file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/franka/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/franka/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_observations: 100.0 clip_actions: 100.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: reach env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: False num_actors: -1 reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.008 score_to_win: 100000000 max_epochs: 500 save_best_after: 100 save_frequency: 50 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 4096 #2048 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,566
YAML
18.835443
73
0.605364
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Locomotion environments for legged robots.""" from .velocity import * # noqa
205
Python
21.888886
56
0.731707
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/velocity_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import math from dataclasses import MISSING import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import CurriculumTermCfg as CurrTerm from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors import ContactSensorCfg, RayCasterCfg, patterns from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.noise import AdditiveUniformNoiseCfg as Unoise import omni.isaac.orbit_tasks.locomotion.velocity.mdp as mdp ## # Pre-defined configs ## from omni.isaac.orbit.terrains.config.rough import ROUGH_TERRAINS_CFG # isort: skip ## # Scene definition ## @configclass class MySceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with a legged robot.""" # ground terrain terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="generator", terrain_generator=ROUGH_TERRAINS_CFG, max_init_terrain_level=5, collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, ), visual_material=sim_utils.MdlFileCfg( mdl_path="{NVIDIA_NUCLEUS_DIR}/Materials/Base/Architecture/Shingles_01.mdl", project_uvw=True, ), debug_vis=False, ) # robots robot: ArticulationCfg = MISSING # sensors height_scanner = RayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 20.0)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=False, mesh_prim_paths=["/World/ground"], ) contact_forces = ContactSensorCfg(prim_path="{ENV_REGEX_NS}/Robot/.*", history_length=3, track_air_time=True) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) sky_light = AssetBaseCfg( prim_path="/World/skyLight", spawn=sim_utils.DomeLightCfg(color=(0.13, 0.13, 0.13), intensity=1000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command specifications for the MDP.""" base_velocity = mdp.UniformVelocityCommandCfg( asset_name="robot", resampling_time_range=(10.0, 10.0), rel_standing_envs=0.02, rel_heading_envs=1.0, heading_command=True, heading_control_stiffness=0.5, debug_vis=True, ranges=mdp.UniformVelocityCommandCfg.Ranges( lin_vel_x=(-1.0, 1.0), lin_vel_y=(-1.0, 1.0), ang_vel_z=(-1.0, 1.0), heading=(-math.pi, math.pi) ), ) @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_pos = mdp.JointPositionActionCfg(asset_name="robot", joint_names=[".*"], scale=0.5, use_default_offset=True) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) base_lin_vel = ObsTerm(func=mdp.base_lin_vel, noise=Unoise(n_min=-0.1, n_max=0.1)) base_ang_vel = ObsTerm(func=mdp.base_ang_vel, noise=Unoise(n_min=-0.2, n_max=0.2)) projected_gravity = ObsTerm( func=mdp.projected_gravity, noise=Unoise(n_min=-0.05, n_max=0.05), ) velocity_commands = ObsTerm(func=mdp.generated_commands, params={"command_name": "base_velocity"}) joint_pos = ObsTerm(func=mdp.joint_pos_rel, noise=Unoise(n_min=-0.01, n_max=0.01)) joint_vel = ObsTerm(func=mdp.joint_vel_rel, noise=Unoise(n_min=-1.5, n_max=1.5)) actions = ObsTerm(func=mdp.last_action) height_scan = ObsTerm( func=mdp.height_scan, params={"sensor_cfg": SceneEntityCfg("height_scanner")}, noise=Unoise(n_min=-0.1, n_max=0.1), clip=(-1.0, 1.0), ) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" # startup physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "static_friction_range": (0.8, 0.8), "dynamic_friction_range": (0.6, 0.6), "restitution_range": (0.0, 0.0), "num_buckets": 64, }, ) add_base_mass = EventTerm( func=mdp.randomize_rigid_body_mass, mode="startup", params={"asset_cfg": SceneEntityCfg("robot", body_names="base"), "mass_range": (-5.0, 5.0), "operation": "add"}, ) # reset base_external_force_torque = EventTerm( func=mdp.apply_external_force_torque, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", body_names="base"), "force_range": (0.0, 0.0), "torque_range": (-0.0, 0.0), }, ) reset_base = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (-0.5, 0.5), "y": (-0.5, 0.5), "z": (-0.5, 0.5), "roll": (-0.5, 0.5), "pitch": (-0.5, 0.5), "yaw": (-0.5, 0.5), }, }, ) reset_robot_joints = EventTerm( func=mdp.reset_joints_by_scale, mode="reset", params={ "position_range": (0.5, 1.5), "velocity_range": (0.0, 0.0), }, ) # interval push_robot = EventTerm( func=mdp.push_by_setting_velocity, mode="interval", interval_range_s=(10.0, 15.0), params={"velocity_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5)}}, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # -- task track_lin_vel_xy_exp = RewTerm( func=mdp.track_lin_vel_xy_exp, weight=1.0, params={"command_name": "base_velocity", "std": math.sqrt(0.25)} ) track_ang_vel_z_exp = RewTerm( func=mdp.track_ang_vel_z_exp, weight=0.5, params={"command_name": "base_velocity", "std": math.sqrt(0.25)} ) # -- penalties lin_vel_z_l2 = RewTerm(func=mdp.lin_vel_z_l2, weight=-2.0) ang_vel_xy_l2 = RewTerm(func=mdp.ang_vel_xy_l2, weight=-0.05) dof_torques_l2 = RewTerm(func=mdp.joint_torques_l2, weight=-1.0e-5) dof_acc_l2 = RewTerm(func=mdp.joint_acc_l2, weight=-2.5e-7) action_rate_l2 = RewTerm(func=mdp.action_rate_l2, weight=-0.01) feet_air_time = RewTerm( func=mdp.feet_air_time, weight=0.125, params={ "sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*FOOT"), "command_name": "base_velocity", "threshold": 0.5, }, ) undesired_contacts = RewTerm( func=mdp.undesired_contacts, weight=-1.0, params={"sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*THIGH"), "threshold": 1.0}, ) # -- optional penalties flat_orientation_l2 = RewTerm(func=mdp.flat_orientation_l2, weight=0.0) dof_pos_limits = RewTerm(func=mdp.joint_pos_limits, weight=0.0) @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) base_contact = DoneTerm( func=mdp.illegal_contact, params={"sensor_cfg": SceneEntityCfg("contact_forces", body_names="base"), "threshold": 1.0}, ) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" terrain_levels = CurrTerm(func=mdp.terrain_levels_vel) ## # Environment configuration ## @configclass class LocomotionVelocityRoughEnvCfg(RLTaskEnvCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=4096, env_spacing=2.5) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 4 self.episode_length_s = 20.0 # simulation settings self.sim.dt = 0.005 self.sim.disable_contact_processing = True self.sim.physics_material = self.scene.terrain.physics_material # update sensor update periods # we tick all the sensors based on the smallest update period (physics update period) if self.scene.height_scanner is not None: self.scene.height_scanner.update_period = self.decimation * self.sim.dt if self.scene.contact_forces is not None: self.scene.contact_forces.update_period = self.sim.dt # check if terrain levels curriculum is enabled - if so, enable curriculum for terrain generator # this generates terrains with increasing difficulty and is useful for training if getattr(self.curriculum, "terrain_levels", None) is not None: if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.curriculum = True else: if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.curriculum = False
10,604
Python
32.666667
120
0.624953
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Locomotion environments with velocity-tracking commands. These environments are based on the `legged_gym` environments provided by Rudin et al. Reference: https://github.com/leggedrobotics/legged_gym """
336
Python
24.923075
86
0.764881
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the locomotion environments.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .curriculums import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403
370
Python
29.916664
94
0.732432
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/mdp/curriculums.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Common functions that can be used to create curriculum for the learning environment. The functions can be passed to the :class:`omni.isaac.orbit.managers.CurriculumTermCfg` object to enable the curriculum introduced by the function. """ from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.terrains import TerrainImporter if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def terrain_levels_vel( env: RLTaskEnv, env_ids: Sequence[int], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Curriculum based on the distance the robot walked when commanded to move at a desired velocity. This term is used to increase the difficulty of the terrain when the robot walks far enough and decrease the difficulty when the robot walks less than half of the distance required by the commanded velocity. .. note:: It is only possible to use this term with the terrain type ``generator``. For further information on different terrain types, check the :class:`omni.isaac.orbit.terrains.TerrainImporter` class. Returns: The mean terrain level for the given environment ids. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] terrain: TerrainImporter = env.scene.terrain command = env.command_manager.get_command("base_velocity") # compute the distance the robot walked distance = torch.norm(asset.data.root_pos_w[env_ids, :2] - env.scene.env_origins[env_ids, :2], dim=1) # robots that walked far enough progress to harder terrains move_up = distance > terrain.cfg.terrain_generator.size[0] / 2 # robots that walked less than half of their required distance go to simpler terrains move_down = distance < torch.norm(command[env_ids, :2], dim=1) * env.max_episode_length_s * 0.5 move_down *= ~move_up # update terrain levels terrain.update_env_origins(env_ids, move_up, move_down) # return the mean terrain level return torch.mean(terrain.terrain_levels.float())
2,376
Python
41.446428
112
0.742424
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.sensors import ContactSensor if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def feet_air_time(env: RLTaskEnv, command_name: str, sensor_cfg: SceneEntityCfg, threshold: float) -> torch.Tensor: """Reward long steps taken by the feet using L2-kernel. This function rewards the agent for taking steps that are longer than a threshold. This helps ensure that the robot lifts its feet off the ground and takes steps. The reward is computed as the sum of the time for which the feet are in the air. If the commands are small (i.e. the agent is not supposed to take a step), then the reward is zero. """ # extract the used quantities (to enable type-hinting) contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] # compute the reward first_contact = contact_sensor.compute_first_contact(env.step_dt)[:, sensor_cfg.body_ids] last_air_time = contact_sensor.data.last_air_time[:, sensor_cfg.body_ids] reward = torch.sum((last_air_time - threshold) * first_contact, dim=1) # no reward for zero command reward *= torch.norm(env.command_manager.get_command(command_name)[:, :2], dim=1) > 0.1 return reward def feet_air_time_positive_biped(env, command_name: str, threshold: float, sensor_cfg: SceneEntityCfg) -> torch.Tensor: """Reward long steps taken by the feet for bipeds. This function rewards the agent for taking steps up to a specified threshold and also keep one foot at a time in the air. If the commands are small (i.e. the agent is not supposed to take a step), then the reward is zero. """ contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] # compute the reward air_time = contact_sensor.data.current_air_time[:, sensor_cfg.body_ids] contact_time = contact_sensor.data.current_contact_time[:, sensor_cfg.body_ids] in_contact = contact_time > 0.0 in_mode_time = torch.where(in_contact, contact_time, air_time) single_stance = torch.sum(in_contact.int(), dim=1) == 1 reward = torch.min(torch.where(single_stance.unsqueeze(-1), in_mode_time, 0.0), dim=1)[0] reward = torch.clamp(reward, max=threshold) # no reward for zero command reward *= torch.norm(env.command_manager.get_command(command_name)[:, :2], dim=1) > 0.1 return reward
2,595
Python
43.75862
119
0.717148
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configurations for velocity-based locomotion environments.""" # We leave this file empty since we don't want to expose any configs in this package directly. # We still need this file to import the "config" module in the parent package.
363
Python
35.399996
94
0.763085
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go1/rough_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.locomotion.velocity.velocity_env_cfg import LocomotionVelocityRoughEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.unitree import UNITREE_GO1_CFG # isort: skip @configclass class UnitreeGo1RoughEnvCfg(LocomotionVelocityRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() self.scene.robot = UNITREE_GO1_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") self.scene.height_scanner.prim_path = "{ENV_REGEX_NS}/Robot/trunk" # scale down the terrains because the robot is small self.scene.terrain.terrain_generator.sub_terrains["boxes"].grid_height_range = (0.025, 0.1) self.scene.terrain.terrain_generator.sub_terrains["random_rough"].noise_range = (0.01, 0.06) self.scene.terrain.terrain_generator.sub_terrains["random_rough"].noise_step = 0.01 # reduce action scale self.actions.joint_pos.scale = 0.25 # event self.events.push_robot = None self.events.add_base_mass.params["mass_range"] = (-1.0, 3.0) self.events.add_base_mass.params["asset_cfg"].body_names = "trunk" self.events.base_external_force_torque.params["asset_cfg"].body_names = "trunk" self.events.reset_robot_joints.params["position_range"] = (1.0, 1.0) self.events.reset_base.params = { "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (0.0, 0.0), "y": (0.0, 0.0), "z": (0.0, 0.0), "roll": (0.0, 0.0), "pitch": (0.0, 0.0), "yaw": (0.0, 0.0), }, } # rewards self.rewards.feet_air_time.params["sensor_cfg"].body_names = ".*_foot" self.rewards.feet_air_time.weight = 0.01 self.rewards.undesired_contacts = None self.rewards.dof_torques_l2.weight = -0.0002 self.rewards.track_lin_vel_xy_exp.weight = 1.5 self.rewards.track_ang_vel_z_exp.weight = 0.75 self.rewards.dof_acc_l2.weight = -2.5e-7 # terminations self.terminations.base_contact.params["sensor_cfg"].body_names = "trunk" @configclass class UnitreeGo1RoughEnvCfg_PLAY(UnitreeGo1RoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # spawn the robot randomly in the grid (instead of their terrain levels) self.scene.terrain.max_init_terrain_level = None # reduce the number of terrains to save memory if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.num_rows = 5 self.scene.terrain.terrain_generator.num_cols = 5 self.scene.terrain.terrain_generator.curriculum = False # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
3,351
Python
38.435294
101
0.621904
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go1/flat_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from .rough_env_cfg import UnitreeGo1RoughEnvCfg @configclass class UnitreeGo1FlatEnvCfg(UnitreeGo1RoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # override rewards self.rewards.flat_orientation_l2.weight = -2.5 self.rewards.feet_air_time.weight = 0.25 # change terrain to flat self.scene.terrain.terrain_type = "plane" self.scene.terrain.terrain_generator = None # no height scan self.scene.height_scanner = None self.observations.policy.height_scan = None # no terrain curriculum self.curriculum.terrain_levels = None class UnitreeGo1FlatEnvCfg_PLAY(UnitreeGo1FlatEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
1,338
Python
29.431818
58
0.658445
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go1/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Unitree-Go1-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeGo1FlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1FlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Flat-Unitree-Go1-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeGo1FlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1FlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-Go1-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeGo1RoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1RoughPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-Go1-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeGo1RoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1RoughPPORunnerCfg, }, )
1,498
Python
27.283018
80
0.690921
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go1/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class UnitreeGo1RoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "unitree_go1_rough" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.01, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class UnitreeGo1FlatPPORunnerCfg(UnitreeGo1RoughPPORunnerCfg): def __post_init__(self): super().__post_init__() self.max_iterations = 300 self.experiment_name = "unitree_go1_flat" self.policy.actor_hidden_dims = [128, 128, 128] self.policy.critic_hidden_dims = [128, 128, 128]
1,432
Python
26.037735
62
0.648045
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go1/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/cassie/rough_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.utils import configclass import omni.isaac.orbit_tasks.locomotion.velocity.mdp as mdp from omni.isaac.orbit_tasks.locomotion.velocity.velocity_env_cfg import LocomotionVelocityRoughEnvCfg, RewardsCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.cassie import CASSIE_CFG # isort: skip @configclass class CassieRewardsCfg(RewardsCfg): termination_penalty = RewTerm(func=mdp.is_terminated, weight=-200.0) feet_air_time = RewTerm( func=mdp.feet_air_time_positive_biped, weight=2.5, params={ "sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*toe"), "command_name": "base_velocity", "threshold": 0.3, }, ) joint_deviation_hip = RewTerm( func=mdp.joint_deviation_l1, weight=-0.2, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["hip_abduction_.*", "hip_rotation_.*"])}, ) joint_deviation_toes = RewTerm( func=mdp.joint_deviation_l1, weight=-0.2, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["toe_joint_.*"])}, ) # penalize toe joint limits dof_pos_limits = RewTerm( func=mdp.joint_pos_limits, weight=-1.0, params={"asset_cfg": SceneEntityCfg("robot", joint_names="toe_joint_.*")}, ) @configclass class CassieRoughEnvCfg(LocomotionVelocityRoughEnvCfg): """Cassie rough environment configuration.""" rewards: CassieRewardsCfg = CassieRewardsCfg() def __post_init__(self): super().__post_init__() # scene self.scene.robot = CASSIE_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") self.scene.height_scanner.prim_path = "{ENV_REGEX_NS}/Robot/pelvis" # actions self.actions.joint_pos.scale = 0.5 # events self.events.push_robot = None self.events.add_base_mass = None self.events.reset_robot_joints.params["position_range"] = (1.0, 1.0) self.events.base_external_force_torque.params["asset_cfg"].body_names = [".*pelvis"] self.events.reset_base.params = { "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (0.0, 0.0), "y": (0.0, 0.0), "z": (0.0, 0.0), "roll": (0.0, 0.0), "pitch": (0.0, 0.0), "yaw": (0.0, 0.0), }, } # terminations self.terminations.base_contact.params["sensor_cfg"].body_names = [".*pelvis"] # rewards self.rewards.undesired_contacts = None self.rewards.dof_torques_l2.weight = -5.0e-6 self.rewards.track_lin_vel_xy_exp.weight = 2.0 self.rewards.track_ang_vel_z_exp.weight = 1.0 self.rewards.action_rate_l2.weight *= 1.5 self.rewards.dof_acc_l2.weight *= 1.5 @configclass class CassieRoughEnvCfg_PLAY(CassieRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # spawn the robot randomly in the grid (instead of their terrain levels) self.scene.terrain.max_init_terrain_level = None # reduce the number of terrains to save memory if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.num_rows = 5 self.scene.terrain.terrain_generator.num_cols = 5 self.scene.terrain.terrain_generator.curriculum = False self.commands.base_velocity.ranges.lin_vel_x = (0.7, 1.0) self.commands.base_velocity.ranges.lin_vel_y = (0.0, 0.0) self.commands.base_velocity.ranges.heading = (0.0, 0.0) # disable randomization for play self.observations.policy.enable_corruption = False
4,139
Python
35
113
0.614641
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/cassie/flat_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from .rough_env_cfg import CassieRoughEnvCfg @configclass class CassieFlatEnvCfg(CassieRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # rewards self.rewards.flat_orientation_l2.weight = -2.5 self.rewards.feet_air_time.weight = 5.0 self.rewards.joint_deviation_hip.params["asset_cfg"].joint_names = ["hip_rotation_.*"] # change terrain to flat self.scene.terrain.terrain_type = "plane" self.scene.terrain.terrain_generator = None # no height scan self.scene.height_scanner = None self.observations.policy.height_scan = None # no terrain curriculum self.curriculum.terrain_levels = None class CassieFlatEnvCfg_PLAY(CassieFlatEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
1,271
Python
30.799999
94
0.653816
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/cassie/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Cassie-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.CassieFlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CassieFlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Flat-Cassie-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.CassieFlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CassieFlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Cassie-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.CassieRoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CassieRoughPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Cassie-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.CassieRoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CassieRoughPPORunnerCfg, }, )
1,446
Python
26.301886
76
0.682573
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/cassie/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class CassieRoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "cassie_rough" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.01, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class CassieFlatPPORunnerCfg(CassieRoughPPORunnerCfg): def __post_init__(self): super().__post_init__() self.max_iterations = 1000 self.experiment_name = "cassie_flat" self.policy.actor_hidden_dims = [128, 128, 128] self.policy.critic_hidden_dims = [128, 128, 128]
1,411
Python
25.641509
58
0.644224
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/cassie/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_b/rough_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.locomotion.velocity.velocity_env_cfg import LocomotionVelocityRoughEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets import ANYMAL_B_CFG # isort: skip @configclass class AnymalBRoughEnvCfg(LocomotionVelocityRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # switch robot to anymal-d self.scene.robot = ANYMAL_B_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") @configclass class AnymalBRoughEnvCfg_PLAY(AnymalBRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # spawn the robot randomly in the grid (instead of their terrain levels) self.scene.terrain.max_init_terrain_level = None # reduce the number of terrains to save memory if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.num_rows = 5 self.scene.terrain.terrain_generator.num_cols = 5 self.scene.terrain.terrain_generator.curriculum = False # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
1,591
Python
32.87234
101
0.683847
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_b/flat_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from .rough_env_cfg import AnymalBRoughEnvCfg @configclass class AnymalBFlatEnvCfg(AnymalBRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # override rewards self.rewards.flat_orientation_l2.weight = -5.0 self.rewards.dof_torques_l2.weight = -2.5e-5 self.rewards.feet_air_time.weight = 0.5 # change terrain to flat self.scene.terrain.terrain_type = "plane" self.scene.terrain.terrain_generator = None # no height scan self.scene.height_scanner = None self.observations.policy.height_scan = None # no terrain curriculum self.curriculum.terrain_levels = None class AnymalBFlatEnvCfg_PLAY(AnymalBFlatEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
1,374
Python
30.249999
58
0.653566
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_b/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Anymal-B-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalBFlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalBFlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Flat-Anymal-B-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalBFlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalBFlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-B-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalBRoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalBRoughPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-B-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalBRoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalBRoughPPORunnerCfg, }, )
1,461
Python
27.115384
77
0.683778
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_b/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AnymalBRoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "anymal_b_rough" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class AnymalBFlatPPORunnerCfg(AnymalBRoughPPORunnerCfg): def __post_init__(self): super().__post_init__() self.max_iterations = 300 self.experiment_name = "anymal_b_flat" self.policy.actor_hidden_dims = [128, 128, 128] self.policy.critic_hidden_dims = [128, 128, 128]
1,418
Python
25.773584
58
0.64457
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_b/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_c/rough_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.locomotion.velocity.velocity_env_cfg import LocomotionVelocityRoughEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG # isort: skip @configclass class AnymalCRoughEnvCfg(LocomotionVelocityRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # switch robot to anymal-c self.scene.robot = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") @configclass class AnymalCRoughEnvCfg_PLAY(AnymalCRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # spawn the robot randomly in the grid (instead of their terrain levels) self.scene.terrain.max_init_terrain_level = None # reduce the number of terrains to save memory if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.num_rows = 5 self.scene.terrain.terrain_generator.num_cols = 5 self.scene.terrain.terrain_generator.curriculum = False # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
1,598
Python
33.021276
101
0.684606
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_c/flat_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from .rough_env_cfg import AnymalCRoughEnvCfg @configclass class AnymalCFlatEnvCfg(AnymalCRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # override rewards self.rewards.flat_orientation_l2.weight = -5.0 self.rewards.dof_torques_l2.weight = -2.5e-5 self.rewards.feet_air_time.weight = 0.5 # change terrain to flat self.scene.terrain.terrain_type = "plane" self.scene.terrain.terrain_generator = None # no height scan self.scene.height_scanner = None self.observations.policy.height_scan = None # no terrain curriculum self.curriculum.terrain_levels = None class AnymalCFlatEnvCfg_PLAY(AnymalCFlatEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
1,374
Python
30.249999
58
0.653566
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_c/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Anymal-C-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalCFlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalCFlatPPORunnerCfg, "skrl_cfg_entry_point": "omni.isaac.orbit_tasks.locomotion.velocity.anymal_c.agents:skrl_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Flat-Anymal-C-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalCFlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalCFlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-C-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalCRoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalCRoughPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-C-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalCRoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalCRoughPPORunnerCfg, }, )
1,570
Python
28.092592
107
0.685987
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_c/agents/skrl_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/develop/modules/skrl.utils.model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.gaussian_model for parameter details clip_actions: False clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [128, 128, 128] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [128, 128, 128] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent: rollouts: 24 learning_epochs: 5 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 1.e-3 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.01 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 1.0 kl_threshold: 0 rewards_shaper_scale: 1.0 # logging and checkpoint experiment: directory: "anymal" experiment_name: "" write_interval: 60 checkpoint_interval: 600 # Sequential trainer # https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.sequential.html trainer: timesteps: 12000
1,893
YAML
27.268656
88
0.711569
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_c/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AnymalCRoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "anymal_c_rough" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class AnymalCFlatPPORunnerCfg(AnymalCRoughPPORunnerCfg): def __post_init__(self): super().__post_init__() self.max_iterations = 300 self.experiment_name = "anymal_c_flat" self.policy.actor_hidden_dims = [128, 128, 128] self.policy.critic_hidden_dims = [128, 128, 128]
1,418
Python
25.773584
58
0.64457
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_c/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_d/rough_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.locomotion.velocity.velocity_env_cfg import LocomotionVelocityRoughEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.anymal import ANYMAL_D_CFG # isort: skip @configclass class AnymalDRoughEnvCfg(LocomotionVelocityRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # switch robot to anymal-d self.scene.robot = ANYMAL_D_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") @configclass class AnymalDRoughEnvCfg_PLAY(AnymalDRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # spawn the robot randomly in the grid (instead of their terrain levels) self.scene.terrain.max_init_terrain_level = None # reduce the number of terrains to save memory if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.num_rows = 5 self.scene.terrain.terrain_generator.num_cols = 5 self.scene.terrain.terrain_generator.curriculum = False # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
1,598
Python
33.021276
101
0.684606
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_d/flat_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from .rough_env_cfg import AnymalDRoughEnvCfg @configclass class AnymalDFlatEnvCfg(AnymalDRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # override rewards self.rewards.flat_orientation_l2.weight = -5.0 self.rewards.dof_torques_l2.weight = -2.5e-5 self.rewards.feet_air_time.weight = 0.5 # change terrain to flat self.scene.terrain.terrain_type = "plane" self.scene.terrain.terrain_generator = None # no height scan self.scene.height_scanner = None self.observations.policy.height_scan = None # no terrain curriculum self.curriculum.terrain_levels = None class AnymalDFlatEnvCfg_PLAY(AnymalDFlatEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
1,374
Python
30.249999
58
0.653566
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_d/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Anymal-D-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalDFlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDFlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Flat-Anymal-D-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalDFlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDFlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-D-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalDRoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDRoughPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-D-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalDRoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDRoughPPORunnerCfg, }, )
1,462
Python
26.603773
77
0.683311
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_d/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AnymalDRoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "anymal_d_rough" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class AnymalDFlatPPORunnerCfg(AnymalDRoughPPORunnerCfg): def __post_init__(self): super().__post_init__() self.max_iterations = 300 self.experiment_name = "anymal_d_flat" self.policy.actor_hidden_dims = [128, 128, 128] self.policy.critic_hidden_dims = [128, 128, 128]
1,418
Python
25.773584
58
0.64457
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_d/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go2/rough_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.locomotion.velocity.velocity_env_cfg import LocomotionVelocityRoughEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.unitree import UNITREE_GO2_CFG # isort: skip @configclass class UnitreeGo2RoughEnvCfg(LocomotionVelocityRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() self.scene.robot = UNITREE_GO2_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") self.scene.height_scanner.prim_path = "{ENV_REGEX_NS}/Robot/base" # scale down the terrains because the robot is small self.scene.terrain.terrain_generator.sub_terrains["boxes"].grid_height_range = (0.025, 0.1) self.scene.terrain.terrain_generator.sub_terrains["random_rough"].noise_range = (0.01, 0.06) self.scene.terrain.terrain_generator.sub_terrains["random_rough"].noise_step = 0.01 # reduce action scale self.actions.joint_pos.scale = 0.25 # event self.events.push_robot = None self.events.add_base_mass.params["mass_range"] = (-1.0, 3.0) self.events.add_base_mass.params["asset_cfg"].body_names = "base" self.events.base_external_force_torque.params["asset_cfg"].body_names = "base" self.events.reset_robot_joints.params["position_range"] = (1.0, 1.0) self.events.reset_base.params = { "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (0.0, 0.0), "y": (0.0, 0.0), "z": (0.0, 0.0), "roll": (0.0, 0.0), "pitch": (0.0, 0.0), "yaw": (0.0, 0.0), }, } # rewards self.rewards.feet_air_time.params["sensor_cfg"].body_names = ".*_foot" self.rewards.feet_air_time.weight = 0.01 self.rewards.undesired_contacts = None self.rewards.dof_torques_l2.weight = -0.0002 self.rewards.track_lin_vel_xy_exp.weight = 1.5 self.rewards.track_ang_vel_z_exp.weight = 0.75 self.rewards.dof_acc_l2.weight = -2.5e-7 # terminations self.terminations.base_contact.params["sensor_cfg"].body_names = "base" @configclass class UnitreeGo2RoughEnvCfg_PLAY(UnitreeGo2RoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # spawn the robot randomly in the grid (instead of their terrain levels) self.scene.terrain.max_init_terrain_level = None # reduce the number of terrains to save memory if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.num_rows = 5 self.scene.terrain.terrain_generator.num_cols = 5 self.scene.terrain.terrain_generator.curriculum = False # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
3,347
Python
38.388235
101
0.621452
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go2/flat_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from .rough_env_cfg import UnitreeGo2RoughEnvCfg @configclass class UnitreeGo2FlatEnvCfg(UnitreeGo2RoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # override rewards self.rewards.flat_orientation_l2.weight = -2.5 self.rewards.feet_air_time.weight = 0.25 # change terrain to flat self.scene.terrain.terrain_type = "plane" self.scene.terrain.terrain_generator = None # no height scan self.scene.height_scanner = None self.observations.policy.height_scan = None # no terrain curriculum self.curriculum.terrain_levels = None class UnitreeGo2FlatEnvCfg_PLAY(UnitreeGo2FlatEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
1,338
Python
29.431818
58
0.658445
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go2/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Unitree-Go2-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeGo2FlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo2FlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Flat-Unitree-Go2-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeGo2FlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo2FlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-Go2-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeGo2RoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo2RoughPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-Go2-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeGo2RoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo2RoughPPORunnerCfg, }, )
1,498
Python
27.283018
80
0.690921
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go2/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class UnitreeGo2RoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "unitree_go2_rough" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.01, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class UnitreeGo2FlatPPORunnerCfg(UnitreeGo2RoughPPORunnerCfg): def __post_init__(self): super().__post_init__() self.max_iterations = 300 self.experiment_name = "unitree_go2_flat" self.policy.actor_hidden_dims = [128, 128, 128] self.policy.critic_hidden_dims = [128, 128, 128]
1,432
Python
26.037735
62
0.648045
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go2/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_a1/rough_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.locomotion.velocity.velocity_env_cfg import LocomotionVelocityRoughEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.unitree import UNITREE_A1_CFG # isort: skip @configclass class UnitreeA1RoughEnvCfg(LocomotionVelocityRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() self.scene.robot = UNITREE_A1_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") self.scene.height_scanner.prim_path = "{ENV_REGEX_NS}/Robot/trunk" # scale down the terrains because the robot is small self.scene.terrain.terrain_generator.sub_terrains["boxes"].grid_height_range = (0.025, 0.1) self.scene.terrain.terrain_generator.sub_terrains["random_rough"].noise_range = (0.01, 0.06) self.scene.terrain.terrain_generator.sub_terrains["random_rough"].noise_step = 0.01 # reduce action scale self.actions.joint_pos.scale = 0.25 # event self.events.push_robot = None self.events.add_base_mass.params["mass_range"] = (-1.0, 3.0) self.events.add_base_mass.params["asset_cfg"].body_names = "trunk" self.events.base_external_force_torque.params["asset_cfg"].body_names = "trunk" self.events.reset_robot_joints.params["position_range"] = (1.0, 1.0) self.events.reset_base.params = { "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (0.0, 0.0), "y": (0.0, 0.0), "z": (0.0, 0.0), "roll": (0.0, 0.0), "pitch": (0.0, 0.0), "yaw": (0.0, 0.0), }, } # rewards self.rewards.feet_air_time.params["sensor_cfg"].body_names = ".*_foot" self.rewards.feet_air_time.weight = 0.01 self.rewards.undesired_contacts = None self.rewards.dof_torques_l2.weight = -0.0002 self.rewards.track_lin_vel_xy_exp.weight = 1.5 self.rewards.track_ang_vel_z_exp.weight = 0.75 self.rewards.dof_acc_l2.weight = -2.5e-7 # terminations self.terminations.base_contact.params["sensor_cfg"].body_names = "trunk" @configclass class UnitreeA1RoughEnvCfg_PLAY(UnitreeA1RoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # spawn the robot randomly in the grid (instead of their terrain levels) self.scene.terrain.max_init_terrain_level = None # reduce the number of terrains to save memory if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.num_rows = 5 self.scene.terrain.terrain_generator.num_cols = 5 self.scene.terrain.terrain_generator.curriculum = False # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
3,346
Python
38.37647
101
0.621339
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_a1/flat_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from .rough_env_cfg import UnitreeA1RoughEnvCfg @configclass class UnitreeA1FlatEnvCfg(UnitreeA1RoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # override rewards self.rewards.flat_orientation_l2.weight = -2.5 self.rewards.feet_air_time.weight = 0.25 # change terrain to flat self.scene.terrain.terrain_type = "plane" self.scene.terrain.terrain_generator = None # no height scan self.scene.height_scanner = None self.observations.policy.height_scan = None # no terrain curriculum self.curriculum.terrain_levels = None class UnitreeA1FlatEnvCfg_PLAY(UnitreeA1FlatEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
1,333
Python
29.318181
58
0.657164
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_a1/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Unitree-A1-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeA1FlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeA1FlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Flat-Unitree-A1-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeA1FlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeA1FlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-A1-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeA1RoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeA1RoughPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-A1-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeA1RoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeA1RoughPPORunnerCfg, }, )
1,486
Python
27.056603
79
0.688425
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_a1/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class UnitreeA1RoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "unitree_a1_rough" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.01, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class UnitreeA1FlatPPORunnerCfg(UnitreeA1RoughPPORunnerCfg): def __post_init__(self): super().__post_init__() self.max_iterations = 300 self.experiment_name = "unitree_a1_flat" self.policy.actor_hidden_dims = [128, 128, 128] self.policy.critic_hidden_dims = [128, 128, 128]
1,427
Python
25.943396
60
0.646811
