file_path
stringlengths
21
202
content
stringlengths
19
1.02M
size
int64
19
1.02M
lang
stringclasses
8 values
avg_line_length
float64
5.88
100
max_line_length
int64
12
993
alphanum_fraction
float64
0.27
0.93
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/actuators/actuator_base.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from abc import ABC, abstractmethod from collections.abc import Sequence from typing import TYPE_CHECKING from omni.isaac.core.utils.types import ArticulationActions import omni.isaac.orbit.utils.string as string_utils if TYPE_CHECKING: from .actuator_cfg import ActuatorBaseCfg class ActuatorBase(ABC): """Base class for actuator models over a collection of actuated joints in an articulation. Actuator models augment the simulated articulation joints with an external drive dynamics model. The model is used to convert the user-provided joint commands (positions, velocities and efforts) into the desired joint positions, velocities and efforts that are applied to the simulated articulation. The base class provides the interface for the actuator models. It is responsible for parsing the actuator parameters from the configuration and storing them as buffers. It also provides the interface for resetting the actuator state and computing the desired joint commands for the simulation. For each actuator model, a corresponding configuration class is provided. The configuration class is used to parse the actuator parameters from the configuration. It also specifies the joint names for which the actuator model is applied. These names can be specified as regular expressions, which are matched against the joint names in the articulation. To see how the class is used, check the :class:`omni.isaac.orbit.assets.Articulation` class. """ computed_effort: torch.Tensor """The computed effort for the actuator group. Shape is (num_envs, num_joints).""" applied_effort: torch.Tensor """The applied effort for the actuator group. Shape is (num_envs, num_joints).""" effort_limit: torch.Tensor """The effort limit for the actuator group. Shape is (num_envs, num_joints).""" velocity_limit: torch.Tensor """The velocity limit for the actuator group. Shape is (num_envs, num_joints).""" stiffness: torch.Tensor """The stiffness (P gain) of the PD controller. Shape is (num_envs, num_joints).""" damping: torch.Tensor """The damping (D gain) of the PD controller. Shape is (num_envs, num_joints).""" armature: torch.Tensor """The armature of the actuator joints. Shape is (num_envs, num_joints).""" friction: torch.Tensor """The joint friction of the actuator joints. Shape is (num_envs, num_joints).""" def __init__( self, cfg: ActuatorBaseCfg, joint_names: list[str], joint_ids: slice | Sequence[int], num_envs: int, device: str, stiffness: torch.Tensor | float = 0.0, damping: torch.Tensor | float = 0.0, armature: torch.Tensor | float = 0.0, friction: torch.Tensor | float = 0.0, effort_limit: torch.Tensor | float = torch.inf, velocity_limit: torch.Tensor | float = torch.inf, ): """Initialize the actuator. Note: The actuator parameters are parsed from the configuration and stored as buffers. If the parameters are not specified in the configuration, then the default values provided in the arguments are used. Args: cfg: The configuration of the actuator model. joint_names: The joint names in the articulation. joint_ids: The joint indices in the articulation. If :obj:`slice(None)`, then all the joints in the articulation are part of the group. num_envs: Number of articulations in the view. device: Device used for processing. stiffness: The default joint stiffness (P gain). Defaults to 0.0. If a tensor, then the shape is (num_envs, num_joints). damping: The default joint damping (D gain). Defaults to 0.0. If a tensor, then the shape is (num_envs, num_joints). armature: The default joint armature. Defaults to 0.0. If a tensor, then the shape is (num_envs, num_joints). friction: The default joint friction. Defaults to 0.0. If a tensor, then the shape is (num_envs, num_joints). effort_limit: The default effort limit. Defaults to infinity. If a tensor, then the shape is (num_envs, num_joints). velocity_limit: The default velocity limit. Defaults to infinity. If a tensor, then the shape is (num_envs, num_joints). """ # save parameters self.cfg = cfg self._num_envs = num_envs self._device = device self._joint_names = joint_names self._joint_indices = joint_ids # parse joint stiffness and damping self.stiffness = self._parse_joint_parameter(self.cfg.stiffness, stiffness) self.damping = self._parse_joint_parameter(self.cfg.damping, damping) # parse joint armature and friction self.armature = self._parse_joint_parameter(self.cfg.armature, armature) self.friction = self._parse_joint_parameter(self.cfg.friction, friction) # parse