file_path
stringlengths 22
162
| content
stringlengths 19
501k
| size
int64 19
501k
| lang
stringclasses 1
value | avg_line_length
float64 6.33
100
| max_line_length
int64 18
935
| alphanum_fraction
float64 0.34
0.93
|
---|---|---|---|---|---|---|
StanfordVL/OmniGibson/omnigibson/utils/git_utils.py | from pathlib import Path
import bddl
import git
import omnigibson as og
def git_info(directory):
repo = git.Repo(directory)
try:
branch_name = repo.active_branch.name
except TypeError:
branch_name = "[DETACHED]"
return {
"directory": str(directory),
"code_diff": repo.git.diff(None),
"code_diff_staged": repo.git.diff("--staged"),
"commit_hash": repo.head.commit.hexsha,
"branch_name": branch_name,
}
def project_git_info():
return {
"OmniGibson": git_info(Path(og.root_path).parent),
"bddl": git_info(Path(bddl.__file__).parent.parent),
}
| 646 | Python | 21.310344 | 60 | 0.605263 |
StanfordVL/OmniGibson/omnigibson/utils/geometry_utils.py | """
A set of helper utility functions for dealing with 3D geometry
"""
import numpy as np
import omnigibson.utils.transform_utils as T
from omnigibson.utils.usd_utils import mesh_prim_mesh_to_trimesh_mesh
def get_particle_positions_in_frame(pos, quat, scale, particle_positions):
"""
Transforms particle positions @positions into the frame specified by @pos and @quat with new scale @scale,
where @pos and @quat are assumed to be specified in the same coordinate frame that @particle_positions is specified
Args:
pos (3-array): (x,y,z) pos of the new frame
quat (4-array): (x,y,z,w) quaternion orientation of the new frame
scale (3-array): (x,y,z) local scale of the new frame
particle_positions ((N, 3) array): positions
Returns:
(N,) array: updated particle positions in the new coordinate frame
"""
# Get pose of origin (global frame) in new_frame
origin_in_new_frame = T.pose_inv(T.pose2mat((pos, quat)))
# Batch the transforms to get all particle points in the local link frame
positions_tensor = np.tile(np.eye(4).reshape(1, 4, 4), (len(particle_positions), 1, 1)) # (N, 4, 4)
# Scale by the new scale#
positions_tensor[:, :3, 3] = particle_positions
particle_positions = (origin_in_new_frame @ positions_tensor)[:, :3, 3] # (N, 3)
# Scale by the new scale
return particle_positions / scale.reshape(1, 3)
def get_particle_positions_from_frame(pos, quat, scale, particle_positions):
"""
Transforms particle positions @positions from the frame specified by @pos and @quat with new scale @scale.
This is similar to @get_particle_positions_in_frame, but does the reverse operation, inverting @pos and @quat
Args:
pos (3-array): (x,y,z) pos of the local frame
quat (4-array): (x,y,z,w) quaternion orientation of the local frame
scale (3-array): (x,y,z) local scale of the local frame
particle_positions ((N, 3) array): positions
Returns:
(N,) array: updated particle positions in the parent coordinate frame
"""
# Scale by the new scale
particle_positions = particle_positions * scale.reshape(1, 3)
# Get pose of origin (global frame) in new_frame
origin_in_new_frame = T.pose2mat((pos, quat))
# Batch the transforms to get all particle points in the local link frame
positions_tensor = np.tile(np.eye(4).reshape(1, 4, 4), (len(particle_positions), 1, 1)) # (N, 4, 4)
# Scale by the new scale#
positions_tensor[:, :3, 3] = particle_positions
return (origin_in_new_frame @ positions_tensor)[:, :3, 3] # (N, 3)
def check_points_in_cube(size, pos, quat, scale, particle_positions):
"""
Checks which points are within a cube with specified size @size.
NOTE: Assumes the cube and positions are expressed
in the same coordinate frame such that the cube's dimensions are axis-aligned with (x,y,z)
Args:
size float: length of each side of the cube, specified in its local frame
pos (3-array): (x,y,z) local location of the cube
quat (4-array): (x,y,z,w) local orientation of the cube
scale (3-array): (x,y,z) local scale of the cube, specified in its local frame
particle_positions ((N, 3) array): positions to check for whether it is in the cube
Returns:
(N,) array: boolean numpy array specifying whether each point lies in the cube.
"""
particle_positions = get_particle_positions_in_frame(
pos=pos,
quat=quat,
scale=scale,
particle_positions=particle_positions,
)
return ((-size / 2.0 < particle_positions) & (particle_positions < size / 2.0)).sum(axis=-1) == 3
def check_points_in_cone(size, pos, quat, scale, particle_positions):
"""
Checks which points are within a cone with specified size @size.
NOTE: Assumes the cone and positions are
expressed in the same coordinate frame such that the cone's height is aligned with the z-axis
Args:
size (2-array): (radius, height) dimensions of the cone, specified in its local frame
pos (3-array): (x,y,z) local location of the cone
quat (4-array): (x,y,z,w) local orientation of the cone
scale (3-array): (x,y,z) local scale of the cone, specified in its local frame
particle_positions ((N, 3) array): positions to check for whether it is in the cone
Returns:
(N,) array: boolean numpy array specifying whether each point lies in the cone.
"""
particle_positions = get_particle_positions_in_frame(
pos=pos,
quat=quat,
scale=scale,
particle_positions=particle_positions,
)
radius, height = size
in_height = (-height / 2.0 < particle_positions[:, -1]) & (particle_positions[:, -1] < height / 2.0)
in_radius = np.linalg.norm(particle_positions[:, :-1], axis=-1) < \
(radius * (1 - (particle_positions[:, -1] + height / 2.0) / height ))
return in_height & in_radius
def check_points_in_cylinder(size, pos, quat, scale, particle_positions):
"""
Checks which points are within a cylinder with specified size @size.
NOTE: Assumes the cylinder and positions are
expressed in the same coordinate frame such that the cylinder's height is aligned with the z-axis
Args:
size (2-array): (radius, height) dimensions of the cylinder, specified in its local frame
pos (3-array): (x,y,z) local location of the cylinder
quat (4-array): (x,y,z,w) local orientation of the cylinder
scale (3-array): (x,y,z) local scale of the cube, specified in its local frame
particle_positions ((N, 3) array): positions to check for whether it is in the cylinder
Returns:
(N,) array: boolean numpy array specifying whether each point lies in the cylinder.
"""
particle_positions = get_particle_positions_in_frame(
pos=pos,
quat=quat,
scale=scale,
particle_positions=particle_positions,
)
radius, height = size
in_height = (-height / 2.0 < particle_positions[:, -1]) & (particle_positions[:, -1] < height / 2.0)
in_radius = np.linalg.norm(particle_positions[:, :-1], axis=-1) < radius
return in_height & in_radius
def check_points_in_sphere(size, pos, quat, scale, particle_positions):
"""
Checks which points are within a sphere with specified size @size.
NOTE: Assumes the sphere and positions are expressed in the same coordinate frame
Args:
size (float): radius dimensions of the sphere
pos (3-array): (x,y,z) local location of the sphere
quat (4-array): (x,y,z,w) local orientation of the sphere
scale (3-array): (x,y,z) local scale of the sphere, specified in its local frame
particle_positions ((N, 3) array): positions to check for whether it is in the sphere
Returns:
(N,) array: boolean numpy array specifying whether each point lies in the sphere
"""
particle_positions = get_particle_positions_in_frame(
pos=pos,
quat=quat,
scale=scale,
particle_positions=particle_positions,
)
return np.linalg.norm(particle_positions, axis=-1) < size
def check_points_in_convex_hull_mesh(mesh_face_centroids, mesh_face_normals, pos, quat, scale, particle_positions):
"""
Checks which points are within a sphere with specified size @size.
NOTE: Assumes the mesh and positions are expressed in the same coordinate frame
Args:
mesh_face_centroids (D, 3): (x,y,z) location of the centroid of each mesh face, expressed in its local frame
mesh_face_normals (D, 3): (x,y,z) normalized direction vector of each mesh face, expressed in its local frame
pos (3-array): (x,y,z) local location of the mesh
quat (4-array): (x,y,z,w) local orientation of the mesh
scale (3-array): (x,y,z) local scale of the cube, specified in its local frame
particle_positions ((N, 3) array): positions to check for whether it is in the mesh
Returns:
(N,) array: boolean numpy array specifying whether each point lies in the mesh
"""
particle_positions = get_particle_positions_in_frame(
pos=pos,
quat=quat,
scale=scale,
particle_positions=particle_positions,
)
# For every mesh point / normal and particle position pair, we check whether it is "inside" (i.e.: the point lies
# BEHIND the normal plane -- this is easily done by taking the dot product with the vector from the point to the
# particle position with the normal, and validating that the value is < 0)
D, _ = mesh_face_centroids.shape
N, _ = particle_positions.shape
mesh_points = np.tile(mesh_face_centroids.reshape(1, D, 3), (N, 1, 1))
mesh_normals = np.tile(mesh_face_normals.reshape(1, D, 3), (N, 1, 1))
particle_positions = np.tile(particle_positions.reshape(N, 1, 3), (1, D, 1))
# All arrays are now (N, D, 3) shape -- efficient for batching
in_range = ((particle_positions - mesh_points) * mesh_normals).sum(axis=-1) < 0 # shape (N, D)
# All D normals must be satisfied for a single point to be considered inside the hull
in_range = in_range.sum(axis=-1) == D
return in_range
def _generate_convex_hull_volume_checker_functions(convex_hull_mesh):
"""
An internal helper function used to programmatically generate lambda funtions to check for particle
points within a convex hull mesh defined by face centroids @mesh_face_centroids and @mesh_face_normals.
Note that this is needed as an EXTERNAL helper function to @generate_points_in_volume_checker_function
because we "bake" certain arguments as part of the lambda internal scope, and
directly generating functions in a for loop results in these local variables being overwritten each time
(meaning that all the generated lambda functions reference the SAME variables!!)
Args:
convex_hull_mesh (Usd.Prim): Raw USD convex hull mesh to generate the volume checker functions
Returns:
2-tuple:
- function: Generated lambda function with signature:
in_range = check_in_volume(mesh, particle_positions)
where @in_range is a N-array boolean numpy array, (True where the particle is in the convex hull mesh
volume), @mesh is the raw USD mesh, and @particle_positions is a (N, 3) array specifying the particle
positions in the SAME coordinate frame as @mesh
- function: Function for grabbing real-time LOCAL scale volume of the container. Signature:
vol = calc_volume(mesh)
where @vol is the total volume being checked (expressed in the mesh's LOCAL scale), and @mesh is the raw
USD mesh
"""
# For efficiency, we pre-compute the mesh using trimesh and find its corresponding faces and normals
trimesh_mesh = mesh_prim_mesh_to_trimesh_mesh(convex_hull_mesh, include_normals=False, include_texcoord=False).convex_hull
assert trimesh_mesh.is_convex, \
f"Trying to generate a volume checker function for a non-convex mesh {convex_hull_mesh.GetPath().pathString}"
face_centroids = trimesh_mesh.vertices[trimesh_mesh.faces].mean(axis=1)
face_normals = trimesh_mesh.face_normals
# This function assumes that:
# 1. @particle_positions are in the local container_link frame
# 2. the @check_points_in_[...] function will convert them into the local @mesh frame
in_volume = lambda mesh, particle_positions: check_points_in_convex_hull_mesh(
mesh_face_centroids=face_centroids,
mesh_face_normals=face_normals,
pos=np.array(mesh.GetAttribute("xformOp:translate").Get()),
quat=np.array(
[*(mesh.GetAttribute("xformOp:orient").Get().imaginary), mesh.GetAttribute("xformOp:orient").Get().real]),
scale=np.array(mesh.GetAttribute("xformOp:scale").Get()),
particle_positions=particle_positions,
)
calc_volume = lambda mesh: trimesh_mesh.volume if trimesh_mesh.is_volume else trimesh_mesh.convex_hull.volume
return in_volume, calc_volume
def generate_points_in_volume_checker_function(obj, volume_link, use_visual_meshes=True, mesh_name_prefixes=None):
"""
Generates a function for quickly checking which of a group of points are contained within any container volumes.
Four volume types are supported:
"Cylinder" - Cylinder volume
"Cube" - Cube volume
"Sphere" - Sphere volume
"Mesh" - Convex hull volume
@volume_link should have any number of nested, visual-only meshes of types {Sphere, Cylinder, Cube, Mesh} with
naming prefix "container[...]"
Args:
obj (EntityPrim): Object which contains @volume_link as one of its links
volume_link (RigidPrim): Link to use to grab container volumes composing the values for checking the points
use_visual_meshes (bool): Whether to use @volume_link's visual or collision meshes to generate points fcn
mesh_name_prefixes (None or str): If specified, specifies the substring that must exist in @volume_link's
mesh names in order for that mesh to be included in the volume checker function. If None, no filtering
will be used.
Returns:
2-tuple:
- function: Function with signature:
in_range = check_in_volumes(particle_positions)
where @in_range is a N-array boolean numpy array, (True where the particle is in the volume), and
@particle_positions is a (N, 3) array specifying the particle positions in global coordinates
- function: Function for grabbing real-time global scale volume of the container. Signature:
vol = total_volume()
where @vol is the total volume being checked (expressed in global scale) aggregated across
all container sub-volumes
"""
# Iterate through all visual meshes and keep track of any that are prefixed with container
container_meshes = []
meshes = volume_link.visual_meshes if use_visual_meshes else volume_link.collision_meshes
for container_mesh_name, container_mesh in meshes.items():
if mesh_name_prefixes is None or mesh_name_prefixes in container_mesh_name:
container_meshes.append(container_mesh)
# Programmatically define the volume checker functions based on each container found
volume_checker_fcns = []
for sub_container_mesh in container_meshes:
mesh_type = sub_container_mesh.prim.GetTypeName()
if mesh_type == "Mesh":
fcn, vol_fcn = _generate_convex_hull_volume_checker_functions(convex_hull_mesh=sub_container_mesh.prim)
elif mesh_type == "Sphere":
fcn = lambda mesh, particle_positions: check_points_in_sphere(
size=mesh.GetAttribute("radius").Get(),
pos=np.array(mesh.GetAttribute("xformOp:translate").Get()),
quat=np.array([*(mesh.GetAttribute("xformOp:orient").Get().imaginary), mesh.GetAttribute("xformOp:orient").Get().real]),
scale=np.array(mesh.GetAttribute("xformOp:scale").Get()),
particle_positions=particle_positions,
)
elif mesh_type == "Cylinder":
fcn = lambda mesh, particle_positions: check_points_in_cylinder(
size=[mesh.GetAttribute("radius").Get(), mesh.GetAttribute("height").Get()],
pos=np.array(mesh.GetAttribute("xformOp:translate").Get()),
quat=np.array([*(mesh.GetAttribute("xformOp:orient").Get().imaginary), mesh.GetAttribute("xformOp:orient").Get().real]),
scale=np.array(mesh.GetAttribute("xformOp:scale").Get()),
particle_positions=particle_positions,
)
elif mesh_type == "Cone":
fcn = lambda mesh, particle_positions: check_points_in_cone(
size=[mesh.GetAttribute("radius").Get(), mesh.GetAttribute("height").Get()],
pos=np.array(mesh.GetAttribute("xformOp:translate").Get()),
quat=np.array([*(mesh.GetAttribute("xformOp:orient").Get().imaginary), mesh.GetAttribute("xformOp:orient").Get().real]),
scale=np.array(mesh.GetAttribute("xformOp:scale").Get()),
particle_positions=particle_positions,
)
elif mesh_type == "Cube":
fcn = lambda mesh, particle_positions: check_points_in_cube(
size=mesh.GetAttribute("size").Get(),
pos=np.array(mesh.GetAttribute("xformOp:translate").Get()),
quat=np.array([*(mesh.GetAttribute("xformOp:orient").Get().imaginary), mesh.GetAttribute("xformOp:orient").Get().real]),
scale=np.array(mesh.GetAttribute("xformOp:scale").Get()),
particle_positions=particle_positions,
)
else:
raise ValueError(f"Cannot create volume checker function for mesh of type: {mesh_type}")
volume_checker_fcns.append(fcn)
# Define the actual volume checker function
def check_points_in_volumes(particle_positions):
# Algo
# 1. Particles in global frame --> particles in volume link frame (including scaling)
# 2. For each volume checker function, apply volume checking
# 3. Aggregate across all functions with OR condition (any volume satisfied for that point)
######
n_particles = len(particle_positions)
# Get pose of origin (global frame) in frame of volume link
# NOTE: This assumes there is no relative scaling between obj and volume link
volume_link_pos, volume_link_quat = volume_link.get_position_orientation()
particle_positions = get_particle_positions_in_frame(
pos=volume_link_pos,
quat=volume_link_quat,
scale=obj.scale,
particle_positions=particle_positions,
)
in_volumes = np.zeros(n_particles).astype(bool)
for checker_fcn, mesh in zip(volume_checker_fcns, container_meshes):
in_volumes |= checker_fcn(mesh.prim, particle_positions)
return in_volumes
# Define the actual volume calculator function
def calculate_volume(precision=1e-5):
# We use monte-carlo sampling to approximate the voluem up to @precision
# NOTE: precision defines the RELATIVE precision of the volume computation -- i.e.: the relative error with
# respect to the volume link's global AABB
# Convert precision to minimum number of particles to sample
min_n_particles = int(np.ceil(1. / precision))
# Make sure container meshes are visible so AABB computation is correct
for mesh in container_meshes:
mesh.visible = True
# Determine equally-spaced sampling distance to achieve this minimum particle count
aabb_volume = np.product(volume_link.visual_aabb_extent)
sampling_distance = np.cbrt(aabb_volume / min_n_particles)
low, high = volume_link.visual_aabb
n_particles_per_axis = ((high - low) / sampling_distance).astype(int) + 1
assert np.all(n_particles_per_axis), "Must increase precision for calculate_volume -- too coarse for sampling!"
# 1e-10 is added because the extent might be an exact multiple of particle radius
arrs = [np.arange(l, h, sampling_distance)
for l, h, n in zip(low, high, n_particles_per_axis)]
# Generate 3D-rectangular grid of points, and only keep the ones inside the mesh
points = np.stack([arr.flatten() for arr in np.meshgrid(*arrs)]).T
# Re-hide container meshes
for mesh in container_meshes:
mesh.visible = False
# Return the fraction of the link AABB's volume based on fraction of points enclosed within it
return aabb_volume * np.mean(check_points_in_volumes(points))
return check_points_in_volumes, calculate_volume
| 19,995 | Python | 48.130221 | 136 | 0.663766 |
StanfordVL/OmniGibson/omnigibson/utils/gym_utils.py | import gym
from abc import ABCMeta, abstractmethod
import numpy as np
from omnigibson.utils.ui_utils import create_module_logger
# Create module logger
log = create_module_logger(module_name=__name__)
def recursively_generate_flat_dict(dic, prefix=None):
"""
Helper function to recursively iterate through dictionary / gym.spaces.Dict @dic and flatten any nested elements,
such that the result is a flat dictionary mapping keys to values
Args:
dic (dict or gym.spaces.Dict): (Potentially nested) dictionary to convert into a flattened dictionary
prefix (None or str): Prefix to append to the beginning of all strings in the flattened dictionary. None results
in no prefix being applied
Returns:
dict: Flattened version of @dic
"""
out = dict()
prefix = "" if prefix is None else f"{prefix}::"
for k, v in dic.items():
if isinstance(v, gym.spaces.Dict) or isinstance(v, dict):
out.update(recursively_generate_flat_dict(dic=v, prefix=f"{prefix}{k}"))
elif isinstance(v, gym.spaces.Tuple) or isinstance(v, tuple):
for i, vv in enumerate(v):
# Assume no dicts are nested within tuples
out[f"{prefix}{k}::{i}"] = vv
else:
# Add to out dict
out[f"{prefix}{k}"] = v
return out
def recursively_generate_compatible_dict(dic):
"""
Helper function to recursively iterate through dictionary and cast values to necessary types to be compatibel with
Gym spaces -- in particular, the Sequence and Tuple types for np.ndarray / np.void values in @dic
Args:
dic (dict or gym.spaces.Dict): (Potentially nested) dictionary to convert into a flattened dictionary
Returns:
dict: Gym-compatible version of @dic
"""
out = dict()
for k, v in dic.items():
if isinstance(v, dict):
out[k] = recursively_generate_compatible_dict(dic=v)
elif isinstance(v, np.ndarray) and len(v.dtype) > 0:
# Map to list of tuples
out[k] = list(map(tuple, v))
else:
# Preserve the key-value pair
out[k] = v
return out
class GymObservable(metaclass=ABCMeta):
"""
Simple class interface for observable objects. These objects should implement a way to grab observations,
(get_obs()), and should define an observation space that is created when load_observation_space() is called
Args:
kwargs: dict, does nothing, used to sink any extraneous arguments during initialization
"""
def __init__(self, *args, **kwargs):
# Initialize variables that we will fill in later
self.observation_space = None
# Call any super methods
super().__init__(*args, **kwargs)
@abstractmethod
def get_obs(self, **kwargs):
"""
Get observations for the object. Note that the shape / nested structure should match that
of @self.observation_space!
Args:
kwargs (dict): Any keyword args necessary for grabbing observations
Returns:
2-tuple:
dict: Keyword-mapped observations mapping observation names to nested observations
dict: Additional information about the observations
"""
raise NotImplementedError()
@staticmethod
def _build_obs_box_space(shape, low, high, dtype=np.float32):
"""
Helper function that builds individual observation box spaces.
Args:
shape (n-array): Shape of the space
low (float): Lower bound of the space
high (float): Upper bound of the space
Returns:
gym.spaces.Box: Generated gym box observation space
"""
return gym.spaces.Box(low=low, high=high, shape=shape, dtype=dtype)
@abstractmethod
def _load_observation_space(self):
"""
Create the observation space for this object. Should be implemented by subclass
Returns:
dict: Keyword-mapped observation space for this object mapping observation name to observation space
"""
raise NotImplementedError()
def load_observation_space(self):
"""
Load the observation space internally, and also return this value
Returns:
gym.spaces.Dict: Loaded observation space for this object
"""
# Load the observation space and convert it into a gym-compatible dictionary
self.observation_space = gym.spaces.Dict(self._load_observation_space())
log.debug(f"Loaded obs space dictionary for: {self.__class__.__name__}")
return self.observation_space
| 4,700 | Python | 34.345864 | 120 | 0.640851 |
StanfordVL/OmniGibson/omnigibson/utils/object_utils.py | """
Helper utility functions for computing relevant object information
"""
import omnigibson as og
import numpy as np
import omnigibson.utils.transform_utils as T
from scipy.spatial.transform import Rotation as R
from omnigibson.utils.geometry_utils import get_particle_positions_from_frame
def sample_stable_orientations(obj, n_samples=10, drop_aabb_offset=0.1):
"""
Samples random stable orientations for obj @obj by stochastically dropping the object and recording its
resulting orientations
Args:
obj (BaseObject): Object whose orientations will be sampled
n_samples (int): How many sampled orientations will be recorded
drop_aabb_offset (float): Offset to apply in the z-direction when dropping the object
Returns:
n-array: (N, 4) array, where each of the N rows are sampled (x,y,z,w) stable orientations
"""
og.sim.play()
assert np.all(obj.scale == 1.0)
aabb_extent = obj.aabb_extent
radius = np.linalg.norm(aabb_extent) / 2.0
drop_pos = np.array([0, 0, radius + drop_aabb_offset])
center_offset = obj.get_position() - obj.aabb_center
drop_orientations = R.random(n_samples).as_quat()
stable_orientations = np.zeros_like(drop_orientations)
for i, drop_orientation in enumerate(drop_orientations):
# Sample orientation, drop, wait to stabilize, then record
pos = drop_pos + T.quat2mat(drop_orientation) @ center_offset
obj.set_position_orientation(pos, drop_orientation)
obj.keep_still()
for j in range(25):
og.sim.step()
stable_orientations[i] = obj.get_orientation()
return stable_orientations
def compute_bbox_offset(obj):
"""
Computes the base link offset of @obj, specifying the relative position of the object's bounding box center wrt to
its root link frame, expressed in the world frame
Args:
obj (BaseObject): Object whose bbox offset will be computed
Returns:
n-array: (x,y,z) offset specifying the relative position from the root link to @obj's bounding box center
"""
og.sim.stop()
assert np.all(obj.scale == 1.0)
obj.set_position_orientation(np.zeros(3), np.array([0, 0, 0, 1.0]))
return obj.aabb_center - obj.get_position()
def compute_native_bbox_extent(obj):
"""
Computes the native bounding box extent for @obj, which is the extent with the obj placed at (0, 0, 0) with
orientation (0, 0, 0, 1) and scale (1, 1, 1)
Args:
obj (BaseObject): Object whose native bbox extent will be computed
Returns:
n-array: (x,y,z) native bounding box extent
"""
og.sim.stop()
assert np.all(obj.scale == 1.0)
obj.set_position_orientation(np.zeros(3), np.array([0, 0, 0, 1.0]))
return obj.aabb_extent
def compute_base_aligned_bboxes(obj):
link_bounding_boxes = {}
for link_name, link in obj.links.items():
link_bounding_boxes[link_name] = {}
for mesh_type, mesh_list in zip(("collision", "visual"), (link.collision_meshes, link.visual_meshes)):
pts_in_link_frame = []
for mesh_name, mesh in mesh_list.items():
pts = mesh.get_attribute("points")
local_pos, local_orn = mesh.get_local_pose()
pts_in_link_frame.append(get_particle_positions_from_frame(local_pos, local_orn, mesh.scale, pts))
pts_in_link_frame = np.concatenate(pts_in_link_frame, axis=0)
max_pt = np.max(pts_in_link_frame, axis=0)
min_pt = np.min(pts_in_link_frame, axis=0)
extent = max_pt - min_pt
center = (max_pt + min_pt) / 2.0
transform = T.pose2mat((center, np.array([0, 0, 0, 1.0])))
print(pts_in_link_frame.shape)
link_bounding_boxes[link_name][mesh_type] = {
"extent": extent,
"transform": transform,
}
return link_bounding_boxes
def compute_obj_kinematic_metadata(obj):
"""
Computes relevant kinematic metadata for @obj, such as stable_orientations, bounding box offsets,
bounding box extents, and base_aligned_bboxes
Args:
obj (BaseObject): Object whose metadata will be computed
Returns:
dict: Relevant metadata, with the following keys:
- "stable_orientations": 2D (N, 4)-array of sampled stable (x,y,z,w) quaternion orientations
- "bbox_offset": (x,y,z) relative position from the root link to @obj's bounding box center
- "native_bbox_extent": (x,y,z) native bounding box extent
- "base_aligned_bboxes": TODO
"""
assert og.sim.scene is not None
assert og.sim.scene.floor_plane is not None, "An empty scene must be used in order to compute kinematic metadata!"
assert np.all(obj.scale == 1.0), "Object must have scale [1, 1, 1] in order to compute kinematic metadata!"
og.sim.stop()
return {
"stable_orientations": sample_stable_orientations(obj=obj),
"bbox_offset": compute_bbox_offset(obj=obj),
"native_bbox_extent": compute_native_bbox_extent(obj=obj),
"base_aligned_bboxes": compute_base_aligned_bboxes(obj=obj),
}
| 5,156 | Python | 38.976744 | 118 | 0.651668 |
StanfordVL/OmniGibson/omnigibson/utils/processing_utils.py | import numpy as np
from omnigibson.utils.python_utils import Serializable
class Filter(Serializable):
"""
A base class for filtering a noisy data stream in an online fashion.
"""
def estimate(self, observation):
"""
Takes an observation and returns a de-noised estimate.
Args:
observation (n-array): A current observation.
Returns:
n-array: De-noised estimate.
"""
raise NotImplementedError
def reset(self):
"""
Resets this filter. Default is no-op.
"""
pass
@property
def state_size(self):
# No state by default
return 0
def _dump_state(self):
# Default is no state (empty dict)
return dict()
def _load_state(self, state):
# Default is no state (empty dict), so this is a no-op
pass
def _serialize(self, state):
# Default is no state, so do nothing
return np.array([])
def _deserialize(self, state):
# Default is no state, so do nothing
return dict(), 0
class MovingAverageFilter(Filter):
"""
This class uses a moving average to de-noise a noisy data stream in an online fashion.
This is a FIR filter.
"""
def __init__(self, obs_dim, filter_width):
"""
Args:
obs_dim (int): The dimension of the points to filter.
filter_width (int): The number of past samples to take the moving average over.
"""
self.obs_dim = obs_dim
assert filter_width > 0, f"MovingAverageFilter must have a non-zero size! Got: {filter_width}"
self.filter_width = filter_width
self.past_samples = np.zeros((filter_width, obs_dim))
self.current_idx = 0
self.fully_filled = False # Whether the entire filter buffer is filled or not
super().__init__()
def estimate(self, observation):
"""
Do an online hold for state estimation given a recent observation.
Args:
observation (n-array): New observation to hold internal estimate of state.
Returns:
n-array: New estimate of state.
"""
# Write the newest observation at the appropriate index
self.past_samples[self.current_idx, :] = np.array(observation)
# Compute value based on whether we're fully filled or not
if not self.fully_filled:
val = self.past_samples[:self.current_idx + 1, :].mean(axis=0)
# Denote that we're fully filled if we're at the end of the buffer
if self.current_idx == self.filter_width - 1:
self.fully_filled = True
else:
val = self.past_samples.mean(axis=0)
# Increment the index to write the next sample to
self.current_idx = (self.current_idx + 1) % self.filter_width
return val
def reset(self):
# Clear internal state
self.past_samples *= 0.0
self.current_idx = 0
self.fully_filled = False
@property
def state_size(self):
return super().state_size + self.filter_width * self.obs_dim + 2
def _dump_state(self):
# Run super init first
state = super()._dump_state()
# Add info from this filter
state["past_samples"] = np.array(self.past_samples)
state["current_idx"] = self.current_idx
state["fully_filled"] = self.fully_filled
return state
def _load_state(self, state):
# Run super first
super()._load_state(state=state)
# Load relevant info for this filter
self.past_samples = np.array(state["past_samples"])
self.current_idx = state["current_idx"]
self.fully_filled = state["fully_filled"]
def _serialize(self, state):
# Run super first
state_flat = super()._serialize(state=state)
# Serialize state for this filter
return np.concatenate([
state_flat,
state["past_samples"].flatten(),
[state["current_idx"]],
[state["fully_filled"]],
]).astype(float)
def _deserialize(self, state):
# Run super first
state_dict, idx = super()._deserialize(state=state)
# Deserialize state for this filter
samples_len = self.filter_width * self.obs_dim
state_dict["past_samples"] = state[idx: idx + samples_len]
state_dict["current_idx"] = int(state[idx + samples_len])
state_dict["fully_filled"] = bool(state[idx + samples_len + 1])
return state_dict, idx + samples_len + 2
class ExponentialAverageFilter(Filter):
"""
This class uses an exponential average of the form y_n = alpha * x_n + (1 - alpha) * y_{n - 1}.
This is an IIR filter.
"""
def __init__(self, obs_dim, alpha=0.9):
"""
Args:
obs_dim (int): The dimension of the points to filter.
alpha (float): The relative weighting of new samples relative to older samples
"""
self.obs_dim = obs_dim
self.avg = np.zeros(obs_dim)
self.num_samples = 0
self.alpha = alpha
super().__init__()
def estimate(self, observation):
"""
Do an online hold for state estimation given a recent observation.
Args:
observation (n-array): New observation to hold internal estimate of state.
Returns:
n-array: New estimate of state.
"""
self.avg = self.alpha * observation + (1.0 - self.alpha) * self.avg
self.num_samples += 1
return np.array(self.avg)
def reset(self):
# Clear internal state
self.avg *= 0.0
self.num_samples = 0
@property
def state_size(self):
return super().state_size + self.obs_dim + 1
def _dump_state(self):
# Run super init first
state = super()._dump_state()
# Add info from this filter
state["avg"] = np.array(self.avg)
state["num_samples"] = self.num_samples
return state
def _load_state(self, state):
# Run super first
super()._load_state(state=state)
# Load relevant info for this filter
self.avg = np.array(state["avg"])
self.num_samples = state["num_samples"]
def _serialize(self, state):
# Run super first
state_flat = super()._serialize(state=state)
# Serialize state for this filter
return np.concatenate([
state_flat,
state["avg"],
[state["num_samples"]],
]).astype(float)
def _deserialize(self, state):
# Run super first
state_dict, idx = super()._deserialize(state=state)
# Deserialize state for this filter
state_dict["avg"] = state[idx: idx + self.obs_dim]
state_dict["num_samples"] = int(state[idx + self.obs_dim])
return state_dict, idx + self.obs_dim + 1
class Subsampler:
"""
A base class for subsampling a data stream in an online fashion.
"""
def subsample(self, observation):
"""
Takes an observation and returns the observation, or None, which
corresponds to deleting the observation.
Args:
observation (n-array): A current observation.
Returns:
None or n-array: No observation if subsampled, otherwise the observation
"""
raise NotImplementedError
class UniformSubsampler(Subsampler):
"""
A class for subsampling a data stream uniformly in time in an online fashion.
"""
def __init__(self, T):
"""
Args:
T (int): Pick one every T observations.
"""
self.T = T
self.counter = 0
super(UniformSubsampler, self).__init__()
def subsample(self, observation):
"""
Returns an observation once every T observations, None otherwise.
Args:
observation (n-array): A current observation.
Returns:
None or n-array: The observation, or None.
"""
self.counter += 1
if self.counter == self.T:
self.counter = 0
return observation
return None
if __name__ == "__main__":
f = MovingAverageFilter(3, 10)
a = np.array([1, 1, 1])
for i in range(500):
print(f.estimate(a + np.random.normal(scale=0.1)))
| 8,427 | Python | 27.962199 | 102 | 0.576718 |
StanfordVL/OmniGibson/omnigibson/utils/grasping_planning_utils.py | import numpy as np
from scipy.spatial.transform import Rotation as R, Slerp
from math import ceil
from omnigibson.macros import create_module_macros
import omnigibson.utils.transform_utils as T
from omnigibson.object_states.open_state import _get_relevant_joints
from omnigibson.utils.constants import JointType, JointAxis
import omnigibson.lazy as lazy
m = create_module_macros(module_path=__file__)
m.REVOLUTE_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS = (0.4, 0.6)
m.PRISMATIC_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS = (0.2, 0.8)
m.ROTATION_ARC_SEGMENT_LENGTHS = 0.05
m.OPENNESS_THRESHOLD_TO_OPEN = 0.8
m.OPENNESS_THRESHOLD_TO_CLOSE = 0.05
def get_grasp_poses_for_object_sticky(target_obj):
"""
Obtain a grasp pose for an object from top down, to be used with sticky grasping.
Args:
target_object (StatefulObject): Object to get a grasp pose for
Returns:
List of grasp candidates, where each grasp candidate is a tuple containing the grasp pose and the approach direction.
"""
bbox_center_in_world, bbox_quat_in_world, bbox_extent_in_base_frame, _ = target_obj.get_base_aligned_bbox(
visual=False
)
grasp_center_pos = bbox_center_in_world + np.array([0, 0, np.max(bbox_extent_in_base_frame) + 0.05])
towards_object_in_world_frame = bbox_center_in_world - grasp_center_pos
towards_object_in_world_frame /= np.linalg.norm(towards_object_in_world_frame)
grasp_quat = T.euler2quat([0, np.pi/2, 0])
grasp_pose = (grasp_center_pos, grasp_quat)
grasp_candidate = [(grasp_pose, towards_object_in_world_frame)]
return grasp_candidate
def get_grasp_poses_for_object_sticky_from_arbitrary_direction(target_obj):
"""
Obtain a grasp pose for an object from an arbitrary direction to be used with sticky grasping.
Args:
target_object (StatefulObject): Object to get a grasp pose for
Returns:
List of grasp candidates, where each grasp candidate is a tuple containing the grasp pose and the approach direction.
"""
bbox_center_in_world, bbox_quat_in_world, bbox_extent_in_base_frame, _ = target_obj.get_base_aligned_bbox(
visual=False
)
# Pick an axis and a direction.
approach_axis = np.random.choice([0, 1, 2])
approach_direction = np.random.choice([-1, 1]) if approach_axis != 2 else 1
constant_dimension_in_base_frame = approach_direction * bbox_extent_in_base_frame * np.eye(3)[approach_axis]
randomizable_dimensions_in_base_frame = bbox_extent_in_base_frame - np.abs(constant_dimension_in_base_frame)
random_dimensions_in_base_frame = np.random.uniform([-1, -1, 0], [1, 1, 1]) # note that we don't allow going below center
grasp_center_in_base_frame = random_dimensions_in_base_frame * randomizable_dimensions_in_base_frame + constant_dimension_in_base_frame
grasp_center_pos = T.mat2pose(
T.pose2mat((bbox_center_in_world, bbox_quat_in_world)) @ # base frame to world frame
T.pose2mat((grasp_center_in_base_frame, [0, 0, 0, 1])) # grasp pose in base frame
)[0] + np.array([0, 0, 0.02])
towards_object_in_world_frame = bbox_center_in_world - grasp_center_pos
towards_object_in_world_frame /= np.linalg.norm(towards_object_in_world_frame)
# For the grasp, we want the X+ direction to be the direction of the object's surface.
# The other two directions can be randomized.
rand_vec = np.random.rand(3)
rand_vec /= np.linalg.norm(rand_vec)
grasp_x = towards_object_in_world_frame
grasp_y = np.cross(rand_vec, grasp_x)
grasp_y /= np.linalg.norm(grasp_y)
grasp_z = np.cross(grasp_x, grasp_y)
grasp_z /= np.linalg.norm(grasp_z)
grasp_mat = np.array([grasp_x, grasp_y, grasp_z]).T
grasp_quat = R.from_matrix(grasp_mat).as_quat()
grasp_pose = (grasp_center_pos, grasp_quat)
grasp_candidate = [(grasp_pose, towards_object_in_world_frame)]
return grasp_candidate
def get_grasp_position_for_open(robot, target_obj, should_open, relevant_joint=None, num_waypoints="default"):
"""
Computes the grasp position for opening or closing a joint.
Args:
robot: the robot object
target_obj: the object to open/close a joint of
should_open: a boolean indicating whether we are opening or closing
relevant_joint: the joint to open/close if we want to do a particular one in advance
num_waypoints: the number of waypoints to interpolate between the start and end poses (default is "default")
Returns:
None (if no grasp was found), or Tuple, containing:
relevant_joint: the joint that is being targeted for open/close by the returned grasp
offset_grasp_pose_in_world_frame: the grasp pose in the world frame
waypoints: the interpolated waypoints between the start and end poses
approach_direction_in_world_frame: the approach direction in the world frame
grasp_required: a boolean indicating whether a grasp is required for the opening/closing based on which side of the joint we are
required_pos_change: the required change in position of the joint to open/close
"""
# Pick a moving link of the object.
relevant_joints = [relevant_joint] if relevant_joint is not None else _get_relevant_joints(target_obj)[1]
if len(relevant_joints) == 0:
raise ValueError("Cannot open/close object without relevant joints.")
# Make sure what we got is an appropriately open/close joint.
np.random.shuffle(relevant_joints)
selected_joint = None
for joint in relevant_joints:
current_position = joint.get_state()[0][0]
joint_range = joint.upper_limit - joint.lower_limit
openness_fraction = (current_position - joint.lower_limit) / joint_range
if (should_open and openness_fraction < m.OPENNESS_FRACTION_TO_OPEN) or (not should_open and openness_fraction > m.OPENNESS_THRESHOLD_TO_CLOSE):
selected_joint = joint
break
if selected_joint is None:
return None
if selected_joint.joint_type == JointType.JOINT_REVOLUTE:
return (selected_joint,) + grasp_position_for_open_on_revolute_joint(robot, target_obj, selected_joint, should_open, num_waypoints=num_waypoints)
elif selected_joint.joint_type == JointType.JOINT_PRISMATIC:
return (selected_joint,) + grasp_position_for_open_on_prismatic_joint(robot, target_obj, selected_joint, should_open, num_waypoints=num_waypoints)
else:
raise ValueError("Unknown joint type encountered while generating joint position.")
def grasp_position_for_open_on_prismatic_joint(robot, target_obj, relevant_joint, should_open, num_waypoints="default"):
"""
Computes the grasp position for opening or closing a prismatic joint.
Args:
robot: the robot object
target_obj: the object to open
relevant_joint: the prismatic joint to open
should_open: a boolean indicating whether we are opening or closing
num_waypoints: the number of waypoints to interpolate between the start and end poses (default is "default")
Returns:
Tuple, containing:
offset_grasp_pose_in_world_frame: the grasp pose in the world frame
waypoints: the interpolated waypoints between the start and end poses
approach_direction_in_world_frame: the approach direction in the world frame
grasp_required: a boolean indicating whether a grasp is required for the opening/closing based on which side of the joint we are
required_pos_change: the required change in position of the joint to open/close
"""
link_name = relevant_joint.body1.split("/")[-1]
# Get the bounding box of the child link.
(
bbox_center_in_world,
bbox_quat_in_world,
bbox_extent_in_link_frame,
_,
) = target_obj.get_base_aligned_bbox(link_name=link_name, visual=False)
# Match the push axis to one of the bb axes.
joint_orientation = lazy.omni.isaac.core.utils.rotations.gf_quat_to_np_array(relevant_joint.get_attribute("physics:localRot0"))[[1, 2, 3, 0]]
push_axis = R.from_quat(joint_orientation).apply([1, 0, 0])
assert np.isclose(np.max(np.abs(push_axis)), 1.0) # Make sure we're aligned with a bb axis.
push_axis_idx = np.argmax(np.abs(push_axis))
canonical_push_axis = np.eye(3)[push_axis_idx]
# TODO: Need to figure out how to get the correct push direction.
push_direction = np.sign(push_axis[push_axis_idx]) if should_open else -1 * np.sign(push_axis[push_axis_idx])
canonical_push_direction = canonical_push_axis * push_direction
# Pick the closer of the two faces along the push axis as our favorite.
points_along_push_axis = (
np.array([canonical_push_axis, -canonical_push_axis]) * bbox_extent_in_link_frame[push_axis_idx] / 2
)
(
push_axis_closer_side_idx,
center_of_selected_surface_along_push_axis,
_,
) = _get_closest_point_to_point_in_world_frame(
points_along_push_axis, (bbox_center_in_world, bbox_quat_in_world), robot.get_position()
)
push_axis_closer_side_sign = 1 if push_axis_closer_side_idx == 0 else -1
# Pick the other axes.
all_axes = list(set(range(3)) - {push_axis_idx})
x_axis_idx, y_axis_idx = tuple(sorted(all_axes))
canonical_x_axis = np.eye(3)[x_axis_idx]
canonical_y_axis = np.eye(3)[y_axis_idx]
# Find the correct side of the lateral axis & go some distance along that direction.
min_lateral_pos_wrt_surface_center = (canonical_x_axis + canonical_y_axis) * -bbox_extent_in_link_frame / 2
max_lateral_pos_wrt_surface_center = (canonical_x_axis + canonical_y_axis) * bbox_extent_in_link_frame / 2
diff_lateral_pos_wrt_surface_center = max_lateral_pos_wrt_surface_center - min_lateral_pos_wrt_surface_center
sampled_lateral_pos_wrt_min = np.random.uniform(
m.PRISMATIC_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS[0] * diff_lateral_pos_wrt_surface_center,
m.PRISMATIC_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS[1] * diff_lateral_pos_wrt_surface_center,
)
lateral_pos_wrt_surface_center = min_lateral_pos_wrt_surface_center + sampled_lateral_pos_wrt_min
grasp_position_in_bbox_frame = center_of_selected_surface_along_push_axis + lateral_pos_wrt_surface_center
grasp_quat_in_bbox_frame = T.quat_inverse(joint_orientation)
grasp_pose_in_world_frame = T.pose_transform(
bbox_center_in_world, bbox_quat_in_world, grasp_position_in_bbox_frame, grasp_quat_in_bbox_frame
)
# Now apply the grasp offset.
dist_from_grasp_pos = robot.finger_lengths[robot.default_arm] + 0.05
offset_grasp_pose_in_bbox_frame = (grasp_position_in_bbox_frame + canonical_push_axis * push_axis_closer_side_sign * dist_from_grasp_pos, grasp_quat_in_bbox_frame)
offset_grasp_pose_in_world_frame = T.pose_transform(
bbox_center_in_world, bbox_quat_in_world, *offset_grasp_pose_in_bbox_frame
)
# To compute the rotation position, we want to decide how far along the rotation axis we'll go.
target_joint_pos = relevant_joint.upper_limit if should_open else relevant_joint.lower_limit
current_joint_pos = relevant_joint.get_state()[0][0]
required_pos_change = target_joint_pos - current_joint_pos
push_vector_in_bbox_frame = canonical_push_direction * abs(required_pos_change)
target_hand_pos_in_bbox_frame = grasp_position_in_bbox_frame + push_vector_in_bbox_frame
target_hand_pose_in_world_frame = T.pose_transform(
bbox_center_in_world, bbox_quat_in_world, target_hand_pos_in_bbox_frame, grasp_quat_in_bbox_frame
)
# Compute the approach direction.
approach_direction_in_world_frame = R.from_quat(bbox_quat_in_world).apply(canonical_push_axis * -push_axis_closer_side_sign)
# Decide whether a grasp is required. If approach direction and displacement are similar, no need to grasp.
grasp_required = np.dot(push_vector_in_bbox_frame, canonical_push_axis * -push_axis_closer_side_sign) < 0
# TODO: Need to find a better of getting the predicted position of eef for start point of interpolating waypoints. Maybe
# break this into another function that called after the grasp is executed, so we know the eef position?
waypoint_start_offset = -0.05 * approach_direction_in_world_frame if should_open else 0.05 * approach_direction_in_world_frame
waypoint_start_pose = (grasp_pose_in_world_frame[0] + -1 * approach_direction_in_world_frame * (robot.finger_lengths[robot.default_arm] + waypoint_start_offset), grasp_pose_in_world_frame[1])
waypoint_end_pose = (target_hand_pose_in_world_frame[0] + -1 * approach_direction_in_world_frame * (robot.finger_lengths[robot.default_arm]), target_hand_pose_in_world_frame[1])
waypoints = interpolate_waypoints(waypoint_start_pose, waypoint_end_pose, num_waypoints=num_waypoints)
return (
offset_grasp_pose_in_world_frame,
waypoints,
approach_direction_in_world_frame,
relevant_joint,
grasp_required,
required_pos_change
)
def interpolate_waypoints(start_pose, end_pose, num_waypoints="default"):
"""
Interpolates a series of waypoints between a start and end pose.
Args:
start_pose (tuple): A tuple containing the starting position and orientation as a quaternion.
end_pose (tuple): A tuple containing the ending position and orientation as a quaternion.
num_waypoints (int, optional): The number of waypoints to interpolate. If "default", the number of waypoints is calculated based on the distance between the start and end pose.
Returns:
list: A list of tuples representing the interpolated waypoints, where each tuple contains a position and orientation as a quaternion.
"""
start_pos, start_orn = start_pose
travel_distance = np.linalg.norm(end_pose[0] - start_pos)
if num_waypoints == "default":
num_waypoints = np.max([2, int(travel_distance / 0.01) + 1])
pos_waypoints = np.linspace(start_pos, end_pose[0], num_waypoints)
# Also interpolate the rotations
combined_rotation = R.from_quat(np.array([start_orn, end_pose[1]]))
slerp = Slerp([0, 1], combined_rotation)
orn_waypoints = slerp(np.linspace(0, 1, num_waypoints))
quat_waypoints = [x.as_quat() for x in orn_waypoints]
return [waypoint for waypoint in zip(pos_waypoints, quat_waypoints)]
def grasp_position_for_open_on_revolute_joint(robot, target_obj, relevant_joint, should_open):
"""
Computes the grasp position for opening or closing a revolute joint.
Args:
robot: the robot object
target_obj: the object to open
relevant_joint: the revolute joint to open
should_open: a boolean indicating whether we are opening or closing
Returns:
Tuple, containing:
offset_grasp_pose_in_world_frame: the grasp pose in the world frame
waypoints: the interpolated waypoints between the start and end poses
approach_direction_in_world_frame: the approach direction in the world frame
grasp_required: a boolean indicating whether a grasp is required for the opening/closing based on which side of the joint we are
required_pos_change: the required change in position of the joint to open/close
"""
link_name = relevant_joint.body1.split("/")[-1]
link = target_obj.links[link_name]
# Get the bounding box of the child link.
(
bbox_center_in_world,
bbox_quat_in_world,
_,
bbox_center_in_obj_frame
) = target_obj.get_base_aligned_bbox(link_name=link_name, visual=False)
bbox_quat_in_world = link.get_orientation()
bbox_extent_in_link_frame = np.array(target_obj.native_link_bboxes[link_name]['collision']['axis_aligned']['extent'])
bbox_wrt_origin = T.relative_pose_transform(bbox_center_in_world, bbox_quat_in_world, *link.get_position_orientation())
origin_wrt_bbox = T.invert_pose_transform(*bbox_wrt_origin)
joint_orientation = lazy.omni.isaac.core.utils.rotations.gf_quat_to_np_array(relevant_joint.get_attribute("physics:localRot0"))[[1, 2, 3, 0]]
joint_axis = R.from_quat(joint_orientation).apply([1, 0, 0])
joint_axis /= np.linalg.norm(joint_axis)
origin_towards_bbox = np.array(bbox_wrt_origin[0])
open_direction = np.cross(joint_axis, origin_towards_bbox)
open_direction /= np.linalg.norm(open_direction)
lateral_axis = np.cross(open_direction, joint_axis)
# Match the axes to the canonical axes of the link bb.
lateral_axis_idx = np.argmax(np.abs(lateral_axis))
open_axis_idx = np.argmax(np.abs(open_direction))
joint_axis_idx = np.argmax(np.abs(joint_axis))
assert lateral_axis_idx != open_axis_idx
assert lateral_axis_idx != joint_axis_idx
assert open_axis_idx != joint_axis_idx
canonical_open_direction = np.eye(3)[open_axis_idx]
points_along_open_axis = (
np.array([canonical_open_direction, -canonical_open_direction]) * bbox_extent_in_link_frame[open_axis_idx] / 2
)
current_yaw = relevant_joint.get_state()[0][0]
closed_yaw = relevant_joint.lower_limit
points_along_open_axis_after_rotation = [
_rotate_point_around_axis((point, [0, 0, 0, 1]), bbox_wrt_origin, joint_axis, closed_yaw - current_yaw)[0]
for point in points_along_open_axis
]
open_axis_closer_side_idx, _, _ = _get_closest_point_to_point_in_world_frame(
points_along_open_axis_after_rotation, (bbox_center_in_world, bbox_quat_in_world), robot.get_position()
)
open_axis_closer_side_sign = 1 if open_axis_closer_side_idx == 0 else -1
center_of_selected_surface_along_push_axis = points_along_open_axis[open_axis_closer_side_idx]
# Find the correct side of the lateral axis & go some distance along that direction.
canonical_joint_axis = np.eye(3)[joint_axis_idx]
lateral_away_from_origin = np.eye(3)[lateral_axis_idx] * np.sign(origin_towards_bbox[lateral_axis_idx])
min_lateral_pos_wrt_surface_center = (
lateral_away_from_origin * -np.array(origin_wrt_bbox[0])
- canonical_joint_axis * bbox_extent_in_link_frame[lateral_axis_idx] / 2
)
max_lateral_pos_wrt_surface_center = (
lateral_away_from_origin * bbox_extent_in_link_frame[lateral_axis_idx] / 2
+ canonical_joint_axis * bbox_extent_in_link_frame[lateral_axis_idx] / 2
)
diff_lateral_pos_wrt_surface_center = max_lateral_pos_wrt_surface_center - min_lateral_pos_wrt_surface_center
sampled_lateral_pos_wrt_min = np.random.uniform(
m.REVOLUTE_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS[0] * diff_lateral_pos_wrt_surface_center,
m.REVOLUTE_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS[1] * diff_lateral_pos_wrt_surface_center,
)
lateral_pos_wrt_surface_center = min_lateral_pos_wrt_surface_center + sampled_lateral_pos_wrt_min
grasp_position = center_of_selected_surface_along_push_axis + lateral_pos_wrt_surface_center
# Get the appropriate rotation
# grasp_quat_in_bbox_frame = get_quaternion_between_vectors([1, 0, 0], canonical_open_direction * open_axis_closer_side_sign * -1)
grasp_quat_in_bbox_frame = _get_orientation_facing_vector_with_random_yaw(canonical_open_direction * open_axis_closer_side_sign * -1)
# Now apply the grasp offset.
dist_from_grasp_pos = robot.finger_lengths[robot.default_arm] + 0.05
offset_in_bbox_frame = canonical_open_direction * open_axis_closer_side_sign * dist_from_grasp_pos
offset_grasp_pose_in_bbox_frame = (grasp_position + offset_in_bbox_frame, grasp_quat_in_bbox_frame)
offset_grasp_pose_in_world_frame = T.pose_transform(
bbox_center_in_world, bbox_quat_in_world, *offset_grasp_pose_in_bbox_frame
)
# To compute the rotation position, we want to decide how far along the rotation axis we'll go.
desired_yaw = relevant_joint.upper_limit if should_open else relevant_joint.lower_limit
required_yaw_change = desired_yaw - current_yaw
# Now we'll rotate the grasp position around the origin by the desired rotation.
# Note that we use the non-offset position here since the joint can't be pulled all the way to the offset.
grasp_pose_in_bbox_frame = grasp_position, grasp_quat_in_bbox_frame
grasp_pose_in_origin_frame = T.pose_transform(*bbox_wrt_origin, *grasp_pose_in_bbox_frame)
# Get the arc length and divide it up to 10cm segments
arc_length = abs(required_yaw_change) * np.linalg.norm(grasp_pose_in_origin_frame[0])
turn_steps = int(ceil(arc_length / m.ROTATION_ARC_SEGMENT_LENGTHS))
targets = []
for i in range(turn_steps):
partial_yaw_change = (i + 1) / turn_steps * required_yaw_change
rotated_grasp_pose_in_bbox_frame = _rotate_point_around_axis(
(offset_grasp_pose_in_bbox_frame[0], offset_grasp_pose_in_bbox_frame[1]), bbox_wrt_origin, joint_axis, partial_yaw_change
)
rotated_grasp_pose_in_world_frame = T.pose_transform(
bbox_center_in_world, bbox_quat_in_world, *rotated_grasp_pose_in_bbox_frame
)
targets.append(rotated_grasp_pose_in_world_frame)
# Compute the approach direction.
approach_direction_in_world_frame = R.from_quat(bbox_quat_in_world).apply(canonical_open_direction * -open_axis_closer_side_sign)
# Decide whether a grasp is required. If approach direction and displacement are similar, no need to grasp.
movement_in_world_frame = np.array(targets[-1][0]) - np.array(offset_grasp_pose_in_world_frame[0])
grasp_required = np.dot(movement_in_world_frame, approach_direction_in_world_frame) < 0
return (
offset_grasp_pose_in_world_frame,
targets,
approach_direction_in_world_frame,
grasp_required,
required_yaw_change,
)
def _get_orientation_facing_vector_with_random_yaw(vector):
"""
Get a quaternion that orients the x-axis of the object to face the given vector and the y and z
axes to be random.
Args:
vector (np.ndarray): The vector to face.
Returns:
np.ndarray: A quaternion representing the orientation.
"""
forward = vector / np.linalg.norm(vector)
rand_vec = np.random.rand(3)
rand_vec /= np.linalg.norm(3)
side = np.cross(rand_vec, forward)
side /= np.linalg.norm(3)
up = np.cross(forward, side)
# assert np.isclose(np.linalg.norm(up), 1, atol=1e-3)
rotmat = np.array([forward, side, up]).T
return R.from_matrix(rotmat).as_quat()
def _rotate_point_around_axis(point_wrt_arbitrary_frame, arbitrary_frame_wrt_origin, joint_axis, yaw_change):
"""
Rotate a point around an axis, given the point in an arbitrary frame, the arbitrary frame's pose in the origin frame,
the axis to rotate around, and the amount to rotate by. This is a utility for rotating the grasp position around the
joint axis.
Args:
point_wrt_arbitrary_frame (tuple): The point in the arbitrary frame.
arbitrary_frame_wrt_origin (tuple): The pose of the arbitrary frame in the origin frame.
joint_axis (np.ndarray): The axis to rotate around.
yaw_change (float): The amount to rotate by.
Returns:
tuple: The rotated point in the arbitrary frame.
"""
rotation = R.from_rotvec(joint_axis * yaw_change).as_quat()
origin_wrt_arbitrary_frame = T.invert_pose_transform(*arbitrary_frame_wrt_origin)
pose_in_origin_frame = T.pose_transform(*arbitrary_frame_wrt_origin, *point_wrt_arbitrary_frame)
rotated_pose_in_origin_frame = T.pose_transform([0, 0, 0], rotation, *pose_in_origin_frame)
rotated_pose_in_arbitrary_frame = T.pose_transform(*origin_wrt_arbitrary_frame, *rotated_pose_in_origin_frame)
return rotated_pose_in_arbitrary_frame
def _get_closest_point_to_point_in_world_frame(
vectors_in_arbitrary_frame, arbitrary_frame_to_world_frame, point_in_world
):
"""
Given a set of vectors in an arbitrary frame, find the closest vector to a point in world frame.
Useful for picking between two sides of a joint for grasping.
Args:
vectors_in_arbitrary_frame (list): A list of vectors in the arbitrary frame.
arbitrary_frame_to_world_frame (tuple): The pose of the arbitrary frame in the world frame.
point_in_world (tuple): The point in the world frame.
Returns:
tuple: The index of the closest vector, the closest vector in the arbitrary frame, and the closest vector in the world frame.
"""
vectors_in_world = np.array(
[
T.pose_transform(*arbitrary_frame_to_world_frame, vector, [0, 0, 0, 1])[0]
for vector in vectors_in_arbitrary_frame
]
)
vector_distances_to_point = np.linalg.norm(vectors_in_world - np.array(point_in_world)[None, :], axis=1)
closer_option_idx = np.argmin(vector_distances_to_point)
vector_in_arbitrary_frame = vectors_in_arbitrary_frame[closer_option_idx]
vector_in_world_frame = vectors_in_world[closer_option_idx]
return closer_option_idx, vector_in_arbitrary_frame, vector_in_world_frame
| 24,988 | Python | 49.687627 | 195 | 0.699416 |
StanfordVL/OmniGibson/omnigibson/utils/bddl_utils.py | import json
import bddl
import os
import random
import numpy as np
import networkx as nx
from collections import defaultdict
from bddl.activity import (
get_goal_conditions,
get_ground_goal_state_options,
get_initial_conditions,
)
from bddl.backend_abc import BDDLBackend
from bddl.condition_evaluation import Negation
from bddl.logic_base import BinaryAtomicFormula, UnaryAtomicFormula, AtomicFormula
from bddl.object_taxonomy import ObjectTaxonomy
import omnigibson as og
from omnigibson.macros import gm, create_module_macros
from omnigibson.utils.constants import PrimType
from omnigibson.utils.asset_utils import get_attachment_metalinks, get_all_object_categories, get_all_object_category_models_with_abilities
from omnigibson.utils.ui_utils import create_module_logger
from omnigibson.utils.python_utils import Wrapper
from omnigibson.objects.dataset_object import DatasetObject
from omnigibson.robots import BaseRobot
from omnigibson import object_states
from omnigibson.object_states.object_state_base import AbsoluteObjectState, RelativeObjectState
from omnigibson.object_states.factory import _KINEMATIC_STATE_SET, get_system_states
from omnigibson.systems.system_base import is_system_active, get_system
from omnigibson.scenes.interactive_traversable_scene import InteractiveTraversableScene
# Create module logger
log = create_module_logger(module_name=__name__)
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.MIN_DYNAMIC_SCALE = 0.5
m.DYNAMIC_SCALE_INCREMENT = 0.1
GOOD_MODELS = {
"jar": {"kijnrj"},
"carton": {"causya", "msfzpz", "sxlklf"},
"hamper": {"drgdfh", "hlgjme", "iofciz", "pdzaca", "ssfvij"},
"hanging_plant": set(),
"hardback": {"esxakn"},
"notebook": {"hwhisw"},
"paperback": {"okcflv"},
"plant_pot": {"ihnfbi", "vhglly", "ygrtaz"},
"pot_plant": {"cvthyv", "dbjcic", "cecdwu"},
"recycling_bin": {"nuoypc"},
"tray": {"gsxbym", "huwhjg", "txcjux", "uekqey", "yqtlhy"},
}
GOOD_BBOXES = {
"basil": {
"dkuhvb": [0.07286304, 0.0545199 , 0.03108144],
},
"basil_jar": {
"swytaw": [0.22969539, 0.19492961, 0.30791675],
},
"bicycle_chain": {
"czrssf": [0.242, 0.012, 0.021],
},
"clam": {
"ihhbfj": [0.078, 0.081, 0.034],
},
"envelope": {
"urcigc": [0.004, 0.06535058, 0.10321216],
},
"mail": {
"azunex": [0.19989018, 0.005, 0.12992871],
"gvivdi": [0.28932137, 0.005, 0.17610794],
"mbbwhn": [0.27069291, 0.005, 0.13114884],
"ojkepk": [0.19092424, 0.005, 0.13252979],
"qpwlor": [0.22472473, 0.005, 0.18983322],
},
"pill_bottle": {
"csvdbe": [0.078, 0.078, 0.109],
"wsasmm": [0.078, 0.078, 0.109],
},
"plant_pot": {
"ihnfbi": [0.24578613, 0.2457865 , 0.18862737],
},
"razor": {
"jocsgp": [0.046, 0.063, 0.204],
},
"recycling_bin": {
"nuoypc": [0.69529409, 0.80712041, 1.07168694],
},
"tupperware": {
"mkstwr": [0.33, 0.33, 0.21],
},
}
BAD_CLOTH_MODELS = {
"bandana": {"wbhliu"},
"curtain": {"ohvomi"},
"cardigan": {"itrkhr"},
"sweatshirt": {"nowqqh"},
"jeans": {"nmvvil", "pvzxyp"},
"pajamas": {"rcgdde"},
"polo_shirt": {"vqbvph"},
"vest": {"girtqm"}, # bddl NOT FIXED
"onesie": {"pbytey"},
"dishtowel": {"ltydgg"},
"dress": {"gtghon"},
"hammock": {'aiftuk', 'fglfga', 'klhkgd', 'lqweda', 'qewdqa'},
'jacket': {'kiiium', 'nogevo', 'remcyk'},
"quilt": {"mksdlu", "prhems"},
"pennant": {"tfnwti"},
"pillowcase": {"dtoahb", "yakvci"},
"rubber_glove": {"leuiso"},
"scarf": {"kclcrj"},
"sock": {"vpafgj"},
"tank_top": {"fzldgi"},
"curtain": {"shbakk"}
}
class UnsampleablePredicate:
def _sample(self, *args, **kwargs):
raise NotImplementedError()
class ObjectStateInsourcePredicate(UnsampleablePredicate, BinaryAtomicFormula):
def _evaluate(self, entity, **kwargs):
# Always returns True
return True
class ObjectStateFuturePredicate(UnsampleablePredicate, UnaryAtomicFormula):
STATE_NAME = "future"
def _evaluate(self, entity, **kwargs):
return not entity.exists
class ObjectStateRealPredicate(UnsampleablePredicate, UnaryAtomicFormula):
STATE_NAME = "real"
def _evaluate(self, entity, **kwargs):
return entity.exists
class ObjectStateUnaryPredicate(UnaryAtomicFormula):
STATE_CLASS = None
STATE_NAME = None
def _evaluate(self, entity, **kwargs):
return entity.get_state(self.STATE_CLASS, **kwargs)
def _sample(self, entity, binary_state, **kwargs):
return entity.set_state(self.STATE_CLASS, binary_state, **kwargs)
class ObjectStateBinaryPredicate(BinaryAtomicFormula):
STATE_CLASS = None
STATE_NAME = None
def _evaluate(self, entity1, entity2, **kwargs):
return entity1.get_state(self.STATE_CLASS, entity2.wrapped_obj, **kwargs) if entity2.exists else False
def _sample(self, entity1, entity2, binary_state, **kwargs):
return entity1.set_state(self.STATE_CLASS, entity2.wrapped_obj, binary_state, **kwargs) if entity2.exists else None
def get_unary_predicate_for_state(state_class, state_name):
return type(
state_class.__name__ + "StateUnaryPredicate",
(ObjectStateUnaryPredicate,),
{"STATE_CLASS": state_class, "STATE_NAME": state_name},
)
def get_binary_predicate_for_state(state_class, state_name):
return type(
state_class.__name__ + "StateBinaryPredicate",
(ObjectStateBinaryPredicate,),
{"STATE_CLASS": state_class, "STATE_NAME": state_name},
)
def is_substance_synset(synset):
return "substance" in OBJECT_TAXONOMY.get_abilities(synset)
def get_system_name_by_synset(synset):
system_names = OBJECT_TAXONOMY.get_subtree_substances(synset)
assert len(system_names) == 1, f"Got zero or multiple systems for {synset}: {system_names}"
return system_names[0]
def process_single_condition(condition):
"""
Processes a single BDDL condition
Args:
condition (Condition): Condition to process
Returns:
2-tuple:
- Expression: Condition's expression
- bool: Whether this evaluated condition is positive or negative
"""
if not isinstance(condition.children[0], Negation) and not isinstance(condition.children[0], AtomicFormula):
log.debug(("Skipping over sampling of predicate that is not a negation or an atomic formula"))
return None, None
if isinstance(condition.children[0], Negation):
condition = condition.children[0].children[0]
positive = False
else:
condition = condition.children[0]
positive = True
return condition, positive
# TODO: Add remaining predicates.
SUPPORTED_PREDICATES = {
"inside": get_binary_predicate_for_state(object_states.Inside, "inside"),
"nextto": get_binary_predicate_for_state(object_states.NextTo, "nextto"),
"ontop": get_binary_predicate_for_state(object_states.OnTop, "ontop"),
"under": get_binary_predicate_for_state(object_states.Under, "under"),
"touching": get_binary_predicate_for_state(object_states.Touching, "touching"),
"covered": get_binary_predicate_for_state(object_states.Covered, "covered"),
"contains": get_binary_predicate_for_state(object_states.Contains, "contains"),
"saturated": get_binary_predicate_for_state(object_states.Saturated, "saturated"),
"filled": get_binary_predicate_for_state(object_states.Filled, "filled"),
"cooked": get_unary_predicate_for_state(object_states.Cooked, "cooked"),
"burnt": get_unary_predicate_for_state(object_states.Burnt, "burnt"),
"frozen": get_unary_predicate_for_state(object_states.Frozen, "frozen"),
"hot": get_unary_predicate_for_state(object_states.Heated, "hot"),
"open": get_unary_predicate_for_state(object_states.Open, "open"),
"toggled_on": get_unary_predicate_for_state(object_states.ToggledOn, "toggled_on"),
"on_fire": get_unary_predicate_for_state(object_states.OnFire, "on_fire"),
"attached": get_binary_predicate_for_state(object_states.AttachedTo, "attached"),
"overlaid": get_binary_predicate_for_state(object_states.Overlaid, "overlaid"),
"folded": get_unary_predicate_for_state(object_states.Folded, "folded"),
"unfolded": get_unary_predicate_for_state(object_states.Unfolded, "unfolded"),
"draped": get_binary_predicate_for_state(object_states.Draped, "draped"),
"future": ObjectStateFuturePredicate,
"real": ObjectStateRealPredicate,
"insource": ObjectStateInsourcePredicate,
}
KINEMATIC_STATES_BDDL = frozenset([state.__name__.lower() for state in _KINEMATIC_STATE_SET] + ["attached"])
# BEHAVIOR-related
OBJECT_TAXONOMY = ObjectTaxonomy()
BEHAVIOR_ACTIVITIES = sorted(os.listdir(os.path.join(os.path.dirname(bddl.__file__), "activity_definitions")))
def _populate_input_output_objects_systems(og_recipe, input_synsets, output_synsets):
# Map input/output synsets into input/output objects and systems.
for synsets, obj_key, system_key in zip((input_synsets, output_synsets), ("input_objects", "output_objects"), ("input_systems", "output_systems")):
for synset, count in synsets.items():
assert OBJECT_TAXONOMY.is_leaf(synset), f"Synset {synset} must be a leaf node in the taxonomy!"
if is_substance_synset(synset):
og_recipe[system_key].append(get_system_name_by_synset(synset))
else:
obj_categories = OBJECT_TAXONOMY.get_categories(synset)
assert len(obj_categories) == 1, f"Object synset {synset} must map to exactly one object category! Now: {obj_categories}."
og_recipe[obj_key][obj_categories[0]] = count
# Assert only one of output_objects or output_systems is not None
assert len(og_recipe["output_objects"]) == 0 or len(og_recipe["output_systems"]) == 0, \
"Recipe can only generate output objects or output systems, but not both!"
def _populate_input_output_states(og_recipe, input_states, output_states):
# Apply post-processing for input/output states if specified
for synsets_to_states, states_key in zip((input_states, output_states), ("input_states", "output_states")):
if synsets_to_states is None:
continue
for synsets, states in synsets_to_states.items():
# For unary/binary states, synsets is a single synset or a comma-separated pair of synsets, respectively
synset_split = synsets.split(",")
if len(synset_split) == 1:
first_synset = synset_split[0]
second_synset = None
else:
first_synset, second_synset = synset_split
# Assert the first synset is an object because the systems don't have any states.
assert OBJECT_TAXONOMY.is_leaf(first_synset), f"Input/output state synset {first_synset} must be a leaf node in the taxonomy!"
assert not is_substance_synset(first_synset), f"Input/output state synset {first_synset} must be applied to an object, not a substance!"
obj_categories = OBJECT_TAXONOMY.get_categories(first_synset)
assert len(obj_categories) == 1, f"Input/output state synset {first_synset} must map to exactly one object category! Now: {obj_categories}."
first_obj_category = obj_categories[0]
if second_synset is None:
# Unary states for the first synset
for state_type, state_value in states:
state_class = SUPPORTED_PREDICATES[state_type].STATE_CLASS
assert issubclass(state_class, AbsoluteObjectState), f"Input/output state type {state_type} must be a unary state!"
# Example: (Cooked, True)
og_recipe[states_key][first_obj_category]["unary"].append((state_class, state_value))
else:
assert OBJECT_TAXONOMY.is_leaf(second_synset), f"Input/output state synset {second_synset} must be a leaf node in the taxonomy!"
obj_categories = OBJECT_TAXONOMY.get_categories(second_synset)
if is_substance_synset(second_synset):
second_obj_category = get_system_name_by_synset(second_synset)
is_substance = True
else:
obj_categories = OBJECT_TAXONOMY.get_categories(second_synset)
assert len(obj_categories) == 1, f"Input/output state synset {second_synset} must map to exactly one object category! Now: {obj_categories}."
second_obj_category = obj_categories[0]
is_substance = False
for state_type, state_value in states:
state_class = SUPPORTED_PREDICATES[state_type].STATE_CLASS
assert issubclass(state_class, RelativeObjectState), f"Input/output state type {state_type} must be a binary state!"
assert is_substance == (state_class in get_system_states()), f"Input/output state type {state_type} system state inconsistency found!"
if is_substance:
# Non-kinematic binary states, e.g. Covered, Saturated, Filled, Contains.
# Example: (Covered, "sesame_seed", True)
og_recipe[states_key][first_obj_category]["binary_system"].append(
(state_class, second_obj_category, state_value))
else:
# Kinematic binary states w.r.t. the second object.
# Example: (OnTop, "raw_egg", True)
assert states_key != "output_states", f"Output state type {state_type} can only be used in input states!"
og_recipe[states_key][first_obj_category]["binary_object"].append(
(state_class, second_obj_category, state_value))
def _populate_filter_categories(og_recipe, filter_name, synsets):
# Map synsets to categories.
if synsets is not None:
og_recipe[f"{filter_name}_categories"] = set()
for synset in synsets:
assert OBJECT_TAXONOMY.is_leaf(synset), f"Synset {synset} must be a leaf node in the taxonomy!"
assert not is_substance_synset(synset), f"Synset {synset} must be applied to an object, not a substance!"
for category in OBJECT_TAXONOMY.get_categories(synset):
og_recipe[f"{filter_name}_categories"].add(category)
def translate_bddl_recipe_to_og_recipe(
name,
input_synsets,
output_synsets,
input_states=None,
output_states=None,
fillable_synsets=None,
heatsource_synsets=None,
timesteps=None,
):
"""
Translate a BDDL recipe to an OG recipe.
Args:
name (str): Name of the recipe
input_synsets (dict): Maps synsets to number of instances required for the recipe
output_synsets (dict): Maps synsets to number of instances to be spawned in the container when the recipe executes
input_states (dict or None): Maps input synsets to states that must be satisfied for the recipe to execute,
or None if no states are required
otuput_states (dict or None): Map output synsets to states that should be set when spawned when the recipe executes,
or None if no states are required
fillable_synsets (None or set of str): If specified, set of fillable synsets which are allowed for this recipe.
If None, any fillable is allowed
heatsource_synsets (None or set of str): If specified, set of heatsource synsets which are allowed for this recipe.
If None, any heatsource is allowed
timesteps (None or int): Number of subsequent heating steps required for the recipe to execute. If None,
it will be set to be 1, i.e.: instantaneous execution
"""
og_recipe = {
"name": name,
# Maps object categories to number of instances required for the recipe
"input_objects": dict(),
# List of system names required for the recipe
"input_systems": list(),
# Maps object categories to number of instances to be spawned in the container when the recipe executes
"output_objects": dict(),
# List of system names to be spawned in the container when the recipe executes. Currently the length is 1.
"output_systems": list(),
# Maps object categories to ["unary", "bianry_system", "binary_object"] to a list of states that must be satisfied for the recipe to execute
"input_states": defaultdict(lambda: defaultdict(list)),
# Maps object categories to ["unary", "bianry_system"] to a list of states that should be set after the output objects are spawned
"output_states": defaultdict(lambda: defaultdict(list)),
# Set of fillable categories which are allowed for this recipe
"fillable_categories": None,
# Set of heatsource categories which are allowed for this recipe
"heatsource_categories": None,
# Number of subsequent heating steps required for the recipe to execute
"timesteps": timesteps if timesteps is not None else 1,
}
_populate_input_output_objects_systems(og_recipe=og_recipe, input_synsets=input_synsets, output_synsets=output_synsets)
_populate_input_output_states(og_recipe=og_recipe, input_states=input_states, output_states=output_states)
_populate_filter_categories(og_recipe=og_recipe, filter_name="fillable", synsets=fillable_synsets)
_populate_filter_categories(og_recipe=og_recipe, filter_name="heatsource", synsets=heatsource_synsets)
return og_recipe
def translate_bddl_washer_rule_to_og_washer_rule(conditions):
"""
Translate BDDL washer rule to OG washer rule.
Args:
conditions (dict): Dictionary mapping the synset of ParticleSystem (str) to None or list of synsets of
ParticleSystem (str). None represents "never", empty list represents "always", or non-empty list represents
at least one of the systems in the list needs to be present in the washer for the key system to be removed.
E.g. "rust.n.01" -> None: "never remove rust.n.01 from the washer"
E.g. "dust.n.01" -> []: "always remove dust.n.01 from the washer"
E.g. "cooking_oil.n.01" -> ["sodium_carbonate.n.01", "vinegar.n.01"]: "remove cooking_oil.n.01 from the
washer if either sodium_carbonate.n.01 or vinegar.n.01 is present"
For keys not present in the dictionary, the default is []: "always remove"
Returns:
dict: Dictionary mapping the system name (str) to None or list of system names (str). None represents "never",
empty list represents "always", or non-empty list represents at least one of the systems in the list needs
to be present in the washer for the key system to be removed.
"""
og_washer_rule = dict()
for solute, solvents in conditions.items():
assert OBJECT_TAXONOMY.is_leaf(solute), f"Synset {solute} must be a leaf node in the taxonomy!"
assert is_substance_synset(solute), f"Synset {solute} must be a substance synset!"
solute_name = get_system_name_by_synset(solute)
if solvents is None:
og_washer_rule[solute_name] = None
else:
solvent_names = []
for solvent in solvents:
assert OBJECT_TAXONOMY.is_leaf(solvent), f"Synset {solvent} must be a leaf node in the taxonomy!"
assert is_substance_synset(solvent), f"Synset {solvent} must be a substance synset!"
solvent_name = get_system_name_by_synset(solvent)
solvent_names.append(solvent_name)
og_washer_rule[solute_name] = solvent_names
return og_washer_rule
class OmniGibsonBDDLBackend(BDDLBackend):
def get_predicate_class(self, predicate_name):
return SUPPORTED_PREDICATES[predicate_name]
class BDDLEntity(Wrapper):
"""
Thin wrapper class that wraps an object or system if it exists, or nothing if it does not exist. Will
dynamically reference an object / system as they become real in the sim
"""
def __init__(
self,
bddl_inst,
entity=None,
):
"""
Args:
bddl_inst (str): BDDL synset instance of the entity, e.g.: "almond.n.01_1"
entity (None or DatasetObject or BaseSystem): If specified, the BDDL entity to wrap. If not
specified, will initially wrap nothing, but may dynamically reference an actual object or system
if it exists in the future
"""
# Store synset and other info, and pass entity internally
self.bddl_inst = bddl_inst
self.synset = "_".join(self.bddl_inst.split("_")[:-1])
self.is_system = is_substance_synset(self.synset)
# Infer the correct category to assign
self.og_categories = OBJECT_TAXONOMY.get_subtree_substances(self.synset) \
if self.is_system else OBJECT_TAXONOMY.get_subtree_categories(self.synset)
super().__init__(obj=entity)
@property
def name(self):
"""
Returns:
None or str: Name of this entity, if it exists, else None
"""
if self.exists:
return self.og_categories[0] if self.is_system else self.wrapped_obj.name
else:
return None
@property
def exists(self):
"""
Checks whether the entity referenced by @synset exists
Returns:
bool: Whether the entity referenced by @synset exists
"""
return self.wrapped_obj is not None
def set_entity(self, entity):
"""
Sets the internal entity, overriding any if it already exists
Args:
entity (BaseSystem or BaseObject): Entity to set internally
"""
self.wrapped_obj = entity
def clear_entity(self):
"""
Clears the internal entity, if any
"""
self.wrapped_obj = None
def get_state(self, state, *args, **kwargs):
"""
Helper function to grab wrapped entity's state @state
Args:
state (BaseObjectState): State whose get_value() should be called
*args (tuple): Any arguments to pass to getter, in order
**kwargs (dict): Any keyword arguments to pass to getter, in order
Returns:
any: Returned value(s) from @state if self.wrapped_obj exists (i.e.: not None), else False
"""
return self.wrapped_obj.states[state].get_value(*args, **kwargs) if self.exists else False
def set_state(self, state, *args, **kwargs):
"""
Helper function to set wrapped entity's state @state. Note: Should only be called if the entity exists!
Args:
state (BaseObjectState): State whose set_value() should be called
*args (tuple): Any arguments to pass to getter, in order
**kwargs (dict): Any keyword arguments to pass to getter, in order
Returns:
any: Returned value(s) from @state if self.wrapped_obj exists (i.e.: not None)
"""
assert self.exists, \
f"Cannot call set_state() for BDDLEntity {self.synset} when the entity does not exist!"
return self.wrapped_obj.states[state].set_value(*args, **kwargs)
class BDDLSampler:
def __init__(
self,
env,
activity_conditions,
object_scope,
backend,
debug=False,
):
# Store internal variables from inputs
self._env = env
self._scene_model = self._env.scene.scene_model if isinstance(self._env.scene, InteractiveTraversableScene) else None
self._agent = self._env.robots[0]
if debug:
gm.DEBUG = True
self._backend = backend
self._activity_conditions = activity_conditions
self._object_scope = object_scope
self._object_instance_to_synset = {
obj_inst: obj_cat
for obj_cat in self._activity_conditions.parsed_objects
for obj_inst in self._activity_conditions.parsed_objects[obj_cat]
}
self._substance_instances = {obj_inst for obj_inst in self._object_scope.keys() if
is_substance_synset(self._object_instance_to_synset[obj_inst])}
# Initialize other variables that will be filled in later
self._room_type_to_object_instance = None # dict
self._inroom_object_instances = None # set of str
self._object_sampling_orders = None # dict mapping str to list of str
self._sampled_objects = None # set of BaseObject
self._future_obj_instances = None # set of str
self._inroom_object_conditions = None # list of (condition, positive) tuple
self._inroom_object_scope_filtered_initial = None # dict mapping str to BDDLEntity
self._attached_objects = defaultdict(set) # dict mapping str to set of str
def sample(self, validate_goal=False):
"""
Run sampling for this BEHAVIOR task
Args:
validate_goal (bool): Whether the goal should be validated or not
Returns:
2-tuple:
- bool: Whether sampling was successful or not
- None or str: None if successful, otherwise the associated error message
"""
log.info("Sampling task...")
# Reject scenes with missing non-sampleable objects
# Populate object_scope with sampleable objects and the robot
accept_scene, feedback = self._prepare_scene_for_sampling()
if not accept_scene:
return accept_scene, feedback
# Sample objects to satisfy initial conditions
accept_scene, feedback = self._sample_all_conditions(validate_goal=validate_goal)
if not accept_scene:
return accept_scene, feedback
log.info("Sampling succeeded!")
return True, None
def _sample_all_conditions(self, validate_goal=False):
"""
Run sampling for this BEHAVIOR task
Args:
validate_goal (bool): Whether the goal should be validated or not
Returns:
2-tuple:
- bool: Whether sampling was successful or not
- None or str: None if successful, otherwise the associated error message
"""
# Auto-initialize all sampleable objects
with og.sim.playing():
self._env.scene.reset()
error_msg = self._sample_initial_conditions()
if error_msg:
log.error(error_msg)
return False, error_msg
if validate_goal:
error_msg = self._sample_goal_conditions()
if error_msg:
log.error(error_msg)
return False, error_msg
error_msg = self._sample_initial_conditions_final()
if error_msg:
log.error(error_msg)
return False, error_msg
self._env.scene.update_initial_state()
return True, None
def _prepare_scene_for_sampling(self):
"""
Runs sanity checks for the current scene for the given BEHAVIOR task
Returns:
2-tuple:
- bool: Whether the generated scene activity should be accepted or not
- dict: Any feedback from the sampling / initialization process
"""
error_msg = self._parse_inroom_object_room_assignment()
if error_msg:
log.error(error_msg)
return False, error_msg
error_msg = self._parse_attached_states()
if error_msg:
log.error(error_msg)
return False, error_msg
error_msg = self._build_sampling_order()
if error_msg:
log.error(error_msg)
return False, error_msg
error_msg = self._build_inroom_object_scope()
if error_msg:
log.error(error_msg)
return False, error_msg
error_msg = self._import_sampleable_objects()
if error_msg:
log.error(error_msg)
return False, error_msg
self._object_scope["agent.n.01_1"] = BDDLEntity(bddl_inst="agent.n.01_1", entity=self._agent)
return True, None
def _parse_inroom_object_room_assignment(self):
"""
Infers which rooms each object is assigned to
"""
self._room_type_to_object_instance = dict()
self._inroom_object_instances = set()
for cond in self._activity_conditions.parsed_initial_conditions:
if cond[0] == "inroom":
obj_inst, room_type = cond[1], cond[2]
obj_synset = self._object_instance_to_synset[obj_inst]
abilities = OBJECT_TAXONOMY.get_abilities(obj_synset)
if "sceneObject" not in abilities:
# Invalid room assignment
return f"You have assigned room type for [{obj_synset}], but [{obj_synset}] is sampleable. " \
f"Only non-sampleable (scene) objects can have room assignment."
if self._scene_model is not None and room_type not in og.sim.scene.seg_map.room_sem_name_to_ins_name:
# Missing room type
return f"Room type [{room_type}] missing in scene [{self._scene_model}]."
if room_type not in self._room_type_to_object_instance:
self._room_type_to_object_instance[room_type] = []
self._room_type_to_object_instance[room_type].append(obj_inst)
if obj_inst in self._inroom_object_instances:
# Duplicate room assignment
return f"Object [{obj_inst}] has more than one room assignment"
self._inroom_object_instances.add(obj_inst)
def _parse_attached_states(self):
"""
Infers which objects are attached to which other objects.
If a category-level attachment is specified, it will be expanded to all instances of that category.
E.g. if the goal condition requires corks to be attached to bottles, every cork needs to be able to
attach to every bottle.
"""
for cond in self._activity_conditions.parsed_initial_conditions:
if cond[0] == "attached":
obj_inst, parent_inst = cond[1], cond[2]
if obj_inst not in self._object_scope or parent_inst not in self._object_scope:
return f"Object [{obj_inst}] or parent [{parent_inst}] in attached initial condition not found in object scope"
self._attached_objects[obj_inst].add(parent_inst)
ground_attached_conditions = []
conditions_to_check = self._activity_conditions.parsed_goal_conditions.copy()
while conditions_to_check:
new_conditions_to_check = []
for cond in conditions_to_check:
if cond[0] == "attached":
ground_attached_conditions.append(cond)
else:
new_conditions_to_check.extend([ele for ele in cond if isinstance(ele, list)])
conditions_to_check = new_conditions_to_check
for cond in ground_attached_conditions:
obj_inst, parent_inst = cond[1].lstrip("?"), cond[2].lstrip("?")
if obj_inst in self._object_scope:
obj_insts = [obj_inst]
elif obj_inst in self._activity_conditions.parsed_objects:
obj_insts = self._activity_conditions.parsed_objects[obj_inst]
else:
return f"Object [{obj_inst}] in attached goal condition not found in object scope or parsed objects"
if parent_inst in self._object_scope:
parent_insts = [parent_inst]
elif parent_inst in self._activity_conditions.parsed_objects:
parent_insts = self._activity_conditions.parsed_objects[parent_inst]
else:
return f"Parent [{parent_inst}] in attached goal condition not found in object scope or parsed objects"
for obj_inst in obj_insts:
for parent_inst in parent_insts:
self._attached_objects[obj_inst].add(parent_inst)
def _build_sampling_order(self):
"""
Sampling orders is a list of lists: [[batch_1_inst_1, ... batch_1_inst_N], [batch_2_inst_1, batch_2_inst_M], ...]
