file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/CrazyfliePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: tanh d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Crazyflie,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,614
YAML
21.430555
101
0.593556
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/KukaKR120R2500ProReacherPPO.yaml
# Ref: /omniisaacgymenvs/cfg/train/ShadowHandPPO.yaml params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [64, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:KukaKR120R2500ProReacher,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-3 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.02 score_to_win: 100000 max_epochs: ${resolve_default:5000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 64 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 player: deterministic: True games_num: 100000 print_stats: True
1,751
YAML
20.9
71
0.6008
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/ShadowHandPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHand,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 player: deterministic: True games_num: 100000 print_stats: True
1,703
YAML
20.56962
62
0.589548
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/HumanoidSAC.yaml
params: seed: ${...seed} algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:HumanoidSAC,${....experiment}} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} normalize_input: True reward_shaper: scale_value: 1.0 max_epochs: ${resolve_default:50000,${....max_iterations}} num_steps_per_episode: 8 save_best_after: 100 save_frequency: 1000 gamma: 0.99 init_alpha: 1.0 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 5 num_warmup_steps: 10 replay_buffer_size: 1000000 num_actors: ${....task.env.numEnvs}
1,165
YAML
21.423077
101
0.603433
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/ShadowHandOpenAI_LSTMPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHandOpenAI_LSTM,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 32768 mini_epochs: 4 learning_rate: 1e-4 kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True zero_rnn_on_done: False player: deterministic: True games_num: 100000 print_stats: True
2,402
YAML
20.265487
68
0.562448
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/IngenuityPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Ingenuity,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,612
YAML
21.402777
101
0.593052
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/QuadcopterPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Quadcopter,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,613
YAML
21.416666
101
0.593304
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltScrewPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltScrew,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 512 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,597
YAML
20.594594
70
0.594865
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/BallBalancePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [128, 64, 32] activation: elu initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:BallBalance,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:250,${....max_iterations}} save_best_after: 50 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,593
YAML
21.450704
101
0.593848
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/FrankaDeformablePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FrankaDeformable,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 100000000 max_epochs: ${resolve_default:6000,${....max_iterations}} save_best_after: 500 save_frequency: 500 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 #2048 #4096 #8192 #16384 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,665
YAML
22.138889
101
0.600601
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPlacePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltPlace,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 128 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,597
YAML
20.594594
70
0.594865
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/CartpoleCameraPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: None convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: elu initializer: name: default # rnn: # name: lstm # units: 128 # layers: 1 # before_mlp: False # concat_input: True # layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:CartpoleCamera,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: False normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 #0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:500,${....max_iterations}} save_best_after: 50 save_frequency: 10 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 256 minibatch_size: 512 #1024 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
2,124
YAML
21.135416
101
0.556026
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/AntPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Ant,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:500,${....max_iterations}} save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,657
YAML
21.405405
101
0.594448
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/FrankaCabinetPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FrankaCabinet,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 100000000 max_epochs: ${resolve_default:1500,${....max_iterations}} save_best_after: 200 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,636
YAML
21.736111
101
0.598411
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/AntSAC.yaml
params: seed: ${...seed} algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AntSAC,${....experiment}} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} normalize_input: True reward_shaper: scale_value: 1.0 max_epochs: ${resolve_default:20000,${....max_iterations}} num_steps_per_episode: 8 save_best_after: 100 save_frequency: 1000 gamma: 0.99 init_alpha: 1.0 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 5 num_warmup_steps: 10 replay_buffer_size: 1000000 num_actors: ${....task.env.numEnvs}
1,160
YAML
21.326923
101
0.601724
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/AllegroHandPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:AllegroHand,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.02 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 player: deterministic: True games_num: 100000 print_stats: True
1,694
YAML
20.455696
62
0.590909
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/AnymalPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0. # std = 1. fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Anymal,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 e_clip: 0.2 entropy_coef: 0.0 learning_rate: 3.e-4 # overwritten by adaptive lr_schedule lr_schedule: adaptive kl_threshold: 0.008 # target kl for adaptive lr truncate_grads: True grad_norm: 1. horizon_length: 24 minibatch_size: 32768 mini_epochs: 5 critic_coef: 2 clip_value: True seq_length: 4 # only for rnn bounds_loss_coef: 0.001 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 200 score_to_win: 20000 save_frequency: 50 print_stats: True
1,744
YAML
21.960526
101
0.600917
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/CartpolePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 32] activation: elu initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Cartpole,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:100,${....max_iterations}} save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,583
YAML
21.628571
101
0.593178
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPickPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltPick,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:200,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 128 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,596
YAML
20.581081
69
0.594612
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/scripts/rlgames_demo.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import datetime import os import hydra import torch from omegaconf import DictConfig from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.scripts.rlgames_train import RLGTrainer from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path from omniisaacgymenvs.utils.demo_util import initialize_demo from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict class RLGDemo(RLGTrainer): def __init__(self, cfg, cfg_dict): RLGTrainer.__init__(self, cfg, cfg_dict) self.cfg.test = True @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_demo(cfg_dict, env) if cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) rlg_trainer = RLGDemo(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run() env.close() if cfg.wandb_activate: wandb.finish() if __name__ == "__main__": parse_hydra_configs()
3,746
Python
35.735294
109
0.719434
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/scripts/rlgames_train.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import datetime import os import hydra import torch from omegaconf import DictConfig from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path, get_experience from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.task_util import initialize_task from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner class RLGTrainer: def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register("RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register("rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env}) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self): # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) runner.load(self.rlg_config_dict) runner.reset() # dump config dict experiment_dir = os.path.join("runs", self.cfg.train.params.config.name) os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, "config.yaml"), "w") as f: f.write(OmegaConf.to_yaml(self.cfg)) runner.run( {"train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None} ) @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless # local rank (GPU id) in a current multi-gpu mode local_rank = int(os.getenv("LOCAL_RANK", "0")) # global rank (GPU id) in multi-gpu multi-node mode global_rank = int(os.getenv("RANK", "0")) if cfg.multi_gpu: cfg.device_id = local_rank cfg.rl_device = f'cuda:{local_rank}' enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience(headless, cfg.enable_livestream, enable_viewport, cfg.kit_app) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport, experience=experience ) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = cfg.seed + global_rank if cfg.seed != -1 else cfg.seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) if cfg.wandb_activate and global_rank == 0: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, name=run_name, resume="allow", ) torch.cuda.set_device(local_rank) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run() env.close() if cfg.wandb_activate and global_rank == 0: wandb.finish() if __name__ == "__main__": parse_hydra_configs()
5,846
Python
37.721854
119
0.695689
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/scripts/random_policy.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import hydra import numpy as np import torch from omegaconf import DictConfig from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import get_experience from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.task_util import initialize_task @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) headless = cfg.headless render = not headless enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience(headless, cfg.enable_livestream, enable_viewport, cfg.kit_app) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport, experience=experience ) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) while env._simulation_app.is_running(): if env._world.is_playing(): if env._world.current_time_step_index == 0: env._world.reset(soft=True) actions = torch.tensor( np.array([env.action_space.sample() for _ in range(env.num_envs)]), device=task.rl_device ) env._task.pre_physics_step(actions) env._world.step(render=render) env.sim_frame_count += 1 env._task.post_physics_step() else: env._world.step(render=render) env._simulation_app.close() if __name__ == "__main__": parse_hydra_configs()
3,559
Python
39.91954
105
0.722113
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/scripts/dummy_kukakr120r2500pro_policy.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: /omniisaacgymenvs/scripts/random_policy.py import hydra import numpy as np import torch from omegaconf import DictConfig from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import get_experience from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.task_util import initialize_task @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) headless = cfg.headless render = not headless enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience(headless, cfg.enable_livestream, enable_viewport, cfg.kit_app) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport, experience=experience ) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) while env._simulation_app.is_running(): if env._world.is_playing(): if env._world.current_time_step_index == 0: env._world.reset(soft=True) actions = torch.tensor( np.array([env.action_space.sample() for _ in range(env.num_envs)]), device=task.rl_device ) actions[:, 0] = 0.0 actions[:, 1] = 0.0 actions[:, 2] = 0.0 actions[:, 3] = 0.0 actions[:, 4] = 0.0 actions[:, 5] = 0.0 env._task.pre_physics_step(actions) env._world.step(render=render) env.sim_frame_count += 1 env._task.post_physics_step() else: env._world.step(render=render) env._simulation_app.close() if __name__ == "__main__": parse_hydra_configs()
3,841
Python
39.020833
105
0.702421
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/demos/anymal_terrain.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask, wrap_to_pi from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.torch.transformations import tf_combine import numpy as np import torch import math import omni import carb from omni.kit.viewport.utility.camera_state import ViewportCameraState from omni.kit.viewport.utility import get_viewport_from_window_name from pxr import Sdf class AnymalTerrainDemo(AnymalTerrainTask): def __init__( self, name, sim_config, env, offset=None ) -> None: max_num_envs = 128 if sim_config.task_config["env"]["numEnvs"] >= max_num_envs: print(f"num_envs reduced to {max_num_envs} for this demo.") sim_config.task_config["env"]["numEnvs"] = max_num_envs sim_config.task_config["env"]["learn"]["episodeLength_s"] = 120 AnymalTerrainTask.__init__(self, name, sim_config, env) self.add_noise = False self.knee_threshold = 0.05 self.create_camera() self._current_command = [0.0, 0.0, 0.0, 0.0] self.set_up_keyboard() self._prim_selection = omni.usd.get_context().get_selection() self._selected_id = None self._previous_selected_id = None return def create_camera(self): stage = omni.usd.get_context().get_stage() self.view_port = get_viewport_from_window_name("Viewport") # Create camera self.camera_path = "/World/Camera" self.perspective_path = "/OmniverseKit_Persp" camera_prim = stage.DefinePrim(self.camera_path, "Camera") camera_prim.GetAttribute("focalLength").Set(8.5) coi_prop = camera_prim.GetProperty("omni:kit:centerOfInterest") if not coi_prop or not coi_prop.IsValid(): camera_prim.CreateAttribute( "omni:kit:centerOfInterest", Sdf.ValueTypeNames.Vector3d, True, Sdf.VariabilityUniform ).Set(Gf.Vec3d(0, 0, -10)) self.view_port.set_active_camera(self.perspective_path) def set_up_keyboard(self): self._input = carb.input.acquire_input_interface() self._keyboard = omni.appwindow.get_default_app_window().get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._on_keyboard_event) T = 1 R = 1 self._key_to_control = { "UP": [T, 0.0, 0.0, 0.0], "DOWN": [-T, 0.0, 0.0, 0.0], "LEFT": [0.0, T, 0.0, 0.0], "RIGHT": [0.0, -T, 0.0, 0.0], "Z": [0.0, 0.0, R, 0.0], "X": [0.0, 0.0, -R, 0.0], } def _on_keyboard_event(self, event, *args, **kwargs): if event.type == carb.input.KeyboardEventType.KEY_PRESS: if event.input.name in self._key_to_control: self._current_command = self._key_to_control[event.input.name] elif event.input.name == "ESCAPE": self._prim_selection.clear_selected_prim_paths() elif event.input.name == "C": if self._selected_id is not None: if self.view_port.get_active_camera() == self.camera_path: self.view_port.set_active_camera(self.perspective_path) else: self.view_port.set_active_camera(self.camera_path) elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: self._current_command = [0.0, 0.0, 0.0, 0.0] def update_selected_object(self): self._previous_selected_id = self._selected_id selected_prim_paths = self._prim_selection.get_selected_prim_paths() if len(selected_prim_paths) == 0: self._selected_id = None self.view_port.set_active_camera(self.perspective_path) elif len(selected_prim_paths) > 1: print("Multiple prims are selected. Please only select one!") else: prim_splitted_path = selected_prim_paths[0].split("/") if len(prim_splitted_path) >= 4 and prim_splitted_path[3][0:4] == "env_": self._selected_id = int(prim_splitted_path[3][4:]) if self._previous_selected_id != self._selected_id: self.view_port.set_active_camera(self.camera_path) self._update_camera() else: print("The selected prim was not an Anymal") if self._previous_selected_id is not None and self._previous_selected_id != self._selected_id: self.commands[self._previous_selected_id, 0] = np.random.uniform(self.command_x_range[0], self.command_x_range[1]) self.commands[self._previous_selected_id, 1] = np.random.uniform(self.command_y_range[0], self.command_y_range[1]) self.commands[self._previous_selected_id, 2] = 0.0 def _update_camera(self): base_pos = self.base_pos[self._selected_id, :].clone() base_quat = self.base_quat[self._selected_id, :].clone() camera_local_transform = torch.tensor([-1.8, 0.0, 0.6], device=self.device) camera_pos = quat_apply(base_quat, camera_local_transform) + base_pos camera_state = ViewportCameraState(self.camera_path, self.view_port) eye = Gf.Vec3d(camera_pos[0].item(), camera_pos[1].item(), camera_pos[2].item()) target = Gf.Vec3d(base_pos[0].item(), base_pos[1].item(), base_pos[2].item()+0.6) camera_state.set_position_world(eye, True) camera_state.set_target_world(target, True) def post_physics_step(self): self.progress_buf[:] += 1 self.refresh_dof_state_tensors() self.refresh_body_state_tensors() self.update_selected_object() self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5*wrap_to_pi(self.commands[:, 3] - heading), -1., 1.) self.check_termination() if self._selected_id is not None: self.commands[self._selected_id, :] = torch.tensor(self._current_command, device=self.device) self.timeout_buf[self._selected_id] = 0 self.reset_buf[self._selected_id] = 0 self.get_states() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
8,841
Python
44.577319
126
0.636127
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/demos/kukakr120r2500pro_reacher.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: /omniisaacgymenvs/demos/anymal_terrain.py from omniisaacgymenvs.tasks.kukakr120r2500pro_reacher import KukaKR120R2500ProReacherTask from omni.isaac.core.utils.torch.rotations import * import torch import omni import carb from omni.kit.viewport.utility.camera_state import ViewportCameraState from omni.kit.viewport.utility import get_viewport_from_window_name from pxr import Sdf class KukaKR120R2500ProReacherDemo(KukaKR120R2500ProReacherTask): def __init__( self, name, sim_config, env, offset=None ) -> None: max_num_envs = 128 if sim_config.task_config["env"]["numEnvs"] >= max_num_envs: print(f"num_envs reduced to {max_num_envs} for this demo.") sim_config.task_config["env"]["numEnvs"] = max_num_envs KukaKR120R2500ProReacherTask.__init__(self, name, sim_config, env) self.add_noise = False self.create_camera() self._current_command = [0.0] * 6 self.set_up_keyboard() self._prim_selection = omni.usd.get_context().get_selection() self._selected_id = None self._previous_selected_id = None return def create_camera(self): stage = omni.usd.get_context().get_stage() self.view_port = get_viewport_from_window_name("Viewport") # Create camera self.camera_path = "/World/Camera" self.perspective_path = "/OmniverseKit_Persp" camera_prim = stage.DefinePrim(self.camera_path, "Camera") camera_prim.GetAttribute("focalLength").Set(8.5) coi_prop = camera_prim.GetProperty("omni:kit:centerOfInterest") if not coi_prop or not coi_prop.IsValid(): camera_prim.CreateAttribute( "omni:kit:centerOfInterest", Sdf.ValueTypeNames.Vector3d, True, Sdf.VariabilityUniform ).Set(Gf.Vec3d(0, 0, -10)) self.view_port.set_active_camera(self.perspective_path) def set_up_keyboard(self): self._input = carb.input.acquire_input_interface() self._keyboard = omni.appwindow.get_default_app_window().get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._on_keyboard_event) self._key_to_control = { # Joint 0 "Q": [-1.0, 0.0, 0.0, 0.0, 0.0, 0.0], "A": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0], # Joint 1 "W": [0.0, -1.0, 0.0, 0.0, 0.0, 0.0], "S": [0.0, 1.0, 0.0, 0.0, 0.0, 0.0], # Joint 2 "E": [0.0, 0.0, -1.0, 0.0, 0.0, 0.0], "D": [0.0, 0.0, 1.0, 0.0, 0.0, 0.0], # Joint 3 "R": [0.0, 0.0, 0.0, -1.0, 0.0, 0.0], "F": [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], # Joint 4 "T": [0.0, 0.0, 0.0, 0.0, -1.0, 0.0], "G": [0.0, 0.0, 0.0, 0.0, 1.0, 0.0], # Joint 5 "Y": [0.0, 0.0, 0.0, 0.0, 0.0, -1.0], "H": [0.0, 0.0, 0.0, 0.0, 0.0, 1.0], } def _on_keyboard_event(self, event, *args, **kwargs): if event.type == carb.input.KeyboardEventType.KEY_PRESS: if event.input.name in self._key_to_control: self._current_command = self._key_to_control[event.input.name] elif event.input.name == "ESCAPE": self._prim_selection.clear_selected_prim_paths() elif event.input.name == "C": if self._selected_id is not None: if self.view_port.get_active_camera() == self.camera_path: self.view_port.set_active_camera(self.perspective_path) else: self.view_port.set_active_camera(self.camera_path) elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: self._current_command = [0.0] * 6 def update_selected_object(self): self._previous_selected_id = self._selected_id selected_prim_paths = self._prim_selection.get_selected_prim_paths() if len(selected_prim_paths) == 0: self._selected_id = None self.view_port.set_active_camera(self.perspective_path) elif len(selected_prim_paths) > 1: print("Multiple prims are selected. Please only select one!") else: prim_splitted_path = selected_prim_paths[0].split("/") if len(prim_splitted_path) >= 4 and prim_splitted_path[3][0:4] == "env_": self._selected_id = int(prim_splitted_path[3][4:]) else: print("The selected prim was not a Kuka") def _update_camera(self): base_pos = self.base_pos[self._selected_id, :].clone() base_quat = self.base_quat[self._selected_id, :].clone() camera_local_transform = torch.tensor([-1.8, 0.0, 0.6], device=self.device) camera_pos = quat_apply(base_quat, camera_local_transform) + base_pos camera_state = ViewportCameraState(self.camera_path, self.view_port) eye = Gf.Vec3d(camera_pos[0].item(), camera_pos[1].item(), camera_pos[2].item()) target = Gf.Vec3d(base_pos[0].item(), base_pos[1].item(), base_pos[2].item()+0.6) camera_state.set_position_world(eye, True) camera_state.set_target_world(target, True) def pre_physics_step(self, actions): if self._selected_id is not None: actions[self._selected_id, :] = torch.tensor(self._current_command, device=self.device) result = super().pre_physics_step(actions) if self._selected_id is not None: print('selected kuka id:', self._selected_id) print('self.rew_buf[idx]:', self.rew_buf[self._selected_id]) print('self.object_pos[idx]:', self.object_pos[self._selected_id]) print('self.goal_pos[idx]:', self.goal_pos[self._selected_id]) return result def post_physics_step(self): self.progress_buf[:] += 1 self.update_selected_object() if self._selected_id is not None: self.reset_buf[self._selected_id] = 0 self.get_states() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec # Calculate rewards self.calculate_metrics() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
8,085
Python
42.945652
110
0.617811
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/tests/__init__.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .runner import *
1,580
Python
53.51724
80
0.783544
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/tests/runner.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio from datetime import date import sys import unittest import weakref import omni.kit.test from omni.kit.test import AsyncTestSuite from omni.kit.test.async_unittest import AsyncTextTestRunner import omni.ui as ui from omni.isaac.ui.menu import make_menu_item_description from omni.isaac.ui.ui_utils import btn_builder from omni.kit.menu.utils import MenuItemDescription, add_menu_items import omni.timeline import omni.usd from omniisaacgymenvs import RLExtension, get_instance class GymRLTests(omni.kit.test.AsyncTestCase): def __init__(self, *args, **kwargs): super(GymRLTests, self).__init__(*args, **kwargs) self.ext = get_instance() async def _train(self, task, load=True, experiment=None, max_iterations=None): task_idx = self.ext._task_list.index(task) self.ext._task_dropdown.get_item_value_model().set_value(task_idx) if load: self.ext._on_load_world() while True: _, files_loaded, total_files = omni.usd.get_context().get_stage_loading_status() if files_loaded or total_files: await omni.kit.app.get_app().next_update_async() else: break for _ in range(100): await omni.kit.app.get_app().next_update_async() self.ext._render_dropdown.get_item_value_model().set_value(2) overrides = None if experiment is not None: overrides = [f"experiment={experiment}"] if max_iterations is not None: if overrides is None: overrides = [f"max_iterations={max_iterations}"] else: overrides += [f"max_iterations={max_iterations}"] await self.ext._on_train_async(overrides=overrides) async def test_train(self): date_str = date.today() tasks = self.ext._task_list for task in tasks: await self._train(task, load=True, experiment=f"{task}_{date_str}") async def test_train_determinism(self): date_str = date.today() tasks = self.ext._task_list for task in tasks: for i in range(3): await self._train(task, load=(i==0), experiment=f"{task}_{date_str}_{i}", max_iterations=100) class TestRunner(): def __init__(self): self._build_ui() def _build_ui(self): menu_items = [make_menu_item_description("RL Examples Tests", "RL Examples Tests", lambda a=weakref.proxy(self): a._menu_callback())] add_menu_items(menu_items, "Isaac Examples") self._window = omni.ui.Window( "RL Examples Tests", width=250, height=0, visible=True, dockPreference=ui.DockPreference.LEFT_BOTTOM ) with self._window.frame: main_stack = ui.VStack(spacing=5, height=0) with main_stack: dict = { "label": "Run Tests", "type": "button", "text": "Run Tests", "tooltip": "Run all tests", "on_clicked_fn": self._run_tests, } btn_builder(**dict) def _menu_callback(self): self._window.visible = not self._window.visible def _run_tests(self): loader = unittest.TestLoader() loader.SuiteClass = AsyncTestSuite test_suite = AsyncTestSuite() test_suite.addTests(loader.loadTestsFromTestCase(GymRLTests)) test_runner = AsyncTextTestRunner(verbosity=2, stream=sys.stdout) async def single_run(): await test_runner.run(test_suite) print("=======================================") print(f"Running Tests") print("=======================================") asyncio.ensure_future(single_run()) TestRunner()
4,254
Python
35.059322
141
0.607428
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/demo_util.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def initialize_demo(config, env, init_sim=True): from omniisaacgymenvs.demos.anymal_terrain import AnymalTerrainDemo from omniisaacgymenvs.demos.kukakr120r2500pro_reacher import KukaKR120R2500ProReacherDemo # Mappings from strings to environments task_map = { "AnymalTerrain": AnymalTerrainDemo, "KukaKR120R2500ProReacher": KukaKR120R2500ProReacherDemo, } from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig sim_config = SimConfig(config) cfg = sim_config.config task = task_map[cfg["task_name"]]( name=cfg["task_name"], sim_config=sim_config, env=env ) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=init_sim) return task
2,366
Python
45.411764
107
0.762468
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/task_util.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def import_tasks(): from omniisaacgymenvs.tasks.allegro_hand import AllegroHandTask from omniisaacgymenvs.tasks.ant import AntLocomotionTask from omniisaacgymenvs.tasks.anymal import AnymalTask from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask from omniisaacgymenvs.tasks.ball_balance import BallBalanceTask from omniisaacgymenvs.tasks.cartpole import CartpoleTask from omniisaacgymenvs.tasks.cartpole_camera import CartpoleCameraTask from omniisaacgymenvs.tasks.crazyflie import CrazyflieTask from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_pick import FactoryTaskNutBoltPick from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_place import FactoryTaskNutBoltPlace from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_screw import FactoryTaskNutBoltScrew from omniisaacgymenvs.tasks.franka_cabinet import FrankaCabinetTask from omniisaacgymenvs.tasks.franka_deformable import FrankaDeformableTask from omniisaacgymenvs.tasks.humanoid import HumanoidLocomotionTask from omniisaacgymenvs.tasks.ingenuity import IngenuityTask from omniisaacgymenvs.tasks.quadcopter import QuadcopterTask from omniisaacgymenvs.tasks.shadow_hand import ShadowHandTask from omniisaacgymenvs.tasks.kukakr120r2500pro_reacher import KukaKR120R2500ProReacherTask from omniisaacgymenvs.tasks.warp.ant import AntLocomotionTask as AntLocomotionTaskWarp from omniisaacgymenvs.tasks.warp.cartpole import CartpoleTask as CartpoleTaskWarp from omniisaacgymenvs.tasks.warp.humanoid import HumanoidLocomotionTask as HumanoidLocomotionTaskWarp # Mappings from strings to environments task_map = { "AllegroHand": AllegroHandTask, "Ant": AntLocomotionTask, "Anymal": AnymalTask, "AnymalTerrain": AnymalTerrainTask, "BallBalance": BallBalanceTask, "Cartpole": CartpoleTask, "CartpoleCamera": CartpoleCameraTask, "FactoryTaskNutBoltPick": FactoryTaskNutBoltPick, "FactoryTaskNutBoltPlace": FactoryTaskNutBoltPlace, "FactoryTaskNutBoltScrew": FactoryTaskNutBoltScrew, "FrankaCabinet": FrankaCabinetTask, "FrankaDeformable": FrankaDeformableTask, "Humanoid": HumanoidLocomotionTask, "Ingenuity": IngenuityTask, "Quadcopter": QuadcopterTask, "Crazyflie": CrazyflieTask, "ShadowHand": ShadowHandTask, "ShadowHandOpenAI_FF": ShadowHandTask, "ShadowHandOpenAI_LSTM": ShadowHandTask, "KukaKR120R2500ProReacher": KukaKR120R2500ProReacherTask, } task_map_warp = { "Cartpole": CartpoleTaskWarp, "Ant":AntLocomotionTaskWarp, "Humanoid": HumanoidLocomotionTaskWarp } return task_map, task_map_warp def initialize_task(config, env, init_sim=True): from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig sim_config = SimConfig(config) task_map, task_map_warp = import_tasks() cfg = sim_config.config if cfg["warp"]: task_map = task_map_warp task = task_map[cfg["task_name"]]( name=cfg["task_name"], sim_config=sim_config, env=env ) backend = "warp" if cfg["warp"] else "torch" rendering_dt = sim_config.get_physics_params()["rendering_dt"] env.set_task( task=task, sim_params=sim_config.get_physics_params(), backend=backend, init_sim=init_sim, rendering_dt=rendering_dt, ) return task
5,093
Python
43.295652
105
0.755154
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/domain_randomization/randomize.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import numpy as np import torch from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.extensions import enable_extension class Randomizer: def __init__(self, main_config, task_config): self._cfg = task_config self._config = main_config self.randomize = False dr_config = self._cfg.get("domain_randomization", None) self.distributions = dict() self.active_domain_randomizations = dict() self._observations_dr_params = None self._actions_dr_params = None if dr_config is not None: randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize and randomization_params is not None: self.randomize = True self.min_frequency = dr_config.get("min_frequency", 1) # import DR extensions enable_extension("omni.replicator.isaac") import omni.replicator.core as rep import omni.replicator.isaac as dr self.rep = rep self.dr = dr def apply_on_startup_domain_randomization(self, task): if self.randomize: torch.manual_seed(self._config["seed"]) randomization_params = self._cfg["domain_randomization"]["randomization_params"] for opt in randomization_params.keys(): if opt == "rigid_prim_views": if randomization_params["rigid_prim_views"] is not None: for view_name in randomization_params["rigid_prim_views"].keys(): if randomization_params["rigid_prim_views"][view_name] is not None: for attribute, params in randomization_params["rigid_prim_views"][view_name].items(): params = randomization_params["rigid_prim_views"][view_name][attribute] if attribute in ["scale", "mass", "density"] and params is not None: if "on_startup" in params.keys(): if not set( ("operation", "distribution", "distribution_parameters") ).issubset(params["on_startup"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} " + "on_startup are provided: operation, distribution, distribution_parameters." ) view = task._env._world.scene._scene_registry.rigid_prim_views[view_name] if attribute == "scale": self.randomize_scale_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], sync_dim_noise=True, ) elif attribute == "mass": self.randomize_mass_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], ) elif attribute == "density": self.randomize_density_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], ) if opt == "articulation_views": if randomization_params["articulation_views"] is not None: for view_name in randomization_params["articulation_views"].keys(): if randomization_params["articulation_views"][view_name] is not None: for attribute, params in randomization_params["articulation_views"][view_name].items(): params = randomization_params["articulation_views"][view_name][attribute] if attribute in ["scale"] and params is not None: if "on_startup" in params.keys(): if not set( ("operation", "distribution", "distribution_parameters") ).issubset(params["on_startup"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} " + "on_startup are provided: operation, distribution, distribution_parameters." ) view = task._env._world.scene._scene_registry.articulated_views[view_name] if attribute == "scale": self.randomize_scale_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], sync_dim_noise=True, ) else: dr_config = self._cfg.get("domain_randomization", None) if dr_config is None: raise ValueError("No domain randomization parameters are specified in the task yaml config file") randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize == False or randomization_params is None: print("On Startup Domain randomization will not be applied.") def set_up_domain_randomization(self, task): if self.randomize: randomization_params = self._cfg["domain_randomization"]["randomization_params"] self.rep.set_global_seed(self._config["seed"]) with self.dr.trigger.on_rl_frame(num_envs=self._cfg["env"]["numEnvs"]): for opt in randomization_params.keys(): if opt == "observations": self._set_up_observations_randomization(task) elif opt == "actions": self._set_up_actions_randomization(task) elif opt == "simulation": if randomization_params["simulation"] is not None: self.distributions["simulation"] = dict() self.dr.physics_view.register_simulation_context(task._env._world) for attribute, params in randomization_params["simulation"].items(): self._set_up_simulation_randomization(attribute, params) elif opt == "rigid_prim_views": if randomization_params["rigid_prim_views"] is not None: self.distributions["rigid_prim_views"] = dict() for view_name in randomization_params["rigid_prim_views"].keys(): if randomization_params["rigid_prim_views"][view_name] is not None: self.distributions["rigid_prim_views"][view_name] = dict() self.dr.physics_view.register_rigid_prim_view( rigid_prim_view=task._env._world.scene._scene_registry.rigid_prim_views[ view_name ], ) for attribute, params in randomization_params["rigid_prim_views"][ view_name ].items(): if attribute not in ["scale", "density"]: self._set_up_rigid_prim_view_randomization(view_name, attribute, params) elif opt == "articulation_views": if randomization_params["articulation_views"] is not None: self.distributions["articulation_views"] = dict() for view_name in randomization_params["articulation_views"].keys(): if randomization_params["articulation_views"][view_name] is not None: self.distributions["articulation_views"][view_name] = dict() self.dr.physics_view.register_articulation_view( articulation_view=task._env._world.scene._scene_registry.articulated_views[ view_name ], ) for attribute, params in randomization_params["articulation_views"][ view_name ].items(): if attribute not in ["scale"]: self._set_up_articulation_view_randomization(view_name, attribute, params) self.rep.orchestrator.run() else: dr_config = self._cfg.get("domain_randomization", None) if dr_config is None: raise ValueError("No domain randomization parameters are specified in the task yaml config file") randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize == False or randomization_params is None: print("Domain randomization will not be applied.") def _set_up_observations_randomization(self, task): task.randomize_observations = True self._observations_dr_params = self._cfg["domain_randomization"]["randomization_params"]["observations"] if self._observations_dr_params is None: raise ValueError(f"Observations randomization parameters are not provided.") if "on_reset" in self._observations_dr_params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset( self._observations_dr_params["on_reset"].keys() ): raise ValueError( f"Please ensure the following observations on_reset randomization parameters are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("observations", "on_reset")] = np.array( self._observations_dr_params["on_reset"]["distribution_parameters"] ) if "on_interval" in self._observations_dr_params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( self._observations_dr_params["on_interval"].keys() ): raise ValueError( f"Please ensure the following observations on_interval randomization parameters are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("observations", "on_interval")] = np.array( self._observations_dr_params["on_interval"]["distribution_parameters"] ) self._observations_counter_buffer = torch.zeros( (self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"] ) self._observations_correlated_noise = torch.zeros( (self._cfg["env"]["numEnvs"], task.num_observations), device=self._config["rl_device"] ) def _set_up_actions_randomization(self, task): task.randomize_actions = True self._actions_dr_params = self._cfg["domain_randomization"]["randomization_params"]["actions"] if self._actions_dr_params is None: raise ValueError(f"Actions randomization parameters are not provided.") if "on_reset" in self._actions_dr_params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset( self._actions_dr_params["on_reset"].keys() ): raise ValueError( f"Please ensure the following actions on_reset randomization parameters are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("actions", "on_reset")] = np.array( self._actions_dr_params["on_reset"]["distribution_parameters"] ) if "on_interval" in self._actions_dr_params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( self._actions_dr_params["on_interval"].keys() ): raise ValueError( f"Please ensure the following actions on_interval randomization parameters are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("actions", "on_interval")] = np.array( self._actions_dr_params["on_interval"]["distribution_parameters"] ) self._actions_counter_buffer = torch.zeros( (self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"] ) self._actions_correlated_noise = torch.zeros( (self._cfg["env"]["numEnvs"], task.num_actions), device=self._config["rl_device"] ) def apply_observations_randomization(self, observations, reset_buf): env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1) self._observations_counter_buffer[env_ids] = 0 self._observations_counter_buffer += 1 if "on_reset" in self._observations_dr_params.keys(): observations[:] = self._apply_correlated_noise( buffer_type="observations", buffer=observations, reset_ids=env_ids, operation=self._observations_dr_params["on_reset"]["operation"], distribution=self._observations_dr_params["on_reset"]["distribution"], distribution_parameters=self._observations_dr_params["on_reset"]["distribution_parameters"], ) if "on_interval" in self._observations_dr_params.keys(): randomize_ids = ( (self._observations_counter_buffer >= self._observations_dr_params["on_interval"]["frequency_interval"]) .nonzero(as_tuple=False) .squeeze(-1) ) self._observations_counter_buffer[randomize_ids] = 0 observations[:] = self._apply_uncorrelated_noise( buffer=observations, randomize_ids=randomize_ids, operation=self._observations_dr_params["on_interval"]["operation"], distribution=self._observations_dr_params["on_interval"]["distribution"], distribution_parameters=self._observations_dr_params["on_interval"]["distribution_parameters"], ) return observations def apply_actions_randomization(self, actions, reset_buf): env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1) self._actions_counter_buffer[env_ids] = 0 self._actions_counter_buffer += 1 if "on_reset" in self._actions_dr_params.keys(): actions[:] = self._apply_correlated_noise( buffer_type="actions", buffer=actions, reset_ids=env_ids, operation=self._actions_dr_params["on_reset"]["operation"], distribution=self._actions_dr_params["on_reset"]["distribution"], distribution_parameters=self._actions_dr_params["on_reset"]["distribution_parameters"], ) if "on_interval" in self._actions_dr_params.keys(): randomize_ids = ( (self._actions_counter_buffer >= self._actions_dr_params["on_interval"]["frequency_interval"]) .nonzero(as_tuple=False) .squeeze(-1) ) self._actions_counter_buffer[randomize_ids] = 0 actions[:] = self._apply_uncorrelated_noise( buffer=actions, randomize_ids=randomize_ids, operation=self._actions_dr_params["on_interval"]["operation"], distribution=self._actions_dr_params["on_interval"]["distribution"], distribution_parameters=self._actions_dr_params["on_interval"]["distribution_parameters"], ) return actions def _apply_uncorrelated_noise(self, buffer, randomize_ids, operation, distribution, distribution_parameters): if distribution == "gaussian" or distribution == "normal": noise = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"], ) elif distribution == "uniform": noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand( (len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"] ) + distribution_parameters[0] elif distribution == "loguniform" or distribution == "log_uniform": noise = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"]) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") if operation == "additive": buffer[randomize_ids] += noise elif operation == "scaling": buffer[randomize_ids] *= noise else: print(f"The specified {operation} operation type is not supported.") return buffer def _apply_correlated_noise(self, buffer_type, buffer, reset_ids, operation, distribution, distribution_parameters): if buffer_type == "observations": correlated_noise_buffer = self._observations_correlated_noise