joint limits # note: for velocity limits, we don't have USD parameter, so default is infinity self.effort_limit = self._parse_joint_parameter(self.cfg.effort_limit, effort_limit) self.velocity_limit = self._parse_joint_parameter(self.cfg.velocity_limit, velocity_limit) # create commands buffers for allocation self.computed_effort = torch.zeros(self._num_envs, self.num_joints, device=self._device) self.applied_effort = torch.zeros_like(self.computed_effort) def __str__(self) -> str: """Returns: A string representation of the actuator group.""" # resolve joint indices for printing joint_indices = self.joint_indices if joint_indices == slice(None): joint_indices = list(range(self.num_joints)) return ( f"<class {self.__class__.__name__}> object:\n" f"\tNumber of joints : {self.num_joints}\n" f"\tJoint names expression: {self.cfg.joint_names_expr}\n" f"\tJoint names : {self.joint_names}\n" f"\tJoint indices : {joint_indices}\n" ) """ Properties. """ @property def num_joints(self) -> int: """Number of actuators in the group.""" return len(self._joint_names) @property def joint_names(self) -> list[str]: """Articulation's joint names that are part of the group.""" return self._joint_names @property def joint_indices(self) -> slice | Sequence[int]: """Articulation's joint indices that are part of the group. Note: If :obj:`slice(None)` is returned, then the group contains all the joints in the articulation. We do this to avoid unnecessary indexing of the joints for performance reasons. """ return self._joint_indices """ Operations. """ @abstractmethod def reset(self, env_ids: Sequence[int]): """Reset the internals within the group. Args: env_ids: List of environment IDs to reset. """ raise NotImplementedError @abstractmethod def compute( self, control_action: ArticulationActions, joint_pos: torch.Tensor, joint_vel: torch.Tensor ) -> ArticulationActions: """Process the actuator group actions and compute the articulation actions. It computes the articulation actions based on the actuator model type Args: control_action: The joint action instance comprising of the desired joint positions, joint velocities and (feed-forward) joint efforts. joint_pos: The current joint positions of the joints in the group. Shape is (num_envs, num_joints). joint_vel: The current joint velocities of the joints in the group. Shape is (num_envs, num_joints). Returns: The computed desired joint positions, joint velocities and joint efforts. """ raise NotImplementedError """ Helper functions. """ def _parse_joint_parameter( self, cfg_value: float | dict[str, float] | None, default_value: float | torch.Tensor | None ) -> torch.Tensor: """Parse the joint parameter from the configuration. Args: cfg_value: The parameter value from the configuration. If None, then use the default value. default_value: The default value to use if the parameter is None. If it is also None, then an error is raised. Returns: The parsed parameter value. Raises: TypeError: If the parameter value is not of the expected type. TypeError: If the default value is not of the expected type. ValueError: If the parameter value is None and no default value is provided. """ # create parameter buffer param = torch.zeros(self._num_envs, self.num_joints, device=self._device) # parse the parameter if cfg_value is not None: if isinstance(cfg_value, (float, int)): # if float, then use the same value for all joints param[:] = float(cfg_value) elif isinstance(cfg_value, dict): # if dict, then parse the regular expression indices, _, values = string_utils.resolve_matching_names_values(cfg_value, self.joint_names) # note: need to specify type to be safe (e.g. values are ints, but we want floats) param[:, indices] = torch.tensor(values, dtype=torch.float, device=self._device) else: raise TypeError(f"Invalid type for parameter value: {type(cfg_value)}. Expected float or dict.") elif default_value is not None: if isinstance(default_value, (float, int)): # if float, then use the same value for all joints param[:] = float(default_value) elif isinstance(default_value, torch.Tensor): # if tensor, then use the same tensor for all joints param[:] = default_value.float() else: raise TypeError(f"Invalid type for default value: {type(default_value)}. Expected float or Tensor.") else: raise ValueError("The parameter value is None and no default value is provided.") return param def _clip_effort(self, effort: torch.Tensor) -> torch.Tensor: """Clip the desired torques based on the motor limits. Args: desired_torques: The desired torques to clip. Returns: The clipped torques. """ return torch.clip(effort, min=-self.effort_limit, max=self.effort_limit)
10,995
Python
43.160642
116
0.643838