Sampling should happen for batch 1 first, then batch 2, so on and so forth
Example: OnTop(plate, table) should belong to batch 1, and OnTop(apple, plate) should belong to batch 2
"""
unsampleable_conditions = []
sampling_groups = {group: [] for group in ("kinematic", "particle", "unary")}
self._object_sampling_conditions = {group: [] for group in ("kinematic", "particle", "unary")}
self._object_sampling_orders = {group: [] for group in ("kinematic", "particle", "unary")}
self._inroom_object_conditions = []
# First, sort initial conditions into kinematic, particle and unary groups
# bddl.condition_evaluation.HEAD, each with one child.
# This child is either a ObjectStateUnaryPredicate/ObjectStateBinaryPredicate or
# a Negation of a ObjectStateUnaryPredicate/ObjectStateBinaryPredicate
for condition in get_initial_conditions(self._activity_conditions, self._backend, self._object_scope):
condition, positive = process_single_condition(condition)
if condition is None:
continue
# Sampled conditions must always be positive
# Non-positive (e.g.: NOT onTop) is not restrictive enough for sampling
if condition.STATE_NAME in KINEMATIC_STATES_BDDL and not positive:
return "Initial condition has negative kinematic conditions: {}".format(condition.body)
# Store any unsampleable conditions separately
if isinstance(condition, UnsampleablePredicate):
unsampleable_conditions.append(condition)
continue
# Infer the group the condition and its object instances belong to
# (a) Kinematic (binary) conditions, where (ent0, ent1) are both objects
# (b) Particle (binary) conditions, where (ent0, ent1) are (object, substance)
# (d) Unary conditions, where (ent0,) is an object
# Binary conditions have length 2: (ent0, ent1)
if len(condition.body) == 2:
group = "particle" if condition.body[1] in self._substance_instances else "kinematic"
else:
assert len(condition.body) == 1, \
f"Got invalid parsed initial condition; body length should either be 2 or 1. " \
f"Got body: {condition.body} for condition: {condition}"
group = "unary"
sampling_groups[group].append(condition.body)
self._object_sampling_conditions[group].append((condition, positive))
# If the condition involves any non-sampleable object (e.g.: furniture), it's a non-sampleable condition
# This means that there's no ordering constraint in terms of sampling, because we know the, e.g., furniture
# object already exists in the scene and is placed, so these specific conditions can be sampled without
# any dependencies
if len(self._inroom_object_instances.intersection(set(condition.body))) > 0:
self._inroom_object_conditions.append((condition, positive))
# Now, sort each group, ignoring the futures (since they don't get sampled)
# First handle kinematics, then particles, then unary
# Start with the non-sampleable objects as the first sampled set, then infer recursively
cur_batch = self._inroom_object_instances
while len(cur_batch) > 0:
next_batch = set()
for cur_batch_inst in cur_batch:
inst_batch = set()
for condition, _ in self._object_sampling_conditions["kinematic"]:
if condition.body[1] == cur_batch_inst:
inst_batch.add(condition.body[0])
next_batch.add(condition.body[0])
if len(inst_batch) > 0:
self._object_sampling_orders["kinematic"].append(inst_batch)
cur_batch = next_batch
# Now parse particles -- simply unordered, since particle systems shouldn't impact each other
self._object_sampling_orders["particle"].append({cond[0] for cond in sampling_groups["particle"]})
sampled_particle_entities = {cond[1] for cond in sampling_groups["particle"]}
# Finally, parse unaries -- this is simply unordered, since it is assumed that unary predicates do not
# affect each other
self._object_sampling_orders["unary"].append({cond[0] for cond in sampling_groups["unary"]})
# Aggregate future objects and any unsampleable obj instances
# Unsampleable obj instances are strictly a superset of future obj instances
unsampleable_obj_instances = {cond.body[-1] for cond in unsampleable_conditions}
self._future_obj_instances = {cond.body[0] for cond in unsampleable_conditions if isinstance(cond, ObjectStateFuturePredicate)}
nonparticle_entities = set(self._object_scope.keys()) - self._substance_instances
# Sanity check kinematic objects -- any non-system must be kinematically sampled
remaining_kinematic_entities = nonparticle_entities - unsampleable_obj_instances - \
self._inroom_object_instances - set.union(*(self._object_sampling_orders["kinematic"] + [set()]))
# Possibly remove the agent entity if we're in an empty scene -- i.e.: no kinematic sampling needed for the
# agent
if self._scene_model is None:
remaining_kinematic_entities -= {"agent.n.01_1"}
if len(remaining_kinematic_entities) != 0:
return f"Some objects do not have any kinematic condition defined for them in the initial conditions: " \
f"{', '.join(remaining_kinematic_entities)}"
# Sanity check particle systems -- any non-future system must be sampled as part of particle groups
remaining_particle_entities = self._substance_instances - unsampleable_obj_instances - sampled_particle_entities
if len(remaining_particle_entities) != 0:
return f"Some systems do not have any particle condition defined for them in the initial conditions: " \
f"{', '.join(remaining_particle_entities)}"
def _build_inroom_object_scope(self):
"""
Store simulator object options for non-sampleable objects in self.inroom_object_scope
{
"living_room": {
"table1": {
"living_room_0": [URDFObject, URDFObject, URDFObject],
"living_room_1": [URDFObject]
},
"table2": {
"living_room_0": [URDFObject, URDFObject],
"living_room_1": [URDFObject, URDFObject]
},
"chair1": {
"living_room_0": [URDFObject],
"living_room_1": [URDFObject]
},
}
}
"""
room_type_to_scene_objs = {}
for room_type in self._room_type_to_object_instance:
room_type_to_scene_objs[room_type] = {}
for obj_inst in self._room_type_to_object_instance[room_type]:
room_type_to_scene_objs[room_type][obj_inst] = {}
obj_synset = self._object_instance_to_synset[obj_inst]
# We allow burners to be used as if they are stoves
# No need to safeguard check for subtree_substances because inroom objects will never be substances
categories = OBJECT_TAXONOMY.get_subtree_categories(obj_synset)
# Grab all models that fully support all abilities for the corresponding category
valid_models = {cat: set(get_all_object_category_models_with_abilities(
cat, OBJECT_TAXONOMY.get_abilities(OBJECT_TAXONOMY.get_synset_from_category(cat))))
for cat in categories}
valid_models = {cat: (models if cat not in GOOD_MODELS else models.intersection(GOOD_MODELS[cat])) - BAD_CLOTH_MODELS.get(cat, set()) for cat, models in valid_models.items()}
valid_models = {cat: self._filter_model_choices_by_attached_states(models, cat, obj_inst) for cat, models in valid_models.items()}
room_insts = [None] if self._scene_model is None else og.sim.scene.seg_map.room_sem_name_to_ins_name[room_type]
for room_inst in room_insts:
# A list of scene objects that satisfy the requested categories
room_objs = og.sim.scene.object_registry("in_rooms", room_inst, default_val=[])
scene_objs = [obj for obj in room_objs if obj.category in categories and obj.model in valid_models[obj.category]]
if len(scene_objs) != 0:
room_type_to_scene_objs[room_type][obj_inst][room_inst] = scene_objs
error_msg = self._consolidate_room_instance(room_type_to_scene_objs, "initial_pre-sampling")
if error_msg:
return error_msg
self._inroom_object_scope = room_type_to_scene_objs
def _filter_object_scope(self, input_object_scope, conditions, condition_type):
"""
Filters the object scope based on given @input_object_scope, @conditions, and @condition_type
Args:
input_object_scope (dict):
conditions (list): List of conditions to filter scope with, where each list entry is
a tuple of (condition, positive), where @positive is True if the condition has a positive
evaluation.
condition_type (str): What type of condition to sample, e.g., "initial"
Returns:
2-tuple:
- dict: Filtered object scope
- list of str: The name of children object(s) that have the highest proportion of kinematic sampling
failures
"""
filtered_object_scope = {}
# Maps child obj name (SCOPE name) to parent obj name (OBJECT name) to T / F,
# ie: if the kinematic relationship was sampled successfully
problematic_objs = defaultdict(dict)
for room_type in input_object_scope:
filtered_object_scope[room_type] = {}
for scene_obj in input_object_scope[room_type]:
filtered_object_scope[room_type][scene_obj] = {}
for room_inst in input_object_scope[room_type][scene_obj]:
# These are a list of candidate simulator objects that need sampling test
for obj in input_object_scope[room_type][scene_obj][room_inst]:
# Temporarily set object_scope to point to this candidate object
self._object_scope[scene_obj] = BDDLEntity(bddl_inst=scene_obj, entity=obj)
success = True
# If this candidate object is not involved in any conditions,
# success will be True by default and this object will qualify
parent_obj_name = obj.name
conditions_to_sample = []
for condition, positive in conditions:
# Sample positive kinematic conditions that involve this candidate object
if condition.STATE_NAME in KINEMATIC_STATES_BDDL and positive and scene_obj in condition.body:
child_scope_name = condition.body[0]
entity = self._object_scope[child_scope_name]
conditions_to_sample.append((condition, positive, entity, child_scope_name))
# If we're sampling kinematics, sort children based on (a) whether they are cloth or not, and
# then (b) their AABB, so that first all rigid objects are sampled before all cloth objects,
# and within each group the larger objects are sampled first. This is needed because rigid
# objects currently don't detect collisions with cloth objects (rigid_obj.states[ContactBodies]
# is empty even when a cloth object is in contact with it).
rigid_conditions = [c for c in conditions_to_sample if c[2].prim_type != PrimType.CLOTH]
cloth_conditions = [c for c in conditions_to_sample if c[2].prim_type == PrimType.CLOTH]
conditions_to_sample = (
list(reversed(sorted(rigid_conditions, key=lambda x: np.product(x[2].aabb_extent)))) +
list(reversed(sorted(cloth_conditions, key=lambda x: np.product(x[2].aabb_extent))))
)
# Sample!
for condition, positive, entity, child_scope_name in conditions_to_sample:
kwargs = dict()
# Reset if we're sampling a kinematic state
if condition.STATE_NAME in {"inside", "ontop", "under"}:
kwargs["reset_before_sampling"] = True
elif condition.STATE_NAME in {"attached"}:
kwargs["bypass_alignment_checking"] = True
kwargs["check_physics_stability"] = True
kwargs["can_joint_break"] = False
success = condition.sample(binary_state=positive, **kwargs)
log_msg = " ".join(
[
f"{condition_type} kinematic condition sampling",
room_type,
scene_obj,
room_inst,
parent_obj_name,
condition.STATE_NAME,
str(condition.body),
str(success),
]
)
log.info(log_msg)
# Record the result for the child object
assert parent_obj_name not in problematic_objs[child_scope_name], \
f"Multiple kinematic relationships attempted for pair {condition.body}"
problematic_objs[child_scope_name][parent_obj_name] = success
# If any condition fails for this candidate object, skip
if not success:
break
# If this candidate object fails, move on to the next candidate object
if not success:
continue
if room_inst not in filtered_object_scope[room_type][scene_obj]:
filtered_object_scope[room_type][scene_obj][room_inst] = []
filtered_object_scope[room_type][scene_obj][room_inst].append(obj)
# Compute most problematic objects
if len(problematic_objs) == 0:
max_problematic_objs = []
else:
problematic_objs_by_proportion = defaultdict(list)
for child_scope_name, parent_obj_names in problematic_objs.items():
problematic_objs_by_proportion[np.mean(list(parent_obj_names.values()))].append(child_scope_name)
max_problematic_objs = problematic_objs_by_proportion[min(problematic_objs_by_proportion.keys())]
return filtered_object_scope, max_problematic_objs
def _consolidate_room_instance(self, filtered_object_scope, condition_type):
"""
Consolidates room instances
Args:
filtered_object_scope (dict): Filtered object scope
condition_type (str): What type of condition to sample, e.g., "initial"
Returns:
None or str: Error message, if any
"""
for room_type in filtered_object_scope:
# For each room_type, filter in room_inst that has successful
# sampling options for all obj_inst in this room_type
room_inst_satisfied = set.intersection(
*[
set(filtered_object_scope[room_type][obj_inst].keys())
for obj_inst in filtered_object_scope[room_type]
]
)
if len(room_inst_satisfied) == 0:
error_msg = "{}: Room type [{}] of scene [{}] do not contain or cannot sample all the objects needed.\nThe following are the possible room instances for each object, the intersection of which is an empty set.\n".format(
condition_type, room_type, self._scene_model
)
for obj_inst in filtered_object_scope[room_type]:
error_msg += (
"{}: ".format(obj_inst) + ", ".join(filtered_object_scope[room_type][obj_inst].keys()) + "\n"
)
return error_msg
for obj_inst in filtered_object_scope[room_type]:
filtered_object_scope[room_type][obj_inst] = {
key: val
for key, val in filtered_object_scope[room_type][obj_inst].items()
if key in room_inst_satisfied
}
def _filter_model_choices_by_attached_states(self, model_choices, category, obj_inst):
# If obj_inst is a child object that depends on a parent object that has been imported or exists in the scene,
# we filter in only models that match the parent object's attachment metalinks.
if obj_inst in self._attached_objects:
parent_insts = self._attached_objects[obj_inst]
parent_objects = []
for parent_inst in parent_insts:
# If parent_inst is not an inroom object, it must be a non-sampleable object that has already been imported.
# Grab it from the object_scope
if parent_inst not in self._inroom_object_instances:
assert self._object_scope[parent_inst] is not None
parent_objects.append([self._object_scope[parent_inst].wrapped_obj])
# If parent_inst is an inroom object, it can refer to multiple objects in the scene in different rooms.
# We gather all of them and require that the model choice supports attachment to at least one of them.
else:
for _, parent_inst_to_parent_objs in self._inroom_object_scope.items():
if parent_inst in parent_inst_to_parent_objs:
parent_objects.append(sum(parent_inst_to_parent_objs[parent_inst].values(), []))
# Help function to check if a child object can attach to a parent object
def can_attach(child_attachment_links, parent_attachment_links):
for child_link_name in child_attachment_links:
child_category = child_link_name.split("_")[1]
if child_category.endswith("F"):
continue
assert child_category.endswith("M")
parent_category = child_category[:-1] + "F"
for parent_link_name in parent_attachment_links:
if parent_category in parent_link_name:
return True
return False
# Filter out models that don't support the attached states
new_model_choices = set()
for model_choice in model_choices:
child_attachment_links = get_attachment_metalinks(category, model_choice)
# The child model choice needs to be able to attach to all parent instances.
# For in-room parent instances, there might be multiple parent objects (e.g. different wall nails),
# and the child object needs to be able to attach to at least one of them.
if all(
any(
can_attach(child_attachment_links, get_attachment_metalinks(parent_obj.category, parent_obj.model))
for parent_obj in parent_objs_per_inst
)
for parent_objs_per_inst in parent_objects):
new_model_choices.add(model_choice)
return new_model_choices
# If obj_inst is a prent object that other objects depend on, we filter in only models that have at least some
# attachment links.
elif any(obj_inst in parents for parents in self._attached_objects.values()):
# Filter out models that don't support the attached states
new_model_choices = set()
for model_choice in model_choices:
if len(get_attachment_metalinks(category, model_choice)) > 0:
new_model_choices.add(model_choice)
return new_model_choices
# If neither of the above cases apply, we don't need to filter the model choices
else:
return model_choices
def _import_sampleable_objects(self):
"""
Import all objects that can be sampled
Args:
env (Environment): Current active environment instance
"""
assert og.sim.is_stopped(), "Simulator should be stopped when importing sampleable objects"
# Move the robot object frame to a far away location, similar to other newly imported objects below
self._agent.set_position_orientation([300, 300, 300], [0, 0, 0, 1])
self._sampled_objects = set()
num_new_obj = 0
# Only populate self.object_scope for sampleable objects
available_categories = set(get_all_object_categories())
# Attached states introduce dependencies among objects during import time.
# For example, when importing a child object instance, we need to make sure the imported model can be attached
# to the parent object instance. We sort the object instances such that parent object instances are imported
# before child object instances.
dependencies = {key: self._attached_objects.get(key, {}) for key in self._object_instance_to_synset.keys()}
for obj_inst in list(reversed(list(nx.algorithms.topological_sort(nx.DiGraph(dependencies))))):
obj_synset = self._object_instance_to_synset[obj_inst]
# Don't populate agent
if obj_synset == "agent.n.01":
continue
# Populate based on whether it's a substance or not
if is_substance_synset(obj_synset):
assert len(self._activity_conditions.parsed_objects[obj_synset]) == 1, "Systems are singletons"
obj_inst = self._activity_conditions.parsed_objects[obj_synset][0]
system_name = OBJECT_TAXONOMY.get_subtree_substances(obj_synset)[0]
self._object_scope[obj_inst] = BDDLEntity(
bddl_inst=obj_inst,
entity=None if obj_inst in self._future_obj_instances else get_system(system_name),
)
else:
valid_categories = set(OBJECT_TAXONOMY.get_subtree_categories(obj_synset))
categories = list(valid_categories.intersection(available_categories))
if len(categories) == 0:
return f"None of the following categories could be found in the dataset for synset {obj_synset}: " \
f"{valid_categories}"
# Don't explicitly sample if future
if obj_inst in self._future_obj_instances:
self._object_scope[obj_inst] = BDDLEntity(bddl_inst=obj_inst)
continue
# Don't sample if already in room
if obj_inst in self._inroom_object_instances:
continue
# Shuffle categories and sample to find a valid model
np.random.shuffle(categories)
model_choices = set()
for category in categories:
# Get all available models that support all of its synset abilities
model_choices = set(get_all_object_category_models_with_abilities(
category=category,
abilities=OBJECT_TAXONOMY.get_abilities(OBJECT_TAXONOMY.get_synset_from_category(category)),
))
model_choices = model_choices if category not in GOOD_MODELS else model_choices.intersection(GOOD_MODELS[category])
model_choices -= BAD_CLOTH_MODELS.get(category, set())
model_choices = self._filter_model_choices_by_attached_states(model_choices, category, obj_inst)
if len(model_choices) > 0:
break
if len(model_choices) == 0:
# We failed to find ANY valid model across ALL valid categories
return f"Missing valid object models for all categories: {categories}"
# Randomly select an object model
model = np.random.choice(list(model_choices))
# Potentially add additional kwargs
obj_kwargs = dict()
obj_kwargs["bounding_box"] = GOOD_BBOXES.get(category, dict()).get(model, None)
# create the object
simulator_obj = DatasetObject(
name=f"{category}_{len(og.sim.scene.objects)}",
category=category,
model=model,
prim_type=PrimType.CLOTH if "cloth" in OBJECT_TAXONOMY.get_abilities(obj_synset) else PrimType.RIGID,
**obj_kwargs,
)
num_new_obj += 1
# Load the object into the simulator
assert og.sim.scene.loaded, "Scene is not loaded"
og.sim.import_object(simulator_obj)
# Set these objects to be far-away locations
simulator_obj.set_position(np.array([100.0, 100.0, -100.0]) + np.ones(3) * num_new_obj * 5.0)
self._sampled_objects.add(simulator_obj)
self._object_scope[obj_inst] = BDDLEntity(bddl_inst=obj_inst, entity=simulator_obj)
og.sim.play()
og.sim.stop()
def _sample_initial_conditions(self):
"""
Sample initial conditions
Returns:
None or str: If successful, returns None. Otherwise, returns an error message
"""
error_msg, self._inroom_object_scope_filtered_initial = self._sample_conditions(
self._inroom_object_scope, self._inroom_object_conditions, "initial"
)
return error_msg
def _sample_goal_conditions(self):
"""
Sample goal conditions
Returns:
None or str: If successful, returns None. Otherwise, returns an error message
"""
activity_goal_conditions = get_goal_conditions(self._activity_conditions, self._backend, self._object_scope)
ground_goal_state_options = get_ground_goal_state_options(self._activity_conditions, self._backend, self._object_scope, activity_goal_conditions)
np.random.shuffle(ground_goal_state_options)
log.debug(("number of ground_goal_state_options", len(ground_goal_state_options)))
num_goal_condition_set_to_test = 10
goal_condition_success = False
# Try to fulfill different set of ground goal conditions (maximum num_goal_condition_set_to_test)
for goal_condition_set in ground_goal_state_options[:num_goal_condition_set_to_test]:
goal_condition_processed = []
for condition in goal_condition_set:
condition, positive = process_single_condition(condition)
if condition is None:
continue
goal_condition_processed.append((condition, positive))
error_msg, _ = self._sample_conditions(
self._inroom_object_scope_filtered_initial, goal_condition_processed, "goal"
)
if not error_msg:
# if one set of goal conditions (and initial conditions) are satisfied, sampling is successful
goal_condition_success = True
break
if not goal_condition_success:
return error_msg
def _sample_initial_conditions_final(self):
"""
Sample final initial conditions
Returns:
None or str: If successful, returns None. Otherwise, returns an error message
"""
# Sample kinematics first, then particle states, then unary states
state = og.sim.dump_state(serialized=False)
for group in ("kinematic", "particle", "unary"):
log.info(f"Sampling {group} states...")
if len(self._object_sampling_orders[group]) > 0:
for cur_batch in self._object_sampling_orders[group]:
conditions_to_sample = []
for condition, positive in self._object_sampling_conditions[group]:
# Sample conditions that involve the current batch of objects
child_scope_name = condition.body[0]
if child_scope_name in cur_batch:
entity = self._object_scope[child_scope_name]
conditions_to_sample.append((condition, positive, entity, child_scope_name))
# If we're sampling kinematics, sort children based on (a) whether they are cloth or not, and then
# (b) their AABB, so that first all rigid objects are sampled before cloth objects, and within each
# group the larger objects are sampled first
if group == "kinematic":
rigid_conditions = [c for c in conditions_to_sample if c[2].prim_type != PrimType.CLOTH]
cloth_conditions = [c for c in conditions_to_sample if c[2].prim_type == PrimType.CLOTH]
conditions_to_sample = (
list(reversed(sorted(rigid_conditions, key=lambda x: np.product(x[2].aabb_extent)))) +
list(reversed(sorted(cloth_conditions, key=lambda x: np.product(x[2].aabb_extent))))
)
# Sample!
for condition, positive, entity, child_scope_name in conditions_to_sample:
success = False
kwargs = dict()
# Reset if we're sampling a kinematic state
if condition.STATE_NAME in {"inside", "ontop", "under"}:
kwargs["reset_before_sampling"] = True
elif condition.STATE_NAME in {"attached"}:
kwargs["bypass_alignment_checking"] = True
kwargs["check_physics_stability"] = True
kwargs["can_joint_break"] = False
while True:
num_trials = 1
for _ in range(num_trials):
success = condition.sample(binary_state=positive, **kwargs)
if success:
# Update state
state = og.sim.dump_state(serialized=False)
break
if success:
# After the final round of kinematic sampling, we assign in_rooms to newly imported objects
if group == "kinematic":
parent = self._object_scope[condition.body[1]]
entity.in_rooms = parent.in_rooms.copy()
# Can terminate immediately
break
# Can't re-sample non-kinematics or rescale cloth or agent, so in
# those cases terminate immediately
if group != "kinematic" or condition.STATE_NAME == "attached" or "agent" in child_scope_name or entity.prim_type == PrimType.CLOTH:
break
# If any scales are equal or less than the lower threshold, terminate immediately
new_scale = entity.scale - m.DYNAMIC_SCALE_INCREMENT
if np.any(new_scale < m.MIN_DYNAMIC_SCALE):
break
# Re-scale and re-attempt
# Re-scaling is not respected unless sim cycle occurs
og.sim.stop()
entity.scale = new_scale
log.info(f"Kinematic sampling {condition.STATE_NAME} {condition.body} failed, rescaling obj: {child_scope_name} to {entity.scale}")
og.sim.play()
og.sim.load_state(state, serialized=False)
og.sim.step_physics()
if not success:
# Update object registry because we just assigned in_rooms to newly imported objects
og.sim.scene.object_registry.update(keys=["in_rooms"])
return f"Sampleable object conditions failed: {condition.STATE_NAME} {condition.body}"
# Update object registry because we just assigned in_rooms to newly imported objects
og.sim.scene.object_registry.update(keys=["in_rooms"])
# One more sim step to make sure the object states are propagated correctly
# E.g. after sampling Filled.set_value(True), Filled.get_value() will become True only after one step
og.sim.step()
def _sample_conditions(self, input_object_scope, conditions, condition_type):
"""
Sample conditions
Args:
input_object_scope (dict):
conditions (list): List of conditions to filter scope with, where each list entry is
a tuple of (condition, positive), where @positive is True if the condition has a positive
evaluation.
condition_type (str): What type of condition to sample, e.g., "initial"
Returns:
None or str: If successful, returns None. Otherwise, returns an error message
"""
error_msg, problematic_objs = "", []
while not np.any([np.any(self._object_scope[obj_inst].scale < m.MIN_DYNAMIC_SCALE) for obj_inst in problematic_objs]):
filtered_object_scope, problematic_objs = self._filter_object_scope(input_object_scope, conditions, condition_type)
error_msg = self._consolidate_room_instance(filtered_object_scope, condition_type)
if error_msg is None:
break
# Re-scaling is not respected unless sim cycle occurs
og.sim.stop()
for obj_inst in problematic_objs:
obj = self._object_scope[obj_inst]
# If the object's initial condition is attachment, or it's agent or cloth, we can't / shouldn't scale
# down, so play again and then terminate immediately
if obj_inst in self._attached_objects or "agent" in obj_inst or obj.prim_type == PrimType.CLOTH:
og.sim.play()
return error_msg, None
assert np.all(obj.scale > m.DYNAMIC_SCALE_INCREMENT)
obj.scale -= m.DYNAMIC_SCALE_INCREMENT
og.sim.play()
if error_msg:
return error_msg, None
return self._maximum_bipartite_matching(filtered_object_scope, condition_type), filtered_object_scope
def _maximum_bipartite_matching(self, filtered_object_scope, condition_type):
"""
Matches objects from @filtered_object_scope to specific room instances it can be
sampled from
Args:
filtered_object_scope (dict): Filtered object scope
condition_type (str): What type of condition to sample, e.g., "initial"
Returns:
None or str: If successful, returns None. Otherwise, returns an error message
"""
# For each room instance, perform maximum bipartite matching between object instance in scope to simulator objects
# Left nodes: a list of object instance in scope
# Right nodes: a list of simulator objects
# Edges: if the simulator object can support the sampling requirement of ths object instance
for room_type in filtered_object_scope:
# The same room instances will be shared across all scene obj in a given room type
some_obj = list(filtered_object_scope[room_type].keys())[0]
room_insts = list(filtered_object_scope[room_type][some_obj].keys())
success = False
# Loop through each room instance
for room_inst in room_insts:
graph = nx.Graph()
# For this given room instance, gether mapping from obj instance to a list of simulator obj
obj_inst_to_obj_per_room_inst = {}
for obj_inst in filtered_object_scope[room_type]:
obj_inst_to_obj_per_room_inst[obj_inst] = filtered_object_scope[room_type][obj_inst][room_inst]
top_nodes = []
log_msg = "MBM for room instance [{}]".format(room_inst)
log.debug((log_msg))
for obj_inst in obj_inst_to_obj_per_room_inst:
for obj in obj_inst_to_obj_per_room_inst[obj_inst]:
# Create an edge between obj instance and each of the simulator obj that supports sampling
graph.add_edge(obj_inst, obj)
log_msg = "Adding edge: {} <-> {}".format(obj_inst, obj.name)
log.debug((log_msg))
top_nodes.append(obj_inst)
# Need to provide top_nodes that contain all nodes in one bipartite node set
# The matches will have two items for each match (e.g. A -> B, B -> A)
matches = nx.bipartite.maximum_matching(graph, top_nodes=top_nodes)
if len(matches) == 2 * len(obj_inst_to_obj_per_room_inst):
log.debug(("Object scope finalized:"))
for obj_inst, obj in matches.items():
if obj_inst in obj_inst_to_obj_per_room_inst:
self._object_scope[obj_inst] = BDDLEntity(bddl_inst=obj_inst, entity=obj)
log.debug((obj_inst, obj.name))
success = True
break
if not success:
return "{}: Room type [{}] of scene [{}] do not have enough simulator objects that can successfully sample all the objects needed. This is usually caused by specifying too many object instances in the object scope or the conditions are so stringent that too few simulator objects can satisfy them via sampling.\n".format(
condition_type, room_type, self._scene_model
)
| 72,214 | Python | 49.429469 | 337 | 0.597945 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/post_processing_settings.py | import omnigibson.lazy as lazy
from omnigibson.renderer_settings.settings_base import SettingItem, SettingsBase, SubSettingsBase
class PostProcessingSettings(SettingsBase):
"""
Post-Processing setting group that handles a variety of sub-settings, including:
- Tone Mapping
- Auto Exposure
- Color Correction
- Color Grading
- XR Compositing
- Chromatic Aberration
- Depth Of Field Camera Overrides
- Motion Blur
- FTT Bloom
- TV Noise & Film Grain
- Reshade
"""
def __init__(self):
self.tone_mapping_settings = ToneMappingSettings()
self.auto_exposure_settings = AutoExposureSettings()
self.color_correction_settings = ColorCorrectionSettings()
self.color_grading_settings = ColorGradingSettings()
self.xr_compositing_settings = XRCompositingSettings()
self.chromatic_aberration_settings = ChromaticAberrationSettings()
self.depth_of_field_settings = DepthOfFieldSettings()
self.motion_blur_settings = MotionBlurSettings()
self.ftt_bloom_settings = FTTBloomSettings()
self.tv_noise_grain_settings = TVNoiseGrainSettings()
self.reshade_settings = ReshadeSettings()
@property
def settings(self):
settings = {}
settings.update(self.tone_mapping_settings.settings)
settings.update(self.auto_exposure_settings.settings)
settings.update(self.color_correction_settings.settings)
settings.update(self.color_grading_settings.settings)
settings.update(self.xr_compositing_settings.settings)
settings.update(self.chromatic_aberration_settings.settings)
settings.update(self.depth_of_field_settings.settings)
settings.update(self.motion_blur_settings.settings)
settings.update(self.ftt_bloom_settings.settings)
settings.update(self.tv_noise_grain_settings.settings)
settings.update(self.reshade_settings.settings)
return settings
class ToneMappingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
# The main tonemapping layout contains only the combo box. All the other options
# are saved in a different layout which can be swapped out in case the tonemapper changes.
tonemapper_ops = [
"Clamp",
"Linear",
"Reinhard",
"Reinhard (modified)",
"HejiHableAlu",
"HableUc2",
"Aces",
"Iray",
]
self.tomemap_op = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Tone Mapping Operator", "/rtx/post/tonemap/op", range_list=tonemapper_ops
)
# tonemap_op_idx = self._carb_settings.get("/rtx/post/tonemap/op")
# Modified Reinhard
# tonemap_op_idx == 3
self.max_white_luminance = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Max White Luminance",
"/rtx/post/tonemap/maxWhiteLuminance",
range_from=0,
range_to=100,
)
# HableUc2
# tonemap_op_idx == 5
self.white_scale = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "White Scale Value", "/rtx/post/tonemap/whiteScale", range_from=0, range_to=100
)
self.cm2_factor = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "cm^2 Factor", "/rtx/post/tonemap/cm2Factor", range_from=0, range_to=2
)
self.white_point = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "White Point", "/rtx/post/tonemap/whitepoint")
self.film_iso = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Film ISO", "/rtx/post/tonemap/filmIso", range_from=50, range_to=1600
)
self.camera_shutter = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Camera Shutter", "/rtx/post/tonemap/cameraShutter", range_from=1, range_to=5000
)
self.f_number = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "f-Number / f-Stop", "/rtx/post/tonemap/fNumber", range_from=1, range_to=20
)
# Iray
# tonemap_op_idx == 7
self.crush_blacks = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Crush Blacks",
"/rtx/post/tonemap/irayReinhard/crushBlacks",
range_from=0,
range_to=1,
)
self.burn_highlights = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Burn Highlights",
"/rtx/post/tonemap/irayReinhard/burnHighlights",
range_from=0,
range_to=1,
)
self.burn_highlights_per_component = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Burn Highlights per Component",
"/rtx/post/tonemap/irayReinhard/burnHighlightsPerComponent",
)
self.burn_highlights_max_component = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Burn Highlights max Component",
"/rtx/post/tonemap/irayReinhard/burnHighlightsMaxComponent",
)
self.saturation = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Saturation", "/rtx/post/tonemap/irayReinhard/saturation", range_from=0, range_to=1
)
# Clamp is never using srgb conversion
# tonemap_op_idx != 0
self.enable_srgb_to_gamma = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable SRGB To Gamma Conversion", "/rtx/post/tonemap/enableSrgbToGamma"
)
tonemapColorMode = ["sRGBLinear", "ACEScg"]
self.color_mode = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Tonemapping Color Space",
"/rtx/post/tonemap/colorMode",
range_list=tonemapColorMode,
)
self.wrapvalue = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Wrap Value", "/rtx/post/tonemap/wrapValue", range_from=0, range_to=100000
)
@property
def settings(self):
settings = {
"/rtx/post/tonemap/op": self.tomemap_op,
"/rtx/post/tonemap/cm2Factor": self.cm2_factor,
"/rtx/post/tonemap/whitepoint": self.white_point,
"/rtx/post/tonemap/filmIso": self.film_iso,
"/rtx/post/tonemap/cameraShutter": self.camera_shutter,
"/rtx/post/tonemap/fNumber": self.f_number,
"/rtx/post/tonemap/colorMode": self.color_mode,
"/rtx/post/tonemap/wrapValue": self.wrapvalue,
}
tonemap_op_idx = self._carb_settings.get("/rtx/post/tonemap/op")
if tonemap_op_idx == 3: # Modified Reinhard
settings.update(
{"/rtx/post/tonemap/maxWhiteLuminance": self.max_white_luminance,}
)
if tonemap_op_idx == 5: # HableUc2
settings.update(
{"/rtx/post/tonemap/whiteScale": self.white_scale,}
)
if tonemap_op_idx == 7: # Iray
settings.update(
{
"/rtx/post/tonemap/irayReinhard/crushBlacks": self.crush_blacks,
"/rtx/post/tonemap/irayReinhard/burnHighlights": self.burn_highlights,
"/rtx/post/tonemap/irayReinhard/burnHighlightsPerComponent": self.burn_highlights_per_component,
"/rtx/post/tonemap/irayReinhard/burnHighlightsMaxComponent": self.burn_highlights_max_component,
"/rtx/post/tonemap/irayReinhard/saturation": self.saturation,
}
)
if tonemap_op_idx != 0: # Clamp is never using srgb conversion
settings.update(
{"/rtx/post/tonemap/enableSrgbToGamma": self.enable_srgb_to_gamma,}
)
return settings
class AutoExposureSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
histFilter_types = ["Median", "Average"]
self.filter_type = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Histogram Filter", "/rtx/post/histogram/filterType", range_list=histFilter_types
)
self.tau = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Adaptation Speed", "/rtx/post/histogram/tau", range_from=0.5, range_to=10.0
)
self.white_scale = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"White Point Scale",
"/rtx/post/histogram/whiteScale",
range_from=0.01,
range_to=80.0,
)
self.use_exposure_clamping = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use Exposure Clamping", "/rtx/post/histogram/useExposureClamping"
)
self.min_ev = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Min EV", "/rtx/post/histogram/minEV", range_from=0.0, range_to=1000000.0
)
self.max_ev = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Max EV", "/rtx/post/histogram/maxEV", range_from=0.0, range_to=1000000.0
)
@property
def settings(self):
return {
"/rtx/post/histogram/filterType": self.filter_type,
"/rtx/post/histogram/tau": self.tau,
"/rtx/post/histogram/whiteScale": self.white_scale,
"/rtx/post/histogram/useExposureClamping": self.use_exposure_clamping,
"/rtx/post/histogram/minEV": self.min_ev,
"/rtx/post/histogram/maxEV": self.max_ev,
}
@property
def enabled_setting_path(self):
return "/rtx/post/histogram/enabled"
class ColorCorrectionSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
mode = ["ACES (Pre-Tonemap)", "Standard (Post-Tonemap)"]
self.mode = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.STRING, "Mode", "/rtx/post/colorcorr/mode", range_list=mode)
# ccMode = self._carb_settings.get("/rtx/post/colorcorr/mode")
# ccMode == 0
color_correction_mode = ["sRGBLinear", "ACEScg"]
self.outputMode = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Output Color Space",
"/rtx/post/colorcorr/outputMode",
range_list=color_correction_mode,
)
self.saturation = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Saturation", "/rtx/post/colorcorr/saturation")
self.contrast = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Contrast", "/rtx/post/colorcorr/contrast")
self.gamma = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Gamma", "/rtx/post/colorcorr/gamma")
self.gain = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Gain", "/rtx/post/colorcorr/gain")
self.offset = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Offset", "/rtx/post/colorcorr/offset")
@property
def settings(self):
settings = {
"/rtx/post/colorcorr/mode": self.mode,
"/rtx/post/colorcorr/saturation": self.saturation,
"/rtx/post/colorcorr/contrast": self.contrast,
"/rtx/post/colorcorr/gamma": self.gamma,
"/rtx/post/colorcorr/gain": self.gain,
"/rtx/post/colorcorr/offset": self.offset,
}
cc_mode = self._carb_settings.get("/rtx/post/colorcorr/mode")
if cc_mode == 0:
settings.update(
{"/rtx/post/colorcorr/outputMode": self.outputMode,}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/post/colorcorr/enabled"
class ColorGradingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
mode = ["ACES (Pre-Tonemap)", "Standard (Post-Tonemap)"]
self.mode = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.STRING, "Mode", "/rtx/post/colorgrad/mode", range_list=mode)
cg_mode = self._carb_settings.get("/rtx/post/colorgrad/mode")
if cg_mode == 0:
colorGradingMode = ["sRGBLinear", "ACEScg"]
self.output_mode = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Output Color Space",
"/rtx/post/colorgrad/outputMode",
range_list=colorGradingMode,
)
self.blackpoint = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Black Point", "/rtx/post/colorgrad/blackpoint")
self.whitepoint = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "White Point", "/rtx/post/colorgrad/whitepoint")
self.contrast = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Contrast", "/rtx/post/colorgrad/contrast")
self.lift = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Lift", "/rtx/post/colorgrad/lift")
self.gain = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Gain", "/rtx/post/colorgrad/gain")
self.multiply = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Multiply", "/rtx/post/colorgrad/multiply")
self.offset = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Offset", "/rtx/post/colorgrad/offset")
self.gamma = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Gamma", "/rtx/post/colorgrad/gamma")
@property
def settings(self):
settings = {
"/rtx/post/colorgrad/mode": self.mode,
"/rtx/post/colorgrad/blackpoint": self.blackpoint,
"/rtx/post/colorgrad/whitepoint": self.whitepoint,
"/rtx/post/colorgrad/contrast": self.contrast,
"/rtx/post/colorgrad/lift": self.lift,
"/rtx/post/colorgrad/gain": self.gain,
"/rtx/post/colorgrad/multiply": self.multiply,
"/rtx/post/colorgrad/offset": self.offset,
"/rtx/post/colorgrad/gamma": self.gamma,
}
cg_mode = self._carb_settings.get("/rtx/post/colorgrad/mode")
if cg_mode == 0:
settings.update(
{"/rtx/post/colorgrad/outputMode": self.output_mode,}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/post/colorgrad/enabled"
class XRCompositingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.apply_alpha_zero_pass_first = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Composite in Linear Space", "/rtx/post/backgroundZeroAlpha/ApplyAlphaZeroPassFirst"
)
self.backgroundComposite = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Composite in Editor", "/rtx/post/backgroundZeroAlpha/backgroundComposite"
)
# self.backplate_texture = SettingItem(self, "ASSET", "Default Backplate Texture", "/rtx/post/backgroundZeroAlpha/backplateTexture")
self.background_default_color = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Default Backplate Color", "/rtx/post/backgroundZeroAlpha/backgroundDefaultColor"
)
self.enable_lens_distortion_correction = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Enable Lens Distortion",
"/rtx/post/backgroundZeroAlpha/enableLensDistortionCorrection",
)
# self.distortion_map = SettingItem(self, "ASSET", "Lens Distortion Map", "/rtx/post/lensDistortion/distortionMap")
# self.undistortion_map = SettingItem(self, "ASSET", "Lens Undistortion Map", "/rtx/post/lensDistortion/undistortionMap")
@property
def settings(self):
return {
"/rtx/post/backgroundZeroAlpha/ApplyAlphaZeroPassFirst": self.apply_alpha_zero_pass_first,
"/rtx/post/backgroundZeroAlpha/backgroundComposite": self.backgroundComposite,
"/rtx/post/backgroundZeroAlpha/backgroundDefaultColor": self.background_default_color,
"/rtx/post/backgroundZeroAlpha/enableLensDistortionCorrection": self.enable_lens_distortion_correction,
}
@property
def enabled_setting_path(self):
return "/rtx/post/backgroundZeroAlpha/enabled"
class ChromaticAberrationSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.strength_r = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Strength Red", "/rtx/post/chromaticAberration/strengthR", -1.0, 1.0, 0.01
)
self.strength_g = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Strength Green", "/rtx/post/chromaticAberration/strengthG", -1.0, 1.0, 0.01
)
self.strength_b = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Strength Blue", "/rtx/post/chromaticAberration/strengthB", -1.0, 1.0, 0.01
)
chromatic_aberration_ops = ["Radial", "Barrel"]
self.mode_r = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Algorithm Red", "/rtx/post/chromaticAberration/modeR", chromatic_aberration_ops
)
self.mode_g = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Algorithm Green", "/rtx/post/chromaticAberration/modeG", chromatic_aberration_ops
)
self.mode_b = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Algorithm Blue", "/rtx/post/chromaticAberration/modeB", chromatic_aberration_ops
)
self.enable_lanczos = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use Lanczos Sampler", "/rtx/post/chromaticAberration/enableLanczos"
)
@property
def settings(self):
return {
"/rtx/post/chromaticAberration/strengthR": self.strength_r,
"/rtx/post/chromaticAberration/strengthG": self.strength_g,
"/rtx/post/chromaticAberration/strengthB": self.strength_b,
"/rtx/post/chromaticAberration/modeR": self.mode_r,
"/rtx/post/chromaticAberration/modeG": self.mode_g,
"/rtx/post/chromaticAberration/modeB": self.mode_b,
"/rtx/post/chromaticAberration/enableLanczos": self.enable_lanczos,
}
@property
def enabled_setting_path(self):
return "/rtx/post/chromaticAberration/enabled"
class DepthOfFieldSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.dof_enabled = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable DOF", "/rtx/post/dof/enabled")
self.subject_distance = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Subject Distance",
"/rtx/post/dof/subjectDistance",
range_from=-10000,
range_to=10000.0,
)
self.focal_length = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Focal Length (mm)", "/rtx/post/dof/focalLength", range_from=0, range_to=1000
)
self.f_number = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "f-Number / f-Stop", "/rtx/post/dof/fNumber", range_from=0, range_to=1000
)
self.anisotropy = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Anisotropy", "/rtx/post/dof/anisotropy", range_from=-1, range_to=1
)
@property
def settings(self):
return {
"/rtx/post/dof/enabled": self.dof_enabled,
"/rtx/post/dof/subjectDistance": self.subject_distance,
"/rtx/post/dof/focalLength": self.focal_length,
"/rtx/post/dof/fNumber": self.f_number,
"/rtx/post/dof/anisotropy": self.anisotropy,
}
@property
def enabled_setting_path(self):
return "/rtx/post/dof/overrideEnabled"
class MotionBlurSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_blur_diameter_fraction = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Blur Diameter Fraction",
"/rtx/post/motionblur/maxBlurDiameterFraction",
range_from=0,
range_to=0.5,
)
self.num_samples = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Number of Samples", "/rtx/post/motionblur/numSamples", range_from=4, range_to=32
)
self.exposure_fraction = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Exposure Fraction",
"/rtx/post/motionblur/exposureFraction",
range_from=0,
range_to=5.0,
)
@property
def settings(self):
return {
"/rtx/post/motionblur/maxBlurDiameterFraction": self.max_blur_diameter_fraction,
"/rtx/post/motionblur/numSamples": self.num_samples,
"/rtx/post/motionblur/exposureFraction": self.exposure_fraction,
}
@property
def enabled_setting_path(self):
return "/rtx/post/motionblur/enabled"
class FTTBloomSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.flare_scale = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Scale", "/rtx/post/lensFlares/flareScale", range_from=-1000, range_to=1000
)
self.cutoff_point = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Cutoff Point", "/rtx/post/lensFlares/cutoffPoint")
self.cutoff_fuzziness = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Cutoff Fuzziness",
"/rtx/post/lensFlares/cutoffFuzziness",
range_from=0.0,
range_to=1.0,
)
self.energy_constraining_blend = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Energy Constrained", "/rtx/post/lensFlares/energyConstrainingBlend"
)
self.physical_settings = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Physical Settings", "/rtx/post/lensFlares/physicalSettings"
)
# fftbloom_use_physical_settings = self._carb_settings.get("/rtx/post/lensFlares/physicalSettings")
# Physical settings
self.blades = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Blades", "/rtx/post/lensFlares/blades", range_from=0, range_to=10
)
self.aperture_rotation = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Aperture Rotation",
"/rtx/post/lensFlares/apertureRotation",
range_from=-1000,
range_to=1000,
)
self.sensor_diagonal = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Sensor Diagonal",
"/rtx/post/lensFlares/sensorDiagonal",
range_from=-1000,
range_to=1000,
)
self.sensor_aspect_ratio = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Sensor Aspect Ratio",
"/rtx/post/lensFlares/sensorAspectRatio",
range_from=-1000,
range_to=1000,
)
self.f_number = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"f-Number / f-Stop",
"/rtx/post/lensFlares/fNumber",
range_from=-1000,
range_to=1000,
)
self.focal_length = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Focal Length (mm)",
"/rtx/post/lensFlares/focalLength",
range_from=-1000,
range_to=1000,
)
# Non-physical settings
self.halo_flare_radius = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Halo Radius", "/rtx/post/lensFlares/haloFlareRadius"
)
self.halo_flare_falloff = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Halo Flare Falloff", "/rtx/post/lensFlares/haloFlareFalloff"
)
self.halo_flare_weight = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Halo Flare Weight",
"/rtx/post/lensFlares/haloFlareWeight",
range_from=-1000,
range_to=1000,
)
self.aniso_flare_falloff_y = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Aniso Falloff Y", "/rtx/post/lensFlares/anisoFlareFalloffY"
)
self.aniso_flare_falloff_x = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Aniso Falloff X", "/rtx/post/lensFlares/anisoFlareFalloffX"
)
self.aniso_flare_weight = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Aniso Flare Weight",
"/rtx/post/lensFlares/anisoFlareWeight",
range_from=-1000,
range_to=1000,
)
self.isotropic_flare_falloff = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Isotropic Flare Falloff", "/rtx/post/lensFlares/isotropicFlareFalloff"
)
self.isotropic_flare_weight = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Isotropic Flare Weight",
"/rtx/post/lensFlares/isotropicFlareWeight",
range_from=-1000,
range_to=1000,
)
@property
def settings(self):
settings = {
"/rtx/post/lensFlares/flareScale": self.flare_scale,
"/rtx/post/lensFlares/cutoffPoint": self.cutoff_point,
"/rtx/post/lensFlares/cutoffFuzziness": self.cutoff_fuzziness,
"/rtx/post/lensFlares/energyConstrainingBlend": self.energy_constraining_blend,
"/rtx/post/lensFlares/physicalSettings": self.physical_settings,
}
fftbloom_use_physical_settings = self._carb_settings.get("/rtx/post/lensFlares/physicalSettings")
if fftbloom_use_physical_settings:
settings.update(
{
"/rtx/post/lensFlares/blades": self.blades,
"/rtx/post/lensFlares/apertureRotation": self.aperture_rotation,
"/rtx/post/lensFlares/sensorDiagonal": self.sensor_diagonal,
"/rtx/post/lensFlares/sensorAspectRatio": self.sensor_aspect_ratio,
"/rtx/post/lensFlares/fNumber": self.f_number,
"/rtx/post/lensFlares/focalLength": self.focal_length,
}
)
else:
settings.update(
{
"/rtx/post/lensFlares/haloFlareRadius": self.halo_flare_radius,
"/rtx/post/lensFlares/haloFlareFalloff": self.halo_flare_falloff,
"/rtx/post/lensFlares/haloFlareWeight": self.halo_flare_weight,
"/rtx/post/lensFlares/anisoFlareFalloffY": self.aniso_flare_falloff_y,
"/rtx/post/lensFlares/anisoFlareFalloffX": self.aniso_flare_falloff_x,
"/rtx/post/lensFlares/anisoFlareWeight": self.aniso_flare_weight,
"/rtx/post/lensFlares/isotropicFlareFalloff": self.isotropic_flare_falloff,
"/rtx/post/lensFlares/isotropicFlareWeight": self.isotropic_flare_weight,
}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/post/lensFlares/enabled"
class TVNoiseGrainSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.enable_scanlines = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Scanlines", "/rtx/post/tvNoise/enableScanlines"
)
self.scanline_spread = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Scanline Spreading",
"/rtx/post/tvNoise/scanlineSpread",
range_from=0.0,
range_to=2.0,
)
self.enable_scroll_bug = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Scroll Bug", "/rtx/post/tvNoise/enableScrollBug"
)
self.enable_vignetting = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Vignetting", "/rtx/post/tvNoise/enableVignetting"
)
self.vignetting_size = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Vignetting Size", "/rtx/post/tvNoise/vignettingSize", range_from=0.0, range_to=255
)
self.vignetting_strength = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Vignetting Strength",
"/rtx/post/tvNoise/vignettingStrength",
range_from=0.0,
range_to=2.0,
)
self.enable_vignetting_flickering = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Vignetting Flickering", "/rtx/post/tvNoise/enableVignettingFlickering"
)
self.enable_ghost_flickering = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Ghost Flickering", "/rtx/post/tvNoise/enableGhostFlickering"
)
self.enable_wave_distortion = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Wavy Distortion", "/rtx/post/tvNoise/enableWaveDistortion"
)
self.enable_vertical_lines = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Vertical Lines", "/rtx/post/tvNoise/enableVerticalLines"
)
self.enable_random_splotches = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Random Splotches", "/rtx/post/tvNoise/enableRandomSplotches"
)
self.enable_film_grain = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Film Grain", "/rtx/post/tvNoise/enableFilmGrain"
)
# Filmgrain is a subframe in TV Noise
# self._carb_settings.get("/rtx/post/tvNoise/enableFilmGrain"):
self.grain_amount = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Grain Amount", "/rtx/post/tvNoise/grainAmount", range_from=0, range_to=0.2
)
self.color_amount = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Color Amount", "/rtx/post/tvNoise/colorAmount", range_from=0, range_to=1.0
)
self.lum_amount = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Luminance Amount", "/rtx/post/tvNoise/lumAmount", range_from=0, range_to=1.0
)
self.grain_size = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Grain Size", "/rtx/post/tvNoise/grainSize", range_from=1.5, range_to=2.5
)
@property
def settings(self):
settings = {
"/rtx/post/tvNoise/enableScanlines": self.enable_scanlines,
"/rtx/post/tvNoise/scanlineSpread": self.scanline_spread,
"/rtx/post/tvNoise/enableScrollBug": self.enable_scroll_bug,
"/rtx/post/tvNoise/enableVignetting": self.enable_vignetting,
"/rtx/post/tvNoise/vignettingSize": self.vignetting_size,
"/rtx/post/tvNoise/vignettingStrength": self.vignetting_strength,
"/rtx/post/tvNoise/enableVignettingFlickering": self.enable_vignetting_flickering,
"/rtx/post/tvNoise/enableGhostFlickering": self.enable_ghost_flickering,
"/rtx/post/tvNoise/enableWaveDistortion": self.enable_wave_distortion,
"/rtx/post/tvNoise/enableVerticalLines": self.enable_vertical_lines,
"/rtx/post/tvNoise/enableRandomSplotches": self.enable_random_splotches,
"/rtx/post/tvNoise/enableFilmGrain": self.enable_film_grain,
}
if self._carb_settings.get("/rtx/post/tvNoise/enableFilmGrain"):
settings.update(
{
"/rtx/post/tvNoise/grainAmount": self.grain_amount,
"/rtx/post/tvNoise/colorAmount": self.color_amount,
"/rtx/post/tvNoise/lumAmount": self.lum_amount,
"/rtx/post/tvNoise/grainSize": self.grain_size,
}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/post/tvNoise/enabled"
class ReshadeSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
# self._add_setting("ASSET", "Preset path", "/rtx/reshade/presetFilePath")
# widget = self._add_setting("ASSET", "Effect search dir path", "/rtx/reshade/effectSearchDirPath")
# widget.is_folder=True
# widget = self._add_setting("ASSET", "Texture search dir path", "/rtx/reshade/textureSearchDirPath")
# widget.is_folder=True
@property
def settings(self):
return {}
@property
def enabled_setting_path(self):
return "/rtx/reshade/enable"
| 34,472 | Python | 44.240157 | 150 | 0.625348 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/common_settings.py | import omnigibson.lazy as lazy
from omnigibson.renderer_settings.settings_base import SettingItem, SettingsBase, SubSettingsBase
class CommonSettings(SettingsBase):
"""
Common setting group that handles a variety of sub-settings, including:
- Rendering
- Geometry
- Materials
- Lighting
- Simple Fog
- Flow
- Debug View
"""
def __init__(self):
self.render_settings = RenderSettings()
self.geometry_settings = GeometrySettings()
self.materials_settings = MaterialsSettings()
self.lighting_settings = LightingSettings()
self.simple_fog_setting = SimpleFogSettings()
self.flow_settings = FlowSettings()
self.debug_view_settings = DebugViewSettings()
@property
def settings(self):
settings = {}
settings.update(self.render_settings.settings)
settings.update(self.geometry_settings.settings)
settings.update(self.materials_settings.settings)
settings.update(self.lighting_settings.settings)
settings.update(self.simple_fog_setting.settings)
settings.update(self.flow_settings.settings)
settings.update(self.debug_view_settings.settings)
return settings
class RenderSettings(SubSettingsBase):
def __init__(self):
self.multi_threading_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Multi-Threading", "/rtx/multiThreading/enabled"
)
@property
def settings(self):
return {
"/rtx/multiThreading/enabled": self.multi_threading_enabled,
}
class GeometrySettings(SubSettingsBase):
def __init__(self):
# Basic geometry settings.
tbnMode = ["AUTO", "CPU", "GPU", "Force GPU"]
self.tbn_frame_mode = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Normal & Tangent Space Generation Mode",
"/rtx/hydra/TBNFrameMode",
range_list=tbnMode,
)
self.face_culling_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Back Face Culling", "/rtx/hydra/faceCulling/enabled"
)
# Wireframe settings.
self.wireframe_thickness = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Wireframe Thickness",
"/rtx/wireframe/wireframeThickness",
range_from=0.1,
range_to=100,
)
self.wireframe_thickness_world_space = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Wireframe World Space Thickness", "/rtx/wireframe/wireframeThicknessWorldSpace"
)
self.wireframe_shading_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Shaded Wireframe", "/rtx/wireframe/shading/enabled"
)
# Subdivision settings.
self.subdivision_refinement_level = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Subdivision Global Refinement Level",
"/rtx/hydra/subdivision/refinementLevel",
range_from=0,
range_to=2,
)
self.subdivision_adaptive_refinement = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Subdivision Feature-adaptive Refinement",
"/rtx/hydra/subdivision/adaptiveRefinement",
)
# if set to zero, override to scene unit, which means the scale factor would be 1
self.renderMeterPerUnit = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Renderer-internal meters per unit ", "/rtx/scene/renderMeterPerUnit"
)
self.only_opaque_ray_flags = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Hide geometry that uses opacity (debug)", "/rtx/debug/onlyOpaqueRayFlags"
)
@property
def settings(self):
return {
"/rtx/hydra/TBNFrameMode": self.tbn_frame_mode,
"/rtx/hydra/faceCulling/enabled": self.face_culling_enabled,
"/rtx/wireframe/wireframeThickness": self.wireframe_thickness,
"/rtx/wireframe/wireframeThicknessWorldSpace": self.wireframe_thickness_world_space,
"/rtx/wireframe/shading/enabled": self.wireframe_shading_enabled,
"/rtx/hydra/subdivision/refinementLevel": self.subdivision_refinement_level,
"/rtx/hydra/subdivision/adaptiveRefinement": self.subdivision_adaptive_refinement,
"/rtx/scene/renderMeterPerUnit": self.renderMeterPerUnit,
"/rtx/debug/onlyOpaqueRayFlags": self.only_opaque_ray_flags,
}
class MaterialsSettings(SubSettingsBase):
def __init__(self):
self.skip_material_loading = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Disable Material Loading", "/app/renderer/skipMaterialLoading"
)
self.max_mip_count = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Textures: Mipmap Levels to Load",
"/rtx-transient/resourcemanager/maxMipCount",
range_from=2,
range_to=15,
)
self.compression_mip_size_threshold = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Textures: Compression Mipmap Size Threshold (0 to disable) ",
"/rtx-transient/resourcemanager/compressionMipSizeThreshold",
0,
8192,
)
self.enable_texture_streaming = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Textures: on-demand streaming (toggling requires scene reload)",
"/rtx-transient/resourcemanager/enableTextureStreaming",
)
self.memory_budget = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Texture streaming memory budget (fraction of GPU memory)",
"/rtx-transient/resourcemanager/texturestreaming/memoryBudget",
0.01,
1,
)
self.animation_time = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "MDL Animation Time Override", "/rtx/animationTime")
self.animation_time_use_wallclock = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "MDL Animation Time Use Wallclock", "/rtx/animationTimeUseWallclock"
)
@property
def settings(self):
return {
"/app/renderer/skipMaterialLoading": self.skip_material_loading,
"/rtx-transient/resourcemanager/maxMipCount": self.max_mip_count,
"/rtx-transient/resourcemanager/compressionMipSizeThreshold": self.compression_mip_size_threshold,
"/rtx-transient/resourcemanager/enableTextureStreaming": self.enable_texture_streaming,
"/rtx-transient/resourcemanager/texturestreaming/memoryBudget": self.memory_budget,
"/rtx/animationTime": self.animation_time,
"/rtx/animationTimeUseWallclock": self.animation_time_use_wallclock,
}
class LightingSettings(SubSettingsBase):
def __init__(self):
# Basic light settings.
show_lights_settings = {"Per-Light Enable": 0, "Force Enable": 1, "Force Disable": 2}
self.show_lights = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Show Area Lights In Primary Rays",
"/rtx/raytracing/showLights",
range_dict=show_lights_settings,
)
self.shadow_bias = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Shadow Bias", "/rtx/raytracing/shadowBias", range_from=0.0, range_to=5.0
)
self.skip_most_lights = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use First Distant Light & First Dome Light Only", "/rtx/scenedb/skipMostLights"
)
# Demo light.
dome_lighting_sampling_type = {
"Upper & Lower Hemisphere": 0,
# "Upper Visible & Sampled, Lower Is Black": 1,
"Upper Hemisphere Visible & Sampled, Lower Is Only Visible": 2,
"Use As Env Map": 3,
}
self.upper_lower_strategy = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Hemisphere Sampling",
"/rtx/domeLight/upperLowerStrategy",
range_dict=dome_lighting_sampling_type,
)
dome_texture_resolution_items = {
"16": 16,
"32": 32,
"64": 64,
"128": 128,
"256": 256,
"512": 512,
"1024": 1024,
"2048": 2048,
"4096": 4096,
"8192": 8192,
}
self.baking_resolution = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Baking Resolution",
"/rtx/domeLight/baking/resolution",
range_dict=dome_texture_resolution_items,
)
self.resolution_factor = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Dome Light Texture Resolution Factor",
"/rtx/domeLight/resolutionFactor",
range_from=0.01,
range_to=4.0,
)
self.baking_spp = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Dome Light Material Baking SPP",
"/rtx/domeLight/baking/spp",
range_from=1,
range_to=32,
)
@property
def settings(self):
return {
"/rtx/raytracing/showLights": self.show_lights,
"/rtx/raytracing/shadowBias": self.shadow_bias,
"/rtx/scenedb/skipMostLights": self.skip_most_lights,
"/rtx/domeLight/upperLowerStrategy": self.upper_lower_strategy,
"/rtx/domeLight/baking/resolution": self.baking_resolution,
"/rtx/domeLight/resolutionFactor": self.resolution_factor,
"/rtx/domeLight/baking/spp": self.baking_spp,
}
class SimpleFogSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.fog_color = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Color", "/rtx/fog/fogColor")
self.fog_color_intensity = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Intensity", "/rtx/fog/fogColorIntensity", range_from=1, range_to=1000000
)
self.fog_z_up_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Height-based Fog - Use +Z Axis", "/rtx/fog/fogZup/enabled"
)
self.fog_start_height = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Height-based Fog - Plane Height",
"/rtx/fog/fogStartHeight",
range_from=-1000000,
range_to=1000000,
)
self.fog_height_density = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Height Density", "/rtx/fog/fogHeightDensity", range_from=0, range_to=1
)
self.fog_height_falloff = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Height Falloff", "/rtx/fog/fogHeightFalloff", range_from=0, range_to=1000
)
self.fog_distance_density = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Distance Density", "/rtx/fog/fogDistanceDensity", range_from=0, range_to=1
)
self.fog_start_dist = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Start Distance to Camera", "/rtx/fog/fogStartDist", range_from=0, range_to=1000000
)
self.fog_end_dist = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "End Distance to Camera", "/rtx/fog/fogEndDist", range_from=0, range_to=1000000
)
@property
def settings(self):
return {
"/rtx/fog/fogColor": self.fog_color,
"/rtx/fog/fogColorIntensity": self.fog_color_intensity,
"/rtx/fog/fogZup/enabled": self.fog_z_up_enabled,
"/rtx/fog/fogStartHeight": self.fog_height_density,
"/rtx/fog/fogHeightDensity": self.fog_height_density,
"/rtx/fog/fogHeightFalloff": self.fog_height_falloff,
"/rtx/fog/fogDistanceDensity": self.fog_distance_density,
"/rtx/fog/fogStartDist": self.fog_start_dist,
"/rtx/fog/fogEndDist": self.fog_end_dist,
}
@property
def enabled_setting_path(self):
return "/rtx/fog/enabled"
class FlowSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.ray_traced_shadows_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Flow in Real-Time Ray Traced Shadows", "/rtx/flow/rayTracedShadowsEnabled"
)
self.ray_traced_reflections_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Flow in Real-Time Ray Traced Reflections", "/rtx/flow/rayTracedReflectionsEnabled"
)
self.path_tracing_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Flow in Path-Traced Mode", "/rtx/flow/pathTracingEnabled"
)
self.path_tracing_shadows_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Flow in Path-Traced Mode Shadows", "/rtx/flow/pathTracingShadowsEnabled"
)
self.composite_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Composite with Flow Library Renderer", "/rtx/flow/compositeEnabled"
)
self.use_flow_library_self_shadow = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use Flow Library Self Shadow", "/rtx/flow/useFlowLibrarySelfShadow"
)
self.max_blocks = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.INT, "Max Blocks", "/rtx/flow/maxBlocks")
@property
def settings(self):
return {
"/rtx/flow/rayTracedShadowsEnabled": self.ray_traced_shadows_enabled,
"/rtx/flow/rayTracedReflectionsEnabled": self.ray_traced_reflections_enabled,
"/rtx/flow/pathTracingEnabled": self.path_tracing_enabled,
"/rtx/flow/pathTracingShadowsEnabled": self.path_tracing_shadows_enabled,
"/rtx/flow/compositeEnabled": self.composite_enabled,
"/rtx/flow/useFlowLibrarySelfShadow": self.use_flow_library_self_shadow,
"/rtx/flow/maxBlocks": self.max_blocks,
}
@property
def enabled_setting_path(self):
return "/rtx/flow/enabled"
class DebugViewSettings(SubSettingsBase):
def __init__(self):
debug_view_items = {
"Off": "",
"Beauty Before Tonemap": "beautyPreTonemap",
"Beauty After Tonemap": "beautyPostTonemap",
"Timing Heat Map": "TimingHeatMap",
"Depth": "depth",
"World Position": "worldPosition",
"Wireframe": "wire",
"Barycentrics": "barycentrics",
"Texture Coordinates 0": "texcoord0",
"Tangent U": "tangentu",
"Tangent V": "tangentv",
"Interpolated Normal": "normal",
"Triangle Normal": "triangleNormal",
"Material Normal": "materialGeometryNormal",
"Instance ID": "instanceId",
"3D Motion Vectors": "targetMotion",
"Shadow (last light)": "shadow",
"Diffuse Reflectance": "diffuseReflectance",
"Specular Reflectance": "reflectance",
"Roughness": "roughness",
"Ambient Occlusion": "ao",
"Reflections": "reflections",
"Reflections 3D Motion Vectors": "reflectionsMotion",
"Translucency": "translucency",
"Radiance": "radiance",
"Diffuse GI": "indirectDiffuse",
"Caustics": "caustics",
"PT Noisy Result": "pathTracerNoisy",
"PT Denoised Result": "pathTracerDenoised",
"RT Noisy Sampled Lighting": "rtNoisySampledLighting",
"RT Denoised Sampled Lighting": "rtDenoisedSampledLighting",
"Developer Debug Texture": "developerDebug",
"Noisy Dome Light": "noisyDomeLightingTex",
"Denoised Dome Light": "denoisedDomeLightingTex",
"RT Noisy Sampled Lighting Diffuse": "rtNoisySampledLightingDiffuse", # ReLAX Only
"RT Noisy Sampled Lighting Specular": "rtNoisySampledLightingSpecular", # ReLAX Only
"RT Denoised Sampled Lighting Diffuse": "rtDenoiseSampledLightingDiffuse", # ReLAX Only
"RT Denoised Sampled Lighting Specular": "rtDenoiseSampledLightingSpecular", # ReLAX Only
"Triangle Normal (OctEnc)": "triangleNormalOctEnc", # ReLAX Only
"Material Normal (OctEnc)": "materialGeometryNormalOctEnc", # ReLAX Only
# Targets not using RT accumulation
"RT Noisy Sampled Lighting (Not Accumulated)": "rtNoisySampledLightingNonAccum",
"RT Noisy Sampled Lighting Diffuse (Not Accumulated)": "sampledLightingDiffuseNonAccum",
"RT Noisy Sampled Lighting Specular (Not Accumulated)": "sampledLightingSpecularNonAccum",
"Reflections (Not Accumulated)": "reflectionsNonAccum",
"Diffuse GI (Not Accumulated)": "indirectDiffuseNonAccum",
}
self.target = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Render Target", "/rtx/debugView/target", range_dict=debug_view_items
)
self.scaling = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Output Value Scaling",
"/rtx/debugView/scaling",
range_from=-1000000,
range_to=1000000,
)
@property
def settings(self):
return {
"/rtx/debugView/target": self.target,
"/rtx/debugView/scaling": self.scaling,
}
| 18,494 | Python | 43.352518 | 150 | 0.621229 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/real_time_settings.py | import omnigibson.lazy as lazy
from omnigibson.renderer_settings.settings_base import SettingItem, SettingsBase, SubSettingsBase
class RealTimeSettings(SettingsBase):
"""
Real-Time setting group that handles a variety of sub-settings, including:
- Eco Mode
- Anti Aliasing
- Direct Lighting
- Reflections
- Translucency
- Global Volumetric Effects
- Caustics
- Indirect Diffuse Lighting
- RTMulti GPU (if multiple GPUs available)
"""
def __init__(self):
self.eco_mode_settings = EcoModeSettings()
self.anti_aliasing_settings = AntiAliasingSettings()
self.direct_lighting_settings = DirectLightingSettings()
self.reflections_settings = ReflectionsSettings()
self.translucency_settings = TranslucencySettings()
self.global_volumetric_effects_settings = GlobalVolumetricEffectsSettings()
self.caustics_settings = CausticsSettings()
self.indirect_diffuse_lighting_settings = IndirectDiffuseLightingSettings()
gpu_count = lazy.carb.settings.get_settings().get("/renderer/multiGpu/currentGpuCount")
if gpu_count and gpu_count > 1:
self.rt_multi_gpu_settings = RTMultiGPUSettings()
@property
def settings(self):
settings = {}
settings.update(self.eco_mode_settings.settings)
settings.update(self.anti_aliasing_settings.settings)
settings.update(self.direct_lighting_settings.settings)
settings.update(self.reflections_settings.settings)
settings.update(self.translucency_settings.settings)
settings.update(self.global_volumetric_effects_settings.settings)
settings.update(self.caustics_settings.settings)
settings.update(self.indirect_diffuse_lighting_settings.settings)
gpu_count = lazy.carb.settings.get_settings().get("/renderer/multiGpu/currentGpuCount")
if gpu_count and gpu_count > 1:
settings.update(self.rt_multi_gpu_settings.settings)
return settings
class EcoModeSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_frames_without_change = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Stop Rendering After This Many Frames Without Changes",
"/rtx/ecoMode/maxFramesWithoutChange",
range_from=0,
range_to=100,
)
@property
def settings(self):
return {
"/rtx/ecoMode/maxFramesWithoutChange": self.max_frames_without_change,
}
@property
def enabled_setting_path(self):
return "/rtx/ecoMode/enabled"
class AntiAliasingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
antialiasing_ops = ["Off", "TAA", "FXAA"]
if self._carb_settings.get("/ngx/enabled") is True:
antialiasing_ops.append("DLSS")
antialiasing_ops.append("RTXAA")
self.algorithm = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.STRING, "Algorithm", "/rtx/post/aa/op", antialiasing_ops)
# antialiasing_op_idx == 1
# TAA
self.static_ratio = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Static scaling", "/rtx/post/scaling/staticRatio", range_from=0.33, range_to=1
)
self.samples = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "TAA Samples", "/rtx/post/taa/samples", range_from=1, range_to=16
)
self.alpha = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "TAA history scale", "/rtx/post/taa/alpha", range_from=0, range_to=1
)
# antialiasing_op_idx == 2
# FXAA
self.quality_sub_pix = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Subpixel Quality", "/rtx/post/fxaa/qualitySubPix", range_from=0.0, range_to=1.0
)
self.quality_edge_threshold = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Edge Threshold",
"/rtx/post/fxaa/qualityEdgeThreshold",
range_from=0.0,
range_to=1.0,
)
self.quality_edge_threshold_min = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Edge Threshold Min",
"/rtx/post/fxaa/qualityEdgeThresholdMin",
range_from=0.0,
range_to=1.0,
)
# antialiasing_op_idx == 3 or antialiasing_op_idx == 4
# DLSS and RTXAA
# if antialiasing_op_idx == 3
dlss_opts = ["Performance", "Balanced", "Quality"]
self.exec_mode = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.STRING, "Execution mode", "/rtx/post/dlss/execMode", dlss_opts)
self.sharpness = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Sharpness", "/rtx/post/aa/sharpness", range_from=0.0, range_to=1.0
)
exposure_ops = ["Force self evaluated", "PostProcess Autoexposure", "Fixed"]
self.auto_exposure_mode = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Exposure mode", "/rtx/post/aa/autoExposureMode", exposure_ops
)
# auto_exposure_idx = self._carb_settings.get("/rtx/post/aa/autoExposureMode")
# if auto_exposure_idx == 1
self.exposure_multiplier = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Auto Exposure Multiplier",
"/rtx/post/aa/exposureMultiplier",
range_from=0.00001,
range_to=10.0,
)
# if auto_exposure_idx == 2
self.exposure = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Fixed Exposure Value", "/rtx/post/aa/exposure", range_from=0.00001, range_to=1.0
)
@property
def settings(self):
settings = {
"/rtx/post/aa/op": self.algorithm,
}
antialiasing_op_idx = self._carb_settings.get("/rtx/post/aa/op")
if antialiasing_op_idx == 1:
# TAA
settings.update(
{
"/rtx/post/scaling/staticRatio": self.static_ratio,
"/rtx/post/taa/samples": self.samples,
"/rtx/post/taa/alpha": self.alpha,
}
)
elif antialiasing_op_idx == 2:
# FXAA
settings.update(
{
"/rtx/post/fxaa/qualitySubPix": self.quality_sub_pix,
"/rtx/post/fxaa/qualityEdgeThreshold": self.quality_edge_threshold,
"/rtx/post/fxaa/qualityEdgeThresholdMin": self.quality_edge_threshold_min,
}
)
elif antialiasing_op_idx == 3 or antialiasing_op_idx == 4:
# DLSS and RTXAA
if antialiasing_op_idx == 3:
settings.update(
{"/rtx/post/dlss/execMode": self.exec_mode,}
)
settings.update(
{"/rtx/post/aa/sharpness": self.sharpness, "/rtx/post/aa/autoExposureMode": self.auto_exposure_mode,}
)
auto_exposure_idx = self._carb_settings.get("/rtx/post/aa/autoExposureMode")
if auto_exposure_idx == 1:
settings.update(
{"/rtx/post/aa/exposureMultiplier": self.exposure_multiplier,}
)
elif auto_exposure_idx == 2:
settings.update(
{"/rtx/post/aa/exposure": self.exposure,}
)
return settings
class DirectLightingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.shadows_enabled = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Shadows", "/rtx/shadows/enabled")
self.sampled_lighting_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Sampled Direct Lighting", "/rtx/directLighting/sampledLighting/enabled"
)
self.sampled_lighting_auto_enable = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Auto-enable Sampled Lighting Above Light Count Threshold",
"/rtx/directLighting/sampledLighting/autoEnable",
)
self.sampled_lighting_auto_enable_light_count_threshold = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Auto-enable Sampled Lighting: Light Count Threshold",
"/rtx/directLighting/sampledLighting/autoEnableLightCountThreshold",
)
# if not self._settings.get("/rtx/directLighting/sampledLighting/enabled"
self.shadows_sample_count = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Shadow Samples per Pixel", "/rtx/shadows/sampleCount", range_from=1, range_to=16
)
self.shadows_denoiser_quarter_res = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Lower Resolution Shadows Denoiser", "/rtx/shadows/denoiser/quarterRes"
)
self.dome_light_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Dome Lighting", "/rtx/directLighting/domeLight/enabled"
)
self.dome_light_sample_count = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Dome Light Samples per Pixel",
"/rtx/directLighting/domeLight/sampleCount",
range_from=0,
range_to=32,
)
self.dome_light_enabled_in_reflections = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Dome Lighting in Reflections", "/rtx/directLighting/domeLight/enabledInReflections"
)
# if self._settings.get("/rtx/directLighting/sampledLighting/enabled")
sampled_lighting_spp_items = {"1": 1, "2": 2, "4": 4, "8": 8}
self.samples_per_pixel = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Samples per Pixel",
"/rtx/directLighting/sampledLighting/samplesPerPixel",
range_dict=sampled_lighting_spp_items,
)
self.clamp_samples_per_pixel_to_number_of_lights = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Clamp Sample Count to Light Count",
"/rtx/directLighting/sampledLighting/clampSamplesPerPixelToNumberOfLights",
)
self.reflections_samples_per_pixel = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Reflections: Light Samples per Pixel",
"/rtx/reflections/sampledLighting/samplesPerPixel",
range_dict=sampled_lighting_spp_items,
)
self.reflections_clamp_samples_per_pixel_to_number_of_lights = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Reflections: Clamp Sample Count to Light Count",
"/rtx/reflections/sampledLighting/clampSamplesPerPixelToNumberOfLights",
)
self.max_ray_intensity = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Max Ray Intensity",
"/rtx/directLighting/sampledLighting/maxRayIntensity",
range_from=0.0,
range_to=1000000,
)
self.reflections_max_ray_intensity = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Reflections: Max Ray Intensity",
"/rtx/reflections/sampledLighting/maxRayIntensity",
range_from=0.0,
range_to=1000000,
)
self.enabled_in_reflections = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Dome Lighting in Reflections", "/rtx/directLighting/domeLight/enabledInReflections"
)
firefly_filter_types = {"None": "None", "Median": "Cross-Bilateral Median", "RCRS": "Cross-Bilateral RCRS"}
self.firefly_suppression_type = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Firefly Filter",
"/rtx/lightspeed/ReLAX/fireflySuppressionType",
range_dict=firefly_filter_types,
)
self.history_clamping_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "History Clamping", "/rtx/lightspeed/ReLAX/historyClampingEnabled"
)
self.denoiser_iterations = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Denoiser Iterations",
"/rtx/lightspeed/ReLAX/aTrousIterations",
range_from=1,
range_to=10,
)
self.diffuse_backscattering_enabled = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Enable Extended Diffuse Backscattering",
"/rtx/directLighting/diffuseBackscattering/enabled",
)
self.shadow_offset = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Shadow Ray Offset",
"/rtx/directLighting/diffuseBackscattering/shadowOffset",
range_from=0.1,
range_to=1000,
)
self.extinction = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Extinction",
"/rtx/directLighting/diffuseBackscattering/extinction",
range_from=0.001,
range_to=100,
)
@property
def settings(self):
settings = {
"/rtx/shadows/enabled": self.shadows_enabled,
"/rtx/directLighting/sampledLighting/enabled": self.sampled_lighting_enabled,
"/rtx/directLighting/sampledLighting/autoEnable": self.sampled_lighting_auto_enable,
"/rtx/directLighting/sampledLighting/autoEnableLightCountThreshold": self.sampled_lighting_auto_enable_light_count_threshold,
}
if not self._carb_settings.get("/rtx/directLighting/sampledLighting/enabled"):
settings.update(
{
"/rtx/shadows/sampleCount": self.shadows_sample_count,
"/rtx/shadows/denoiser/quarterRes": self.shadows_denoiser_quarter_res,
"/rtx/directLighting/domeLight/enabled": self.dome_light_enabled,
"/rtx/directLighting/domeLight/sampleCount": self.dome_light_sample_count,
"/rtx/directLighting/domeLight/enabledInReflections": self.dome_light_enabled_in_reflections,
}
)
else:
settings.update(
{
"/rtx/directLighting/sampledLighting/samplesPerPixel": self.samples_per_pixel,
"/rtx/directLighting/sampledLighting/clampSamplesPerPixelToNumberOfLights": self.clamp_samples_per_pixel_to_number_of_lights,
"/rtx/reflections/sampledLighting/samplesPerPixel": self.reflections_samples_per_pixel,
"/rtx/reflections/sampledLighting/clampSamplesPerPixelToNumberOfLights": self.reflections_clamp_samples_per_pixel_to_number_of_lights,
"/rtx/directLighting/sampledLighting/maxRayIntensity": self.max_ray_intensity,
"/rtx/reflections/sampledLighting/maxRayIntensity": self.reflections_max_ray_intensity,
"/rtx/directLighting/domeLight/enabledInReflections": self.enabled_in_reflections,
"/rtx/lightspeed/ReLAX/fireflySuppressionType": self.firefly_suppression_type,
"/rtx/lightspeed/ReLAX/historyClampingEnabled": self.history_clamping_enabled,
"/rtx/lightspeed/ReLAX/aTrousIterations": self.denoiser_iterations,
"/rtx/directLighting/diffuseBackscattering/enabled": self.diffuse_backscattering_enabled,
"/rtx/directLighting/diffuseBackscattering/shadowOffset": self.shadow_offset,
"/rtx/directLighting/diffuseBackscattering/extinction": self.extinction,
}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/directLighting/enabled"
class ReflectionsSettings(SettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_roughness = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Max Roughness", "/rtx/reflections/maxRoughness", range_from=0.0, range_to=1.0
)
self.max_reflection_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Reflection Bounces",
"/rtx/reflections/maxReflectionBounces",
range_from=0,
range_to=100,
)
@property
def settings(self):
return {
"/rtx/reflections/maxRoughness": self.max_roughness,
"/rtx/reflections/maxReflectionBounces": self.max_reflection_bounces,
}
@property
def enabled_setting_path(self):
return "/rtx/reflections/enabled"
class TranslucencySettings(SettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_refraction_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Refraction Bounces",
"/rtx/translucency/maxRefractionBounces",
range_from=0,
range_to=100,
)
self.reflection_cutoff = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Secondary Bounce Roughness Cutoff",
"/rtx/translucency/reflectionCutoff",
range_from=0.0,
range_to=1.0,
)
self.fractional_cutou_opacity = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Fractional Cutout Opacity", "/rtx/raytracing/fractionalCutoutOpacity"
)
self.virtual_depth = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Depth Correction for DoF", "/rtx/translucency/virtualDepth"
)
@property
def settings(self):
return {
"/rtx/translucency/maxRefractionBounces": self.max_refraction_bounces,
"/rtx/translucency/reflectionCutoff": self.reflection_cutoff,
"/rtx/raytracing/fractionalCutoutOpacity": self.reflection_cutoff,
"/rtx/translucency/virtualDepth": self.virtual_depth,
}
@property
def enabled_setting_path(self):
return "/rtx/translucency/enabled"
class GlobalVolumetricEffectsSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_accumulation_frames = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Accumulation Frames",
"/rtx/raytracing/inscattering/maxAccumulationFrames",
range_from=1,
range_to=255,
)
self.depth_slices = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"# Depth Slices",
"/rtx/raytracing/inscattering/depthSlices",
range_from=16,
range_to=1024,
)
self.pixel_ratio = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Pixel Density", "/rtx/raytracing/inscattering/pixelRatio", range_from=4, range_to=64
)
self.max_distance = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Max inscattering Distance",
"/rtx/raytracing/inscattering/maxDistance",
range_from=10,
range_to=100000,
)
self.atmosphere_height = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Atmosphere Height",
"/rtx/raytracing/inscattering/atmosphereHeight",
range_from=-100000,
range_to=100000,
)
self.transmittance_color = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Transmittance Color", "/rtx/raytracing/inscattering/transmittanceColor"
)
self.transmittance_measurement_distance = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Transmittance Measurment Distance",
"/rtx/raytracing/inscattering/transmittanceMeasurementDistance",
range_from=0.0001,
range_to=1000000,
)
self.single_scattering_albedo = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Single Scattering Albedo", "/rtx/raytracing/inscattering/singleScatteringAlbedo",
)
self.anisotropy_factor = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Anisotropy Factor",
"/rtx/raytracing/inscattering/anisotropyFactor",
range_from=-0.999,
range_to=0.999,
)
self.slice_distribution_exponent = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Slice Distribution Exponent",
"/rtx/raytracing/inscattering/sliceDistributionExponent",
range_from=1,
range_to=16,
)
self.blur_sigma = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Inscatter Blur Sigma",
"/rtx/raytracing/inscattering/blurSigma",
0.0,
range_to=10.0,
)
self.dithering_scale = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Inscatter Dithering Scale",
"/rtx/raytracing/inscattering/ditheringScale",
range_from=0,
range_to=100,
)
self.spatial_jitter_scale = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Spatial Sample Jittering Scale",
"/rtx/raytracing/inscattering/spatialJitterScale",
range_from=0.0,
range_to=1,
)
self.temporal_jitter_scale = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Temporal Reprojection Jittering Scale",
"/rtx/raytracing/inscattering/temporalJitterScale",
range_from=0.0,
range_to=1,
)
self.use_detail_noise = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Apply Density Noise", "/rtx/raytracing/inscattering/useDetailNoise"
)
self.detail_noise_scale = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise World Scale",
"/rtx/raytracing/inscattering/detailNoiseScale",
range_from=0.0,
range_to=1,
)
self.noise_animation_speed_x = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise Animation Speed X",
"/rtx/raytracing/inscattering/noiseAnimationSpeedX",
range_from=-1.0,
range_to=1.0,
)
self.noise_animation_speed_y = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise Animation Speed Y",
"/rtx/raytracing/inscattering/noiseAnimationSpeedY",
range_from=-1.0,
range_to=1.0,
)
self.noise_animation_speed_z = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise Animation Speed Z",
"/rtx/raytracing/inscattering/noiseAnimationSpeedZ",
range_from=-1.0,
range_to=1.0,
)
self.noise_scale_range_min = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise Scale Min",
"/rtx/raytracing/inscattering/noiseScaleRangeMin",
range_from=-1.0,
range_to=5.0,
)
self.noise_scale_range_max = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise Scale Max",
"/rtx/raytracing/inscattering/noiseScaleRangeMax",
range_from=-1.0,
range_to=5.0,
)
self.noise_num_octaves = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Density Noise Octave Count",
"/rtx/raytracing/inscattering/noiseNumOctaves",
range_from=1,
range_to=8,
)
self.use_32bit_precision = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use 32-bit Precision", "/rtx/raytracing/inscattering/use32bitPrecision"
)
@property
def settings(self):
return {
"/rtx/raytracing/inscattering/maxAccumulationFrames": self.max_accumulation_frames,
"/rtx/raytracing/inscattering/depthSlices": self.depth_slices,
"/rtx/raytracing/inscattering/pixelRatio": self.pixel_ratio,
"/rtx/raytracing/inscattering/maxDistance": self.max_distance,
"/rtx/raytracing/inscattering/atmosphereHeight": self.atmosphere_height,
"/rtx/raytracing/inscattering/transmittanceColor": self.transmittance_color,
"/rtx/raytracing/inscattering/transmittanceMeasurementDistance": self.transmittance_measurement_distance,
"/rtx/raytracing/inscattering/singleScatteringAlbedo": self.single_scattering_albedo,
"/rtx/raytracing/inscattering/anisotropyFactor": self.anisotropy_factor,
"/rtx/raytracing/inscattering/sliceDistributionExponent": self.slice_distribution_exponent,
"/rtx/raytracing/inscattering/blurSigma": self.blur_sigma,
"/rtx/raytracing/inscattering/ditheringScale": self.dithering_scale,
"/rtx/raytracing/inscattering/spatialJitterScale": self.spatial_jitter_scale,
"/rtx/raytracing/inscattering/temporalJitterScale": self.temporal_jitter_scale,
"/rtx/raytracing/inscattering/useDetailNoise": self.use_detail_noise,
"/rtx/raytracing/inscattering/detailNoiseScale": self.detail_noise_scale,
"/rtx/raytracing/inscattering/noiseAnimationSpeedX": self.noise_animation_speed_x,
"/rtx/raytracing/inscattering/noiseAnimationSpeedY": self.noise_animation_speed_y,
"/rtx/raytracing/inscattering/noiseAnimationSpeedZ": self.noise_animation_speed_z,
"/rtx/raytracing/inscattering/noiseScaleRangeMin": self.noise_scale_range_min,
"/rtx/raytracing/inscattering/noiseScaleRangeMax": self.noise_scale_range_max,
"/rtx/raytracing/inscattering/noiseNumOctaves": self.noise_num_octaves,
"/rtx/raytracing/inscattering/use32bitPrecision": self.use_32bit_precision,
}
@property
def enabled_setting_path(self):
return "/rtx/raytracing/globalVolumetricEffects/enabled"
class CausticsSettings(SettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.photon_count_nultiplier = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Photon Count Multiplier",
"/rtx/raytracing/caustics/photonCountMultiplier",
range_from=1,
range_to=5000,
)
self.photon_max_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Photon Max Bounces",
"/rtx/raytracing/caustics/photonMaxBounces",
range_from=1,
range_to=20,
)
self.positio_phi = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Position Phi", "/rtx/raytracing/caustics/positionPhi", range_from=0.1, range_to=50
)
self.normal_phi = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Normal Phi", "/rtx/raytracing/caustics/normalPhi", range_from=0.3, range_to=1
)
self.filtering_iterations = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Filter Iterations",
"/rtx/raytracing/caustics/eawFilteringSteps",
range_from=0,
range_to=10,
)
@property
def settings(self):
return {
"/rtx/raytracing/caustics/photonCountMultiplier": self.photon_count_nultiplier,
"/rtx/raytracing/caustics/photonMaxBounces": self.photon_max_bounces,
"/rtx/raytracing/caustics/positionPhi": self.positio_phi,
"/rtx/raytracing/caustics/normalPhi": self.normal_phi,
"/rtx/raytracing/caustics/eawFilteringSteps": self.filtering_iterations,
}
@property
def enabled_setting_path(self):
return "/rtx/caustics/enabled"
class IndirectDiffuseLightingSettings(SettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.ambient_light_color = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Ambient Light Color", "/rtx/sceneDb/ambientLightColor"
)
self.ambient_light_intensity = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Ambient Light Intensity",
"/rtx/sceneDb/ambientLightIntensity",
range_from=0.0,
range_to=10.0,
)
self.ambient_occlusion_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Ambient Occlusion (AO)", "/rtx/ambientOcclusion/enabled"
)
# if self._carb_settings.get("/rtx/ambientOcclusion/enabled")
self.ray_length_in_cm = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"AO: Ray Length (cm)",
"/rtx/ambientOcclusion/rayLengthInCm",
range_from=0.0,
range_to=2000.0,
)
self.min_samples = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"AO: Minimum Samples per Pixel",
"/rtx/ambientOcclusion/minSamples",
range_from=1,
range_to=16,
)
self.max_samples = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"AO: Maximum Samples per Pixel",
"/rtx/ambientOcclusion/maxSamples",
range_from=1,
range_to=16,
)
self.aggressive_denoising = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "AO: Aggressive denoising", "/rtx/ambientOcclusion/aggressiveDenoising"
)
self.indirect_diffuse_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Indirect Diffuse GI", "/rtx/indirectDiffuse/enabled"
)
# if self._carb_settings.get("/rtx/indirectDiffuse/enabled")
gi_denoising_techniques_ops = ["NVRTD", "NRD:Reblur"]
self.fetch_sample_count = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Samples per Pixel",
"/rtx/indirectDiffuse/fetchSampleCount",
range_from=0,
range_to=4,
)
self.max_bounces = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Max Bounces", "/rtx/indirectDiffuse/maxBounces", range_from=0, range_to=16
)
self.scaling_factor = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Intensity", "/rtx/indirectDiffuse/scalingFactor", range_from=0.0, range_to=20.0
)
self.denoiser_method = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Denoising technique",
"/rtx/indirectDiffuse/denoiser/method",
range_list=gi_denoising_techniques_ops,
)
# if enabled and self._carb_settings.get("/rtx/indirectDiffuse/denoiser/method") == 0:
self.kernel_radius = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Kernel radius",
"/rtx/indirectDiffuse/denoiser/kernelRadius",
range_from=1,
range_to=64,
)
self.iterations = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Iteration count",
"/rtx/indirectDiffuse/denoiser/iterations",
range_from=1,
range_to=10,
)
self.max_history = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max History Length",
"/rtx/indirectDiffuse/denoiser/temporal/maxHistory",
range_from=1,
range_to=100,
)
# if enabled and self._carb_settings.get("/rtx/indirectDiffuse/denoiser/method") == 1:
self.max_accumulated_frame_num = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Frames in History",
"/rtx/lightspeed/NRD_ReblurDiffuse/maxAccumulatedFrameNum",
range_from=0,
range_to=63,
)
self.max_fast_accumulated_frame_num = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Frames in Fast History",
"/rtx/lightspeed/NRD_ReblurDiffuse/maxFastAccumulatedFrameNum",
range_from=0,
range_to=63,
)
self.plane_distance_sensitivity = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Plane Distance Sensitivity",
"/rtx/lightspeed/NRD_ReblurDiffuse/planeDistanceSensitivity",
range_from=0,
range_to=1,
)
self.blur_radius = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Blur Radius",
"/rtx/lightspeed/NRD_ReblurDiffuse/blurRadius",
range_from=0,
range_to=100,
)
@property
def settings(self):
settings = {
"/rtx/sceneDb/ambientLightColor": self.ambient_light_color,
"/rtx/sceneDb/ambientLightIntensity": self.ambient_light_intensity,
"/rtx/ambientOcclusion/enabled": self.ambient_occlusion_enabled,
"/rtx/indirectDiffuse/enabled": self.indirect_diffuse_enabled,
}
if self._carb_settings.get("/rtx/ambientOcclusion/enabled"):
settings.update(
{
"/rtx/ambientOcclusion/rayLengthInCm": self.ray_length_in_cm,
"/rtx/ambientOcclusion/minSamples": self.min_samples,
"/rtx/ambientOcclusion/maxSamples": self.max_samples,
"/rtx/ambientOcclusion/aggressiveDenoising": self.aggressive_denoising,
}
)
if self._carb_settings.get("/rtx/indirectDiffuse/enabled"):
settings.update(
{
"/rtx/indirectDiffuse/fetchSampleCount": self.max_bounces,
"/rtx/indirectDiffuse/maxBounces": self.ambient_light_color,
"/rtx/indirectDiffuse/scalingFactor": self.scaling_factor,
"/rtx/indirectDiffuse/denoiser/method": self.denoiser_method,
}
)
if self._carb_settings.get("/rtx/indirectDiffuse/denoiser/method") == 0:
settings.update(
{
"/rtx/indirectDiffuse/denoiser/kernelRadius": self.kernel_radius,
"/rtx/indirectDiffuse/denoiser/iterations": self.iterations,
"/rtx/indirectDiffuse/denoiser/temporal/maxHistory": self.max_history,
}
)
elif self._carb_settings.get("/rtx/indirectDiffuse/denoiser/method") == 1:
settings.update(
{
"/rtx/lightspeed/NRD_ReblurDiffuse/maxAccumulatedFrameNum": self.max_accumulated_frame_num,
"/rtx/lightspeed/NRD_ReblurDiffuse/maxFastAccumulatedFrameNum": self.max_fast_accumulated_frame_num,
"/rtx/lightspeed/NRD_ReblurDiffuse/planeDistanceSensitivity": self.plane_distance_sensitivity,
"/rtx/lightspeed/NRD_ReblurDiffuse/blurRadius": self.blur_radius,
}
)
return settings
class RTMultiGPUSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
currentGpuCount = self._carb_settings.get("/renderer/multiGpu/currentGpuCount")
self.tile_count = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Tile Count", "/rtx/realtime/mgpu/tileCount", range_from=2, range_to=currentGpuCount
)
self.master_post_processOnly = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "GPU 0 Post Process Only", "/rtx/realtime/mgpu/masterPostProcessOnly"
)
self.tile_overlap = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Tile Overlap (Pixels)", "/rtx/realtime/mgpu/tileOverlap", range_from=0, range_to=256
)
self.tile_overlap_blend_fraction = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Fraction of Overlap Pixels to Blend",
"/rtx/realtime/mgpu/tileOverlapBlendFraction",
range_from=0.0,
range_to=1.0,
)
@property
def settings(self):
return {
"/rtx/realtime/mgpu/tileCount": self.tile_count,
"/rtx/realtime/mgpu/masterPostProcessOnly": self.master_post_processOnly,
"/rtx/realtime/mgpu/tileOverlap": self.tile_overlap,
"/rtx/realtime/mgpu/tileOverlapBlendFraction": self.tile_overlap_blend_fraction,
}
@property
def enabled_setting_path(self):
return "/rtx/realtime/mgpu/enabled"
| 39,074 | Python | 42.320399 | 154 | 0.609203 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/__init__.py | from omnigibson.renderer_settings.renderer_settings import RendererSettings
| 76 | Python | 37.499981 | 75 | 0.894737 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/path_tracing_settings.py | import omnigibson.lazy as lazy
from omnigibson.renderer_settings.settings_base import SettingItem, SettingsBase, SubSettingsBase
class PathTracingSettings(SettingsBase):
"""
Path-Tracing setting group that handles a variety of sub-settings, including:
- Anti-Aliasing
- Firefly Filter
- Path-Tracing
- Sampling & Caching
- Denoising
- Path-Traced Fog
- Heterogeneous Volumes (Path Traced Volume)
- Multi GPU (if multiple GPUs available)
"""
def __init__(self):
self.anti_aliasing_settings = AntiAliasingSettings()
self.firefly_filter_settings = FireflyFilterSettings()
self.path_tracing_settings = PathTracingSettings()
self.sampling_and_caching_settings = SamplingAndCachingSettings()
self.denoising_settings = DenoisingSettings()
self.path_traced_fog_settings = PathTracedFogSettings()
self.path_traced_volume_settings = PathTracedVolumeSettings()
if lazy.carb.settings.get_settings().get("/renderer/multiGpu/currentGpuCount") > 1:
self.multi_gpu_settings = MultiGPUSettings()
@property
def settings(self):
settings = {}
settings.update(self.anti_aliasing_settings.settings)
settings.update(self.firefly_filter_settings.settings)
settings.update(self.path_tracing_settings.settings)
settings.update(self.sampling_and_caching_settings.settings)
settings.update(self.denoising_settings.settings)
settings.update(self.path_traced_fog_settings.settings)
settings.update(self.path_traced_volume_settings.settings)
if lazy.carb.settings.get_settings().get("/renderer/multiGpu/currentGpuCount") > 1:
settings.update(self.multi_gpu_settings.settings)
return settings
class AntiAliasingSettings(SubSettingsBase):
def __init__(self):
pt_aa_ops = ["Box", "Triangle", "Gaussian", "Uniform"]
self.sample_pattern = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Anti-Aliasing Sample Pattern", "/rtx/pathtracing/aa/op", pt_aa_ops
)
self.filter_radius = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Anti-Aliasing Radius",
"/rtx/pathtracing/aa/filterRadius",
range_from=0.0001,
range_to=5.0,
)
@property
def settings(self):
return {
"/rtx/pathtracing/aa/op": self.sample_pattern,
"/rtx/pathtracing/aa/filterRadius": self.filter_radius,
}
class FireflyFilterSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_intensity_per_sample = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Max Ray Intensity Glossy",
"/rtx/pathtracing/fireflyFilter/maxIntensityPerSample",
range_from=0,
range_to=100000,
)
self.max_intensityper_sample_diffuse = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Max Ray Intensity Diffuse",
"/rtx/pathtracing/fireflyFilter/maxIntensityPerSampleDiffuse",
range_from=0,
range_to=100000,
)
@property
def settings(self):
return {
"/rtx/pathtracing/fireflyFilter/maxIntensityPerSample": self.max_intensity_per_sample,
"/rtx/pathtracing/fireflyFilter/maxIntensityPerSampleDiffuse": self.max_intensityper_sample_diffuse,
}
@property
def enabled_setting_path(self):
return "/rtx/pathtracing/fireflyFilter/enabled"
class PathTracingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.pathtracing_max_bounces = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Max Bounces", "/rtx/pathtracing/maxBounces", range_from=0, range_to=64
)
self.max_specular_and_transmission_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Specular and Transmission Bounces",
"/rtx/pathtracing/maxSpecularAndTransmissionBounces",
range_from=1,
range_to=128,
)
self.maxvolume_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max SSS Volume Scattering Bounces",
"/rtx/pathtracing/maxVolumeBounces",
range_from=0,
range_to=1024,
)
self.ptfog_max_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Fog Scattering Bounces",
"/rtx/pathtracing/ptfog/maxBounces",
range_from=1,
range_to=10,
)
self.ptvol_max_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Heterogeneous Volume Scattering Bounces",
"/rtx/pathtracing/ptvol/maxBounces",
range_from=0,
range_to=1024,
)
clamp_spp = self._carb_settings.get("/rtx/pathtracing/clampSpp")
if clamp_spp > 1: # better 0, but setting range = (1,1) completely disables the UI control range
self.spp = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Samples per Pixel per Frame (1 to {})".format(clamp_spp),
"/rtx/pathtracing/spp",
range_from=1,
range_to=clamp_spp,
)
else:
self.spp = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Samples per Pixel per Frame",
"/rtx/pathtracing/spp",
range_from=1,
range_to=1048576,
)
self.total_spp = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Total Samples per Pixel (0 = inf)",
"/rtx/pathtracing/totalSpp",
range_from=0,
range_to=1048576,
)
self.fractional_cutout_opacity = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Fractional Cutout Opacity", "/rtx/pathtracing/fractionalCutoutOpacity"
)
self.reset_pt_accum_on_anim_time_change = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Reset Accumulation on Time Change", "/rtx/resetPtAccumOnAnimTimeChange"
)
@property
def settings(self):
return {
"/rtx/pathtracing/maxBounces": self.pathtracing_max_bounces,
"/rtx/pathtracing/maxSpecularAndTransmissionBounces": self.max_specular_and_transmission_bounces,
"/rtx/pathtracing/maxVolumeBounces": self.maxvolume_bounces,
"/rtx/pathtracing/ptfog/maxBounces": self.ptfog_max_bounces,
"/rtx/pathtracing/ptvol/maxBounces": self.ptvol_max_bounces,
"/rtx/pathtracing/spp": self.spp,
"/rtx/pathtracing/totalSpp": self.total_spp,
"/rtx/pathtracing/fractionalCutoutOpacity": self.fractional_cutout_opacity,
"/rtx/resetPtAccumOnAnimTimeChange": self.reset_pt_accum_on_anim_time_change,
}
class SamplingAndCachingSettings(SubSettingsBase):
def __init__(self):
self.cached_enabled = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Caching", "/rtx/pathtracing/cached/enabled")
self.lightcache_cached_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Many-Light Sampling", "/rtx/pathtracing/lightcache/cached/enabled"
)
@property
def settings(self):
return {
"/rtx/pathtracing/cached/enabled": self.cached_enabled,
"/rtx/pathtracing/lightcache/cached/enabled": self.lightcache_cached_enabled,
}
class DenoisingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.blend_factor = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"OptiX Denoiser Blend Factor",
"/rtx/pathtracing/optixDenoiser/blendFactor",
range_from=0,
range_to=1,
)
@property
def settings(self):
return {
"/rtx/pathtracing/optixDenoiser/blendFactor": self.blend_factor,
}
@property
def enabled_setting_path(self):
return "/rtx/pathtracing/optixDenoiser/enabled"
class PathTracedFogSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.density = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Density", "/rtx/pathtracing/ptfog/density", range_from=0, range_to=1
)
self.height = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Height", "/rtx/pathtracing/ptfog/height", range_from=-10, range_to=1000
)
self.falloff = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Falloff", "/rtx/pathtracing/ptfog/falloff", range_from=0, range_to=100
)
self.color = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Color", "/rtx/pathtracing/ptfog/color", range_from=0, range_to=1
)
self.asymmetry = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Asymmetry (g)",
"/rtx/pathtracing/ptfog/asymmetry",
range_from=-0.99,
range_to=0.99,
)
self.z_up = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use +Z Axis for Height", "/rtx/pathtracing/ptfog/ZUp")
@property
def settings(self):
return {
"/rtx/pathtracing/ptfog/density": self.density,
"/rtx/pathtracing/ptfog/height": self.height,
"/rtx/pathtracing/ptfog/falloff": self.falloff,
"/rtx/pathtracing/ptfog/color": self.color,
"/rtx/pathtracing/ptfog/asymmetry": self.asymmetry,
"/rtx/pathtracing/ptfog/ZUp": self.z_up,
}
@property
def enabled_setting_path(self):
return "/rtx/pathtracing/ptfog/enabled"
class PathTracedVolumeSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
pt_vol_tr_ops = ["Biased Ray Marching", "Ratio Tracking", "Brute-force Ray Marching"]
self.transmittance_method = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Transmittance Method",
"/rtx/pathtracing/ptvol/transmittanceMethod",
range_list=pt_vol_tr_ops,
)
self.max_collision_count = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Collision Count",
"/rtx/pathtracing/ptvol/maxCollisionCount",
range_from=0,
range_to=1024,
)
self.max_light_collision_count = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Light Collision Count",
"/rtx/pathtracing/ptvol/maxLightCollisionCount",
range_from=0,
range_to=1024,
)
self.max_density = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Max Density", "/rtx/pathtracing/ptvol/maxDensity", range_from=0, range_to=1000
)
self.fast_vdb = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Fast VDB", "/rtx/pathtracing/ptvol/fastVdb")
# if self._carb_settings.get("/rtx/pathtracing/ptvol/fastVdb")
self.autoMajorant_vdb = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Fast VDB Auto majorant", "/rtx/pathtracing/ptvol/autoMajorantVdb"
)
@property
def settings(self):
settings = {
"/rtx/pathtracing/ptvol/transmittanceMethod": self.transmittance_method,
"/rtx/pathtracing/ptvol/maxCollisionCount": self.max_collision_count,
"/rtx/pathtracing/ptvol/maxLightCollisionCount": self.max_light_collision_count,
"/rtx/pathtracing/ptvol/maxDensity": self.max_density,
"/rtx/pathtracing/ptvol/fastVdb": self.fast_vdb,
}
if self._carb_settings.get("/rtx/pathtracing/ptvol/fastVdb"):
settings.update(
{"/rtx/pathtracing/ptvol/autoMajorantVdb": self.autoMajorant_vdb,}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/pathtracing/ptvol/enabled"
class MultiGPUSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.weight_gpu0 = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "GPU 0 Weight", "/rtx/pathtracing/mgpu/weightGpu0", range_from=0, range_to=1
)
self.compress_radiance = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Compress Radiance", "/rtx/pathtracing/mgpu/compressRadiance"
)
self.compress_albedo = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Compress Albedo", "/rtx/pathtracing/mgpu/compressAlbedo"
)
self.compress_normals = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Compress Normals", "/rtx/pathtracing/mgpu/compressNormals"
)
@property
def settings(self):
return {
"/rtx/pathtracing/mgpu/weightGpu0": self.weight_gpu0,
"/rtx/pathtracing/mgpu/compressRadiance": self.compress_radiance,
"/rtx/pathtracing/mgpu/compressAlbedo": self.compress_albedo,
"/rtx/pathtracing/mgpu/compressNormals": self.compress_normals,
}
@property
def enabled_setting_path(self):
return "/rtx/pathtracing/mgpu/enabled"
| 14,389 | Python | 39.083565 | 148 | 0.623601 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/renderer_settings.py | import omnigibson.lazy as lazy
from omnigibson.renderer_settings.common_settings import CommonSettings
from omnigibson.renderer_settings.path_tracing_settings import PathTracingSettings
from omnigibson.renderer_settings.post_processing_settings import PostProcessingSettings
from omnigibson.renderer_settings.real_time_settings import RealTimeSettings
def singleton(cls):
instances = {}
def getinstance():
if cls not in instances:
instances[cls] = cls()
return instances[cls]
return getinstance
@singleton
class RendererSettings:
"""
Controller for all renderer settings.