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_a1/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/importer.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module with utility for importing all modules in a package recursively.""" from __future__ import annotations import importlib import pkgutil import sys def import_packages(package_name: str, blacklist_pkgs: list[str] | None = None): """Import all sub-packages in a package recursively. It is easier to use this function to import all sub-packages in a package recursively than to manually import each sub-package. It replaces the need of the following code snippet on the top of each package's ``__init__.py`` file: .. code-block:: python import .locomotion.velocity import .manipulation.reach import .manipulation.lift Args: package_name: The package name. blacklist_pkgs: The list of blacklisted packages to skip. Defaults to None, which means no packages are blacklisted. """ # Default blacklist if blacklist_pkgs is None: blacklist_pkgs = [] # Import the package itself package = importlib.import_module(package_name) # Import all Python files for _ in _walk_packages(package.__path__, package.__name__ + ".", blacklist_pkgs=blacklist_pkgs): pass def _walk_packages( path: str | None = None, prefix: str = "", onerror: callable | None = None, blacklist_pkgs: list[str] | None = None, ): """Yields ModuleInfo for all modules recursively on path, or, if path is None, all accessible modules. Note: This function is a modified version of the original ``pkgutil.walk_packages`` function. It adds the `blacklist_pkgs` argument to skip blacklisted packages. Please refer to the original ``pkgutil.walk_packages`` function for more details. """ if blacklist_pkgs is None: blacklist_pkgs = [] def seen(p, m={}): if p in m: return True m[p] = True # noqa: R503 for info in pkgutil.iter_modules(path, prefix): # check blacklisted if any([black_pkg_name in info.name for black_pkg_name in blacklist_pkgs]): continue # yield the module info yield info if info.ispkg: try: __import__(info.name) except Exception: if onerror is not None: onerror(info.name) else: raise else: path = getattr(sys.modules[info.name], "__path__", None) or [] # don't traverse path items we've seen before path = [p for p in path if not seen(p)] yield from _walk_packages(path, info.name + ".", onerror, blacklist_pkgs)
2,798
Python
30.806818
106
0.617227
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package with utilities, data collectors and environment wrappers.""" from .importer import import_packages from .parse_cfg import get_checkpoint_path, load_cfg_from_registry, parse_env_cfg
320
Python
31.099997
81
0.771875
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/parse_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module with utilities for parsing and loading configurations.""" import gymnasium as gym import importlib import inspect import os import re import yaml from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.utils import update_class_from_dict, update_dict def load_cfg_from_registry(task_name: str, entry_point_key: str) -> dict | RLTaskEnvCfg: """Load default configuration given its entry point from the gym registry. This function loads the configuration object from the gym registry for the given task name. It supports both YAML and Python configuration files. It expects the configuration to be registered in the gym registry as: .. code-block:: python gym.register( id="My-Awesome-Task-v0", ... kwargs={"env_entry_point_cfg": "path.to.config:ConfigClass"}, ) The parsed configuration object for above example can be obtained as: .. code-block:: python from omni.isaac.orbit_tasks.utils.parse_cfg import load_cfg_from_registry cfg = load_cfg_from_registry("My-Awesome-Task-v0", "env_entry_point_cfg") Args: task_name: The name of the environment. entry_point_key: The entry point key to resolve the configuration file. Returns: The parsed configuration object. This is either a dictionary or a class object. Raises: ValueError: If the entry point key is not available in the gym registry for the task. """ # obtain the configuration entry point cfg_entry_point = gym.spec(task_name).kwargs.get(entry_point_key) # check if entry point exists if cfg_entry_point is None: raise ValueError( f"Could not find configuration for the environment: '{task_name}'." f" Please check that the gym registry has the entry point: '{entry_point_key}'." ) # parse the default config file if isinstance(cfg_entry_point, str) and cfg_entry_point.endswith(".yaml"): if os.path.exists(cfg_entry_point): # absolute path for the config file config_file = cfg_entry_point else: # resolve path to the module location mod_name, file_name = cfg_entry_point.split(":") mod_path = os.path.dirname(importlib.import_module(mod_name).__file__) # obtain the configuration file path config_file = os.path.join(mod_path, file_name) # load the configuration print(f"[INFO]: Parsing configuration from: {config_file}") with open(config_file, encoding="utf-8") as f: cfg = yaml.full_load(f) else: if callable(cfg_entry_point): # resolve path to the module location mod_path = inspect.getfile(cfg_entry_point) # load the configuration cfg_cls = cfg_entry_point() elif isinstance(cfg_entry_point, str): # resolve path to the module location mod_name, attr_name = cfg_entry_point.split(":") mod = importlib.import_module(mod_name) cfg_cls = getattr(mod, attr_name) else: cfg_cls = cfg_entry_point # load the configuration print(f"[INFO]: Parsing configuration from: {cfg_entry_point}") if callable(cfg_cls): cfg = cfg_cls() else: cfg = cfg_cls return cfg def parse_env_cfg( task_name: str, use_gpu: bool | None = None, num_envs: int | None = None, use_fabric: bool | None = None ) -> dict | RLTaskEnvCfg: """Parse configuration for an environment and override based on inputs. Args: task_name: The name of the environment. use_gpu: Whether to use GPU/CPU pipeline. Defaults to None, in which case it is left unchanged. num_envs: Number of environments to create. Defaults to None, in which case it is left unchanged. use_fabric: Whether to enable/disable fabric interface. If false, all read/write operations go through USD. This slows down the simulation but allows seeing the changes in the USD through the USD stage. Defaults to None, in which case it is left unchanged. Returns: The parsed configuration object. This is either a dictionary or a class object. Raises: ValueError: If the task name is not provided, i.e. None. """ # check if a task name is provided if task_name is None: raise ValueError("Please provide a valid task name. Hint: Use --task <task_name>.") # create a dictionary to update from args_cfg = {"sim": {"physx": dict()}, "scene": dict()} # resolve pipeline to use (based on input) if use_gpu is not None: if not use_gpu: args_cfg["sim"]["use_gpu_pipeline"] = False args_cfg["sim"]["physx"]["use_gpu"] = False args_cfg["sim"]["device"] = "cpu" else: args_cfg["sim"]["use_gpu_pipeline"] = True args_cfg["sim"]["physx"]["use_gpu"] = True args_cfg["sim"]["device"] = "cuda:0" # disable fabric to read/write through USD if use_fabric is not None: args_cfg["sim"]["use_fabric"] = use_fabric # number of environments if num_envs is not None: args_cfg["scene"]["num_envs"] = num_envs # load the default configuration cfg = load_cfg_from_registry(task_name, "env_cfg_entry_point") # update the main configuration if isinstance(cfg, dict): cfg = update_dict(cfg, args_cfg) else: update_class_from_dict(cfg, args_cfg) return cfg def get_checkpoint_path( log_path: str, run_dir: str = ".*", checkpoint: str = ".*", other_dirs: list[str] = None, sort_alpha: bool = True ) -> str: """Get path to the model checkpoint in input directory. The checkpoint file is resolved as: ``<log_path>/<run_dir>/<*other_dirs>/<checkpoint>``, where the :attr:`other_dirs` are intermediate folder names to concatenate. These cannot be regex expressions. If :attr:`run_dir` and :attr:`checkpoint` are regex expressions then the most recent (highest alphabetical order) run and checkpoint are selected. To disable this behavior, set the flag :attr:`sort_alpha` to False. Args: log_path: The log directory path to find models in. run_dir: The regex expression for the name of the directory containing the run. Defaults to the most recent directory created inside :attr:`log_path`. other_dirs: The intermediate directories between the run directory and the checkpoint file. Defaults to None, which implies that checkpoint file is directly under the run directory. checkpoint: The regex expression for the model checkpoint file. Defaults to the most recent torch-model saved in the :attr:`run_dir` directory. sort_alpha: Whether to sort the runs by alphabetical order. Defaults to True. If False, the folders in :attr:`run_dir` are sorted by the last modified time. Raises: ValueError: When no runs are found in the input directory. ValueError: When no checkpoints are found in the input directory. Returns: The path to the model checkpoint. Reference: https://github.com/leggedrobotics/legged_gym/blob/master/legged_gym/utils/helpers.py#L103 """ # check if runs present in directory try: # find all runs in the directory that math the regex expression runs = [ os.path.join(log_path, run) for run in os.scandir(log_path) if run.is_dir() and re.match(run_dir, run.name) ] # sort matched runs by alphabetical order (latest run should be last) if sort_alpha: runs.sort() else: runs = sorted(runs, key=os.path.getmtime) # create last run file path if other_dirs is not None: run_path = os.path.join(runs[-1], *other_dirs) else: run_path = runs[-1] except IndexError: raise ValueError(f"No runs present in the directory: '{log_path}' match: '{run_dir}'.") # list all model checkpoints in the directory model_checkpoints = [f for f in os.listdir(run_path) if re.match(checkpoint, f)] # check if any checkpoints are present if len(model_checkpoints) == 0: raise ValueError(f"No checkpoints in the directory: '{run_path}' match '{checkpoint}'.") # sort alphabetically while ensuring that *_10 comes after *_9 model_checkpoints.sort(key=lambda m: f"{m:0>15}") # get latest matched checkpoint file checkpoint_file = model_checkpoints[-1] return os.path.join(run_path, checkpoint_file)
8,798
Python
39.925581
119
0.646397
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/wrappers/skrl.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Wrapper to configure an :class:`RLTaskEnv` instance to skrl environment. The following example shows how to wrap an environment for skrl: .. code-block:: python from omni.isaac.orbit_tasks.utils.wrappers.skrl import SkrlVecEnvWrapper env = SkrlVecEnvWrapper(env) Or, equivalently, by directly calling the skrl library API as follows: .. code-block:: python from skrl.envs.torch.wrappers import wrap_env env = wrap_env(env, wrapper="isaac-orbit") """ # needed to import for type hinting: Agent | list[Agent] from __future__ import annotations import copy import torch import tqdm from skrl.agents.torch import Agent from skrl.envs.wrappers.torch import Wrapper, wrap_env from skrl.resources.preprocessors.torch import RunningStandardScaler # noqa: F401 from skrl.resources.schedulers.torch import KLAdaptiveLR # noqa: F401 from skrl.trainers.torch import Trainer from skrl.trainers.torch.sequential import SEQUENTIAL_TRAINER_DEFAULT_CONFIG from skrl.utils.model_instantiators.torch import Shape # noqa: F401 from omni.isaac.orbit.envs import RLTaskEnv """ Configuration Parser. """ def process_skrl_cfg(cfg: dict) -> dict: """Convert simple YAML types to skrl classes/components. Args: cfg: A configuration dictionary. Returns: A dictionary containing the converted configuration. """ _direct_eval = [ "learning_rate_scheduler", "state_preprocessor", "value_preprocessor", "input_shape", "output_shape", ] def reward_shaper_function(scale): def reward_shaper(rewards, timestep, timesteps): return rewards * scale return reward_shaper def update_dict(d): for key, value in d.items(): if isinstance(value, dict): update_dict(value) else: if key in _direct_eval: d[key] = eval(value) elif key.endswith("_kwargs"): d[key] = value if value is not None else {} elif key in ["rewards_shaper_scale"]: d["rewards_shaper"] = reward_shaper_function(value) return d # parse agent configuration and convert to classes return update_dict(cfg) """ Vectorized environment wrapper. """ def SkrlVecEnvWrapper(env: RLTaskEnv): """Wraps around Orbit environment for skrl. This function wraps around the Orbit environment. Since the :class:`RLTaskEnv` environment wrapping functionality is defined within the skrl library itself, this implementation is maintained for compatibility with the structure of the extension that contains it. Internally it calls the :func:`wrap_env` from the skrl library API. Args: env: The environment to wrap around. Raises: ValueError: When the environment is not an instance of :class:`RLTaskEnv`. Reference: https://skrl.readthedocs.io/en/latest/modules/skrl.envs.wrapping.html """ # check that input is valid if not isinstance(env.unwrapped, RLTaskEnv): raise ValueError(f"The environment must be inherited from RLTaskEnv. Environment type: {type(env)}") # wrap and return the environment return wrap_env(env, wrapper="isaac-orbit") """ Custom trainer for skrl. """ class SkrlSequentialLogTrainer(Trainer): """Sequential trainer with logging of episode information. This trainer inherits from the :class:`skrl.trainers.base_class.Trainer` class. It is used to train agents in a sequential manner (i.e., one after the other in each interaction with the environment). It is most suitable for on-policy RL agents such as PPO, A2C, etc. It modifies the :class:`skrl.trainers.torch.sequential.SequentialTrainer` class with the following differences: * It also log episode information to the agent's logger. * It does not close the environment at the end of the training. Reference: https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.base_class.html """ def __init__( self, env: Wrapper, agents: Agent | list[Agent], agents_scope: list[int] | None = None, cfg: dict | None = None, ): """Initializes the trainer. Args: env: Environment to train on. agents: Agents to train. agents_scope: Number of environments for each agent to train on. Defaults to None. cfg: Configuration dictionary. Defaults to None. """ # update the config _cfg = copy.deepcopy(SEQUENTIAL_TRAINER_DEFAULT_CONFIG) _cfg.update(cfg if cfg is not None else {}) # store agents scope agents_scope = agents_scope if agents_scope is not None else [] # initialize the base class super().__init__(env=env, agents=agents, agents_scope=agents_scope, cfg=_cfg) # init agents if self.env.num_agents > 1: for agent in self.agents: agent.init(trainer_cfg=self.cfg) else: self.agents.init(trainer_cfg=self.cfg) def train(self): """Train the agents sequentially. This method executes the training loop for the agents. It performs the following steps: * Pre-interaction: Perform any pre-interaction operations. * Compute actions: Compute the actions for the agents. * Step the environments: Step the environments with the computed actions. * Record the environments' transitions: Record the transitions from the environments. * Log custom environment data: Log custom environment data. * Post-interaction: Perform any post-interaction operations. * Reset the environments: Reset the environments if they are terminated or truncated. """ # init agent self.agents.init(trainer_cfg=self.cfg) self.agents.set_running_mode("train") # reset env states, infos = self.env.reset() # training loop for timestep in tqdm.tqdm(range(self.timesteps), disable=self.disable_progressbar): # pre-interaction self.agents.pre_interaction(timestep=timestep, timesteps=self.timesteps) # compute actions with torch.no_grad(): actions = self.agents.act(states, timestep=timestep, timesteps=self.timesteps)[0] # step the environments next_states, rewards, terminated, truncated, infos = self.env.step(actions) # note: here we do not call render scene since it is done in the env.step() method # record the environments' transitions with torch.no_grad(): self.agents.record_transition( states=states, actions=actions, rewards=rewards, next_states=next_states, terminated=terminated, truncated=truncated, infos=infos, timestep=timestep, timesteps=self.timesteps, ) # log custom environment data if "episode" in infos: for k, v in infos["episode"].items(): if isinstance(v, torch.Tensor) and v.numel() == 1: self.agents.track_data(f"EpisodeInfo / {k}", v.item()) # post-interaction self.agents.post_interaction(timestep=timestep, timesteps=self.timesteps) # reset the environments # note: here we do not call reset scene since it is done in the env.step() method # update states states.copy_(next_states) def eval(self) -> None: """Evaluate the agents sequentially. This method executes the following steps in loop: * Compute actions: Compute the actions for the agents. * Step the environments: Step the environments with the computed actions. * Record the environments' transitions: Record the transitions from the environments. * Log custom environment data: Log custom environment data. """ # set running mode if self.num_agents > 1: for agent in self.agents: agent.set_running_mode("eval") else: self.agents.set_running_mode("eval") # single agent if self.num_agents == 1: self.single_agent_eval() return # reset env states, infos = self.env.reset() # evaluation loop for timestep in tqdm.tqdm(range(self.initial_timestep, self.timesteps), disable=self.disable_progressbar): # compute actions with torch.no_grad(): actions = torch.vstack([ agent.act(states[scope[0] : scope[1]], timestep=timestep, timesteps=self.timesteps)[0] for agent, scope in zip(self.agents, self.agents_scope) ]) # step the environments next_states, rewards, terminated, truncated, infos = self.env.step(actions) with torch.no_grad(): # write data to TensorBoard for agent, scope in zip(self.agents, self.agents_scope): # track data agent.record_transition( states=states[scope[0] : scope[1]], actions=actions[scope[0] : scope[1]], rewards=rewards[scope[0] : scope[1]], next_states=next_states[scope[0] : scope[1]], terminated=terminated[scope[0] : scope[1]], truncated=truncated[scope[0] : scope[1]], infos=infos, timestep=timestep, timesteps=self.timesteps, ) # log custom environment data if "log" in infos: for k, v in infos["log"].items(): if isinstance(v, torch.Tensor) and v.numel() == 1: agent.track_data(k, v.item()) # perform post-interaction super(type(agent), agent).post_interaction(timestep=timestep, timesteps=self.timesteps) # reset environments # note: here we do not call reset scene since it is done in the env.step() method states.copy_(next_states)
10,641
Python
36.340351
114
0.608589
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/wrappers/rl_games.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Wrapper to configure an :class:`RLTaskEnv` instance to RL-Games vectorized environment. The following example shows how to wrap an environment for RL-Games and register the environment construction for RL-Games :class:`Runner` class: .. code-block:: python from rl_games.common import env_configurations, vecenv from omni.isaac.orbit_tasks.utils.wrappers.rl_games import RlGamesGpuEnv, RlGamesVecEnvWrapper # configuration parameters rl_device = "cuda:0" clip_obs = 10.0 clip_actions = 1.0 # wrap around environment for rl-games env = RlGamesVecEnvWrapper(env, rl_device, clip_obs, clip_actions) # register the environment to rl-games registry # note: in agents configuration: environment name must be "rlgpu" vecenv.register( "IsaacRlgWrapper", lambda config_name, num_actors, **kwargs: RlGamesGpuEnv(config_name, num_actors, **kwargs) ) env_configurations.register("rlgpu", {"vecenv_type": "IsaacRlgWrapper", "env_creator": lambda **kwargs: env}) """ # needed to import for allowing type-hinting:gym.spaces.Box | None from __future__ import annotations import gym.spaces # needed for rl-games incompatibility: https://github.com/Denys88/rl_games/issues/261 import gymnasium import torch from rl_games.common import env_configurations from rl_games.common.vecenv import IVecEnv from omni.isaac.orbit.envs import RLTaskEnv, VecEnvObs """ Vectorized environment wrapper. """ class RlGamesVecEnvWrapper(IVecEnv): """Wraps around Orbit environment for RL-Games. This class wraps around the Orbit environment. Since RL-Games works directly on GPU buffers, the wrapper handles moving of buffers from the simulation environment to the same device as the learning agent. Additionally, it performs clipping of observations and actions. For algorithms like asymmetric actor-critic, RL-Games expects a dictionary for observations. This dictionary contains "obs" and "states" which typically correspond to the actor and critic observations respectively. To use asymmetric actor-critic, the environment observations from :class:`RLTaskEnv` must have the key or group name "critic". The observation group is used to set the :attr:`num_states` (int) and :attr:`state_space` (:obj:`gym.spaces.Box`). These are used by the learning agent in RL-Games to allocate buffers in the trajectory memory. Since this is optional for some environments, the wrapper checks if these attributes exist. If they don't then the wrapper defaults to zero as number of privileged observations. .. caution:: This class must be the last wrapper in the wrapper chain. This is because the wrapper does not follow the :class:`gym.Wrapper` interface. Any subsequent wrappers will need to be modified to work with this wrapper. Reference: https://github.com/Denys88/rl_games/blob/master/rl_games/common/ivecenv.py https://github.com/NVIDIA-Omniverse/IsaacGymEnvs """ def __init__(self, env: RLTaskEnv, rl_device: str, clip_obs: float, clip_actions: float): """Initializes the wrapper instance. Args: env: The environment to wrap around. rl_device: The device on which agent computations are performed. clip_obs: The clipping value for observations. clip_actions: The clipping value for actions. Raises: ValueError: The environment is not inherited from :class:`RLTaskEnv`. ValueError: If specified, the privileged observations (critic) are not of type :obj:`gym.spaces.Box`. """ # check that input is valid if not isinstance(env.unwrapped, RLTaskEnv): raise ValueError(f"The environment must be inherited from RLTaskEnv. Environment type: {type(env)}") # initialize the wrapper self.env = env # store provided arguments self._rl_device = rl_device self._clip_obs = clip_obs self._clip_actions = clip_actions self._sim_device = env.unwrapped.device # information for privileged observations if self.state_space is None: self.rlg_num_states = 0 else: self.rlg_num_states = self.state_space.shape[0] def __str__(self): """Returns the wrapper name and the :attr:`env` representation string.""" return ( f"<{type(self).__name__}{self.env}>" f"\n\tObservations clipping: {self._clip_obs}" f"\n\tActions clipping : {self._clip_actions}" f"\n\tAgent device : {self._rl_device}" f"\n\tAsymmetric-learning : {self.rlg_num_states != 0}" ) def __repr__(self): """Returns the string representation of the wrapper.""" return str(self) """ Properties -- Gym.Wrapper """ @property def render_mode(self) -> str | None: """Returns the :attr:`Env` :attr:`render_mode`.""" return self.env.render_mode @property def observation_space(self) -> gym.spaces.Box: """Returns the :attr:`Env` :attr:`observation_space`.""" # note: rl-games only wants single observation space policy_obs_space = self.unwrapped.single_observation_space["policy"] if not isinstance(policy_obs_space, gymnasium.spaces.Box): raise NotImplementedError( f"The RL-Games wrapper does not currently support observation space: '{type(policy_obs_space)}'." f" If you need to support this, please modify the wrapper: {self.__class__.__name__}," " and if you are nice, please send a merge-request." ) # note: maybe should check if we are a sub-set of the actual space. don't do it right now since # in RLTaskEnv we are setting action space as (-inf, inf). return gym.spaces.Box(-self._clip_obs, self._clip_obs, policy_obs_space.shape) @property def action_space(self) -> gym.Space: """Returns the :attr:`Env` :attr:`action_space`.""" # note: rl-games only wants single action space action_space = self.unwrapped.single_action_space if not isinstance(action_space, gymnasium.spaces.Box): raise NotImplementedError( f"The RL-Games wrapper does not currently support action space: '{type(action_space)}'." f" If you need to support this, please modify the wrapper: {self.__class__.__name__}," " and if you are nice, please send a merge-request." ) # return casted space in gym.spaces.Box (OpenAI Gym) # note: maybe should check if we are a sub-set of the actual space. don't do it right now since # in RLTaskEnv we are setting action space as (-inf, inf). return gym.spaces.Box(-self._clip_actions, self._clip_actions, action_space.shape) @classmethod def class_name(cls) -> str: """Returns the class name of the wrapper.""" return cls.__name__ @property def unwrapped(self) -> RLTaskEnv: """Returns the base environment of the wrapper. This will be the bare :class:`gymnasium.Env` environment, underneath all layers of wrappers. """ return self.env.unwrapped """ Properties """ @property def num_envs(self) -> int: """Returns the number of sub-environment instances.""" return self.unwrapped.num_envs @property def device(self) -> str: """Returns the base environment simulation device.""" return self.unwrapped.device @property def state_space(self) -> gym.spaces.Box | None: """Returns the :attr:`Env` :attr:`observation_space`.""" # note: rl-games only wants single observation space critic_obs_space = self.unwrapped.single_observation_space.get("critic") # check if we even have a critic obs if critic_obs_space is None: return None elif not isinstance(critic_obs_space, gymnasium.spaces.Box): raise NotImplementedError( f"The RL-Games wrapper does not currently support state space: '{type(critic_obs_space)}'." f" If you need to support this, please modify the wrapper: {self.__class__.__name__}," " and if you are nice, please send a merge-request." ) # return casted space in gym.spaces.Box (OpenAI Gym) # note: maybe should check if we are a sub-set of the actual space. don't do it right now since # in RLTaskEnv we are setting action space as (-inf, inf). return gym.spaces.Box(-self._clip_obs, self._clip_obs, critic_obs_space.shape) def get_number_of_agents(self) -> int: """Returns number of actors in the environment.""" return getattr(self, "num_agents", 1) def get_env_info(self) -> dict: """Returns the Gym spaces for the environment.""" return { "observation_space": self.observation_space, "action_space": self.action_space, "state_space": self.state_space, } """ Operations - MDP """ def seed(self, seed: int = -1) -> int: # noqa: D102 return self.unwrapped.seed(seed) def reset(self): # noqa: D102 obs_dict, _ = self.env.reset() # process observations and states return self._process_obs(obs_dict) def step(self, actions): # noqa: D102 # move actions to sim-device actions = actions.detach().clone().to(device=self._sim_device) # clip the actions actions = torch.clamp(actions, -self._clip_actions, self._clip_actions) # perform environment step obs_dict, rew, terminated, truncated, extras = self.env.step(actions) # move time out information to the extras dict # this is only needed for infinite horizon tasks # note: only useful when `value_bootstrap` is True in the agent configuration if not self.unwrapped.cfg.is_finite_horizon: extras["time_outs"] = truncated.to(device=self._rl_device) # process observations and states obs_and_states = self._process_obs(obs_dict) # move buffers to rl-device # note: we perform clone to prevent issues when rl-device and sim-device are the same. rew = rew.to(device=self._rl_device) dones = (terminated | truncated).to(device=self._rl_device) extras = { k: v.to(device=self._rl_device, non_blocking=True) if hasattr(v, "to") else v for k, v in extras.items() } # remap extras from "log" to "episode" if "log" in extras: extras["episode"] = extras.pop("log") return obs_and_states, rew, dones, extras def close(self): # noqa: D102 return self.env.close() """ Helper functions """ def _process_obs(self, obs_dict: VecEnvObs) -> torch.Tensor | dict[str, torch.Tensor]: """Processing of the observations and states from the environment. Note: States typically refers to privileged observations for the critic function. It is typically used in asymmetric actor-critic algorithms. Args: obs_dict: The current observations from environment. Returns: If environment provides states, then a dictionary containing the observations and states is returned. Otherwise just the observations tensor is returned. """ # process policy obs obs = obs_dict["policy"] # clip the observations obs = torch.clamp(obs, -self._clip_obs, self._clip_obs) # move the buffer to rl-device obs = obs.to(device=self._rl_device).clone() # check if asymmetric actor-critic or not if self.rlg_num_states > 0: # acquire states from the environment if it exists try: states = obs_dict["critic"] except AttributeError: raise NotImplementedError("Environment does not define key 'critic' for privileged observations.") # clip the states states = torch.clamp(states, -self._clip_obs, self._clip_obs) # move buffers to rl-device states = states.to(self._rl_device).clone() # convert to dictionary return {"obs": obs, "states": states} else: return obs """ Environment Handler. """ class RlGamesGpuEnv(IVecEnv): """Thin wrapper to create instance of the environment to fit RL-Games runner.""" # TODO: Adding this for now but do we really need this? def __init__(self, config_name: str, num_actors: int, **kwargs): """Initialize the environment. Args: config_name: The name of the environment configuration. num_actors: The number of actors in the environment. This is not used in this wrapper. """ self.env: RlGamesVecEnvWrapper = env_configurations.configurations[config_name]["env_creator"](**kwargs) def step(self, action): # noqa: D102 return self.env.step(action) def reset(self): # noqa: D102 return self.env.reset() def get_number_of_agents(self) -> int: """Get number of agents in the environment. Returns: The number of agents in the environment. """ return self.env.get_number_of_agents() def get_env_info(self) -> dict: """Get the Gym spaces for the environment. Returns: The Gym spaces for the environment. """ return self.env.get_env_info()
13,803
Python
38.666667
117
0.638484
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/wrappers/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for environment wrappers to different learning frameworks. Wrappers allow you to modify the behavior of an environment without modifying the environment itself. This is useful for modifying the observation space, action space, or reward function. Additionally, they can be used to cast a given environment into the respective environment class definition used by different learning frameworks. This operation may include handling of asymmetric actor-critic observations, casting the data between different backends such `numpy` and `pytorch`, or organizing the returned data into the expected data structure by the learning framework. All wrappers work similar to the :class:`gymnasium.Wrapper` class. Using a wrapper is as simple as passing the initialized environment instance to the wrapper constructor. However, since learning frameworks expect different input and output data structures, their wrapper classes are not compatible with each other. Thus, they should always be used in conjunction with the respective learning framework. For instance, to wrap an environment in the `Stable-Baselines3`_ wrapper, you can do the following: .. code-block:: python from omni.isaac.orbit_tasks.utils.wrappers.sb3 import Sb3VecEnvWrapper env = Sb3VecEnvWrapper(env) .. _RL-Games: https://github.com/Denys88/rl_games .. _RSL-RL: https://github.com/leggedrobotics/rsl_rl .. _skrl: https://github.com/Toni-SM/skrl .. _Stable-Baselines3: https://github.com/DLR-RM/stable-baselines3 """
1,629
Python
45.571427
108
0.794352
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/wrappers/sb3.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Wrapper to configure an :class:`RLTaskEnv` instance to Stable-Baselines3 vectorized environment. The following example shows how to wrap an environment for Stable-Baselines3: .. code-block:: python from omni.isaac.orbit_tasks.utils.wrappers.sb3 import Sb3VecEnvWrapper env = Sb3VecEnvWrapper(env) """ # needed to import for allowing type-hinting: torch.Tensor | dict[str, torch.Tensor] from __future__ import annotations import gymnasium as gym import numpy as np import torch import torch.nn as nn # noqa: F401 from typing import Any from stable_baselines3.common.utils import constant_fn from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvObs, VecEnvStepReturn from omni.isaac.orbit.envs import RLTaskEnv """ Configuration Parser. """ def process_sb3_cfg(cfg: dict) -> dict: """Convert simple YAML types to Stable-Baselines classes/components. Args: cfg: A configuration dictionary. Returns: A dictionary containing the converted configuration. Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/0e5eb145faefa33e7d79c7f8c179788574b20da5/utils/exp_manager.py#L358 """ def update_dict(hyperparams: dict[str, Any]) -> dict[str, Any]: for key, value in hyperparams.items(): if isinstance(value, dict): update_dict(value) else: if key in ["policy_kwargs", "replay_buffer_class", "replay_buffer_kwargs"]: hyperparams[key] = eval(value) elif key in ["learning_rate", "clip_range", "clip_range_vf", "delta_std"]: if isinstance(value, str): _, initial_value = value.split("_") initial_value = float(initial_value) hyperparams[key] = lambda progress_remaining: progress_remaining * initial_value elif isinstance(value, (float, int)): # Negative value: ignore (ex: for clipping) if value < 0: continue hyperparams[key] = constant_fn(float(value)) else: raise ValueError(f"Invalid value for {key}: {hyperparams[key]}") return hyperparams # parse agent configuration and convert to classes return update_dict(cfg) """ Vectorized environment wrapper. """ class Sb3VecEnvWrapper(VecEnv): """Wraps around Orbit environment for Stable Baselines3. Isaac Sim internally implements a vectorized environment. However, since it is still considered a single environment instance, Stable Baselines tries to wrap around it using the :class:`DummyVecEnv`. This is only done if the environment is not inheriting from their :class:`VecEnv`. Thus, this class thinly wraps over the environment from :class:`RLTaskEnv`. Note: While Stable-Baselines3 supports Gym 0.26+ API, their vectorized environment still uses the old API (i.e. it is closer to Gym 0.21). Thus, we implement the old API for the vectorized environment. We also add monitoring functionality that computes the un-discounted episode return and length. This information is added to the info dicts under key `episode`. In contrast to the Orbit environment, stable-baselines expect the following: 1. numpy datatype for MDP signals 2. a list of info dicts for each sub-environment (instead of a dict) 3. when environment has terminated, the observations from the environment should correspond to the one after reset. The "real" final observation is passed using the info dicts under the key ``terminal_observation``. .. warning:: By the nature of physics stepping in Isaac Sim, it is not possible to forward the simulation buffers without performing a physics step. Thus, reset is performed inside the :meth:`step()` function after the actual physics step is taken. Thus, the returned observations for terminated environments is the one after the reset. .. caution:: This class must be the last wrapper in the wrapper chain. This is because the wrapper does not follow the :class:`gym.Wrapper` interface. Any subsequent wrappers will need to be modified to work with this wrapper. Reference: 1. https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html 2. https://stable-baselines3.readthedocs.io/en/master/common/monitor.html """ def __init__(self, env: RLTaskEnv): """Initialize the wrapper. Args: env: The environment to wrap around. Raises: ValueError: When the environment is not an instance of :class:`RLTaskEnv`. """ # check that input is valid if not isinstance(env.unwrapped, RLTaskEnv): raise ValueError(f"The environment must be inherited from RLTaskEnv. Environment type: {type(env)}") # initialize the wrapper self.env = env # collect common information self.num_envs = self.unwrapped.num_envs self.sim_device = self.unwrapped.device self.render_mode = self.unwrapped.render_mode # obtain gym spaces # note: stable-baselines3 does not like when we have unbounded action space so # we set it to some high value here. Maybe this is not general but something to think about. observation_space = self.unwrapped.single_observation_space["policy"] action_space = self.unwrapped.single_action_space if isinstance(action_space, gym.spaces.Box) and action_space.is_bounded() != "both": action_space = gym.spaces.Box(low=-100, high=100, shape=action_space.shape) # initialize vec-env VecEnv.__init__(self, self.num_envs, observation_space, action_space) # add buffer for logging episodic information self._ep_rew_buf = torch.zeros(self.num_envs, device=self.sim_device) self._ep_len_buf = torch.zeros(self.num_envs, device=self.sim_device) def __str__(self): """Returns the wrapper name and the :attr:`env` representation string.""" return f"<{type(self).__name__}{self.env}>" def __repr__(self): """Returns the string representation of the wrapper.""" return str(self) """ Properties -- Gym.Wrapper """ @classmethod def class_name(cls) -> str: """Returns the class name of the wrapper.""" return cls.__name__ @property def unwrapped(self) -> RLTaskEnv: """Returns the base environment of the wrapper. This will be the bare :class:`gymnasium.Env` environment, underneath all layers of wrappers. """ return self.env.unwrapped """ Properties """ def get_episode_rewards(self) -> list[float]: """Returns the rewards of all the episodes.""" return self._ep_rew_buf.cpu().tolist() def get_episode_lengths(self) -> list[int]: """Returns the number of time-steps of all the episodes.""" return self._ep_len_buf.cpu().tolist() """ Operations - MDP """ def seed(self, seed: int | None = None) -> list[int | None]: # noqa: D102 return [self.unwrapped.seed(seed)] * self.unwrapped.num_envs def reset(self) -> VecEnvObs: # noqa: D102 obs_dict, _ = self.env.reset() # convert data types to numpy depending on backend return self._process_obs(obs_dict) def step_async(self, actions): # noqa: D102 # convert input to numpy array if not isinstance(actions, torch.Tensor): actions = np.asarray(actions) actions = torch.from_numpy(actions).to(device=self.sim_device, dtype=torch.float32) else: actions = actions.to(device=self.sim_device, dtype=torch.float32) # convert to tensor self._async_actions = actions def step_wait(self) -> VecEnvStepReturn: # noqa: D102 # record step information obs_dict, rew, terminated, truncated, extras = self.env.step(self._async_actions) # update episode un-discounted return and length self._ep_rew_buf += rew self._ep_len_buf += 1 # compute reset ids dones = terminated | truncated reset_ids = (dones > 0).nonzero(as_tuple=False) # convert data types to numpy depending on backend # note: RLTaskEnv uses torch backend (by default). obs = self._process_obs(obs_dict) rew = rew.detach().cpu().numpy() terminated = terminated.detach().cpu().numpy() truncated = truncated.detach().cpu().numpy() dones = dones.detach().cpu().numpy() # convert extra information to list of dicts infos = self._process_extras(obs, terminated, truncated, extras, reset_ids) # reset info for terminated environments self._ep_rew_buf[reset_ids] = 0 self._ep_len_buf[reset_ids] = 0 return obs, rew, dones, infos def close(self): # noqa: D102 self.env.close() def get_attr(self, attr_name, indices=None): # noqa: D102 # resolve indices if indices is None: indices = slice(None) num_indices = self.num_envs else: num_indices = len(indices) # obtain attribute value attr_val = getattr(self.env, attr_name) # return the value if not isinstance(attr_val, torch.Tensor): return [attr_val] * num_indices else: return attr_val[indices].detach().cpu().numpy() def set_attr(self, attr_name, value, indices=None): # noqa: D102 raise NotImplementedError("Setting attributes is not supported.") def env_method(self, method_name: str, *method_args, indices=None, **method_kwargs): # noqa: D102 if method_name == "render": # gymnasium does not support changing render mode at runtime return self.env.render() else: # this isn't properly implemented but it is not necessary. # mostly done for completeness. env_method = getattr(self.env, method_name) return env_method(*method_args, indices=indices, **method_kwargs) def env_is_wrapped(self, wrapper_class, indices=None): # noqa: D102 raise NotImplementedError("Checking if environment is wrapped is not supported.") def get_images(self): # noqa: D102 raise NotImplementedError("Getting images is not supported.") """ Helper functions. """ def _process_obs(self, obs_dict: torch.Tensor | dict[str, torch.Tensor]) -> np.ndarray | dict[str, np.ndarray]: """Convert observations into NumPy data type.""" # Sb3 doesn't support asymmetric observation spaces, so we only use "policy" obs = obs_dict["policy"] # note: RLTaskEnv uses torch backend (by default). if isinstance(obs, dict): for key, value in obs.items(): obs[key] = value.detach().cpu().numpy() elif isinstance(obs, torch.Tensor): obs = obs.detach().cpu().numpy() else: raise NotImplementedError(f"Unsupported data type: {type(obs)}") return obs def _process_extras( self, obs: np.ndarray, terminated: np.ndarray, truncated: np.ndarray, extras: dict, reset_ids: np.ndarray ) -> list[dict[str, Any]]: """Convert miscellaneous information into dictionary for each sub-environment.""" # create empty list of dictionaries to fill infos: list[dict[str, Any]] = [dict.fromkeys(extras.keys()) for _ in range(self.num_envs)] # fill-in information for each sub-environment # note: This loop becomes slow when number of environments is large. for idx in range(self.num_envs): # fill-in episode monitoring info if idx in reset_ids: infos[idx]["episode"] = dict() infos[idx]["episode"]["r"] = float(self._ep_rew_buf[idx]) infos[idx]["episode"]["l"] = float(self._ep_len_buf[idx]) else: infos[idx]["episode"] = None # fill-in bootstrap information infos[idx]["TimeLimit.truncated"] = truncated[idx] and not terminated[idx] # fill-in information from extras for key, value in extras.items(): # 1. remap extra episodes information safely # 2. for others just store their values if key == "log": # only log this data for episodes that are terminated if infos[idx]["episode"] is not None: for sub_key, sub_value in value.items(): infos[idx]["episode"][sub_key] = sub_value else: infos[idx][key] = value[idx] # add information about terminal observation separately if idx in reset_ids: # extract terminal observations if isinstance(obs, dict): terminal_obs = dict.fromkeys(obs.keys()) for key, value in obs.items(): terminal_obs[key] = value[idx] else: terminal_obs = obs[idx] # add info to dict infos[idx]["terminal_observation"] = terminal_obs else: infos[idx]["terminal_observation"] = None # return list of dictionaries return infos
13,706
Python
39.196481
123
0.621844
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/wrappers/rsl_rl/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Wrappers and utilities to configure an :class:`RLTaskEnv` for RSL-RL library.""" from .exporter import export_policy_as_jit, export_policy_as_onnx from .rl_cfg import RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg from .vecenv_wrapper import RslRlVecEnvWrapper
410
Python
36.363633
88
0.795122