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/actuators/actuator_net.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Neural network models for actuators. Currently, the following models are supported: * Multi-Layer Perceptron (MLP) * Long Short-Term Memory (LSTM) """ from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING from omni.isaac.core.utils.types import ArticulationActions from omni.isaac.orbit.utils.assets import read_file from .actuator_pd import DCMotor if TYPE_CHECKING: from .actuator_cfg import ActuatorNetLSTMCfg, ActuatorNetMLPCfg class ActuatorNetLSTM(DCMotor): """Actuator model based on recurrent neural network (LSTM). Unlike the MLP implementation :cite:t:`hwangbo2019learning`, this class implements the learned model as a temporal neural network (LSTM) based on the work from :cite:t:`rudin2022learning`. This removes the need of storing a history as the hidden states of the recurrent network captures the history. Note: Only the desired joint positions are used as inputs to the network. """ cfg: ActuatorNetLSTMCfg """The configuration of the actuator model.""" def __init__(self, cfg: ActuatorNetLSTMCfg, *args, **kwargs): super().__init__(cfg, *args, **kwargs) # load the model from JIT file file_bytes = read_file(self.cfg.network_file) self.network = torch.jit.load(file_bytes, map_location=self._device) # extract number of lstm layers and hidden dim from the shape of weights num_layers = len(self.network.lstm.state_dict()) // 4 hidden_dim = self.network.lstm.state_dict()["weight_hh_l0"].shape[1] # create buffers for storing LSTM inputs self.sea_input = torch.zeros(self._num_envs * self.num_joints, 1, 2, device=self._device) self.sea_hidden_state = torch.zeros( num_layers, self._num_envs * self.num_joints, hidden_dim, device=self._device ) self.sea_cell_state = torch.zeros(num_layers, self._num_envs * self.num_joints, hidden_dim, device=self._device) # reshape via views (doesn't change the actual memory layout) layer_shape_per_env = (num_layers, self._num_envs, self.num_joints, hidden_dim) self.sea_hidden_state_per_env = self.sea_hidden_state.view(layer_shape_per_env) self.sea_cell_state_per_env = self.sea_cell_state.view(layer_shape_per_env) """ Operations. """ def reset(self, env_ids: Sequence[int]): # reset the hidden and cell states for the specified environments with torch.no_grad(): self.sea_hidden_state_per_env[:, env_ids] = 0.0 self.sea_cell_state_per_env[:, env_ids] = 0.0 def compute( self, control_action: ArticulationActions, joint_pos: torch.Tensor, joint_vel: torch.Tensor ) -> ArticulationActions: # compute network inputs self.sea_input[:, 0, 0] = (control_action.joint_positions - joint_pos).flatten() self.sea_input[:, 0, 1] = joint_vel.flatten() # save current joint vel for dc-motor clipping self._joint_vel[:] = joint_vel # run network inference with torch.inference_mode(): torques, (self.sea_hidden_state[:], self.sea_cell_state[:]) = self.network( self.sea_input, (self.sea_hidden_state, self.sea_cell_state) ) self.computed_effort = torques.reshape(self._num_envs, self.num_joints) # clip the computed effort based on the motor limits self.applied_effort = self._clip_effort(self.computed_effort) # return torques control_action.joint_efforts = self.applied_effort control_action.joint_positions = None control_action.joint_velocities = None return control_action class ActuatorNetMLP(DCMotor): """Actuator model based on multi-layer perceptron and joint history. Many times the analytical model is not sufficient to capture the actuator dynamics, the delay in the actuator response, or the non-linearities in the actuator. In these cases, a neural network model can be used to approximate the actuator dynamics. This model is trained using data collected from the physical actuator and maps the joint state and the desired joint command to the produced torque by the actuator. This class implements the learned model as a neural network based on the work from :cite:t:`hwangbo2019learning`. The class stores the history of the joint positions errors and velocities which are used to provide input to the neural network. The model is loaded as a TorchScript. Note: Only the desired joint positions are used as inputs to the network. """ cfg: ActuatorNetMLPCfg """The configuration of the actuator model.""" def __init__(self, cfg: ActuatorNetMLPCfg, *args, **kwargs): super().