"""
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.common_settings = CommonSettings()
self.path_tracing_settings = PathTracingSettings()
self.post_processing_settings = PostProcessingSettings()
self.real_time_settings = RealTimeSettings()
def set_setting(self, path, value):
"""
Sets setting @path with value @value.
Args:
path (str): Path of the setting to set.
value (any): Value to set for for setting @path.
"""
if path not in self.settings:
raise NotImplementedError(f"Setting {path} is not supported.")
self.settings[path].set(value)
def reset_setting(self, path):
"""
Resets setting @path to default value.
Args:
path (str): Path of the setting to reset.
"""
if path not in self.settings:
raise NotImplementedError(f"Setting {path} is not supported.")
self.settings[path].reset()
def get_setting_from_path(self, path):
"""
Get the value of setting @path.
Args:
path (str): Path of the setting to get.
Returns:
any: Value of the requested setting @path.
"""
return self._carb_settings.get(path)
def get_current_renderer(self):
"""
Get the current renderer.
Args:
path (str): Path of the setting to get.
Returns:
str: the current renderer.
"""
return lazy.omni.rtx.window.settings.RendererSettingsFactory.get_current_renderer()
def set_current_renderer(self, renderer):
"""
Set the current renderer to @renderer.
Args:
renderer (str): The renderer to set as current (e.g. Real-Time, Path-Traced).
"""
assert (
renderer in lazy.omni.rtx.window.settings.RendererSettingsFactory.get_registered_renderers()
), f"renderer must be one of {lazy.omni.rtx.window.settings.RendererSettingsFactory.get_registered_renderers()}"
print(f"Set current renderer to {renderer}.")
lazy.omni.rtx.window.settings.RendererSettingsFactory.set_current_renderer(renderer)
@property
def settings(self):
"""
Get all available settings.
Returns:
dict: A dictionary of all available settings.
Keys are setting paths and values are setting item objects.
"""
settings = {}
settings.update(self.common_settings.settings)
settings.update(self.path_tracing_settings.settings)
settings.update(self.post_processing_settings.settings)
settings.update(self.real_time_settings.settings)
return settings
| 3,431 | Python | 31.685714 | 120 | 0.632469 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/settings_base.py | from abc import ABCMeta
import numpy as np
import omnigibson.lazy as lazy
class SettingsBase(metaclass=ABCMeta):
"""
Base class for all renderer settings classes.
Settings classes include Common, Real-Time (Ray-Tracing), Path-Tracing and Post Processing.
"""
class SubSettingsBase(metaclass=ABCMeta):
"""
Base class for all renderer sub-settings classes.
"""
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
@property
def enabled_setting_path(self):
"""
The path of "enabled" setting for this sub-settings class.
Subclass with "enabled" mode needs to overwrite this method.
Returns:
str or None: The path of "enabled" mode for this sub-setting class.
Defaults to None, which means this sub-setting group cannot be enabled/disabled.
"""
return None
def is_enabled(self):
"""
Get the enabled status for this sub-setting class.
Returns:
bool: Whether this sub-setting group is enabled.
Returns true if this sub-setting group has no "enabled" mode.
"""
if not self.enabled_setting_path:
return True
return self._carb_settings.get(self.enabled_setting_path)
def enable(self):
"""
Enable this sub-setting class.
"""
if not self.enabled_setting_path:
print(f"{self.__class__.__name__} has no enabled mode.")
return
self._carb_settings.set_bool(self.enabled_setting_path, True)
def disable(self):
"""
Disable this sub-setting class.
"""
if not self.enabled_setting_path:
print(f"{self.__class__.__name__} has no enabled mode.")
return
self._carb_settings.set_bool(self.enabled_setting_path, False)
class SettingItem:
"""
A wrapper of an individual setting item.
Args:
owner (:class:`SubSettingsBase`): The SubSettingsBase object owning this setting.
setting_type (:class:`SettingType`): Setting type (e.g. float, int).
name (str): Description of this setting.
path (str): Path of this setting.
range_from (float): The lower bound of the values for this setting. Defaults to -inf.
range_to (float): The upper bound of the values for this settin. Defaults to inf.
range_list (list): Possible values for this setting. Defaults to None.
range_dict (dict): Possible values for this setting. Defaults to None.
"""
def __init__(
self,
owner,
setting_type,
name,
path,
range_from=-float("inf"),
range_to=float("inf"),
range_list=None,
range_dict=None,
):
self._carb_settings = lazy.carb.settings.get_settings()
self.owner = owner
self.setting_type = setting_type
self.name = name
self.path = path
self.range_from = range_from
self.range_to = range_to
self.range_list = range_list
self.range_dict = range_dict
self.initial_value = self.value
@property
def value(self):
"""
Get the current setting value.
Returns:
any: The current setting value.
"""
return self._carb_settings.get(self.path)
def get(self):
"""
Get the current setting value.
Returns:
any: The current setting value.
"""
return self.value
def reset(self):
"""
Reset the current setting value to default.
"""
self.set(self.initial_value)
def set(self, value):
"""
Set the current setting to @value.
Args:
value (any): Value to set for the current setting value.
"""
print(f"Set setting {self.path} ({self.name}) to {value}.") # carb.log_info
if not self.owner.is_enabled():
print(f"Note: {self.owner.enabled_setting_path} is not enabled.")
# Validate range list and range dict.
if self.range_list:
assert value in self.range_list, f"Setting {self.path} must be chosen from {self.range_list}."
if self.range_dict:
assert isinstance(self.range_dict, dict)
assert (
value in self.range_dict.values()
), f"Setting {self.path} must be chosen from a value (not key) in {self.range_dict}."
if self.setting_type == lazy.omni.kit.widget.settings.SettingType.FLOAT:
assert isinstance(value, (int, float)), f"Setting {self.path} must be of type float."
assert (
value >= self.range_from and value <= self.range_to
), f"Setting {self.path} must be within range ({self.range_from}, {self.range_to})."
self._carb_settings.set_float(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.INT:
assert isinstance(value, int), f"Setting {self.path} must be of type int."
assert (
value >= self.range_from and value <= self.range_to
), f"Setting {self.path} must be within range ({self.range_from}, {self.range_to})."
self._carb_settings.set_int(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.COLOR3:
assert (
isinstance(value, (list, tuple, np.ndarray)) and len(value) == 3
), f"Setting {self.path} must be a list of 3 numbers within range [0,1]."
for v in value:
assert (
isinstance(v, (int, float)) and v >= 0 and v <= 1
), f"Setting {self.path} must be a list of 3 numbers within range [0,1]."
self._carb_settings.set_float_array(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.BOOL:
assert isinstance(value, bool), f"Setting {self.path} must be of type bool."
self._carb_settings.set_bool(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.STRING:
assert isinstance(value, str), f"Setting {self.path} must be of type str."
self._carb_settings.set_string(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.DOUBLE3:
assert (
isinstance(value, (list, tuple, np.ndarray)) and len(value) == 3
), f"Setting {self.path} must be a list of 3 floats."
for v in value:
assert isinstance(v, (int, float)), f"Setting {self.path} must be a list of 3 floats."
self._carb_settings.set_float_array(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.INT2:
assert (
isinstance(value, (list, tuple, np.ndarray)) and len(value) == 2
), f"Setting {self.path} must be a list of 2 ints."
for v in value:
assert isinstance(v, int), f"Setting {self.path} must be a list of 2 ints."
self._carb_settings.set_int_array(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.DOUBLE2:
assert (
isinstance(value, (list, tuple, np.ndarray)) and len(value) == 2
), f"Setting {self.path} must be a list of 2 floats."
for v in value:
assert isinstance(v, (int, float)), f"Setting {self.path} must be a list of 2 floats."
self._carb_settings.set_float_array(self.path, value)
else:
raise TypeError(f"Setting type {self.setting_type} is not supported.")
| 7,821 | Python | 36.787439 | 106 | 0.586626 |
StanfordVL/OmniGibson/omnigibson/scene_graphs/graph_builder.py | import itertools
import os
import networkx as nx
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
from omnigibson import object_states
from omnigibson.macros import create_module_macros
from omnigibson.sensors import VisionSensor
from omnigibson.object_states.factory import get_state_name
from omnigibson.object_states.object_state_base import AbsoluteObjectState, BooleanStateMixin, RelativeObjectState
from omnigibson.utils import transform_utils as T
def _formatted_aabb(obj):
return T.pose2mat((obj.aabb_center, [0, 0, 0, 1])), obj.aabb_extent
class SceneGraphBuilder(object):
def __init__(
self,
robot_name=None,
egocentric=False,
full_obs=False,
only_true=False,
merge_parallel_edges=False,
exclude_states=(object_states.Touching,)
):
"""
A utility that builds a scene graph with objects as nodes and relative states as edges,
alongside additional metadata.
Args:
robot_name (str): Name of the robot whose POV the scene graph will be from. If None, we assert that there
is exactly one robot in the scene and use that robot.
egocentric (bool): Whether the objects should have poses in the world frame or robot frame.
full_obs (bool): Whether all objects should be updated or only those in FOV of the robot.
only_true (bool): Whether edges should be created only for relative states that have a value True, or for all
relative states (with the appropriate value attached as an attribute).
merge_parallel_edges (bool): Whether parallel edges (e.g. different states of the same pair of objects) should
exist (making the graph a MultiDiGraph) or should be merged into a single edge instead.
exclude_states (Iterable): Object state classes that should be ignored when building the graph.
"""
self._G = None
self._robot = None
self._robot_name = robot_name
self._egocentric = egocentric
self._full_obs = full_obs
self._only_true = only_true
self._merge_parallel_edges = merge_parallel_edges
self._last_desired_frame_to_world = None
self._exclude_states = set(exclude_states)
def get_scene_graph(self):
return self._G.copy()
def _get_desired_frame(self):
desired_frame_to_world = np.eye(4)
world_to_desired_frame = np.eye(4)
if self._egocentric:
desired_frame_to_world = self._get_robot_to_world_transform()
world_to_desired_frame = T.pose_inv(desired_frame_to_world)
return desired_frame_to_world, world_to_desired_frame
def _get_robot_to_world_transform(self):
robot_to_world = self._robot.get_position_orientation()
# Get rid of any rotation outside xy plane
robot_to_world = T.pose2mat((robot_to_world[0], T.z_rotation_from_quat(robot_to_world[1])))
return robot_to_world
def _get_boolean_unary_states(self, obj):
states = {}
for state_type, state_inst in obj.states.items():
if not issubclass(state_type, BooleanStateMixin) or not issubclass(state_type, AbsoluteObjectState):
continue
if state_type in self._exclude_states:
continue
value = state_inst.get_value()
if self._only_true and not value:
continue
states[get_state_name(state_type)] = value
return states
def _get_boolean_binary_states(self, objs):
states = []
for obj1 in objs:
for obj2 in objs:
if obj1 == obj2:
continue
for state_type, state_inst in obj1.states.items():
if not issubclass(state_type, BooleanStateMixin) or not issubclass(state_type, RelativeObjectState):
continue
if state_type in self._exclude_states:
continue
try:
value = state_inst.get_value(obj2)
if self._only_true and not value:
continue
states.append((obj1, obj2, get_state_name(state_type), {"value": value}))
except:
pass
return states
def start(self, scene):
assert self._G is None, "Cannot start graph builder multiple times."
if self._robot_name is None:
assert len(scene.robots) == 1, "Cannot build scene graph without specifying robot name if there are multiple robots."
self._robot = scene.robots[0]
else:
self._robot = scene.object_registry("name", self._robot_name)
assert self._robot, f"Robot with name {self._robot_name} not found in scene."
self._G = nx.DiGraph() if self._merge_parallel_edges else nx.MultiDiGraph()
desired_frame_to_world, world_to_desired_frame = self._get_desired_frame()
robot_pose = world_to_desired_frame @ self._get_robot_to_world_transform()
robot_bbox_pose, robot_bbox_extent = _formatted_aabb(self._robot)
robot_bbox_pose = world_to_desired_frame @ robot_bbox_pose
self._G.add_node(
self._robot, pose=robot_pose, bbox_pose=robot_bbox_pose, bbox_extent=robot_bbox_extent, states={}
)
self._last_desired_frame_to_world = desired_frame_to_world
# Let's also take the first step.
self.step(scene)
def step(self, scene):
assert self._G is not None, "Cannot step graph builder before starting it."
# Prepare the necessary transformations.
desired_frame_to_world, world_to_desired_frame = self._get_desired_frame()
# Update the position of everything that's already in the scene by using our relative position to last frame.
old_desired_to_new_desired = world_to_desired_frame @ self._last_desired_frame_to_world
nodes = list(self._G.nodes)
poses = np.array([self._G.nodes[obj]["pose"] for obj in nodes])
bbox_poses = np.array([self._G.nodes[obj]["bbox_pose"] for obj in nodes])
updated_poses = old_desired_to_new_desired @ poses
updated_bbox_poses = old_desired_to_new_desired @ bbox_poses
for i, obj in enumerate(nodes):
self._G.nodes[obj]["pose"] = updated_poses[i]
self._G.nodes[obj]["bbox_pose"] = updated_bbox_poses[i]
# Update the robot's pose. We don't want to accumulate errors because of the repeated transforms.
self._G.nodes[self._robot]["pose"] = world_to_desired_frame @ self._get_robot_to_world_transform()
robot_bbox_pose, robot_bbox_extent = _formatted_aabb(self._robot)
robot_bbox_pose = world_to_desired_frame @ robot_bbox_pose
self._G.nodes[self._robot]["bbox_pose"] = robot_bbox_pose
self._G.nodes[self._robot]["bbox_extent"] = robot_bbox_extent
# Go through the objects in FOV of the robot.
objs_to_add = set(scene.objects)
if not self._full_obs:
# TODO: Reenable this once InFOV state is fixed.
# If we're not in full observability mode, only pick the objects in FOV of robot.
# bids_in_fov = self._robot.states[object_states.ObjectsInFOVOfRobot].get_value()
# objs_in_fov = set(
# scene.objects_by_id[bid]
# for bid in bids_in_fov
# if bid in scene.objects_by_id
# )
# objs_to_add &= objs_in_fov
raise NotImplementedError("Partial observability not supported in scene graph builder yet.")
for obj in objs_to_add:
# Add the object if not already in the graph
if obj not in self._G.nodes:
self._G.add_node(obj)
# Get the relative position of the object & update it (reducing accumulated errors)
self._G.nodes[obj]["pose"] = world_to_desired_frame @ T.pose2mat(obj.get_position_orientation())
# Get the bounding box.
if hasattr(obj, "get_base_aligned_bbox"):
bbox_center, bbox_orn, bbox_extent, _ = obj.get_base_aligned_bbox(visual=True)
bbox_pose = T.pose2mat((bbox_center, bbox_orn))
else:
bbox_pose, bbox_extent = _formatted_aabb(obj)
self._G.nodes[obj]["bbox_pose"] = world_to_desired_frame @ bbox_pose
self._G.nodes[obj]["bbox_extent"] = bbox_extent
# Update the states of the object
self._G.nodes[obj]["states"] = self._get_boolean_unary_states(obj)
# Update the binary states for seen objects.
self._G.remove_edges_from(list(itertools.product(objs_to_add, objs_to_add)))
edges = self._get_boolean_binary_states(objs_to_add)
if self._merge_parallel_edges:
new_edges = {}
for edge in edges:
edge_pair = (edge[0], edge[1])
if edge_pair not in new_edges:
new_edges[edge_pair] = []
new_edges[edge_pair].append((edge[2], edge[3]["value"]))
edges = [(k[0], k[1], {"states": v}) for k, v in new_edges.items()]
self._G.add_edges_from(edges)
# Save the robot's transform in this frame.
self._last_desired_frame_to_world = desired_frame_to_world
def visualize_scene_graph(scene, G, show_window=True, realistic_positioning=False):
"""
Converts the graph into an image and shows it in a cv2 window if preferred.
Args:
show_window (bool): Whether a cv2 GUI window containing the visualization should be shown.
realistic_positioning (bool): Whether nodes should be positioned based on their position in the scene (if True)
or placed using a graphviz layout (neato) that makes it easier to read edges & find clusters.
"""
def _draw_graph():
nodes = list(G.nodes)
node_labels = {obj: obj.category for obj in nodes}
colors = [
"yellow"
if obj.category == "agent"
else ("green" if obj.states[object_states.InFOVOfRobot].get_value() else "red")
for obj in nodes
]
positions = (
{obj: (-pose[0][1], pose[0][0]) for obj, pose in G.nodes.data("pose")}
if realistic_positioning
else nx.nx_pydot.pydot_layout(G, prog="neato")
)
nx.drawing.draw_networkx(
G,
pos=positions,
labels=node_labels,
nodelist=nodes,
node_color=colors,
font_size=4,
arrowsize=5,
node_size=150,
)
edge_labels = {
edge: ", ".join(
state + "=" + str(value)
for state, value in G.edges[edge]["states"]
)
for edge in G.edges
}
nx.drawing.draw_networkx_edge_labels(G, pos=positions, edge_labels=edge_labels, font_size=4)
# Prepare pyplot figure that's sized to match the robot video.
robot = scene.robots[0]
robot_camera_sensor, = [s for s in robot.sensors.values() if isinstance(s, VisionSensor) and "rgb" in s.modalities]
robot_view = (robot_camera_sensor.get_obs()[0]["rgb"][..., :3]).astype(np.uint8)
imgheight, imgwidth, _ = robot_view.shape
figheight = 4.8
figdpi = imgheight / figheight
figwidth = imgwidth / figdpi
# Draw the graph onto the figure.
fig = plt.figure(figsize=(figwidth, figheight), dpi=figdpi)
_draw_graph()
fig.canvas.draw()
# Convert the canvas to image
graph_view = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
graph_view = graph_view.reshape(fig.canvas.get_width_height()[::-1] + (3,))
assert graph_view.shape == robot_view.shape
plt.close(fig)
# Combine the two images side-by-side
img = np.hstack((robot_view, graph_view))
# # Convert to BGR for cv2-based viewing.
if show_window:
import cv2
cv_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imshow("SceneGraph", cv_img)
cv2.waitKey(1)
return Image.fromarray(img).save(r"D:\test.png")
| 12,289 | Python | 40.52027 | 129 | 0.604768 |
StanfordVL/OmniGibson/omnigibson/robots/franka_allegro.py | import os
import numpy as np
import omnigibson.utils.transform_utils as T
from omnigibson.macros import gm
from omnigibson.robots.manipulation_robot import ManipulationRobot, GraspingPoint
class FrankaAllegro(ManipulationRobot):
"""
Franka Robot with Allegro hand
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=True,
load_config=None,
fixed_base=True,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at teh render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers.
If "sticky", will magnetize any object touching the gripper's fingers.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
grasping_mode=grasping_mode,
grasping_direction="upper",
**kwargs,
)
@property
def model_name(self):
return "FrankaAllegro"
@property
def discrete_action_list(self):
# Not supported for this robot
raise NotImplementedError()
def _create_discrete_action_space(self):
# Fetch does not support discrete actions
raise ValueError("Franka does not support discrete actions!")
@property
def controller_order(self):
return ["arm_{}".format(self.default_arm), "gripper_{}".format(self.default_arm)]
@property
def _default_controllers(self):
controllers = super()._default_controllers
controllers["arm_{}".format(self.default_arm)] = "InverseKinematicsController"
controllers["gripper_{}".format(self.default_arm)] = "MultiFingerGripperController"
return controllers
@property
def _default_gripper_multi_finger_controller_configs(self):
conf = super()._default_gripper_multi_finger_controller_configs
conf[self.default_arm]["mode"] = "independent"
conf[self.default_arm]["command_input_limits"] = None
return conf
@property
def _default_joint_pos(self):
# position where the hand is parallel to the ground
return np.r_[[0.86, -0.27, -0.68, -1.52, -0.18, 1.29, 1.72], np.zeros(16)]
@property
def finger_lengths(self):
return {self.default_arm: 0.1}
@property
def arm_control_idx(self):
return {self.default_arm: np.arange(7)}
@property
def gripper_control_idx(self):
# thumb.proximal, ..., thumb.tip, ..., ring.tip
return {self.default_arm: np.array([8, 12, 16, 20, 10, 14, 18, 22, 9, 13, 17, 21, 7, 11, 15, 19])}
@property
def arm_link_names(self):
return {self.default_arm: [f"panda_link{i}" for i in range(8)]}
@property
def arm_joint_names(self):
return {self.default_arm: [f"panda_joint_{i+1}" for i in range(7)]}
@property
def eef_link_names(self):
return {self.default_arm: "base_link"}
@property
def finger_link_names(self):
return {self.default_arm: [f"link_{i}_0" for i in range(16)]}
@property
def finger_joint_names(self):
# thumb.proximal, ..., thumb.tip, ..., ring.tip
return {self.default_arm: [f"joint_{i}_0" for i in [12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3]]}
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/franka/franka_allegro.usd")
@property
def robot_arm_descriptor_yamls(self):
return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/franka/franka_allegro_description.yaml")}
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/franka/franka_allegro.urdf")
@property
def disabled_collision_pairs(self):
return [
["link_12_0", "part_studio_link"],
]
@property
def assisted_grasp_start_points(self):
return {self.default_arm: [
GraspingPoint(link_name=f"base_link", position=[0.015, 0, -0.03]),
GraspingPoint(link_name=f"base_link", position=[0.015, 0, -0.08]),
GraspingPoint(link_name=f"link_15_0_tip", position=[0, 0.015, 0.007]),
]}
@property
def assisted_grasp_end_points(self):
return {self.default_arm: [
GraspingPoint(link_name=f"link_3_0_tip", position=[0.012, 0, 0.007]),
GraspingPoint(link_name=f"link_7_0_tip", position=[0.012, 0, 0.007]),
GraspingPoint(link_name=f"link_11_0_tip", position=[0.012, 0, 0.007]),
]}
@property
def teleop_rotation_offset(self):
return {self.default_arm: T.euler2quat(np.array([0, np.pi / 2, 0]))}
| 9,906 | Python | 42.643172 | 126 | 0.628104 |
StanfordVL/OmniGibson/omnigibson/robots/two_wheel_robot.py | from abc import abstractmethod
import gym
import numpy as np
from omnigibson.controllers import DifferentialDriveController
from omnigibson.robots.locomotion_robot import LocomotionRobot
from omnigibson.utils.python_utils import classproperty
class TwoWheelRobot(LocomotionRobot):
"""
Robot that is is equipped with locomotive (navigational) capabilities, as defined by two wheels that can be used
for differential drive (e.g.: Turtlebot).
Provides common interface for a wide variety of robots.
NOTE: controller_config should, at the minimum, contain:
base: controller specifications for the controller to control this robot's base (locomotion).
Should include:
- name: Controller to create
- <other kwargs> relevant to the controller being created. Note that all values will have default
values specified, but setting these individual kwargs will override them
"""
def _validate_configuration(self):
# Make sure base only has two indices (i.e.: two wheels for differential drive)
assert len(self.base_control_idx) == 2, "Differential drive can only be used with robot with two base joints!"
# run super
super()._validate_configuration()
def _create_discrete_action_space(self):
# Set action list based on controller (joint or DD) used
# We set straight velocity to be 50% of max velocity for the wheels
max_wheel_joint_vels = self.control_limits["velocity"][1][self.base_control_idx]
assert len(max_wheel_joint_vels) == 2, "TwoWheelRobot must only have two base (wheel) joints!"
assert max_wheel_joint_vels[0] == max_wheel_joint_vels[1], "Both wheels must have the same max speed!"
wheel_straight_vel = 0.5 * max_wheel_joint_vels[0]
wheel_rotate_vel = 0.5
if self._controller_config["base"]["name"] == "JointController":
action_list = [
[wheel_straight_vel, wheel_straight_vel],
[-wheel_straight_vel, -wheel_straight_vel],
[wheel_rotate_vel, -wheel_rotate_vel],
[-wheel_rotate_vel, wheel_rotate_vel],
[0, 0],
]
else:
# DifferentialDriveController
lin_vel = wheel_straight_vel * self.wheel_radius
ang_vel = wheel_rotate_vel * self.wheel_radius * 2.0 / self.wheel_axle_length
action_list = [
[lin_vel, 0],
[-lin_vel, 0],
[0, ang_vel],
[0, -ang_vel],
[0, 0],
]
self.action_list = action_list
# Return this action space
return gym.spaces.Discrete(n=len(self.action_list))
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
# Grab wheel joint velocity info
joints = list(self._joints.values())
wheel_joints = [joints[idx] for idx in self.base_control_idx]
l_vel, r_vel = [jnt.get_state()[1] for jnt in wheel_joints]
# Compute linear and angular velocities
lin_vel = (l_vel + r_vel) / 2.0 * self.wheel_radius
ang_vel = (r_vel - l_vel) / self.wheel_axle_length
# Add info
dic["dd_base_lin_vel"] = lin_vel # lin_vel is already 1D np array of length 1
dic["dd_base_ang_vel"] = ang_vel # lin_vel is already 1D np array of length 1
return dic
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
return obs_keys + ["dd_base_lin_vel", "dd_base_ang_vel"]
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# Use DifferentialDrive as default
controllers["base"] = "DifferentialDriveController"
return controllers
@property
def _default_base_differential_drive_controller_config(self):
"""
Returns:
dict: Default differential drive controller config to
control this robot's base.
"""
return {
"name": "DifferentialDriveController",
"control_freq": self._control_freq,
"wheel_radius": self.wheel_radius,
"wheel_axle_length": self.wheel_axle_length,
"control_limits": self.control_limits,
"dof_idx": self.base_control_idx,
}
@property
def _default_controller_config(self):
# Always run super method first
cfg = super()._default_controller_config
# Add differential drive option to base
cfg["base"][
self._default_base_differential_drive_controller_config["name"]
] = self._default_base_differential_drive_controller_config
return cfg
@property
@abstractmethod
def wheel_radius(self):
"""
Returns:
float: radius of each wheel at the base, in metric units
"""
raise NotImplementedError
@property
@abstractmethod
def wheel_axle_length(self):
"""
Returns:
float: perpendicular distance between the robot's two wheels, in metric units
"""
raise NotImplementedError
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("TwoWheelRobot")
return classes
def teleop_data_to_action(self, teleop_action) -> np.ndarray:
"""
Generate action data from teleoperation action data
NOTE: This implementation only supports DifferentialDriveController.
Overwrite this function if the robot is using a different base controller.
Args:
teleop_action (TeleopAction): teleoperation action data
Returns:
np.ndarray: array of action data
"""
action = super().teleop_data_to_action(teleop_action)
assert isinstance(self._controllers["base"], DifferentialDriveController), "Only DifferentialDriveController is supported!"
action[self.base_action_idx] = np.array([teleop_action.base[0], teleop_action.base[2]]) * 0.3
return action
| 6,279 | Python | 36.60479 | 131 | 0.621118 |
StanfordVL/OmniGibson/omnigibson/robots/tiago.py | import os
import numpy as np
import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.macros import gm
import omnigibson.utils.transform_utils as T
from omnigibson.macros import create_module_macros
from omnigibson.robots.active_camera_robot import ActiveCameraRobot
from omnigibson.robots.manipulation_robot import GraspingPoint, ManipulationRobot
from omnigibson.robots.locomotion_robot import LocomotionRobot
from omnigibson.utils.python_utils import assert_valid_key
from omnigibson.utils.usd_utils import JointType
# Create settings for this module
m = create_module_macros(module_path=__file__)
DEFAULT_ARM_POSES = {
"vertical",
"diagonal15",
"diagonal30",
"diagonal45",
"horizontal",
}
RESET_JOINT_OPTIONS = {
"tuck",
"untuck",
}
m.MAX_LINEAR_VELOCITY = 1.5 # linear velocity in meters/second
m.MAX_ANGULAR_VELOCITY = np.pi # angular velocity in radians/second
class Tiago(ManipulationRobot, LocomotionRobot, ActiveCameraRobot):
"""
Tiago Robot
Reference: https://pal-robotics.com/robots/tiago/
NOTE: If using IK Control for both the right and left arms, note that the left arm dictates control of the trunk,
and the right arm passively must follow. That is, sending desired delta position commands to the right end effector
will be computed independently from any trunk motion occurring during that timestep.
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=False,
load_config=None,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
disable_grasp_handling=False,
# Unique to Tiago
variant="default",
rigid_trunk=False,
default_trunk_offset=0.365,
default_reset_mode="untuck",
default_arm_pose="vertical",
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
category (str): Category for the object. Defaults to "object".
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
prim_type (PrimType): Which type of prim the object is, Valid options are: {PrimType.RIGID, PrimType.CLOTH}
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers.
If "sticky", will magnetize any object touching the gripper's fingers.
disable_grasp_handling (bool): If True, will disable all grasp handling for this object. This means that
sticky and assisted grasp modes will not work unless the connection/release methodsare manually called.
variant (str): Which variant of the robot should be loaded. One of "default", "wrist_cam"
rigid_trunk (bool) if True, will prevent the trunk from moving during execution.
default_trunk_offset (float): sets the default height of the robot's trunk
default_reset_mode (str): Default reset mode for the robot. Should be one of: {"tuck", "untuck"}
If reset_joint_pos is not None, this will be ignored (since _default_joint_pos won't be used during initialization).
default_arm_pose (str): Default pose for the robot arm. Should be one of:
{"vertical", "diagonal15", "diagonal30", "diagonal45", "horizontal"}
If either reset_joint_pos is not None or default_reset_mode is "tuck", this will be ignored.
Otherwise the reset_joint_pos will be initialized to the precomputed joint positions that represents default_arm_pose.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Store args
assert variant in ("default", "wrist_cam"), f"Invalid Tiago variant specified {variant}!"
self._variant = variant
self.rigid_trunk = rigid_trunk
self.default_trunk_offset = default_trunk_offset
assert_valid_key(key=default_reset_mode, valid_keys=RESET_JOINT_OPTIONS, name="default_reset_mode")
self.default_reset_mode = default_reset_mode
assert_valid_key(key=default_arm_pose, valid_keys=DEFAULT_ARM_POSES, name="default_arm_pose")
self.default_arm_pose = default_arm_pose
# Other args that will be created at runtime
self._world_base_fixed_joint_prim = None
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=True,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
grasping_mode=grasping_mode,
disable_grasp_handling=disable_grasp_handling,
**kwargs,
)
@property
def arm_joint_names(self):
names = dict()
for arm in self.arm_names:
names[arm] = ["torso_lift_joint"] + [
f"arm_{arm}_{i}_joint" for i in range(1, 8)
]
return names
@property
def model_name(self):
return "Tiago"
@property
def n_arms(self):
return 2
@property
def arm_names(self):
return ["left", "right"]
@property
def tucked_default_joint_pos(self):
pos = np.zeros(self.n_dof)
# Keep the current joint positions for the base joints
pos[self.base_idx] = self.get_joint_positions()[self.base_idx]
pos[self.trunk_control_idx] = 0
pos[self.camera_control_idx] = np.array([0.0, 0.0])
for arm in self.arm_names:
pos[self.gripper_control_idx[arm]] = np.array([0.045, 0.045]) # open gripper
pos[self.arm_control_idx[arm]] = np.array(
[-1.10, 1.47, 2.71, 1.71, -1.57, 1.39, 0]
)
return pos
@property
def untucked_default_joint_pos(self):
pos = np.zeros(self.n_dof)
# Keep the current joint positions for the base joints
pos[self.base_idx] = self.get_joint_positions()[self.base_idx]
pos[self.trunk_control_idx] = 0.02 + self.default_trunk_offset
pos[self.camera_control_idx] = np.array([0.0, -0.45])
# Choose arm joint pos based on setting
for arm in self.arm_names:
pos[self.gripper_control_idx[arm]] = np.array([0.045, 0.045]) # open gripper
if self.default_arm_pose == "vertical":
pos[self.arm_control_idx[arm]] = np.array(
[0.85846, -0.14852, 1.81008, 1.63368, 0.13764, -1.32488, -0.68415]
)
elif self.default_arm_pose == "diagonal15":
pos[self.arm_control_idx[arm]] = np.array(
[0.90522, -0.42811, 2.23505, 1.64627, 0.76867, -0.79464, 2.05251]
)
elif self.default_arm_pose == "diagonal30":
pos[self.arm_control_idx[arm]] = np.array(
[0.71883, -0.02787, 1.86002, 1.52897, 0.52204, -0.99741, 2.03113]
)
elif self.default_arm_pose == "diagonal45" :
pos[self.arm_control_idx[arm]] = np.array(
[0.66058, -0.14251, 1.77547, 1.43345, 0.65988, -1.02741, 1.81302]
)
elif self.default_arm_pose == "horizontal":
pos[self.arm_control_idx[arm]] = np.array(
[0.61511, 0.49229, 1.46306, 1.24919, 1.08282, -1.28865, 1.50910]
)
else:
raise ValueError("Unknown default arm pose: {}".format(self.default_arm_pose))
return pos
def _create_discrete_action_space(self):
# Tiago does not support discrete actions
raise ValueError("Fetch does not support discrete actions!")
@property
def discrete_action_list(self):
# Not supported for this robot
raise NotImplementedError()
def tuck(self):
"""
Immediately set this robot's configuration to be in tucked mode
"""
self.set_joint_positions(self.tucked_default_joint_pos)
def untuck(self):
"""
Immediately set this robot's configuration to be in untucked mode
"""
self.set_joint_positions(self.untucked_default_joint_pos)
def reset(self):
"""
Reset should not change the robot base pose.
We need to cache and restore the base joints to the world.
"""
base_joint_positions = self.get_joint_positions()[self.base_idx]
super().reset()
self.set_joint_positions(base_joint_positions, indices=self.base_idx)
def _post_load(self):
super()._post_load()
# The eef gripper links should be visual-only. They only contain a "ghost" box volume for detecting objects
# inside the gripper, in order to activate attachments (AG for Cloths).
for arm in self.arm_names:
self.eef_links[arm].visual_only = True
self.eef_links[arm].visible = False
self._world_base_fixed_joint_prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(f"{self._prim_path}/rootJoint")
position, orientation = self.get_position_orientation()
# Set the world-to-base fixed joint to be at the robot's current pose
self._world_base_fixed_joint_prim.GetAttribute("physics:localPos0").Set(tuple(position))
self._world_base_fixed_joint_prim.GetAttribute("physics:localRot0").Set(lazy.pxr.Gf.Quatf(*orientation[[3, 0, 1, 2]].tolist()))
def _initialize(self):
# Run super method first
super()._initialize()
# Set the joint friction for EEF to be higher
for arm in self.arm_names:
for joint in self.finger_joints[arm]:
if joint.joint_type != JointType.JOINT_FIXED:
joint.friction = 500
# Name of the actual root link that we are interested in. Note that this is different from self.root_link_name,
# which is "base_footprint_x", corresponding to the first of the 6 1DoF joints to control the base.
@property
def base_footprint_link_name(self):
return "base_footprint"
@property
def base_footprint_link(self):
"""
Returns:
RigidPrim: base footprint link of this object prim
"""
return self._links[self.base_footprint_link_name]
def _postprocess_control(self, control, control_type):
# Run super method first
u_vec, u_type_vec = super()._postprocess_control(control=control, control_type=control_type)
# Change the control from base_footprint_link ("base_footprint") frame to root_link ("base_footprint_x") frame
base_orn = self.base_footprint_link.get_orientation()
root_link_orn = self.root_link.get_orientation()
cur_orn = T.mat2quat(T.quat2mat(root_link_orn).T @ T.quat2mat(base_orn))
# Rotate the linear and angular velocity to the desired frame
lin_vel_global, _ = T.pose_transform([0, 0, 0], cur_orn, u_vec[self.base_idx[:3]], [0, 0, 0, 1])
ang_vel_global, _ = T.pose_transform([0, 0, 0], cur_orn, u_vec[self.base_idx[3:]], [0, 0, 0, 1])
u_vec[self.base_control_idx] = np.array([lin_vel_global[0], lin_vel_global[1], ang_vel_global[2]])
return u_vec, u_type_vec
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
# Add trunk info
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
dic["trunk_qpos"] = joint_positions[self.trunk_control_idx]
dic["trunk_qvel"] = joint_velocities[self.trunk_control_idx]
return dic
@property
def control_limits(self):
# Overwrite the control limits with the maximum linear and angular velocities for the purpose of clip_control
# Note that when clip_control happens, the control is still in the base_footprint_link ("base_footprint") frame
# Omniverse still thinks these joints have no limits because when the control is transformed to the root_link
# ("base_footprint_x") frame, it can go above this limit.
limits = super().control_limits
limits["velocity"][0][self.base_idx[:3]] = -m.MAX_LINEAR_VELOCITY
limits["velocity"][1][self.base_idx[:3]] = m.MAX_LINEAR_VELOCITY
limits["velocity"][0][self.base_idx[3:]] = -m.MAX_ANGULAR_VELOCITY
limits["velocity"][1][self.base_idx[3:]] = m.MAX_ANGULAR_VELOCITY
return limits
def get_control_dict(self):
# Modify the right hand's pos_relative in the z-direction based on the trunk's value
# We do this so we decouple the trunk's dynamic value from influencing the IK controller solution for the right
# hand, which does not control the trunk
fcns = super().get_control_dict()
native_fcn = fcns.get_fcn("eef_right_pos_relative")
fcns["eef_right_pos_relative"] = lambda: (native_fcn() + np.array([0, 0, -self.get_joint_positions()[self.trunk_control_idx[0]]]))
return fcns
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
return obs_keys + ["trunk_qpos"]
@property
def controller_order(self):
controllers = ["base", "camera"]
for arm in self.arm_names:
controllers += ["arm_{}".format(arm), "gripper_{}".format(arm)]
return controllers
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# We use joint controllers for base and camera as default
controllers["base"] = "JointController"
controllers["camera"] = "JointController"
# We use multi finger gripper, and IK controllers for eefs as default
for arm in self.arm_names:
controllers["arm_{}".format(arm)] = "InverseKinematicsController"
controllers["gripper_{}".format(arm)] = "MultiFingerGripperController"
return controllers
@property
def _default_base_controller_configs(self):
dic = {
"name": "JointController",
"control_freq": self._control_freq,
"control_limits": self.control_limits,
"use_delta_commands": False,
"use_impedances": False,
"motor_type": "velocity",
"dof_idx": self.base_control_idx,
}
return dic
@property
def _default_controller_config(self):
# Grab defaults from super method first
cfg = super()._default_controller_config
# Get default base controller for omnidirectional Tiago
cfg["base"] = {"JointController": self._default_base_controller_configs}
for arm in self.arm_names:
for arm_cfg in cfg["arm_{}".format(arm)].values():
if arm == "left":
# Need to override joint idx being controlled to include trunk in default arm controller configs
arm_control_idx = np.concatenate([self.trunk_control_idx, self.arm_control_idx[arm]])
arm_cfg["dof_idx"] = arm_control_idx
# Need to modify the default joint positions also if this is a null joint controller
if arm_cfg["name"] == "NullJointController":
arm_cfg["default_command"] = self.reset_joint_pos[arm_control_idx]
# If using rigid trunk, we also clamp its limits
# TODO: How to handle for right arm which has a fixed trunk internally even though the trunk is moving
# via the left arm??
if self.rigid_trunk:
arm_cfg["control_limits"]["position"][0][self.trunk_control_idx] = \
self.untucked_default_joint_pos[self.trunk_control_idx]
arm_cfg["control_limits"]["position"][1][self.trunk_control_idx] = \
self.untucked_default_joint_pos[self.trunk_control_idx]
return cfg
@property
def _default_joint_pos(self):
return self.tucked_default_joint_pos if self.default_reset_mode == "tuck" else self.untucked_default_joint_pos
@property
def assisted_grasp_start_points(self):
return {
arm: [
GraspingPoint(link_name="gripper_{}_right_finger_link".format(arm), position=[0.002, 0.0, -0.2]),
GraspingPoint(link_name="gripper_{}_right_finger_link".format(arm), position=[0.002, 0.0, -0.13]),
]
for arm in self.arm_names
}
@property
def assisted_grasp_end_points(self):
return {
arm: [
GraspingPoint(link_name="gripper_{}_left_finger_link".format(arm), position=[-0.002, 0.0, -0.2]),
GraspingPoint(link_name="gripper_{}_left_finger_link".format(arm), position=[-0.002, 0.0, -0.13]),
]
for arm in self.arm_names
}
@property
def base_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to the three controllable 1DoF base joints
"""
joints = list(self.joints.keys())
return np.array(
[
joints.index(f"base_footprint_{component}_joint")
for component in ["x", "y", "rz"]
]
)
@property
def base_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to the six 1DoF base joints
"""
joints = list(self.joints.keys())
return np.array(
[
joints.index(f"base_footprint_{component}_joint")
for component in ["x", "y", "z", "rx", "ry", "rz"]
]
)
@property
def trunk_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to trunk joint.
"""
return np.array([6])
@property
def camera_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to [tilt, pan] camera joints.
"""
return np.array([9, 12])
@property
def arm_control_idx(self):
return {"left": np.array([7, 10, 13, 15, 17, 19, 21]),
"right": np.array([8, 11, 14, 16, 18, 20, 22]),
"combined": np.array([7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22])}
@property
def gripper_control_idx(self):
return {"left": np.array([23, 24]), "right": np.array([25, 26])}
@property
def finger_lengths(self):
return {arm: 0.12 for arm in self.arm_names}
@property
def disabled_collision_link_names(self):
# These should NEVER have collisions in the first place (i.e.: these are poorly modeled geoms from the source
# asset) -- they are strictly engulfed within ANOTHER collision mesh from a DIFFERENT link
return [name for arm in self.arm_names for name in [f"arm_{arm}_tool_link", f"wrist_{arm}_ft_link", f"wrist_{arm}_ft_tool_link"]]
@property
def disabled_collision_pairs(self):
return [
["arm_left_1_link", "arm_left_2_link"],
["arm_left_2_link", "arm_left_3_link"],
["arm_left_3_link", "arm_left_4_link"],
["arm_left_4_link", "arm_left_5_link"],
["arm_left_5_link", "arm_left_6_link"],
["arm_left_6_link", "arm_left_7_link"],
["arm_right_1_link", "arm_right_2_link"],
["arm_right_2_link", "arm_right_3_link"],
["arm_right_3_link", "arm_right_4_link"],
["arm_right_4_link", "arm_right_5_link"],
["arm_right_5_link", "arm_right_6_link"],
["arm_right_6_link", "arm_right_7_link"],
["gripper_right_right_finger_link", "gripper_right_left_finger_link"],
["gripper_right_link", "wrist_right_ft_link"],
["arm_right_6_link", "gripper_right_link"],
["arm_right_6_link", "wrist_right_ft_tool_link"],
["arm_right_6_link", "wrist_right_ft_link"],
["arm_right_6_link", "arm_right_tool_link"],
["arm_right_5_link", "wrist_right_ft_link"],
["arm_right_5_link", "arm_right_tool_link"],
["gripper_left_right_finger_link", "gripper_left_left_finger_link"],
["gripper_left_link", "wrist_left_ft_link"],
["arm_left_6_link", "gripper_left_link"],
["arm_left_6_link", "wrist_left_ft_tool_link"],
["arm_left_6_link", "wrist_left_ft_link"],
["arm_left_6_link", "arm_left_tool_link"],
["arm_left_5_link", "wrist_left_ft_link"],
["arm_left_5_link", "arm_left_tool_link"],
["torso_lift_link", "torso_fixed_column_link"],
["torso_fixed_link", "torso_fixed_column_link"],
["base_antenna_left_link", "torso_fixed_link"],
["base_antenna_right_link", "torso_fixed_link"],
["base_link", "wheel_rear_left_link"],
["base_link", "wheel_rear_right_link"],
["base_link", "wheel_front_left_link"],
["base_link", "wheel_front_right_link"],
["base_link", "base_dock_link"],
["base_link", "base_antenna_right_link"],
["base_link", "base_antenna_left_link"],
["base_link", "torso_fixed_column_link"],
["base_link", "suspension_front_left_link"],
["base_link", "suspension_front_right_link"],
["base_link", "torso_fixed_link"],
["suspension_front_left_link", "wheel_front_left_link"],
["torso_lift_link", "arm_right_1_link"],
["torso_lift_link", "arm_right_2_link"],
["torso_lift_link", "arm_left_1_link"],
["torso_lift_link", "arm_left_2_link"],
["arm_left_tool_link", "wrist_left_ft_link"],
["wrist_left_ft_link", "wrist_left_ft_tool_link"],
["wrist_left_ft_tool_link", "gripper_left_link"],
['gripper_left_grasping_frame', 'gripper_left_left_finger_link'],
['gripper_left_grasping_frame', 'gripper_left_right_finger_link'],
['wrist_right_ft_link', 'arm_right_tool_link'],
['wrist_right_ft_tool_link', 'wrist_right_ft_link'],
['gripper_right_link', 'wrist_right_ft_tool_link'],
['head_1_link', 'head_2_link'],
['torso_fixed_column_link', 'arm_right_1_link'],
['torso_fixed_column_link', 'arm_left_1_link'],
['arm_left_1_link', 'arm_left_3_link'],
['arm_right_1_link', 'arm_right_3_link'],
['base_link', 'arm_right_4_link'],
['base_link', 'arm_right_5_link'],
['base_link', 'arm_left_4_link'],
['base_link', 'arm_left_5_link'],
['wrist_left_ft_tool_link', 'arm_left_5_link'],
['wrist_right_ft_tool_link', 'arm_right_5_link'],
['arm_left_tool_link', 'wrist_left_ft_tool_link'],
['arm_right_tool_link', 'wrist_right_ft_tool_link']
]
@property
def manipulation_link_names(self):
return [
"torso_fixed_link",
"torso_lift_link",
"arm_left_1_link",
"arm_left_2_link",
"arm_left_3_link",
"arm_left_4_link",
"arm_left_5_link",
"arm_left_6_link",
"arm_left_7_link",
"arm_left_tool_link",
"wrist_left_ft_link",
"wrist_left_ft_tool_link",
"gripper_left_link",
# "gripper_left_grasping_frame",
"gripper_left_left_finger_link",
"gripper_left_right_finger_link",
"gripper_left_tool_link",
"arm_right_1_link",
"arm_right_2_link",
"arm_right_3_link",
"arm_right_4_link",
"arm_right_5_link",
"arm_right_6_link",
"arm_right_7_link",
"arm_right_tool_link",
"wrist_right_ft_link",
"wrist_right_ft_tool_link",
"gripper_right_link",
# "gripper_right_grasping_frame",
"gripper_right_left_finger_link",
"gripper_right_right_finger_link",
"gripper_right_tool_link",
"head_1_link",
"head_2_link",
"xtion_link",
]
@property
def arm_link_names(self):
return {arm: [f"arm_{arm}_{i}_link" for i in range(1, 8)] for arm in self.arm_names}
@property
def eef_link_names(self):
return {arm: "gripper_{}_grasping_frame".format(arm) for arm in self.arm_names}
@property
def finger_link_names(self):
return {arm: ["gripper_{}_right_finger_link".format(arm), "gripper_{}_left_finger_link".format(arm)] for arm in
self.arm_names}
@property
def finger_joint_names(self):
return {arm: ["gripper_{}_right_finger_joint".format(arm), "gripper_{}_left_finger_joint".format(arm)] for arm
in self.arm_names}
@property
def usd_path(self):
if self._variant == "wrist_cam":
return os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford/tiago_dual_omnidirectional_stanford_33_with_wrist_cam.usd")
# Default variant
return os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford/tiago_dual_omnidirectional_stanford_33.usd")
@property
def simplified_mesh_usd_path(self):
# TODO: How can we make this more general - maybe some automatic way to generate these?
return os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford/tiago_dual_omnidirectional_stanford_33_simplified_collision_mesh.usd")
@property
def robot_arm_descriptor_yamls(self):
# TODO: Remove the need to do this by making the arm descriptor yaml files generated automatically
return {"left": os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford_left_arm_descriptor.yaml"),
"left_fixed": os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford_left_arm_fixed_trunk_descriptor.yaml"),
"right": os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford_right_arm_fixed_trunk_descriptor.yaml"),
"combined": os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford.yaml")}
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford.urdf")
@property
def arm_workspace_range(self):
return {
"left": [np.deg2rad(15), np.deg2rad(75)],
"right": [np.deg2rad(-75), np.deg2rad(-15)],
}
def get_position_orientation(self):
# TODO: Investigate the need for this custom behavior.
return self.base_footprint_link.get_position_orientation()
def set_position_orientation(self, position=None, orientation=None):
current_position, current_orientation = self.get_position_orientation()
if position is None:
position = current_position
if orientation is None:
orientation = current_orientation
position, orientation = np.array(position), np.array(orientation)
assert np.isclose(np.linalg.norm(orientation), 1, atol=1e-3), \
f"{self.name} desired orientation {orientation} is not a unit quaternion."
# TODO: Reconsider the need for this. Why can't these behaviors be unified? Does the joint really need to move?
# If the simulator is playing, set the 6 base joints to achieve the desired pose of base_footprint link frame
if og.sim.is_playing() and self.initialized:
# Find the relative transformation from base_footprint_link ("base_footprint") frame to root_link
# ("base_footprint_x") frame. Assign it to the 6 1DoF joints that control the base.
# Note that the 6 1DoF joints are originated from the root_link ("base_footprint_x") frame.
joint_pos, joint_orn = self.root_link.get_position_orientation()
inv_joint_pos, inv_joint_orn = T.mat2pose(T.pose_inv(T.pose2mat((joint_pos, joint_orn))))
relative_pos, relative_orn = T.pose_transform(inv_joint_pos, inv_joint_orn, position, orientation)
relative_rpy = T.quat2euler(relative_orn)
self.joints["base_footprint_x_joint"].set_pos(relative_pos[0], drive=False)
self.joints["base_footprint_y_joint"].set_pos(relative_pos[1], drive=False)
self.joints["base_footprint_z_joint"].set_pos(relative_pos[2], drive=False)
self.joints["base_footprint_rx_joint"].set_pos(relative_rpy[0], drive=False)
self.joints["base_footprint_ry_joint"].set_pos(relative_rpy[1], drive=False)
self.joints["base_footprint_rz_joint"].set_pos(relative_rpy[2], drive=False)
# Else, set the pose of the robot frame, and then move the joint frame of the world_base_joint to match it
else:
# Call the super() method to move the robot frame first
super().set_position_orientation(position, orientation)
# Move the joint frame for the world_base_joint
if self._world_base_fixed_joint_prim is not None:
self._world_base_fixed_joint_prim.GetAttribute("physics:localPos0").Set(tuple(position))
self._world_base_fixed_joint_prim.GetAttribute("physics:localRot0").Set(lazy.pxr.Gf.Quatf(*orientation[[3, 0, 1, 2]].tolist()))
def set_linear_velocity(self, velocity: np.ndarray):
# Transform the desired linear velocity from the world frame to the root_link ("base_footprint_x") frame
# Note that this will also set the target to be the desired linear velocity (i.e. the robot will try to maintain
# such velocity), which is different from the default behavior of set_linear_velocity for all other objects.
orn = self.root_link.get_orientation()
velocity_in_root_link = T.quat2mat(orn).T @ velocity
self.joints["base_footprint_x_joint"].set_vel(velocity_in_root_link[0], drive=False)
self.joints["base_footprint_y_joint"].set_vel(velocity_in_root_link[1], drive=False)
self.joints["base_footprint_z_joint"].set_vel(velocity_in_root_link[2], drive=False)
def get_linear_velocity(self) -> np.ndarray:
# Note that the link we are interested in is self.base_footprint_link, not self.root_link
return self.base_footprint_link.get_linear_velocity()
def set_angular_velocity(self, velocity: np.ndarray) -> None:
# See comments of self.set_linear_velocity
orn = self.root_link.get_orientation()
velocity_in_root_link = T.quat2mat(orn).T @ velocity
self.joints["base_footprint_rx_joint"].set_vel(velocity_in_root_link[0], drive=False)
self.joints["base_footprint_ry_joint"].set_vel(velocity_in_root_link[1], drive=False)
self.joints["base_footprint_rz_joint"].set_vel(velocity_in_root_link[2], drive=False)
def get_angular_velocity(self) -> np.ndarray:
# Note that the link we are interested in is self.base_footprint_link, not self.root_link
return self.base_footprint_link.get_angular_velocity()
@property
def eef_usd_path(self):
return {arm: os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford/tiago_eef.usd") for arm in self.arm_names}
def teleop_data_to_action(self, teleop_action) -> np.ndarray:
action = ManipulationRobot.teleop_data_to_action(self, teleop_action)
action[self.base_action_idx] = teleop_action.base * 0.1
return action
| 36,634 | Python | 46.701823 | 163 | 0.611345 |
StanfordVL/OmniGibson/omnigibson/robots/active_camera_robot.py | from abc import abstractmethod
import numpy as np
from omnigibson.robots.robot_base import BaseRobot
from omnigibson.utils.python_utils import classproperty
class ActiveCameraRobot(BaseRobot):
"""
Robot that is is equipped with an onboard camera that can be moved independently from the robot's other kinematic
joints (e.g.: independent of base and arm for a mobile manipulator).
NOTE: controller_config should, at the minimum, contain:
camera: controller specifications for the controller to control this robot's camera.
Should include:
- name: Controller to create
- <other kwargs> relevant to the controller being created. Note that all values will have default
values specified, but setting these individual kwargs will override them
"""
def _validate_configuration(self):
# Make sure a camera controller is specified
assert (
"camera" in self._controllers
), "Controller 'camera' must exist in controllers! Current controllers: {}".format(
list(self._controllers.keys())
)
# run super
super()._validate_configuration()
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
# Add camera pos info
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
dic["camera_qpos"] = joint_positions[self.camera_control_idx]
dic["camera_qpos_sin"] = np.sin(joint_positions[self.camera_control_idx])
dic["camera_qpos_cos"] = np.cos(joint_positions[self.camera_control_idx])
dic["camera_qvel"] = joint_velocities[self.camera_control_idx]
return dic
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
return obs_keys + ["camera_qpos_sin", "camera_qpos_cos"]
@property
def controller_order(self):
# By default, only camera is supported
return ["camera"]
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# For best generalizability use, joint controller as default
controllers["camera"] = "JointController"
return controllers
@property
def _default_camera_joint_controller_config(self):
"""
Returns:
dict: Default camera joint controller config to control this robot's camera
"""
return {
"name": "JointController",
"control_freq": self._control_freq,
"control_limits": self.control_limits,
"dof_idx": self.camera_control_idx,
"command_output_limits": None,
"motor_type": "position",
"use_delta_commands": True,
"use_impedances": False,
}
@property
def _default_camera_null_joint_controller_config(self):
"""
Returns:
dict: Default null joint controller config to control this robot's camera i.e. dummy controller
"""
return {
"name": "NullJointController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.camera_control_idx,
"default_command": self.reset_joint_pos[self.camera_control_idx],
"use_impedances": False,
}
@property
def _default_controller_config(self):
# Always run super method first
cfg = super()._default_controller_config
# We additionally add in camera default
cfg["camera"] = {
self._default_camera_joint_controller_config["name"]: self._default_camera_joint_controller_config,
self._default_camera_null_joint_controller_config["name"]: self._default_camera_null_joint_controller_config,
}
return cfg
@property
@abstractmethod
def camera_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to camera joints.
"""
raise NotImplementedError
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("ActiveCameraRobot")
return classes
| 4,464 | Python | 33.882812 | 121 | 0.62948 |
StanfordVL/OmniGibson/omnigibson/robots/vx300s.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.robots.manipulation_robot import ManipulationRobot, GraspingPoint
from omnigibson.utils.transform_utils import euler2quat
class VX300S(ManipulationRobot):
"""
The VX300-6DOF arm from Trossen Robotics
(https://www.trossenrobotics.com/docs/interbotix_xsarms/specifications/vx300s.html)
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=True,
load_config=None,
fixed_base=True,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers.
If "sticky", will magnetize any object touching the gripper's fingers.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
grasping_mode=grasping_mode,
**kwargs,
)
@property
def model_name(self):
return "VX300S"
@property
def discrete_action_list(self):
# Not supported for this robot
raise NotImplementedError()
def _create_discrete_action_space(self):
# Fetch does not support discrete actions
raise ValueError("VX300S does not support discrete actions!")
@property
def controller_order(self):
return [f"arm_{self.default_arm}", f"gripper_{self.default_arm}"]
@property
def _default_controllers(self):
controllers = super()._default_controllers
controllers[f"arm_{self.default_arm}"] = "InverseKinematicsController"
controllers[f"gripper_{self.default_arm}"] = "MultiFingerGripperController"
return controllers
@property
def _default_joint_pos(self):
return np.array([0.0, -0.849879, 0.258767, 0.0, 1.2831712, 0.0, 0.057, 0.057])
@property
def finger_lengths(self):
return {self.default_arm: 0.1}
@property
def arm_control_idx(self):
# The first 7 joints
return {self.default_arm: np.arange(6)}
@property
def gripper_control_idx(self):
# The last two joints
return {self.default_arm: np.arange(6, 8)}
@property
def disabled_collision_pairs(self):
return [
["gripper_bar_link", "left_finger_link"],
["gripper_bar_link", "right_finger_link"],
["gripper_bar_link", "gripper_link"],
]
@property
def arm_link_names(self):
return {self.default_arm: [
"base_link",
"shoulder_link",
"upper_arm_link",
"upper_forearm_link",
"lower_forearm_link",
"wrist_link",
"gripper_link",
"gripper_bar_link",
]}
@property
def arm_joint_names(self):
return {self.default_arm: [
"waist",
"shoulder",
"elbow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
]}
@property
def eef_link_names(self):
return {self.default_arm: "ee_gripper_link"}
@property
def finger_link_names(self):
return {self.default_arm: ["left_finger_link", "right_finger_link"]}
@property
def finger_joint_names(self):
return {self.default_arm: ["left_finger", "right_finger"]}
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/vx300s/vx300s/vx300s.usd")
@property
def robot_arm_descriptor_yamls(self):
return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/vx300s/vx300s_description.yaml")}
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/vx300s/vx300s.urdf")
@property
def eef_usd_path(self):
# return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/vx300s/vx300s_eef.usd")}
raise NotImplementedError
@property
def teleop_rotation_offset(self):
return {self.default_arm: euler2quat([-np.pi, 0, 0])}
@property
def assisted_grasp_start_points(self):
return {self.default_arm: [
GraspingPoint(link_name="right_finger_link", position=[0.0, 0.001, 0.057]),
]}
@property
def assisted_grasp_end_points(self):
return {self.default_arm: [
GraspingPoint(link_name="left_finger_link", position=[0.0, 0.001, 0.057]),
]}
| 9,721 | Python | 40.021097 | 126 | 0.622673 |
StanfordVL/OmniGibson/omnigibson/robots/fetch.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.controllers import ControlType
from omnigibson.robots.active_camera_robot import ActiveCameraRobot
from omnigibson.robots.manipulation_robot import GraspingPoint, ManipulationRobot
from omnigibson.robots.two_wheel_robot import TwoWheelRobot
from omnigibson.utils.python_utils import assert_valid_key
from omnigibson.utils.ui_utils import create_module_logger
from omnigibson.utils.transform_utils import euler2quat
from omnigibson.utils.usd_utils import JointType
log = create_module_logger(module_name=__name__)
DEFAULT_ARM_POSES = {
"vertical",
"diagonal15",
"diagonal30",
"diagonal45",
"horizontal",
}
RESET_JOINT_OPTIONS = {
"tuck",
"untuck",
}
class Fetch(ManipulationRobot, TwoWheelRobot, ActiveCameraRobot):
"""
Fetch Robot
Reference: https://fetchrobotics.com/robotics-platforms/fetch-mobile-manipulator/
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=False,
load_config=None,
fixed_base=False,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
disable_grasp_handling=False,
# Unique to Fetch
rigid_trunk=False,
default_trunk_offset=0.365,
default_reset_mode="untuck",
default_arm_pose="vertical",
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers.
If "sticky", will magnetize any object touching the gripper's fingers.
disable_grasp_handling (bool): If True, will disable all grasp handling for this object. This means that
sticky and assisted grasp modes will not work unless the connection/release methodsare manually called.
rigid_trunk (bool) if True, will prevent the trunk from moving during execution.
default_trunk_offset (float): sets the default height of the robot's trunk
default_reset_mode (str): Default reset mode for the robot. Should be one of: {"tuck", "untuck"}
If reset_joint_pos is not None, this will be ignored (since _default_joint_pos won't be used during initialization).
default_arm_pose (str): Default pose for the robot arm. Should be one of:
{"vertical", "diagonal15", "diagonal30", "diagonal45", "horizontal"}
If either reset_joint_pos is not None or default_reset_mode is "tuck", this will be ignored.
Otherwise the reset_joint_pos will be initialized to the precomputed joint positions that represents default_arm_pose.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Store args
self.rigid_trunk = rigid_trunk
self.default_trunk_offset = default_trunk_offset
assert_valid_key(key=default_reset_mode, valid_keys=RESET_JOINT_OPTIONS, name="default_reset_mode")
self.default_reset_mode = default_reset_mode
assert_valid_key(key=default_arm_pose, valid_keys=DEFAULT_ARM_POSES, name="default_arm_pose")
self.default_arm_pose = default_arm_pose
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
grasping_mode=grasping_mode,
disable_grasp_handling=disable_grasp_handling,
**kwargs,
)
@property
def model_name(self):
return "Fetch"
@property
def tucked_default_joint_pos(self):
return np.array(
[
0.0,
0.0, # wheels
0.02, # trunk
0.0,
1.1707963267948966,
0.0, # head
1.4707963267948965,
-0.4,
1.6707963267948966,
0.0,
1.5707963267948966,
0.0, # arm
0.05,
0.05, # gripper
]
)
@property
def untucked_default_joint_pos(self):
pos = np.zeros(self.n_joints)
pos[self.base_control_idx] = 0.0
pos[self.trunk_control_idx] = 0.02 + self.default_trunk_offset
pos[self.camera_control_idx] = np.array([0.0, 0.45])
pos[self.gripper_control_idx[self.default_arm]] = np.array([0.05, 0.05]) # open gripper
# Choose arm based on setting
if self.default_arm_pose == "vertical":
pos[self.arm_control_idx[self.default_arm]] = np.array(
[-0.94121, -0.64134, 1.55186, 1.65672, -0.93218, 1.53416, 2.14474]
)
elif self.default_arm_pose == "diagonal15":
pos[self.arm_control_idx[self.default_arm]] = np.array(
[-0.95587, -0.34778, 1.46388, 1.47821, -0.93813, 1.4587, 1.9939]
)
elif self.default_arm_pose == "diagonal30":
pos[self.arm_control_idx[self.default_arm]] = np.array(
[-1.06595, -0.22184, 1.53448, 1.46076, -0.84995, 1.36904, 1.90996]
)
elif self.default_arm_pose == "diagonal45":
pos[self.arm_control_idx[self.default_arm]] = np.array(
[-1.11479, -0.0685, 1.5696, 1.37304, -0.74273, 1.3983, 1.79618]
)
elif self.default_arm_pose == "horizontal":
pos[self.arm_control_idx[self.default_arm]] = np.array(
[-1.43016, 0.20965, 1.86816, 1.77576, -0.27289, 1.31715, 2.01226]
)
else:
raise ValueError("Unknown default arm pose: {}".format(self.default_arm_pose))
return pos
def _post_load(self):
super()._post_load()
# Set the wheels back to using sphere approximations
for wheel_name in ["l_wheel_link", "r_wheel_link"]:
log.warning(
"Fetch wheel links are post-processed to use sphere approximation collision meshes."
"Please ignore any previous errors about these collision meshes.")
wheel_link = self.links[wheel_name]
assert set(wheel_link.collision_meshes) == {"collisions"}, "Wheel link should only have 1 collision!"
wheel_link.collision_meshes["collisions"].set_collision_approximation("boundingSphere")
# Also apply a convex decomposition to the torso lift link
torso_lift_link = self.links["torso_lift_link"]
assert set(torso_lift_link.collision_meshes) == {"collisions"}, "Wheel link should only have 1 collision!"
torso_lift_link.collision_meshes["collisions"].set_collision_approximation("convexDecomposition")
@property
def discrete_action_list(self):
# Not supported for this robot
raise NotImplementedError()
def _create_discrete_action_space(self):
# Fetch does not support discrete actions
raise ValueError("Fetch does not support discrete actions!")
def tuck(self):
"""
Immediately set this robot's configuration to be in tucked mode
"""
self.set_joint_positions(self.tucked_default_joint_pos)
def untuck(self):
"""
Immediately set this robot's configuration to be in untucked mode
"""
self.set_joint_positions(self.untucked_default_joint_pos)
def _initialize(self):
# Run super method first
super()._initialize()
# Set the joint friction for EEF to be higher
for arm in self.arm_names:
for joint in self.finger_joints[arm]:
if joint.joint_type != JointType.JOINT_FIXED:
joint.friction = 500
def _postprocess_control(self, control, control_type):
# Run super method first
u_vec, u_type_vec = super()._postprocess_control(control=control, control_type=control_type)
# Override trunk value if we're keeping the trunk rigid
if self.rigid_trunk:
u_vec[self.trunk_control_idx] = self.untucked_default_joint_pos[self.trunk_control_idx]
u_type_vec[self.trunk_control_idx] = ControlType.POSITION
# Return control
return u_vec, u_type_vec
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
# Add trunk info
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
dic["trunk_qpos"] = joint_positions[self.trunk_control_idx]
dic["trunk_qvel"] = joint_velocities[self.trunk_control_idx]
return dic
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
return obs_keys + ["trunk_qpos"]
@property
def controller_order(self):
# Ordered by general robot kinematics chain
return ["base", "camera", "arm_{}".format(self.default_arm), "gripper_{}".format(self.default_arm)]
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# We use multi finger gripper, differential drive, and IK controllers as default
controllers["base"] = "DifferentialDriveController"
controllers["camera"] = "JointController"
controllers["arm_{}".format(self.default_arm)] = "InverseKinematicsController"
controllers["gripper_{}".format(self.default_arm)] = "MultiFingerGripperController"
return controllers
@property
def _default_controller_config(self):
# Grab defaults from super method first
cfg = super()._default_controller_config
# Need to override joint idx being controlled to include trunk in default arm controller configs
for arm_cfg in cfg[f"arm_{self.default_arm}"].values():
arm_control_idx = np.concatenate([self.trunk_control_idx, self.arm_control_idx[self.default_arm]])
arm_cfg["dof_idx"] = arm_control_idx
# Need to modify the default joint positions also if this is a null joint controller
if arm_cfg["name"] == "NullJointController":
arm_cfg["default_command"] = self.reset_joint_pos[arm_control_idx]
# If using rigid trunk, we also clamp its limits
if self.rigid_trunk:
arm_cfg["control_limits"]["position"][0][self.trunk_control_idx] = \
self.untucked_default_joint_pos[self.trunk_control_idx]
arm_cfg["control_limits"]["position"][1][self.trunk_control_idx] = \
self.untucked_default_joint_pos[self.trunk_control_idx]
return cfg
@property
def _default_joint_pos(self):
return self.tucked_default_joint_pos if self.default_reset_mode == "tuck" else self.untucked_default_joint_pos
@property
def wheel_radius(self):
return 0.0613
@property
def wheel_axle_length(self):
return 0.372
@property
def finger_lengths(self):
return {self.default_arm: 0.1}
@property
def assisted_grasp_start_points(self):
return {
self.default_arm: [
GraspingPoint(link_name="r_gripper_finger_link", position=[0.025, -0.012, 0.0]),
GraspingPoint(link_name="r_gripper_finger_link", position=[-0.025, -0.012, 0.0]),
]
}
@property
def assisted_grasp_end_points(self):
return {
self.default_arm: [
GraspingPoint(link_name="l_gripper_finger_link", position=[0.025, 0.012, 0.0]),
GraspingPoint(link_name="l_gripper_finger_link", position=[-0.025, 0.012, 0.0]),
]
}
@property
def base_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to [Left, Right] wheel joints.
"""
return np.array([0, 1])
@property
def trunk_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to trunk joint.
"""
return np.array([2])
@property
def camera_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to [tilt, pan] camera joints.
"""
return np.array([3, 5])
@property
def arm_control_idx(self):
return {self.default_arm: np.array([4, 6, 7, 8, 9, 10, 11])}
@property
def gripper_control_idx(self):
return {self.default_arm: np.array([12, 13])}
@property
def disabled_collision_pairs(self):
return [
["torso_lift_link", "shoulder_lift_link"],
["torso_lift_link", "torso_fixed_link"],
["torso_lift_link", "estop_link"],
["base_link", "laser_link"],
["base_link", "torso_fixed_link"],
["base_link", "l_wheel_link"],
["base_link", "r_wheel_link"],
["base_link", "estop_link"],
["torso_lift_link", "shoulder_pan_link"],
["torso_lift_link", "head_pan_link"],
["head_pan_link", "head_tilt_link"],
["shoulder_pan_link", "shoulder_lift_link"],
["shoulder_lift_link", "upperarm_roll_link"],
["upperarm_roll_link", "elbow_flex_link"],
["elbow_flex_link", "forearm_roll_link"],
["forearm_roll_link", "wrist_flex_link"],
["wrist_flex_link", "wrist_roll_link"],
["wrist_roll_link", "gripper_link"],
]
@property
def manipulation_link_names(self):
return [
"torso_lift_link",
"head_pan_link",
"head_tilt_link",
"shoulder_pan_link",
"shoulder_lift_link",
"upperarm_roll_link",
"elbow_flex_link",
"forearm_roll_link",
"wrist_flex_link",
"wrist_roll_link",
"gripper_link",
"l_gripper_finger_link",
"r_gripper_finger_link",
]
@property
def arm_link_names(self):
return {self.default_arm: [
"shoulder_pan_link",
"shoulder_lift_link",
"upperarm_roll_link",
"elbow_flex_link",
"forearm_roll_link",
"wrist_flex_link",
"wrist_roll_link",
]}
@property
def arm_joint_names(self):
return {self.default_arm: [
"torso_lift_joint",
"shoulder_pan_joint",
"shoulder_lift_joint",
"upperarm_roll_joint",
"elbow_flex_joint",
"forearm_roll_joint",
"wrist_flex_joint",
"wrist_roll_joint",
]}
@property
def eef_link_names(self):
return {self.default_arm: "gripper_link"}
@property
def finger_link_names(self):
return {self.default_arm: ["r_gripper_finger_link", "l_gripper_finger_link"]}
@property
def finger_joint_names(self):
return {self.default_arm: ["r_gripper_finger_joint", "l_gripper_finger_joint"]}
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/fetch/fetch/fetch.usd")
@property
def robot_arm_descriptor_yamls(self):
return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/fetch/fetch_descriptor.yaml")}
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/fetch/fetch.urdf")
@property
def arm_workspace_range(self):
return {
self.default_arm : [np.deg2rad(-45), np.deg2rad(45)]
}
@property
def eef_usd_path(self):
return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/fetch/fetch/fetch_eef.usd")}
@property
def teleop_rotation_offset(self):
return {self.default_arm: euler2quat([0, np.pi / 2, np.pi])}
| 20,962 | Python | 40.184676 | 134 | 0.60686 |
StanfordVL/OmniGibson/omnigibson/robots/__init__.py | from omnigibson.robots.active_camera_robot import ActiveCameraRobot
from omnigibson.robots.freight import Freight
from omnigibson.robots.husky import Husky
from omnigibson.robots.locobot import Locobot
from omnigibson.robots.locomotion_robot import LocomotionRobot
from omnigibson.robots.manipulation_robot import ManipulationRobot
from omnigibson.robots.robot_base import REGISTERED_ROBOTS, BaseRobot
from omnigibson.robots.turtlebot import Turtlebot
from omnigibson.robots.fetch import Fetch
from omnigibson.robots.tiago import Tiago
from omnigibson.robots.two_wheel_robot import TwoWheelRobot
from omnigibson.robots.franka import FrankaPanda
from omnigibson.robots.franka_allegro import FrankaAllegro
from omnigibson.robots.franka_leap import FrankaLeap
from omnigibson.robots.vx300s import VX300S
from omnigibson.robots.behavior_robot import BehaviorRobot
| 860 | Python | 49.647056 | 69 | 0.873256 |
StanfordVL/OmniGibson/omnigibson/robots/turtlebot.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.robots.two_wheel_robot import TwoWheelRobot
class Turtlebot(TwoWheelRobot):
"""
Turtlebot robot
Reference: http://wiki.ros.org/Robots/TurtleBot
Uses joint velocity control
"""
@property
def wheel_radius(self):
return 0.038
@property
def wheel_axle_length(self):
return 0.23
@property
def base_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to [Left, Right] wheel joints.
"""
return np.array([0, 1])
@property
def _default_joint_pos(self):
return np.zeros(self.n_joints)
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/turtlebot/turtlebot/turtlebot.usd")
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/turtlebot/turtlebot.urdf")
| 963 | Python | 21.95238 | 101 | 0.643821 |
StanfordVL/OmniGibson/omnigibson/robots/manipulation_robot.py | from abc import abstractmethod
from collections import namedtuple
import numpy as np
import networkx as nx
import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.controllers import InverseKinematicsController, MultiFingerGripperController, OperationalSpaceController
from omnigibson.macros import gm, create_module_macros
from omnigibson.object_states import ContactBodies
import omnigibson.utils.transform_utils as T
from omnigibson.controllers import (
IsGraspingState,
ControlType,
ManipulationController,
GripperController,
)
from omnigibson.robots.robot_base import BaseRobot
from omnigibson.utils.python_utils import classproperty, assert_valid_key
from omnigibson.utils.geometry_utils import generate_points_in_volume_checker_function
from omnigibson.utils.constants import JointType, PrimType
from omnigibson.utils.usd_utils import create_joint
from omnigibson.utils.sampling_utils import raytest_batch
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Assisted grasping parameters
m.ASSIST_FRACTION = 1.0
m.ASSIST_GRASP_MASS_THRESHOLD = 10.0
m.ARTICULATED_ASSIST_FRACTION = 0.7
m.MIN_ASSIST_FORCE = 0
m.MAX_ASSIST_FORCE = 100
m.ASSIST_FORCE = m.MIN_ASSIST_FORCE + (m.MAX_ASSIST_FORCE - m.MIN_ASSIST_FORCE) * m.ASSIST_FRACTION
m.CONSTRAINT_VIOLATION_THRESHOLD = 0.1
m.RELEASE_WINDOW = 1 / 30.0 # release window in seconds
AG_MODES = {
"physical",
"assisted",
"sticky",
}
GraspingPoint = namedtuple("GraspingPoint", ["link_name", "position"]) # link_name (str), position (x,y,z tuple)
class ManipulationRobot(BaseRobot):
"""
Robot that is is equipped with grasping (manipulation) capabilities.
Provides common interface for a wide variety of robots.
NOTE: controller_config should, at the minimum, contain:
arm: controller specifications for the controller to control this robot's arm (manipulation).
Should include:
- name: Controller to create
- <other kwargs> relevant to the controller being created. Note that all values will have default
values specified, but setting these individual kwargs will override them
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
fixed_base=False,
visual_only=False,
self_collisions=False,
load_config=None,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
grasping_direction="lower",
disable_grasp_handling=False,
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
fixed_base (bool): whether to fix the base of this object or not
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers. In this mode,
at least two "fingers" need to touch the object.
If "sticky", will magnetize any object touching the gripper's fingers. In this mode, only one finger
needs to touch the object.
grasping_direction (str): One of {"lower", "upper"}. If "lower", lower limit represents a closed grasp,
otherwise upper limit represents a closed grasp.
disable_grasp_handling (bool): If True, the robot will not automatically handle assisted or sticky grasps.
Instead, you will need to call the grasp handling methods yourself.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Store relevant internal vars
assert_valid_key(key=grasping_mode, valid_keys=AG_MODES, name="grasping_mode")
assert_valid_key(key=grasping_direction, valid_keys=["lower", "upper"], name="grasping direction")
self._grasping_mode = grasping_mode
self._grasping_direction = grasping_direction
self._disable_grasp_handling = disable_grasp_handling
# Initialize other variables used for assistive grasping
self._ag_freeze_joint_pos = {
arm: {} for arm in self.arm_names
} # Frozen positions for keeping fingers held still
self._ag_obj_in_hand = {arm: None for arm in self.arm_names}
self._ag_obj_constraints = {arm: None for arm in self.arm_names}
self._ag_obj_constraint_params = {arm: {} for arm in self.arm_names}
self._ag_freeze_gripper = {arm: None for arm in self.arm_names}
self._ag_release_counter = {arm: None for arm in self.arm_names}
self._ag_check_in_volume = {arm: None for arm in self.arm_names}
self._ag_calculate_volume = {arm: None for arm in self.arm_names}
# Call super() method
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
**kwargs,
)
def _validate_configuration(self):
# Iterate over all arms
for arm in self.arm_names:
# We make sure that our arm controller exists and is a manipulation controller
assert (
"arm_{}".format(arm) in self._controllers
), "Controller 'arm_{}' must exist in controllers! Current controllers: {}".format(
arm, list(self._controllers.keys())
)
assert isinstance(
self._controllers["arm_{}".format(arm)], ManipulationController
), "Arm {} controller must be a ManipulationController!".format(arm)
# We make sure that our gripper controller exists and is a gripper controller
assert (
"gripper_{}".format(arm) in self._controllers
), "Controller 'gripper_{}' must exist in controllers! Current controllers: {}".format(
arm, list(self._controllers.keys())
)
assert isinstance(
self._controllers["gripper_{}".format(arm)], GripperController
), "Gripper {} controller must be a GripperController!".format(arm)
# run super
super()._validate_configuration()
def _initialize(self):
super()._initialize()
if gm.AG_CLOTH:
for arm in self.arm_names:
self._ag_check_in_volume[arm], self._ag_calculate_volume[arm] = \
generate_points_in_volume_checker_function(obj=self, volume_link=self.eef_links[arm], mesh_name_prefixes="container")
def is_grasping(self, arm="default", candidate_obj=None):
"""
Returns True if the robot is grasping the target option @candidate_obj or any object if @candidate_obj is None.
Args:
arm (str): specific arm to check for grasping. Default is "default" which corresponds to the first entry
in self.arm_names
candidate_obj (StatefulObject or None): object to check if this robot is currently grasping. If None, then
will be a general (object-agnostic) check for grasping.
Note: if self.grasping_mode is "physical", then @candidate_obj will be ignored completely
Returns:
IsGraspingState: For the specific manipulator appendage, returns IsGraspingState.TRUE if it is grasping
(potentially @candidate_obj if specified), IsGraspingState.FALSE if it is not grasping,
and IsGraspingState.UNKNOWN if unknown.
"""
arm = self.default_arm if arm == "default" else arm
if self.grasping_mode != "physical":
is_grasping_obj = (
self._ag_obj_in_hand[arm] is not None
if candidate_obj is None
else self._ag_obj_in_hand[arm] == candidate_obj
)
is_grasping = (
IsGraspingState.TRUE
if is_grasping_obj and self._ag_release_counter[arm] is None
else IsGraspingState.FALSE
)
else:
# Infer from the gripper controller the state
is_grasping = self._controllers["gripper_{}".format(arm)].is_grasping()
# If candidate obj is not None, we also check to see if our fingers are in contact with the object
if is_grasping == IsGraspingState.TRUE and candidate_obj is not None:
finger_links = {link for link in self.finger_links[arm]}
is_grasping = len(candidate_obj.states[ContactBodies].get_value().intersection(finger_links)) > 0
return is_grasping
def _find_gripper_contacts(self, arm="default", return_contact_positions=False):
"""
For arm @arm, calculate any body IDs and corresponding link IDs that are not part of the robot
itself that are in contact with any of this arm's gripper's fingers
Args:
arm (str): specific arm whose gripper will be checked for contact. Default is "default" which
corresponds to the first entry in self.arm_names
return_contact_positions (bool): if True, will additionally return the contact (x,y,z) position
Returns:
2-tuple:
- set: set of unique contact prim_paths that are not the robot self-collisions.
If @return_contact_positions is True, then returns (prim_path, pos), where pos is the contact
(x,y,z) position
Note: if no objects that are not the robot itself are intersecting, the set will be empty.
- dict: dictionary mapping unique contact objects defined by the contact prim_path to
set of unique robot link prim_paths that it is in contact with
"""
arm = self.default_arm if arm == "default" else arm
robot_contact_links = dict()
contact_data = set()
# Find all objects in contact with all finger joints for this arm
con_results = [con for link in self.finger_links[arm] for con in link.contact_list()]
# Get robot contact links
link_paths = set(self.link_prim_paths)
for con_res in con_results:
# Only add this contact if it's not a robot self-collision
other_contact_set = {con_res.body0, con_res.body1} - link_paths
if len(other_contact_set) == 1:
link_contact, other_contact = (con_res.body0, con_res.body1) if \
list(other_contact_set)[0] == con_res.body1 else (con_res.body1, con_res.body0)
# Add to contact data
contact_data.add((other_contact, tuple(con_res.position)) if return_contact_positions else other_contact)
# Also add robot contact link info
if other_contact not in robot_contact_links:
robot_contact_links[other_contact] = set()
robot_contact_links[other_contact].add(link_contact)
return contact_data, robot_contact_links
def set_position_orientation(self, position=None, orientation=None):
# Store the original EEF poses.
original_poses = {}
for arm in self.arm_names:
original_poses[arm] = (self.get_eef_position(arm), self.get_eef_orientation(arm))
# Run the super method
super().set_position_orientation(position=position, orientation=orientation)
# Now for each hand, if it was holding an AG object, teleport it.
for arm in self.arm_names:
if self._ag_obj_in_hand[arm] is not None:
original_eef_pose = T.pose2mat(original_poses[arm])
inv_original_eef_pose = T.pose_inv(pose_mat=original_eef_pose)
original_obj_pose = T.pose2mat(self._ag_obj_in_hand[arm].get_position_orientation())
new_eef_pose = T.pose2mat((self.get_eef_position(arm), self.get_eef_orientation(arm)))
# New object pose is transform:
# original --> "De"transform the original EEF pose --> "Re"transform the new EEF pose
new_obj_pose = new_eef_pose @ inv_original_eef_pose @ original_obj_pose
self._ag_obj_in_hand[arm].set_position_orientation(*T.mat2pose(hmat=new_obj_pose))
def deploy_control(self, control, control_type, indices=None, normalized=False):
# We intercept the gripper control and replace it with the current joint position if we're freezing our gripper
for arm in self.arm_names:
if self._ag_freeze_gripper[arm]:
control[self.gripper_control_idx[arm]] = self._ag_obj_constraint_params[arm]["gripper_pos"] if \
self.controllers[f"gripper_{arm}"].control_type == ControlType.POSITION else 0.0
super().deploy_control(control=control, control_type=control_type, indices=indices, normalized=normalized)
# Then run assisted grasping
if self.grasping_mode != "physical" and not self._disable_grasp_handling:
self._handle_assisted_grasping()
# Potentially freeze gripper joints
for arm in self.arm_names:
if self._ag_freeze_gripper[arm]:
self._freeze_gripper(arm)
def _release_grasp(self, arm="default"):
"""
Magic action to release this robot's grasp on an object
Args:
arm (str): specific arm whose grasp will be released.
Default is "default" which corresponds to the first entry in self.arm_names
"""
arm = self.default_arm if arm == "default" else arm
# Remove joint and filtered collision restraints
og.sim.stage.RemovePrim(self._ag_obj_constraint_params[arm]["ag_joint_prim_path"])
self._ag_obj_constraints[arm] = None
self._ag_obj_constraint_params[arm] = {}
self._ag_freeze_gripper[arm] = False
self._ag_release_counter[arm] = 0
def release_grasp_immediately(self):
"""
Magic action to release this robot's grasp for all arms at once.
As opposed to @_release_grasp, this method would byupass the release window mechanism and immediately release.
"""
for arm in self.arm_names:
if self._ag_obj_in_hand[arm] is not None:
self._release_grasp(arm=arm)
self._ag_release_counter[arm] = int(np.ceil(m.RELEASE_WINDOW / og.sim.get_rendering_dt()))
self._handle_release_window(arm=arm)
assert not self._ag_obj_in_hand[arm], "Object still in ag list after release!"
# TODO: Verify not needed!
# for finger_link in self.finger_links[arm]:
# finger_link.remove_filtered_collision_pair(prim=self._ag_obj_in_hand[arm])
def get_control_dict(self):
# In addition to super method, add in EEF states
fcns = super().get_control_dict()
for arm in self.arm_names:
self._add_arm_control_dict(fcns=fcns, arm=arm)
return fcns
def _add_arm_control_dict(self, fcns, arm):
"""
Internally helper function to generate per-arm control dictionary entries. Needed because otherwise generated
functions inadvertently point to the same arm, if directly iterated in a for loop!
Args:
fcns (CachedFunctions): Keyword-mapped control values for this object, mapping names to n-arrays.
arm (str): specific arm to generate necessary control dict entries for
"""
fcns[f"_eef_{arm}_pos_quat_relative"] = lambda: self.get_relative_eef_pose(arm)
fcns[f"eef_{arm}_pos_relative"] = lambda: fcns[f"_eef_{arm}_pos_quat_relative"][0]
fcns[f"eef_{arm}_quat_relative"] = lambda: fcns[f"_eef_{arm}_pos_quat_relative"][1]
fcns[f"eef_{arm}_lin_vel_relative"] = lambda: self.get_relative_eef_lin_vel(arm)
fcns[f"eef_{arm}_ang_vel_relative"] = lambda: self.get_relative_eef_ang_vel(arm)
# -n_joints because there may be an additional 6 entries at the beginning of the array, if this robot does
# not have a fixed base (i.e.: the 6DOF --> "floating" joint)
# see self.get_relative_jacobian() for more info
eef_link_idx = self._articulation_view.get_body_index(self.eef_links[arm].body_name)
fcns[f"eef_{arm}_jacobian_relative"] = lambda: self.get_relative_jacobian(clone=False)[eef_link_idx, :, -self.n_joints:]
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
# Loop over all arms to grab proprio info
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
for arm in self.arm_names:
# Add arm info
dic["arm_{}_qpos".format(arm)] = joint_positions[self.arm_control_idx[arm]]
dic["arm_{}_qpos_sin".format(arm)] = np.sin(joint_positions[self.arm_control_idx[arm]])
dic["arm_{}_qpos_cos".format(arm)] = np.cos(joint_positions[self.arm_control_idx[arm]])
dic["arm_{}_qvel".format(arm)] = joint_velocities[self.arm_control_idx[arm]]
# Add eef and grasping info
dic["eef_{}_pos_global".format(arm)] = self.get_eef_position(arm)
dic["eef_{}_quat_global".format(arm)] = self.get_eef_orientation(arm)
dic["eef_{}_pos".format(arm)] = self.get_relative_eef_position(arm)
dic["eef_{}_quat".format(arm)] = self.get_relative_eef_orientation(arm)
dic["grasp_{}".format(arm)] = np.array([self.is_grasping(arm)])
dic["gripper_{}_qpos".format(arm)] = joint_positions[self.gripper_control_idx[arm]]
dic["gripper_{}_qvel".format(arm)] = joint_velocities[self.gripper_control_idx[arm]]
return dic
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
for arm in self.arm_names:
obs_keys += [
"arm_{}_qpos_sin".format(arm),
"arm_{}_qpos_cos".format(arm),
"eef_{}_pos".format(arm),
"eef_{}_quat".format(arm),
"gripper_{}_qpos".format(arm),
"grasp_{}".format(arm),
]
return obs_keys
@property
def grasping_mode(self):
"""
Grasping mode of this robot. Is one of AG_MODES
Returns:
str: Grasping mode for this robot
"""
return self._grasping_mode
@property
def controller_order(self):
# Assumes we have arm(s) and corresponding gripper(s)
controllers = []
for arm in self.arm_names:
controllers += ["arm_{}".format(arm), "gripper_{}".format(arm)]
return controllers
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# For best generalizability use, joint controller as default
for arm in self.arm_names:
controllers["arm_{}".format(arm)] = "JointController"
controllers["gripper_{}".format(arm)] = "JointController"
return controllers
@property
def n_arms(self):
"""
Returns:
int: Number of arms this robot has. Returns 1 by default
"""
return 1
@property
def arm_names(self):
"""
Returns:
list of str: List of arm names for this robot. Should correspond to the keys used to index into
arm- and gripper-related dictionaries, e.g.: eef_link_names, finger_link_names, etc.
Default is string enumeration based on @self.n_arms.
"""
return [str(i) for i in range(self.n_arms)]
@property
def default_arm(self):
"""
Returns:
str: Default arm name for this robot, corresponds to the first entry in @arm_names by default
"""
return self.arm_names[0]
@property
def arm_action_idx(self):
arm_action_idx = {}
for arm_name in self.arm_names:
controller_idx = self.controller_order.index(f"arm_{arm_name}")
action_start_idx = sum([self.controllers[self.controller_order[i]].command_dim for i in range(controller_idx)])
arm_action_idx[arm_name] = np.arange(action_start_idx, action_start_idx + self.controllers[f"arm_{arm_name}"].command_dim)
return arm_action_idx
@property
def gripper_action_idx(self):
gripper_action_idx = {}
for arm_name in self.arm_names:
controller_idx = self.controller_order.index(f"gripper_{arm_name}")
action_start_idx = sum([self.controllers[self.controller_order[i]].command_dim for i in range(controller_idx)])
gripper_action_idx[arm_name] = np.arange(action_start_idx, action_start_idx + self.controllers[f"gripper_{arm_name}"].command_dim)
return gripper_action_idx
@property
@abstractmethod
def arm_link_names(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to corresponding arm link names,
should correspond to specific link names in this robot's underlying model file
"""
raise NotImplementedError
@property
@abstractmethod
def arm_joint_names(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to corresponding arm joint names,
should correspond to specific joint names in this robot's underlying model file
"""
raise NotImplementedError
@property
@abstractmethod
def eef_link_names(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to corresponding name of the EEF link,
should correspond to specific link name in this robot's underlying model file
"""
raise NotImplementedError
@property
@abstractmethod
def finger_link_names(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to array of link names corresponding to
this robot's fingers
"""
raise NotImplementedError
@property
@abstractmethod
def finger_joint_names(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to array of joint names corresponding to
this robot's fingers
"""
raise NotImplementedError
@property
@abstractmethod
def arm_control_idx(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to indices in low-level control
vector corresponding to arm joints.
"""
raise NotImplementedError
@property
@abstractmethod
def gripper_control_idx(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to indices in low-level control
vector corresponding to gripper joints.
"""
raise NotImplementedError
@property
def arm_links(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to robot links corresponding to
that arm's links
"""
return {arm: [self._links[link] for link in self.arm_link_names[arm]] for arm in self.arm_names}
@property
def eef_links(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to robot link corresponding to that arm's
eef link
"""
return {arm: self._links[self.eef_link_names[arm]] for arm in self.arm_names}
@property
def finger_links(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to robot links corresponding to
that arm's finger links
"""
return {arm: [self._links[link] for link in self.finger_link_names[arm]] for arm in self.arm_names}
@property
def finger_joints(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to robot joints corresponding to
that arm's finger joints
"""
return {arm: [self._joints[joint] for joint in self.finger_joint_names[arm]] for arm in self.arm_names}
@property
def assisted_grasp_start_points(self):
"""
Returns:
dict: Dictionary mapping individual arm appendage names to array of GraspingPoint tuples,
composed of (link_name, position) values specifying valid grasping start points located at
cartesian (x,y,z) coordinates specified in link_name's local coordinate frame.
These values will be used in conjunction with
@self.assisted_grasp_end_points to trigger assisted grasps, where objects that intersect
with any ray starting at any point in @self.assisted_grasp_start_points and terminating at any point in
@self.assisted_grasp_end_points will trigger an assisted grasp (calculated individually for each gripper
appendage). By default, each entry returns None, and must be implemented by any robot subclass that
wishes to use assisted grasping.
"""
return {arm: None for arm in self.arm_names}
@property
def assisted_grasp_end_points(self):
"""
Returns:
dict: Dictionary mapping individual arm appendage names to array of GraspingPoint tuples,
composed of (link_name, position) values specifying valid grasping end points located at
cartesian (x,y,z) coordinates specified in link_name's local coordinate frame.
These values will be used in conjunction with
@self.assisted_grasp_start_points to trigger assisted grasps, where objects that intersect
with any ray starting at any point in @self.assisted_grasp_start_points and terminating at any point in
@self.assisted_grasp_end_points will trigger an assisted grasp (calculated individually for each gripper
appendage). By default, each entry returns None, and must be implemented by any robot subclass that
wishes to use assisted grasping.