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/wrappers/rsl_rl/vecenv_wrapper.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Wrapper to configure an :class:`RLTaskEnv` instance to RSL-RL vectorized environment. The following example shows how to wrap an environment for RSL-RL: .. code-block:: python from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import RslRlVecEnvWrapper env = RslRlVecEnvWrapper(env) """ import gymnasium as gym import torch from rsl_rl.env import VecEnv from omni.isaac.orbit.envs import RLTaskEnv class RslRlVecEnvWrapper(VecEnv): """Wraps around Orbit environment for RSL-RL library To use asymmetric actor-critic, the environment instance must have the attributes :attr:`num_privileged_obs` (int). This is used by the learning agent to allocate buffers in the trajectory memory. Additionally, the returned observations should have the key "critic" which corresponds to the privileged observations. Since this is optional for some environments, the wrapper checks if these attributes exist. If they don't then the wrapper defaults to zero as number of privileged observations. .. caution:: This class must be the last wrapper in the wrapper chain. This is because the wrapper does not follow the :class:`gym.Wrapper` interface. Any subsequent wrappers will need to be modified to work with this wrapper. Reference: https://github.com/leggedrobotics/rsl_rl/blob/master/rsl_rl/env/vec_env.py """ def __init__(self, env: RLTaskEnv): """Initializes the wrapper. Note: The wrapper calls :meth:`reset` at the start since the RSL-RL runner does not call reset. Args: env: The environment to wrap around. Raises: ValueError: When the environment is not an instance of :class:`RLTaskEnv`. """ # check that input is valid if not isinstance(env.unwrapped, RLTaskEnv): raise ValueError(f"The environment must be inherited from RLTaskEnv. Environment type: {type(env)}") # initialize the wrapper self.env = env # store information required by wrapper self.num_envs = self.unwrapped.num_envs self.device = self.unwrapped.device self.max_episode_length = self.unwrapped.max_episode_length self.num_actions = self.unwrapped.action_manager.total_action_dim self.num_obs = self.unwrapped.observation_manager.group_obs_dim["policy"][0] # -- privileged observations if "critic" in self.unwrapped.observation_manager.group_obs_dim: self.num_privileged_obs = self.unwrapped.observation_manager.group_obs_dim["critic"][0] else: self.num_privileged_obs = 0 # reset at the start since the RSL-RL runner does not call reset self.env.reset() def __str__(self): """Returns the wrapper name and the :attr:`env` representation string.""" return f"<{type(self).__name__}{self.env}>" def __repr__(self): """Returns the string representation of the wrapper.""" return str(self) """ Properties -- Gym.Wrapper """ @property def cfg(self) -> object: """Returns the configuration class instance of the environment.""" return self.unwrapped.cfg @property def render_mode(self) -> str | None: """Returns the :attr:`Env` :attr:`render_mode`.""" return self.env.render_mode @property def observation_space(self) -> gym.Space: """Returns the :attr:`Env` :attr:`observation_space`.""" return self.env.observation_space @property def action_space(self) -> gym.Space: """Returns the :attr:`Env` :attr:`action_space`.""" return self.env.action_space @classmethod def class_name(cls) -> str: """Returns the class name of the wrapper.""" return cls.__name__ @property def unwrapped(self) -> RLTaskEnv: """Returns the base environment of the wrapper. This will be the bare :class:`gymnasium.Env` environment, underneath all layers of wrappers. """ return self.env.unwrapped """ Properties """ def get_observations(self) -> tuple[torch.Tensor, dict]: """Returns the current observations of the environment.""" obs_dict = self.unwrapped.observation_manager.compute() return obs_dict["policy"], {"observations": obs_dict} @property def episode_length_buf(self) -> torch.Tensor: """The episode length buffer.""" return self.unwrapped.episode_length_buf @episode_length_buf.setter def episode_length_buf(self, value: torch.Tensor): """Set the episode length buffer. Note: This is needed to perform random initialization of episode lengths in RSL-RL. """ self.unwrapped.episode_length_buf = value """ Operations - MDP """ def seed(self, seed: int = -1) -> int: # noqa: D102 return self.unwrapped.seed(seed) def reset(self) -> tuple[torch.Tensor, dict]: # noqa: D102 # reset the environment obs_dict, _ = self.env.reset() # return observations return obs_dict["policy"], {"observations": obs_dict} def step(self, actions: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, dict]: # record step information obs_dict, rew, terminated, truncated, extras = self.env.step(actions) # compute dones for compatibility with RSL-RL dones = (terminated | truncated).to(dtype=torch.long) # move extra observations to the extras dict obs = obs_dict["policy"] extras["observations"] = obs_dict # move time out information to the extras dict # this is only needed for infinite horizon tasks if not self.unwrapped.cfg.is_finite_horizon: extras["time_outs"] = truncated # return the step information return obs, rew, dones, extras def close(self): # noqa: D102 return self.env.close()
6,120
Python
33.778409
119
0.650817
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/wrappers/rsl_rl/exporter.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import copy import os import torch def export_policy_as_jit(actor_critic: object, path: str, filename="policy.pt"): """Export policy into a Torch JIT file. Args: actor_critic: The actor-critic torch module. path: The path to the saving directory. filename: The name of exported JIT file. Defaults to "policy.pt". Reference: https://github.com/leggedrobotics/legged_gym/blob/master/legged_gym/utils/helpers.py#L180 """ policy_exporter = _TorchPolicyExporter(actor_critic) policy_exporter.export(path, filename) def export_policy_as_onnx(actor_critic: object, path: str, filename="policy.onnx", verbose=False): """Export policy into a Torch ONNX file. Args: actor_critic: The actor-critic torch module. path: The path to the saving directory. filename: The name of exported JIT file. Defaults to "policy.pt". verbose: Whether to print the model summary. Defaults to False. """ if not os.path.exists(path): os.makedirs(path, exist_ok=True) policy_exporter = _OnnxPolicyExporter(actor_critic, verbose) policy_exporter.export(path, filename) """ Helper Classes - Private. """ class _TorchPolicyExporter(torch.nn.Module): """Exporter of actor-critic into JIT file. Reference: https://github.com/leggedrobotics/legged_gym/blob/master/legged_gym/utils/helpers.py#L193 """ def __init__(self, actor_critic): super().__init__() self.actor = copy.deepcopy(actor_critic.actor) self.is_recurrent = actor_critic.is_recurrent if self.is_recurrent: self.rnn = copy.deepcopy(actor_critic.memory_a.rnn) self.rnn.cpu() self.register_buffer("hidden_state", torch.zeros(self.rnn.num_layers, 1, self.rnn.hidden_size)) self.register_buffer("cell_state", torch.zeros(self.rnn.num_layers, 1, self.rnn.hidden_size)) self.forward = self.forward_lstm self.reset = self.reset_memory def forward_lstm(self, x): x, (h, c) = self.rnn(x.unsqueeze(0), (self.hidden_state, self.cell_state)) self.hidden_state[:] = h self.cell_state[:] = c x = x.squeeze(0) return self.actor(x) def forward(self, x): return self.actor(x) @torch.jit.export def reset(self): pass def reset_memory(self): self.hidden_state[:] = 0.0 self.cell_state[:] = 0.0 def export(self, path, filename): os.makedirs(path, exist_ok=True) path = os.path.join(path, filename) self.to("cpu") traced_script_module = torch.jit.script(self) traced_script_module.save(path) class _OnnxPolicyExporter(torch.nn.Module): """Exporter of actor-critic into ONNX file.""" def __init__(self, actor_critic, verbose=False): super().__init__() self.verbose = verbose self.actor = copy.deepcopy(actor_critic.actor) self.is_recurrent = actor_critic.is_recurrent if self.is_recurrent: self.rnn = copy.deepcopy(actor_critic.memory_a.rnn) self.rnn.cpu() self.forward = self.forward_lstm def forward_lstm(self, x_in, h_in, c_in): x, (h, c) = self.rnn(x_in.unsqueeze(0), (h_in, c_in)) x = x.squeeze(0) return self.actor(x), h, c def forward(self, x): return self.actor(x) def export(self, path, filename): self.to("cpu") if self.is_recurrent: obs = torch.zeros(1, self.rnn.input_size) h_in = torch.zeros(self.rnn.num_layers, 1, self.rnn.hidden_size) c_in = torch.zeros(self.rnn.num_layers, 1, self.rnn.hidden_size) actions, h_out, c_out = self(obs, h_in, c_in) torch.onnx.export( self, (obs, h_in, c_in), os.path.join(path, filename), export_params=True, opset_version=11, verbose=self.verbose, input_names=["obs", "h_in", "c_in"], output_names=["actions", "h_out", "c_out"], dynamic_axes={}, ) else: obs = torch.zeros(1, self.actor[0].in_features) torch.onnx.export( self, obs, os.path.join(path, filename), export_params=True, opset_version=11, verbose=self.verbose, input_names=["obs"], output_names=["actions"], dynamic_axes={}, )
4,718
Python
32
107
0.583934
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/wrappers/rsl_rl/rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from dataclasses import MISSING from typing import Literal from omni.isaac.orbit.utils import configclass @configclass class RslRlPpoActorCriticCfg: """Configuration for the PPO actor-critic networks.""" class_name: str = "ActorCritic" """The policy class name. Default is ActorCritic.""" init_noise_std: float = MISSING """The initial noise standard deviation for the policy.""" actor_hidden_dims: list[int] = MISSING """The hidden dimensions of the actor network.""" critic_hidden_dims: list[int] = MISSING """The hidden dimensions of the critic network.""" activation: str = MISSING """The activation function for the actor and critic networks.""" @configclass class RslRlPpoAlgorithmCfg: """Configuration for the PPO algorithm.""" class_name: str = "PPO" """The algorithm class name. Default is PPO.""" value_loss_coef: float = MISSING """The coefficient for the value loss.""" use_clipped_value_loss: bool = MISSING """Whether to use clipped value loss.""" clip_param: float = MISSING """The clipping parameter for the policy.""" entropy_coef: float = MISSING """The coefficient for the entropy loss.""" num_learning_epochs: int = MISSING """The number of learning epochs per update.""" num_mini_batches: int = MISSING """The number of mini-batches per update.""" learning_rate: float = MISSING """The learning rate for the policy.""" schedule: str = MISSING """The learning rate schedule.""" gamma: float = MISSING """The discount factor.""" lam: float = MISSING """The lambda parameter for Generalized Advantage Estimation (GAE).""" desired_kl: float = MISSING """The desired KL divergence.""" max_grad_norm: float = MISSING """The maximum gradient norm.""" @configclass class RslRlOnPolicyRunnerCfg: """Configuration of the runner for on-policy algorithms.""" seed: int = 42 """The seed for the experiment. Default is 42.""" device: str = "cuda" """The device for the rl-agent. Default is cuda.""" num_steps_per_env: int = MISSING """The number of steps per environment per update.""" max_iterations: int = MISSING """The maximum number of iterations.""" empirical_normalization: bool = MISSING """Whether to use empirical normalization.""" policy: RslRlPpoActorCriticCfg = MISSING """The policy configuration.""" algorithm: RslRlPpoAlgorithmCfg = MISSING """The algorithm configuration.""" ## # Checkpointing parameters ## save_interval: int = MISSING """The number of iterations between saves.""" experiment_name: str = MISSING """The experiment name.""" run_name: str = "" """The run name. Default is empty string. The name of the run directory is typically the time-stamp at execution. If the run name is not empty, then it is appended to the run directory's name, i.e. the logging directory's name will become ``{time-stamp}_{run_name}``. """ ## # Logging parameters ## logger: Literal["tensorboard", "neptune", "wandb"] = "tensorboard" """The logger to use. Default is tensorboard.""" neptune_project: str = "orbit" """The neptune project name. Default is "orbit".""" wandb_project: str = "orbit" """The wandb project name. Default is "orbit".""" ## # Loading parameters ## resume: bool = False """Whether to resume. Default is False.""" load_run: str = ".*" """The run directory to load. Default is ".*" (all). If regex expression, the latest (alphabetical order) matching run will be loaded. """ load_checkpoint: str = "model_.*.pt" """The checkpoint file to load. Default is ``"model_.*.pt"`` (all). If regex expression, the latest (alphabetical order) matching file will be loaded. """
4,026
Python
25.846666
105
0.654993
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/data_collector/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for data collection utilities. All post-processed robomimic compatible datasets share the same data structure. A single dataset is a single HDF5 file. The stored data follows the structure provided `here <https://robomimic.github.io/docs/datasets/overview.html#dataset-structure>`_. The collector takes input data in its batched format and stores them as different demonstrations, each corresponding to a given environment index. The demonstrations are flushed to disk when the :meth:`RobomimicDataCollector.flush` is called for the respective environments. All the data is saved when the :meth:`RobomimicDataCollector.close()` is called. The following sample shows how to use the :class:`RobomimicDataCollector` to store random data in a dataset. .. code-block:: python import os import torch from omni.isaac.orbit_tasks.utils.data_collector import RobomimicDataCollector # name of the environment (needed by robomimic) task_name = "Isaac-Franka-Lift-v0" # specify directory for logging experiments test_dir = os.path.dirname(os.path.abspath(__file__)) log_dir = os.path.join(test_dir, "logs", "demos") # name of the file to save data filename = "hdf_dataset.hdf5" # number of episodes to collect num_demos = 10 # number of environments to simulate num_envs = 4 # create data-collector collector_interface = RobomimicDataCollector(task_name, log_dir, filename, num_demos) # reset the collector collector_interface.reset() while not collector_interface.is_stopped(): # generate random data to store # -- obs obs = { "joint_pos": torch.randn(num_envs, 10), "joint_vel": torch.randn(num_envs, 10) } # -- actions actions = torch.randn(num_envs, 10) # -- rewards rewards = torch.randn(num_envs) # -- dones dones = torch.rand(num_envs) > 0.5 # store signals # -- obs for key, value in obs.items(): collector_interface.add(f"obs/{key}", value) # -- actions collector_interface.add("actions", actions) # -- next_obs for key, value in obs.items(): collector_interface.add(f"next_obs/{key}", value.cpu().numpy()) # -- rewards collector_interface.add("rewards", rewards) # -- dones collector_interface.add("dones", dones) # flush data from collector for successful environments # note: in this case we flush all the time reset_env_ids = dones.nonzero(as_tuple=False).squeeze(-1) collector_interface.flush(reset_env_ids) # close collector collector_interface.close() """ from .robomimic_data_collector import RobomimicDataCollector
2,834
Python
32.352941
88
0.688073
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/utils/data_collector/robomimic_data_collector.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Interface to collect and store data from the environment using format from `robomimic`.""" # needed to import for allowing type-hinting: np.ndarray | torch.Tensor from __future__ import annotations import h5py import json import numpy as np import os import torch from collections.abc import Iterable import carb class RobomimicDataCollector: """Data collection interface for robomimic. This class implements a data collector interface for saving simulation states to disk. The data is stored in `HDF5`_ binary data format. The class is useful for collecting demonstrations. The collected data follows the `structure`_ from robomimic. All datasets in `robomimic` require the observations and next observations obtained from before and after the environment step. These are stored as a dictionary of observations in the keys "obs" and "next_obs" respectively. For certain agents in `robomimic`, the episode data should have the following additional keys: "actions", "rewards", "dones". This behavior can be altered by changing the dataset keys required in the training configuration for the respective learning agent. For reference on datasets, please check the robomimic `documentation`. .. _HDF5: https://www.h5py.org/ .. _structure: https://robomimic.github.io/docs/datasets/overview.html#dataset-structure .. _documentation: https://github.com/ARISE-Initiative/robomimic/blob/master/robomimic/config/base_config.py#L167-L173 """ def __init__( self, env_name: str, directory_path: str, filename: str = "test", num_demos: int = 1, flush_freq: int = 1, env_config: dict | None = None, ): """Initializes the data collection wrapper. Args: env_name: The name of the environment. directory_path: The path to store collected data. filename: The basename of the saved file. Defaults to "test". num_demos: Number of demonstrations to record until stopping. Defaults to 1. flush_freq: Frequency to dump data to disk. Defaults to 1. env_config: The configuration for the environment. Defaults to None. """ # save input arguments self._env_name = env_name self._env_config = env_config self._directory = os.path.abspath(directory_path) self._filename = filename self._num_demos = num_demos self._flush_freq = flush_freq # print info print(self.__str__()) # create directory it doesn't exist if not os.path.isdir(self._directory): os.makedirs(self._directory) # placeholder for current hdf5 file object self._h5_file_stream = None self._h5_data_group = None self._h5_episode_group = None # store count of demos within episode self._demo_count = 0 # flags for setting up self._is_first_interaction = True self._is_stop = False # create buffers to store data self._dataset = dict() def __del__(self): """Destructor for data collector.""" if not self._is_stop: self.close() def __str__(self) -> str: """Represents the data collector as a string.""" msg = "Dataset collector <class RobomimicDataCollector> object" msg += f"\tStoring trajectories in directory: {self._directory}\n" msg += f"\tNumber of demos for collection : {self._num_demos}\n" msg += f"\tFrequency for saving data to disk: {self._flush_freq}\n" return msg """ Properties """ @property def demo_count(self) -> int: """The number of demos collected so far.""" return self._demo_count """ Operations. """ def is_stopped(self) -> bool: """Whether data collection is stopped or not. Returns: True if data collection has stopped. """ return self._is_stop def reset(self): """Reset the internals of data logger.""" # setup the file to store data in if self._is_first_interaction: self._demo_count = 0 self._create_new_file(self._filename) self._is_first_interaction = False # clear out existing buffers self._dataset = dict() def add(self, key: str, value: np.ndarray | torch.Tensor): """Add a key-value pair to the dataset. The key can be nested by using the "/" character. For example: "obs/joint_pos". Currently only two-level nesting is supported. Args: key: The key name. value: The corresponding value of shape (N, ...), where `N` is number of environments. Raises: ValueError: When provided key has sub-keys more than 2. Example: "obs/joints/pos", instead of "obs/joint_pos". """ # check if data should be recorded if self._is_first_interaction: carb.log_warn("Please call reset before adding new data. Calling reset...") self.reset() if self._is_stop: carb.log_warn(f"Desired number of demonstrations collected: {self._demo_count} >= {self._num_demos}.") return # check datatype if isinstance(value, torch.Tensor): value = value.cpu().numpy() else: value = np.asarray(value) # check if there are sub-keys sub_keys = key.split("/") num_sub_keys = len(sub_keys) if len(sub_keys) > 2: raise ValueError(f"Input key '{key}' has elements {num_sub_keys} which is more than two.") # add key to dictionary if it doesn't exist for i in range(value.shape[0]): # demo index if f"env_{i}" not in self._dataset: self._dataset[f"env_{i}"] = dict() # key index if num_sub_keys == 2: # create keys if sub_keys[0] not in self._dataset[f"env_{i}"]: self._dataset[f"env_{i}"][sub_keys[0]] = dict() if sub_keys[1] not in self._dataset[f"env_{i}"][sub_keys[0]]: self._dataset[f"env_{i}"][sub_keys[0]][sub_keys[1]] = list() # add data to key self._dataset[f"env_{i}"][sub_keys[0]][sub_keys[1]].append(value[i]) else: # create keys if sub_keys[0] not in self._dataset[f"env_{i}"]: self._dataset[f"env_{i}"][sub_keys[0]] = list() # add data to key self._dataset[f"env_{i}"][sub_keys[0]].append(value[i]) def flush(self, env_ids: Iterable[int] = (0,)): """Flush the episode data based on environment indices. Args: env_ids: Environment indices to write data for. Defaults to (0). """ # check that data is being recorded if self._h5_file_stream is None or self._h5_data_group is None: carb.log_error("No file stream has been opened. Please call reset before flushing data.") return # iterate over each environment and add their data for index in env_ids: # data corresponding to demo env_dataset = self._dataset[f"env_{index}"] # create episode group based on demo count h5_episode_group = self._h5_data_group.create_group(f"demo_{self._demo_count}") # store number of steps taken h5_episode_group.attrs["num_samples"] = len(env_dataset["actions"]) # store other data from dictionary for key, value in env_dataset.items(): if isinstance(value, dict): # create group key_group = h5_episode_group.create_group(key) # add sub-keys values for sub_key, sub_value in value.items(): key_group.create_dataset(sub_key, data=np.array(sub_value)) else: h5_episode_group.create_dataset(key, data=np.array(value)) # increment total step counts self._h5_data_group.attrs["total"] += h5_episode_group.attrs["num_samples"] # increment total demo counts self._demo_count += 1 # reset buffer for environment self._dataset[f"env_{index}"] = dict() # dump at desired frequency if self._demo_count % self._flush_freq == 0: self._h5_file_stream.flush() print(f">>> Flushing data to disk. Collected demos: {self._demo_count} / {self._num_demos}") # if demos collected then stop if self._demo_count >= self._num_demos: print(f">>> Desired number of demonstrations collected: {self._demo_count} >= {self._num_demos}.") self.close() # break out of loop break def close(self): """Stop recording and save the file at its current state.""" if not self._is_stop: print(f">>> Closing recording of data. Collected demos: {self._demo_count} / {self._num_demos}") # close the file safely if self._h5_file_stream is not None: self._h5_file_stream.close() # mark that data collection is stopped self._is_stop = True """ Helper functions. """ def _create_new_file(self, fname: str): """Create a new HDF5 file for writing episode info into. Reference: https://robomimic.github.io/docs/datasets/overview.html Args: fname: The base name of the file. """ if not fname.endswith(".hdf5"): fname += ".hdf5" # define path to file hdf5_path = os.path.join(self._directory, fname) # construct the stream object self._h5_file_stream = h5py.File(hdf5_path, "w") # create group to store data self._h5_data_group = self._h5_file_stream.create_group("data") # stores total number of samples accumulated across demonstrations self._h5_data_group.attrs["total"] = 0 # store the environment meta-info # -- we use gym environment type # Ref: https://github.com/ARISE-Initiative/robomimic/blob/master/robomimic/envs/env_base.py#L15 env_type = 2 # -- check if env config provided if self._env_config is None: self._env_config = dict() # -- add info self._h5_data_group.attrs["env_args"] = json.dumps({ "env_name": self._env_name, "type": env_type, "env_kwargs": self._env_config, })
10,907
Python
37.544169
122
0.581095
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/docs/CHANGELOG.rst
Changelog --------- 0.6.1 (2024-04-16) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a new environment ``Isaac-Repose-Cube-Allegro-v0`` and ``Isaac-Repose-Allegro-Cube-NoVelObs-v0`` for the Allegro hand to reorient a cube. It is based on the IsaacGymEnvs Allegro hand environment. 0.6.0 (2024-03-10) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a new environment ``Isaac-Open-Drawer-Franka-v0`` for the Franka arm to open a drawer. It is based on the IsaacGymEnvs cabinet environment. Fixed ^^^^^ * Fixed logging of extra information for RL-Games wrapper. It expected the extra information to be under the key ``"episode"``, but Orbit used the key ``"log"``. The wrapper now remaps the key to ``"episode"``. 0.5.7 (2024-02-28) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Updated the RL wrapper for the skrl library to the latest release (>= 1.1.0) 0.5.6 (2024-02-21) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the configuration parsing to support a pre-initialized configuration object. 0.5.5 (2024-02-05) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Pinned :mod:`torch` version to 2.0.1 in the setup.py to keep parity version of :mod:`torch` supplied by Isaac 2023.1.1, and prevent version incompatibility between :mod:`torch` ==2.2 and :mod:`typing-extensions` ==3.7.4.3 0.5.4 (2024-02-06) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a check for the flag :attr:`omni.isaac.orbit.envs.RLTaskEnvCfg.is_finite_horizon` in the RSL-RL and RL-Games wrappers to handle the finite horizon tasks properly. Earlier, the wrappers were always assuming the tasks to be infinite horizon tasks and returning a time-out signals when the episode length was reached. 0.5.3 (2023-11-16) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added raising of error in the :meth:`omni.isaac.orbit_tasks.utils.importer.import_all` method to make sure all the packages are imported properly. Previously, error was being caught and ignored. 0.5.2 (2023-11-08) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the RL wrappers for Stable-Baselines3 and RL-Games. It now works with their most recent versions. * Fixed the :meth:`get_checkpoint_path` to allow any in-between sub-folders between the run directory and the checkpoint directory. 0.5.1 (2023-11-04) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the wrappers to different learning frameworks to use the new :class:`omni.isaac.orbit_tasks.RLTaskEnv` class. The :class:`RLTaskEnv` class inherits from the :class:`gymnasium.Env` class (Gym 0.29.0). * Fixed the registration of tasks in the Gym registry based on Gym 0.29.0 API. Changed ^^^^^^^ * Removed the inheritance of all the RL-framework specific wrappers from the :class:`gymnasium.Wrapper` class. This is because the wrappers don't comply with the new Gym 0.29.0 API. The wrappers are now only inherit from their respective RL-framework specific base classes. 0.5.0 (2023-10-30) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the way agent configs are handled for environments and learning agents. Switched from yaml to configclasses. Fixed ^^^^^ * Fixed the way package import automation is handled in the :mod:`omni.isaac.orbit_tasks` module. Earlier it was not skipping the blacklisted packages properly. 0.4.3 (2023-09-25) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Added future import of ``annotations`` to have a consistent behavior across Python versions. * Removed the type-hinting from docstrings to simplify maintenance of the documentation. All type-hints are now in the code itself. 0.4.2 (2023-08-29) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Moved the base environment definition to the :class:`omni.isaac.orbit.envs.RLEnv` class. The :class:`RLEnv` contains RL-specific managers such as the reward, termination, randomization and curriculum managers. These are all configured using the :class:`omni.isaac.orbit.envs.RLEnvConfig` class. The :class:`RLEnv` class inherits from the :class:`omni.isaac.orbit.envs.BaseEnv` and ``gym.Env`` classes. Fixed ^^^^^ * Adapted the wrappers to use the new :class:`omni.isaac.orbit.envs.RLEnv` class. 0.4.1 (2023-08-02) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Adapted the base :class:`IsaacEnv` class to use the :class:`SimulationContext` class from the :mod:`omni.isaac.orbit.sim` module. This simplifies setting of simulation parameters. 0.4.0 (2023-07-26) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Removed the resetting of environment indices in the step call of the :class:`IsaacEnv` class. This must be handled in the :math:`_step_impl`` function by the inherited classes. * Adapted the wrapper for RSL-RL library its new API. Fixed ^^^^^ * Added handling of no checkpoint available error in the :meth:`get_checkpoint_path`. * Fixed the locomotion environment for rough terrain locomotion training. 0.3.2 (2023-07-22) ~~~~~~~~~~~~~~~~~~ Added ^^^^^^^ * Added a UI to the :class:`IsaacEnv` class to enable/disable rendering of the viewport when not running in headless mode. Fixed ^^^^^ * Fixed the the issue with environment returning transition tuples even when the simulation is paused. * Fixed the shutdown of the simulation when the environment is closed. 0.3.1 (2023-06-23) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the argument ``headless`` in :class:`IsaacEnv` class to ``render``, in order to cause less confusion about rendering and headless-ness, i.e. that you can render while headless. 0.3.0 (2023-04-14) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a new flag ``viewport`` to the :class:`IsaacEnv` class to enable/disable rendering of the viewport. If the flag is set to ``True``, the viewport is enabled and the environment is rendered in the background. * Updated the training scripts in the ``source/standalone/workflows`` directory to use the new flag ``viewport``. If the CLI argument ``--video`` is passed, videos are recorded in the ``videos`` directory using the :class:`gym.wrappers.RecordVideo` wrapper. Changed ^^^^^^^ * The :class:`IsaacEnv` class supports different rendering mode as referenced in OpenAI Gym's ``render`` method. These modes are: * ``rgb_array``: Renders the environment in the background and returns the rendered image as a numpy array. * ``human``: Renders the environment in the background and displays the rendered image in a window. * Changed the constructor in the classes inheriting from :class:`IsaacEnv` to pass all the keyword arguments to the constructor of :class:`IsaacEnv` class. Fixed ^^^^^ * Clarified the documentation of ``headless`` flag in the :class:`IsaacEnv` class. It refers to whether or not to render at every sim step, not whether to render the viewport or not. * Fixed the unit tests for running random agent on included environments. 0.2.3 (2023-03-06) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Tuned the observations and rewards for ``Isaac-Lift-Franka-v0`` environment. 0.2.2 (2023-03-04) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the issue with rigid object not working in the ``Isaac-Lift-Franka-v0`` environment. 0.2.1 (2023-03-01) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a flag ``disable_contact_processing`` to the :class:`SimCfg` class to handle contact processing effectively when using TensorAPIs for contact reporting. * Added verbosity flag to :meth:`export_policy_as_onnx` to print model summary. Fixed ^^^^^ * Clarified the documentation of flags in the :class:`SimCfg` class. * Added enabling of ``omni.kit.viewport`` and ``omni.replicator.isaac`` extensions dynamically to maintain order in the startup of extensions. * Corrected the experiment names in the configuration files for training environments with ``rsl_rl``. Changed ^^^^^^^ * Changed the default value of ``enable_scene_query_support`` in :class:`SimCfg` class to False. The flag is overridden to True inside :class:`IsaacEnv` class when running the simulation in non-headless mode. 0.2.0 (2023-01-25) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added environment wrapper and sequential trainer for the skrl RL library * Added training/evaluation configuration files for the skrl RL library 0.1.2 (2023-01-19) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added the flag ``replicate_physics`` to the :class:`SimCfg` class. * Increased the default value of ``gpu_found_lost_pairs_capacity`` in :class:`PhysxCfg` class 0.1.1 (2023-01-18) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed a bug in ``Isaac-Velocity-Anymal-C-v0`` where the domain randomization is not applicable if cloning the environments with ``replicate_physics=True``. 0.1.0 (2023-01-17) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Initial release of the extension. * Includes the following environments: * ``Isaac-Cartpole-v0``: A cartpole environment with a continuous action space. * ``Isaac-Ant-v0``: A 3D ant environment with a continuous action space. * ``Isaac-Humanoid-v0``: A 3D humanoid environment with a continuous action space. * ``Isaac-Reach-Franka-v0``: A end-effector pose tracking task for the Franka arm. * ``Isaac-Lift-Franka-v0``: A 3D object lift and reposing task for the Franka arm. * ``Isaac-Velocity-Anymal-C-v0``: An SE(2) velocity tracking task for legged robot on flat terrain.
9,099
reStructuredText
27.4375
118
0.693813
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit_tasks/docs/README.md
# Orbit: Environment Suite Using the core framework developed as part of Orbit, we provide various learning environments for robotics research. These environments follow the `gym.Env` API from OpenAI Gym version `0.21.0`. The environments are registered using the Gym registry. Each environment's name is composed of `Isaac-<Task>-<Robot>-v<X>`, where `<Task>` indicates the skill to learn in the environment, `<Robot>` indicates the embodiment of the acting agent, and `<X>` represents the version of the environment (which can be used to suggest different observation or action spaces). The environments are configured using either Python classes (wrapped using `configclass` decorator) or through YAML files. The template structure of the environment is always put at the same level as the environment file itself. However, its various instances are included in directories within the environment directory itself. This looks like as follows: ```tree omni/isaac/orbit_tasks/locomotion/ ├── __init__.py └── velocity ├── config │ └── anymal_c │ ├── agent # <- this is where we store the learning agent configurations │ ├── __init__.py # <- this is where we register the environment and configurations to gym registry │ ├── flat_env_cfg.py │ └── rough_env_cfg.py ├── __init__.py └── velocity_env_cfg.py # <- this is the base task configuration ``` The environments are then registered in the `omni/isaac/orbit_tasks/locomotion/velocity/config/anymal_c/__init__.py`: ```python gym.register( id="Isaac-Velocity-Rough-Anymal-C-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={"env_cfg_entry_point": f"{__name__}.rough_env_cfg:AnymalCRoughEnvCfg"}, ) gym.register( id="Isaac-Velocity-Flat-Anymal-C-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={"env_cfg_entry_point": f"{__name__}.flat_env_cfg:AnymalCFlatEnvCfg"}, ) ``` > **Note:** As a practice, we specify all the environments in a single file to avoid name conflicts between different > tasks or environments. However, this practice is debatable and we are open to suggestions to deal with a large > scaling in the number of tasks or environments.
2,275
Markdown
43.62745
117
0.722198
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/setup.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Installation script for the 'omni.isaac.orbit' python package.""" import os import toml from setuptools import setup # Obtain the extension data from the extension.toml file EXTENSION_PATH = os.path.dirname(os.path.realpath(__file__)) # Read the extension.toml file EXTENSION_TOML_DATA = toml.load(os.path.join(EXTENSION_PATH, "config", "extension.toml")) # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ # generic "numpy", "torch==2.0.1", "prettytable==3.3.0", "tensordict", # devices "hidapi", # gym "gymnasium==0.29.0", # procedural-generation "trimesh", "pyglet<2", ] # Installation operation setup( name="omni-isaac-orbit", author="ORBIT Project Developers", maintainer="Mayank Mittal", maintainer_email="[email protected]", url=EXTENSION_TOML_DATA["package"]["repository"], version=EXTENSION_TOML_DATA["package"]["version"], description=EXTENSION_TOML_DATA["package"]["description"], keywords=EXTENSION_TOML_DATA["package"]["keywords"], license="BSD-3-Clause", include_package_data=True, python_requires=">=3.10", install_requires=INSTALL_REQUIRES, packages=["omni.isaac.orbit"], classifiers=[ "Natural Language :: English", "Programming Language :: Python :: 3.10", "Isaac Sim :: 2023.1.0-hotfix.1", "Isaac Sim :: 2023.1.1", ], zip_safe=False, )
1,553
Python
26.263157
89
0.665808
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/devices/check_keyboard.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script shows how to use a teleoperation device with Isaac Sim. The teleoperation device is a keyboard device that allows the user to control the robot. It is possible to add additional callbacks to it for user-defined operations. """ """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher # launch omniverse app app_launcher = AppLauncher() simulation_app = app_launcher.app """Rest everything follows.""" import ctypes from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.orbit.devices import Se3Keyboard def print_cb(): """Dummy callback function executed when the key 'L' is pressed.""" print("Print callback") def quit_cb(): """Dummy callback function executed when the key 'ESC' is pressed.""" print("Quit callback") simulation_app.close() def main(): # Load kit helper sim = SimulationContext(physics_dt=0.01, rendering_dt=0.01) # Create teleoperation interface teleop_interface = Se3Keyboard(pos_sensitivity=0.1, rot_sensitivity=0.1) # Add teleoperation callbacks # available key buttons: https://docs.omniverse.nvidia.com/kit/docs/carbonite/latest/docs/python/carb.html?highlight=keyboardeventtype#carb.input.KeyboardInput teleop_interface.add_callback("L", print_cb) teleop_interface.add_callback("ESCAPE", quit_cb) print("Press 'L' to print a message. Press 'ESC' to quit.") # Check that boundedness of articulation is correct if ctypes.c_long.from_address(id(teleop_interface)).value != 1: raise RuntimeError("Teleoperation interface is not bounded to a single instance.") # Reset interface internals teleop_interface.reset() # Play simulation sim.reset() # Simulate while simulation_app.is_running(): # If simulation is stopped, then exit. if sim.is_stopped(): break # If simulation is paused, then skip. if not sim.is_playing(): sim.step() continue # get keyboard command delta_pose, gripper_command = teleop_interface.advance() # print command if gripper_command: print(f"Gripper command: {gripper_command}") # step simulation sim.step() # check if simulator is stopped if sim.is_stopped(): break if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
2,589
Python
27.461538
163
0.679799
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sensors/check_contact_sensor.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to use the contact sensor sensor in Orbit. .. code-block:: bash ./orbit.sh -p source/extensions/omni.isaac.orbit/test/sensors/test_contact_sensor.py --num_robots 2 """ """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Contact Sensor Test Script") parser.add_argument("--num_robots", type=int, default=64, help="Number of robots to spawn.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import torch import omni.isaac.core.utils.prims as prim_utils from omni.isaac.cloner import GridCloner from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.carb import set_carb_setting from omni.isaac.core.utils.viewports import set_camera_view import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.sensors.contact_sensor import ContactSensor, ContactSensorCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG # isort:skip """ Helpers """ def design_scene(): """Add prims to the scene.""" # Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # Lights cfg = sim_utils.SphereLightCfg() cfg.func("/World/Light/GreySphere", cfg, translation=(4.5, 3.5, 10.0)) cfg.func("/World/Light/WhiteSphere", cfg, translation=(-4.5, 3.5, 10.0)) """ Main """ def main(): """Spawns the ANYmal robot and clones it using Isaac Sim Cloner API.""" # Load kit helper sim = SimulationContext(physics_dt=0.005, rendering_dt=0.005, backend="torch", device="cuda:0") # Set main camera set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0]) # Enable hydra scene-graph instancing # this is needed to visualize the scene when flatcache is enabled set_carb_setting(sim._settings, "/persistent/omnihydra/useSceneGraphInstancing", True) # Create interface to clone the scene cloner = GridCloner(spacing=2.0) cloner.define_base_env("/World/envs") # Everything under the namespace "/World/envs/env_0" will be cloned prim_utils.define_prim("/World/envs/env_0") # Clone the scene num_envs = args_cli.num_robots cloner.define_base_env("/World/envs") envs_prim_paths = cloner.generate_paths("/World/envs/env", num_paths=num_envs) _ = cloner.clone(source_prim_path="/World/envs/env_0", prim_paths=envs_prim_paths, replicate_physics=True) # Design props design_scene() # Spawn things into the scene robot_cfg = ANYMAL_C_CFG.replace(prim_path="/World/envs/env_.*/Robot") robot_cfg.spawn.activate_contact_sensors = True robot = Articulation(cfg=robot_cfg) # Contact sensor contact_sensor_cfg = ContactSensorCfg( prim_path="/World/envs/env_.*/Robot/.*_SHANK", track_air_time=True, debug_vis=not args_cli.headless ) contact_sensor = ContactSensor(cfg=contact_sensor_cfg) # filter collisions within each environment instance physics_scene_path = sim.get_physics_context().prim_path cloner.filter_collisions( physics_scene_path, "/World/collisions", envs_prim_paths, global_paths=["/World/defaultGroundPlane"] ) # Play the simulator sim.reset() # print info print(contact_sensor) # Now we are ready! print("[INFO]: Setup complete...") # Define simulation stepping decimation = 4 physics_dt = sim.get_physics_dt() sim_dt = decimation * physics_dt sim_time = 0.0 count = 0 # Simulate physics while simulation_app.is_running(): # If simulation is stopped, then exit. if sim.is_stopped(): break # If simulation is paused, then skip. if not sim.is_playing(): sim.step(render=False) continue # reset if count % 1000 == 0: # reset counters sim_time = 0.0 count = 0 # reset dof state joint_pos, joint_vel = robot.data.default_joint_pos, robot.data.default_joint_vel robot.write_joint_state_to_sim(joint_pos, joint_vel) robot.reset() # perform 4 steps for _ in range(decimation): # apply actions robot.set_joint_position_target(robot.data.default_joint_pos) # write commands to sim robot.write_data_to_sim() # perform step sim.step() # fetch data robot.update(physics_dt) # update sim-time sim_time += sim_dt count += 1 # update the buffers if sim.is_playing(): contact_sensor.update(sim_dt, force_recompute=True) if count % 100 == 0: print("Sim-time: ", sim_time) print("Number of contacts: ", torch.count_nonzero(contact_sensor.data.current_air_time == 0.0).item()) print("-" * 80) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
5,433
Python
30.229885
118
0.654519