elif buffer_type == "actions": correlated_noise_buffer = self._actions_correlated_noise if len(reset_ids) > 0: if distribution == "gaussian" or distribution == "normal": correlated_noise_buffer[reset_ids] = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(reset_ids), buffer.shape[1]), device=self._config["rl_device"], ) elif distribution == "uniform": correlated_noise_buffer[reset_ids] = ( distribution_parameters[1] - distribution_parameters[0] ) * torch.rand( (len(reset_ids), buffer.shape[1]), device=self._config["rl_device"] ) + distribution_parameters[ 0 ] elif distribution == "loguniform" or distribution == "log_uniform": correlated_noise_buffer[reset_ids] = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(reset_ids), buffer.shape[1]), device=self._config["rl_device"]) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") if operation == "additive": buffer += correlated_noise_buffer elif operation == "scaling": buffer *= correlated_noise_buffer else: print(f"The specified {operation} operation type is not supported.") return buffer def _set_up_simulation_randomization(self, attribute, params): if params is None: raise ValueError(f"Randomization parameters for simulation {attribute} is not provided.") if attribute in self.dr.SIMULATION_CONTEXT_ATTRIBUTES: self.distributions["simulation"][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for simulation {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("simulation", attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"operation": params["on_reset"]["operation"]} self.distributions["simulation"][attribute]["on_reset"] = self._generate_distribution( dimension=self.dr.physics_view._simulation_context_initial_values[attribute].shape[0], view_name="simulation", attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["simulation"][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_simulation_context(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for simulation {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("simulation", attribute, "on_interval")] = np.array( params["on_interval"]["distribution_parameters"] ) kwargs = {"operation": params["on_interval"]["operation"]} self.distributions["simulation"][attribute]["on_interval"] = self._generate_distribution( dimension=self.dr.physics_view._simulation_context_initial_values[attribute].shape[0], view_name="simulation", attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["simulation"][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_simulation_context(**kwargs) def _set_up_rigid_prim_view_randomization(self, view_name, attribute, params): if params is None: raise ValueError(f"Randomization parameters for rigid prim view {view_name} {attribute} is not provided.") if attribute in self.dr.RIGID_PRIM_ATTRIBUTES: self.distributions["rigid_prim_views"][view_name][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys(): kwargs["num_buckets"] = params["on_reset"]["num_buckets"] self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] = self._generate_distribution( dimension=self.dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_rigid_prim_view(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_interval")] = np.array( params["on_interval"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys(): kwargs["num_buckets"] = params["on_interval"]["num_buckets"] self.distributions["rigid_prim_views"][view_name][attribute][ "on_interval" ] = self._generate_distribution( dimension=self.dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_rigid_prim_view(**kwargs) else: raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.") def _set_up_articulation_view_randomization(self, view_name, attribute, params): if params is None: raise ValueError(f"Randomization parameters for articulation view {view_name} {attribute} is not provided.") if attribute in self.dr.ARTICULATION_ATTRIBUTES: self.distributions["articulation_views"][view_name][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("articulation_views", view_name, attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys(): kwargs["num_buckets"] = params["on_reset"]["num_buckets"] self.distributions["articulation_views"][view_name][attribute][ "on_reset" ] = self._generate_distribution( dimension=self.dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_articulation_view(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[ ("articulation_views", view_name, attribute, "on_interval") ] = np.array(params["on_interval"]["distribution_parameters"]) kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys(): kwargs["num_buckets"] = params["on_interval"]["num_buckets"] self.distributions["articulation_views"][view_name][attribute][ "on_interval" ] = self._generate_distribution( dimension=self.dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_articulation_view(**kwargs) else: raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.") def _generate_distribution(self, view_name, attribute, dimension, params): dist_params = self._sanitize_distribution_parameters(attribute, dimension, params["distribution_parameters"]) if params["distribution"] == "uniform": return self.rep.distribution.uniform(tuple(dist_params[0]), tuple(dist_params[1])) elif params["distribution"] == "gaussian" or params["distribution"] == "normal": return self.rep.distribution.normal(tuple(dist_params[0]), tuple(dist_params[1])) elif params["distribution"] == "loguniform" or params["distribution"] == "log_uniform": return self.rep.distribution.log_uniform(tuple(dist_params[0]), tuple(dist_params[1])) else: raise ValueError( f"The provided distribution for {view_name} {attribute} is not supported. " + "Options: uniform, gaussian/normal, loguniform/log_uniform" ) def _sanitize_distribution_parameters(self, attribute, dimension, params): distribution_parameters = np.array(params) if distribution_parameters.shape == (2,): # if the user does not provide a set of parameters for each dimension dist_params = [[distribution_parameters[0]] * dimension, [distribution_parameters[1]] * dimension] elif distribution_parameters.shape == (2, dimension): # if the user provides a set of parameters for each dimension in the format [[...], [...]] dist_params = distribution_parameters.tolist() elif attribute in ["material_properties", "body_inertias"] and distribution_parameters.shape == (2, 3): # if the user only provides the parameters for one body in the articulation, assume the same parameters for all other links dist_params = [ [distribution_parameters[0]] * (dimension // 3), [distribution_parameters[1]] * (dimension // 3), ] else: raise ValueError( f"The provided distribution_parameters for {view_name} {attribute} is invalid due to incorrect dimensions." ) return dist_params def set_dr_distribution_parameters(self, distribution_parameters, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) if distribution_path[0] == "observations": if len(distribution_parameters) == 2: self._observations_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters else: raise ValueError( f"Please provide distribution_parameters for observations {distribution_path[1]} " + "in the form of [dist_param_1, dist_param_2]" ) elif distribution_path[0] == "actions": if len(distribution_parameters) == 2: self._actions_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters else: raise ValueError( f"Please provide distribution_parameters for actions {distribution_path[1]} " + "in the form of [dist_param_1, dist_param_2]" ) else: replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][ distribution_path[2] ] if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views": replicator_distribution = replicator_distribution[distribution_path[3]] if ( replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform" ): dimension = len(self.dr.utils.get_distribution_params(replicator_distribution, ["lower"])[0]) dist_params = self._sanitize_distribution_parameters( distribution_path[-2], dimension, distribution_parameters ) self.dr.utils.set_distribution_params( replicator_distribution, {"lower": dist_params[0], "upper": dist_params[1]} ) elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal": dimension = len(self.dr.utils.get_distribution_params(replicator_distribution, ["mean"])[0]) dist_params = self._sanitize_distribution_parameters( distribution_path[-2], dimension, distribution_parameters ) self.dr.utils.set_distribution_params( replicator_distribution, {"mean": dist_params[0], "std": dist_params[1]} ) def get_dr_distribution_parameters(self, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) if distribution_path[0] == "observations": return self._observations_dr_params[distribution_path[1]]["distribution_parameters"] elif distribution_path[0] == "actions": return self._actions_dr_params[distribution_path[1]]["distribution_parameters"] else: replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][ distribution_path[2] ] if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views": replicator_distribution = replicator_distribution[distribution_path[3]] if ( replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform" ): return self.dr.utils.get_distribution_params(replicator_distribution, ["lower", "upper"]) elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal": return self.dr.utils.get_distribution_params(replicator_distribution, ["mean", "std"]) def get_initial_dr_distribution_parameters(self, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) return self.active_domain_randomizations[distribution_path].copy() def _generate_noise(self, distribution, distribution_parameters, size, device): if distribution == "gaussian" or distribution == "normal": noise = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=size, device=device ) elif distribution == "uniform": noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand( size, device=device ) + distribution_parameters[0] elif distribution == "loguniform" or distribution == "log_uniform": noise = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand(size, device=device) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") return noise def randomize_scale_on_startup(self, view, distribution, distribution_parameters, operation, sync_dim_noise=True): scales = view.get_local_scales() if sync_dim_noise: dist_params = np.asarray( self._sanitize_distribution_parameters(attribute="scale", dimension=1, params=distribution_parameters) ) noise = ( self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device).repeat(3, 1).T ) else: dist_params = np.asarray( self._sanitize_distribution_parameters(attribute="scale", dimension=3, params=distribution_parameters) ) noise = torch.zeros((view.count, 3), device=view._device) for i in range(3): noise[:, i] = self._generate_noise(distribution, dist_params[:, i], (view.count,), view._device) if operation == "additive": scales += noise elif operation == "scaling": scales *= noise elif operation == "direct": scales = noise else: print(f"The specified {operation} operation type is not supported.") view.set_local_scales(scales=scales) def randomize_mass_on_startup(self, view, distribution, distribution_parameters, operation): if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView): masses = view.get_masses() dist_params = np.asarray( self._sanitize_distribution_parameters( attribute=f"{view.name} mass", dimension=1, params=distribution_parameters ) ) noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device) set_masses = view.set_masses if operation == "additive": masses += noise elif operation == "scaling": masses *= noise elif operation == "direct": masses = noise else: print(f"The specified {operation} operation type is not supported.") set_masses(masses) def randomize_density_on_startup(self, view, distribution, distribution_parameters, operation): if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView): densities = view.get_densities() dist_params = np.asarray( self._sanitize_distribution_parameters( attribute=f"{view.name} density", dimension=1, params=distribution_parameters ) ) noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device) set_densities = view.set_densities if operation == "additive": densities += noise elif operation == "scaling": densities *= noise elif operation == "direct": densities = noise else: print(f"The specified {operation} operation type is not supported.") set_densities(densities)
45,603
Python
58.691099
136
0.555051
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/rlgames/rlgames_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Callable import numpy as np import torch from rl_games.algos_torch import torch_ext from rl_games.common import env_configurations, vecenv from rl_games.common.algo_observer import AlgoObserver class RLGPUAlgoObserver(AlgoObserver): """Allows us to log stats from the env along with the algorithm running stats.""" def __init__(self): pass def after_init(self, algo): self.algo = algo self.mean_scores = torch_ext.AverageMeter(1, self.algo.games_to_track).to(self.algo.ppo_device) self.ep_infos = [] self.direct_info = {} self.writer = self.algo.writer def process_infos(self, infos, done_indices): assert isinstance(infos, dict), "RLGPUAlgoObserver expects dict info" if isinstance(infos, dict): if "episode" in infos: self.ep_infos.append(infos["episode"]) if len(infos) > 0 and isinstance(infos, dict): # allow direct logging from env self.direct_info = {} for k, v in infos.items(): # only log scalars if ( isinstance(v, float) or isinstance(v, int) or (isinstance(v, torch.Tensor) and len(v.shape) == 0) ): self.direct_info[k] = v def after_clear_stats(self): self.mean_scores.clear() def after_print_stats(self, frame, epoch_num, total_time): if self.ep_infos: for key in self.ep_infos[0]: infotensor = torch.tensor([], device=self.algo.device) for ep_info in self.ep_infos: # handle scalar and zero dimensional tensor infos if not isinstance(ep_info[key], torch.Tensor): ep_info[key] = torch.Tensor([ep_info[key]]) if len(ep_info[key].shape) == 0: ep_info[key] = ep_info[key].unsqueeze(0) infotensor = torch.cat((infotensor, ep_info[key].to(self.algo.device))) value = torch.mean(infotensor) self.writer.add_scalar("Episode/" + key, value, epoch_num) self.ep_infos.clear() for k, v in self.direct_info.items(): self.writer.add_scalar(f"{k}/frame", v, frame) self.writer.add_scalar(f"{k}/iter", v, epoch_num) self.writer.add_scalar(f"{k}/time", v, total_time) if self.mean_scores.current_size > 0: mean_scores = self.mean_scores.get_mean() self.writer.add_scalar("scores/mean", mean_scores, frame) self.writer.add_scalar("scores/iter", mean_scores, epoch_num) self.writer.add_scalar("scores/time", mean_scores, total_time) class RLGPUEnv(vecenv.IVecEnv): def __init__(self, config_name, num_actors, **kwargs): self.env = env_configurations.configurations[config_name]["env_creator"](**kwargs) def step(self, action): return self.env.step(action) def reset(self): return self.env.reset() def get_number_of_agents(self): return self.env.get_number_of_agents() def get_env_info(self): info = {} info["action_space"] = self.env.action_space info["observation_space"] = self.env.observation_space if self.env.num_states > 0: info["state_space"] = self.env.state_space print(info["action_space"], info["observation_space"], info["state_space"]) else: print(info["action_space"], info["observation_space"]) return info
5,201
Python
40.951613
103
0.636801
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/rlgames/rlgames_train_mt.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import datetime import os import queue import threading import traceback import hydra from omegaconf import DictConfig from omni.isaac.gym.vec_env.vec_env_mt import TrainerMT from omniisaacgymenvs.envs.vec_env_rlgames_mt import VecEnvRLGamesMT from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.task_util import initialize_task from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner class RLGTrainer: def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict # ensure checkpoints can be specified as relative paths self._bad_checkpoint = False if self.cfg.checkpoint: self.cfg.checkpoint = retrieve_checkpoint_path(self.cfg.checkpoint) if not self.cfg.checkpoint: self._bad_checkpoint = True def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register("RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register("rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env}) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self): # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) # add evaluation parameters if self.cfg.evaluation: player_config = self.rlg_config_dict["params"]["config"].get("player", {}) player_config["evaluation"] = True player_config["update_checkpoint_freq"] = 100 player_config["dir_to_monitor"] = os.path.dirname(self.cfg.checkpoint) self.rlg_config_dict["params"]["config"]["player"] = player_config # load config runner.load(copy.deepcopy(self.rlg_config_dict)) runner.reset() # dump config dict experiment_dir = os.path.join("runs", self.cfg.train.params.config.name) os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, "config.yaml"), "w") as f: f.write(OmegaConf.to_yaml(self.cfg)) time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") if self.cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{self.cfg.wandb_name}_{time_str}" wandb.init( project=self.cfg.wandb_project, group=self.cfg.wandb_group, entity=self.cfg.wandb_entity, config=self.cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) runner.run( {"train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None} ) if self.cfg.wandb_activate: wandb.finish() class Trainer(TrainerMT): def __init__(self, trainer, env): self.ppo_thread = None self.action_queue = None self.data_queue = None self.trainer = trainer self.is_running = False self.env = env self.create_task() self.run() def create_task(self): self.trainer.launch_rlg_hydra(self.env) # task = initialize_task(self.trainer.cfg_dict, self.env, init_sim=False) self.task = self.env._task def run(self): self.is_running = True self.action_queue = queue.Queue(1) self.data_queue = queue.Queue(1) if "mt_timeout" in self.trainer.cfg_dict: self.env.initialize(self.action_queue, self.data_queue, self.trainer.cfg_dict["mt_timeout"]) else: self.env.initialize(self.action_queue, self.data_queue) self.ppo_thread = PPOTrainer(self.env, self.task, self.trainer) self.ppo_thread.daemon = True self.ppo_thread.start() def stop(self): self.env.stop = True self.env.clear_queues() if self.action_queue: self.action_queue.join() if self.data_queue: self.data_queue.join() if self.ppo_thread: self.ppo_thread.join() self.action_queue = None self.data_queue = None self.ppo_thread = None self.is_running = False class PPOTrainer(threading.Thread): def __init__(self, env, task, trainer): super().__init__() self.env = env self.task = task self.trainer = trainer def run(self): from omni.isaac.gym.vec_env import TaskStopException print("starting ppo...") try: self.trainer.run() # trainer finished - send stop signal to main thread self.env.should_run = False self.env.send_actions(None, block=False) except TaskStopException: print("Task Stopped!") self.env.should_run = False self.env.send_actions(None, block=False) except Exception as e: # an error occurred on the RL side - signal stop to main thread print(traceback.format_exc()) self.env.should_run = False self.env.send_actions(None, block=False)
7,402
Python
36.770408
119
0.653337
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/config_utils/sim_config.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import carb import numpy as np import omni.usd import torch from omni.isaac.core.utils.extensions import enable_extension from omniisaacgymenvs.utils.config_utils.default_scene_params import * class SimConfig: def __init__(self, config: dict = None): if config is None: config = dict() self._config = config self._cfg = config.get("task", dict()) self._parse_config() if self._config["test"] == True: self._sim_params["enable_scene_query_support"] = True if ( self._config["headless"] == True and not self._sim_params["enable_cameras"] and not self._config["enable_livestream"] ): self._sim_params["use_fabric"] = False self._sim_params["enable_viewport"] = False else: self._sim_params["enable_viewport"] = True enable_extension("omni.kit.viewport.bundle") if self._sim_params["enable_cameras"]: enable_extension("omni.replicator.isaac") self._sim_params["warp"] = self._config["warp"] self._sim_params["sim_device"] = self._config["sim_device"] self._adjust_dt() if self._sim_params["disable_contact_processing"]: carb.settings.get_settings().set_bool("/physics/disableContactProcessing", True) carb.settings.get_settings().set_bool("/physics/physxDispatcher", True) # Force the background grid off all the time for RL tasks, to avoid the grid showing up in any RL camera task carb.settings.get_settings().set("/app/viewport/grid/enabled", False) # Disable framerate limiting which might cause rendering slowdowns carb.settings.get_settings().set("/app/runLoops/main/rateLimitEnabled", False) import omni.ui # Dock floating UIs this might not be needed anymore as extensions dock themselves # Method for docking a particular window to a location def dock_window(space, name, location, ratio=0.5): window = omni.ui.Workspace.get_window(name) if window and space: window.dock_in(space, location, ratio=ratio) return window # Acquire the main docking station main_dockspace = omni.ui.Workspace.get_window("DockSpace") dock_window(main_dockspace, "Content", omni.ui.DockPosition.BOTTOM, 0.3) window = omni.ui.Workspace.get_window("Content") if window: window.visible = False def _parse_config(self): # general sim parameter self._sim_params = copy.deepcopy(default_sim_params) self._default_physics_material = copy.deepcopy(default_physics_material) sim_cfg = self._cfg.get("sim", None) if sim_cfg is not None: for opt in sim_cfg.keys(): if opt in self._sim_params: if opt == "default_physics_material": for material_opt in sim_cfg[opt]: self._default_physics_material[material_opt] = sim_cfg[opt][material_opt] else: self._sim_params[opt] = sim_cfg[opt] else: print("Sim params does not have attribute: ", opt) self._sim_params["default_physics_material"] = self._default_physics_material # physx parameters self._physx_params = copy.deepcopy(default_physx_params) if sim_cfg is not None and "physx" in sim_cfg: for opt in sim_cfg["physx"].keys(): if opt in self._physx_params: self._physx_params[opt] = sim_cfg["physx"][opt] else: print("Physx sim params does not have attribute: ", opt) self._sanitize_device() def _sanitize_device(self): if self._sim_params["use_gpu_pipeline"]: self._physx_params["use_gpu"] = True # device should be in sync with pipeline if self._sim_params["use_gpu_pipeline"]: self._config["sim_device"] = f"cuda:{self._config['device_id']}" else: self._config["sim_device"] = "cpu" # also write to physics params for setting sim device self._physx_params["sim_device"] = self._config["sim_device"] print("Pipeline: ", "GPU" if self._sim_params["use_gpu_pipeline"] else "CPU") print("Pipeline Device: ", self._config["sim_device"]) print("Sim Device: ", "GPU" if self._physx_params["use_gpu"] else "CPU") def parse_actor_config(self, actor_name): actor_params = copy.deepcopy(default_actor_options) if "sim" in self._cfg and actor_name in self._cfg["sim"]: actor_cfg = self._cfg["sim"][actor_name] for opt in actor_cfg.keys(): if actor_cfg[opt] != -1 and opt in actor_params: actor_params[opt] = actor_cfg[opt] elif opt not in actor_params: print("Actor params does not have attribute: ", opt) return actor_params def _get_actor_config_value(self, actor_name, attribute_name, attribute=None): actor_params = self.parse_actor_config(actor_name) if attribute is not None: if attribute_name not in actor_params: return attribute.Get() if actor_params[attribute_name] != -1: return actor_params[attribute_name] elif actor_params["override_usd_defaults"] and not attribute.IsAuthored(): return self._physx_params[attribute_name] else: if actor_params[attribute_name] != -1: return actor_params[attribute_name] def _adjust_dt(self): # re-evaluate rendering dt to simulate physics substeps physics_dt = self.sim_params["dt"] rendering_dt = self.sim_params["rendering_dt"] # by default, rendering dt = physics dt if rendering_dt <= 0: rendering_dt = physics_dt self.task_config["renderingInterval"] = max(round((1/physics_dt) / (1/rendering_dt)), 1) # we always set rendering dt to be the same as physics dt, stepping is taken care of in VecEnvRLGames self.sim_params["rendering_dt"] = physics_dt @property def sim_params(self): return self._sim_params @property def config(self): return self._config @property def task_config(self): return self._cfg @property def physx_params(self): return self._physx_params def get_physics_params(self): return {**self.sim_params, **self.physx_params} def _get_physx_collision_api(self, prim): from pxr import PhysxSchema, UsdPhysics physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim) if not physx_collision_api: physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim) return physx_collision_api def _get_physx_rigid_body_api(self, prim): from pxr import PhysxSchema, UsdPhysics physx_rb_api = PhysxSchema.PhysxRigidBodyAPI(prim) if not physx_rb_api: physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim) return physx_rb_api def _get_physx_articulation_api(self, prim): from pxr import PhysxSchema, UsdPhysics arti_api = PhysxSchema.PhysxArticulationAPI(prim) if not arti_api: arti_api = PhysxSchema.PhysxArticulationAPI.Apply(prim) return arti_api def set_contact_offset(self, name, prim, value=None): physx_collision_api = self._get_physx_collision_api(prim) contact_offset = physx_collision_api.GetContactOffsetAttr() # if not contact_offset: # contact_offset = physx_collision_api.CreateContactOffsetAttr() if value is None: value = self._get_actor_config_value(name, "contact_offset", contact_offset) if value != -1: contact_offset.Set(value) def set_rest_offset(self, name, prim, value=None): physx_collision_api = self._get_physx_collision_api(prim) rest_offset = physx_collision_api.GetRestOffsetAttr() # if not rest_offset: # rest_offset = physx_collision_api.CreateRestOffsetAttr() if value is None: value = self._get_actor_config_value(name, "rest_offset", rest_offset) if value != -1: rest_offset.Set(value) def set_position_iteration(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) solver_position_iteration_count = physx_rb_api.GetSolverPositionIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_position_iteration_count", solver_position_iteration_count ) if value != -1: solver_position_iteration_count.Set(value) def set_velocity_iteration(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) solver_velocity_iteration_count = physx_rb_api.GetSolverVelocityIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_velocity_iteration_count", solver_velocity_iteration_count ) if value != -1: solver_velocity_iteration_count.Set(value) def set_max_depenetration_velocity(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) max_depenetration_velocity = physx_rb_api.GetMaxDepenetrationVelocityAttr() if value is None: value = self._get_actor_config_value(name, "max_depenetration_velocity", max_depenetration_velocity) if value != -1: max_depenetration_velocity.Set(value) def set_sleep_threshold(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) sleep_threshold = physx_rb_api.GetSleepThresholdAttr() if value is None: value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold) if value != -1: sleep_threshold.Set(value) def set_stabilization_threshold(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) stabilization_threshold = physx_rb_api.GetStabilizationThresholdAttr() if value is None: value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold) if value != -1: stabilization_threshold.Set(value) def set_gyroscopic_forces(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) enable_gyroscopic_forces = physx_rb_api.GetEnableGyroscopicForcesAttr() if value is None: value = self._get_actor_config_value(name, "enable_gyroscopic_forces", enable_gyroscopic_forces) if value != -1: enable_gyroscopic_forces.Set(value) def set_density(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) density = physx_rb_api.GetDensityAttr() if value is None: value = self._get_actor_config_value(name, "density", density) if value != -1: density.Set(value) # auto-compute mass self.set_mass(prim, 0.0) def set_mass(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) mass = physx_rb_api.GetMassAttr() if value is None: value = self._get_actor_config_value(name, "mass", mass) if value != -1: mass.Set(value) def retain_acceleration(self, prim): # retain accelerations if running with more than one substep physx_rb_api = self._get_physx_rigid_body_api(prim) if self._sim_params["substeps"] > 1: physx_rb_api.GetRetainAccelerationsAttr().Set(True) def make_kinematic(self, name, prim, cfg, value=None): # make rigid body kinematic (fixed base and no collision) from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() if value is None: value = self._get_actor_config_value(name, "make_kinematic") if value == True: # parse through all children prims prims = [prim] while len(prims) > 0: cur_prim = prims.pop(0) rb = UsdPhysics.RigidBodyAPI.Get(stage, cur_prim.GetPath()) if rb: rb.CreateKinematicEnabledAttr().Set(True) children_prims = cur_prim.GetPrim().GetChildren() prims = prims + children_prims def set_articulation_position_iteration(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) solver_position_iteration_count = arti_api.GetSolverPositionIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_position_iteration_count", solver_position_iteration_count ) if value != -1: solver_position_iteration_count.Set(value) def set_articulation_velocity_iteration(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) solver_velocity_iteration_count = arti_api.GetSolverVelocityIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_velocity_iteration_count", solver_position_iteration_count ) if value != -1: solver_velocity_iteration_count.Set(value) def set_articulation_sleep_threshold(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) sleep_threshold = arti_api.GetSleepThresholdAttr() if value is None: value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold) if value != -1: sleep_threshold.Set(value) def set_articulation_stabilization_threshold(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) stabilization_threshold = arti_api.GetStabilizationThresholdAttr() if value is None: value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold) if value != -1: stabilization_threshold.Set(value) def apply_rigid_body_settings(self, name, prim, cfg, is_articulation): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() rb_api = UsdPhysics.RigidBodyAPI.Get(stage, prim.GetPath()) physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Get(stage, prim.GetPath()) if not physx_rb_api: physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim) # if it's a body in an articulation, it's handled at articulation root if not is_articulation: self.make_kinematic(name, prim, cfg, cfg["make_kinematic"]) self.set_position_iteration(name, prim, cfg["solver_position_iteration_count"]) self.set_velocity_iteration(name, prim, cfg["solver_velocity_iteration_count"]) self.set_max_depenetration_velocity(name, prim, cfg["max_depenetration_velocity"]) self.set_sleep_threshold(name, prim, cfg["sleep_threshold"]) self.set_stabilization_threshold(name, prim, cfg["stabilization_threshold"]) self.set_gyroscopic_forces(name, prim, cfg["enable_gyroscopic_forces"]) # density and mass mass_api = UsdPhysics.MassAPI.Get(stage, prim.GetPath()) if mass_api is None: mass_api = UsdPhysics.MassAPI.Apply(prim) mass_attr = mass_api.GetMassAttr() density_attr = mass_api.GetDensityAttr() if not mass_attr: mass_attr = mass_api.CreateMassAttr() if not density_attr: density_attr = mass_api.CreateDensityAttr() if cfg["density"] != -1: density_attr.Set(cfg["density"]) mass_attr.Set(0.0) # mass is to be computed elif cfg["override_usd_defaults"] and not density_attr.IsAuthored() and not mass_attr.IsAuthored(): density_attr.Set(self._physx_params["density"]) self.retain_acceleration(prim) def apply_rigid_shape_settings(self, name, prim, cfg): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() # collision APIs collision_api = UsdPhysics.CollisionAPI(prim) if not collision_api: collision_api = UsdPhysics.CollisionAPI.Apply(prim) physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim) if not physx_collision_api: physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim) self.set_contact_offset(name, prim, cfg["contact_offset"]) self.set_rest_offset(name, prim, cfg["rest_offset"]) def apply_articulation_settings(self, name, prim, cfg): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() is_articulation = False # check if is articulation prims = [prim] while len(prims) > 0: prim_tmp = prims.pop(0) articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, prim_tmp.GetPath()) physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, prim_tmp.GetPath()) if articulation_api or physx_articulation_api: is_articulation = True children_prims = prim_tmp.GetPrim().GetChildren() prims = prims + children_prims # parse through all children prims prims = [prim] while len(prims) > 0: cur_prim = prims.pop(0) rb = UsdPhysics.RigidBodyAPI.Get(stage, cur_prim.GetPath()) collision_body = UsdPhysics.CollisionAPI.Get(stage, cur_prim.GetPath()) articulation = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath()) if rb: self.apply_rigid_body_settings(name, cur_prim, cfg, is_articulation) if collision_body: self.apply_rigid_shape_settings(name, cur_prim, cfg) if articulation: articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath()) physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, cur_prim.GetPath()) # enable self collisions enable_self_collisions = physx_articulation_api.GetEnabledSelfCollisionsAttr() if cfg["enable_self_collisions"] != -1: enable_self_collisions.Set(cfg["enable_self_collisions"]) self.set_articulation_position_iteration(name, cur_prim, cfg["solver_position_iteration_count"]) self.set_articulation_velocity_iteration(name, cur_prim, cfg["solver_velocity_iteration_count"]) self.set_articulation_sleep_threshold(name, cur_prim, cfg["sleep_threshold"]) self.set_articulation_stabilization_threshold(name, cur_prim, cfg["stabilization_threshold"]) children_prims = cur_prim.GetPrim().GetChildren() prims = prims + children_prims
20,932
Python
42.792887
117
0.632429
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/config_utils/default_scene_params.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. default_physx_params = { ### Per-scene settings "use_gpu": False, "worker_thread_count": 4, "solver_type": 1, # 0: PGS, 1:TGS "bounce_threshold_velocity": 0.2, "friction_offset_threshold": 0.04, # A threshold of contact separation distance used to decide if a contact # point will experience friction forces. "friction_correlation_distance": 0.025, # Contact points can be merged into a single friction anchor if the # distance between the contacts is smaller than correlation distance. # disabling these can be useful for debugging "enable_sleeping": True, "enable_stabilization": True, # GPU buffers "gpu_max_rigid_contact_count": 512 * 1024, "gpu_max_rigid_patch_count": 80 * 1024, "gpu_found_lost_pairs_capacity": 1024, "gpu_found_lost_aggregate_pairs_capacity": 1024, "gpu_total_aggregate_pairs_capacity": 1024, "gpu_max_soft_body_contacts": 1024 * 1024, "gpu_max_particle_contacts": 1024 * 1024, "gpu_heap_capacity": 64 * 1024 * 1024, "gpu_temp_buffer_capacity": 16 * 1024 * 1024, "gpu_max_num_partitions": 8, "gpu_collision_stack_size": 64 * 1024 * 1024, ### Per-actor settings ( can override in actor_options ) "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may go to sleep. # Allowed range [0, max_float). "stabilization_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may # participate in stabilization. Allowed range [0, max_float). ### Per-body settings ( can override in actor_options ) "enable_gyroscopic_forces": False, "density": 1000.0, # density to be used for bodies that do not specify mass or density "max_depenetration_velocity": 100.0, ### Per-shape settings ( can override in actor_options ) "contact_offset": 0.02, "rest_offset": 0.001, } default_physics_material = {"static_friction": 1.0, "dynamic_friction": 1.0, "restitution": 0.0} default_sim_params = { "gravity": [0.0, 0.0, -9.81], "dt": 1.0 / 60.0, "rendering_dt": -1.0, # we don't want to override this if it's set from cfg "substeps": 1, "use_gpu_pipeline": True, "add_ground_plane": True, "add_distant_light": True, "use_fabric": True, "enable_scene_query_support": False, "enable_cameras": False, "disable_contact_processing": False, "default_physics_material": default_physics_material, } default_actor_options = { # -1 means use authored value from USD or default values from default_sim_params if not explicitly authored in USD. # If an attribute value is not explicitly authored in USD, add one with the value given here, # which overrides the USD default. "override_usd_defaults": False, "make_kinematic": -1, "enable_self_collisions": -1, "enable_gyroscopic_forces": -1, "solver_position_iteration_count": -1, "solver_velocity_iteration_count": -1, "sleep_threshold": -1, "stabilization_threshold": -1, "max_depenetration_velocity": -1, "density": -1, "mass": -1, "contact_offset": -1, "rest_offset": -1, }
4,783
Python
44.132075
119
0.703951
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/config_utils/path_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import carb from hydra.utils import to_absolute_path def is_valid_local_file(path): return os.path.isfile(path) def is_valid_ov_file(path): import omni.client result, entry = omni.client.stat(path) return result == omni.client.Result.OK def download_ov_file(source_path, target_path): import omni.client result = omni.client.copy(source_path, target_path) if result == omni.client.Result.OK: return True return False def break_ov_path(path): import omni.client return omni.client.break_url(path) def retrieve_checkpoint_path(path): # check if it's a local path if is_valid_local_file(path): return to_absolute_path(path) # check if it's an OV path elif is_valid_ov_file(path): ov_path = break_ov_path(path) file_name = os.path.basename(ov_path.path) target_path = f"checkpoints/{file_name}" copy_to_local = download_ov_file(path, target_path) return to_absolute_path(target_path) else: carb.log_error(f"Invalid checkpoint path: {path}. Does the file exist?") return None def get_experience(headless, enable_livestream, enable_viewport, kit_app): if kit_app == '': if enable_viewport: experience = os.path.abspath(os.path.join('../apps', 'omni.isaac.sim.python.gym.camera.kit')) else: experience = f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.gym.kit' if headless and not enable_livestream: experience = f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.gym.headless.kit' else: experience = kit_app return experience
3,226
Python
34.855555
105
0.713887
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/hydra_cfg/hydra_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import hydra from omegaconf import DictConfig, OmegaConf ## OmegaConf & Hydra Config # Resolvers used in hydra configs (see https://omegaconf.readthedocs.io/en/2.1_branch/usage.html#resolvers) if not OmegaConf.has_resolver("eq"): OmegaConf.register_new_resolver("eq", lambda x, y: x.lower() == y.lower()) if not OmegaConf.has_resolver("contains"): OmegaConf.register_new_resolver("contains", lambda x, y: x.lower() in y.lower()) if not OmegaConf.has_resolver("if"): OmegaConf.register_new_resolver("if", lambda pred, a, b: a if pred else b) # allows us to resolve default arguments which are copied in multiple places in the config. used primarily for # num_ensv if not OmegaConf.has_resolver("resolve_default"): OmegaConf.register_new_resolver("resolve_default", lambda default, arg: default if arg == "" else arg)
2,394
Python
51.065216
110
0.767753
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/hydra_cfg/reformat.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Dict from omegaconf import DictConfig, OmegaConf def omegaconf_to_dict(d: DictConfig) -> Dict: """Converts an omegaconf DictConfig to a python Dict, respecting variable interpolation.""" ret = {} for k, v in d.items(): if isinstance(v, DictConfig): ret[k] = omegaconf_to_dict(v) else: ret[k] = v return ret def print_dict(val, nesting: int = -4, start: bool = True): """Outputs a nested dictionory.""" if type(val) == dict: if not start: print("") nesting += 4 for k in val: print(nesting * " ", end="") print(k, end=": ") print_dict(val[k], nesting, start=False) else: print(val)
2,313
Python
38.896551
95
0.707739