__init__(cfg, *args, **kwargs) # load the model from JIT file file_bytes = read_file(self.cfg.network_file) self.network = torch.jit.load(file_bytes, map_location=self._device) # create buffers for MLP history history_length = max(self.cfg.input_idx) + 1 self._joint_pos_error_history = torch.zeros( self._num_envs, history_length, self.num_joints, device=self._device ) self._joint_vel_history = torch.zeros(self._num_envs, history_length, self.num_joints, device=self._device) """ Operations. """ def reset(self, env_ids: Sequence[int]): # reset the history for the specified environments self._joint_pos_error_history[env_ids] = 0.0 self._joint_vel_history[env_ids] = 0.0 def compute( self, control_action: ArticulationActions, joint_pos: torch.Tensor, joint_vel: torch.Tensor ) -> ArticulationActions: # move history queue by 1 and update top of history # -- positions self._joint_pos_error_history = self._joint_pos_error_history.roll(1, 1) self._joint_pos_error_history[:, 0] = control_action.joint_positions - joint_pos # -- velocity self._joint_vel_history = self._joint_vel_history.roll(1, 1) self._joint_vel_history[:, 0] = joint_vel # save current joint vel for dc-motor clipping self._joint_vel[:] = joint_vel # compute network inputs # -- positions pos_input = torch.cat([self._joint_pos_error_history[:, i].unsqueeze(2) for i in self.cfg.input_idx], dim=2) pos_input = pos_input.view(self._num_envs * self.num_joints, -1) # -- velocity vel_input = torch.cat([self._joint_vel_history[:, i].unsqueeze(2) for i in self.cfg.input_idx], dim=2) vel_input = vel_input.view(self._num_envs * self.num_joints, -1) # -- scale and concatenate inputs if self.cfg.input_order == "pos_vel": network_input = torch.cat([pos_input * self.cfg.pos_scale, vel_input * self.cfg.vel_scale], dim=1) elif self.cfg.input_order == "vel_pos": network_input = torch.cat([vel_input * self.cfg.vel_scale, pos_input * self.cfg.pos_scale], dim=1) else: raise ValueError( f"Invalid input order for MLP actuator net: {self.cfg.input_order}. Must be 'pos_vel' or 'vel_pos'." ) # run network inference torques = self.network(network_input).view(self._num_envs, self.num_joints) self.computed_effort = torques.view(self._num_envs, self.num_joints) * self.cfg.torque_scale # clip the computed effort based on the motor limits self.applied_effort = self._clip_effort(self.computed_effort) # return torques control_action.joint_efforts = self.applied_effort control_action.joint_positions = None control_action.joint_velocities = None return control_action
7,933
Python
40.757895
120
0.663053
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/scene/interactive_scene_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from omni.isaac.orbit.utils.configclass import configclass @configclass class InteractiveSceneCfg: """Configuration for the interactive scene. The users can inherit from this class to add entities to their scene. This is then parsed by the :class:`InteractiveScene` class to create the scene. .. note:: The adding of entities to the scene is sensitive to the order of the attributes in the configuration. Please make sure to add the entities in the order you want them to be added to the scene. The recommended order of specification is terrain, physics-related assets (articulations and rigid bodies), sensors and non-physics-related assets (lights). For example, to add a robot to the scene, the user can create a configuration class as follows: .. code-block:: python import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import AssetBaseCfg from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors.ray_caster import GridPatternCfg, RayCasterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG @configclass class MySceneCfg(InteractiveSceneCfg): # terrain - flat terrain plane terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", ) # articulation - robot 1 robot_1 = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot_1") # articulation - robot 2 robot_2 = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot_2") robot_2.init_state.pos = (0.0, 1.0, 0.6) # sensor - ray caster attached to the base of robot 1 that scans the ground height_scanner = RayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot_1/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 20.0)), attach_yaw_only=True, pattern_cfg=GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=True, mesh_prim_paths=["/World/ground"], ) # extras - light light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)), init_state=AssetBaseCfg.InitialStateCfg(pos=(0.0, 0.0, 500.0)), ) """ num_envs: int = MISSING """Number of environment instances handled by the scene.""" env_spacing: float = MISSING """Spacing between environments. This is the default distance between environment origins in the scene. Used only when the number of environments is greater than one. """ lazy_sensor_update: bool = True """Whether to update sensors only when they are accessed. Default is True. If true, the sensor data is only updated when their attribute ``data`` is accessed. Otherwise, the sensor data is updated every time sensors are updated. """ replicate_physics: bool = True """Enable/disable replication of physics schemas when using the Cloner APIs. Default is True."""