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sensors/check_ray_caster.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script shows how to use the ray caster from the Orbit framework. .. code-block:: bash # Usage ./orbit.sh -p source/extensions/omni.isaac.orbit/test/sensors/test_ray_caster.py --headless """ """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Ray Caster Test Script") parser.add_argument("--num_envs", type=int, default=128, help="Number of environments to clone.") parser.add_argument( "--terrain_type", type=str, default="generator", help="Type of terrain to import. Can be 'generator' or 'usd' or 'plane'.", ) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import torch import omni.isaac.core.utils.prims as prim_utils from omni.isaac.cloner import GridCloner from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.viewports import set_camera_view import omni.isaac.orbit.sim as sim_utils import omni.isaac.orbit.terrains as terrain_gen from omni.isaac.orbit.sensors.ray_caster import RayCaster, RayCasterCfg, patterns from omni.isaac.orbit.terrains.config.rough import ROUGH_TERRAINS_CFG from omni.isaac.orbit.terrains.terrain_importer import TerrainImporter from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.orbit.utils.timer import Timer def design_scene(sim: SimulationContext, num_envs: int = 2048): """Design the scene.""" # Create interface to clone the scene cloner = GridCloner(spacing=2.0) cloner.define_base_env("/World/envs") # Everything under the namespace "/World/envs/env_0" will be cloned prim_utils.define_prim("/World/envs/env_0") # Define the scene # -- Light cfg = sim_utils.DistantLightCfg(intensity=2000) cfg.func("/World/light", cfg) # -- Balls cfg = sim_utils.SphereCfg( radius=0.25, rigid_props=sim_utils.RigidBodyPropertiesCfg(), mass_props=sim_utils.MassPropertiesCfg(mass=0.5), collision_props=sim_utils.CollisionPropertiesCfg(), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 0.0, 1.0)), ) cfg.func("/World/envs/env_0/ball", cfg, translation=(0.0, 0.0, 5.0)) # Clone the scene cloner.define_base_env("/World/envs") envs_prim_paths = cloner.generate_paths("/World/envs/env", num_paths=num_envs) cloner.clone(source_prim_path="/World/envs/env_0", prim_paths=envs_prim_paths, replicate_physics=True) physics_scene_path = sim.get_physics_context().prim_path cloner.filter_collisions( physics_scene_path, "/World/collisions", prim_paths=envs_prim_paths, global_paths=["/World/ground"] ) def main(): """Main function.""" # Load kit helper sim_params = { "use_gpu": True, "use_gpu_pipeline": True, "use_flatcache": True, # deprecated from Isaac Sim 2023.1 onwards "use_fabric": True, # used from Isaac Sim 2023.1 onwards "enable_scene_query_support": True, } sim = SimulationContext( physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, sim_params=sim_params, backend="torch", device="cuda:0" ) # Set main camera set_camera_view([0.0, 30.0, 25.0], [0.0, 0.0, -2.5]) # Parameters num_envs = args_cli.num_envs # Design the scene design_scene(sim=sim, num_envs=num_envs) # Handler for terrains importing terrain_importer_cfg = terrain_gen.TerrainImporterCfg( prim_path="/World/ground", terrain_type=args_cli.terrain_type, terrain_generator=ROUGH_TERRAINS_CFG, usd_path=f"{ISAAC_NUCLEUS_DIR}/Environments/Terrains/rough_plane.usd", max_init_terrain_level=None, num_envs=1, ) _ = TerrainImporter(terrain_importer_cfg) # Create a ray-caster sensor ray_caster_cfg = RayCasterCfg( prim_path="/World/envs/env_.*/ball", mesh_prim_paths=["/World/ground"], pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=(1.6, 1.0)), attach_yaw_only=True, debug_vis=not args_cli.headless, ) ray_caster = RayCaster(cfg=ray_caster_cfg) # Create a view over all the balls ball_view = RigidPrimView("/World/envs/env_.*/ball", reset_xform_properties=False) # Play simulator sim.reset() # Initialize the views # -- balls ball_view.initialize() # Print the sensor information print(ray_caster) # Get the initial positions of the balls ball_initial_positions, ball_initial_orientations = ball_view.get_world_poses() ball_initial_velocities = ball_view.get_velocities() # Create a counter for resetting the scene step_count = 0 # Simulate physics while simulation_app.is_running(): # If simulation is stopped, then exit. if sim.is_stopped(): break # If simulation is paused, then skip. if not sim.is_playing(): sim.step(render=False) continue # Reset the scene if step_count % 500 == 0: # sample random indices to reset reset_indices = torch.randint(0, num_envs, (num_envs // 2,)) # reset the balls ball_view.set_world_poses( ball_initial_positions[reset_indices], ball_initial_orientations[reset_indices], indices=reset_indices ) ball_view.set_velocities(ball_initial_velocities[reset_indices], indices=reset_indices) # reset the sensor ray_caster.reset(reset_indices) # reset the counter step_count = 0 # Step simulation sim.step() # Update the ray-caster with Timer(f"Ray-caster update with {num_envs} x {ray_caster.num_rays} rays"): ray_caster.update(dt=sim.get_physics_dt(), force_recompute=True) # Update counter step_count += 1 if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
6,366
Python
33.603261
118
0.665724
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sensors/test_camera.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # ignore private usage of variables warning # pyright: reportPrivateUsage=none """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app app_launcher = AppLauncher(headless=True, offscreen_render=True) simulation_app = app_launcher.app """Rest everything follows.""" import copy import numpy as np import os import random import scipy.spatial.transform as tf import torch import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils import omni.replicator.core as rep from omni.isaac.core.prims import GeometryPrim, RigidPrim from pxr import Gf, Usd, UsdGeom import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.sensors.camera import Camera, CameraCfg from omni.isaac.orbit.utils import convert_dict_to_backend from omni.isaac.orbit.utils.math import convert_quat from omni.isaac.orbit.utils.timer import Timer # sample camera poses POSITION = [2.5, 2.5, 2.5] QUAT_ROS = [-0.17591989, 0.33985114, 0.82047325, -0.42470819] QUAT_OPENGL = [0.33985113, 0.17591988, 0.42470818, 0.82047324] QUAT_WORLD = [-0.3647052, -0.27984815, -0.1159169, 0.88047623] class TestCamera(unittest.TestCase): """Test for USD Camera sensor.""" def setUp(self): """Create a blank new stage for each test.""" self.camera_cfg = CameraCfg( height=128, width=128, prim_path="/World/Camera", update_period=0, data_types=["distance_to_image_plane"], spawn=sim_utils.PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 1.0e5) ), ) # Create a new stage stage_utils.create_new_stage() # Simulation time-step self.dt = 0.01 # Load kit helper sim_cfg = sim_utils.SimulationCfg(dt=self.dt) self.sim: sim_utils.SimulationContext = sim_utils.SimulationContext(sim_cfg) # populate scene self._populate_scene() # load stage stage_utils.update_stage() def tearDown(self): """Stops simulator after each test.""" # close all the opened viewport from before. rep.vp_manager.destroy_hydra_textures("Replicator") # stop simulation # note: cannot use self.sim.stop() since it does one render step after stopping!! This doesn't make sense :( self.sim._timeline.stop() # clear the stage self.sim.clear_all_callbacks() self.sim.clear_instance() """ Tests """ def test_camera_init(self): """Test camera initialization.""" # Create camera camera = Camera(self.camera_cfg) # Check simulation parameter is set correctly self.assertTrue(self.sim.has_rtx_sensors()) # Play sim self.sim.reset() # Check if camera is initialized self.assertTrue(camera._is_initialized) # Check if camera prim is set correctly and that it is a camera prim self.assertEqual(camera._sensor_prims[0].GetPath().pathString, self.camera_cfg.prim_path) self.assertIsInstance(camera._sensor_prims[0], UsdGeom.Camera) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Check buffers that exists and have correct shapes self.assertEqual(camera.data.pos_w.shape, (1, 3)) self.assertEqual(camera.data.quat_w_ros.shape, (1, 4)) self.assertEqual(camera.data.quat_w_world.shape, (1, 4)) self.assertEqual(camera.data.quat_w_opengl.shape, (1, 4)) self.assertEqual(camera.data.intrinsic_matrices.shape, (1, 3, 3)) self.assertEqual(camera.data.image_shape, (self.camera_cfg.height, self.camera_cfg.width)) self.assertEqual(camera.data.info, [{self.camera_cfg.data_types[0]: None}]) # Simulate physics for _ in range(10): # perform rendering self.sim.step() # update camera camera.update(self.dt) # check image data for im_data in camera.data.output.to_dict().values(): self.assertEqual(im_data.shape, (1, self.camera_cfg.height, self.camera_cfg.width)) def test_camera_init_offset(self): """Test camera initialization with offset using different conventions.""" # define the same offset in all conventions # -- ROS convention cam_cfg_offset_ros = copy.deepcopy(self.camera_cfg) cam_cfg_offset_ros.offset = CameraCfg.OffsetCfg( pos=POSITION, rot=QUAT_ROS, convention="ros", ) cam_cfg_offset_ros.prim_path = "/World/CameraOffsetRos" camera_ros = Camera(cam_cfg_offset_ros) # -- OpenGL convention cam_cfg_offset_opengl = copy.deepcopy(self.camera_cfg) cam_cfg_offset_opengl.offset = CameraCfg.OffsetCfg( pos=POSITION, rot=QUAT_OPENGL, convention="opengl", ) cam_cfg_offset_opengl.prim_path = "/World/CameraOffsetOpengl" camera_opengl = Camera(cam_cfg_offset_opengl) # -- World convention cam_cfg_offset_world = copy.deepcopy(self.camera_cfg) cam_cfg_offset_world.offset = CameraCfg.OffsetCfg( pos=POSITION, rot=QUAT_WORLD, convention="world", ) cam_cfg_offset_world.prim_path = "/World/CameraOffsetWorld" camera_world = Camera(cam_cfg_offset_world) # play sim self.sim.reset() # retrieve camera pose using USD API prim_tf_ros = camera_ros._sensor_prims[0].ComputeLocalToWorldTransform(Usd.TimeCode.Default()) prim_tf_opengl = camera_opengl._sensor_prims[0].ComputeLocalToWorldTransform(Usd.TimeCode.Default()) prim_tf_world = camera_world._sensor_prims[0].ComputeLocalToWorldTransform(Usd.TimeCode.Default()) # convert them from column-major to row-major prim_tf_ros = np.transpose(prim_tf_ros) prim_tf_opengl = np.transpose(prim_tf_opengl) prim_tf_world = np.transpose(prim_tf_world) # check that all transforms are set correctly np.testing.assert_allclose(prim_tf_ros[0:3, 3], cam_cfg_offset_ros.offset.pos) np.testing.assert_allclose(prim_tf_opengl[0:3, 3], cam_cfg_offset_opengl.offset.pos) np.testing.assert_allclose(prim_tf_world[0:3, 3], cam_cfg_offset_world.offset.pos) np.testing.assert_allclose( convert_quat(tf.Rotation.from_matrix(prim_tf_ros[:3, :3]).as_quat(), "wxyz"), cam_cfg_offset_opengl.offset.rot, rtol=1e-5, ) np.testing.assert_allclose( convert_quat(tf.Rotation.from_matrix(prim_tf_opengl[:3, :3]).as_quat(), "wxyz"), cam_cfg_offset_opengl.offset.rot, rtol=1e-5, ) np.testing.assert_allclose( convert_quat(tf.Rotation.from_matrix(prim_tf_world[:3, :3]).as_quat(), "wxyz"), cam_cfg_offset_opengl.offset.rot, rtol=1e-5, ) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # check if transform correctly set in output np.testing.assert_allclose(camera_ros.data.pos_w[0].cpu().numpy(), cam_cfg_offset_ros.offset.pos, rtol=1e-5) np.testing.assert_allclose(camera_ros.data.quat_w_ros[0].cpu().numpy(), QUAT_ROS, rtol=1e-5) np.testing.assert_allclose(camera_ros.data.quat_w_opengl[0].cpu().numpy(), QUAT_OPENGL, rtol=1e-5) np.testing.assert_allclose(camera_ros.data.quat_w_world[0].cpu().numpy(), QUAT_WORLD, rtol=1e-5) def test_multi_camera_init(self): """Test multi-camera initialization.""" # create two cameras with different prim paths # -- camera 1 cam_cfg_1 = copy.deepcopy(self.camera_cfg) cam_cfg_1.prim_path = "/World/Camera_1" cam_1 = Camera(cam_cfg_1) # -- camera 2 cam_cfg_2 = copy.deepcopy(self.camera_cfg) cam_cfg_2.prim_path = "/World/Camera_2" cam_2 = Camera(cam_cfg_2) # play sim self.sim.reset() # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Simulate physics for _ in range(10): # perform rendering self.sim.step() # update camera cam_1.update(self.dt) cam_2.update(self.dt) # check image data for cam in [cam_1, cam_2]: for im_data in cam.data.output.to_dict().values(): self.assertEqual(im_data.shape, (1, self.camera_cfg.height, self.camera_cfg.width)) def test_camera_set_world_poses(self): """Test camera function to set specific world pose.""" camera = Camera(self.camera_cfg) # play sim self.sim.reset() # convert to torch tensors position = torch.tensor([POSITION], dtype=torch.float32, device=camera.device) orientation = torch.tensor([QUAT_WORLD], dtype=torch.float32, device=camera.device) # set new pose camera.set_world_poses(position.clone(), orientation.clone(), convention="world") # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # check if transform correctly set in output torch.testing.assert_close(camera.data.pos_w, position) torch.testing.assert_close(camera.data.quat_w_world, orientation) def test_camera_set_world_poses_from_view(self): """Test camera function to set specific world pose from view.""" camera = Camera(self.camera_cfg) # play sim self.sim.reset() # convert to torch tensors eyes = torch.tensor([POSITION], dtype=torch.float32, device=camera.device) targets = torch.tensor([[0.0, 0.0, 0.0]], dtype=torch.float32, device=camera.device) quat_ros_gt = torch.tensor([QUAT_ROS], dtype=torch.float32, device=camera.device) # set new pose camera.set_world_poses_from_view(eyes.clone(), targets.clone()) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # check if transform correctly set in output torch.testing.assert_close(camera.data.pos_w, eyes) torch.testing.assert_close(camera.data.quat_w_ros, quat_ros_gt) def test_intrinsic_matrix(self): """Checks that the camera's set and retrieve methods work for intrinsic matrix.""" camera_cfg = copy.deepcopy(self.camera_cfg) camera_cfg.height = 240 camera_cfg.width = 320 camera = Camera(camera_cfg) # play sim self.sim.reset() # Desired properties (obtained from realsense camera at 320x240 resolution) rs_intrinsic_matrix = [229.31640625, 0.0, 164.810546875, 0.0, 229.826171875, 122.1650390625, 0.0, 0.0, 1.0] rs_intrinsic_matrix = torch.tensor(rs_intrinsic_matrix, device=camera.device).reshape(3, 3).unsqueeze(0) # Set matrix into simulator camera.set_intrinsic_matrices(rs_intrinsic_matrix.clone()) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Simulate physics for _ in range(10): # perform rendering self.sim.step() # update camera camera.update(self.dt) # Check that matrix is correct # TODO: This is not correctly setting all values in the matrix since the # vertical aperture and aperture offsets are not being set correctly # This is a bug in the simulator. torch.testing.assert_close(rs_intrinsic_matrix[0, 0, 0], camera.data.intrinsic_matrices[0, 0, 0]) # torch.testing.assert_close(rs_intrinsic_matrix[0, 1, 1], camera.data.intrinsic_matrices[0, 1, 1]) def test_camera_resolution_all_colorize(self): """Test camera resolution is correctly set for all types with colorization enabled.""" # Add all types camera_cfg = copy.deepcopy(self.camera_cfg) camera_cfg.data_types = [ "rgb", "distance_to_image_plane", "normals", "semantic_segmentation", "instance_segmentation_fast", "instance_id_segmentation_fast", ] camera_cfg.colorize_instance_id_segmentation = True camera_cfg.colorize_instance_segmentation = True camera_cfg.colorize_semantic_segmentation = True # Create camera camera = Camera(camera_cfg) # Play sim self.sim.reset() # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() camera.update(self.dt) # expected sizes hw_3c_shape = (1, camera_cfg.height, camera_cfg.width, 4) hw_1c_shape = (1, camera_cfg.height, camera_cfg.width) # access image data and compare shapes output = camera.data.output self.assertEqual(output["rgb"].shape, hw_3c_shape) self.assertEqual(output["distance_to_image_plane"].shape, hw_1c_shape) self.assertEqual(output["normals"].shape, hw_3c_shape) self.assertEqual(output["semantic_segmentation"].shape, hw_3c_shape) self.assertEqual(output["instance_segmentation_fast"].shape, hw_3c_shape) self.assertEqual(output["instance_id_segmentation_fast"].shape, hw_3c_shape) # access image data and compare dtype output = camera.data.output self.assertEqual(output["rgb"].dtype, torch.uint8) self.assertEqual(output["distance_to_image_plane"].dtype, torch.float) self.assertEqual(output["normals"].dtype, torch.float) self.assertEqual(output["semantic_segmentation"].dtype, torch.uint8) self.assertEqual(output["instance_segmentation_fast"].dtype, torch.uint8) self.assertEqual(output["instance_id_segmentation_fast"].dtype, torch.uint8) def test_camera_resolution_no_colorize(self): """Test camera resolution is correctly set for all types with no colorization enabled.""" # Add all types camera_cfg = copy.deepcopy(self.camera_cfg) camera_cfg.data_types = [ "rgb", "distance_to_image_plane", "normals", "semantic_segmentation", "instance_segmentation_fast", "instance_id_segmentation_fast", ] camera_cfg.colorize_instance_id_segmentation = False camera_cfg.colorize_instance_segmentation = False camera_cfg.colorize_semantic_segmentation = False # Create camera camera = Camera(camera_cfg) # Play sim self.sim.reset() # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(12): self.sim.step() camera.update(self.dt) # expected sizes hw_3c_shape = (1, camera_cfg.height, camera_cfg.width, 4) hw_1c_shape = (1, camera_cfg.height, camera_cfg.width) # access image data and compare shapes output = camera.data.output self.assertEqual(output["rgb"].shape, hw_3c_shape) self.assertEqual(output["distance_to_image_plane"].shape, hw_1c_shape) self.assertEqual(output["normals"].shape, hw_3c_shape) self.assertEqual(output["semantic_segmentation"].shape, hw_1c_shape) self.assertEqual(output["instance_segmentation_fast"].shape, hw_1c_shape) self.assertEqual(output["instance_id_segmentation_fast"].shape, hw_1c_shape) # access image data and compare dtype output = camera.data.output self.assertEqual(output["rgb"].dtype, torch.uint8) self.assertEqual(output["distance_to_image_plane"].dtype, torch.float) self.assertEqual(output["normals"].dtype, torch.float) self.assertEqual(output["semantic_segmentation"].dtype, torch.int32) self.assertEqual(output["instance_segmentation_fast"].dtype, torch.int32) self.assertEqual(output["instance_id_segmentation_fast"].dtype, torch.int32) def test_throughput(self): """Checks that the single camera gets created properly with a rig.""" # Create directory temp dir to dump the results file_dir = os.path.dirname(os.path.realpath(__file__)) temp_dir = os.path.join(file_dir, "output", "camera", "throughput") os.makedirs(temp_dir, exist_ok=True) # Create replicator writer rep_writer = rep.BasicWriter(output_dir=temp_dir, frame_padding=3) # create camera camera_cfg = copy.deepcopy(self.camera_cfg) camera_cfg.height = 480 camera_cfg.width = 640 camera = Camera(camera_cfg) # Play simulator self.sim.reset() # Set camera pose eyes = torch.tensor([[2.5, 2.5, 2.5]], dtype=torch.float32, device=camera.device) targets = torch.tensor([[0.0, 0.0, 0.0]], dtype=torch.float32, device=camera.device) camera.set_world_poses_from_view(eyes, targets) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Simulate physics for _ in range(5): # perform rendering self.sim.step() # update camera with Timer(f"Time taken for updating camera with shape {camera.image_shape}"): camera.update(self.dt) # Save images with Timer(f"Time taken for writing data with shape {camera.image_shape} "): # Pack data back into replicator format to save them using its writer rep_output = dict() camera_data = convert_dict_to_backend(camera.data.output[0].to_dict(), backend="numpy") for key, data, info in zip(camera_data.keys(), camera_data.values(), camera.data.info[0].values()): if info is not None: rep_output[key] = {"data": data, "info": info} else: rep_output[key] = data # Save images rep_output["trigger_outputs"] = {"on_time": camera.frame[0]} rep_writer.write(rep_output) print("----------------------------------------") # Check image data for im_data in camera.data.output.values(): self.assertEqual(im_data.shape, (1, camera_cfg.height, camera_cfg.width)) """ Helper functions. """ @staticmethod def _populate_scene(): """Add prims to the scene.""" # Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # Lights cfg = sim_utils.SphereLightCfg() cfg.func("/World/Light/GreySphere", cfg, translation=(4.5, 3.5, 10.0)) cfg.func("/World/Light/WhiteSphere", cfg, translation=(-4.5, 3.5, 10.0)) # Random objects random.seed(0) for i in range(10): # sample random position position = np.random.rand(3) - np.asarray([0.05, 0.05, -1.0]) position *= np.asarray([1.5, 1.5, 0.5]) # create prim prim_type = random.choice(["Cube", "Sphere", "Cylinder"]) prim = prim_utils.create_prim( f"/World/Objects/Obj_{i:02d}", prim_type, translation=position, scale=(0.25, 0.25, 0.25), semantic_label=prim_type, ) # cast to geom prim geom_prim = getattr(UsdGeom, prim_type)(prim) # set random color color = Gf.Vec3f(random.random(), random.random(), random.random()) geom_prim.CreateDisplayColorAttr() geom_prim.GetDisplayColorAttr().Set([color]) # add rigid properties GeometryPrim(f"/World/Objects/Obj_{i:02d}", collision=True) RigidPrim(f"/World/Objects/Obj_{i:02d}", mass=5.0) if __name__ == "__main__": run_tests()
21,527
Python
41.799205
116
0.616389
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sensors/test_frame_transformer.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script checks the FrameTransformer sensor by visualizing the frames that it creates. """ """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import math import scipy.spatial.transform as tf import torch import unittest import omni.isaac.core.utils.stage as stage_utils import omni.isaac.orbit.sim as sim_utils import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.scene import InteractiveScene, InteractiveSceneCfg from omni.isaac.orbit.sensors import FrameTransformerCfg, OffsetCfg from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass ## # Pre-defined configs ## from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG # isort:skip def quat_from_euler_rpy(roll, pitch, yaw, degrees=False): """Converts Euler XYZ to Quaternion (w, x, y, z).""" quat = tf.Rotation.from_euler("xyz", (roll, pitch, yaw), degrees=degrees).as_quat() return tuple(quat[[3, 0, 1, 2]].tolist()) def euler_rpy_apply(rpy, xyz, degrees=False): """Applies rotation from Euler XYZ on position vector.""" rot = tf.Rotation.from_euler("xyz", rpy, degrees=degrees) return tuple(rot.apply(xyz).tolist()) @configclass class MySceneCfg(InteractiveSceneCfg): """Example scene configuration.""" # terrain - flat terrain plane terrain = TerrainImporterCfg(prim_path="/World/ground", terrain_type="plane") # articulation - robot robot = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # sensors - frame transformer (filled inside unit test) frame_transformer: FrameTransformerCfg = None class TestFrameTransformer(unittest.TestCase): """Test for frame transformer sensor.""" def setUp(self): """Create a blank new stage for each test.""" # Create a new stage stage_utils.create_new_stage() # Load kit helper self.sim = sim_utils.SimulationContext(sim_utils.SimulationCfg(dt=0.005)) # Set main camera self.sim.set_camera_view(eye=[5, 5, 5], target=[0.0, 0.0, 0.0]) def tearDown(self): """Stops simulator after each test.""" # stop simulation # self.sim.stop() # clear the stage self.sim.clear_all_callbacks() self.sim.clear_instance() """ Tests """ def test_frame_transformer_feet_wrt_base(self): """Test feet transformations w.r.t. base source frame. In this test, the source frame is the robot base. This frame is at index 0, when the frame bodies are sorted in the order of the regex matching in the frame transformer. """ # Spawn things into stage scene_cfg = MySceneCfg(num_envs=32, env_spacing=5.0, lazy_sensor_update=False) scene_cfg.frame_transformer = FrameTransformerCfg( prim_path="{ENV_REGEX_NS}/Robot/base", target_frames=[ FrameTransformerCfg.FrameCfg( name="LF_FOOT_USER", prim_path="{ENV_REGEX_NS}/Robot/LF_SHANK", offset=OffsetCfg( pos=euler_rpy_apply(rpy=(0, 0, -math.pi / 2), xyz=(0.08795, 0.01305, -0.33797)), rot=quat_from_euler_rpy(0, 0, -math.pi / 2), ), ), FrameTransformerCfg.FrameCfg( name="RF_FOOT_USER", prim_path="{ENV_REGEX_NS}/Robot/RF_SHANK", offset=OffsetCfg( pos=euler_rpy_apply(rpy=(0, 0, math.pi / 2), xyz=(0.08795, -0.01305, -0.33797)), rot=quat_from_euler_rpy(0, 0, math.pi / 2), ), ), FrameTransformerCfg.FrameCfg( name="LH_FOOT_USER", prim_path="{ENV_REGEX_NS}/Robot/LH_SHANK", offset=OffsetCfg( pos=euler_rpy_apply(rpy=(0, 0, -math.pi / 2), xyz=(-0.08795, 0.01305, -0.33797)), rot=quat_from_euler_rpy(0, 0, -math.pi / 2), ), ), FrameTransformerCfg.FrameCfg( name="RH_FOOT_USER", prim_path="{ENV_REGEX_NS}/Robot/RH_SHANK", offset=OffsetCfg( pos=euler_rpy_apply(rpy=(0, 0, math.pi / 2), xyz=(-0.08795, -0.01305, -0.33797)), rot=quat_from_euler_rpy(0, 0, math.pi / 2), ), ), ], ) scene = InteractiveScene(scene_cfg) # Play the simulator self.sim.reset() # Acquire the index of ground truth bodies feet_indices, feet_names = scene.articulations["robot"].find_bodies( ["LF_FOOT", "RF_FOOT", "LH_FOOT", "RH_FOOT"] ) # Check names are parsed the same order user_feet_names = [f"{name}_USER" for name in feet_names] self.assertListEqual(scene.sensors["frame_transformer"].data.target_frame_names, user_feet_names) # default joint targets default_actions = scene.articulations["robot"].data.default_joint_pos.clone() # Define simulation stepping sim_dt = self.sim.get_physics_dt() # Simulate physics for count in range(100): # # reset if count % 25 == 0: # reset root state root_state = scene.articulations["robot"].data.default_root_state.clone() root_state[:, :3] += scene.env_origins joint_pos = scene.articulations["robot"].data.default_joint_pos joint_vel = scene.articulations["robot"].data.default_joint_vel # -- set root state # -- robot scene.articulations["robot"].write_root_state_to_sim(root_state) scene.articulations["robot"].write_joint_state_to_sim(joint_pos, joint_vel) # reset buffers scene.reset() # set joint targets robot_actions = default_actions + 0.5 * torch.randn_like(default_actions) scene.articulations["robot"].set_joint_position_target(robot_actions) # write data to sim scene.write_data_to_sim() # perform step self.sim.step() # read data from sim scene.update(sim_dt) # check absolute frame transforms in world frame # -- ground-truth root_pose_w = scene.articulations["robot"].data.root_state_w[:, :7] feet_pos_w_gt = scene.articulations["robot"].data.body_pos_w[:, feet_indices] feet_quat_w_gt = scene.articulations["robot"].data.body_quat_w[:, feet_indices] # -- frame transformer source_pos_w_tf = scene.sensors["frame_transformer"].data.source_pos_w source_quat_w_tf = scene.sensors["frame_transformer"].data.source_quat_w feet_pos_w_tf = scene.sensors["frame_transformer"].data.target_pos_w feet_quat_w_tf = scene.sensors["frame_transformer"].data.target_quat_w # check if they are same torch.testing.assert_close(root_pose_w[:, :3], source_pos_w_tf, rtol=1e-3, atol=1e-3) torch.testing.assert_close(root_pose_w[:, 3:], source_quat_w_tf, rtol=1e-3, atol=1e-3) torch.testing.assert_close(feet_pos_w_gt, feet_pos_w_tf, rtol=1e-3, atol=1e-3) torch.testing.assert_close(feet_quat_w_gt, feet_quat_w_tf, rtol=1e-3, atol=1e-3) # check if relative transforms are same feet_pos_source_tf = scene.sensors["frame_transformer"].data.target_pos_source feet_quat_source_tf = scene.sensors["frame_transformer"].data.target_quat_source for index in range(len(feet_indices)): # ground-truth foot_pos_b, foot_quat_b = math_utils.subtract_frame_transforms( root_pose_w[:, :3], root_pose_w[:, 3:], feet_pos_w_tf[:, index], feet_quat_w_tf[:, index] ) # check if they are same torch.testing.assert_close(feet_pos_source_tf[:, index], foot_pos_b, rtol=1e-3, atol=1e-3) torch.testing.assert_close(feet_quat_source_tf[:, index], foot_quat_b, rtol=1e-3, atol=1e-3) def test_frame_transformer_feet_wrt_thigh(self): """Test feet transformation w.r.t. thigh source frame. In this test, the source frame is the LF leg's thigh frame. This frame is not at index 0, when the frame bodies are sorted in the order of the regex matching in the frame transformer. """ # Spawn things into stage scene_cfg = MySceneCfg(num_envs=32, env_spacing=5.0, lazy_sensor_update=False) scene_cfg.frame_transformer = FrameTransformerCfg( prim_path="{ENV_REGEX_NS}/Robot/LF_THIGH", target_frames=[ FrameTransformerCfg.FrameCfg( name="LF_FOOT_USER", prim_path="{ENV_REGEX_NS}/Robot/LF_SHANK", offset=OffsetCfg( pos=euler_rpy_apply(rpy=(0, 0, -math.pi / 2), xyz=(0.08795, 0.01305, -0.33797)), rot=quat_from_euler_rpy(0, 0, -math.pi / 2), ), ), FrameTransformerCfg.FrameCfg( name="RF_FOOT_USER", prim_path="{ENV_REGEX_NS}/Robot/RF_SHANK", offset=OffsetCfg( pos=euler_rpy_apply(rpy=(0, 0, math.pi / 2), xyz=(0.08795, -0.01305, -0.33797)), rot=quat_from_euler_rpy(0, 0, math.pi / 2), ), ), ], ) scene = InteractiveScene(scene_cfg) # Play the simulator self.sim.reset() # Acquire the index of ground truth bodies source_frame_index = scene.articulations["robot"].find_bodies("LF_THIGH")[0][0] feet_indices, feet_names = scene.articulations["robot"].find_bodies(["LF_FOOT", "RF_FOOT"]) # Check names are parsed the same order user_feet_names = [f"{name}_USER" for name in feet_names] self.assertListEqual(scene.sensors["frame_transformer"].data.target_frame_names, user_feet_names) # default joint targets default_actions = scene.articulations["robot"].data.default_joint_pos.clone() # Define simulation stepping sim_dt = self.sim.get_physics_dt() # Simulate physics for count in range(100): # # reset if count % 25 == 0: # reset root state root_state = scene.articulations["robot"].data.default_root_state.clone() root_state[:, :3] += scene.env_origins joint_pos = scene.articulations["robot"].data.default_joint_pos joint_vel = scene.articulations["robot"].data.default_joint_vel # -- set root state # -- robot scene.articulations["robot"].write_root_state_to_sim(root_state) scene.articulations["robot"].write_joint_state_to_sim(joint_pos, joint_vel) # reset buffers scene.reset() # set joint targets robot_actions = default_actions + 0.5 * torch.randn_like(default_actions) scene.articulations["robot"].set_joint_position_target(robot_actions) # write data to sim scene.write_data_to_sim() # perform step self.sim.step() # read data from sim scene.update(sim_dt) # check absolute frame transforms in world frame # -- ground-truth source_pose_w_gt = scene.articulations["robot"].data.body_state_w[:, source_frame_index, :7] feet_pos_w_gt = scene.articulations["robot"].data.body_pos_w[:, feet_indices] feet_quat_w_gt = scene.articulations["robot"].data.body_quat_w[:, feet_indices] # -- frame transformer source_pos_w_tf = scene.sensors["frame_transformer"].data.source_pos_w source_quat_w_tf = scene.sensors["frame_transformer"].data.source_quat_w feet_pos_w_tf = scene.sensors["frame_transformer"].data.target_pos_w feet_quat_w_tf = scene.sensors["frame_transformer"].data.target_quat_w # check if they are same torch.testing.assert_close(source_pose_w_gt[:, :3], source_pos_w_tf, rtol=1e-3, atol=1e-3) torch.testing.assert_close(source_pose_w_gt[:, 3:], source_quat_w_tf, rtol=1e-3, atol=1e-3) torch.testing.assert_close(feet_pos_w_gt, feet_pos_w_tf, rtol=1e-3, atol=1e-3) torch.testing.assert_close(feet_quat_w_gt, feet_quat_w_tf, rtol=1e-3, atol=1e-3) # check if relative transforms are same feet_pos_source_tf = scene.sensors["frame_transformer"].data.target_pos_source feet_quat_source_tf = scene.sensors["frame_transformer"].data.target_quat_source for index in range(len(feet_indices)): # ground-truth foot_pos_b, foot_quat_b = math_utils.subtract_frame_transforms( source_pose_w_gt[:, :3], source_pose_w_gt[:, 3:], feet_pos_w_tf[:, index], feet_quat_w_tf[:, index] ) # check if they are same torch.testing.assert_close(feet_pos_source_tf[:, index], foot_pos_b, rtol=1e-3, atol=1e-3) torch.testing.assert_close(feet_quat_source_tf[:, index], foot_quat_b, rtol=1e-3, atol=1e-3) if __name__ == "__main__": run_tests()
13,928
Python
44.224026
119
0.577972
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sensors/test_contact_sensor.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Tests to verify contact sensor functionality on rigid object prims.""" """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests HEADLESS = True # launch omniverse app app_launcher = AppLauncher(headless=HEADLESS) simulation_app = app_launcher.app """Rest everything follows.""" import torch import unittest from dataclasses import MISSING from enum import Enum import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import RigidObject, RigidObjectCfg from omni.isaac.orbit.scene import InteractiveScene, InteractiveSceneCfg from omni.isaac.orbit.sensors import ContactSensor, ContactSensorCfg from omni.isaac.orbit.sim import build_simulation_context from omni.isaac.orbit.terrains import HfRandomUniformTerrainCfg, TerrainGeneratorCfg, TerrainImporterCfg from omni.isaac.orbit.utils import configclass ## # Custom helper classes. ## class ContactTestMode(Enum): """Enum to declare the type of contact sensor test to execute.""" IN_CONTACT = 0 """Enum to test the condition where the test object is in contact with the ground plane.""" NON_CONTACT = 1 """Enum to test the condition where the test object is not in contact with the ground plane (air time).""" @configclass class TestContactSensorRigidObjectCfg(RigidObjectCfg): """Configuration for rigid objects used for the contact sensor test. This contains the expected values in the configuration to simplify test fixtures. """ contact_pose: torch.Tensor = MISSING """6D pose of the rigid object under test when it is in contact with the ground surface.""" non_contact_pose: torch.Tensor = MISSING """6D pose of the rigid object under test when it is not in contact.""" @configclass class ContactSensorSceneCfg(InteractiveSceneCfg): """Configuration of the scene used by the contact sensor test.""" terrain: TerrainImporterCfg = MISSING """Terrain configuration within the scene.""" shape: TestContactSensorRigidObjectCfg = MISSING """RigidObject contact prim configuration.""" contact_sensor: ContactSensorCfg = MISSING """Contact sensor configuration.""" shape_2: TestContactSensorRigidObjectCfg = None """RigidObject contact prim configuration. Defaults to None, i.e. not included in the scene. This is a second prim used for testing contact filtering. """ contact_sensor_2: ContactSensorCfg = None """Contact sensor configuration. Defaults to None, i.e. not included in the scene. This is a second contact sensor used for testing contact filtering. """ ## # Scene entity configurations. ## CUBE_CFG = TestContactSensorRigidObjectCfg( prim_path="/World/Objects/Cube", spawn=sim_utils.CuboidCfg( size=(0.5, 0.5, 0.5), rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, ), collision_props=sim_utils.CollisionPropertiesCfg( collision_enabled=True, ), activate_contact_sensors=True, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.4, 0.6, 0.4)), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(0, -1.0, 1.0)), contact_pose=torch.tensor([0, -1.0, 0, 1, 0, 0, 0]), non_contact_pose=torch.tensor([0, -1.0, 1.0, 1, 0, 0, 0]), ) """Configuration of the cube prim.""" SPHERE_CFG = TestContactSensorRigidObjectCfg( prim_path="/World/Objects/Sphere", spawn=sim_utils.SphereCfg( radius=0.25, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, ), collision_props=sim_utils.CollisionPropertiesCfg( collision_enabled=True, ), activate_contact_sensors=True, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.4, 0.4, 0.6)), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(0, 1.0, 1.0)), contact_pose=torch.tensor([0, 1.0, 0.0, 1, 0, 0, 0]), non_contact_pose=torch.tensor([0, 1.0, 1.0, 1, 0, 0, 0]), ) """Configuration of the sphere prim.""" CYLINDER_CFG = TestContactSensorRigidObjectCfg( prim_path="/World/Objects/Cylinder", spawn=sim_utils.CylinderCfg( radius=0.5, height=0.01, axis="Y", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, ), collision_props=sim_utils.CollisionPropertiesCfg( collision_enabled=True, ), activate_contact_sensors=True, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.6, 0.4, 0.4)), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(0, 0.0, 1.0)), contact_pose=torch.tensor([0, 0, 0.0, 1, 0, 0, 0]), non_contact_pose=torch.tensor([0, 0, 1.0, 1, 0, 0, 0]), ) """Configuration of the cylinder prim.""" CAPSULE_CFG = TestContactSensorRigidObjectCfg( prim_path="/World/Objects/Capsule", spawn=sim_utils.CapsuleCfg( radius=0.25, height=0.5, axis="Z", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, ), collision_props=sim_utils.CollisionPropertiesCfg( collision_enabled=True, ), activate_contact_sensors=True, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.2, 0.4, 0.4)), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(1.0, 0.0, 1.5)), contact_pose=torch.tensor([1.0, 0.0, 0.0, 1, 0, 0, 0]), non_contact_pose=torch.tensor([1.0, 0.0, 1.5, 1, 0, 0, 0]), ) """Configuration of the capsule prim.""" CONE_CFG = TestContactSensorRigidObjectCfg( prim_path="/World/Objects/Cone", spawn=sim_utils.ConeCfg( radius=0.5, height=0.5, axis="Z", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, ), collision_props=sim_utils.CollisionPropertiesCfg( collision_enabled=True, ), activate_contact_sensors=True, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.4, 0.2, 0.4)), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(-1.0, 0.0, 1.0)), contact_pose=torch.tensor([-1.0, 0.0, 0.0, 1, 0, 0, 0]), non_contact_pose=torch.tensor([-1.0, 0.0, 1.0, 1, 0, 0, 0]), ) """Configuration of the cone prim.""" FLAT_TERRAIN_CFG = TerrainImporterCfg(prim_path="/World/ground", terrain_type="plane") """Configuration of the flat ground plane.""" COBBLESTONE_TERRAIN_CFG = TerrainImporterCfg( prim_path="/World/ground", terrain_type="generator", terrain_generator=TerrainGeneratorCfg( seed=0, size=(3.0, 3.0), border_width=0.0, num_rows=1, num_cols=1, sub_terrains={ "random_rough": HfRandomUniformTerrainCfg( proportion=1.0, noise_range=(0.0, 0.05), noise_step=0.01, border_width=0.25 ), }, ), ) """Configuration of the generated mesh terrain.""" class TestContactSensor(unittest.TestCase): """Unittest class for testing the contact sensor. This class includes test cases for the available rigid object primitives, and tests that the the contact sensor is reporting correct results for various contact durations, terrain types, and evaluation devices. """ @classmethod def setUpClass(cls): """Contact sensor test suite init.""" cls.sim_dt = 0.0025 cls.durations = [cls.sim_dt, cls.sim_dt * 2, cls.sim_dt * 32, cls.sim_dt * 128] cls.terrains = [FLAT_TERRAIN_CFG, COBBLESTONE_TERRAIN_CFG] cls.devices = ["cuda:0", "cpu"] def test_cube_contact_time(self): """Checks contact sensor values for contact time and air time for a cube collision primitive.""" self._run_contact_sensor_test(shape_cfg=CUBE_CFG) def test_sphere_contact_time(self): """Checks contact sensor values for contact time and air time for a sphere collision primitive.""" self._run_contact_sensor_test(shape_cfg=SPHERE_CFG) def test_cube_stack_contact_filtering(self): """Checks contact sensor reporting for filtering stacked cube prims.""" for device in self.devices: for num_envs in [1, 6, 24]: with self.subTest(device=device, num_envs=num_envs): with build_simulation_context(device=device, dt=self.sim_dt, add_lighting=True) as sim: # Instance new scene for the current terrain and contact prim. scene_cfg = ContactSensorSceneCfg(num_envs=num_envs, env_spacing=1.0, lazy_sensor_update=False) scene_cfg.terrain = FLAT_TERRAIN_CFG.replace(prim_path="/World/ground") # -- cube 1 scene_cfg.shape = CUBE_CFG.replace(prim_path="{ENV_REGEX_NS}/Cube_1") scene_cfg.shape.init_state.pos = (0, -1.0, 1.0) # -- cube 2 (on top of cube 1) scene_cfg.shape_2 = CUBE_CFG.replace(prim_path="{ENV_REGEX_NS}/Cube_2") scene_cfg.shape_2.init_state.pos = (0, -1.0, 1.525) # -- contact sensor 1 scene_cfg.contact_sensor = ContactSensorCfg( prim_path="{ENV_REGEX_NS}/Cube_1", track_pose=True, debug_vis=False, update_period=0.0, filter_prim_paths_expr=["{ENV_REGEX_NS}/Cube_2"], ) # -- contact sensor 2 scene_cfg.contact_sensor_2 = ContactSensorCfg( prim_path="{ENV_REGEX_NS}/Cube_2", track_pose=True, debug_vis=False, update_period=0.0, filter_prim_paths_expr=["{ENV_REGEX_NS}/Cube_1"], ) scene = InteractiveScene(scene_cfg) # Set variables internally for reference self.sim = sim self.scene = scene # Play the simulation self.sim.reset() # Extract from scene for type hinting contact_sensor: ContactSensor = self.scene["contact_sensor"] contact_sensor_2: ContactSensor = self.scene["contact_sensor_2"] # Check buffers have the right size self.assertEqual(contact_sensor.contact_physx_view.filter_count, 1) self.assertEqual(contact_sensor_2.contact_physx_view.filter_count, 1) # Reset the contact sensors self.scene.reset() # Let the scene come to a rest for _ in range(20): self._perform_sim_step() # Check values for cube 2 torch.testing.assert_close( contact_sensor_2.data.force_matrix_w[:, :, 0], contact_sensor_2.data.net_forces_w ) torch.testing.assert_close( contact_sensor_2.data.force_matrix_w[:, :, 0], contact_sensor.data.force_matrix_w[:, :, 0] ) """ Internal helpers. """ def _run_contact_sensor_test(self, shape_cfg: TestContactSensorRigidObjectCfg): """Runs a rigid body test for a given contact primitive configuration. This method iterates through each device and terrain combination in the simulation environment, running tests for contact sensors. Args: shape_cfg: The configuration parameters for the shape to be tested. """ for device in self.devices: for terrain in self.terrains: with self.subTest(device=device, terrain=terrain): with build_simulation_context(device=device, dt=self.sim_dt, add_lighting=True) as sim: # Instance new scene for the current terrain and contact prim. scene_cfg = ContactSensorSceneCfg(num_envs=1, env_spacing=1.0, lazy_sensor_update=False) scene_cfg.terrain = terrain scene_cfg.shape = shape_cfg scene_cfg.contact_sensor = ContactSensorCfg( prim_path=shape_cfg.prim_path, track_pose=True, debug_vis=False, update_period=0.0, track_air_time=True, history_length=3, ) scene = InteractiveScene(scene_cfg) # Set variables internally for reference self.sim = sim self.scene = scene # Play the simulation self.sim.reset() # Run contact time and air time tests. self._test_sensor_contact( shape=self.scene["shape"], sensor=self.scene["contact_sensor"], mode=ContactTestMode.IN_CONTACT, ) self._test_sensor_contact( shape=self.scene["shape"], sensor=self.scene["contact_sensor"], mode=ContactTestMode.NON_CONTACT, ) def _test_sensor_contact(self, shape: RigidObject, sensor: ContactSensor, mode: ContactTestMode): """Test for the contact sensor. This test sets the contact prim to a pose either in contact or out of contact with the ground plane for a known duration. Once the contact duration has elapsed, the data stored inside the contact sensor associated with the contact prim is checked against the expected values. This process is repeated for all elements in :attr:`TestContactSensor.durations`, where each successive contact timing test is punctuated by setting the contact prim to the complement of the desired contact mode for 1 sim time-step. Args: shape: The contact prim used for the contact sensor test. sensor: The sensor reporting data to be verified by the contact sensor test. mode: The contact test mode: either contact with ground plane or air time. """ # reset the test state sensor.reset() expected_last_test_contact_time = 0 expected_last_reset_contact_time = 0 # set poses for shape for a given contact sensor test mode. # desired contact mode to set for a given duration. test_pose = None # complement of the desired contact mode used to reset the contact sensor. reset_pose = None if mode == ContactTestMode.IN_CONTACT: test_pose = shape.cfg.contact_pose reset_pose = shape.cfg.non_contact_pose elif mode == ContactTestMode.NON_CONTACT: test_pose = shape.cfg.non_contact_pose reset_pose = shape.cfg.contact_pose else: raise ValueError("Received incompatible contact sensor test mode") for idx in range(len(self.durations)): current_test_time = 0 duration = self.durations[idx] while current_test_time < duration: # set object states to contact the ground plane shape.write_root_pose_to_sim(root_pose=test_pose) # perform simulation step self._perform_sim_step() # increment contact time current_test_time += self.sim_dt # set last contact time to the previous desired contact duration plus the extra dt allowance. expected_last_test_contact_time = self.durations[idx - 1] + self.sim_dt if idx > 0 else 0 # Check the data inside the contact sensor if mode == ContactTestMode.IN_CONTACT: self._check_prim_contact_state_times( sensor=sensor, expected_air_time=0.0, expected_contact_time=self.durations[idx], expected_last_contact_time=expected_last_test_contact_time, expected_last_air_time=expected_last_reset_contact_time, dt=duration + self.sim_dt, ) elif mode == ContactTestMode.NON_CONTACT: self._check_prim_contact_state_times( sensor=sensor, expected_air_time=self.durations[idx], expected_contact_time=0.0, expected_last_contact_time=expected_last_reset_contact_time, expected_last_air_time=expected_last_test_contact_time, dt=duration + self.sim_dt, ) # switch the contact mode for 1 dt step before the next contact test begins. shape.write_root_pose_to_sim(root_pose=reset_pose) # perform simulation step self._perform_sim_step() # set the last air time to 2 sim_dt steps, because last_air_time and last_contact_time # adds an additional sim_dt to the total time spent in the previous contact mode for uncertainty in # when the contact switch happened in between a dt step. expected_last_reset_contact_time = 2 * self.sim_dt def _check_prim_contact_state_times( self, sensor: ContactSensor, expected_air_time: float, expected_contact_time: float, expected_last_air_time: float, expected_last_contact_time: float, dt: float, ) -> None: """Checks contact sensor data matches expected values. Args: sensor: Instance of ContactSensor containing data to be tested. expected_air_time: Air time ground truth. expected_contact_time: Contact time ground truth. expected_last_air_time: Last air time ground truth. expected_last_contact_time: Last contact time ground truth. dt: Time since previous contact mode switch. If the contact prim left contact 0.1 seconds ago, dt should be 0.1 + simulation dt seconds. """ # store current state of the contact prim in_air = False in_contact = False if expected_air_time > 0.0: in_air = True if expected_contact_time > 0.0: in_contact = True measured_contact_time = sensor.data.current_contact_time measured_air_time = sensor.data.current_air_time measured_last_contact_time = sensor.data.last_contact_time measured_last_air_time = sensor.data.last_air_time # check current contact state self.assertAlmostEqual(measured_contact_time.item(), expected_contact_time, places=2) self.assertAlmostEqual(measured_air_time.item(), expected_air_time, places=2) # check last contact state self.assertAlmostEqual(measured_last_contact_time.item(), expected_last_contact_time, places=2) self.assertAlmostEqual(measured_last_air_time.item(), expected_last_air_time, places=2) # check current contact mode self.assertEqual(sensor.compute_first_contact(dt=dt).item(), in_contact) self.assertEqual(sensor.compute_first_air(dt=dt).item(), in_air) def _perform_sim_step(self) -> None: """Updates sensors and steps the contact sensor test scene.""" # write data to simulation self.scene.write_data_to_sim() # simulate self.sim.step(render=not HEADLESS) # update buffers at sim dt self.scene.update(dt=self.sim_dt) if __name__ == "__main__": run_tests()