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/terrain_utils/terrain_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from math import sqrt import numpy as np from numpy.random import choice from omni.isaac.core.prims import XFormPrim from pxr import Gf, PhysxSchema, Sdf, UsdPhysics from scipy import interpolate def random_uniform_terrain( terrain, min_height, max_height, step=1, downsampled_scale=None, ): """ Generate a uniform noise terrain Parameters terrain (SubTerrain): the terrain min_height (float): the minimum height of the terrain [meters] max_height (float): the maximum height of the terrain [meters] step (float): minimum height change between two points [meters] downsampled_scale (float): distance between two randomly sampled points ( musty be larger or equal to terrain.horizontal_scale) """ if downsampled_scale is None: downsampled_scale = terrain.horizontal_scale # switch parameters to discrete units min_height = int(min_height / terrain.vertical_scale) max_height = int(max_height / terrain.vertical_scale) step = int(step / terrain.vertical_scale) heights_range = np.arange(min_height, max_height + step, step) height_field_downsampled = np.random.choice( heights_range, ( int(terrain.width * terrain.horizontal_scale / downsampled_scale), int(terrain.length * terrain.horizontal_scale / downsampled_scale), ), ) x = np.linspace(0, terrain.width * terrain.horizontal_scale, height_field_downsampled.shape[0]) y = np.linspace(0, terrain.length * terrain.horizontal_scale, height_field_downsampled.shape[1]) f = interpolate.RectBivariateSpline(y, x, height_field_downsampled) x_upsampled = np.linspace(0, terrain.width * terrain.horizontal_scale, terrain.width) y_upsampled = np.linspace(0, terrain.length * terrain.horizontal_scale, terrain.length) z_upsampled = np.rint(f(y_upsampled, x_upsampled)) terrain.height_field_raw += z_upsampled.astype(np.int16) return terrain def sloped_terrain(terrain, slope=1): """ Generate a sloped terrain Parameters: terrain (SubTerrain): the terrain slope (int): positive or negative slope Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * terrain.width) terrain.height_field_raw[:, np.arange(terrain.length)] += (max_height * xx / terrain.width).astype( terrain.height_field_raw.dtype ) return terrain def pyramid_sloped_terrain(terrain, slope=1, platform_size=1.0): """ Generate a sloped terrain Parameters: terrain (terrain): the terrain slope (int): positive or negative slope platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) center_x = int(terrain.width / 2) center_y = int(terrain.length / 2) xx, yy = np.meshgrid(x, y, sparse=True) xx = (center_x - np.abs(center_x - xx)) / center_x yy = (center_y - np.abs(center_y - yy)) / center_y xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * (terrain.width / 2)) terrain.height_field_raw += (max_height * xx * yy).astype(terrain.height_field_raw.dtype) platform_size = int(platform_size / terrain.horizontal_scale / 2) x1 = terrain.width // 2 - platform_size x2 = terrain.width // 2 + platform_size y1 = terrain.length // 2 - platform_size y2 = terrain.length // 2 + platform_size min_h = min(terrain.height_field_raw[x1, y1], 0) max_h = max(terrain.height_field_raw[x1, y1], 0) terrain.height_field_raw = np.clip(terrain.height_field_raw, min_h, max_h) return terrain def discrete_obstacles_terrain(terrain, max_height, min_size, max_size, num_rects, platform_size=1.0): """ Generate a terrain with gaps Parameters: terrain (terrain): the terrain max_height (float): maximum height of the obstacles (range=[-max, -max/2, max/2, max]) [meters] min_size (float): minimum size of a rectangle obstacle [meters] max_size (float): maximum size of a rectangle obstacle [meters] num_rects (int): number of randomly generated obstacles platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units max_height = int(max_height / terrain.vertical_scale) min_size = int(min_size / terrain.horizontal_scale) max_size = int(max_size / terrain.horizontal_scale) platform_size = int(platform_size / terrain.horizontal_scale) (i, j) = terrain.height_field_raw.shape height_range = [-max_height, -max_height // 2, max_height // 2, max_height] width_range = range(min_size, max_size, 4) length_range = range(min_size, max_size, 4) for _ in range(num_rects): width = np.random.choice(width_range) length = np.random.choice(length_range) start_i = np.random.choice(range(0, i - width, 4)) start_j = np.random.choice(range(0, j - length, 4)) terrain.height_field_raw[start_i : start_i + width, start_j : start_j + length] = np.random.choice(height_range) x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def wave_terrain(terrain, num_waves=1, amplitude=1.0): """ Generate a wavy terrain Parameters: terrain (terrain): the terrain num_waves (int): number of sine waves across the terrain length Returns: terrain (SubTerrain): update terrain """ amplitude = int(0.5 * amplitude / terrain.vertical_scale) if num_waves > 0: div = terrain.length / (num_waves * np.pi * 2) x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) terrain.height_field_raw += (amplitude * np.cos(yy / div) + amplitude * np.sin(xx / div)).astype( terrain.height_field_raw.dtype ) return terrain def stairs_terrain(terrain, step_width, step_height): """ Generate a stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the height of the step [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) num_steps = terrain.width // step_width height = step_height for i in range(num_steps): terrain.height_field_raw[i * step_width : (i + 1) * step_width, :] += height height += step_height return terrain def pyramid_stairs_terrain(terrain, step_width, step_height, platform_size=1.0): """ Generate stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the step_height [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height = 0 start_x = 0 stop_x = terrain.width start_y = 0 stop_y = terrain.length while (stop_x - start_x) > platform_size and (stop_y - start_y) > platform_size: start_x += step_width stop_x -= step_width start_y += step_width stop_y -= step_width height += step_height terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = height return terrain def stepping_stones_terrain(terrain, stone_size, stone_distance, max_height, platform_size=1.0, depth=-10): """ Generate a stepping stones terrain Parameters: terrain (terrain): the terrain stone_size (float): horizontal size of the stepping stones [meters] stone_distance (float): distance between stones (i.e size of the holes) [meters] max_height (float): maximum height of the stones (positive and negative) [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] depth (float): depth of the holes (default=-10.) [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units stone_size = int(stone_size / terrain.horizontal_scale) stone_distance = int(stone_distance / terrain.horizontal_scale) max_height = int(max_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height_range = np.arange(-max_height - 1, max_height, step=1) start_x = 0 start_y = 0 terrain.height_field_raw[:, :] = int(depth / terrain.vertical_scale) if terrain.length >= terrain.width: while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) start_x = np.random.randint(0, stone_size) # fill first hole stop_x = max(0, start_x - stone_distance) terrain.height_field_raw[0:stop_x, start_y:stop_y] = np.random.choice(height_range) # fill row while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(height_range) start_x += stone_size + stone_distance start_y += stone_size + stone_distance elif terrain.width > terrain.length: while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) start_y = np.random.randint(0, stone_size) # fill first hole stop_y = max(0, start_y - stone_distance) terrain.height_field_raw[start_x:stop_x, 0:stop_y] = np.random.choice(height_range) # fill column while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(height_range) start_y += stone_size + stone_distance start_x += stone_size + stone_distance x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def convert_heightfield_to_trimesh(height_field_raw, horizontal_scale, vertical_scale, slope_threshold=None): """ Convert a heightfield array to a triangle mesh represented by vertices and triangles. Optionally, corrects vertical surfaces above the provide slope threshold: If (y2-y1)/(x2-x1) > slope_threshold -> Move A to A' (set x1 = x2). Do this for all directions. B(x2,y2) /| / | / | (x1,y1)A---A'(x2',y1) Parameters: height_field_raw (np.array): input heightfield horizontal_scale (float): horizontal scale of the heightfield [meters] vertical_scale (float): vertical scale of the heightfield [meters] slope_threshold (float): the slope threshold above which surfaces are made vertical. If None no correction is applied (default: None) Returns: vertices (np.array(float)): array of shape (num_vertices, 3). Each row represents the location of each vertex [meters] triangles (np.array(int)): array of shape (num_triangles, 3). Each row represents the indices of the 3 vertices connected by this triangle. """ hf = height_field_raw num_rows = hf.shape[0] num_cols = hf.shape[1] y = np.linspace(0, (num_cols - 1) * horizontal_scale, num_cols) x = np.linspace(0, (num_rows - 1) * horizontal_scale, num_rows) yy, xx = np.meshgrid(y, x) if slope_threshold is not None: slope_threshold *= horizontal_scale / vertical_scale move_x = np.zeros((num_rows, num_cols)) move_y = np.zeros((num_rows, num_cols)) move_corners = np.zeros((num_rows, num_cols)) move_x[: num_rows - 1, :] += hf[1:num_rows, :] - hf[: num_rows - 1, :] > slope_threshold move_x[1:num_rows, :] -= hf[: num_rows - 1, :] - hf[1:num_rows, :] > slope_threshold move_y[:, : num_cols - 1] += hf[:, 1:num_cols] - hf[:, : num_cols - 1] > slope_threshold move_y[:, 1:num_cols] -= hf[:, : num_cols - 1] - hf[:, 1:num_cols] > slope_threshold move_corners[: num_rows - 1, : num_cols - 1] += ( hf[1:num_rows, 1:num_cols] - hf[: num_rows - 1, : num_cols - 1] > slope_threshold ) move_corners[1:num_rows, 1:num_cols] -= ( hf[: num_rows - 1, : num_cols - 1] - hf[1:num_rows, 1:num_cols] > slope_threshold ) xx += (move_x + move_corners * (move_x == 0)) * horizontal_scale yy += (move_y + move_corners * (move_y == 0)) * horizontal_scale # create triangle mesh vertices and triangles from the heightfield grid vertices = np.zeros((num_rows * num_cols, 3), dtype=np.float32) vertices[:, 0] = xx.flatten() vertices[:, 1] = yy.flatten() vertices[:, 2] = hf.flatten() * vertical_scale triangles = -np.ones((2 * (num_rows - 1) * (num_cols - 1), 3), dtype=np.uint32) for i in range(num_rows - 1): ind0 = np.arange(0, num_cols - 1) + i * num_cols ind1 = ind0 + 1 ind2 = ind0 + num_cols ind3 = ind2 + 1 start = 2 * i * (num_cols - 1) stop = start + 2 * (num_cols - 1) triangles[start:stop:2, 0] = ind0 triangles[start:stop:2, 1] = ind3 triangles[start:stop:2, 2] = ind1 triangles[start + 1 : stop : 2, 0] = ind0 triangles[start + 1 : stop : 2, 1] = ind2 triangles[start + 1 : stop : 2, 2] = ind3 return vertices, triangles def add_terrain_to_stage(stage, vertices, triangles, position=None, orientation=None): num_faces = triangles.shape[0] terrain_mesh = stage.DefinePrim("/World/terrain", "Mesh") terrain_mesh.GetAttribute("points").Set(vertices) terrain_mesh.GetAttribute("faceVertexIndices").Set(triangles.flatten()) terrain_mesh.GetAttribute("faceVertexCounts").Set(np.asarray([3] * num_faces)) terrain = XFormPrim(prim_path="/World/terrain", name="terrain", position=position, orientation=orientation) UsdPhysics.CollisionAPI.Apply(terrain.prim) # collision_api = UsdPhysics.MeshCollisionAPI.Apply(terrain.prim) # collision_api.CreateApproximationAttr().Set("meshSimplification") physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(terrain.prim) physx_collision_api.GetContactOffsetAttr().Set(0.02) physx_collision_api.GetRestOffsetAttr().Set(0.00) class SubTerrain: def __init__(self, terrain_name="terrain", width=256, length=256, vertical_scale=1.0, horizontal_scale=1.0): self.terrain_name = terrain_name self.vertical_scale = vertical_scale self.horizontal_scale = horizontal_scale self.width = width self.length = length self.height_field_raw = np.zeros((self.width, self.length), dtype=np.int16)
17,645
Python
41.215311
147
0.649306
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/terrain_utils/create_terrain_demo.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os, sys SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(SCRIPT_DIR) import omni from omni.isaac.kit import SimulationApp import numpy as np import torch simulation_app = SimulationApp({"headless": False}) from abc import abstractmethod from omni.isaac.core.tasks import BaseTask from omni.isaac.core.prims import RigidPrimView, RigidPrim, XFormPrim from omni.isaac.core import World from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.core.utils.nucleus import find_nucleus_server from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage from omni.isaac.core.materials import PreviewSurface from omni.isaac.cloner import GridCloner from pxr import UsdPhysics, UsdLux, UsdShade, Sdf, Gf, UsdGeom, PhysxSchema from terrain_utils import * class TerrainCreation(BaseTask): def __init__(self, name, num_envs, num_per_row, env_spacing, config=None, offset=None,) -> None: BaseTask.__init__(self, name=name, offset=offset) self._num_envs = num_envs self._num_per_row = num_per_row self._env_spacing = env_spacing self._device = "cpu" self._cloner = GridCloner(self._env_spacing, self._num_per_row) self._cloner.define_base_env(self.default_base_env_path) define_prim(self.default_zero_env_path) @property def default_base_env_path(self): return "/World/envs" @property def default_zero_env_path(self): return f"{self.default_base_env_path}/env_0" def set_up_scene(self, scene) -> None: self._stage = get_current_stage() distantLight = UsdLux.DistantLight.Define(self._stage, Sdf.Path("/World/DistantLight")) distantLight.CreateIntensityAttr(2000) self.get_terrain() self.get_ball() super().set_up_scene(scene) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) print(f"cloning {self._num_envs} environments...") self._env_pos = self._cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=prim_paths ) return def get_terrain(self): # create all available terrain types num_terains = 8 terrain_width = 12. terrain_length = 12. horizontal_scale = 0.25 # [m] vertical_scale = 0.005 # [m] num_rows = int(terrain_width/horizontal_scale) num_cols = int(terrain_length/horizontal_scale) heightfield = np.zeros((num_terains*num_rows, num_cols), dtype=np.int16) def new_sub_terrain(): return SubTerrain(width=num_rows, length=num_cols, vertical_scale=vertical_scale, horizontal_scale=horizontal_scale) heightfield[0:num_rows, :] = random_uniform_terrain(new_sub_terrain(), min_height=-0.2, max_height=0.2, step=0.2, downsampled_scale=0.5).height_field_raw heightfield[num_rows:2*num_rows, :] = sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[2*num_rows:3*num_rows, :] = pyramid_sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[3*num_rows:4*num_rows, :] = discrete_obstacles_terrain(new_sub_terrain(), max_height=0.5, min_size=1., max_size=5., num_rects=20).height_field_raw heightfield[4*num_rows:5*num_rows, :] = wave_terrain(new_sub_terrain(), num_waves=2., amplitude=1.).height_field_raw heightfield[5*num_rows:6*num_rows, :] = stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[6*num_rows:7*num_rows, :] = pyramid_stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[7*num_rows:8*num_rows, :] = stepping_stones_terrain(new_sub_terrain(), stone_size=1., stone_distance=1., max_height=0.5, platform_size=0.).height_field_raw vertices, triangles = convert_heightfield_to_trimesh(heightfield, horizontal_scale=horizontal_scale, vertical_scale=vertical_scale, slope_threshold=1.5) position = np.array([-6.0, 48.0, 0]) orientation = np.array([0.70711, 0.0, 0.0, -0.70711]) add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position, orientation=orientation) def get_ball(self): ball = DynamicSphere(prim_path=self.default_zero_env_path + "/ball", name="ball", translation=np.array([0.0, 0.0, 1.0]), mass=0.5, radius=0.2,) def post_reset(self): for i in range(self._num_envs): ball_prim = self._stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}/ball") color = 0.5 + 0.5 * np.random.random(3) visual_material = PreviewSurface(prim_path=f"{self.default_base_env_path}/env_{i}/ball/Looks/visual_material", color=color) binding_api = UsdShade.MaterialBindingAPI(ball_prim) binding_api.Bind(visual_material.material, bindingStrength=UsdShade.Tokens.strongerThanDescendants) def get_observations(self): pass def calculate_metrics(self) -> None: pass def is_done(self) -> None: pass if __name__ == "__main__": world = World( stage_units_in_meters=1.0, rendering_dt=1.0/60.0, backend="torch", device="cpu", ) num_envs = 800 num_per_row = 80 env_spacing = 0.56*2 terrain_creation_task = TerrainCreation(name="TerrainCreation", num_envs=num_envs, num_per_row=num_per_row, env_spacing=env_spacing, ) world.add_task(terrain_creation_task) world.reset() while simulation_app.is_running(): if world.is_playing(): if world.current_time_step_index == 0: world.reset(soft=True) world.step(render=True) else: world.step(render=True) simulation_app.close()
7,869
Python
43.213483
166
0.650654
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/usd_utils/create_instanceable_kukakr120r2500pro_from_urdf.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_import_urdf.html#importing-urdf-using-python import os import omni.kit.commands import omni.usd from omni.importer.urdf import _urdf from omni.isaac.core.utils.extensions import get_extension_path_from_name from pxr import Sdf, UsdGeom def create_kuka_from_urdf(urdf_path, usd_path, mesh_usd_path, instanceable_usd_path): # Set the settings in the import config import_config = _urdf.ImportConfig() import_config.merge_fixed_joints = False import_config.convex_decomp = False import_config.import_inertia_tensor = False import_config.fix_base = True import_config.make_default_prim = True import_config.self_collision = False import_config.create_physics_scene = True # The two values below follows the suggestion from Step 2 in # `5.1.3. Using the URDF Importer Extension Window`. # Ref: https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_import_urdf.html#using-the-urdf-importer-extension-window # However, we found that the drive strength is too large, so we reduced it to the same value as drive damping. import_config.default_drive_strength = 100000.0 # 10000000.0 import_config.default_position_drive_damping = 100000.0 import_config.default_drive_type = _urdf.UrdfJointTargetType.JOINT_DRIVE_POSITION import_config.distance_scale = 1 import_config.density = 0.0 # Finally import the robot & save it as USD result, prim_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, dest_path=usd_path, ) import_config.make_instanceable=True import_config.instanceable_usd_path=mesh_usd_path # Finally import the robot & save it as instanceable USD result, prim_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, dest_path=instanceable_usd_path, ) def create_block_indicator(): for suffix in ['', '_instanceable']: asset_usd_path = f'omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Props/Blocks/block{suffix}.usd' block_usd_path = f'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Props/Blocks/block{suffix}.usd' omni.client.copy(asset_usd_path, block_usd_path) omni.usd.get_context().open_stage(block_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() edits.Add(Sdf.NamespaceEdit.Remove('/object/object/collisions')) stage.GetRootLayer().Apply(edits) omni.usd.get_context().save_stage() if __name__ == '__main__': kuka_urdf_path = f'{os.path.expanduser("~")}/OmniIsaacGymEnvs-KukaReacher/thirdparty/kuka_kr120_support/urdf/kr120r2500pro.urdf' kuka_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Kuka/KR120_R2500_Pro/kr120r2500pro_urdf.usd' kuka_mesh_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Kuka/KR120_R2500_Pro/kr120r2500pro_urdf_instanceable_meshes.usd' kuka_instanceable_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Kuka/KR120_R2500_Pro/kr120r2500pro_urdf_instanceable.usd' create_kuka_from_urdf(kuka_urdf_path, kuka_usd_path, kuka_mesh_usd_path, kuka_instanceable_usd_path) create_block_indicator() print("Done!")
5,061
Python
53.430107
157
0.747678
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import omni.client import omni.usd from pxr import Sdf, UsdGeom def update_reference(source_prim_path, source_reference_path, target_reference_path): stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] while len(prims) > 0: prim = prims.pop(0) prim_spec = stage.GetRootLayer().GetPrimAtPath(prim.GetPath()) reference_list = prim_spec.referenceList refs = reference_list.GetAddedOrExplicitItems() if len(refs) > 0: for ref in refs: if ref.assetPath == source_reference_path: prim.GetReferences().RemoveReference(ref) prim.GetReferences().AddReference(assetPath=target_reference_path, primPath=prim.GetPath()) prims = prims + prim.GetChildren() def create_parent_xforms(asset_usd_path, source_prim_path, save_as_path=None): """Adds a new UsdGeom.Xform prim for each Mesh/Geometry prim under source_prim_path. Moves material assignment to new parent prim if any exists on the Mesh/Geometry prim. Args: asset_usd_path (str): USD file path for asset source_prim_path (str): USD path of root prim save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file. """ omni.usd.get_context().open_stage(asset_usd_path) stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] edits = Sdf.BatchNamespaceEdit() while len(prims) > 0: prim = prims.pop(0) print(prim) if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]: new_xform = UsdGeom.Xform.Define(stage, str(prim.GetPath()) + "_xform") print(prim, new_xform) edits.Add(Sdf.NamespaceEdit.Reparent(prim.GetPath(), new_xform.GetPath(), 0)) continue children_prims = prim.GetChildren() prims = prims + children_prims stage.GetRootLayer().Apply(edits) if save_as_path is None: omni.usd.get_context().save_stage() else: omni.usd.get_context().save_as_stage(save_as_path) def convert_asset_instanceable(asset_usd_path, source_prim_path, save_as_path=None, create_xforms=True): """Makes all mesh/geometry prims instanceable. Can optionally add UsdGeom.Xform prim as parent for all mesh/geometry prims. Makes a copy of the asset USD file, which will be used for referencing. Updates asset file to convert all parent prims of mesh/geometry prims to reference cloned USD file. Args: asset_usd_path (str): USD file path for asset source_prim_path (str): USD path of root prim save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file. create_xforms (bool): Whether to add new UsdGeom.Xform prims to mesh/geometry prims. """ if create_xforms: create_parent_xforms(asset_usd_path, source_prim_path, save_as_path) asset_usd_path = save_as_path instance_usd_path = ".".join(asset_usd_path.split(".")[:-1]) + "_meshes.usd" omni.client.copy(asset_usd_path, instance_usd_path) omni.usd.get_context().open_stage(asset_usd_path) stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] while len(prims) > 0: prim = prims.pop(0) if prim: if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]: parent_prim = prim.GetParent() if parent_prim and not parent_prim.IsInstance(): parent_prim.GetReferences().AddReference( assetPath=instance_usd_path, primPath=str(parent_prim.GetPath()) ) parent_prim.SetInstanceable(True) continue children_prims = prim.GetChildren() prims = prims + children_prims if save_as_path is None: omni.usd.get_context().save_stage() else: omni.usd.get_context().save_as_stage(save_as_path)
5,627
Python
42.627907
111
0.67727
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/balance_bot.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.utils.usd_utils import set_drive class BalanceBot(Robot): def __init__( self, prim_path: str, name: Optional[str] = "BalanceBot", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/BalanceBot/balance_bot.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, ) for j in range(3): # set leg joint properties joint_path = f"joints/lower_leg{j}" set_drive(f"{self.prim_path}/{joint_path}", "angular", "position", 0, 400, 40, 1000)
2,996
Python
40.054794
96
0.697597
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/allegro_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from pxr import Gf, PhysxSchema, Sdf, Usd, UsdGeom, UsdPhysics class AllegroHand(Robot): def __init__( self, prim_path: str, name: Optional[str] = "allegro_hand", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/AllegroHand/allegro_hand_instanceable.usd" self._position = torch.tensor([0.0, 0.0, 0.5]) if translation is None else translation self._orientation = ( torch.tensor([0.257551, 0.283045, 0.683330, -0.621782]) if orientation is None else orientation ) add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, ) def set_allegro_hand_properties(self, stage, allegro_hand_prim): for link_prim in allegro_hand_prim.GetChildren(): if not ( link_prim == stage.GetPrimAtPath("/allegro/Looks") or link_prim == stage.GetPrimAtPath("/allegro/root_joint") ): rb = PhysxSchema.PhysxRigidBodyAPI.Apply(link_prim) rb.GetDisableGravityAttr().Set(True) rb.GetRetainAccelerationsAttr().Set(False) rb.GetEnableGyroscopicForcesAttr().Set(False) rb.GetAngularDampingAttr().Set(0.01) rb.GetMaxLinearVelocityAttr().Set(1000) rb.GetMaxAngularVelocityAttr().Set(64 / np.pi * 180) rb.GetMaxDepenetrationVelocityAttr().Set(1000) rb.GetMaxContactImpulseAttr().Set(1e32) def set_motor_control_mode(self, stage, allegro_hand_path): prim = stage.GetPrimAtPath(allegro_hand_path) self._set_joint_properties(stage, prim) def _set_joint_properties(self, stage, prim): if prim.HasAPI(UsdPhysics.DriveAPI): drive = UsdPhysics.DriveAPI.Apply(prim, "angular") drive.GetStiffnessAttr().Set(3 * np.pi / 180) drive.GetDampingAttr().Set(0.1 * np.pi / 180) drive.GetMaxForceAttr().Set(0.5) revolute_joint = PhysxSchema.PhysxJointAPI.Get(stage, prim.GetPath()) revolute_joint.GetJointFrictionAttr().Set(0.01) for child_prim in prim.GetChildren(): self._set_joint_properties(stage, child_prim)
4,627
Python
43.5
107
0.673655
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/shadow_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.utils.usd_utils import set_drive from pxr import Gf, PhysxSchema, Sdf, Usd, UsdGeom, UsdPhysics class ShadowHand(Robot): def __init__( self, prim_path: str, name: Optional[str] = "shadow_hand", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/ShadowHand/shadow_hand_instanceable.usd" self._position = torch.tensor([0.0, 0.0, 0.5]) if translation is None else translation self._orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) if orientation is None else orientation add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, ) def set_shadow_hand_properties(self, stage, shadow_hand_prim): for link_prim in shadow_hand_prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(True) rb.GetRetainAccelerationsAttr().Set(True) def set_motor_control_mode(self, stage, shadow_hand_path): joints_config = { "robot0_WRJ1": {"stiffness": 5, "damping": 0.5, "max_force": 4.785}, "robot0_WRJ0": {"stiffness": 5, "damping": 0.5, "max_force": 2.175}, "robot0_FFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_FFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_FFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_MFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_MFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_MFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_RFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_RFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_RFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_LFJ4": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_LFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_LFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_LFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_THJ4": {"stiffness": 1, "damping": 0.1, "max_force": 2.3722}, "robot0_THJ3": {"stiffness": 1, "damping": 0.1, "max_force": 1.45}, "robot0_THJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.99}, "robot0_THJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.99}, "robot0_THJ0": {"stiffness": 1, "damping": 0.1, "max_force": 0.81}, } for joint_name, config in joints_config.items(): set_drive( f"{self.prim_path}/joints/{joint_name}", "angular", "position", 0.0, config["stiffness"] * np.pi / 180, config["damping"] * np.pi / 180, config["max_force"], )
5,517
Python
46.982608
103
0.623527
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/crazyflie.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Crazyflie(Robot): def __init__( self, prim_path: str, name: Optional[str] = "crazyflie", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, scale: Optional[np.array] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Crazyflie/cf2x.usd" add_reference_to_stage(self._usd_path, prim_path) scale = torch.tensor([5, 5, 5]) super().__init__(prim_path=prim_path, name=name, translation=translation, orientation=orientation, scale=scale)
2,720
Python
40.861538
119
0.718015
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/cabinet.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Cabinet(Robot): def __init__( self, prim_path: str, name: Optional[str] = "cabinet", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Props/Sektion_Cabinet/sektion_cabinet_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) self._position = torch.tensor([0.0, 0.0, 0.4]) if translation is None else translation self._orientation = torch.tensor([0.1, 0.0, 0.0, 0.0]) if orientation is None else orientation super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, )
1,819
Python
35.399999
111
0.660803
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/humanoid.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Humanoid(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Humanoid", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Humanoid/humanoid_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, )
2,716
Python
38.955882
98
0.71134
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/franka.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.utils.usd_utils import set_drive from pxr import PhysxSchema class Franka(Robot): def __init__( self, prim_path: str, name: Optional[str] = "franka", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name self._position = torch.tensor([1.0, 0.0, 0.0]) if translation is None else translation self._orientation = torch.tensor([0.0, 0.0, 0.0, 1.0]) if orientation is None else orientation if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Franka/franka_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, ) dof_paths = [ "panda_link0/panda_joint1", "panda_link1/panda_joint2", "panda_link2/panda_joint3", "panda_link3/panda_joint4", "panda_link4/panda_joint5", "panda_link5/panda_joint6", "panda_link6/panda_joint7", "panda_hand/panda_finger_joint1", "panda_hand/panda_finger_joint2", ] drive_type = ["angular"] * 7 + ["linear"] * 2 default_dof_pos = [math.degrees(x) for x in [0.0, -1.0, 0.0, -2.2, 0.0, 2.4, 0.8]] + [0.02, 0.02] stiffness = [400 * np.pi / 180] * 7 + [10000] * 2 damping = [80 * np.pi / 180] * 7 + [100] * 2 max_force = [87, 87, 87, 87, 12, 12, 12, 200, 200] max_velocity = [math.degrees(x) for x in [2.175, 2.175, 2.175, 2.175, 2.61, 2.61, 2.61]] + [0.2, 0.2] for i, dof in enumerate(dof_paths): set_drive( prim_path=f"{self.prim_path}/{dof}", drive_type=drive_type[i], target_type="position", target_value=default_dof_pos[i], stiffness=stiffness[i], damping=damping[i], max_force=max_force[i], ) PhysxSchema.PhysxJointAPI(get_prim_at_path(f"{self.prim_path}/{dof}")).CreateMaxJointVelocityAttr().Set( max_velocity[i] ) def set_franka_properties(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(True)
3,653
Python
37.0625
116
0.599781
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/ant.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Ant(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Ant", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Ant/ant_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, )
2,696
Python
38.661764
88
0.709199
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/cartpole.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Cartpole(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Cartpole", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Cartpole/cartpole.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, )
2,703
Python
38.764705
85
0.710322
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/factory_franka.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.utils.usd_utils import set_drive from pxr import PhysxSchema class FactoryFranka(Robot): def __init__( self, prim_path: str, name: Optional[str] = "franka", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name self._position = torch.tensor([1.0, 0.0, 0.0]) if translation is None else translation self._orientation = torch.tensor([0.0, 0.0, 0.0, 1.0]) if orientation is None else orientation if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/FactoryFranka/factory_franka.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, ) dof_paths = [ "panda_link0/panda_joint1", "panda_link1/panda_joint2", "panda_link2/panda_joint3", "panda_link3/panda_joint4", "panda_link4/panda_joint5", "panda_link5/panda_joint6", "panda_link6/panda_joint7", "panda_hand/panda_finger_joint1", "panda_hand/panda_finger_joint2", ] drive_type = ["angular"] * 7 + ["linear"] * 2 default_dof_pos = [math.degrees(x) for x in [0.0, -1.0, 0.0, -2.2, 0.0, 2.4, 0.8]] + [0.02, 0.02] stiffness = [40 * np.pi / 180] * 7 + [500] * 2 damping = [80 * np.pi / 180] * 7 + [20] * 2 max_force = [87, 87, 87, 87, 12, 12, 12, 200, 200] max_velocity = [math.degrees(x) for x in [2.175, 2.175, 2.175, 2.175, 2.61, 2.61, 2.61]] + [0.2, 0.2] for i, dof in enumerate(dof_paths): set_drive( prim_path=f"{self.prim_path}/{dof}", drive_type=drive_type[i], target_type="position", target_value=default_dof_pos[i], stiffness=stiffness[i], damping=damping[i], max_force=max_force[i], ) PhysxSchema.PhysxJointAPI(get_prim_at_path(f"{self.prim_path}/{dof}")).CreateMaxJointVelocityAttr().Set( max_velocity[i] )
3,356
Python
36.719101
116
0.596544
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/quadcopter.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Quadcopter(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Quadcopter", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Quadcopter/quadcopter.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, position=translation, orientation=orientation, articulation_controller=None, )
2,719
Python
39.597014
89
0.706878
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/ingenuity.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Ingenuity(Robot): def __init__( self, prim_path: str, name: Optional[str] = "ingenuity", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, scale: Optional[np.array] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = ( assets_root_path + "/Isaac/Robots/Ingenuity/ingenuity.usd" ) add_reference_to_stage(self._usd_path, prim_path) scale = torch.tensor([0.01, 0.01, 0.01]) super().__init__(prim_path=prim_path, name=name, translation=translation, orientation=orientation, scale=scale)
2,802
Python
40.83582
119
0.711991
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/kukakr120r2500pro.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: /omniisaacgymenvs/robots/articulations/shadow_hand.py from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class KukaKR120R2500Pro(Robot): def __init__( self, prim_path: str, name: Optional[str] = "KukaKR120R2500Pro", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._position = torch.tensor([0.0, 0.0, 0.0]) if translation is None else translation self._orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) if orientation is None else orientation add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, )
2,948
Python
39.39726
102
0.712687
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/anymal.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from pxr import PhysxSchema class Anymal(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Anymal", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find nucleus server with /Isaac folder") self._usd_path = assets_root_path + "/Isaac/Robots/ANYbotics/anymal_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, ) self._dof_names = [ "LF_HAA", "LH_HAA", "RF_HAA", "RH_HAA", "LF_HFE", "LH_HFE", "RF_HFE", "RH_HFE", "LF_KFE", "LH_KFE", "RF_KFE", "RH_KFE", ] @property def dof_names(self): return self._dof_names def set_anymal_properties(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(False) rb.GetRetainAccelerationsAttr().Set(False) rb.GetLinearDampingAttr().Set(0.0) rb.GetMaxLinearVelocityAttr().Set(1000.0) rb.GetAngularDampingAttr().Set(0.0) rb.GetMaxAngularVelocityAttr().Set(64 / np.pi * 180) def prepare_contacts(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): if "_HIP" not in str(link_prim.GetPrimPath()): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.CreateSleepThresholdAttr().Set(0) cr_api = PhysxSchema.PhysxContactReportAPI.Apply(link_prim) cr_api.CreateThresholdAttr().Set(0)
4,273
Python
38.943925
97
0.648022
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/views/cabinet_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class CabinetView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "CabinetView", ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._drawers = RigidPrimView( prim_paths_expr="/World/envs/.*/cabinet/drawer_top", name="drawers_view", reset_xform_properties=False )
586
Python
28.349999
114
0.653584
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/views/shadow_hand_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class ShadowHandView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "ShadowHandView", ) -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._fingers = RigidPrimView( prim_paths_expr="/World/envs/.*/shadow_hand/robot0.*distal", name="finger_view", reset_xform_properties=False, ) @property def actuated_dof_indices(self): return self._actuated_dof_indices def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self.actuated_joint_names = [ "robot0_WRJ1", "robot0_WRJ0", "robot0_FFJ3", "robot0_FFJ2", "robot0_FFJ1", "robot0_MFJ3", "robot0_MFJ2", "robot0_MFJ1", "robot0_RFJ3", "robot0_RFJ2", "robot0_RFJ1", "robot0_LFJ4", "robot0_LFJ3", "robot0_LFJ2", "robot0_LFJ1", "robot0_THJ4", "robot0_THJ3", "robot0_THJ2", "robot0_THJ1", "robot0_THJ0", ] self._actuated_dof_indices = list() for joint_name in self.actuated_joint_names: self._actuated_dof_indices.append(self.get_dof_index(joint_name)) self._actuated_dof_indices.sort() limit_stiffness = torch.tensor([30.0] * self.num_fixed_tendons, device=self._device) damping = torch.tensor([0.1] * self.num_fixed_tendons, device=self._device) self.set_fixed_tendon_properties(dampings=damping, limit_stiffnesses=limit_stiffness) fingertips = ["robot0_ffdistal", "robot0_mfdistal", "robot0_rfdistal", "robot0_lfdistal", "robot0_thdistal"] self._sensor_indices = torch.tensor([self._body_indices[j] for j in fingertips], device=self._device, dtype=torch.long)
3,681
Python
38.591397
127
0.669383
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/views/franka_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class FrankaView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "FrankaView", ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._hands = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_link7", name="hands_view", reset_xform_properties=False ) self._lfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_leftfinger", name="lfingers_view", reset_xform_properties=False ) self._rfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_rightfinger", name="rfingers_view", reset_xform_properties=False, ) def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self._gripper_indices = [self.get_dof_index("panda_finger_joint1"), self.get_dof_index("panda_finger_joint2")] @property def gripper_indices(self): return self._gripper_indices
1,241
Python
32.567567
120
0.637389
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/views/factory_franka_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class FactoryFrankaView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "FactoryFrankaView", ) -> None: """Initialize articulation view.""" super().__init__( prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False ) self._hands = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_hand", name="hands_view", reset_xform_properties=False, ) self._lfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_leftfinger", name="lfingers_view", reset_xform_properties=False, track_contact_forces=True, ) self._rfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_rightfinger", name="rfingers_view", reset_xform_properties=False, track_contact_forces=True, ) self._fingertip_centered = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_fingertip_centered", name="fingertips_view", reset_xform_properties=False, ) def initialize(self, physics_sim_view): """Initialize physics simulation view.""" super().initialize(physics_sim_view)
1,488
Python
31.369565
84
0.598118
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/views/anymal_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class AnymalView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "AnymalView", track_contact_forces=False, prepare_contact_sensors=False, ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._knees = RigidPrimView( prim_paths_expr="/World/envs/.*/anymal/.*_THIGH", name="knees_view", reset_xform_properties=False, track_contact_forces=track_contact_forces, prepare_contact_sensors=prepare_contact_sensors, ) self._base = RigidPrimView( prim_paths_expr="/World/envs/.*/anymal/base", name="base_view", reset_xform_properties=False, track_contact_forces=track_contact_forces, prepare_contact_sensors=prepare_contact_sensors, ) def get_knee_transforms(self): return self._knees.get_world_poses() def is_knee_below_threshold(self, threshold, ground_heights=None): knee_pos, _ = self._knees.get_world_poses() knee_heights = knee_pos.view((-1, 4, 3))[:, :, 2] if ground_heights is not None: knee_heights -= ground_heights return ( (knee_heights[:, 0] < threshold) | (knee_heights[:, 1] < threshold) | (knee_heights[:, 2] < threshold) | (knee_heights[:, 3] < threshold) ) def is_base_below_threshold(self, threshold, ground_heights): base_pos, _ = self.get_world_poses() base_heights = base_pos[:, 2] base_heights -= ground_heights return base_heights[:] < threshold
3,433
Python
41.395061
98
0.678415
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/views/quadcopter_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class QuadcopterView(ArticulationView): def __init__(self, prim_paths_expr: str, name: Optional[str] = "QuadcopterView") -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self.rotors = RigidPrimView( prim_paths_expr=f"/World/envs/.*/Quadcopter/rotor[0-3]", name="rotors_view", reset_xform_properties=False )
2,121
Python
47.227272
117
0.759547
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/views/kukakr120r2500pro_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: /omniisaacgymenvs/robots/articulations/views/shadow_hand_view.py from typing import Optional import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class KukaKR120R2500ProView(ArticulationView): def __init__( self, prim_paths_expr: str, end_effector_prim_paths_expr: str, name: Optional[str] = "KukaKR120R2500ProView", ) -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) # Use RigidPrimView instead of XFormPrimView, since the XForm is not updated when running self._end_effectors = RigidPrimView( prim_paths_expr=end_effector_prim_paths_expr, name="end_effector_view", reset_xform_properties=False ) def initialize(self, physics_sim_view): super().initialize(physics_sim_view)
2,525
Python
42.551723
98
0.746535
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/views/allegro_hand_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class AllegroHandView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "AllegroHandView", ) -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._actuated_dof_indices = list() @property def actuated_dof_indices(self): return self._actuated_dof_indices def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self._actuated_dof_indices = [i for i in range(self.num_dof)]
2,275
Python
41.148147
98
0.74989
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/views/crazyflie_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class CrazyflieView(ArticulationView): def __init__(self, prim_paths_expr: str, name: Optional[str] = "CrazyflieView") -> None: """[summary]""" super().__init__( prim_paths_expr=prim_paths_expr, name=name, ) self.physics_rotors = [ RigidPrimView(prim_paths_expr=f"/World/envs/.*/Crazyflie/m{i}_prop", name=f"m{i}_prop_view") for i in range(1, 5) ]
2,140
Python
42.693877
104
0.737383
j3soon/OmniIsaacGymEnvs-KukaReacher/omniisaacgymenvs/robots/articulations/views/ingenuity_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class IngenuityView(ArticulationView): def __init__(self, prim_paths_expr: str, name: Optional[str] = "IngenuityView") -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self.physics_rotors = [ RigidPrimView( prim_paths_expr=f"/World/envs/.*/Ingenuity/rotor_physics_{i}", name=f"physics_rotor_{i}_view", reset_xform_properties=False, ) for i in range(2) ] self.visual_rotors = [ RigidPrimView( prim_paths_expr=f"/World/envs/.*/Ingenuity/rotor_visual_{i}", name=f"visual_rotor_{i}_view", reset_xform_properties=False, ) for i in range(2) ]
2,524
Python
42.534482
98
0.70206
j3soon/OmniIsaacGymEnvs-KukaReacher/docs/domain_randomization.md