3,447
Python
36.890109
115
0.64839
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/scene/interactive_scene.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import builtins import torch from collections.abc import Sequence from typing import Any import carb import omni.usd from omni.isaac.cloner import GridCloner from omni.isaac.core.prims import XFormPrimView from pxr import PhysxSchema import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import Articulation, ArticulationCfg, AssetBaseCfg, RigidObject, RigidObjectCfg from omni.isaac.orbit.sensors import FrameTransformerCfg, SensorBase, SensorBaseCfg from omni.isaac.orbit.terrains import TerrainImporter, TerrainImporterCfg from .interactive_scene_cfg import InteractiveSceneCfg class InteractiveScene: """A scene that contains entities added to the simulation. The interactive scene parses the :class:`InteractiveSceneCfg` class to create the scene. Based on the specified number of environments, it clones the entities and groups them into different categories (e.g., articulations, sensors, etc.). Each entity is registered to scene based on its name in the configuration class. For example, if the user specifies a robot in the configuration class as follows: .. code-block:: python from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG @configclass class MySceneCfg(InteractiveSceneCfg): robot = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") Then the robot can be accessed from the scene as follows: .. code-block:: python from omni.isaac.orbit.scene import InteractiveScene # create 128 environments scene = InteractiveScene(cfg=MySceneCfg(num_envs=128)) # access the robot from the scene robot = scene["robot"] # access the robot based on its type robot = scene.articulations["robot"] .. note:: It is important to note that the scene only performs common operations on the entities. For example, resetting the internal buffers, writing the buffers to the simulation and updating the buffers from the simulation. The scene does not perform any task specific to the entity. For example, it does not apply actions to the robot or compute observations from the robot. These tasks are handled by different modules called "managers" in the framework. Please refer to the :mod:`omni.isaac.orbit.managers` sub-package for more details. """ def __init__(self, cfg: InteractiveSceneCfg): """Initializes the scene. Args: cfg: The configuration class for the scene. """ # store inputs self.cfg = cfg # initialize scene elements self._terrain = None self._articulations = dict() self._rigid_objects = dict() self._sensors = dict() self._extras = dict() # obtain the current stage self.stage = omni.usd.get_context().get_stage() # prepare cloner for environment replication self.cloner = GridCloner(spacing=self.cfg.env_spacing) self.cloner.define_base_env(self.env_ns) self.env_prim_paths = self.cloner.generate_paths(f"{self.env_ns}/env", self.cfg.num_envs) # create source prim self.stage.DefinePrim(self.env_prim_paths[0], "Xform") # clone the env xform env_origins = self.cloner.clone( source_prim_path=self.env_prim_paths[0], prim_paths=self.env_prim_paths, replicate_physics=False, copy_from_source=True, ) self._default_env_origins = torch.tensor(env_origins, device=self.device, dtype=torch.float32) # add entities from config self._add_entities_from_cfg() # replicate physics if we have more than one environment # this is done to make scene initialization faster at play time if self.cfg.replicate_physics and self.cfg.num_envs > 1: self.cloner.replicate_physics( source_prim_path=self.env_prim_paths[0], prim_paths=self.env_prim_paths, base_env_path=self.env_ns, root_path=self.env_regex_ns.replace(".*", ""), ) # obtain the current physics scene physics_scene_prim_path = None for prim in self.stage.Traverse(): if prim.HasAPI(PhysxSchema.PhysxSceneAPI): physics_scene_prim_path = prim.GetPrimPath() carb.log_info(f"Physics scene prim path: {physics_scene_prim_path}") break # filter collisions within each environment instance self.cloner.filter_collisions( physics_scene_prim_path, "/World/collisions", self.env_prim_paths, global_paths=self._global_prim_paths, ) def __str__(self) -> str: """Returns a string representation of the scene.""" msg = f"<class {self.