"""
return {arm: None for arm in self.arm_names}
@property
def finger_lengths(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to corresponding length of the fingers in that
hand defined from the palm (assuming all fingers in one hand are equally long)
"""
raise NotImplementedError
@property
def arm_workspace_range(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to a tuple indicating the start and end of the
angular range of the arm workspace around the Z axis of the robot, where 0 is facing
forward.
"""
raise NotImplementedError
def get_eef_position(self, arm="default"):
"""
Args:
arm (str): specific arm to grab eef position. Default is "default" which corresponds to the first entry
in self.arm_names
Returns:
3-array: (x,y,z) global end-effector Cartesian position for this robot's end-effector corresponding
to arm @arm
"""
arm = self.default_arm if arm == "default" else arm
return self._links[self.eef_link_names[arm]].get_position()
def get_eef_orientation(self, arm="default"):
"""
Args:
arm (str): specific arm to grab eef orientation. Default is "default" which corresponds to the first entry
in self.arm_names
Returns:
3-array: (x,y,z,w) global quaternion orientation for this robot's end-effector corresponding
to arm @arm
"""
arm = self.default_arm if arm == "default" else arm
return self._links[self.eef_link_names[arm]].get_orientation()
def get_relative_eef_pose(self, arm="default", mat=False):
"""
Args:
arm (str): specific arm to grab eef pose. Default is "default" which corresponds to the first entry
in self.arm_names
mat (bool): whether to return pose in matrix form (mat=True) or (pos, quat) tuple (mat=False)
Returns:
2-tuple or (4, 4)-array: End-effector pose, either in 4x4 homogeneous
matrix form (if @mat=True) or (pos, quat) tuple (if @mat=False), corresponding to arm @arm
"""
arm = self.default_arm if arm == "default" else arm
eef_link_pose = self.eef_links[arm].get_position_orientation()
base_link_pose = self.get_position_orientation()
pose = T.relative_pose_transform(*eef_link_pose, *base_link_pose)
return T.pose2mat(pose) if mat else pose
def get_relative_eef_position(self, arm="default"):
"""
Args:
arm (str): specific arm to grab relative eef pos.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
3-array: (x,y,z) Cartesian position of end-effector relative to robot base frame
"""
arm = self.default_arm if arm == "default" else arm
return self.get_relative_eef_pose(arm=arm)[0]
def get_relative_eef_orientation(self, arm="default"):
"""
Args:
arm (str): specific arm to grab relative eef orientation.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
4-array: (x,y,z,w) quaternion orientation of end-effector relative to robot base frame
"""
arm = self.default_arm if arm == "default" else arm
return self.get_relative_eef_pose(arm=arm)[1]
def get_relative_eef_lin_vel(self, arm="default"):
"""
Args:
arm (str): specific arm to grab relative eef linear velocity.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
3-array: (x,y,z) Linear velocity of end-effector relative to robot base frame
"""
arm = self.default_arm if arm == "default" else arm
base_link_quat = self.get_orientation()
return T.quat2mat(base_link_quat).T @ self.eef_links[arm].get_linear_velocity()
def get_relative_eef_ang_vel(self, arm="default"):
"""
Args:
arm (str): specific arm to grab relative eef angular velocity.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
3-array: (ax,ay,az) angular velocity of end-effector relative to robot base frame
"""
arm = self.default_arm if arm == "default" else arm
base_link_quat = self.get_orientation()
return T.quat2mat(base_link_quat).T @ self.eef_links[arm].get_angular_velocity()
def _calculate_in_hand_object_rigid(self, arm="default"):
"""
Calculates which object to assisted-grasp for arm @arm. Returns an (object_id, link_id) tuple or None
if no valid AG-enabled object can be found.
Args:
arm (str): specific arm to calculate in-hand object for.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
None or 2-tuple: If a valid assisted-grasp object is found, returns the corresponding
(object, object_link) (i.e.: (BaseObject, RigidPrim)) pair to the contacted in-hand object.
Otherwise, returns None
"""
arm = self.default_arm if arm == "default" else arm
# If we're not using physical grasping, we check for gripper contact
if self.grasping_mode != "physical":
candidates_set, robot_contact_links = self._find_gripper_contacts(arm=arm)
# If we're using assisted grasping, we further filter candidates via ray-casting
if self.grasping_mode == "assisted":
candidates_set_raycast = self._find_gripper_raycast_collisions(arm=arm)
candidates_set = candidates_set.intersection(candidates_set_raycast)
else:
raise ValueError("Invalid grasping mode for calculating in hand object: {}".format(self.grasping_mode))
# Immediately return if there are no valid candidates
if len(candidates_set) == 0:
return None
# Find the closest object to the gripper center
gripper_center_pos = self.eef_links[arm].get_position()
candidate_data = []
for prim_path in candidates_set:
# Calculate position of the object link. Only allow this for objects currently.
obj_prim_path, link_name = prim_path.rsplit("/", 1)
candidate_obj = og.sim.scene.object_registry("prim_path", obj_prim_path, None)
if candidate_obj is None or link_name not in candidate_obj.links:
continue
candidate_link = candidate_obj.links[link_name]
dist = np.linalg.norm(np.array(candidate_link.get_position()) - np.array(gripper_center_pos))
candidate_data.append((prim_path, dist))
if not candidate_data:
return None
candidate_data = sorted(candidate_data, key=lambda x: x[-1])
ag_prim_path, _ = candidate_data[0]
# Make sure the ag_prim_path is not a self collision
assert ag_prim_path not in self.link_prim_paths, "assisted grasp object cannot be the robot itself!"
# Make sure at least two fingers are in contact with this object
robot_contacts = robot_contact_links[ag_prim_path]
touching_at_least_two_fingers = True if self.grasping_mode == "sticky" else len({link.prim_path for link in self.finger_links[arm]}.intersection(robot_contacts)) >= 2
# TODO: Better heuristic, hacky, we assume the parent object prim path is the prim_path minus the last "/" item
ag_obj_prim_path = "/".join(ag_prim_path.split("/")[:-1])
ag_obj_link_name = ag_prim_path.split("/")[-1]
ag_obj = og.sim.scene.object_registry("prim_path", ag_obj_prim_path)
# Return None if object cannot be assisted grasped or not touching at least two fingers
if ag_obj is None or not touching_at_least_two_fingers:
return None
# Get object and its contacted link
return ag_obj, ag_obj.links[ag_obj_link_name]
def _find_gripper_raycast_collisions(self, arm="default"):
"""
For arm @arm, calculate any prims that are not part of the robot
itself that intersect with rays cast between any of the gripper's start and end points
Args:
arm (str): specific arm whose gripper will be checked for raycast collisions. Default is "default"
which corresponds to the first entry in self.arm_names
Returns:
set[str]: set of prim path of detected raycast intersections that
are not the robot itself. Note: if no objects that are not the robot itself are intersecting,
the set will be empty.
"""
arm = self.default_arm if arm == "default" else arm
# First, make sure start and end grasp points exist (i.e.: aren't None)
assert (
self.assisted_grasp_start_points[arm] is not None
), "In order to use assisted grasping, assisted_grasp_start_points must not be None!"
assert (
self.assisted_grasp_end_points[arm] is not None
), "In order to use assisted grasping, assisted_grasp_end_points must not be None!"
# Iterate over all start and end grasp points and calculate their x,y,z positions in the world frame
# (per arm appendage)
# Since we'll be calculating the cartesian cross product between start and end points, we stack the start points
# by the number of end points and repeat the individual elements of the end points by the number of start points
startpoints = []
endpoints = []
for grasp_start_point in self.assisted_grasp_start_points[arm]:
# Get world coordinates of link base frame
link_pos, link_orn = self.links[grasp_start_point.link_name].get_position_orientation()
# Calculate grasp start point in world frame and add to startpoints
start_point, _ = T.pose_transform(link_pos, link_orn, grasp_start_point.position, [0, 0, 0, 1])
startpoints.append(start_point)
# Repeat for end points
for grasp_end_point in self.assisted_grasp_end_points[arm]:
# Get world coordinates of link base frame
link_pos, link_orn = self.links[grasp_end_point.link_name].get_position_orientation()
# Calculate grasp start point in world frame and add to endpoints
end_point, _ = T.pose_transform(link_pos, link_orn, grasp_end_point.position, [0, 0, 0, 1])
endpoints.append(end_point)
# Stack the start points and repeat the end points, and add these values to the raycast dicts
n_startpoints, n_endpoints = len(startpoints), len(endpoints)
raycast_startpoints = startpoints * n_endpoints
raycast_endpoints = []
for endpoint in endpoints:
raycast_endpoints += [endpoint] * n_startpoints
ray_data = set()
# Calculate raycasts from each start point to end point -- this is n_startpoints * n_endpoints total rays
for result in raytest_batch(raycast_startpoints, raycast_endpoints, only_closest=True):
if result["hit"]:
# filter out self body parts (we currently assume that the robot cannot grasp itself)
if self.prim_path not in result["rigidBody"]:
ray_data.add(result["rigidBody"])
return ray_data
def _handle_release_window(self, arm="default"):
"""
Handles releasing an object from arm @arm
Args:
arm (str): specific arm to handle release window.
Default is "default" which corresponds to the first entry in self.arm_names
"""
arm = self.default_arm if arm == "default" else arm
self._ag_release_counter[arm] += 1
time_since_release = self._ag_release_counter[arm] * og.sim.get_rendering_dt()
if time_since_release >= m.RELEASE_WINDOW:
self._ag_obj_in_hand[arm] = None
self._ag_release_counter[arm] = None
def _freeze_gripper(self, arm="default"):
"""
Freezes gripper finger joints - used in assisted grasping.
Args:
arm (str): specific arm to freeze gripper.
Default is "default" which corresponds to the first entry in self.arm_names
"""
arm = self.default_arm if arm == "default" else arm
for joint_name, j_val in self._ag_freeze_joint_pos[arm].items():
joint = self._joints[joint_name]
joint.set_pos(pos=j_val)
joint.set_vel(vel=0.0)
@property
def robot_arm_descriptor_yamls(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to files path to the descriptor
of the robot for IK Controller.
"""
raise NotImplementedError
@property
def _default_arm_joint_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default controller config to control that
robot's arm. Uses velocity control by default.
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "JointController",
"control_freq": self._control_freq,
"control_limits": self.control_limits,
"dof_idx": self.arm_control_idx[arm],
"command_output_limits": None,
"motor_type": "position",
"use_delta_commands": True,
"use_impedances": True,
}
return dic
@property
def _default_arm_ik_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default controller config for an
Inverse kinematics controller to control this robot's arm
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "InverseKinematicsController",
"task_name": f"eef_{arm}",
"robot_description_path": self.robot_arm_descriptor_yamls[arm],
"robot_urdf_path": self.urdf_path,
"eef_name": self.eef_link_names[arm],
"control_freq": self._control_freq,
"reset_joint_pos": self.reset_joint_pos,
"control_limits": self.control_limits,
"dof_idx": self.arm_control_idx[arm],
"command_output_limits": (
np.array([-0.2, -0.2, -0.2, -0.5, -0.5, -0.5]),
np.array([0.2, 0.2, 0.2, 0.5, 0.5, 0.5]),
),
"mode": "pose_delta_ori",
"smoothing_filter_size": 2,
"workspace_pose_limiter": None,
}
return dic
@property
def _default_arm_osc_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default controller config for an
operational space controller to control this robot's arm
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "OperationalSpaceController",
"task_name": f"eef_{arm}",
"control_freq": self._control_freq,
"reset_joint_pos": self.reset_joint_pos,
"control_limits": self.control_limits,
"dof_idx": self.arm_control_idx[arm],
"command_output_limits": (
np.array([-0.2, -0.2, -0.2, -0.5, -0.5, -0.5]),
np.array([0.2, 0.2, 0.2, 0.5, 0.5, 0.5]),
),
"mode": "pose_delta_ori",
"workspace_pose_limiter": None,
}
return dic
@property
def _default_arm_null_joint_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default arm null controller config
to control this robot's arm i.e. dummy controller
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "NullJointController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.arm_control_idx[arm],
"default_command": self.reset_joint_pos[self.arm_control_idx[arm]],
"use_impedances": False,
}
return dic
@property
def _default_gripper_multi_finger_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default controller config to control
this robot's multi finger gripper. Assumes robot gripper idx has exactly two elements
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "MultiFingerGripperController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.gripper_control_idx[arm],
"command_output_limits": "default",
"mode": "binary",
"limit_tolerance": 0.001,
}
return dic
@property
def _default_gripper_joint_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default gripper joint controller config
to control this robot's gripper
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "JointController",
"control_freq": self._control_freq,
"motor_type": "velocity",
"control_limits": self.control_limits,
"dof_idx": self.gripper_control_idx[arm],
"command_output_limits": "default",
"use_delta_commands": False,
"use_impedances": False,
}
return dic
@property
def _default_gripper_null_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default gripper null controller config
to control this robot's (non-prehensile) gripper i.e. dummy controller
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "NullJointController",
"control_freq": self._control_freq,
"motor_type": "velocity",
"control_limits": self.control_limits,
"dof_idx": self.gripper_control_idx[arm],
"default_command": np.zeros(len(self.gripper_control_idx[arm])),
"use_impedances": False,
}
return dic
@property
def _default_controller_config(self):
# Always run super method first
cfg = super()._default_controller_config
arm_ik_configs = self._default_arm_ik_controller_configs
arm_osc_configs = self._default_arm_osc_controller_configs
arm_joint_configs = self._default_arm_joint_controller_configs
arm_null_joint_configs = self._default_arm_null_joint_controller_configs
gripper_pj_configs = self._default_gripper_multi_finger_controller_configs
gripper_joint_configs = self._default_gripper_joint_controller_configs
gripper_null_configs = self._default_gripper_null_controller_configs
# Add arm and gripper defaults, per arm
for arm in self.arm_names:
cfg["arm_{}".format(arm)] = {
arm_ik_configs[arm]["name"]: arm_ik_configs[arm],
arm_osc_configs[arm]["name"]: arm_osc_configs[arm],
arm_joint_configs[arm]["name"]: arm_joint_configs[arm],
arm_null_joint_configs[arm]["name"]: arm_null_joint_configs[arm],
}
cfg["gripper_{}".format(arm)] = {
gripper_pj_configs[arm]["name"]: gripper_pj_configs[arm],
gripper_joint_configs[arm]["name"]: gripper_joint_configs[arm],
gripper_null_configs[arm]["name"]: gripper_null_configs[arm],
}
return cfg
def _get_assisted_grasp_joint_type(self, ag_obj, ag_link):
"""
Check whether an object @obj can be grasped. If so, return the joint type to use for assisted grasping.
Otherwise, return None.
Args:
ag_obj (BaseObject): Object targeted for an assisted grasp
ag_link (RigidPrim): Link of the object to be grasped
Returns:
(None or str): If obj can be grasped, returns the joint type to use for assisted grasping.
"""
# Deny objects that are too heavy and are not a non-base link of a fixed-base object)
mass = ag_link.mass
if mass > m.ASSIST_GRASP_MASS_THRESHOLD and not (ag_obj.fixed_base and ag_link != ag_obj.root_link):
return None
# Otherwise, compute the joint type. We use a fixed joint unless the link is a non-fixed link.
# A link is non-fixed if it has any non-fixed parent joints.
joint_type = "FixedJoint"
for edge in nx.edge_dfs(ag_obj.articulation_tree, ag_link.body_name, orientation="reverse"):
joint = ag_obj.articulation_tree.edges[edge]["joint"]
if joint.joint_type != JointType.JOINT_FIXED:
joint_type = "SphericalJoint"
break
return joint_type
def _establish_grasp_rigid(self, arm="default", ag_data=None, contact_pos=None):
"""
Establishes an ag-assisted grasp, if enabled.
Args:
arm (str): specific arm to establish grasp.
Default is "default" which corresponds to the first entry in self.arm_names
ag_data (None or 2-tuple): if specified, assisted-grasp object, link tuple (i.e. :(BaseObject, RigidPrim)).
Otherwise, does a no-op
contact_pos (None or np.array): if specified, contact position to use for grasp.
"""
arm = self.default_arm if arm == "default" else arm
# Return immediately if ag_data is None
if ag_data is None:
return
ag_obj, ag_link = ag_data
# Get the appropriate joint type
joint_type = self._get_assisted_grasp_joint_type(ag_obj, ag_link)
if joint_type is None:
return
if contact_pos is None:
force_data, _ = self._find_gripper_contacts(arm=arm, return_contact_positions=True)
for c_link_prim_path, c_contact_pos in force_data:
if c_link_prim_path == ag_link.prim_path:
contact_pos = np.array(c_contact_pos)
break
assert contact_pos is not None
# Joint frame set at the contact point
# Need to find distance between robot and contact point in robot link's local frame and
# ag link and contact point in ag link's local frame
joint_frame_pos = contact_pos
joint_frame_orn = np.array([0, 0, 0, 1.0])
eef_link_pos, eef_link_orn = self.eef_links[arm].get_position_orientation()
parent_frame_pos, parent_frame_orn = T.relative_pose_transform(joint_frame_pos, joint_frame_orn, eef_link_pos, eef_link_orn)
obj_link_pos, obj_link_orn = ag_link.get_position_orientation()
child_frame_pos, child_frame_orn = T.relative_pose_transform(joint_frame_pos, joint_frame_orn, obj_link_pos, obj_link_orn)
# Create the joint
joint_prim_path = f"{self.eef_links[arm].prim_path}/ag_constraint"
joint_prim = create_joint(
prim_path=joint_prim_path,
joint_type=joint_type,
body0=self.eef_links[arm].prim_path,
body1=ag_link.prim_path,
enabled=True,
joint_frame_in_parent_frame_pos=parent_frame_pos / self.scale,
joint_frame_in_parent_frame_quat=parent_frame_orn,
joint_frame_in_child_frame_pos=child_frame_pos / ag_obj.scale,
joint_frame_in_child_frame_quat=child_frame_orn,
)
# Save a reference to this joint prim
self._ag_obj_constraints[arm] = joint_prim
# Modify max force based on user-determined assist parameters
# TODO
max_force = m.ASSIST_FORCE if joint_type == "FixedJoint" else m.ASSIST_FORCE * m.ARTICULATED_ASSIST_FRACTION
# joint_prim.GetAttribute("physics:breakForce").Set(max_force)
self._ag_obj_constraint_params[arm] = {
"ag_obj_prim_path": ag_obj.prim_path,
"ag_link_prim_path": ag_link.prim_path,
"ag_joint_prim_path": joint_prim_path,
"joint_type": joint_type,
"gripper_pos": self.get_joint_positions()[self.gripper_control_idx[arm]],
"max_force": max_force,
"contact_pos": contact_pos,
}
self._ag_obj_in_hand[arm] = ag_obj
self._ag_freeze_gripper[arm] = True
for joint in self.finger_joints[arm]:
j_val = joint.get_state()[0][0]
self._ag_freeze_joint_pos[arm][joint.joint_name] = j_val
def _handle_assisted_grasping(self):
"""
Handles assisted grasping by creating or removing constraints.
"""
# Loop over all arms
for arm in self.arm_names:
# We apply a threshold based on the control rather than the command here so that the behavior
# stays the same across different controllers and control modes (absolute / delta). This way,
# a zero action will actually keep the AG setting where it already is.
controller = self._controllers[f"gripper_{arm}"]
controlled_joints = controller.dof_idx
threshold = np.mean([self.joint_lower_limits[controlled_joints], self.joint_upper_limits[controlled_joints]], axis=0)
if controller.control is None:
applying_grasp = False
elif self._grasping_direction == "lower":
applying_grasp = np.any(controller.control < threshold)
else:
applying_grasp = np.any(controller.control > threshold)
# Execute gradual release of object
if self._ag_obj_in_hand[arm]:
if self._ag_release_counter[arm] is not None:
self._handle_release_window(arm=arm)
else:
if gm.AG_CLOTH:
self._update_constraint_cloth(arm=arm)
if not applying_grasp:
self._release_grasp(arm=arm)
elif applying_grasp:
self._establish_grasp(arm=arm, ag_data=self._calculate_in_hand_object(arm=arm))
def _update_constraint_cloth(self, arm="default"):
"""
Update the AG constraint for cloth: for the fixed joint between the attachment point and the world, we set
the local pos to match the current eef link position plus the attachment_point_pos_local offset. As a result,
the joint will drive the attachment point to the updated position, which will then drive the cloth.
See _establish_grasp_cloth for more details.
Args:
arm (str): specific arm to establish grasp.
Default is "default" which corresponds to the first entry in self.arm_names
"""
attachment_point_pos_local = self._ag_obj_constraint_params[arm]["attachment_point_pos_local"]
eef_link_pos, eef_link_orn = self.eef_links[arm].get_position_orientation()
attachment_point_pos, _ = T.pose_transform(eef_link_pos, eef_link_orn, attachment_point_pos_local, [0, 0, 0, 1])
joint_prim = self._ag_obj_constraints[arm]
joint_prim.GetAttribute("physics:localPos1").Set(lazy.pxr.Gf.Vec3f(*attachment_point_pos.astype(float)))
def _calculate_in_hand_object(self, arm="default"):
if gm.AG_CLOTH:
return self._calculate_in_hand_object_cloth(arm)
else:
return self._calculate_in_hand_object_rigid(arm)
def _establish_grasp(self, arm="default", ag_data=None, contact_pos=None):
if gm.AG_CLOTH:
return self._establish_grasp_cloth(arm, ag_data)
else:
return self._establish_grasp_rigid(arm, ag_data, contact_pos)
def _calculate_in_hand_object_cloth(self, arm="default"):
"""
Same as _calculate_in_hand_object_rigid, except for cloth. Only one should be used at any given time.
Calculates which object to assisted-grasp for arm @arm. Returns an (BaseObject, RigidPrim, np.ndarray) tuple or
None if no valid AG-enabled object can be found.
1) Check if the gripper is closed enough
2) Go through each of the cloth object, and check if its attachment point link position is within the "ghost"
box volume of the gripper link.
Only returns the first valid object and ignore the rest.
Args:
arm (str): specific arm to establish grasp.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
None or 3-tuple: If a valid assisted-grasp object is found,
returns the corresponding (object, object_link, attachment_point_position), i.e.
((BaseObject, RigidPrim, np.ndarray)) to the contacted in-hand object. Otherwise, returns None
"""
# TODO (eric): Assume joint_pos = 0 means fully closed
GRIPPER_FINGER_CLOSE_THRESHOLD = 0.03
gripper_finger_pos = self.get_joint_positions()[self.gripper_control_idx[arm]]
gripper_finger_close = np.sum(gripper_finger_pos) < GRIPPER_FINGER_CLOSE_THRESHOLD
if not gripper_finger_close:
return None
cloth_objs = og.sim.scene.object_registry("prim_type", PrimType.CLOTH)
if cloth_objs is None:
return None
# TODO (eric): Only AG one cloth at any given moment.
# Returns the first cloth that overlaps with the "ghost" box volume
for cloth_obj in cloth_objs:
attachment_point_pos = cloth_obj.links["attachment_point"].get_position()
particles_in_volume = self._ag_check_in_volume[arm]([attachment_point_pos])
if particles_in_volume.sum() > 0:
return cloth_obj, cloth_obj.links["attachment_point"], attachment_point_pos
return None
def _establish_grasp_cloth(self, arm="default", ag_data=None):
"""
Same as _establish_grasp_cloth, except for cloth. Only one should be used at any given time.
Establishes an ag-assisted grasp, if enabled.
Create a fixed joint between the attachment point link of the cloth object and the world.
In theory, we could have created a fixed joint to the eef link, but omni doesn't support this as the robot has
an articulation root API attached to it, which is incompatible with the attachment API.
We also store attachment_point_pos_local as the attachment point position in the eef link frame when the fixed
joint is created. As the eef link frame changes its pose, we will use attachment_point_pos_local to figure out
the new attachment_point_pos in the world frame and set the fixed joint to there. See _update_constraint_cloth
for more details.
Args:
arm (str): specific arm to establish grasp.
Default is "default" which corresponds to the first entry in self.arm_names
ag_data (None or 3-tuple): If specified, should be the corresponding
(object, object_link, attachment_point_position), i.e. ((BaseObject, RigidPrim, np.ndarray)) to the]
contacted in-hand object
"""
arm = self.default_arm if arm == "default" else arm
# Return immediately if ag_data is None
if ag_data is None:
return
ag_obj, ag_link, attachment_point_pos = ag_data
# Find the attachment point position in the eef frame
eef_link_pos, eef_link_orn = self.eef_links[arm].get_position_orientation()
attachment_point_pos_local, _ = \
T.relative_pose_transform(attachment_point_pos, [0, 0, 0, 1], eef_link_pos, eef_link_orn)
# Create the joint
joint_prim_path = f"{ag_link.prim_path}/ag_constraint"
joint_type = "FixedJoint"
joint_prim = create_joint(
prim_path=joint_prim_path,
joint_type=joint_type,
body0=ag_link.prim_path,
body1=None,
enabled=False,
joint_frame_in_child_frame_pos=attachment_point_pos,
)
# Save a reference to this joint prim
self._ag_obj_constraints[arm] = joint_prim
# Modify max force based on user-determined assist parameters
# TODO
max_force = m.ASSIST_FORCE
# joint_prim.GetAttribute("physics:breakForce").Set(max_force)
self._ag_obj_constraint_params[arm] = {
"ag_obj_prim_path": ag_obj.prim_path,
"ag_link_prim_path": ag_link.prim_path,
"ag_joint_prim_path": joint_prim_path,
"joint_type": joint_type,
"gripper_pos": self.get_joint_positions()[self.gripper_control_idx[arm]],
"max_force": max_force,
"attachment_point_pos_local": attachment_point_pos_local,
"contact_pos": attachment_point_pos,
}
self._ag_obj_in_hand[arm] = ag_obj
self._ag_freeze_gripper[arm] = True
for joint in self.finger_joints[arm]:
j_val = joint.get_state()[0][0]
self._ag_freeze_joint_pos[arm][joint.joint_name] = j_val
def _dump_state(self):
# Call super first
state = super()._dump_state()
# If we're using actual physical grasping, no extra state needed to save
if self.grasping_mode == "physical":
return state
# Include AG_state
state["ag_obj_constraint_params"] = self._ag_obj_constraint_params.copy()
return state
def _load_state(self, state):
# If there is an existing AG object, remove it
self.release_grasp_immediately()
super()._load_state(state=state)
# No additional loading needed if we're using physical grasping
if self.grasping_mode == "physical":
return
# Include AG_state
# TODO: currently does not take care of cloth objects
# TODO: add unit tests
for arm in state["ag_obj_constraint_params"].keys():
if len(state["ag_obj_constraint_params"][arm]) > 0:
data = state["ag_obj_constraint_params"][arm]
obj = og.sim.scene.object_registry("prim_path", data["ag_obj_prim_path"])
link = obj.links[data["ag_link_prim_path"].split("/")[-1]]
self._establish_grasp(arm=arm, ag_data=(obj, link), contact_pos=data["contact_pos"])
def _serialize(self, state):
# Call super first
state_flat = super()._serialize(state=state)
# No additional serialization needed if we're using physical grasping
if self.grasping_mode == "physical":
return state_flat
# TODO AG
return state_flat
def _deserialize(self, state):
# Call super first
state_dict, idx = super()._deserialize(state=state)
# No additional deserialization needed if we're using physical grasping
if self.grasping_mode == "physical":
return state_dict, idx
# TODO AG
return state_dict, idx
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("ManipulationRobot")
return classes
@property
def eef_usd_path(self):
"""
Returns:
dict(str, str): dict mapping arm name to the path to the eef usd file
"""
raise NotImplementedError
@property
def teleop_rotation_offset(self):
"""
Rotational offset that will be applied for teleoperation
such that [0, 0, 0, 1] as action will keep the robot eef pointing at +x axis
"""
return {arm: np.array([0, 0, 0, 1]) for arm in self.arm_names}
def teleop_data_to_action(self, teleop_action) -> np.ndarray:
"""
Generate action data from teleoperation action data
NOTE: This implementation only supports IK/OSC controller for arm and MultiFingerGripperController for gripper.
Overwrite this function if the robot is using a different controller.
Args:
teleop_action (TeleopAction): teleoperation action data
Returns:
np.ndarray: array of action data for arm and gripper
"""
action = super().teleop_data_to_action(teleop_action)
hands = ["left", "right"] if self.n_arms == 2 else ["right"]
for i, hand in enumerate(hands):
arm_name = self.arm_names[i]
arm_action = teleop_action[hand]
# arm action
assert \
isinstance(self._controllers[f"arm_{arm_name}"], InverseKinematicsController) or \
isinstance(self._controllers[f"arm_{arm_name}"], OperationalSpaceController), \
f"Only IK and OSC controllers are supported for arm {arm_name}!"
target_pos, target_orn = arm_action[:3], T.quat2axisangle(T.euler2quat(arm_action[3:6]))
action[self.arm_action_idx[arm_name]] = np.r_[target_pos, target_orn]
# gripper action
assert isinstance(self._controllers[f"gripper_{arm_name}"], MultiFingerGripperController), \
f"Only MultiFingerGripperController is supported for gripper {arm_name}!"
action[self.gripper_action_idx[arm_name]] = arm_action[6]
return action
| 69,213 | Python | 45.050566 | 174 | 0.612515 |
StanfordVL/OmniGibson/omnigibson/robots/locobot.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.robots.two_wheel_robot import TwoWheelRobot
class Locobot(TwoWheelRobot):
"""
Locobot robot
Reference: https://www.trossenrobotics.com/locobot-pyrobot-ros-rover.aspx
"""
@property
def model_name(self):
return "Locobot"
@property
def wheel_radius(self):
return 0.038
@property
def wheel_axle_length(self):
return 0.230
@property
def base_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to [Left, Right] wheel joints.
"""
return np.array([1, 0])
@property
def _default_joint_pos(self):
return np.zeros(self.n_joints)
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/locobot/locobot/locobot.usd")
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/locobot/locobot.urdf")
| 1,010 | Python | 21.466666 | 101 | 0.636634 |
StanfordVL/OmniGibson/omnigibson/robots/robot_base.py | from abc import abstractmethod
from copy import deepcopy
import numpy as np
import matplotlib.pyplot as plt
from omnigibson.macros import create_module_macros
from omnigibson.sensors import create_sensor, SENSOR_PRIMS_TO_SENSOR_CLS, ALL_SENSOR_MODALITIES, VisionSensor, ScanSensor
from omnigibson.objects.usd_object import USDObject
from omnigibson.objects.object_base import BaseObject
from omnigibson.objects.controllable_object import ControllableObject
from omnigibson.utils.gym_utils import GymObservable
from omnigibson.utils.usd_utils import add_asset_to_stage
from omnigibson.utils.python_utils import classproperty, merge_nested_dicts
from omnigibson.utils.vision_utils import segmentation_to_rgb
from omnigibson.utils.constants import PrimType
# Global dicts that will contain mappings
REGISTERED_ROBOTS = dict()
# Add proprio sensor modality to ALL_SENSOR_MODALITIES
ALL_SENSOR_MODALITIES.add("proprio")
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Name of the category to assign to all robots
m.ROBOT_CATEGORY = "agent"
class BaseRobot(USDObject, ControllableObject, GymObservable):
"""
Base class for USD-based robot agents.
This class handles object loading, and provides method interfaces that should be
implemented by subclassed robots.
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
fixed_base=False,
visual_only=False,
self_collisions=False,
load_config=None,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to this class
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
fixed_base (bool): whether to fix the base of this object or not
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Store inputs
self._obs_modalities = obs_modalities if obs_modalities == "all" else \
{obs_modalities} if isinstance(obs_modalities, str) else set(obs_modalities) # this will get updated later when we fill in our sensors
self._proprio_obs = self.default_proprio_obs if proprio_obs == "default" else list(proprio_obs)
self._sensor_config = sensor_config
# Process abilities
robot_abilities = {"robot": {}}
abilities = robot_abilities if abilities is None else robot_abilities.update(abilities)
# Initialize internal attributes that will be loaded later
self._sensors = None # e.g.: scan sensor, vision sensor
self._dummy = None # Dummy version of the robot w/ fixed base for computing generalized gravity forces
# If specified, make sure scale is uniform -- this is because non-uniform scale can result in non-matching
# collision representations for parts of the robot that were optimized (e.g.: bounding sphere for wheels)
assert scale is None or isinstance(scale, int) or isinstance(scale, float) or np.all(scale == scale[0]), \
f"Robot scale must be uniform! Got: {scale}"
# Run super init
super().__init__(
prim_path=prim_path,
usd_path=self.usd_path,
name=name,
category=m.ROBOT_CATEGORY,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
prim_type=PrimType.RIGID,
include_default_states=True,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
**kwargs,
)
def _load(self):
# Run super first
prim = super()._load()
# Also import dummy object if this robot is not fixed base
if self._use_dummy:
dummy_path = f"{self._prim_path}_dummy"
dummy_prim = add_asset_to_stage(asset_path=self._dummy_usd_path, prim_path=dummy_path)
self._dummy = BaseObject(
name=f"{self.name}_dummy",
prim_path=dummy_path,
scale=self._load_config.get("scale", None),
visible=False,
fixed_base=True,
visual_only=True,
)
return prim
def _post_load(self):
# Run super post load first
super()._post_load()
# Load the sensors
self._load_sensors()
def _initialize(self):
# Initialize the dummy first if it exists
if self._dummy is not None:
self._dummy.initialize()
# Run super
super()._initialize()
# Initialize all sensors
for sensor in self._sensors.values():
sensor.initialize()
# Load the observation space for this robot
self.load_observation_space()
# Validate this robot configuration
self._validate_configuration()
self._reset_joint_pos_aabb_extent = self.aabb_extent
def _load_sensors(self):
"""
Loads sensor(s) to retrieve observations from this object.
Stores created sensors as dictionary mapping sensor names to specific sensor
instances used by this object.
"""
# Populate sensor config
self._sensor_config = self._generate_sensor_config(custom_config=self._sensor_config)
# Search for any sensors this robot might have attached to any of its links
self._sensors = dict()
obs_modalities = set()
for link_name, link in self._links.items():
# Search through all children prims and see if we find any sensor
sensor_counts = {p: 0 for p in SENSOR_PRIMS_TO_SENSOR_CLS.keys()}
for prim in link.prim.GetChildren():
prim_type = prim.GetPrimTypeInfo().GetTypeName()
if prim_type in SENSOR_PRIMS_TO_SENSOR_CLS:
# Infer what obs modalities to use for this sensor
sensor_cls = SENSOR_PRIMS_TO_SENSOR_CLS[prim_type]
sensor_kwargs = self._sensor_config[sensor_cls.__name__]
if "modalities" not in sensor_kwargs:
sensor_kwargs["modalities"] = sensor_cls.all_modalities if self._obs_modalities == "all" else \
sensor_cls.all_modalities.intersection(self._obs_modalities)
obs_modalities = obs_modalities.union(sensor_kwargs["modalities"])
# Create the sensor and store it internally
sensor = create_sensor(
sensor_type=prim_type,
prim_path=str(prim.GetPrimPath()),
name=f"{self.name}:{link_name}:{prim_type}:{sensor_counts[prim_type]}",
**sensor_kwargs,
)
self._sensors[sensor.name] = sensor
sensor_counts[prim_type] += 1
# Since proprioception isn't an actual sensor, we need to possibly manually add it here as well
if self._obs_modalities == "all" or "proprio" in self._obs_modalities:
obs_modalities.add("proprio")
# Update our overall obs modalities
self._obs_modalities = obs_modalities
def _generate_sensor_config(self, custom_config=None):
"""
Generates a fully-populated sensor config, overriding any default values with the corresponding values
specified in @custom_config
Args:
custom_config (None or Dict[str, ...]): nested dictionary mapping sensor class name(s) to specific custom
sensor configurations for this object. This will override any default values specified by this class
Returns:
dict: Fully-populated nested dictionary mapping sensor class name(s) to specific sensor configurations
for this object
"""
sensor_config = {} if custom_config is None else deepcopy(custom_config)
# Merge the sensor dictionaries
sensor_config = merge_nested_dicts(
base_dict=self._default_sensor_config,
extra_dict=sensor_config,
)
return sensor_config
def _validate_configuration(self):
"""
Run any needed sanity checks to make sure this robot was created correctly.
"""
pass
def step(self):
# Skip this step if our articulation view is not valid
if self._articulation_view_direct is None or not self._articulation_view_direct.initialized:
return
# Before calling super, update the dummy robot's kinematic state based on this robot's kinematic state
# This is done prior to any state getter calls, since setting kinematic state results in physx backend
# having to re-fetch tensorized state.
# We do this so we have more optimal runtime performance
if self._use_dummy:
self._dummy.set_joint_positions(self.get_joint_positions())
self._dummy.set_joint_velocities(self.get_joint_velocities())
self._dummy.set_position_orientation(*self.get_position_orientation())
super().step()
def get_obs(self):
"""
Grabs all observations from the robot. This is keyword-mapped based on each observation modality
(e.g.: proprio, rgb, etc.)
Returns:
2-tuple:
dict: Keyword-mapped dictionary mapping observation modality names to
observations (usually np arrays)
dict: Keyword-mapped dictionary mapping observation modality names to
additional info
"""
# Our sensors already know what observation modalities it has, so we simply iterate over all of them
# and grab their observations, processing them into a flat dict
obs_dict = dict()
info_dict = dict()
for sensor_name, sensor in self._sensors.items():
obs_dict[sensor_name], info_dict[sensor_name] = sensor.get_obs()
# Have to handle proprio separately since it's not an actual sensor
if "proprio" in self._obs_modalities:
obs_dict["proprio"], info_dict["proprio"] = self.get_proprioception()
return obs_dict, info_dict
def get_proprioception(self):
"""
Returns:
n-array: numpy array of all robot-specific proprioceptive observations.
dict: empty dictionary, a placeholder for additional info
"""
proprio_dict = self._get_proprioception_dict()
return np.concatenate([proprio_dict[obs] for obs in self._proprio_obs]), {}
def _get_proprioception_dict(self):
"""
Returns:
dict: keyword-mapped proprioception observations available for this robot.
Can be extended by subclasses
"""
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
joint_efforts = self.get_joint_efforts(normalized=False)
pos, ori = self.get_position(), self.get_rpy()
ori_2d = self.get_2d_orientation()
return dict(
joint_qpos=joint_positions,
joint_qpos_sin=np.sin(joint_positions),
joint_qpos_cos=np.cos(joint_positions),
joint_qvel=joint_velocities,
joint_qeffort=joint_efforts,
robot_pos=pos,
robot_ori_cos=np.cos(ori),
robot_ori_sin=np.sin(ori),
robot_2d_ori=ori_2d,
robot_2d_ori_cos=np.cos(ori_2d),
robot_2d_ori_sin=np.sin(ori_2d),
robot_lin_vel=self.get_linear_velocity(),
robot_ang_vel=self.get_angular_velocity(),
)
def _load_observation_space(self):
# We compile observation spaces from our sensors
obs_space = dict()
for sensor_name, sensor in self._sensors.items():
# Load the sensor observation space
obs_space[sensor_name] = sensor.load_observation_space()
# Have to handle proprio separately since it's not an actual sensor
if "proprio" in self._obs_modalities:
obs_space["proprio"] = self._build_obs_box_space(shape=(self.proprioception_dim,), low=-np.inf, high=np.inf, dtype=np.float64)
return obs_space
def add_obs_modality(self, modality):
"""
Adds observation modality @modality to this robot. Note: Should be one of omnigibson.sensors.ALL_SENSOR_MODALITIES
Args:
modality (str): Observation modality to add to this robot
"""
# Iterate over all sensors we own, and if the requested modality is a part of its possible valid modalities,
# then we add it
for sensor in self._sensors.values():
if modality in sensor.all_modalities:
sensor.add_modality(modality=modality)
def remove_obs_modality(self, modality):
"""
Remove observation modality @modality from this robot. Note: Should be one of
omnigibson.sensors.ALL_SENSOR_MODALITIES
Args:
modality (str): Observation modality to remove from this robot
"""
# Iterate over all sensors we own, and if the requested modality is a part of its possible valid modalities,
# then we remove it
for sensor in self._sensors.values():
if modality in sensor.all_modalities:
sensor.remove_modality(modality=modality)
def visualize_sensors(self):
"""
Renders this robot's key sensors, visualizing them via matplotlib plots
"""
frames = dict()
remaining_obs_modalities = deepcopy(self.obs_modalities)
for sensor in self.sensors.values():
obs, _ = sensor.get_obs()
sensor_frames = []
if isinstance(sensor, VisionSensor):
# We check for rgb, depth, normal, seg_instance
for modality in ["rgb", "depth", "normal", "seg_instance"]:
if modality in sensor.modalities:
ob = obs[modality]
if modality == "rgb":
# Ignore alpha channel, map to floats
ob = ob[:, :, :3] / 255.0
elif modality == "seg_instance":
# Map IDs to rgb
ob = segmentation_to_rgb(ob, N=256) / 255.0
elif modality == "normal":
# Re-map to 0 - 1 range
ob = (ob + 1.0) / 2.0
else:
# Depth, nothing to do here
pass
# Add this observation to our frames and remove the modality
sensor_frames.append((modality, ob))
remaining_obs_modalities -= {modality}
else:
# Warn user that we didn't find this modality
print(f"Modality {modality} is not active in sensor {sensor.name}, skipping...")
elif isinstance(sensor, ScanSensor):
# We check for occupancy_grid
occupancy_grid = obs.get("occupancy_grid", None)
if occupancy_grid is not None:
sensor_frames.append(("occupancy_grid", occupancy_grid))
remaining_obs_modalities -= {"occupancy_grid"}
# Map the sensor name to the frames for that sensor
frames[sensor.name] = sensor_frames
# Warn user that any remaining modalities are not able to be visualized
if len(remaining_obs_modalities) > 0:
print(f"Modalities: {remaining_obs_modalities} cannot be visualized, skipping...")
# Write all the frames to a plot
for sensor_name, sensor_frames in frames.items():
n_sensor_frames = len(sensor_frames)
if n_sensor_frames > 0:
fig, axes = plt.subplots(nrows=1, ncols=n_sensor_frames)
if n_sensor_frames == 1:
axes = [axes]
# Dump frames and set each subtitle
for i, (modality, frame) in enumerate(sensor_frames):
axes[i].imshow(frame)
axes[i].set_title(modality)
axes[i].set_axis_off()
# Set title
fig.suptitle(sensor_name)
plt.show(block=False)
# One final plot show so all the figures get rendered
plt.show()
def update_handles(self):
# Call super first
super().update_handles()
# If we have a dummy robot, also update its handles too
if self._dummy is not None:
self._dummy.update_handles()
def remove(self):
"""
Do NOT call this function directly to remove a prim - call og.sim.remove_prim(prim) for proper cleanup
"""
# Remove all sensors
for sensor in self._sensors.values():
sensor.remove()
# Run super
super().remove()
@property
def reset_joint_pos_aabb_extent(self):
"""
This is the aabb extent of the robot in the robot frame after resetting the joints.
Returns:
3-array: Axis-aligned bounding box extent of the robot base
"""
return self._reset_joint_pos_aabb_extent
def teleop_data_to_action(self, teleop_action) -> np.ndarray:
"""
Generate action data from teleoperation action data
Args:
teleop_action (TeleopAction): teleoperation action data
Returns:
np.ndarray: array of action data filled with update value
"""
return np.zeros(self.action_dim)
def get_generalized_gravity_forces(self, clone=True):
# Override method based on whether we're using a dummy or not
return self._dummy.get_generalized_gravity_forces(clone=clone) \
if self._use_dummy else super().get_generalized_gravity_forces(clone=clone)
@property
def sensors(self):
"""
Returns:
dict: Keyword-mapped dictionary mapping sensor names to BaseSensor instances owned by this robot
"""
return self._sensors
@property
def obs_modalities(self):
"""
Returns:
set of str: Observation modalities used for this robot (e.g.: proprio, rgb, etc.)
"""
assert self._loaded, "Cannot check observation modalities until we load this robot!"
return self._obs_modalities
@property
def proprioception_dim(self):
"""
Returns:
int: Size of self.get_proprioception() vector
"""
return len(self.get_proprioception()[0])
@property
def _default_sensor_config(self):
"""
Returns:
dict: default nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. See kwargs from omnigibson/sensors/__init__/create_sensor for more
details
Expected structure is as follows:
SensorClassName1:
modalities: ...
enabled: ...
noise_type: ...
noise_kwargs:
...
sensor_kwargs:
...
SensorClassName2:
modalities: ...
enabled: ...
noise_type: ...
noise_kwargs:
...
sensor_kwargs:
...
...
"""
return {
"VisionSensor": {
"enabled": True,
"noise_type": None,
"noise_kwargs": None,
"sensor_kwargs": {
"image_height": 128,
"image_width": 128,
},
},
"ScanSensor": {
"enabled": True,
"noise_type": None,
"noise_kwargs": None,
"sensor_kwargs": {
# Basic LIDAR kwargs
"min_range": 0.05,
"max_range": 10.0,
"horizontal_fov": 360.0,
"vertical_fov": 1.0,
"yaw_offset": 0.0,
"horizontal_resolution": 1.0,
"vertical_resolution": 1.0,
"rotation_rate": 0.0,
"draw_points": False,
"draw_lines": False,
# Occupancy Grid kwargs
"occupancy_grid_resolution": 128,
"occupancy_grid_range": 5.0,
"occupancy_grid_inner_radius": 0.5,
"occupancy_grid_local_link": None,
},
},
}
@property
def default_proprio_obs(self):
"""
Returns:
list of str: Default proprioception observations to use
"""
return []
@property
def model_name(self):
"""
Returns:
str: name of this robot model. usually corresponds to the class name of a given robot model
"""
return self.__class__.__name__
@property
@abstractmethod
def usd_path(self):
# For all robots, this must be specified a priori, before we actually initialize the USDObject constructor!
# So we override the parent implementation, and make this an abstract method
raise NotImplementedError
@property
def _dummy_usd_path(self):
"""
Returns:
str: Absolute path to the dummy USD to load for, e.g., computing gravity compensation
"""
# By default, this is just the normal usd path
return self.usd_path
@property
def urdf_path(self):
"""
Returns:
str: file path to the robot urdf file.
"""
raise NotImplementedError
@property
def _use_dummy(self):
"""
Returns:
bool: Whether the robot dummy should be loaded and used for some computations, e.g., gravity compensation
"""
# By default, only load if robot is not fixed base
return not self.fixed_base
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("BaseRobot")
return classes
@classproperty
def _cls_registry(cls):
# Global robot registry -- override super registry
global REGISTERED_ROBOTS
return REGISTERED_ROBOTS
| 27,335 | Python | 41.250386 | 159 | 0.588257 |
StanfordVL/OmniGibson/omnigibson/robots/behavior_robot.py | from abc import ABC
from collections import OrderedDict
import itertools
import numpy as np
import os
from scipy.spatial.transform import Rotation as R
from typing import List, Tuple, Iterable
import omnigibson as og
import omnigibson.lazy as lazy
import omnigibson.utils.transform_utils as T
from omnigibson.macros import gm, create_module_macros
from omnigibson.robots.locomotion_robot import LocomotionRobot
from omnigibson.robots.manipulation_robot import ManipulationRobot, GraspingPoint
from omnigibson.robots.active_camera_robot import ActiveCameraRobot
from omnigibson.objects.usd_object import USDObject
m = create_module_macros(module_path=__file__)
# component suffixes for the 6-DOF arm joint names
m.COMPONENT_SUFFIXES = ['x', 'y', 'z', 'rx', 'ry', 'rz']
# Offset between the body and parts
m.HEAD_TO_BODY_OFFSET = [0, 0, -0.4]
m.HAND_TO_BODY_OFFSET = {
"left": [0, -0.15, -0.4],
"right": [0, 0.15, -0.4]
}
m.BODY_HEIGHT_OFFSET = 0.45
# Hand parameters
m.HAND_GHOST_HAND_APPEAR_THRESHOLD = 0.15
m.THUMB_2_POS = [0, -0.02, -0.05]
m.THUMB_1_POS = [0, -0.015, -0.02]
m.PALM_CENTER_POS = [0, -0.04, 0.01]
m.PALM_BASE_POS = [0, 0, 0.015]
m.FINGER_TIP_POS = [0, -0.025, -0.055]
# Hand link index constants
m.PALM_LINK_NAME = "palm"
m.FINGER_MID_LINK_NAMES = ("Tproximal", "Iproximal", "Mproximal", "Rproximal", "Pproximal")
m.FINGER_TIP_LINK_NAMES = ("Tmiddle", "Imiddle", "Mmiddle", "Rmiddle", "Pmiddle")
m.THUMB_LINK_NAME = "Tmiddle"
# joint parameters
m.BASE_JOINT_STIFFNESS = 1e8
m.BASE_JOINT_MAX_EFFORT = 7500
m.ARM_JOINT_STIFFNESS = 1e6
m.ARM_JOINT_MAX_EFFORT = 300
m.FINGER_JOINT_STIFFNESS = 1e3
m.FINGER_JOINT_MAX_EFFORT = 50
m.FINGER_JOINT_MAX_VELOCITY = np.pi * 4
class BehaviorRobot(ManipulationRobot, LocomotionRobot, ActiveCameraRobot):
"""
A humanoid robot that can be used in VR as an avatar. It has two hands, a body and a head with two cameras.
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=True,
load_config=None,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=False,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="rgb",
proprio_obs="default",
# Unique to ManipulationRobot
grasping_mode="assisted",
# unique to BehaviorRobot
use_ghost_hands=True,
**kwargs
):
"""
Initializes BehaviorRobot
Args:
use_ghost_hands (bool): whether to show ghost hand when the robot hand is too far away from the controller
"""
super(BehaviorRobot, self).__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=True,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
grasping_mode=grasping_mode,
grasping_direction="upper",
**kwargs,
)
# setup eef parts
self.parts = OrderedDict()
for arm_name in self.arm_names:
self.parts[arm_name] = BRPart(
name=arm_name, parent=self, prim_path=f"{arm_name}_palm", eef_type="hand",
offset_to_body=m.HAND_TO_BODY_OFFSET[arm_name], **kwargs
)
self.parts["head"] = BRPart(
name="head", parent=self, prim_path="eye", eef_type="head",
offset_to_body=m.HEAD_TO_BODY_OFFSET, **kwargs
)
# whether to use ghost hands (visual markers to help visualize current vr hand pose)
self._use_ghost_hands = use_ghost_hands
# prim for the world_base_fixed_joint, used to reset the robot pose
self._world_base_fixed_joint_prim = None
# whether hand or body is in contact with other objects (we need this since checking contact list is costly)
self._part_is_in_contact = {hand_name: False for hand_name in self.arm_names + ["body"]}
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/behavior_robot/usd/BehaviorRobot.usd")
@property
def model_name(self):
return "BehaviorRobot"
@property
def n_arms(self):
return 2
@property
def arm_names(self):
return ["left", "right"]
@property
def eef_link_names(self):
dic = {arm: f"{arm}_{m.PALM_LINK_NAME}" for arm in self.arm_names}
dic["head"] = "head"
return dic
@property
def arm_link_names(self):
"""The head counts as a arm since it has the same 33 joint configuration"""
return {arm: [f"{arm}_{component}" for component in m.COMPONENT_SUFFIXES] for arm in self.arm_names + ['head']}
@property
def finger_link_names(self):
return {
arm: [f"{arm}_{link_name}" for link_name in itertools.chain(m.FINGER_MID_LINK_NAMES, m.FINGER_TIP_LINK_NAMES)]
for arm in self.arm_names
}
@property
def base_joint_names(self):
return [f"base_{component}_joint" for component in m.COMPONENT_SUFFIXES]
@property
def arm_joint_names(self):
"""The head counts as a arm since it has the same 33 joint configuration"""
return {eef: [f"{eef}_{component}_joint" for component in m.COMPONENT_SUFFIXES] for eef in self.arm_names + ["head"]}
@property
def finger_joint_names(self):
return {
arm: (
# palm-to-proximal joints.
[f"{arm}_{to_link}__{arm}_{m.PALM_LINK_NAME}" for to_link in m.FINGER_MID_LINK_NAMES]
+
# proximal-to-tip joints.
[f"{arm}_{to_link}__{arm}_{from_link}" for from_link, to_link in zip(m.FINGER_MID_LINK_NAMES, m.FINGER_TIP_LINK_NAMES)]
)
for arm in self.arm_names
}
@property
def base_control_idx(self):
joints = list(self.joints.keys())
return [joints.index(joint) for joint in self.base_joint_names]
@property
def arm_control_idx(self):
joints = list(self.joints.keys())
return {
arm: [joints.index(f"{arm}_{component}_joint") for component in m.COMPONENT_SUFFIXES]
for arm in self.arm_names
}
@property
def gripper_control_idx(self):
joints = list(self.joints.values())
return {arm: [joints.index(joint) for joint in arm_joints] for arm, arm_joints in self.finger_joints.items()}
@property
def camera_control_idx(self):
joints = list(self.joints.keys())
return [joints.index(f"head_{component}_joint") for component in m.COMPONENT_SUFFIXES]
@property
def _default_joint_pos(self):
return np.zeros(self.n_joints)
@property
def controller_order(self):
controllers = ["base", "camera"]
for arm_name in self.arm_names:
controllers += [f"arm_{arm_name}", f"gripper_{arm_name}"]
return controllers
@property
def _default_controllers(self):
controllers = {
"base": "JointController",
"camera": "JointController"
}
controllers.update({f"arm_{arm_name}": "JointController" for arm_name in self.arm_names})
controllers.update({f"gripper_{arm_name}": "MultiFingerGripperController" for arm_name in self.arm_names})
return controllers
@property
def _default_base_joint_controller_config(self):
return {
"name": "JointController",
"control_freq": self._control_freq,
"control_limits": self.control_limits,
"use_delta_commands": False,
"motor_type": "position",
"dof_idx": self.base_control_idx,
"command_input_limits": None,
}
@property
def _default_arm_joint_controller_configs(self):
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "JointController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.arm_control_idx[arm],
"command_input_limits": None,
"use_delta_commands": False,
}
return dic
@property
def _default_gripper_multi_finger_controller_configs(self):
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "MultiFingerGripperController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.gripper_control_idx[arm],
"command_input_limits": None,
"mode": "independent",
}
return dic
@property
def _default_camera_joint_controller_config(self):
return {
"name": "JointController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.camera_control_idx,
"command_input_limits": None,
"use_delta_commands": False,
}
@property
def _default_gripper_joint_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default gripper joint controller config
to control this robot's gripper
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "JointController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.gripper_control_idx[arm],
"command_input_limits": None,
"use_delta_commands": False,
}
return dic
@property
def _default_controller_config(self):
controllers = {
"base": {"JointController": self._default_base_joint_controller_config},
"camera": {"JointController": self._default_camera_joint_controller_config},
}
controllers.update(
{
f"arm_{arm_name}": {"JointController": self._default_arm_joint_controller_configs[arm_name]}
for arm_name in self.arm_names
}
)
controllers.update(
{
f"gripper_{arm_name}": {
"MultiFingerGripperController": self._default_gripper_multi_finger_controller_configs[arm_name],
"JointController": self._default_gripper_joint_controller_configs[arm_name],
}
for arm_name in self.arm_names
}
)
return controllers
def load(self):
prim = super(BehaviorRobot, self).load()
for part in self.parts.values():
part.load()
return prim
def _post_load(self):
super()._post_load()
def _create_discrete_action_space(self):
raise ValueError("BehaviorRobot does not support discrete actions!")
def update_controller_mode(self):
super().update_controller_mode()
# set base joint properties
for joint_name in self.base_joint_names:
self.joints[joint_name].stiffness = m.BASE_JOINT_STIFFNESS
self.joints[joint_name].max_effort = m.BASE_JOINT_MAX_EFFORT
# set arm joint properties
for arm in self.arm_joint_names:
for joint_name in self.arm_joint_names[arm]:
self.joints[joint_name].stiffness = m.ARM_JOINT_STIFFNESS
self.joints[joint_name].max_effort = m.ARM_JOINT_MAX_EFFORT
# set finger joint properties
for arm in self.finger_joint_names:
for joint_name in self.finger_joint_names[arm]:
self.joints[joint_name].stiffness = m.FINGER_JOINT_STIFFNESS
self.joints[joint_name].max_effort = m.FINGER_JOINT_MAX_EFFORT
self.joints[joint_name].max_velocity = m.FINGER_JOINT_MAX_VELOCITY
@property
def base_footprint_link_name(self):
"""
Name of the actual root link that we are interested in.
"""
return "base"
@property
def base_footprint_link(self):
"""
Returns:
RigidPrim: base footprint link of this object prim
"""
return self._links[self.base_footprint_link_name]
def get_position_orientation(self):
return self.base_footprint_link.get_position_orientation()
def set_position_orientation(self, position=None, orientation=None):
super().set_position_orientation(position, orientation)
# Move the joint frame for the world_base_joint
if self._world_base_fixed_joint_prim is not None:
if position is not None:
self._world_base_fixed_joint_prim.GetAttribute("physics:localPos0").Set(tuple(position))
if orientation is not None:
self._world_base_fixed_joint_prim.GetAttribute("physics:localRot0").Set(lazy.pxr.Gf.Quatf(*np.float_(orientation)[[3, 0, 1, 2]]))
@property
def assisted_grasp_start_points(self):
side_coefficients = {"left": np.array([1, -1, 1]), "right": np.array([1, 1, 1])}
return {
arm: [
GraspingPoint(link_name=f"{arm}_{m.PALM_LINK_NAME}", position=m.PALM_BASE_POS),
GraspingPoint(link_name=f"{arm}_{m.PALM_LINK_NAME}", position=m.PALM_CENTER_POS * side_coefficients[arm]),
GraspingPoint(
link_name=f"{arm}_{m.THUMB_LINK_NAME}", position=m.THUMB_1_POS * side_coefficients[arm]
),
GraspingPoint(
link_name=f"{arm}_{m.THUMB_LINK_NAME}", position=m.THUMB_2_POS * side_coefficients[arm]
),
]
for arm in self.arm_names
}
@property
def assisted_grasp_end_points(self):
side_coefficients = {"left": np.array([1, -1, 1]), "right": np.array([1, 1, 1])}
return {
arm: [
GraspingPoint(link_name=f"{arm}_{finger}", position=m.FINGER_TIP_POS * side_coefficients[arm])
for finger in m.FINGER_TIP_LINK_NAMES
]
for arm in self.arm_names
}
def update_hand_contact_info(self):
"""
Helper function that updates the contact info for the hands and body.
Can be used in the future with device haptics to provide collision feedback.
"""
self._part_is_in_contact["body"] = len(self.links["body"].contact_list()) > 0
for hand_name in self.arm_names:
self._part_is_in_contact[hand_name] = len(self.eef_links[hand_name].contact_list()) > 0 \
or np.any([len(finger.contact_list()) > 0 for finger in self.finger_links[hand_name]])
def teleop_data_to_action(self, teleop_action) -> np.ndarray:
"""
Generates an action for the BehaviorRobot to perform based on teleop action data dict.
Action space (all non-normalized values that will be clipped if they are too large)
Body:
- 6DOF pose - relative to body frame from previous frame
Eye:
- 6DOF pose - relative to body frame (where the body will be after applying this frame's action)
Left hand, right hand (in that order):
- 6DOF pose - relative to body frame (same as above)
- 10DOF gripper joint rotation
Total size: 44
"""
# Actions are stored as 1D numpy array
action = np.zeros(self.action_dim)
# Update body action space
if teleop_action.is_valid["head"]:
head_pos, head_orn = teleop_action.head[:3], T.euler2quat(teleop_action.head[3:6])
des_body_pos = head_pos - np.array([0, 0, m.BODY_HEIGHT_OFFSET])
des_body_rpy = np.array([0, 0, R.from_quat(head_orn).as_euler("XYZ")[2]])
des_body_orn = T.euler2quat(des_body_rpy)
else:
des_body_pos, des_body_orn = self.get_position_orientation()
des_body_rpy = R.from_quat(des_body_orn).as_euler("XYZ")
action[self.controller_action_idx["base"]] = np.r_[des_body_pos, des_body_rpy]
# Update action space for other VR objects
for part_name, eef_part in self.parts.items():
# Process local transform adjustments
hand_data = 0
if teleop_action.is_valid[part_name]:
des_world_part_pos, des_world_part_orn = teleop_action[part_name][:3], T.euler2quat(teleop_action[part_name][3:6])
if part_name in self.arm_names:
# compute gripper action
if hasattr(teleop_action, "hand_data"):
# hand tracking mode, compute joint rotations for each independent hand joint
hand_data = teleop_action.hand_data[part_name]
hand_data = hand_data[:, :2].T.reshape(-1)
else:
# controller mode, map trigger fraction from [0, 1] to [-1, 1] range.
hand_data = teleop_action[part_name][6] * 2 - 1
action[self.controller_action_idx[f"gripper_{part_name}"]] = hand_data
# update ghost hand if necessary
if self._use_ghost_hands:
self.parts[part_name].update_ghost_hands(des_world_part_pos, des_world_part_orn)
else:
des_world_part_pos, des_world_part_orn = eef_part.local_position_orientation
# Get local pose with respect to the new body frame
des_local_part_pos, des_local_part_orn = T.relative_pose_transform(
des_world_part_pos, des_world_part_orn, des_body_pos, des_body_orn
)
# apply shoulder position offset to the part transform to get final destination pose
des_local_part_pos, des_local_part_orn = T.pose_transform(
eef_part.offset_to_body, [0, 0, 0, 1], des_local_part_pos, des_local_part_orn
)
des_part_rpy = R.from_quat(des_local_part_orn).as_euler("XYZ")
controller_name = "camera" if part_name == "head" else "arm_" + part_name
action[self.controller_action_idx[controller_name]] = np.r_[des_local_part_pos, des_part_rpy]
# If we reset, teleop the robot parts to the desired pose
if part_name in self.arm_names and teleop_action.reset[part_name]:
self.parts[part_name].set_position_orientation(des_local_part_pos, des_part_rpy)
return action
class BRPart(ABC):
"""This is the interface that all BehaviorRobot eef parts must implement."""
def __init__(self, name: str, parent: BehaviorRobot, prim_path: str, eef_type: str, offset_to_body: List[float]) -> None:
"""
Create an object instance with the minimum information of class ID and rendering parameters.
Args:
name (str): unique name of this BR part
parent (BehaviorRobot): the parent BR object
prim_path (str): prim path to the root link of the eef
eef_type (str): type of eef. One of hand, head
offset_to_body (List[float]): relative POSITION offset between the rz link and the eef link.
"""
self.name = name
self.parent = parent
self.prim_path = prim_path
self.eef_type = eef_type
self.offset_to_body = offset_to_body
self.ghost_hand = None
self._root_link = None
def load(self) -> None:
self._root_link = self.parent.links[self.prim_path]
# setup ghost hand
if self.eef_type == "hand" and self.parent._use_ghost_hands:
gh_name = f"ghost_hand_{self.name}"
self.ghost_hand = USDObject(
prim_path=f"/World/{gh_name}",
usd_path=os.path.join(gm.ASSET_PATH, f"models/behavior_robot/usd/{gh_name}.usd"),
name=gh_name,
scale=0.001,
visible=False,
visual_only=True,
)
og.sim.import_object(self.ghost_hand)
@property
def local_position_orientation(self) -> Tuple[Iterable[float], Iterable[float]]:
"""
Get local position and orientation w.r.t. to the body
Returns:
Tuple[Array[x, y, z], Array[x, y, z, w]]
"""
return T.relative_pose_transform(*self.get_position_orientation(), *self.parent.get_position_orientation())
def get_position_orientation(self) -> Tuple[Iterable[float], Iterable[float]]:
"""
Get position and orientation in the world space
Returns:
Tuple[Array[x, y, z], Array[x, y, z, w]]
"""
return self._root_link.get_position_orientation()
def set_position_orientation(self, pos: Iterable[float], orn: Iterable[float]) -> None:
"""
Call back function to set the base's position
"""
self.parent.joints[f"{self.name}_x_joint"].set_pos(pos[0], drive=False)
self.parent.joints[f"{self.name}_y_joint"].set_pos(pos[1], drive=False)
self.parent.joints[f"{self.name}_z_joint"].set_pos(pos[2], drive=False)
self.parent.joints[f"{self.name}_rx_joint"].set_pos(orn[0], drive=False)
self.parent.joints[f"{self.name}_ry_joint"].set_pos(orn[1], drive=False)
self.parent.joints[f"{self.name}_rz_joint"].set_pos(orn[2], drive=False)
def update_ghost_hands(self, pos: Iterable[float], orn: Iterable[float]) -> None:
"""
Updates ghost hand to track real hand and displays it if the real and virtual hands are too far apart.
Args:
pos (Iterable[float]): list of positions [x, y, z]
orn (Iterable[float]): list of rotations [x, y, z, w]
"""
assert self.eef_type == "hand", "ghost hand is only valid for BR hand!"
# Ghost hand tracks real hand whether it is hidden or not
self.ghost_hand.set_position_orientation(pos, orn)
# If distance between hand and controller is greater than threshold,
# ghost hand appears
dist_to_real_controller = np.linalg.norm(pos - self.get_position_orientation()[0])
should_visible = dist_to_real_controller > m.HAND_GHOST_HAND_APPEAR_THRESHOLD
# Only toggle visibility if we are transition from hidden to unhidden, or the other way around
if self.ghost_hand.visible is not should_visible:
self.ghost_hand.visible = should_visible
| 23,460 | Python | 39.035836 | 145 | 0.587127 |
StanfordVL/OmniGibson/omnigibson/robots/locomotion_robot.py | from abc import abstractmethod
import numpy as np
from transforms3d.euler import euler2quat
from transforms3d.quaternions import qmult, quat2mat
from omnigibson.controllers import LocomotionController
from omnigibson.robots.robot_base import BaseRobot
from omnigibson.utils.python_utils import classproperty
class LocomotionRobot(BaseRobot):
"""
Robot that is is equipped with locomotive (navigational) capabilities.
Provides common interface for a wide variety of robots.
NOTE: controller_config should, at the minimum, contain:
base: controller specifications for the controller to control this robot's base (locomotion).
Should include:
- name: Controller to create
- <other kwargs> relevant to the controller being created. Note that all values will have default
values specified, but setting these individual kwargs will override them
"""
def _validate_configuration(self):
# We make sure that our base controller exists and is a locomotion controller
assert (
"base" in self._controllers
), "Controller 'base' must exist in controllers! Current controllers: {}".format(list(self._controllers.keys()))
assert isinstance(
self._controllers["base"], LocomotionController
), "Base controller must be a LocomotionController!"
# run super
super()._validate_configuration()
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
# Add base info
dic["base_qpos"] = joint_positions[self.base_control_idx]
dic["base_qpos_sin"] = np.sin(joint_positions[self.base_control_idx])
dic["base_qpos_cos"] = np.cos(joint_positions[self.base_control_idx])
dic["base_qvel"] = joint_velocities[self.base_control_idx]
return dic
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
return obs_keys + ["base_qpos_sin", "base_qpos_cos", "robot_lin_vel", "robot_ang_vel"]
@property
def controller_order(self):
# By default, only base is supported
return ["base"]
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# For best generalizability use, joint controller as default
controllers["base"] = "JointController"
return controllers
@property
def _default_base_joint_controller_config(self):
"""
Returns:
dict: Default base joint controller config to control this robot's base. Uses velocity
control by default.
"""
return {
"name": "JointController",
"control_freq": self._control_freq,
"motor_type": "velocity",
"control_limits": self.control_limits,
"dof_idx": self.base_control_idx,
"command_output_limits": "default",
"use_delta_commands": False,
}
@property
def _default_base_null_joint_controller_config(self):
"""
Returns:
dict: Default null joint controller config to control this robot's base i.e. dummy controller
"""
return {
"name": "NullJointController",
"control_freq": self._control_freq,
"motor_type": "velocity",
"control_limits": self.control_limits,
"dof_idx": self.base_control_idx,
"default_command": np.zeros(len(self.base_control_idx)),
"use_impedances": False,
}
@property
def _default_controller_config(self):
# Always run super method first
cfg = super()._default_controller_config
# Add supported base controllers
cfg["base"] = {
self._default_base_joint_controller_config["name"]: self._default_base_joint_controller_config,
self._default_base_null_joint_controller_config["name"]: self._default_base_null_joint_controller_config,
}
return cfg
def move_by(self, delta):
"""
Move robot base without physics simulation
Args:
delta (float):float], (x,y,z) cartesian delta base position
"""
new_pos = np.array(delta) + self.get_position()
self.set_position(position=new_pos)
def move_forward(self, delta=0.05):
"""
Move robot base forward without physics simulation
Args:
delta (float): delta base position forward
"""
self.move_by(quat2mat(self.get_orientation()).dot(np.array([delta, 0, 0])))
def move_backward(self, delta=0.05):
"""
Move robot base backward without physics simulation
Args:
delta (float): delta base position backward
"""
self.move_by(quat2mat(self.get_orientation()).dot(np.array([-delta, 0, 0])))
def move_left(self, delta=0.05):
"""
Move robot base left without physics simulation
Args:
delta (float): delta base position left
"""
self.move_by(quat2mat(self.get_orientation()).dot(np.array([0, -delta, 0])))
def move_right(self, delta=0.05):
"""
Move robot base right without physics simulation
Args:
delta (float): delta base position right
"""
self.move_by(quat2mat(self.get_orientation()).dot(np.array([0, delta, 0])))
def turn_left(self, delta=0.03):
"""
Rotate robot base left without physics simulation
Args:
delta (float): delta angle to rotate the base left
"""
quat = self.get_orientation()
quat = qmult((euler2quat(-delta, 0, 0)), quat)
self.set_orientation(quat)
def turn_right(self, delta=0.03):
"""
Rotate robot base right without physics simulation
Args:
delta (float): angle to rotate the base right
"""
quat = self.get_orientation()
quat = qmult((euler2quat(delta, 0, 0)), quat)
self.set_orientation(quat)
@property
def base_action_idx(self):
controller_idx = self.controller_order.index("base")
action_start_idx = sum([self.controllers[self.controller_order[i]].command_dim for i in range(controller_idx)])
return np.arange(action_start_idx, action_start_idx + self.controllers["base"].command_dim)
@property
@abstractmethod
def base_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to base joints.
"""
raise NotImplementedError
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("LocomotionRobot")
return classes
| 7,069 | Python | 32.990384 | 120 | 0.618758 |
StanfordVL/OmniGibson/omnigibson/robots/husky.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.robots.locomotion_robot import LocomotionRobot
class Husky(LocomotionRobot):
"""
Husky robot
Reference: https://clearpathrobotics.com/, http://wiki.ros.org/Robots/Husky
"""
def _create_discrete_action_space(self):
raise ValueError("Husky does not support discrete actions!")
@property
def base_control_idx(self):
return np.array([0, 1, 2, 3])
@property
def _default_joint_pos(self):
return np.zeros(self.n_joints)
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/husky/husky/husky.usd")
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/husky/husky.urdf")
| 782 | Python | 23.468749 | 79 | 0.671355 |
StanfordVL/OmniGibson/tests/test_symbolic_primitives.py | import os
import pytest
import yaml
from omnigibson.macros import gm
gm.USE_GPU_DYNAMICS = True
gm.USE_FLATCACHE = True
import omnigibson as og
from omnigibson import object_states
from omnigibson.action_primitives.symbolic_semantic_action_primitives import SymbolicSemanticActionPrimitiveSet, SymbolicSemanticActionPrimitives
from omnigibson.systems import get_system
def start_env():
og.sim.stop()
config = {
"env": {
"initial_pos_z_offset": 0.1
},
"render": {
"viewer_width": 1280,
"viewer_height": 720
},
"scene": {
"type": "InteractiveTraversableScene",
"scene_model": "Wainscott_0_int",
"load_object_categories": ["floors", "walls", "countertop", "fridge", "sink", "stove"],
"scene_source": "OG",
},
"robots": [
{
"type": "Fetch",
"obs_modalities": [
"scan",
"rgb",
"depth"
],
"scale": 1,
"self_collisions": True,
"action_normalize": False,
"action_type": "continuous",
"grasping_mode": "sticky",
"disable_grasp_handling": True,
"rigid_trunk": False,
"default_trunk_offset": 0.365,
"default_arm_pose": "diagonal30",
"default_reset_mode": "tuck",
"controller_config": {
"base": {
"name": "DifferentialDriveController"
},
"arm_0": {
"name": "JointController",
"motor_type": "position",
"command_input_limits": None,
"command_output_limits": None,
"use_delta_commands": False
},
"gripper_0": {
"name": "JointController",
"motor_type": "position",
"command_input_limits": [
-1,
1
],
"command_output_limits": None,
"use_delta_commands": True,
},
"camera": {
"name": "JointController",
"use_delta_commands": False
}
}
}
],
"objects": [
{
"type": "DatasetObject",
"name": "pan",
"category": "frying_pan",
"model": "mhndon",
"position": [5.31, 10.75, 1.],
},
{
"type": "DatasetObject",
"name": "knife",
"category": "carving_knife",
"model": "awvoox",
"position": [5.31, 10.75, 1.2],
},
{
"type": "DatasetObject",
"name": "apple",
"category": "apple",
"model": "agveuv",
"position": [4.75, 10.75, 1.],
"bounding_box": [0.098, 0.098, 0.115]
},
{
"type": "DatasetObject",
"name": "sponge",
"category": "sponge",
"model": "qewotb",
"position": [4.75, 10.75, 1.],
},
]
}
env = og.Environment(configs=config)
return env
@pytest.fixture(scope="module")
def shared_env():
"""Load the environment just once using module scope."""
return start_env()
@pytest.fixture(scope="function")
def env(shared_env):
"""Reset the environment before each test function."""
og.sim.scene.reset()
return shared_env
@pytest.fixture
def robot(env):
return env.robots[0]
@pytest.fixture
def prim_gen(env):
return SymbolicSemanticActionPrimitives(env)
@pytest.fixture
def countertop(env):
return next(iter(env.scene.object_registry("category", "countertop")))
@pytest.fixture
def fridge(env):
return next(iter(env.scene.object_registry("category", "fridge")))
@pytest.fixture
def stove(env):
return next(iter(env.scene.object_registry("category", "stove")))
@pytest.fixture
def sink(env):
return next(iter(env.scene.object_registry("category", "sink")))
@pytest.fixture
def pan(env):
return next(iter(env.scene.object_registry("category", "frying_pan")))
@pytest.fixture
def apple(env):
return next(iter(env.scene.object_registry("category", "apple")))
@pytest.fixture
def sponge(env):
return next(iter(env.scene.object_registry("category", "sponge")))
@pytest.fixture
def knife(env):
return next(iter(env.scene.object_registry("category", "carving_knife")))
class TestSymbolicPrimitives:
@pytest.mark.skip(reason="primitives are broken")
def test_in_hand_state(self, env, robot, prim_gen, apple):
assert not robot.states[object_states.IsGrasping].get_value(apple)
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.GRASP, apple):
env.step(action)
assert robot.states[object_states.IsGrasping].get_value(apple)
# def test_navigate():
# pass
@pytest.mark.skip(reason="primitives are broken")
def test_open(self, env, prim_gen, fridge):
assert not fridge.states[object_states.Open].get_value()
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.OPEN, fridge):
env.step(action)
assert fridge.states[object_states.Open].get_value()
@pytest.mark.skip(reason="primitives are broken")
def test_close(self, env, prim_gen, fridge):
fridge.states[object_states.Open].set_value(True)
assert fridge.states[object_states.Open].get_value()
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.CLOSE, fridge):
env.step(action)
assert not fridge.states[object_states.Open].get_value()
@pytest.mark.skip(reason="primitives are broken")
def test_place_inside(self, env, prim_gen, apple, fridge):
assert not apple.states[object_states.Inside].get_value(fridge)
assert not fridge.states[object_states.Open].get_value()
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.OPEN, fridge):
env.step(action)
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.GRASP, apple):
env.step(action)
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.PLACE_INSIDE, fridge):
env.step(action)
assert apple.states[object_states.Inside].get_value(fridge)
@pytest.mark.skip(reason="primitives are broken")
def test_place_ontop(self, env, prim_gen, apple, pan):
assert not apple.states[object_states.OnTop].get_value(pan)
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.GRASP, apple):
env.step(action)
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.PLACE_ON_TOP, pan):
env.step(action)
assert apple.states[object_states.OnTop].get_value(pan)
@pytest.mark.skip(reason="primitives are broken")
def test_toggle_on(self, env, prim_gen, stove):
assert not stove.states[object_states.ToggledOn].get_value()
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.TOGGLE_ON, stove):
env.step(action)
assert stove.states[object_states.ToggledOn].get_value()
@pytest.mark.skip(reason="primitives are broken")
def test_soak_under(self, env, prim_gen, robot, sponge, sink):
water_system = get_system("water", force_active=True)
assert not sponge.states[object_states.Saturated].get_value(water_system)
assert not sink.states[object_states.ToggledOn].get_value()
# First toggle on the sink
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.TOGGLE_ON, sink):
env.step(action)
assert sink.states[object_states.ToggledOn].get_value()
# Then grasp the sponge
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.GRASP, sponge):
env.step(action)
assert robot.states[object_states.IsGrasping].get_value(sponge)
# Then soak the sponge under the water
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.SOAK_UNDER, sink):
env.step(action)
assert sponge.states[object_states.Saturated].get_value(water_system)
# def test_soak_inside():
# pass
@pytest.mark.skip(reason="primitives are broken")
def test_wipe(self, env, prim_gen, sponge, sink, countertop):
# Some pre-assertions
water_system = get_system("water", force_active=True)
assert not sponge.states[object_states.Saturated].get_value(water_system)
assert not sink.states[object_states.ToggledOn].get_value()
# Dirty the countertop as the setup
mud_system = get_system("mud", force_active=True)
countertop.states[object_states.Covered].set_value(mud_system, True)
assert countertop.states[object_states.Covered].get_value(mud_system)
# First toggle on the sink
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.TOGGLE_ON, sink):
env.step(action)
assert sink.states[object_states.ToggledOn].get_value()
# Then grasp the sponge
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.GRASP, sponge):
env.step(action)
assert robot.states[object_states.IsGrasping].get_value(sponge)
# Then soak the sponge under the water
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.SOAK_UNDER, sink):
env.step(action)
assert sponge.states[object_states.Saturated].get_value(water_system)
# Wipe the countertop with the sponge
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.WIPE, countertop):
env.step(action)
assert not countertop.states[object_states.Covered].get_value(mud_system)
@pytest.mark.skip(reason="primitives are broken")
def test_cut(self, env, prim_gen, apple, knife, countertop):
# assert not apple.states[object_states.Cut].get_value(knife)
print("Grasping knife")
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.GRASP, knife):
env.step(action)
for _ in range(60): env.step(prim_gen._empty_action())
print("Cutting apple")
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.CUT, apple):
env.step(action)
for _ in range(60): env.step(prim_gen._empty_action())
print("Putting knife back on countertop")
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.PLACE_ON_TOP, countertop):
env.step(action)
def test_persistent_sticky_grasping(self, env, robot, prim_gen, apple):
assert not robot.states[object_states.IsGrasping].get_value(apple)
for action in prim_gen.apply_ref(SymbolicSemanticActionPrimitiveSet.GRASP, apple):
env.step(action)
assert robot.states[object_states.IsGrasping].get_value(apple)
state = og.sim.dump_state()
og.sim.stop()
og.sim.play()
og.sim.load_state(state)
assert robot.states[object_states.IsGrasping].get_value(apple)
for _ in range(10):
env.step(prim_gen._empty_action())
assert robot.states[object_states.IsGrasping].get_value(apple)
# def test_place_near_heating_element():
# pass
# def test_wait_for_cooked():
# pass
def teardown_class(cls):
og.sim.clear()
def main():
env = start_env()
prim_gen = SymbolicSemanticActionPrimitives(env)
apple = next(iter(env.scene.object_registry("category", "apple")))
knife = next(iter(env.scene.object_registry("category", "carving_knife")))
countertop = next(iter(env.scene.object_registry("category", "countertop")))
print("Will start in 3 seconds")
for _ in range(180): env.step(prim_gen._empty_action())
try:
test_cut(env, prim_gen, apple, knife, countertop)
except:
raise
while True:
og.sim.step()
if __name__ == "__main__":
main() | 11,284 | Python | 32.888889 | 145 | 0.663506 |
StanfordVL/OmniGibson/tests/test_transition_rules.py | from omnigibson.macros import macros as m
from omnigibson.object_states import *
from omnigibson.systems import get_system, is_physical_particle_system, is_visual_particle_system
from omnigibson.utils.constants import PrimType
from omnigibson.utils.physx_utils import apply_force_at_pos, apply_torque
import omnigibson.utils.transform_utils as T
from omnigibson.objects import DatasetObject
from omnigibson.transition_rules import REGISTERED_RULES
import omnigibson as og
from omnigibson.macros import macros as m
from scipy.spatial.transform import Rotation as R
from utils import og_test, get_random_pose, place_objA_on_objB_bbox, place_obj_on_floor_plane, retrieve_obj_cfg, remove_all_systems
import pytest
import numpy as np
@pytest.mark.skip(reason="dryer is not fillable yet.")