Domain Randomization ==================== Overview -------- We sometimes need our reinforcement learning agents to be robust to different physics than they are trained with, such as when attempting a sim2real policy transfer. Using domain randomization (DR), we repeatedly randomize the simulation dynamics during training in order to learn a good policy under a wide range of physical parameters. OmniverseIsaacGymEnvs supports "on the fly" domain randomization, allowing dynamics to be changed without requiring reloading of assets. This allows us to efficiently apply domain randomizations without common overheads like re-parsing asset files. The OmniverseIsaacGymEnvs DR framework utilizes the `omni.replicator.isaac` extension in its backend to perform "on the fly" randomization. Users can add domain randomization by either directly using methods provided in `omni.replicator.isaac` in python, or specifying DR settings in the task configuration `yaml` file. The following sections will focus on setting up DR using the `yaml` file interface. For more detailed documentations regarding methods provided in the `omni.replicator.isaac` extension, please visit [here](https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.replicator.isaac/docs/index.html). Domain Randomization Options ------------------------------- We will first explain what can be randomized in the scene and the sampling distributions. There are five main parameter groups that support randomization. They are: - `observations`: Add noise directly to the agent observations - `actions`: Add noise directly to the agent actions - `simulation`: Add noise to physical parameters defined for the entire scene, such as `gravity` - `rigid_prim_views`: Add noise to properties belonging to rigid prims, such as `material_properties`. - `articulation_views`: Add noise to properties belonging to articulations, such as `stiffness` of joints. For each parameter you wish to randomize, you can specify two ways that determine when the randomization is applied: - `on_reset`: Adds correlated noise to a parameter of an environment when that environment gets reset. This correlated noise will remain with an environment until that environemnt gets reset again, which will then set a new correlated noise. To trigger `on_reset`, the indices for the environemnts that need to be reset must be passed in to `omni.replicator.isaac.physics_view.step_randomization(reset_inds)`. - `on_interval`: Adds uncorrelated noise to a parameter at a frequency specified by `frequency_interval`. If a parameter also has `on_reset` randomization, the `on_interval` noise is combined with the noise applied at `on_reset`. - `on_startup`: Applies randomization once prior to the start of the simulation. Only available to rigid prim scale, mass, density and articulation scale parameters. For `on_reset`, `on_interval`, and `on_startup`, you can specify the following settings: - `distribution`: The distribution to generate a sample `x` from. The available distributions are listed below. Note that parameters `a` and `b` are defined by the `distribution_parameters` setting. - `uniform`: `x ~ unif(a, b)` - `loguniform`: `x ~ exp(unif(log(a), log(b)))` - `gaussian`: `x ~ normal(a, b)` - `distribution_parameters`: The parameters to the distribution. - For observations and actions, this setting is specified as a tuple `[a, b]` of real values. - For simulation and view parameters, this setting is specified as a nested tuple in the form of `[[a_1, a_2, ..., a_n], [[b_1, b_2, ..., b_n]]`, where the `n` is the dimension of the parameter (*i.e.* `n` is 3 for position). It can also be specified as a tuple in the form of `[a, b]`, which will be broadcasted to the correct dimensions. - For `uniform` and `loguniform` distributions, `a` and `b` are the lower and upper bounds. - For `gaussian`, `a` is the distribution mean and `b` is the variance. - `operation`: Defines how the generated sample `x` will be applied to the original simulation parameter. The options are `additive`, `scaling`, `direct`. - `additive`:, add the sample to the original value. - `scaling`: multiply the original value by the sample. - `direct`: directly sets the sample as the parameter value. - `frequency_interval`: Specifies the number of steps to apply randomization. - Only used with `on_interval`. - Steps of each environemnt are incremented with each `omni.replicator.isaac.physics_view.step_randomization(reset_inds)` call and reset if the environment index is in `reset_inds`. - `num_buckets`: Only used for `material_properties` randomization - Physx only allows 64000 unique physics materials in the scene at once. If more than 64000 materials are needed, increase `num_buckets` to allow materials to be shared between prims. YAML Interface -------------- Now that we know what options are available for domain randomization, let's put it all together in the YAML config. In your `omniverseisaacgymenvs/cfg/task` yaml file, you can specify your domain randomization parameters under the `domain_randomization` key. First, we turn on domain randomization by setting `randomize` to `True`: ```yaml domain_randomization: randomize: True randomization_params: ... ``` This can also be set as a command line argument at launch time with `task.domain_randomization.randomize=True`. Next, we will define our parameters under the `randomization_params` keys. Here you can see how we used the previous settings to define some randomization parameters for a ShadowHand cube manipulation task: ```yaml randomization_params: randomization_params: observations: on_reset: operation: "additive" distribution: "gaussian" distribution_parameters: [0, .0001] on_interval: frequency_interval: 1 operation: "additive" distribution: "gaussian" distribution_parameters: [0, .002] actions: on_reset: operation: "additive" distribution: "gaussian" distribution_parameters: [0, 0.015] on_interval: frequency_interval: 1 operation: "additive" distribution: "gaussian" distribution_parameters: [0., 0.05] simulation: gravity: on_reset: operation: "additive" distribution: "gaussian" distribution_parameters: [[0.0, 0.0, 0.0], [0.0, 0.0, 0.4]] rigid_prim_views: object_view: material_properties: on_reset: num_buckets: 250 operation: "scaling" distribution: "uniform" distribution_parameters: [[0.7, 1, 1], [1.3, 1, 1]] articulation_views: shadow_hand_view: stiffness: on_reset: operation: "scaling" distribution: "uniform" distribution_parameters: [0.75, 1.5] ``` Note how we structured `rigid_prim_views` and `articulation_views`. When creating a `RigidPrimView` or `ArticulationView` in the task python file, you have the option to pass in `name` as an argument. **To use domain randomization, the name of the `RigidPrimView` or `ArticulationView` must match the name provided in the randomization `yaml` file.** In the example above, `object_view` is the name of a `RigidPrimView` and `shadow_hand_view` is the name of the `ArticulationView`. The exact parameters that can be randomized are listed below: **simulation**: - gravity (dim=3): The gravity vector of the entire scene. **rigid\_prim\_views**: - position (dim=3): The position of the rigid prim. In meters. - orientation (dim=3): The orientation of the rigid prim, specified with euler angles. In radians. - linear_velocity (dim=3): The linear velocity of the rigid prim. In m/s. **CPU pipeline only** - angular_velocity (dim=3): The angular velocity of the rigid prim. In rad/s. **CPU pipeline only** - velocity (dim=6): The linear + angular velocity of the rigid prim. - force (dim=3): Apply a force to the rigid prim. In N. - mass (dim=1): Mass of the rigid prim. In kg. **CPU pipeline only during runtime**. - inertia (dim=3): The diagonal values of the inertia matrix. **CPU pipeline only** - material_properties (dim=3): Static friction, Dynamic friction, and Restitution. - contact_offset (dim=1): A small distance from the surface of the collision geometry at which contacts start being generated. - rest_offset (dim=1): A small distance from the surface of the collision geometry at which the effective contact with the shape takes place. - scale (dim=1): The scale of the rigid prim. `on_startup` only. - density (dim=1): Density of the rigid prim. `on_startup` only. **articulation\_views**: - position (dim=3): The position of the articulation root. In meters. - orientation (dim=3): The orientation of the articulation root, specified with euler angles. In radians. - linear_velocity (dim=3): The linear velocity of the articulation root. In m/s. **CPU pipeline only** - angular_velocity (dim=3): The angular velocity of the articulation root. In rad/s. **CPU pipeline only** - velocity (dim=6): The linear + angular velocity of the articulation root. - stiffness (dim=num_dof): The stiffness of the joints. - damping (dim=num_dof): The damping of the joints - joint_friction (dim=num_dof): The friction coefficient of the joints. - joint_positions (dim=num_dof): The joint positions. In radians or meters. - joint_velocities (dim=num_dof): The joint velocities. In rad/s or m/s. - lower_dof_limits (dim=num_dof): The lower limit of the joints. In radians or meters. - upper_dof_limits (dim=num_dof): The upper limit of the joints. In radians or meters. - max_efforts (dim=num_dof): The maximum force or torque that the joints can exert. In N or Nm. - joint_armatures (dim=num_dof): A value added to the diagonal of the joint-space inertia matrix. Physically, it corresponds to the rotating part of a motor - joint_max_velocities (dim=num_dof): The maximum velocity allowed on the joints. In rad/s or m/s. - joint_efforts (dim=num_dof): Applies a force or a torque on the joints. In N or Nm. - body_masses (dim=num_bodies): The mass of each body in the articulation. In kg. **CPU pipeline only** - body_inertias (dim=num_bodies×3): The diagonal values of the inertia matrix of each body. **CPU pipeline only** - material_properties (dim=num_bodies×3): The static friction, dynamic friction, and restitution of each body in the articulation, specified in the following order: [body_1_static_friciton, body_1_dynamic_friciton, body_1_restitution, body_1_static_friciton, body_2_dynamic_friciton, body_2_restitution, ... ] - tendon_stiffnesses (dim=num_tendons): The stiffness of the fixed tendons in the articulation. - tendon_dampings (dim=num_tendons): The damping of the fixed tendons in the articulation. - tendon_limit_stiffnesses (dim=num_tendons): The limit stiffness of the fixed tendons in the articulation. - tendon_lower_limits (dim=num_tendons): The lower limits of the fixed tendons in the articulation. - tendon_upper_limits (dim=num_tendons): The upper limits of the fixed tendons in the articulation. - tendon_rest_lengths (dim=num_tendons): The rest lengths of the fixed tendons in the articulation. - tendon_offsets (dim=num_tendons): The offsets of the fixed tendons in the articulation. - scale (dim=1): The scale of the articulation. `on_startup` only. Applying Domain Randomization ------------------------------ To parse the domain randomization configurations in the task `yaml` file and set up the DR pipeline, it is necessary to call `self._randomizer.set_up_domain_randomization(self)`, where `self._randomizer` is the `Randomizer` object created in RLTask's `__init__`. It is worth noting that the names of the views provided under `rigid_prim_views` or `articulation_views` in the task `yaml` file must match the names passed into `RigidPrimView` or `ArticulationView` objects in the python task file. In addition, all `RigidPrimView` and `ArticulationView` that would have domain randomizaiton applied must be added to the scene in the task's `set_up_scene()` via `scene.add()`. To trigger `on_startup` randomizations, call `self._randomizer.apply_on_startup_domain_randomization(self)` in `set_up_scene()` after all views are added to the scene. Note that `on_startup` randomizations are only availble to rigid prim scale, mass, density and articulation scale parameters since these parameters cannot be randomized after the simulation begins on GPU pipeline. Therefore, randomizations must be applied to these parameters in `set_up_scene()` prior to the start of the simulation. To trigger `on_reset` and `on_interval` randomizations, it is required to step the interal counter of the DR pipeline in `pre_physics_step()`: ```python if self._randomizer.randomize: omni.replicator.isaac.physics_view.step_randomization(reset_inds) ``` `reset_inds` is a list of indices of the environments that need to be reset. For those environments, it will trigger the randomizations defined with `on_reset`. All other environments will follow randomizations defined with `on_interval`. Randomization Scheduling ---------------------------- We provide methods to modify distribution parameters defined in the `yaml` file during training, which allows custom DR scheduling. There are three methods from the `Randomizer` class that are relevant to DR scheduling: - `get_initial_dr_distribution_parameters`: returns a numpy array of the initial parameters (as defined in the `yaml` file) of a specified distribution - `get_dr_distribution_parameters`: returns a numpy array of the current parameters of a specified distribution - `set_dr_distribution_parameters`: sets new parameters to a specified distribution Using the DR configuration example defined above, we can get the current parameters and set new parameters to gravity randomization and shadow hand joint stiffness randomization as follows: ```python current_gravity_dr_params = self._randomizer.get_dr_distribution_parameters( "simulation", "gravity", "on_reset", ) self._randomizer.set_dr_distribution_parameters( [[0.0, 0.0, 0.0], [0.0, 0.0, 0.5]], "simulation", "gravity", "on_reset", ) current_joint_stiffness_dr_params = self._randomizer.get_dr_distribution_parameters( "articulation_views", "shadow_hand_view", "stiffness", "on_reset", ) self._randomizer.set_dr_distribution_parameters( [0.7, 1.55], "articulation_views", "shadow_hand_view", "stiffness", "on_reset", ) ``` The following is an example of using these methods to perform linear scheduling of gaussian noise that is added to observations and actions in the above shadow hand example. The following method linearly adds more noise to observations and actions every epoch up until the `schedule_epoch`. This method can be added to the Task python class and be called in `pre_physics_step()`. ```python def apply_observations_actions_noise_linear_scheduling(self, schedule_epoch=100): current_epoch = self._env.sim_frame_count // self._cfg["task"]["env"]["controlFrequencyInv"] // self._cfg["train"]["params"]["config"]["horizon_length"] if current_epoch <= schedule_epoch: if (self._env.sim_frame_count // self._cfg["task"]["env"]["controlFrequencyInv"]) % self._cfg["train"]["params"]["config"]["horizon_length"] == 0: for distribution_path in [("observations", "on_reset"), ("observations", "on_interval"), ("actions", "on_reset"), ("actions", "on_interval")]: scheduled_params = self._randomizer.get_initial_dr_distribution_parameters(*distribution_path) scheduled_params[1] = (1/schedule_epoch) * current_epoch * scheduled_params[1] self._randomizer.set_dr_distribution_parameters(scheduled_params, *distribution_path) ```
16,889
Markdown
51.453416
156
0.68814
j3soon/OmniIsaacGymEnvs-KukaReacher/docs/instanceable_assets.md
## A Note on Instanceable USD Assets The following section presents a method that modifies existing USD assets which allows Isaac Sim to load significantly more environments. This is currently an experimental method and has thus not been completely integrated into the framework. As a result, this section is reserved for power users who wish to maxmimize the performance of the Isaac Sim RL framework. ### Motivation One common issue in Isaac Sim that occurs when we try to increase the number of environments `numEnvs` is running out of RAM. This occurs because the Isaac Sim RL framework uses `omni.isaac.cloner` to duplicate environments. As a result, there are `numEnvs` number of identical copies of the visual and collision meshes in the scene, which consumes lots of memory. However, only one copy of the meshes are needed on stage since prims in all other environments could merely reference that one copy, thus reducing the amount of memory used for loading environments. To enable this functionality, USD assets need to be modified to be `instanceable`. ### Creating Instanceable Assets Assets can now be directly imported as Instanceable assets through the URDF and MJCF importers provided in Isaac Sim. By selecting this option, imported assets will be split into two separate USD files that follow the above hierarchy definition. Any mesh data will be written to an USD stage to be referenced by the main USD stage, which contains the main robot definition. To use the Instanceable option in the importers, first check the `Create Instanceable Asset` option. Then, specify a file path to indicate the location for saving the mesh data in the `Instanceable USD Path` textbox. This will default to `./instanceable_meshes.usd`, which will generate a file `instanceable_meshes.usd` that is saved to the current directory. Once the asset is imported with these options enabled, you will see the robot definition in the stage - we will refer to this stage as the master stage. If we expand the robot hierarchy in the Stage, we will notice that the parent prims that have mesh decendants have been marked as Instanceable and they reference a prim in our `Instanceable USD Path` USD file. We are also no longer able to modify attributes of descendant meshes. To add the instanced asset into a new stage, we will simply need to add the master USD file. ### Converting Existing Assets We provide the utility function `convert_asset_instanceable`, which creates an instanceable version of a given USD asset in `/omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py`. To run this function, launch Isaac Sim and open the script editor via `Window -> Script Editor`. Enter the following script and press `Run (Ctrl + Enter)`: ```bash from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import convert_asset_instanceable convert_asset_instanceable( asset_usd_path=ASSET_USD_PATH, source_prim_path=SOURCE_PRIM_PATH, save_as_path=SAVE_AS_PATH ) ``` Note that `ASSET_USD_PATH` is the file path to the USD asset (*e.g.* robot_asset.usd). `SOURCE_PRIM_PATH` is the USD path of the root prim of the asset on stage. `SAVE_AS_PATH` is the file path of the generated instanceable version of the asset (*e.g.* robot_asset_instanceable.usd). Assuming that `SAVE_AS_PATH` is `OUTPUT_NAME.usd`, the above script will generate two files: `OUTPUT_NAME.usd` and `OUTPUT_NAME_meshes.usd`. `OUTPUT_NAME.usd` is the instanceable version of the asset that can be imported to stage and used by `omni.isaac.cloner` to create numerous duplicates without consuming much memory. `OUTPUT_NAME_meshes.usd` contains all the visual and collision meshes that `OUTPUT_NAME.usd` references. It is worth noting that any [USD Relationships](https://graphics.pixar.com/usd/dev/api/class_usd_relationship.html) on the referenced meshes are removed in `OUTPUT_NAME.usd`. This is because those USD Relationships originally have targets set to prims in `OUTPUT_NAME_meshes.usd` and hence cannot be accessed from `OUTPUT_NAME.usd`. Common examples of USD Relationships that could exist on the meshes are visual materials, physics materials, and filtered collision pairs. Therefore, it is recommanded to set these USD Relationships on the meshes' parent Xforms instead of the meshes themselves. In a case where we would like to update the main USD file where the instanceable USD file is being referenced from, we also provide a utility method to update all references in the stage that matches a source reference path to a new USD file path. ```bash from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import update_reference update_reference( source_prim_path=SOURCE_PRIM_PATH, source_reference_path=SOURCE_REFERENCE_PATH, target_reference_path=TARGET_REFERENCE_PATH ) ``` ### Limitations USD requires a specific structure in the asset tree definition in order for the instanceable flag to take action. To mark any mesh or primitive geometry prim in the asset as instanceable, the mesh prim requires a parent Xform prim to be present, which will be used to add a reference to a master USD file containing definition of the mesh prim. For example, the following definition: ``` World |_ Robot |_ Collisions |_ Sphere |_ Box ``` would have to be modified to: ``` World |_ Robot |_ Collisions |_ Sphere_Xform | |_ Sphere |_ Box_Xform |_ Box ``` Any references that exist on the original `Sphere` and `Box` prims would have to be moved to `Sphere_Xform` and `Box_Xform` prims. To help with the process of creating new parent prims, we provide a utility method `create_parent_xforms()` in `omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py` to automatically insert a new Xform prim as a parent of every mesh prim in the stage. This method can be run on an existing non-instanced USD file for an asset from the script editor: ```bash from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import create_parent_xforms create_parent_xforms( asset_usd_path=ASSET_USD_PATH, source_prim_path=SOURCE_PRIM_PATH, save_as_path=SAVE_AS_PATH ) ``` This method can also be run as part of `convert_asset_instanceable()` method, by passing in the argument `create_xforms=True`. It is also worth noting that once an instanced asset is added to the stage, we can no longer modify USD attributes on the instanceable prims. For example, to modify attributes of collision meshes that are set as instanceable, we have to first modify the attributes on the corresponding prims in the master prim which our instanced asset references from. Then, we can allow the instanced asset to pick up the updated values from the master prim.
6,846
Markdown
56.058333
444
0.76804
j3soon/OmniIsaacGymEnvs-KukaReacher/docs/reproducibility.md
Reproducibility and Determinism =============================== Seeds ----- To achieve deterministic behavior on multiple training runs, a seed value can be set in the training config file for each task. This will potentially allow for individual runs of the same task to be deterministic when executed on the same machine and system setup. Alternatively, a seed can also be set via command line argument `seed=<seed>` to override any settings in config files. If no seed is specified in either config files or command line arguments, we default to generating a random seed. In this case, individual runs of the same task should not be expected to be deterministic. For convenience, we also support setting `seed=-1` to generate a random seed, which will override any seed values set in config files. By default, we have explicitly set all seed values in config files to be 42. PyTorch Deterministic Training ------------------------------ We also include a `torch_deterministic` argument for use when running RL training. Enabling this flag (by passing `torch_deterministic=True`) will apply additional settings to PyTorch that can force the usage of deterministic algorithms in PyTorch, but may also negatively impact runtime performance. For more details regarding PyTorch reproducibility, refer to <https://pytorch.org/docs/stable/notes/randomness.html>. If both `torch_deterministic=True` and `seed=-1` are set, the seed value will be fixed to 42. Runtime Simulation Changes / Domain Randomization ------------------------------------------------- Note that using a fixed seed value will only **potentially** allow for deterministic behavior. Due to GPU work scheduling, it is possible that runtime changes to simulation parameters can alter the order in which operations take place, as environment updates can happen while the GPU is doing other work. Because of the nature of floating point numeric storage, any alteration of execution ordering can cause small changes in the least significant bits of output data, leading to divergent execution over the simulation of thousands of environments and simulation frames. As an example of this, runtime domain randomization of object scales is known to cause both determinancy and simulation issues when running on the GPU due to the way those parameters are passed from CPU to GPU in lower level APIs. Therefore, this is only supported at setup time before starting simulation, which is specified by the `on_startup` condition for Domain Randomization. At this time, we do not believe that other domain randomizations offered by this framework cause issues with deterministic execution when running GPU simulation, but directly manipulating other simulation parameters outside of the omni.isaac.core View APIs may induce similar issues. Also due to floating point precision, states across different environments in the simulation may be non-deterministic when the same set of actions are applied to the same initial states. This occurs as environments are placed further apart from the world origin at (0, 0, 0). As actors get placed at different origins in the world, floating point errors may build up and result in slight variance in results even when starting from the same initial states. One possible workaround for this issue is to place all actors/environments at the world origin at (0, 0, 0) and filter out collisions between the environments. Note that this may induce a performance degradation of around 15-50%, depending on the complexity of actors and environment. Another known cause of non-determinism is from resetting actors into contact states. If actors within a scene is reset to a state where contacts are registered between actors, the simulation may not be able to produce deterministic results. This is because contacts are not recorded and will be re-computed from scratch for each reset scenario where actors come into contact, which cannot guarantee deterministic behavior across different computations.
4,017
Markdown
53.297297
96
0.787155
j3soon/OmniIsaacGymEnvs-KukaReacher/docs/training_with_camera.md
## Reinforcement Learning with Vision in the Loop Some reinforcement learning tasks can benefit from having image data in the pipeline by collecting sensor data from cameras to use as observations. However, high fidelity rendering can be expensive when scaled up towards thousands of environments during training. Although Isaac Sim does not currently have the capability to scale towards thousands of environments, we are continually working on improvements to reach the goal. As a starting point, we are providing a simple example showcasing a proof-of-concept for reinforcement learning with vision in the loop. ### CartpoleCamera [cartpole_camera.py](../omniisaacgymenvs/tasks/cartpole_camera.py) As an example showcasing the possiblity of reinforcmenet learning with vision in the loop, we provide a variation of the Cartpole task, which uses RGB image data as observations. This example can be launched with command line argument `task=CartpoleCamera`. Config files used for this task are: - **Task config**: [CartpoleCamera.yaml](../omniisaacgymenvs/cfg/task/CartpoleCamera.yaml) - **rl_games training config**: [CartpoleCameraPPO.yaml](../omniisaacgymenvs/cfg/train/CartpoleCameraPPO.yaml) ### Working with Cameras We have provided an individual app file `apps/omni.isaac.sim.python.gym.camera.kit`, designed specifically towards vision-based RL tasks. This app file provides necessary settings to enable multiple cameras to be rendered each frame. Additional settings are also applied to increase performance when rendering cameras across multiple environments. In addition, the following settings can be added to the app file to increase performance at a cost of accuracy. By setting these flags to `false`, data collected from the cameras may have a 1 to 2 frame delay. ``` app.renderer.waitIdle=false app.hydraEngine.waitIdle=false ``` We can also render in white-mode by adding the following line: ``` rtx.debugMaterialType=0 ``` ### Config Settings In order for rendering to occur during training, tasks using camera rendering must have the `enable_cameras` flag set to `True` in the task config file. By default, the `omni.isaac.sim.python.gym.camera.kit` app file will be used automatically when `enable_cameras` is set to `True`. This flag is located in the task config file, under the `sim` section. In addition, the `rendering_dt` parameter can be used to specify the rendering frequency desired. Similar to `dt` for physics simulation frequency, the `rendering_dt` specifies the amount of time in `s` between each rendering step. The `rendering_dt` should be larger or equal to the physics `dt`, and be a multiple of physics `dt`. Note that specifying the `controlFrequencyInv` flag will reduce the control frequency in terms of the physics simulation frequency. For example, assume control frequency is 30hz, physics simulation frequency is 120 hz, and rendering frequency is 10hz. In the task config file, we can set `dt: 1/120`, `controlFrequencyInv: 4`, such that control is applied every 4 physics steps, and `rendering_dt: 1/10`. In this case, render data will only be updated once every 12 physics steps. Note that both `dt` and `rendering_dt` parameters are under the `sim` section of the config file, while `controlFrequencyInv` is under the `env` section. ### Environment Setup To set up a task for vision-based RL, we will first need to add a camera to each environment in the scene and wrap it in a Replicator `render_product` to use the vectorized rendering API available in Replicator. This can be done with the following code in `set_up_scene`: ```python self.render_products = [] env_pos = self._env_pos.cpu() for i in range(self._num_envs): camera = self.rep.create.camera( position=(-4.2 + env_pos[i][0], env_pos[i][1], 3.0), look_at=(env_pos[i][0], env_pos[i][1], 2.55)) render_product = self.rep.create.render_product(camera, resolution=(self.camera_width, self.camera_height)) self.render_products.append(render_product) ``` Next, we need to initialize Replicator and the PytorchListener, which will be used to collect rendered data. ```python # start replicator to capture image data self.rep.orchestrator._orchestrator._is_started = True # initialize pytorch writer for vectorized collection self.pytorch_listener = self.PytorchListener() self.pytorch_writer = self.rep.WriterRegistry.get("PytorchWriter") self.pytorch_writer.initialize(listener=self.pytorch_listener, device="cuda") self.pytorch_writer.attach(self.render_products) ``` Then, we can simply collect rendered data from each environment using a single API call: ```python # retrieve RGB data from all render products images = self.pytorch_listener.get_rgb_data() ```
4,728
Markdown
58.860759
502
0.777496
j3soon/OmniIsaacGymEnvs-KukaReacher/docs/rl_examples.md
## Reinforcement Learning Examples We introduce the following reinforcement learning examples that are implemented using Isaac Sim's RL framework. Pre-trained checkpoints can be found on the Nucleus server. To set up localhost, please refer to the [Isaac Sim installation guide](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_workstation.html). *Note: All commands should be executed from `omniisaacgymenvs/omniisaacgymenvs`.* - [Reinforcement Learning Examples](#reinforcement-learning-examples) - [Cartpole cartpole.py](#cartpole-cartpolepy) - [Ant ant.py](#ant-antpy) - [Humanoid humanoid.py](#humanoid-humanoidpy) - [Shadow Hand Object Manipulation shadow_hand.py](#shadow-hand-object-manipulation-shadow_handpy) - [OpenAI Variant](#openai-variant) - [LSTM Training Variant](#lstm-training-variant) - [Allegro Hand Object Manipulation allegro_hand.py](#allegro-hand-object-manipulation-allegro_handpy) - [ANYmal anymal.py](#anymal-anymalpy) - [Anymal Rough Terrain anymal_terrain.py](#anymal-rough-terrain-anymal_terrainpy) - [NASA Ingenuity Helicopter ingenuity.py](#nasa-ingenuity-helicopter-ingenuitypy) - [Quadcopter quadcopter.py](#quadcopter-quadcopterpy) - [Crazyflie crazyflie.py](#crazyflie-crazyfliepy) - [Ball Balance ball_balance.py](#ball-balance-ball_balancepy) - [Franka Cabinet franka_cabinet.py](#franka-cabinet-franka_cabinetpy) - [Franka Deformable franka_deformable.py](#franka-deformablepy) - [Factory: Fast Contact for Robotic Assembly](#factory-fast-contact-for-robotic-assembly) ### Cartpole [cartpole.py](../omniisaacgymenvs/tasks/cartpole.py) Cartpole is a simple example that demonstrates getting and setting usage of DOF states using `ArticulationView` from `omni.isaac.core`. The goal of this task is to move a cart horizontally such that the pole, which is connected to the cart via a revolute joint, stays upright. Joint positions and joint velocities are retrieved using `get_joint_positions` and `get_joint_velocities` respectively, which are required in computing observations. Actions are applied onto the cartpoles via `set_joint_efforts`. Cartpoles are reset by using `set_joint_positions` and `set_joint_velocities`. Training can be launched with command line argument `task=Cartpole`. Training using the Warp backend can be launched with `task=Cartpole warp=True`. Running inference with pre-trained model can be launched with command line argument `task=Cartpole test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/cartpole.pth` Config files used for this task are: - **Task config**: [Cartpole.yaml](../omniisaacgymenvs/cfg/task/Cartpole.yaml) - **rl_games training config**: [CartpolePPO.yaml](../omniisaacgymenvs/cfg/train/CartpolePPO.yaml) #### CartpoleCamera [cartpole_camera.py](../omniisaacgymenvs/tasks/cartpole_camera.py) A variation of the Cartpole task showcases the usage of RGB image data as observations. This example can be launched with command line argument `task=CartpoleCamera`. Note that to use camera data as observations, `enable_cameras` must be set to `True` in the task config file. In addition, the example must be run with the `omni.isaac.sim.python.gym.camera.kit` app file provided under `apps`, which applies necessary settings to enable camera training. By default, this app file will be used automatically when `enable_cameras` is set to `True`. Config files used for this task are: - **Task config**: [CartpoleCamera.yaml](../omniisaacgymenvs/cfg/task/CartpoleCamera.yaml) - **rl_games training config**: [CartpoleCameraPPO.yaml](../omniisaacgymenvs/cfg/train/CartpoleCameraPPO.yaml) For more details on training with camera data, please visit [here](training_with_camera.md). <img src="https://user-images.githubusercontent.com/34286328/171454189-6afafbff-bb61-4aac-b518-24646007cb9f.gif" width="300" height="150"/> ### Ant [ant.py](../omniisaacgymenvs/tasks/ant.py) Ant is an example of a simple locomotion task. The goal of this task is to train quadruped robots (ants) to run forward as fast as possible. This example inherets from [LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py), which is a shared class between this example and the humanoid example; this simplifies implementations for both environemnts since they compute rewards, observations, and resets in a similar manner. This framework allows us to easily switch between robots used in the task. The Ant task includes more examples of utilizing `ArticulationView` from `omni.isaac.core`, which provides various functions to get and set both DOF states and articulation root states in a tensorized fashion across all of the actors in the environment. `get_world_poses`, `get_linear_velocities`, and `get_angular_velocities`, can be used to determine whether the ants have been moving towards the desired direction and whether they have fallen or flipped over. Actions are applied onto the ants via `set_joint_efforts`, which moves the ants by setting torques to the DOFs. Note that the previously used force sensors and `get_force_sensor_forces` API are now deprecated. Force sensors can now be retrieved directly using `get_measured_joint_forces` from `ArticulationView`. Training with PPO can be launched with command line argument `task=Ant`. Training with SAC with command line arguments `task=AntSAC train=AntSAC`. Training using the Warp backend can be launched with `task=Ant warp=True`. Running inference with pre-trained model can be launched with command line argument `task=Ant test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ant.pth` Config files used for this task are: - **PPO task config**: [Ant.yaml](../omniisaacgymenvs/cfg/task/Ant.yaml) - **rl_games PPO training config**: [AntPPO.yaml](../omniisaacgymenvs/cfg/train/AntPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/171454182-0be1b830-bceb-4cfd-93fb-e1eb8871ec68.gif" width="300" height="150"/> ### Humanoid [humanoid.py](../omniisaacgymenvs/tasks/humanoid.py) Humanoid is another environment that uses [LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py). It is conceptually very similar to the Ant example, where the goal for the humanoid is to run forward as fast as possible. Training can be launched with command line argument `task=Humanoid`. Training with SAC with command line arguments `task=HumanoidSAC train=HumanoidSAC`. Training using the Warp backend can be launched with `task=Humanoid warp=True`. Running inference with pre-trained model can be launched with command line argument `task=Humanoid test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/humanoid.pth` Config files used for this task are: - **PPO task config**: [Humanoid.yaml](../omniisaacgymenvs/cfg/task/Humanoid.yaml) - **rl_games PPO training config**: [HumanoidPPO.yaml](../omniisaacgymenvs/cfg/train/HumanoidPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/171454193-e027885d-1510-4ef4-b838-06b37f70c1c7.gif" width="300" height="150"/> ### Shadow Hand Object Manipulation [shadow_hand.py](../omniisaacgymenvs/tasks/shadow_hand.py) The Shadow Hand task is an example of a challenging dexterity manipulation task with complex contact dynamics. It resembles OpenAI's [Learning Dexterity](https://openai.com/blog/learning-dexterity/) project and [Robotics Shadow Hand](https://github.com/openai/gym/tree/v0.21.0/gym/envs/robotics) training environments. The goal of this task is to orient the object in the robot hand to match a random target orientation, which is visually displayed by a goal object in the scene. This example inherets from [InHandManipulationTask](../omniisaacgymenvs/tasks/shared/in_hand_manipulation.py), which is a shared class between this example and the Allegro Hand example. The idea of this shared [InHandManipulationTask](../omniisaacgymenvs/tasks/shared/in_hand_manipulation.py) class is similar to that of the [LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py); since the Shadow Hand example and the Allegro Hand example only differ by the robot hand used in the task, using this shared class simplifies implementation across the two. In this example, motion of the hand is controlled using position targets with `set_joint_position_targets`. The object and the goal object are reset using `set_world_poses`; their states are retrieved via `get_world_poses` for computing observations. It is worth noting that the Shadow Hand model in this example also demonstrates the use of tendons, which are imported using the `omni.isaac.mjcf` extension. Training can be launched with command line argument `task=ShadowHand`. Training with Domain Randomization can be launched with command line argument `task.domain_randomization.randomize=True`. For best training results with DR, use `num_envs=16384`. Running inference with pre-trained model can be launched with command line argument `task=ShadowHand test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/shadow_hand.pth` Config files used for this task are: - **Task config**: [ShadowHand.yaml](../omniisaacgymenvs/cfg/task/ShadowHand.yaml) - **rl_games training config**: [ShadowHandPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandPPO.yaml) #### OpenAI Variant In addition to the basic version of this task, there is an additional variant matching OpenAI's [Learning Dexterity](https://openai.com/blog/learning-dexterity/) project. This variant uses the **openai** observations in the policy network, but asymmetric observations of the **full_state** in the value network. This can be launched with command line argument `task=ShadowHandOpenAI_FF`. Running inference with pre-trained model can be launched with command line argument `task=ShadowHandOpenAI_FF test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/shadow_hand_openai_ff.pth` Config files used for this are: - **Task config**: [ShadowHandOpenAI_FF.yaml](../omniisaacgymenvs/cfg/task/ShadowHandOpenAI_FF.yaml) - **rl_games training config**: [ShadowHandOpenAI_FFPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandOpenAI_FFPPO.yaml). #### LSTM Training Variant This variant uses LSTM policy and value networks instead of feed forward networks, and also asymmetric LSTM critic designed for the OpenAI variant of the task. This can be launched with command line argument `task=ShadowHandOpenAI_LSTM`. Running inference with pre-trained model can be launched with command line argument `task=ShadowHandOpenAI_LSTM test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/shadow_hand_openai_lstm.pth` Config files used for this are: - **Task config**: [ShadowHandOpenAI_LSTM.yaml](../omniisaacgymenvs/cfg/task/ShadowHandOpenAI_LSTM.yaml) - **rl_games training config**: [ShadowHandOpenAI_LSTMPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandOpenAI_LSTMPPO.yaml). <img src="https://user-images.githubusercontent.com/34286328/171454160-8cb6739d-162a-4c84-922d-cda04382633f.gif" width="300" height="150"/> ### Allegro Hand Object Manipulation [allegro_hand.py](../omniisaacgymenvs/tasks/allegro_hand.py) This example performs the same object orientation task as the Shadow Hand example, but using the Allegro hand instead of the Shadow hand. Training can be launched with command line argument `task=AllegroHand`. Running inference with pre-trained model can be launched with command line argument `task=AllegroHand test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/allegro_hand.pth` Config files used for this task are: - **Task config**: [AllegroHand.yaml](../omniisaacgymenvs/cfg/task/Allegro.yaml) - **rl_games training config**: [AllegroHandPPO.yaml](../omniisaacgymenvs/cfg/train/AllegroHandPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/171454176-ce08f6d0-3087-4ecc-9273-7d30d8f73f6d.gif" width="300" height="150"/> ### ANYmal [anymal.py](../omniisaacgymenvs/tasks/anymal.py) This example trains a model of the ANYmal quadruped robot from ANYbotics to follow randomly chosen x, y, and yaw target velocities. Training can be launched with command line argument `task=Anymal`. Running inference with pre-trained model can be launched with command line argument `task=Anymal test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/anymal.pth` Config files used for this task are: - **Task config**: [Anymal.yaml](../omniisaacgymenvs/cfg/task/Anymal.yaml) - **rl_games training config**: [AnymalPPO.yaml](../omniisaacgymenvs/cfg/train/AnymalPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184168200-152567a8-3354-4947-9ae0-9443a56fee4c.gif" width="300" height="150"/> ### Anymal Rough Terrain [anymal_terrain.py](../omniisaacgymenvs/tasks/anymal_terrain.py) A more complex version of the above Anymal environment that supports traversing various forms of rough terrain. Training can be launched with command line argument `task=AnymalTerrain`. Running inference with pre-trained model can be launched with command line argument `task=AnymalTerrain test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/anymal_terrain.pth` - **Task config**: [AnymalTerrain.yaml](../omniisaacgymenvs/cfg/task/AnymalTerrain.yaml) - **rl_games training config**: [AnymalTerrainPPO.yaml](../omniisaacgymenvs/cfg/train/AnymalTerrainPPO.yaml) **Note** during test time use the last weights generated, rather than the usual best weights. Due to curriculum training, the reward goes down as the task gets more challenging, so the best weights do not typically correspond to the best outcome. **Note** if you use the ANYmal rough terrain environment in your work, please ensure you cite the following work: ``` @misc{rudin2021learning, title={Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning}, author={Nikita Rudin and David Hoeller and Philipp Reist and Marco Hutter}, year={2021}, journal = {arXiv preprint arXiv:2109.11978} ``` **Note** The OmniIsaacGymEnvs implementation slightly differs from the implementation used in the paper above, which also uses a different RL library and PPO implementation. The original implementation is made available [here](https://github.com/leggedrobotics/legged_gym). Results reported in the Isaac Gym technical paper are based on that repository, not this one. <img src="https://user-images.githubusercontent.com/34286328/184170040-3f76f761-e748-452e-b8c8-3cc1c7c8cb98.gif" width="300" height="150"/> ### NASA Ingenuity Helicopter [ingenuity.py](../omniisaacgymenvs/tasks/ingenuity.py) This example trains a simplified model of NASA's Ingenuity helicopter to navigate to a moving target. It showcases the use of velocity tensors and applying force vectors to rigid bodies. Note that we are applying force directly to the chassis, rather than simulating aerodynamics. This example also demonstrates using different values for gravitational forces. Ingenuity Helicopter visual 3D Model courtesy of NASA: https://mars.nasa.gov/resources/25043/mars-ingenuity-helicopter-3d-model/. Training can be launched with command line argument `task=Ingenuity`. Running inference with pre-trained model can be launched with command line argument `task=Ingenuity test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ingenuity.pth` Config files used for this task are: - **Task config**: [Ingenuity.yaml](../omniisaacgymenvs/cfg/task/Ingenuity.yaml) - **rl_games training config**: [IngenuityPPO.yaml](../omniisaacgymenvs/cfg/train/IngenuityPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184176312-df7d2727-f043-46e3-b537-48a583d321b9.gif" width="300" height="150"/> ### Quadcopter [quadcopter.py](../omniisaacgymenvs/tasks/quadcopter.py) This example trains a very simple quadcopter model to reach and hover near a fixed position. Lift is achieved by applying thrust forces to the "rotor" bodies, which are modeled as flat cylinders. In addition to thrust, the pitch and roll of each rotor is controlled using DOF position targets. Training can be launched with command line argument `task=Quadcopter`. Running inference with pre-trained model can be launched with command line argument `task=Quadcopter test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/quadcopter.pth` Config files used for this task are: - **Task config**: [Quadcopter.yaml](../omniisaacgymenvs/cfg/task/Quadcopter.yaml) - **rl_games training config**: [QuadcopterPPO.yaml](../omniisaacgymenvs/cfg/train/QuadcopterPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184178817-9c4b6b3c-c8a2-41fb-94be-cfc8ece51d5d.gif" width="300" height="150"/> ### Crazyflie [crazyflie.py](../omniisaacgymenvs/tasks/crazyflie.py) This example trains the Crazyflie drone model to hover near a fixed position. It is achieved by applying thrust forces to the four rotors. Training can be launched with command line argument `task=Crazyflie`. Running inference with pre-trained model can be launched with command line argument `task=Crazyflie test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/crazyflie.pth` Config files used for this task are: - **Task config**: [Crazyflie.yaml](../omniisaacgymenvs/cfg/task/Crazyflie.yaml) - **rl_games training config**: [CrazyfliePPO.yaml](../omniisaacgymenvs/cfg/train/CrazyfliePPO.yaml) <img src="https://user-images.githubusercontent.com/6352136/185715165-b430a0c7-948b-4dce-b3bb-7832be714c37.gif" width="300" height="150"/> ### Ball Balance [ball_balance.py](../omniisaacgymenvs/tasks/ball_balance.py) This example trains balancing tables to balance a ball on the table top. This is a great example to showcase the use of force and torque sensors, as well as DOF states for the table and root states for the ball. In this example, the three-legged table has a force sensor attached to each leg. We use the force sensor APIs to collect force and torque data on the legs, which guide position target outputs produced by the policy. Training can be launched with command line argument `task=BallBalance`. Running inference with pre-trained model can be launched with command line argument `task=BallBalance test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ball_balance.pth` Config files used for this task are: - **Task config**: [BallBalance.yaml](../omniisaacgymenvs/cfg/task/BallBalance.yaml) - **rl_games training config**: [BallBalancePPO.yaml](../omniisaacgymenvs/cfg/train/BallBalancePPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184172037-cdad9ee8-f705-466f-bbde-3caa6c7dea37.gif" width="300" height="150"/> ### Franka Cabinet [franka_cabinet.py](../omniisaacgymenvs/tasks/franka_cabinet.py) This Franka example demonstrates interaction between Franka arm and cabinet, as well as setting states of objects inside the drawer. It also showcases control of the Franka arm using position targets. In this example, we use DOF state tensors to retrieve the state of the Franka arm, as well as the state of the drawer on the cabinet. Actions are applied as position targets to the Franka arm DOFs. Training can be launched with command line argument `task=FrankaCabinet`. Running inference with pre-trained model can be launched with command line argument `task=FrankaCabinet test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/franka_cabinet.pth` Config files used for this task are: - **Task config**: [FrankaCabinet.yaml](../omniisaacgymenvs/cfg/task/FrankaCabinet.yaml) - **rl_games training config**: [FrankaCabinetPPO.yaml](../omniisaacgymenvs/cfg/train/FrankaCabinetPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184174894-03767aa0-936c-4bfe-bbe9-a6865f539bb4.gif" width="300" height="150"/> ### Franka Deformable [franka_deformable.py](../omniisaacgymenvs/tasks/franka_deformable.py) This Franka example demonstrates interaction between Franka arm and a deformable tube. It demonstrates the manipulation of deformable objects, using nodal positions and velocities of the simulation mesh as observations. Training can be launched with command line argument `task=FrankaDeformable`. Running inference with pre-trained model can be launched with command line argument `task=FrankaDeformable test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/franka_deformable.pth` Config files used for this task are: - **Task config**: [FrankaDeformable.yaml](../omniisaacgymenvs/cfg/task/FrankaDeformable.yaml) - **rl_games training config**: [FrankaCabinetFrankaDeformable.yaml](../omniisaacgymenvs/cfg/train/FrankaDeformablePPO.yaml) ### Factory: Fast Contact for Robotic Assembly We provide a set of Factory example tasks, [**FactoryTaskNutBoltPick**](../omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_pick.py), [**FactoryTaskNutBoltPlace**](../omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_place.py), and [**FactoryTaskNutBoltScrew**](../omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_screw.py), `FactoryTaskNutBoltPick` can be executed with `python train.py task=FactoryTaskNutBoltPick`. This task trains policy for the Pick task, a simplified version of the corresponding task in the Factory paper. The policy may take ~1 hour to achieve high success rates on a modern GPU. - The general configuration file for the above task is [FactoryTaskNutBoltPick.yaml](../omniisaacgymenvs/cfg/task/FactoryTaskNutBoltPick.yaml). - The training configuration file for the above task is [FactoryTaskNutBoltPickPPO.yaml](../omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPickPPO.yaml). Running inference with pre-trained model can be launched with command line argument `task=FactoryTaskNutBoltPick test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/factory_task_nut_bolt_pick.pth` `FactoryTaskNutBoltPlace` can be executed with `python train.py task=FactoryTaskNutBoltPlace`. This task trains policy for the Place task. - The general configuration file for the above task is [FactoryTaskNutBoltPlace.yaml](../omniisaacgymenvs/cfg/task/FactoryTaskNutBoltPlace.yaml). - The training configuration file for the above task is [FactoryTaskNutBoltPlacePPO.yaml](../omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPlacePPO.yaml). Running inference with pre-trained model can be launched with command line argument `task=FactoryTaskNutBoltPlace test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/factory_task_nut_bolt_place.pth` `FactoryTaskNutBoltScrew` can be executed with `python train.py task=FactoryTaskNutBoltScrew`. This task trains policy for the Screw task. - The general configuration file for the above task is [FactoryTaskNutBoltScrew.yaml](../omniisaacgymenvs/cfg/task/FactoryTaskNutBoltScrew.yaml). - The training configuration file for the above task is [FactoryTaskNutBoltScrewPPO.yaml](../omniisaacgymenvs/cfg/train/FactoryTaskNutBoltScrewPPO.yaml). Running inference with pre-trained model can be launched with command line argument `task=FactoryTaskNutBoltScrew test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/factory_task_nut_bolt_screw.pth` If you use the Factory simulation methods (e.g., SDF collisions, contact reduction) or Factory learning tools (e.g., assets, environments, or controllers) in your work, please cite the following paper: ``` @inproceedings{ narang2022factory, author = {Yashraj Narang and Kier Storey and Iretiayo Akinola and Miles Macklin and Philipp Reist and Lukasz Wawrzyniak and Yunrong Guo and Adam Moravanszky and Gavriel State and Michelle Lu and Ankur Handa and Dieter Fox}, title = {Factory: Fast contact for robotic assembly}, booktitle = {Robotics: Science and Systems}, year = {2022} } ``` Also note that our original formulations of SDF collisions and contact reduction were developed by [Macklin, et al.](https://dl.acm.org/doi/abs/10.1145/3384538) and [Moravanszky and Terdiman](https://scholar.google.com/scholar?q=Game+Programming+Gems+4%2C+chapter+Fast+Contact+Reduction+for+Dynamics+Simulation), respectively. <img src="https://user-images.githubusercontent.com/6352136/205978286-fa2ae714-a3cb-4acd-9f5f-a467338a8bb3.gif"/>
25,126
Markdown
63.927648
347
0.792725
j3soon/OmniIsaacGymEnvs-KukaReacher/docs/release_notes.md
Release Notes ============= 2023.1.0a - October 20, 2023 ---------------------------- Fixes ----- - Fix extension loading error in camera app file 2023.1.0 - October 18, 2023 --------------------------- Additions --------- - Add support for Warp backend task implementation - Add Warp-based RL examples: Cartpole, Ant, Humanoid - Add new Factory environments for place and screw: FactoryTaskNutBoltPlace and FactoryTaskNutBoltScrew - Add new camera-based Cartpole example: CartpoleCamera - Add new deformable environment showing Franka picking up a deformable tube: FrankaDeformable - Add support for running OIGE as an extension in Isaac Sim - Add options to filter collisions between environments and specify global collision filter paths to `RLTask.set_to_scene()` - Add multinode training support - Add dockerfile with OIGE - Add option to select kit app file from command line argument `kit_app` - Add `rendering_dt` parameter to the task config file for setting rendering dt. Defaults to the same value as the physics dt. Changes ------- - `use_flatcache` flag has been renamed to `use_fabric` - Update hydra-core version to 1.3.2, omegaconf version to 2.3.0 - Update rlgames to version 1.6.1. - The `get_force_sensor_forces` API for articulations is now deprecated and replaced with `get_measured_joint_forces` - Remove unnecessary cloning of buffers in VecEnv classes - Only enable omni.replicator.isaac when domain randomization or cameras are enabled - The multi-threaded launch script `rlgames_train_mt.py` has been re-designed to support the extension workflow. This script can no longer be used to launch a training run from python. Please use `rlgames_train.py` instead. - Restructures for environments to support the new extension-based workflow - Add async workflow to factory pick environment to support extension-based workflow - Update docker scripts with cache directories Fixes ----- - Fix errors related to setting velocities to kinematic markers in Ingenuity and Quadcopter environments - Fix contact-related issues with quadruped assets - Fix errors in physics APIs when returning empty tensors - Fix orientation correctness issues when using some assets with omni.isaac.core. Additional orientations applied to accommodate for the error are no longer required (i.e. ShadowHand) - Updated the deprecated config name `seq_len` used with RNN networks to `seq_length` 2022.2.1 - March 16, 2023 ------------------------- Additions --------- - Add FactoryTaskNutBoltPick example - Add Ant and Humanoid SAC training examples - Add multi-GPU support for training - Add utility scripts for launching Isaac Sim docker with OIGE - Add support for livestream through the Omniverse Streaming Client Changes ------- - Change rigid body fixed_base option to make_kinematic, avoiding creation of unnecessary articulations - Update ShadowHand, Ingenuity, Quadcopter and Crazyflie marker objects to use kinematics - Update ShadowHand GPU buffer parameters - Disable PyTorch nvFuser for better performance - Enable viewport and replicator extensions dynamically to maintain order of extension startup - Separate app files for headless environments with rendering (requires Isaac Sim update) - Update rl-games to v1.6.0 Fixes ----- - Fix material property randomization at run-time, including friction and restitution (requires Isaac Sim update) - Fix a bug in contact reporting API where incorrect values were being reported (requires Isaac Sim update) - Enable render flag in Isaac Sim when enable_cameras is set to True - Add root pose and velocity reset to BallBalance environment 2.0.0 - December 15, 2022 ------------------------- Additions --------- - Update to Viewport 2.0 - Allow for runtime mass randomization on GPU pipeline - Add runtime mass randomization to ShadowHand environments - Introduce `disable_contact_processing` simulation parameter for faster contact processing - Use physics replication for cloning by default for faster load time Changes ------- - Update AnymalTerrain environment to use contact forces - Update Quadcopter example to apply local forces - Update training parameters for ShadowHandOpenAI_FF environment - Rename rlgames_play.py to rlgames_demo.py Fixes ----- - Remove fix_base option from articulation configs - Fix in_hand_manipulation random joint position sampling on reset - Fix mass and density randomization in MT training script - Fix actions/observations noise randomization in MT training script - Fix random seed when domain randomization is enabled - Check whether simulation is running before executing pre_physics_step logic 1.1.0 - August 22, 2022 ----------------------- Additions --------- - Additional examples: Anymal, AnymalTerrain, BallBalance, Crazyflie, FrankaCabinet, Ingenuity, Quadcopter - Add OpenAI variantions for Feed-Forward and LSTM networks for ShadowHand - Add domain randomization framework `using omni.replicator.isaac` - Add AnymalTerrain interactable demo - Automatically disable `omni.kit.window.viewport` and `omni.physx.flatcache` extensions in headless mode to improve start-up load time - Introduce `reset_xform_properties` flag for initializing Views of cloned environments to reduce load time - Add WandB support - Update RL-Games version to 1.5.2 Fixes ----- - Correctly sets simulation device for GPU simulation - Fix omni.client import order - Fix episode length reset condition for ShadowHand and AllegroHand 1.0.0 - June 03, 2022 ---------------------- - Initial release for RL examples with Isaac Sim - Examples provided: AllegroHand, Ant, Cartpole, Humanoid, ShadowHand
5,592
Markdown
41.371212
223
0.768777
j3soon/OmniIsaacGymEnvs-KukaReacher/docs/CHANGELOG.md
# Changelog ## [0.0.0] - 2023-07-13 ### Added - UI for launching RL trasks
76
Markdown
11.833331
28
0.618421
j3soon/OmniIsaacGymEnvs-KukaReacher/docs/transfering_policies_from_isaac_gym.md
## Transfering Policies from Isaac Gym Preview Releases This section delineates some of the differences between the standalone [Isaac Gym Preview Releases](https://developer.nvidia.com/isaac-gym) and Isaac Sim reinforcement learning extensions, in hopes of facilitating the process of transferring policies trained in the standalone preview releases to Isaac Sim. ### Isaac Sim RL Extensions Unlike the monolithic standalone Isaac Gym Preview Releases, Omniverse is a highly modular system, with functionality split between various [Extensions](https://docs.omniverse.nvidia.com/extensions/latest/index.html). The APIs used by typical robotics RL systems are split between a handful of extensions in Isaac Sim. These include `omni.isaac.core`, which provides tensorized access to physics simulation state as well as a task management framework, the `omni.isaac.cloner` extension for creating many copies of your environments, and the `omni.isaac.gym` extension for interfacing with external RL training libraries. For naming clarity, we'll refer collectively to the extensions used for RL within Isaac Sim as the **Isaac Sim RL extensions**, in contrast with the older **Isaac Gym Preview Releases**. ### Quaternion Convention The Isaac Sim RL extensions use various classes and methods in `omni.isaac.core`, which adopts `wxyz` as the quaternion convention. However, the quaternion convention used in Isaac Gym Preview Releases is `xyzw`. Therefore, if a policy trained in one of the Isaac Gym Preview Releases takes in quaternions as part of its observations, remember to switch all quaternions to use the `xyzw` convention in the observation buffer `self.obs_buf`. Similarly, please ensure all quaternions are in `wxyz` before passing them in any of the utility functions in `omni.isaac.core`. ### Assets Isaac Sim provides [URDF](https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_import_urdf.html) and [MJCF](https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_import_mjcf.html) importers for translating URDF and MJCF assets into USD format. Any robot or object assets must be in .usd, .usda, or .usdc format for Isaac Sim and Omniverse. For more details on working with USD, please see https://docs.omniverse.nvidia.com/isaacsim/latest/reference_glossary.html#usd. Importer tools are also available for other common geometry file formats, such as .obj, .fbx, and more. Please see [Asset Importer](https://docs.omniverse.nvidia.com/extensions/latest/ext_asset-importer.html) for more details. ### Joint Order Isaac Sim's `ArticulationView` in `omni.isaac.core` assumes a breadth-first ordering for the joints in a given kinematic tree. Specifically, for the following kinematic tree, the method `ArticulationView.get_joint_positions` returns a tensor of shape `(number of articulations in the view, number of joints in the articulation)`. Along the second dimension of this tensor, the values represent the articulation's joint positions in the following order: `[Joint 1, Joint 2, Joint 4, Joint 3, Joint 5]`. On the other hand, the Isaac Gym Preview Releases assume a depth-first ordering for the joints in the kinematic tree; In the example below, the joint orders would be the following: `[Joint 1, Joint 2, Joint 3, Joint 4, Joint 5]`. <img src="./media/KinematicTree.png" height="300"/> With this in mind, it is important to change the joint order to depth-first in the observation buffer before feeding it into an existing policy trained in one of the Isaac Gym Preview Releases. Similarly, you would also need to change the joint order in the output (the action buffer) of the Isaac Gym Preview Release trained policy to breadth-first before applying joint actions to articulations via methods in `ArticulationView`. ### Physics Parameters One factor that could dictate the success of policy transfer from Isaac Gym Preview Releases to Isaac Sim is to ensure the physics parameters used in both simulations are identical or very similar. In general, the `sim` parameters specified in the task configuration `yaml` file overwrite the corresponding parameters in the USD asset. However, there are additional parameters in the USD asset that are not included in the task configuration `yaml` file. These additional parameters may sometimes impact the performance of Isaac Gym Preview Release trained policies and hence need modifications in the USD asset itself to match the values set in Isaac Gym Preview Releases. For instance, the following parameters in the `RigidBodyAPI` could be modified in the USD asset to yield better policy transfer performance: | RigidBodyAPI Parameter | Default Value in Isaac Sim | Default Value in Isaac Gym Preview Releases | |:----------------------:|:--------------------------:|:--------------------------:| | Linear Damping | 0.00 | 0.00 | | Angular Damping | 0.05 | 0.00 | | Max Linear Velocity | inf | 1000 | | Max Angular Velocity | 5729.58008 (deg/s) | 64 (rad/s) | | Max Contact Impulse | inf | 1e32 | <img src="./media/RigidBodyAPI.png" width="500"/> Parameters in the `JointAPI` as well as the `DriveAPI` could be altered as well. Note that the Isaac Sim UI assumes the unit of angle to be degrees. It is particularly worth noting that the `Damping` and `Stiffness` paramters in the `DriveAPI` have the unit of `1/deg` in the Isaac Sim UI but `1/rad` in Isaac Gym Preview Releases. | Joint Parameter | Default Value in Isaac Sim | Default Value in Isaac Gym Preview Releases | |:----------------------:|:--------------------------:|:--------------------------:| | Maximum Joint Velocity | 1000000.0 (deg) | 100.0 (rad) | <img src="./media/JointAPI.png" width="500"/> ### Differences in APIs APIs for accessing physics states in Isaac Sim require the creation of an ArticulationView or RigidPrimView object. Multiple view objects can be initialized for different articulations or bodies in the scene by defining a regex expression that matches the paths of the desired objects. This approach eliminates the need of retrieving body handles to slice states for specific bodies in the scene. We have also removed `acquire` and `refresh` APIs in Isaac Sim. Physics states can be directly applied or retrieved by using `set`/`get` APIs defined for the views. New APIs provided in Isaac Sim no longer require explicit wrapping and un-wrapping of underlying buffers. APIs can now work with tensors directly for reading and writing data. Most APIs in Isaac Sim also provide the option to specify an `indices` parameter, which can be used when reading or writing data for a subset of environments. Note that when setting states with the `indices` parameter, the shape of the states buffer should match with the dimension of the `indices` list. Note some naming differences between APIs in Isaac Gym Preview Release and Isaac Sim. Most `dof` related APIs have been named to `joint` in Isaac Sim. `root_states` is now separated into different APIs for `world_poses` and `velocities`. Similary, `dof_states` are retrieved individually in Isaac Sim as `joint_positions` and `joint_velocities`. APIs in Isaac Sim also no longer follow the explicit `_tensors` or `_tensor_indexed` suffixes in naming. Indexed versions of APIs now happen implicitly through the optional `indices` parameter. ### Task Configuration Files There are a few modifications that need to be made to an existing Isaac Gym Preview Release task `yaml` file in order for it to be compatible with the Isaac Sim RL extensions. #### Frequencies of Physics Simulation and RL Policy The way in which physics simulation frequency and RL policy frequency are specified is different between Isaac Gym Preview Releases and Isaac Sim, dictated by the following three parameters: `dt`, `substeps`, and `controlFrequencyInv`. - `dt`: The simulation time difference between each simulation step. - `substeps`: The number of physics steps within one simulation step. *i.e.* if `dt: 1/60` and `substeps: 4`, physics is simulated at 240 hz. - `controlFrequencyInv`: The control decimation of the RL policy, which is the number of simulation steps between RL actions. *i.e.* if `dt: 1/60` and `controlFrequencyInv: 2`, RL policy is running at 30 hz. In Isaac Gym Preview Releases, all three of the above parameters are used to specify the frequencies of physics simulation and RL policy. However, Isaac Sim only uses `controlFrequencyInv` and `dt` as `substeps` is always fixed at `1`. Note that despite only using two parameters, Isaac Sim can still achieve the same substeps definition as Isaac Gym. For example, if in an Isaac Gym Preview Release policy, we set `substeps: 2`, `dt: 1/60` and `controlFrequencyInv: 1`, we can achieve the equivalent in Isaac Sim by setting `controlFrequencyInv: 2` and `dt: 1/120`. In the Isaac Sim RL extensions, `dt` is specified in the task configuration `yaml` file under `sim`, whereas `controlFrequencyInv` is a parameter under `env`. #### Physx Parameters Parameters under `physx` in the task configuration `yaml` file remain mostly unchanged. In Isaac Gym Preview Releases, `use_gpu` is frequently set to `${contains:"cuda",${....sim_device}}`. For Isaac Sim, please ensure this is changed to `${eq:${....sim_device},"gpu"}`. In Isaac Gym Preview Releases, GPU buffer sizes are specified using the following two parameters: `default_buffer_size_multiplier` and `max_gpu_contact_pairs`. With the Isaac Sim RL extensions, these two parameters are no longer used; instead, the various GPU buffer sizes can be set explicitly. For instance, in the [Humanoid task configuration file](../omniisaacgymenvs/cfg/task/Humanoid.yaml), GPU buffer sizes are specified as follows: ```yaml gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 ``` Please refer to the [Troubleshooting](./troubleshoot.md#simulation) documentation should you encounter errors related to GPU buffer sizes. #### Articulation Parameters The articulation parameters of each actor can now be individually specified tn the Isaac Sim task configuration `yaml` file. The following is an example template for setting these parameters: ```yaml ARTICULATION_NAME: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: True enable_gyroscopic_forces: True # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 10.0 ``` These articulation parameters can be parsed using the `parse_actor_config` method in the [SimConfig](../omniisaacgymenvs/utils/config_utils/sim_config.py) class, which can then be applied to a prim in simulation via the `apply_articulation_settings` method. A concrete example of this is the following code snippet from the [HumanoidTask](../omniisaacgymenvs/tasks/humanoid.py#L75): ```python self._sim_config.apply_articulation_settings("Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid")) ``` #### Additional Simulation Parameters - `use_fabric`: Setting this paramter to `True` enables [PhysX Fabric](https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_physics.html#flatcache), which offers a significant increase in simulation speed. However, this parameter must be set to `False` if soft-body simulation is required because `PhysX Fabric` curently only supports rigid-body simulation. - `enable_scene_query_support`: Setting this paramter to `True` allows the user to interact with prims in the scene. Keeping this setting to `False` during training improves simulation speed. Note that this parameter is always set to `True` if in test/inference mode to enable user interaction with trained models. ### Training Configuration Files The Omniverse Isaac Gym RL Environments are trained using a third-party highly-optimized RL library, [rl_games](https://github.com/Denys88/rl_games), which is also used to train the Isaac Gym Preview Release examples in [IsaacGymEnvs](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs). Therefore, the rl_games training configuration `yaml` files in Isaac Sim are compatible with those from IsaacGymEnvs. However, please add the following lines under `config` in the training configuration `yaml` files (*i.e.* line 41-42 in [HumanoidPPO.yaml](../omniisaacgymenvs/cfg/train/HumanoidPPO.yaml#L41)) to ensure RL training runs on the intended device. ```yaml device: ${....rl_device} device_name: ${....rl_device} ```
13,250
Markdown
55.387234
252
0.749585
j3soon/OmniIsaacGymEnvs-KukaReacher/docs/framework.md
## RL Framework ### Overview Our RL examples are built on top of Isaac Sim's RL framework provided in `omni.isaac.gym`. Tasks are implemented following `omni.isaac.core`'s Task structure. PPO training is performed using the [rl_games](https://github.com/Denys88/rl_games) library, but we provide the flexibility to use other RL libraries for training. For a list of examples provided, refer to the [RL List of Examples](rl_examples.md) ### Class Definition The RL ecosystem can be viewed as three main pieces: the Task, the RL policy, and the Environment wrapper that provides an interface for communication between the task and the RL policy. #### Task The Task class is where main task logic is implemented, such as computing observations and rewards. This is where we can collect states of actors in the scene and apply controls or actions to our actors. For convenience, we provide a base Task class, `RLTask`, which inherits from the `BaseTask` class in `omni.isaac.core`. This class is responsible for dealing with common configuration parsing, buffer initialization, and environment creation. Note that some config parameters and buffers in this class are specific to the rl_games library, and it is not necessary to inherit new tasks from `RLTask`. A few key methods in `RLTask` include: * `__init__(self, name: str, env: VecEnvBase, offset: np.ndarray = None)` - Parses config values common to all tasks and initializes action/observation spaces if not defined in the child class. Defines a GridCloner by default and creates a base USD scope for holding all environment prims. Can be called from child class. * `set_up_scene(self, scene: Scene, replicate_physics=True, collision_filter_global_paths=[], filter_collisions=True)` - Adds ground plane and creates clones of environment 0 based on values specifid in config. Can be called from child class `set_up_scene()`. * `pre_physics_step(self, actions: torch.Tensor)` - Takes in actions buffer from RL policy. Can be overriden by child class to process actions. * `post_physics_step(self)` - Controls flow of RL data processing by triggering APIs to compute observations, retrieve states, compute rewards, resets, and extras. Will return observation, reward, reset, and extras buffers. #### Environment Wrappers As part of the RL framework in Isaac Sim, we have introduced environment wrapper classes in `omni.isaac.gym` for RL policies to communicate with simulation in Isaac Sim. This class provides a vectorized interface for common RL APIs used by `gym.Env` and can be easily extended towards RL libraries that require additional APIs. We show an example of this extension process in this repository, where we extend `VecEnvBase` as provided in `omni.isaac.gym` to include additional APIs required by the rl_games library. Commonly used APIs provided by the base wrapper class `VecEnvBase` include: * `render(self, mode: str = "human")` - renders the current frame * `close(self)` - closes the simulator * `seed(self, seed: int = -1)` - sets a seed. Use `-1` for a random seed. * `step(self, actions: Union[np.ndarray, torch.Tensor])` - triggers task `pre_physics_step` with actions, steps simulation and renderer, computes observations, rewards, dones, and returns state buffers * `reset(self)` - triggers task `reset()`, steps simulation, and re-computes observations ##### Multi-Threaded Environment Wrapper for Extension Workflows `VecEnvBase` is a simple interface that’s designed to provide commonly used `gym.Env` APIs required by RL libraries. Users can create an instance of this class, attach your task to the interface, and provide your wrapper instance to the RL policy. Since the RL algorithm maintains the main loop of execution, interaction with the UI and environments in the scene can be limited and may interfere with the training loop. We also provide another environment wrapper class called `VecEnvMT`, which is designed to isolate the RL policy in a new thread, separate from the main simulation and rendering thread. This class provides the same set of interface as `VecEnvBase`, but also provides threaded queues for sending and receiving actions and states between the RL policy and the task. In order to use this wrapper interface, users have to implement a `TrainerMT` class, which should implement a `run()` method that initiates the RL loop on a new thread. We show an example of this in OmniIsaacGymEnvs under `omniisaacgymenvs/utils/rlgames/rlgames_train_mt.py`. The setup for using `VecEnvMT` is more involved compared to the single-threaded `VecEnvBase` interface, but will allow users to have more control over starting and stopping the training loop through interaction with the UI. Note that `VecEnvMT` has a timeout variable, which defaults to 90 seconds. If either the RL thread waiting for physics state exceeds the timeout amount or the simulation thread waiting for RL actions exceeds the timeout amount, the threaded queues will throw an exception and terminate training. For larger scenes that require longer simulation or training time, try increasing the timeout variable in `VecEnvMT` to prevent unnecessary timeouts. This can be done by passing in a `timeout` argument when calling `VecEnvMT.initialize()`. This wrapper is currently only supported with the [extension workflow](extension_workflow.md). ### Creating New Examples For simplicity, we will focus on using the single-threaded `VecEnvBase` interface in this tutorial. To run any example, first make sure an instance of `VecEnvBase` or descendant of `VecEnvBase` is initialized. This will be required as an argumet to our new Task. For example: ``` python env = VecEnvBase(headless=False) ``` The headless parameter indicates whether a viewer should be created for visualizing results. Then, create our task class, extending it from `RLTask`: ```python class MyNewTask(RLTask): def __init__( self, name: str, # name of the Task sim_config: SimConfig, # SimConfig instance for parsing cfg env: VecEnvBase, # env instance of VecEnvBase or inherited class offset=None # transform offset in World ) -> None: # parse configurations, set task-specific members ... self._num_observations = 4 self._num_actions = 1 # call parent class’s __init__ RLTask.__init__(self, name, env) ``` The `__init__` method should take 4 arguments: * `name`: a string for the name of the task (required by BaseTask) * `sim_config`: an instance of `SimConfig` used for config parsing, can be `None`. This object is created in `omniisaacgymenvs/utils/task_utils.py`. * `env`: an instance of `VecEnvBase` or an inherited class of `VecEnvBase` * `offset`: any offset required to place the `Task` in `World` (required by `BaseTask`) In the `__init__` method of `MyNewTask`, we can populate any task-specific parameters, such as dimension of observations and actions, and retrieve data from config dictionaries. Make sure to make a call to `RLTask`’s `__init__` at the end of the method to perform additional data initialization. Next, we can implement the methods required by the RL framework. These methods follow APIs defined in `omni.isaac.core` `BaseTask` class. Below is an example of a simple implementation for each method. ```python def set_up_scene(self, scene: Scene) -> None: # implement environment setup here add_prim_to_stage(my_robot) # add a robot actor to the stage super().set_up_scene(scene) # pass scene to parent class - this method in RLTask also uses GridCloner to clone the robot and adds a ground plane if desired self._my_robots = ArticulationView(...) # create a view of robots scene.add(self._my_robots) # add view to scene for initialization def post_reset(self): # implement any logic required for simulation on-start here pass def pre_physics_step(self, actions: torch.Tensor) -> None: # implement logic to be performed before physics steps self.perform_reset() self.apply_action(actions) def get_observations(self) -> dict: # implement logic to retrieve observation states self.obs_buf = self.compute_observations() def calculate_metrics(self) -> None: # implement logic to compute rewards self.rew_buf = self.compute_rewards() def is_done(self) -> None: # implement logic to update dones/reset buffer self.reset_buf = self.compute_resets() ``` To launch the new example from one of our training scripts, add `MyNewTask` to `omniisaacgymenvs/utils/task_util.py`. In `initialize_task()`, add an import to the `MyNewTask` class and add an instance to the `task_map` dictionary to register it into the command line parsing. To use the Hydra config parsing system, also add a task and train config files into `omniisaacgymenvs/cfg`. The config files should be named `cfg/task/MyNewTask.yaml` and `cfg/train/MyNewTaskPPO.yaml`. Finally, we can launch `MyNewTask` with: ```bash PYTHON_PATH random_policy.py task=MyNewTask ``` ### Using a New RL Library In this repository, we provide an example of extending Isaac Sim's environment wrapper classes to work with the rl_games library, which can be found at `omniisaacgymenvs/envs/vec_env_rlgames.py` and `omniisaacgymenvs/envs/vec_env_rlgames_mt.py`. The first script, `omniisaacgymenvs/envs/vec_env_rlgames.py`, extends from `VecEnvBase`. ```python from omni.isaac.gym.vec_env import VecEnvBase class VecEnvRLGames(VecEnvBase): ``` One of the features in rl_games is the support for asymmetrical actor-critic policies, which requires a `states` buffer in addition to the `observations` buffer. Thus, we have overriden a few of the class in `VecEnvBase` to incorporate this requirement. ```python def set_task( self, task, backend="numpy", sim_params=None, init_sim=True ) -> None: super().set_task(task, backend, sim_params, init_sim) # class VecEnvBase's set_task to register task to the environment instance # special variables required by rl_games self.num_states = self._task.num_states self.state_space = self._task.state_space def step(self, actions): # we clamp the actions so that values are within a defined range actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone() # pass actions buffer to task for processing self._task.pre_physics_step(actions) # allow users to specify the control frequency through config for _ in range(self._task.control_frequency_inv): self._world.step(render=self._render) self.sim_frame_count += 1 # compute new buffers self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step() self._states = self._task.get_states() # special buffer required by rl_games # return buffers in format required by rl_games obs_dict = {"obs": self._obs, "states": self._states} return obs_dict, self._rew, self._resets, self._extras ``` Similarly, we also have a multi-threaded version of the rl_games environment wrapper implementation, `omniisaacgymenvs/envs/vec_env_rlgames_mt.py`. This class extends from `VecEnvMT` and `VecEnvRLGames`: ```python from omni.isaac.gym.vec_env import VecEnvMT from .vec_env_rlgames import VecEnvRLGames class VecEnvRLGamesMT(VecEnvRLGames, VecEnvMT): ``` In this class, we also have a special method `_parse_data(self, data)`, which is required to be implemented to parse dictionary values passed through queues. Since multiple buffers of data are required by the RL policy, we concatenate all of the buffers in a single dictionary, and send that to the queue to be received by the RL thread. ```python def _parse_data(self, data): self._obs = torch.clamp(data["obs"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._rew = data["rew"].to(self._task.rl_device).clone() self._states = torch.clamp(data["states"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._resets = data["reset"].to(self._task.rl_device).clone() self._extras = data["extras"].copy() ``` ### API Limitations #### omni.isaac.core Setter APIs Setter APIs in omni.isaac.core for ArticulationView, RigidPrimView, and RigidContactView should only be called once per simulation step for each view instance per API. This means that for use cases where multiple calls to the same setter API from the same view instance is required, users will need to cache the states to be set for intermmediate calls, and make only one call to the setter API prior to stepping physics with the complete buffer containing all cached states. If multiple calls to the same setter API from the same view object are made within the simulation step, subsequent calls will override the states that have been set by prior calls to the same API, voiding the previous calls to the API. The API can be called again once a simulation step is made. For example, the below code will override states. ```python my_view.set_world_poses(positions=[[0, 0, 1]], orientations=[[1, 0, 0, 0]], indices=[0]) # this call will void the previous call my_view.set_world_poses(positions=[[0, 1, 1]], orientations=[[1, 0, 0, 0]], indices=[1]) my_world.step() ``` Instead, the below code should be used. ```python my_view.set_world_poses(positions=[[0, 0, 1], [0, 1, 1]], orientations=[[1, 0, 0, 0], [1, 0, 0, 0]], indices=[0, 1]) my_world.step() ``` #### omni.isaac.core Getter APIs Getter APIs for cloth simulation may return stale states when used with the GPU pipeline. This is because the physics simulation requires a simulation step to occur in order to refresh the GPU buffers with new states. Therefore, when a getter API is called after a setter API before a simulation step, the states returned from the getter API may not reflect the values that were set using the setter API. For example: ```python my_view.set_world_positions(positions=[[0, 0, 1]], indices=[0]) # Values may be stale when called before step positions = my_view.get_world_positions() # positions may not match [[0, 0, 1]] my_world.step() # Values will be updated when called after step positions = my_view.get_world_positions() # positions will reflect the new states ``` #### Performing Resets When resetting the states of actors, impulses generated by previous target or effort controls will continue to be carried over from the previous states in simulation. Therefore, depending on the time step, the masses of the objects, and the magnitude of the impulses, the difference between the desired reset state and the observed first state after reset can be large. To eliminate this issue, users should also reset any position/velocity targets or effort controllers to the reset state or zero state when resetting actor states. For setting joint positions and velocities using the omni.isaac.core ArticulationView APIs, position targets and velocity targets will automatically be set to the same states as joint positions and velocities. #### Massless Links It may be helpful in some scenarios to introduce dummy bodies into articulations for retrieving transformations at certain locations of the articulation. Although it is possible to introduce rigid bodies with no mass and colliders APIs and attach them to the articulation with fixed joints, this can sometimes cause physics instabilities in simulation. To prevent instabilities from occurring, it is recommended to add a dummy geometry to the rigid body and include both Mass and Collision APIs. The mass of the geometry can be set to a very small value, such as 0.0001, to avoid modifying physical behaviors of the articulation. Similarly, we can also disable collision on the Collision API of the geometry to preserve contact behavior of the articulation.