__class__.__name__}>\n" msg += f"\tNumber of environments: {self.cfg.num_envs}\n" msg += f"\tEnvironment spacing : {self.cfg.env_spacing}\n" msg += f"\tSource prim name : {self.env_prim_paths[0]}\n" msg += f"\tGlobal prim paths : {self._global_prim_paths}\n" msg += f"\tReplicate physics : {self.cfg.replicate_physics}" return msg """ Properties. """ @property def physics_dt(self) -> float: """The physics timestep of the scene.""" return sim_utils.SimulationContext.instance().get_physics_dt() # pyright: ignore [reportOptionalMemberAccess] @property def device(self) -> str: """The device on which the scene is created.""" return sim_utils.SimulationContext.instance().device # pyright: ignore [reportOptionalMemberAccess] @property def env_ns(self) -> str: """The namespace ``/World/envs`` in which all environments created. The environments are present w.r.t. this namespace under "env_{N}" prim, where N is a natural number. """ return "/World/envs" @property def env_regex_ns(self) -> str: """The namespace ``/World/envs/env_.*`` in which all environments created.""" return f"{self.env_ns}/env_.*" @property def num_envs(self) -> int: """The number of environments handled by the scene.""" return self.cfg.num_envs @property def env_origins(self) -> torch.Tensor: """The origins of the environments in the scene. Shape is (num_envs, 3).""" if self._terrain is not None: return self._terrain.env_origins else: return self._default_env_origins @property def terrain(self) -> TerrainImporter | None: """The terrain in the scene. If None, then the scene has no terrain. Note: We treat terrain separate from :attr:`extras` since terrains define environment origins and are handled differently from other miscellaneous entities. """ return self._terrain @property def articulations(self) -> dict[str, Articulation]: """A dictionary of articulations in the scene.""" return self._articulations @property def rigid_objects(self) -> dict[str, RigidObject]: """A dictionary of rigid objects in the scene.""" return self._rigid_objects @property def sensors(self) -> dict[str, SensorBase]: """A dictionary of the sensors in the scene, such as cameras and contact reporters.""" return self._sensors @property def extras(self) -> dict[str, XFormPrimView]: """A dictionary of miscellaneous simulation objects that neither inherit from assets nor sensors. The keys are the names of the miscellaneous objects, and the values are the `XFormPrimView`_ of the corresponding prims. As an example, lights or other props in the scene that do not have any attributes or properties that you want to alter at runtime can be added to this dictionary. Note: These are not reset or updated by the scene. They are mainly other prims that are not necessarily handled by the interactive scene, but are useful to be accessed by the user. .. _XFormPrimView: https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.core/docs/index.html#omni.isaac.core.prims.XFormPrimView """ return self._extras """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None): """Resets the scene entities. Args: env_ids: The indices of the environments to reset. Defaults to None (all instances). """ # -- assets for articulation in self._articulations.values(): articulation.reset(env_ids) for rigid_object in self._rigid_objects.values(): rigid_object.reset(env_ids) # -- sensors for sensor in self._sensors.values(): sensor.reset(env_ids) # -- flush physics sim view if called in extension mode # this is needed when using PhysX GPU pipeline since the data needs to be sent to the underlying # PhysX buffers that might live on a separate device # note: In standalone mode, this method is called in the `step()` method of the simulation context. # So we only need to flush when running in extension mode. if builtins.ISAAC_LAUNCHED_FROM_TERMINAL: sim_utils.SimulationContext.instance().physics_sim_view.flush() # pyright: ignore [reportOptionalMemberAccess] def write_data_to_sim(self): """Writes the data of the scene entities to the simulation.""" # -- assets for