@og_test
def test_dryer_rule():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
clothes_dryer = og.sim.scene.object_registry("name", "clothes_dryer")
remover_dishtowel = og.sim.scene.object_registry("name", "remover_dishtowel")
bowl = og.sim.scene.object_registry("name", "bowl")
water = get_system("water")
place_obj_on_floor_plane(clothes_dryer)
og.sim.step()
# Place the two objects inside the dryer
remover_dishtowel.set_position_orientation([0.0, 0.0, 0.4], [0, 0, 0, 1])
bowl.set_position_orientation([0.0, 0.0, 0.5], [0, 0, 0, 1])
og.sim.step()
assert remover_dishtowel.states[Saturated].set_value(water, True)
assert bowl.states[Covered].set_value(water, True)
og.sim.step()
assert remover_dishtowel.states[Saturated].get_value(water)
assert clothes_dryer.states[Contains].get_value(water)
# The rule will not execute if Open is True
clothes_dryer.states[Open].set_value(True)
og.sim.step()
assert remover_dishtowel.states[Saturated].get_value(water)
assert clothes_dryer.states[Contains].get_value(water)
clothes_dryer.states[Open].set_value(False)
clothes_dryer.states[ToggledOn].set_value(True)
# The rule will execute when Open is False and ToggledOn is True
og.sim.step()
# Need to take one more step for the state setters to take effect
og.sim.step()
assert not remover_dishtowel.states[Saturated].get_value(water)
assert not clothes_dryer.states[Contains].get_value(water)
# Clean up
remove_all_systems()
@og_test
def test_washer_rule():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
baking_sheet = og.sim.scene.object_registry("name", "baking_sheet")
washer = og.sim.scene.object_registry("name", "washer")
remover_dishtowel = og.sim.scene.object_registry("name", "remover_dishtowel")
bowl = og.sim.scene.object_registry("name", "bowl")
water = get_system("water")
dust = get_system("dust") # always remove
salt = get_system("salt") # always remove (not explicitly specified)
rust = get_system("rust") # never remove
spray_paint = get_system("spray_paint") # requires acetone
acetone = get_system("acetone") # solvent for spray paint
cooking_oil = get_system("cooking_oil") # requires vinegar, lemon_juice, vinegar, etc.
place_obj_on_floor_plane(washer)
og.sim.step()
# Place the two objects inside the washer
# (Hacky) use baking_sheet as a stepping stone to elevate the objects so that they are inside the container volume.
baking_sheet.set_position_orientation([0.0, 0.0, 0.04], T.euler2quat([np.pi, 0, 0]))
remover_dishtowel.set_position_orientation([0.0, 0.0, 0.05], [0, 0, 0, 1])
bowl.set_position_orientation([0.10, 0.0, 0.08], [0, 0, 0, 1])
og.sim.step()
assert bowl.states[Covered].set_value(dust, True)
assert bowl.states[Covered].set_value(salt, True)
assert bowl.states[Covered].set_value(rust, True)
assert bowl.states[Covered].set_value(spray_paint, True)
assert bowl.states[Covered].set_value(acetone, True)
assert bowl.states[Covered].set_value(cooking_oil, True)
assert not remover_dishtowel.states[Saturated].get_value(water)
assert not bowl.states[Covered].get_value(water)
# The rule will not execute if Open is True
washer.states[Open].set_value(True)
og.sim.step()
assert bowl.states[Covered].get_value(dust)
assert bowl.states[Covered].get_value(salt)
assert bowl.states[Covered].get_value(rust)
assert bowl.states[Covered].get_value(spray_paint)
assert bowl.states[Covered].get_value(acetone)
assert bowl.states[Covered].get_value(cooking_oil)
assert not remover_dishtowel.states[Saturated].get_value(water)
assert not bowl.states[Covered].get_value(water)
washer.states[Open].set_value(False)
washer.states[ToggledOn].set_value(True)
# The rule will execute when Open is False and ToggledOn is True
og.sim.step()
# Need to take one more step for the state setters to take effect
og.sim.step()
assert not bowl.states[Covered].get_value(dust)
assert not bowl.states[Covered].get_value(salt)
assert bowl.states[Covered].get_value(rust)
assert not bowl.states[Covered].get_value(spray_paint)
assert not bowl.states[Covered].get_value(acetone)
assert bowl.states[Covered].get_value(cooking_oil)
assert remover_dishtowel.states[Saturated].get_value(water)
assert bowl.states[Covered].get_value(water)
# Clean up
remove_all_systems()
@og_test
def test_slicing_rule():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
apple = og.sim.scene.object_registry("name", "apple")
table_knife = og.sim.scene.object_registry("name", "table_knife")
deleted_objs = [apple]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
assert apple.states[Cooked].set_value(True)
initial_half_apples = og.sim.scene.object_registry("category", "half_apple", set()).copy()
place_obj_on_floor_plane(apple)
og.sim.step()
table_knife.set_position_orientation([-0.05, 0.0, 0.15], T.euler2quat([-np.pi / 2, 0, 0]))
og.sim.step()
assert not table_knife.states[Touching].get_value(apple)
final_half_apples = og.sim.scene.object_registry("category", "half_apple", set()).copy()
assert len(final_half_apples) == len(initial_half_apples)
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is not None
table_knife.set_position_orientation([-0.05, 0.0, 0.10], T.euler2quat([-np.pi / 2, 0, 0]))
og.sim.step()
final_half_apples = og.sim.scene.object_registry("category", "half_apple", set()).copy()
assert len(final_half_apples) > len(initial_half_apples)
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is None
# One more step for the half apples to be initialized
og.sim.step()
# All new half_apple should be cooked
new_half_apples = final_half_apples - initial_half_apples
for half_apple in new_half_apples:
assert half_apple.states[Cooked].get_value()
# Clean up
og.sim.remove_object(new_half_apples)
og.sim.step()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_dicing_rule_cooked():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
half_apple = og.sim.scene.object_registry("name", "half_apple")
table_knife = og.sim.scene.object_registry("name", "table_knife")
cooked_diced_apple = get_system("cooked__diced__apple")
deleted_objs = [half_apple]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
half_apple.set_orientation(T.euler2quat([0, -np.pi / 2, 0]))
place_obj_on_floor_plane(half_apple)
og.sim.step()
assert half_apple.states[Cooked].set_value(True)
assert cooked_diced_apple.n_particles == 0
table_knife.set_position_orientation([-0.05, 0.0, 0.15], T.euler2quat([-np.pi / 2, 0, 0]))
og.sim.step()
assert not table_knife.states[Touching].get_value(half_apple)
assert cooked_diced_apple.n_particles == 0
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is not None
table_knife.set_position_orientation([-0.05, 0.0, 0.07], T.euler2quat([-np.pi / 2, 0, 0]))
og.sim.step()
assert cooked_diced_apple.n_particles > 0
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is None
# Move the knife away so that it doesn't immediately dice the half_apple again once it's imported back
table_knife.set_position_orientation([-0.05, 0.0, 1.15], T.euler2quat([-np.pi / 2, 0, 0]))
og.sim.step()
# Clean up
remove_all_systems()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_dicing_rule_uncooked():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
half_apple = og.sim.scene.object_registry("name", "half_apple")
table_knife = og.sim.scene.object_registry("name", "table_knife")
diced_apple = get_system("diced__apple")
deleted_objs = [half_apple]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
half_apple.set_orientation(T.euler2quat([0, -np.pi / 2, 0]))
place_obj_on_floor_plane(half_apple)
og.sim.step()
assert diced_apple.n_particles == 0
table_knife.set_position_orientation([-0.05, 0.0, 0.15], T.euler2quat([-np.pi / 2, 0, 0]))
og.sim.step()
assert not table_knife.states[Touching].get_value(half_apple)
assert diced_apple.n_particles == 0
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is not None
table_knife.set_position_orientation([-0.05, 0.0, 0.07], T.euler2quat([-np.pi / 2, 0, 0]))
og.sim.step()
assert diced_apple.n_particles > 0
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is None
# Move the knife away so that it doesn't immediately dice the half_apple again once it's imported back
table_knife.set_position_orientation([-0.05, 0.0, 1.15], T.euler2quat([-np.pi / 2, 0, 0]))
og.sim.step()
# Clean up
remove_all_systems()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_melting_rule():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
stove = og.sim.scene.object_registry("name", "stove")
stockpot = og.sim.scene.object_registry("name", "stockpot")
swiss_cheese = og.sim.scene.object_registry("name", "swiss_cheese")
melted_swiss_cheese = get_system("melted__swiss_cheese")
deleted_objs = [swiss_cheese]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
place_obj_on_floor_plane(stove)
og.sim.step()
stockpot.set_position_orientation([-0.24, 0.11, 0.89], [0, 0, 0, 1])
og.sim.step()
assert stockpot.states[OnTop].get_value(stove)
swiss_cheese.set_position_orientation([-0.24, 0.11, 0.92], [0, 0, 0, 1])
og.sim.step()
assert swiss_cheese.states[Inside].get_value(stockpot)
assert melted_swiss_cheese.n_particles == 0
# To save time, directly set the temperature of the swiss cheese to be below the melting point
assert swiss_cheese.states[Temperature].set_value(m.transition_rules.MELTING_TEMPERATURE - 1)
og.sim.step()
assert melted_swiss_cheese.n_particles == 0
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is not None
# To save time, directly set the temperature of the swiss cheese to be above the melting point
assert swiss_cheese.states[Temperature].set_value(m.transition_rules.MELTING_TEMPERATURE + 1)
og.sim.step()
# Recipe should execute successfully: new melted swiss cheese should be created, and the ingredients should be deleted
assert melted_swiss_cheese.n_particles > 0
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is None
# Clean up
remove_all_systems()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_cooking_physical_particle_rule_failure_recipe_systems():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
stove = og.sim.scene.object_registry("name", "stove")
stockpot = og.sim.scene.object_registry("name", "stockpot")
arborio_rice = get_system("arborio_rice")
water = get_system("water")
cooked_water = get_system("cooked__water")
cooked_arborio_rice = get_system("cooked__arborio_rice")
place_obj_on_floor_plane(stove)
og.sim.step()
stockpot.set_position_orientation([-0.24, 0.11, 0.89], [0, 0, 0, 1])
og.sim.step()
assert stockpot.states[OnTop].get_value(stove)
arborio_rice.generate_particles(positions=[[-0.25, 0.13, 0.95]])
# This fails the recipe because water (recipe system) is not in the stockpot
water.generate_particles(positions=[[-0.25, 0.17, 1.95]])
assert stockpot.states[Contains].get_value(arborio_rice)
assert not stockpot.states[Contains].get_value(water)
assert cooked_arborio_rice.n_particles == 0
# To save time, directly set the stockpot to be heated
assert stockpot.states[Heated].set_value(True)
og.sim.step()
# Recipe should fail: no cooked arborio rice should be created
assert water.n_particles > 0
assert cooked_water.n_particles == 0
assert arborio_rice.n_particles > 0
assert cooked_arborio_rice.n_particles == 0
# Clean up
remove_all_systems()
@og_test
def test_cooking_physical_particle_rule_success():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
stove = og.sim.scene.object_registry("name", "stove")
stockpot = og.sim.scene.object_registry("name", "stockpot")
arborio_rice = get_system("arborio_rice")
water = get_system("water")
cooked_water = get_system("cooked__water")
cooked_arborio_rice = get_system("cooked__arborio_rice")
place_obj_on_floor_plane(stove)
og.sim.step()
stockpot.set_position_orientation([-0.24, 0.11, 0.89], [0, 0, 0, 1])
og.sim.step()
assert stockpot.states[OnTop].get_value(stove)
arborio_rice.generate_particles(positions=[[-0.25, 0.13, 0.95]])
water.generate_particles(positions=[[-0.25, 0.17, 0.95]])
assert stockpot.states[Contains].get_value(arborio_rice)
assert stockpot.states[Contains].get_value(water)
assert cooked_arborio_rice.n_particles == 0
assert cooked_water.n_particles == 0
# To save time, directly set the stockpot to be heated
assert stockpot.states[Heated].set_value(True)
og.sim.step()
assert water.n_particles == 0
assert cooked_water.n_particles > 0
assert arborio_rice.n_particles > 0
assert cooked_arborio_rice.n_particles == 0
# Recipe should execute successfully: new cooked arborio rice should be created, and the ingredients should be deleted
og.sim.step()
assert water.n_particles == 0
assert cooked_water.n_particles == 0
assert arborio_rice.n_particles == 0
assert cooked_arborio_rice.n_particles > 0
# Clean up
remove_all_systems()
@og_test
def test_mixing_rule_failure_recipe_systems():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
bowl = og.sim.scene.object_registry("name", "bowl")
tablespoon = og.sim.scene.object_registry("name", "tablespoon")
water = get_system("water")
granulated_sugar = get_system("granulated_sugar")
lemon_juice = get_system("lemon_juice")
lemonade = get_system("lemonade")
sludge = get_system("sludge")
place_obj_on_floor_plane(bowl)
og.sim.step()
water.generate_particles(positions=[[-0.02, 0.0, 0.02]])
granulated_sugar.generate_particles(positions=[[0.0, 0.0, 0.02]])
# This fails the recipe because lemon juice (recipe system) is not in the bowl
lemon_juice.generate_particles(positions=[[0.02, 0.0, 1.02]])
assert bowl.states[Contains].get_value(water)
assert bowl.states[Contains].get_value(granulated_sugar)
assert not bowl.states[Contains].get_value(lemon_juice)
assert lemonade.n_particles == 0
assert sludge.n_particles == 0
tablespoon.set_position_orientation([0.04, 0.0, 0.11], [0, 0, 0, 1])
og.sim.step()
assert tablespoon.states[Touching].get_value(bowl)
# Recipe should fail: no milkshake should be created, and sludge should be created.
assert lemonade.n_particles == 0
assert sludge.n_particles > 0
assert water.n_particles == 0
assert granulated_sugar.n_particles == 0
# Clean up
remove_all_systems()
@og_test
def test_mixing_rule_failure_nonrecipe_systems():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
bowl = og.sim.scene.object_registry("name", "bowl")
tablespoon = og.sim.scene.object_registry("name", "tablespoon")
water = get_system("water")
granulated_sugar = get_system("granulated_sugar")
lemon_juice = get_system("lemon_juice")
lemonade = get_system("lemonade")
salt = get_system("salt")
sludge = get_system("sludge")
place_obj_on_floor_plane(bowl)
og.sim.step()
water.generate_particles(positions=[[-0.02, 0, 0.02]])
granulated_sugar.generate_particles(positions=[[0.0, 0.0, 0.02]])
lemon_juice.generate_particles(positions=[[0.02, 0.0, 0.02]])
# This fails the recipe because salt (nonrecipe system) is in the bowl
salt.generate_particles(positions=[[0.0, 0.02, 0.02]])
assert bowl.states[Contains].get_value(water)
assert bowl.states[Contains].get_value(granulated_sugar)
assert bowl.states[Contains].get_value(lemon_juice)
assert bowl.states[Contains].get_value(salt)
assert lemonade.n_particles == 0
assert sludge.n_particles == 0
tablespoon.set_position_orientation([0.04, 0.0, 0.11], [0, 0, 0, 1])
og.sim.step()
assert tablespoon.states[Touching].get_value(bowl)
# Recipe should fail: no milkshake should be created, and sludge should be created.
assert lemonade.n_particles == 0
assert sludge.n_particles > 0
assert water.n_particles == 0
assert granulated_sugar.n_particles == 0
assert lemon_juice.n_particles == 0
assert salt.n_particles == 0
# Clean up
remove_all_systems()
@og_test
def test_mixing_rule_success():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
bowl = og.sim.scene.object_registry("name", "bowl")
tablespoon = og.sim.scene.object_registry("name", "tablespoon")
water = get_system("water")
granulated_sugar = get_system("granulated_sugar")
lemon_juice = get_system("lemon_juice")
lemonade = get_system("lemonade")
place_obj_on_floor_plane(bowl)
og.sim.step()
water.generate_particles(positions=[[-0.02, 0.0, 0.02]])
granulated_sugar.generate_particles(positions=[[0.0, 0.0, 0.02]])
lemon_juice.generate_particles(positions=[[0.02, 0.0, 0.02]])
assert bowl.states[Contains].get_value(water)
assert bowl.states[Contains].get_value(granulated_sugar)
assert bowl.states[Contains].get_value(lemon_juice)
assert lemonade.n_particles == 0
tablespoon.set_position_orientation([0.04, 0.0, 0.11], [0, 0, 0, 1])
og.sim.step()
assert tablespoon.states[Touching].get_value(bowl)
# Recipe should execute successfully: new lemonade should be created, and the ingredients should be deleted
assert lemonade.n_particles > 0
assert water.n_particles == 0
assert granulated_sugar.n_particles == 0
assert lemon_juice.n_particles == 0
# Clean up
remove_all_systems()
@og_test
def test_cooking_system_rule_failure_recipe_systems():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
stove = og.sim.scene.object_registry("name", "stove")
stockpot = og.sim.scene.object_registry("name", "stockpot")
chicken = og.sim.scene.object_registry("name", "chicken")
chicken_broth = get_system("chicken_broth")
diced_carrot = get_system("diced__carrot")
diced_celery = get_system("diced__celery")
salt = get_system("salt")
rosemary = get_system("rosemary")
chicken_soup = get_system("cooked__chicken_soup")
place_obj_on_floor_plane(stove)
og.sim.step()
stockpot.set_position_orientation([-0.24, 0.11, 0.89], [0, 0, 0, 1])
og.sim.step()
assert stockpot.states[OnTop].get_value(stove)
chicken.set_position_orientation([-0.24, 0.11, 0.86], [0, 0, 0, 1])
# This fails the recipe because chicken broth (recipe system) is not in the stockpot
chicken_broth.generate_particles(positions=[[-0.33, 0.05, 1.93]])
diced_carrot.generate_particles(positions=[[-0.28, 0.05, 0.93]])
diced_celery.generate_particles(positions=[[-0.23, 0.05, 0.93]])
salt.generate_particles(positions=[[-0.33, 0.15, 0.93]])
rosemary.generate_particles(positions=[[-0.28, 0.15, 0.93]])
og.sim.step()
assert chicken.states[Inside].get_value(stockpot)
assert not chicken.states[Cooked].get_value()
assert not stockpot.states[Contains].get_value(chicken_broth)
assert stockpot.states[Contains].get_value(diced_carrot)
assert stockpot.states[Contains].get_value(diced_celery)
assert stockpot.states[Contains].get_value(salt)
assert stockpot.states[Contains].get_value(rosemary)
assert chicken_soup.n_particles == 0
assert stove.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should fail: no chicken soup should be created
assert chicken_soup.n_particles == 0
assert chicken_broth.n_particles > 0
assert diced_carrot.n_particles > 0
assert diced_celery.n_particles > 0
assert salt.n_particles > 0
assert rosemary.n_particles > 0
assert og.sim.scene.object_registry("name", "chicken") is not None
# Clean up
remove_all_systems()
@og_test
def test_cooking_system_rule_failure_nonrecipe_systems():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
stove = og.sim.scene.object_registry("name", "stove")
stockpot = og.sim.scene.object_registry("name", "stockpot")
chicken = og.sim.scene.object_registry("name", "chicken")
water = get_system("water")
chicken_broth = get_system("chicken_broth")
diced_carrot = get_system("diced__carrot")
diced_celery = get_system("diced__celery")
salt = get_system("salt")
rosemary = get_system("rosemary")
chicken_soup = get_system("cooked__chicken_soup")
place_obj_on_floor_plane(stove)
og.sim.step()
stockpot.set_position_orientation([-0.24, 0.11, 0.89], [0, 0, 0, 1])
og.sim.step()
assert stockpot.states[OnTop].get_value(stove)
chicken.set_position_orientation([-0.24, 0.11, 0.86], [0, 0, 0, 1])
# This fails the recipe because water (nonrecipe system) is inside the stockpot
water.generate_particles(positions=[[-0.24, 0.11, 0.93]])
chicken_broth.generate_particles(positions=[[-0.33, 0.05, 0.93]])
diced_carrot.generate_particles(positions=[[-0.28, 0.05, 0.93]])
diced_celery.generate_particles(positions=[[-0.23, 0.05, 0.93]])
salt.generate_particles(positions=[[-0.33, 0.15, 0.93]])
rosemary.generate_particles(positions=[[-0.28, 0.15, 0.93]])
og.sim.step()
assert chicken.states[Inside].get_value(stockpot)
assert not chicken.states[Cooked].get_value()
assert stockpot.states[Contains].get_value(water)
assert stockpot.states[Contains].get_value(chicken_broth)
assert stockpot.states[Contains].get_value(diced_carrot)
assert stockpot.states[Contains].get_value(diced_celery)
assert stockpot.states[Contains].get_value(salt)
assert stockpot.states[Contains].get_value(rosemary)
assert chicken_soup.n_particles == 0
assert stove.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should fail: no chicken soup should be created
assert chicken_soup.n_particles == 0
assert chicken_broth.n_particles > 0
assert diced_carrot.n_particles > 0
assert diced_celery.n_particles > 0
assert salt.n_particles > 0
assert rosemary.n_particles > 0
assert water.n_particles > 0
assert og.sim.scene.object_registry("name", "chicken") is not None
# Clean up
remove_all_systems()
@og_test
def test_cooking_system_rule_failure_nonrecipe_objects():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
stove = og.sim.scene.object_registry("name", "stove")
stockpot = og.sim.scene.object_registry("name", "stockpot")
chicken = og.sim.scene.object_registry("name", "chicken")
bowl = og.sim.scene.object_registry("name", "bowl")
chicken_broth = get_system("chicken_broth")
diced_carrot = get_system("diced__carrot")
diced_celery = get_system("diced__celery")
salt = get_system("salt")
rosemary = get_system("rosemary")
chicken_soup = get_system("cooked__chicken_soup")
place_obj_on_floor_plane(stove)
og.sim.step()
stockpot.set_position_orientation([-0.24, 0.11, 0.89], [0, 0, 0, 1])
og.sim.step()
assert stockpot.states[OnTop].get_value(stove)
chicken.set_position_orientation([-0.24, 0.11, 0.86], [0, 0, 0, 1])
# This fails the recipe because the bowl (nonrecipe object) is inside the stockpot
bowl.set_position_orientation([-0.20, 0.15, 1], [0, 0, 0, 1])
chicken_broth.generate_particles(positions=[[-0.33, 0.05, 0.93]])
diced_carrot.generate_particles(positions=[[-0.28, 0.05, 0.93]])
diced_celery.generate_particles(positions=[[-0.23, 0.05, 0.93]])
salt.generate_particles(positions=[[-0.33, 0.15, 0.93]])
rosemary.generate_particles(positions=[[-0.28, 0.15, 0.93]])
og.sim.step()
assert chicken.states[Inside].get_value(stockpot)
assert bowl.states[Inside].get_value(stockpot)
assert not chicken.states[Cooked].get_value()
assert stockpot.states[Contains].get_value(chicken_broth)
assert stockpot.states[Contains].get_value(diced_carrot)
assert stockpot.states[Contains].get_value(diced_celery)
assert stockpot.states[Contains].get_value(salt)
assert stockpot.states[Contains].get_value(rosemary)
assert chicken_soup.n_particles == 0
assert stove.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should fail: no chicken soup should be created
assert chicken_soup.n_particles == 0
assert chicken_broth.n_particles > 0
assert diced_carrot.n_particles > 0
assert diced_celery.n_particles > 0
assert salt.n_particles > 0
assert rosemary.n_particles > 0
assert og.sim.scene.object_registry("name", "chicken") is not None
assert og.sim.scene.object_registry("name", "bowl") is not None
# Clean up
remove_all_systems()
@og_test
def test_cooking_system_rule_success():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
stove = og.sim.scene.object_registry("name", "stove")
stockpot = og.sim.scene.object_registry("name", "stockpot")
chicken = og.sim.scene.object_registry("name", "chicken")
chicken_broth = get_system("chicken_broth")
diced_carrot = get_system("diced__carrot")
diced_celery = get_system("diced__celery")
salt = get_system("salt")
rosemary = get_system("rosemary")
chicken_soup = get_system("cooked__chicken_soup")
deleted_objs = [chicken]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
place_obj_on_floor_plane(stove)
og.sim.step()
stockpot.set_position_orientation([-0.24, 0.11, 0.89], [0, 0, 0, 1])
og.sim.step()
assert stockpot.states[OnTop].get_value(stove)
chicken.set_position_orientation([-0.24, 0.11, 0.86], [0, 0, 0, 1])
chicken_broth.generate_particles(positions=[[-0.33, 0.05, 0.93]])
diced_carrot.generate_particles(positions=[[-0.28, 0.05, 0.93]])
diced_celery.generate_particles(positions=[[-0.23, 0.05, 0.93]])
salt.generate_particles(positions=[[-0.33, 0.15, 0.93]])
rosemary.generate_particles(positions=[[-0.28, 0.15, 0.93]])
og.sim.step()
assert chicken.states[Inside].get_value(stockpot)
assert not chicken.states[Cooked].get_value()
assert stockpot.states[Contains].get_value(chicken_broth)
assert stockpot.states[Contains].get_value(diced_carrot)
assert stockpot.states[Contains].get_value(diced_celery)
assert stockpot.states[Contains].get_value(salt)
assert stockpot.states[Contains].get_value(rosemary)
assert chicken_soup.n_particles == 0
assert stove.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should execute successfully: new chicken soup should be created, and the ingredients should be deleted
assert chicken_soup.n_particles > 0
assert chicken_broth.n_particles == 0
assert diced_carrot.n_particles == 0
assert diced_celery.n_particles == 0
assert salt.n_particles == 0
assert rosemary.n_particles == 0
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is None
# Clean up
remove_all_systems()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_cooking_object_rule_failure_wrong_container():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
oven = og.sim.scene.object_registry("name", "oven")
stockpot = og.sim.scene.object_registry("name", "stockpot")
bagel_dough = og.sim.scene.object_registry("name", "bagel_dough")
raw_egg = og.sim.scene.object_registry("name", "raw_egg")
sesame_seed = get_system("sesame_seed")
initial_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
place_obj_on_floor_plane(oven)
og.sim.step()
# This fails the recipe because it requires the baking sheet to be inside the oven, not the stockpot
stockpot.set_position_orientation([0, 0, 0.47], [0, 0, 0, 1])
og.sim.step()
assert stockpot.states[Inside].get_value(oven)
bagel_dough.set_position_orientation([0, 0, 0.45], [0, 0, 0, 1])
raw_egg.set_position_orientation([0.02, 0, 0.50], [0, 0, 0, 1])
og.sim.step()
assert bagel_dough.states[Inside].get_value(stockpot)
assert raw_egg.states[OnTop].get_value(bagel_dough)
assert bagel_dough.states[Cooked].set_value(False)
assert raw_egg.states[Cooked].set_value(False)
og.sim.step()
assert bagel_dough.states[Covered].set_value(sesame_seed, True)
og.sim.step()
assert oven.states[ToggledOn].set_value(True)
og.sim.step()
final_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
assert len(final_bagels) == len(initial_bagels)
# Clean up
remove_all_systems()
@og_test
def test_cooking_object_rule_failure_recipe_objects():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
oven = og.sim.scene.object_registry("name", "oven")
baking_sheet = og.sim.scene.object_registry("name", "baking_sheet")
bagel_dough = og.sim.scene.object_registry("name", "bagel_dough")
raw_egg = og.sim.scene.object_registry("name", "raw_egg")
sesame_seed = get_system("sesame_seed")
initial_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
place_obj_on_floor_plane(oven)
og.sim.step()
baking_sheet.set_position_orientation([0, 0, 0.455], [0, 0, 0, 1])
og.sim.step()
assert baking_sheet.states[Inside].get_value(oven)
# This fails the recipe because it requires the bagel dough to be on top of the baking sheet
bagel_dough.set_position_orientation([1, 0, 0.5], [0, 0, 0, 1])
raw_egg.set_position_orientation([1.02, 0, 0.55], [0, 0, 0, 1])
og.sim.step()
assert not bagel_dough.states[OnTop].get_value(baking_sheet)
assert bagel_dough.states[Cooked].set_value(False)
assert raw_egg.states[Cooked].set_value(False)
og.sim.step()
assert bagel_dough.states[Covered].set_value(sesame_seed, True)
og.sim.step()
assert oven.states[ToggledOn].set_value(True)
og.sim.step()
final_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
assert len(final_bagels) == len(initial_bagels)
# Clean up
remove_all_systems()
@og_test
def test_cooking_object_rule_failure_unary_states():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
oven = og.sim.scene.object_registry("name", "oven")
baking_sheet = og.sim.scene.object_registry("name", "baking_sheet")
bagel_dough = og.sim.scene.object_registry("name", "bagel_dough")
raw_egg = og.sim.scene.object_registry("name", "raw_egg")
sesame_seed = get_system("sesame_seed")
initial_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
place_obj_on_floor_plane(oven)
og.sim.step()
baking_sheet.set_position_orientation([0, 0, 0.455], [0, 0, 0, 1])
og.sim.step()
assert baking_sheet.states[Inside].get_value(oven)
bagel_dough.set_position_orientation([0, 0, 0.5], [0, 0, 0, 1])
raw_egg.set_position_orientation([0.02, 0, 0.55], [0, 0, 0, 1])
og.sim.step()
assert bagel_dough.states[OnTop].get_value(baking_sheet)
assert raw_egg.states[OnTop].get_value(bagel_dough)
# This fails the recipe because it requires the bagel dough and the raw egg to be not cooked
assert bagel_dough.states[Cooked].set_value(True)
assert raw_egg.states[Cooked].set_value(True)
og.sim.step()
assert bagel_dough.states[Covered].set_value(sesame_seed, True)
og.sim.step()
assert oven.states[ToggledOn].set_value(True)
og.sim.step()
final_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
assert len(final_bagels) == len(initial_bagels)
# Clean up
remove_all_systems()
@og_test
def test_cooking_object_rule_failure_binary_system_states():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
oven = og.sim.scene.object_registry("name", "oven")
baking_sheet = og.sim.scene.object_registry("name", "baking_sheet")
bagel_dough = og.sim.scene.object_registry("name", "bagel_dough")
raw_egg = og.sim.scene.object_registry("name", "raw_egg")
sesame_seed = get_system("sesame_seed")
initial_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
place_obj_on_floor_plane(oven)
og.sim.step()
baking_sheet.set_position_orientation([0, 0, 0.455], [0, 0, 0, 1])
og.sim.step()
assert baking_sheet.states[Inside].get_value(oven)
bagel_dough.set_position_orientation([0, 0, 0.5], [0, 0, 0, 1])
raw_egg.set_position_orientation([0.02, 0, 0.55], [0, 0, 0, 1])
og.sim.step()
assert bagel_dough.states[OnTop].get_value(baking_sheet)
assert raw_egg.states[OnTop].get_value(bagel_dough)
assert bagel_dough.states[Cooked].set_value(False)
assert raw_egg.states[Cooked].set_value(False)
og.sim.step()
# This fails the recipe because it requires the bagel dough to be covered with sesame seed
assert bagel_dough.states[Covered].set_value(sesame_seed, False)
og.sim.step()
assert oven.states[ToggledOn].set_value(True)
og.sim.step()
final_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
assert len(final_bagels) == len(initial_bagels)
# Clean up
remove_all_systems()
@og_test
def test_cooking_object_rule_failure_binary_object_states():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
oven = og.sim.scene.object_registry("name", "oven")
baking_sheet = og.sim.scene.object_registry("name", "baking_sheet")
bagel_dough = og.sim.scene.object_registry("name", "bagel_dough")
raw_egg = og.sim.scene.object_registry("name", "raw_egg")
sesame_seed = get_system("sesame_seed")
initial_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
place_obj_on_floor_plane(oven)
og.sim.step()
baking_sheet.set_position_orientation([0, 0, 0.455], [0, 0, 0, 1])
og.sim.step()
assert baking_sheet.states[Inside].get_value(oven)
bagel_dough.set_position_orientation([0, 0, 0.5], [0, 0, 0, 1])
raw_egg.set_position_orientation([0.12, 0.15, 0.47], [0, 0, 0, 1])
og.sim.step()
assert bagel_dough.states[OnTop].get_value(baking_sheet)
# This fails the recipe because it requires the raw egg to be on top of the bagel dough
assert not raw_egg.states[OnTop].get_value(bagel_dough)
assert bagel_dough.states[Cooked].set_value(False)
assert raw_egg.states[Cooked].set_value(False)
og.sim.step()
assert bagel_dough.states[Covered].set_value(sesame_seed, True)
og.sim.step()
assert oven.states[ToggledOn].set_value(True)
og.sim.step()
final_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
assert len(final_bagels) == len(initial_bagels)
# Clean up
remove_all_systems()
@og_test
def test_cooking_object_rule_failure_wrong_heat_source():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
stove = og.sim.scene.object_registry("name", "stove")
baking_sheet = og.sim.scene.object_registry("name", "baking_sheet")
bagel_dough = og.sim.scene.object_registry("name", "bagel_dough")
raw_egg = og.sim.scene.object_registry("name", "raw_egg")
sesame_seed = get_system("sesame_seed")
initial_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
# This fails the recipe because it requires the oven to be the heat source, not the stove
place_obj_on_floor_plane(stove)
og.sim.step()
heat_source_position = stove.states[HeatSourceOrSink].link.get_position()
baking_sheet.set_position_orientation([-0.20, 0, 0.80], [0, 0, 0, 1])
og.sim.step()
bagel_dough.set_position_orientation([-0.20, 0, 0.84], [0, 0, 0, 1])
raw_egg.set_position_orientation([-0.18, 0, 0.89], [0, 0, 0, 1])
og.sim.step()
assert bagel_dough.states[OnTop].get_value(baking_sheet)
assert raw_egg.states[OnTop].get_value(bagel_dough)
assert bagel_dough.states[Cooked].set_value(True)
assert raw_egg.states[Cooked].set_value(True)
og.sim.step()
assert bagel_dough.states[Covered].set_value(sesame_seed, True)
og.sim.step()
assert stove.states[ToggledOn].set_value(True)
og.sim.step()
# Make sure the stove affects the baking sheet
assert stove.states[HeatSourceOrSink].affects_obj(baking_sheet)
final_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
assert len(final_bagels) == len(initial_bagels)
# Clean up
remove_all_systems()
@og_test
def test_cooking_object_rule_success():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
oven = og.sim.scene.object_registry("name", "oven")
baking_sheet = og.sim.scene.object_registry("name", "baking_sheet")
bagel_dough = og.sim.scene.object_registry("name", "bagel_dough")
raw_egg = og.sim.scene.object_registry("name", "raw_egg")
sesame_seed = get_system("sesame_seed")
deleted_objs = [bagel_dough, raw_egg]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
initial_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
place_obj_on_floor_plane(oven)
og.sim.step()
baking_sheet.set_position_orientation([0, 0, 0.455], [0, 0, 0, 1])
og.sim.step()
assert baking_sheet.states[Inside].get_value(oven)
bagel_dough.set_position_orientation([0, 0, 0.5], [0, 0, 0, 1])
raw_egg.set_position_orientation([0.02, 0, 0.55], [0, 0, 0, 1])
og.sim.step()
assert bagel_dough.states[OnTop].get_value(baking_sheet)
assert raw_egg.states[OnTop].get_value(bagel_dough)
assert bagel_dough.states[Cooked].set_value(False)
assert raw_egg.states[Cooked].set_value(False)
og.sim.step()
assert bagel_dough.states[Covered].set_value(sesame_seed, True)
og.sim.step()
assert oven.states[ToggledOn].set_value(True)
og.sim.step()
final_bagels = og.sim.scene.object_registry("category", "bagel", set()).copy()
# Recipe should execute successfully: new bagels should be created, and the ingredients should be deleted
assert len(final_bagels) > len(initial_bagels)
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is None
# Need to step again for the new bagels to be initialized, placed in the container, and cooked.
og.sim.step()
# All new bagels should be cooked
new_bagels = final_bagels - initial_bagels
for bagel in new_bagels:
assert bagel.states[Cooked].get_value()
# This assertion occasionally fails, because when four bagels are sampled on top of the baking sheet one by one,
# there is no guarantee that all four of them will be on top of the baking sheet at the end.
# assert bagel.states[OnTop].get_value(baking_sheet)
assert bagel.states[Inside].get_value(oven)
# Clean up
remove_all_systems()
og.sim.remove_object(new_bagels)
og.sim.step()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_single_toggleable_machine_rule_output_system_failure_wrong_container():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
food_processor = og.sim.scene.object_registry("name", "food_processor")
ice_cream = og.sim.scene.object_registry("name", "scoop_of_ice_cream")
milk = get_system("whole_milk")
chocolate_sauce = get_system("chocolate_sauce")
milkshake = get_system("milkshake")
sludge = get_system("sludge")
deleted_objs = [ice_cream]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
# This fails the recipe because it requires the blender to be the container, not the food processor
place_obj_on_floor_plane(food_processor)
og.sim.step()
milk.generate_particles(positions=np.array([[0.02, 0.06, 0.22]]))
chocolate_sauce.generate_particles(positions=np.array([[-0.05, -0.04, 0.22]]))
ice_cream.set_position_orientation([0.03, -0.02, 0.23], [0, 0, 0, 1])
og.sim.step()
assert food_processor.states[Contains].get_value(milk)
assert food_processor.states[Contains].get_value(chocolate_sauce)
assert ice_cream.states[Inside].get_value(food_processor)
assert milkshake.n_particles == 0
assert sludge.n_particles == 0
food_processor.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should fail: no milkshake should be created, and sludge should be created.
assert milkshake.n_particles == 0
assert sludge.n_particles > 0
assert milk.n_particles == 0
assert chocolate_sauce.n_particles == 0
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is None
# Clean up
remove_all_systems()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_single_toggleable_machine_rule_output_system_failure_recipe_systems():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
blender = og.sim.scene.object_registry("name", "blender")
ice_cream = og.sim.scene.object_registry("name", "scoop_of_ice_cream")
milk = get_system("whole_milk")
chocolate_sauce = get_system("chocolate_sauce")
milkshake = get_system("milkshake")
sludge = get_system("sludge")
deleted_objs = [ice_cream]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
place_obj_on_floor_plane(blender)
og.sim.step()
# This fails the recipe because it requires the milk to be in the blender
milk.generate_particles(positions=np.array([[0.02, 0, 1.57]]))
chocolate_sauce.generate_particles(positions=np.array([[0, -0.02, 0.57]]))
ice_cream.set_position_orientation([0, 0, 0.51], [0, 0, 0, 1])
og.sim.step()
assert not blender.states[Contains].get_value(milk)
assert blender.states[Contains].get_value(chocolate_sauce)
assert ice_cream.states[Inside].get_value(blender)
assert milkshake.n_particles == 0
assert sludge.n_particles == 0
blender.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should fail: no milkshake should be created, and sludge should be created.
assert milkshake.n_particles == 0
assert sludge.n_particles > 0
assert chocolate_sauce.n_particles == 0
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is None
# Clean up
remove_all_systems()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_single_toggleable_machine_rule_output_system_failure_recipe_objects():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
blender = og.sim.scene.object_registry("name", "blender")
ice_cream = og.sim.scene.object_registry("name", "scoop_of_ice_cream")
milk = get_system("whole_milk")
chocolate_sauce = get_system("chocolate_sauce")
milkshake = get_system("milkshake")
sludge = get_system("sludge")
place_obj_on_floor_plane(blender)
og.sim.step()
milk.generate_particles(positions=np.array([[0.02, 0, 0.57]]))
chocolate_sauce.generate_particles(positions=np.array([[0, -0.02, 0.57]]))
# This fails the recipe because it requires the ice cream to be inside the blender
ice_cream.set_position_orientation([0, 0, 1.51], [0, 0, 0, 1])
og.sim.step()
assert blender.states[Contains].get_value(milk)
assert blender.states[Contains].get_value(chocolate_sauce)
assert not ice_cream.states[Inside].get_value(blender)
assert milkshake.n_particles == 0
assert sludge.n_particles == 0
blender.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should fail: no milkshake should be created, and sludge should be created.
assert milkshake.n_particles == 0
assert sludge.n_particles > 0
assert milk.n_particles == 0
assert chocolate_sauce.n_particles == 0
# Clean up
remove_all_systems()
@og_test
def test_single_toggleable_machine_rule_output_system_failure_nonrecipe_systems():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
blender = og.sim.scene.object_registry("name", "blender")
ice_cream = og.sim.scene.object_registry("name", "scoop_of_ice_cream")
milk = get_system("whole_milk")
chocolate_sauce = get_system("chocolate_sauce")
milkshake = get_system("milkshake")
sludge = get_system("sludge")
water = get_system("water")
deleted_objs = [ice_cream]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
place_obj_on_floor_plane(blender)
og.sim.step()
milk.generate_particles(positions=np.array([[0.02, 0, 0.57]]))
chocolate_sauce.generate_particles(positions=np.array([[0, -0.02, 0.57]]))
# This fails the recipe because water (nonrecipe system) is in the blender
water.generate_particles(positions=np.array([[0, 0, 0.57]]))
ice_cream.set_position_orientation([0, 0, 0.51], [0, 0, 0, 1])
og.sim.step()
assert blender.states[Contains].get_value(milk)
assert blender.states[Contains].get_value(chocolate_sauce)
assert blender.states[Contains].get_value(water)
assert ice_cream.states[Inside].get_value(blender)
assert milkshake.n_particles == 0
assert sludge.n_particles == 0
blender.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should fail: no milkshake should be created, and sludge should be created.
assert milkshake.n_particles == 0
assert sludge.n_particles > 0
assert milk.n_particles == 0
assert chocolate_sauce.n_particles == 0
assert water.n_particles == 0
# Clean up
remove_all_systems()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_single_toggleable_machine_rule_output_system_failure_nonrecipe_objects():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
blender = og.sim.scene.object_registry("name", "blender")
ice_cream = og.sim.scene.object_registry("name", "scoop_of_ice_cream")
bowl = og.sim.scene.object_registry("name", "bowl")
milk = get_system("whole_milk")
chocolate_sauce = get_system("chocolate_sauce")
milkshake = get_system("milkshake")
sludge = get_system("sludge")
deleted_objs = [ice_cream, bowl]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
place_obj_on_floor_plane(blender)
og.sim.step()
milk.generate_particles(positions=np.array([[0.02, 0, 0.57]]))
chocolate_sauce.generate_particles(positions=np.array([[0, -0.02, 0.57]]))
ice_cream.set_position_orientation([0, 0, 0.51], [0, 0, 0, 1])
# This fails the recipe because the bowl (nonrecipe object) is in the blender
bowl.set_position_orientation([0, 0, 0.58], [0, 0, 0, 1])
og.sim.step()
assert blender.states[Contains].get_value(milk)
assert blender.states[Contains].get_value(chocolate_sauce)
assert ice_cream.states[Inside].get_value(blender)
assert bowl.states[Inside].get_value(blender)
assert milkshake.n_particles == 0
assert sludge.n_particles == 0
blender.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should fail: no milkshake should be created, and sludge should be created.
assert milkshake.n_particles == 0
assert sludge.n_particles > 0
assert milk.n_particles == 0
assert chocolate_sauce.n_particles == 0
# Clean up
remove_all_systems()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_single_toggleable_machine_rule_output_system_success():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
blender = og.sim.scene.object_registry("name", "blender")
ice_cream = og.sim.scene.object_registry("name", "scoop_of_ice_cream")
milk = get_system("whole_milk")
chocolate_sauce = get_system("chocolate_sauce")
milkshake = get_system("milkshake")
sludge = get_system("sludge")
deleted_objs = [ice_cream]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
place_obj_on_floor_plane(blender)
og.sim.step()
milk.generate_particles(positions=np.array([[0.02, 0, 0.57]]))
chocolate_sauce.generate_particles(positions=np.array([[0, -0.02, 0.57]]))
ice_cream.set_position_orientation([0, 0, 0.51], [0, 0, 0, 1])
og.sim.step()
assert blender.states[Contains].get_value(milk)
assert blender.states[Contains].get_value(chocolate_sauce)
assert ice_cream.states[Inside].get_value(blender)
assert milkshake.n_particles == 0
assert sludge.n_particles == 0
blender.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should execute successfully: new milkshake should be created, and the ingredients should be deleted
assert milkshake.n_particles > 0
assert sludge.n_particles == 0
assert milk.n_particles == 0
assert chocolate_sauce.n_particles == 0
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is None
# Clean up
remove_all_systems()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_single_toggleable_machine_rule_output_object_failure_unary_states():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
electric_mixer = og.sim.scene.object_registry("name", "electric_mixer")
raw_egg = og.sim.scene.object_registry("name", "raw_egg")
another_raw_egg = og.sim.scene.object_registry("name", "another_raw_egg")
flour = get_system("flour")
granulated_sugar = get_system("granulated_sugar")
vanilla = get_system("vanilla")
melted_butter = get_system("melted__butter")
baking_powder = get_system("baking_powder")
salt = get_system("salt")
sludge = get_system("sludge")
initial_doughs = og.sim.scene.object_registry("category", "sugar_cookie_dough", set()).copy()
deleted_objs = [raw_egg, another_raw_egg]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
place_obj_on_floor_plane(electric_mixer)
og.sim.step()
another_raw_egg.set_position_orientation([-0.01, -0.14, 0.50], [0, 0, 0, 1])
raw_egg.set_position_orientation([-0.01, -0.14, 0.47], [0, 0, 0, 1])
flour.generate_particles(positions=np.array([[-0.01, -0.15, 0.43]]))
granulated_sugar.generate_particles(positions=np.array([[0.01, -0.15, 0.43]]))
vanilla.generate_particles(positions=np.array([[0.03, -0.15, 0.43]]))
melted_butter.generate_particles(positions=np.array([[-0.01, -0.13, 0.43]]))
baking_powder.generate_particles(positions=np.array([[0.01, -0.13, 0.43]]))
salt.generate_particles(positions=np.array([[0.03, -0.13, 0.43]]))
# This fails the recipe because the egg should not be cooked
raw_egg.states[Cooked].set_value(True)
og.sim.step()
assert electric_mixer.states[Contains].get_value(flour)
assert electric_mixer.states[Contains].get_value(granulated_sugar)
assert electric_mixer.states[Contains].get_value(vanilla)
assert electric_mixer.states[Contains].get_value(melted_butter)
assert electric_mixer.states[Contains].get_value(baking_powder)
assert electric_mixer.states[Contains].get_value(salt)
assert raw_egg.states[Inside].get_value(electric_mixer)
assert raw_egg.states[Cooked].get_value()
assert another_raw_egg.states[Inside].get_value(electric_mixer)
assert not another_raw_egg.states[Cooked].get_value()
assert sludge.n_particles == 0
electric_mixer.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should fail: no dough should be created, and sludge should be created.
final_doughs = og.sim.scene.object_registry("category", "sugar_cookie_dough", set()).copy()
# Recipe should execute successfully: new dough should be created, and the ingredients should be deleted
assert len(final_doughs) == len(initial_doughs)
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is None
assert flour.n_particles == 0
assert granulated_sugar.n_particles == 0
assert vanilla.n_particles == 0
assert melted_butter.n_particles == 0
assert baking_powder.n_particles == 0
assert salt.n_particles == 0
assert sludge.n_particles > 0
# Clean up
remove_all_systems()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
@og_test
def test_single_toggleable_machine_rule_output_object_success():
assert len(REGISTERED_RULES) > 0, "No rules registered!"
electric_mixer = og.sim.scene.object_registry("name", "electric_mixer")
raw_egg = og.sim.scene.object_registry("name", "raw_egg")
another_raw_egg = og.sim.scene.object_registry("name", "another_raw_egg")
flour = get_system("flour")
granulated_sugar = get_system("granulated_sugar")
vanilla = get_system("vanilla")
melted_butter = get_system("melted__butter")
baking_powder = get_system("baking_powder")
salt = get_system("salt")
sludge = get_system("sludge")
initial_doughs = og.sim.scene.object_registry("category", "sugar_cookie_dough", set()).copy()
deleted_objs = [raw_egg, another_raw_egg]
deleted_objs_cfg = [retrieve_obj_cfg(obj) for obj in deleted_objs]
place_obj_on_floor_plane(electric_mixer)
og.sim.step()
another_raw_egg.set_position_orientation([-0.01, -0.14, 0.50], [0, 0, 0, 1])
raw_egg.set_position_orientation([-0.01, -0.14, 0.47], [0, 0, 0, 1])
flour.generate_particles(positions=np.array([[-0.01, -0.15, 0.43]]))
granulated_sugar.generate_particles(positions=np.array([[0.01, -0.15, 0.43]]))
vanilla.generate_particles(positions=np.array([[0.03, -0.15, 0.43]]))
melted_butter.generate_particles(positions=np.array([[-0.01, -0.13, 0.43]]))
baking_powder.generate_particles(positions=np.array([[0.01, -0.13, 0.43]]))
salt.generate_particles(positions=np.array([[0.03, -0.13, 0.43]]))
og.sim.step()
assert electric_mixer.states[Contains].get_value(flour)
assert electric_mixer.states[Contains].get_value(granulated_sugar)
assert electric_mixer.states[Contains].get_value(vanilla)
assert electric_mixer.states[Contains].get_value(melted_butter)
assert electric_mixer.states[Contains].get_value(baking_powder)
assert electric_mixer.states[Contains].get_value(salt)
assert raw_egg.states[Inside].get_value(electric_mixer)
assert not raw_egg.states[Cooked].get_value()
assert another_raw_egg.states[Inside].get_value(electric_mixer)
assert not another_raw_egg.states[Cooked].get_value()
assert sludge.n_particles == 0
electric_mixer.states[ToggledOn].set_value(True)
og.sim.step()
# Recipe should execute successfully: new dough should be created, and the ingredients should be deleted
final_doughs = og.sim.scene.object_registry("category", "sugar_cookie_dough", set()).copy()
# Recipe should execute successfully: new dough should be created, and the ingredients should be deleted
assert len(final_doughs) > len(initial_doughs)
for obj in deleted_objs:
assert og.sim.scene.object_registry("name", obj.name) is None
assert flour.n_particles == 0
assert granulated_sugar.n_particles == 0
assert vanilla.n_particles == 0
assert melted_butter.n_particles == 0
assert baking_powder.n_particles == 0
assert salt.n_particles == 0
# Need to step again for the new dough to be initialized, placed in the container, and cooked.
og.sim.step()
# All new doughs should not be cooked
new_doughs = final_doughs - initial_doughs
for dough in new_doughs:
assert not dough.states[Cooked].get_value()
assert dough.states[OnTop].get_value(electric_mixer)
# Clean up
og.sim.remove_object(new_doughs)
og.sim.step()
for obj_cfg in deleted_objs_cfg:
obj = DatasetObject(**obj_cfg)
og.sim.import_object(obj)
og.sim.step()
| 58,046 | Python | 37.340158 | 131 | 0.68127 |
StanfordVL/OmniGibson/tests/test_object_removal.py | from omnigibson.objects import DatasetObject
import omnigibson as og
from omnigibson.utils.python_utils import NAMES
from utils import og_test
import pytest
@og_test
def test_removal_and_readdition():
# Make a copy of NAMES
initial_names = NAMES.copy()
# Add an apple
apple = DatasetObject(
name="apple_unique",
category="apple",
model="agveuv",
)
# Import it into the scene
og.sim.import_object(apple)
# Check that NAMES has changed
assert NAMES != initial_names
# Step a few times
for _ in range(5):
og.sim.step()
# Remove the apple
og.sim.remove_object(obj=apple)
# Check that NAMES is the same as before
extra_names = NAMES - initial_names
assert len(extra_names) == 0, f"Extra names: {extra_names}"
# Importing should work now
apple2 = DatasetObject(
name="apple_unique",
category="apple",
model="agveuv",
)
og.sim.import_object(apple2)
og.sim.step()
# Clear the stuff we added
og.sim.remove_object(apple2)
@og_test
def test_readdition():
# Make a copy of NAMES
initial_names = NAMES.copy()
# Add an apple
apple = DatasetObject(
name="apple_unique",
category="apple",
model="agveuv",
)
# Import it into the scene
og.sim.import_object(apple)
# Check that NAMES has changed
new_names = NAMES.copy()
assert new_names != initial_names
# Step a few times
for _ in range(5):
og.sim.step()
# Creating and importing a new apple should fail
with pytest.raises(AssertionError):
apple2 = DatasetObject(
name="apple_unique",
category="apple",
model="agveuv",
)
og.sim.import_object(apple2)
# Check that NAMES has not changed
assert NAMES == new_names
# Clear the stuff we added
og.sim.remove_object(apple)
| 1,931 | Python | 20.954545 | 63 | 0.617815 |
StanfordVL/OmniGibson/tests/test_dump_load_states.py | import omnigibson as og
from omnigibson.systems import *
from omnigibson.object_states import Covered
from utils import og_test, SYSTEM_EXAMPLES
import pytest
@og_test
def test_dump_load():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
for system_name, system_class in SYSTEM_EXAMPLES.items():
system = get_system(system_name)
assert issubclass(system, system_class)
if issubclass(system_class, VisualParticleSystem):
assert breakfast_table.states[Covered].set_value(system, True)
else:
system.generate_particles(positions=[[0, 0, 1]])
assert system.n_particles > 0
system.remove_all_particles()
state = og.sim.dump_state()
og.sim.load_state(state)
for system_name, system_class in SYSTEM_EXAMPLES.items():
system = get_system(system_name)
system.clear()
@og_test
def test_dump_load_serialized():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
for system_name, system_class in SYSTEM_EXAMPLES.items():
system = get_system(system_name)
assert issubclass(system, system_class)
if issubclass(system_class, VisualParticleSystem):
assert breakfast_table.states[Covered].set_value(system, True)
else:
system.generate_particles(positions=[[0, 0, 1]])
assert system.n_particles > 0
state = og.sim.dump_state(serialized=True)
og.sim.load_state(state, serialized=True)
for system_name, system_class in SYSTEM_EXAMPLES.items():
system = get_system(system_name)
system.clear()
| 1,636 | Python | 33.829787 | 77 | 0.675428 |
StanfordVL/OmniGibson/tests/test_envs.py | import omnigibson as og
from omnigibson.macros import gm
def task_tester(task_type):
cfg = {
"scene": {
"type": "InteractiveTraversableScene",
"scene_model": "Rs_int",
"load_object_categories": ["floors", "breakfast_table"],
},
"robots": [
{
"type": "Fetch",
"obs_modalities": [],
}
],
# Task kwargs
"task": {
"type": task_type,
# BehaviorTask-specific
"activity_name": "assembling_gift_baskets",
"online_object_sampling": True
},
}
# Make sure sim is stopped
if og.sim is not None:
og.sim.stop()
# Make sure GPU dynamics are enabled (GPU dynamics needed for cloth) and no flatcache
gm.ENABLE_OBJECT_STATES = True
gm.USE_GPU_DYNAMICS = True
gm.ENABLE_FLATCACHE = True
# Create the environment
env = og.Environment(configs=cfg)
env.reset()
for _ in range(5):
env.step(env.robots[0].action_space.sample())
# Clear the sim
og.sim.clear()
def test_dummy_task():
task_tester("DummyTask")
def test_point_reaching_task():
task_tester("PointReachingTask")
def test_point_navigation_task():
task_tester("PointNavigationTask")
def test_behavior_task():
task_tester("BehaviorTask")
def test_rs_int_full_load():
cfg = {
"scene": {
"type": "InteractiveTraversableScene",
"scene_model": "Rs_int",
},
"robots": [
{
"type": "Fetch",
"obs_modalities": [],
}
],
# Task kwargs
"task": {
"type": "DummyTask",
},
}
# Make sure sim is stopped
og.sim.stop()
# Make sure GPU dynamics are enabled (GPU dynamics needed for cloth)
gm.ENABLE_OBJECT_STATES = True
gm.USE_GPU_DYNAMICS = True
gm.ENABLE_FLATCACHE = True
# Create the environment
env = og.Environment(configs=cfg)
env.reset()
for _ in range(5):
env.step(env.robots[0].action_space.sample())
# Clear the sim
og.sim.clear()
| 2,175 | Python | 20.979798 | 89 | 0.538391 |
StanfordVL/OmniGibson/tests/create_tests_of_examples.py | import importlib
import os
import pkgutil
import shutil
from string import Template
import omnigibson
from omnigibson import examples
from omnigibson.utils.asset_utils import download_assets
download_assets()
def main():
examples_list = []
for package in pkgutil.walk_packages(examples.__path__, examples.__name__ + "."):
if (
not package.ispkg
and package.name[17:] != "example_selector"
and "web_ui" not in package.name[17:] # The WebUI examples require additional server setup
and "vr_" not in package.name[17:] # The VR examples require additional dependencies
and "ray_" not in package.name[17:] # The Ray/RLLib example does not run in a subprocess
): # Consider removing the last condition if we have runnable VR tests
examples_list += [package.name[17:]]
temp_folder_of_test = os.path.join("/", "tmp", "tests_of_examples")
shutil.rmtree(temp_folder_of_test, ignore_errors=True)
os.makedirs(temp_folder_of_test, exist_ok=True)
for example in examples_list:
template_file_name = os.path.join(omnigibson.__path__[0], "..", "tests", "test_of_example_template.txt")
with open(template_file_name, "r") as f:
substitutes = dict()
substitutes["module"] = example
name = example.rsplit(".", 1)[-1]
substitutes["name"] = name
src = Template(f.read())
dst = src.substitute(substitutes)
test_file = open(os.path.join(temp_folder_of_test, name + "_test.py"), "w")
n = test_file.write(dst)
test_file.close()
if __name__ == "__main__":
main()
| 1,687 | Python | 35.695651 | 112 | 0.617072 |
StanfordVL/OmniGibson/tests/utils.py | import omnigibson as og
from omnigibson.macros import gm
from omnigibson.object_states import *
from omnigibson.utils.constants import PrimType, ParticleModifyCondition, ParticleModifyMethod
from omnigibson.systems import *
import omnigibson.utils.transform_utils as T
import numpy as np
TEMP_RELATED_ABILITIES = {"cookable": {}, "freezable": {}, "burnable": {}, "heatable": {}}
SYSTEM_EXAMPLES = {
"water": FluidSystem,
"white_rice": GranularSystem,
"diced__apple": MacroPhysicalParticleSystem,
"stain": MacroVisualParticleSystem,
}
def og_test(func):
def wrapper():
assert_test_scene()
try:
func()
finally:
og.sim.scene.reset()
return wrapper
num_objs = 0
def retrieve_obj_cfg(obj):
return {
"name": obj.name,
"category": obj.category,
"model": obj.model,
"prim_type": obj.prim_type,
"position": obj.get_position(),
"scale": obj.scale,
"abilities": obj.abilities,
"visual_only": obj.visual_only,
}
def get_obj_cfg(name, category, model, prim_type=PrimType.RIGID, scale=None, bounding_box=None, abilities=None, visual_only=False):
global num_objs
num_objs += 1
return {
"type": "DatasetObject",
"fit_avg_dim_volume": scale is None and bounding_box is None,
"name": name,
"category": category,
"model": model,
"prim_type": prim_type,
"position": [150, 150, 150 + num_objs * 5],
"scale": scale,
"bounding_box": bounding_box,
"abilities": abilities,
"visual_only": visual_only,
}
def assert_test_scene():
if og.sim is None or og.sim.scene is None:
cfg = {
"scene": {
"type": "Scene",
},
"objects": [
get_obj_cfg("breakfast_table", "breakfast_table", "skczfi"),
get_obj_cfg("bottom_cabinet", "bottom_cabinet", "immwzb"),
get_obj_cfg("dishtowel", "dishtowel", "dtfspn", prim_type=PrimType.CLOTH, abilities={"cloth": {}}),
get_obj_cfg("carpet", "carpet", "ctclvd", prim_type=PrimType.CLOTH, abilities={"cloth": {}}),
get_obj_cfg("bowl", "bowl", "ajzltc"),
get_obj_cfg("bagel", "bagel", "zlxkry", abilities=TEMP_RELATED_ABILITIES),
get_obj_cfg("cookable_dishtowel", "dishtowel", "dtfspn", prim_type=PrimType.CLOTH, abilities={**TEMP_RELATED_ABILITIES, **{"cloth": {}}}),
get_obj_cfg("microwave", "microwave", "hjjxmi"),
get_obj_cfg("stove", "stove", "yhjzwg"),
get_obj_cfg("fridge", "fridge", "dszchb"),
get_obj_cfg("plywood", "plywood", "fkmkqa", abilities={"flammable": {}}),
get_obj_cfg("shelf_back_panel", "shelf_back_panel", "gjsnrt", abilities={"attachable": {}}),
get_obj_cfg("shelf_shelf", "shelf_shelf", "ymtnqa", abilities={"attachable": {}}),
get_obj_cfg("shelf_baseboard", "shelf_baseboard", "hlhneo", abilities={"attachable": {}}),
get_obj_cfg("bracelet", "bracelet", "thqqmo"),
get_obj_cfg("oyster", "oyster", "enzocs"),
get_obj_cfg("sink", "sink", "egwapq", scale=np.ones(3)),
get_obj_cfg("stockpot", "stockpot", "dcleem", abilities={"fillable": {}, "heatable": {}}),
get_obj_cfg("applier_dishtowel", "dishtowel", "dtfspn", abilities={"particleApplier": {"method": ParticleModifyMethod.ADJACENCY, "conditions": {"water": []}}}),
get_obj_cfg("remover_dishtowel", "dishtowel", "dtfspn", abilities={"particleRemover": {"method": ParticleModifyMethod.ADJACENCY, "conditions": {"water": []}}}),
get_obj_cfg("spray_bottle", "spray_bottle", "asztxi", visual_only=True, abilities={"toggleable": {}, "particleApplier": {"method": ParticleModifyMethod.PROJECTION, "conditions": {"water": [(ParticleModifyCondition.TOGGLEDON, True)]}}}),
get_obj_cfg("vacuum", "vacuum", "bdmsbr", visual_only=True, abilities={"toggleable": {}, "particleRemover": {"method": ParticleModifyMethod.PROJECTION, "conditions": {"water": [(ParticleModifyCondition.TOGGLEDON, True)]}}}),
get_obj_cfg("blender", "blender", "cwkvib", bounding_box=[0.316, 0.318, 0.649], abilities={"fillable": {}, "toggleable": {}, "heatable": {}}),
get_obj_cfg("oven", "oven", "cgtaer", bounding_box=[0.943, 0.837, 1.297]),
get_obj_cfg("baking_sheet", "baking_sheet", "yhurut", bounding_box=[0.41607812, 0.43617093, 0.02281223]),
get_obj_cfg("bagel_dough", "bagel_dough", "iuembm", scale=np.ones(3) * 0.8),
get_obj_cfg("raw_egg", "raw_egg", "ydgivr"),
get_obj_cfg("scoop_of_ice_cream", "scoop_of_ice_cream", "dodndj", bounding_box=[0.076, 0.077, 0.065]),
get_obj_cfg("food_processor", "food_processor", "gamkbo"),
get_obj_cfg("electric_mixer", "electric_mixer", "qornxa"),
get_obj_cfg("another_raw_egg", "raw_egg", "ydgivr"),
get_obj_cfg("chicken", "chicken", "nppsmz", scale=np.ones(3) * 0.7),
get_obj_cfg("tablespoon", "tablespoon", "huudhe"),
get_obj_cfg("swiss_cheese", "swiss_cheese", "hwxeto"),
get_obj_cfg("apple", "apple", "agveuv"),
get_obj_cfg("table_knife", "table_knife", "jxdfyy"),
get_obj_cfg("half_apple", "half_apple", "sguztn"),
get_obj_cfg("washer", "washer", "dobgmu"),
get_obj_cfg("carpet_sweeper", "carpet_sweeper", "xboreo"),
],
"robots": [
{
"type": "Fetch",
"obs_modalities": ["seg_semantic", "seg_instance", "seg_instance_id"],
"position": [150, 150, 100],
"orientation": [0, 0, 0, 1],
}
]
}
# Make sure sim is stopped
if og.sim is not None:
og.sim.stop()
# Make sure GPU dynamics are enabled (GPU dynamics needed for cloth) and no flatcache
gm.ENABLE_OBJECT_STATES = True
gm.USE_GPU_DYNAMICS = True
gm.ENABLE_FLATCACHE = False
# Create the environment
env = og.Environment(configs=cfg)
# Additional processing for the tests to pass more deterministically
og.sim.stop()
bounding_box_object_names = ["bagel_dough", "raw_egg"]
for name in bounding_box_object_names:
obj = og.sim.scene.object_registry("name", name)
for collision_mesh in obj.root_link.collision_meshes.values():
collision_mesh.set_collision_approximation("boundingCube")
og.sim.play()
def get_random_pose(pos_low=10.0, pos_hi=20.0):
pos = np.random.uniform(pos_low, pos_hi, 3)
orn = T.euler2quat(np.random.uniform(-np.pi, np.pi, 3))
return pos, orn
def place_objA_on_objB_bbox(objA, objB, x_offset=0.0, y_offset=0.0, z_offset=0.001):
objA.keep_still()
objB.keep_still()
# Reset pose if cloth object
if objA.prim_type == PrimType.CLOTH:
objA.root_link.reset()
objA_aabb_center, objA_aabb_extent = objA.aabb_center, objA.aabb_extent
objB_aabb_center, objB_aabb_extent = objB.aabb_center, objB.aabb_extent
objA_aabb_offset = objA.get_position() - objA_aabb_center
target_objA_aabb_pos = objB_aabb_center + np.array([0, 0, (objB_aabb_extent[2] + objA_aabb_extent[2]) / 2.0]) + \
np.array([x_offset, y_offset, z_offset])
objA.set_position(target_objA_aabb_pos + objA_aabb_offset)
def place_obj_on_floor_plane(obj, x_offset=0.0, y_offset=0.0, z_offset=0.01):
obj.keep_still()
# Reset pose if cloth object
if obj.prim_type == PrimType.CLOTH:
obj.root_link.reset()
obj_aabb_center, obj_aabb_extent = obj.aabb_center, obj.aabb_extent
obj_aabb_offset = obj.get_position() - obj_aabb_center
target_obj_aabb_pos = np.array([0, 0, obj_aabb_extent[2] / 2.0]) + np.array([x_offset, y_offset, z_offset])
obj.set_position(target_obj_aabb_pos + obj_aabb_offset)
def remove_all_systems():
for system in ParticleRemover.supported_active_systems.values():
system.remove_all_particles()
og.sim.step() | 8,329 | Python | 46.329545 | 252 | 0.581102 |
StanfordVL/OmniGibson/tests/test_robot_teleoperation.py | import omnigibson as og
import numpy as np
from omnigibson.macros import gm
from telemoma.human_interface.teleop_core import TeleopAction
from omnigibson.utils.transform_utils import quat2euler
import pytest
@pytest.mark.skip(reason="test hangs on CI")
def test_teleop():
cfg = {
"env": {"action_timestep": 1 / 60., "physics_timestep": 1 / 120.},
"scene": {"type": "Scene"},
"robots": [
{
"type": "Fetch",
"action_normalize": False,
"controller_config": {
"arm_0": {
"name": "InverseKinematicsController",
"command_input_limits": None,
},
}
}
],
}
# Make sure sim is stopped
if og.sim is not None:
og.sim.stop()
# Make sure GPU dynamics are enabled (GPU dynamics needed for cloth) and no flatcache
gm.USE_GPU_DYNAMICS = False
gm.ENABLE_FLATCACHE = False
# Create the environment
env = og.Environment(configs=cfg)
robot = env.robots[0]
env.reset()
teleop_action = TeleopAction()
start_base_pose = robot.get_position_orientation()
start_eef_pose = robot.links[robot.eef_link_names[robot.default_arm]].get_position_orientation()
# test moving robot arm
teleop_action.right = np.concatenate(([0.01], np.zeros(6)))
for _ in range(50):
action = robot.teleop_data_to_action(teleop_action)
env.step(action)
cur_eef_pose = robot.links[robot.eef_link_names[robot.default_arm]].get_position_orientation()
assert cur_eef_pose[0][0] - start_eef_pose[0][0] > 0.02, "Robot arm not moving forward"
# test moving robot base
teleop_action.right = np.zeros(7)
teleop_action.base = np.array([0.1, 0, 0.1])
for _ in range(50):
action = robot.teleop_data_to_action(teleop_action)
env.step(action)
cur_base_pose = robot.get_position_orientation()
assert cur_base_pose[0][0] - start_base_pose[0][0] > 0.02, "robot base not moving forward"
assert quat2euler(cur_base_pose[1])[2] - quat2euler(start_base_pose[1])[2] > 0.02, "robot base not rotating counter-clockwise"
# Clear the sim
og.sim.clear()
| 2,248 | Python | 34.698412 | 130 | 0.606317 |
StanfordVL/OmniGibson/tests/test_robot_states.py | import numpy as np
import omnigibson as og
from omnigibson.macros import gm
import omnigibson.lazy as lazy
from omnigibson.sensors import VisionSensor
from omnigibson.object_states import ObjectsInFOVOfRobot
from omnigibson.utils.transform_utils import pose2mat, mat2pose, relative_pose_transform
from omnigibson.utils.usd_utils import PoseAPI
from omnigibson.utils.constants import semantic_class_name_to_id
def setup_environment(flatcache=True):
"""
Sets up the environment with or without flatcache based on the flatcache parameter.
"""
# Ensure any existing simulation is stopped
if og.sim is not None:
og.sim.stop()
# Set global flags
gm.ENABLE_OBJECT_STATES = True
gm.USE_GPU_DYNAMICS = True
gm.ENABLE_FLATCACHE = flatcache # Set based on function parameter
# Define the environment configuration
config = {
"scene": {
"type": "Scene",
},
"robots": [
{
"type": "Fetch",
"obs_modalities": 'all',
"position": [150, 150, 100],
"orientation": [0, 0, 0, 1],
"controller_config": {
"arm_0": {
"name": "NullJointController",
"motor_type": "position",
},
},
}
]
}
env = og.Environment(configs=config)
return env
def camera_pose_test(flatcache):
env = setup_environment(flatcache)
robot = env.robots[0]
env.reset()
sensors = [s for s in robot.sensors.values() if isinstance(s, VisionSensor)]
assert len(sensors) > 0
vision_sensor = sensors[0]
# Get vision sensor world pose via directly calling get_position_orientation
robot_world_pos, robot_world_ori = robot.get_position_orientation()
sensor_world_pos, sensor_world_ori = vision_sensor.get_position_orientation()
robot_to_sensor_mat = pose2mat(relative_pose_transform(sensor_world_pos, sensor_world_ori, robot_world_pos, robot_world_ori))
sensor_world_pos_gt = np.array([150.16513062, 150., 101.38952637])
sensor_world_ori_gt = np.array([-0.29444987, 0.29444981, 0.64288363, -0.64288352])
assert np.allclose(sensor_world_pos, sensor_world_pos_gt, atol=1e-3)
assert np.allclose(sensor_world_ori, sensor_world_ori_gt, atol=1e-3)
# Now, we want to move the robot and check if the sensor pose has been updated
old_camera_local_pose = vision_sensor.get_local_pose()
robot.set_position_orientation(position=[100, 100, 100])
new_camera_local_pose = vision_sensor.get_local_pose()
new_camera_world_pose = vision_sensor.get_position_orientation()
robot_pose_mat = pose2mat(robot.get_position_orientation())
expected_camera_world_pos, expected_camera_world_ori = mat2pose(robot_pose_mat @ robot_to_sensor_mat)
assert np.allclose(old_camera_local_pose[0], new_camera_local_pose[0], atol=1e-3)
assert np.allclose(new_camera_world_pose[0], expected_camera_world_pos, atol=1e-3)
assert np.allclose(new_camera_world_pose[1], expected_camera_world_ori, atol=1e-3)
# Then, we want to move the local pose of the camera and check
# 1) if the world pose is updated 2) if the robot stays in the same position
old_camera_local_pose = vision_sensor.get_local_pose()
vision_sensor.set_local_pose(position=[10, 10, 10], orientation=[0, 0, 0, 1])
new_camera_world_pose = vision_sensor.get_position_orientation()
camera_parent_prim = lazy.omni.isaac.core.utils.prims.get_prim_parent(vision_sensor.prim)
camera_parent_path = str(camera_parent_prim.GetPath())
camera_parent_world_transform = PoseAPI.get_world_pose_with_scale(camera_parent_path)
expected_new_camera_world_pos, expected_new_camera_world_ori = mat2pose(camera_parent_world_transform @ pose2mat([[10, 10, 10], [0, 0, 0, 1]]))
assert np.allclose(new_camera_world_pose[0], expected_new_camera_world_pos, atol=1e-3)
assert np.allclose(new_camera_world_pose[1], expected_new_camera_world_ori, atol=1e-3)
assert np.allclose(robot.get_position(), [100, 100, 100], atol=1e-3)
# Finally, we want to move the world pose of the camera and check
# 1) if the local pose is updated 2) if the robot stays in the same position
robot.set_position_orientation(position=[150, 150, 100])
old_camera_local_pose = vision_sensor.get_local_pose()
vision_sensor.set_position_orientation([150, 150, 101.36912537], [-0.29444987, 0.29444981, 0.64288363, -0.64288352])
new_camera_local_pose = vision_sensor.get_local_pose()
assert not np.allclose(old_camera_local_pose[0], new_camera_local_pose[0], atol=1e-3)
assert not np.allclose(old_camera_local_pose[1], new_camera_local_pose[1], atol=1e-3)
assert np.allclose(robot.get_position(), [150, 150, 100], atol=1e-3)
# Another test we want to try is setting the camera's parent scale and check if the world pose is updated
camera_parent_prim.GetAttribute('xformOp:scale').Set(lazy.pxr.Gf.Vec3d([2.0, 2.0, 2.0]))
camera_parent_world_transform = PoseAPI.get_world_pose_with_scale(camera_parent_path)
camera_local_pose = vision_sensor.get_local_pose()
expected_new_camera_world_pos, _ = mat2pose(camera_parent_world_transform @ pose2mat(camera_local_pose))
new_camera_world_pose = vision_sensor.get_position_orientation()
assert np.allclose(new_camera_world_pose[0], expected_new_camera_world_pos, atol=1e-3)
og.sim.clear()
def test_camera_pose_flatcache_on():
camera_pose_test(True)
def test_camera_pose_flatcache_off():
camera_pose_test(False)
def test_camera_semantic_segmentation():
env = setup_environment(False)
robot = env.robots[0]
env.reset()
sensors = [s for s in robot.sensors.values() if isinstance(s, VisionSensor)]
assert len(sensors) > 0
vision_sensor = sensors[0]
env.reset()
all_observation, all_info = vision_sensor.get_obs()
seg_semantic = all_observation['seg_semantic']
seg_semantic_info = all_info['seg_semantic']
agent_label = semantic_class_name_to_id()['agent']
background_label = semantic_class_name_to_id()['background']
assert np.all(np.isin(seg_semantic, [agent_label, background_label]))
assert set(seg_semantic_info.keys()) == {agent_label, background_label}
og.sim.clear()
def test_object_in_FOV_of_robot():
env = setup_environment(False)
robot = env.robots[0]
env.reset()
assert robot.states[ObjectsInFOVOfRobot].get_value() == [robot]
sensors = [s for s in robot.sensors.values() if isinstance(s, VisionSensor)]
assert len(sensors) > 0
vision_sensor = sensors[0]
vision_sensor.set_position_orientation(position=[100, 150, 100])
og.sim.step()
og.sim.step()
assert robot.states[ObjectsInFOVOfRobot].get_value() == []
og.sim.clear()
| 6,867 | Python | 43.888889 | 147 | 0.678462 |
StanfordVL/OmniGibson/tests/conftest.py | import omnigibson as og
def pytest_unconfigure(config):
og.shutdown()
| 75 | Python | 14.199997 | 31 | 0.746667 |
StanfordVL/OmniGibson/tests/test_sensors.py | from omnigibson.systems import get_system, is_physical_particle_system, is_visual_particle_system
import omnigibson.utils.transform_utils as T
import omnigibson as og
from omnigibson.sensors import VisionSensor
from utils import og_test, place_obj_on_floor_plane, SYSTEM_EXAMPLES
import pytest
import numpy as np
@og_test
def test_seg():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
dishtowel = og.sim.scene.object_registry("name", "dishtowel")
robot = og.sim.scene.robots[0]
place_obj_on_floor_plane(breakfast_table)
dishtowel.set_position_orientation([-0.4, 0.0, 0.55], [0, 0, 0, 1])
robot.set_position_orientation([0, 0.8, 0.0], T.euler2quat([0, 0, -np.pi/2]))
robot.reset()
systems = [get_system(system_name) for system_name, system_class in SYSTEM_EXAMPLES.items()]
for i, system in enumerate(systems):
# Sample two particles for each system
pos = np.array([-0.2 + i * 0.2, 0, 0.55])
if is_physical_particle_system(system_name=system.name):
system.generate_particles(positions=[pos, pos + np.array([0.1, 0.0, 0.0])])
else:
if system.get_group_name(breakfast_table) not in system.groups:
system.create_attachment_group(breakfast_table)
system.generate_group_particles(
group=system.get_group_name(breakfast_table),
positions=np.array([pos, pos + np.array([0.1, 0.0, 0.0])]),
link_prim_paths=[breakfast_table.root_link.prim_path],
)
og.sim.step()
og.sim.render()
sensors = [s for s in robot.sensors.values() if isinstance(s, VisionSensor)]
assert len(sensors) > 0
vision_sensor = sensors[0]
all_observation, all_info = vision_sensor.get_obs()
seg_semantic = all_observation['seg_semantic']
seg_semantic_info = all_info['seg_semantic']
assert set(np.unique(seg_semantic)) == set(seg_semantic_info.keys())
expected_dict = {
335706086: 'diced__apple',
825831922: 'floors',
884110082: 'stain',
1949122937: 'breakfast_table',
2814990211: 'agent',
3051938632: 'white_rice',
3330677804: 'water',
4207839377: 'dishtowel'
}
assert set(seg_semantic_info.values()) == set(expected_dict.values())
seg_instance = all_observation['seg_instance']
seg_instance_info = all_info['seg_instance']
assert set(np.unique(seg_instance)) == set(seg_instance_info.keys())
expected_dict = {
2: 'robot0',
3: 'groundPlane',
4: 'dishtowel',
5: 'breakfast_table',
6: 'stain',
7: 'water',
8: 'white_rice',
9: 'diced__apple'
}
assert set(seg_instance_info.values()) == set(expected_dict.values())
seg_instance_id = all_observation['seg_instance_id']
seg_instance_id_info = all_info['seg_instance_id']
assert set(np.unique(seg_instance_id)) == set(seg_instance_id_info.keys())
expected_dict = {
3: '/World/robot0/gripper_link/visuals',
4: '/World/robot0/wrist_roll_link/visuals',
5: '/World/robot0/forearm_roll_link/visuals',
6: '/World/robot0/wrist_flex_link/visuals',
8: '/World/groundPlane/geom',
9: '/World/dishtowel/base_link_cloth',
10: '/World/robot0/r_gripper_finger_link/visuals',
11: '/World/robot0/l_gripper_finger_link/visuals',
12: '/World/breakfast_table/base_link/visuals',
13: 'stain',
14: 'white_rice',
15: 'diced__apple',
16: 'water'
}
# Temporarily disable this test because og_assets are outdated on CI machines
# assert set(seg_instance_id_info.values()) == set(expected_dict.values())
def test_clear_sim():
og.sim.clear()
| 3,768 | Python | 37.85567 | 97 | 0.628185 |
StanfordVL/OmniGibson/tests/test_primitives.py | import numpy as np
import pytest
import omnigibson as og
from omnigibson.macros import gm
from omnigibson.action_primitives.starter_semantic_action_primitives import StarterSemanticActionPrimitives, StarterSemanticActionPrimitiveSet
import omnigibson.utils.transform_utils as T
from omnigibson.objects.dataset_object import DatasetObject
def execute_controller(ctrl_gen, env):
for action in ctrl_gen:
env.step(action)
def primitive_tester(load_object_categories, objects, primitives, primitives_args):
cfg = {
"scene": {
"type": "InteractiveTraversableScene",
"scene_model": "Rs_int",
"load_object_categories": load_object_categories,
},
"robots": [
{
"type": "Fetch",
"obs_modalities": ["scan", "rgb", "depth"],
"scale": 1.0,
"self_collisions": True,
"action_normalize": False,
"action_type": "continuous",
"grasping_mode": "sticky",
"rigid_trunk": False,
"default_arm_pose": "diagonal30",
"default_trunk_offset": 0.365,
"controller_config": {
"base": {
"name": "DifferentialDriveController",
},
"arm_0": {
"name": "InverseKinematicsController",
"command_input_limits": "default",
"command_output_limits": [[-0.2, -0.2, -0.2, -0.5, -0.5, -0.5], [0.2, 0.2, 0.2, 0.5, 0.5, 0.5]],
"mode": "pose_absolute_ori",
"kp": 300.0
},
"gripper_0": {
"name": "JointController",
"motor_type": "position",
"command_input_limits": [-1, 1],
"command_output_limits": None,
"use_delta_commands": True
},
"camera": {
"name": "JointController",
"use_delta_commands": False
}
}
}
],
}
# Make sure sim is stopped
if og.sim is not None:
og.sim.stop()
# Make sure GPU dynamics are enabled (GPU dynamics needed for cloth) and no flatcache
gm.ENABLE_OBJECT_STATES = True
gm.USE_GPU_DYNAMICS = False
gm.ENABLE_FLATCACHE = False
# Create the environment
env = og.Environment(configs=cfg)
robot = env.robots[0]
env.reset()
for obj in objects:
og.sim.import_object(obj['object'])
obj['object'].set_position_orientation(obj['position'], obj['orientation'])
og.sim.step()
controller = StarterSemanticActionPrimitives(env, enable_head_tracking=False)
try:
for primitive, args in zip(primitives, primitives_args):
try:
execute_controller(controller.apply_ref(primitive, *args), env)
except Exception as e:
return False
finally:
# Clear the sim
og.sim.clear()
return True
def test_navigate():
categories = ["floors", "ceilings", "walls"]
objects = []
obj_1 = {
"object": DatasetObject(
name="cologne",
category="bottle_of_cologne",
model="lyipur"
),
"position": [-0.3, -0.8, 0.5],
"orientation": [0, 0, 0, 1]
}
objects.append(obj_1)
primitives = [StarterSemanticActionPrimitiveSet.NAVIGATE_TO]
primitives_args = [(obj_1['object'],)]
assert primitive_tester(categories, objects, primitives, primitives_args)
def test_grasp():
categories = ["floors", "ceilings", "walls", "coffee_table"]
objects = []
obj_1 = {
"object": DatasetObject(
name="cologne",
category="bottle_of_cologne",
model="lyipur"
),
"position": [-0.3, -0.8, 0.5],
"orientation": [0, 0, 0, 1]
}
objects.append(obj_1)
primitives = [StarterSemanticActionPrimitiveSet.GRASP]
primitives_args = [(obj_1['object'],)]
assert primitive_tester(categories, objects, primitives, primitives_args)
def test_place():
categories = ["floors", "ceilings", "walls", "coffee_table"]
objects = []
obj_1 = {
"object": DatasetObject(
name="table",
category="breakfast_table",
model="rjgmmy",
scale=[0.3, 0.3, 0.3]
),
"position": [-0.7, 0.5, 0.2],
"orientation": [0, 0, 0, 1]
}
obj_2 = {
"object": DatasetObject(
name="cologne",
category="bottle_of_cologne",
model="lyipur"
),
"position": [-0.3, -0.8, 0.5],
"orientation": [0, 0, 0, 1]
}
objects.append(obj_1)
objects.append(obj_2)
primitives = [StarterSemanticActionPrimitiveSet.GRASP, StarterSemanticActionPrimitiveSet.PLACE_ON_TOP]
primitives_args = [(obj_2['object'],), (obj_1['object'],)]
assert primitive_tester(categories, objects, primitives, primitives_args)
@pytest.mark.skip(reason="primitives are broken")
def test_open_prismatic():
categories = ["floors"]
objects = []
obj_1 = {
"object": DatasetObject(
name="bottom_cabinet",
category="bottom_cabinet",
model="bamfsz",
scale=[0.7, 0.7, 0.7]
),
"position": [-1.2, -0.4, 0.5],
"orientation": [0, 0, 0, 1]
}
objects.append(obj_1)
primitives = [StarterSemanticActionPrimitiveSet.OPEN]
primitives_args = [(obj_1['object'],)]
assert primitive_tester(categories, objects, primitives, primitives_args)
@pytest.mark.skip(reason="primitives are broken")
def test_open_revolute():
categories = ["floors"]
objects = []
obj_1 = {
"object": DatasetObject(
name="fridge",
category="fridge",
model="dszchb",
scale=[0.7, 0.7, 0.7]
),
"position": [-1.2, -0.4, 0.5],
"orientation": [0, 0, 0, 1]
}
objects.append(obj_1)
primitives = [StarterSemanticActionPrimitiveSet.OPEN]
primitives_args = [(obj_1['object'],)]
assert primitive_tester(categories, objects, primitives, primitives_args) | 6,423 | Python | 30.336585 | 142 | 0.528414 |
StanfordVL/OmniGibson/tests/test_object_states.py | from omnigibson.macros import macros as m
from omnigibson.object_states import *
from omnigibson.systems import get_system, is_physical_particle_system, is_visual_particle_system, VisualParticleSystem
from omnigibson.utils.constants import PrimType
from omnigibson.utils.physx_utils import apply_force_at_pos, apply_torque
import omnigibson.utils.transform_utils as T
import omnigibson as og
from utils import og_test, get_random_pose, place_objA_on_objB_bbox, place_obj_on_floor_plane, SYSTEM_EXAMPLES
import pytest
import numpy as np
@og_test
def test_on_top():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
bowl = og.sim.scene.object_registry("name", "bowl")
dishtowel = og.sim.scene.object_registry("name", "dishtowel")
place_obj_on_floor_plane(breakfast_table)
for i, obj in enumerate((bowl, dishtowel)):
place_objA_on_objB_bbox(obj, breakfast_table)
for _ in range(5):
og.sim.step()
assert obj.states[OnTop].get_value(breakfast_table)
obj.set_position(np.ones(3) * 10 * (i + 1))
og.sim.step()
assert not obj.states[OnTop].get_value(breakfast_table)
assert bowl.states[OnTop].set_value(breakfast_table, True)
assert dishtowel.states[OnTop].set_value(breakfast_table, True)
with pytest.raises(NotImplementedError):
bowl.states[OnTop].set_value(breakfast_table, False)
@og_test
def test_inside():
bottom_cabinet = og.sim.scene.object_registry("name", "bottom_cabinet")
bowl = og.sim.scene.object_registry("name", "bowl")
dishtowel = og.sim.scene.object_registry("name", "dishtowel")
place_obj_on_floor_plane(bottom_cabinet)
bowl.set_position([0., 0., 0.08])
dishtowel.set_position([0, 0., 0.5])
for _ in range(5):
og.sim.step()
assert bowl.states[Inside].get_value(bottom_cabinet)
assert dishtowel.states[Inside].get_value(bottom_cabinet)
bowl.set_position([10., 10., 1.])
dishtowel.set_position([20., 20., 1.])
for _ in range(5):
og.sim.step()
assert not bowl.states[Inside].get_value(bottom_cabinet)
assert not dishtowel.states[Inside].get_value(bottom_cabinet)
assert bowl.states[Inside].set_value(bottom_cabinet, True)
assert dishtowel.states[Inside].set_value(bottom_cabinet, True)
with pytest.raises(NotImplementedError):
bowl.states[OnTop].set_value(bottom_cabinet, False)
@og_test
def test_under():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
bowl = og.sim.scene.object_registry("name", "bowl")
dishtowel = og.sim.scene.object_registry("name", "dishtowel")
place_obj_on_floor_plane(breakfast_table)
for i, obj in enumerate((bowl, dishtowel)):
place_obj_on_floor_plane(obj)
for _ in range(5):
og.sim.step()
assert obj.states[Under].get_value(breakfast_table)
obj.set_position(np.ones(3) * 10 * (i + 1))
og.sim.step()
assert not obj.states[Under].get_value(breakfast_table)
assert bowl.states[Under].set_value(breakfast_table, True)
assert dishtowel.states[Under].set_value(breakfast_table, True)
with pytest.raises(NotImplementedError):
bowl.states[Under].set_value(breakfast_table, False)
@og_test
def test_touching():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
bowl = og.sim.scene.object_registry("name", "bowl")
dishtowel = og.sim.scene.object_registry("name", "dishtowel")
place_obj_on_floor_plane(breakfast_table)
for i, obj in enumerate((bowl, dishtowel)):
place_objA_on_objB_bbox(obj, breakfast_table)
for _ in range(5):
og.sim.step()
assert obj.states[Touching].get_value(breakfast_table)
assert breakfast_table.states[Touching].get_value(obj)
obj.set_position(np.ones(3) * 10 * (i + 1))
og.sim.step()
assert not obj.states[Touching].get_value(breakfast_table)
assert not breakfast_table.states[Touching].get_value(obj)
with pytest.raises(NotImplementedError):
bowl.states[Touching].set_value(breakfast_table, None)
@og_test
def test_contact_bodies():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
bowl = og.sim.scene.object_registry("name", "bowl")
dishtowel = og.sim.scene.object_registry("name", "dishtowel")
place_obj_on_floor_plane(breakfast_table)
for i, obj in enumerate((bowl, dishtowel)):
place_objA_on_objB_bbox(obj, breakfast_table)
for _ in range(5):
og.sim.step()
# TODO: rigid body's ContactBodies should include cloth
if obj.prim_type != PrimType.CLOTH:
assert obj.root_link in breakfast_table.states[ContactBodies].get_value()
assert breakfast_table.root_link in obj.states[ContactBodies].get_value()
obj.set_position(np.ones(3) * 10 * (i + 1))
og.sim.step()
assert obj.root_link not in breakfast_table.states[ContactBodies].get_value()
assert breakfast_table.root_link not in obj.states[ContactBodies].get_value()
with pytest.raises(NotImplementedError):
bowl.states[ContactBodies].set_value(None)
@og_test
def test_next_to():
bottom_cabinet = og.sim.scene.object_registry("name", "bottom_cabinet")
bowl = og.sim.scene.object_registry("name", "bowl")
dishtowel = og.sim.scene.object_registry("name", "dishtowel")
place_obj_on_floor_plane(bottom_cabinet)
for i, (axis, obj) in enumerate(zip(("x", "y"), (bowl, dishtowel))):
place_obj_on_floor_plane(obj, **{f"{axis}_offset": 0.3})
for _ in range(5):
og.sim.step()
assert obj.states[NextTo].get_value(bottom_cabinet)
assert bottom_cabinet.states[NextTo].get_value(obj)
obj.set_position(np.ones(3) * 10 * (i + 1))
og.sim.step()
assert not obj.states[NextTo].get_value(bottom_cabinet)
assert not bottom_cabinet.states[NextTo].get_value(obj)
with pytest.raises(NotImplementedError):
bowl.states[NextTo].set_value(bottom_cabinet, None)
@og_test
def test_overlaid():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
carpet = og.sim.scene.object_registry("name", "carpet")
place_obj_on_floor_plane(breakfast_table)
place_objA_on_objB_bbox(carpet, breakfast_table)
for _ in range(5):
og.sim.step()
assert carpet.states[Overlaid].get_value(breakfast_table)
carpet.set_position(np.ones(3) * 20.0)
og.sim.step()
assert not carpet.states[Overlaid].get_value(breakfast_table)
assert carpet.states[Overlaid].set_value(breakfast_table, True)
with pytest.raises(NotImplementedError):
carpet.states[Overlaid].set_value(breakfast_table, False)
@og_test
def test_pose():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
dishtowel = og.sim.scene.object_registry("name", "dishtowel")
pos1, orn1 = get_random_pose()
breakfast_table.set_position_orientation(pos1, orn1)
pos2, orn2 = get_random_pose()
dishtowel.set_position_orientation(pos2, orn2)
assert np.allclose(breakfast_table.states[Pose].get_value()[0], pos1)
assert np.allclose(breakfast_table.states[Pose].get_value()[1], orn1) or np.allclose(breakfast_table.states[Pose].get_value()[1], -orn1)
assert np.allclose(dishtowel.states[Pose].get_value()[0], pos2)
assert np.allclose(dishtowel.states[Pose].get_value()[1], orn2) or np.allclose(dishtowel.states[Pose].get_value()[1], -orn2)
with pytest.raises(NotImplementedError):
breakfast_table.states[Pose].set_value(None)
@og_test
def test_aabb():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
dishtowel = og.sim.scene.object_registry("name", "dishtowel")
pos1, orn1 = get_random_pose()
breakfast_table.set_position_orientation(pos1, orn1)
pos2, orn2 = get_random_pose()
dishtowel.set_position_orientation(pos2, orn2)
# Need to take one sim step
og.sim.step()
assert np.allclose(breakfast_table.states[AABB].get_value(), breakfast_table.aabb)
assert np.all((breakfast_table.states[AABB].get_value()[0] < pos1) & (pos1 < breakfast_table.states[AABB].get_value()[1]))
pp = dishtowel.root_link.compute_particle_positions()
offset = dishtowel.root_link.cloth_system.particle_contact_offset
assert np.allclose(dishtowel.states[AABB].get_value(), (pp.min(axis=0) - offset, pp.max(axis=0) + offset))
assert np.all((dishtowel.states[AABB].get_value()[0] < pos2) & (pos2 < dishtowel.states[AABB].get_value()[1]))
with pytest.raises(NotImplementedError):
breakfast_table.states[AABB].set_value(None)
@og_test
def test_adjacency():
bottom_cabinet = og.sim.scene.object_registry("name", "bottom_cabinet")
bowl = og.sim.scene.object_registry("name", "bowl")
dishtowel = og.sim.scene.object_registry("name", "dishtowel")
place_obj_on_floor_plane(bottom_cabinet)
for i, (axis, obj) in enumerate(zip(("x", "y"), (bowl, dishtowel))):
place_obj_on_floor_plane(obj, **{f"{axis}_offset": 0.4})
og.sim.step()
assert bottom_cabinet in set.union(
*(axis.positive_neighbors | axis.negative_neighbors
for coordinate in obj.states[HorizontalAdjacency].get_value() for axis in coordinate)
)
bowl.set_position([0., 0., 1.])
dishtowel.set_position([0., 0., 2.0])
# Need to take one sim step
og.sim.step()
assert bowl in bottom_cabinet.states[VerticalAdjacency].get_value().positive_neighbors
# TODO: adjacency relies on raytest, which doesn't take particle systems into account
# assert dishtowel in bottom_cabinet.states[VerticalAdjacency].get_value().positive_neighbors
assert bottom_cabinet in bowl.states[VerticalAdjacency].get_value().negative_neighbors
# TODO: adjacency relies on raytest, which doesn't take particle systems into account
# assert dishtowel in bowl.states[VerticalAdjacency].get_value().positive_neighbors
assert bottom_cabinet in dishtowel.states[VerticalAdjacency].get_value().negative_neighbors
assert bowl in dishtowel.states[VerticalAdjacency].get_value().negative_neighbors
with pytest.raises(NotImplementedError):
bottom_cabinet.states[HorizontalAdjacency].set_value(None)
bottom_cabinet.states[VerticalAdjacency].set_value(None)
@og_test
def test_temperature():
microwave = og.sim.scene.object_registry("name", "microwave")
stove = og.sim.scene.object_registry("name", "stove")
fridge = og.sim.scene.object_registry("name", "fridge")
plywood = og.sim.scene.object_registry("name", "plywood")
bagel = og.sim.scene.object_registry("name", "bagel")
dishtowel = og.sim.scene.object_registry("name", "cookable_dishtowel")
place_obj_on_floor_plane(microwave)
place_obj_on_floor_plane(stove, x_offset=1.0)
place_obj_on_floor_plane(fridge, x_offset=2.0)
place_obj_on_floor_plane(plywood, x_offset=3.0)
# Set the objects to be far away
place_obj_on_floor_plane(bagel, x_offset=-0.5)
place_obj_on_floor_plane(dishtowel, x_offset=-1.0)
for _ in range(5):
og.sim.step()
# Not affected by any heat source
assert bagel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
# Open the microwave
microwave.joints["j_link_0"].set_pos(np.pi / 2)
# Set the objects to be inside the microwave
bagel.set_position_orientation([0, 0, 0.11], [0, 0, 0, 1])
dishtowel.set_position_orientation([-0.15, 0, 0.11], [0, 0, 0, 1])
for _ in range(5):
og.sim.step()
# Not affected by any heat source (the microwave is NOT toggled on)
assert bagel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
microwave.states[ToggledOn].set_value(True)
for _ in range(5):
og.sim.step()
# Not affected by any heat source (the microwave is open)
assert bagel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
microwave.joints["j_link_0"].set_pos(0.)