15,846
Markdown
58.575188
862
0.754007
j3soon/OmniIsaacGymEnvs-KukaReacher/docs/README.md
# Usage To enable this extension, go to the Extension Manager menu and enable omniisaacgymenvs extension
105
Markdown
34.333322
96
0.828571
j3soon/OmniIsaacGymEnvs-KukaReacher/docs/index.rst
RL Examples [omniisaacgymenvs] ######################################################
86
reStructuredText
27.999991
54
0.302326
yizhouzhao/OpenAnyDrawer/README.md
# OpenAnyDrawer windows running guide: C:/Users/zhaoy/AppData/Local/ov/pkg/isaac_sim-2022.1.0/python.bat E:\researches\OpenAnyDrawer\open-any-drawer\exts\open.any.drawer\open\any\drawer result_file_path = "F:\\allegro_exp_learning823.txt" MODEL_PATH = "F:\\fasterrcnn_resnet50_fpn823.pth" usd_path = "F:\\scene1.usd" env = OpenEnv(load_nucleus=False) open_env.py line 134-139 change to load locally experiment.py line result_file_path = "F:\\shadowhand_exp823.txt" SHOW_IMAGE = False usd_path = "F:\\scene2.usd" MODEL_PATH = "F:\\fasterrcnn_resnet50_fpn823.pth" linux running guide: # go to directory: open-any-drawer/exts/open.any.drawer/open/any/drawer/ # # start notebook from: /home/yizhou/.local/share/ov/pkg/isaac_sim-2022.1.0/jupyter_notebook.sh # start python: /home/yizhou/.local/share/ov/pkg/isaac_sim-2022.1.0/python.sh # next paper about body language
891
Markdown
30.857142
97
0.735129
yizhouzhao/OpenAnyDrawer/learning/resnet.py
import torch import torch.nn as nn import torch.nn.functional as F class IdentityBlock(nn.Module): def __init__(self, in_planes, filters, kernel_size, stride=1, final_relu=True, batchnorm=True): super(IdentityBlock, self).__init__() self.final_relu = final_relu self.batchnorm = batchnorm filters1, filters2, filters3 = filters self.conv1 = nn.Conv2d(in_planes, filters1, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(filters1) if self.batchnorm else nn.Identity() self.conv2 = nn.Conv2d(filters1, filters2, kernel_size=kernel_size, dilation=1, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(filters2) if self.batchnorm else nn.Identity() self.conv3 = nn.Conv2d(filters2, filters3, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(filters3) if self.batchnorm else nn.Identity() def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += x if self.final_relu: out = F.relu(out) return out class ConvBlock(nn.Module): def __init__(self, in_planes, filters, kernel_size, stride=1, final_relu=True, batchnorm=True): super(ConvBlock, self).__init__() self.final_relu = final_relu self.batchnorm = batchnorm filters1, filters2, filters3 = filters self.conv1 = nn.Conv2d(in_planes, filters1, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(filters1) if self.batchnorm else nn.Identity() self.conv2 = nn.Conv2d(filters1, filters2, kernel_size=kernel_size, dilation=1, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(filters2) if self.batchnorm else nn.Identity() self.conv3 = nn.Conv2d(filters2, filters3, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(filters3) if self.batchnorm else nn.Identity() self.shortcut = nn.Sequential( nn.Conv2d(in_planes, filters3, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(filters3) if self.batchnorm else nn.Identity() ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) if self.final_relu: out = F.relu(out) return out class ResNet43_8s(nn.Module): def __init__(self, input_shape, output_dim, cfg, device, preprocess): super(ResNet43_8s, self).__init__() self.input_shape = input_shape self.input_dim = input_shape[-1] self.output_dim = output_dim self.cfg = cfg self.device = device self.batchnorm = self.cfg['train']['batchnorm'] self.preprocess = preprocess self.layers = self._make_layers() def _make_layers(self): layers = nn.Sequential( # conv1 nn.Conv2d(self.input_dim, 64, stride=1, kernel_size=3, padding=1), nn.BatchNorm2d(64) if self.batchnorm else nn.Identity(), nn.ReLU(True), # fcn ConvBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), ConvBlock(64, [128, 128, 128], kernel_size=3, stride=2, batchnorm=self.batchnorm), IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), ConvBlock(128, [256, 256, 256], kernel_size=3, stride=2, batchnorm=self.batchnorm), IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), ConvBlock(256, [512, 512, 512], kernel_size=3, stride=2, batchnorm=self.batchnorm), IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), # head ConvBlock(512, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ConvBlock(256, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), # conv2 ConvBlock(64, [16, 16, self.output_dim], kernel_size=3, stride=1, final_relu=False, batchnorm=self.batchnorm), IdentityBlock(self.output_dim, [16, 16, self.output_dim], kernel_size=3, stride=1, final_relu=False, batchnorm=self.batchnorm), ) return layers def forward(self, x): x = self.preprocess(x, dist='transporter') out = self.layers(x) return out
5,290
Python
43.091666
99
0.60983
yizhouzhao/OpenAnyDrawer/learning/custom_cliport.py
import os import sys sys.path.append(os.path.dirname(__file__)) import torch import torch.nn as nn import torch.nn.functional as F from fusion import * from resnet import IdentityBlock, ConvBlock class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1), nn.BatchNorm2d(mid_channels), # (Mohit): argh... forgot to remove this batchnorm nn.ReLU(inplace=True), nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), # (Mohit): argh... forgot to remove this batchnorm nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) else: self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) # if you have padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd x = torch.cat([x2, x1], dim=1) return self.conv(x) class CustomCliport(nn.Module): def __init__(self, clip_text_feature_path = "/home/yizhou/Research/OpenAnyDrawer/learning/text2clip_feature.json", device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')) -> None: """ Prediction mode: initialize resnet """ super().__init__() self.batchnorm = True self.clip_text_feature_path = clip_text_feature_path self.device = device self.proj_input_dim = 512 self.lang_proj1 = nn.Linear(self.proj_input_dim, 512) self.lang_proj2 = nn.Linear(self.proj_input_dim, 256) self.lang_proj3 = nn.Linear(self.proj_input_dim, 128) self.lang_fuser1 = FusionMult(512) self.lang_fuser2 = FusionMult(256) self.lang_fuser3 = FusionMult(128) self.up1 = nn.Sequential( nn.Upsample(scale_factor= 2, mode='bilinear', align_corners=True), DoubleConv(512, 512, 512) ) self.up2 = nn.Sequential( nn.Upsample(scale_factor= 2, mode='bilinear', align_corners=True), DoubleConv(512, 256, 512) ) self.up3 = nn.Sequential( nn.Upsample(scale_factor= 2, mode='bilinear', align_corners=True), DoubleConv(256, 128, 256) ) self.layer1 = nn.Sequential( ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.layer2 = nn.Sequential( ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.layer3 = nn.Sequential( ConvBlock(32, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(16, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.conv2 = nn.Sequential( nn.Conv2d(16, 1, kernel_size=1), ) # in prediction def set_prediction_mode(self): # load vision model from transformers import AutoFeatureExtractor, ResNetModel self.feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-18") self.resnet_model = ResNetModel.from_pretrained("microsoft/resnet-18").to(self.device) # load language feature import json self.text2clip_feature = json.load(open(self.clip_text_feature_path,'r', encoding='utf-8')) def pred_box_pos_and_dir(self, image, text): """ Prediction box center position and direction """ # image features inputs = self.feature_extractor(image, return_tensors="pt").to(self.device) with torch.no_grad(): image_features = self.resnet_model(**inputs).last_hidden_state # [1, 512, 7, 7] text_feautures = torch.tensor(self.text2clip_feature[text]).float().unsqueeze(0).to(self.device) # [1, 512] pred_y = self.forward(image_features, text_feautures) pred_max_index = torch.argmax(pred_y[0].cpu().data).item() h, w = pred_max_index// 256, pred_max_index % 256 # get direction top_bound = max(h - 5, 0) bottom_bound = min(h + 5, 255) left_bound = max(w - 5, 0) right_bound = min(w + 5, 255) # mean over vertical direction v_mean = torch.mean(pred_y[0][top_bound:bottom_bound, w]).item() h_mean = torch.mean(pred_y[0][left_bound:right_bound, h]).item() handle_dir = "horizontal" if v_mean > h_mean else "vertical" # if vertical direction more concentrate, then direciton is horizontal return (h,w), handle_dir def forward(self, x, l): """ x: image features [B x 512 x 7 x 7] l: language features [B x 512] """ x = self.up1(x) x = self.lang_fuser1(x, l, x2_proj = self.lang_proj1) x = self.up2(x) x = self.lang_fuser2(x, l, x2_proj = self.lang_proj2) x = self.up3(x) x = self.lang_fuser3(x, l, x2_proj = self.lang_proj3) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.conv2(x) x = F.interpolate(x, size=(256, 256), mode='bilinear') x = F.relu(x) x = x.squeeze(1) return x
6,850
Python
34.497409
139
0.589343
yizhouzhao/OpenAnyDrawer/learning/custom_dataset.py
import numpy as np import cv2 import os from PIL import Image, ImageDraw import json import torch from torch.utils.data import DataLoader, Dataset from tqdm.auto import tqdm # load vision model from transformers import AutoFeatureExtractor, ResNetModel feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-18") resnet_model = ResNetModel.from_pretrained("microsoft/resnet-18").to("cuda") # load language feature import pickle text2clip_feature = pickle.load(open("text2clip_feature.pickle",'rb')) def collate_fn(batch): image_list = [] target_list = [] text_feature_list = [] for (image, target, text) in batch: image_list.append(image) target_list.append(torch.tensor(target)) text_feature_list.append(text2clip_feature[text]) # image features inputs = feature_extractor(image_list, return_tensors="pt").to("cuda") with torch.no_grad(): image_features = resnet_model(**inputs).last_hidden_state # targets targets = torch.stack(target_list).to("cuda") text_feautures = torch.stack(text_feature_list).to("cuda") return image_features.float(), targets.float(), text_feautures.float() class HandleDataset4Cliport(Dataset): def __init__(self, image_dir, num_frames = 5, is_train = True, transforms=None): super().__init__() self.image_dir = image_dir self.num_frames = num_frames # randomized frames in rendering self.transforms = transforms self.is_train = is_train self.get_img_ids() def get_img_ids(self): self.image_ids = [] for image_id in tqdm(sorted(os.listdir(self.image_dir), key = lambda x: int(x))): if self.is_train: if int(image_id) > 150: continue else: # test if int(image_id) <= 150: continue # print("image_id", image_id) for i in range(self.num_frames): boxes_np = np.load(f'{self.image_dir}/{image_id}/bounding_box_2d_tight_{i}.npy') lang_json = json.load(open(f'{self.image_dir}/{image_id}/bounding_box_2d_tight_labels_{i}.json')) if boxes_np.shape[0] > 0: boxes = np.array([ list(e) for e in boxes_np]) boxes = boxes[...,1:] # 0 is the class index boxes[:, :2] -= 1 # make min a little smaller boxes[:, 2:] += 1 # make max a little large for j, key in enumerate(lang_json): self.image_ids.append([image_id, boxes[j], i, lang_json[key]['class']]) # image, box, frame, text def __len__(self): return len(self.image_ids) def __getitem__(self, index: int): """ return: image: image """ image_id, box, frame, text = self.image_ids[index] image = Image.open(f'{self.image_dir}/{image_id}/rgb_{frame}.png') image = image.convert('RGB') box_image = Image.new('L', image.size) draw_image = ImageDraw.Draw(box_image) draw_image.rectangle(list(box), fill ="#FFFFFF") box_image = np.array(box_image) / 255.0 text = text.replace("_"," ").replace("-"," ").replace(" ", " ").strip() return image, box_image, text
3,353
Python
30.942857
117
0.583656
yizhouzhao/OpenAnyDrawer/learning/utils.py
# get text clip encoding def get_text_embeddings(): """ Get text embeddings from clip language model """ ALL_SEMANTIC_TYPES = [f"{v_desc}_{h_desc}_{cabinet_type}" for v_desc in ["", "bottom", "second-bottom", "middle", "second-top", "top"] for h_desc in ["", "right", "second-right", "middle", "second-left", "left"] for cabinet_type in ["drawer", "door"]] ALL_SEMANTIC_TYPES = [f"{v_desc}_{h_desc}_{cabinet_type}" for v_desc in ["", "bottom", "second-bottom", "middle", "second-top", "top"] for h_desc in ["", "right", "second-right", "middle", "second-left", "left"] for cabinet_type in ["drawer", "door"]] all_texts = [t.replace("_"," ").replace("-"," ").replace(" ", " ").strip() for t in ALL_SEMANTIC_TYPES] # all_texts from transformers import CLIPTokenizer, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") inputs = tokenizer(all_texts, padding=True, return_tensors="pt") text_features = model.get_text_features(**inputs) text2feature = {all_texts[i]: text_features[i].data for i in range(72)} import pickle # save dictionary to pickle file with open('text2clip_feature.pickle', 'wb') as file: pickle.dump(text2feature, file, protocol=pickle.HIGHEST_PROTOCOL)
1,357
Python
42.80645
255
0.647752
yizhouzhao/OpenAnyDrawer/learning/dataset.py
import numpy as np import cv2 import os import torch from torch.utils.data import DataLoader, Dataset import albumentations as A from albumentations.pytorch.transforms import ToTensorV2 from tqdm.auto import tqdm # Albumentations def get_train_transform(): return A.Compose([ A.Resize(224, 224), A.Flip(0.5), ToTensorV2(p=1.0) ], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']}) def get_valid_transform(): return A.Compose([ A.Resize(224, 224), ToTensorV2(p=1.0) ], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']}) def collate_fn(batch): return tuple(zip(*batch)) class HandleDataset(Dataset): def __init__(self, image_dir, num_frames = 5, is_train = True, transforms=None): super().__init__() self.image_dir = image_dir self.num_frames = num_frames # randomized frames in rendering self.transforms = transforms self.is_train = is_train self.get_img_ids() def get_img_ids(self): self.image_ids = [] for image_id in tqdm(os.listdir(self.image_dir)): if self.is_train: if int(image_id) > 150: continue else: # test if int(image_id) <= 150: continue for i in range(self.num_frames): boxes_np = np.load(f'{self.image_dir}/{image_id}/bounding_box_2d_tight_{i}.npy') if boxes_np.shape[0] > 0: boxes = np.array([ list(e) for e in boxes_np]) boxes = boxes[...,1:] # 0 is the class index boxes[:, 2:] += 1 # make max a little large self.image_ids.append([image_id, boxes, i]) def __len__(self): return len(self.image_ids) def __getitem__(self, index: int): image_id, boxes, frame = self.image_ids[index] image = cv2.imread(f'{self.image_dir}/{image_id}/rgb_{frame}.png', cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32) image /= 255.0 area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]) area = torch.as_tensor(area, dtype=torch.float32) # there is only one class labels = torch.ones((len(boxes),), dtype=torch.int64) # suppose all instances are not crowd iscrowd = torch.zeros((len(boxes),), dtype=torch.int64) target = {} target['boxes'] = boxes target['labels'] = labels # target['masks'] = None target['image_id'] = torch.tensor([index]) target['area'] = area target['iscrowd'] = iscrowd if self.transforms: sample = { 'image': image, 'bboxes': target['boxes'], 'labels': labels } sample = self.transforms(**sample) image = sample['image'] target['boxes'] = torch.stack(tuple(map(torch.tensor, zip(*sample['bboxes'])))).permute(1, 0) return image, target, image_id
3,162
Python
28.839622
105
0.538267
yizhouzhao/OpenAnyDrawer/learning/fusion.py
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class DotAttn(nn.Module): """ Dot-Attention """ def forward(self, inp, h): score = self.softmax(inp, h) return score.expand_as(inp).mul(inp).sum(1), score def softmax(self, inp, h): raw_score = inp.bmm(h.unsqueeze(2)) score = F.softmax(raw_score, dim=1) return score class ScaledDotAttn(nn.Module): """ Scaled Dot-Attention """ def forward(self, inp, h): score = self.softmax(inp, h) return score.expand_as(inp).mul(inp).sum(1), score def softmax(self, inp, h): raw_score = inp.bmm(h.unsqueeze(2)) / np.sqrt(h.shape[-1]) score = F.softmax(raw_score, dim=1) return score class Fusion(nn.Module): """ Base Fusion Class""" def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim def tile_x2(self, x1, x2, x2_proj=None): if x2_proj: x2 = x2_proj(x2) x2 = x2.unsqueeze(-1).unsqueeze(-1) x2 = x2.repeat(1, 1, x1.shape[-2], x1.shape[-1]) return x2 def forward(self, x1, x2, x2_mask=None, x2_proj=None): raise NotImplementedError() class FusionAdd(Fusion): """ x1 + x2 """ def __init__(self, input_dim=3): super(FusionAdd, self).__init__(input_dim=input_dim) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) return x1 + x2 class FusionMult(Fusion): """ x1 * x2 """ def __init__(self, input_dim=3): super(FusionMult, self).__init__(input_dim=input_dim) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) return x1 * x2 class FusionMax(Fusion): """ max(x1, x2) """ def __init__(self, input_dim=3): super(FusionMax, self).__init__(input_dim=input_dim) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) return torch.max(x1, x2) class FusionConcat(Fusion): """ [x1; x2] """ def __init__(self, input_dim=3): super(FusionConcat, self).__init__(input_dim=input_dim) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) return torch.cat([x1, x2], dim=1) class FusionConv(Fusion): """ 1x1 convs after [x1; x2] """ def __init__(self, input_dim=3): super(FusionConv, self).__init__(input_dim=input_dim) self.conv = nn.Sequential( nn.ReLU(True), nn.Conv2d(input_dim * 2, input_dim, kernel_size=1, bias=False) ) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) x = torch.cat([x1, x2], dim=1) # [B, 2C, H, W] x = self.conv(x) # [B, C, H, W] return x class FusionConvLat(Fusion): """ 1x1 convs after [x1; x2] for lateral fusion """ def __init__(self, input_dim=3, output_dim=3): super(FusionConvLat, self).__init__(input_dim=input_dim) self.conv = nn.Sequential( nn.ReLU(True), nn.Conv2d(input_dim, output_dim, kernel_size=1, bias=False) ) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) x = torch.cat([x1, x2], dim=1) # [B, input_dim, H, W] x = self.conv(x) # [B, output_dim, H, W] return x ## ------------- NOTE ---------------- ## The following are various fusion types I experimented with. ## Most of them didn't work well ¯\_(ツ)_/¯ ## But it doesn't mean there isn't a better way of ## doing lateral and multi-modal (language+vision) fusion. class FusionFiLM(Fusion): """ FiLM (Perez et. al, https://arxiv.org/abs/1709.07871). Note: This is not used inside a Residual block before ReLU. I had a version this in UpBlock with FiLM, which didn't seem to work at all. """ def __init__(self, input_dim=3, output_dim=3): super(FusionFiLM, self).__init__(input_dim=input_dim) def forward(self, x1, x2, gamma, beta): g = self.tile_x2(x1, x2, gamma) b = self.tile_x2(x1, x2, beta) return x1 * g + b class FusionDeepConv(Fusion): """ Multi-Layer 1x1 convs after [x1; x2] """ def __init__(self, input_dim=3): super(FusionDeepConv, self).__init__(input_dim=input_dim) self.conv = nn.Sequential( nn.ReLU(True), nn.Conv2d(input_dim * 2, input_dim, kernel_size=1, bias=False), nn.ReLU(True), nn.Conv2d(input_dim, input_dim, kernel_size=1, bias=False), nn.ReLU(True), nn.Conv2d(input_dim, input_dim, kernel_size=1, bias=False), ) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) x = torch.cat([x1, x2], dim=1) # [B, 2C, H, W] x = self.conv(x) # [B, C, H, W] return x class FusionMultWord(nn.Module): """ Product with weighted-sum of words """ def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim def forward(self, x1, x2, x2_mask=None, x2_proj=None): B, D, H, W = x1.shape x2_len = int(x2_mask.count_nonzero()) weighted_x1 = torch.zeros_like(x1) for t in range(x2_len): x2_t = x2_proj(x2[:,t]) if x2_proj else x2[:,t] x2_t = x2_t.unsqueeze(-1).unsqueeze(-1).repeat(B, 1, H, W) weighted_x1 += x1 * x2_t weighted_x1 /= x2_len return weighted_x1 class FusionWordAttention(nn.Module): """ Word Attention """ def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim self.dot_attn = DotAttn() def forward(self, x1, x2, x2_mask=None, x2_proj=None): B, D, H, W = x1.shape x1_flat = x1.reshape(B, D, H*W) x2_len = int(x2_mask.count_nonzero()) # TODO: batch this unrolling? weight_sum_x1_flat = torch.zeros_like(x1_flat) for t in range(x2_len): x2_t = x2_proj(x2[:,t]) if x2_proj else x2[:,t] x2_t = x2_t.repeat(B, 1) _, attn_x1 = self.dot_attn(x1_flat.transpose(1, 2), x2_t) weight_sum_x1_flat += x1_flat * attn_x1.transpose(1, 2) weight_sum_x1_flat /= x2_len x2 = weight_sum_x1_flat.reshape(B, D, H, W) return x2 class FusionSentenceAttention(nn.Module): """ Sentence Attention """ def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim self.dot_attn = ScaledDotAttn() def forward(self, x1, x2, x2_mask=None, x2_proj=None): B, D, H, W = x1.shape x1_flat = x1.reshape(B, D, H*W) x2_t = x2_proj(x2) if x2_proj else x2 x2_t = x2_t.repeat(B, 1) _, attn_x1 = self.dot_attn(x1_flat.transpose(1, 2), x2_t) weight_sum_x1_flat = x1_flat * attn_x1.transpose(1, 2) x2 = weight_sum_x1_flat.reshape(B, D, H, W) return x2 class CrossModalAttention2d(nn.Module): """ Cross-Modal Attention. Adapted from: https://github.com/openai/CLIP/blob/main/clip/model.py#L56 """ def __init__(self, spacial_dim=7, embed_dim=1024, num_heads=32, output_dim=1024, lang_dim=512, lang_max_tokens=77): super().__init__() self.embed_dim = embed_dim self.lang_dim = lang_dim self.lang_max_tokens = lang_max_tokens self.num_heads = num_heads self.lang_proj = nn.Linear(self.lang_dim, embed_dim) self.vision_positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2, embed_dim) / embed_dim ** 0.5) self.lang_positional_embedding = nn.Parameter(torch.randn(lang_max_tokens, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) def forward(self, x, l, l_mask): # reshape vision features x_shape = x.shape x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = x + self.vision_positional_embedding[:x.shape[0], None, :].to(x.dtype) # (HW)NC # project language l = l.permute(1, 0, 2) l_shape = l.shape l = l.reshape(-1, self.lang_dim) l = self.lang_proj(l) l = l.reshape(l_shape[0], l_shape[1], self.embed_dim) l = l + self.lang_positional_embedding[:, None, :].to(l.dtype) # hard language mask l_len = int(l_mask.count_nonzero()) l = l[:l_len] l = l.repeat(1, x.shape[1], 1) x, _ = F.multi_head_attention_forward( query=x, key=l, value=l, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) x = x.permute(1, 2, 0) x = x.reshape(x_shape) return x class FusionMultiHeadedWordAttention(nn.Module): """ Multi-Headed Word Attention that uses Cross Modal Attention at different scales """ def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim self.attn1 = CrossModalAttention2d(spacial_dim=7, embed_dim=1024, output_dim=1024) self.attn2 = CrossModalAttention2d(spacial_dim=14, embed_dim=512, output_dim=512) self.attn3 = CrossModalAttention2d(spacial_dim=28, embed_dim=256, output_dim=256) self.multi_headed_attns = { 1024: self.attn1, 512: self.attn2, 256: self.attn3, } def forward(self, x1, x2, x2_mask=None, x2_proj=None): emb_dim = x1.shape[1] x = self.multi_headed_attns[emb_dim](x1, x2, x2_mask) return x names = { 'add': FusionAdd, 'mult': FusionMult, 'mult_word': FusionMultWord, 'film': FusionFiLM, 'max': FusionMax, 'concat': FusionConcat, 'conv': FusionConv, 'deep_conv': FusionDeepConv, 'word_attn': FusionWordAttention, 'sent_attn': FusionSentenceAttention, 'multi_headed_word_attn': FusionMultiHeadedWordAttention, }
11,360
Python
31.646552
116
0.563292
yizhouzhao/OpenAnyDrawer/open-any-drawer/README.md
# Extension Project Template This project was automatically generated. - `app` - It is a folder link to the location of your *Omniverse Kit* based app. - `exts` - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "open.any.drawer" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. Alternatively, you can launch your app from console with this folder added to search path and your extension enabled, e.g.: ``` > app\omni.code.bat --ext-folder exts --enable omni.hello.world ``` # App Link Setup If `app` folder link doesn't exist or broken it can be created again. For better developer experience it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. Convenience script to use is included. Run: ``` > link_app.bat ``` If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ``` > link_app.bat --app create ``` You can also just pass a path to create link to: ``` > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path
2,036
Markdown
37.433962
258
0.756385
yizhouzhao/OpenAnyDrawer/open-any-drawer/tools/scripts/link_app.py
import os import argparse import sys import json import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,813
Python
32.5
133
0.562389
yizhouzhao/OpenAnyDrawer/open-any-drawer/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
yizhouzhao/OpenAnyDrawer/open-any-drawer/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import zipfile import tempfile import sys import shutil __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile( package_src_path, allowZip64=True ) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning( "Directory %s already present, packaged installation aborted" % package_dst_path ) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,888
Python
31.568965
103
0.68697
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/numpy_utils.py
import numpy as np def orientation_error(desired, current): cc = quat_conjugate(current) q_r = quat_mul(desired, cc) return q_r[:, 0:3] * np.sign(q_r[:, 3])[:, None] def quat_mul(a, b): assert a.shape == b.shape shape = a.shape a = a.reshape(-1, 4) b = b.reshape(-1, 4) x1, y1, z1, w1 = a[:, 0], a[:, 1], a[:, 2], a[:, 3] x2, y2, z2, w2 = b[:, 0], b[:, 1], b[:, 2], b[:, 3] ww = (z1 + x1) * (x2 + y2) yy = (w1 - y1) * (w2 + z2) zz = (w1 + y1) * (w2 - z2) xx = ww + yy + zz qq = 0.5 * (xx + (z1 - x1) * (x2 - y2)) w = qq - ww + (z1 - y1) * (y2 - z2) x = qq - xx + (x1 + w1) * (x2 + w2) y = qq - yy + (w1 - x1) * (y2 + z2) z = qq - zz + (z1 + y1) * (w2 - x2) quat = np.stack([x, y, z, w], axis=-1).reshape(shape) return quat def normalize(x, eps: float = 1e-9): return x / np.clip(np.linalg.norm(x, axis=-1), a_min=eps, a_max=None)[:, None] def quat_unit(a): return normalize(a) def quat_from_angle_axis(angle, axis): theta = (angle / 2)[:, None] xyz = normalize(axis) * np.sin(theta) w = np.cos(theta) return quat_unit(np.concatenate([xyz, w], axis=-1)) def quat_rotate(q, v): shape = q.shape q_w = q[:, -1] q_vec = q[:, :3] a = v * (2.0 * q_w ** 2 - 1.0)[:, None] b = np.cross(q_vec, v) * q_w[:, None] * 2.0 c = q_vec * np.sum(q_vec * v, axis=1).reshape(shape[0], -1) * 2.0 return a + b + c def quat_conjugate(a): shape = a.shape a = a.reshape(-1, 4) return np.concatenate((-a[:, :3], a[:, -1:]), axis=-1).reshape(shape) def quat_axis(q, axis=0): basis_vec = np.zeros((q.shape[0], 3)) basis_vec[:, axis] = 1 return quat_rotate(q, basis_vec)
1,714
Python
24.984848
82
0.491832
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/hand_common.py
import os import sys sys.path.append(os.path.dirname(__file__)) import numpy as np from numpy_utils import * from utils import get_mesh_bboxes from omni.isaac.core import World, SimulationContext from omni.isaac.core.prims.xform_prim_view import XFormPrimView from omni.isaac.core.robots.robot_view import RobotView default_grasp_profile = { "position_offset":{ "vertical": [0,0,0], "horizontal": [0,0,0], }, "rotation":{ "vertical": [0,0,0,1], # XYZW "horizontal": [0,0,0,1], } } class HandBase(): def __init__(self, prim_paths_expr="", xform_paths_expr="", backend = "numpy", device = None ) -> None: # init hand helper # self.hander_helper = HandHelper() self.xform_paths_expr = xform_paths_expr self.prim_paths_expr = prim_paths_expr self.backend = backend self.device = device self.grasp_profile = default_grasp_profile def start(self): # simulation context self.simlation_context = SimulationContext(backend=self.backend, device=self.device) print("simlation context", SimulationContext.instance().backend, SimulationContext.instance().device) # articulation self.robots = RobotView(self.prim_paths_expr) # sim.create_articulation_view("/World/envs/*/humanoid/torso") # self.robot_indices = self.robots._backend_utils.convert(np.arange(self.robots.count, dtype=np.int32), self.device) self.num_envs = len(self.robot_indices) print("num_envs", self.num_envs) # initialize self.robots.initialize() self.robot_states = self.robots.get_world_poses() self.dof_pos = self.robots.get_joint_positions() self.initial_dof_pos = self.dof_pos self.dof_vel = self.robots.get_joint_velocities() self.initial_dof_vel = self.dof_vel self.xforms = XFormPrimView(self.xform_paths_expr) def calculate_grasp_location(self, keyword = "handle_", verticle = True): """ Calculate the grasp location for the handle """ bboxes_list = get_mesh_bboxes(keyword) # assert len(bboxes_list) == self.num_envs, "more than one handle!" # get center and min x axis min_x = bboxes_list[0][0][0] # center_list = [(e[1] + e[0]) / 2 for e in bboxes_list] # box center pos_offset = self.grasp_profile["position_offset"] if verticle: v_pos_offset = pos_offset["vertical"] grasp_list = [[min_x - v_pos_offset[0], c[1] - v_pos_offset[1], c[2] - v_pos_offset[2]] for c in center_list] else: h_pos_offset = pos_offset["horizontal"] grasp_list = [[min_x - h_pos_offset[0], c[1] - h_pos_offset[1], c[2] - h_pos_offset[2]] for c in center_list] graps_pos = np.array(grasp_list, dtype=np.float32) base_rotation = self.grasp_profile["rotation"]["vertical"] if verticle else self.grasp_profile["rotation"]["horizontal"] grasp_rot = np.array([base_rotation], dtype=np.float32)# XYZW # rotation: 0, 0.70711, 0, 0.70711; 0, 90, 0 # rotation:[0.5, 0.5, 0.5, 0.5] return graps_pos, grasp_rot def calculate_grasp_location_from_pred_box(self, box, center = None, verticle = True): """ Calculate the grasp location for the handle box: [y_0, z_0, y_1, z_1] center: [y, z] """ # assert len(bboxes_list) == self.num_envs, "more than one handle!" # get center and min x axis min_x = 0.618 handle_y = 0.5 * (box[0] + box[2]) handle_z = 0.5 * (box[1] + box[3]) pos_offset = self.grasp_profile["position_offset"] if verticle: v_pos_offset = pos_offset["vertical"] grasp_list = [[min_x - v_pos_offset[0], handle_y - v_pos_offset[1], handle_z - v_pos_offset[2]]] else: h_pos_offset = pos_offset["horizontal"] grasp_list = [[min_x - h_pos_offset[0], handle_y - h_pos_offset[1], handle_z - h_pos_offset[2]]] graps_pos = np.array(grasp_list, dtype=np.float32) base_rotation = self.grasp_profile["rotation"]["vertical"] if verticle else self.grasp_profile["rotation"]["horizontal"] grasp_rot = np.array([base_rotation], dtype=np.float32)# XYZW return graps_pos, grasp_rot
4,445
Python
34.285714
129
0.593926
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/open_env.py
import os import sys sys.path.append(os.path.dirname(__file__)) import omni import pxr from pxr import Gf, Sdf from omni.isaac.franka import Franka from omni.isaac.core.utils.stage import set_stage_up_axis from omni.isaac.core import World, SimulationContext from omni.isaac.synthetic_utils import SyntheticDataHelper from omni.isaac.core.prims.xform_prim_view import XFormPrimView from omni.isaac.core.robots.robot_view import RobotView import numpy as np from pathlib import Path from PIL import Image from numpy_utils import * from utils import get_bounding_box ROOT = str(Path(__file__).parent.joinpath("../../../../../../").resolve()) class OpenEnv(): def __init__(self, prim_paths_expr="", xform_paths_expr="", backend = "numpy", device = None, load_nucleus = True, ) -> None: self.xform_paths_expr = xform_paths_expr self.prim_paths_expr = prim_paths_expr self.backend = backend self.device = device self.load_nucleus = load_nucleus def add_camera(self): self.stage = omni.usd.get_context().get_stage() # Create prim prim = self.stage.GetPrimAtPath("/World/Camera") # delete if exist if prim: omni.kit.commands.execute("DeletePrims", paths=["/World/Camera"]) omni.kit.commands.execute("CreatePrimWithDefaultXform", prim_type="Camera", prim_path = "/World/Camera") prim = self.stage.GetPrimAtPath("/World/Camera") mat = Gf.Matrix4f().SetRotate(Gf.Quatf(0.5, 0.5, -0.5, -0.5)) * Gf.Matrix4f().SetTranslate(Gf.Vec3f(-1, 0, 0.5)) omni.kit.commands.execute( "TransformPrimCommand", path="/World/Camera", new_transform_matrix=mat, ) # Setup missing ftheta params prim.CreateAttribute("cameraProjectionType", Sdf.ValueTypeNames.Token) prim.CreateAttribute("fthetaPolyA", Sdf.ValueTypeNames.Float) prim.CreateAttribute("fthetaPolyB", Sdf.ValueTypeNames.Float) prim.CreateAttribute("fthetaPolyC", Sdf.ValueTypeNames.Float) prim.CreateAttribute("fthetaPolyD", Sdf.ValueTypeNames.Float) prim.CreateAttribute("fthetaPolyE", Sdf.ValueTypeNames.Float) prim.CreateAttribute("fthetaCx", Sdf.ValueTypeNames.Float) prim.CreateAttribute("fthetaCy", Sdf.ValueTypeNames.Float) prim.CreateAttribute("fthetaWidth", Sdf.ValueTypeNames.Float) prim.CreateAttribute("fthetaHeight", Sdf.ValueTypeNames.Float) prim.CreateAttribute("fthetaMaxFov", Sdf.ValueTypeNames.Float) camera_properties = { "focalLength": 24.0, "focusDistance": 400.0, "fStop":0.0, "horizontalAperture":20.955, "horizontalApertureOffset":0.0, "verticalApertureOffset":0.0, "clippingRange":(1.0, 1000000.0), "cameraProjectionType":"pinhole", "fthetaWidth":1936.0, "fthetaHeight":1216.0, "fthetaCx":970.94244, "fthetaCy":600.37482, "fthetaMaxFov":200.0, "fthetaPolyA":0.0, "fthetaPolyB":0.00245, "fthetaPolyC":0.0, "fthetaPolyD":0.0, "fthetaPolyE":0.0, } for attribute, attribute_value in camera_properties.items(): prim.GetAttribute(attribute).Set(attribute_value) # import omni.replicator.core as rep # camera = rep.create.camera(position=(-1, 0, 0.5), rotation=(90, 0, -90)) def add_robot(self): print("add robot") self.stage = omni.usd.get_context().get_stage() self.game_path_str = "/World/Game" xform_game = self.stage.GetPrimAtPath(self.game_path_str) if not xform_game: xform_game = pxr.UsdGeom.Xform.Define(self.stage, self.game_path_str) set_stage_up_axis("z") # import robot self.robot = Franka("/World/Game/Franka") def add_object(self, obj_idx = 0, x_offset = 6, scale = 1): from utils import get_bounding_box, add_physical_material_to, fix_linear_joint print("add object") self.stage = omni.usd.get_context().get_stage() self.game_path_str = "/World/Game" xform_game = self.stage.GetPrimAtPath(self.game_path_str) if not xform_game: xform_game = pxr.UsdGeom.Xform.Define(self.stage, self.game_path_str) # move obj to the correct place mobility_prim_path = xform_game.GetPath().pathString + "/mobility" prim = self.stage.GetPrimAtPath(mobility_prim_path) if not prim.IsValid(): prim = self.stage.DefinePrim(mobility_prim_path) # loading asset from Omniverse Nucleus or local if self.load_nucleus: asset_root = "omniverse://localhost/Users/yizhou" r = omni.client.list(os.path.join(asset_root, "Asset/Sapien/StorageFurniture/")) print("loading asset from omni nucleus") object_ids = sorted([e.relative_path for e in r[1]]) else: asset_root = ROOT object_ids = sorted(os.listdir(os.path.join(asset_root, "Asset/Sapien/StorageFurniture/"))) obj_usd_path = os.path.join(asset_root, f"Asset/Sapien/StorageFurniture/{object_ids[obj_idx]}/mobility.usd") success_bool = prim.GetReferences().AddReference(obj_usd_path) assert success_bool, f"Import error at usd {obj_usd_path}" xform = pxr.Gf.Matrix4d().SetRotate(pxr.Gf.Quatf(1.0,0.0,0.0,0.0)) * \ pxr.Gf.Matrix4d().SetTranslate([0,0,0]) * \ pxr.Gf.Matrix4d().SetScale([7.0 * scale,7.0 *scale,7.0 * scale]) omni.kit.commands.execute( "TransformPrimCommand", path=mobility_prim_path, new_transform_matrix=xform, ) # get obj bounding box bboxes = get_bounding_box(mobility_prim_path) position = [-bboxes[0][0] + x_offset * scale, 0, -bboxes[0][2]] xform.SetTranslateOnly(position) omni.kit.commands.execute( "TransformPrimCommand", path=mobility_prim_path, new_transform_matrix=xform, ) # add physical meterial to add_physical_material_to("handle_") # fix linear joint fix_linear_joint() def start(self): # simulation context self.simlation_context = SimulationContext(backend=self.backend, device=self.device) print("simlation context", SimulationContext.instance().backend, SimulationContext.instance().device) # articulation self.robots = RobotView(self.prim_paths_expr) # sim.create_articulation_view("/World/envs/*/humanoid/torso") # self.robot_indices = self.robots._backend_utils.convert(np.arange(self.robots.count, dtype=np.int32), self.device) self.num_envs = len(self.robot_indices) print("num_envs", self.num_envs) # initialize self.robots.initialize() self.robot_states = self.robots.get_world_poses() self.dof_pos = self.robots.get_joint_positions() self.initial_dof_pos = self.dof_pos self.dof_vel = self.robots.get_joint_velocities() self.initial_dof_vel = self.dof_vel self.xforms = XFormPrimView(self.xform_paths_expr) def move_to_target(self, goal_pos, goal_rot): """ Move hand to target points """ # get end effector transforms hand_pos, hand_rot = self.xforms.get_world_poses() hand_rot = hand_rot[:,[1,2,3,0]] # WXYZ # get franka DOF states dof_pos = self.robots.get_joint_positions() # compute position and orientation error pos_err = goal_pos - hand_pos orn_err = orientation_error(goal_rot, hand_rot) dpose = np.concatenate([pos_err, orn_err], -1)[:, None].transpose(0, 2, 1) jacobians = self.robots._physics_view.get_jacobians() # jacobian entries corresponding to franka hand franka_hand_index = 8 # !!! j_eef = jacobians[:, franka_hand_index - 1, :] # solve damped least squares j_eef_T = np.transpose(j_eef, (0, 2, 1)) d = 0.05 # damping term lmbda = np.eye(6) * (d ** 2) u = (j_eef_T @ np.linalg.inv(j_eef @ j_eef_T + lmbda) @ dpose).reshape(self.num_envs, 9) # update position targets pos_targets = dof_pos + u # * 0.3 return pos_targets ################################################################################################## # -------------------------------------- Calculation --------------------------------------------# ################################################################################################## def get_mesh_bboxes(self, keyword: str): stage = omni.usd.get_context().get_stage() prim_list = list(stage.TraverseAll()) prim_list = [ item for item in prim_list if keyword in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ] bboxes_list = [] for prim in prim_list: bboxes = get_bounding_box(prim.GetPath().pathString) bboxes_list.append(bboxes) return bboxes_list def calculate_grasp_location(self, keyword = "handle_", verticle = True, x_offset = 0.086): """ Calculate the grasp location for the handle """ bboxes_list = self.get_mesh_bboxes(keyword) assert len(bboxes_list) == self.num_envs, "more than one handle!" # get center and min x axis min_x = bboxes_list[0][0][0] # center_list = [(e[1] + e[0]) / 2 for e in bboxes_list] # box center grasp_list = [[min_x - x_offset, c[1], c[2]] for c in center_list] graps_pos = np.array(grasp_list, dtype=np.float32) base_rotation = [0.5, 0.5, 0.5, 0.5] if verticle else [0, 0.70711, 0, 0.70711] grasp_rot = np.array([base_rotation], dtype=np.float32).repeat(self.num_envs, axis = 0) # XYZW # rotation: 0, 0.70711, 0, 0.70711; 0, 90, 0 # rotation:[0.5, 0.5, 0.5, 0.5] return graps_pos, grasp_rot def calculate_pull_location(self, start_pos, start_rot, theta, r, clock_wise = False): """ Calculate how to pull to open the Cabinet """ clock_wise = float(2 * clock_wise - 1) # position pos_offset = np.tile(np.array([-r * np.sin(theta), clock_wise * r * (1 - np.cos(theta)), 0]), (self.num_envs, 1)) target_pos = start_pos + pos_offset # rotate rot_offset = np.tile(np.array([np.sin(clock_wise * theta / 2), 0, 0, np.cos( - clock_wise * theta / 2)]), (self.num_envs, 1)) target_rot = quat_mul(start_rot, rot_offset) return target_pos, target_rot ################################################################################################## # -------------------------------------- Render ------------------------------------------------# ################################################################################################## def setup_viewport(self, camera_path = "/World/Camera", resolution = [256, 256]): viewport = omni.kit.viewport_legacy.get_viewport_interface() viewport_handle = viewport.get_instance("Viewport") self.viewport_window = viewport.get_viewport_window(viewport_handle) self.viewport_window.set_texture_resolution(*resolution) self.viewport_window.set_active_camera(camera_path) # /OmniverseKit_Persp self.sd_helper = SyntheticDataHelper() self.sd_helper.initialize(sensor_names=["rgb",'depthLinear'], viewport=self.viewport_window) def get_image(self, return_array = False, world = None): if world: world.step(render=True) world.render() gt = self.sd_helper.get_groundtruth( ["rgb", "depthLinear"], self.viewport_window, verify_sensor_init=False, wait_for_sensor_data= 0 ) if return_array: return gt['rgb'] return Image.fromarray(gt['rgb'])