20,168
Python
41.283019
119
0.597779
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sensors/test_ray_caster_camera.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # ignore private usage of variables warning # pyright: reportPrivateUsage=none """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app app_launcher = AppLauncher(headless=True, offscreen_render=True) simulation_app = app_launcher.app """Rest everything follows.""" import copy import numpy as np import os import torch import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils import omni.replicator.core as rep from pxr import Gf import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.sensors.camera import Camera, CameraCfg from omni.isaac.orbit.sensors.ray_caster import RayCasterCamera, RayCasterCameraCfg, patterns from omni.isaac.orbit.sim import PinholeCameraCfg from omni.isaac.orbit.terrains.trimesh.utils import make_plane from omni.isaac.orbit.terrains.utils import create_prim_from_mesh from omni.isaac.orbit.utils import convert_dict_to_backend from omni.isaac.orbit.utils.timer import Timer # sample camera poses POSITION = [2.5, 2.5, 2.5] QUAT_ROS = [-0.17591989, 0.33985114, 0.82047325, -0.42470819] QUAT_OPENGL = [0.33985113, 0.17591988, 0.42470818, 0.82047324] QUAT_WORLD = [-0.3647052, -0.27984815, -0.1159169, 0.88047623] class TestWarpCamera(unittest.TestCase): """Test for orbit camera sensor""" """ Test Setup and Teardown """ def setUp(self): """Create a blank new stage for each test.""" camera_pattern_cfg = patterns.PinholeCameraPatternCfg( focal_length=24.0, horizontal_aperture=20.955, height=480, width=640, ) self.camera_cfg = RayCasterCameraCfg( prim_path="/World/Camera", mesh_prim_paths=["/World/defaultGroundPlane"], update_period=0, offset=RayCasterCameraCfg.OffsetCfg(pos=(0.0, 0.0, 0.0), rot=(1.0, 0.0, 0.0, 0.0), convention="world"), debug_vis=False, pattern_cfg=camera_pattern_cfg, data_types=[ "distance_to_image_plane", ], ) # Create a new stage stage_utils.create_new_stage() # create xform because placement of camera directly under world is not supported prim_utils.create_prim("/World/Camera", "Xform") # Simulation time-step self.dt = 0.01 # Load kit helper sim_cfg = sim_utils.SimulationCfg(dt=self.dt) self.sim: sim_utils.SimulationContext = sim_utils.SimulationContext(sim_cfg) # Ground-plane mesh = make_plane(size=(2e1, 2e1), height=0.0, center_zero=True) create_prim_from_mesh("/World/defaultGroundPlane", mesh) # load stage stage_utils.update_stage() def tearDown(self): """Stops simulator after each test.""" # close all the opened viewport from before. rep.vp_manager.destroy_hydra_textures("Replicator") # stop simulation # note: cannot use self.sim.stop() since it does one render step after stopping!! This doesn't make sense :( self.sim._timeline.stop() # clear the stage self.sim.clear_all_callbacks() self.sim.clear_instance() """ Tests """ def test_camera_init(self): """Test camera initialization.""" # Create camera camera = RayCasterCamera(cfg=self.camera_cfg) # Play sim self.sim.reset() # Check if camera is initialized self.assertTrue(camera._is_initialized) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Check buffers that exists and have correct shapes self.assertEqual(camera.data.pos_w.shape, (1, 3)) self.assertEqual(camera.data.quat_w_ros.shape, (1, 4)) self.assertEqual(camera.data.quat_w_world.shape, (1, 4)) self.assertEqual(camera.data.quat_w_opengl.shape, (1, 4)) self.assertEqual(camera.data.intrinsic_matrices.shape, (1, 3, 3)) self.assertEqual( camera.data.image_shape, (self.camera_cfg.pattern_cfg.height, self.camera_cfg.pattern_cfg.width) ) self.assertEqual(camera.data.info, [{self.camera_cfg.data_types[0]: None}]) # Simulate physics for _ in range(10): # perform rendering self.sim.step() # update camera camera.update(self.dt) # check image data for im_data in camera.data.output.to_dict().values(): self.assertEqual( im_data.shape, (1, self.camera_cfg.pattern_cfg.height, self.camera_cfg.pattern_cfg.width) ) def test_camera_resolution(self): """Test camera resolution is correctly set.""" # Create camera camera = RayCasterCamera(cfg=self.camera_cfg) # Play sim self.sim.reset() # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() camera.update(self.dt) # access image data and compare shapes for im_data in camera.data.output.to_dict().values(): self.assertTrue(im_data.shape == (1, self.camera_cfg.pattern_cfg.height, self.camera_cfg.pattern_cfg.width)) def test_camera_init_offset(self): """Test camera initialization with offset using different conventions.""" # define the same offset in all conventions # -- ROS convention cam_cfg_offset_ros = copy.deepcopy(self.camera_cfg) cam_cfg_offset_ros.offset = RayCasterCameraCfg.OffsetCfg( pos=POSITION, rot=QUAT_ROS, convention="ros", ) prim_utils.create_prim("/World/CameraOffsetRos", "Xform") cam_cfg_offset_ros.prim_path = "/World/CameraOffsetRos" camera_ros = RayCasterCamera(cam_cfg_offset_ros) # -- OpenGL convention cam_cfg_offset_opengl = copy.deepcopy(self.camera_cfg) cam_cfg_offset_opengl.offset = RayCasterCameraCfg.OffsetCfg( pos=POSITION, rot=QUAT_OPENGL, convention="opengl", ) prim_utils.create_prim("/World/CameraOffsetOpengl", "Xform") cam_cfg_offset_opengl.prim_path = "/World/CameraOffsetOpengl" camera_opengl = RayCasterCamera(cam_cfg_offset_opengl) # -- World convention cam_cfg_offset_world = copy.deepcopy(self.camera_cfg) cam_cfg_offset_world.offset = RayCasterCameraCfg.OffsetCfg( pos=POSITION, rot=QUAT_WORLD, convention="world", ) prim_utils.create_prim("/World/CameraOffsetWorld", "Xform") cam_cfg_offset_world.prim_path = "/World/CameraOffsetWorld" camera_world = RayCasterCamera(cam_cfg_offset_world) # play sim self.sim.reset() # update cameras camera_world.update(self.dt) camera_opengl.update(self.dt) camera_ros.update(self.dt) # check that all transforms are set correctly np.testing.assert_allclose(camera_ros.data.pos_w[0].cpu().numpy(), cam_cfg_offset_ros.offset.pos) np.testing.assert_allclose(camera_opengl.data.pos_w[0].cpu().numpy(), cam_cfg_offset_opengl.offset.pos) np.testing.assert_allclose(camera_world.data.pos_w[0].cpu().numpy(), cam_cfg_offset_world.offset.pos) # check if transform correctly set in output np.testing.assert_allclose(camera_ros.data.pos_w[0].cpu().numpy(), cam_cfg_offset_ros.offset.pos, rtol=1e-5) np.testing.assert_allclose(camera_ros.data.quat_w_ros[0].cpu().numpy(), QUAT_ROS, rtol=1e-5) np.testing.assert_allclose(camera_ros.data.quat_w_opengl[0].cpu().numpy(), QUAT_OPENGL, rtol=1e-5) np.testing.assert_allclose(camera_ros.data.quat_w_world[0].cpu().numpy(), QUAT_WORLD, rtol=1e-5) def test_multi_camera_init(self): """Test multi-camera initialization.""" # create two cameras with different prim paths # -- camera 1 cam_cfg_1 = copy.deepcopy(self.camera_cfg) cam_cfg_1.prim_path = "/World/Camera_1" prim_utils.create_prim("/World/Camera_1", "Xform") # Create camera cam_1 = RayCasterCamera(cam_cfg_1) # -- camera 2 cam_cfg_2 = copy.deepcopy(self.camera_cfg) cam_cfg_2.prim_path = "/World/Camera_2" prim_utils.create_prim("/World/Camera_2", "Xform") cam_2 = RayCasterCamera(cam_cfg_2) # check that the loaded meshes are equal self.assertTrue(cam_1.meshes == cam_2.meshes) # play sim self.sim.reset() # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Simulate physics for _ in range(10): # perform rendering self.sim.step() # update camera cam_1.update(self.dt) cam_2.update(self.dt) # check image data for cam in [cam_1, cam_2]: for im_data in cam.data.output.to_dict().values(): self.assertEqual( im_data.shape, (1, self.camera_cfg.pattern_cfg.height, self.camera_cfg.pattern_cfg.width) ) def test_camera_set_world_poses(self): """Test camera function to set specific world pose.""" camera = RayCasterCamera(self.camera_cfg) # play sim self.sim.reset() # convert to torch tensors position = torch.tensor([POSITION], dtype=torch.float32, device=camera.device) orientation = torch.tensor([QUAT_WORLD], dtype=torch.float32, device=camera.device) # set new pose camera.set_world_poses(position.clone(), orientation.clone(), convention="world") # check if transform correctly set in output torch.testing.assert_close(camera.data.pos_w, position) torch.testing.assert_close(camera.data.quat_w_world, orientation) def test_camera_set_world_poses_from_view(self): """Test camera function to set specific world pose from view.""" camera = RayCasterCamera(self.camera_cfg) # play sim self.sim.reset() # convert to torch tensors eyes = torch.tensor([POSITION], dtype=torch.float32, device=camera.device) targets = torch.tensor([[0.0, 0.0, 0.0]], dtype=torch.float32, device=camera.device) quat_ros_gt = torch.tensor([QUAT_ROS], dtype=torch.float32, device=camera.device) # set new pose camera.set_world_poses_from_view(eyes.clone(), targets.clone()) # check if transform correctly set in output torch.testing.assert_close(camera.data.pos_w, eyes) torch.testing.assert_close(camera.data.quat_w_ros, quat_ros_gt) def test_intrinsic_matrix(self): """Checks that the camera's set and retrieve methods work for intrinsic matrix.""" camera_cfg = copy.deepcopy(self.camera_cfg) camera_cfg.pattern_cfg.height = 240 camera_cfg.pattern_cfg.width = 320 camera = RayCasterCamera(camera_cfg) # play sim self.sim.reset() # Desired properties (obtained from realsense camera at 320x240 resolution) rs_intrinsic_matrix = [229.31640625, 0.0, 164.810546875, 0.0, 229.826171875, 122.1650390625, 0.0, 0.0, 1.0] rs_intrinsic_matrix = torch.tensor(rs_intrinsic_matrix, device=camera.device).reshape(3, 3).unsqueeze(0) # Set matrix into simulator camera.set_intrinsic_matrices(rs_intrinsic_matrix.clone()) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Simulate physics for _ in range(10): # perform rendering self.sim.step() # update camera camera.update(self.dt) # Check that matrix is correct # TODO: This is not correctly setting all values in the matrix since the # vertical aperture and aperture offsets are not being set correctly # This is a bug in the simulator. torch.testing.assert_close(rs_intrinsic_matrix[0, 0, 0], camera.data.intrinsic_matrices[0, 0, 0]) # torch.testing.assert_close(rs_intrinsic_matrix[0, 1, 1], camera.data.intrinsic_matrices[0, 1, 1]) def test_throughput(self): """Checks that the single camera gets created properly with a rig.""" # Create directory temp dir to dump the results file_dir = os.path.dirname(os.path.realpath(__file__)) temp_dir = os.path.join(file_dir, "output", "camera", "throughput") os.makedirs(temp_dir, exist_ok=True) # Create replicator writer rep_writer = rep.BasicWriter(output_dir=temp_dir, frame_padding=3) # create camera camera_cfg = copy.deepcopy(self.camera_cfg) camera_cfg.pattern_cfg.height = 480 camera_cfg.pattern_cfg.width = 640 camera = RayCasterCamera(camera_cfg) # Play simulator self.sim.reset() # Set camera pose eyes = torch.tensor([[2.5, 2.5, 2.5]], dtype=torch.float32, device=camera.device) targets = torch.tensor([[0.0, 0.0, 0.0]], dtype=torch.float32, device=camera.device) camera.set_world_poses_from_view(eyes, targets) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Simulate physics for _ in range(5): # perform rendering self.sim.step() # update camera with Timer(f"Time taken for updating camera with shape {camera.image_shape}"): camera.update(self.dt) # Save images with Timer(f"Time taken for writing data with shape {camera.image_shape} "): # Pack data back into replicator format to save them using its writer rep_output = dict() camera_data = convert_dict_to_backend(camera.data.output[0].to_dict(), backend="numpy") for key, data, info in zip(camera_data.keys(), camera_data.values(), camera.data.info[0].values()): if info is not None: rep_output[key] = {"data": data, "info": info} else: rep_output[key] = data # Save images rep_output["trigger_outputs"] = {"on_time": camera.frame[0]} rep_writer.write(rep_output) print("----------------------------------------") # Check image data for im_data in camera.data.output.values(): self.assertEqual(im_data.shape, (1, camera_cfg.pattern_cfg.height, camera_cfg.pattern_cfg.width)) def test_output_equal_to_usdcamera(self): camera_pattern_cfg = patterns.PinholeCameraPatternCfg( focal_length=24.0, horizontal_aperture=20.955, height=240, width=320, ) prim_utils.create_prim("/World/Camera_warp", "Xform") camera_cfg_warp = RayCasterCameraCfg( prim_path="/World/Camera", mesh_prim_paths=["/World/defaultGroundPlane"], update_period=0, offset=RayCasterCameraCfg.OffsetCfg(pos=(0.0, 0.0, 0.0), rot=(1.0, 0.0, 0.0, 0.0)), debug_vis=False, pattern_cfg=camera_pattern_cfg, data_types=["distance_to_image_plane", "distance_to_camera", "normals"], ) camera_warp = RayCasterCamera(camera_cfg_warp) # create usd camera camera_cfg_usd = CameraCfg( height=240, width=320, prim_path="/World/Camera_usd", update_period=0, data_types=["distance_to_image_plane", "distance_to_camera", "normals"], spawn=PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(1e-4, 1.0e5) ), ) camera_usd = Camera(camera_cfg_usd) # play sim self.sim.reset() self.sim.play() # convert to torch tensors eyes = torch.tensor([[2.5, 2.5, 4.5]], dtype=torch.float32, device=camera_warp.device) targets = torch.tensor([[0.0, 0.0, 0.0]], dtype=torch.float32, device=camera_warp.device) # set views camera_warp.set_world_poses_from_view(eyes, targets) camera_usd.set_world_poses_from_view(eyes, targets) # perform steps for _ in range(5): self.sim.step() # update camera camera_usd.update(self.dt) camera_warp.update(self.dt) # check image data torch.testing.assert_close( camera_usd.data.output["distance_to_image_plane"], camera_warp.data.output["distance_to_image_plane"], rtol=5e-3, atol=1e-4, ) torch.testing.assert_close( camera_usd.data.output["distance_to_camera"], camera_warp.data.output["distance_to_camera"], rtol=5e-3, atol=1e-4, ) torch.testing.assert_close( camera_usd.data.output["normals"][..., :3], camera_warp.data.output["normals"], rtol=1e-5, atol=1e-4, ) def test_output_equal_to_usdcamera_offset(self): offset_rot = [-0.1251, 0.3617, 0.8731, -0.3020] camera_pattern_cfg = patterns.PinholeCameraPatternCfg( focal_length=24.0, horizontal_aperture=20.955, height=240, width=320, ) prim_utils.create_prim("/World/Camera_warp", "Xform") camera_cfg_warp = RayCasterCameraCfg( prim_path="/World/Camera", mesh_prim_paths=["/World/defaultGroundPlane"], update_period=0, offset=RayCasterCameraCfg.OffsetCfg(pos=(2.5, 2.5, 4.0), rot=offset_rot, convention="ros"), debug_vis=False, pattern_cfg=camera_pattern_cfg, data_types=["distance_to_image_plane", "distance_to_camera", "normals"], ) camera_warp = RayCasterCamera(camera_cfg_warp) # create usd camera camera_cfg_usd = CameraCfg( height=240, width=320, prim_path="/World/Camera_usd", update_period=0, data_types=["distance_to_image_plane", "distance_to_camera", "normals"], spawn=PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(1e-6, 1.0e5) ), offset=CameraCfg.OffsetCfg(pos=(2.5, 2.5, 4.0), rot=offset_rot, convention="ros"), ) camera_usd = Camera(camera_cfg_usd) # play sim self.sim.reset() self.sim.play() # perform steps for _ in range(5): self.sim.step() # update camera camera_usd.update(self.dt) camera_warp.update(self.dt) # check image data torch.testing.assert_close( camera_usd.data.output["distance_to_image_plane"], camera_warp.data.output["distance_to_image_plane"], rtol=5e-3, atol=1e-4, ) torch.testing.assert_close( camera_usd.data.output["distance_to_camera"], camera_warp.data.output["distance_to_camera"], rtol=5e-3, atol=1e-4, ) torch.testing.assert_close( camera_usd.data.output["normals"][..., :3], camera_warp.data.output["normals"], rtol=1e-5, atol=1e-4, ) def test_output_equal_to_usdcamera_prim_offset(self): """Test that the output of the ray caster camera is equal to the output of the usd camera when both are placed under an XForm prim that is translated and rotated from the world origin .""" offset_rot = [-0.1251, 0.3617, 0.8731, -0.3020] # gf quat gf_quatf = Gf.Quatd() gf_quatf.SetReal(QUAT_OPENGL[0]) gf_quatf.SetImaginary(tuple(QUAT_OPENGL[1:])) camera_pattern_cfg = patterns.PinholeCameraPatternCfg( focal_length=24.0, horizontal_aperture=20.955, height=240, width=320, ) prim_raycast_cam = prim_utils.create_prim("/World/Camera_warp", "Xform") prim_raycast_cam.GetAttribute("xformOp:translate").Set(tuple(POSITION)) prim_raycast_cam.GetAttribute("xformOp:orient").Set(gf_quatf) camera_cfg_warp = RayCasterCameraCfg( prim_path="/World/Camera_warp", mesh_prim_paths=["/World/defaultGroundPlane"], update_period=0, offset=RayCasterCameraCfg.OffsetCfg(pos=(0, 0, 2.0), rot=offset_rot, convention="ros"), debug_vis=False, pattern_cfg=camera_pattern_cfg, data_types=["distance_to_image_plane", "distance_to_camera", "normals"], ) camera_warp = RayCasterCamera(camera_cfg_warp) # create usd camera camera_cfg_usd = CameraCfg( height=240, width=320, prim_path="/World/Camera_usd/camera", update_period=0, data_types=["distance_to_image_plane", "distance_to_camera", "normals"], spawn=PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(1e-6, 1.0e5) ), offset=CameraCfg.OffsetCfg(pos=(0, 0, 2.0), rot=offset_rot, convention="ros"), ) prim_usd = prim_utils.create_prim("/World/Camera_usd", "Xform") prim_usd.GetAttribute("xformOp:translate").Set(tuple(POSITION)) prim_usd.GetAttribute("xformOp:orient").Set(gf_quatf) camera_usd = Camera(camera_cfg_usd) # play sim self.sim.reset() self.sim.play() # perform steps for _ in range(5): self.sim.step() # update camera camera_usd.update(self.dt) camera_warp.update(self.dt) # check if pos and orientation are correct torch.testing.assert_close(camera_warp.data.pos_w[0], camera_usd.data.pos_w[0]) torch.testing.assert_close(camera_warp.data.quat_w_ros[0], camera_usd.data.quat_w_ros[0]) # check image data torch.testing.assert_close( camera_usd.data.output["distance_to_image_plane"], camera_warp.data.output["distance_to_image_plane"], rtol=5e-3, atol=1e-4, ) torch.testing.assert_close( camera_usd.data.output["distance_to_camera"], camera_warp.data.output["distance_to_camera"], rtol=5e-3, atol=1e-4, ) torch.testing.assert_close( camera_usd.data.output["normals"][..., :3], camera_warp.data.output["normals"], rtol=1e-5, atol=1e-4, ) if __name__ == "__main__": run_tests()
23,839
Python
39.27027
120
0.598851
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/envs/check_base_env_floating_cube.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates the base environment concept that combines a scene with an action, observation and event manager for a floating cube. """ """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates how to use the concept of an Environment.") parser.add_argument("--num_envs", type=int, default=64, help="Number of environments to spawn.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import torch import omni.isaac.orbit.envs.mdp as mdp import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import AssetBaseCfg, RigidObject, RigidObjectCfg from omni.isaac.orbit.envs import BaseEnv, BaseEnvCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers.action_manager import ActionTerm, ActionTermCfg from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass ## # Scene definition ## @configclass class MySceneCfg(InteractiveSceneCfg): """Example scene configuration.""" # add terrain terrain = TerrainImporterCfg(prim_path="/World/ground", terrain_type="plane", debug_vis=False) # add cube cube: RigidObjectCfg = RigidObjectCfg( prim_path="{ENV_REGEX_NS}/cube", spawn=sim_utils.CuboidCfg( size=(0.2, 0.2, 0.2), rigid_props=sim_utils.RigidBodyPropertiesCfg(max_depenetration_velocity=1.0), mass_props=sim_utils.MassPropertiesCfg(mass=1.0), physics_material=sim_utils.RigidBodyMaterialCfg(), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.5, 0.0, 0.0)), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(0.0, 0.0, 5)), ) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) ## # Action Term ## class CubeActionTerm(ActionTerm): """Simple action term that implements a PD controller to track a target position.""" _asset: RigidObject """The articulation asset on which the action term is applied.""" def __init__(self, cfg: ActionTermCfg, env: BaseEnv): # call super constructor super().__init__(cfg, env) # create buffers self._raw_actions = torch.zeros(env.num_envs, 3, device=self.device) self._processed_actions = torch.zeros(env.num_envs, 3, device=self.device) self._vel_command = torch.zeros(self.num_envs, 6, device=self.device) # gains of controller self.p_gain = 5.0 self.d_gain = 0.5 """ Properties. """ @property def action_dim(self) -> int: return self._raw_actions.shape[1] @property def raw_actions(self) -> torch.Tensor: # desired: (x, y, z) return self._raw_actions @property def processed_actions(self) -> torch.Tensor: return self._processed_actions """ Operations """ def process_actions(self, actions: torch.Tensor): # store the raw actions self._raw_actions[:] = actions # no-processing of actions self._processed_actions[:] = self._raw_actions[:] def apply_actions(self): # implement a PD controller to track the target position pos_error = self._processed_actions - (self._asset.data.root_pos_w - self._env.scene.env_origins) vel_error = -self._asset.data.root_lin_vel_w # set velocity targets self._vel_command[:, :3] = self.p_gain * pos_error + self.d_gain * vel_error self._asset.write_root_velocity_to_sim(self._vel_command) @configclass class CubeActionTermCfg(ActionTermCfg): """Configuration for the cube action term.""" class_type: type = CubeActionTerm ## # Observation Term ## def base_position(env: BaseEnv, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Root linear velocity in the asset's root frame.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return asset.data.root_pos_w - env.scene.env_origins ## # Environment settings ## @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_pos = CubeActionTermCfg(asset_name="cube") @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # cube velocity position = ObsTerm(func=base_position, params={"asset_cfg": SceneEntityCfg("cube")}) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" reset_base = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (-0.5, 0.5), "y": (-0.5, 0.5), "z": (-0.5, 0.5), }, "asset_cfg": SceneEntityCfg("cube"), }, ) ## # Environment configuration ## @configclass class CubeEnvCfg(BaseEnvCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=args_cli.num_envs, env_spacing=2.5, replicate_physics=True) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() events: EventCfg = EventCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 2 # simulation settings self.sim.dt = 0.01 self.sim.physics_material = self.scene.terrain.physics_material def main(): """Main function.""" # setup base environment env = BaseEnv(cfg=CubeEnvCfg()) # setup target position commands target_position = torch.rand(env.num_envs, 3, device=env.device) * 2 target_position[:, 2] += 2.0 # offset all targets so that they move to the world origin target_position -= env.scene.env_origins # simulate physics count = 0 while simulation_app.is_running(): with torch.inference_mode(): # reset if count % 300 == 0: env.reset() count = 0 # step env obs, _ = env.step(target_position) # print mean squared position error between target and current position error = torch.norm(obs["policy"] - target_position).mean().item() print(f"[Step: {count:04d}]: Mean position error: {error:.4f}") # update counter count += 1 if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
7,627
Python
27.569288
114
0.649797
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/envs/test_base_env.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # ignore private usage of variables warning # pyright: reportPrivateUsage=none from __future__ import annotations """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher # Can set this to False to see the GUI for debugging HEADLESS = True # launch omniverse app app_launcher = AppLauncher(headless=HEADLESS) simulation_app = app_launcher.app """Rest everything follows.""" import torch import unittest import omni.usd from omni.isaac.orbit.envs import BaseEnv, BaseEnvCfg from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.utils import configclass @configclass class EmptyActionsCfg: """Action specifications for the environment.""" pass @configclass class EmptySceneCfg(InteractiveSceneCfg): """Configuration for an empty scene.""" pass def get_empty_base_env_cfg(device: str = "cuda:0", num_envs: int = 1, env_spacing: float = 1.0): """Generate base environment config based on device""" @configclass class EmptyEnvCfg(BaseEnvCfg): """Configuration for the empty test environment.""" # Scene settings scene: EmptySceneCfg = EmptySceneCfg(num_envs=num_envs, env_spacing=env_spacing) # Basic settings actions: EmptyActionsCfg = EmptyActionsCfg() def __post_init__(self): """Post initialization.""" # step settings self.decimation = 4 # env step every 4 sim steps: 200Hz / 4 = 50Hz # simulation settings self.sim.dt = 0.005 # sim step every 5ms: 200Hz # pass device down from test self.sim.device = device return EmptyEnvCfg() class TestBaseEnv(unittest.TestCase): """Test for base env class""" """ Tests """ def test_initialization(self): for device in ("cuda:0", "cpu"): with self.subTest(device=device): # create a new stage omni.usd.get_context().new_stage() # create environment env = BaseEnv(cfg=get_empty_base_env_cfg(device=device)) # check size of action manager terms self.assertEqual(env.action_manager.total_action_dim, 0) self.assertEqual(len(env.action_manager.active_terms), 0) self.assertEqual(len(env.action_manager.action_term_dim), 0) # check size of observation manager terms self.assertEqual(len(env.observation_manager.active_terms), 0) self.assertEqual(len(env.observation_manager.group_obs_dim), 0) self.assertEqual(len(env.observation_manager.group_obs_term_dim), 0) self.assertEqual(len(env.observation_manager.group_obs_concatenate), 0) # create actions of correct size (1,0) act = torch.randn_like(env.action_manager.action) # step environment to verify setup for _ in range(2): obs, ext = env.step(action=act) # close the environment env.close()
3,207
Python
30.45098
96
0.635485
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/envs/test_null_command_term.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import unittest from collections import namedtuple from omni.isaac.orbit.envs.mdp import NullCommandCfg class TestNullCommandTerm(unittest.TestCase): """Test cases for null command generator.""" def setUp(self) -> None: self.env = namedtuple("RLTaskEnv", ["num_envs", "dt", "device"])(20, 0.1, "cpu") def test_str(self): """Test the string representation of the command manager.""" cfg = NullCommandCfg() command_term = cfg.class_type(cfg, self.env) # print the expected string print() print(command_term) def test_compute(self): """Test the compute function. For null command generator, it does nothing.""" cfg = NullCommandCfg() command_term = cfg.class_type(cfg, self.env) # test the reset function command_term.reset() # test the compute function command_term.compute(dt=self.env.dt) # expect error with self.assertRaises(RuntimeError): command_term.command if __name__ == "__main__": run_tests()
1,423
Python
26.384615
88
0.657765
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/envs/check_base_env_anymal_locomotion.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates the environment concept that combines a scene with an action, observation and event manager for a quadruped robot. A locomotion policy is loaded and used to control the robot. This shows how to use the environment with a policy. """ """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates how to use the concept of an Environment.") parser.add_argument("--num_envs", type=int, default=64, help="Number of environments to spawn.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import os import torch import omni.isaac.orbit.envs.mdp as mdp import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import BaseEnv, BaseEnvCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors import RayCasterCfg, patterns from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR, check_file_path, read_file from omni.isaac.orbit.utils.noise import AdditiveUniformNoiseCfg as Unoise ## # Pre-defined configs ## from omni.isaac.orbit.terrains.config.rough import ROUGH_TERRAINS_CFG # isort: skip from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG # isort: skip ## # Scene definition ## @configclass class MySceneCfg(InteractiveSceneCfg): """Example scene configuration.""" # add terrain terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="generator", terrain_generator=ROUGH_TERRAINS_CFG, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, ), debug_vis=False, ) # add robot robot: ArticulationCfg = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # sensors height_scanner = RayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 20.0)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=True, mesh_prim_paths=["/World/ground"], ) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) ## # MDP settings ## def constant_commands(env: BaseEnv) -> torch.Tensor: """The generated command from the command generator.""" return torch.tensor([[1, 0, 0]], device=env.device).repeat(env.num_envs, 1) @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_pos = mdp.JointPositionActionCfg(asset_name="robot", joint_names=[".*"], scale=0.5, use_default_offset=True) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) base_lin_vel = ObsTerm(func=mdp.base_lin_vel, noise=Unoise(n_min=-0.1, n_max=0.1)) base_ang_vel = ObsTerm(func=mdp.base_ang_vel, noise=Unoise(n_min=-0.2, n_max=0.2)) projected_gravity = ObsTerm( func=mdp.projected_gravity, noise=Unoise(n_min=-0.05, n_max=0.05), ) velocity_commands = ObsTerm(func=constant_commands) joint_pos = ObsTerm(func=mdp.joint_pos_rel, noise=Unoise(n_min=-0.01, n_max=0.01)) joint_vel = ObsTerm(func=mdp.joint_vel_rel, noise=Unoise(n_min=-1.5, n_max=1.5)) actions = ObsTerm(func=mdp.last_action) height_scan = ObsTerm( func=mdp.height_scan, params={"sensor_cfg": SceneEntityCfg("height_scanner")}, noise=Unoise(n_min=-0.1, n_max=0.1), clip=(-1.0, 1.0), ) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" reset_base = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (-0.5, 0.5), "y": (-0.5, 0.5), "z": (-0.5, 0.5), "roll": (-0.5, 0.5), "pitch": (-0.5, 0.5), "yaw": (-0.5, 0.5), }, }, ) ## # Environment configuration ## @configclass class QuadrupedEnvCfg(BaseEnvCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=args_cli.num_envs, env_spacing=2.5, replicate_physics=True) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() events: EventCfg = EventCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 4 self.episode_length_s = 20.0 # simulation settings self.sim.dt = 0.005 # update sensor update periods # we tick all the sensors based on the smallest update period (physics update period) if self.scene.height_scanner is not None: self.scene.height_scanner.update_period = self.decimation * self.sim.dt def main(): """Main function.""" # setup base environment env = BaseEnv(cfg=QuadrupedEnvCfg()) obs, _ = env.reset() # load level policy policy_path = os.path.join(ISAAC_ORBIT_NUCLEUS_DIR, "Policies", "ANYmal-C", "policy.pt") # check if policy file exists if not check_file_path(policy_path): raise FileNotFoundError(f"Policy file '{policy_path}' does not exist.") file_bytes = read_file(policy_path) # jit load the policy locomotion_policy = torch.jit.load(file_bytes) locomotion_policy.to(env.device) locomotion_policy.eval() # simulate physics count = 0 while simulation_app.is_running(): with torch.inference_mode(): # reset if count % 1000 == 0: obs, _ = env.reset() count = 0 print("[INFO]: Resetting robots state...") # infer action action = locomotion_policy(obs["policy"]) # step env obs, _ = env.step(action) # update counter count += 1 if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
7,495
Python
29.348178
118
0.644029
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/managers/test_observation_manager.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # needed to import for allowing type-hinting: torch.Tensor | None from __future__ import annotations """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import torch import unittest from collections import namedtuple from omni.isaac.orbit.managers import ManagerTermBase, ObservationGroupCfg, ObservationManager, ObservationTermCfg from omni.isaac.orbit.utils import configclass def grilled_chicken(env): return torch.ones(env.num_envs, 4, device=env.device) def grilled_chicken_with_bbq(env, bbq: bool): return bbq * torch.ones(env.num_envs, 1, device=env.device) def grilled_chicken_with_curry(env, hot: bool): return hot * 2 * torch.ones(env.num_envs, 1, device=env.device) def grilled_chicken_with_yoghurt(env, hot: bool, bland: float): return hot * bland * torch.ones(env.num_envs, 5, device=env.device) def grilled_chicken_with_yoghurt_and_bbq(env, hot: bool, bland: float, bbq: bool = False): return hot * bland * bbq * torch.ones(env.num_envs, 3, device=env.device) class complex_function_class(ManagerTermBase): def __init__(self, cfg: ObservationTermCfg, env: object): self.cfg = cfg self.env = env # define some variables self._time_passed = torch.zeros(env.num_envs, device=env.device) def reset(self, env_ids: torch.Tensor | None = None): if env_ids is None: env_ids = slice(None) self._time_passed[env_ids] = 0.0 def __call__(self, env: object, interval: float) -> torch.Tensor: self._time_passed += interval return self._time_passed.clone().unsqueeze(-1) class non_callable_complex_function_class(ManagerTermBase): def __init__(self, cfg: ObservationTermCfg, env: object): self.cfg = cfg self.env = env # define some variables self._cost = 2 * self.env.num_envs def call_me(self, env: object) -> torch.Tensor: return torch.ones(env.num_envs, 2, device=env.device) * self._cost class MyDataClass: def __init__(self, num_envs: int, device: str): self.pos_w = torch.rand((num_envs, 3), device=device) self.lin_vel_w = torch.rand((num_envs, 3), device=device) def pos_w_data(env) -> torch.Tensor: return env.data.pos_w def lin_vel_w_data(env) -> torch.Tensor: return env.data.lin_vel_w class TestObservationManager(unittest.TestCase): """Test cases for various situations with observation manager.""" def setUp(self) -> None: # set up the environment self.num_envs = 20 self.device = "cuda:0" # create dummy environment self.env = namedtuple("BaseEnv", ["num_envs", "device", "data"])( self.num_envs, self.device, MyDataClass(self.num_envs, self.device) ) def test_str(self): """Test the string representation of the observation manager.""" @configclass class MyObservationManagerCfg: """Test config class for observation manager.""" @configclass class SampleGroupCfg(ObservationGroupCfg): """Test config class for policy observation group.""" term_1 = ObservationTermCfg(func="__main__:grilled_chicken", scale=10) term_2 = ObservationTermCfg(func=grilled_chicken, scale=2) term_3 = ObservationTermCfg(func=grilled_chicken_with_bbq, scale=5, params={"bbq": True}) term_4 = ObservationTermCfg( func=grilled_chicken_with_yoghurt, scale=1.0, params={"hot": False, "bland": 2.0} ) term_5 = ObservationTermCfg( func=grilled_chicken_with_yoghurt_and_bbq, scale=1.0, params={"hot": False, "bland": 2.0} ) policy: ObservationGroupCfg = SampleGroupCfg() # create observation manager cfg = MyObservationManagerCfg() self.obs_man = ObservationManager(cfg, self.env) self.assertEqual(len(self.obs_man.active_terms["policy"]), 5) # print the expected string print() print(self.obs_man) def test_config_equivalence(self): """Test the equivalence of observation manager created from different config types.""" # create from config class @configclass class MyObservationManagerCfg: """Test config class for observation manager.""" @configclass class SampleGroupCfg(ObservationGroupCfg): """Test config class for policy observation group.""" your_term = ObservationTermCfg(func="__main__:grilled_chicken", scale=10) his_term = ObservationTermCfg(func=grilled_chicken, scale=2) my_term = ObservationTermCfg(func=grilled_chicken_with_bbq, scale=5, params={"bbq": True}) her_term = ObservationTermCfg( func=grilled_chicken_with_yoghurt, scale=1.0, params={"hot": False, "bland": 2.0} ) policy = SampleGroupCfg() critic = SampleGroupCfg(concatenate_terms=False, her_term=None) cfg = MyObservationManagerCfg() obs_man_from_cfg = ObservationManager(cfg, self.env) # create from config class @configclass class MyObservationManagerAnnotatedCfg: """Test config class for observation manager with annotations on terms.""" @configclass class SampleGroupCfg(ObservationGroupCfg): """Test config class for policy observation group.""" your_term: ObservationTermCfg = ObservationTermCfg(func="__main__:grilled_chicken", scale=10) his_term: ObservationTermCfg = ObservationTermCfg(func=grilled_chicken, scale=2) my_term: ObservationTermCfg = ObservationTermCfg( func=grilled_chicken_with_bbq, scale=5, params={"bbq": True} ) her_term: ObservationTermCfg = ObservationTermCfg( func=grilled_chicken_with_yoghurt, scale=1.0, params={"hot": False, "bland": 2.0} ) policy: ObservationGroupCfg = SampleGroupCfg() critic: ObservationGroupCfg = SampleGroupCfg(concatenate_terms=False, her_term=None) cfg = MyObservationManagerAnnotatedCfg() obs_man_from_annotated_cfg = ObservationManager(cfg, self.env) # check equivalence # parsed terms self.assertEqual(obs_man_from_cfg.active_terms, obs_man_from_annotated_cfg.active_terms) self.assertEqual(obs_man_from_cfg.group_obs_term_dim, obs_man_from_annotated_cfg.group_obs_term_dim) self.assertEqual(obs_man_from_cfg.group_obs_dim, obs_man_from_annotated_cfg.group_obs_dim) # parsed term configs self.assertEqual(obs_man_from_cfg._group_obs_term_cfgs, obs_man_from_annotated_cfg._group_obs_term_cfgs) self.assertEqual(obs_man_from_cfg._group_obs_concatenate, obs_man_from_annotated_cfg._group_obs_concatenate) def test_config_terms(self): """Test the number of terms in the observation manager.""" @configclass class MyObservationManagerCfg: """Test config class for observation manager.""" @configclass class SampleGroupCfg(ObservationGroupCfg): """Test config class for policy observation group.""" term_1 = ObservationTermCfg(func=grilled_chicken, scale=10) term_2 = ObservationTermCfg(func=grilled_chicken_with_curry, scale=0.0, params={"hot": False}) policy: ObservationGroupCfg = SampleGroupCfg() critic: ObservationGroupCfg = SampleGroupCfg(term_2=None) # create observation manager cfg = MyObservationManagerCfg() self.obs_man = ObservationManager(cfg, self.env) self.assertEqual(len(self.obs_man.active_terms["policy"]), 2) self.assertEqual(len(self.obs_man.active_terms["critic"]), 1) def test_compute(self): """Test the observation computation.""" @configclass class MyObservationManagerCfg: """Test config class for observation manager.""" @configclass class PolicyCfg(ObservationGroupCfg): """Test config class for policy observation group.""" term_1 = ObservationTermCfg(func=grilled_chicken, scale=10) term_2 = ObservationTermCfg(func=grilled_chicken_with_curry, scale=0.0, params={"hot": False}) term_3 = ObservationTermCfg(func=pos_w_data, scale=2.0) term_4 = ObservationTermCfg(func=lin_vel_w_data, scale=1.5) @configclass class CriticCfg(ObservationGroupCfg): term_1 = ObservationTermCfg(func=pos_w_data, scale=2.0) term_2 = ObservationTermCfg(func=lin_vel_w_data, scale=1.5) term_3 = ObservationTermCfg(func=pos_w_data, scale=2.0) term_4 = ObservationTermCfg(func=lin_vel_w_data, scale=1.5) policy: ObservationGroupCfg = PolicyCfg() critic: ObservationGroupCfg = CriticCfg() # create observation manager cfg = MyObservationManagerCfg() self.obs_man = ObservationManager(cfg, self.env) # compute observation using manager observations = self.obs_man.compute() # obtain the group observations obs_policy: torch.Tensor = observations["policy"] obs_critic: torch.Tensor = observations["critic"] # check the observation shape self.assertEqual((self.env.num_envs, 11), obs_policy.shape) self.assertEqual((self.env.num_envs, 12), obs_critic.shape) # make sure that the data are the same for same terms # -- within group torch.testing.assert_close(obs_critic[:, 0:3], obs_critic[:, 6:9]) torch.testing.assert_close(obs_critic[:, 3:6], obs_critic[:, 9:12]) # -- between groups torch.testing.assert_close(obs_policy[:, 5:8], obs_critic[:, 0:3]) torch.testing.assert_close(obs_policy[:, 8:11], obs_critic[:, 3:6]) def test_invalid_observation_config(self): """Test the invalid observation config.""" @configclass class MyObservationManagerCfg: """Test config class for observation manager.""" @configclass class PolicyCfg(ObservationGroupCfg): """Test config class for policy observation group.""" term_1 = ObservationTermCfg(func=grilled_chicken_with_bbq, scale=0.1, params={"hot": False}) term_2 = ObservationTermCfg(func=grilled_chicken_with_yoghurt, scale=2.0, params={"hot": False}) policy: ObservationGroupCfg = PolicyCfg() # create observation manager cfg = MyObservationManagerCfg() # check the invalid config with self.assertRaises(ValueError): self.obs_man = ObservationManager(cfg, self.env) def test_callable_class_term(self): """Test the observation computation with callable class term.""" @configclass class MyObservationManagerCfg: """Test config class for observation manager.""" @configclass class PolicyCfg(ObservationGroupCfg): """Test config class for policy observation group.""" term_1 = ObservationTermCfg(func=grilled_chicken, scale=10) term_2 = ObservationTermCfg(func=complex_function_class, scale=0.2, params={"interval": 0.5}) policy: ObservationGroupCfg = PolicyCfg() # create observation manager cfg = MyObservationManagerCfg() self.obs_man = ObservationManager(cfg, self.env) # compute observation using manager observations = self.obs_man.compute() # check the observation self.assertEqual((self.env.num_envs, 5), observations["policy"].shape) self.assertAlmostEqual(observations["policy"][0, -1].item(), 0.2 * 0.5) # check memory in term num_exec_count = 10 for _ in range(num_exec_count): observations = self.obs_man.compute() self.assertAlmostEqual(observations["policy"][0, -1].item(), 0.2 * 0.5 * (num_exec_count + 1)) # check reset works self.obs_man.reset(env_ids=[0, 4, 9, 14, 19]) observations = self.obs_man.compute() self.assertAlmostEqual(observations["policy"][0, -1].item(), 0.2 * 0.5) self.assertAlmostEqual(observations["policy"][1, -1].item(), 0.2 * 0.5 * (num_exec_count + 2)) def test_non_callable_class_term(self): """Test the observation computation with non-callable class term.""" @configclass class MyObservationManagerCfg: """Test config class for observation manager.""" @configclass class PolicyCfg(ObservationGroupCfg): """Test config class for policy observation group.""" term_1 = ObservationTermCfg(func=grilled_chicken, scale=10) term_2 = ObservationTermCfg(func=non_callable_complex_function_class, scale=0.2) policy: ObservationGroupCfg = PolicyCfg() # create observation manager config cfg = MyObservationManagerCfg() # create observation manager with self.assertRaises(NotImplementedError): self.obs_man = ObservationManager(cfg, self.env) if __name__ == "__main__": run_tests()