for _ in range(5):
og.sim.step()
# Affected by the microwave
bagel_new_temp = bagel.states[Temperature].get_value()
dishtowel_new_temp = dishtowel.states[Temperature].get_value()
assert bagel.states[Temperature].get_value() > m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[Temperature].get_value() > m.object_states.temperature.DEFAULT_TEMPERATURE
# Set the objects to be far away
place_obj_on_floor_plane(bagel, x_offset=-0.5)
place_obj_on_floor_plane(dishtowel, x_offset=-1.0)
for _ in range(5):
og.sim.step()
# Not affected by any heat source (should cool down by itself towards the default temp)
assert bagel.states[Temperature].get_value() < bagel_new_temp
assert dishtowel.states[Temperature].get_value() < dishtowel_new_temp
# Setter should work
assert bagel.states[Temperature].set_value(m.object_states.temperature.DEFAULT_TEMPERATURE)
assert dishtowel.states[Temperature].set_value(m.object_states.temperature.DEFAULT_TEMPERATURE)
assert bagel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
# Set the objects to be on top of the stove
bagel.set_position_orientation([0.71, 0.11, 0.88], [0, 0, 0, 1])
dishtowel.set_position_orientation([0.84, 0.11, 0.88], [0, 0, 0, 1])
for _ in range(5):
og.sim.step()
# Not affected by any heat source (the stove is off)
assert bagel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
stove.states[ToggledOn].set_value(True)
for _ in range(5):
og.sim.step()
# Affected by the stove
assert bagel.states[Temperature].get_value() > m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[Temperature].get_value() > m.object_states.temperature.DEFAULT_TEMPERATURE
# Reset
assert bagel.states[Temperature].set_value(m.object_states.temperature.DEFAULT_TEMPERATURE)
assert dishtowel.states[Temperature].set_value(m.object_states.temperature.DEFAULT_TEMPERATURE)
# Set the objects to be inside the fridge
bagel.set_position_orientation([1.9, 0, 0.89], [0, 0, 0, 1])
dishtowel.set_position_orientation([2.1, 0, 0.89], [0, 0, 0, 1])
for _ in range(5):
og.sim.step()
# Affected by the fridge
assert bagel.states[Temperature].get_value() < m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[Temperature].get_value() < m.object_states.temperature.DEFAULT_TEMPERATURE
# Reset temp
assert bagel.states[Temperature].set_value(m.object_states.temperature.DEFAULT_TEMPERATURE)
assert dishtowel.states[Temperature].set_value(m.object_states.temperature.DEFAULT_TEMPERATURE)
# Set the objects to be near the plywood
place_obj_on_floor_plane(bagel, x_offset=2.9)
place_obj_on_floor_plane(dishtowel, x_offset=3.1)
for _ in range(5):
og.sim.step()
# Not affected by any heat source (the plywood is NOT onfire)
assert bagel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[Temperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
plywood.states[OnFire].set_value(True)
for _ in range(5):
og.sim.step()
assert bagel.states[Temperature].get_value() > m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[Temperature].get_value() > m.object_states.temperature.DEFAULT_TEMPERATURE
@og_test
def test_max_temperature():
bagel = og.sim.scene.object_registry("name", "bagel")
dishtowel = og.sim.scene.object_registry("name", "cookable_dishtowel")
assert bagel.states[MaxTemperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[MaxTemperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE
assert bagel.states[MaxTemperature].set_value(m.object_states.temperature.DEFAULT_TEMPERATURE - 1)
assert dishtowel.states[MaxTemperature].set_value(m.object_states.temperature.DEFAULT_TEMPERATURE - 1)
assert bagel.states[MaxTemperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE - 1
assert dishtowel.states[MaxTemperature].get_value() == m.object_states.temperature.DEFAULT_TEMPERATURE - 1
bagel.states[Temperature].set_value(m.object_states.temperature.DEFAULT_TEMPERATURE + 1)
dishtowel.states[Temperature].set_value(m.object_states.temperature.DEFAULT_TEMPERATURE + 1)
og.sim.step()
assert bagel.states[MaxTemperature].get_value() > m.object_states.temperature.DEFAULT_TEMPERATURE
assert dishtowel.states[MaxTemperature].get_value() > m.object_states.temperature.DEFAULT_TEMPERATURE
@og_test
def test_heat_source_or_sink():
microwave = og.sim.scene.object_registry("name", "microwave")
stove = og.sim.scene.object_registry("name", "stove")
fridge = og.sim.scene.object_registry("name", "fridge")
assert microwave.states[HeatSourceOrSink].requires_inside
assert microwave.states[HeatSourceOrSink].requires_closed
assert microwave.states[HeatSourceOrSink].requires_toggled_on
microwave.joints["j_link_0"].set_pos(np.pi / 2)
microwave.states[ToggledOn].set_value(False)
og.sim.step()
assert not microwave.states[HeatSourceOrSink].get_value()
microwave.joints["j_link_0"].set_pos(0.0)
og.sim.step()
assert not microwave.states[HeatSourceOrSink].get_value()
microwave.states[ToggledOn].set_value(True)
og.sim.step()
assert microwave.states[HeatSourceOrSink].get_value()
assert fridge.states[HeatSourceOrSink].requires_inside
assert fridge.states[HeatSourceOrSink].requires_closed
assert not fridge.states[HeatSourceOrSink].requires_toggled_on
fridge.joints["j_link_0"].set_pos(np.pi / 2)
og.sim.step()
assert not fridge.states[HeatSourceOrSink].get_value()
fridge.joints["j_link_0"].set_pos(0.0)
og.sim.step()
assert fridge.states[HeatSourceOrSink].get_value()
assert not stove.states[HeatSourceOrSink].requires_inside
assert not stove.states[HeatSourceOrSink].requires_closed
assert stove.states[HeatSourceOrSink].requires_toggled_on
stove.states[ToggledOn].set_value(False)
og.sim.step()
assert not stove.states[HeatSourceOrSink].get_value()
stove.states[ToggledOn].set_value(True)
og.sim.step()
assert stove.states[HeatSourceOrSink].get_value()
@og_test
def test_cooked():
bagel = og.sim.scene.object_registry("name", "bagel")
dishtowel = og.sim.scene.object_registry("name", "cookable_dishtowel")
assert not bagel.states[Cooked].get_value()
assert not dishtowel.states[Cooked].get_value()
bagel.states[MaxTemperature].set_value(bagel.states[Cooked].cook_temperature)
dishtowel.states[MaxTemperature].set_value(dishtowel.states[Cooked].cook_temperature)
og.sim.step()
assert bagel.states[Cooked].get_value()
assert dishtowel.states[Cooked].get_value()
assert bagel.states[Cooked].set_value(False)
assert dishtowel.states[Cooked].set_value(False)
assert not bagel.states[Cooked].get_value()
assert not dishtowel.states[Cooked].get_value()
assert bagel.states[MaxTemperature].get_value() < bagel.states[Cooked].cook_temperature
assert dishtowel.states[MaxTemperature].get_value() < dishtowel.states[Cooked].cook_temperature
assert bagel.states[Cooked].set_value(True)
assert dishtowel.states[Cooked].set_value(True)
assert bagel.states[Cooked].get_value()
assert dishtowel.states[Cooked].get_value()
assert bagel.states[MaxTemperature].get_value() >= bagel.states[Cooked].cook_temperature
assert dishtowel.states[MaxTemperature].get_value() >= dishtowel.states[Cooked].cook_temperature
@og_test
def test_burnt():
bagel = og.sim.scene.object_registry("name", "bagel")
dishtowel = og.sim.scene.object_registry("name", "cookable_dishtowel")
assert not bagel.states[Burnt].get_value()
assert not dishtowel.states[Burnt].get_value()
bagel.states[MaxTemperature].set_value(bagel.states[Burnt].burn_temperature)
dishtowel.states[MaxTemperature].set_value(dishtowel.states[Burnt].burn_temperature)
og.sim.step()
assert bagel.states[Burnt].get_value()
assert dishtowel.states[Burnt].get_value()
assert bagel.states[Burnt].set_value(False)
assert dishtowel.states[Burnt].set_value(False)
assert not bagel.states[Burnt].get_value()
assert not dishtowel.states[Burnt].get_value()
assert bagel.states[MaxTemperature].get_value() < bagel.states[Burnt].burn_temperature
assert dishtowel.states[MaxTemperature].get_value() < dishtowel.states[Burnt].burn_temperature
assert bagel.states[Burnt].set_value(True)
assert dishtowel.states[Burnt].set_value(True)
assert bagel.states[Burnt].get_value()
assert dishtowel.states[Burnt].get_value()
assert bagel.states[MaxTemperature].get_value() >= bagel.states[Burnt].burn_temperature
assert dishtowel.states[MaxTemperature].get_value() >= dishtowel.states[Burnt].burn_temperature
@og_test
def test_frozen():
bagel = og.sim.scene.object_registry("name", "bagel")
dishtowel = og.sim.scene.object_registry("name", "cookable_dishtowel")
assert not bagel.states[Frozen].get_value()
assert not dishtowel.states[Frozen].get_value()
bagel.states[Temperature].set_value(bagel.states[Frozen].freeze_temperature - 1)
dishtowel.states[Temperature].set_value(dishtowel.states[Frozen].freeze_temperature - 1)
og.sim.step()
assert bagel.states[Frozen].get_value()
assert dishtowel.states[Frozen].get_value()
assert bagel.states[Frozen].set_value(False)
assert dishtowel.states[Frozen].set_value(False)
assert not bagel.states[Frozen].get_value()
assert not dishtowel.states[Frozen].get_value()
assert bagel.states[Temperature].get_value() > bagel.states[Frozen].freeze_temperature
assert dishtowel.states[Temperature].get_value() > dishtowel.states[Frozen].freeze_temperature
assert bagel.states[Frozen].set_value(True)
assert dishtowel.states[Frozen].set_value(True)
assert bagel.states[Frozen].get_value()
assert dishtowel.states[Frozen].get_value()
assert bagel.states[Temperature].get_value() <= bagel.states[Frozen].freeze_temperature
assert dishtowel.states[Temperature].get_value() <= dishtowel.states[Frozen].freeze_temperature
@og_test
def test_heated():
bagel = og.sim.scene.object_registry("name", "bagel")
dishtowel = og.sim.scene.object_registry("name", "cookable_dishtowel")
assert not bagel.states[Heated].get_value()
assert not dishtowel.states[Heated].get_value()
bagel.states[Temperature].set_value(bagel.states[Heated].heat_temperature + 1)
dishtowel.states[Temperature].set_value(dishtowel.states[Heated].heat_temperature + 1)
og.sim.step()
assert bagel.states[Heated].get_value()
assert dishtowel.states[Heated].get_value()
assert bagel.states[Heated].set_value(False)
assert dishtowel.states[Heated].set_value(False)
assert not bagel.states[Heated].get_value()
assert not dishtowel.states[Heated].get_value()
assert bagel.states[Temperature].get_value() < bagel.states[Heated].heat_temperature
assert dishtowel.states[Temperature].get_value() < dishtowel.states[Heated].heat_temperature
assert bagel.states[Heated].set_value(True)
assert dishtowel.states[Heated].set_value(True)
assert bagel.states[Heated].get_value()
assert dishtowel.states[Heated].get_value()
assert bagel.states[Temperature].get_value() >= bagel.states[Heated].heat_temperature
assert dishtowel.states[Temperature].get_value() >= dishtowel.states[Heated].heat_temperature
@og_test
def test_on_fire():
plywood = og.sim.scene.object_registry("name", "plywood")
assert not plywood.states[OnFire].get_value()
plywood.states[Temperature].set_value(plywood.states[OnFire].ignition_temperature + 1)
og.sim.step()
assert plywood.states[OnFire].get_value()
assert plywood.states[OnFire].set_value(False)
assert not plywood.states[OnFire].get_value()
assert plywood.states[Temperature].get_value() < plywood.states[OnFire].ignition_temperature
assert plywood.states[OnFire].set_value(True)
assert plywood.states[OnFire].get_value()
assert plywood.states[Temperature].get_value() == plywood.states[OnFire].temperature
for _ in range(5):
og.sim.step()
assert plywood.states[Temperature].get_value() == plywood.states[OnFire].temperature
@og_test
def test_toggled_on():
stove = og.sim.scene.object_registry("name", "stove")
robot = og.sim.scene.object_registry("name", "robot0")
stove.set_position_orientation([1.48, 0.3, 0.443], T.euler2quat([0, 0, -np.pi / 2.0]))
robot.set_position_orientation([0.0, 0.38, 0.0], [0, 0, 0, 1])
assert not stove.states[ToggledOn].get_value()
q = robot.get_joint_positions()
jnt_idxs = {name: i for i, name in enumerate(robot.joints.keys())}
q[jnt_idxs["torso_lift_joint"]] = 0.0
q[jnt_idxs["shoulder_pan_joint"]] = np.deg2rad(90.0)
q[jnt_idxs["shoulder_lift_joint"]] = np.deg2rad(9.0)
q[jnt_idxs["upperarm_roll_joint"]] = 0.0
q[jnt_idxs["elbow_flex_joint"]] = 0.0
q[jnt_idxs["forearm_roll_joint"]] = 0.0
q[jnt_idxs["wrist_flex_joint"]] = 0.0
q[jnt_idxs["wrist_roll_joint"]] = 0.0
q[jnt_idxs["l_gripper_finger_joint"]] = 0.0
q[jnt_idxs["r_gripper_finger_joint"]] = 0.0
robot.set_joint_positions(q, drive=False)
steps = m.object_states.toggle.CAN_TOGGLE_STEPS
for _ in range(steps):
og.sim.step()
# End-effector not close to the button, stays False
assert not stove.states[ToggledOn].get_value()
q[jnt_idxs["shoulder_pan_joint"]] = 0.0
robot.set_joint_positions(q, drive=False)
for _ in range(steps - 1):
og.sim.step()
# End-effector close to the button, but not enough time has passed, still False
assert not stove.states[ToggledOn].get_value()
og.sim.step()
# Enough time has passed, turns True
assert stove.states[ToggledOn].get_value()
# Setter should work
assert stove.states[ToggledOn].set_value(False)
assert not stove.states[ToggledOn].get_value()
@pytest.mark.skip(reason="skipping attachment for now")
@og_test
def test_attached_to():
shelf_back_panel = og.sim.scene.object_registry("name", "shelf_back_panel")
shelf_shelf = og.sim.scene.object_registry("name", "shelf_shelf")
shelf_baseboard = og.sim.scene.object_registry("name", "shelf_baseboard")
shelf_back_panel.set_position_orientation([0, 0, 0.01], [0, 0, 0, 1])
shelf_back_panel.keep_still()
shelf_shelf.set_position_orientation([0, 0.03, 0.17], [0, 0, 0, 1])
shelf_shelf.keep_still()
# The shelf should not be attached to the back panel (no contact yet)
assert not shelf_shelf.states[AttachedTo].get_value(shelf_back_panel)
# Let the shelf fall
for _ in range(10):
og.sim.step()
# The shelf should be attached to the back panel
assert shelf_shelf.states[AttachedTo].get_value(shelf_back_panel)
assert shelf_shelf.states[AttachedTo].set_value(shelf_back_panel, True)
# The shelf should still be attached to the back panel
assert shelf_shelf.states[AttachedTo].get_value(shelf_back_panel)
assert shelf_shelf.states[AttachedTo].set_value(shelf_back_panel, False)
# The shelf should not be attached to the back panel
assert not shelf_shelf.states[AttachedTo].get_value(shelf_back_panel)
assert shelf_shelf.states[AttachedTo].set_value(shelf_back_panel, True)
# shelf should be attached to the back panel
assert shelf_shelf.states[AttachedTo].get_value(shelf_back_panel)
force_dir = np.array([0, 0, 1])
# A small force will not break the attachment
force_mag = 10
apply_force_at_pos(shelf_shelf.root_link, force_dir * force_mag, shelf_shelf.get_position())
og.sim.step()
assert shelf_shelf.states[AttachedTo].get_value(shelf_back_panel)
# A large force will break the attachment
force_mag = 1000
apply_force_at_pos(shelf_shelf.root_link, force_dir * force_mag, shelf_shelf.get_position())
og.sim.step()
assert not shelf_shelf.states[AttachedTo].get_value(shelf_back_panel)
shelf_shelf.set_position_orientation([0, 0, 10], [0, 0, 0, 1])
assert not shelf_shelf.states[AttachedTo].set_value(shelf_back_panel, True)
# The shelf should not be attached to the back panel because the alignment is wrong
assert not shelf_shelf.states[AttachedTo].get_value(shelf_back_panel)
assert shelf_shelf.states[AttachedTo].set_value(shelf_back_panel, True, bypass_alignment_checking=True)
# The shelf should be attached to the back panel because the alignment checking is bypassed
assert shelf_shelf.states[AttachedTo].get_value(shelf_back_panel)
# The shelf baseboard should NOT be attached because the attachment has the wrong type
shelf_baseboard.set_position_orientation([0.37, -0.93, 0.03], [0, 0, 0, 1])
assert not shelf_baseboard.states[AttachedTo].set_value(shelf_back_panel, True, bypass_alignment_checking=True)
assert not shelf_baseboard.states[AttachedTo].get_value(shelf_back_panel)
@og_test
def test_particle_source():
sink = og.sim.scene.object_registry("name", "sink")
place_obj_on_floor_plane(sink)
for _ in range(3):
og.sim.step()
assert not sink.states[ToggledOn].get_value()
water_system = get_system("water")
# Sink is toggled off, no water should be present
assert water_system.n_particles == 0
sink.states[ToggledOn].set_value(True)
for _ in range(sink.states[ParticleSource].n_steps_per_modification):
og.sim.step()
# Sink is toggled on, some water should be present
assert water_system.n_particles > 0
# Cannot set this state
with pytest.raises(NotImplementedError):
sink.states[ParticleSource].set_value(True)
water_system.remove_all_particles()
@og_test
def test_particle_sink():
sink = og.sim.scene.object_registry("name", "sink")
place_obj_on_floor_plane(sink)
for _ in range(3):
og.sim.step()
water_system = get_system("water")
# There should be no water particles.
assert water_system.n_particles == 0
sink_pos = sink.states[ParticleSink].link.get_position()
water_system.generate_particles(positions=[sink_pos + np.array([0, 0, 0.05])])
# There should be exactly 1 water particle.
assert water_system.n_particles == 1
for _ in range(sink.states[ParticleSink].n_steps_per_modification):
og.sim.step()
# There should be no water particles because the fluid source absorbs them.
assert water_system.n_particles == 0
# Cannot set this state
with pytest.raises(NotImplementedError):
sink.states[ParticleSink].set_value(True)
water_system.remove_all_particles()
@og_test
def test_particle_applier():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
spray_bottle = og.sim.scene.object_registry("name", "spray_bottle")
applier_dishtowel = og.sim.scene.object_registry("name", "applier_dishtowel")
# Test projection
place_obj_on_floor_plane(breakfast_table)
place_objA_on_objB_bbox(spray_bottle, breakfast_table, z_offset=0.1)
spray_bottle.set_orientation(np.array([0.707, 0, 0, 0.707]))
for _ in range(3):
og.sim.step()
assert not spray_bottle.states[ToggledOn].get_value()
water_system = get_system("water")
# Spray bottle is toggled off, no water should be present
assert water_system.n_particles == 0
# Take number of steps for water to be generated, make sure there is still no water
n_applier_steps = spray_bottle.states[ParticleApplier].n_steps_per_modification
for _ in range(n_applier_steps):
og.sim.step()
assert water_system.n_particles == 0
# Turn particle applier on, and verify particles are generated after the same number of steps are taken
spray_bottle.states[ToggledOn].set_value(True)
for _ in range(n_applier_steps):
og.sim.step()
# Some water should be present
assert water_system.n_particles > 0
# Test adjacency
water_system.remove_all_particles()
spray_bottle.set_position_orientation(position=np.ones(3) * 50.0, orientation=np.array([0, 0, 0, 1.0]))
place_objA_on_objB_bbox(applier_dishtowel, breakfast_table)
og.sim.step()
# no water should be present
assert water_system.n_particles == 0
# Take number of steps for water to be generated
n_applier_steps = applier_dishtowel.states[ParticleApplier].n_steps_per_modification
for _ in range(n_applier_steps):
og.sim.step()
# Some water should be present
assert water_system.n_particles > 0
# Cannot set this state
with pytest.raises(NotImplementedError):
spray_bottle.states[ParticleApplier].set_value(True)
water_system.remove_all_particles()
@og_test
def test_particle_remover():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
vacuum = og.sim.scene.object_registry("name", "vacuum")
remover_dishtowel = og.sim.scene.object_registry("name", "remover_dishtowel")
# Test projection
place_obj_on_floor_plane(breakfast_table)
place_objA_on_objB_bbox(vacuum, breakfast_table, z_offset=0.02)
for _ in range(3):
og.sim.step()
assert not vacuum.states[ToggledOn].get_value()
water_system = get_system("water")
# Place single particle of water on middle of table
water_system.generate_particles(positions=[np.array([0, 0, breakfast_table.aabb[1][2] + water_system.particle_radius])])
assert water_system.n_particles > 0
# Take number of steps for water to be removed, make sure there is still water
n_remover_steps = vacuum.states[ParticleRemover].n_steps_per_modification
for _ in range(n_remover_steps):
og.sim.step()
assert water_system.n_particles > 0
# Turn particle remover on, and verify particles are generated after the same number of steps are taken
vacuum.states[ToggledOn].set_value(True)
for _ in range(n_remover_steps):
og.sim.step()
# No water should be present
assert water_system.n_particles == 0
# Test adjacency
vacuum.set_position(np.ones(3) * 50.0)
place_objA_on_objB_bbox(remover_dishtowel, breakfast_table, z_offset=0.03)
og.sim.step()
# Place single particle of water on middle of table
water_system.generate_particles(positions=[np.array([0, 0, breakfast_table.aabb[1][2] + water_system.particle_radius])])
# Water should be present
assert water_system.n_particles > 0
# Take number of steps for water to be removed
n_remover_steps = remover_dishtowel.states[ParticleRemover].n_steps_per_modification
for _ in range(n_remover_steps):
og.sim.step()
# No water should be present
assert water_system.n_particles == 0
# Cannot set this state
with pytest.raises(NotImplementedError):
vacuum.states[ParticleRemover].set_value(True)
water_system.remove_all_particles()
@og_test
def test_saturated():
remover_dishtowel = og.sim.scene.object_registry("name", "remover_dishtowel")
place_obj_on_floor_plane(remover_dishtowel)
for _ in range(5):
og.sim.step()
water_system = get_system("water")
# Place single row of water above dishtowel
n_particles = 5
remover_dishtowel.states[Saturated].set_limit(water_system, n_particles)
water_system.generate_particles(positions=[np.array([0, 0, remover_dishtowel.aabb[1][2] + water_system.particle_radius * (1 + 2 * i)]) for i in range(n_particles)])
# Take a few steps
for _ in range(20):
og.sim.step()
# Make sure Saturated is True, and no particles exist
assert water_system.n_particles == 0
assert remover_dishtowel.states[Saturated].get_value(water_system)
# Make sure we can toggle saturated to be true and false
assert remover_dishtowel.states[Saturated].set_value(water_system, False)
assert remover_dishtowel.states[Saturated].set_value(water_system, True)
water_system.remove_all_particles()
@og_test
def test_open():
microwave = og.sim.scene.object_registry("name", "microwave")
bottom_cabinet = og.sim.scene.object_registry("name", "bottom_cabinet")
# By default, objects should not be open.
assert not microwave.states[Open].get_value()
assert not bottom_cabinet.states[Open].get_value()
# Set the joints to their upper limits.
microwave.joints["j_link_0"].set_pos(microwave.joints["j_link_0"].upper_limit)
bottom_cabinet.joints["j_link_2"].set_pos(bottom_cabinet.joints["j_link_2"].upper_limit)
og.sim.step()
# The objects should be open.
assert microwave.states[Open].get_value()
assert bottom_cabinet.states[Open].get_value()
# Set the joints to their lower limits.
microwave.joints["j_link_0"].set_pos(microwave.joints["j_link_0"].lower_limit)
bottom_cabinet.joints["j_link_2"].set_pos(bottom_cabinet.joints["j_link_2"].lower_limit)
og.sim.step()
# The objects should not be open.
assert not microwave.states[Open].get_value()
assert not bottom_cabinet.states[Open].get_value()
# Setters should work.
assert microwave.states[Open].set_value(True)
assert bottom_cabinet.states[Open].set_value(True)
# The objects should be open.
assert microwave.states[Open].get_value()
assert bottom_cabinet.states[Open].get_value()
# Setters should work.
assert microwave.states[Open].set_value(False)
assert bottom_cabinet.states[Open].set_value(False)
# The objects should not be open.
assert not microwave.states[Open].get_value()
assert not bottom_cabinet.states[Open].get_value()
@og_test
def test_folded_unfolded():
carpet = og.sim.scene.object_registry("name", "carpet")
place_obj_on_floor_plane(carpet)
for _ in range(5):
og.sim.step()
assert not carpet.states[Folded].get_value()
assert carpet.states[Unfolded].get_value()
pos = carpet.root_link.compute_particle_positions()
x_min, x_max = np.min(pos, axis=0)[0], np.max(pos, axis=0)[0]
x_extent = x_max - x_min
# Get indices for the bottom 10 percent vertices in the x-axis
indices = np.argsort(pos, axis=0)[:, 0][:(pos.shape[0] // 10)]
start = np.copy(pos[indices])
# lift up a bit
mid = np.copy(start)
mid[:, 2] += x_extent * 0.2
# move towards x_max
end = np.copy(mid)
end[:, 0] += x_extent * 0.9
increments = 25
for ctrl_pts in np.concatenate([np.linspace(start, mid, increments), np.linspace(mid, end, increments)]):
carpet.root_link.set_particle_positions(ctrl_pts, idxs=indices)
og.sim.step()
assert carpet.states[Folded].get_value()
assert not carpet.states[Unfolded].get_value()
assert carpet.states[Unfolded].set_value(True)
with pytest.raises(NotImplementedError):
carpet.states[Unfolded].set_value(False)
with pytest.raises(NotImplementedError):
carpet.states[Folded].set_value(True)
@og_test
def test_draped():
breakfast_table = og.sim.scene.object_registry("name", "breakfast_table")
carpet = og.sim.scene.object_registry("name", "carpet")
place_obj_on_floor_plane(breakfast_table)
place_objA_on_objB_bbox(carpet, breakfast_table)
for _ in range(10):
og.sim.step()
assert carpet.states[Draped].get_value(breakfast_table)
carpet.set_position([20., 20., 1.])
for _ in range(5):
og.sim.step()
assert not carpet.states[Draped].get_value(breakfast_table)
assert carpet.states[Draped].set_value(breakfast_table, True)
with pytest.raises(NotImplementedError):
carpet.states[Draped].set_value(breakfast_table, False)
@og_test
def test_filled():
stockpot = og.sim.scene.object_registry("name", "stockpot")
systems = [get_system(system_name) for system_name, system_class in SYSTEM_EXAMPLES.items() if not issubclass(system_class, VisualParticleSystem)]
for system in systems:
stockpot.set_position_orientation(position=np.ones(3) * 50.0, orientation=[0, 0, 0, 1.0])
place_obj_on_floor_plane(stockpot)
for _ in range(5):
og.sim.step()
assert stockpot.states[Filled].set_value(system, True)
og.sim.step()
assert stockpot.states[Filled].get_value(system)
# Cannot set Filled state False
with pytest.raises(NotImplementedError):
stockpot.states[Filled].set_value(system, False)
system.remove_all_particles()
og.sim.step()
assert not stockpot.states[Filled].get_value(system)
@og_test
def test_contains():
stockpot = og.sim.scene.object_registry("name", "stockpot")
systems = [get_system(system_name) for system_name, system_class in SYSTEM_EXAMPLES.items()]
for system in systems:
print(f"Testing Contains {stockpot.name} with {system.name}")
stockpot.set_position_orientation(position=np.ones(3) * 50.0, orientation=[0, 0, 0, 1.0])
place_obj_on_floor_plane(stockpot)
for _ in range(5):
og.sim.step()
# Sample single particle
if is_physical_particle_system(system_name=system.name):
system.generate_particles(positions=[np.array([0, 0, stockpot.aabb[1][2] - 0.1])])
else:
if system.get_group_name(stockpot) not in system.groups:
system.create_attachment_group(stockpot)
system.generate_group_particles(
group=system.get_group_name(stockpot),
positions=np.array([np.array([0, 0, stockpot.aabb[1][2] - 0.1])]),
link_prim_paths=[stockpot.root_link.prim_path],
)
og.sim.step()
assert stockpot.states[Contains].get_value(system)
# Remove all particles and make sure contains returns False
stockpot.states[Contains].set_value(system, False)
og.sim.step()
assert not stockpot.states[Contains].get_value(system)
# Cannot set Contains state
with pytest.raises(NotImplementedError):
stockpot.states[Contains].set_value(system, True)
system.remove_all_particles()
@og_test
def test_covered():
bracelet = og.sim.scene.object_registry("name", "bracelet")
bowl = og.sim.scene.object_registry("name", "bowl")
microwave = og.sim.scene.object_registry("name", "microwave")
systems = [get_system(system_name) for system_name, system_class in SYSTEM_EXAMPLES.items()]
for obj in (bracelet, bowl, microwave):
for system in systems:
# bracelet is too small to sample physical particles on it
sampleable = is_visual_particle_system(system.name) or obj != bracelet
if sampleable:
print(f"Testing Covered {obj.name} with {system.name}")
obj.set_position_orientation(position=np.ones(3) * 50.0, orientation=[0, 0, 0, 1.0])
place_obj_on_floor_plane(obj)
for _ in range(5):
og.sim.step()
assert obj.states[Covered].set_value(system, True)
og.sim.step()
assert obj.states[Covered].get_value(system)
assert obj.states[Covered].set_value(system, False)
# We don't call og.sim.step() here because it's possible for the "second" layer of particles to fall down
# and make Covered to be True again. Instead, we clear the caches and check that Covered is False.
obj.states[Covered].clear_cache()
obj.states[ContactParticles].clear_cache()
assert not obj.states[Covered].get_value(system)
system.remove_all_particles()
obj.set_position_orientation(position=np.ones(3) * 75.0, orientation=[0, 0, 0, 1.0])
def test_clear_sim():
og.sim.clear()
| 44,690 | Python | 37.593264 | 168 | 0.69237 |
StanfordVL/OmniGibson/tests/benchmark/benchmark_object_count.py | """
Script to benchmark speed vs. no. of objects in the scene.
"""
import os
import time
import matplotlib.pyplot as plt
import numpy as np
from omnigibson import app, launch_simulator
from omnigibson.objects.primitive_object import PrimitiveObject
from omnigibson.scenes.scene_base import Scene
from omnigibson.utils.asset_utils import get_og_assets_version
# Params to be set as needed.
MAX_NUM_OBJS = 400 # Maximum no. of objects to add.
NUM_OBJS_PER_ITER = 20 # No. of objects to add per iteration.
NUM_STEPS_PER_ITER = 30 # No. of steps to take for each n of objects.
OBJ_SCALE = 0.05 # Object scale to be set appropriately to sim collisions.
RAND_POSITION = True # True to randomize positions.
OUTPUT_DIR = os.path.join(os.path.expanduser("~"), "Desktop")
# Internal constants.
_N_PER_ROW = int(np.sqrt(MAX_NUM_OBJS))
_MIN_VAL = -2.0
_MAX_VAL = 2.0
_STEP_SIZE = (_MAX_VAL - _MIN_VAL) / _N_PER_ROW
def _get_position(obj_idx, is_random=False):
if is_random:
pos_arange = np.arange(_MIN_VAL, _MAX_VAL, step=0.1, dtype=np.float32)
x, y, z = np.random.choice(pos_arange, size=3)
return x, y, z
x = _MIN_VAL + _STEP_SIZE * (obj_idx % _N_PER_ROW)
y = _MIN_VAL + _STEP_SIZE * (obj_idx // _N_PER_ROW)
return x, y, 0.1
def benchmark_scene(sim):
assets_version = get_og_assets_version()
print("assets_version", assets_version)
scene = Scene(floor_plane_visible=True)
sim.import_scene(scene)
sim.play()
xs = []
ys = []
yerrs = []
for i in range(MAX_NUM_OBJS // NUM_OBJS_PER_ITER):
new_objs = []
for j in range(NUM_OBJS_PER_ITER):
obj_idx = i * NUM_OBJS_PER_ITER + j
obj = PrimitiveObject(
prim_path=f"/World/obj{obj_idx}",
primitive_type="Sphere",
name=f"obj{obj_idx}",
scale=OBJ_SCALE,
visual_only=False,
)
sim.import_object(obj=obj, auto_initialize=False)
# x, y, z = _get_position(obj_idx, RAND_POSITION)
x, y = 0, 0
z = 0.5 + j * OBJ_SCALE * 2.25
obj.set_position(position=np.array([x, y, z]))
new_objs.append(obj)
# Take a step to initialize the new objects (done in _non_physics_step()).
sim.step()
step_freqs = []
for _ in range(NUM_STEPS_PER_ITER):
start = time.time()
sim.step()
end = time.time()
step_freqs.append(1 / (end - start))
xs.append(i * NUM_OBJS_PER_ITER)
max_freq, min_freq = np.max(step_freqs), np.min(step_freqs)
ys.append(np.mean((max_freq, min_freq)))
yerrs.append(max_freq - ys[-1])
plt.figure(figsize=(9, 6))
ax = plt.subplot(1, 1, 1)
plt.errorbar(xs, ys, yerr=yerrs, elinewidth=0.75)
ax.set_xlabel("No. of objects")
ax.set_ylabel("Step fps")
ax.set_title(f"Version {assets_version}")
plt.tight_layout()
plt.savefig(os.path.join(
OUTPUT_DIR, f"scene_objs_benchmark_{MAX_NUM_OBJS}_{OBJ_SCALE}.png"))
def main():
assert MAX_NUM_OBJS <= 1000
sim = launch_simulator()
benchmark_scene(sim)
app.close()
if __name__ == "__main__":
main()
| 3,243 | Python | 29.603773 | 82 | 0.590811 |
StanfordVL/OmniGibson/tests/benchmark/profiling.py | import os
import argparse
import json
import omnigibson as og
import numpy as np
import omnigibson.utils.transform_utils as T
import time
from omnigibson.macros import gm
from omnigibson.systems import get_system
from omnigibson.object_states import Covered
from omnigibson.utils.profiling_utils import ProfilingEnv
from omnigibson.utils.constants import PrimType
parser = argparse.ArgumentParser()
parser.add_argument("-r", "--robot", type=int, default=0)
parser.add_argument("-s", "--scene", default="")
parser.add_argument("-c", "--cloth", action='store_true')
parser.add_argument("-w", "--fluids", action='store_true')
parser.add_argument("-g", "--gpu_denamics", action='store_true')
parser.add_argument("-p", "--macro_particle_system", action='store_true')
PROFILING_FIELDS = ["FPS", "Omni step time", "Non-omni step time", "Memory usage", "Vram usage"]
NUM_CLOTH = 5
NUM_SLICE_OBJECT = 3
SCENE_OFFSET = {
"": [0, 0],
"Rs_int": [0, 0],
"Pomaria_0_garden": [0.3, 0],
"grocery_store_cafe": [-3.5, 3.5],
"house_single_floor": [-3, -1],
"Ihlen_0_int": [-1, 2]
}
def main():
args = parser.parse_args()
# Modify macros settings
gm.ENABLE_HQ_RENDERING = args.fluids
gm.ENABLE_OBJECT_STATES = True
gm.ENABLE_TRANSITION_RULES = True
gm.ENABLE_FLATCACHE = not args.cloth
gm.USE_GPU_DYNAMICS = args.gpu_denamics
cfg = {
"env": {
"action_frequency": 30,
"physics_frequency": 120,
}
}
if args.robot > 0:
cfg["robots"] = []
for i in range(args.robot):
cfg["robots"].append({
"type": "Fetch",
"obs_modalities": "all",
"position": [-1.3 + 0.75 * i + SCENE_OFFSET[args.scene][0], 0.5 + SCENE_OFFSET[args.scene][1], 0],
"orientation": [0., 0., 0.7071, -0.7071]
})
if args.scene:
assert args.scene in SCENE_OFFSET, f"Scene {args.scene} not found in SCENE_OFFSET"
cfg["scene"] = {
"type": "InteractiveTraversableScene",
"scene_model": args.scene,
}
else:
cfg["scene"] = {"type": "Scene"}
cfg["objects"] = [{
"type": "DatasetObject",
"name": "table",
"category": "breakfast_table",
"model": "rjgmmy",
"fixed_base": True,
"scale": [0.75] * 3,
"position": [0.5 + SCENE_OFFSET[args.scene][0], -1 + SCENE_OFFSET[args.scene][1], 0.3],
"orientation": [0., 0., 0.7071, -0.7071]
}]
if args.cloth:
cfg["objects"].extend([{
"type": "DatasetObject",
"name": f"cloth_{n}",
"category": "t_shirt",
"model": "kvidcx",
"prim_type": PrimType.CLOTH,
"abilities": {"cloth": {}},
"bounding_box": [0.3, 0.5, 0.7],
"position": [-0.4, -1, 0.7 + n * 0.4],
"orientation": [0.7071, 0., 0.7071, 0.],
} for n in range(NUM_CLOTH)])
cfg["objects"].extend([{
"type": "DatasetObject",
"name": f"apple_{n}",
"category": "apple",
"model": "agveuv",
"scale": [1.5] * 3,
"position": [0.5 + SCENE_OFFSET[args.scene][0], -1.25 + SCENE_OFFSET[args.scene][1] + n * 0.2, 0.5],
"abilities": {"diceable": {}} if args.macro_particle_system else {}
} for n in range(NUM_SLICE_OBJECT)])
cfg["objects"].extend([{
"type": "DatasetObject",
"name": f"knife_{n}",
"category": "table_knife",
"model": "jxdfyy",
"scale": [2.5] * 3
} for n in range(NUM_SLICE_OBJECT)])
load_start = time.time()
env = ProfilingEnv(configs=cfg)
table = env.scene.object_registry("name", "table")
apples = [env.scene.object_registry("name", f"apple_{n}") for n in range(NUM_SLICE_OBJECT)]
knifes = [env.scene.object_registry("name", f"knife_{n}") for n in range(NUM_SLICE_OBJECT)]
if args.cloth:
clothes = [env.scene.object_registry("name", f"cloth_{n}") for n in range(NUM_CLOTH)]
for cloth in clothes:
cloth.root_link.mass = 1.0
env.reset()
for n, knife in enumerate(knifes):
knife.set_position_orientation(
position=apples[n].get_position() + np.array([-0.15, 0.0, 0.1 * (n + 2)]),
orientation=T.euler2quat([-np.pi / 2, 0, 0]),
)
knife.keep_still()
if args.fluids:
table.states[Covered].set_value(get_system("water"), True)
output, results = [], []
# Update the simulator's viewer camera's pose so it points towards the robot
og.sim.viewer_camera.set_position([SCENE_OFFSET[args.scene][0], -3 + SCENE_OFFSET[args.scene][1], 1])
# record total load time
total_load_time = time.time() - load_start
for i in range(300):
if args.robot:
result = env.step(np.array([np.random.uniform(-0.3, 0.3, env.robots[i].action_dim) for i in range(args.robot)]).flatten())[4]
else:
result = env.step(None)[4]
results.append(result)
field = f"{args.scene}" if args.scene else "Empty scene"
if args.robot:
field += f", with {args.robot} Fetch"
if args.cloth:
field += ", cloth"
if args.fluids:
field += ", fluids"
if args.macro_particle_system:
field += ", macro particles"
output.append({
"name": field,
"unit": "time (ms)",
"value": total_load_time,
"extra": ["Loading time", "Loading time"]
})
results = np.array(results)
for i, title in enumerate(PROFILING_FIELDS):
unit = "time (ms)" if 'time' in title else "GB"
value = np.mean(results[:, i])
if title == "FPS":
value = 1000 / value
unit = "fps"
output.append({"name": field, "unit": unit, "value": value, "extra": [title, title]})
ret = []
if os.path.exists("output.json"):
with open("output.json", "r") as f:
ret = json.load(f)
ret.extend(output)
with open("output.json", "w") as f:
json.dump(ret, f, indent=4)
og.shutdown()
if __name__ == "__main__":
main()
| 6,127 | Python | 32.670329 | 137 | 0.555247 |
StanfordVL/OmniGibson/tests/benchmark/benchmark_interactive_scene.py | #!/usr/bin/env python
import os
import time
import matplotlib.pyplot as plt
import numpy as np
import omnigibson as og
from omnigibson.objects import DatasetObject
from omnigibson.macros import gm
from omnigibson.robots.turtlebot import Turtlebot
from omnigibson.scenes.interactive_traversable_scene import InteractiveTraversableScene
from omnigibson.simulator import launch_simulator
from omnigibson.utils.asset_utils import get_og_assets_version
from omnigibson.utils.constants import PrimType
from omnigibson.systems import get_system
# Params to be set as needed.
SCENES = ["Rs_int"] # house_single_floor
OUTPUT_DIR = os.path.join(os.path.expanduser("~"), "Desktop")
NUM_STEPS = 2000
gm.HEADLESS = False
gm.GUI_VIEWPORT_ONLY = True
gm.RENDER_VIEWER_CAMERA = False
gm.ENABLE_FLATCACHE = True
gm.USE_GPU_DYNAMICS = False
gm.ENABLE_OBJECT_STATES = False
gm.ENABLE_TRANSITION_RULES = False
gm.DEFAULT_VIEWER_WIDTH = 128
gm.DEFAULT_VIEWER_HEIGHT = 128
# Launch the simulator
launch_simulator(physics_dt=1/60., rendering_dt=1/60.)
def benchmark_scene(scene_name, non_rigid_simulation=False, import_robot=True):
assets_version = get_og_assets_version()
print("assets_version", assets_version)
scene = InteractiveTraversableScene(scene_name)
start = time.time()
og.sim.import_scene(scene)
if gm.RENDER_VIEWER_CAMERA:
og.sim.viewer_camera.set_position_orientation([0, 0, 0.2], [0.5, -0.5, -0.5, 0.5])
print(time.time() - start)
if import_robot:
turtlebot = Turtlebot(prim_path="/World/robot", name="agent", obs_modalities=['rgb'])
og.sim.import_object(turtlebot)
og.sim.step()
if non_rigid_simulation:
cloth = DatasetObject(
name="cloth",
prim_path="/World/cloth",
category="t_shirt",
model="kvidcx",
prim_type=PrimType.CLOTH,
abilities={"cloth": {}},
bounding_box=[0.3, 0.5, 0.7],
)
og.sim.import_object(cloth)
og.sim.step()
water_system = get_system("water")
for i in range(100):
water_system.generate_particles(
positions=[np.array([0.5, 0, 0.5]) + np.random.randn(3) * 0.1]
)
og.sim.step()
og.sim.play()
if non_rigid_simulation:
cloth.set_position([1, 0, 1])
og.sim.step()
fps = []
physics_fps = []
render_fps = []
print(len(og.sim.scene.objects))
for i in range(NUM_STEPS):
start = time.time()
if import_robot:
# Apply random actions.
turtlebot.apply_action(np.zeros(2))
og.sim.step(render=False)
physics_end = time.time()
og.sim.render()
end = time.time()
if i % 100 == 0:
print("Elapsed time: ", end - start)
print("Render Frequency: ", 1 / (end - physics_end))
print("Physics Frequency: ", 1 / (physics_end - start))
print("Step Frequency: ", 1 / (end - start))
fps.append(1 / (end - start))
physics_fps.append(1 / (physics_end - start))
render_fps.append(1 / (end - physics_end))
plt.figure(figsize=(7, 25))
ax = plt.subplot(6, 1, 1)
plt.hist(render_fps)
ax.set_xlabel("Render fps")
ax.set_title(
"Scene {} version {}\nnon_physics {} num_obj {}\n import_robot {}".format(
scene_name, assets_version, non_rigid_simulation, scene.n_objects, import_robot
)
)
ax = plt.subplot(6, 1, 2)
plt.hist(physics_fps)
ax.set_xlabel("Physics fps")
ax = plt.subplot(6, 1, 3)
plt.hist(fps)
ax.set_xlabel("Step fps")
ax = plt.subplot(6, 1, 4)
plt.plot(render_fps)
ax.set_xlabel("Render fps with time, converge to {}".format(np.mean(render_fps[-100:])))
ax.set_ylabel("fps")
ax = plt.subplot(6, 1, 5)
plt.plot(physics_fps)
ax.set_xlabel("Physics fps with time, converge to {}".format(np.mean(physics_fps[-100:])))
ax.set_ylabel("fps")
ax = plt.subplot(6, 1, 6)
plt.plot(fps)
ax.set_xlabel("Overall fps with time, converge to {}".format(np.mean(fps[-100:])))
ax.set_ylabel("fps")
plt.tight_layout()
plt.savefig(os.path.join(
OUTPUT_DIR,
"scene_benchmark_{}_np_{}_r_{}.pdf".format(scene_name, non_rigid_simulation, import_robot)))
def main():
for scene in SCENES:
benchmark_scene(scene, non_rigid_simulation=False, import_robot=True)
og.shutdown()
if __name__ == "__main__":
main()
| 4,494 | Python | 30.215278 | 100 | 0.62016 |
StanfordVL/OmniGibson/docs/gen_ref_pages.py | """Generate the code reference pages."""
from pathlib import Path
import mkdocs_gen_files
nav = mkdocs_gen_files.Nav()
src = "omnigibson"
for path in sorted(Path(src).rglob("*.py")): #
module_path = path.relative_to(src).with_suffix("") #
doc_path = path.relative_to(src).with_suffix(".md") #
full_doc_path = Path("reference", doc_path) #
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
# print(f"parts: {parts}")
if parts == ():
continue
# parts = (src,)
# input(f"parts: {parts}")
nav[parts] = doc_path.as_posix()
with mkdocs_gen_files.open(full_doc_path, "w") as fd:
ident = ".".join(parts)
fd.write(f"# {parts[-1]}\n\n::: {ident}")
mkdocs_gen_files.set_edit_path(full_doc_path, Path("../../") / path)
with mkdocs_gen_files.open("reference/SUMMARY.md", "w") as nav_file:
nav_file.writelines(nav.build_literate_nav())
# parts = list(module_path.parts)
# if parts[-1] == "__init__": #
# parts = parts[:-1]
# elif parts[-1] == "__main__":
# continue
# with mkdocs_gen_files.open(full_doc_path, "w") as fd: #
# identifier = ".".join(parts) #
# print("::: " + identifier, file=fd) #
# mkdocs_gen_files.set_edit_path(full_doc_path, Path("../") / path) #
| 1,520 | Python | 27.698113 | 75 | 0.554605 |
Toni-SM/skrl/skrl/__init__.py | from typing import Union
import logging
import sys
import numpy as np
__all__ = ["__version__", "logger", "config"]
# read library version from metadata
try:
import importlib.metadata
__version__ = importlib.metadata.version("skrl")
except ImportError:
__version__ = "unknown"
# logger with format
class _Formatter(logging.Formatter):
_format = "[%(name)s:%(levelname)s] %(message)s"
_formats = {logging.DEBUG: f"\x1b[38;20m{_format}\x1b[0m",
logging.INFO: f"\x1b[38;20m{_format}\x1b[0m",
logging.WARNING: f"\x1b[33;20m{_format}\x1b[0m",
logging.ERROR: f"\x1b[31;20m{_format}\x1b[0m",
logging.CRITICAL: f"\x1b[31;1m{_format}\x1b[0m"}
def format(self, record):
return logging.Formatter(self._formats.get(record.levelno)).format(record)
_handler = logging.StreamHandler()
_handler.setLevel(logging.DEBUG)
_handler.setFormatter(_Formatter())
logger = logging.getLogger("skrl")
logger.setLevel(logging.DEBUG)
logger.addHandler(_handler)
# machine learning framework configuration
class _Config(object):
def __init__(self) -> None:
"""Machine learning framework specific configuration
"""
class JAX(object):
def __init__(self) -> None:
"""JAX configuration
"""
self._backend = "numpy"
self._key = np.array([0, 0], dtype=np.uint32)
@property
def backend(self) -> str:
"""Backend used by the different components to operate and generate arrays
This configuration excludes models and optimizers.
Supported backend are: ``"numpy"`` and ``"jax"``
"""
return self._backend
@backend.setter
def backend(self, value: str) -> None:
if value not in ["numpy", "jax"]:
raise ValueError("Invalid jax backend. Supported values are: numpy, jax")
self._backend = value
@property
def key(self) -> "jax.Array":
"""Pseudo-random number generator (PRNG) key
"""
if isinstance(self._key, np.ndarray):
try:
import jax
self._key = jax.random.PRNGKey(self._key[1])
except ImportError:
pass
return self._key
@key.setter
def key(self, value: Union[int, "jax.Array"]) -> None:
if type(value) is int:
# don't import JAX if it has not been imported before
if "jax" in sys.modules:
import jax
value = jax.random.PRNGKey(value)
else:
value = np.array([0, value], dtype=np.uint32)
self._key = value
self.jax = JAX()
config = _Config()
| 2,993 | Python | 30.851064 | 93 | 0.529569 |
Toni-SM/skrl/skrl/envs/jax.py | # TODO: Delete this file in future releases
from skrl import logger # isort: skip
logger.warning("Using `from skrl.envs.jax import ...` is deprecated and will be removed in future versions.")
logger.warning(" - Import loaders using `from skrl.envs.loaders.jax import ...`")
logger.warning(" - Import wrappers using `from skrl.envs.wrappers.jax import ...`")
from skrl.envs.loaders.jax import (
load_bidexhands_env,
load_isaac_orbit_env,
load_isaacgym_env_preview2,
load_isaacgym_env_preview3,
load_isaacgym_env_preview4,
load_omniverse_isaacgym_env
)
from skrl.envs.wrappers.jax import MultiAgentEnvWrapper, Wrapper, wrap_env
| 654 | Python | 35.388887 | 109 | 0.740061 |
Toni-SM/skrl/skrl/envs/loaders/torch/bidexhands_envs.py | from typing import Optional, Sequence
import os
import sys
from contextlib import contextmanager
from skrl import logger
__all__ = ["load_bidexhands_env"]
@contextmanager
def cwd(new_path: str) -> None:
"""Context manager to change the current working directory
This function restores the current working directory after the context manager exits
:param new_path: The new path to change to
:type new_path: str
"""
current_path = os.getcwd()
os.chdir(new_path)
try:
yield
finally:
os.chdir(current_path)
def _print_cfg(d, indent=0) -> None:
"""Print the environment configuration
:param d: The dictionary to print
:type d: dict
:param indent: The indentation level (default: ``0``)
:type indent: int, optional
"""
for key, value in d.items():
if isinstance(value, dict):
_print_cfg(value, indent + 1)
else:
print(" | " * indent + f" |-- {key}: {value}")
def load_bidexhands_env(task_name: str = "",
num_envs: Optional[int] = None,
headless: Optional[bool] = None,
cli_args: Sequence[str] = [],
bidexhands_path: str = "",
show_cfg: bool = True):
"""Load a Bi-DexHands environment
:param task_name: The name of the task (default: ``""``).
If not specified, the task name is taken from the command line argument (``--task TASK_NAME``).
Command line argument has priority over function parameter if both are specified
:type task_name: str, optional
:param num_envs: Number of parallel environments to create (default: ``None``).
If not specified, the default number of environments defined in the task configuration is used.
Command line argument has priority over function parameter if both are specified
:type num_envs: int, optional
:param headless: Whether to use headless mode (no rendering) (default: ``None``).
If not specified, the default task configuration is used.
Command line argument has priority over function parameter if both are specified
:type headless: bool, optional
:param cli_args: Isaac Gym environment configuration and command line arguments (default: ``[]``)
:type cli_args: list of str, optional
:param bidexhands_path: The path to the ``bidexhands`` directory (default: ``""``).
If empty, the path will obtained from bidexhands package metadata
:type bidexhands_path: str, optional
:param show_cfg: Whether to print the configuration (default: ``True``)
:type show_cfg: bool, optional
:raises ValueError: The task name has not been defined, neither by the function parameter nor by the command line arguments
:raises RuntimeError: The bidexhands package is not installed or the path is wrong
:return: Bi-DexHands environment (preview 4)
:rtype: isaacgymenvs.tasks.base.vec_task.VecTask
"""
import isaacgym # isort:skip
import bidexhands
# check task from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("--task"):
defined = True
break
# get task name from command line arguments
if defined:
arg_index = sys.argv.index("--task") + 1
if arg_index >= len(sys.argv):
raise ValueError("No task name defined. Set the task_name parameter or use --task <task_name> as command line argument")
if task_name and task_name != sys.argv[arg_index]:
logger.warning(f"Overriding task ({task_name}) with command line argument ({sys.argv[arg_index]})")
# get task name from function arguments
else:
if task_name:
sys.argv.append("--task")
sys.argv.append(task_name)
else:
raise ValueError("No task name defined. Set the task_name parameter or use --task <task_name> as command line argument")
# check num_envs from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("--num_envs"):
defined = True
break
# get num_envs from command line arguments
if defined:
if num_envs is not None:
logger.warning("Overriding num_envs with command line argument --num_envs")
# get num_envs from function arguments
elif num_envs is not None and num_envs > 0:
sys.argv.append("--num_envs")
sys.argv.append(str(num_envs))
# check headless from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("--headless"):
defined = True
break
# get headless from command line arguments
if defined:
if headless is not None:
logger.warning("Overriding headless with command line argument --headless")
# get headless from function arguments
elif headless is not None:
sys.argv.append("--headless")
# others command line arguments
sys.argv += cli_args
# get bidexhands path from bidexhands package metadata
if not bidexhands_path:
if not hasattr(bidexhands, "__path__"):
raise RuntimeError("bidexhands package is not installed")
path = list(bidexhands.__path__)[0]
else:
path = bidexhands_path
sys.path.append(path)
status = True
try:
from utils.config import get_args, load_cfg, parse_sim_params # type: ignore
from utils.parse_task import parse_task # type: ignore
from utils.process_marl import get_AgentIndex # type: ignore
except Exception as e:
status = False
logger.error(f"Failed to import required packages: {e}")
if not status:
raise RuntimeError(f"The path ({path}) is not valid")
args = get_args()
# print config
if show_cfg:
print(f"\nBi-DexHands environment ({args.task})")
_print_cfg(vars(args))
# update task arguments
args.task_type = "MultiAgent" # TODO: get from parameters
args.cfg_train = os.path.join(path, args.cfg_train)
args.cfg_env = os.path.join(path, args.cfg_env)
# load environment
with cwd(path):
cfg, cfg_train, _ = load_cfg(args)
agent_index = get_AgentIndex(cfg)
sim_params = parse_sim_params(args, cfg, cfg_train)
task, env = parse_task(args, cfg, cfg_train, sim_params, agent_index)
return env
| 6,552 | Python | 36.445714 | 132 | 0.628205 |
Toni-SM/skrl/skrl/envs/loaders/torch/__init__.py | from skrl.envs.loaders.torch.bidexhands_envs import load_bidexhands_env
from skrl.envs.loaders.torch.isaac_orbit_envs import load_isaac_orbit_env
from skrl.envs.loaders.torch.isaacgym_envs import (
load_isaacgym_env_preview2,
load_isaacgym_env_preview3,
load_isaacgym_env_preview4
)
from skrl.envs.loaders.torch.omniverse_isaacgym_envs import load_omniverse_isaacgym_env
| 383 | Python | 41.666662 | 87 | 0.804178 |
Toni-SM/skrl/skrl/envs/loaders/torch/isaacgym_envs.py | from typing import Optional, Sequence
import os
import sys
from contextlib import contextmanager
from skrl import logger
__all__ = ["load_isaacgym_env_preview2",
"load_isaacgym_env_preview3",
"load_isaacgym_env_preview4"]
@contextmanager
def cwd(new_path: str) -> None:
"""Context manager to change the current working directory
This function restores the current working directory after the context manager exits
:param new_path: The new path to change to
:type new_path: str
"""
current_path = os.getcwd()
os.chdir(new_path)
try:
yield
finally:
os.chdir(current_path)
def _omegaconf_to_dict(config) -> dict:
"""Convert OmegaConf config to dict
:param config: The OmegaConf config
:type config: OmegaConf.Config
:return: The config as dict
:rtype: dict
"""
# return config.to_container(dict)
from omegaconf import DictConfig
d = {}
for k, v in config.items():
d[k] = _omegaconf_to_dict(v) if isinstance(v, DictConfig) else v
return d
def _print_cfg(d, indent=0) -> None:
"""Print the environment configuration
:param d: The dictionary to print
:type d: dict
:param indent: The indentation level (default: ``0``)
:type indent: int, optional
"""
for key, value in d.items():
if isinstance(value, dict):
_print_cfg(value, indent + 1)
else:
print(" | " * indent + f" |-- {key}: {value}")
def load_isaacgym_env_preview2(task_name: str = "",
num_envs: Optional[int] = None,
headless: Optional[bool] = None,
cli_args: Sequence[str] = [],
isaacgymenvs_path: str = "",
show_cfg: bool = True):
"""Load an Isaac Gym environment (preview 2)
:param task_name: The name of the task (default: ``""``).
If not specified, the task name is taken from the command line argument (``--task TASK_NAME``).
Command line argument has priority over function parameter if both are specified
:type task_name: str, optional
:param num_envs: Number of parallel environments to create (default: ``None``).
If not specified, the default number of environments defined in the task configuration is used.
Command line argument has priority over function parameter if both are specified
:type num_envs: int, optional
:param headless: Whether to use headless mode (no rendering) (default: ``None``).
If not specified, the default task configuration is used.
Command line argument has priority over function parameter if both are specified
:type headless: bool, optional
:param cli_args: Isaac Gym environment configuration and command line arguments (default: ``[]``)
:type cli_args: list of str, optional
:param isaacgymenvs_path: The path to the ``rlgpu`` directory (default: ``""``).
If empty, the path will obtained from isaacgym package metadata
:type isaacgymenvs_path: str, optional
:param show_cfg: Whether to print the configuration (default: ``True``)
:type show_cfg: bool, optional
:raises ValueError: The task name has not been defined,
neither by the function parameter nor by the command line arguments
:raises RuntimeError: The isaacgym package is not installed or the path is wrong
:return: Isaac Gym environment (preview 2)
:rtype: tasks.base.vec_task.VecTask
"""
import isaacgym
# check task from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("--task"):
defined = True
break
# get task name from command line arguments
if defined:
arg_index = sys.argv.index("--task") + 1
if arg_index >= len(sys.argv):
raise ValueError("No task name defined. Set the task_name parameter or use --task <task_name> as command line argument")
if task_name and task_name != sys.argv[arg_index]:
logger.warning(f"Overriding task ({task_name}) with command line argument ({sys.argv[arg_index]})")
# get task name from function arguments
else:
if task_name:
sys.argv.append("--task")
sys.argv.append(task_name)
else:
raise ValueError("No task name defined. Set the task_name parameter or use --task <task_name> as command line argument")
# check num_envs from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("--num_envs"):
defined = True
break
# get num_envs from command line arguments
if defined:
if num_envs is not None:
logger.warning("Overriding num_envs with command line argument --num_envs")
# get num_envs from function arguments
elif num_envs is not None and num_envs > 0:
sys.argv.append("--num_envs")
sys.argv.append(str(num_envs))
# check headless from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("--headless"):
defined = True
break
# get headless from command line arguments
if defined:
if headless is not None:
logger.warning("Overriding headless with command line argument --headless")
# get headless from function arguments
elif headless is not None:
sys.argv.append("--headless")
# others command line arguments
sys.argv += cli_args
# get isaacgym envs path from isaacgym package metadata
if not isaacgymenvs_path:
if not hasattr(isaacgym, "__path__"):
raise RuntimeError("isaacgym package is not installed or could not be accessed by the current Python environment")
path = isaacgym.__path__
path = os.path.join(path[0], "..", "rlgpu")
else:
path = isaacgymenvs_path
# import required packages
sys.path.append(path)
status = True
try:
from utils.config import get_args, load_cfg, parse_sim_params # type: ignore
from utils.parse_task import parse_task # type: ignore
except Exception as e:
status = False
logger.error(f"Failed to import required packages: {e}")
if not status:
raise RuntimeError(f"Path ({path}) is not valid or the isaacgym package is not installed in editable mode (pip install -e .)")
args = get_args()
# print config
if show_cfg:
print(f"\nIsaac Gym environment ({args.task})")
_print_cfg(vars(args))
# update task arguments
args.cfg_train = os.path.join(path, args.cfg_train)
args.cfg_env = os.path.join(path, args.cfg_env)
# load environment
with cwd(path):
cfg, cfg_train, _ = load_cfg(args)
sim_params = parse_sim_params(args, cfg, cfg_train)
task, env = parse_task(args, cfg, cfg_train, sim_params)
return env
def load_isaacgym_env_preview3(task_name: str = "",
num_envs: Optional[int] = None,
headless: Optional[bool] = None,
cli_args: Sequence[str] = [],
isaacgymenvs_path: str = "",
show_cfg: bool = True):
"""Load an Isaac Gym environment (preview 3)
Isaac Gym benchmark environments: https://github.com/NVIDIA-Omniverse/IsaacGymEnvs
:param task_name: The name of the task (default: ``""``).
If not specified, the task name is taken from the command line argument (``task=TASK_NAME``).
Command line argument has priority over function parameter if both are specified
:type task_name: str, optional
:param num_envs: Number of parallel environments to create (default: ``None``).
If not specified, the default number of environments defined in the task configuration is used.
Command line argument has priority over function parameter if both are specified
:type num_envs: int, optional
:param headless: Whether to use headless mode (no rendering) (default: ``None``).
If not specified, the default task configuration is used.
Command line argument has priority over function parameter if both are specified
:type headless: bool, optional
:param cli_args: IsaacGymEnvs configuration and command line arguments (default: ``[]``)
:type cli_args: list of str, optional
:param isaacgymenvs_path: The path to the ``isaacgymenvs`` directory (default: ``""``).
If empty, the path will obtained from isaacgymenvs package metadata
:type isaacgymenvs_path: str, optional
:param show_cfg: Whether to print the configuration (default: ``True``)
:type show_cfg: bool, optional
:raises ValueError: The task name has not been defined, neither by the function parameter nor by the command line arguments
:raises RuntimeError: The isaacgymenvs package is not installed or the path is wrong
:return: Isaac Gym environment (preview 3)
:rtype: isaacgymenvs.tasks.base.vec_task.VecTask
"""
import isaacgym
import isaacgymenvs
from hydra._internal.hydra import Hydra
from hydra._internal.utils import create_automatic_config_search_path, get_args_parser
from hydra.types import RunMode
from omegaconf import OmegaConf
# check task from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("task="):
defined = True
break
# get task name from command line arguments
if defined:
if task_name and task_name != arg.split("task=")[1].split(" ")[0]:
logger.warning("Overriding task name ({}) with command line argument ({})" \
.format(task_name, arg.split("task=")[1].split(" ")[0]))
# get task name from function arguments
else:
if task_name:
sys.argv.append(f"task={task_name}")
else:
raise ValueError("No task name defined. Set task_name parameter or use task=<task_name> as command line argument")
# check num_envs from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("num_envs="):
defined = True
break
# get num_envs from command line arguments
if defined:
if num_envs is not None and num_envs != int(arg.split("num_envs=")[1].split(" ")[0]):
logger.warning("Overriding num_envs ({}) with command line argument (num_envs={})" \
.format(num_envs, arg.split("num_envs=")[1].split(" ")[0]))
# get num_envs from function arguments
elif num_envs is not None and num_envs > 0:
sys.argv.append(f"num_envs={num_envs}")
# check headless from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("headless="):
defined = True
break
# get headless from command line arguments
if defined:
if headless is not None and str(headless).lower() != arg.split("headless=")[1].split(" ")[0].lower():
logger.warning("Overriding headless ({}) with command line argument (headless={})" \
.format(headless, arg.split("headless=")[1].split(" ")[0]))
# get headless from function arguments
elif headless is not None:
sys.argv.append(f"headless={headless}")
# others command line arguments
sys.argv += cli_args
# get isaacgymenvs path from isaacgymenvs package metadata
if isaacgymenvs_path == "":
if not hasattr(isaacgymenvs, "__path__"):
raise RuntimeError("isaacgymenvs package is not installed")
isaacgymenvs_path = list(isaacgymenvs.__path__)[0]
config_path = os.path.join(isaacgymenvs_path, "cfg")
# set omegaconf resolvers
try:
OmegaConf.register_new_resolver('eq', lambda x, y: x.lower() == y.lower())
except Exception as e:
pass
try:
OmegaConf.register_new_resolver('contains', lambda x, y: x.lower() in y.lower())
except Exception as e:
pass
try:
OmegaConf.register_new_resolver('if', lambda condition, a, b: a if condition else b)
except Exception as e:
pass
try:
OmegaConf.register_new_resolver('resolve_default', lambda default, arg: default if arg == '' else arg)
except Exception as e:
pass
# get hydra config without use @hydra.main
config_file = "config"
args = get_args_parser().parse_args()
search_path = create_automatic_config_search_path(config_file, None, config_path)
hydra_object = Hydra.create_main_hydra2(task_name='load_isaacgymenv', config_search_path=search_path)
config = hydra_object.compose_config(config_file, args.overrides, run_mode=RunMode.RUN)
cfg = _omegaconf_to_dict(config.task)
# print config
if show_cfg:
print(f"\nIsaac Gym environment ({config.task.name})")
_print_cfg(cfg)
# load environment
sys.path.append(isaacgymenvs_path)
from tasks import isaacgym_task_map # type: ignore
try:
env = isaacgym_task_map[config.task.name](cfg=cfg,
sim_device=config.sim_device,
graphics_device_id=config.graphics_device_id,
headless=config.headless)
except TypeError as e:
env = isaacgym_task_map[config.task.name](cfg=cfg,
rl_device=config.rl_device,
sim_device=config.sim_device,
graphics_device_id=config.graphics_device_id,
headless=config.headless,
virtual_screen_capture=config.capture_video, # TODO: check
force_render=config.force_render)
return env
def load_isaacgym_env_preview4(task_name: str = "",
num_envs: Optional[int] = None,
headless: Optional[bool] = None,
cli_args: Sequence[str] = [],
isaacgymenvs_path: str = "",
show_cfg: bool = True):
"""Load an Isaac Gym environment (preview 4)
Isaac Gym benchmark environments: https://github.com/NVIDIA-Omniverse/IsaacGymEnvs
:param task_name: The name of the task (default: ``""``).
If not specified, the task name is taken from the command line argument (``task=TASK_NAME``).
Command line argument has priority over function parameter if both are specified
:type task_name: str, optional
:param num_envs: Number of parallel environments to create (default: ``None``).
If not specified, the default number of environments defined in the task configuration is used.
Command line argument has priority over function parameter if both are specified
:type num_envs: int, optional
:param headless: Whether to use headless mode (no rendering) (default: ``None``).
If not specified, the default task configuration is used.
Command line argument has priority over function parameter if both are specified
:type headless: bool, optional
:param cli_args: IsaacGymEnvs configuration and command line arguments (default: ``[]``)
:type cli_args: list of str, optional
:param isaacgymenvs_path: The path to the ``isaacgymenvs`` directory (default: ``""``).
If empty, the path will obtained from isaacgymenvs package metadata
:type isaacgymenvs_path: str, optional
:param show_cfg: Whether to print the configuration (default: ``True``)
:type show_cfg: bool, optional
:raises ValueError: The task name has not been defined, neither by the function parameter nor by the command line arguments
:raises RuntimeError: The isaacgymenvs package is not installed or the path is wrong
:return: Isaac Gym environment (preview 4)
:rtype: isaacgymenvs.tasks.base.vec_task.VecTask
"""
return load_isaacgym_env_preview3(task_name, num_envs, headless, cli_args, isaacgymenvs_path, show_cfg)
| 16,639 | Python | 42.446475 | 134 | 0.615241 |
Toni-SM/skrl/skrl/envs/loaders/torch/isaac_orbit_envs.py | from typing import Optional, Sequence
import os
import sys
from skrl import logger
__all__ = ["load_isaac_orbit_env"]
def _print_cfg(d, indent=0) -> None:
"""Print the environment configuration
:param d: The dictionary to print
:type d: dict
:param indent: The indentation level (default: ``0``)
:type indent: int, optional
"""
for key, value in d.items():
if isinstance(value, dict):
_print_cfg(value, indent + 1)
else:
print(" | " * indent + f" |-- {key}: {value}")
def load_isaac_orbit_env(task_name: str = "",
num_envs: Optional[int] = None,
headless: Optional[bool] = None,
cli_args: Sequence[str] = [],
show_cfg: bool = True):
"""Load an Isaac Orbit environment
Isaac Orbit: https://isaac-orbit.github.io/orbit/index.html
This function includes the definition and parsing of command line arguments used by Isaac Orbit:
- ``--headless``: Force display off at all times
- ``--cpu``: Use CPU pipeline
- ``--num_envs``: Number of environments to simulate
- ``--task``: Name of the task
- ``--num_envs``: Seed used for the environment
:param task_name: The name of the task (default: ``""``).
If not specified, the task name is taken from the command line argument (``--task TASK_NAME``).
Command line argument has priority over function parameter if both are specified
:type task_name: str, optional
:param num_envs: Number of parallel environments to create (default: ``None``).
If not specified, the default number of environments defined in the task configuration is used.
Command line argument has priority over function parameter if both are specified
:type num_envs: int, optional
:param headless: Whether to use headless mode (no rendering) (default: ``None``).
If not specified, the default task configuration is used.
Command line argument has priority over function parameter if both are specified
:type headless: bool, optional
:param cli_args: Isaac Orbit configuration and command line arguments (default: ``[]``)
:type cli_args: list of str, optional
:param show_cfg: Whether to print the configuration (default: ``True``)
:type show_cfg: bool, optional
:raises ValueError: The task name has not been defined, neither by the function parameter nor by the command line arguments
:return: Isaac Orbit environment
:rtype: gym.Env
"""
import argparse
import atexit
import gym
# check task from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("--task"):
defined = True
break
# get task name from command line arguments
if defined:
arg_index = sys.argv.index("--task") + 1
if arg_index >= len(sys.argv):
raise ValueError("No task name defined. Set the task_name parameter or use --task <task_name> as command line argument")
if task_name and task_name != sys.argv[arg_index]:
logger.warning(f"Overriding task ({task_name}) with command line argument ({sys.argv[arg_index]})")
# get task name from function arguments
else:
if task_name:
sys.argv.append("--task")
sys.argv.append(task_name)
else:
raise ValueError("No task name defined. Set the task_name parameter or use --task <task_name> as command line argument")
# check num_envs from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("--num_envs"):
defined = True
break
# get num_envs from command line arguments
if defined:
if num_envs is not None:
logger.warning("Overriding num_envs with command line argument (--num_envs)")
# get num_envs from function arguments
elif num_envs is not None and num_envs > 0:
sys.argv.append("--num_envs")
sys.argv.append(str(num_envs))
# check headless from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("--headless"):
defined = True
break
# get headless from command line arguments
if defined:
if headless is not None:
logger.warning("Overriding headless with command line argument (--headless)")
# get headless from function arguments
elif headless is not None:
sys.argv.append("--headless")
# others command line arguments
sys.argv += cli_args
# parse arguments
parser = argparse.ArgumentParser("Welcome to Orbit: Omniverse Robotics Environments!")
parser.add_argument("--headless", action="store_true", default=False, help="Force display off at all times.")
parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.")
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
args = parser.parse_args()
# load the most efficient kit configuration in headless mode
if args.headless:
app_experience = f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.gym.headless.kit"
else:
app_experience = f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit"
# launch the simulator
from omni.isaac.kit import SimulationApp # type: ignore
config = {"headless": args.headless}
simulation_app = SimulationApp(config, experience=app_experience)
@atexit.register
def close_the_simulator():
simulation_app.close()
# import orbit extensions
import omni.isaac.contrib_envs # type: ignore
import omni.isaac.orbit_envs # type: ignore
from omni.isaac.orbit_envs.utils import parse_env_cfg # type: ignore
cfg = parse_env_cfg(args.task, use_gpu=not args.cpu, num_envs=args.num_envs)
# print config
if show_cfg:
print(f"\nIsaac Orbit environment ({args.task})")
try:
_print_cfg(cfg)
except AttributeError as e:
pass
# load environment
env = gym.make(args.task, cfg=cfg, headless=args.headless)
return env
| 6,481 | Python | 37.814371 | 132 | 0.636013 |
Toni-SM/skrl/skrl/envs/loaders/torch/omniverse_isaacgym_envs.py | from typing import Optional, Sequence, Union
import os
import queue
import sys
from skrl import logger
__all__ = ["load_omniverse_isaacgym_env"]
def _omegaconf_to_dict(config) -> dict:
"""Convert OmegaConf config to dict
:param config: The OmegaConf config
:type config: OmegaConf.Config
:return: The config as dict
:rtype: dict
"""
# return config.to_container(dict)
from omegaconf import DictConfig
d = {}
for k, v in config.items():
d[k] = _omegaconf_to_dict(v) if isinstance(v, DictConfig) else v
return d
def _print_cfg(d, indent=0) -> None:
"""Print the environment configuration
:param d: The dictionary to print
:type d: dict
:param indent: The indentation level (default: ``0``)
:type indent: int, optional
"""
for key, value in d.items():
if isinstance(value, dict):
_print_cfg(value, indent + 1)
else:
print(" | " * indent + f" |-- {key}: {value}")
def load_omniverse_isaacgym_env(task_name: str = "",
num_envs: Optional[int] = None,
headless: Optional[bool] = None,
cli_args: Sequence[str] = [],
omniisaacgymenvs_path: str = "",
show_cfg: bool = True,
multi_threaded: bool = False,
timeout: int = 30) -> Union["VecEnvBase", "VecEnvMT"]:
"""Load an Omniverse Isaac Gym environment (OIGE)
Omniverse Isaac Gym benchmark environments: https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs
:param task_name: The name of the task (default: ``""``).
If not specified, the task name is taken from the command line argument (``task=TASK_NAME``).
Command line argument has priority over function parameter if both are specified
:type task_name: str, optional
:param num_envs: Number of parallel environments to create (default: ``None``).
If not specified, the default number of environments defined in the task configuration is used.
Command line argument has priority over function parameter if both are specified
:type num_envs: int, optional
:param headless: Whether to use headless mode (no rendering) (default: ``None``).
If not specified, the default task configuration is used.
Command line argument has priority over function parameter if both are specified
:type headless: bool, optional
:param cli_args: OIGE configuration and command line arguments (default: ``[]``)
:type cli_args: list of str, optional
:param omniisaacgymenvs_path: The path to the ``omniisaacgymenvs`` directory (default: ``""``).
If empty, the path will obtained from omniisaacgymenvs package metadata
:type omniisaacgymenvs_path: str, optional
:param show_cfg: Whether to print the configuration (default: ``True``)
:type show_cfg: bool, optional
:param multi_threaded: Whether to use multi-threaded environment (default: ``False``)
:type multi_threaded: bool, optional
:param timeout: Seconds to wait for data when queue is empty in multi-threaded environment (default: ``30``)
:type timeout: int, optional
:raises ValueError: The task name has not been defined, neither by the function parameter nor by the command line arguments
:raises RuntimeError: The omniisaacgymenvs package is not installed or the path is wrong
:return: Omniverse Isaac Gym environment
:rtype: omni.isaac.gym.vec_env.vec_env_base.VecEnvBase or omni.isaac.gym.vec_env.vec_env_mt.VecEnvMT
"""
import omegaconf
import omniisaacgymenvs # type: ignore
from hydra._internal.hydra import Hydra
from hydra._internal.utils import create_automatic_config_search_path, get_args_parser
from hydra.types import RunMode
from omegaconf import OmegaConf
from omni.isaac.gym.vec_env import TaskStopException, VecEnvBase, VecEnvMT # type: ignore
from omni.isaac.gym.vec_env.vec_env_mt import TrainerMT # type: ignore
import torch
# check task from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("task="):
defined = True
break
# get task name from command line arguments
if defined:
if task_name and task_name != arg.split("task=")[1].split(" ")[0]:
logger.warning("Overriding task name ({}) with command line argument (task={})" \
.format(task_name, arg.split("task=")[1].split(" ")[0]))
# get task name from function arguments
else:
if task_name:
sys.argv.append(f"task={task_name}")
else:
raise ValueError("No task name defined. Set task_name parameter or use task=<task_name> as command line argument")
# check num_envs from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("num_envs="):
defined = True
break
# get num_envs from command line arguments
if defined:
if num_envs is not None and num_envs != int(arg.split("num_envs=")[1].split(" ")[0]):
logger.warning("Overriding num_envs ({}) with command line argument (num_envs={})" \
.format(num_envs, arg.split("num_envs=")[1].split(" ")[0]))
# get num_envs from function arguments
elif num_envs is not None and num_envs > 0:
sys.argv.append(f"num_envs={num_envs}")
# check headless from command line arguments
defined = False
for arg in sys.argv:
if arg.startswith("headless="):
defined = True
break
# get headless from command line arguments
if defined:
if headless is not None and str(headless).lower() != arg.split("headless=")[1].split(" ")[0].lower():
logger.warning("Overriding headless ({}) with command line argument (headless={})" \
.format(headless, arg.split("headless=")[1].split(" ")[0]))
# get headless from function arguments
elif headless is not None:
sys.argv.append(f"headless={headless}")
# others command line arguments
sys.argv += cli_args
# get omniisaacgymenvs path from omniisaacgymenvs package metadata
if omniisaacgymenvs_path == "":
if not hasattr(omniisaacgymenvs, "__path__"):
raise RuntimeError("omniisaacgymenvs package is not installed")
omniisaacgymenvs_path = list(omniisaacgymenvs.__path__)[0]
config_path = os.path.join(omniisaacgymenvs_path, "cfg")
# set omegaconf resolvers
OmegaConf.register_new_resolver('eq', lambda x, y: x.lower() == y.lower())
OmegaConf.register_new_resolver('contains', lambda x, y: x.lower() in y.lower())
OmegaConf.register_new_resolver('if', lambda condition, a, b: a if condition else b)
OmegaConf.register_new_resolver('resolve_default', lambda default, arg: default if arg == '' else arg)
# get hydra config without use @hydra.main
config_file = "config"
args = get_args_parser().parse_args()
search_path = create_automatic_config_search_path(config_file, None, config_path)
hydra_object = Hydra.create_main_hydra2(task_name='load_omniisaacgymenv', config_search_path=search_path)
config = hydra_object.compose_config(config_file, args.overrides, run_mode=RunMode.RUN)
del config.hydra
cfg = _omegaconf_to_dict(config)
cfg["train"] = {}
# print config
if show_cfg:
print(f"\nOmniverse Isaac Gym environment ({config.task.name})")
_print_cfg(cfg)
# internal classes
class _OmniIsaacGymVecEnv(VecEnvBase):
def step(self, actions):
actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone()
self._task.pre_physics_step(actions)
for _ in range(self._task.control_frequency_inv):
self._world.step(render=self._render)
self.sim_frame_count += 1
observations, rewards, dones, info = self._task.post_physics_step()
return {"obs": torch.clamp(observations, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone()}, \
rewards.to(self._task.rl_device).clone(), dones.to(self._task.rl_device).clone(), info.copy()
def reset(self):
self._task.reset()
actions = torch.zeros((self.num_envs, self._task.num_actions), device=self._task.device)
return self.step(actions)[0]
class _OmniIsaacGymTrainerMT(TrainerMT):
def run(self):
pass
def stop(self):
pass
class _OmniIsaacGymVecEnvMT(VecEnvMT):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.action_queue = queue.Queue(1)
self.data_queue = queue.Queue(1)
def run(self, trainer=None):
super().run(_OmniIsaacGymTrainerMT() if trainer is None else trainer)
def _parse_data(self, data):
self._observations = torch.clamp(data["obs"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone()
self._rewards = data["rew"].to(self._task.rl_device).clone()
self._dones = data["reset"].to(self._task.rl_device).clone()
self._info = data["extras"].copy()
def step(self, actions):
if self._stop:
raise TaskStopException()
actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).clone()
self.send_actions(actions)
data = self.get_data()
return {"obs": self._observations}, self._rewards, self._dones, self._info
def reset(self):
self._task.reset()
actions = torch.zeros((self.num_envs, self._task.num_actions), device=self._task.device)
return self.step(actions)[0]
def close(self):
# end stop signal to main thread
self.send_actions(None)
self.stop = True
# load environment
sys.path.append(omniisaacgymenvs_path)
from utils.task_util import initialize_task # type: ignore
try:
if config.multi_gpu:
rank = int(os.getenv("LOCAL_RANK", "0"))
config.device_id = rank
config.rl_device = f"cuda:{rank}"
except omegaconf.errors.ConfigAttributeError:
logger.warning("Using an older version of OmniIsaacGymEnvs (2022.2.0 or earlier)")
enable_viewport = "enable_cameras" in config.task.sim and config.task.sim.enable_cameras
if multi_threaded:
try:
env = _OmniIsaacGymVecEnvMT(headless=config.headless,
sim_device=config.device_id,
enable_livestream=config.enable_livestream,
enable_viewport=enable_viewport)
except (TypeError, omegaconf.errors.ConfigAttributeError):
logger.warning("Using an older version of Isaac Sim or OmniIsaacGymEnvs (2022.2.0 or earlier)")
env = _OmniIsaacGymVecEnvMT(headless=config.headless) # Isaac Sim 2022.2.0 and earlier
task = initialize_task(cfg, env, init_sim=False)
env.initialize(env.action_queue, env.data_queue, timeout=timeout)
else:
try:
env = _OmniIsaacGymVecEnv(headless=config.headless,
sim_device=config.device_id,
enable_livestream=config.enable_livestream,
enable_viewport=enable_viewport)
except (TypeError, omegaconf.errors.ConfigAttributeError):
logger.warning("Using an older version of Isaac Sim or OmniIsaacGymEnvs (2022.2.0 or earlier)")
env = _OmniIsaacGymVecEnv(headless=config.headless) # Isaac Sim 2022.2.0 and earlier
task = initialize_task(cfg, env, init_sim=True)
return env
| 12,134 | Python | 42.808664 | 133 | 0.619829 |
Toni-SM/skrl/skrl/envs/loaders/jax/bidexhands_envs.py | # since Bi-DexHands environments are implemented on top of PyTorch, the loader is the same
from skrl.envs.loaders.torch import load_bidexhands_env
| 148 | Python | 36.249991 | 90 | 0.810811 |
Toni-SM/skrl/skrl/envs/loaders/jax/__init__.py | from skrl.envs.loaders.jax.bidexhands_envs import load_bidexhands_env
from skrl.envs.loaders.jax.isaac_orbit_envs import load_isaac_orbit_env
from skrl.envs.loaders.jax.isaacgym_envs import (
load_isaacgym_env_preview2,
load_isaacgym_env_preview3,
load_isaacgym_env_preview4
)
from skrl.envs.loaders.jax.omniverse_isaacgym_envs import load_omniverse_isaacgym_env
| 375 | Python | 40.777773 | 85 | 0.8 |
Toni-SM/skrl/skrl/envs/loaders/jax/isaacgym_envs.py | # since Isaac Gym (preview) environments are implemented on top of PyTorch, the loaders are the same
from skrl.envs.loaders.torch import ( # isort:skip
load_isaacgym_env_preview2,
load_isaacgym_env_preview3,
load_isaacgym_env_preview4,
)
| 252 | Python | 30.624996 | 100 | 0.746032 |
Toni-SM/skrl/skrl/envs/loaders/jax/isaac_orbit_envs.py | # since Isaac Orbit environments are implemented on top of PyTorch, the loader is the same
from skrl.envs.loaders.torch import load_isaac_orbit_env
| 149 | Python | 36.499991 | 90 | 0.805369 |
Toni-SM/skrl/skrl/envs/loaders/jax/omniverse_isaacgym_envs.py | # since Omniverse Isaac Gym environments are implemented on top of PyTorch, the loader is the same
from skrl.envs.loaders.torch import load_omniverse_isaacgym_env
| 164 | Python | 40.24999 | 98 | 0.817073 |
Toni-SM/skrl/skrl/envs/wrappers/torch/gym_envs.py | from typing import Any, Optional, Tuple
import gym
from packaging import version
import numpy as np
import torch
from skrl import logger
from skrl.envs.wrappers.torch.base import Wrapper
class GymWrapper(Wrapper):
def __init__(self, env: Any) -> None:
"""OpenAI Gym environment wrapper
:param env: The environment to wrap
:type env: Any supported OpenAI Gym environment
"""
super().__init__(env)
self._vectorized = False
try:
if isinstance(env, gym.vector.SyncVectorEnv) or isinstance(env, gym.vector.AsyncVectorEnv):
self._vectorized = True
self._reset_once = True
self._obs_tensor = None
self._info_dict = None
except Exception as e:
logger.warning(f"Failed to check for a vectorized environment: {e}")
self._deprecated_api = version.parse(gym.__version__) < version.parse("0.25.0")
if self._deprecated_api:
logger.warning(f"Using a deprecated version of OpenAI Gym's API: {gym.__version__}")
@property
def state_space(self) -> gym.Space:
"""State space
An alias for the ``observation_space`` property
"""
if self._vectorized:
return self._env.single_observation_space
return self._env.observation_space
@property
def observation_space(self) -> gym.Space:
"""Observation space
"""
if self._vectorized:
return self._env.single_observation_space
return self._env.observation_space
@property
def action_space(self) -> gym.Space:
"""Action space
"""
if self._vectorized:
return self._env.single_action_space
return self._env.action_space
def _observation_to_tensor(self, observation: Any, space: Optional[gym.Space] = None) -> torch.Tensor:
"""Convert the OpenAI Gym observation to a flat tensor
:param observation: The OpenAI Gym observation to convert to a tensor
:type observation: Any supported OpenAI Gym observation space
:raises: ValueError if the observation space type is not supported
:return: The observation as a flat tensor
:rtype: torch.Tensor
"""
observation_space = self._env.observation_space if self._vectorized else self.observation_space
space = space if space is not None else observation_space
if self._vectorized and isinstance(space, gym.spaces.MultiDiscrete):
return torch.tensor(observation, device=self.device, dtype=torch.int64).view(self.num_envs, -1)
elif isinstance(observation, int):
return torch.tensor(observation, device=self.device, dtype=torch.int64).view(self.num_envs, -1)
elif isinstance(observation, np.ndarray):
return torch.tensor(observation, device=self.device, dtype=torch.float32).view(self.num_envs, -1)
elif isinstance(space, gym.spaces.Discrete):
return torch.tensor(observation, device=self.device, dtype=torch.float32).view(self.num_envs, -1)
elif isinstance(space, gym.spaces.Box):
return torch.tensor(observation, device=self.device, dtype=torch.float32).view(self.num_envs, -1)
elif isinstance(space, gym.spaces.Dict):
tmp = torch.cat([self._observation_to_tensor(observation[k], space[k]) \
for k in sorted(space.keys())], dim=-1).view(self.num_envs, -1)
return tmp
else:
raise ValueError(f"Observation space type {type(space)} not supported. Please report this issue")
def _tensor_to_action(self, actions: torch.Tensor) -> Any:
"""Convert the action to the OpenAI Gym expected format
:param actions: The actions to perform
:type actions: torch.Tensor
:raise ValueError: If the action space type is not supported
:return: The action in the OpenAI Gym format
:rtype: Any supported OpenAI Gym action space
"""
space = self._env.action_space if self._vectorized else self.action_space
if self._vectorized:
if isinstance(space, gym.spaces.MultiDiscrete):
return np.array(actions.cpu().numpy(), dtype=space.dtype).reshape(space.shape)
elif isinstance(space, gym.spaces.Tuple):
if isinstance(space[0], gym.spaces.Box):
return np.array(actions.cpu().numpy(), dtype=space[0].dtype).reshape(space.shape)
elif isinstance(space[0], gym.spaces.Discrete):
return np.array(actions.cpu().numpy(), dtype=space[0].dtype).reshape(-1)
elif isinstance(space, gym.spaces.Discrete):
return actions.item()
elif isinstance(space, gym.spaces.MultiDiscrete):
return np.array(actions.cpu().numpy(), dtype=space.dtype).reshape(space.shape)
elif isinstance(space, gym.spaces.Box):
return np.array(actions.cpu().numpy(), dtype=space.dtype).reshape(space.shape)
raise ValueError(f"Action space type {type(space)} not supported. Please report this issue")
def step(self, actions: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Any]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: torch.Tensor
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of torch.Tensor and any other info
"""
if self._deprecated_api:
observation, reward, terminated, info = self._env.step(self._tensor_to_action(actions))
# truncated: https://gymnasium.farama.org/tutorials/handling_time_limits
if type(info) is list:
truncated = np.array([d.get("TimeLimit.truncated", False) for d in info], dtype=terminated.dtype)
terminated *= np.logical_not(truncated)
else:
truncated = info.get("TimeLimit.truncated", False)
if truncated:
terminated = False
else:
observation, reward, terminated, truncated, info = self._env.step(self._tensor_to_action(actions))
# convert response to torch
observation = self._observation_to_tensor(observation)
reward = torch.tensor(reward, device=self.device, dtype=torch.float32).view(self.num_envs, -1)
terminated = torch.tensor(terminated, device=self.device, dtype=torch.bool).view(self.num_envs, -1)
truncated = torch.tensor(truncated, device=self.device, dtype=torch.bool).view(self.num_envs, -1)
# save observation and info for vectorized envs
if self._vectorized:
self._obs_tensor = observation
self._info_dict = info
return observation, reward, terminated, truncated, info
def reset(self) -> Tuple[torch.Tensor, Any]:
"""Reset the environment
:return: Observation, info
:rtype: torch.Tensor and any other info
"""
# handle vectorized envs
if self._vectorized:
if not self._reset_once:
return self._obs_tensor, self._info_dict
self._reset_once = False
# reset the env/envs
if self._deprecated_api:
observation = self._env.reset()
info = {}
else:
observation, info = self._env.reset()
return self._observation_to_tensor(observation), info
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
self._env.render(*args, **kwargs)
def close(self) -> None:
"""Close the environment
"""
self._env.close()
| 7,739 | Python | 40.612903 | 113 | 0.625275 |
Toni-SM/skrl/skrl/envs/wrappers/torch/bidexhands_envs.py | from typing import Any, Mapping, Sequence, Tuple
import gym
import torch
from skrl.envs.wrappers.torch.base import MultiAgentEnvWrapper
class BiDexHandsWrapper(MultiAgentEnvWrapper):
def __init__(self, env: Any) -> None:
"""Bi-DexHands wrapper
:param env: The environment to wrap
:type env: Any supported Bi-DexHands environment
"""
super().__init__(env)
self._reset_once = True
self._obs_buf = None
self._shared_obs_buf = None
self.possible_agents = [f"agent_{i}" for i in range(self.num_agents)]
@property
def agents(self) -> Sequence[str]:
"""Names of all current agents
These may be changed as an environment progresses (i.e. agents can be added or removed)
"""
return self.possible_agents
@property
def observation_spaces(self) -> Mapping[str, gym.Space]:
"""Observation spaces
"""
return {uid: space for uid, space in zip(self.possible_agents, self._env.observation_space)}
@property
def action_spaces(self) -> Mapping[str, gym.Space]:
"""Action spaces
"""
return {uid: space for uid, space in zip(self.possible_agents, self._env.action_space)}
@property
def shared_observation_spaces(self) -> Mapping[str, gym.Space]:
"""Shared observation spaces
"""
return {uid: space for uid, space in zip(self.possible_agents, self._env.share_observation_space)}
def step(self, actions: Mapping[str, torch.Tensor]) -> \
Tuple[Mapping[str, torch.Tensor], Mapping[str, torch.Tensor],
Mapping[str, torch.Tensor], Mapping[str, torch.Tensor], Mapping[str, Any]]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: dictionary of torch.Tensor
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of dictionaries torch.Tensor and any other info
"""
actions = [actions[uid] for uid in self.possible_agents]
obs_buf, shared_obs_buf, reward_buf, terminated_buf, info, _ = self._env.step(actions)
self._obs_buf = {uid: obs_buf[:,i] for i, uid in enumerate(self.possible_agents)}
self._shared_obs_buf = {uid: shared_obs_buf[:,i] for i, uid in enumerate(self.possible_agents)}
reward = {uid: reward_buf[:,i].view(-1, 1) for i, uid in enumerate(self.possible_agents)}
terminated = {uid: terminated_buf[:,i].view(-1, 1) for i, uid in enumerate(self.possible_agents)}
truncated = {uid: torch.zeros_like(value) for uid, value in terminated.items()}
info = {"shared_states": self._shared_obs_buf}
return self._obs_buf, reward, terminated, truncated, info
def reset(self) -> Tuple[Mapping[str, torch.Tensor], Mapping[str, Any]]:
"""Reset the environment
:return: Observation, info
:rtype: tuple of dictionaries of torch.Tensor and any other info
"""
if self._reset_once:
obs_buf, shared_obs_buf, _ = self._env.reset()
self._obs_buf = {uid: obs_buf[:,i] for i, uid in enumerate(self.possible_agents)}
self._shared_obs_buf = {uid: shared_obs_buf[:,i] for i, uid in enumerate(self.possible_agents)}
self._reset_once = False
return self._obs_buf, {"shared_states": self._shared_obs_buf}
| 3,394 | Python | 38.476744 | 107 | 0.629641 |
Toni-SM/skrl/skrl/envs/wrappers/torch/robosuite_envs.py | from typing import Any, Optional, Tuple
import collections
import gym
import numpy as np
import torch
from skrl.envs.wrappers.torch.base import Wrapper
class RobosuiteWrapper(Wrapper):
def __init__(self, env: Any) -> None:
"""Robosuite environment wrapper
:param env: The environment to wrap
:type env: Any supported robosuite environment
"""
super().__init__(env)
# observation and action spaces
self._observation_space = self._spec_to_space(self._env.observation_spec())
self._action_space = self._spec_to_space(self._env.action_spec)
@property
def state_space(self) -> gym.Space:
"""State space
An alias for the ``observation_space`` property
"""
return self._observation_space
@property
def observation_space(self) -> gym.Space:
"""Observation space
"""
return self._observation_space
@property
def action_space(self) -> gym.Space:
"""Action space
"""
return self._action_space
def _spec_to_space(self, spec: Any) -> gym.Space:
"""Convert the robosuite spec to a Gym space
:param spec: The robosuite spec to convert
:type spec: Any supported robosuite spec
:raises: ValueError if the spec type is not supported
:return: The Gym space
:rtype: gym.Space
"""
if type(spec) is tuple:
return gym.spaces.Box(shape=spec[0].shape,
dtype=np.float32,
low=spec[0],
high=spec[1])
elif isinstance(spec, np.ndarray):
return gym.spaces.Box(shape=spec.shape,
dtype=np.float32,
low=np.full(spec.shape, float("-inf")),
high=np.full(spec.shape, float("inf")))
elif isinstance(spec, collections.OrderedDict):
return gym.spaces.Dict({k: self._spec_to_space(v) for k, v in spec.items()})
else:
raise ValueError(f"Spec type {type(spec)} not supported. Please report this issue")
def _observation_to_tensor(self, observation: Any, spec: Optional[Any] = None) -> torch.Tensor:
"""Convert the observation to a flat tensor
:param observation: The observation to convert to a tensor
:type observation: Any supported observation
:raises: ValueError if the observation spec type is not supported
:return: The observation as a flat tensor
:rtype: torch.Tensor
"""
spec = spec if spec is not None else self._env.observation_spec()
if isinstance(spec, np.ndarray):
return torch.tensor(observation, device=self.device, dtype=torch.float32).reshape(self.num_envs, -1)
elif isinstance(spec, collections.OrderedDict):
return torch.cat([self._observation_to_tensor(observation[k], spec[k]) \
for k in sorted(spec.keys())], dim=-1).reshape(self.num_envs, -1)
else:
raise ValueError(f"Observation spec type {type(spec)} not supported. Please report this issue")
def _tensor_to_action(self, actions: torch.Tensor) -> Any:
"""Convert the action to the robosuite expected format
:param actions: The actions to perform
:type actions: torch.Tensor
:raise ValueError: If the action space type is not supported
:return: The action in the robosuite expected format
:rtype: Any supported robosuite action
"""
spec = self._env.action_spec
if type(spec) is tuple:
return np.array(actions.cpu().numpy(), dtype=np.float32).reshape(spec[0].shape)
else:
raise ValueError(f"Action spec type {type(spec)} not supported. Please report this issue")
def step(self, actions: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Any]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: torch.Tensor
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of torch.Tensor and any other info
"""
observation, reward, terminated, info = self._env.step(self._tensor_to_action(actions))
truncated = False
info = {}
# convert response to torch
return self._observation_to_tensor(observation), \
torch.tensor(reward, device=self.device, dtype=torch.float32).view(self.num_envs, -1), \
torch.tensor(terminated, device=self.device, dtype=torch.bool).view(self.num_envs, -1), \
torch.tensor(truncated, device=self.device, dtype=torch.bool).view(self.num_envs, -1), \
info
def reset(self) -> Tuple[torch.Tensor, Any]:
"""Reset the environment
:return: The state of the environment
:rtype: torch.Tensor
"""
observation = self._env.reset()
return self._observation_to_tensor(observation), {}
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
self._env.render(*args, **kwargs)
def close(self) -> None:
"""Close the environment
"""
self._env.close()
| 5,343 | Python | 35.108108 | 112 | 0.600786 |
Toni-SM/skrl/skrl/envs/wrappers/torch/base.py | from typing import Any, Mapping, Sequence, Tuple
import gym
import torch
class Wrapper(object):
def __init__(self, env: Any) -> None:
"""Base wrapper class for RL environments
:param env: The environment to wrap
:type env: Any supported RL environment
"""
self._env = env
# device (faster than @property)
if hasattr(self._env, "device"):
self.device = torch.device(self._env.device)
else:
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# spaces
try:
self._action_space = self._env.single_action_space
self._observation_space = self._env.single_observation_space
except AttributeError:
self._action_space = self._env.action_space
self._observation_space = self._env.observation_space
self._state_space = self._env.state_space if hasattr(self._env, "state_space") else self._observation_space
def __getattr__(self, key: str) -> Any:
"""Get an attribute from the wrapped environment
:param key: The attribute name
:type key: str
:raises AttributeError: If the attribute does not exist
:return: The attribute value
:rtype: Any
"""
if hasattr(self._env, key):
return getattr(self._env, key)
raise AttributeError(f"Wrapped environment ({self._env.__class__.__name__}) does not have attribute '{key}'")
def reset(self) -> Tuple[torch.Tensor, Any]:
"""Reset the environment
:raises NotImplementedError: Not implemented
:return: Observation, info
:rtype: torch.Tensor and any other info
"""
raise NotImplementedError
def step(self, actions: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Any]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: torch.Tensor
:raises NotImplementedError: Not implemented
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of torch.Tensor and any other info
"""
raise NotImplementedError
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
pass
def close(self) -> None:
"""Close the environment
"""
pass
@property
def num_envs(self) -> int:
"""Number of environments
If the wrapped environment does not have the ``num_envs`` property, it will be set to 1
"""
return self._env.num_envs if hasattr(self._env, "num_envs") else 1
@property
def num_agents(self) -> int:
"""Number of agents
If the wrapped environment does not have the ``num_agents`` property, it will be set to 1
"""
return self._env.num_agents if hasattr(self._env, "num_agents") else 1
@property
def state_space(self) -> gym.Space:
"""State space
If the wrapped environment does not have the ``state_space`` property,
the value of the ``observation_space`` property will be used
"""
return self._state_space
@property
def observation_space(self) -> gym.Space:
"""Observation space
"""
return self._observation_space
@property
def action_space(self) -> gym.Space:
"""Action space
"""
return self._action_space
class MultiAgentEnvWrapper(object):
def __init__(self, env: Any) -> None:
"""Base wrapper class for multi-agent environments
:param env: The multi-agent environment to wrap
:type env: Any supported multi-agent environment
"""
self._env = env
# device (faster than @property)
if hasattr(self._env, "device"):
self.device = torch.device(self._env.device)
else:
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.possible_agents = []
def __getattr__(self, key: str) -> Any:
"""Get an attribute from the wrapped environment
:param key: The attribute name
:type key: str
:raises AttributeError: If the attribute does not exist
:return: The attribute value
:rtype: Any
"""
if hasattr(self._env, key):
return getattr(self._env, key)
raise AttributeError(f"Wrapped environment ({self._env.__class__.__name__}) does not have attribute '{key}'")
def reset(self) -> Tuple[Mapping[str, torch.Tensor], Mapping[str, Any]]:
"""Reset the environment
:raises NotImplementedError: Not implemented
:return: Observation, info
:rtype: tuple of dictionaries of torch.Tensor and any other info
"""
raise NotImplementedError
def step(self, actions: Mapping[str, torch.Tensor]) -> \
Tuple[Mapping[str, torch.Tensor], Mapping[str, torch.Tensor],
Mapping[str, torch.Tensor], Mapping[str, torch.Tensor], Mapping[str, Any]]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: dictionary of torch.Tensor
:raises NotImplementedError: Not implemented
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of dictionaries of torch.Tensor and any other info
"""
raise NotImplementedError
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
pass
def close(self) -> None:
"""Close the environment
"""
pass
@property
def num_envs(self) -> int:
"""Number of environments
If the wrapped environment does not have the ``num_envs`` property, it will be set to 1
"""
return self._env.num_envs if hasattr(self._env, "num_envs") else 1
@property
def num_agents(self) -> int:
"""Number of agents
If the wrapped environment does not have the ``num_agents`` property, it will be set to 1
"""
return self._env.num_agents if hasattr(self._env, "num_agents") else 1
@property
def agents(self) -> Sequence[str]:
"""Names of all current agents
These may be changed as an environment progresses (i.e. agents can be added or removed)
"""
raise NotImplementedError
@property
def state_spaces(self) -> Mapping[str, gym.Space]:
"""State spaces
An alias for the ``observation_spaces`` property
"""
return self.observation_spaces
@property
def observation_spaces(self) -> Mapping[str, gym.Space]:
"""Observation spaces
"""
raise NotImplementedError
@property
def action_spaces(self) -> Mapping[str, gym.Space]:
"""Action spaces
"""
raise NotImplementedError
@property
def shared_state_spaces(self) -> Mapping[str, gym.Space]:
"""Shared state spaces
An alias for the ``shared_observation_spaces`` property
"""
return self.shared_observation_spaces
@property
def shared_observation_spaces(self) -> Mapping[str, gym.Space]:
"""Shared observation spaces
"""
raise NotImplementedError
def state_space(self, agent: str) -> gym.Space:
"""State space
:param agent: Name of the agent
:type agent: str
:return: The state space for the specified agent
:rtype: gym.Space
"""
return self.state_spaces[agent]
def observation_space(self, agent: str) -> gym.Space:
"""Observation space
:param agent: Name of the agent
:type agent: str
:return: The observation space for the specified agent
:rtype: gym.Space
"""
return self.observation_spaces[agent]
def action_space(self, agent: str) -> gym.Space:
"""Action space
:param agent: Name of the agent
:type agent: str
:return: The action space for the specified agent
:rtype: gym.Space
"""
return self.action_spaces[agent]
def shared_state_space(self, agent: str) -> gym.Space:
"""Shared state space
:param agent: Name of the agent
:type agent: str
:return: The shared state space for the specified agent
:rtype: gym.Space
"""
return self.shared_state_spaces[agent]
def shared_observation_space(self, agent: str) -> gym.Space:
"""Shared observation space
:param agent: Name of the agent
:type agent: str
:return: The shared observation space for the specified agent
:rtype: gym.Space
"""
return self.shared_observation_spaces[agent]
| 8,836 | Python | 28.85473 | 117 | 0.601517 |
Toni-SM/skrl/skrl/envs/wrappers/torch/__init__.py | from typing import Any, Union
import gym
import gymnasium
from skrl import logger
from skrl.envs.wrappers.torch.base import MultiAgentEnvWrapper, Wrapper
from skrl.envs.wrappers.torch.bidexhands_envs import BiDexHandsWrapper
from skrl.envs.wrappers.torch.deepmind_envs import DeepMindWrapper
from skrl.envs.wrappers.torch.gym_envs import GymWrapper
from skrl.envs.wrappers.torch.gymnasium_envs import GymnasiumWrapper
from skrl.envs.wrappers.torch.isaac_orbit_envs import IsaacOrbitWrapper
from skrl.envs.wrappers.torch.isaacgym_envs import IsaacGymPreview2Wrapper, IsaacGymPreview3Wrapper
from skrl.envs.wrappers.torch.omniverse_isaacgym_envs import OmniverseIsaacGymWrapper
from skrl.envs.wrappers.torch.pettingzoo_envs import PettingZooWrapper
from skrl.envs.wrappers.torch.robosuite_envs import RobosuiteWrapper
__all__ = ["wrap_env", "Wrapper", "MultiAgentEnvWrapper"]
def wrap_env(env: Any, wrapper: str = "auto", verbose: bool = True) -> Union[Wrapper, MultiAgentEnvWrapper]:
"""Wrap an environment to use a common interface
Example::
>>> from skrl.envs.wrappers.torch import wrap_env
>>>
>>> # assuming that there is an environment called "env"
>>> env = wrap_env(env)
:param env: The environment to be wrapped
:type env: gym.Env, gymnasium.Env, dm_env.Environment or VecTask
:param wrapper: The type of wrapper to use (default: ``"auto"``).
If ``"auto"``, the wrapper will be automatically selected based on the environment class.