12,285
Python
36.571865
133
0.572324
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/usd_utils.py
from pxr import Gf import omni def calcuate_rotation_axis(q, axis = 2, direction = 0): """ Calculate quaternion axis (x,y,z) project on direction (x,y,z) q: [x,y,z,w] """ mat = Gf.Matrix4f().SetRotate(Gf.Quatf(float(q[3]), float(q[0]), float(q[1]), float(q[2]))) return mat.GetRow(axis)[direction]
324
Python
28.545452
95
0.62037
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/extension.py
import omni.ext import omni.ui as ui from .open_env import OpenEnv # NOTE: # go to directory: open-any-drawer/exts/open.any.drawer/open/any/drawer/ # # start notebook from: /home/yizhou/.local/share/ov/pkg/isaac_sim-2022.1.0/jupyter_notebook.sh # start python: /home/yizhou/.local/share/ov/pkg/isaac_sim-2022.1.0/python.sh # next paper about body language # hand helper import carb import sys from pxr import Usd, Sdf, PhysxSchema, UsdPhysics, Vt, Gf, UsdGeom, UsdShade from omni.physx.scripts import physicsUtils, particleUtils from omni.physx.scripts import deformableUtils, utils import math from copy import copy from .hand.limiter import * # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[open.any.drawer] MyExtension startup") self.env = OpenEnv() self._window = ui.Window("Open any drawer", width=300, height=300) with self._window.frame: with ui.VStack(): with ui.HStack(height = 20): ui.Button("Add Franka Robot", clicked_fn= self.env.add_robot) with ui.HStack(height = 20): ui.Label("object index: ", width = 80) self.object_id_ui = omni.ui.IntField(height=20, width = 40, style={ "margin": 2 }) self.object_id_ui.model.set_value(0) ui.Label("object scale: ", width = 80) self.object_scale_ui = omni.ui.FloatField(height=20, width = 40, style={ "margin": 2 }) self.object_scale_ui.model.set_value(0.1) ui.Button("Add Object", clicked_fn=self.add_object) with ui.HStack(height = 20): ui.Button("Add Ground", clicked_fn=self.add_ground) ui.Button("Add Camera", clicked_fn=self.add_camera) with ui.HStack(height = 20): # ui.Button("Add hand from copying", clicked_fn= self.debug) ui.Button("Add hand from helper", clicked_fn= self.rig_hand2) ui.Button("Rig D6", clicked_fn= self.debug_rig_d6) ui.Button("Add drivers to joint", clicked_fn = self._add_driver_to_revolve_joint) with ui.HStack(height = 20): ui.Button("Test instructor", clicked_fn= self.debug_instructor) ui.Button("Batch generation", clicked_fn= self.debug_batch_gen) with ui.HStack(height = 20): ui.Button("Test task checker", clicked_fn= self.debug_task_checker) with ui.HStack(height = 20): ui.Button("Test Load FastRCNN", clicked_fn= self.debug_load_model) def add_ground(self): from utils import add_ground_plane add_ground_plane("/World/Game") def add_camera(self): self.env.add_camera() self.env.setup_viewport() def add_object(self): object_id = self.object_id_ui.model.get_value_as_int() object_scale = self.object_scale_ui.model.get_value_as_float() self.env.add_object(object_id, scale = object_scale) selection = omni.usd.get_context().get_selection() selection.clear_selected_prim_paths() selection.set_prim_path_selected("/World/game", True, True, True, True) viewport = omni.kit.viewport_legacy.get_viewport_interface() if viewport: viewport.get_viewport_window().focus_on_selected() def on_shutdown(self): print("[open.any.drawer] MyExtension shutdown") def rig_hand2(self): print("debug2") from .hand.helper import HandHelper self.hand_helper = HandHelper() def debug_rig_d6(self): self._stage = omni.usd.get_context().get_stage() self._damping = 5 # 1e4 self._stiffness = 5e1 # 2e5 # create anchor: self._anchorXform = UsdGeom.Xform.Define( self._stage, Sdf.Path("/World/AnchorXform") ) # these are global coords because world is the xform's parent xformLocalToWorldTrans = Gf.Vec3f(0) xformLocalToWorldRot = Gf.Quatf(1.0) self._anchorXform.AddTranslateOp().Set(xformLocalToWorldTrans) self._anchorXform.AddOrientOp().Set(xformLocalToWorldRot) xformPrim = self._anchorXform.GetPrim() physicsAPI = UsdPhysics.RigidBodyAPI.Apply(xformPrim) physicsAPI.CreateRigidBodyEnabledAttr(True) physicsAPI.CreateKinematicEnabledAttr(True) # setup joint to floating hand base component = UsdPhysics.Joint.Define( self._stage, Sdf.Path("/World/AnchorToHandBaseD6") # allegro/ ) # "/World/Hand/Bones/l_carpal_mid" # "/World/allegro/allegro_mount" # "/World/shadow_hand/robot0_hand_mount" # "/World/Franka/panda_link8" self._articulation_root = self._stage.GetPrimAtPath("/World/Hand/Bones/l_carpal_mid") baseLocalToWorld = UsdGeom.Xformable(self._articulation_root).ComputeLocalToWorldTransform(Usd.TimeCode.Default()) jointPosition = baseLocalToWorld.GetInverse().Transform(xformLocalToWorldTrans) jointPose = Gf.Quatf(baseLocalToWorld.GetInverse().RemoveScaleShear().ExtractRotationQuat()) component.CreateExcludeFromArticulationAttr().Set(True) component.CreateLocalPos0Attr().Set(Gf.Vec3f(0.0)) component.CreateLocalRot0Attr().Set(Gf.Quatf(1.0)) component.CreateBody0Rel().SetTargets([self._anchorXform.GetPath()]) component.CreateBody1Rel().SetTargets([self._articulation_root.GetPath()]) component.CreateLocalPos1Attr().Set(jointPosition) component.CreateLocalRot1Attr().Set(jointPose) component.CreateBreakForceAttr().Set(sys.float_info.max) component.CreateBreakTorqueAttr().Set(sys.float_info.max) rootJointPrim = component.GetPrim() for dof in ["transX", "transY", "transZ"]: driveAPI = UsdPhysics.DriveAPI.Apply(rootJointPrim, dof) driveAPI.CreateTypeAttr("force") # driveAPI.CreateMaxForceAttr(self._drive_max_force) driveAPI.CreateTargetPositionAttr(0.0) driveAPI.CreateDampingAttr(self._damping) driveAPI.CreateStiffnessAttr(self._stiffness) for rotDof in ["rotX", "rotY", "rotZ"]: driveAPI = UsdPhysics.DriveAPI.Apply(rootJointPrim, rotDof) driveAPI.CreateTypeAttr("force") # driveAPI.CreateMaxForceAttr(self._drive_max_force) driveAPI.CreateTargetPositionAttr(0.0) driveAPI.CreateDampingAttr(self._damping) driveAPI.CreateStiffnessAttr(self._stiffness) def _add_driver_to_revolve_joint(self): stage = omni.usd.get_context().get_stage() joint_prim_list = [ item for item in list(stage.TraverseAll()) if item.GetTypeName() == 'PhysicsRevoluteJoint'] # for joint in joint_prim_list: # if not UsdPhysics.DriveAPI.Get(stage, joint.GetPath()): driveAPI = UsdPhysics.DriveAPI.Apply(joint, "angular") driveAPI.CreateTypeAttr("force") # driveAPI.CreateMaxForceAttr(self._drive_max_force) driveAPI.CreateTargetPositionAttr(0.0) driveAPI.CreateDampingAttr(1e6) driveAPI.CreateStiffnessAttr(1e8) def debug_instructor(self): print("debug instru") from task.instructor import SceneInstructor self.scene_instr = SceneInstructor() self.scene_instr.analysis() self.scene_instr.build_handle_desc_ui() self.scene_instr.add_semantic_to_handle() self.scene_instr.export_data() def debug_batch_gen(self): print("debug_batch_gen") from .task.instructor import SceneInstructor import omni.replicator.core as rep # object_id = self.object_id_ui.model.set_value(4) object_id = self.object_id_ui.model.get_value_as_int() object_scale = self.object_scale_ui.model.get_value_as_float() self.env.add_object(object_id, scale = object_scale) self.scene_instr = SceneInstructor() self.scene_instr.analysis() self.scene_instr.build_handle_desc_ui() print("scene_instr.is_obj_valid: ", self.scene_instr.is_obj_valid) if self.scene_instr.is_obj_valid: self.scene_instr.add_semantic_to_handle() self.scene_instr.output_path = f"/home/yizhou/Research/temp0/" self.scene_instr.export_data() # print("print(rep.orchestrator.get_is_started())", rep.orchestrator.get_is_started()) ############ task check ##################################################################### def debug_task_checker(self): print("debug_task_checker") from task.checker import TaskChecker from task.instructor import SceneInstructor self.env.add_robot() object_id = self.object_id_ui.model.get_value_as_int() object_scale = self.object_scale_ui.model.get_value_as_float() self.env.add_object(object_id, scale = object_scale) self.scene_instr = SceneInstructor() self.scene_instr.analysis() self.scene_instr.build_handle_desc_ui() # self.task_checker = TaskChecker("mobility", "joint_0", "PhysicsRevoluteJoint") ############ deep learning ##################################################################### def debug_load_model(self): print("load_model") from task.instructor import SceneInstructor self.scene_instr = SceneInstructor() self.scene_instr.analysis() self.scene_instr.build_handle_desc_ui() print("scene_instr.is_obj_valid: ", self.scene_instr.is_obj_valid) if self.scene_instr.is_obj_valid: # print("valid_handle_list", self.scene_instr.valid_handle_list) self.scene_instr.load_model() self.scene_instr.predict_bounding_boxes(image_path="/home/yizhou/Research/temp0/rgb_0.png") print("pred bboxes", self.scene_instr.pred_boxes) handle_list = list(self.scene_instr.valid_handle_list.keys()) for HANDLE_INDEX in range(len(handle_list)): handle_path_str = handle_list[HANDLE_INDEX] v_desc = self.scene_instr.valid_handle_list[handle_path_str]["vertical_description"] h_desc = self.scene_instr.valid_handle_list[handle_path_str]["horizontal_description"] print("handle_path_str", handle_path_str, "v desc: ", v_desc, "h desc:", h_desc) the_box = self.scene_instr.get_box_from_desc(v_desc, h_desc) print("the_box:", the_box) del self.scene_instr.model
11,224
Python
42.507752
123
0.622951
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/hand_env.py
import os import sys sys.path.append(os.path.dirname(__file__)) import numpy as np from hand.helper import HandHelper from numpy_utils import * from utils import get_mesh_bboxes from omni.isaac.core import World, SimulationContext from omni.isaac.core.prims.xform_prim_view import XFormPrimView from omni.isaac.core.robots.robot_view import RobotView class HandEnv(): def __init__(self, prim_paths_expr="", xform_paths_expr="", backend = "numpy", device = None ) -> None: # init hand helper # self.hander_helper = HandHelper() self.xform_paths_expr = xform_paths_expr self.prim_paths_expr = prim_paths_expr self.backend = backend self.device = device def start(self): # simulation context self.simlation_context = SimulationContext(backend=self.backend, device=self.device) print("simlation context", SimulationContext.instance().backend, SimulationContext.instance().device) # articulation self.robots = RobotView(self.prim_paths_expr) # sim.create_articulation_view("/World/envs/*/humanoid/torso") # self.robot_indices = self.robots._backend_utils.convert(np.arange(self.robots.count, dtype=np.int32), self.device) self.num_envs = len(self.robot_indices) print("num_envs", self.num_envs) # initialize self.robots.initialize() self.robot_states = self.robots.get_world_poses() self.dof_pos = self.robots.get_joint_positions() self.initial_dof_pos = self.dof_pos self.dof_vel = self.robots.get_joint_velocities() self.initial_dof_vel = self.dof_vel self.xforms = XFormPrimView(self.xform_paths_expr) def calculate_grasp_location(self, keyword = "handle_", verticle = True, x_offset = 0.1): """ Calculate the grasp location for the handle """ bboxes_list = get_mesh_bboxes(keyword) # assert len(bboxes_list) == self.num_envs, "more than one handle!" # get center and min x axis min_x = bboxes_list[0][0][0] # center_list = [(e[1] + e[0]) / 2 for e in bboxes_list] # box center if verticle: grasp_list = [[min_x - x_offset, c[1], c[2] - 0.12] for c in center_list] else: grasp_list = [[min_x - x_offset, c[1] + 0.12, c[2]] for c in center_list] graps_pos = np.array(grasp_list, dtype=np.float32) base_rotation = [0.38268, 0, 0, 0.92388] if verticle else [0.3036, 0.23296, -0.56242, 0.73296] grasp_rot = np.array([base_rotation], dtype=np.float32)# XYZW # rotation: 0, 0.70711, 0, 0.70711; 0, 90, 0 # rotation:[0.5, 0.5, 0.5, 0.5] return graps_pos, grasp_rot def move_to_target(self, goal_pos, goal_rot, finger = "thumb"): """ Move hand to target points """ # get end effector transforms finger_pos, finger_rot = self.xforms.get_world_poses() finger_rot = finger_rot[:,[1,2,3,0]] # WXYZ # get franka DOF states dof_pos = self.robots.get_joint_positions() # compute position and orientation error pos_err = goal_pos - finger_pos orn_err = orientation_error(goal_rot, finger_rot) dpose = np.concatenate([pos_err, orn_err], -1)[:, None].transpose(0, 2, 1) jacobians = self.robots._physics_view.get_jacobians() # jacobian entries corresponding to correct finger if finger == "thumb": finger_index = 14 elif finger == "index": finger_index = 15 elif finger == "middle": finger_index = 16 elif finger == "pinky": finger_index = 17 else: # ring finger_index = 18 j_eef = jacobians[:, finger_index, :] # solve damped least squares j_eef_T = np.transpose(j_eef, (0, 2, 1)) d = 0.05 # damping term lmbda = np.eye(6) * (d ** 2) u = (j_eef_T @ np.linalg.inv(j_eef @ j_eef_T + lmbda) @ dpose).reshape(self.num_envs, -1) # update position targets pos_targets = dof_pos + u # * 0.3 return pos_targets ################################################################################################## # -------------------------------------- Control ------------------------------------------------# ################################################################################################## def move_finger_to_fast(self, target_pos, target_rot, world, finger = "thumb", max_step = 100): """ Quickly move the robot hands to the target position and rotation """ for i in range(max_step): world.step(render=True) # get end effector transforms finger_pos, finger_rot = self.xforms.get_world_poses() finger_rot = finger_rot[:,[1,2,3,0]] # WXYZ -> XYZW print("finger_pos", finger_pos) orient_error = quat_mul(target_rot[0], quat_conjugate(finger_rot[0])) # print("orient_error", orient_error) # if abs(orient_error[3] - 1) < 0.02 and \ # np.sqrt(orient_error[0]**2 + orient_error[1]**2 + orient_error[2]**2) < 0.02 and \ # np.sqrt(np.sum((target_pos[0] - finger_pos[0])**2)) < 0.01: # print("Done rotation, position", finger_pos, finger_rot) # return u = self.move_to_target(target_pos, target_rot) # u[:,[-2, -1]] = 0.05 if open_gripper else 0 self.robots.set_joint_position_targets(u) print("Not Done rotation, position", finger_pos, finger_rot) def calculate_grasp_location_from_pred_box(self, box, verticle = True, x_offset = 0.1): """ Calculate the grasp location for the handle """ # assert len(bboxes_list) == self.num_envs, "more than one handle!" # get center and min x axis min_x = 0.618 handle_y = 0.5 * (box[0] + box[2]) handle_z = 0.5 * (box[1] + box[3]) if verticle: grasp_list = [[min_x - x_offset, handle_y, handle_z - 0.12]] else: grasp_list = [[min_x - x_offset, handle_y + 0.12, handle_z]] graps_pos = np.array(grasp_list, dtype=np.float32) base_rotation = [0.38268, 0, 0, 0.92388] if verticle else [0.3036, 0.23296, -0.56242, 0.73296] grasp_rot = np.array([base_rotation], dtype=np.float32)# XYZW return graps_pos, grasp_rot
6,608
Python
36.338983
122
0.548123
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/utils.py
# utility import numpy as np import omni from omni.physx.scripts import physicsUtils from pxr import UsdGeom, Usd, UsdShade, UsdPhysics, Gf def add_ground_plane(prim_path = "/World/game", invisible = False): stage = omni.usd.get_context().get_stage() purposes = [UsdGeom.Tokens.default_] bboxcache = UsdGeom.BBoxCache(Usd.TimeCode.Default(), purposes) prim = stage.GetPrimAtPath(prim_path) bboxes = bboxcache.ComputeWorldBound(prim) # print("bboxes", bboxes) z = bboxes.ComputeAlignedRange().GetMin()[2] physicsUtils.add_ground_plane(stage, "/groundPlane", "Z", 10.0, Gf.Vec3f(0.0, 0.0, z), Gf.Vec3f(0.2)) if invisible: prim_list = list(stage.TraverseAll()) prim_list = [ item for item in prim_list if 'groundPlane' in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ] for prim in prim_list: prim.GetAttribute('visibility').Set('invisible') def get_bounding_box(prim_path: str): """ Get the bounding box of a prim """ stage = omni.usd.get_context().get_stage() purposes = [UsdGeom.Tokens.default_] bboxcache = UsdGeom.BBoxCache(Usd.TimeCode.Default(), purposes) prim = stage.GetPrimAtPath(prim_path) bboxes = bboxcache.ComputeWorldBound(prim) # print("bboxes", bboxes) game_bboxes = [bboxes.ComputeAlignedRange().GetMin(),bboxes.ComputeAlignedRange().GetMax()] return game_bboxes def get_mesh_bboxes(keyword: str): stage = omni.usd.get_context().get_stage() prim_list = list(stage.TraverseAll()) prim_list = [ item for item in prim_list if keyword in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ] bboxes_list = [] for prim in prim_list: bboxes = get_bounding_box(prim.GetPath().pathString) bboxes_list.append(bboxes) return bboxes_list def add_physical_material_to(keyword:str): """ Set up physical material """ stage = omni.usd.get_context().get_stage() prim_list = list(stage.TraverseAll()) prim_list = [ item for item in prim_list if keyword in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ] for prim in prim_list: setup_physics_material(prim) print("add physics material to handle") # setStaticCollider(prim, approximationShape = "convexDecomposition") def setup_physics_material(prim): """ Set up physic material for prim at Path """ # def _setup_physics_material(self, path: Sdf.Path): stage = omni.usd.get_context().get_stage() _material_static_friction = 100.0 _material_dynamic_friction = 100.0 _material_restitution = 0.0 _physicsMaterialPath = None if _physicsMaterialPath is None: # _physicsMaterialPath = stage.GetDefaultPrim().GetPath().AppendChild("physicsMaterial") _physicsMaterialPath = prim.GetPath().AppendChild("physicsMaterial") UsdShade.Material.Define(stage, _physicsMaterialPath) material = UsdPhysics.MaterialAPI.Apply(stage.GetPrimAtPath(_physicsMaterialPath)) material.CreateStaticFrictionAttr().Set(_material_static_friction) material.CreateDynamicFrictionAttr().Set(_material_dynamic_friction) material.CreateRestitutionAttr().Set(_material_restitution) collisionAPI = UsdPhysics.CollisionAPI.Get(stage, prim.GetPath()) # prim = stage.GetPrimAtPath(path) if not collisionAPI: collisionAPI = UsdPhysics.CollisionAPI.Apply(prim) # apply material physicsUtils.add_physics_material_to_prim(stage, prim, _physicsMaterialPath) print("physics material: path: ", _physicsMaterialPath) def fix_linear_joint(fix_driver = True, damping_cofficient = 0.0): stage = omni.usd.get_context().get_stage() prim_list = stage.TraverseAll() for prim in prim_list: if "joint_" in str(prim.GetPath()): if fix_driver: # find linear drive joint_driver = UsdPhysics.DriveAPI.Get(prim, "linear") if joint_driver: joint_driver.CreateDampingAttr(damping_cofficient) # find linear drive joint_driver = UsdPhysics.DriveAPI.Get(prim, "angular") if joint_driver: joint_driver.CreateDampingAttr(damping_cofficient) # find linear joint upperlimit joint = UsdPhysics.PrismaticJoint.Get(stage, prim.GetPath()) if joint: upper_limit = joint.GetUpperLimitAttr().Get() #GetAttribute("xformOp:translate").Get() # print(prim.GetPath(), "upper_limit", upper_limit) mobility_prim = prim.GetParent().GetParent() mobility_xform = UsdGeom.Xformable.Get(stage, mobility_prim.GetPath()) scale_factor = mobility_xform.GetOrderedXformOps()[2].Get()[0] # print("scale_factor", scale_factor) joint.CreateUpperLimitAttr(upper_limit * scale_factor / 100)
4,968
Python
41.110169
129
0.657407
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/hand/limiter.py
# hand limiter import carb import sys from pxr import Usd, Sdf, PhysxSchema, UsdPhysics, Vt, Gf, UsdGeom, UsdShade from omni.physx.scripts import physicsUtils, particleUtils from omni.physx.scripts import deformableUtils, utils import math from copy import copy # helpers def computeMeshWorldBoundsFromPoints(mesh: UsdGeom.Mesh) -> Vt.Vec3fArray: mesh_pts = mesh.GetPointsAttr().Get() extent = UsdGeom.PointBased.ComputeExtent(mesh_pts) transform = mesh.ComputeLocalToWorldTransform(Usd.TimeCode.Default()) for i in range(len(extent)): extent[i] = transform.Transform(extent[i]) return extent def get_quat_from_extrinsic_xyz_rotation(angleXrad: float = 0.0, angleYrad: float = 0.0, angleZrad: float = 0.0): # angles are in radians rotX = rotate_around_axis(1, 0, 0, angleXrad) rotY = rotate_around_axis(0, 1, 0, angleYrad) rotZ = rotate_around_axis(0, 0, 1, angleZrad) return rotZ * rotY * rotX def rotate_around_axis(x: float, y: float, z: float, angle: float) -> Gf.Quatf: s = math.sin(0.5 * angle) return Gf.Quatf(math.cos(0.5 * angle), s * x, s * y, s * z) class QuaternionRateOfChangeLimiter: def __init__(self, initQuat: Gf.Quatf = Gf.Quatf(1.0), maxRateRad: float = 0.01, iirAlpha: float = 0.0): self.maxDeltaPerFrame = maxRateRad self.cosThreshdold = math.cos(maxRateRad) self.resetValue = initQuat self.reset() self.alpha = 1.0 - iirAlpha # 1 - alpha due to slerp (alpha = 0 -> immediate step to new goal) def reset(self): self.targetValue = self.resetValue self.currentValue = self.resetValue self.filteredTarget = None def set_target(self, targetValue: Gf.Quatf): self.targetValue = targetValue def set_target_and_update(self, targetValue: Gf.Quatf): self.targetValue = targetValue self.update() @property def current_value(self): return self.currentValue def update(self): if self.filteredTarget is None: self.filteredTarget = self.targetValue else: self.filteredTarget = Gf.Quatf(Gf.Slerp(self.alpha, self.filteredTarget, self.targetValue)) toTarget = self.currentValue.GetInverse() * self.filteredTarget # shortest rotation if toTarget.GetReal() < 0.0: toTarget = -toTarget angle = math.acos(max(-1, min(1, toTarget.GetReal()))) * 2.0 if angle > self.maxDeltaPerFrame: angle = self.maxDeltaPerFrame axis = toTarget.GetImaginary() axis.Normalize() sin = math.sin(0.5 * angle) toTarget = Gf.Quatf(math.cos(angle * 0.5), sin * axis[0], sin * axis[1], sin * axis[2]) self.currentValue = self.currentValue * toTarget class JointGeometry: def __init__(self, bbCenterWeight=None, quat=None, posOffsetW=None, axis=None, limits=None, joint_type="revolute"): self.bbCenterWeight = bbCenterWeight self.quat = quat self.posOffsetW = posOffsetW self.axis = axis self.limits = limits self.type = joint_type self.defaultDriveAngles = {"rotX": 0.0, "rotY": 0.0, "rotZ": 0.0} class VectorRateOfChangeLimiter: def __init__(self, initVector: Gf.Vec3f = Gf.Vec3f(0.0), maxRatePerAxis: float = 0.01, iirAlpha: float = 0.0): self.maxDeltaPerFrame = maxRatePerAxis self.resetValue = initVector self.reset() self.alpha = iirAlpha def reset(self): # need to copy to avoid creating just a ref self.targetValue = copy(self.resetValue) self.currentValue = copy(self.resetValue) self.filteredTarget = None def set_target(self, targetValue: Gf.Vec3f): self.targetValue = targetValue def set_target_and_update(self, targetValue: Gf.Vec3f): self.targetValue = targetValue self.update() @property def current_value(self): return self.currentValue def update(self): if self.filteredTarget is None: self.filteredTarget = self.targetValue else: self.filteredTarget = self.alpha * self.filteredTarget + (1.0 - self.alpha) * self.targetValue for i in range(3): toTarget = self.filteredTarget[i] - self.currentValue[i] if abs(toTarget) > self.maxDeltaPerFrame: if toTarget < 0.0: toTarget = -self.maxDeltaPerFrame else: toTarget = self.maxDeltaPerFrame self.currentValue[i] += toTarget class JointAngleRateOfChangeLimiter: def __init__(self, jointDriveAPI, initValue: float = 0.0, maxRateRad: float = 0.01): self.maxDeltaPerFrame = maxRateRad self.jointDriveAPI = jointDriveAPI self.resetValue = initValue self.reset() def set_current_angle_in_drive_api(self): targetDeg = self.currentValue * 180.0 / math.pi self.jointDriveAPI.GetTargetPositionAttr().Set(targetDeg) def reset(self): self.targetValue = self.resetValue self.currentValue = self.resetValue def set_target(self, targetValue): self.targetValue = targetValue def set_target_and_update(self, targetValue): self.targetValue = targetValue self.update() def update(self): toTarget = self.targetValue - self.currentValue if abs(toTarget) > self.maxDeltaPerFrame: if toTarget < 0: toTarget = -self.maxDeltaPerFrame else: toTarget = self.maxDeltaPerFrame self.currentValue += toTarget
5,611
Python
36.165563
119
0.641597
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/hand/hand_env.py
import numpy as np from numpy_utils import * from utils import get_mesh_bboxes from omni.isaac.core import World, SimulationContext from omni.isaac.core.prims.xform_prim_view import XFormPrimView from omni.isaac.core.robots.robot_view import RobotView class HumanHandEnv(): def __init__(self, prim_paths_expr="", xform_paths_expr="", backend = "numpy", device = None ) -> None: # init hand helper # self.hander_helper = HandHelper() self.xform_paths_expr = xform_paths_expr self.prim_paths_expr = prim_paths_expr self.backend = backend self.device = device def start(self): # simulation context self.simlation_context = SimulationContext(backend=self.backend, device=self.device) print("simlation context", SimulationContext.instance().backend, SimulationContext.instance().device) # articulation self.robots = RobotView(self.prim_paths_expr) # sim.create_articulation_view("/World/envs/*/humanoid/torso") # self.robot_indices = self.robots._backend_utils.convert(np.arange(self.robots.count, dtype=np.int32), self.device) self.num_envs = len(self.robot_indices) print("num_envs", self.num_envs) # initialize self.robots.initialize() self.robot_states = self.robots.get_world_poses() self.dof_pos = self.robots.get_joint_positions() self.initial_dof_pos = self.dof_pos self.dof_vel = self.robots.get_joint_velocities() self.initial_dof_vel = self.dof_vel self.xforms = XFormPrimView(self.xform_paths_expr) def calculate_grasp_location(self, keyword = "handle_", verticle = True, x_offset = 0.01): """ Calculate the grasp location for the handle """ bboxes_list = get_mesh_bboxes(keyword) # assert len(bboxes_list) == self.num_envs, "more than one handle!" # get center and min x axis min_x = bboxes_list[0][0][0] # center_list = [(e[1] + e[0]) / 2 for e in bboxes_list] # box center if verticle: grasp_list = [[min_x - x_offset, c[1], c[2] - 0.02] for c in center_list] else: grasp_list = [[min_x - x_offset, c[1] + 0.02, c[2]] for c in center_list] graps_pos = np.array(grasp_list, dtype=np.float32) base_rotation = [0.5, -0.5, 0.5, 0.5] if verticle else [-0.70711, 0.70711, 0, 0] grasp_rot = np.array([base_rotation], dtype=np.float32)# XYZW # rotation: 0, 0.70711, 0, 0.70711; 0, 90, 0 # rotation:[0.5, 0.5, 0.5, 0.5] return graps_pos, grasp_rot def move_to_target(self, goal_pos, goal_rot, finger = "thumb"): """ Move hand to target points """ # get end effector transforms finger_pos, finger_rot = self.xforms.get_world_poses() finger_rot = finger_rot[:,[1,2,3,0]] # WXYZ # get franka DOF states dof_pos = self.robots.get_joint_positions() # compute position and orientation error pos_err = goal_pos - finger_pos orn_err = orientation_error(goal_rot, finger_rot) dpose = np.concatenate([pos_err, orn_err], -1)[:, None].transpose(0, 2, 1) jacobians = self.robots._physics_view.get_jacobians() # jacobian entries corresponding to correct finger if finger == "thumb": finger_index = 14 elif finger == "index": finger_index = 15 elif finger == "middle": finger_index = 16 elif finger == "pinky": finger_index = 17 else: # ring finger_index = 18 j_eef = jacobians[:, finger_index, :] # solve damped least squares j_eef_T = np.transpose(j_eef, (0, 2, 1)) d = 0.05 # damping term lmbda = np.eye(6) * (d ** 2) u = (j_eef_T @ np.linalg.inv(j_eef @ j_eef_T + lmbda) @ dpose).reshape(self.num_envs, -1) # update position targets pos_targets = dof_pos + u # * 0.3 return pos_targets ################################################################################################## # -------------------------------------- Control ------------------------------------------------# ################################################################################################## def move_finger_to_fast(self, target_pos, target_rot, world, finger = "thumb", max_step = 100): """ Quickly move the robot hands to the target position and rotation """ for i in range(max_step): world.step(render=True) # get end effector transforms finger_pos, finger_rot = self.xforms.get_world_poses() finger_rot = finger_rot[:,[1,2,3,0]] # WXYZ -> XYZW print("finger_pos", finger_pos) orient_error = quat_mul(target_rot[0], quat_conjugate(finger_rot[0])) # print("orient_error", orient_error) # if abs(orient_error[3] - 1) < 0.02 and \ # np.sqrt(orient_error[0]**2 + orient_error[1]**2 + orient_error[2]**2) < 0.02 and \ # np.sqrt(np.sum((target_pos[0] - finger_pos[0])**2)) < 0.01: # print("Done rotation, position", finger_pos, finger_rot) # return u = self.move_to_target(target_pos, target_rot) # u[:,[-2, -1]] = 0.05 if open_gripper else 0 self.robots.set_joint_position_targets(u) print("Not Done rotation, position", finger_pos, finger_rot) def calculate_grasp_location_from_pred_box(self, box, verticle = True, x_offset = 0.01): """ Calculate the grasp location for the handle """ # assert len(bboxes_list) == self.num_envs, "more than one handle!" # get center and min x axis min_x = 0.618 handle_y = 0.5 * (box[0] + box[2]) handle_z = 0.5 * (box[1] + box[3]) if verticle: grasp_list = [[min_x - x_offset, handle_y, handle_z - 0.02]] else: grasp_list = [[min_x - x_offset, handle_y + 0.02, handle_z]] graps_pos = np.array(grasp_list, dtype=np.float32) base_rotation = [0.5, -0.5, 0.5, 0.5] if verticle else [-0.70711, 0.70711, 0, 0] grasp_rot = np.array([base_rotation], dtype=np.float32)# XYZW return graps_pos, grasp_rot
6,487
Python
36.72093
122
0.542932
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/hand/helper.py