13,717
Python
38.762319
116
0.632135
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/managers/test_reward_manager.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import unittest from collections import namedtuple from omni.isaac.orbit.managers import RewardManager, RewardTermCfg from omni.isaac.orbit.utils import configclass def grilled_chicken(env): return 1 def grilled_chicken_with_bbq(env, bbq: bool): return 0 def grilled_chicken_with_curry(env, hot: bool): return 0 def grilled_chicken_with_yoghurt(env, hot: bool, bland: float): return 0 class TestRewardManager(unittest.TestCase): """Test cases for various situations with reward manager.""" def setUp(self) -> None: self.env = namedtuple("RLTaskEnv", ["num_envs", "dt", "device"])(20, 0.1, "cpu") def test_str(self): """Test the string representation of the reward manager.""" cfg = { "term_1": RewardTermCfg(func=grilled_chicken, weight=10), "term_2": RewardTermCfg(func=grilled_chicken_with_bbq, weight=5, params={"bbq": True}), "term_3": RewardTermCfg( func=grilled_chicken_with_yoghurt, weight=1.0, params={"hot": False, "bland": 2.0}, ), } self.rew_man = RewardManager(cfg, self.env) self.assertEqual(len(self.rew_man.active_terms), 3) # print the expected string print() print(self.rew_man) def test_config_equivalence(self): """Test the equivalence of reward manager created from different config types.""" # create from dictionary cfg = { "my_term": RewardTermCfg(func=grilled_chicken, weight=10), "your_term": RewardTermCfg(func=grilled_chicken_with_bbq, weight=2.0, params={"bbq": True}), "his_term": RewardTermCfg( func=grilled_chicken_with_yoghurt, weight=1.0, params={"hot": False, "bland": 2.0}, ), } rew_man_from_dict = RewardManager(cfg, self.env) # create from config class @configclass class MyRewardManagerCfg: """Reward manager config with no type annotations.""" my_term = RewardTermCfg(func=grilled_chicken, weight=10.0) your_term = RewardTermCfg(func=grilled_chicken_with_bbq, weight=2.0, params={"bbq": True}) his_term = RewardTermCfg(func=grilled_chicken_with_yoghurt, weight=1.0, params={"hot": False, "bland": 2.0}) cfg = MyRewardManagerCfg() rew_man_from_cfg = RewardManager(cfg, self.env) # create from config class @configclass class MyRewardManagerAnnotatedCfg: """Reward manager config with type annotations.""" my_term: RewardTermCfg = RewardTermCfg(func=grilled_chicken, weight=10.0) your_term: RewardTermCfg = RewardTermCfg(func=grilled_chicken_with_bbq, weight=2.0, params={"bbq": True}) his_term: RewardTermCfg = RewardTermCfg( func=grilled_chicken_with_yoghurt, weight=1.0, params={"hot": False, "bland": 2.0} ) cfg = MyRewardManagerAnnotatedCfg() rew_man_from_annotated_cfg = RewardManager(cfg, self.env) # check equivalence # parsed terms self.assertEqual(rew_man_from_dict.active_terms, rew_man_from_annotated_cfg.active_terms) self.assertEqual(rew_man_from_cfg.active_terms, rew_man_from_annotated_cfg.active_terms) self.assertEqual(rew_man_from_dict.active_terms, rew_man_from_cfg.active_terms) # parsed term configs self.assertEqual(rew_man_from_dict._term_cfgs, rew_man_from_annotated_cfg._term_cfgs) self.assertEqual(rew_man_from_cfg._term_cfgs, rew_man_from_annotated_cfg._term_cfgs) self.assertEqual(rew_man_from_dict._term_cfgs, rew_man_from_cfg._term_cfgs) def test_compute(self): """Test the computation of reward.""" cfg = { "term_1": RewardTermCfg(func=grilled_chicken, weight=10), "term_2": RewardTermCfg(func=grilled_chicken_with_curry, weight=0.0, params={"hot": False}), } self.rew_man = RewardManager(cfg, self.env) # compute expected reward expected_reward = cfg["term_1"].weight * self.env.dt # compute reward using manager rewards = self.rew_man.compute(dt=self.env.dt) # check the reward for environment index 0 self.assertEqual(float(rewards[0]), expected_reward) self.assertEqual(tuple(rewards.shape), (self.env.num_envs,)) def test_active_terms(self): """Test the correct reading of active terms.""" cfg = { "term_1": RewardTermCfg(func=grilled_chicken, weight=10), "term_2": RewardTermCfg(func=grilled_chicken_with_bbq, weight=5, params={"bbq": True}), "term_3": RewardTermCfg(func=grilled_chicken_with_curry, weight=0.0, params={"hot": False}), } self.rew_man = RewardManager(cfg, self.env) self.assertEqual(len(self.rew_man.active_terms), 3) def test_missing_weight(self): """Test the missing of weight in the config.""" # TODO: The error should be raised during the config parsing, not during the reward manager creation. cfg = { "term_1": RewardTermCfg(func=grilled_chicken, weight=10), "term_2": RewardTermCfg(func=grilled_chicken_with_bbq, params={"bbq": True}), } with self.assertRaises(TypeError): self.rew_man = RewardManager(cfg, self.env) def test_invalid_reward_func_module(self): """Test the handling of invalid reward function's module in string representation.""" cfg = { "term_1": RewardTermCfg(func=grilled_chicken, weight=10), "term_2": RewardTermCfg(func=grilled_chicken_with_bbq, weight=5, params={"bbq": True}), "term_3": RewardTermCfg(func="a:grilled_chicken_with_no_bbq", weight=0.1, params={"hot": False}), } with self.assertRaises(ValueError): self.rew_man = RewardManager(cfg, self.env) def test_invalid_reward_config(self): """Test the handling of invalid reward function's config parameters.""" cfg = { "term_1": RewardTermCfg(func=grilled_chicken_with_bbq, weight=0.1, params={"hot": False}), "term_2": RewardTermCfg(func=grilled_chicken_with_yoghurt, weight=2.0, params={"hot": False}), } with self.assertRaises(ValueError): self.rew_man = RewardManager(cfg, self.env) if __name__ == "__main__": run_tests()
6,805
Python
39.272189
120
0.629096
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/deps/test_torch.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch import torch.utils.benchmark as benchmark import unittest from omni.isaac.orbit.app import run_tests class TestTorchOperations(unittest.TestCase): """Tests for assuring torch related operations used in Orbit.""" def test_array_slicing(self): """Check that using ellipsis and slices work for torch tensors.""" size = (400, 300, 5) my_tensor = torch.rand(size, device="cuda:0") self.assertEqual(my_tensor[..., 0].shape, (400, 300)) self.assertEqual(my_tensor[:, :, 0].shape, (400, 300)) self.assertEqual(my_tensor[slice(None), slice(None), 0].shape, (400, 300)) with self.assertRaises(IndexError): my_tensor[..., ..., 0] self.assertEqual(my_tensor[0, ...].shape, (300, 5)) self.assertEqual(my_tensor[0, :, :].shape, (300, 5)) self.assertEqual(my_tensor[0, slice(None), slice(None)].shape, (300, 5)) self.assertEqual(my_tensor[0, ..., ...].shape, (300, 5)) self.assertEqual(my_tensor[..., 0, 0].shape, (400,)) self.assertEqual(my_tensor[slice(None), 0, 0].shape, (400,)) self.assertEqual(my_tensor[:, 0, 0].shape, (400,)) def test_array_circular(self): """Check circular buffer implementation in torch.""" size = (10, 30, 5) my_tensor = torch.rand(size, device="cuda:0") # roll up the tensor without cloning my_tensor_1 = my_tensor.clone() my_tensor_1[:, 1:, :] = my_tensor_1[:, :-1, :] my_tensor_1[:, 0, :] = my_tensor[:, -1, :] # check that circular buffer works as expected error = torch.max(torch.abs(my_tensor_1 - my_tensor.roll(1, dims=1))) self.assertNotEqual(error.item(), 0.0) self.assertFalse(torch.allclose(my_tensor_1, my_tensor.roll(1, dims=1))) # roll up the tensor with cloning my_tensor_2 = my_tensor.clone() my_tensor_2[:, 1:, :] = my_tensor_2[:, :-1, :].clone() my_tensor_2[:, 0, :] = my_tensor[:, -1, :] # check that circular buffer works as expected error = torch.max(torch.abs(my_tensor_2 - my_tensor.roll(1, dims=1))) self.assertEqual(error.item(), 0.0) self.assertTrue(torch.allclose(my_tensor_2, my_tensor.roll(1, dims=1))) # roll up the tensor with detach operation my_tensor_3 = my_tensor.clone() my_tensor_3[:, 1:, :] = my_tensor_3[:, :-1, :].detach() my_tensor_3[:, 0, :] = my_tensor[:, -1, :] # check that circular buffer works as expected error = torch.max(torch.abs(my_tensor_3 - my_tensor.roll(1, dims=1))) self.assertNotEqual(error.item(), 0.0) self.assertFalse(torch.allclose(my_tensor_3, my_tensor.roll(1, dims=1))) # roll up the tensor with roll operation my_tensor_4 = my_tensor.clone() my_tensor_4 = my_tensor_4.roll(1, dims=1) my_tensor_4[:, 0, :] = my_tensor[:, -1, :] # check that circular buffer works as expected error = torch.max(torch.abs(my_tensor_4 - my_tensor.roll(1, dims=1))) self.assertEqual(error.item(), 0.0) self.assertTrue(torch.allclose(my_tensor_4, my_tensor.roll(1, dims=1))) def test_array_circular_copy(self): """Check that circular buffer implementation in torch is copying data.""" size = (10, 30, 5) my_tensor = torch.rand(size, device="cuda:0") my_tensor_clone = my_tensor.clone() # roll up the tensor my_tensor_1 = my_tensor.clone() my_tensor_1[:, 1:, :] = my_tensor_1[:, :-1, :].clone() my_tensor_1[:, 0, :] = my_tensor[:, -1, :] # change the source tensor my_tensor[:, 0, :] = 1000 # check that circular buffer works as expected self.assertFalse(torch.allclose(my_tensor_1, my_tensor.roll(1, dims=1))) self.assertTrue(torch.allclose(my_tensor_1, my_tensor_clone.roll(1, dims=1))) def test_array_multi_indexing(self): """Check multi-indexing works for torch tensors.""" size = (400, 300, 5) my_tensor = torch.rand(size, device="cuda:0") # this fails since array indexing cannot be broadcasted!! with self.assertRaises(IndexError): my_tensor[[0, 1, 2, 3], [0, 1, 2, 3, 4]] def test_array_single_indexing(self): """Check how indexing effects the returned tensor.""" size = (400, 300, 5) my_tensor = torch.rand(size, device="cuda:0") # obtain a slice of the tensor my_slice = my_tensor[0, ...] self.assertEqual(my_slice.untyped_storage().data_ptr(), my_tensor.untyped_storage().data_ptr()) # obtain a slice over ranges my_slice = my_tensor[0:2, ...] self.assertEqual(my_slice.untyped_storage().data_ptr(), my_tensor.untyped_storage().data_ptr()) # obtain a slice over list my_slice = my_tensor[[0, 1], ...] self.assertNotEqual(my_slice.untyped_storage().data_ptr(), my_tensor.untyped_storage().data_ptr()) # obtain a slice over tensor my_slice = my_tensor[torch.tensor([0, 1]), ...] self.assertNotEqual(my_slice.untyped_storage().data_ptr(), my_tensor.untyped_storage().data_ptr()) def test_logical_or(self): """Test bitwise or operation.""" size = (400, 300, 5) my_tensor_1 = torch.rand(size, device="cuda:0") > 0.5 my_tensor_2 = torch.rand(size, device="cuda:0") < 0.5 # check the speed of logical or timer_logical_or = benchmark.Timer( stmt="torch.logical_or(my_tensor_1, my_tensor_2)", globals={"my_tensor_1": my_tensor_1, "my_tensor_2": my_tensor_2}, ) timer_bitwise_or = benchmark.Timer( stmt="my_tensor_1 | my_tensor_2", globals={"my_tensor_1": my_tensor_1, "my_tensor_2": my_tensor_2} ) print("Time for logical or:", timer_logical_or.timeit(number=1000)) print("Time for bitwise or:", timer_bitwise_or.timeit(number=1000)) # check that logical or works as expected output_logical_or = torch.logical_or(my_tensor_1, my_tensor_2) output_bitwise_or = my_tensor_1 | my_tensor_2 self.assertTrue(torch.allclose(output_logical_or, output_bitwise_or)) if __name__ == "__main__": run_tests()
6,388
Python
40.219355
110
0.595492
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/deps/test_scipy.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # isort: off import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) # isort: on import numpy as np import scipy.interpolate as interpolate import unittest from omni.isaac.orbit.app import run_tests class TestScipyOperations(unittest.TestCase): """Tests for assuring scipy related operations used in Orbit.""" def test_interpolation(self): """Test scipy interpolation 2D method.""" # parameters size = (10.0, 12.0) horizontal_scale = 0.1 vertical_scale = 0.005 downsampled_scale = 0.2 noise_range = (-0.02, 0.1) noise_step = 0.02 # switch parameters to discrete units # -- horizontal scale width_pixels = int(size[0] / horizontal_scale) length_pixels = int(size[1] / horizontal_scale) # -- downsampled scale width_downsampled = int(size[0] / downsampled_scale) length_downsampled = int(size[1] / downsampled_scale) # -- height height_min = int(noise_range[0] / vertical_scale) height_max = int(noise_range[1] / vertical_scale) height_step = int(noise_step / vertical_scale) # create range of heights possible height_range = np.arange(height_min, height_max + height_step, height_step) # sample heights randomly from the range along a grid height_field_downsampled = np.random.choice(height_range, size=(width_downsampled, length_downsampled)) # create interpolation function for the sampled heights x = np.linspace(0, size[0] * horizontal_scale, width_downsampled) y = np.linspace(0, size[1] * horizontal_scale, length_downsampled) # interpolate the sampled heights to obtain the height field x_upsampled = np.linspace(0, size[0] * horizontal_scale, width_pixels) y_upsampled = np.linspace(0, size[1] * horizontal_scale, length_pixels) # -- method 1: interp2d (this will be deprecated in the future 1.12 release) func_interp2d = interpolate.interp2d(y, x, height_field_downsampled, kind="cubic") z_upsampled_interp2d = func_interp2d(y_upsampled, x_upsampled) # -- method 2: RectBivariateSpline (alternate to interp2d) func_RectBiVariate = interpolate.RectBivariateSpline(x, y, height_field_downsampled) z_upsampled_RectBivariant = func_RectBiVariate(x_upsampled, y_upsampled) # -- method 3: RegularGridInterpolator (recommended from scipy but slow!) # Ref: https://github.com/scipy/scipy/issues/18010 func_RegularGridInterpolator = interpolate.RegularGridInterpolator( (x, y), height_field_downsampled, method="cubic" ) xx_upsampled, yy_upsampled = np.meshgrid(x_upsampled, y_upsampled, indexing="ij", sparse=True) z_upsampled_RegularGridInterpolator = func_RegularGridInterpolator((xx_upsampled, yy_upsampled)) # check if the interpolated height field is the same as the sampled height field np.testing.assert_allclose(z_upsampled_interp2d, z_upsampled_RectBivariant, atol=1e-14) np.testing.assert_allclose(z_upsampled_RectBivariant, z_upsampled_RegularGridInterpolator, atol=1e-14) np.testing.assert_allclose(z_upsampled_RegularGridInterpolator, z_upsampled_interp2d, atol=1e-14) if __name__ == "__main__": run_tests()
3,462
Python
44.565789
111
0.68342
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/deps/isaacsim/check_floating_base_made_fixed.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This script demonstrates how to make a floating robot fixed in Isaac Sim.""" """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.kit import SimulationApp # add argparse arguments parser = argparse.ArgumentParser( description="This script shows the issue in Isaac Sim with making a floating robot fixed." ) parser.add_argument("--headless", action="store_true", help="Run in headless mode.") parser.add_argument("--fix-base", action="store_true", help="Whether to fix the base of the robot.") # parse the arguments args_cli = parser.parse_args() # launch omniverse app simulation_app = SimulationApp({"headless": args_cli.headless}) """Rest everything follows.""" import torch import carb import omni.isaac.core.utils.nucleus as nucleus_utils import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils import omni.kit.commands import omni.physx from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.carb import set_carb_setting from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.core.world import World from pxr import PhysxSchema, UsdPhysics # check nucleus connection if nucleus_utils.get_assets_root_path() is None: msg = ( "Unable to perform Nucleus login on Omniverse. Assets root path is not set.\n" "\tPlease check: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html#omniverse-nucleus" ) carb.log_error(msg) raise RuntimeError(msg) ISAAC_NUCLEUS_DIR = f"{nucleus_utils.get_assets_root_path()}/Isaac" """Path to the `Isaac` directory on the NVIDIA Nucleus Server.""" ISAAC_ORBIT_NUCLEUS_DIR = f"{nucleus_utils.get_assets_root_path()}/Isaac/Samples/Orbit" """Path to the `Isaac/Samples/Orbit` directory on the NVIDIA Nucleus Server.""" """ Main """ def main(): """Spawns the ANYmal robot and makes it fixed.""" # Load kit helper world = World(physics_dt=0.005, rendering_dt=0.005, backend="torch", device="cpu") # Set main camera set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0]) # Enable hydra scene-graph instancing # this is needed to visualize the scene when flatcache is enabled set_carb_setting(world._settings, "/persistent/omnihydra/useSceneGraphInstancing", True) # Spawn things into stage # Ground-plane world.scene.add_default_ground_plane(prim_path="/World/defaultGroundPlane", z_position=0.0) # Lights-1 prim_utils.create_prim("/World/Light/GreySphere", "SphereLight", translation=(4.5, 3.5, 10.0)) # Lights-2 prim_utils.create_prim("/World/Light/WhiteSphere", "SphereLight", translation=(-4.5, 3.5, 10.0)) # -- Robot # resolve asset usd_path = f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-C/anymal_c.usd" root_prim_path = "/World/Robot/base" # add asset print("Loading robot from: ", usd_path) prim_utils.create_prim( "/World/Robot", usd_path=usd_path, translation=(0.0, 0.0, 0.6), ) # create fixed joint if args_cli.fix_base: # get all necessary information stage = stage_utils.get_current_stage() root_prim = stage.GetPrimAtPath(root_prim_path) parent_prim = root_prim.GetParent() # here we assume that the root prim is a rigid body # there is no clear way to deal with situation where the root prim is not a rigid body but has articulation api # in that case, it is unclear how to get the link to the first link in the tree if not root_prim.HasAPI(UsdPhysics.RigidBodyAPI): raise RuntimeError("The root prim does not have the RigidBodyAPI applied.") # create fixed joint omni.kit.commands.execute( "CreateJointCommand", stage=stage, joint_type="Fixed", from_prim=None, to_prim=root_prim, ) # move the root to the parent if this is a rigid body # having a fixed joint on a rigid body makes physx treat it as a part of the maximal coordinate tree # if we put to joint on the parent, physx parser treats it as a fixed base articulation # get parent prim parent_prim = root_prim.GetParent() # apply api to parent UsdPhysics.ArticulationRootAPI.Apply(parent_prim) PhysxSchema.PhysxArticulationAPI.Apply(parent_prim) # copy the attributes # -- usd attributes root_usd_articulation_api = UsdPhysics.ArticulationRootAPI(root_prim) for attr_name in root_usd_articulation_api.GetSchemaAttributeNames(): attr = root_prim.GetAttribute(attr_name) parent_prim.GetAttribute(attr_name).Set(attr.Get()) # -- physx attributes root_physx_articulation_api = PhysxSchema.PhysxArticulationAPI(root_prim) for attr_name in root_physx_articulation_api.GetSchemaAttributeNames(): attr = root_prim.GetAttribute(attr_name) parent_prim.GetAttribute(attr_name).Set(attr.Get()) # remove api from root root_prim.RemoveAPI(UsdPhysics.ArticulationRootAPI) root_prim.RemoveAPI(PhysxSchema.PhysxArticulationAPI) # rename root path to parent path root_prim_path = parent_prim.GetPath().pathString # Setup robot robot_view = ArticulationView(root_prim_path, name="ANYMAL") world.scene.add(robot_view) # Play the simulator world.reset() # Now we are ready! print("[INFO]: Setup complete...") # dummy actions # actions = torch.zeros(robot.count, robot.num_actions, device=robot.device) init_root_pos_w, init_root_quat_w = robot_view.get_world_poses() # Define simulation stepping sim_dt = world.get_physics_dt() # episode counter sim_time = 0.0 count = 0 # Simulate physics while simulation_app.is_running(): # If simulation is stopped, then exit. if world.is_stopped(): break # If simulation is paused, then skip. if not world.is_playing(): world.step(render=False) continue # do reset if count % 20 == 0: # reset sim_time = 0.0 count = 0 # reset root state root_pos_w = init_root_pos_w.clone() root_pos_w[:, :2] += torch.rand_like(root_pos_w[:, :2]) * 0.5 robot_view.set_world_poses(root_pos_w, init_root_quat_w) # print if it is fixed base print("Fixed base: ", robot_view._physics_view.shared_metatype.fixed_base) print("Moving base to: ", root_pos_w[0].cpu().numpy()) print("-" * 50) # apply random joint actions actions = torch.rand_like(robot_view.get_joint_positions()) * 0.001 robot_view.set_joint_efforts(actions) # perform step world.step() # update sim-time sim_time += sim_dt count += 1 if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
7,175
Python
34.88
119
0.657143
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/deps/isaacsim/check_camera.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script shows the issue with renderer in Isaac Sim that affects episodic resets. The first few images of every new episode are not updated. They take multiple steps to update and have the same image as the previous episode for the first few steps. ``` # run with cube _isaac_sim/python.sh source/extensions/omni.isaac.orbit/test/deps/isaacsim/check_camera.py --scenario cube # run with anymal _isaac_sim/python.sh source/extensions/omni.isaac.orbit/test/deps/isaacsim/check_camera.py --scenario anymal ``` """ """Launch Isaac Sim Simulator first.""" import argparse # omni-isaac-orbit from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser( description="This script shows the issue with renderer in Isaac Sim that affects episodic resets." ) parser.add_argument("--gpu", action="store_true", default=False, help="Use GPU device for camera rendering output.") parser.add_argument("--scenario", type=str, default="anymal", help="Scenario to load.", choices=["anymal", "cube"]) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import numpy as np import os import random import omni.isaac.core.utils.nucleus as nucleus_utils import omni.isaac.core.utils.prims as prim_utils import omni.replicator.core as rep from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import GeometryPrim, RigidPrim, RigidPrimView from omni.isaac.core.utils.carb import set_carb_setting from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.core.world import World from PIL import Image, ImageChops from pxr import Gf, UsdGeom # check nucleus connection if nucleus_utils.get_assets_root_path() is None: msg = ( "Unable to perform Nucleus login on Omniverse. Assets root path is not set.\n" "\tPlease check: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html#omniverse-nucleus" ) raise RuntimeError(msg) ISAAC_NUCLEUS_DIR = f"{nucleus_utils.get_assets_root_path()}/Isaac" """Path to the `Isaac` directory on the NVIDIA Nucleus Server.""" def main(): """Runs a camera sensor from orbit.""" # Load kit helper world = World(physics_dt=0.005, rendering_dt=0.005, backend="torch", device="cpu") # Set main camera set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0]) # Enable flatcache which avoids passing data over to USD structure # this speeds up the read-write operation of GPU buffers if world.get_physics_context().use_gpu_pipeline: world.get_physics_context().enable_flatcache(True) # Enable hydra scene-graph instancing # this is needed to visualize the scene when flatcache is enabled set_carb_setting(world._settings, "/persistent/omnihydra/useSceneGraphInstancing", True) # Populate scene # Ground world.scene.add_default_ground_plane() # Lights-1 prim_utils.create_prim("/World/Light/GreySphere", "SphereLight", translation=(4.5, 3.5, 10.0)) # Lights-2 prim_utils.create_prim("/World/Light/WhiteSphere", "SphereLight", translation=(-4.5, 3.5, 10.0)) # Xform to hold objects if args_cli.scenario == "cube": prim_utils.create_prim("/World/Objects", "Xform") # Random objects for i in range(8): # sample random position position = np.random.rand(3) - np.asarray([0.05, 0.05, -1.0]) position *= np.asarray([1.5, 1.5, 0.5]) # create prim prim_type = random.choice(["Cube", "Sphere", "Cylinder"]) _ = prim_utils.create_prim( f"/World/Objects/Obj_{i:02d}", prim_type, translation=position, scale=(0.25, 0.25, 0.25), semantic_label=prim_type, ) # add rigid properties GeometryPrim(f"/World/Objects/Obj_{i:02d}", collision=True) rigid_obj = RigidPrim(f"/World/Objects/Obj_{i:02d}", mass=5.0) # cast to geom prim geom_prim = getattr(UsdGeom, prim_type)(rigid_obj.prim) # set random color color = Gf.Vec3f(random.random(), random.random(), random.random()) geom_prim.CreateDisplayColorAttr() geom_prim.GetDisplayColorAttr().Set([color]) # Setup camera sensor on the world cam_prim_path = "/World/CameraSensor" else: # Robot prim_utils.create_prim( "/World/Robot", usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/ANYbotics/anymal_instanceable.usd", translation=(0.0, 0.0, 0.6), ) # Setup camera sensor on the robot cam_prim_path = "/World/CameraSensor" # Create camera cam_prim = prim_utils.create_prim( cam_prim_path, prim_type="Camera", translation=(5.0, 5.0, 5.0), orientation=(0.33985113, 0.17591988, 0.42470818, 0.82047324), ) _ = UsdGeom.Camera(cam_prim) # Get render product render_prod_path = rep.create.render_product(cam_prim_path, resolution=(640, 480)) # create annotator node rep_registry = {} for name in ["rgb", "distance_to_image_plane"]: # create annotator rep_annotator = rep.AnnotatorRegistry.get_annotator(name, device="cpu") rep_annotator.attach(render_prod_path) # add to registry rep_registry[name] = rep_annotator # Create replicator writer output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output", "camera", args_cli.scenario) os.makedirs(output_dir, exist_ok=True) # Create a view of the stuff we want to see if args_cli.scenario == "cube": view: RigidPrimView = world.scene.add(RigidPrimView("/World/Objects/.*", name="my_object")) else: view: ArticulationView = world.scene.add(ArticulationView("/World/Robot", name="my_object")) # Play simulator world.reset() # Get initial state if args_cli.scenario == "cube": initial_pos, initial_quat = view.get_world_poses() initial_joint_pos = None initial_joint_vel = None else: initial_pos, initial_quat = view.get_world_poses() initial_joint_pos = view.get_joint_positions() initial_joint_vel = view.get_joint_velocities() # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): world.step(render=True) # Counter count = 0 prev_im = None # make episode directory episode_count = 0 episode_dir = os.path.join(output_dir, f"episode_{episode_count:06d}") os.makedirs(episode_dir, exist_ok=True) # Simulate physics while simulation_app.is_running(): # If simulation is stopped, then exit. if world.is_stopped(): break # If simulation is paused, then skip. if not world.is_playing(): world.step(render=False) continue # Reset on intervals if count % 25 == 0: # reset all the state view.set_world_poses(initial_pos, initial_quat) if initial_joint_pos is not None: view.set_joint_positions(initial_joint_pos) if initial_joint_vel is not None: view.set_joint_velocities(initial_joint_vel) # make a new episode directory episode_dir = os.path.join(output_dir, f"episode_{episode_count:06d}") os.makedirs(episode_dir, exist_ok=True) # reset counters count = 0 episode_count += 1 # Step simulation for _ in range(15): world.step(render=False) world.render() # Update camera data rgb_data = rep_registry["rgb"].get_data() depth_data = rep_registry["distance_to_image_plane"].get_data() # Show current image number print(f"[Epi {episode_count:03d}] Current image number: {count:06d}") # Save data curr_im = Image.fromarray(rgb_data) curr_im.save(os.path.join(episode_dir, f"{count:06d}_rgb.png")) # Save diff if prev_im is not None: diff_im = ImageChops.difference(curr_im, prev_im) # convert to grayscale and threshold diff_im = diff_im.convert("L") threshold = 30 diff_im = diff_im.point(lambda p: p > threshold and 255) # Save all of them together dst_im = Image.new("RGB", (curr_im.width + prev_im.width + diff_im.width, diff_im.height)) dst_im.paste(prev_im, (0, 0)) dst_im.paste(curr_im, (prev_im.width, 0)) dst_im.paste(diff_im, (2 * prev_im.width, 0)) dst_im.save(os.path.join(episode_dir, f"{count:06d}_diff.png")) # Save to previous prev_im = curr_im.copy() # Update counter count += 1 # Print camera info print("Received shape of rgb image: ", rgb_data.shape) print("Received shape of depth image: ", depth_data.shape) print("-------------------------------") if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
9,573
Python
37.143426
117
0.633657
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/deps/isaacsim/check_legged_robot_clone.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to use the cloner API from Isaac Sim. Reference: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_gym_cloner.html """ """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser( description="This script shows the issue in Isaac Sim with GPU simulation of floating robots." ) parser.add_argument("--num_robots", type=int, default=128, help="Number of robots to spawn.") parser.add_argument( "--asset", type=str, default="orbit", help="The asset source location for the robot. Can be: orbit, oige, custom asset path.", ) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import os import torch import carb import omni.isaac.core.utils.nucleus as nucleus_utils import omni.isaac.core.utils.prims as prim_utils from omni.isaac.cloner import GridCloner from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.carb import set_carb_setting from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.core.world import World # check nucleus connection if nucleus_utils.get_assets_root_path() is None: msg = ( "Unable to perform Nucleus login on Omniverse. Assets root path is not set.\n" "\tPlease check: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html#omniverse-nucleus" ) carb.log_error(msg) raise RuntimeError(msg) ISAAC_NUCLEUS_DIR = f"{nucleus_utils.get_assets_root_path()}/Isaac" """Path to the `Isaac` directory on the NVIDIA Nucleus Server.""" ISAAC_ORBIT_NUCLEUS_DIR = f"{nucleus_utils.get_assets_root_path()}/Isaac/Samples/Orbit" """Path to the `Isaac/Samples/Orbit` directory on the NVIDIA Nucleus Server.""" """ Main """ def main(): """Spawns the ANYmal robot and clones it using Isaac Sim Cloner API.""" # Load kit helper world = World(physics_dt=0.005, rendering_dt=0.005, backend="torch", device="cuda:0") # Set main camera set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0]) # Enable hydra scene-graph instancing # this is needed to visualize the scene when flatcache is enabled set_carb_setting(world._settings, "/persistent/omnihydra/useSceneGraphInstancing", True) # Create interface to clone the scene cloner = GridCloner(spacing=2.0) cloner.define_base_env("/World/envs") # Everything under the namespace "/World/envs/env_0" will be cloned prim_utils.define_prim("/World/envs/env_0") # Spawn things into stage # Ground-plane world.scene.add_default_ground_plane(prim_path="/World/defaultGroundPlane", z_position=0.0) # Lights-1 prim_utils.create_prim("/World/Light/GreySphere", "SphereLight", translation=(4.5, 3.5, 10.0)) # Lights-2 prim_utils.create_prim("/World/Light/WhiteSphere", "SphereLight", translation=(-4.5, 3.5, 10.0)) # -- Robot # resolve asset if args_cli.asset == "orbit": usd_path = f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-C/anymal_c.usd" root_prim_path = "/World/envs/env_.*/Robot/base" elif args_cli.asset == "oige": usd_path = f"{ISAAC_NUCLEUS_DIR}/Robots/ANYbotics/anymal_instanceable.usd" root_prim_path = "/World/envs/env_.*/Robot" elif os.path.exists(args_cli.asset): usd_path = args_cli.asset else: raise ValueError(f"Invalid asset: {args_cli.asset}. Must be one of: orbit, oige.") # add asset print("Loading robot from: ", usd_path) prim_utils.create_prim( "/World/envs/env_0/Robot", usd_path=usd_path, translation=(0.0, 0.0, 0.6), ) # Clone the scene num_envs = args_cli.num_robots cloner.define_base_env("/World/envs") envs_prim_paths = cloner.generate_paths("/World/envs/env", num_paths=num_envs) envs_positions = cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=envs_prim_paths, replicate_physics=True ) # convert environment positions to torch tensor envs_positions = torch.tensor(envs_positions, dtype=torch.float, device=world.device) # filter collisions within each environment instance physics_scene_path = world.get_physics_context().prim_path cloner.filter_collisions( physics_scene_path, "/World/collisions", envs_prim_paths, global_paths=["/World/defaultGroundPlane"] ) # Resolve robot prim paths if args_cli.asset == "orbit": root_prim_path = "/World/envs/env_.*/Robot/base" elif args_cli.asset == "oige": root_prim_path = "/World/envs/env_.*/Robot" elif os.path.exists(args_cli.asset): usd_path = args_cli.asset root_prim_path = "/World/envs/env_.*/Robot" else: raise ValueError(f"Invalid asset: {args_cli.asset}. Must be one of: orbit, oige.") # Setup robot robot_view = ArticulationView(root_prim_path, name="ANYMAL") world.scene.add(robot_view) # Play the simulator world.reset() # Now we are ready! print("[INFO]: Setup complete...") # dummy actions # actions = torch.zeros(robot.count, robot.num_actions, device=robot.device) # Define simulation stepping sim_dt = world.get_physics_dt() # episode counter sim_time = 0.0 # Simulate physics while simulation_app.is_running(): # If simulation is stopped, then exit. if world.is_stopped(): break # If simulation is paused, then skip. if not world.is_playing(): world.step(render=False) continue # perform step world.step() # update sim-time sim_time += sim_dt if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
6,106
Python
32.740331
117
0.677203
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/deps/isaacsim/check_rep_texture_randomizer.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script shows how to use replicator to randomly change the textures of a USD scene. Note: Currently this script fails since cloner does not support changing textures of cloned USD prims. This is because the prims are cloned using `Sdf.ChangeBlock` which does not allow individual texture changes. Usage: .. code-block:: bash ./orbit.sh -p source/extensions/omni.isaac.orbit/test/deps/isaacsim/check_rep_texture_randomizer.py """ """Launch Isaac Sim Simulator first.""" import argparse # omni-isaac-orbit from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser( description="This script shows how to use replicator to randomly change the textures of a USD scene." ) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import numpy as np import torch import omni.isaac.core.utils.prims as prim_utils import omni.replicator.core as rep from omni.isaac.cloner import GridCloner from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.viewports import set_camera_view def main(): """Spawn a bunch of balls and randomly change their textures.""" # Load kit helper sim_params = { "use_gpu": True, "use_gpu_pipeline": True, "use_flatcache": True, # deprecated from Isaac Sim 2023.1 onwards "use_fabric": True, # used from Isaac Sim 2023.1 onwards "enable_scene_query_support": True, } sim = SimulationContext( physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, sim_params=sim_params, backend="torch", device="cuda:0" ) # Set main camera set_camera_view([0.0, 30.0, 25.0], [0.0, 0.0, -2.5]) # Parameters num_balls = 128 # Create interface to clone the scene cloner = GridCloner(spacing=2.0) cloner.define_base_env("/World/envs") # Everything under the namespace "/World/envs/env_0" will be cloned prim_utils.define_prim("/World/envs/env_0") # Define the scene # -- Ball DynamicSphere(prim_path="/World/envs/env_0/ball", translation=np.array([0.0, 0.0, 5.0]), mass=0.5, radius=0.25) # Clone the scene cloner.define_base_env("/World/envs") envs_prim_paths = cloner.generate_paths("/World/envs/env", num_paths=num_balls) env_positions = cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=envs_prim_paths, replicate_physics=True, copy_from_source=True ) physics_scene_path = sim.get_physics_context().prim_path cloner.filter_collisions( physics_scene_path, "/World/collisions", prim_paths=envs_prim_paths, global_paths=["/World/ground"] ) # Use replicator to randomize color on the spheres with rep.new_layer(): # Define a function to get all the shapes def get_shapes(): shapes = rep.get.prims(path_pattern="/World/envs/env_.*/ball") with shapes: rep.randomizer.color(colors=rep.distribution.uniform((0, 0, 0), (1, 1, 1))) return shapes.node # Register the function rep.randomizer.register(get_shapes) # Specify the frequency of randomization with rep.trigger.on_frame(): rep.randomizer.get_shapes() # Set ball positions over terrain origins # Create a view over all the balls ball_view = RigidPrimView("/World/envs/env_.*/ball", reset_xform_properties=False) # cache initial state of the balls ball_initial_positions = torch.tensor(env_positions, dtype=torch.float, device=sim.device) ball_initial_positions[:, 2] += 5.0 # set initial poses # note: setting here writes to USD :) ball_view.set_world_poses(positions=ball_initial_positions) # Play simulator sim.reset() # Step replicator to randomize colors rep.orchestrator.step(pause_timeline=False) # Stop replicator to prevent further randomization rep.orchestrator.stop() # Pause simulator at the beginning for inspection sim.pause() # Initialize the ball views for physics simulation ball_view.initialize() ball_initial_velocities = ball_view.get_velocities() # Create a counter for resetting the scene step_count = 0 # Simulate physics while simulation_app.is_running(): # If simulation is stopped, then exit. if sim.is_stopped(): break # If simulation is paused, then skip. if not sim.is_playing(): sim.step() continue # Reset the scene if step_count % 500 == 0: # reset the balls ball_view.set_world_poses(positions=ball_initial_positions) ball_view.set_velocities(ball_initial_velocities) # reset the counter step_count = 0 # Step simulation sim.step() # Update counter step_count += 1 if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
5,376
Python
31.587879
119
0.670759
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/deps/isaacsim/check_app.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script shows the issue with launching Isaac Sim application in headless mode. On launching the application in headless mode, the application does not exit gracefully. There are multiple warnings and errors that are printed on the console. ``` _isaac_sim/python.sh source/extensions/omni.isaac.orbit/test/deps/isaacsim/check_app.py ``` Output: ``` [10.948s] Simulation App Startup Complete [11.471s] Simulation App Shutting Down ...... [Warning] [carb] [Plugin: omni.spectree.delegate.plugin] Module /media/vulcan/packman-repo/chk/kit-sdk/105.1+release.129498.98d86eae.tc.linux-x86_64.release/exts/omni.usd_resolver/bin/libomni.spectree.delegate.plugin.so remained loaded after unload request ...... [Warning] [omni.core.ITypeFactory] Module /media/vulcan/packman-repo/chk/kit-sdk/105.1+release.129498.98d86eae.tc.linux-x86_64.release/exts/omni.graph.action/bin/libomni.graph.action.plugin.so remained loaded after unload request. ...... [Warning] [omni.core.ITypeFactory] Module /media/vulcan/packman-repo/chk/kit-sdk/105.1+release.129498.98d86eae.tc.linux-x86_64.release/exts/omni.activity.core/bin/libomni.activity.core.plugin.so remained loaded after unload request. ``` """ from omni.isaac.kit import SimulationApp if __name__ == "__main__": app = SimulationApp({"headless": True}) app.close()
1,445
Python
42.818181
263
0.764014