The supported wrappers are described in the following table:
+--------------------+-------------------------+
|Environment |Wrapper tag |
+====================+=========================+
|OpenAI Gym |``"gym"`` |
+--------------------+-------------------------+
|Gymnasium |``"gymnasium"`` |
+--------------------+-------------------------+
|Petting Zoo |``"pettingzoo"`` |
+--------------------+-------------------------+
|DeepMind |``"dm"`` |
+--------------------+-------------------------+
|Robosuite |``"robosuite"`` |
+--------------------+-------------------------+
|Bi-DexHands |``"bidexhands"`` |
+--------------------+-------------------------+
|Isaac Gym preview 2 |``"isaacgym-preview2"`` |
+--------------------+-------------------------+
|Isaac Gym preview 3 |``"isaacgym-preview3"`` |
+--------------------+-------------------------+
|Isaac Gym preview 4 |``"isaacgym-preview4"`` |
+--------------------+-------------------------+
|Omniverse Isaac Gym |``"omniverse-isaacgym"`` |
+--------------------+-------------------------+
|Isaac Sim (orbit) |``"isaac-orbit"`` |
+--------------------+-------------------------+
:type wrapper: str, optional
:param verbose: Whether to print the wrapper type (default: ``True``)
:type verbose: bool, optional
:raises ValueError: Unknown wrapper type
:return: Wrapped environment
:rtype: Wrapper or MultiAgentEnvWrapper
"""
if verbose:
logger.info("Environment class: {}".format(", ".join([str(base).replace("<class '", "").replace("'>", "") \
for base in env.__class__.__bases__])))
if wrapper == "auto":
base_classes = [str(base) for base in env.__class__.__bases__]
if "<class 'omni.isaac.gym.vec_env.vec_env_base.VecEnvBase'>" in base_classes or \
"<class 'omni.isaac.gym.vec_env.vec_env_mt.VecEnvMT'>" in base_classes:
if verbose:
logger.info("Environment wrapper: Omniverse Isaac Gym")
return OmniverseIsaacGymWrapper(env)
elif isinstance(env, gym.core.Env) or isinstance(env, gym.core.Wrapper):
# isaac-orbit
if hasattr(env, "sim") and hasattr(env, "env_ns"):
if verbose:
logger.info("Environment wrapper: Isaac Orbit")
return IsaacOrbitWrapper(env)
# gym
if verbose:
logger.info("Environment wrapper: Gym")
return GymWrapper(env)
elif isinstance(env, gymnasium.core.Env) or isinstance(env, gymnasium.core.Wrapper):
if verbose:
logger.info("Environment wrapper: Gymnasium")
return GymnasiumWrapper(env)
elif "<class 'pettingzoo.utils.env" in base_classes[0] or "<class 'pettingzoo.utils.wrappers" in base_classes[0]:
if verbose:
logger.info("Environment wrapper: Petting Zoo")
return PettingZooWrapper(env)
elif "<class 'dm_env._environment.Environment'>" in base_classes:
if verbose:
logger.info("Environment wrapper: DeepMind")
return DeepMindWrapper(env)
elif "<class 'robosuite.environments." in base_classes[0]:
if verbose:
logger.info("Environment wrapper: Robosuite")
return RobosuiteWrapper(env)
elif "<class 'rlgpu.tasks.base.vec_task.VecTask'>" in base_classes:
if verbose:
logger.info("Environment wrapper: Isaac Gym (preview 2)")
return IsaacGymPreview2Wrapper(env)
if verbose:
logger.info("Environment wrapper: Isaac Gym (preview 3/4)")
return IsaacGymPreview3Wrapper(env) # preview 4 is the same as 3
elif wrapper == "gym":
if verbose:
logger.info("Environment wrapper: Gym")
return GymWrapper(env)
elif wrapper == "gymnasium":
if verbose:
logger.info("Environment wrapper: gymnasium")
return GymnasiumWrapper(env)
elif wrapper == "pettingzoo":
if verbose:
logger.info("Environment wrapper: Petting Zoo")
return PettingZooWrapper(env)
elif wrapper == "dm":
if verbose:
logger.info("Environment wrapper: DeepMind")
return DeepMindWrapper(env)
elif wrapper == "robosuite":
if verbose:
logger.info("Environment wrapper: Robosuite")
return RobosuiteWrapper(env)
elif wrapper == "bidexhands":
if verbose:
logger.info("Environment wrapper: Bi-DexHands")
return BiDexHandsWrapper(env)
elif wrapper == "isaacgym-preview2":
if verbose:
logger.info("Environment wrapper: Isaac Gym (preview 2)")
return IsaacGymPreview2Wrapper(env)
elif wrapper == "isaacgym-preview3":
if verbose:
logger.info("Environment wrapper: Isaac Gym (preview 3)")
return IsaacGymPreview3Wrapper(env)
elif wrapper == "isaacgym-preview4":
if verbose:
logger.info("Environment wrapper: Isaac Gym (preview 4)")
return IsaacGymPreview3Wrapper(env) # preview 4 is the same as 3
elif wrapper == "omniverse-isaacgym":
if verbose:
logger.info("Environment wrapper: Omniverse Isaac Gym")
return OmniverseIsaacGymWrapper(env)
elif wrapper == "isaac-orbit":
if verbose:
logger.info("Environment wrapper: Isaac Orbit")
return IsaacOrbitWrapper(env)
else:
raise ValueError(f"Unknown wrapper type: {wrapper}")
| 7,723 | Python | 46.975155 | 121 | 0.537356 |
Toni-SM/skrl/skrl/envs/wrappers/torch/isaacgym_envs.py | from typing import Any, Tuple
import torch
from skrl.envs.wrappers.torch.base import Wrapper
class IsaacGymPreview2Wrapper(Wrapper):
def __init__(self, env: Any) -> None:
"""Isaac Gym environment (preview 2) wrapper
:param env: The environment to wrap
:type env: Any supported Isaac Gym environment (preview 2) environment
"""
super().__init__(env)
self._reset_once = True
self._obs_buf = None
def step(self, actions: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Any]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: torch.Tensor
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of torch.Tensor and any other info
"""
self._obs_buf, reward, terminated, info = self._env.step(actions)
truncated = info["time_outs"] if "time_outs" in info else torch.zeros_like(terminated)
return self._obs_buf, reward.view(-1, 1), terminated.view(-1, 1), truncated.view(-1, 1), info
def reset(self) -> Tuple[torch.Tensor, Any]:
"""Reset the environment
:return: Observation, info
:rtype: torch.Tensor and any other info
"""
if self._reset_once:
self._obs_buf = self._env.reset()
self._reset_once = False
return self._obs_buf, {}
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
pass
def close(self) -> None:
"""Close the environment
"""
pass
class IsaacGymPreview3Wrapper(Wrapper):
def __init__(self, env: Any) -> None:
"""Isaac Gym environment (preview 3) wrapper
:param env: The environment to wrap
:type env: Any supported Isaac Gym environment (preview 3) environment
"""
super().__init__(env)
self._reset_once = True
self._obs_dict = None
def step(self, actions: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Any]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: torch.Tensor
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of torch.Tensor and any other info
"""
self._obs_dict, reward, terminated, info = self._env.step(actions)
truncated = info["time_outs"] if "time_outs" in info else torch.zeros_like(terminated)
return self._obs_dict["obs"], reward.view(-1, 1), terminated.view(-1, 1), truncated.view(-1, 1), info
def reset(self) -> Tuple[torch.Tensor, Any]:
"""Reset the environment
:return: Observation, info
:rtype: torch.Tensor and any other info
"""
if self._reset_once:
self._obs_dict = self._env.reset()
self._reset_once = False
return self._obs_dict["obs"], {}
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
pass
def close(self) -> None:
"""Close the environment
"""
pass
| 3,182 | Python | 30.83 | 112 | 0.595223 |
Toni-SM/skrl/skrl/envs/wrappers/torch/gymnasium_envs.py | from typing import Any, Optional, Tuple
import gymnasium
import numpy as np
import torch
from skrl import logger
from skrl.envs.wrappers.torch.base import Wrapper
class GymnasiumWrapper(Wrapper):
def __init__(self, env: Any) -> None:
"""Gymnasium environment wrapper
:param env: The environment to wrap
:type env: Any supported Gymnasium environment
"""
super().__init__(env)
self._vectorized = False
try:
if isinstance(env, gymnasium.vector.SyncVectorEnv) or isinstance(env, gymnasium.vector.AsyncVectorEnv):
self._vectorized = True
self._reset_once = True
self._obs_tensor = None
self._info_dict = None
except Exception as e:
logger.warning(f"Failed to check for a vectorized environment: {e}")
@property
def state_space(self) -> gymnasium.Space:
"""State space
An alias for the ``observation_space`` property
"""
if self._vectorized:
return self._env.single_observation_space
return self._env.observation_space
@property
def observation_space(self) -> gymnasium.Space:
"""Observation space
"""
if self._vectorized:
return self._env.single_observation_space
return self._env.observation_space
@property
def action_space(self) -> gymnasium.Space:
"""Action space
"""
if self._vectorized:
return self._env.single_action_space
return self._env.action_space
def _observation_to_tensor(self, observation: Any, space: Optional[gymnasium.Space] = None) -> torch.Tensor:
"""Convert the Gymnasium observation to a flat tensor
:param observation: The Gymnasium observation to convert to a tensor
:type observation: Any supported Gymnasium observation space
:raises: ValueError if the observation space type is not supported
:return: The observation as a flat tensor
:rtype: torch.Tensor
"""
observation_space = self._env.observation_space if self._vectorized else self.observation_space
space = space if space is not None else observation_space
if self._vectorized and isinstance(space, gymnasium.spaces.MultiDiscrete):
return torch.tensor(observation, device=self.device, dtype=torch.int64).view(self.num_envs, -1)
elif isinstance(observation, int):
return torch.tensor(observation, device=self.device, dtype=torch.int64).view(self.num_envs, -1)
elif isinstance(observation, np.ndarray):
return torch.tensor(observation, device=self.device, dtype=torch.float32).view(self.num_envs, -1)
elif isinstance(space, gymnasium.spaces.Discrete):
return torch.tensor(observation, device=self.device, dtype=torch.float32).view(self.num_envs, -1)
elif isinstance(space, gymnasium.spaces.Box):
return torch.tensor(observation, device=self.device, dtype=torch.float32).view(self.num_envs, -1)
elif isinstance(space, gymnasium.spaces.Dict):
tmp = torch.cat([self._observation_to_tensor(observation[k], space[k]) \
for k in sorted(space.keys())], dim=-1).view(self.num_envs, -1)
return tmp
else:
raise ValueError(f"Observation space type {type(space)} not supported. Please report this issue")
def _tensor_to_action(self, actions: torch.Tensor) -> Any:
"""Convert the action to the Gymnasium expected format
:param actions: The actions to perform
:type actions: torch.Tensor
:raise ValueError: If the action space type is not supported
:return: The action in the Gymnasium format
:rtype: Any supported Gymnasium action space
"""
space = self._env.action_space if self._vectorized else self.action_space
if self._vectorized:
if isinstance(space, gymnasium.spaces.MultiDiscrete):
return np.array(actions.cpu().numpy(), dtype=space.dtype).reshape(space.shape)
elif isinstance(space, gymnasium.spaces.Tuple):
if isinstance(space[0], gymnasium.spaces.Box):
return np.array(actions.cpu().numpy(), dtype=space[0].dtype).reshape(space.shape)
elif isinstance(space[0], gymnasium.spaces.Discrete):
return np.array(actions.cpu().numpy(), dtype=space[0].dtype).reshape(-1)
if isinstance(space, gymnasium.spaces.Discrete):
return actions.item()
elif isinstance(space, gymnasium.spaces.MultiDiscrete):
return np.array(actions.cpu().numpy(), dtype=space.dtype).reshape(space.shape)
elif isinstance(space, gymnasium.spaces.Box):
return np.array(actions.cpu().numpy(), dtype=space.dtype).reshape(space.shape)
raise ValueError(f"Action space type {type(space)} not supported. Please report this issue")
def step(self, actions: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Any]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: torch.Tensor
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of torch.Tensor and any other info
"""
observation, reward, terminated, truncated, info = self._env.step(self._tensor_to_action(actions))
# convert response to torch
observation = self._observation_to_tensor(observation)
reward = torch.tensor(reward, device=self.device, dtype=torch.float32).view(self.num_envs, -1)
terminated = torch.tensor(terminated, device=self.device, dtype=torch.bool).view(self.num_envs, -1)
truncated = torch.tensor(truncated, device=self.device, dtype=torch.bool).view(self.num_envs, -1)
# save observation and info for vectorized envs
if self._vectorized:
self._obs_tensor = observation
self._info_dict = info
return observation, reward, terminated, truncated, info
def reset(self) -> Tuple[torch.Tensor, Any]:
"""Reset the environment
:return: Observation, info
:rtype: torch.Tensor and any other info
"""
# handle vectorized envs
if self._vectorized:
if not self._reset_once:
return self._obs_tensor, self._info_dict
self._reset_once = False
# reset the env/envs
observation, info = self._env.reset()
return self._observation_to_tensor(observation), info
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
self._env.render(*args, **kwargs)
def close(self) -> None:
"""Close the environment
"""
self._env.close()
| 6,882 | Python | 40.463855 | 115 | 0.639494 |
Toni-SM/skrl/skrl/envs/wrappers/torch/pettingzoo_envs.py | from typing import Any, Mapping, Sequence, Tuple
import collections
import gymnasium
import numpy as np
import torch
from skrl.envs.wrappers.torch.base import MultiAgentEnvWrapper
class PettingZooWrapper(MultiAgentEnvWrapper):
def __init__(self, env: Any) -> None:
"""PettingZoo (parallel) environment wrapper
:param env: The environment to wrap
:type env: Any supported PettingZoo (parallel) environment
"""
super().__init__(env)
self.possible_agents = self._env.possible_agents
self._shared_observation_space = self._compute_shared_observation_space(self._env.observation_spaces)
def _compute_shared_observation_space(self, observation_spaces):
space = next(iter(observation_spaces.values()))
shape = (len(self.possible_agents),) + space.shape
return gymnasium.spaces.Box(low=np.stack([space.low for _ in self.possible_agents], axis=0),
high=np.stack([space.high for _ in self.possible_agents], axis=0),
dtype=space.dtype,
shape=shape)
@property
def num_agents(self) -> int:
"""Number of agents
"""
return len(self.possible_agents)
@property
def agents(self) -> Sequence[str]:
"""Names of all current agents
These may be changed as an environment progresses (i.e. agents can be added or removed)
"""
return self._env.agents
@property
def observation_spaces(self) -> Mapping[str, gymnasium.Space]:
"""Observation spaces
"""
return {uid: self._env.observation_space(uid) for uid in self.possible_agents}
@property
def action_spaces(self) -> Mapping[str, gymnasium.Space]:
"""Action spaces
"""
return {uid: self._env.action_space(uid) for uid in self.possible_agents}
@property
def shared_observation_spaces(self) -> Mapping[str, gymnasium.Space]:
"""Shared observation spaces
"""
return {uid: self._shared_observation_space for uid in self.possible_agents}
def _observation_to_tensor(self, observation: Any, space: gymnasium.Space) -> torch.Tensor:
"""Convert the Gymnasium observation to a flat tensor
:param observation: The Gymnasium observation to convert to a tensor
:type observation: Any supported Gymnasium observation space
:raises: ValueError if the observation space type is not supported
:return: The observation as a flat tensor
:rtype: torch.Tensor
"""
if isinstance(observation, int):
return torch.tensor(observation, device=self.device, dtype=torch.int64).view(self.num_envs, -1)
elif isinstance(observation, np.ndarray):
return torch.tensor(observation, device=self.device, dtype=torch.float32).view(self.num_envs, -1)
elif isinstance(space, gymnasium.spaces.Discrete):
return torch.tensor(observation, device=self.device, dtype=torch.float32).view(self.num_envs, -1)
elif isinstance(space, gymnasium.spaces.Box):
return torch.tensor(observation, device=self.device, dtype=torch.float32).view(self.num_envs, -1)
elif isinstance(space, gymnasium.spaces.Dict):
tmp = torch.cat([self._observation_to_tensor(observation[k], space[k]) \
for k in sorted(space.keys())], dim=-1).view(self.num_envs, -1)
return tmp
else:
raise ValueError(f"Observation space type {type(space)} not supported. Please report this issue")
def _tensor_to_action(self, actions: torch.Tensor, space: gymnasium.Space) -> Any:
"""Convert the action to the Gymnasium expected format
:param actions: The actions to perform
:type actions: torch.Tensor
:raise ValueError: If the action space type is not supported
:return: The action in the Gymnasium format
:rtype: Any supported Gymnasium action space
"""
if isinstance(space, gymnasium.spaces.Discrete):
return actions.item()
elif isinstance(space, gymnasium.spaces.Box):
return np.array(actions.cpu().numpy(), dtype=space.dtype).reshape(space.shape)
raise ValueError(f"Action space type {type(space)} not supported. Please report this issue")
def step(self, actions: Mapping[str, torch.Tensor]) -> \
Tuple[Mapping[str, torch.Tensor], Mapping[str, torch.Tensor],
Mapping[str, torch.Tensor], Mapping[str, torch.Tensor], Mapping[str, Any]]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: dictionary of torch.Tensor
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of dictionaries torch.Tensor and any other info
"""
actions = {uid: self._tensor_to_action(action, self._env.action_space(uid)) for uid, action in actions.items()}
observations, rewards, terminated, truncated, infos = self._env.step(actions)
# build shared observation
shared_observations = np.stack([observations[uid] for uid in self.possible_agents], axis=0)
shared_observations = self._observation_to_tensor(shared_observations, self._shared_observation_space)
infos["shared_states"] = {uid: shared_observations for uid in self.possible_agents}
# convert response to torch
observations = {uid: self._observation_to_tensor(value, self._env.observation_space(uid)) for uid, value in observations.items()}
rewards = {uid: torch.tensor(value, device=self.device, dtype=torch.float32).view(self.num_envs, -1) for uid, value in rewards.items()}
terminated = {uid: torch.tensor(value, device=self.device, dtype=torch.bool).view(self.num_envs, -1) for uid, value in terminated.items()}
truncated = {uid: torch.tensor(value, device=self.device, dtype=torch.bool).view(self.num_envs, -1) for uid, value in truncated.items()}
return observations, rewards, terminated, truncated, infos
def reset(self) -> Tuple[Mapping[str, torch.Tensor], Mapping[str, Any]]:
"""Reset the environment
:return: Observation, info
:rtype: tuple of dictionaries of torch.Tensor and any other info
"""
outputs = self._env.reset()
if isinstance(outputs, collections.abc.Mapping):
observations = outputs
infos = {uid: {} for uid in self.possible_agents}
else:
observations, infos = outputs
# build shared observation
shared_observations = np.stack([observations[uid] for uid in self.possible_agents], axis=0)
shared_observations = self._observation_to_tensor(shared_observations, self._shared_observation_space)
infos["shared_states"] = {uid: shared_observations for uid in self.possible_agents}
# convert response to torch
observations = {uid: self._observation_to_tensor(observation, self._env.observation_space(uid)) for uid, observation in observations.items()}
return observations, infos
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
self._env.render(*args, **kwargs)
def close(self) -> None:
"""Close the environment
"""
self._env.close()
| 7,391 | Python | 44.07317 | 149 | 0.652686 |
Toni-SM/skrl/skrl/envs/wrappers/torch/omniverse_isaacgym_envs.py | from typing import Any, Optional, Tuple
import torch
from skrl.envs.wrappers.torch.base import Wrapper
class OmniverseIsaacGymWrapper(Wrapper):
def __init__(self, env: Any) -> None:
"""Omniverse Isaac Gym environment wrapper
:param env: The environment to wrap
:type env: Any supported Omniverse Isaac Gym environment
"""
super().__init__(env)
self._reset_once = True
self._obs_dict = None
def run(self, trainer: Optional["omni.isaac.gym.vec_env.vec_env_mt.TrainerMT"] = None) -> None:
"""Run the simulation in the main thread
This method is valid only for the Omniverse Isaac Gym multi-threaded environments
:param trainer: Trainer which should implement a ``run`` method that initiates the RL loop on a new thread
:type trainer: omni.isaac.gym.vec_env.vec_env_mt.TrainerMT, optional
"""
self._env.run(trainer)
def step(self, actions: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Any]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: torch.Tensor
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of torch.Tensor and any other info
"""
self._obs_dict, reward, terminated, info = self._env.step(actions)
truncated = info["time_outs"] if "time_outs" in info else torch.zeros_like(terminated)
return self._obs_dict["obs"], reward.view(-1, 1), terminated.view(-1, 1), truncated.view(-1, 1), info
def reset(self) -> Tuple[torch.Tensor, Any]:
"""Reset the environment
:return: Observation, info
:rtype: torch.Tensor and any other info
"""
if self._reset_once:
self._obs_dict = self._env.reset()
self._reset_once = False
return self._obs_dict["obs"], {}
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
pass
def close(self) -> None:
"""Close the environment
"""
self._env.close()
| 2,133 | Python | 32.873015 | 114 | 0.619316 |
Toni-SM/skrl/skrl/envs/wrappers/jax/gym_envs.py | from typing import Any, Optional, Tuple, Union
import gym
from packaging import version
import jax
import numpy as np
from skrl import logger
from skrl.envs.wrappers.jax.base import Wrapper
class GymWrapper(Wrapper):
def __init__(self, env: Any) -> None:
"""OpenAI Gym environment wrapper
:param env: The environment to wrap
:type env: Any supported OpenAI Gym environment
"""
super().__init__(env)
self._vectorized = False
try:
if isinstance(env, gym.vector.SyncVectorEnv) or isinstance(env, gym.vector.AsyncVectorEnv):
self._vectorized = True
self._reset_once = True
self._obs_tensor = None
self._info_dict = None
except Exception as e:
logger.warning(f"Failed to check for a vectorized environment: {e}")
self._deprecated_api = version.parse(gym.__version__) < version.parse("0.25.0")
if self._deprecated_api:
logger.warning(f"Using a deprecated version of OpenAI Gym's API: {gym.__version__}")
@property
def state_space(self) -> gym.Space:
"""State space
An alias for the ``observation_space`` property
"""
if self._vectorized:
return self._env.single_observation_space
return self._env.observation_space
@property
def observation_space(self) -> gym.Space:
"""Observation space
"""
if self._vectorized:
return self._env.single_observation_space
return self._env.observation_space
@property
def action_space(self) -> gym.Space:
"""Action space
"""
if self._vectorized:
return self._env.single_action_space
return self._env.action_space
def _observation_to_tensor(self, observation: Any, space: Optional[gym.Space] = None) -> np.ndarray:
"""Convert the OpenAI Gym observation to a flat tensor
:param observation: The OpenAI Gym observation to convert to a tensor
:type observation: Any supported OpenAI Gym observation space
:raises: ValueError if the observation space type is not supported
:return: The observation as a flat tensor
:rtype: np.ndarray
"""
observation_space = self._env.observation_space if self._vectorized else self.observation_space
space = space if space is not None else observation_space
if self._vectorized and isinstance(space, gym.spaces.MultiDiscrete):
return observation.reshape(self.num_envs, -1).astype(np.int32)
elif isinstance(observation, int):
return np.array(observation, dtype=np.int32).reshape(self.num_envs, -1)
elif isinstance(observation, np.ndarray):
return observation.reshape(self.num_envs, -1).astype(np.float32)
elif isinstance(space, gym.spaces.Discrete):
return np.array(observation, dtype=np.float32).reshape(self.num_envs, -1)
elif isinstance(space, gym.spaces.Box):
return observation.reshape(self.num_envs, -1).astype(np.float32)
elif isinstance(space, gym.spaces.Dict):
tmp = np.concatenate([self._observation_to_tensor(observation[k], space[k]) \
for k in sorted(space.keys())], axis=-1).reshape(self.num_envs, -1)
return tmp
else:
raise ValueError(f"Observation space type {type(space)} not supported. Please report this issue")
def _tensor_to_action(self, actions: np.ndarray) -> Any:
"""Convert the action to the OpenAI Gym expected format
:param actions: The actions to perform
:type actions: np.ndarray
:raise ValueError: If the action space type is not supported
:return: The action in the OpenAI Gym format
:rtype: Any supported OpenAI Gym action space
"""
space = self._env.action_space if self._vectorized else self.action_space
if self._vectorized:
if isinstance(space, gym.spaces.MultiDiscrete):
return actions.astype(space.dtype).reshape(space.shape)
elif isinstance(space, gym.spaces.Tuple):
if isinstance(space[0], gym.spaces.Box):
return actions.astype(space[0].dtype).reshape(space.shape)
elif isinstance(space[0], gym.spaces.Discrete):
return actions.astype(space[0].dtype).reshape(-1)
elif isinstance(space, gym.spaces.Discrete):
return actions.item()
elif isinstance(space, gym.spaces.MultiDiscrete):
return actions.astype(space.dtype).reshape(space.shape)
elif isinstance(space, gym.spaces.Box):
return actions.astype(space.dtype).reshape(space.shape)
raise ValueError(f"Action space type {type(space)} not supported. Please report this issue")
def step(self, actions: Union[np.ndarray, jax.Array]) -> \
Tuple[Union[np.ndarray, jax.Array], Union[np.ndarray, jax.Array],
Union[np.ndarray, jax.Array], Union[np.ndarray, jax.Array], Any]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: np.ndarray or jax.Array
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of np.ndarray or jax.Array and any other info
"""
if self._jax:
actions = jax.device_get(actions)
if self._deprecated_api:
observation, reward, terminated, info = self._env.step(self._tensor_to_action(actions))
# truncated: https://gymnasium.farama.org/tutorials/handling_time_limits
if type(info) is list:
truncated = np.array([d.get("TimeLimit.truncated", False) for d in info], dtype=terminated.dtype)
terminated *= np.logical_not(truncated)
else:
truncated = info.get("TimeLimit.truncated", False)
if truncated:
terminated = False
else:
observation, reward, terminated, truncated, info = self._env.step(self._tensor_to_action(actions))
# convert response to numpy or jax
observation = self._observation_to_tensor(observation)
reward = np.array(reward, dtype=np.float32).reshape(self.num_envs, -1)
terminated = np.array(terminated, dtype=np.int8).reshape(self.num_envs, -1)
truncated = np.array(truncated, dtype=np.int8).reshape(self.num_envs, -1)
# save observation and info for vectorized envs
if self._vectorized:
self._obs_tensor = observation
self._info_dict = info
return observation, reward, terminated, truncated, info
def reset(self) -> Tuple[Union[np.ndarray, jax.Array], Any]:
"""Reset the environment
:return: Observation, info
:rtype: np.ndarray or jax.Array and any other info
"""
# handle vectorized envs
if self._vectorized:
if not self._reset_once:
return self._obs_tensor, self._info_dict
self._reset_once = False
# reset the env/envs
if self._deprecated_api:
observation = self._env.reset()
info = {}
else:
observation, info = self._env.reset()
return self._observation_to_tensor(observation), info
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
self._env.render(*args, **kwargs)
def close(self) -> None:
"""Close the environment
"""
self._env.close()
| 7,637 | Python | 39.2 | 113 | 0.618437 |
Toni-SM/skrl/skrl/envs/wrappers/jax/bidexhands_envs.py | from typing import Any, Mapping, Sequence, Tuple, Union
import gym
import jax
import jax.dlpack
import numpy as np
try:
import torch
import torch.utils.dlpack
except:
pass # TODO: show warning message
from skrl.envs.wrappers.jax.base import MultiAgentEnvWrapper
def _jax2torch(array, device, from_jax=True):
return torch.utils.dlpack.from_dlpack(jax.dlpack.to_dlpack(array)) if from_jax else torch.tensor(array, device=device)
def _torch2jax(tensor, to_jax=True):
return jax.dlpack.from_dlpack(torch.utils.dlpack.to_dlpack(tensor.contiguous())) if to_jax else tensor.cpu().numpy()
class BiDexHandsWrapper(MultiAgentEnvWrapper):
def __init__(self, env: Any) -> None:
"""Bi-DexHands wrapper
:param env: The environment to wrap
:type env: Any supported Bi-DexHands environment
"""
super().__init__(env)
self._reset_once = True
self._obs_buf = None
self._shared_obs_buf = None
self.possible_agents = [f"agent_{i}" for i in range(self.num_agents)]
@property
def agents(self) -> Sequence[str]:
"""Names of all current agents
These may be changed as an environment progresses (i.e. agents can be added or removed)
"""
return self.possible_agents
@property
def observation_spaces(self) -> Mapping[str, gym.Space]:
"""Observation spaces
"""
return {uid: space for uid, space in zip(self.possible_agents, self._env.observation_space)}
@property
def action_spaces(self) -> Mapping[str, gym.Space]:
"""Action spaces
"""
return {uid: space for uid, space in zip(self.possible_agents, self._env.action_space)}
@property
def shared_observation_spaces(self) -> Mapping[str, gym.Space]:
"""Shared observation spaces
"""
return {uid: space for uid, space in zip(self.possible_agents, self._env.share_observation_space)}
def step(self, actions: Mapping[str, Union[np.ndarray, jax.Array]]) -> \
Tuple[Mapping[str, Union[np.ndarray, jax.Array]], Mapping[str, Union[np.ndarray, jax.Array]],
Mapping[str, Union[np.ndarray, jax.Array]], Mapping[str, Union[np.ndarray, jax.Array]],
Mapping[str, Any]]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: dict of nd.ndarray or jax.Array
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of dict of nd.ndarray or jax.Array and any other info
"""
actions = [_jax2torch(actions[uid], self.device, self._jax) for uid in self.possible_agents]
with torch.no_grad():
obs_buf, shared_obs_buf, reward_buf, terminated_buf, info, _ = self._env.step(actions)
obs_buf = _torch2jax(obs_buf, self._jax)
shared_obs_buf = _torch2jax(shared_obs_buf, self._jax)
reward_buf = _torch2jax(reward_buf, self._jax)
terminated_buf = _torch2jax(terminated_buf.to(dtype=torch.int8), self._jax)
self._obs_buf = {uid: obs_buf[:,i] for i, uid in enumerate(self.possible_agents)}
self._shared_obs_buf = {uid: shared_obs_buf[:,i] for i, uid in enumerate(self.possible_agents)}
reward = {uid: reward_buf[:,i].reshape(-1, 1) for i, uid in enumerate(self.possible_agents)}
terminated = {uid: terminated_buf[:,i].reshape(-1, 1) for i, uid in enumerate(self.possible_agents)}
truncated = terminated
info = {"shared_states": self._shared_obs_buf}
return self._obs_buf, reward, terminated, truncated, info
def reset(self) -> Tuple[Mapping[str, Union[np.ndarray, jax.Array]], Mapping[str, Any]]:
"""Reset the environment
:return: Observation, info
:rtype: tuple of dict of np.ndarray of jax.Array and any other info
"""
if self._reset_once:
obs_buf, shared_obs_buf, _ = self._env.reset()
obs_buf = _torch2jax(obs_buf, self._jax)
shared_obs_buf = _torch2jax(shared_obs_buf, self._jax)
self._obs_buf = {uid: obs_buf[:,i] for i, uid in enumerate(self.possible_agents)}
self._shared_obs_buf = {uid: shared_obs_buf[:,i] for i, uid in enumerate(self.possible_agents)}
self._reset_once = False
return self._obs_buf, {"shared_states": self._shared_obs_buf}
| 4,383 | Python | 37.45614 | 122 | 0.635866 |
Toni-SM/skrl/skrl/envs/wrappers/jax/isaacgym_envs.py | from typing import Any, Tuple, Union
import jax
import jax.dlpack as jax_dlpack
import numpy as np
try:
import torch
import torch.utils.dlpack as torch_dlpack
except:
pass # TODO: show warning message
from skrl import logger
from skrl.envs.wrappers.jax.base import Wrapper
# ML frameworks conversion utilities
# jaxlib.xla_extension.XlaRuntimeError: INVALID_ARGUMENT: DLPack tensor is on GPU, but no GPU backend was provided.
_CPU = jax.devices()[0].device_kind.lower() == "cpu"
if _CPU:
logger.warning("IsaacGymEnvs runs on GPU, but there is no GPU backend for JAX. JAX operations will run on CPU.")
def _jax2torch(array, device, from_jax=True):
if from_jax:
return torch_dlpack.from_dlpack(jax_dlpack.to_dlpack(array)).to(device=device)
return torch.tensor(array, device=device)
def _torch2jax(tensor, to_jax=True):
if to_jax:
return jax_dlpack.from_dlpack(torch_dlpack.to_dlpack(tensor.contiguous().cpu() if _CPU else tensor.contiguous()))
return tensor.cpu().numpy()
class IsaacGymPreview2Wrapper(Wrapper):
def __init__(self, env: Any) -> None:
"""Isaac Gym environment (preview 2) wrapper
:param env: The environment to wrap
:type env: Any supported Isaac Gym environment (preview 2) environment
"""
super().__init__(env)
self._reset_once = True
self._obs_buf = None
def step(self, actions: Union[np.ndarray, jax.Array]) -> \
Tuple[Union[np.ndarray, jax.Array], Union[np.ndarray, jax.Array],
Union[np.ndarray, jax.Array], Union[np.ndarray, jax.Array], Any]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: np.ndarray or jax.Array
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of np.ndarray or jax.Array and any other info
"""
actions = _jax2torch(actions, self._env.device, self._jax)
with torch.no_grad():
self._obs_buf, reward, terminated, info = self._env.step(actions)
terminated = terminated.to(dtype=torch.int8)
truncated = info["time_outs"].to(dtype=torch.int8) if "time_outs" in info else torch.zeros_like(terminated)
return _torch2jax(self._obs_buf, self._jax), \
_torch2jax(reward.view(-1, 1), self._jax), \
_torch2jax(terminated.view(-1, 1), self._jax), \
_torch2jax(truncated.view(-1, 1), self._jax), \
info
def reset(self) -> Tuple[Union[np.ndarray, jax.Array], Any]:
"""Reset the environment
:return: Observation, info
:rtype: np.ndarray or jax.Array and any other info
"""
if self._reset_once:
self._obs_buf = self._env.reset()
self._reset_once = False
return _torch2jax(self._obs_buf, self._jax), {}
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
pass
def close(self) -> None:
"""Close the environment
"""
pass
class IsaacGymPreview3Wrapper(Wrapper):
def __init__(self, env: Any) -> None:
"""Isaac Gym environment (preview 3) wrapper
:param env: The environment to wrap
:type env: Any supported Isaac Gym environment (preview 3) environment
"""
super().__init__(env)
self._reset_once = True
self._obs_dict = None
def step(self, actions: Union[np.ndarray, jax.Array]) ->\
Tuple[Union[np.ndarray, jax.Array], Union[np.ndarray, jax.Array],
Union[np.ndarray, jax.Array], Union[np.ndarray, jax.Array], Any]:
"""Perform a step in the environment
:param actions: The actions to perform
:type actions: np.ndarray or jax.Array
:return: Observation, reward, terminated, truncated, info
:rtype: tuple of np.ndarray or jax.Array and any other info
"""
actions = _jax2torch(actions, self._env.device, self._jax)
with torch.no_grad():
self._obs_dict, reward, terminated, info = self._env.step(actions)
terminated = terminated.to(dtype=torch.int8)
truncated = info["time_outs"].to(dtype=torch.int8) if "time_outs" in info else torch.zeros_like(terminated)
return _torch2jax(self._obs_dict["obs"], self._jax), \
_torch2jax(reward.view(-1, 1), self._jax), \
_torch2jax(terminated.view(-1, 1), self._jax), \
_torch2jax(truncated.view(-1, 1), self._jax), \
info
def reset(self) -> Tuple[Union[np.ndarray, jax.Array], Any]:
"""Reset the environment
:return: Observation, info
:rtype: np.ndarray or jax.Array and any other info
"""
if self._reset_once:
self._obs_dict = self._env.reset()
self._reset_once = False
return _torch2jax(self._obs_dict["obs"], self._jax), {}
def render(self, *args, **kwargs) -> None:
"""Render the environment
"""
pass
def close(self) -> None:
"""Close the environment
"""
pass
| 5,142 | Python | 33.059602 | 121 | 0.608129 |
Toni-SM/skrl/skrl/agents/torch/base.py | from typing import Any, Mapping, Optional, Tuple, Union
import collections
import copy
import datetime
import os
import gym
import gymnasium
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from skrl import logger
from skrl.memories.torch import Memory
from skrl.models.torch import Model
class Agent:
def __init__(self,
models: Mapping[str, Model],
memory: Optional[Union[Memory, Tuple[Memory]]] = None,
observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
device: Optional[Union[str, torch.device]] = None,
cfg: Optional[dict] = None) -> None:
"""Base class that represent a RL agent
:param models: Models used by the agent
:type models: dictionary of skrl.models.torch.Model
:param memory: Memory to storage the transitions.
If it is a tuple, the first element will be used for training and
for the rest only the environment transitions will be added
:type memory: skrl.memory.torch.Memory, list of skrl.memory.torch.Memory or None
:param observation_space: Observation/state space or shape (default: ``None``)
:type observation_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param action_space: Action space or shape (default: ``None``)
:type action_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param device: Device on which a tensor/array is or will be allocated (default: ``None``).
If None, the device will be either ``"cuda"`` if available or ``"cpu"``
:type device: str or torch.device, optional
:param cfg: Configuration dictionary
:type cfg: dict
"""
self.models = models
self.observation_space = observation_space
self.action_space = action_space
self.cfg = cfg if cfg is not None else {}
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if device is None else torch.device(device)
if type(memory) is list:
self.memory = memory[0]
self.secondary_memories = memory[1:]
else:
self.memory = memory
self.secondary_memories = []
# convert the models to their respective device
for model in self.models.values():
if model is not None:
model.to(model.device)
self.tracking_data = collections.defaultdict(list)
self.write_interval = self.cfg.get("experiment", {}).get("write_interval", 1000)
self._track_rewards = collections.deque(maxlen=100)
self._track_timesteps = collections.deque(maxlen=100)
self._cumulative_rewards = None
self._cumulative_timesteps = None
self.training = True
# checkpoint
self.checkpoint_modules = {}
self.checkpoint_interval = self.cfg.get("experiment", {}).get("checkpoint_interval", 1000)
self.checkpoint_store_separately = self.cfg.get("experiment", {}).get("store_separately", False)
self.checkpoint_best_modules = {"timestep": 0, "reward": -2 ** 31, "saved": False, "modules": {}}
# experiment directory
directory = self.cfg.get("experiment", {}).get("directory", "")
experiment_name = self.cfg.get("experiment", {}).get("experiment_name", "")
if not directory:
directory = os.path.join(os.getcwd(), "runs")
if not experiment_name:
experiment_name = "{}_{}".format(datetime.datetime.now().strftime("%y-%m-%d_%H-%M-%S-%f"), self.__class__.__name__)
self.experiment_dir = os.path.join(directory, experiment_name)
def __str__(self) -> str:
"""Generate a representation of the agent as string
:return: Representation of the agent as string
:rtype: str
"""
string = f"Agent: {repr(self)}"
for k, v in self.cfg.items():
if type(v) is dict:
string += f"\n |-- {k}"
for k1, v1 in v.items():
string += f"\n | |-- {k1}: {v1}"
else:
string += f"\n |-- {k}: {v}"
return string
def _empty_preprocessor(self, _input: Any, *args, **kwargs) -> Any:
"""Empty preprocess method
This method is defined because PyTorch multiprocessing can't pickle lambdas
:param _input: Input to preprocess
:type _input: Any
:return: Preprocessed input
:rtype: Any
"""
return _input
def _get_internal_value(self, _module: Any) -> Any:
"""Get internal module/variable state/value
:param _module: Module or variable
:type _module: Any
:return: Module/variable state/value
:rtype: Any
"""
return _module.state_dict() if hasattr(_module, "state_dict") else _module
def init(self, trainer_cfg: Optional[Mapping[str, Any]] = None) -> None:
"""Initialize the agent
This method should be called before the agent is used.
It will initialize the TensoBoard writer (and optionally Weights & Biases) and create the checkpoints directory
:param trainer_cfg: Trainer configuration
:type trainer_cfg: dict, optional
"""
# setup Weights & Biases
if self.cfg.get("experiment", {}).get("wandb", False):
# save experiment config
trainer_cfg = trainer_cfg if trainer_cfg is not None else {}
try:
models_cfg = {k: v.net._modules for (k, v) in self.models.items()}
except AttributeError:
models_cfg = {k: v._modules for (k, v) in self.models.items()}
config={**self.cfg, **trainer_cfg, **models_cfg}
# set default values
wandb_kwargs = copy.deepcopy(self.cfg.get("experiment", {}).get("wandb_kwargs", {}))
wandb_kwargs.setdefault("name", os.path.split(self.experiment_dir)[-1])
wandb_kwargs.setdefault("sync_tensorboard", True)
wandb_kwargs.setdefault("config", {})
wandb_kwargs["config"].update(config)
# init Weights & Biases
import wandb
wandb.init(**wandb_kwargs)
# main entry to log data for consumption and visualization by TensorBoard
if self.write_interval > 0:
self.writer = SummaryWriter(log_dir=self.experiment_dir)
if self.checkpoint_interval > 0:
os.makedirs(os.path.join(self.experiment_dir, "checkpoints"), exist_ok=True)
def track_data(self, tag: str, value: float) -> None:
"""Track data to TensorBoard
Currently only scalar data are supported
:param tag: Data identifier (e.g. 'Loss / policy loss')
:type tag: str
:param value: Value to track
:type value: float
"""
self.tracking_data[tag].append(value)
def write_tracking_data(self, timestep: int, timesteps: int) -> None:
"""Write tracking data to TensorBoard
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
for k, v in self.tracking_data.items():
if k.endswith("(min)"):
self.writer.add_scalar(k, np.min(v), timestep)
elif k.endswith("(max)"):
self.writer.add_scalar(k, np.max(v), timestep)
else:
self.writer.add_scalar(k, np.mean(v), timestep)
# reset data containers for next iteration
self._track_rewards.clear()
self._track_timesteps.clear()
self.tracking_data.clear()
def write_checkpoint(self, timestep: int, timesteps: int) -> None:
"""Write checkpoint (modules) to disk
The checkpoints are saved in the directory 'checkpoints' in the experiment directory.
The name of the checkpoint is the current timestep if timestep is not None, otherwise it is the current time.
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
tag = str(timestep if timestep is not None else datetime.datetime.now().strftime("%y-%m-%d_%H-%M-%S-%f"))
# separated modules
if self.checkpoint_store_separately:
for name, module in self.checkpoint_modules.items():
torch.save(self._get_internal_value(module),
os.path.join(self.experiment_dir, "checkpoints", f"{name}_{tag}.pt"))
# whole agent
else:
modules = {}
for name, module in self.checkpoint_modules.items():
modules[name] = self._get_internal_value(module)
torch.save(modules, os.path.join(self.experiment_dir, "checkpoints", f"agent_{tag}.pt"))
# best modules
if self.checkpoint_best_modules["modules"] and not self.checkpoint_best_modules["saved"]:
# separated modules
if self.checkpoint_store_separately:
for name, module in self.checkpoint_modules.items():
torch.save(self.checkpoint_best_modules["modules"][name],
os.path.join(self.experiment_dir, "checkpoints", f"best_{name}.pt"))
# whole agent
else:
modules = {}
for name, module in self.checkpoint_modules.items():
modules[name] = self.checkpoint_best_modules["modules"][name]
torch.save(modules, os.path.join(self.experiment_dir, "checkpoints", "best_agent.pt"))
self.checkpoint_best_modules["saved"] = True
def act(self,
states: torch.Tensor,
timestep: int,
timesteps: int) -> torch.Tensor:
"""Process the environment's states to make a decision (actions) using the main policy
:param states: Environment's states
:type states: torch.Tensor
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:raises NotImplementedError: The method is not implemented by the inheriting classes
:return: Actions
:rtype: torch.Tensor
"""
raise NotImplementedError
def record_transition(self,
states: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
next_states: torch.Tensor,
terminated: torch.Tensor,
truncated: torch.Tensor,
infos: Any,
timestep: int,
timesteps: int) -> None:
"""Record an environment transition in memory (to be implemented by the inheriting classes)
Inheriting classes must call this method to record episode information (rewards, timesteps, etc.).
In addition to recording environment transition (such as states, rewards, etc.), agent information can be recorded.
:param states: Observations/states of the environment used to make the decision
:type states: torch.Tensor
:param actions: Actions taken by the agent
:type actions: torch.Tensor
:param rewards: Instant rewards achieved by the current actions
:type rewards: torch.Tensor
:param next_states: Next observations/states of the environment
:type next_states: torch.Tensor
:param terminated: Signals to indicate that episodes have terminated
:type terminated: torch.Tensor
:param truncated: Signals to indicate that episodes have been truncated
:type truncated: torch.Tensor
:param infos: Additional information about the environment
:type infos: Any type supported by the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
if self.write_interval > 0:
# compute the cumulative sum of the rewards and timesteps
if self._cumulative_rewards is None:
self._cumulative_rewards = torch.zeros_like(rewards, dtype=torch.float32)
self._cumulative_timesteps = torch.zeros_like(rewards, dtype=torch.int32)
self._cumulative_rewards.add_(rewards)
self._cumulative_timesteps.add_(1)
# check ended episodes
finished_episodes = (terminated + truncated).nonzero(as_tuple=False)
if finished_episodes.numel():
# storage cumulative rewards and timesteps
self._track_rewards.extend(self._cumulative_rewards[finished_episodes][:, 0].reshape(-1).tolist())
self._track_timesteps.extend(self._cumulative_timesteps[finished_episodes][:, 0].reshape(-1).tolist())
# reset the cumulative rewards and timesteps
self._cumulative_rewards[finished_episodes] = 0
self._cumulative_timesteps[finished_episodes] = 0
# record data
self.tracking_data["Reward / Instantaneous reward (max)"].append(torch.max(rewards).item())
self.tracking_data["Reward / Instantaneous reward (min)"].append(torch.min(rewards).item())
self.tracking_data["Reward / Instantaneous reward (mean)"].append(torch.mean(rewards).item())
if len(self._track_rewards):
track_rewards = np.array(self._track_rewards)
track_timesteps = np.array(self._track_timesteps)
self.tracking_data["Reward / Total reward (max)"].append(np.max(track_rewards))
self.tracking_data["Reward / Total reward (min)"].append(np.min(track_rewards))
self.tracking_data["Reward / Total reward (mean)"].append(np.mean(track_rewards))
self.tracking_data["Episode / Total timesteps (max)"].append(np.max(track_timesteps))
self.tracking_data["Episode / Total timesteps (min)"].append(np.min(track_timesteps))
self.tracking_data["Episode / Total timesteps (mean)"].append(np.mean(track_timesteps))
def set_mode(self, mode: str) -> None:
"""Set the model mode (training or evaluation)
:param mode: Mode: 'train' for training or 'eval' for evaluation
:type mode: str
"""
for model in self.models.values():
if model is not None:
model.set_mode(mode)
def set_running_mode(self, mode: str) -> None:
"""Set the current running mode (training or evaluation)
This method sets the value of the ``training`` property (boolean).
This property can be used to know if the agent is running in training or evaluation mode.
:param mode: Mode: 'train' for training or 'eval' for evaluation
:type mode: str
"""
self.training = mode == "train"
def save(self, path: str) -> None:
"""Save the agent to the specified path
:param path: Path to save the model to
:type path: str
"""
modules = {}
for name, module in self.checkpoint_modules.items():
modules[name] = self._get_internal_value(module)
torch.save(modules, path)
def load(self, path: str) -> None:
"""Load the model from the specified path
The final storage device is determined by the constructor of the model
:param path: Path to load the model from
:type path: str
"""
modules = torch.load(path, map_location=self.device)
if type(modules) is dict:
for name, data in modules.items():
module = self.checkpoint_modules.get(name, None)
if module is not None:
if hasattr(module, "load_state_dict"):
module.load_state_dict(data)
if hasattr(module, "eval"):
module.eval()
else:
raise NotImplementedError
else:
logger.warning(f"Cannot load the {name} module. The agent doesn't have such an instance")
def migrate(self,
path: str,
name_map: Mapping[str, Mapping[str, str]] = {},
auto_mapping: bool = True,
verbose: bool = False) -> bool:
"""Migrate the specified extrernal checkpoint to the current agent
The final storage device is determined by the constructor of the agent.
Only files generated by the *rl_games* library are supported at the moment
For ambiguous models (where 2 or more parameters, for source or current model, have equal shape)
it is necessary to define the ``name_map``, at least for those parameters, to perform the migration successfully
:param path: Path to the external checkpoint to migrate from
:type path: str
:param name_map: Name map to use for the migration (default: ``{}``).
Keys are the current parameter names and values are the external parameter names
:type name_map: Mapping[str, Mapping[str, str]], optional
:param auto_mapping: Automatically map the external state dict to the current state dict (default: ``True``)
:type auto_mapping: bool, optional
:param verbose: Show model names and migration (default: ``False``)
:type verbose: bool, optional
:raises ValueError: If the correct file type cannot be identified from the ``path`` parameter
:return: True if the migration was successful, False otherwise.
Migration is successful if all parameters of the current model are found in the external model
:rtype: bool
Example::
# migrate a rl_games checkpoint with ambiguous state_dict
>>> agent.migrate(path="./runs/Cartpole/nn/Cartpole.pth", verbose=False)
[skrl:WARNING] Ambiguous match for net.0.bias <- [a2c_network.actor_mlp.0.bias, a2c_network.actor_mlp.2.bias]
[skrl:WARNING] Ambiguous match for net.2.bias <- [a2c_network.actor_mlp.0.bias, a2c_network.actor_mlp.2.bias]
[skrl:WARNING] Ambiguous match for net.4.weight <- [a2c_network.value.weight, a2c_network.mu.weight]
[skrl:WARNING] Ambiguous match for net.4.bias <- [a2c_network.value.bias, a2c_network.mu.bias]
[skrl:WARNING] Multiple use of a2c_network.actor_mlp.0.bias -> [net.0.bias, net.2.bias]
[skrl:WARNING] Multiple use of a2c_network.actor_mlp.2.bias -> [net.0.bias, net.2.bias]
[skrl:WARNING] Ambiguous match for net.0.bias <- [a2c_network.actor_mlp.0.bias, a2c_network.actor_mlp.2.bias]
[skrl:WARNING] Ambiguous match for net.2.bias <- [a2c_network.actor_mlp.0.bias, a2c_network.actor_mlp.2.bias]
[skrl:WARNING] Ambiguous match for net.4.weight <- [a2c_network.value.weight, a2c_network.mu.weight]
[skrl:WARNING] Ambiguous match for net.4.bias <- [a2c_network.value.bias, a2c_network.mu.bias]
[skrl:WARNING] Multiple use of a2c_network.actor_mlp.0.bias -> [net.0.bias, net.2.bias]
[skrl:WARNING] Multiple use of a2c_network.actor_mlp.2.bias -> [net.0.bias, net.2.bias]
False
>>> name_map = {"policy": {"net.0.bias": "a2c_network.actor_mlp.0.bias",
... "net.2.bias": "a2c_network.actor_mlp.2.bias",
... "net.4.weight": "a2c_network.mu.weight",
... "net.4.bias": "a2c_network.mu.bias"},
... "value": {"net.0.bias": "a2c_network.actor_mlp.0.bias",
... "net.2.bias": "a2c_network.actor_mlp.2.bias",
... "net.4.weight": "a2c_network.value.weight",
... "net.4.bias": "a2c_network.value.bias"}}
>>> model.migrate(path="./runs/Cartpole/nn/Cartpole.pth", name_map=name_map, verbose=True)
[skrl:INFO] Modules
[skrl:INFO] |-- current
[skrl:INFO] | |-- policy (Policy)
[skrl:INFO] | | |-- log_std_parameter : [1]
[skrl:INFO] | | |-- net.0.weight : [32, 4]
[skrl:INFO] | | |-- net.0.bias : [32]
[skrl:INFO] | | |-- net.2.weight : [32, 32]
[skrl:INFO] | | |-- net.2.bias : [32]
[skrl:INFO] | | |-- net.4.weight : [1, 32]
[skrl:INFO] | | |-- net.4.bias : [1]
[skrl:INFO] | |-- value (Value)
[skrl:INFO] | | |-- net.0.weight : [32, 4]
[skrl:INFO] | | |-- net.0.bias : [32]
[skrl:INFO] | | |-- net.2.weight : [32, 32]
[skrl:INFO] | | |-- net.2.bias : [32]
[skrl:INFO] | | |-- net.4.weight : [1, 32]
[skrl:INFO] | | |-- net.4.bias : [1]
[skrl:INFO] | |-- optimizer (Adam)
[skrl:INFO] | | |-- state (dict)
[skrl:INFO] | | |-- param_groups (list)
[skrl:INFO] | |-- state_preprocessor (RunningStandardScaler)
[skrl:INFO] | | |-- running_mean : [4]
[skrl:INFO] | | |-- running_variance : [4]
[skrl:INFO] | | |-- current_count : []
[skrl:INFO] | |-- value_preprocessor (RunningStandardScaler)
[skrl:INFO] | | |-- running_mean : [1]
[skrl:INFO] | | |-- running_variance : [1]
[skrl:INFO] | | |-- current_count : []
[skrl:INFO] |-- source
[skrl:INFO] | |-- model (OrderedDict)
[skrl:INFO] | | |-- value_mean_std.running_mean : [1]
[skrl:INFO] | | |-- value_mean_std.running_var : [1]
[skrl:INFO] | | |-- value_mean_std.count : []
[skrl:INFO] | | |-- running_mean_std.running_mean : [4]
[skrl:INFO] | | |-- running_mean_std.running_var : [4]
[skrl:INFO] | | |-- running_mean_std.count : []
[skrl:INFO] | | |-- a2c_network.sigma : [1]
[skrl:INFO] | | |-- a2c_network.actor_mlp.0.weight : [32, 4]
[skrl:INFO] | | |-- a2c_network.actor_mlp.0.bias : [32]
[skrl:INFO] | | |-- a2c_network.actor_mlp.2.weight : [32, 32]
[skrl:INFO] | | |-- a2c_network.actor_mlp.2.bias : [32]
[skrl:INFO] | | |-- a2c_network.value.weight : [1, 32]
[skrl:INFO] | | |-- a2c_network.value.bias : [1]
[skrl:INFO] | | |-- a2c_network.mu.weight : [1, 32]
[skrl:INFO] | | |-- a2c_network.mu.bias : [1]
[skrl:INFO] | |-- epoch (int)
[skrl:INFO] | |-- optimizer (dict)
[skrl:INFO] | |-- frame (int)
[skrl:INFO] | |-- last_mean_rewards (float32)
[skrl:INFO] | |-- env_state (NoneType)
[skrl:INFO] Migration
[skrl:INFO] Model: policy (Policy)
[skrl:INFO] Models
[skrl:INFO] |-- current: 7 items
[skrl:INFO] | |-- log_std_parameter : [1]
[skrl:INFO] | |-- net.0.weight : [32, 4]
[skrl:INFO] | |-- net.0.bias : [32]
[skrl:INFO] | |-- net.2.weight : [32, 32]
[skrl:INFO] | |-- net.2.bias : [32]
[skrl:INFO] | |-- net.4.weight : [1, 32]
[skrl:INFO] | |-- net.4.bias : [1]
[skrl:INFO] |-- source: 9 items
[skrl:INFO] | |-- a2c_network.sigma : [1]
[skrl:INFO] | |-- a2c_network.actor_mlp.0.weight : [32, 4]
[skrl:INFO] | |-- a2c_network.actor_mlp.0.bias : [32]
[skrl:INFO] | |-- a2c_network.actor_mlp.2.weight : [32, 32]
[skrl:INFO] | |-- a2c_network.actor_mlp.2.bias : [32]
[skrl:INFO] | |-- a2c_network.value.weight : [1, 32]
[skrl:INFO] | |-- a2c_network.value.bias : [1]
[skrl:INFO] | |-- a2c_network.mu.weight : [1, 32]
[skrl:INFO] | |-- a2c_network.mu.bias : [1]
[skrl:INFO] Migration
[skrl:INFO] |-- auto: log_std_parameter <- a2c_network.sigma
[skrl:INFO] |-- auto: net.0.weight <- a2c_network.actor_mlp.0.weight
[skrl:INFO] |-- map: net.0.bias <- a2c_network.actor_mlp.0.bias
[skrl:INFO] |-- auto: net.2.weight <- a2c_network.actor_mlp.2.weight
[skrl:INFO] |-- map: net.2.bias <- a2c_network.actor_mlp.2.bias
[skrl:INFO] |-- map: net.4.weight <- a2c_network.mu.weight
[skrl:INFO] |-- map: net.4.bias <- a2c_network.mu.bias
[skrl:INFO] Model: value (Value)
[skrl:INFO] Models
[skrl:INFO] |-- current: 6 items
[skrl:INFO] | |-- net.0.weight : [32, 4]
[skrl:INFO] | |-- net.0.bias : [32]
[skrl:INFO] | |-- net.2.weight : [32, 32]
[skrl:INFO] | |-- net.2.bias : [32]
[skrl:INFO] | |-- net.4.weight : [1, 32]
[skrl:INFO] | |-- net.4.bias : [1]
[skrl:INFO] |-- source: 9 items
[skrl:INFO] | |-- a2c_network.sigma : [1]
[skrl:INFO] | |-- a2c_network.actor_mlp.0.weight : [32, 4]
[skrl:INFO] | |-- a2c_network.actor_mlp.0.bias : [32]
[skrl:INFO] | |-- a2c_network.actor_mlp.2.weight : [32, 32]
[skrl:INFO] | |-- a2c_network.actor_mlp.2.bias : [32]
[skrl:INFO] | |-- a2c_network.value.weight : [1, 32]
[skrl:INFO] | |-- a2c_network.value.bias : [1]
[skrl:INFO] | |-- a2c_network.mu.weight : [1, 32]
[skrl:INFO] | |-- a2c_network.mu.bias : [1]
[skrl:INFO] Migration
[skrl:INFO] |-- auto: net.0.weight <- a2c_network.actor_mlp.0.weight
[skrl:INFO] |-- map: net.0.bias <- a2c_network.actor_mlp.0.bias
[skrl:INFO] |-- auto: net.2.weight <- a2c_network.actor_mlp.2.weight
[skrl:INFO] |-- map: net.2.bias <- a2c_network.actor_mlp.2.bias
[skrl:INFO] |-- map: net.4.weight <- a2c_network.value.weight
[skrl:INFO] |-- map: net.4.bias <- a2c_network.value.bias
True
"""
# load state_dict from path
if path is not None:
# rl_games checkpoint
if path.endswith(".pt") or path.endswith(".pth"):
checkpoint = torch.load(path, map_location=self.device)
else:
raise ValueError("Cannot identify file type")
# show modules
if verbose:
logger.info("Modules")
logger.info(" |-- current")
for name, module in self.checkpoint_modules.items():
logger.info(f" | |-- {name} ({type(module).__name__})")
if hasattr(module, "state_dict"):
for k, v in module.state_dict().items():
if hasattr(v, "shape"):
logger.info(f" | | |-- {k} : {list(v.shape)}")
else:
logger.info(f" | | |-- {k} ({type(v).__name__})")
logger.info(" |-- source")
for name, module in checkpoint.items():
logger.info(f" | |-- {name} ({type(module).__name__})")
if name == "model":
for k, v in module.items():
logger.info(f" | | |-- {k} : {list(v.shape)}")
else:
if hasattr(module, "state_dict"):
for k, v in module.state_dict().items():
if hasattr(v, "shape"):
logger.info(f" | | |-- {k} : {list(v.shape)}")
else:
logger.info(f" | | |-- {k} ({type(v).__name__})")
logger.info("Migration")
if "optimizer" in self.checkpoint_modules:
# loaded state dict contains a parameter group that doesn't match the size of optimizer's group
# self.checkpoint_modules["optimizer"].load_state_dict(checkpoint["optimizer"])
pass
# state_preprocessor
if "state_preprocessor" in self.checkpoint_modules:
if "running_mean_std.running_mean" in checkpoint["model"]:
state_dict = copy.deepcopy(self.checkpoint_modules["state_preprocessor"].state_dict())
state_dict["running_mean"] = checkpoint["model"]["running_mean_std.running_mean"]
state_dict["running_variance"] = checkpoint["model"]["running_mean_std.running_var"]
state_dict["current_count"] = checkpoint["model"]["running_mean_std.count"]
self.checkpoint_modules["state_preprocessor"].load_state_dict(state_dict)
del checkpoint["model"]["running_mean_std.running_mean"]
del checkpoint["model"]["running_mean_std.running_var"]
del checkpoint["model"]["running_mean_std.count"]
# value_preprocessor
if "value_preprocessor" in self.checkpoint_modules:
if "value_mean_std.running_mean" in checkpoint["model"]:
state_dict = copy.deepcopy(self.checkpoint_modules["value_preprocessor"].state_dict())
state_dict["running_mean"] = checkpoint["model"]["value_mean_std.running_mean"]
state_dict["running_variance"] = checkpoint["model"]["value_mean_std.running_var"]
state_dict["current_count"] = checkpoint["model"]["value_mean_std.count"]
self.checkpoint_modules["value_preprocessor"].load_state_dict(state_dict)
del checkpoint["model"]["value_mean_std.running_mean"]
del checkpoint["model"]["value_mean_std.running_var"]
del checkpoint["model"]["value_mean_std.count"]
# TODO: AMP state preprocessor
# model
status = True
for name, module in self.checkpoint_modules.items():
if module not in ["state_preprocessor", "value_preprocessor", "optimizer"] and hasattr(module, "migrate"):
if verbose:
logger.info(f"Model: {name} ({type(module).__name__})")
status *= module.migrate(state_dict=checkpoint["model"],
name_map=name_map.get(name, {}),
auto_mapping=auto_mapping,
verbose=verbose)
self.set_mode("eval")
return bool(status)
def pre_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called before the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
pass
def post_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called after the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
timestep += 1
# update best models and write checkpoints
if timestep > 1 and self.checkpoint_interval > 0 and not timestep % self.checkpoint_interval:
# update best models
reward = np.mean(self.tracking_data.get("Reward / Total reward (mean)", -2 ** 31))
if reward > self.checkpoint_best_modules["reward"]:
self.checkpoint_best_modules["timestep"] = timestep
self.checkpoint_best_modules["reward"] = reward
self.checkpoint_best_modules["saved"] = False
self.checkpoint_best_modules["modules"] = {k: copy.deepcopy(self._get_internal_value(v)) for k, v in self.checkpoint_modules.items()}
# write checkpoints
self.write_checkpoint(timestep, timesteps)
# write to tensorboard
if timestep > 1 and self.write_interval > 0 and not timestep % self.write_interval:
self.write_tracking_data(timestep, timesteps)
def _update(self, timestep: int, timesteps: int) -> None:
"""Algorithm's main update step
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:raises NotImplementedError: The method is not implemented by the inheriting classes
"""
raise NotImplementedError
| 33,314 | Python | 49.097744 | 149 | 0.555082 |
Toni-SM/skrl/skrl/agents/torch/__init__.py | from skrl.agents.torch.base import Agent
| 41 | Python | 19.99999 | 40 | 0.829268 |
Toni-SM/skrl/skrl/agents/torch/trpo/__init__.py | from skrl.agents.torch.trpo.trpo import TRPO, TRPO_DEFAULT_CONFIG
from skrl.agents.torch.trpo.trpo_rnn import TRPO_RNN
| 119 | Python | 38.999987 | 65 | 0.815126 |
Toni-SM/skrl/skrl/agents/torch/trpo/trpo.py | from typing import Any, Mapping, Optional, Tuple, Union
import copy
import gym
import gymnasium
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.convert_parameters import parameters_to_vector, vector_to_parameters
from skrl.agents.torch import Agent
from skrl.memories.torch import Memory
from skrl.models.torch import Model
# [start-config-dict-torch]
TRPO_DEFAULT_CONFIG = {
"rollouts": 16, # number of rollouts before updating
"learning_epochs": 8, # number of learning epochs during each update
"mini_batches": 2, # number of mini batches during each learning epoch
"discount_factor": 0.99, # discount factor (gamma)
"lambda": 0.95, # TD(lambda) coefficient (lam) for computing returns and advantages
"value_learning_rate": 1e-3, # value learning rate
"learning_rate_scheduler": None, # learning rate scheduler class (see torch.optim.lr_scheduler)
"learning_rate_scheduler_kwargs": {}, # learning rate scheduler's kwargs (e.g. {"step_size": 1e-3})
"state_preprocessor": None, # state preprocessor class (see skrl.resources.preprocessors)
"state_preprocessor_kwargs": {}, # state preprocessor's kwargs (e.g. {"size": env.observation_space})
"value_preprocessor": None, # value preprocessor class (see skrl.resources.preprocessors)
"value_preprocessor_kwargs": {}, # value preprocessor's kwargs (e.g. {"size": 1})
"random_timesteps": 0, # random exploration steps
"learning_starts": 0, # learning starts after this many steps
"grad_norm_clip": 0.5, # clipping coefficient for the norm of the gradients
"value_loss_scale": 1.0, # value loss scaling factor
"damping": 0.1, # damping coefficient for computing the Hessian-vector product
"max_kl_divergence": 0.01, # maximum KL divergence between old and new policy
"conjugate_gradient_steps": 10, # maximum number of iterations for the conjugate gradient algorithm
"max_backtrack_steps": 10, # maximum number of backtracking steps during line search
"accept_ratio": 0.5, # accept ratio for the line search loss improvement
"step_fraction": 1.0, # fraction of the step size for the line search
"rewards_shaper": None, # rewards shaping function: Callable(reward, timestep, timesteps) -> reward
"time_limit_bootstrap": False, # bootstrap at timeout termination (episode truncation)
"experiment": {
"directory": "", # experiment's parent directory
"experiment_name": "", # experiment name
"write_interval": 250, # TensorBoard writing interval (timesteps)
"checkpoint_interval": 1000, # interval for checkpoints (timesteps)
"store_separately": False, # whether to store checkpoints separately
"wandb": False, # whether to use Weights & Biases
"wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init)
}
}
# [end-config-dict-torch]
class TRPO(Agent):
def __init__(self,
models: Mapping[str, Model],
memory: Optional[Union[Memory, Tuple[Memory]]] = None,
observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
device: Optional[Union[str, torch.device]] = None,
cfg: Optional[dict] = None) -> None:
"""Trust Region Policy Optimization (TRPO)
https://arxiv.org/abs/1502.05477
:param models: Models used by the agent
:type models: dictionary of skrl.models.torch.Model
:param memory: Memory to storage the transitions.
If it is a tuple, the first element will be used for training and
for the rest only the environment transitions will be added
:type memory: skrl.memory.torch.Memory, list of skrl.memory.torch.Memory or None
:param observation_space: Observation/state space or shape (default: ``None``)
:type observation_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param action_space: Action space or shape (default: ``None``)
:type action_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param device: Device on which a tensor/array is or will be allocated (default: ``None``).
If None, the device will be either ``"cuda"`` if available or ``"cpu"``
:type device: str or torch.device, optional
:param cfg: Configuration dictionary
:type cfg: dict
:raises KeyError: If the models dictionary is missing a required key
"""
_cfg = copy.deepcopy(TRPO_DEFAULT_CONFIG)
_cfg.update(cfg if cfg is not None else {})
super().__init__(models=models,
memory=memory,
observation_space=observation_space,
action_space=action_space,
device=device,
cfg=_cfg)
# models
self.policy = self.models.get("policy", None)
self.value = self.models.get("value", None)
self.backup_policy = copy.deepcopy(self.policy)
# checkpoint models
self.checkpoint_modules["policy"] = self.policy
self.checkpoint_modules["value"] = self.value
# configuration
self._learning_epochs = self.cfg["learning_epochs"]
self._mini_batches = self.cfg["mini_batches"]
self._rollouts = self.cfg["rollouts"]
self._rollout = 0
self._grad_norm_clip = self.cfg["grad_norm_clip"]
self._value_loss_scale = self.cfg["value_loss_scale"]
self._max_kl_divergence = self.cfg["max_kl_divergence"]
self._damping = self.cfg["damping"]
self._conjugate_gradient_steps = self.cfg["conjugate_gradient_steps"]
self._max_backtrack_steps = self.cfg["max_backtrack_steps"]
self._accept_ratio = self.cfg["accept_ratio"]
self._step_fraction = self.cfg["step_fraction"]
self._value_learning_rate = self.cfg["value_learning_rate"]
self._learning_rate_scheduler = self.cfg["learning_rate_scheduler"]
self._state_preprocessor = self.cfg["state_preprocessor"]
self._value_preprocessor = self.cfg["value_preprocessor"]
self._discount_factor = self.cfg["discount_factor"]
self._lambda = self.cfg["lambda"]
self._random_timesteps = self.cfg["random_timesteps"]
self._learning_starts = self.cfg["learning_starts"]
self._rewards_shaper = self.cfg["rewards_shaper"]
self._time_limit_bootstrap = self.cfg["time_limit_bootstrap"]
# set up optimizer and learning rate scheduler
if self.policy is not None and self.value is not None:
self.value_optimizer = torch.optim.Adam(self.value.parameters(), lr=self._value_learning_rate)
if self._learning_rate_scheduler is not None:
self.value_scheduler = self._learning_rate_scheduler(self.value_optimizer, **self.cfg["learning_rate_scheduler_kwargs"])
self.checkpoint_modules["value_optimizer"] = self.value_optimizer
# set up preprocessors
if self._state_preprocessor:
self._state_preprocessor = self._state_preprocessor(**self.cfg["state_preprocessor_kwargs"])
self.checkpoint_modules["state_preprocessor"] = self._state_preprocessor
else:
self._state_preprocessor = self._empty_preprocessor
if self._value_preprocessor:
self._value_preprocessor = self._value_preprocessor(**self.cfg["value_preprocessor_kwargs"])
self.checkpoint_modules["value_preprocessor"] = self._value_preprocessor
else:
self._value_preprocessor = self._empty_preprocessor
def init(self, trainer_cfg: Optional[Mapping[str, Any]] = None) -> None:
"""Initialize the agent
"""
super().init(trainer_cfg=trainer_cfg)
self.set_mode("eval")
# create tensors in memory
if self.memory is not None:
self.memory.create_tensor(name="states", size=self.observation_space, dtype=torch.float32)
self.memory.create_tensor(name="actions", size=self.action_space, dtype=torch.float32)
self.memory.create_tensor(name="rewards", size=1, dtype=torch.float32)
self.memory.create_tensor(name="terminated", size=1, dtype=torch.bool)
self.memory.create_tensor(name="log_prob", size=1, dtype=torch.float32)
self.memory.create_tensor(name="values", size=1, dtype=torch.float32)
self.memory.create_tensor(name="returns", size=1, dtype=torch.float32)
self.memory.create_tensor(name="advantages", size=1, dtype=torch.float32)
self._tensors_names_policy = ["states", "actions", "log_prob", "advantages"]
self._tensors_names_value = ["states", "returns"]
# create temporary variables needed for storage and computation
self._current_log_prob = None
self._current_next_states = None
def act(self, states: torch.Tensor, timestep: int, timesteps: int) -> torch.Tensor:
"""Process the environment's states to make a decision (actions) using the main policy
:param states: Environment's states
:type states: torch.Tensor
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:return: Actions
:rtype: torch.Tensor
"""
# sample random actions
# TODO: fix for stochasticity
if timestep < self._random_timesteps:
return self.policy.random_act({"states": self._state_preprocessor(states)}, role="policy")
# sample stochastic actions
actions, log_prob, outputs = self.policy.act({"states": self._state_preprocessor(states)}, role="policy")
self._current_log_prob = log_prob
return actions, log_prob, outputs
def record_transition(self,
states: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
next_states: torch.Tensor,
terminated: torch.Tensor,
truncated: torch.Tensor,
infos: Any,
timestep: int,
timesteps: int) -> None:
"""Record an environment transition in memory
:param states: Observations/states of the environment used to make the decision
:type states: torch.Tensor
:param actions: Actions taken by the agent
:type actions: torch.Tensor
:param rewards: Instant rewards achieved by the current actions
:type rewards: torch.Tensor
:param next_states: Next observations/states of the environment
:type next_states: torch.Tensor
:param terminated: Signals to indicate that episodes have terminated
:type terminated: torch.Tensor
:param truncated: Signals to indicate that episodes have been truncated
:type truncated: torch.Tensor
:param infos: Additional information about the environment
:type infos: Any type supported by the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps)
if self.memory is not None:
self._current_next_states = next_states
# reward shaping
if self._rewards_shaper is not None:
rewards = self._rewards_shaper(rewards, timestep, timesteps)
# compute values
values, _, _ = self.value.act({"states": self._state_preprocessor(states)}, role="value")
values = self._value_preprocessor(values, inverse=True)
# time-limit (truncation) boostrapping
if self._time_limit_bootstrap:
rewards += self._discount_factor * values * truncated
# storage transition in memory
self.memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated, log_prob=self._current_log_prob, values=values)
for memory in self.secondary_memories:
memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated, log_prob=self._current_log_prob, values=values)
def pre_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called before the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
pass
def post_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called after the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
self._rollout += 1
if not self._rollout % self._rollouts and timestep >= self._learning_starts:
self.set_mode("train")
self._update(timestep, timesteps)
self.set_mode("eval")
# write tracking data and checkpoints
super().post_interaction(timestep, timesteps)
def _update(self, timestep: int, timesteps: int) -> None:
"""Algorithm's main update step
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
def compute_gae(rewards: torch.Tensor,
dones: torch.Tensor,
values: torch.Tensor,
next_values: torch.Tensor,
discount_factor: float = 0.99,
lambda_coefficient: float = 0.95) -> torch.Tensor:
"""Compute the Generalized Advantage Estimator (GAE)
:param rewards: Rewards obtained by the agent
:type rewards: torch.Tensor
:param dones: Signals to indicate that episodes have ended
:type dones: torch.Tensor
:param values: Values obtained by the agent
:type values: torch.Tensor
:param next_values: Next values obtained by the agent
:type next_values: torch.Tensor
:param discount_factor: Discount factor
:type discount_factor: float
:param lambda_coefficient: Lambda coefficient
:type lambda_coefficient: float
:return: Generalized Advantage Estimator
:rtype: torch.Tensor
"""
advantage = 0
advantages = torch.zeros_like(rewards)
not_dones = dones.logical_not()
memory_size = rewards.shape[0]
# advantages computation
for i in reversed(range(memory_size)):
next_values = values[i + 1] if i < memory_size - 1 else last_values
advantage = rewards[i] - values[i] + discount_factor * not_dones[i] * (next_values + lambda_coefficient * advantage)
advantages[i] = advantage
# returns computation
returns = advantages + values
# normalize advantages
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
return returns, advantages
def surrogate_loss(policy: Model,
states: torch.Tensor,
actions: torch.Tensor,
log_prob: torch.Tensor,
advantages: torch.Tensor) -> torch.Tensor:
"""Compute the surrogate objective (policy loss)
:param policy: Policy
:type policy: Model
:param states: States
:type states: torch.Tensor
:param actions: Actions
:type actions: torch.Tensor
:param log_prob: Log probability
:type log_prob: torch.Tensor
:param advantages: Advantages
:type advantages: torch.Tensor
:return: Surrogate loss
:rtype: torch.Tensor
"""
_, new_log_prob, _ = policy.act({"states": states, "taken_actions": actions}, role="policy")
return (advantages * torch.exp(new_log_prob - log_prob.detach())).mean()
def conjugate_gradient(policy: Model,
states: torch.Tensor,
b: torch.Tensor,
num_iterations: float = 10,
residual_tolerance: float = 1e-10) -> torch.Tensor:
"""Conjugate gradient algorithm to solve Ax = b using the iterative method
https://en.wikipedia.org/wiki/Conjugate_gradient_method#As_an_iterative_method
:param policy: Policy
:type policy: Model
:param states: States
:type states: torch.Tensor
:param b: Vector b
:type b: torch.Tensor
:param num_iterations: Number of iterations (default: ``10``)
:type num_iterations: float, optional
:param residual_tolerance: Residual tolerance (default: ``1e-10``)
:type residual_tolerance: float, optional
:return: Conjugate vector
:rtype: torch.Tensor
"""
x = torch.zeros_like(b)
r = b.clone()
p = b.clone()
rr_old = torch.dot(r, r)
for _ in range(num_iterations):
hv = fisher_vector_product(policy, states, p, damping=self._damping)
alpha = rr_old / torch.dot(p, hv)
x += alpha * p
r -= alpha * hv
rr_new = torch.dot(r, r)
if rr_new < residual_tolerance:
break
p = r + rr_new / rr_old * p
rr_old = rr_new
return x
def fisher_vector_product(policy: Model,
states: torch.Tensor,
vector: torch.Tensor,
damping: float = 0.1) -> torch.Tensor:
"""Compute the Fisher vector product (direct method)
https://www.telesens.co/2018/06/09/efficiently-computing-the-fisher-vector-product-in-trpo/
:param policy: Policy
:type policy: Model
:param states: States
:type states: torch.Tensor
:param vector: Vector
:type vector: torch.Tensor
:param damping: Damping (default: ``0.1``)
:type damping: float, optional
:return: Hessian vector product
:rtype: torch.Tensor
"""
kl = kl_divergence(policy, policy, states)
kl_gradient = torch.autograd.grad(kl, policy.parameters(), create_graph=True)
flat_kl_gradient = torch.cat([gradient.view(-1) for gradient in kl_gradient])
hessian_vector_gradient = torch.autograd.grad((flat_kl_gradient * vector).sum(), policy.parameters())
flat_hessian_vector_gradient = torch.cat([gradient.contiguous().view(-1) for gradient in hessian_vector_gradient])
return flat_hessian_vector_gradient + damping * vector
def kl_divergence(policy_1: Model, policy_2: Model, states: torch.Tensor) -> torch.Tensor:
"""Compute the KL divergence between two distributions
https://en.wikipedia.org/wiki/Normal_distribution#Other_properties
:param policy_1: First policy
:type policy_1: Model
:param policy_2: Second policy
:type policy_2: Model
:param states: States
:type states: torch.Tensor
:return: KL divergence
:rtype: torch.Tensor
"""
mu_1 = policy_1.act({"states": states}, role="policy")[2]["mean_actions"]
logstd_1 = policy_1.get_log_std(role="policy")
mu_1, logstd_1 = mu_1.detach(), logstd_1.detach()
mu_2 = policy_2.act({"states": states}, role="policy")[2]["mean_actions"]
logstd_2 = policy_2.get_log_std(role="policy")
kl = logstd_1 - logstd_2 + 0.5 * (torch.square(logstd_1.exp()) + torch.square(mu_1 - mu_2)) \
/ torch.square(logstd_2.exp()) - 0.5
return torch.sum(kl, dim=-1).mean()
# compute returns and advantages
with torch.no_grad():
self.value.train(False)
last_values, _, _ = self.value.act({"states": self._state_preprocessor(self._current_next_states.float())}, role="value")
self.value.train(True)
last_values = self._value_preprocessor(last_values, inverse=True)
values = self.memory.get_tensor_by_name("values")
returns, advantages = compute_gae(rewards=self.memory.get_tensor_by_name("rewards"),
dones=self.memory.get_tensor_by_name("terminated"),
values=values,
next_values=last_values,
discount_factor=self._discount_factor,
lambda_coefficient=self._lambda)
self.memory.set_tensor_by_name("values", self._value_preprocessor(values, train=True))
self.memory.set_tensor_by_name("returns", self._value_preprocessor(returns, train=True))
self.memory.set_tensor_by_name("advantages", advantages)
# sample all from memory
sampled_states, sampled_actions, sampled_log_prob, sampled_advantages \
= self.memory.sample_all(names=self._tensors_names_policy, mini_batches=1)[0]
sampled_states = self._state_preprocessor(sampled_states, train=True)
# compute policy loss gradient
policy_loss = surrogate_loss(self.policy, sampled_states, sampled_actions, sampled_log_prob, sampled_advantages)
policy_loss_gradient = torch.autograd.grad(policy_loss, self.policy.parameters())
flat_policy_loss_gradient = torch.cat([gradient.view(-1) for gradient in policy_loss_gradient])
# compute the search direction using the conjugate gradient algorithm
search_direction = conjugate_gradient(self.policy, sampled_states, flat_policy_loss_gradient.data,
num_iterations=self._conjugate_gradient_steps)
# compute step size and full step
xHx = (search_direction * fisher_vector_product(self.policy, sampled_states, search_direction, self._damping)) \
.sum(0, keepdim=True)
step_size = torch.sqrt(2 * self._max_kl_divergence / xHx)[0]
full_step = step_size * search_direction
# backtracking line search
restore_policy_flag = True
self.backup_policy.update_parameters(self.policy)
params = parameters_to_vector(self.policy.parameters())
expected_improvement = (flat_policy_loss_gradient * full_step).sum(0, keepdim=True)
for alpha in [self._step_fraction * 0.5 ** i for i in range(self._max_backtrack_steps)]:
new_params = params + alpha * full_step
vector_to_parameters(new_params, self.policy.parameters())
expected_improvement *= alpha
kl = kl_divergence(self.backup_policy, self.policy, sampled_states)
loss = surrogate_loss(self.policy, sampled_states, sampled_actions, sampled_log_prob, sampled_advantages)
if kl < self._max_kl_divergence and (loss - policy_loss) / expected_improvement > self._accept_ratio:
restore_policy_flag = False
break
if restore_policy_flag:
self.policy.update_parameters(self.backup_policy)
# sample mini-batches from memory
sampled_batches = self.memory.sample_all(names=self._tensors_names_value, mini_batches=self._mini_batches)
cumulative_value_loss = 0
# learning epochs
for epoch in range(self._learning_epochs):
# mini-batches loop
for sampled_states, sampled_returns in sampled_batches:
sampled_states = self._state_preprocessor(sampled_states, train=not epoch)
# compute value loss
predicted_values, _, _ = self.value.act({"states": sampled_states}, role="value")
value_loss = self._value_loss_scale * F.mse_loss(sampled_returns, predicted_values)
# optimization step (value)
self.value_optimizer.zero_grad()
value_loss.backward()
if self._grad_norm_clip > 0:
nn.utils.clip_grad_norm_(self.value.parameters(), self._grad_norm_clip)
self.value_optimizer.step()
# update cumulative losses
cumulative_value_loss += value_loss.item()
# update learning rate
if self._learning_rate_scheduler:
self.value_scheduler.step()
# record data
self.track_data("Loss / Policy loss", policy_loss.item())
self.track_data("Loss / Value loss", cumulative_value_loss / (self._learning_epochs * self._mini_batches))
self.track_data("Policy / Standard deviation", self.policy.distribution(role="policy").stddev.mean().item())
if self._learning_rate_scheduler:
self.track_data("Learning / Value learning rate", self.value_scheduler.get_last_lr()[0])
| 26,328 | Python | 45.682624 | 136 | 0.598184 |
Toni-SM/skrl/skrl/agents/torch/q_learning/__init__.py | from skrl.agents.torch.q_learning.q_learning import Q_LEARNING, Q_LEARNING_DEFAULT_CONFIG
| 90 | Python | 44.499978 | 89 | 0.822222 |
Toni-SM/skrl/skrl/agents/torch/q_learning/q_learning.py | from typing import Any, Mapping, Optional, Tuple, Union
import copy
import gym
import gymnasium
import torch
from skrl.agents.torch import Agent
from skrl.memories.torch import Memory
from skrl.models.torch import Model
# [start-config-dict-torch]
Q_LEARNING_DEFAULT_CONFIG = {
"discount_factor": 0.99, # discount factor (gamma)
"random_timesteps": 0, # random exploration steps
"learning_starts": 0, # learning starts after this many steps
"learning_rate": 0.5, # learning rate (alpha)
"rewards_shaper": None, # rewards shaping function: Callable(reward, timestep, timesteps) -> reward
"experiment": {
"directory": "", # experiment's parent directory
"experiment_name": "", # experiment name
"write_interval": 250, # TensorBoard writing interval (timesteps)
"checkpoint_interval": 1000, # interval for checkpoints (timesteps)
"store_separately": False, # whether to store checkpoints separately
"wandb": False, # whether to use Weights & Biases
"wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init)
}
}
# [end-config-dict-torch]
class Q_LEARNING(Agent):
def __init__(self,
models: Mapping[str, Model],
memory: Optional[Union[Memory, Tuple[Memory]]] = None,
observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
device: Optional[Union[str, torch.device]] = None,
cfg: Optional[dict] = None) -> None:
"""Q-learning
https://www.academia.edu/3294050/Learning_from_delayed_rewards
:param models: Models used by the agent
:type models: dictionary of skrl.models.torch.Model
:param memory: Memory to storage the transitions.
If it is a tuple, the first element will be used for training and
for the rest only the environment transitions will be added
:type memory: skrl.memory.torch.Memory, list of skrl.memory.torch.Memory or None
:param observation_space: Observation/state space or shape (default: ``None``)
:type observation_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param action_space: Action space or shape (default: ``None``)
:type action_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param device: Device on which a tensor/array is or will be allocated (default: ``None``).
If None, the device will be either ``"cuda"`` if available or ``"cpu"``
:type device: str or torch.device, optional
:param cfg: Configuration dictionary
:type cfg: dict
:raises KeyError: If the models dictionary is missing a required key
"""
_cfg = copy.deepcopy(Q_LEARNING_DEFAULT_CONFIG)
_cfg.update(cfg if cfg is not None else {})
super().__init__(models=models,
memory=memory,
observation_space=observation_space,
action_space=action_space,
device=device,
cfg=_cfg)
# models
self.policy = self.models.get("policy", None)
# checkpoint models
self.checkpoint_modules["policy"] = self.policy
# configuration
self._discount_factor = self.cfg["discount_factor"]
self._random_timesteps = self.cfg["random_timesteps"]
self._learning_starts = self.cfg["learning_starts"]
self._learning_rate = self.cfg["learning_rate"]
self._rewards_shaper = self.cfg["rewards_shaper"]
# create temporary variables needed for storage and computation
self._current_states = None
self._current_actions = None
self._current_rewards = None
self._current_next_states = None
self._current_dones = None
def init(self, trainer_cfg: Optional[Mapping[str, Any]] = None) -> None:
"""Initialize the agent
"""
super().init(trainer_cfg=trainer_cfg)
def act(self, states: torch.Tensor, timestep: int, timesteps: int) -> torch.Tensor:
"""Process the environment's states to make a decision (actions) using the main policy
:param states: Environment's states
:type states: torch.Tensor
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:return: Actions
:rtype: torch.Tensor
"""
# sample random actions
if timestep < self._random_timesteps:
return self.policy.random_act({"states": states}, role="policy")
# sample actions from policy
return self.policy.act({"states": states}, role="policy")
def record_transition(self,
states: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
next_states: torch.Tensor,
terminated: torch.Tensor,
truncated: torch.Tensor,
infos: Any,
timestep: int,
timesteps: int) -> None:
"""Record an environment transition in memory
:param states: Observations/states of the environment used to make the decision
:type states: torch.Tensor
:param actions: Actions taken by the agent
:type actions: torch.Tensor
:param rewards: Instant rewards achieved by the current actions
:type rewards: torch.Tensor
:param next_states: Next observations/states of the environment
:type next_states: torch.Tensor
:param terminated: Signals to indicate that episodes have terminated
:type terminated: torch.Tensor
:param truncated: Signals to indicate that episodes have been truncated
:type truncated: torch.Tensor
:param infos: Additional information about the environment
:type infos: Any type supported by the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps)
# reward shaping
if self._rewards_shaper is not None:
rewards = self._rewards_shaper(rewards, timestep, timesteps)
self._current_states = states
self._current_actions = actions
self._current_rewards = rewards
self._current_next_states = next_states
self._current_dones = terminated + truncated
if self.memory is not None:
self.memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated)
for memory in self.secondary_memories:
memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated)
def pre_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called before the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
pass
def post_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called after the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
if timestep >= self._learning_starts:
self._update(timestep, timesteps)
# write tracking data and checkpoints
super().post_interaction(timestep, timesteps)
def _update(self, timestep: int, timesteps: int) -> None:
"""Algorithm's main update step
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
q_table = self.policy.table()
env_ids = torch.arange(self._current_rewards.shape[0]).view(-1, 1)
# compute next actions
next_actions = torch.argmax(q_table[env_ids, self._current_next_states], dim=-1, keepdim=True).view(-1,1)
# update Q-table
q_table[env_ids, self._current_states, self._current_actions] += self._learning_rate \
* (self._current_rewards + self._discount_factor * self._current_dones.logical_not() \
* q_table[env_ids, self._current_next_states, next_actions] \
- q_table[env_ids, self._current_states, self._current_actions])
| 9,186 | Python | 40.759091 | 123 | 0.609514 |
Toni-SM/skrl/skrl/agents/torch/cem/cem.py | from typing import Any, Mapping, Optional, Tuple, Union
import copy
import gym
import gymnasium
import torch
import torch.nn.functional as F
from skrl import logger
from skrl.agents.torch import Agent
from skrl.memories.torch import Memory
from skrl.models.torch import Model
# [start-config-dict-torch]
CEM_DEFAULT_CONFIG = {
"rollouts": 16, # number of rollouts before updating
"percentile": 0.70, # percentile to compute the reward bound [0, 1]
"discount_factor": 0.99, # discount factor (gamma)
"learning_rate": 1e-2, # learning rate
"learning_rate_scheduler": None, # learning rate scheduler class (see torch.optim.lr_scheduler)
"learning_rate_scheduler_kwargs": {}, # learning rate scheduler's kwargs (e.g. {"step_size": 1e-3})
"state_preprocessor": None, # state preprocessor class (see skrl.resources.preprocessors)
"state_preprocessor_kwargs": {}, # state preprocessor's kwargs (e.g. {"size": env.observation_space})
"random_timesteps": 0, # random exploration steps
"learning_starts": 0, # learning starts after this many steps
"rewards_shaper": None, # rewards shaping function: Callable(reward, timestep, timesteps) -> reward
"experiment": {
"directory": "", # experiment's parent directory
"experiment_name": "", # experiment name
"write_interval": 250, # TensorBoard writing interval (timesteps)
"checkpoint_interval": 1000, # interval for checkpoints (timesteps)
"store_separately": False, # whether to store checkpoints separately
"wandb": False, # whether to use Weights & Biases
"wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init)
}
}
# [end-config-dict-torch]
class CEM(Agent):
def __init__(self,
models: Mapping[str, Model],
memory: Optional[Union[Memory, Tuple[Memory]]] = None,
observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
device: Optional[Union[str, torch.device]] = None,
cfg: Optional[dict] = None) -> None:
"""Cross-Entropy Method (CEM)
https://ieeexplore.ieee.org/abstract/document/6796865/
:param models: Models used by the agent
:type models: dictionary of skrl.models.torch.Model
:param memory: Memory to storage the transitions.
If it is a tuple, the first element will be used for training and
for the rest only the environment transitions will be added
:type memory: skrl.memory.torch.Memory, list of skrl.memory.torch.Memory or None
:param observation_space: Observation/state space or shape (default: ``None``)
:type observation_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param action_space: Action space or shape (default: ``None``)
:type action_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param device: Device on which a tensor/array is or will be allocated (default: ``None``).
If None, the device will be either ``"cuda"`` if available or ``"cpu"``
:type device: str or torch.device, optional
:param cfg: Configuration dictionary
:type cfg: dict
:raises KeyError: If the models dictionary is missing a required key
"""
_cfg = copy.deepcopy(CEM_DEFAULT_CONFIG)
_cfg.update(cfg if cfg is not None else {})
super().__init__(models=models,
memory=memory,
observation_space=observation_space,
action_space=action_space,
device=device,
cfg=_cfg)
# models
self.policy = self.models.get("policy", None)
# checkpoint models
self.checkpoint_modules["policy"] = self.policy
# configuration:
self._rollouts = self.cfg["rollouts"]
self._rollout = 0
self._percentile = self.cfg["percentile"]
self._discount_factor = self.cfg["discount_factor"]
self._learning_rate = self.cfg["learning_rate"]
self._learning_rate_scheduler = self.cfg["learning_rate_scheduler"]
self._state_preprocessor = self.cfg["state_preprocessor"]
self._random_timesteps = self.cfg["random_timesteps"]
self._learning_starts = self.cfg["learning_starts"]
self._rewards_shaper = self.cfg["rewards_shaper"]
self._episode_tracking = []
# set up optimizer and learning rate scheduler
if self.policy is not None:
self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=self._learning_rate)
if self._learning_rate_scheduler is not None:
self.scheduler = self._learning_rate_scheduler(self.optimizer, **self.cfg["learning_rate_scheduler_kwargs"])
self.checkpoint_modules["optimizer"] = self.optimizer
# set up preprocessors
if self._state_preprocessor:
self._state_preprocessor = self._state_preprocessor(**self.cfg["state_preprocessor_kwargs"])
self.checkpoint_modules["state_preprocessor"] = self._state_preprocessor
else:
self._state_preprocessor = self._empty_preprocessor
def init(self, trainer_cfg: Optional[Mapping[str, Any]] = None) -> None:
"""Initialize the agent
"""
super().init(trainer_cfg=trainer_cfg)
# create tensors in memory
if self.memory is not None:
self.memory.create_tensor(name="states", size=self.observation_space, dtype=torch.float32)
self.memory.create_tensor(name="next_states", size=self.observation_space, dtype=torch.float32)
self.memory.create_tensor(name="actions", size=self.action_space, dtype=torch.int64)
self.memory.create_tensor(name="rewards", size=1, dtype=torch.float32)
self.memory.create_tensor(name="terminated", size=1, dtype=torch.bool)
self.tensors_names = ["states", "actions", "rewards", "next_states", "terminated"]
def act(self, states: torch.Tensor, timestep: int, timesteps: int) -> torch.Tensor:
"""Process the environment's states to make a decision (actions) using the main policy
:param states: Environment's states
:type states: torch.Tensor
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:return: Actions
:rtype: torch.Tensor
"""
states = self._state_preprocessor(states)
# sample random actions
# TODO, check for stochasticity
if timestep < self._random_timesteps:
return self.policy.random_act({"states": states}, role="policy")
# sample stochastic actions
return self.policy.act({"states": states}, role="policy")
def record_transition(self,
states: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
next_states: torch.Tensor,
terminated: torch.Tensor,
truncated: torch.Tensor,
infos: Any,
timestep: int,
timesteps: int) -> None:
"""Record an environment transition in memory
:param states: Observations/states of the environment used to make the decision
:type states: torch.Tensor
:param actions: Actions taken by the agent
:type actions: torch.Tensor
:param rewards: Instant rewards achieved by the current actions
:type rewards: torch.Tensor
:param next_states: Next observations/states of the environment
:type next_states: torch.Tensor
:param terminated: Signals to indicate that episodes have terminated
:type terminated: torch.Tensor
:param truncated: Signals to indicate that episodes have been truncated
:type truncated: torch.Tensor
:param infos: Additional information about the environment
:type infos: Any type supported by the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps)
# reward shaping
if self._rewards_shaper is not None:
rewards = self._rewards_shaper(rewards, timestep, timesteps)
if self.memory is not None:
self.memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated)
for memory in self.secondary_memories:
memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated)
# track episodes internally
if self._rollout:
indexes = torch.nonzero(terminated + truncated)
if indexes.numel():
for i in indexes[:, 0]:
self._episode_tracking[i.item()].append(self._rollout + 1)
else:
self._episode_tracking = [[0] for _ in range(rewards.size(-1))]
def pre_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called before the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
pass
def post_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called after the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
self._rollout += 1
if not self._rollout % self._rollouts and timestep >= self._learning_starts:
self._rollout = 0
self._update(timestep, timesteps)
# write tracking data and checkpoints
super().post_interaction(timestep, timesteps)
def _update(self, timestep: int, timesteps: int) -> None:
"""Algorithm's main update step
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
# sample all memory
sampled_states, sampled_actions, sampled_rewards, _, _ = self.memory.sample_all(names=self.tensors_names)[0]
sampled_states = self._state_preprocessor(sampled_states, train=True)
with torch.no_grad():
# compute discounted return threshold
limits = []
returns = []
for e in range(sampled_rewards.size(-1)):
for i, j in zip(self._episode_tracking[e][:-1], self._episode_tracking[e][1:]):
limits.append([e + i, e + j])
rewards = sampled_rewards[e + i: e + j]
returns.append(torch.sum(rewards * self._discount_factor ** \
torch.arange(rewards.size(0), device=rewards.device).flip(-1).view(rewards.size())))
if not len(returns):
logger.warning("No returns to update. Consider increasing the number of rollouts")
return
returns = torch.tensor(returns)
return_threshold = torch.quantile(returns, self._percentile, dim=-1)
# get elite states and actions
indexes = torch.nonzero(returns >= return_threshold)
elite_states = torch.cat([sampled_states[limits[i][0]:limits[i][1]] for i in indexes[:, 0]], dim=0)
elite_actions = torch.cat([sampled_actions[limits[i][0]:limits[i][1]] for i in indexes[:, 0]], dim=0)
# compute scores for the elite states
_, _, outputs = self.policy.act({"states": elite_states}, role="policy")
scores = outputs["net_output"]
# compute policy loss
policy_loss = F.cross_entropy(scores, elite_actions.view(-1))
# optimization step
self.optimizer.zero_grad()
policy_loss.backward()
self.optimizer.step()
# update learning rate
if self._learning_rate_scheduler:
self.scheduler.step()
# record data
self.track_data("Loss / Policy loss", policy_loss.item())
self.track_data("Coefficient / Return threshold", return_threshold.item())
self.track_data("Coefficient / Mean discounted returns", torch.mean(returns).item())
if self._learning_rate_scheduler:
self.track_data("Learning / Learning rate", self.scheduler.get_last_lr()[0])
| 13,279 | Python | 42.398693 | 124 | 0.609308 |
Toni-SM/skrl/skrl/agents/torch/cem/__init__.py | from skrl.agents.torch.cem.cem import CEM, CEM_DEFAULT_CONFIG
| 62 | Python | 30.499985 | 61 | 0.806452 |
Toni-SM/skrl/skrl/agents/torch/sac/__init__.py | from skrl.agents.torch.sac.sac import SAC, SAC_DEFAULT_CONFIG
from skrl.agents.torch.sac.sac_rnn import SAC_RNN
| 112 | Python | 36.666654 | 61 | 0.803571 |
Toni-SM/skrl/skrl/agents/torch/sac/sac.py | from typing import Any, Mapping, Optional, Tuple, Union
import copy
import itertools
import gym
import gymnasium
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from skrl.agents.torch import Agent
from skrl.memories.torch import Memory
from skrl.models.torch import Model
# [start-config-dict-torch]
SAC_DEFAULT_CONFIG = {
"gradient_steps": 1, # gradient steps
"batch_size": 64, # training batch size
"discount_factor": 0.99, # discount factor (gamma)
"polyak": 0.005, # soft update hyperparameter (tau)
"actor_learning_rate": 1e-3, # actor learning rate
"critic_learning_rate": 1e-3, # critic learning rate
"learning_rate_scheduler": None, # learning rate scheduler class (see torch.optim.lr_scheduler)
"learning_rate_scheduler_kwargs": {}, # learning rate scheduler's kwargs (e.g. {"step_size": 1e-3})
"state_preprocessor": None, # state preprocessor class (see skrl.resources.preprocessors)
"state_preprocessor_kwargs": {}, # state preprocessor's kwargs (e.g. {"size": env.observation_space})
"random_timesteps": 0, # random exploration steps
"learning_starts": 0, # learning starts after this many steps
"grad_norm_clip": 0, # clipping coefficient for the norm of the gradients
"learn_entropy": True, # learn entropy
"entropy_learning_rate": 1e-3, # entropy learning rate
"initial_entropy_value": 0.2, # initial entropy value
"target_entropy": None, # target entropy
"rewards_shaper": None, # rewards shaping function: Callable(reward, timestep, timesteps) -> reward
"experiment": {
"base_directory": "", # base directory for the experiment
"experiment_name": "", # experiment name
"write_interval": 250, # TensorBoard writing interval (timesteps)
"checkpoint_interval": 1000, # interval for checkpoints (timesteps)
"store_separately": False, # whether to store checkpoints separately
"wandb": False, # whether to use Weights & Biases
"wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init)
}
}
# [end-config-dict-torch]
class SAC(Agent):
def __init__(self,
models: Mapping[str, Model],
memory: Optional[Union[Memory, Tuple[Memory]]] = None,
observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
device: Optional[Union[str, torch.device]] = None,
cfg: Optional[dict] = None) -> None:
"""Soft Actor-Critic (SAC)
https://arxiv.org/abs/1801.01290
:param models: Models used by the agent
:type models: dictionary of skrl.models.torch.Model
:param memory: Memory to storage the transitions.