# hand helper import carb import omni import sys from pxr import Usd, Sdf, PhysxSchema, UsdPhysics, Vt, Gf, UsdGeom, UsdShade from omni.physx.scripts import physicsUtils, particleUtils from omni.physx.scripts import deformableUtils, utils import math from copy import copy from .limiter import * class HandHelper(): def __init__(self) -> None: self.stage = omni.usd.get_context().get_stage() self._scale = 1 ######################################################### ################### constants ########################### ######################################################### self._physicsMaterialPath = None self._material_static_friction = 1.0 self._material_dynamic_friction = 1.0 self._material_restitution = 0.0 # Joint drives / params: radToDeg = 180.0 / math.pi self._drive_max_force = 1e20 self._revolute_drive_stiffness = 10000000 / radToDeg # 50000.0 self._spherical_drive_stiffness = 22000000 / radToDeg # 50000.0 self._revolute_drive_damping = 0.2 * self._revolute_drive_stiffness self._spherical_drive_damping = 0.2 * self._spherical_drive_stiffness self._maxJointVelocity = 3.0 * radToDeg self._jointFriction = 0.01 self._finger_mass = 0.1 mHand = self._finger_mass * 20.0 + self._finger_mass + self._finger_mass dh = 0.05 self._d6LinearSpring = mHand * 100 / dh self._d6LinearDamping = 20 * math.sqrt(self._d6LinearSpring * mHand) self._d6RotationalSpring = self._d6LinearSpring * 100.0 * 100.0 / radToDeg self._d6RotationalDamping = self._d6LinearDamping * 100.0 * 50.0 / radToDeg self._jointAngleRateLimitRad = 150 / 60 * math.pi / 180.0 # driving and dofs self._drives = [] self._driveGuards = [] self._numDofs = 0 self._thumbIndices = [] ######################################################### ################### hand ########################### ######################################################### self._handInitPos = Gf.Vec3f(0.0) self.import_hand() self._setup_geometry() self._setup_mesh_tree() self._rig_hand() #! disable tips # tips_prim = self.stage.GetPrimAtPath(self._tips_root_path.pathString) # tips_prim.SetActive(False) self._rig_D6_anchor() # self._setup_skeleton_hand_db_tips(self.stage) def import_hand(self): # import skeleton hand default_prim_path = Sdf.Path("/World") # stage.GetDefaultPrim().GetPath() self._hand_prim_path = default_prim_path.AppendPath("Hand") self._bones_root_path = default_prim_path.AppendPath("Hand/Bones") self._tips_root_path = default_prim_path.AppendPath("Hand/Tips") abspath = "/home/yizhou/Desktop/hand1.usd" # "https://omniverse-content-staging.s3.us-west-2.amazonaws.com/DoNotDelete/PhysicsDemoAssets/103.1/DeformableHand/skeleton_hand_with_tips.usd" assert self.stage.DefinePrim(self._hand_prim_path).GetReferences().AddReference(abspath) self._hand_prim = self.stage.GetPrimAtPath(self._hand_prim_path.pathString) hand_xform = UsdGeom.Xformable(self._hand_prim) hand_xform.ClearXformOpOrder() precision = UsdGeom.XformOp.PrecisionFloat hand_xform.AddTranslateOp(precision=precision).Set(self._handInitPos) hand_xform.AddOrientOp(precision=precision).Set(Gf.Quatf(1,0,0,0)) hand_xform.AddScaleOp(precision=precision).Set(Gf.Vec3f(self._scale)) # Physics scene # physicsScenePath = default_prim_path.AppendChild("physicsScene") # scene = UsdPhysics.Scene.Define(self.stage, physicsScenePath) # scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) # scene.CreateGravityMagnitudeAttr().Set(9.81) # utils.set_physics_scene_asyncsimrender(scene.GetPrim()) # physxAPI = PhysxSchema.PhysxSceneAPI.Apply(scene.GetPrim()) # physxAPI.CreateSolverTypeAttr("TGS") # physxAPI.CreateGpuMaxNumPartitionsAttr(4) def _setup_geometry(self): boneNames = ["proximal", "middle", "distal"] self._jointGeometry = {} revoluteLimits = (-20, 120) # Thumb: metacarpal = JointGeometry() metacarpal.bbCenterWeight = 0.67 metacarpal.posOffsetW = Gf.Vec3d(-1.276, 0.28, 0.233) # this quaternion is the joint pose in the inertial coordinate system # and will be converted to the bone frame in the joint rigging angleY = -0.45 angleZ = -0.5 quat = get_quat_from_extrinsic_xyz_rotation(angleYrad=angleY, angleZrad=angleZ) metacarpal.quat = quat # first y then z, extrinsic metacarpal.type = "spherical" metacarpal.axis = "X" metacarpal.limits = (90, 90) metacarpal.defaultDriveAngles["rotY"] = angleY metacarpal.defaultDriveAngles["rotZ"] = angleZ proximal = JointGeometry() proximal.bbCenterWeight = 0.67 proximal.quat = Gf.Quatf(0, 0, 0, 1) * quat proximal.axis = "Y" proximal.limits = revoluteLimits distal = copy(proximal) distal.bbCenterWeight = 0.55 self._jointGeometry["Thumb"] = { "metacarpal": copy(metacarpal), "proximal": copy(proximal), "distal": copy(distal), } sphericalLimits = (60, 90) # Index: proximal = JointGeometry() proximal.bbCenterWeight = 0.67 proximal.quat = Gf.Quatf(1.0) proximal.type = "spherical" proximal.axis = "X" proximal.limits = sphericalLimits middle = JointGeometry() middle.bbCenterWeight = 0.67 xAngleRad = 5.0 * math.pi / 180.0 middle.quat = get_quat_from_extrinsic_xyz_rotation(angleXrad=xAngleRad) middle.axis = "Z" middle.limits = revoluteLimits distal = copy(middle) distal.bbCenterWeight = 0.55 geoms = [copy(g) for g in [proximal, middle, distal]] self._jointGeometry["Index"] = dict(zip(boneNames, geoms)) # middle: proximal = JointGeometry() proximal.bbCenterWeight = 0.67 proximal.quat = Gf.Quatf(1.0) proximal.type = "spherical" proximal.limits = sphericalLimits proximal.axis = "X" middle = JointGeometry() middle.bbCenterWeight = 0.67 middle.quat = Gf.Quatf(1.0) middle.axis = "Z" middle.limits = revoluteLimits distal = copy(middle) distal.bbCenterWeight = 0.55 geoms = [copy(g) for g in [proximal, middle, distal]] self._jointGeometry["Middle"] = dict(zip(boneNames, geoms)) # ring: proximal = JointGeometry() proximal.bbCenterWeight = 0.67 proximal.quat = Gf.Quatf(1.0) proximal.type = "spherical" proximal.limits = sphericalLimits proximal.axis = "X" middle = JointGeometry() middle.bbCenterWeight = 0.6 middle.quat = Gf.Quatf(1.0) middle.limits = revoluteLimits xAngleRad = -5.0 * math.pi / 180.0 middle.quat = get_quat_from_extrinsic_xyz_rotation(angleXrad=xAngleRad) middle.axis = "Z" distal = copy(middle) distal.bbCenterWeight = 0.55 geoms = [copy(g) for g in [proximal, middle, distal]] self._jointGeometry["Ring"] = dict(zip(boneNames, geoms)) # pinky: proximal = JointGeometry() proximal.bbCenterWeight = 0.67 yAngleRad = 8.0 * math.pi / 180.0 proximal.quat = get_quat_from_extrinsic_xyz_rotation(angleXrad=xAngleRad, angleYrad=yAngleRad) proximal.type = "spherical" proximal.limits = sphericalLimits proximal.axis = "X" proximal.defaultDriveAngles["rotY"] = yAngleRad middle = JointGeometry() middle.bbCenterWeight = 0.67 middle.quat = Gf.Quatf(1.0) middle.limits = revoluteLimits middle.axis = "Z" yAngleRad = 8.0 * math.pi / 180.0 xAngleRad = -5.0 * math.pi / 180.0 middle.quat = get_quat_from_extrinsic_xyz_rotation(angleXrad=xAngleRad, angleYrad=yAngleRad) distal = copy(middle) distal.bbCenterWeight = 0.55 geoms = [copy(g) for g in [proximal, middle, distal]] self._jointGeometry["Pinky"] = dict(zip(boneNames, geoms)) def _setup_mesh_tree(self): self._baseMesh = UsdGeom.Mesh.Get(self.stage, self._bones_root_path.AppendChild("l_carpal_mid")) assert self._baseMesh boneNames = ["metacarpal", "proximal", "middle", "distal"] fingerNames = ["Thumb", "Index", "Middle", "Ring", "Pinky"] self._fingerMeshes = {} for fingerName in fingerNames: self._fingerMeshes[fingerName] = {} groupPath = self._bones_root_path.AppendChild(f"l_{fingerName.lower()}Skeleton_grp") for boneName in boneNames: if fingerName == "Thumb" and boneName == "middle": continue bonePath = groupPath.AppendChild(f"l_{boneName}{fingerName}_mid") boneMesh = UsdGeom.Mesh.Get(self.stage, bonePath) assert boneMesh, f"Mesh {bonePath.pathString} invalid" self._fingerMeshes[fingerName][boneName] = boneMesh ################################## rigging ######################################### def _rig_hand(self): self._set_bones_to_rb() self._rig_articulation_root() self._setup_physics_material(self._baseMesh.GetPath()) self._rig_hand_base() self._rig_fingers() def _rig_articulation_root(self): self.hand_prim = self.stage.GetPrimAtPath("/World/Hand") self.bone_prim = self.stage.GetPrimAtPath("/World/Hand/Bones") self.tip_prim = self.stage.GetPrimAtPath("/World/Hand/Tips") # reset bone XForm and tip Xform mat = Gf.Matrix4d() omni.kit.commands.execute( "TransformPrimCommand", path="/World/Hand/Bones", new_transform_matrix=mat, ) # self.bone_prim.GetAttribute("xformOp:transform").Set(mat) # if self.tip_prim : # self.tip_prim.GetAttribute("xformOp:transform").Set(mat) ropt_prim = self._baseMesh.GetPrim() UsdPhysics.ArticulationRootAPI.Apply(ropt_prim) physxArticulationAPI = PhysxSchema.PhysxArticulationAPI.Apply(ropt_prim) physxArticulationAPI.GetSolverPositionIterationCountAttr().Set(15) physxArticulationAPI.GetSolverVelocityIterationCountAttr().Set(0) # fixedJointPath = ropt_prim.GetPath().AppendChild(f"rootJoint") # fixedJoint = UsdPhysics.FixedJoint.Define(self.stage, fixedJointPath) # fixedJoint.CreateBody0Rel().SetTargets([]) # fixedJoint.CreateBody1Rel().SetTargets([Sdf.Path("/World/Hand/Bones/l_carpal_mid")]) # parentWorldBB = computeMeshWorldBoundsFromPoints(self._baseMesh) # self._base_mesh_world_pos = Gf.Vec3f(0.5 * (parentWorldBB[0] + parentWorldBB[1])) # # fixedJoint.CreateLocalPos0Attr().Set(Gf.Vec3f(0)) # # fixedJoint.CreateLocalRot0Attr().Set(Gf.Quatf(1.0)) # fixedJoint.CreateLocalPos1Attr().Set(-self._base_mesh_world_pos) # fixedJoint.CreateLocalRot1Attr().Set(Gf.Quatf(1.0)) # print("rootJoint", self._base_mesh_world_pos) def _rig_hand_base(self): basePath = self._baseMesh.GetPath() parentWorldBB = computeMeshWorldBoundsFromPoints(self._baseMesh) self._base_mesh_world_pos = Gf.Vec3f(0.5 * (parentWorldBB[0] + parentWorldBB[1])) baseLocalToWorld = self._baseMesh.ComputeLocalToWorldTransform(Usd.TimeCode.Default()) for fingerName, finger in self._fingerMeshes.items(): if fingerName == "Thumb": # skip thumb continue for boneName, bone in finger.items(): if boneName == "metacarpal": fixedJointPath = bone.GetPath().AppendChild(f"{fingerName}_baseFixedJoint") fixedJoint = UsdPhysics.FixedJoint.Define(self.stage, fixedJointPath) fixedJoint.CreateBody0Rel().SetTargets([basePath]) fixedJoint.CreateBody1Rel().SetTargets([bone.GetPath()]) childWorldBB = computeMeshWorldBoundsFromPoints(bone) childWorldPos = Gf.Vec3f(0.5 * (childWorldBB[0] + childWorldBB[1])) childLocalToWorld = bone.ComputeLocalToWorldTransform(Usd.TimeCode.Default()) jointWorldPos = 0.5 * (self._base_mesh_world_pos + childWorldPos) jointParentPosition = baseLocalToWorld.GetInverse().Transform(jointWorldPos) jointChildPosition = childLocalToWorld.GetInverse().Transform(jointWorldPos) fixedJoint.CreateLocalPos0Attr().Set(jointParentPosition) fixedJoint.CreateLocalRot0Attr().Set(Gf.Quatf(1.0)) fixedJoint.CreateLocalPos1Attr().Set(jointChildPosition) fixedJoint.CreateLocalRot1Attr().Set(Gf.Quatf(1.0)) fixedJoint.CreateBreakForceAttr().Set(sys.float_info.max) fixedJoint.CreateBreakTorqueAttr().Set(sys.float_info.max) def _rig_joint(self, boneName, fingerName, parentBone): if boneName not in self._jointGeometry[fingerName]: return childBone = self._fingerMeshes[fingerName][boneName] jointGeom = self._jointGeometry[fingerName][boneName] jointType = jointGeom.type.lower() # print("jointType", parentBone, jointType, childBone, jointType) parentWorldBB = computeMeshWorldBoundsFromPoints(parentBone) parentWorldPos = Gf.Vec3d(0.5 * (parentWorldBB[0] + parentWorldBB[1])) parentLocalToWorld = parentBone.ComputeLocalToWorldTransform(Usd.TimeCode.Default()) childWorldBB = computeMeshWorldBoundsFromPoints(childBone) childWorldPos = Gf.Vec3d(0.5 * (childWorldBB[0] + childWorldBB[1])) childLocalToWorld = childBone.ComputeLocalToWorldTransform(Usd.TimeCode.Default()) jointWorldPos = parentWorldPos + jointGeom.bbCenterWeight * (childWorldPos - parentWorldPos) # print("jointWorldPos", jointWorldPos, parentWorldPos) if jointGeom.posOffsetW is not None: jointWorldPos += jointGeom.posOffsetW * 0.01 # print("jointGeom.posOffsetW", jointGeom.posOffsetW) jointParentPosition = parentLocalToWorld.GetInverse().Transform(jointWorldPos) jointChildPosition = childLocalToWorld.GetInverse().Transform(jointWorldPos) if jointType == "revolute": jointPath = childBone.GetPath().AppendChild(f"{fingerName}_{boneName}_RevoluteJoint") joint = UsdPhysics.RevoluteJoint.Define(self.stage, jointPath) # elif jointType == "spherical": # jointPath = childBone.GetPath().AppendChild("SphericalJoint") # joint = UsdPhysics.SphericalJoint.Define(self.stage, jointPath) joint.CreateBody0Rel().SetTargets([parentBone.GetPath()]) joint.CreateBody1Rel().SetTargets([childBone.GetPath()]) joint.CreateAxisAttr(jointGeom.axis) # for the sphericals, the relative orientation does not matter as they are externally driven. # for the revolutes, it is key that they are oriented correctly and that parent and child are identical # in order to avoid offsets - offsets will be added in the joint commands jointPose = Gf.Quatf(parentLocalToWorld.GetInverse().RemoveScaleShear().ExtractRotationQuat()) jointPose *= jointGeom.quat # this is assuming that parent and child's frames coincide joint.CreateLocalPos0Attr().Set(jointParentPosition) joint.CreateLocalRot0Attr().Set(jointPose) joint.CreateLocalPos1Attr().Set(jointChildPosition) joint.CreateLocalRot1Attr().Set(jointPose) physxJointAPI = PhysxSchema.PhysxJointAPI.Apply(joint.GetPrim()) physxJointAPI.GetMaxJointVelocityAttr().Set(self._maxJointVelocity) physxJointAPI.GetJointFrictionAttr().Set(self._jointFriction) if jointType == "revolute": # for revolute create drive driveAPI = UsdPhysics.DriveAPI.Apply(joint.GetPrim(), "angular") driveAPI.CreateTypeAttr("force") # driveAPI.CreateMaxForceAttr(self._drive_max_force) driveAPI.CreateDampingAttr(self._revolute_drive_damping) driveAPI.CreateStiffnessAttr(self._revolute_drive_stiffness) dofIndex = len(self._drives) self._numDofs += 1 if fingerName == "Thumb": self._thumbIndices.append(dofIndex) self._drives.append(driveAPI) targetAngle = jointGeom.defaultDriveAngles["rot" + jointGeom.axis] self._driveGuards.append( JointAngleRateOfChangeLimiter(driveAPI, targetAngle, self._jointAngleRateLimitRad) ) elif jointType == "spherical": # add 6d external joint and drive: d6path = childBone.GetPath().AppendChild(f"{fingerName}_{boneName}_D6DriverJoint") d6j = UsdPhysics.Joint.Define(self.stage, d6path) # d6j.CreateExcludeFromArticulationAttr().Set(True) d6j.CreateBody0Rel().SetTargets([parentBone.GetPath()]) d6j.CreateBody1Rel().SetTargets([childBone.GetPath()]) # d6j.CreateExcludeFromArticulationAttr().Set(True) d6j.CreateLocalPos0Attr().Set(jointParentPosition) parentWorldToLocal = Gf.Quatf(parentLocalToWorld.GetInverse().RemoveScaleShear().ExtractRotationQuat()) # print("D6DriverJoint parentWorldToLocal", jointParentPosition, jointChildPosition) d6j.CreateLocalRot0Attr().Set(parentWorldToLocal) d6j.CreateLocalPos1Attr().Set(jointChildPosition) childPose = parentWorldToLocal * jointGeom.quat d6j.CreateLocalRot1Attr().Set(childPose) # d6j.CreateBreakForceAttr().Set(1e20) # d6j.CreateBreakTorqueAttr().Set(1e20) axes = [x for x in "XYZ" if jointGeom.axis != x] assert len(axes) == 2, "Error in spherical drives setup" drives = ["rot" + x for x in axes] # lock the joint axis: limitAPI = UsdPhysics.LimitAPI.Apply(d6j.GetPrim(), "rot" + jointGeom.axis) limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) limitAPI = UsdPhysics.LimitAPI.Apply(d6j.GetPrim(), UsdPhysics.Tokens.transY) limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) limitAPI = UsdPhysics.LimitAPI.Apply(d6j.GetPrim(), UsdPhysics.Tokens.transZ) limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) limitAPI = UsdPhysics.LimitAPI.Apply(d6j.GetPrim(), UsdPhysics.Tokens.transX) limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) for d in drives: driveAPI = UsdPhysics.DriveAPI.Apply(d6j.GetPrim(), d) driveAPI.CreateTypeAttr("force") # driveAPI.CreateMaxForceAttr(self._drive_max_force) driveAPI.CreateDampingAttr(self._spherical_drive_damping) driveAPI.CreateStiffnessAttr(self._spherical_drive_stiffness) dofIndex = len(self._drives) self._numDofs += 1 if fingerName == "Thumb": self._thumbIndices.append(dofIndex) self._drives.append(driveAPI) targetAngle = jointGeom.defaultDriveAngles[d] self._driveGuards.append( JointAngleRateOfChangeLimiter(driveAPI, targetAngle, self._jointAngleRateLimitRad) ) def _rig_fingers(self): for fingerName, finger in self._fingerMeshes.items(): # print("fingerName", fingerName) parentBone = self._baseMesh for boneName, bone in finger.items(): self._rig_joint(boneName, fingerName, parentBone) parentBone = bone # return def _rig_D6_anchor(self): # create anchor: self._anchorXform = UsdGeom.Xform.Define( self.stage, self.stage.GetDefaultPrim().GetPath().AppendChild("AnchorXform") ) # these are global coords because world is the xform's parent xformLocalToWorldTrans = self._handInitPos xformLocalToWorldRot = Gf.Quatf(1.0) self._anchorXform.AddTranslateOp().Set(xformLocalToWorldTrans) self._anchorXform.AddOrientOp().Set(xformLocalToWorldRot) self._anchorPositionRateLimiter = VectorRateOfChangeLimiter( xformLocalToWorldTrans, 0.01666, 0.5 ** (1 / 6) #! change max movement per frame ) self._anchorQuatRateLimiter = QuaternionRateOfChangeLimiter( xformLocalToWorldRot, 0.01666, 0.5 ** (1 / 6) ) xformPrim = self._anchorXform.GetPrim() physicsAPI = UsdPhysics.RigidBodyAPI.Apply(xformPrim) physicsAPI.CreateRigidBodyEnabledAttr(True) physicsAPI.CreateKinematicEnabledAttr(True) # setup joint to floating hand base component = UsdPhysics.Joint.Define( self.stage, self.stage.GetDefaultPrim().GetPath().AppendChild("AnchorToHandBaseD6") ) if not hasattr(self, "_baseMesh"): self._baseMesh = UsdGeom.Mesh.Get(self.stage, self._bones_root_path.AppendChild("l_carpal_mid")) baseLocalToWorld = self._baseMesh.ComputeLocalToWorldTransform(Usd.TimeCode.Default()) jointPosition = baseLocalToWorld.GetInverse().Transform(xformLocalToWorldTrans) jointPose = Gf.Quatf(baseLocalToWorld.GetInverse().RemoveScaleShear().ExtractRotationQuat()) component.CreateExcludeFromArticulationAttr().Set(True) component.CreateLocalPos0Attr().Set(Gf.Vec3f(0.0)) component.CreateLocalRot0Attr().Set(Gf.Quatf(1.0)) component.CreateBody0Rel().SetTargets([self._anchorXform.GetPath()]) component.CreateBody1Rel().SetTargets([self._baseMesh.GetPath()]) # component.CreateLocalPos1Attr().Set(jointPosition) component.CreateLocalRot1Attr().Set(jointPose) component.CreateBreakForceAttr().Set(sys.float_info.max) component.CreateBreakTorqueAttr().Set(sys.float_info.max) rootJointPrim = component.GetPrim() for dof in ["transX", "transY", "transZ"]: driveAPI = UsdPhysics.DriveAPI.Apply(rootJointPrim, dof) driveAPI.CreateTypeAttr("force") # driveAPI.CreateMaxForceAttr(self._drive_max_force) driveAPI.CreateTargetPositionAttr(0.0) driveAPI.CreateDampingAttr(1e4) driveAPI.CreateStiffnessAttr(1e5) for rotDof in ["rotX", "rotY", "rotZ"]: driveAPI = UsdPhysics.DriveAPI.Apply(rootJointPrim, rotDof) driveAPI.CreateTypeAttr("force") # driveAPI.CreateMaxForceAttr(self._drive_max_force) driveAPI.CreateTargetPositionAttr(0.0) driveAPI.CreateDampingAttr(1e4) driveAPI.CreateStiffnessAttr(1e5) # limitAPI = UsdPhysics.LimitAPI.Apply(rootJointPrim, rotDof) # limitAPI.CreateLowAttr(1.0) # limitAPI.CreateHighAttr(-1.0) ########################################## physics ################################### def _setup_physics_material(self, path: Sdf.Path): if self._physicsMaterialPath is None: self._physicsMaterialPath = self.stage.GetDefaultPrim().GetPath().AppendChild("physicsMaterial") UsdShade.Material.Define(self.stage, self._physicsMaterialPath) material = UsdPhysics.MaterialAPI.Apply(self.stage.GetPrimAtPath(self._physicsMaterialPath)) material.CreateStaticFrictionAttr().Set(self._material_static_friction) material.CreateDynamicFrictionAttr().Set(self._material_dynamic_friction) material.CreateRestitutionAttr().Set(self._material_restitution) # collisionAPI = UsdPhysics.CollisionAPI.Get(self.stage, path) prim = self.stage.GetPrimAtPath(path) # if not collisionAPI: # collisionAPI = UsdPhysics.CollisionAPI.Apply(prim) # apply material physicsUtils.add_physics_material_to_prim(self.stage, prim, self._physicsMaterialPath) def _apply_mass(self, mesh: UsdGeom.Mesh, mass: float): massAPI = UsdPhysics.MassAPI.Apply(mesh.GetPrim()) massAPI.GetMassAttr().Set(mass) def _setup_rb_parameters(self, prim, restOffset, contactOffset): physxCollisionAPI = PhysxSchema.PhysxCollisionAPI.Apply(prim) self._setup_physics_material(prim.GetPath()) assert physxCollisionAPI.GetRestOffsetAttr().Set(restOffset) assert physxCollisionAPI.GetContactOffsetAttr().Set(contactOffset) assert prim.CreateAttribute("physxMeshCollision:minThickness", Sdf.ValueTypeNames.Float).Set(0.001) physxRBAPI = PhysxSchema.PhysxRigidBodyAPI.Apply(prim) physxRBAPI.CreateSolverPositionIterationCountAttr().Set(15) physxRBAPI.CreateSolverVelocityIterationCountAttr().Set(0) def _set_bone_mesh_to_rigid_body_and_config(self, mesh: UsdGeom.Mesh, approximationShape="convexHull"): prim = mesh.GetPrim() utils.setRigidBody(prim, approximationShape=approximationShape, kinematic=False) # self._setup_rb_parameters(prim, restOffset=0.0, contactOffset= 0.01) # omni.kit.commands.execute( # "SetRigidBodyCommand", # path=prim.GetPath().pathString, # approximationShape="convexHull", # kinematic=False # ) def _set_bones_to_rb(self): # utils.setRigidBody(self.stage.GetPrimAtPath("/World/Hand"), approximationShape="convexHull", kinematic=False) # return self._set_bone_mesh_to_rigid_body_and_config(self._baseMesh) # self._apply_mass(self._baseMesh, self._finger_mass) for _, finger in self._fingerMeshes.items(): for _, bone in finger.items(): self._set_bone_mesh_to_rigid_body_and_config(bone) self._setup_physics_material(bone.GetPrim().GetPath()) #! add physical material # self._apply_mass(bone, self._finger_mass) ########################### soft body ################################################# def _setup_skeleton_hand_db_tips(self, stage): # SB and fluid: self._sb_hand_schema_parameters = { "youngsModulus": 1.0e5, "poissonsRatio": 0.3, "dampingScale": 1.0, "dynamicFriction": 1.0, "solver_position_iteration_count": 15, "collisionRestOffset": 0.1, "collisionContactOffset": 0.5, "self_collision": False, "vertex_velocity_damping": 0.005, "sleep_damping": 0.001, # disable "sleep_threshold": 0.001, # disable "settling_threshold": 0.001, # disable } self._sb_tips_schema_parameters = self._sb_hand_schema_parameters self._sb_tips_schema_parameters["collisionRestOffset"] = 0.00001 self._sb_tips_resolution = 8 self._sb_hand_resolution = 20 # create and attach softbodies sbTipsStringPaths = [ "LeftHandThumbTipScaled/geom", "LeftHandIndexTipScaled/geom", "LeftHandMiddleTipScaled/geom", "LeftHandRingTipScaled/geom", "LeftHandPinkyTipScaled/geom", ] sbTipsPaths = [self._tips_root_path.AppendPath(x) for x in sbTipsStringPaths] sbTips_material_path = omni.usd.get_stage_next_free_path(stage, "/sbTipsMaterial", True) deformableUtils.add_deformable_body_material( stage, sbTips_material_path, youngs_modulus=self._sb_tips_schema_parameters["youngsModulus"], poissons_ratio=self._sb_tips_schema_parameters["poissonsRatio"], damping_scale=self._sb_tips_schema_parameters["dampingScale"], dynamic_friction=self._sb_tips_schema_parameters["dynamicFriction"], ) self._deformableTipMass = 0.01 for sbTipPath in sbTipsPaths: self.set_softbody( sbTipPath, self._sb_tips_schema_parameters, sbTips_material_path, self._deformableTipMass, self._sb_tips_resolution, ) # rigid attach attachmentBoneStringPaths = [ "l_thumbSkeleton_grp/l_distalThumb_mid", "l_indexSkeleton_grp/l_distalIndex_mid", "l_middleSkeleton_grp/l_distalMiddle_mid", "l_ringSkeleton_grp/l_distalRing_mid", "l_pinkySkeleton_grp/l_distalPinky_mid", "l_thumbSkeleton_grp/l_metacarpalThumb_mid", "l_indexSkeleton_grp/l_metacarpalIndex_mid", "l_middleSkeleton_grp/l_metacarpalMiddle_mid", "l_ringSkeleton_grp/l_metacarpalRing_mid", "l_pinkySkeleton_grp/l_metacarpalPinky_mid", "l_thumbSkeleton_grp/l_proximalThumb_mid", "l_indexSkeleton_grp/l_proximalIndex_mid", "l_middleSkeleton_grp/l_proximalMiddle_mid", "l_ringSkeleton_grp/l_proximalRing_mid", "l_pinkySkeleton_grp/l_proximalPinky_mid", "l_indexSkeleton_grp/l_middleIndex_mid", "l_middleSkeleton_grp/l_middleMiddle_mid", "l_ringSkeleton_grp/l_middleRing_mid", "l_pinkySkeleton_grp/l_middlePinky_mid", "l_carpal_mid", ] # color of tips: color_rgb = [161, 102, 94] sbColor = Vt.Vec3fArray([Gf.Vec3f(color_rgb[0], color_rgb[1], color_rgb[2]) / 256.0]) attachmentBonePaths = [self._bones_root_path.AppendPath(x) for x in attachmentBoneStringPaths] for sbTipPath, bonePath in zip(sbTipsPaths, attachmentBonePaths): sbMesh = UsdGeom.Mesh.Get(stage, sbTipPath) sbMesh.CreateDisplayColorAttr(sbColor) boneMesh = UsdGeom.Mesh.Get(stage, bonePath) self.create_softbody_rigid_attachment(sbMesh, boneMesh, 0) softbodyGroupPath = "/World/physicsScene/collisionGroupSoftBodyTips" boneGroupPath = "/World/physicsScene/collisionGroupHandBones" softbodyGroup = UsdPhysics.CollisionGroup.Define(stage, softbodyGroupPath) boneGroup = UsdPhysics.CollisionGroup.Define(stage, boneGroupPath) filteredRel = softbodyGroup.CreateFilteredGroupsRel() filteredRel.AddTarget(boneGroupPath) filteredRel = boneGroup.CreateFilteredGroupsRel() filteredRel.AddTarget(softbodyGroupPath) for sbTipPath in sbTipsPaths: self.assign_collision_group(sbTipPath, softbodyGroupPath) # filter all SB tips vs bone rigid bodies collisions self.assign_collision_group(self._baseMesh.GetPath(), boneGroupPath) for finger in self._fingerMeshes.values(): for bone in finger.values(): self.assign_collision_group(bone.GetPath(), boneGroupPath) def assign_collision_group(self, primPath: Sdf.Path, groupPath: Sdf.Path): stage = self.stage physicsUtils.add_collision_to_collision_group(stage, primPath, groupPath) def set_softbody( self, mesh_path: Sdf.Path, schema_parameters: dict, material_path: Sdf.Path, mass: float, resolution: int ): success = omni.kit.commands.execute( "AddDeformableBodyComponentCommand", skin_mesh_path=mesh_path, voxel_resolution=resolution, solver_position_iteration_count=schema_parameters["solver_position_iteration_count"], self_collision=schema_parameters["self_collision"], vertex_velocity_damping=schema_parameters["vertex_velocity_damping"], sleep_damping=schema_parameters["sleep_damping"], sleep_threshold=schema_parameters["sleep_threshold"], settling_threshold=schema_parameters["settling_threshold"], ) prim = self.stage.GetPrimAtPath(mesh_path) physxCollisionAPI = PhysxSchema.PhysxCollisionAPI.Apply(prim) assert physxCollisionAPI.CreateRestOffsetAttr().Set(schema_parameters["collisionRestOffset"]) assert physxCollisionAPI.CreateContactOffsetAttr().Set(schema_parameters["collisionContactOffset"]) massAPI = UsdPhysics.MassAPI.Apply(prim) massAPI.CreateMassAttr().Set(mass) physicsUtils.add_physics_material_to_prim(self.stage, self.stage.GetPrimAtPath(mesh_path), material_path) assert success def create_softbody_rigid_attachment(self, soft_body, gprim, id): assert PhysxSchema.PhysxDeformableBodyAPI(soft_body) assert UsdPhysics.CollisionAPI(gprim) # get attachment to set parameters: attachmentPath = soft_body.GetPath().AppendChild(f"rigid_attachment_{id}") attachment = PhysxSchema.PhysxPhysicsAttachment.Define(self.stage, attachmentPath) attachment.GetActor0Rel().SetTargets([soft_body.GetPath()]) attachment.GetActor1Rel().SetTargets([gprim.GetPath()]) PhysxSchema.PhysxAutoAttachmentAPI.Apply(attachment.GetPrim()) attachment = PhysxSchema.PhysxAutoAttachmentAPI.Get(self.stage, attachmentPath) attachment.GetEnableDeformableVertexAttachmentsAttr().Set(True) attachment.GetEnableRigidSurfaceAttachmentsAttr().Set(True)
33,932
Python
44.486595
151
0.630349
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/franka/control.py
import os import sys sys.path.append(os.path.dirname(__file__)) import omni import pxr from pxr import Gf from omni.isaac.franka import Franka from omni.isaac.core.utils.stage import set_stage_up_axis from omni.isaac.core import World, SimulationContext from omni.isaac.synthetic_utils import SyntheticDataHelper from omni.isaac.core.prims.xform_prim_view import XFormPrimView from omni.isaac.core.robots.robot_view import RobotView import numpy as np from pathlib import Path from numpy_utils import * from utils import get_mesh_bboxes ROOT = str(Path(__file__).parent.joinpath("../../../../../../").resolve()) class FrankaControl(): def __init__(self, prim_paths_expr="", xform_paths_expr="", backend = "numpy", device = None) -> None: self.xform_paths_expr = xform_paths_expr self.prim_paths_expr = prim_paths_expr self.backend = backend self.device = device def start(self): # simulation context self.simlation_context = SimulationContext(backend=self.backend, device=self.device) print("simlation context", SimulationContext.instance().backend, SimulationContext.instance().device) # articulation self.robots = RobotView(self.prim_paths_expr) # sim.create_articulation_view("/World/envs/*/humanoid/torso") # self.robot_indices = self.robots._backend_utils.convert(np.arange(self.robots.count, dtype=np.int32), self.device) self.num_envs = len(self.robot_indices) print("num_envs", self.num_envs) # initialize self.robots.initialize() self.robot_states = self.robots.get_world_poses() self.dof_pos = self.robots.get_joint_positions() self.initial_dof_pos = self.dof_pos self.dof_vel = self.robots.get_joint_velocities() self.initial_dof_vel = self.dof_vel self.xforms = XFormPrimView(self.xform_paths_expr) def move_to_target(self, goal_pos, goal_rot): """ Move hand to target points """ # get end effector transforms hand_pos, hand_rot = self.xforms.get_world_poses() hand_rot = hand_rot[:,[1,2,3,0]] # WXYZ # get franka DOF states dof_pos = self.robots.get_joint_positions() # compute position and orientation error pos_err = goal_pos - hand_pos orn_err = orientation_error(goal_rot, hand_rot) dpose = np.concatenate([pos_err, orn_err], -1)[:, None].transpose(0, 2, 1) jacobians = self.robots._physics_view.get_jacobians() # jacobian entries corresponding to franka hand franka_hand_index = 8 # !!! j_eef = jacobians[:, franka_hand_index - 1, :] # solve damped least squares j_eef_T = np.transpose(j_eef, (0, 2, 1)) d = 0.05 # damping term lmbda = np.eye(6) * (d ** 2) u = (j_eef_T @ np.linalg.inv(j_eef @ j_eef_T + lmbda) @ dpose).reshape(self.num_envs, 9) # update position targets pos_targets = dof_pos + u # * 0.3 return pos_targets ################################################################################################## # -------------------------------------- Calculation --------------------------------------------# ################################################################################################## def calculate_grasp_location(self, keyword = "handle_", verticle = True, x_offset = 0.086): """ Calculate the grasp location for the handle """ bboxes_list = get_mesh_bboxes(keyword) assert len(bboxes_list) == self.num_envs, "more than one handle!" # get center and min x axis min_x = bboxes_list[0][0][0] # center_list = [(e[1] + e[0]) / 2 for e in bboxes_list] # box center grasp_list = [[min_x - x_offset, c[1], c[2]] for c in center_list] graps_pos = np.array(grasp_list, dtype=np.float32) base_rotation = [0.5, 0.5, 0.5, 0.5] if verticle else [0, 0.70711, 0, 0.70711] grasp_rot = np.array([base_rotation], dtype=np.float32).repeat(self.num_envs, axis = 0) # XYZW # rotation: 0, 0.70711, 0, 0.70711; 0, 90, 0 # rotation:[0.5, 0.5, 0.5, 0.5] return graps_pos, grasp_rot def calculate_pull_location(self, start_pos, start_rot, theta, r, clock_wise = False): """ Calculate how to pull to open the Cabinet """ clock_wise = float(2 * clock_wise - 1) # position pos_offset = np.tile(np.array([-r * np.sin(theta), clock_wise * r * (1 - np.cos(theta)), 0]), (self.num_envs, 1)) target_pos = start_pos + pos_offset # rotate rot_offset = np.tile(np.array([np.sin(clock_wise * theta / 2), 0, 0, np.cos( - clock_wise * theta / 2)]), (self.num_envs, 1)) target_rot = quat_mul(start_rot, rot_offset) return target_pos, target_rot ################################################################################################## # -------------------------------------- Control ------------------------------------------------# ################################################################################################## def move_hand_to_fast(self, target_pos, target_rot, world, open_gripper = True, max_step = 300): """ Quickly move the robot hands to the target position and rotation """ for i in range(max_step): world.step(render=True) # get end effector transforms hand_pos, hand_rot = self.xforms.get_world_poses() hand_rot = hand_rot[:,[1,2,3,0]] # WXYZ -> XYZW orient_error = quat_mul(target_rot[0], quat_conjugate(hand_rot[0])) # print("orient_error", orient_error) if abs(orient_error[3] - 1) < 0.02 and \ np.sqrt(orient_error[0]**2 + orient_error[1]**2 + orient_error[2]**2) < 0.02 and \ np.sqrt(np.sum((target_pos[0] - hand_pos[0])**2)) < 0.01: print("Done rotation, position", hand_pos, hand_rot) return u = self.move_to_target(target_pos, target_rot) u[:,[-2, -1]] = 0.05 if open_gripper else 0 self.robots.set_joint_position_targets(u) print("Not Done rotation, position", hand_pos, hand_rot) def move_hand_to_slow(self, target_pos, target_rot, world, open_gripper = True, step = 60): """ Continuously and slowly move robot hands to the target position and rotation target_pos, target_rot: [x,y,z], [x, y, z, w] """ hand_pos, hand_rot = self.xforms.get_world_poses() # [x,y,z], [w, x, y, z] hand_rot = hand_rot[:,[1,2,3,0]] # WXYZ -> XYZW inter_pos, inter_rot = np.zeros_like(hand_pos), np.zeros_like(hand_rot) start_pos, start_rot = [], [] target_pos_gf, target_rot_gf = [], [] # init for i in range(self.num_envs): start_pos.append(Gf.Vec3f(float(hand_pos[i][0]), float(hand_pos[i][1]), float(hand_pos[i][2]))) start_rot.append(Gf.Quatf(float(hand_rot[i][3]),float(hand_rot[i][0]),float(hand_rot[i][1]),float(hand_rot[i][2]))) target_pos_gf.append(Gf.Vec3f(float(target_pos[i][0]), float(target_pos[i][1]), float(target_pos[i][2]))) target_rot_gf.append(Gf.Quatf(float(target_rot[i][3]),float(target_rot[i][0]),float(target_rot[i][1]),float(target_rot[i][2]))) # gripper dof_pos = self.robots.get_joint_positions() init_gripper_close = dof_pos[...,-1][0] <= 0.015 # step for t in range(step): world.step(render=True) for i in range(self.num_envs): inter_pos_i = Gf.Lerp(t / (step - 1), start_pos[i], target_pos_gf[i]) inter_pos[i] = [inter_pos_i[0], inter_pos_i[1], inter_pos_i[2]] inter_rot_i = Gf.Slerp(t / (step - 1), start_rot[i], target_rot_gf[i]) inter_rot_i_imaginary = inter_rot_i.GetImaginary() inter_rot[i] = [inter_rot_i_imaginary[0], inter_rot_i_imaginary[1], inter_rot_i_imaginary[2], inter_rot_i.GetReal()] u = self.move_to_target(inter_pos, inter_rot) if init_gripper_close and not open_gripper: gripper_target = -0.5 else: gripper_target = 0.5 if open_gripper else 0.5 - (0.5 - -0.5) / (step - 1) * t # print("gripper_target", gripper_target) u[:,[-2, -1]] = gripper_target self.robots.set_joint_position_targets(u) # final adjustment for t in range(step // 10): world.step(render=True) u = self.move_to_target(target_pos, target_rot) u[:,[-2, -1]] = 0.5 if open_gripper else -0.5 self.robots.set_joint_position_targets(u) world.step(render=True) ############################### SLAM ######################################################### def calculate_grasp_location_from_bbox(self, box, resolution = 256, D = -293, camera_pos = [-1, 0, 0.5], handle_x = 0.61857): """ Calculate the grasp location for the handle box: [x_min, y_min, x_max, y_max] 2D boudning box in camera resolution: camera resolution D: depth of field camera_pos: camera_position handle_x: object offset """ delta_w = (box[0] + box[2]) / 2 - resolution / 2 delta_h = (box[1] + box[3]) / 2 - resolution / 2 handle_z = (handle_x - camera_pos[0]) * delta_h / D + camera_pos[2] handle_y = (handle_x - camera_pos[0]) * delta_w / D + camera_pos[1] graps_pos = np.array([[handle_x, handle_y, handle_z]], dtype=np.float32) verticle = delta_w < delta_h base_rotation = [0.5, 0.5, 0.5, 0.5] if verticle else [0, 0.70711, 0, 0.70711] grasp_rot = np.array([base_rotation], dtype=np.float32).repeat(self.num_envs, axis = 0) # XYZW # rotation: 0, 0.70711, 0, 0.70711; 0, 90, 0 # rotation:[0.5, 0.5, 0.5, 0.5] return graps_pos, grasp_rot
10,251
Python
38.430769
139
0.534094
yizhouzhao/OpenAnyDrawer/open-any-drawer/exts/open.any.drawer/open/any/drawer/franka/gripper.py
import numpy as np from numpy_utils import * from utils import get_mesh_bboxes from omni.isaac.core import World, SimulationContext from omni.isaac.core.prims.xform_prim_view import XFormPrimView from omni.isaac.core.robots.robot_view import RobotView class GripperHandEnv(): def __init__(self, prim_paths_expr="", xform_paths_expr="", backend = "numpy", device = None ) -> None: self.xform_paths_expr = xform_paths_expr self.prim_paths_expr = prim_paths_expr self.backend = backend self.device = device def start(self): # simulation context self.simlation_context = SimulationContext(backend=self.backend, device=self.device) print("simlation context", SimulationContext.instance().backend, SimulationContext.instance().device) # articulation self.robots = RobotView(self.prim_paths_expr) # sim.create_articulation_view("/World/envs/*/humanoid/torso") # self.robot_indices = self.robots._backend_utils.convert(np.arange(self.robots.count, dtype=np.int32), self.device) self.num_envs = len(self.robot_indices) print("num_envs", self.num_envs) # initialize self.robots.initialize() self.robot_states = self.robots.get_world_poses() self.dof_pos = self.robots.get_joint_positions() self.initial_dof_pos = self.dof_pos self.dof_vel = self.robots.get_joint_velocities() self.initial_dof_vel = self.dof_vel self.xforms = XFormPrimView(self.xform_paths_expr) def calculate_grasp_location(self, keyword = "handle_", verticle = True, x_offset = 0.01): """ Calculate the grasp location for the handle """ bboxes_list = get_mesh_bboxes(keyword) # assert len(bboxes_list) == self.num_envs, "more than one handle!" # get center and min x axis min_x = bboxes_list[0][0][0] # center_list = [(e[1] + e[0]) / 2 for e in bboxes_list] # box center if verticle: grasp_list = [[min_x - x_offset, c[1] + 0.02, c[2] - 0.00] for c in center_list] else: grasp_list = [[min_x - x_offset, c[1] + 0.01, c[2] + 0.02] for c in center_list] graps_pos = np.array(grasp_list, dtype=np.float32) base_rotation = [-0.2706, -0.65328, 0.2706, 0.65328] if verticle else [0.2706, -0.65328, -0.2706, 0.65328] grasp_rot = np.array([base_rotation], dtype=np.float32)# XYZW # rotation: 0, 0.70711, 0, 0.70711; 0, 90, 0 # rotation:[0.5, 0.5, 0.5, 0.5] return graps_pos, grasp_rot def move_to_target(self, goal_pos, goal_rot, finger = "thumb"): """ Move hand to target points """ # get end effector transforms finger_pos, finger_rot = self.xforms.get_world_poses() finger_rot = finger_rot[:,[1,2,3,0]] # WXYZ # get franka DOF states dof_pos = self.robots.get_joint_positions() # compute position and orientation error pos_err = goal_pos - finger_pos orn_err = orientation_error(goal_rot, finger_rot) dpose = np.concatenate([pos_err, orn_err], -1)[:, None].transpose(0, 2, 1) jacobians = self.robots._physics_view.get_jacobians() # jacobian entries corresponding to correct finger if finger == "thumb": finger_index = 14 elif finger == "index": finger_index = 15 elif finger == "middle": finger_index = 16 elif finger == "pinky": finger_index = 17 else: # ring finger_index = 18 j_eef = jacobians[:, finger_index, :] # solve damped least squares j_eef_T = np.transpose(j_eef, (0, 2, 1)) d = 0.05 # damping term lmbda = np.eye(6) * (d ** 2) u = (j_eef_T @ np.linalg.inv(j_eef @ j_eef_T + lmbda) @ dpose).reshape(self.num_envs, -1) # update position targets pos_targets = dof_pos + u # * 0.3 return pos_targets ################################################################################################## # -------------------------------------- Control ------------------------------------------------# ################################################################################################## def move_finger_to_fast(self, target_pos, target_rot, world, finger = "thumb", max_step = 100): """ Quickly move the robot hands to the target position and rotation """ for i in range(max_step): world.step(render=True) # get end effector transforms finger_pos, finger_rot = self.xforms.get_world_poses() finger_rot = finger_rot[:,[1,2,3,0]] # WXYZ -> XYZW print("finger_pos", finger_pos) orient_error = quat_mul(target_rot[0], quat_conjugate(finger_rot[0])) # print("orient_error", orient_error) # if abs(orient_error[3] - 1) < 0.02 and \ # np.sqrt(orient_error[0]**2 + orient_error[1]**2 + orient_error[2]**2) < 0.02 and \ # np.sqrt(np.sum((target_pos[0] - finger_pos[0])**2)) < 0.01: # print("Done rotation, position", finger_pos, finger_rot) # return u = self.move_to_target(target_pos, target_rot) # u[:,[-2, -1]] = 0.05 if open_gripper else 0 self.robots.set_joint_position_targets(u) print("Not Done rotation, position", finger_pos, finger_rot) def calculate_grasp_location_from_pred_box(self, box, verticle = True, x_offset = 0.04): """ Calculate the grasp location for the handle """ # assert len(bboxes_list) == self.num_envs, "more than one handle!" # get center and min x axis min_x = 0.618 handle_y = 0.5 * (box[0] + box[2]) handle_z = 0.5 * (box[1] + box[3]) if verticle: grasp_list = [[min_x - x_offset, handle_y + 0.02, handle_z - 0.00]] else: grasp_list = [[min_x - x_offset, handle_y + 0.01, handle_z + 0.02]] graps_pos = np.array(grasp_list, dtype=np.float32) base_rotation = [-0.2706, -0.65328, 0.2706, 0.65328] if verticle else [0.2706, -0.65328, -0.2706, 0.65328] grasp_rot = np.array([base_rotation], dtype=np.float32)# XYZW return graps_pos, grasp_rot
6,499
Python
37.235294
122
0.544699