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/controllers/test_differential_ik.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import torch import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils from omni.isaac.cloner import GridCloner import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.controllers import DifferentialIKController, DifferentialIKControllerCfg from omni.isaac.orbit.utils.math import compute_pose_error, subtract_frame_transforms ## # Pre-defined configs ## from omni.isaac.orbit_assets import FRANKA_PANDA_HIGH_PD_CFG, UR10_CFG # isort:skip class TestDifferentialIKController(unittest.TestCase): """Test fixture for checking that differential IK controller tracks commands properly.""" def setUp(self): """Create a blank new stage for each test.""" # Wait for spawning stage_utils.create_new_stage() # Constants self.num_envs = 128 # Load kit helper sim_cfg = sim_utils.SimulationCfg(dt=0.01) self.sim = sim_utils.SimulationContext(sim_cfg) # TODO: Remove this once we have a better way to handle this. self.sim._app_control_on_stop_handle = None # Create a ground plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/GroundPlane", cfg) # Create interface to clone the scene cloner = GridCloner(spacing=2.0) cloner.define_base_env("/World/envs") self.env_prim_paths = cloner.generate_paths("/World/envs/env", self.num_envs) # create source prim prim_utils.define_prim(self.env_prim_paths[0], "Xform") # clone the env xform self.env_origins = cloner.clone( source_prim_path=self.env_prim_paths[0], prim_paths=self.env_prim_paths, replicate_physics=True, ) # Define goals for the arm ee_goals_set = [ [0.5, 0.5, 0.7, 0.707, 0, 0.707, 0], [0.5, -0.4, 0.6, 0.707, 0.707, 0.0, 0.0], [0.5, 0, 0.5, 0.0, 1.0, 0.0, 0.0], ] self.ee_pose_b_des_set = torch.tensor(ee_goals_set, device=self.sim.device) def tearDown(self): """Stops simulator after each test.""" # stop simulation self.sim.stop() self.sim.clear() self.sim.clear_all_callbacks() self.sim.clear_instance() """ Test fixtures. """ def test_franka_ik_pose_abs(self): """Test IK controller for Franka arm with Franka hand.""" # Create robot instance robot_cfg = FRANKA_PANDA_HIGH_PD_CFG.replace(prim_path="/World/envs/env_.*/Robot") robot = Articulation(cfg=robot_cfg) # Create IK controller diff_ik_cfg = DifferentialIKControllerCfg(command_type="pose", use_relative_mode=False, ik_method="dls") diff_ik_controller = DifferentialIKController(diff_ik_cfg, num_envs=self.num_envs, device=self.sim.device) # Run the controller and check that it converges to the goal self._run_ik_controller(robot, diff_ik_controller, "panda_hand", ["panda_joint.*"]) def test_ur10_ik_pose_abs(self): """Test IK controller for UR10 arm.""" # Create robot instance robot_cfg = UR10_CFG.replace(prim_path="/World/envs/env_.*/Robot") robot_cfg.spawn.rigid_props.disable_gravity = True robot = Articulation(cfg=robot_cfg) # Create IK controller diff_ik_cfg = DifferentialIKControllerCfg(command_type="pose", use_relative_mode=False, ik_method="dls") diff_ik_controller = DifferentialIKController(diff_ik_cfg, num_envs=self.num_envs, device=self.sim.device) # Run the controller and check that it converges to the goal self._run_ik_controller(robot, diff_ik_controller, "ee_link", [".*"]) """ Helper functions. """ def _run_ik_controller( self, robot: Articulation, diff_ik_controller: DifferentialIKController, ee_frame_name: str, arm_joint_names: list[str], ): # Define simulation stepping sim_dt = self.sim.get_physics_dt() # Play the simulator self.sim.reset() # Obtain the frame index of the end-effector ee_frame_idx = robot.find_bodies(ee_frame_name)[0][0] ee_jacobi_idx = ee_frame_idx - 1 # Obtain joint indices arm_joint_ids = robot.find_joints(arm_joint_names)[0] # Update existing buffers # Note: We need to update buffers before the first step for the controller. robot.update(dt=sim_dt) # Track the given command current_goal_idx = 0 # Current goal for the arm ee_pose_b_des = torch.zeros(self.num_envs, diff_ik_controller.action_dim, device=self.sim.device) ee_pose_b_des[:] = self.ee_pose_b_des_set[current_goal_idx] # Compute current pose of the end-effector ee_pose_w = robot.data.body_state_w[:, ee_frame_idx, 0:7] root_pose_w = robot.data.root_state_w[:, 0:7] ee_pos_b, ee_quat_b = subtract_frame_transforms( root_pose_w[:, 0:3], root_pose_w[:, 3:7], ee_pose_w[:, 0:3], ee_pose_w[:, 3:7] ) # Now we are ready! for count in range(1500): # reset every 150 steps if count % 250 == 0: # check that we converged to the goal if count > 0: pos_error, rot_error = compute_pose_error( ee_pos_b, ee_quat_b, ee_pose_b_des[:, 0:3], ee_pose_b_des[:, 3:7] ) pos_error_norm = torch.norm(pos_error, dim=-1) rot_error_norm = torch.norm(rot_error, dim=-1) # desired error (zer) des_error = torch.zeros_like(pos_error_norm) # check convergence torch.testing.assert_close(pos_error_norm, des_error, rtol=0.0, atol=1e-3) torch.testing.assert_close(rot_error_norm, des_error, rtol=0.0, atol=1e-3) # reset joint state joint_pos = robot.data.default_joint_pos.clone() joint_vel = robot.data.default_joint_vel.clone() # joint_pos *= sample_uniform(0.9, 1.1, joint_pos.shape, joint_pos.device) robot.write_joint_state_to_sim(joint_pos, joint_vel) robot.set_joint_position_target(joint_pos) robot.write_data_to_sim() robot.reset() # reset actions ee_pose_b_des[:] = self.ee_pose_b_des_set[current_goal_idx] joint_pos_des = joint_pos[:, arm_joint_ids].clone() # update goal for next iteration current_goal_idx = (current_goal_idx + 1) % len(self.ee_pose_b_des_set) # set the controller commands diff_ik_controller.reset() diff_ik_controller.set_command(ee_pose_b_des) else: # at reset, the jacobians are not updated to the latest state # so we MUST skip the first step # obtain quantities from simulation jacobian = robot.root_physx_view.get_jacobians()[:, ee_jacobi_idx, :, arm_joint_ids] ee_pose_w = robot.data.body_state_w[:, ee_frame_idx, 0:7] root_pose_w = robot.data.root_state_w[:, 0:7] joint_pos = robot.data.joint_pos[:, arm_joint_ids] # compute frame in root frame ee_pos_b, ee_quat_b = subtract_frame_transforms( root_pose_w[:, 0:3], root_pose_w[:, 3:7], ee_pose_w[:, 0:3], ee_pose_w[:, 3:7] ) # compute the joint commands joint_pos_des = diff_ik_controller.compute(ee_pos_b, ee_quat_b, jacobian, joint_pos) # apply actions robot.set_joint_position_target(joint_pos_des, arm_joint_ids) robot.write_data_to_sim() # perform step self.sim.step(render=False) # update buffers robot.update(sim_dt) if __name__ == "__main__": run_tests()
8,427
Python
39.714976
114
0.5925
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_spawn_from_files.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.app import AppLauncher, run_tests """Launch Isaac Sim Simulator first.""" # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.extensions import enable_extension, get_extension_path_from_name import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR class TestSpawningFromFiles(unittest.TestCase): """Test fixture for checking spawning of USD references from files with different settings.""" def setUp(self) -> None: """Create a blank new stage for each test.""" # Create a new stage stage_utils.create_new_stage() # Simulation time-step self.dt = 0.1 # Load kit helper self.sim = SimulationContext(physics_dt=self.dt, rendering_dt=self.dt, backend="numpy") # Wait for spawning stage_utils.update_stage() def tearDown(self) -> None: """Stops simulator after each test.""" # stop simulation self.sim.stop() self.sim.clear() self.sim.clear_all_callbacks() self.sim.clear_instance() """ Basic spawning. """ def test_spawn_usd(self): """Test loading prim from Usd file.""" # Spawn cone cfg = sim_utils.UsdFileCfg(usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/FrankaEmika/panda_instanceable.usd") prim = cfg.func("/World/Franka", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/Franka")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Xform") def test_spawn_usd_fails(self): """Test loading prim from Usd file fails when asset usd path is invalid.""" # Spawn cone cfg = sim_utils.UsdFileCfg(usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/FrankaEmika/panda2_instanceable.usd") with self.assertRaises(FileNotFoundError): cfg.func("/World/Franka", cfg) def test_spawn_urdf(self): """Test loading prim from URDF file.""" # retrieve path to urdf importer extension enable_extension("omni.importer.urdf") extension_path = get_extension_path_from_name("omni.importer.urdf") # Spawn franka from URDF cfg = sim_utils.UrdfFileCfg( asset_path=f"{extension_path}/data/urdf/robots/franka_description/robots/panda_arm_hand.urdf", fix_base=True ) prim = cfg.func("/World/Franka", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/Franka")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Xform") def test_spawn_ground_plane(self): """Test loading prim for the ground plane from grid world USD.""" # Spawn ground plane cfg = sim_utils.GroundPlaneCfg(color=(0.1, 0.1, 0.1), size=(10.0, 10.0)) prim = cfg.func("/World/ground_plane", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/ground_plane")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Xform") if __name__ == "__main__": run_tests()
3,580
Python
35.540816
120
0.660615
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_urdf_converter.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app config = {"headless": True} simulation_app = AppLauncher(config).app """Rest everything follows.""" import math import numpy as np import os import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.extensions import enable_extension, get_extension_path_from_name from omni.isaac.orbit.sim.converters import UrdfConverter, UrdfConverterCfg class TestUrdfConverter(unittest.TestCase): """Test fixture for the UrdfConverter class.""" def setUp(self): """Create a blank new stage for each test.""" # Create a new stage stage_utils.create_new_stage() # retrieve path to urdf importer extension enable_extension("omni.importer.urdf") extension_path = get_extension_path_from_name("omni.importer.urdf") # default configuration self.config = UrdfConverterCfg( asset_path=f"{extension_path}/data/urdf/robots/franka_description/robots/panda_arm_hand.urdf", fix_base=True ) # Simulation time-step self.dt = 0.01 # Load kit helper self.sim = SimulationContext(physics_dt=self.dt, rendering_dt=self.dt, backend="numpy") def tearDown(self) -> None: """Stops simulator after each test.""" # stop simulation self.sim.stop() # cleanup stage and context self.sim.clear() self.sim.clear_all_callbacks() self.sim.clear_instance() def test_no_change(self): """Call conversion twice. This should not generate a new USD file.""" urdf_converter = UrdfConverter(self.config) time_usd_file_created = os.stat(urdf_converter.usd_path).st_mtime_ns # no change to config only define the usd directory new_config = self.config new_config.usd_dir = urdf_converter.usd_dir # convert to usd but this time in the same directory as previous step new_urdf_converter = UrdfConverter(new_config) new_time_usd_file_created = os.stat(new_urdf_converter.usd_path).st_mtime_ns self.assertEqual(time_usd_file_created, new_time_usd_file_created) def test_config_change(self): """Call conversion twice but change the config in the second call. This should generate a new USD file.""" urdf_converter = UrdfConverter(self.config) time_usd_file_created = os.stat(urdf_converter.usd_path).st_mtime_ns # change the config new_config = self.config new_config.fix_base = not self.config.fix_base # define the usd directory new_config.usd_dir = urdf_converter.usd_dir # convert to usd but this time in the same directory as previous step new_urdf_converter = UrdfConverter(new_config) new_time_usd_file_created = os.stat(new_urdf_converter.usd_path).st_mtime_ns self.assertNotEqual(time_usd_file_created, new_time_usd_file_created) def test_create_prim_from_usd(self): """Call conversion and create a prim from it.""" urdf_converter = UrdfConverter(self.config) prim_path = "/World/Robot" prim_utils.create_prim(prim_path, usd_path=urdf_converter.usd_path) self.assertTrue(prim_utils.is_prim_path_valid(prim_path)) def test_config_drive_type(self): """Change the drive mechanism of the robot to be position.""" # Create directory to dump results test_dir = os.path.dirname(os.path.abspath(__file__)) output_dir = os.path.join(test_dir, "output", "urdf_converter") if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True) # change the config self.config.default_drive_type = "position" self.config.default_drive_stiffness = 400.0 self.config.default_drive_damping = 40.0 self.config.usd_dir = output_dir urdf_converter = UrdfConverter(self.config) # check the drive type of the robot prim_path = "/World/Robot" prim_utils.create_prim(prim_path, usd_path=urdf_converter.usd_path) # access the robot robot = ArticulationView(prim_path, reset_xform_properties=False) # play the simulator and initialize the robot self.sim.reset() robot.initialize() # check drive values for the robot (read from physx) drive_stiffness, drive_damping = robot.get_gains() # -- for the arm (revolute joints) # user provides the values in radians but simulator sets them as in degrees expected_drive_stiffness = math.degrees(self.config.default_drive_stiffness) expected_drive_damping = math.degrees(self.config.default_drive_damping) np.testing.assert_array_equal(drive_stiffness[:, :7], expected_drive_stiffness) np.testing.assert_array_equal(drive_damping[:, :7], expected_drive_damping) # -- for the hand (prismatic joints) # note: from isaac sim 2023.1, the test asset has mimic joints for the hand # so the mimic joint doesn't have drive values expected_drive_stiffness = self.config.default_drive_stiffness expected_drive_damping = self.config.default_drive_damping np.testing.assert_array_equal(drive_stiffness[:, 7], expected_drive_stiffness) np.testing.assert_array_equal(drive_damping[:, 7], expected_drive_damping) # check drive values for the robot (read from usd) self.sim.stop() drive_stiffness, drive_damping = robot.get_gains() # -- for the arm (revolute joints) # user provides the values in radians but simulator sets them as in degrees expected_drive_stiffness = math.degrees(self.config.default_drive_stiffness) expected_drive_damping = math.degrees(self.config.default_drive_damping) np.testing.assert_array_equal(drive_stiffness[:, :7], expected_drive_stiffness) np.testing.assert_array_equal(drive_damping[:, :7], expected_drive_damping) # -- for the hand (prismatic joints) # note: from isaac sim 2023.1, the test asset has mimic joints for the hand # so the mimic joint doesn't have drive values expected_drive_stiffness = self.config.default_drive_stiffness expected_drive_damping = self.config.default_drive_damping np.testing.assert_array_equal(drive_stiffness[:, 7], expected_drive_stiffness) np.testing.assert_array_equal(drive_damping[:, 7], expected_drive_damping) if __name__ == "__main__": run_tests()
6,890
Python
41.801242
120
0.677358
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_schemas.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils from omni.isaac.core.simulation_context import SimulationContext from pxr import UsdPhysics import omni.isaac.orbit.sim.schemas as schemas from omni.isaac.orbit.sim.utils import find_global_fixed_joint_prim from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.orbit.utils.string import to_camel_case class TestPhysicsSchema(unittest.TestCase): """Test fixture for checking schemas modifications through Orbit.""" def setUp(self) -> None: """Create a blank new stage for each test.""" # Create a new stage stage_utils.create_new_stage() # Simulation time-step self.dt = 0.1 # Load kit helper self.sim = SimulationContext(physics_dt=self.dt, rendering_dt=self.dt, backend="numpy") # Set some default values for test self.arti_cfg = schemas.ArticulationRootPropertiesCfg( enabled_self_collisions=False, articulation_enabled=True, solver_position_iteration_count=4, solver_velocity_iteration_count=1, sleep_threshold=1.0, stabilization_threshold=5.0, fix_root_link=False, ) self.rigid_cfg = schemas.RigidBodyPropertiesCfg( rigid_body_enabled=True, kinematic_enabled=False, disable_gravity=False, linear_damping=0.1, angular_damping=0.5, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=10.0, max_contact_impulse=10.0, enable_gyroscopic_forces=True, retain_accelerations=True, solver_position_iteration_count=8, solver_velocity_iteration_count=1, sleep_threshold=1.0, stabilization_threshold=6.0, ) self.collision_cfg = schemas.CollisionPropertiesCfg( collision_enabled=True, contact_offset=0.05, rest_offset=0.001, min_torsional_patch_radius=0.1, torsional_patch_radius=1.0, ) self.mass_cfg = schemas.MassPropertiesCfg(mass=1.0, density=100.0) self.joint_cfg = schemas.JointDrivePropertiesCfg(drive_type="acceleration") def tearDown(self) -> None: """Stops simulator after each test.""" # stop simulation self.sim.stop() self.sim.clear() self.sim.clear_all_callbacks() self.sim.clear_instance() def test_valid_properties_cfg(self): """Test that all the config instances have non-None values. This is to ensure that we check that all the properties of the schema are set. """ for cfg in [self.arti_cfg, self.rigid_cfg, self.collision_cfg, self.mass_cfg, self.joint_cfg]: # check nothing is none for k, v in cfg.__dict__.items(): self.assertIsNotNone(v, f"{cfg.__class__.__name__}:{k} is None. Please make sure schemas are valid.") def test_modify_properties_on_invalid_prim(self): """Test modifying properties on a prim that does not exist.""" # set properties with self.assertRaises(ValueError): schemas.modify_rigid_body_properties("/World/asset_xyz", self.rigid_cfg) def test_modify_properties_on_articulation_instanced_usd(self): """Test modifying properties on articulation instanced usd. In this case, modifying collision properties on the articulation instanced usd will fail. """ # spawn asset to the stage asset_usd_file = f"{ISAAC_NUCLEUS_DIR}/Robots/ANYbotics/anymal_instanceable.usd" prim_utils.create_prim("/World/asset_instanced", usd_path=asset_usd_file, translation=(0.0, 0.0, 0.62)) # set properties on the asset and check all properties are set schemas.modify_articulation_root_properties("/World/asset_instanced", self.arti_cfg) schemas.modify_rigid_body_properties("/World/asset_instanced", self.rigid_cfg) schemas.modify_mass_properties("/World/asset_instanced", self.mass_cfg) schemas.modify_joint_drive_properties("/World/asset_instanced", self.joint_cfg) # validate the properties self._validate_articulation_properties_on_prim("/World/asset_instanced", has_default_fixed_root=False) self._validate_rigid_body_properties_on_prim("/World/asset_instanced") self._validate_mass_properties_on_prim("/World/asset_instanced") self._validate_joint_drive_properties_on_prim("/World/asset_instanced") # make a fixed joint # note: for this asset, it doesn't work because the root is not a rigid body self.arti_cfg.fix_root_link = True with self.assertRaises(NotImplementedError): schemas.modify_articulation_root_properties("/World/asset_instanced", self.arti_cfg) def test_modify_properties_on_articulation_usd(self): """Test setting properties on articulation usd.""" # spawn asset to the stage asset_usd_file = f"{ISAAC_NUCLEUS_DIR}/Robots/Franka/franka.usd" prim_utils.create_prim("/World/asset", usd_path=asset_usd_file, translation=(0.0, 0.0, 0.62)) # set properties on the asset and check all properties are set schemas.modify_articulation_root_properties("/World/asset", self.arti_cfg) schemas.modify_rigid_body_properties("/World/asset", self.rigid_cfg) schemas.modify_collision_properties("/World/asset", self.collision_cfg) schemas.modify_mass_properties("/World/asset", self.mass_cfg) schemas.modify_joint_drive_properties("/World/asset", self.joint_cfg) # validate the properties self._validate_articulation_properties_on_prim("/World/asset", has_default_fixed_root=True) self._validate_rigid_body_properties_on_prim("/World/asset") self._validate_collision_properties_on_prim("/World/asset") self._validate_mass_properties_on_prim("/World/asset") self._validate_joint_drive_properties_on_prim("/World/asset") # make a fixed joint self.arti_cfg.fix_root_link = True schemas.modify_articulation_root_properties("/World/asset", self.arti_cfg) # validate the properties self._validate_articulation_properties_on_prim("/World/asset", has_default_fixed_root=True) def test_defining_rigid_body_properties_on_prim(self): """Test defining rigid body properties on a prim.""" # create a prim prim_utils.create_prim("/World/parent", prim_type="XForm") # spawn a prim prim_utils.create_prim("/World/cube1", prim_type="Cube", translation=(0.0, 0.0, 0.62)) # set properties on the asset and check all properties are set schemas.define_rigid_body_properties("/World/cube1", self.rigid_cfg) schemas.define_collision_properties("/World/cube1", self.collision_cfg) schemas.define_mass_properties("/World/cube1", self.mass_cfg) # validate the properties self._validate_rigid_body_properties_on_prim("/World/cube1") self._validate_collision_properties_on_prim("/World/cube1") self._validate_mass_properties_on_prim("/World/cube1") # spawn another prim prim_utils.create_prim("/World/cube2", prim_type="Cube", translation=(1.0, 1.0, 0.62)) # set properties on the asset and check all properties are set schemas.define_rigid_body_properties("/World/cube2", self.rigid_cfg) schemas.define_collision_properties("/World/cube2", self.collision_cfg) # validate the properties self._validate_rigid_body_properties_on_prim("/World/cube2") self._validate_collision_properties_on_prim("/World/cube2") # check if we can play self.sim.reset() for _ in range(100): self.sim.step() def test_defining_articulation_properties_on_prim(self): """Test defining articulation properties on a prim.""" # create a parent articulation prim_utils.create_prim("/World/parent", prim_type="Xform") schemas.define_articulation_root_properties("/World/parent", self.arti_cfg) # validate the properties self._validate_articulation_properties_on_prim("/World/parent", has_default_fixed_root=False) # create a child articulation prim_utils.create_prim("/World/parent/child", prim_type="Cube", translation=(0.0, 0.0, 0.62)) schemas.define_rigid_body_properties("/World/parent/child", self.rigid_cfg) schemas.define_mass_properties("/World/parent/child", self.mass_cfg) # check if we can play self.sim.reset() for _ in range(100): self.sim.step() """ Helper functions. """ def _validate_articulation_properties_on_prim( self, prim_path: str, has_default_fixed_root: False, verbose: bool = False ): """Validate the articulation properties on the prim. If :attr:`has_default_fixed_root` is True, then the asset already has a fixed root link. This is used to check the expected behavior of the fixed root link configuration. """ # the root prim root_prim = prim_utils.get_prim_at_path(prim_path) # check articulation properties are set correctly for attr_name, attr_value in self.arti_cfg.__dict__.items(): # skip names we know are not present if attr_name == "func": continue # handle fixed root link if attr_name == "fix_root_link" and attr_value is not None: # obtain the fixed joint prim fixed_joint_prim = find_global_fixed_joint_prim(prim_path) # if asset does not have a fixed root link then check if the joint is created if not has_default_fixed_root: if attr_value: self.assertIsNotNone(fixed_joint_prim) else: self.assertIsNone(fixed_joint_prim) else: # check a joint exists self.assertIsNotNone(fixed_joint_prim) # check if the joint is enabled or disabled is_enabled = fixed_joint_prim.GetJointEnabledAttr().Get() self.assertEqual(is_enabled, attr_value) # skip the rest of the checks continue # convert attribute name in prim to cfg name prim_prop_name = f"physxArticulation:{to_camel_case(attr_name, to='cC')}" # validate the values self.assertAlmostEqual( root_prim.GetAttribute(prim_prop_name).Get(), attr_value, places=5, msg=f"Failed setting for {prim_prop_name}", ) def _validate_rigid_body_properties_on_prim(self, prim_path: str, verbose: bool = False): """Validate the rigid body properties on the prim. Note: Right now this function exploits the hierarchy in the asset to check the properties. This is not a fool-proof way of checking the properties. """ # the root prim root_prim = prim_utils.get_prim_at_path(prim_path) # check rigid body properties are set correctly for link_prim in root_prim.GetChildren(): if UsdPhysics.RigidBodyAPI(link_prim): for attr_name, attr_value in self.rigid_cfg.__dict__.items(): # skip names we know are not present if attr_name in ["func", "rigid_body_enabled", "kinematic_enabled"]: continue # convert attribute name in prim to cfg name prim_prop_name = f"physxRigidBody:{to_camel_case(attr_name, to='cC')}" # validate the values self.assertAlmostEqual( link_prim.GetAttribute(prim_prop_name).Get(), attr_value, places=5, msg=f"Failed setting for {prim_prop_name}", ) elif verbose: print(f"Skipping prim {link_prim.GetPrimPath()} as it is not a rigid body.") def _validate_collision_properties_on_prim(self, prim_path: str, verbose: bool = False): """Validate the collision properties on the prim. Note: Right now this function exploits the hierarchy in the asset to check the properties. This is not a fool-proof way of checking the properties. """ # the root prim root_prim = prim_utils.get_prim_at_path(prim_path) # check collision properties are set correctly for link_prim in root_prim.GetChildren(): for mesh_prim in link_prim.GetChildren(): if UsdPhysics.CollisionAPI(mesh_prim): for attr_name, attr_value in self.collision_cfg.__dict__.items(): # skip names we know are not present if attr_name in ["func", "collision_enabled"]: continue # convert attribute name in prim to cfg name prim_prop_name = f"physxCollision:{to_camel_case(attr_name, to='cC')}" # validate the values self.assertAlmostEqual( mesh_prim.GetAttribute(prim_prop_name).Get(), attr_value, places=5, msg=f"Failed setting for {prim_prop_name}", ) elif verbose: print(f"Skipping prim {mesh_prim.GetPrimPath()} as it is not a collision mesh.") def _validate_mass_properties_on_prim(self, prim_path: str, verbose: bool = False): """Validate the mass properties on the prim. Note: Right now this function exploits the hierarchy in the asset to check the properties. This is not a fool-proof way of checking the properties. """ # the root prim root_prim = prim_utils.get_prim_at_path(prim_path) # check rigid body mass properties are set correctly for link_prim in root_prim.GetChildren(): if UsdPhysics.MassAPI(link_prim): for attr_name, attr_value in self.mass_cfg.__dict__.items(): # skip names we know are not present if attr_name in ["func"]: continue # print(link_prim.GetProperties()) prim_prop_name = f"physics:{to_camel_case(attr_name, to='cC')}" # validate the values self.assertAlmostEqual( link_prim.GetAttribute(prim_prop_name).Get(), attr_value, places=5, msg=f"Failed setting for {prim_prop_name}", ) elif verbose: print(f"Skipping prim {link_prim.GetPrimPath()} as it is not a mass api.") def _validate_joint_drive_properties_on_prim(self, prim_path: str, verbose: bool = False): """Validate the mass properties on the prim. Note: Right now this function exploits the hierarchy in the asset to check the properties. This is not a fool-proof way of checking the properties. """ # the root prim root_prim = prim_utils.get_prim_at_path(prim_path) # check joint drive properties are set correctly for link_prim in root_prim.GetAllChildren(): for joint_prim in link_prim.GetChildren(): if joint_prim.IsA(UsdPhysics.PrismaticJoint) or joint_prim.IsA(UsdPhysics.RevoluteJoint): # check it has drive API self.assertTrue(joint_prim.HasAPI(UsdPhysics.DriveAPI)) # iterate over the joint properties for attr_name, attr_value in self.joint_cfg.__dict__.items(): # skip names we know are not present if attr_name == "func": continue # manually check joint type if attr_name == "drive_type": if joint_prim.IsA(UsdPhysics.PrismaticJoint): prim_attr_name = "drive:linear:physics:type" elif joint_prim.IsA(UsdPhysics.RevoluteJoint): prim_attr_name = "drive:angular:physics:type" else: raise ValueError(f"Unknown joint type for prim {joint_prim.GetPrimPath()}") # check the value self.assertEqual(attr_value, joint_prim.GetAttribute(prim_attr_name).Get()) continue elif verbose: print(f"Skipping prim {joint_prim.GetPrimPath()} as it is not a joint drive api.") if __name__ == "__main__": run_tests()
17,605
Python
46.972752
122
0.600738
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_spawn_materials.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils from omni.isaac.core.simulation_context import SimulationContext from pxr import UsdPhysics, UsdShade import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.utils.assets import NVIDIA_NUCLEUS_DIR class TestSpawningMaterials(unittest.TestCase): """Test fixture for checking spawning of materials.""" def setUp(self) -> None: """Create a blank new stage for each test.""" # Create a new stage stage_utils.create_new_stage() # Simulation time-step self.dt = 0.1 # Load kit helper self.sim = SimulationContext(physics_dt=self.dt, rendering_dt=self.dt, backend="numpy") # Wait for spawning stage_utils.update_stage() def tearDown(self) -> None: """Stops simulator after each test.""" # stop simulation self.sim.stop() self.sim.clear() self.sim.clear_all_callbacks() self.sim.clear_instance() def test_spawn_preview_surface(self): """Test spawning preview surface.""" # Spawn preview surface cfg = sim_utils.materials.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)) prim = cfg.func("/Looks/PreviewSurface", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/Looks/PreviewSurface")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Shader") # Check properties self.assertEqual(prim.GetAttribute("inputs:diffuseColor").Get(), cfg.diffuse_color) def test_spawn_mdl_material(self): """Test spawning mdl material.""" # Spawn mdl material cfg = sim_utils.materials.MdlFileCfg( mdl_path=f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Metals/Aluminum_Anodized.mdl", project_uvw=True, albedo_brightness=0.5, ) prim = cfg.func("/Looks/MdlMaterial", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/Looks/MdlMaterial")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Shader") # Check properties self.assertEqual(prim.GetAttribute("inputs:project_uvw").Get(), cfg.project_uvw) self.assertEqual(prim.GetAttribute("inputs:albedo_brightness").Get(), cfg.albedo_brightness) def test_spawn_glass_mdl_material(self): """Test spawning a glass mdl material.""" # Spawn mdl material cfg = sim_utils.materials.GlassMdlCfg(thin_walled=False, glass_ior=1.0, glass_color=(0.0, 1.0, 0.0)) prim = cfg.func("/Looks/GlassMaterial", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/Looks/GlassMaterial")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Shader") # Check properties self.assertEqual(prim.GetAttribute("inputs:thin_walled").Get(), cfg.thin_walled) self.assertEqual(prim.GetAttribute("inputs:glass_ior").Get(), cfg.glass_ior) self.assertEqual(prim.GetAttribute("inputs:glass_color").Get(), cfg.glass_color) def test_spawn_rigid_body_material(self): """Test spawning a rigid body material.""" # spawn physics material cfg = sim_utils.materials.RigidBodyMaterialCfg( dynamic_friction=1.5, restitution=1.5, static_friction=0.5, restitution_combine_mode="max", friction_combine_mode="max", improve_patch_friction=True, ) prim = cfg.func("/Looks/RigidBodyMaterial", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/Looks/RigidBodyMaterial")) # Check properties self.assertEqual(prim.GetAttribute("physics:staticFriction").Get(), cfg.static_friction) self.assertEqual(prim.GetAttribute("physics:dynamicFriction").Get(), cfg.dynamic_friction) self.assertEqual(prim.GetAttribute("physics:restitution").Get(), cfg.restitution) self.assertEqual(prim.GetAttribute("physxMaterial:improvePatchFriction").Get(), cfg.improve_patch_friction) self.assertEqual(prim.GetAttribute("physxMaterial:restitutionCombineMode").Get(), cfg.restitution_combine_mode) self.assertEqual(prim.GetAttribute("physxMaterial:frictionCombineMode").Get(), cfg.friction_combine_mode) def test_apply_rigid_body_material_on_visual_material(self): """Test applying a rigid body material on a visual material.""" # Spawn mdl material cfg = sim_utils.materials.GlassMdlCfg(thin_walled=False, glass_ior=1.0, glass_color=(0.0, 1.0, 0.0)) prim = cfg.func("/Looks/Material", cfg) # spawn physics material cfg = sim_utils.materials.RigidBodyMaterialCfg( dynamic_friction=1.5, restitution=1.5, static_friction=0.5, restitution_combine_mode="max", friction_combine_mode="max", improve_patch_friction=True, ) prim = cfg.func("/Looks/Material", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/Looks/Material")) # Check properties self.assertEqual(prim.GetAttribute("physics:staticFriction").Get(), cfg.static_friction) self.assertEqual(prim.GetAttribute("physics:dynamicFriction").Get(), cfg.dynamic_friction) self.assertEqual(prim.GetAttribute("physics:restitution").Get(), cfg.restitution) self.assertEqual(prim.GetAttribute("physxMaterial:improvePatchFriction").Get(), cfg.improve_patch_friction) self.assertEqual(prim.GetAttribute("physxMaterial:restitutionCombineMode").Get(), cfg.restitution_combine_mode) self.assertEqual(prim.GetAttribute("physxMaterial:frictionCombineMode").Get(), cfg.friction_combine_mode) def test_bind_prim_to_material(self): """Test binding a rigid body material on a mesh prim.""" # create a mesh prim object_prim = prim_utils.create_prim("/World/Geometry/box", "Cube") UsdPhysics.CollisionAPI.Apply(object_prim) # create a visual material visual_material_cfg = sim_utils.GlassMdlCfg(glass_ior=1.0, thin_walled=True) visual_material_cfg.func("/World/Looks/glassMaterial", visual_material_cfg) # create a physics material physics_material_cfg = sim_utils.RigidBodyMaterialCfg( static_friction=0.5, dynamic_friction=1.5, restitution=1.5 ) physics_material_cfg.func("/World/Physics/rubberMaterial", physics_material_cfg) # bind the visual material to the mesh prim sim_utils.bind_visual_material("/World/Geometry/box", "/World/Looks/glassMaterial") sim_utils.bind_physics_material("/World/Geometry/box", "/World/Physics/rubberMaterial") # check the main material binding material_binding_api = UsdShade.MaterialBindingAPI(object_prim) # -- visual material_direct_binding = material_binding_api.GetDirectBinding() self.assertEqual(material_direct_binding.GetMaterialPath(), "/World/Looks/glassMaterial") self.assertEqual(material_direct_binding.GetMaterialPurpose(), "") # -- physics material_direct_binding = material_binding_api.GetDirectBinding("physics") self.assertEqual(material_direct_binding.GetMaterialPath(), "/World/Physics/rubberMaterial") self.assertEqual(material_direct_binding.GetMaterialPurpose(), "physics") if __name__ == "__main__": run_tests()
8,041
Python
45.485549
119
0.673175
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_spawn_lights.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils from omni.isaac.core.simulation_context import SimulationContext from pxr import UsdLux import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.utils.string import to_camel_case class TestSpawningLights(unittest.TestCase): """Test fixture for checking spawning of USD lights with different settings.""" def setUp(self) -> None: """Create a blank new stage for each test.""" # Create a new stage stage_utils.create_new_stage() # Simulation time-step self.dt = 0.1 # Load kit helper self.sim = SimulationContext(physics_dt=self.dt, rendering_dt=self.dt, backend="numpy") # Wait for spawning stage_utils.update_stage() def tearDown(self) -> None: """Stops simulator after each test.""" # stop simulation self.sim.stop() self.sim.clear() self.sim.clear_all_callbacks() self.sim.clear_instance() """ Basic spawning. """ def test_spawn_disk_light(self): """Test spawning a disk light source.""" cfg = sim_utils.DiskLightCfg( color=(0.1, 0.1, 0.1), enable_color_temperature=True, color_temperature=5500, intensity=100, radius=20.0 ) prim = cfg.func("/World/disk_light", cfg) # check if the light is spawned self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/disk_light")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "DiskLight") # validate properties on the prim self._validate_properties_on_prim("/World/disk_light", cfg) def test_spawn_distant_light(self): """Test spawning a distant light.""" cfg = sim_utils.DistantLightCfg( color=(0.1, 0.1, 0.1), enable_color_temperature=True, color_temperature=5500, intensity=100, angle=20 ) prim = cfg.func("/World/distant_light", cfg) # check if the light is spawned self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/distant_light")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "DistantLight") # validate properties on the prim self._validate_properties_on_prim("/World/distant_light", cfg) def test_spawn_dome_light(self): """Test spawning a dome light source.""" cfg = sim_utils.DomeLightCfg( color=(0.1, 0.1, 0.1), enable_color_temperature=True, color_temperature=5500, intensity=100 ) prim = cfg.func("/World/dome_light", cfg) # check if the light is spawned self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/dome_light")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "DomeLight") # validate properties on the prim self._validate_properties_on_prim("/World/dome_light", cfg) def test_spawn_cylinder_light(self): """Test spawning a cylinder light source.""" cfg = sim_utils.CylinderLightCfg( color=(0.1, 0.1, 0.1), enable_color_temperature=True, color_temperature=5500, intensity=100, radius=20.0 ) prim = cfg.func("/World/cylinder_light", cfg) # check if the light is spawned self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/cylinder_light")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "CylinderLight") # validate properties on the prim self._validate_properties_on_prim("/World/cylinder_light", cfg) def test_spawn_sphere_light(self): """Test spawning a sphere light source.""" cfg = sim_utils.SphereLightCfg( color=(0.1, 0.1, 0.1), enable_color_temperature=True, color_temperature=5500, intensity=100, radius=20.0 ) prim = cfg.func("/World/sphere_light", cfg) # check if the light is spawned self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/sphere_light")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "SphereLight") # validate properties on the prim self._validate_properties_on_prim("/World/sphere_light", cfg) """ Helper functions. """ def _validate_properties_on_prim(self, prim_path: str, cfg: sim_utils.LightCfg): """Validate the properties on the prim. Args: prim_path: The prim name. cfg: The configuration for the light source. """ # default list of params to skip non_usd_params = ["func", "prim_type", "visible", "semantic_tags", "copy_from_source"] # obtain prim prim = prim_utils.get_prim_at_path(prim_path) for attr_name, attr_value in cfg.__dict__.items(): # skip names we know are not present if attr_name in non_usd_params or attr_value is None: continue # deal with texture input names if "texture" in attr_name: light_prim = UsdLux.DomeLight(prim) if attr_name == "texture_file": configured_value = light_prim.GetTextureFileAttr().Get() elif attr_name == "texture_format": configured_value = light_prim.GetTextureFormatAttr().Get() else: raise ValueError(f"Unknown texture attribute: '{attr_name}'") else: # convert attribute name in prim to cfg name prim_prop_name = f"inputs:{to_camel_case(attr_name, to='cC')}" # configured value configured_value = prim.GetAttribute(prim_prop_name).Get() # validate the values self.assertEqual(configured_value, attr_value, msg=f"Failed for attribute: '{attr_name}'") if __name__ == "__main__": run_tests()
6,329
Python
38.31677
116
0.626165
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_utils.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app config = {"headless": True} simulation_app = AppLauncher(config).app """Rest everything follows.""" import numpy as np import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils from pxr import Sdf, Usd, UsdGeom import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR, ISAAC_ORBIT_NUCLEUS_DIR class TestUtilities(unittest.TestCase): """Test fixture for the sim utility functions.""" def setUp(self): """Create a blank new stage for each test.""" # Create a new stage stage_utils.create_new_stage() stage_utils.update_stage() def tearDown(self) -> None: """Clear stage after each test.""" stage_utils.clear_stage() def test_get_all_matching_child_prims(self): """Test get_all_matching_child_prims() function.""" # create scene prim_utils.create_prim("/World/Floor") prim_utils.create_prim( "/World/Floor/thefloor", "Cube", position=np.array([75, 75, -150.1]), attributes={"size": 300} ) prim_utils.create_prim("/World/Room", "Sphere", attributes={"radius": 1e3}) # test isaac_sim_result = prim_utils.get_all_matching_child_prims("/World") orbit_result = sim_utils.get_all_matching_child_prims("/World") self.assertListEqual(isaac_sim_result, orbit_result) # test valid path with self.assertRaises(ValueError): sim_utils.get_all_matching_child_prims("World/Room") def test_find_matching_prim_paths(self): """Test find_matching_prim_paths() function.""" # create scene for index in range(2048): random_pos = np.random.uniform(-100, 100, size=3) prim_utils.create_prim(f"/World/Floor_{index}", "Cube", position=random_pos, attributes={"size": 2.0}) prim_utils.create_prim(f"/World/Floor_{index}/Sphere", "Sphere", attributes={"radius": 10}) prim_utils.create_prim(f"/World/Floor_{index}/Sphere/childSphere", "Sphere", attributes={"radius": 1}) prim_utils.create_prim(f"/World/Floor_{index}/Sphere/childSphere2", "Sphere", attributes={"radius": 1}) # test leaf paths isaac_sim_result = prim_utils.find_matching_prim_paths("/World/Floor_.*/Sphere") orbit_result = sim_utils.find_matching_prim_paths("/World/Floor_.*/Sphere") self.assertListEqual(isaac_sim_result, orbit_result) # test non-leaf paths isaac_sim_result = prim_utils.find_matching_prim_paths("/World/Floor_.*") orbit_result = sim_utils.find_matching_prim_paths("/World/Floor_.*") self.assertListEqual(isaac_sim_result, orbit_result) # test child-leaf paths isaac_sim_result = prim_utils.find_matching_prim_paths("/World/Floor_.*/Sphere/childSphere.*") orbit_result = sim_utils.find_matching_prim_paths("/World/Floor_.*/Sphere/childSphere.*") self.assertListEqual(isaac_sim_result, orbit_result) # test valid path with self.assertRaises(ValueError): sim_utils.get_all_matching_child_prims("World/Floor_.*") def test_find_global_fixed_joint_prim(self): """Test find_global_fixed_joint_prim() function.""" # create scene prim_utils.create_prim("/World") prim_utils.create_prim( "/World/ANYmal", usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-C/anymal_c.usd" ) prim_utils.create_prim( "/World/Franka", usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/FrankaEmika/panda_instanceable.usd" ) prim_utils.create_prim("/World/Franka_Isaac", usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Franka/franka.usd") # test self.assertIsNone(sim_utils.find_global_fixed_joint_prim("/World/ANYmal")) self.assertIsNotNone(sim_utils.find_global_fixed_joint_prim("/World/Franka")) self.assertIsNotNone(sim_utils.find_global_fixed_joint_prim("/World/Franka_Isaac")) # make fixed joint disabled manually joint_prim = sim_utils.find_global_fixed_joint_prim("/World/Franka") joint_prim.GetJointEnabledAttr().Set(False) self.assertIsNotNone(sim_utils.find_global_fixed_joint_prim("/World/Franka")) self.assertIsNone(sim_utils.find_global_fixed_joint_prim("/World/Franka", check_enabled_only=True)) def test_select_usd_variants(self): """Test select_usd_variants() function.""" stage = stage_utils.get_current_stage() prim: Usd.Prim = UsdGeom.Xform.Define(stage, Sdf.Path("/World")).GetPrim() stage.SetDefaultPrim(prim) # Create the variant set and add your variants to it. variants = ["red", "blue", "green"] variant_set = prim.GetVariantSets().AddVariantSet("colors") for variant in variants: variant_set.AddVariant(variant) # Set the variant selection sim_utils.utils.select_usd_variants("/World", {"colors": "red"}, stage) # Check if the variant selection is correct self.assertEqual(variant_set.GetVariantSelection(), "red") if __name__ == "__main__": run_tests()
5,443
Python
40.557252
115
0.653316