If it is a tuple, the first element will be used for training and
for the rest only the environment transitions will be added
:type memory: skrl.memory.torch.Memory, list of skrl.memory.torch.Memory or None
:param observation_space: Observation/state space or shape (default: ``None``)
:type observation_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param action_space: Action space or shape (default: ``None``)
:type action_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param device: Device on which a tensor/array is or will be allocated (default: ``None``).
If None, the device will be either ``"cuda"`` if available or ``"cpu"``
:type device: str or torch.device, optional
:param cfg: Configuration dictionary
:type cfg: dict
:raises KeyError: If the models dictionary is missing a required key
"""
_cfg = copy.deepcopy(SAC_DEFAULT_CONFIG)
_cfg.update(cfg if cfg is not None else {})
super().__init__(models=models,
memory=memory,
observation_space=observation_space,
action_space=action_space,
device=device,
cfg=_cfg)
# models
self.policy = self.models.get("policy", None)
self.critic_1 = self.models.get("critic_1", None)
self.critic_2 = self.models.get("critic_2", None)
self.target_critic_1 = self.models.get("target_critic_1", None)
self.target_critic_2 = self.models.get("target_critic_2", None)
# checkpoint models
self.checkpoint_modules["policy"] = self.policy
self.checkpoint_modules["critic_1"] = self.critic_1
self.checkpoint_modules["critic_2"] = self.critic_2
self.checkpoint_modules["target_critic_1"] = self.target_critic_1
self.checkpoint_modules["target_critic_2"] = self.target_critic_2
if self.target_critic_1 is not None and self.target_critic_2 is not None:
# freeze target networks with respect to optimizers (update via .update_parameters())
self.target_critic_1.freeze_parameters(True)
self.target_critic_2.freeze_parameters(True)
# update target networks (hard update)
self.target_critic_1.update_parameters(self.critic_1, polyak=1)
self.target_critic_2.update_parameters(self.critic_2, polyak=1)
# configuration
self._gradient_steps = self.cfg["gradient_steps"]
self._batch_size = self.cfg["batch_size"]
self._discount_factor = self.cfg["discount_factor"]
self._polyak = self.cfg["polyak"]
self._actor_learning_rate = self.cfg["actor_learning_rate"]
self._critic_learning_rate = self.cfg["critic_learning_rate"]
self._learning_rate_scheduler = self.cfg["learning_rate_scheduler"]
self._state_preprocessor = self.cfg["state_preprocessor"]
self._random_timesteps = self.cfg["random_timesteps"]
self._learning_starts = self.cfg["learning_starts"]
self._grad_norm_clip = self.cfg["grad_norm_clip"]
self._entropy_learning_rate = self.cfg["entropy_learning_rate"]
self._learn_entropy = self.cfg["learn_entropy"]
self._entropy_coefficient = self.cfg["initial_entropy_value"]
self._rewards_shaper = self.cfg["rewards_shaper"]
# entropy
if self._learn_entropy:
self._target_entropy = self.cfg["target_entropy"]
if self._target_entropy is None:
if issubclass(type(self.action_space), gym.spaces.Box) or issubclass(type(self.action_space), gymnasium.spaces.Box):
self._target_entropy = -np.prod(self.action_space.shape).astype(np.float32)
elif issubclass(type(self.action_space), gym.spaces.Discrete) or issubclass(type(self.action_space), gymnasium.spaces.Discrete):
self._target_entropy = -self.action_space.n
else:
self._target_entropy = 0
self.log_entropy_coefficient = torch.log(torch.ones(1, device=self.device) * self._entropy_coefficient).requires_grad_(True)
self.entropy_optimizer = torch.optim.Adam([self.log_entropy_coefficient], lr=self._entropy_learning_rate)
self.checkpoint_modules["entropy_optimizer"] = self.entropy_optimizer
# set up optimizers and learning rate schedulers
if self.policy is not None and self.critic_1 is not None and self.critic_2 is not None:
self.policy_optimizer = torch.optim.Adam(self.policy.parameters(), lr=self._actor_learning_rate)
self.critic_optimizer = torch.optim.Adam(itertools.chain(self.critic_1.parameters(), self.critic_2.parameters()),
lr=self._critic_learning_rate)
if self._learning_rate_scheduler is not None:
self.policy_scheduler = self._learning_rate_scheduler(self.policy_optimizer, **self.cfg["learning_rate_scheduler_kwargs"])
self.critic_scheduler = self._learning_rate_scheduler(self.critic_optimizer, **self.cfg["learning_rate_scheduler_kwargs"])
self.checkpoint_modules["policy_optimizer"] = self.policy_optimizer
self.checkpoint_modules["critic_optimizer"] = self.critic_optimizer
# set up preprocessors
if self._state_preprocessor:
self._state_preprocessor = self._state_preprocessor(**self.cfg["state_preprocessor_kwargs"])
self.checkpoint_modules["state_preprocessor"] = self._state_preprocessor
else:
self._state_preprocessor = self._empty_preprocessor
def init(self, trainer_cfg: Optional[Mapping[str, Any]] = None) -> None:
"""Initialize the agent
"""
super().init(trainer_cfg=trainer_cfg)
self.set_mode("eval")
# create tensors in memory
if self.memory is not None:
self.memory.create_tensor(name="states", size=self.observation_space, dtype=torch.float32)
self.memory.create_tensor(name="next_states", size=self.observation_space, dtype=torch.float32)
self.memory.create_tensor(name="actions", size=self.action_space, dtype=torch.float32)
self.memory.create_tensor(name="rewards", size=1, dtype=torch.float32)
self.memory.create_tensor(name="terminated", size=1, dtype=torch.bool)
self._tensors_names = ["states", "actions", "rewards", "next_states", "terminated"]
def act(self, states: torch.Tensor, timestep: int, timesteps: int) -> torch.Tensor:
"""Process the environment's states to make a decision (actions) using the main policy
:param states: Environment's states
:type states: torch.Tensor
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:return: Actions
:rtype: torch.Tensor
"""
# sample random actions
# TODO, check for stochasticity
if timestep < self._random_timesteps:
return self.policy.random_act({"states": self._state_preprocessor(states)}, role="policy")
# sample stochastic actions
actions, _, outputs = self.policy.act({"states": self._state_preprocessor(states)}, role="policy")
return actions, None, outputs
def record_transition(self,
states: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
next_states: torch.Tensor,
terminated: torch.Tensor,
truncated: torch.Tensor,
infos: Any,
timestep: int,
timesteps: int) -> None:
"""Record an environment transition in memory
:param states: Observations/states of the environment used to make the decision
:type states: torch.Tensor
:param actions: Actions taken by the agent
:type actions: torch.Tensor
:param rewards: Instant rewards achieved by the current actions
:type rewards: torch.Tensor
:param next_states: Next observations/states of the environment
:type next_states: torch.Tensor
:param terminated: Signals to indicate that episodes have terminated
:type terminated: torch.Tensor
:param truncated: Signals to indicate that episodes have been truncated
:type truncated: torch.Tensor
:param infos: Additional information about the environment
:type infos: Any type supported by the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps)
if self.memory is not None:
# reward shaping
if self._rewards_shaper is not None:
rewards = self._rewards_shaper(rewards, timestep, timesteps)
# storage transition in memory
self.memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated)
for memory in self.secondary_memories:
memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated)
def pre_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called before the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
pass
def post_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called after the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
if timestep >= self._learning_starts:
self.set_mode("train")
self._update(timestep, timesteps)
self.set_mode("eval")
# write tracking data and checkpoints
super().post_interaction(timestep, timesteps)
def _update(self, timestep: int, timesteps: int) -> None:
"""Algorithm's main update step
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
# sample a batch from memory
sampled_states, sampled_actions, sampled_rewards, sampled_next_states, sampled_dones = \
self.memory.sample(names=self._tensors_names, batch_size=self._batch_size)[0]
# gradient steps
for gradient_step in range(self._gradient_steps):
sampled_states = self._state_preprocessor(sampled_states, train=True)
sampled_next_states = self._state_preprocessor(sampled_next_states, train=True)
# compute target values
with torch.no_grad():
next_actions, next_log_prob, _ = self.policy.act({"states": sampled_next_states}, role="policy")
target_q1_values, _, _ = self.target_critic_1.act({"states": sampled_next_states, "taken_actions": next_actions}, role="target_critic_1")
target_q2_values, _, _ = self.target_critic_2.act({"states": sampled_next_states, "taken_actions": next_actions}, role="target_critic_2")
target_q_values = torch.min(target_q1_values, target_q2_values) - self._entropy_coefficient * next_log_prob
target_values = sampled_rewards + self._discount_factor * sampled_dones.logical_not() * target_q_values
# compute critic loss
critic_1_values, _, _ = self.critic_1.act({"states": sampled_states, "taken_actions": sampled_actions}, role="critic_1")
critic_2_values, _, _ = self.critic_2.act({"states": sampled_states, "taken_actions": sampled_actions}, role="critic_2")
critic_loss = (F.mse_loss(critic_1_values, target_values) + F.mse_loss(critic_2_values, target_values)) / 2
# optimization step (critic)
self.critic_optimizer.zero_grad()
critic_loss.backward()
if self._grad_norm_clip > 0:
nn.utils.clip_grad_norm_(itertools.chain(self.critic_1.parameters(), self.critic_2.parameters()), self._grad_norm_clip)
self.critic_optimizer.step()
# compute policy (actor) loss
actions, log_prob, _ = self.policy.act({"states": sampled_states}, role="policy")
critic_1_values, _, _ = self.critic_1.act({"states": sampled_states, "taken_actions": actions}, role="critic_1")
critic_2_values, _, _ = self.critic_2.act({"states": sampled_states, "taken_actions": actions}, role="critic_2")
policy_loss = (self._entropy_coefficient * log_prob - torch.min(critic_1_values, critic_2_values)).mean()
# optimization step (policy)
self.policy_optimizer.zero_grad()
policy_loss.backward()
if self._grad_norm_clip > 0:
nn.utils.clip_grad_norm_(self.policy.parameters(), self._grad_norm_clip)
self.policy_optimizer.step()
# entropy learning
if self._learn_entropy:
# compute entropy loss
entropy_loss = -(self.log_entropy_coefficient * (log_prob + self._target_entropy).detach()).mean()
# optimization step (entropy)
self.entropy_optimizer.zero_grad()
entropy_loss.backward()
self.entropy_optimizer.step()
# compute entropy coefficient
self._entropy_coefficient = torch.exp(self.log_entropy_coefficient.detach())
# update target networks
self.target_critic_1.update_parameters(self.critic_1, polyak=self._polyak)
self.target_critic_2.update_parameters(self.critic_2, polyak=self._polyak)
# update learning rate
if self._learning_rate_scheduler:
self.policy_scheduler.step()
self.critic_scheduler.step()
# record data
if self.write_interval > 0:
self.track_data("Loss / Policy loss", policy_loss.item())
self.track_data("Loss / Critic loss", critic_loss.item())
self.track_data("Q-network / Q1 (max)", torch.max(critic_1_values).item())
self.track_data("Q-network / Q1 (min)", torch.min(critic_1_values).item())
self.track_data("Q-network / Q1 (mean)", torch.mean(critic_1_values).item())
self.track_data("Q-network / Q2 (max)", torch.max(critic_2_values).item())
self.track_data("Q-network / Q2 (min)", torch.min(critic_2_values).item())
self.track_data("Q-network / Q2 (mean)", torch.mean(critic_2_values).item())
self.track_data("Target / Target (max)", torch.max(target_values).item())
self.track_data("Target / Target (min)", torch.min(target_values).item())
self.track_data("Target / Target (mean)", torch.mean(target_values).item())
if self._learn_entropy:
self.track_data("Loss / Entropy loss", entropy_loss.item())
self.track_data("Coefficient / Entropy coefficient", self._entropy_coefficient.item())
if self._learning_rate_scheduler:
self.track_data("Learning / Policy learning rate", self.policy_scheduler.get_last_lr()[0])
self.track_data("Learning / Critic learning rate", self.critic_scheduler.get_last_lr()[0])
| 19,278 | Python | 48.181122 | 153 | 0.615002 |
Toni-SM/skrl/skrl/agents/torch/td3/__init__.py | from skrl.agents.torch.td3.td3 import TD3, TD3_DEFAULT_CONFIG
from skrl.agents.torch.td3.td3_rnn import TD3_RNN
| 112 | Python | 36.666654 | 61 | 0.803571 |
Toni-SM/skrl/skrl/agents/torch/ddpg/__init__.py | from skrl.agents.torch.ddpg.ddpg import DDPG, DDPG_DEFAULT_CONFIG
from skrl.agents.torch.ddpg.ddpg_rnn import DDPG_RNN
| 119 | Python | 38.999987 | 65 | 0.815126 |
Toni-SM/skrl/skrl/agents/torch/dqn/dqn.py | from typing import Any, Mapping, Optional, Tuple, Union
import copy
import math
import gym
import gymnasium
import torch
import torch.nn.functional as F
from skrl.agents.torch import Agent
from skrl.memories.torch import Memory
from skrl.models.torch import Model
# [start-config-dict-torch]
DQN_DEFAULT_CONFIG = {
"gradient_steps": 1, # gradient steps
"batch_size": 64, # training batch size
"discount_factor": 0.99, # discount factor (gamma)
"polyak": 0.005, # soft update hyperparameter (tau)
"learning_rate": 1e-3, # learning rate
"learning_rate_scheduler": None, # learning rate scheduler class (see torch.optim.lr_scheduler)
"learning_rate_scheduler_kwargs": {}, # learning rate scheduler's kwargs (e.g. {"step_size": 1e-3})
"state_preprocessor": None, # state preprocessor class (see skrl.resources.preprocessors)
"state_preprocessor_kwargs": {}, # state preprocessor's kwargs (e.g. {"size": env.observation_space})
"random_timesteps": 0, # random exploration steps
"learning_starts": 0, # learning starts after this many steps
"update_interval": 1, # agent update interval
"target_update_interval": 10, # target network update interval
"exploration": {
"initial_epsilon": 1.0, # initial epsilon for epsilon-greedy exploration
"final_epsilon": 0.05, # final epsilon for epsilon-greedy exploration
"timesteps": 1000, # timesteps for epsilon-greedy decay
},
"rewards_shaper": None, # rewards shaping function: Callable(reward, timestep, timesteps) -> reward
"experiment": {
"directory": "", # experiment's parent directory
"experiment_name": "", # experiment name
"write_interval": 250, # TensorBoard writing interval (timesteps)
"checkpoint_interval": 1000, # interval for checkpoints (timesteps)
"store_separately": False, # whether to store checkpoints separately
"wandb": False, # whether to use Weights & Biases
"wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init)
}
}
# [end-config-dict-torch]
class DQN(Agent):
def __init__(self,
models: Mapping[str, Model],
memory: Optional[Union[Memory, Tuple[Memory]]] = None,
observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
device: Optional[Union[str, torch.device]] = None,
cfg: Optional[dict] = None) -> None:
"""Deep Q-Network (DQN)
https://arxiv.org/abs/1312.5602
:param models: Models used by the agent
:type models: dictionary of skrl.models.torch.Model
:param memory: Memory to storage the transitions.
If it is a tuple, the first element will be used for training and
for the rest only the environment transitions will be added
:type memory: skrl.memory.torch.Memory, list of skrl.memory.torch.Memory or None
:param observation_space: Observation/state space or shape (default: ``None``)
:type observation_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param action_space: Action space or shape (default: ``None``)
:type action_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param device: Device on which a tensor/array is or will be allocated (default: ``None``).
If None, the device will be either ``"cuda"`` if available or ``"cpu"``
:type device: str or torch.device, optional
:param cfg: Configuration dictionary
:type cfg: dict
:raises KeyError: If the models dictionary is missing a required key
"""
_cfg = copy.deepcopy(DQN_DEFAULT_CONFIG)
_cfg.update(cfg if cfg is not None else {})
super().__init__(models=models,
memory=memory,
observation_space=observation_space,
action_space=action_space,
device=device,
cfg=_cfg)
# models
self.q_network = self.models.get("q_network", None)
self.target_q_network = self.models.get("target_q_network", None)
# checkpoint models
self.checkpoint_modules["q_network"] = self.q_network
self.checkpoint_modules["target_q_network"] = self.target_q_network
if self.target_q_network is not None:
# freeze target networks with respect to optimizers (update via .update_parameters())
self.target_q_network.freeze_parameters(True)
# update target networks (hard update)
self.target_q_network.update_parameters(self.q_network, polyak=1)
# configuration
self._gradient_steps = self.cfg["gradient_steps"]
self._batch_size = self.cfg["batch_size"]
self._discount_factor = self.cfg["discount_factor"]
self._polyak = self.cfg["polyak"]
self._learning_rate = self.cfg["learning_rate"]
self._learning_rate_scheduler = self.cfg["learning_rate_scheduler"]
self._state_preprocessor = self.cfg["state_preprocessor"]
self._random_timesteps = self.cfg["random_timesteps"]
self._learning_starts = self.cfg["learning_starts"]
self._update_interval = self.cfg["update_interval"]
self._target_update_interval = self.cfg["target_update_interval"]
self._exploration_initial_epsilon = self.cfg["exploration"]["initial_epsilon"]
self._exploration_final_epsilon = self.cfg["exploration"]["final_epsilon"]
self._exploration_timesteps = self.cfg["exploration"]["timesteps"]
self._rewards_shaper = self.cfg["rewards_shaper"]
# set up optimizer and learning rate scheduler
if self.q_network is not None:
self.optimizer = torch.optim.Adam(self.q_network.parameters(), lr=self._learning_rate)
if self._learning_rate_scheduler is not None:
self.scheduler = self._learning_rate_scheduler(self.optimizer, **self.cfg["learning_rate_scheduler_kwargs"])
self.checkpoint_modules["optimizer"] = self.optimizer
# set up preprocessors
if self._state_preprocessor:
self._state_preprocessor = self._state_preprocessor(**self.cfg["state_preprocessor_kwargs"])
self.checkpoint_modules["state_preprocessor"] = self._state_preprocessor
else:
self._state_preprocessor = self._empty_preprocessor
def init(self, trainer_cfg: Optional[Mapping[str, Any]] = None) -> None:
"""Initialize the agent
"""
super().init(trainer_cfg=trainer_cfg)
# create tensors in memory
if self.memory is not None:
self.memory.create_tensor(name="states", size=self.observation_space, dtype=torch.float32)
self.memory.create_tensor(name="next_states", size=self.observation_space, dtype=torch.float32)
self.memory.create_tensor(name="actions", size=self.action_space, dtype=torch.int64)
self.memory.create_tensor(name="rewards", size=1, dtype=torch.float32)
self.memory.create_tensor(name="terminated", size=1, dtype=torch.bool)
self.tensors_names = ["states", "actions", "rewards", "next_states", "terminated"]
def act(self, states: torch.Tensor, timestep: int, timesteps: int) -> torch.Tensor:
"""Process the environment's states to make a decision (actions) using the main policy
:param states: Environment's states
:type states: torch.Tensor
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:return: Actions
:rtype: torch.Tensor
"""
states = self._state_preprocessor(states)
if not self._exploration_timesteps:
return torch.argmax(self.q_network.act({"states": states}, role="q_network")[0], dim=1, keepdim=True), None, None
# sample random actions
actions = self.q_network.random_act({"states": states}, role="q_network")[0]
if timestep < self._random_timesteps:
return actions, None, None
# sample actions with epsilon-greedy policy
epsilon = self._exploration_final_epsilon + (self._exploration_initial_epsilon - self._exploration_final_epsilon) \
* math.exp(-1.0 * timestep / self._exploration_timesteps)
indexes = (torch.rand(states.shape[0], device=self.device) >= epsilon).nonzero().view(-1)
if indexes.numel():
actions[indexes] = torch.argmax(self.q_network.act({"states": states[indexes]}, role="q_network")[0], dim=1, keepdim=True)
# record epsilon
self.track_data("Exploration / Exploration epsilon", epsilon)
return actions, None, None
def record_transition(self,
states: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
next_states: torch.Tensor,
terminated: torch.Tensor,
truncated: torch.Tensor,
infos: Any,
timestep: int,
timesteps: int) -> None:
"""Record an environment transition in memory
:param states: Observations/states of the environment used to make the decision
:type states: torch.Tensor
:param actions: Actions taken by the agent
:type actions: torch.Tensor
:param rewards: Instant rewards achieved by the current actions
:type rewards: torch.Tensor
:param next_states: Next observations/states of the environment
:type next_states: torch.Tensor
:param terminated: Signals to indicate that episodes have terminated
:type terminated: torch.Tensor
:param truncated: Signals to indicate that episodes have been truncated
:type truncated: torch.Tensor
:param infos: Additional information about the environment
:type infos: Any type supported by the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps)
if self.memory is not None:
# reward shaping
if self._rewards_shaper is not None:
rewards = self._rewards_shaper(rewards, timestep, timesteps)
self.memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated)
for memory in self.secondary_memories:
memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated)
def pre_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called before the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
pass
def post_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called after the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
if timestep >= self._learning_starts and not timestep % self._update_interval:
self._update(timestep, timesteps)
# write tracking data and checkpoints
super().post_interaction(timestep, timesteps)
def _update(self, timestep: int, timesteps: int) -> None:
"""Algorithm's main update step
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
# sample a batch from memory
sampled_states, sampled_actions, sampled_rewards, sampled_next_states, sampled_dones = \
self.memory.sample(names=self.tensors_names, batch_size=self._batch_size)[0]
# gradient steps
for gradient_step in range(self._gradient_steps):
sampled_states = self._state_preprocessor(sampled_states, train=True)
sampled_next_states = self._state_preprocessor(sampled_next_states, train=True)
# compute target values
with torch.no_grad():
next_q_values, _, _ = self.target_q_network.act({"states": sampled_next_states}, role="target_q_network")
target_q_values = torch.max(next_q_values, dim=-1, keepdim=True)[0]
target_values = sampled_rewards + self._discount_factor * sampled_dones.logical_not() * target_q_values
# compute Q-network loss
q_values = torch.gather(self.q_network.act({"states": sampled_states}, role="q_network")[0],
dim=1, index=sampled_actions.long())
q_network_loss = F.mse_loss(q_values, target_values)
# optimize Q-network
self.optimizer.zero_grad()
q_network_loss.backward()
self.optimizer.step()
# update target network
if not timestep % self._target_update_interval:
self.target_q_network.update_parameters(self.q_network, polyak=self._polyak)
# update learning rate
if self._learning_rate_scheduler:
self.scheduler.step()
# record data
self.track_data("Loss / Q-network loss", q_network_loss.item())
self.track_data("Target / Target (max)", torch.max(target_values).item())
self.track_data("Target / Target (min)", torch.min(target_values).item())
self.track_data("Target / Target (mean)", torch.mean(target_values).item())
if self._learning_rate_scheduler:
self.track_data("Learning / Learning rate", self.scheduler.get_last_lr()[0])
| 14,654 | Python | 44.092308 | 134 | 0.617101 |
Toni-SM/skrl/skrl/agents/torch/dqn/__init__.py | from skrl.agents.torch.dqn.ddqn import DDQN, DDQN_DEFAULT_CONFIG
from skrl.agents.torch.dqn.dqn import DQN, DQN_DEFAULT_CONFIG
| 127 | Python | 41.666653 | 64 | 0.811024 |
Toni-SM/skrl/skrl/agents/torch/sarsa/__init__.py | from skrl.agents.torch.sarsa.sarsa import SARSA, SARSA_DEFAULT_CONFIG
| 70 | Python | 34.499983 | 69 | 0.828571 |
Toni-SM/skrl/skrl/agents/torch/a2c/a2c.py | from typing import Any, Mapping, Optional, Tuple, Union
import copy
import itertools
import gym
import gymnasium
import torch
import torch.nn as nn
import torch.nn.functional as F
from skrl.agents.torch import Agent
from skrl.memories.torch import Memory
from skrl.models.torch import Model
from skrl.resources.schedulers.torch import KLAdaptiveLR
# [start-config-dict-torch]
A2C_DEFAULT_CONFIG = {
"rollouts": 16, # number of rollouts before updating
"mini_batches": 1, # number of mini batches to use for updating
"discount_factor": 0.99, # discount factor (gamma)
"lambda": 0.95, # TD(lambda) coefficient (lam) for computing returns and advantages
"learning_rate": 1e-3, # learning rate
"learning_rate_scheduler": None, # learning rate scheduler class (see torch.optim.lr_scheduler)
"learning_rate_scheduler_kwargs": {}, # learning rate scheduler's kwargs (e.g. {"step_size": 1e-3})
"state_preprocessor": None, # state preprocessor class (see skrl.resources.preprocessors)
"state_preprocessor_kwargs": {}, # state preprocessor's kwargs (e.g. {"size": env.observation_space})
"value_preprocessor": None, # value preprocessor class (see skrl.resources.preprocessors)
"value_preprocessor_kwargs": {}, # value preprocessor's kwargs (e.g. {"size": 1})
"random_timesteps": 0, # random exploration steps
"learning_starts": 0, # learning starts after this many steps
"grad_norm_clip": 0.5, # clipping coefficient for the norm of the gradients
"entropy_loss_scale": 0.0, # entropy loss scaling factor
"rewards_shaper": None, # rewards shaping function: Callable(reward, timestep, timesteps) -> reward
"time_limit_bootstrap": False, # bootstrap at timeout termination (episode truncation)
"experiment": {
"directory": "", # experiment's parent directory
"experiment_name": "", # experiment name
"write_interval": 250, # TensorBoard writing interval (timesteps)
"checkpoint_interval": 1000, # interval for checkpoints (timesteps)
"store_separately": False, # whether to store checkpoints separately
"wandb": False, # whether to use Weights & Biases
"wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init)
}
}
# [end-config-dict-torch]
class A2C(Agent):
def __init__(self,
models: Mapping[str, Model],
memory: Optional[Union[Memory, Tuple[Memory]]] = None,
observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
device: Optional[Union[str, torch.device]] = None,
cfg: Optional[dict] = None) -> None:
"""Advantage Actor Critic (A2C)
https://arxiv.org/abs/1602.01783
:param models: Models used by the agent
:type models: dictionary of skrl.models.torch.Model
:param memory: Memory to storage the transitions.
If it is a tuple, the first element will be used for training and
for the rest only the environment transitions will be added
:type memory: skrl.memory.torch.Memory, list of skrl.memory.torch.Memory or None
:param observation_space: Observation/state space or shape (default: ``None``)
:type observation_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param action_space: Action space or shape (default: ``None``)
:type action_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param device: Device on which a tensor/array is or will be allocated (default: ``None``).
If None, the device will be either ``"cuda"`` if available or ``"cpu"``
:type device: str or torch.device, optional
:param cfg: Configuration dictionary
:type cfg: dict
:raises KeyError: If the models dictionary is missing a required key
"""
_cfg = copy.deepcopy(A2C_DEFAULT_CONFIG)
_cfg.update(cfg if cfg is not None else {})
super().__init__(models=models,
memory=memory,
observation_space=observation_space,
action_space=action_space,
device=device,
cfg=_cfg)
# models
self.policy = self.models.get("policy", None)
self.value = self.models.get("value", None)
# checkpoint models
self.checkpoint_modules["policy"] = self.policy
self.checkpoint_modules["value"] = self.value
# configuration
self._mini_batches = self.cfg["mini_batches"]
self._rollouts = self.cfg["rollouts"]
self._rollout = 0
self._grad_norm_clip = self.cfg["grad_norm_clip"]
self._entropy_loss_scale = self.cfg["entropy_loss_scale"]
self._learning_rate = self.cfg["learning_rate"]
self._learning_rate_scheduler = self.cfg["learning_rate_scheduler"]
self._state_preprocessor = self.cfg["state_preprocessor"]
self._value_preprocessor = self.cfg["value_preprocessor"]
self._discount_factor = self.cfg["discount_factor"]
self._lambda = self.cfg["lambda"]
self._random_timesteps = self.cfg["random_timesteps"]
self._learning_starts = self.cfg["learning_starts"]
self._rewards_shaper = self.cfg["rewards_shaper"]
self._time_limit_bootstrap = self.cfg["time_limit_bootstrap"]
# set up optimizer and learning rate scheduler
if self.policy is not None and self.value is not None:
if self.policy is self.value:
self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=self._learning_rate)
else:
self.optimizer = torch.optim.Adam(itertools.chain(self.policy.parameters(), self.value.parameters()),
lr=self._learning_rate)
if self._learning_rate_scheduler is not None:
self.scheduler = self._learning_rate_scheduler(self.optimizer, **self.cfg["learning_rate_scheduler_kwargs"])
self.checkpoint_modules["optimizer"] = self.optimizer
# set up preprocessors
if self._state_preprocessor:
self._state_preprocessor = self._state_preprocessor(**self.cfg["state_preprocessor_kwargs"])
self.checkpoint_modules["state_preprocessor"] = self._state_preprocessor
else:
self._state_preprocessor = self._empty_preprocessor
if self._value_preprocessor:
self._value_preprocessor = self._value_preprocessor(**self.cfg["value_preprocessor_kwargs"])
self.checkpoint_modules["value_preprocessor"] = self._value_preprocessor
else:
self._value_preprocessor = self._empty_preprocessor
def init(self, trainer_cfg: Optional[Mapping[str, Any]] = None) -> None:
"""Initialize the agent
"""
super().init(trainer_cfg=trainer_cfg)
self.set_mode("eval")
# create tensors in memory
if self.memory is not None:
self.memory.create_tensor(name="states", size=self.observation_space, dtype=torch.float32)
self.memory.create_tensor(name="actions", size=self.action_space, dtype=torch.float32)
self.memory.create_tensor(name="rewards", size=1, dtype=torch.float32)
self.memory.create_tensor(name="terminated", size=1, dtype=torch.bool)
self.memory.create_tensor(name="log_prob", size=1, dtype=torch.float32)
self.memory.create_tensor(name="values", size=1, dtype=torch.float32)
self.memory.create_tensor(name="returns", size=1, dtype=torch.float32)
self.memory.create_tensor(name="advantages", size=1, dtype=torch.float32)
self._tensors_names = ["states", "actions", "log_prob", "returns", "advantages"]
# create temporary variables needed for storage and computation
self._current_log_prob = None
self._current_next_states = None
def act(self, states: torch.Tensor, timestep: int, timesteps: int) -> torch.Tensor:
"""Process the environment's states to make a decision (actions) using the main policy
:param states: Environment's states
:type states: torch.Tensor
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:return: Actions
:rtype: torch.Tensor
"""
# sample random actions
# TODO, check for stochasticity
if timestep < self._random_timesteps:
return self.policy.random_act({"states": self._state_preprocessor(states)}, role="policy")
# sample stochastic actions
actions, log_prob, outputs = self.policy.act({"states": self._state_preprocessor(states)}, role="policy")
self._current_log_prob = log_prob
return actions, log_prob, outputs
def record_transition(self,
states: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
next_states: torch.Tensor,
terminated: torch.Tensor,
truncated: torch.Tensor,
infos: Any,
timestep: int,
timesteps: int) -> None:
"""Record an environment transition in memory
:param states: Observations/states of the environment used to make the decision
:type states: torch.Tensor
:param actions: Actions taken by the agent
:type actions: torch.Tensor
:param rewards: Instant rewards achieved by the current actions
:type rewards: torch.Tensor
:param next_states: Next observations/states of the environment
:type next_states: torch.Tensor
:param terminated: Signals to indicate that episodes have terminated
:type terminated: torch.Tensor
:param truncated: Signals to indicate that episodes have been truncated
:type truncated: torch.Tensor
:param infos: Additional information about the environment
:type infos: Any type supported by the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps)
if self.memory is not None:
self._current_next_states = next_states
# reward shaping
if self._rewards_shaper is not None:
rewards = self._rewards_shaper(rewards, timestep, timesteps)
# compute values
values, _, _ = self.value.act({"states": self._state_preprocessor(states)}, role="value")
values = self._value_preprocessor(values, inverse=True)
# time-limit (truncation) boostrapping
if self._time_limit_bootstrap:
rewards += self._discount_factor * values * truncated
# storage transition in memory
self.memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated, log_prob=self._current_log_prob, values=values)
for memory in self.secondary_memories:
memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated, log_prob=self._current_log_prob, values=values)
def pre_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called before the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
pass
def post_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called after the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
self._rollout += 1
if not self._rollout % self._rollouts and timestep >= self._learning_starts:
self.set_mode("train")
self._update(timestep, timesteps)
self.set_mode("eval")
# write tracking data and checkpoints
super().post_interaction(timestep, timesteps)
def _update(self, timestep: int, timesteps: int) -> None:
"""Algorithm's main update step
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
def compute_gae(rewards: torch.Tensor,
dones: torch.Tensor,
values: torch.Tensor,
next_values: torch.Tensor,
discount_factor: float = 0.99,
lambda_coefficient: float = 0.95) -> torch.Tensor:
"""Compute the Generalized Advantage Estimator (GAE)
:param rewards: Rewards obtained by the agent
:type rewards: torch.Tensor
:param dones: Signals to indicate that episodes have ended
:type dones: torch.Tensor
:param values: Values obtained by the agent
:type values: torch.Tensor
:param next_values: Next values obtained by the agent
:type next_values: torch.Tensor
:param discount_factor: Discount factor
:type discount_factor: float
:param lambda_coefficient: Lambda coefficient
:type lambda_coefficient: float
:return: Generalized Advantage Estimator
:rtype: torch.Tensor
"""
advantage = 0
advantages = torch.zeros_like(rewards)
not_dones = dones.logical_not()
memory_size = rewards.shape[0]
# advantages computation
for i in reversed(range(memory_size)):
next_values = values[i + 1] if i < memory_size - 1 else last_values
advantage = rewards[i] - values[i] + discount_factor * not_dones[i] * (next_values + lambda_coefficient * advantage)
advantages[i] = advantage
# returns computation
returns = advantages + values
# normalize advantages
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
return returns, advantages
# compute returns and advantages
with torch.no_grad():
self.value.train(False)
last_values, _, _ = self.value.act({"states": self._state_preprocessor(self._current_next_states.float())}, role="value")
self.value.train(True)
last_values = self._value_preprocessor(last_values, inverse=True)
values = self.memory.get_tensor_by_name("values")
returns, advantages = compute_gae(rewards=self.memory.get_tensor_by_name("rewards"),
dones=self.memory.get_tensor_by_name("terminated"),
values=values,
next_values=last_values,
discount_factor=self._discount_factor,
lambda_coefficient=self._lambda)
self.memory.set_tensor_by_name("values", self._value_preprocessor(values, train=True))
self.memory.set_tensor_by_name("returns", self._value_preprocessor(returns, train=True))
self.memory.set_tensor_by_name("advantages", advantages)
# sample mini-batches from memory
sampled_batches = self.memory.sample_all(names=self._tensors_names, mini_batches=self._mini_batches)
cumulative_policy_loss = 0
cumulative_entropy_loss = 0
cumulative_value_loss = 0
kl_divergences = []
# mini-batches loop
for sampled_states, sampled_actions, sampled_log_prob, sampled_returns, sampled_advantages in sampled_batches:
sampled_states = self._state_preprocessor(sampled_states, train=True)
_, next_log_prob, _ = self.policy.act({"states": sampled_states, "taken_actions": sampled_actions}, role="policy")
# compute approximate KL divergence for KLAdaptive learning rate scheduler
if self._learning_rate_scheduler:
if isinstance(self.scheduler, KLAdaptiveLR):
with torch.no_grad():
ratio = next_log_prob - sampled_log_prob
kl_divergence = ((torch.exp(ratio) - 1) - ratio).mean()
kl_divergences.append(kl_divergence)
# compute entropy loss
if self._entropy_loss_scale:
entropy_loss = -self._entropy_loss_scale * self.policy.get_entropy(role="policy").mean()
else:
entropy_loss = 0
# compute policy loss
policy_loss = -(sampled_advantages * next_log_prob).mean()
# compute value loss
predicted_values, _, _ = self.value.act({"states": sampled_states}, role="value")
value_loss = F.mse_loss(sampled_returns, predicted_values)
# optimization step
self.optimizer.zero_grad()
(policy_loss + entropy_loss + value_loss).backward()
if self._grad_norm_clip > 0:
if self.policy is self.value:
nn.utils.clip_grad_norm_(self.policy.parameters(), self._grad_norm_clip)
else:
nn.utils.clip_grad_norm_(itertools.chain(self.policy.parameters(), self.value.parameters()), self._grad_norm_clip)
self.optimizer.step()
# update cumulative losses
cumulative_policy_loss += policy_loss.item()
cumulative_value_loss += value_loss.item()
if self._entropy_loss_scale:
cumulative_entropy_loss += entropy_loss.item()
# update learning rate
if self._learning_rate_scheduler:
if isinstance(self.scheduler, KLAdaptiveLR):
self.scheduler.step(torch.tensor(kl_divergences).mean())
else:
self.scheduler.step()
# record data
self.track_data("Loss / Policy loss", cumulative_policy_loss / len(sampled_batches))
self.track_data("Loss / Value loss", cumulative_value_loss / len(sampled_batches))
if self._entropy_loss_scale:
self.track_data("Loss / Entropy loss", cumulative_entropy_loss / len(sampled_batches))
self.track_data("Policy / Standard deviation", self.policy.distribution(role="policy").stddev.mean().item())
if self._learning_rate_scheduler:
self.track_data("Learning / Learning rate", self.scheduler.get_last_lr()[0])
| 19,522 | Python | 44.93647 | 134 | 0.604702 |
Toni-SM/skrl/skrl/agents/torch/a2c/__init__.py | from skrl.agents.torch.a2c.a2c import A2C, A2C_DEFAULT_CONFIG
from skrl.agents.torch.a2c.a2c_rnn import A2C_RNN
| 112 | Python | 36.666654 | 61 | 0.803571 |
Toni-SM/skrl/skrl/agents/torch/ppo/__init__.py | from skrl.agents.torch.ppo.ppo import PPO, PPO_DEFAULT_CONFIG
from skrl.agents.torch.ppo.ppo_rnn import PPO_RNN
| 112 | Python | 36.666654 | 61 | 0.803571 |
Toni-SM/skrl/skrl/agents/torch/amp/amp.py | from typing import Any, Callable, Mapping, Optional, Tuple, Union
import copy
import itertools
import math
import gym
import gymnasium
import torch
import torch.nn as nn
import torch.nn.functional as F
from skrl.agents.torch import Agent
from skrl.memories.torch import Memory
from skrl.models.torch import Model
# [start-config-dict-torch]
AMP_DEFAULT_CONFIG = {
"rollouts": 16, # number of rollouts before updating
"learning_epochs": 6, # number of learning epochs during each update
"mini_batches": 2, # number of mini batches during each learning epoch
"discount_factor": 0.99, # discount factor (gamma)
"lambda": 0.95, # TD(lambda) coefficient (lam) for computing returns and advantages
"learning_rate": 5e-5, # learning rate
"learning_rate_scheduler": None, # learning rate scheduler class (see torch.optim.lr_scheduler)
"learning_rate_scheduler_kwargs": {}, # learning rate scheduler's kwargs (e.g. {"step_size": 1e-3})
"state_preprocessor": None, # state preprocessor class (see skrl.resources.preprocessors)
"state_preprocessor_kwargs": {}, # state preprocessor's kwargs (e.g. {"size": env.observation_space})
"value_preprocessor": None, # value preprocessor class (see skrl.resources.preprocessors)
"value_preprocessor_kwargs": {}, # value preprocessor's kwargs (e.g. {"size": 1})
"amp_state_preprocessor": None, # AMP state preprocessor class (see skrl.resources.preprocessors)
"amp_state_preprocessor_kwargs": {}, # AMP state preprocessor's kwargs (e.g. {"size": env.amp_observation_space})
"random_timesteps": 0, # random exploration steps
"learning_starts": 0, # learning starts after this many steps
"grad_norm_clip": 0.0, # clipping coefficient for the norm of the gradients
"ratio_clip": 0.2, # clipping coefficient for computing the clipped surrogate objective
"value_clip": 0.2, # clipping coefficient for computing the value loss (if clip_predicted_values is True)
"clip_predicted_values": False, # clip predicted values during value loss computation
"entropy_loss_scale": 0.0, # entropy loss scaling factor
"value_loss_scale": 2.5, # value loss scaling factor
"discriminator_loss_scale": 5.0, # discriminator loss scaling factor
"amp_batch_size": 512, # batch size for updating the reference motion dataset
"task_reward_weight": 0.0, # task-reward weight (wG)
"style_reward_weight": 1.0, # style-reward weight (wS)
"discriminator_batch_size": 0, # batch size for computing the discriminator loss (all samples if 0)
"discriminator_reward_scale": 2, # discriminator reward scaling factor
"discriminator_logit_regularization_scale": 0.05, # logit regularization scale factor for the discriminator loss
"discriminator_gradient_penalty_scale": 5, # gradient penalty scaling factor for the discriminator loss
"discriminator_weight_decay_scale": 0.0001, # weight decay scaling factor for the discriminator loss
"rewards_shaper": None, # rewards shaping function: Callable(reward, timestep, timesteps) -> reward
"time_limit_bootstrap": False, # bootstrap at timeout termination (episode truncation)
"experiment": {
"directory": "", # experiment's parent directory
"experiment_name": "", # experiment name
"write_interval": 250, # TensorBoard writing interval (timesteps)
"checkpoint_interval": 1000, # interval for checkpoints (timesteps)
"store_separately": False, # whether to store checkpoints separately
"wandb": False, # whether to use Weights & Biases
"wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init)
}
}
# [end-config-dict-torch]
class AMP(Agent):
def __init__(self,
models: Mapping[str, Model],
memory: Optional[Union[Memory, Tuple[Memory]]] = None,
observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
device: Optional[Union[str, torch.device]] = None,
cfg: Optional[dict] = None,
amp_observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
motion_dataset: Optional[Memory] = None,
reply_buffer: Optional[Memory] = None,
collect_reference_motions: Optional[Callable[[int], torch.Tensor]] = None,
collect_observation: Optional[Callable[[], torch.Tensor]] = None) -> None:
"""Adversarial Motion Priors (AMP)
https://arxiv.org/abs/2104.02180
The implementation is adapted from the NVIDIA IsaacGymEnvs
(https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/isaacgymenvs/learning/amp_continuous.py)
:param models: Models used by the agent
:type models: dictionary of skrl.models.torch.Model
:param memory: Memory to storage the transitions.
If it is a tuple, the first element will be used for training and
for the rest only the environment transitions will be added
:type memory: skrl.memory.torch.Memory, list of skrl.memory.torch.Memory or None
:param observation_space: Observation/state space or shape (default: ``None``)
:type observation_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param action_space: Action space or shape (default: ``None``)
:type action_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param device: Device on which a tensor/array is or will be allocated (default: ``None``).
If None, the device will be either ``"cuda"`` if available or ``"cpu"``
:type device: str or torch.device, optional
:param cfg: Configuration dictionary
:type cfg: dict
:param amp_observation_space: AMP observation/state space or shape (default: ``None``)
:type amp_observation_space: int, tuple or list of int, gym.Space, gymnasium.Space or None
:param motion_dataset: Reference motion dataset: M (default: ``None``)
:type motion_dataset: skrl.memory.torch.Memory or None
:param reply_buffer: Reply buffer for preventing discriminator overfitting: B (default: ``None``)
:type reply_buffer: skrl.memory.torch.Memory or None
:param collect_reference_motions: Callable to collect reference motions (default: ``None``)
:type collect_reference_motions: Callable[[int], torch.Tensor] or None
:param collect_observation: Callable to collect observation (default: ``None``)
:type collect_observation: Callable[[], torch.Tensor] or None
:raises KeyError: If the models dictionary is missing a required key
"""
_cfg = copy.deepcopy(AMP_DEFAULT_CONFIG)
_cfg.update(cfg if cfg is not None else {})
super().__init__(models=models,
memory=memory,
observation_space=observation_space,
action_space=action_space,
device=device,
cfg=_cfg)
self.amp_observation_space = amp_observation_space
self.motion_dataset = motion_dataset
self.reply_buffer = reply_buffer
self.collect_reference_motions = collect_reference_motions
self.collect_observation = collect_observation
# models
self.policy = self.models.get("policy", None)
self.value = self.models.get("value", None)
self.discriminator = self.models.get("discriminator", None)
# checkpoint models
self.checkpoint_modules["policy"] = self.policy
self.checkpoint_modules["value"] = self.value
self.checkpoint_modules["discriminator"] = self.discriminator
# configuration
self._learning_epochs = self.cfg["learning_epochs"]
self._mini_batches = self.cfg["mini_batches"]
self._rollouts = self.cfg["rollouts"]
self._rollout = 0
self._grad_norm_clip = self.cfg["grad_norm_clip"]
self._ratio_clip = self.cfg["ratio_clip"]
self._value_clip = self.cfg["value_clip"]
self._clip_predicted_values = self.cfg["clip_predicted_values"]
self._value_loss_scale = self.cfg["value_loss_scale"]
self._entropy_loss_scale = self.cfg["entropy_loss_scale"]
self._discriminator_loss_scale = self.cfg["discriminator_loss_scale"]
self._learning_rate = self.cfg["learning_rate"]
self._learning_rate_scheduler = self.cfg["learning_rate_scheduler"]
self._state_preprocessor = self.cfg["state_preprocessor"]
self._value_preprocessor = self.cfg["value_preprocessor"]
self._amp_state_preprocessor = self.cfg["amp_state_preprocessor"]
self._discount_factor = self.cfg["discount_factor"]
self._lambda = self.cfg["lambda"]
self._random_timesteps = self.cfg["random_timesteps"]
self._learning_starts = self.cfg["learning_starts"]
self._amp_batch_size = self.cfg["amp_batch_size"]
self._task_reward_weight = self.cfg["task_reward_weight"]
self._style_reward_weight = self.cfg["style_reward_weight"]
self._discriminator_batch_size = self.cfg["discriminator_batch_size"]
self._discriminator_reward_scale = self.cfg["discriminator_reward_scale"]
self._discriminator_logit_regularization_scale = self.cfg["discriminator_logit_regularization_scale"]
self._discriminator_gradient_penalty_scale = self.cfg["discriminator_gradient_penalty_scale"]
self._discriminator_weight_decay_scale = self.cfg["discriminator_weight_decay_scale"]
self._rewards_shaper = self.cfg["rewards_shaper"]
self._time_limit_bootstrap = self.cfg["time_limit_bootstrap"]
# set up optimizer and learning rate scheduler
if self.policy is not None and self.value is not None and self.discriminator is not None:
self.optimizer = torch.optim.Adam(itertools.chain(self.policy.parameters(),
self.value.parameters(),
self.discriminator.parameters()),
lr=self._learning_rate)
if self._learning_rate_scheduler is not None:
self.scheduler = self._learning_rate_scheduler(self.optimizer, **self.cfg["learning_rate_scheduler_kwargs"])
self.checkpoint_modules["optimizer"] = self.optimizer
# set up preprocessors
if self._state_preprocessor:
self._state_preprocessor = self._state_preprocessor(**self.cfg["state_preprocessor_kwargs"])
self.checkpoint_modules["state_preprocessor"] = self._state_preprocessor
else:
self._state_preprocessor = self._empty_preprocessor
if self._value_preprocessor:
self._value_preprocessor = self._value_preprocessor(**self.cfg["value_preprocessor_kwargs"])
self.checkpoint_modules["value_preprocessor"] = self._value_preprocessor
else:
self._value_preprocessor = self._empty_preprocessor
if self._amp_state_preprocessor:
self._amp_state_preprocessor = self._amp_state_preprocessor(**self.cfg["amp_state_preprocessor_kwargs"])
self.checkpoint_modules["amp_state_preprocessor"] = self._amp_state_preprocessor
else:
self._amp_state_preprocessor = self._empty_preprocessor
def init(self, trainer_cfg: Optional[Mapping[str, Any]] = None) -> None:
"""Initialize the agent
"""
super().init(trainer_cfg=trainer_cfg)
self.set_mode("eval")
# create tensors in memory
if self.memory is not None:
self.memory.create_tensor(name="states", size=self.observation_space, dtype=torch.float32)
self.memory.create_tensor(name="next_states", size=self.observation_space, dtype=torch.float32)
self.memory.create_tensor(name="actions", size=self.action_space, dtype=torch.float32)
self.memory.create_tensor(name="rewards", size=1, dtype=torch.float32)
self.memory.create_tensor(name="terminated", size=1, dtype=torch.bool)
self.memory.create_tensor(name="log_prob", size=1, dtype=torch.float32)
self.memory.create_tensor(name="values", size=1, dtype=torch.float32)
self.memory.create_tensor(name="returns", size=1, dtype=torch.float32)
self.memory.create_tensor(name="advantages", size=1, dtype=torch.float32)
self.memory.create_tensor(name="amp_states", size=self.amp_observation_space, dtype=torch.float32)
self.memory.create_tensor(name="next_values", size=1, dtype=torch.float32)
self.tensors_names = ["states", "actions", "rewards", "next_states", "terminated", \
"log_prob", "values", "returns", "advantages", "amp_states", "next_values"]
# create tensors for motion dataset and reply buffer
if self.motion_dataset is not None:
self.motion_dataset.create_tensor(name="states", size=self.amp_observation_space, dtype=torch.float32)
self.reply_buffer.create_tensor(name="states", size=self.amp_observation_space, dtype=torch.float32)
# initialize motion dataset
for _ in range(math.ceil(self.motion_dataset.memory_size / self._amp_batch_size)):
self.motion_dataset.add_samples(states=self.collect_reference_motions(self._amp_batch_size))
# create temporary variables needed for storage and computation
self._current_log_prob = None
self._current_states = None
def act(self, states: torch.Tensor, timestep: int, timesteps: int) -> torch.Tensor:
"""Process the environment's states to make a decision (actions) using the main policy
:param states: Environment's states
:type states: torch.Tensor
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:return: Actions
:rtype: torch.Tensor
"""
# use collected states
if self._current_states is not None:
states = self._current_states
states = self._state_preprocessor(states)
# sample random actions
# TODO, check for stochasticity
if timestep < self._random_timesteps:
return self.policy.random_act({"states": states}, role="policy")
# sample stochastic actions
actions, log_prob, outputs = self.policy.act({"states": states}, role="policy")
self._current_log_prob = log_prob
return actions, log_prob, outputs
def record_transition(self,
states: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
next_states: torch.Tensor,
terminated: torch.Tensor,
truncated: torch.Tensor,
infos: Any,
timestep: int,
timesteps: int) -> None:
"""Record an environment transition in memory
:param states: Observations/states of the environment used to make the decision
:type states: torch.Tensor
:param actions: Actions taken by the agent
:type actions: torch.Tensor
:param rewards: Instant rewards achieved by the current actions
:type rewards: torch.Tensor
:param next_states: Next observations/states of the environment
:type next_states: torch.Tensor
:param terminated: Signals to indicate that episodes have terminated
:type terminated: torch.Tensor
:param truncated: Signals to indicate that episodes have been truncated
:type truncated: torch.Tensor
:param infos: Additional information about the environment
:type infos: Any type supported by the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
# use collected states
if self._current_states is not None:
states = self._current_states
super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps)
if self.memory is not None:
amp_states = infos["amp_obs"]
# reward shaping
if self._rewards_shaper is not None:
rewards = self._rewards_shaper(rewards, timestep, timesteps)
with torch.no_grad():
values, _, _ = self.value.act({"states": self._state_preprocessor(states)}, role="value")
values = self._value_preprocessor(values, inverse=True)
# time-limit (truncation) boostrapping
if self._time_limit_bootstrap:
rewards += self._discount_factor * values * truncated
with torch.no_grad():
next_values, _, _ = self.value.act({"states": self._state_preprocessor(next_states)}, role="value")
next_values = self._value_preprocessor(next_values, inverse=True)
next_values *= infos['terminate'].view(-1, 1).logical_not()
self.memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states, terminated=terminated, truncated=truncated,
log_prob=self._current_log_prob, values=values, amp_states=amp_states, next_values=next_values)
for memory in self.secondary_memories:
memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states, terminated=terminated, truncated=truncated,
log_prob=self._current_log_prob, values=values, amp_states=amp_states, next_values=next_values)
def pre_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called before the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
if self.collect_observation is not None:
self._current_states = self.collect_observation()
def post_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called after the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
self._rollout += 1
if not self._rollout % self._rollouts and timestep >= self._learning_starts:
self.set_mode("train")
self._update(timestep, timesteps)
self.set_mode("eval")
# write tracking data and checkpoints
super().post_interaction(timestep, timesteps)
def _update(self, timestep: int, timesteps: int) -> None:
"""Algorithm's main update step
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
def compute_gae(rewards: torch.Tensor,
dones: torch.Tensor,
values: torch.Tensor,
next_values: torch.Tensor,
discount_factor: float = 0.99,
lambda_coefficient: float = 0.95) -> torch.Tensor:
"""Compute the Generalized Advantage Estimator (GAE)
:param rewards: Rewards obtained by the agent
:type rewards: torch.Tensor
:param dones: Signals to indicate that episodes have ended
:type dones: torch.Tensor
:param values: Values obtained by the agent
:type values: torch.Tensor
:param next_values: Next values obtained by the agent
:type next_values: torch.Tensor
:param discount_factor: Discount factor
:type discount_factor: float
:param lambda_coefficient: Lambda coefficient
:type lambda_coefficient: float
:return: Generalized Advantage Estimator
:rtype: torch.Tensor
"""
advantage = 0
advantages = torch.zeros_like(rewards)
not_dones = dones.logical_not()
memory_size = rewards.shape[0]
# advantages computation
for i in reversed(range(memory_size)):
advantage = rewards[i] - values[i] + discount_factor * (next_values[i] + lambda_coefficient * not_dones[i] * advantage)
advantages[i] = advantage
# returns computation
returns = advantages + values
# normalize advantages
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
return returns, advantages
# update dataset of reference motions
self.motion_dataset.add_samples(states=self.collect_reference_motions(self._amp_batch_size))
# compute combined rewards
rewards = self.memory.get_tensor_by_name("rewards")
amp_states = self.memory.get_tensor_by_name("amp_states")
with torch.no_grad():
amp_logits, _, _ = self.discriminator.act({"states": self._amp_state_preprocessor(amp_states)}, role="discriminator")
style_reward = -torch.log(torch.maximum(1 - 1 / (1 + torch.exp(-amp_logits)), torch.tensor(0.0001, device=self.device)))
style_reward *= self._discriminator_reward_scale
combined_rewards = self._task_reward_weight * rewards + self._style_reward_weight * style_reward
# compute returns and advantages
values = self.memory.get_tensor_by_name("values")
next_values=self.memory.get_tensor_by_name("next_values")
returns, advantages = compute_gae(rewards=combined_rewards,
dones=self.memory.get_tensor_by_name("terminated"),
values=values,
next_values=next_values,
discount_factor=self._discount_factor,
lambda_coefficient=self._lambda)
self.memory.set_tensor_by_name("values", self._value_preprocessor(values, train=True))
self.memory.set_tensor_by_name("returns", self._value_preprocessor(returns, train=True))
self.memory.set_tensor_by_name("advantages", advantages)
# sample mini-batches from memory
sampled_batches = self.memory.sample_all(names=self.tensors_names, mini_batches=self._mini_batches)
sampled_motion_batches = self.motion_dataset.sample(names=["states"],
batch_size=self.memory.memory_size * self.memory.num_envs,
mini_batches=self._mini_batches)
if len(self.reply_buffer):
sampled_replay_batches = self.reply_buffer.sample(names=["states"],
batch_size=self.memory.memory_size * self.memory.num_envs,
mini_batches=self._mini_batches)
else:
sampled_replay_batches = [[batches[self.tensors_names.index("amp_states")]] for batches in sampled_batches]
cumulative_policy_loss = 0
cumulative_entropy_loss = 0
cumulative_value_loss = 0
cumulative_discriminator_loss = 0
# learning epochs
for epoch in range(self._learning_epochs):
# mini-batches loop
for batch_index, (sampled_states, sampled_actions, _, _, _, \
sampled_log_prob, sampled_values, sampled_returns, sampled_advantages, \
sampled_amp_states, _) in enumerate(sampled_batches):
sampled_states = self._state_preprocessor(sampled_states, train=True)
_, next_log_prob, _ = self.policy.act({"states": sampled_states, "taken_actions": sampled_actions}, role="policy")
# compute entropy loss
if self._entropy_loss_scale:
entropy_loss = -self._entropy_loss_scale * self.policy.get_entropy(role="policy").mean()
else:
entropy_loss = 0
# compute policy loss
ratio = torch.exp(next_log_prob - sampled_log_prob)
surrogate = sampled_advantages * ratio
surrogate_clipped = sampled_advantages * torch.clip(ratio, 1.0 - self._ratio_clip, 1.0 + self._ratio_clip)
policy_loss = -torch.min(surrogate, surrogate_clipped).mean()
# compute value loss
predicted_values, _, _ = self.value.act({"states": sampled_states}, role="value")
if self._clip_predicted_values:
predicted_values = sampled_values + torch.clip(predicted_values - sampled_values,
min=-self._value_clip,
max=self._value_clip)
value_loss = self._value_loss_scale * F.mse_loss(sampled_returns, predicted_values)
# compute discriminator loss
if self._discriminator_batch_size:
sampled_amp_states = self._amp_state_preprocessor(sampled_amp_states[0:self._discriminator_batch_size], train=True)
sampled_amp_replay_states = self._amp_state_preprocessor(
sampled_replay_batches[batch_index][0][0:self._discriminator_batch_size], train=True)
sampled_amp_motion_states = self._amp_state_preprocessor(
sampled_motion_batches[batch_index][0][0:self._discriminator_batch_size], train=True)
else:
sampled_amp_states = self._amp_state_preprocessor(sampled_amp_states, train=True)
sampled_amp_replay_states = self._amp_state_preprocessor(sampled_replay_batches[batch_index][0], train=True)
sampled_amp_motion_states = self._amp_state_preprocessor(sampled_motion_batches[batch_index][0], train=True)
sampled_amp_motion_states.requires_grad_(True)
amp_logits, _, _ = self.discriminator.act({"states": sampled_amp_states}, role="discriminator")
amp_replay_logits, _, _ = self.discriminator.act({"states": sampled_amp_replay_states}, role="discriminator")
amp_motion_logits, _, _ = self.discriminator.act({"states": sampled_amp_motion_states}, role="discriminator")
amp_cat_logits = torch.cat([amp_logits, amp_replay_logits], dim=0)
# discriminator prediction loss
discriminator_loss = 0.5 * (nn.BCEWithLogitsLoss()(amp_cat_logits, torch.zeros_like(amp_cat_logits)) \
+ torch.nn.BCEWithLogitsLoss()(amp_motion_logits, torch.ones_like(amp_motion_logits)))
# discriminator logit regularization
if self._discriminator_logit_regularization_scale:
logit_weights = torch.flatten(list(self.discriminator.modules())[-1].weight)
discriminator_loss += self._discriminator_logit_regularization_scale * torch.sum(torch.square(logit_weights))
# discriminator gradient penalty
if self._discriminator_gradient_penalty_scale:
amp_motion_gradient = torch.autograd.grad(amp_motion_logits,
sampled_amp_motion_states,
grad_outputs=torch.ones_like(amp_motion_logits),
create_graph=True,
retain_graph=True,
only_inputs=True)
gradient_penalty = torch.sum(torch.square(amp_motion_gradient[0]), dim=-1).mean()
discriminator_loss += self._discriminator_gradient_penalty_scale * gradient_penalty
# discriminator weight decay
if self._discriminator_weight_decay_scale:
weights = [torch.flatten(module.weight) for module in self.discriminator.modules() \
if isinstance(module, torch.nn.Linear)]
weight_decay = torch.sum(torch.square(torch.cat(weights, dim=-1)))
discriminator_loss += self._discriminator_weight_decay_scale * weight_decay
discriminator_loss *= self._discriminator_loss_scale
# optimization step
self.optimizer.zero_grad()
(policy_loss + entropy_loss + value_loss + discriminator_loss).backward()
if self._grad_norm_clip > 0:
nn.utils.clip_grad_norm_(itertools.chain(self.policy.parameters(),
self.value.parameters(),
self.discriminator.parameters()), self._grad_norm_clip)
self.optimizer.step()
# update cumulative losses
cumulative_policy_loss += policy_loss.item()
cumulative_value_loss += value_loss.item()
if self._entropy_loss_scale:
cumulative_entropy_loss += entropy_loss.item()
cumulative_discriminator_loss += discriminator_loss.item()
# update learning rate
if self._learning_rate_scheduler:
self.scheduler.step()
# update AMP repaly buffer
self.reply_buffer.add_samples(states=amp_states.view(-1, amp_states.shape[-1]))
# record data
self.track_data("Loss / Policy loss", cumulative_policy_loss / (self._learning_epochs * self._mini_batches))
self.track_data("Loss / Value loss", cumulative_value_loss / (self._learning_epochs * self._mini_batches))
if self._entropy_loss_scale:
self.track_data("Loss / Entropy loss", cumulative_entropy_loss / (self._learning_epochs * self._mini_batches))
self.track_data("Loss / Discriminator loss", cumulative_discriminator_loss / (self._learning_epochs * self._mini_batches))
self.track_data("Policy / Standard deviation", self.policy.distribution(role="policy").stddev.mean().item())
if self._learning_rate_scheduler:
self.track_data("Learning / Learning rate", self.scheduler.get_last_lr()[0])
| 31,430 | Python | 52.454082 | 153 | 0.605663 |
Toni-SM/skrl/skrl/agents/torch/amp/__init__.py | from skrl.agents.torch.amp.amp import AMP, AMP_DEFAULT_CONFIG
| 62 | Python | 30.499985 | 61 | 0.806452 |
Toni-SM/skrl/skrl/agents/torch/rpo/__init__.py | from skrl.agents.torch.rpo.rpo import RPO, RPO_DEFAULT_CONFIG
from skrl.agents.torch.rpo.rpo_rnn import RPO_RNN
| 112 | Python | 36.666654 | 61 | 0.803571 |
Toni-SM/skrl/skrl/agents/jax/base.py | from typing import Any, Mapping, Optional, Tuple, Union
import collections
import copy
import datetime
import os
import pickle
import gym
import gymnasium
import flax
import jax
import numpy as np
from skrl import config, logger
from skrl.memories.jax import Memory
from skrl.models.jax import Model
class Agent:
def __init__(self,
models: Mapping[str, Model],
memory: Optional[Union[Memory, Tuple[Memory]]] = None,
observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
device: Optional[Union[str, jax.Device]] = None,
cfg: Optional[dict] = None) -> None:
"""Base class that represent a RL agent
:param models: Models used by the agent
:type models: dictionary of skrl.models.jax.Model
:param memory: Memory to storage the transitions.
If it is a tuple, the first element will be used for training and
for the rest only the environment transitions will be added
:type memory: skrl.memory.jax.Memory, list of skrl.memory.jax.Memory or None
:param observation_space: Observation/state space or shape (default: ``None``)
:type observation_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param action_space: Action space or shape (default: ``None``)
:type action_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param device: Device on which a tensor/array is or will be allocated (default: ``None``).
If None, the device will be either ``"cuda"`` if available or ``"cpu"``
:type device: str or jax.Device, optional
:param cfg: Configuration dictionary
:type cfg: dict
"""
self._jax = config.jax.backend == "jax"
self.models = models
self.observation_space = observation_space
self.action_space = action_space
self.cfg = cfg if cfg is not None else {}
if device is None:
self.device = jax.devices()[0]
else:
self.device = device if isinstance(device, jax.Device) else jax.devices(device)[0]
if type(memory) is list:
self.memory = memory[0]
self.secondary_memories = memory[1:]
else:
self.memory = memory
self.secondary_memories = []
# convert the models to their respective device
for model in self.models.values():
if model is not None:
pass
self.tracking_data = collections.defaultdict(list)
self.write_interval = self.cfg.get("experiment", {}).get("write_interval", 1000)
self._track_rewards = collections.deque(maxlen=100)
self._track_timesteps = collections.deque(maxlen=100)
self._cumulative_rewards = None
self._cumulative_timesteps = None
self.training = True
# checkpoint
self.checkpoint_modules = {}
self.checkpoint_interval = self.cfg.get("experiment", {}).get("checkpoint_interval", 1000)
self.checkpoint_store_separately = self.cfg.get("experiment", {}).get("store_separately", False)
self.checkpoint_best_modules = {"timestep": 0, "reward": -2 ** 31, "saved": False, "modules": {}}
# experiment directory
directory = self.cfg.get("experiment", {}).get("directory", "")
experiment_name = self.cfg.get("experiment", {}).get("experiment_name", "")
if not directory:
directory = os.path.join(os.getcwd(), "runs")
if not experiment_name:
experiment_name = "{}_{}".format(datetime.datetime.now().strftime("%y-%m-%d_%H-%M-%S-%f"), self.__class__.__name__)
self.experiment_dir = os.path.join(directory, experiment_name)
def __str__(self) -> str:
"""Generate a representation of the agent as string
:return: Representation of the agent as string
:rtype: str
"""
string = f"Agent: {repr(self)}"
for k, v in self.cfg.items():
if type(v) is dict:
string += f"\n |-- {k}"
for k1, v1 in v.items():
string += f"\n | |-- {k1}: {v1}"
else:
string += f"\n |-- {k}: {v}"
return string
def _empty_preprocessor(self, _input: Any, *args, **kwargs) -> Any:
"""Empty preprocess method
This method is defined because PyTorch multiprocessing can't pickle lambdas
:param _input: Input to preprocess
:type _input: Any
:return: Preprocessed input
:rtype: Any
"""
return _input
def _get_internal_value(self, _module: Any) -> Any:
"""Get internal module/variable state/value
:param _module: Module or variable
:type _module: Any
:return: Module/variable state/value
:rtype: Any
"""
return _module.state_dict.params if hasattr(_module, "state_dict") else _module
def init(self, trainer_cfg: Optional[Mapping[str, Any]] = None) -> None:
"""Initialize the agent
This method should be called before the agent is used.
It will initialize the TensoBoard writer (and optionally Weights & Biases) and create the checkpoints directory
:param trainer_cfg: Trainer configuration
:type trainer_cfg: dict, optional
"""
# setup Weights & Biases
if self.cfg.get("experiment", {}).get("wandb", False):
# save experiment config
trainer_cfg = trainer_cfg if trainer_cfg is not None else {}
try:
models_cfg = {k: v.net._modules for (k, v) in self.models.items()}
except AttributeError:
models_cfg = {k: v._modules for (k, v) in self.models.items()}
config={**self.cfg, **trainer_cfg, **models_cfg}
# set default values
wandb_kwargs = copy.deepcopy(self.cfg.get("experiment", {}).get("wandb_kwargs", {}))
wandb_kwargs.setdefault("name", os.path.split(self.experiment_dir)[-1])
wandb_kwargs.setdefault("sync_tensorboard", True)
wandb_kwargs.setdefault("config", {})
wandb_kwargs["config"].update(config)
# init Weights & Biases
import wandb
wandb.init(**wandb_kwargs)
# main entry to log data for consumption and visualization by TensorBoard
if self.write_interval > 0:
self.writer = None
# tensorboard via torch SummaryWriter
try:
from torch.utils.tensorboard import SummaryWriter
self.writer = SummaryWriter(log_dir=self.experiment_dir)
except ImportError as e:
pass
# tensorboard via tensorflow
if self.writer is None:
try:
import tensorflow
class _SummaryWriter:
def __init__(self, log_dir):
self.writer = tensorflow.summary.create_file_writer(logdir=log_dir)
def add_scalar(self, tag, value, step):
with self.writer.as_default():
tensorflow.summary.scalar(tag, value, step=step)
self.writer = _SummaryWriter(log_dir=self.experiment_dir)
except ImportError as e:
pass
# tensorboard via tensorboardX
if self.writer is None:
try:
import tensorboardX
self.writer = tensorboardX.SummaryWriter(log_dir=self.experiment_dir)
except ImportError as e:
pass
# show warnings and exit
if self.writer is None:
logger.warning("No package found to write events to Tensorboard.")
logger.warning("Set agent's `write_interval` setting to 0 to disable writing")
logger.warning("or install one of the following packages:")
logger.warning(" - PyTorch: https://pytorch.org/get-started/locally")
logger.warning(" - TensorFlow: https://www.tensorflow.org/install")
logger.warning(" - TensorboardX: https://github.com/lanpa/tensorboardX#install")
logger.warning("The current running process will be terminated.")
exit()
if self.checkpoint_interval > 0:
os.makedirs(os.path.join(self.experiment_dir, "checkpoints"), exist_ok=True)
def track_data(self, tag: str, value: float) -> None:
"""Track data to TensorBoard
Currently only scalar data are supported
:param tag: Data identifier (e.g. 'Loss / policy loss')
:type tag: str
:param value: Value to track
:type value: float
"""
self.tracking_data[tag].append(value)
def write_tracking_data(self, timestep: int, timesteps: int) -> None:
"""Write tracking data to TensorBoard
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
for k, v in self.tracking_data.items():
if k.endswith("(min)"):
self.writer.add_scalar(k, np.min(v), timestep)
elif k.endswith("(max)"):
self.writer.add_scalar(k, np.max(v), timestep)
else:
self.writer.add_scalar(k, np.mean(v), timestep)
# reset data containers for next iteration
self._track_rewards.clear()
self._track_timesteps.clear()
self.tracking_data.clear()
def write_checkpoint(self, timestep: int, timesteps: int) -> None:
"""Write checkpoint (modules) to disk
The checkpoints are saved in the directory 'checkpoints' in the experiment directory.
The name of the checkpoint is the current timestep if timestep is not None, otherwise it is the current time.
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
tag = str(timestep if timestep is not None else datetime.datetime.now().strftime("%y-%m-%d_%H-%M-%S-%f"))
# separated modules
if self.checkpoint_store_separately:
for name, module in self.checkpoint_modules.items():
with open(os.path.join(self.experiment_dir, "checkpoints", f"{name}_{tag}.pickle"), "wb") as file:
pickle.dump(flax.serialization.to_bytes(self._get_internal_value(module)), file, protocol=4)
# whole agent
else:
modules = {}
for name, module in self.checkpoint_modules.items():
modules[name] = flax.serialization.to_bytes(self._get_internal_value(module))
with open(os.path.join(self.experiment_dir, "checkpoints", f"agent_{tag}.pickle"), "wb") as file:
pickle.dump(modules, file, protocol=4)
# best modules
if self.checkpoint_best_modules["modules"] and not self.checkpoint_best_modules["saved"]:
# separated modules
if self.checkpoint_store_separately:
for name, module in self.checkpoint_modules.items():
with open(os.path.join(self.experiment_dir, "checkpoints", f"best_{name}.pickle"), "wb") as file:
pickle.dump(flax.serialization.to_bytes(self.checkpoint_best_modules["modules"][name]), file, protocol=4)
# whole agent
else:
modules = {}
for name, module in self.checkpoint_modules.items():
modules[name] = flax.serialization.to_bytes(self.checkpoint_best_modules["modules"][name])
with open(os.path.join(self.experiment_dir, "checkpoints", "best_agent.pickle"), "wb") as file:
pickle.dump(modules, file, protocol=4)
self.checkpoint_best_modules["saved"] = True
def act(self, states: Union[np.ndarray, jax.Array], timestep: int, timesteps: int) -> Union[np.ndarray, jax.Array]:
"""Process the environment's states to make a decision (actions) using the main policy
:param states: Environment's states
:type states: np.ndarray or jax.Array
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:raises NotImplementedError: The method is not implemented by the inheriting classes
:return: Actions
:rtype: np.ndarray or jax.Array
"""
raise NotImplementedError
def record_transition(self,
states: Union[np.ndarray, jax.Array],
actions: Union[np.ndarray, jax.Array],
rewards: Union[np.ndarray, jax.Array],
next_states: Union[np.ndarray, jax.Array],
terminated: Union[np.ndarray, jax.Array],
truncated: Union[np.ndarray, jax.Array],
infos: Any,
timestep: int,
timesteps: int) -> None:
"""Record an environment transition in memory (to be implemented by the inheriting classes)
Inheriting classes must call this method to record episode information (rewards, timesteps, etc.).
In addition to recording environment transition (such as states, rewards, etc.), agent information can be recorded.
:param states: Observations/states of the environment used to make the decision
:type states: np.ndarray or jax.Array
:param actions: Actions taken by the agent
:type actions: np.ndarray or jax.Array
:param rewards: Instant rewards achieved by the current actions
:type rewards: np.ndarray or jax.Array
:param next_states: Next observations/states of the environment
:type next_states: np.ndarray or jax.Array
:param terminated: Signals to indicate that episodes have terminated
:type terminated: np.ndarray or jax.Array
:param truncated: Signals to indicate that episodes have been truncated
:type truncated: np.ndarray or jax.Array
:param infos: Additional information about the environment
:type infos: Any type supported by the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
if self.write_interval > 0:
# compute the cumulative sum of the rewards and timesteps
if self._cumulative_rewards is None:
self._cumulative_rewards = np.zeros_like(rewards, dtype=np.float32)
self._cumulative_timesteps = np.zeros_like(rewards, dtype=np.int32)
# TODO: find a better way to avoid https://jax.readthedocs.io/en/latest/errors.html#jax.errors.ConcretizationTypeError
if self._jax:
rewards = jax.device_get(rewards)
terminated = jax.device_get(terminated)
truncated = jax.device_get(truncated)
self._cumulative_rewards += rewards
self._cumulative_timesteps += 1
# check ended episodes
finished_episodes = (terminated + truncated).nonzero()[0]
if finished_episodes.size:
# storage cumulative rewards and timesteps
self._track_rewards.extend(self._cumulative_rewards[finished_episodes][:, 0].reshape(-1).tolist())
self._track_timesteps.extend(self._cumulative_timesteps[finished_episodes][:, 0].reshape(-1).tolist())
# reset the cumulative rewards and timesteps
self._cumulative_rewards[finished_episodes] = 0
self._cumulative_timesteps[finished_episodes] = 0
# record data
self.tracking_data["Reward / Instantaneous reward (max)"].append(np.max(rewards).item())
self.tracking_data["Reward / Instantaneous reward (min)"].append(np.min(rewards).item())
self.tracking_data["Reward / Instantaneous reward (mean)"].append(np.mean(rewards).item())
if len(self._track_rewards):
track_rewards = np.array(self._track_rewards)
track_timesteps = np.array(self._track_timesteps)
self.tracking_data["Reward / Total reward (max)"].append(np.max(track_rewards))
self.tracking_data["Reward / Total reward (min)"].append(np.min(track_rewards))
self.tracking_data["Reward / Total reward (mean)"].append(np.mean(track_rewards))
self.tracking_data["Episode / Total timesteps (max)"].append(np.max(track_timesteps))
self.tracking_data["Episode / Total timesteps (min)"].append(np.min(track_timesteps))
self.tracking_data["Episode / Total timesteps (mean)"].append(np.mean(track_timesteps))
def set_mode(self, mode: str) -> None:
"""Set the model mode (training or evaluation)
:param mode: Mode: 'train' for training or 'eval' for evaluation
:type mode: str
"""
for model in self.models.values():
if model is not None:
model.set_mode(mode)
def set_running_mode(self, mode: str) -> None:
"""Set the current running mode (training or evaluation)
This method sets the value of the ``training`` property (boolean).
This property can be used to know if the agent is running in training or evaluation mode.
:param mode: Mode: 'train' for training or 'eval' for evaluation
:type mode: str
"""
self.training = mode == "train"
def save(self, path: str) -> None:
"""Save the agent to the specified path
:param path: Path to save the model to
:type path: str
"""
modules = {}
for name, module in self.checkpoint_modules.items():
modules[name] = flax.serialization.to_bytes(self._get_internal_value(module))
# HACK: Does it make sense to use https://github.com/google/orbax
# file.write(flax.serialization.to_bytes(modules))
with open(path, "wb") as file:
pickle.dump(modules, file, protocol=4)
def load(self, path: str) -> None:
"""Load the model from the specified path
:param path: Path to load the model from
:type path: str
"""
with open(path, "rb") as file:
modules = pickle.load(file)
if type(modules) is dict:
for name, data in modules.items():
module = self.checkpoint_modules.get(name, None)
if module is not None:
if hasattr(module, "state_dict"):
params = flax.serialization.from_bytes(module.state_dict.params, data)
module.state_dict = module.state_dict.replace(params=params)
else:
pass # TODO: raise NotImplementedError
else:
logger.warning(f"Cannot load the {name} module. The agent doesn't have such an instance")
def migrate(self,
path: str,
name_map: Mapping[str, Mapping[str, str]] = {},
auto_mapping: bool = True,
verbose: bool = False) -> bool:
"""Migrate the specified extrernal checkpoint to the current agent
:raises NotImplementedError: Not yet implemented
"""
raise NotImplementedError
def pre_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called before the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
pass
def post_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called after the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
timestep += 1
# update best models and write checkpoints
if timestep > 1 and self.checkpoint_interval > 0 and not timestep % self.checkpoint_interval:
# update best models
reward = np.mean(self.tracking_data.get("Reward / Total reward (mean)", -2 ** 31))
if reward > self.checkpoint_best_modules["reward"]:
self.checkpoint_best_modules["timestep"] = timestep
self.checkpoint_best_modules["reward"] = reward
self.checkpoint_best_modules["saved"] = False
self.checkpoint_best_modules["modules"] = {k: copy.deepcopy(self._get_internal_value(v)) for k, v in self.checkpoint_modules.items()}
# write checkpoints
self.write_checkpoint(timestep, timesteps)
# write to tensorboard
if timestep > 1 and self.write_interval > 0 and not timestep % self.write_interval:
self.write_tracking_data(timestep, timesteps)
def _update(self, timestep: int, timesteps: int) -> None:
"""Algorithm's main update step
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:raises NotImplementedError: The method is not implemented by the inheriting classes
"""
raise NotImplementedError
| 21,860 | Python | 43.432927 | 149 | 0.595288 |
Toni-SM/skrl/skrl/agents/jax/__init__.py | from skrl.agents.jax.base import Agent
| 39 | Python | 18.999991 | 38 | 0.820513 |
Toni-SM/skrl/skrl/agents/jax/cem/cem.py | from typing import Any, Mapping, Optional, Tuple, Union
import copy
import gym
import gymnasium
import jax
import jax.numpy as jnp
import numpy as np
import optax
from skrl import logger
from skrl.agents.jax import Agent
from skrl.memories.jax import Memory
from skrl.models.jax import Model
from skrl.resources.optimizers.jax import Adam
# [start-config-dict-jax]
CEM_DEFAULT_CONFIG = {
"rollouts": 16, # number of rollouts before updating
"percentile": 0.70, # percentile to compute the reward bound [0, 1]
"discount_factor": 0.99, # discount factor (gamma)
"learning_rate": 1e-2, # learning rate
"learning_rate_scheduler": None, # learning rate scheduler class (see torch.optim.lr_scheduler)
"learning_rate_scheduler_kwargs": {}, # learning rate scheduler's kwargs (e.g. {"step_size": 1e-3})
"state_preprocessor": None, # state preprocessor class (see skrl.resources.preprocessors)
"state_preprocessor_kwargs": {}, # state preprocessor's kwargs (e.g. {"size": env.observation_space})
"random_timesteps": 0, # random exploration steps
"learning_starts": 0, # learning starts after this many steps
"rewards_shaper": None, # rewards shaping function: Callable(reward, timestep, timesteps) -> reward
"experiment": {
"directory": "", # experiment's parent directory
"experiment_name": "", # experiment name
"write_interval": 250, # TensorBoard writing interval (timesteps)
"checkpoint_interval": 1000, # interval for checkpoints (timesteps)
"store_separately": False, # whether to store checkpoints separately
"wandb": False, # whether to use Weights & Biases
"wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init)
}
}
# [end-config-dict-jax]
class CEM(Agent):
def __init__(self,
models: Mapping[str, Model],
memory: Optional[Union[Memory, Tuple[Memory]]] = None,
observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None,
device: Optional[Union[str, jax.Device]] = None,
cfg: Optional[dict] = None) -> None:
"""Cross-Entropy Method (CEM)
https://ieeexplore.ieee.org/abstract/document/6796865/
:param models: Models used by the agent
:type models: dictionary of skrl.models.jax.Model
:param memory: Memory to storage the transitions.
If it is a tuple, the first element will be used for training and
for the rest only the environment transitions will be added
:type memory: skrl.memory.jax.Memory, list of skrl.memory.jax.Memory or None
:param observation_space: Observation/state space or shape (default: ``None``)
:type observation_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param action_space: Action space or shape (default: ``None``)
:type action_space: int, tuple or list of int, gym.Space, gymnasium.Space or None, optional
:param device: Device on which a tensor/array is or will be allocated (default: ``None``).
If None, the device will be either ``"cuda"`` if available or ``"cpu"``
:type device: str or jax.Device, optional
:param cfg: Configuration dictionary
:type cfg: dict
:raises KeyError: If the models dictionary is missing a required key
"""
# _cfg = copy.deepcopy(CEM_DEFAULT_CONFIG) # TODO: TypeError: cannot pickle 'jax.Device' object
_cfg = CEM_DEFAULT_CONFIG
_cfg.update(cfg if cfg is not None else {})
super().__init__(models=models,
memory=memory,
observation_space=observation_space,
action_space=action_space,
device=device,
cfg=_cfg)
# models
self.policy = self.models.get("policy", None)
# checkpoint models
self.checkpoint_modules["policy"] = self.policy
# configuration
self._rollouts = self.cfg["rollouts"]
self._rollout = 0
self._percentile = self.cfg["percentile"]
self._discount_factor = self.cfg["discount_factor"]
self._learning_rate = self.cfg["learning_rate"]
self._learning_rate_scheduler = self.cfg["learning_rate_scheduler"]
self._state_preprocessor = self.cfg["state_preprocessor"]
self._random_timesteps = self.cfg["random_timesteps"]
self._learning_starts = self.cfg["learning_starts"]
self._rewards_shaper = self.cfg["rewards_shaper"]
self._episode_tracking = []
# set up optimizer and learning rate scheduler
if self.policy is not None:
self.optimizer = Adam(model=self.policy, lr=self._learning_rate)
if self._learning_rate_scheduler is not None:
self.scheduler = self._learning_rate_scheduler(self.optimizer, **self.cfg["learning_rate_scheduler_kwargs"])
self.checkpoint_modules["optimizer"] = self.optimizer
# set up preprocessors
if self._state_preprocessor:
self._state_preprocessor = self._state_preprocessor(**self.cfg["state_preprocessor_kwargs"])
self.checkpoint_modules["state_preprocessor"] = self._state_preprocessor
else:
self._state_preprocessor = self._empty_preprocessor
def init(self, trainer_cfg: Optional[Mapping[str, Any]] = None) -> None:
"""Initialize the agent
"""
super().init(trainer_cfg=trainer_cfg)
self.set_mode("eval")
# create tensors in memory
if self.memory is not None:
self.memory.create_tensor(name="states", size=self.observation_space, dtype=jnp.float32)
self.memory.create_tensor(name="next_states", size=self.observation_space, dtype=jnp.float32)
self.memory.create_tensor(name="actions", size=self.action_space, dtype=jnp.int32)
self.memory.create_tensor(name="rewards", size=1, dtype=jnp.float32)
self.memory.create_tensor(name="terminated", size=1, dtype=jnp.int8)
self.tensors_names = ["states", "actions", "rewards"]
# set up models for just-in-time compilation with XLA
self.policy.apply = jax.jit(self.policy.apply, static_argnums=2)
def act(self, states: Union[np.ndarray, jax.Array], timestep: int, timesteps: int) -> Union[np.ndarray, jax.Array]:
"""Process the environment's states to make a decision (actions) using the main policy
:param states: Environment's states
:type states: np.ndarray or jax.Array
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
:return: Actions
:rtype: np.ndarray or jax.Array
"""
# sample random actions
# TODO, check for stochasticity
if timestep < self._random_timesteps:
return self.policy.random_act({"states": self._state_preprocessor(states)}, role="policy")
# sample stochastic actions
actions, _, outputs = self.policy.act({"states": self._state_preprocessor(states)}, role="policy")
if not self._jax: # numpy backend
actions = jax.device_get(actions)
return actions, None, outputs
def record_transition(self,
states: Union[np.ndarray, jax.Array],
actions: Union[np.ndarray, jax.Array],
rewards: Union[np.ndarray, jax.Array],
next_states: Union[np.ndarray, jax.Array],
terminated: Union[np.ndarray, jax.Array],
truncated: Union[np.ndarray, jax.Array],
infos: Any,
timestep: int,
timesteps: int) -> None:
"""Record an environment transition in memory
:param states: Observations/states of the environment used to make the decision
:type states: np.ndarray or jax.Array
:param actions: Actions taken by the agent
:type actions: np.ndarray or jax.Array
:param rewards: Instant rewards achieved by the current actions
:type rewards: np.ndarray or jax.Array
:param next_states: Next observations/states of the environment
:type next_states: np.ndarray or jax.Array
:param terminated: Signals to indicate that episodes have terminated
:type terminated: np.ndarray or jax.Array
:param truncated: Signals to indicate that episodes have been truncated
:type truncated: np.ndarray or jax.Array
:param infos: Additional information about the environment
:type infos: Any type supported by the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps)
if self.memory is not None:
# reward shaping
if self._rewards_shaper is not None:
rewards = self._rewards_shaper(rewards, timestep, timesteps)
# storage transition in memory
self.memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated)
for memory in self.secondary_memories:
memory.add_samples(states=states, actions=actions, rewards=rewards, next_states=next_states,
terminated=terminated, truncated=truncated)
# track episodes internally
if self._rollout:
indexes = (terminated + truncated).nonzero()[0]
if indexes.size:
for i in indexes:
self._episode_tracking[i.item()].append(self._rollout + 1)
else:
self._episode_tracking = [[0] for _ in range(rewards.shape[-1])]
def pre_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called before the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
pass
def post_interaction(self, timestep: int, timesteps: int) -> None:
"""Callback called after the interaction with the environment
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
self._rollout += 1
if not self._rollout % self._rollouts and timestep >= self._learning_starts:
self._rollout = 0
self.set_mode("train")
self._update(timestep, timesteps)
self.set_mode("eval")
# write tracking data and checkpoints
super().post_interaction(timestep, timesteps)
def _update(self, timestep: int, timesteps: int) -> None:
"""Algorithm's main update step
:param timestep: Current timestep
:type timestep: int
:param timesteps: Number of timesteps
:type timesteps: int
"""
# sample all memory
sampled_states, sampled_actions, sampled_rewards = self.memory.sample_all(names=self.tensors_names)[0]
sampled_states = self._state_preprocessor(sampled_states, train=True)
if self._jax: # move to numpy backend
sampled_states = jax.device_get(sampled_states)
sampled_actions = jax.device_get(sampled_actions)
sampled_rewards = jax.device_get(sampled_rewards)
# compute discounted return threshold
limits = []
returns = []
for e in range(sampled_rewards.shape[-1]):
for i, j in zip(self._episode_tracking[e][:-1], self._episode_tracking[e][1:]):
limits.append([e + i, e + j])
rewards = sampled_rewards[e + i: e + j]
returns.append(np.sum(rewards * self._discount_factor ** \
np.flip(np.arange(rewards.shape[0]), axis=-1).reshape(rewards.shape)))
if not len(returns):
logger.warning("No returns to update. Consider increasing the number of rollouts")
return
returns = np.array(returns)
return_threshold = np.quantile(returns, self._percentile, axis=-1)
# get elite states and actions
indexes = (returns >= return_threshold).nonzero()[0]
elite_states = np.concatenate([sampled_states[limits[i][0]:limits[i][1]] for i in indexes], axis=0)
elite_actions = np.concatenate([sampled_actions[limits[i][0]:limits[i][1]] for i in indexes], axis=0).reshape(-1)
# compute policy loss
def _policy_loss(params):
# compute scores for the elite states
_, _, outputs = self.policy.act({"states": elite_states}, "policy", params)
scores = outputs["net_output"]
# HACK: return optax.softmax_cross_entropy_with_integer_labels(scores, elite_actions).mean()
labels = jax.nn.one_hot(elite_actions, self.action_space.n)
return optax.softmax_cross_entropy(scores, labels).mean()
policy_loss, grad = jax.value_and_grad(_policy_loss, has_aux=False)(self.policy.state_dict.params)
# optimization step (policy)
self.optimizer = self.optimizer.step(grad, self.policy)
# update learning rate
if self._learning_rate_scheduler:
self.scheduler.step()
# record data
self.track_data("Loss / Policy loss", policy_loss.item())
self.track_data("Coefficient / Return threshold", return_threshold.item())
self.track_data("Coefficient / Mean discounted returns", returns.mean().item())
if self._learning_rate_scheduler:
self.track_data("Learning / Learning rate", self.scheduler.get_last_lr()[0])
| 14,421 | Python | 43.239264 | 124 | 0.615145 |
Toni-SM/skrl/skrl/agents/jax/cem/__init__.py | from skrl.agents.jax.cem.cem import CEM, CEM_DEFAULT_CONFIG
| 60 | Python | 29.499985 | 59 | 0.8 |
Toni-SM/skrl/skrl/agents/jax/sac/__init__.py | from skrl.agents.jax.sac.sac import SAC, SAC_DEFAULT_CONFIG
| 60 | Python | 29.499985 | 59 | 0.8 |
Toni-SM/skrl/skrl/agents/jax/td3/__init__.py | from skrl.agents.jax.td3.td3 import TD3, TD3_DEFAULT_CONFIG
| 60 | Python | 29.499985 | 59 | 0.8 |
Toni-SM/skrl/skrl/agents/jax/ddpg/__init__.py | from skrl.agents.jax.ddpg.ddpg import DDPG, DDPG_DEFAULT_CONFIG
| 64 | Python | 31.499984 | 63 | 0.8125 |
Toni-SM/skrl/skrl/agents/jax/dqn/__init__.py | from skrl.agents.jax.dqn.ddqn import DDQN, DDQN_DEFAULT_CONFIG
from skrl.agents.jax.dqn.dqn import DQN, DQN_DEFAULT_CONFIG
| 123 | Python | 40.33332 | 62 | 0.804878 |
Toni-SM/skrl/skrl/agents/jax/a2c/__init__.py | from skrl.agents.jax.a2c.a2c import A2C, A2C_DEFAULT_CONFIG
| 60 | Python | 29.499985 | 59 | 0.8 |
Subsets and Splits