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_build_simulation_context_headless.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This test has a lot of duplication with ``test_build_simulation_context_nonheadless.py``. This is intentional to ensure that the tests are run in both headless and non-headless modes, and we currently can't re-build the simulation app in a script. If you need to make a change to this test, please make sure to also make the same change to ``test_build_simulation_context_nonheadless.py``. """ """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import unittest from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.orbit.sim.simulation_cfg import SimulationCfg from omni.isaac.orbit.sim.simulation_context import build_simulation_context class TestBuildSimulationContextHeadless(unittest.TestCase): """Tests for simulation context builder with headless usecase.""" """ Tests """ def test_build_simulation_context_no_cfg(self): """Test that the simulation context is built when no simulation cfg is passed in.""" for gravity_enabled in (True, False): for device in ("cuda:0", "cpu"): for dt in (0.01, 0.1): with self.subTest(gravity_enabled=gravity_enabled, device=device, dt=dt): with build_simulation_context(gravity_enabled=gravity_enabled, device=device, dt=dt) as sim: if gravity_enabled: self.assertEqual(sim.cfg.gravity, (0.0, 0.0, -9.81)) else: self.assertEqual(sim.cfg.gravity, (0.0, 0.0, 0.0)) if device == "cuda:0": self.assertEqual(sim.cfg.device, "cuda:0") else: self.assertEqual(sim.cfg.device, "cpu") self.assertEqual(sim.cfg.dt, dt) # Ensure that dome light didn't get added automatically as we are headless self.assertFalse(is_prim_path_valid("/World/defaultDomeLight")) def test_build_simulation_context_ground_plane(self): """Test that the simulation context is built with the correct ground plane.""" for add_ground_plane in (True, False): with self.subTest(add_ground_plane=add_ground_plane): with build_simulation_context(add_ground_plane=add_ground_plane) as _: # Ensure that ground plane got added self.assertEqual(is_prim_path_valid("/World/defaultGroundPlane"), add_ground_plane) def test_build_simulation_context_auto_add_lighting(self): """Test that the simulation context is built with the correct lighting.""" for add_lighting in (True, False): for auto_add_lighting in (True, False): with self.subTest(add_lighting=add_lighting, auto_add_lighting=auto_add_lighting): with build_simulation_context(add_lighting=add_lighting, auto_add_lighting=auto_add_lighting) as _: if add_lighting: # Ensure that dome light got added self.assertTrue(is_prim_path_valid("/World/defaultDomeLight")) else: # Ensure that dome light didn't get added as there's no GUI self.assertFalse(is_prim_path_valid("/World/defaultDomeLight")) def test_build_simulation_context_cfg(self): """Test that the simulation context is built with the correct cfg and values don't get overridden.""" dt = 0.001 # Non-standard gravity gravity = (0.0, 0.0, -1.81) device = "cuda:0" cfg = SimulationCfg( gravity=gravity, device=device, dt=dt, ) with build_simulation_context(sim_cfg=cfg, gravity_enabled=False, dt=0.01, device="cpu") as sim: self.assertEqual(sim.cfg.gravity, gravity) self.assertEqual(sim.cfg.device, device) self.assertEqual(sim.cfg.dt, dt) if __name__ == "__main__": run_tests()
4,422
Python
41.941747
141
0.605834
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_build_simulation_context_nonheadless.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This test has a lot of duplication with ``test_build_simulation_context_headless.py``. This is intentional to ensure that the tests are run in both headless and non-headless modes, and we currently can't re-build the simulation app in a script. If you need to make a change to this test, please make sure to also make the same change to ``test_build_simulation_context_headless.py``. """ """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app app_launcher = AppLauncher(headless=False) simulation_app = app_launcher.app """Rest everything follows.""" import unittest from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.orbit.sim.simulation_cfg import SimulationCfg from omni.isaac.orbit.sim.simulation_context import build_simulation_context class TestBuildSimulationContextNonheadless(unittest.TestCase): """Tests for simulation context builder with non-headless usecase.""" """ Tests """ def test_build_simulation_context_no_cfg(self): """Test that the simulation context is built when no simulation cfg is passed in.""" for gravity_enabled in (True, False): for device in ("cuda:0", "cpu"): for dt in (0.01, 0.1): with self.subTest(gravity_enabled=gravity_enabled, device=device, dt=dt): with build_simulation_context( gravity_enabled=gravity_enabled, device=device, dt=dt, ) as sim: if gravity_enabled: self.assertEqual(sim.cfg.gravity, (0.0, 0.0, -9.81)) else: self.assertEqual(sim.cfg.gravity, (0.0, 0.0, 0.0)) if device == "cuda:0": self.assertEqual(sim.cfg.device, "cuda:0") else: self.assertEqual(sim.cfg.device, "cpu") self.assertEqual(sim.cfg.dt, dt) def test_build_simulation_context_ground_plane(self): """Test that the simulation context is built with the correct ground plane.""" for add_ground_plane in (True, False): with self.subTest(add_ground_plane=add_ground_plane): with build_simulation_context(add_ground_plane=add_ground_plane) as _: # Ensure that ground plane got added self.assertEqual(is_prim_path_valid("/World/defaultGroundPlane"), add_ground_plane) def test_build_simulation_context_auto_add_lighting(self): """Test that the simulation context is built with the correct lighting.""" for add_lighting in (True, False): for auto_add_lighting in (True, False): with self.subTest(add_lighting=add_lighting, auto_add_lighting=auto_add_lighting): with build_simulation_context(add_lighting=add_lighting, auto_add_lighting=auto_add_lighting) as _: if auto_add_lighting or add_lighting: # Ensure that dome light got added self.assertTrue(is_prim_path_valid("/World/defaultDomeLight")) else: # Ensure that dome light didn't get added self.assertFalse(is_prim_path_valid("/World/defaultDomeLight")) def test_build_simulation_context_cfg(self): """Test that the simulation context is built with the correct cfg and values don't get overridden.""" dt = 0.001 # Non-standard gravity gravity = (0.0, 0.0, -1.81) device = "cuda:0" cfg = SimulationCfg( gravity=gravity, device=device, dt=dt, ) with build_simulation_context(sim_cfg=cfg, gravity_enabled=False, dt=0.01, device="cpu") as sim: self.assertEqual(sim.cfg.gravity, gravity) self.assertEqual(sim.cfg.device, device) self.assertEqual(sim.cfg.dt, dt) if __name__ == "__main__": run_tests()
4,341
Python
41.155339
138
0.592721
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_simulation_context.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True, experience="omni.isaac.sim.python.gym.headless.kit").app """Rest everything follows.""" import ctypes import numpy as np import unittest import omni.isaac.core.utils.prims as prim_utils from omni.isaac.core.simulation_context import SimulationContext as IsaacSimulationContext from omni.isaac.orbit.sim import SimulationCfg, SimulationContext class TestSimulationContext(unittest.TestCase): """Test fixture for wrapper around simulation context.""" def setUp(self) -> None: """Create a blank new stage for each test.""" # Load kit helper SimulationContext.clear_instance() def test_singleton(self): """Tests that the singleton is working.""" sim1 = SimulationContext() sim2 = SimulationContext() sim3 = IsaacSimulationContext() self.assertIs(sim1, sim2) self.assertIs(sim1, sim3) # try to delete the singleton sim2.clear_instance() self.assertTrue(sim1.instance() is None) # create new instance sim4 = SimulationContext() self.assertIsNot(sim1, sim4) self.assertIsNot(sim3, sim4) self.assertIs(sim1.instance(), sim4.instance()) self.assertIs(sim3.instance(), sim4.instance()) # clear instance sim3.clear_instance() def test_initialization(self): """Test the simulation config.""" cfg = SimulationCfg(physics_prim_path="/Physics/PhysX", substeps=5, gravity=(0.0, -0.5, -0.5)) sim = SimulationContext(cfg) # TODO: Figure out why keyword argument doesn't work. # note: added a fix in Isaac Sim 2023.1 for this. # sim = SimulationContext(cfg=cfg) # check valid settings self.assertEqual(sim.get_physics_dt(), cfg.dt) self.assertEqual(sim.get_rendering_dt(), cfg.dt * cfg.substeps) self.assertFalse(sim.has_rtx_sensors()) # check valid paths self.assertTrue(prim_utils.is_prim_path_valid("/Physics/PhysX")) self.assertTrue(prim_utils.is_prim_path_valid("/Physics/PhysX/defaultMaterial")) # check valid gravity gravity_dir, gravity_mag = sim.get_physics_context().get_gravity() gravity = np.array(gravity_dir) * gravity_mag np.testing.assert_almost_equal(gravity, cfg.gravity) def test_sim_version(self): """Test obtaining the version.""" sim = SimulationContext() version = sim.get_version() self.assertTrue(len(version) > 0) self.assertTrue(version[0] >= 2023) def test_carb_setting(self): """Test setting carb settings.""" sim = SimulationContext() # known carb setting sim.set_setting("/physics/physxDispatcher", False) self.assertEqual(sim.get_setting("/physics/physxDispatcher"), False) # unknown carb setting sim.set_setting("/myExt/using_omniverse_version", sim.get_version()) self.assertSequenceEqual(sim.get_setting("/myExt/using_omniverse_version"), sim.get_version()) def test_headless_mode(self): """Test that render mode is headless since we are running in headless mode.""" sim = SimulationContext() # check default render mode self.assertEqual(sim.render_mode, sim.RenderMode.NO_GUI_OR_RENDERING) def test_boundedness(self): """Test that the boundedness of the simulation context remains constant. Note: This test fails right now because Isaac Sim does not handle boundedness correctly. On creation, it is registering itself to various callbacks and hence the boundedness is more than 1. This may not be critical for the simulation context since we usually call various clear functions before deleting the simulation context. """ sim = SimulationContext() # manually set the boundedness to 1? -- this is not possible because of Isaac Sim. sim.clear_all_callbacks() sim._stage_open_callback = None sim._physics_timer_callback = None sim._event_timer_callback = None # check that boundedness of simulation context is correct sim_ref_count = ctypes.c_long.from_address(id(sim)).value # reset the simulation sim.reset() self.assertEqual(ctypes.c_long.from_address(id(sim)).value, sim_ref_count) # step the simulation for _ in range(10): sim.step() self.assertEqual(ctypes.c_long.from_address(id(sim)).value, sim_ref_count) # clear the simulation sim.clear_instance() self.assertEqual(ctypes.c_long.from_address(id(sim)).value, sim_ref_count - 1) def test_zero_gravity(self): """Test that gravity can be properly disabled.""" cfg = SimulationCfg(gravity=(0.0, 0.0, 0.0)) sim = SimulationContext(cfg) gravity_dir, gravity_mag = sim.get_physics_context().get_gravity() gravity = np.array(gravity_dir) * gravity_mag np.testing.assert_almost_equal(gravity, cfg.gravity) if __name__ == "__main__": run_tests()
5,341
Python
37.710145
111
0.659802
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_mesh_converter.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import os import tempfile import unittest import omni import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils from omni.isaac.core.simulation_context import SimulationContext from pxr import UsdGeom, UsdPhysics from omni.isaac.orbit.sim.converters import MeshConverter, MeshConverterCfg from omni.isaac.orbit.sim.schemas import schemas_cfg from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR, retrieve_file_path class TestMeshConverter(unittest.TestCase): """Test fixture for the MeshConverter class.""" @classmethod def setUpClass(cls): """Load assets for tests.""" assets_dir = f"{ISAAC_ORBIT_NUCLEUS_DIR}/Tests/MeshConverter/duck" # Create mapping of file endings to file paths that can be used by tests cls.assets = { "obj": f"{assets_dir}/duck.obj", "stl": f"{assets_dir}/duck.stl", "fbx": f"{assets_dir}/duck.fbx", "mtl": f"{assets_dir}/duck.mtl", "png": f"{assets_dir}/duckCM.png", } # Download all these locally download_dir = tempfile.mkdtemp(suffix="_mesh_converter_test_assets") for key, value in cls.assets.items(): cls.assets[key] = retrieve_file_path(value, download_dir=download_dir) def setUp(self): """Create a blank new stage for each test.""" # Create a new stage stage_utils.create_new_stage() # Simulation time-step self.dt = 0.01 # Load kit helper self.sim = SimulationContext(physics_dt=self.dt, rendering_dt=self.dt, backend="numpy") def tearDown(self) -> None: """Stops simulator after each test.""" # stop simulation self.sim.stop() # cleanup stage and context self.sim.clear() self.sim.clear_all_callbacks() self.sim.clear_instance() """ Test fixtures. """ def test_no_change(self): """Call conversion twice on the same input asset. This should not generate a new USD file if the hash is the same.""" # create an initial USD file from asset mesh_config = MeshConverterCfg(asset_path=self.assets["obj"]) mesh_converter = MeshConverter(mesh_config) time_usd_file_created = os.stat(mesh_converter.usd_path).st_mtime_ns # no change to config only define the usd directory new_config = mesh_config new_config.usd_dir = mesh_converter.usd_dir # convert to usd but this time in the same directory as previous step new_mesh_converter = MeshConverter(new_config) new_time_usd_file_created = os.stat(new_mesh_converter.usd_path).st_mtime_ns self.assertEqual(time_usd_file_created, new_time_usd_file_created) def test_config_change(self): """Call conversion twice but change the config in the second call. This should generate a new USD file.""" # create an initial USD file from asset mesh_config = MeshConverterCfg(asset_path=self.assets["obj"]) mesh_converter = MeshConverter(mesh_config) time_usd_file_created = os.stat(mesh_converter.usd_path).st_mtime_ns # change the config new_config = mesh_config new_config.make_instanceable = not mesh_config.make_instanceable # define the usd directory new_config.usd_dir = mesh_converter.usd_dir # convert to usd but this time in the same directory as previous step new_mesh_converter = MeshConverter(new_config) new_time_usd_file_created = os.stat(new_mesh_converter.usd_path).st_mtime_ns self.assertNotEqual(time_usd_file_created, new_time_usd_file_created) def test_convert_obj(self): """Convert an OBJ file""" mesh_config = MeshConverterCfg(asset_path=self.assets["obj"]) mesh_converter = MeshConverter(mesh_config) # check that mesh conversion is successful self._check_mesh_conversion(mesh_converter) def test_convert_stl(self): """Convert an STL file""" mesh_config = MeshConverterCfg(asset_path=self.assets["stl"]) mesh_converter = MeshConverter(mesh_config) # check that mesh conversion is successful self._check_mesh_conversion(mesh_converter) def test_convert_fbx(self): """Convert an FBX file""" mesh_config = MeshConverterCfg(asset_path=self.assets["fbx"]) mesh_converter = MeshConverter(mesh_config) # check that mesh conversion is successful self._check_mesh_conversion(mesh_converter) def test_collider_no_approximation(self): """Convert an OBJ file using no approximation""" collision_props = schemas_cfg.CollisionPropertiesCfg(collision_enabled=True) mesh_config = MeshConverterCfg( asset_path=self.assets["obj"], collision_approximation="none", collision_props=collision_props, ) mesh_converter = MeshConverter(mesh_config) # check that mesh conversion is successful self._check_mesh_collider_settings(mesh_converter) def test_collider_convex_hull(self): """Convert an OBJ file using convex hull approximation""" collision_props = schemas_cfg.CollisionPropertiesCfg(collision_enabled=True) mesh_config = MeshConverterCfg( asset_path=self.assets["obj"], collision_approximation="convexHull", collision_props=collision_props, ) mesh_converter = MeshConverter(mesh_config) # check that mesh conversion is successful self._check_mesh_collider_settings(mesh_converter) def test_collider_mesh_simplification(self): """Convert an OBJ file using mesh simplification approximation""" collision_props = schemas_cfg.CollisionPropertiesCfg(collision_enabled=True) mesh_config = MeshConverterCfg( asset_path=self.assets["obj"], collision_approximation="meshSimplification", collision_props=collision_props, ) mesh_converter = MeshConverter(mesh_config) # check that mesh conversion is successful self._check_mesh_collider_settings(mesh_converter) def test_collider_mesh_bounding_cube(self): """Convert an OBJ file using bounding cube approximation""" collision_props = schemas_cfg.CollisionPropertiesCfg(collision_enabled=True) mesh_config = MeshConverterCfg( asset_path=self.assets["obj"], collision_approximation="boundingCube", collision_props=collision_props, ) mesh_converter = MeshConverter(mesh_config) # check that mesh conversion is successful self._check_mesh_collider_settings(mesh_converter) def test_collider_mesh_bounding_sphere(self): """Convert an OBJ file using bounding sphere""" collision_props = schemas_cfg.CollisionPropertiesCfg(collision_enabled=True) mesh_config = MeshConverterCfg( asset_path=self.assets["obj"], collision_approximation="boundingSphere", collision_props=collision_props, ) mesh_converter = MeshConverter(mesh_config) # check that mesh conversion is successful self._check_mesh_collider_settings(mesh_converter) def test_collider_mesh_no_collision(self): """Convert an OBJ file using bounding sphere with collision disabled""" collision_props = schemas_cfg.CollisionPropertiesCfg(collision_enabled=False) mesh_config = MeshConverterCfg( asset_path=self.assets["obj"], collision_approximation="boundingSphere", collision_props=collision_props, ) mesh_converter = MeshConverter(mesh_config) # check that mesh conversion is successful self._check_mesh_collider_settings(mesh_converter) """ Helper functions. """ def _check_mesh_conversion(self, mesh_converter: MeshConverter): """Check that mesh is loadable and stage is valid.""" # Load the mesh prim_path = "/World/Object" prim_utils.create_prim(prim_path, usd_path=mesh_converter.usd_path) # Check prim can be properly spawned self.assertTrue(prim_utils.is_prim_path_valid(prim_path)) # Load a second time prim_path = "/World/Object2" prim_utils.create_prim(prim_path, usd_path=mesh_converter.usd_path) # Check prim can be properly spawned self.assertTrue(prim_utils.is_prim_path_valid(prim_path)) stage = omni.usd.get_context().get_stage() # Check axis is z-up axis = UsdGeom.GetStageUpAxis(stage) self.assertEqual(axis, "Z") # Check units is meters units = UsdGeom.GetStageMetersPerUnit(stage) self.assertEqual(units, 1.0) def _check_mesh_collider_settings(self, mesh_converter: MeshConverter): # Check prim can be properly spawned prim_path = "/World/Object" prim_utils.create_prim(prim_path, usd_path=mesh_converter.usd_path) self.assertTrue(prim_utils.is_prim_path_valid(prim_path)) # Make uninstanceable to check collision settings geom_prim = prim_utils.get_prim_at_path(prim_path + "/geometry") # Check that instancing worked! self.assertEqual(geom_prim.IsInstanceable(), mesh_converter.cfg.make_instanceable) # Obtain mesh settings geom_prim.SetInstanceable(False) mesh_prim = prim_utils.get_prim_at_path(prim_path + "/geometry/mesh") # Check collision settings # -- if collision is enabled, check that API is present exp_collision_enabled = ( mesh_converter.cfg.collision_props is not None and mesh_converter.cfg.collision_props.collision_enabled ) collision_api = UsdPhysics.CollisionAPI(mesh_prim) collision_enabled = collision_api.GetCollisionEnabledAttr().Get() self.assertEqual(collision_enabled, exp_collision_enabled, "Collision enabled is not the same!") # -- if collision is enabled, check that collision approximation is correct if exp_collision_enabled: exp_collision_approximation = mesh_converter.cfg.collision_approximation mesh_collision_api = UsdPhysics.MeshCollisionAPI(mesh_prim) collision_approximation = mesh_collision_api.GetApproximationAttr().Get() self.assertEqual( collision_approximation, exp_collision_approximation, "Collision approximation is not the same!" ) if __name__ == "__main__": run_tests()
10,938
Python
40.12406
125
0.664564
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_spawn_shapes.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils from omni.isaac.core.simulation_context import SimulationContext import omni.isaac.orbit.sim as sim_utils class TestSpawningUsdGeometries(unittest.TestCase): """Test fixture for checking spawning of USDGeom prim with different settings.""" def setUp(self) -> None: """Create a blank new stage for each test.""" # Create a new stage stage_utils.create_new_stage() # Simulation time-step self.dt = 0.1 # Load kit helper self.sim = SimulationContext(physics_dt=self.dt, rendering_dt=self.dt, backend="numpy") # Wait for spawning stage_utils.update_stage() def tearDown(self) -> None: """Stops simulator after each test.""" # stop simulation self.sim.stop() self.sim.clear() self.sim.clear_all_callbacks() self.sim.clear_instance() """ Basic spawning. """ def test_spawn_cone(self): """Test spawning of UsdGeom.Cone prim.""" # Spawn cone cfg = sim_utils.ConeCfg(radius=1.0, height=2.0, axis="Y") prim = cfg.func("/World/Cone", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/Cone")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Xform") # Check properties prim = prim_utils.get_prim_at_path("/World/Cone/geometry/mesh") self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Cone") self.assertEqual(prim.GetAttribute("radius").Get(), cfg.radius) self.assertEqual(prim.GetAttribute("height").Get(), cfg.height) self.assertEqual(prim.GetAttribute("axis").Get(), cfg.axis) def test_spawn_capsule(self): """Test spawning of UsdGeom.Capsule prim.""" # Spawn capsule cfg = sim_utils.CapsuleCfg(radius=1.0, height=2.0, axis="Y") prim = cfg.func("/World/Capsule", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/Capsule")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Xform") # Check properties prim = prim_utils.get_prim_at_path("/World/Capsule/geometry/mesh") self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Capsule") self.assertEqual(prim.GetAttribute("radius").Get(), cfg.radius) self.assertEqual(prim.GetAttribute("height").Get(), cfg.height) self.assertEqual(prim.GetAttribute("axis").Get(), cfg.axis) def test_spawn_cylinder(self): """Test spawning of UsdGeom.Cylinder prim.""" # Spawn cylinder cfg = sim_utils.CylinderCfg(radius=1.0, height=2.0, axis="Y") prim = cfg.func("/World/Cylinder", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/Cylinder")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Xform") # Check properties prim = prim_utils.get_prim_at_path("/World/Cylinder/geometry/mesh") self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Cylinder") self.assertEqual(prim.GetAttribute("radius").Get(), cfg.radius) self.assertEqual(prim.GetAttribute("height").Get(), cfg.height) self.assertEqual(prim.GetAttribute("axis").Get(), cfg.axis) def test_spawn_cuboid(self): """Test spawning of UsdGeom.Cube prim.""" # Spawn cuboid cfg = sim_utils.CuboidCfg(size=(1.0, 2.0, 3.0)) prim = cfg.func("/World/Cube", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/Cube")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Xform") # Check properties prim = prim_utils.get_prim_at_path("/World/Cube/geometry/mesh") self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Cube") self.assertEqual(prim.GetAttribute("size").Get(), min(cfg.size)) def test_spawn_sphere(self): """Test spawning of UsdGeom.Sphere prim.""" # Spawn sphere cfg = sim_utils.SphereCfg(radius=1.0) prim = cfg.func("/World/Sphere", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/Sphere")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Xform") # Check properties prim = prim_utils.get_prim_at_path("/World/Sphere/geometry/mesh") self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Sphere") self.assertEqual(prim.GetAttribute("radius").Get(), cfg.radius) """ Physics properties. """ def test_spawn_cone_with_rigid_props(self): """Test spawning of UsdGeom.Cone prim with rigid body API. Note: Playing the simulation in this case will give a warning that no mass is specified! Need to also setup mass and colliders. """ # Spawn cone cfg = sim_utils.ConeCfg( radius=1.0, height=2.0, rigid_props=sim_utils.RigidBodyPropertiesCfg( rigid_body_enabled=True, solver_position_iteration_count=8, sleep_threshold=0.1 ), ) prim = cfg.func("/World/Cone", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/Cone")) # Check properties prim = prim_utils.get_prim_at_path("/World/Cone") self.assertEqual(prim.GetAttribute("physics:rigidBodyEnabled").Get(), cfg.rigid_props.rigid_body_enabled) self.assertEqual( prim.GetAttribute("physxRigidBody:solverPositionIterationCount").Get(), cfg.rigid_props.solver_position_iteration_count, ) self.assertAlmostEqual( prim.GetAttribute("physxRigidBody:sleepThreshold").Get(), cfg.rigid_props.sleep_threshold ) def test_spawn_cone_with_rigid_and_mass_props(self): """Test spawning of UsdGeom.Cone prim with rigid body and mass API.""" # Spawn cone cfg = sim_utils.ConeCfg( radius=1.0, height=2.0, rigid_props=sim_utils.RigidBodyPropertiesCfg( rigid_body_enabled=True, solver_position_iteration_count=8, sleep_threshold=0.1 ), mass_props=sim_utils.MassPropertiesCfg(mass=1.0), ) prim = cfg.func("/World/Cone", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/Cone")) # Check properties prim = prim_utils.get_prim_at_path("/World/Cone") self.assertEqual(prim.GetAttribute("physics:mass").Get(), cfg.mass_props.mass) # check sim playing self.sim.play() for _ in range(10): self.sim.step() def test_spawn_cone_with_rigid_and_density_props(self): """Test spawning of UsdGeom.Cone prim with rigid body and mass API. Note: In this case, we specify the density instead of the mass. In that case, physics need to know the collision shape to compute the mass. Thus, we have to set the collider properties. In order to not have a collision shape, we disable the collision. """ # Spawn cone cfg = sim_utils.ConeCfg( radius=1.0, height=2.0, rigid_props=sim_utils.RigidBodyPropertiesCfg( rigid_body_enabled=True, solver_position_iteration_count=8, sleep_threshold=0.1 ), mass_props=sim_utils.MassPropertiesCfg(density=10.0), collision_props=sim_utils.CollisionPropertiesCfg(collision_enabled=False), ) prim = cfg.func("/World/Cone", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/Cone")) # Check properties prim = prim_utils.get_prim_at_path("/World/Cone") self.assertEqual(prim.GetAttribute("physics:density").Get(), cfg.mass_props.density) # check sim playing self.sim.play() for _ in range(10): self.sim.step() def test_spawn_cone_with_all_props(self): """Test spawning of UsdGeom.Cone prim with all properties.""" # Spawn cone cfg = sim_utils.ConeCfg( radius=1.0, height=2.0, mass_props=sim_utils.MassPropertiesCfg(mass=5.0), rigid_props=sim_utils.RigidBodyPropertiesCfg(), collision_props=sim_utils.CollisionPropertiesCfg(), visual_material=sim_utils.materials.PreviewSurfaceCfg(diffuse_color=(0.0, 0.75, 0.5)), physics_material=sim_utils.materials.RigidBodyMaterialCfg(), ) prim = cfg.func("/World/Cone", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/Cone")) self.assertTrue(prim_utils.is_prim_path_valid("/World/Cone/geometry/material")) # Check properties # -- rigid body prim = prim_utils.get_prim_at_path("/World/Cone") self.assertEqual(prim.GetAttribute("physics:rigidBodyEnabled").Get(), True) # -- collision shape prim = prim_utils.get_prim_at_path("/World/Cone/geometry/mesh") self.assertEqual(prim.GetAttribute("physics:collisionEnabled").Get(), True) # check sim playing self.sim.play() for _ in range(10): self.sim.step() """ Cloning. """ def test_spawn_cone_clones_invalid_paths(self): """Test spawning of cone clones on invalid cloning paths.""" num_clones = 10 for i in range(num_clones): prim_utils.create_prim(f"/World/env_{i}", "Xform", translation=(i, i, 0)) # Spawn cone cfg = sim_utils.ConeCfg(radius=1.0, height=2.0, copy_from_source=True) # Should raise error for invalid path with self.assertRaises(RuntimeError): cfg.func("/World/env/env_.*/Cone", cfg) def test_spawn_cone_clones(self): """Test spawning of cone clones.""" num_clones = 10 for i in range(num_clones): prim_utils.create_prim(f"/World/env_{i}", "Xform", translation=(i, i, 0)) # Spawn cone cfg = sim_utils.ConeCfg(radius=1.0, height=2.0, copy_from_source=True) prim = cfg.func("/World/env_.*/Cone", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertEqual(prim_utils.get_prim_path(prim), "/World/env_0/Cone") # Find matching prims prims = prim_utils.find_matching_prim_paths("/World/env_*/Cone") self.assertEqual(len(prims), num_clones) def test_spawn_cone_clone_with_all_props_global_material(self): """Test spawning of cone clones with global material reference.""" num_clones = 10 for i in range(num_clones): prim_utils.create_prim(f"/World/env_{i}", "Xform", translation=(i, i, 0)) # Spawn cone cfg = sim_utils.ConeCfg( radius=1.0, height=2.0, mass_props=sim_utils.MassPropertiesCfg(mass=5.0), rigid_props=sim_utils.RigidBodyPropertiesCfg(), collision_props=sim_utils.CollisionPropertiesCfg(), visual_material=sim_utils.materials.PreviewSurfaceCfg(diffuse_color=(0.0, 0.75, 0.5)), physics_material=sim_utils.materials.RigidBodyMaterialCfg(), visual_material_path="/Looks/visualMaterial", physics_material_path="/Looks/physicsMaterial", ) prim = cfg.func("/World/env_.*/Cone", cfg) # Check validity self.assertTrue(prim.IsValid()) self.assertEqual(prim_utils.get_prim_path(prim), "/World/env_0/Cone") # Find matching prims prims = prim_utils.find_matching_prim_paths("/World/env_*/Cone") self.assertEqual(len(prims), num_clones) # Find global materials prims = prim_utils.find_matching_prim_paths("/Looks/visualMaterial.*") self.assertEqual(len(prims), 1) if __name__ == "__main__": run_tests()
12,695
Python
40.626229
113
0.622844
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/sim/test_spawn_sensors.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils from omni.isaac.core.simulation_context import SimulationContext import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.sim.spawners.sensors.sensors import ( CUSTOM_FISHEYE_CAMERA_ATTRIBUTES, CUSTOM_PINHOLE_CAMERA_ATTRIBUTES, ) from omni.isaac.orbit.utils.string import to_camel_case class TestSpawningSensors(unittest.TestCase): """Test fixture for checking spawning of USD sensors with different settings.""" def setUp(self) -> None: """Create a blank new stage for each test.""" # Create a new stage stage_utils.create_new_stage() # Simulation time-step self.dt = 0.1 # Load kit helper self.sim = SimulationContext(physics_dt=self.dt, rendering_dt=self.dt, backend="numpy") # Wait for spawning stage_utils.update_stage() def tearDown(self) -> None: """Stops simulator after each test.""" # stop simulation self.sim.stop() self.sim.clear() self.sim.clear_all_callbacks() self.sim.clear_instance() """ Basic spawning. """ def test_spawn_pinhole_camera(self): """Test spawning a pinhole camera.""" cfg = sim_utils.PinholeCameraCfg( focal_length=5.0, f_stop=10.0, clipping_range=(0.1, 1000.0), horizontal_aperture=10.0 ) prim = cfg.func("/World/pinhole_camera", cfg) # check if the light is spawned self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/pinhole_camera")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Camera") # validate properties on the prim self._validate_properties_on_prim("/World/pinhole_camera", cfg, CUSTOM_PINHOLE_CAMERA_ATTRIBUTES) def test_spawn_fisheye_camera(self): """Test spawning a fisheye camera.""" cfg = sim_utils.FisheyeCameraCfg( projection_type="fisheye_equidistant", focal_length=5.0, f_stop=10.0, clipping_range=(0.1, 1000.0), horizontal_aperture=10.0, ) # FIXME: This throws a warning. Check with Replicator team if this is expected/known. # [omni.hydra] Camera '/World/fisheye_camera': Unknown projection type, defaulting to pinhole prim = cfg.func("/World/fisheye_camera", cfg) # check if the light is spawned self.assertTrue(prim.IsValid()) self.assertTrue(prim_utils.is_prim_path_valid("/World/fisheye_camera")) self.assertEqual(prim.GetPrimTypeInfo().GetTypeName(), "Camera") # validate properties on the prim self._validate_properties_on_prim("/World/fisheye_camera", cfg, CUSTOM_FISHEYE_CAMERA_ATTRIBUTES) """ Helper functions. """ def _validate_properties_on_prim(self, prim_path: str, cfg: object, custom_attr: dict): """Validate the properties on the prim. Args: prim_path: The prim name. cfg: The configuration object. custom_attr: The custom attributes for sensor. """ # delete custom attributes in the config that are not USD parameters non_usd_cfg_param_names = ["func", "copy_from_source", "lock_camera", "visible", "semantic_tags"] # get prim prim = prim_utils.get_prim_at_path(prim_path) for attr_name, attr_value in cfg.__dict__.items(): # skip names we know are not present if attr_name in non_usd_cfg_param_names or attr_value is None: continue # obtain prim property name if attr_name in custom_attr: # check custom attributes prim_prop_name = custom_attr[attr_name][0] else: # convert attribute name in prim to cfg name prim_prop_name = to_camel_case(attr_name, to="cC") # validate the values self.assertAlmostEqual(prim.GetAttribute(prim_prop_name).Get(), attr_value, places=5) if __name__ == "__main__": run_tests()
4,480
Python
35.729508
105
0.635937
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/app/test_env_var_launch.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import os import unittest from omni.isaac.orbit.app import AppLauncher, run_tests class TestAppLauncher(unittest.TestCase): """Test launching of the simulation app using AppLauncher.""" def test_livestream_launch_with_env_var(self): """Test launching with no-keyword args but environment variables.""" # manually set the settings as well to make sure they are set correctly os.environ["LIVESTREAM"] = "1" # everything defaults to None app = AppLauncher().app # import settings import carb # acquire settings interface carb_settings_iface = carb.settings.get_settings() # check settings # -- no-gui mode self.assertEqual(carb_settings_iface.get("/app/window/enabled"), False) # -- livestream self.assertEqual(carb_settings_iface.get("/app/livestream/enabled"), True) # close the app on exit app.close() if __name__ == "__main__": run_tests()
1,113
Python
27.564102
82
0.654088
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/app/test_argparser_launch.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import argparse import unittest from unittest import mock from omni.isaac.orbit.app import AppLauncher, run_tests class TestAppLauncher(unittest.TestCase): """Test launching of the simulation app using AppLauncher.""" @mock.patch("argparse.ArgumentParser.parse_args", return_value=argparse.Namespace(livestream=1)) def test_livestream_launch_with_argparser(self, mock_args): """Test launching with argparser arguments.""" # create argparser parser = argparse.ArgumentParser() # add app launcher arguments AppLauncher.add_app_launcher_args(parser) # check that argparser has the mandatory arguments for name in AppLauncher._APPLAUNCHER_CFG_INFO: self.assertTrue(parser._option_string_actions[f"--{name}"]) # parse args mock_args = parser.parse_args() # everything defaults to None app = AppLauncher(mock_args).app # import settings import carb # acquire settings interface carb_settings_iface = carb.settings.get_settings() # check settings # -- no-gui mode self.assertEqual(carb_settings_iface.get("/app/window/enabled"), False) # -- livestream self.assertEqual(carb_settings_iface.get("/app/livestream/enabled"), True) # close the app on exit app.close() if __name__ == "__main__": run_tests()
1,531
Python
30.916666
100
0.663619
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/app/test_kwarg_launch.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import unittest from omni.isaac.orbit.app import AppLauncher, run_tests class TestAppLauncher(unittest.TestCase): """Test launching of the simulation app using AppLauncher.""" def test_livestream_launch_with_kwarg(self): """Test launching with headless and livestreaming arguments.""" # everything defaults to None app = AppLauncher(headless=True, livestream=1).app # import settings import carb # acquire settings interface carb_settings_iface = carb.settings.get_settings() # check settings # -- no-gui mode self.assertEqual(carb_settings_iface.get("/app/window/enabled"), False) # -- livestream self.assertEqual(carb_settings_iface.get("/app/livestream/enabled"), True) # close the app on exit app.close() if __name__ == "__main__": run_tests()
1,004
Python
26.916666
82
0.659363
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/scene/check_interactive_scene.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to use the scene interface to quickly setup a scene with multiple articulated robots and sensors. """ """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates how to use the scene interface.") parser.add_argument("--headless", action="store_true", default=False, help="Force display off at all times.") parser.add_argument("--num_envs", type=int, default=2, help="Number of environments to spawn.") args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(headless=args_cli.headless) simulation_app = app_launcher.app """Rest everything follows.""" import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import AssetBaseCfg from omni.isaac.orbit.scene import InteractiveScene, InteractiveSceneCfg from omni.isaac.orbit.sensors.ray_caster import RayCasterCfg, patterns from omni.isaac.orbit.sim import SimulationContext from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.timer import Timer ## # Pre-defined configs ## from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG # isort: skip @configclass class MySceneCfg(InteractiveSceneCfg): """Example scene configuration.""" # terrain - flat terrain plane terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", ) # articulation - robot 1 robot_1 = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot_1") # articulation - robot 2 robot_2 = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot_2") robot_2.init_state.pos = (0.0, 1.0, 0.6) # sensor - ray caster attached to the base of robot 1 that scans the ground height_scanner = RayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot_1/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 20.0)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=True, mesh_prim_paths=["/World/ground"], ) # extras - light light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)), init_state=AssetBaseCfg.InitialStateCfg(pos=(0.0, 0.0, 500.0)), ) def main(): """Main function.""" # Load kit helper sim = SimulationContext(sim_utils.SimulationCfg(dt=0.005)) # Set main camera sim.set_camera_view(eye=[5, 5, 5], target=[0.0, 0.0, 0.0]) # Spawn things into stage with Timer("Setup scene"): scene = InteractiveScene(MySceneCfg(num_envs=args_cli.num_envs, env_spacing=5.0, lazy_sensor_update=False)) # Check that parsing happened as expected assert len(scene.env_prim_paths) == args_cli.num_envs, "Number of environments does not match." assert scene.terrain is not None, "Terrain not found." assert len(scene.articulations) == 2, "Number of robots does not match." assert len(scene.sensors) == 1, "Number of sensors does not match." assert len(scene.extras) == 1, "Number of extras does not match." # Play the simulator with Timer("Time taken to play the simulator"): sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # default joint targets robot_1_actions = scene.articulations["robot_1"].data.default_joint_pos.clone() robot_2_actions = scene.articulations["robot_2"].data.default_joint_pos.clone() # Define simulation stepping sim_dt = sim.get_physics_dt() sim_time = 0.0 count = 0 # Simulate physics while simulation_app.is_running(): # If simulation is stopped, then exit. if sim.is_stopped(): break # If simulation is paused, then skip. if not sim.is_playing(): sim.step() continue # reset if count % 50 == 0: # reset counters sim_time = 0.0 count = 0 # reset root state root_state = scene.articulations["robot_1"].data.default_root_state.clone() root_state[:, :3] += scene.env_origins joint_pos = scene.articulations["robot_1"].data.default_joint_pos joint_vel = scene.articulations["robot_1"].data.default_joint_vel # -- set root state # -- robot 1 scene.articulations["robot_1"].write_root_state_to_sim(root_state) scene.articulations["robot_1"].write_joint_state_to_sim(joint_pos, joint_vel) # -- robot 2 root_state[:, 1] += 1.0 scene.articulations["robot_2"].write_root_state_to_sim(root_state) scene.articulations["robot_2"].write_joint_state_to_sim(joint_pos, joint_vel) # reset buffers scene.reset() print(">>>>>>>> Reset!") # perform this loop at policy control freq (50 Hz) for _ in range(4): # set joint targets scene.articulations["robot_1"].set_joint_position_target(robot_1_actions) scene.articulations["robot_2"].set_joint_position_target(robot_2_actions) # write data to sim scene.write_data_to_sim() # perform step sim.step() # read data from sim scene.update(sim_dt) # update sim-time sim_time += sim_dt * 4 count += 1 if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
5,758
Python
34.331288
115
0.643279
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/scene/test_interactive_scene.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import unittest import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg, RigidObjectCfg from omni.isaac.orbit.scene import InteractiveScene, InteractiveSceneCfg from omni.isaac.orbit.sensors import ContactSensorCfg from omni.isaac.orbit.sim import build_simulation_context from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR @configclass class MySceneCfg(InteractiveSceneCfg): """Example scene configuration.""" # terrain - flat terrain plane terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", ) # articulation robot = ArticulationCfg( prim_path="/World/Robot", spawn=sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Simple/revolute_articulation.usd"), actuators={ "joint": ImplicitActuatorCfg(), }, ) # rigid object rigid_obj = RigidObjectCfg( prim_path="/World/RigidObj", spawn=sim_utils.CuboidCfg( size=(0.5, 0.5, 0.5), rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, ), collision_props=sim_utils.CollisionPropertiesCfg( collision_enabled=True, ), ), ) # sensor sensor = ContactSensorCfg( prim_path="/World/Robot", ) # extras - light light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(), ) class TestInteractiveScene(unittest.TestCase): """Test cases for InteractiveScene.""" def setUp(self) -> None: self.devices = ["cuda:0", "cpu"] self.sim_dt = 0.001 self.scene_cfg = MySceneCfg(num_envs=1, env_spacing=1) def test_scene_entity_isolation(self): """Tests that multiple instances of InteractiveScene does not share any data. In this test, two InteractiveScene instances are created in a loop and added to a list. The scene at index 0 of the list will have all of its entities cleared manually, and the test compares that the data held in the scene at index 1 remained intact. """ for device in self.devices: scene_list = [] # create two InteractiveScene instances for _ in range(2): with build_simulation_context(device=device, dt=self.sim_dt) as _: scene = InteractiveScene(MySceneCfg(num_envs=1, env_spacing=1)) scene_list.append(scene) scene_0 = scene_list[0] scene_1 = scene_list[1] # clear entities for scene_0 - this should not affect any data in scene_1 scene_0.articulations.clear() scene_0.rigid_objects.clear() scene_0.sensors.clear() scene_0.extras.clear() # check that scene_0 and scene_1 do not share entity data via dictionary comparison self.assertEqual(scene_0.articulations, dict()) self.assertNotEqual(scene_0.articulations, scene_1.articulations) self.assertEqual(scene_0.rigid_objects, dict()) self.assertNotEqual(scene_0.rigid_objects, scene_1.rigid_objects) self.assertEqual(scene_0.sensors, dict()) self.assertNotEqual(scene_0.sensors, scene_1.sensors) self.assertEqual(scene_0.extras, dict()) self.assertNotEqual(scene_0.extras, scene_1.extras) if __name__ == "__main__": run_tests()
3,996
Python
34.371681
108
0.64965
fnuabhimanyu8713/orbit/source/extensions/omni.isaac.orbit/test/terrains/check_terrain_generator.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher # launch omniverse app # note: we only need to do this because of `TerrainImporter` which uses Omniverse functions app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import os import shutil from omni.isaac.orbit.terrains.config.rough import ROUGH_TERRAINS_CFG from omni.isaac.orbit.terrains.terrain_generator import TerrainGenerator def main(): # Create directory to dump results test_dir = os.path.dirname(os.path.abspath(__file__)) output_dir = os.path.join(test_dir, "output", "generator") # remove directory if os.path.exists(output_dir): shutil.rmtree(output_dir) # create directory os.makedirs(output_dir, exist_ok=True) # modify the config to cache ROUGH_TERRAINS_CFG.use_cache = True ROUGH_TERRAINS_CFG.cache_dir = output_dir ROUGH_TERRAINS_CFG.curriculum = False # generate terrains terrain_generator = TerrainGenerator(cfg=ROUGH_TERRAINS_CFG) # noqa: F841 if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
1,313
Python
27.565217
91
0.715918