articulation in self._articulations.values(): articulation.write_data_to_sim() for rigid_object in self._rigid_objects.values(): rigid_object.write_data_to_sim() # -- flush physics sim view if called in extension mode # this is needed when using PhysX GPU pipeline since the data needs to be sent to the underlying # PhysX buffers that might live on a separate device # note: In standalone mode, this method is called in the `step()` method of the simulation context. # So we only need to flush when running in extension mode. if builtins.ISAAC_LAUNCHED_FROM_TERMINAL: sim_utils.SimulationContext.instance().physics_sim_view.flush() # pyright: ignore [reportOptionalMemberAccess] def update(self, dt: float) -> None: """Update the scene entities. Args: dt: The amount of time passed from last :meth:`update` call. """ # -- assets for articulation in self._articulations.values(): articulation.update(dt) for rigid_object in self._rigid_objects.values(): rigid_object.update(dt) # -- sensors for sensor in self._sensors.values(): sensor.update(dt, force_recompute=not self.cfg.lazy_sensor_update) """ Operations: Iteration. """ def keys(self) -> list[str]: """Returns the keys of the scene entities. Returns: The keys of the scene entities. """ all_keys = ["terrain"] for asset_family in [self._articulations, self._rigid_objects, self._sensors, self._extras]: all_keys += list(asset_family.keys()) return all_keys def __getitem__(self, key: str) -> Any: """Returns the scene entity with the given key. Args: key: The key of the scene entity. Returns: The scene entity. """ # check if it is a terrain if key == "terrain": return self._terrain all_keys = ["terrain"] # check if it is in other dictionaries for asset_family in [self._articulations, self._rigid_objects, self._sensors, self._extras]: out = asset_family.get(key) # if found, return if out is not None: return out all_keys += list(asset_family.keys()) # if not found, raise error raise KeyError(f"Scene entity with key '{key}' not found. Available Entities: '{all_keys}'") """ Internal methods. """ def _add_entities_from_cfg(self): """Add scene entities from the config.""" # store paths that are in global collision filter self._global_prim_paths = list() # parse the entire scene config and resolve regex for asset_name, asset_cfg in self.cfg.__dict__.items(): # skip keywords # note: easier than writing a list of keywords: [num_envs, env_spacing, lazy_sensor_update] if asset_name in InteractiveSceneCfg.__dataclass_fields__ or asset_cfg is None: continue # resolve regex asset_cfg.prim_path = asset_cfg.prim_path.format(ENV_REGEX_NS=self.env_regex_ns) # create asset if isinstance(asset_cfg, TerrainImporterCfg): # terrains are special entities since they define environment origins asset_cfg.num_envs = self.cfg.num_envs asset_cfg.env_spacing = self.cfg.env_spacing self._terrain = asset_cfg.class_type(asset_cfg) elif isinstance(asset_cfg, ArticulationCfg): self._articulations[asset_name] = asset_cfg.class_type(asset_cfg) elif isinstance(asset_cfg, RigidObjectCfg): self._rigid_objects[asset_name] = asset_cfg.class_type(asset_cfg) elif isinstance(asset_cfg, SensorBaseCfg): # Update target frame path(s)' regex name space for FrameTransformer if isinstance(asset_cfg, FrameTransformerCfg): updated_target_frames = [] for target_frame in asset_cfg.target_frames: target_frame.prim_path = target_frame.prim_path.format(ENV_REGEX_NS=self.env_regex_ns) updated_target_frames.append(target_frame) asset_cfg.target_frames = updated_target_frames self._sensors[asset_name] = asset_cfg.class_type(asset_cfg) elif isinstance(asset_cfg, AssetBaseCfg): # manually spawn asset if asset_cfg.spawn is not None: asset_cfg.spawn.func( asset_cfg.prim_path, asset_cfg.spawn, translation=asset_cfg.init_state.pos, orientation=asset_cfg.init_state.rot, ) # store xform prim view corresponding to this asset # all prims in the scene are Xform prims (i.e. have a transform component) self._extras[asset_name] = XFormPrimView(asset_cfg.prim_path, reset_xform_properties=False) else: raise ValueError(f"Unknown asset config type for {asset_name}: {asset_cfg}") # store global collision paths if hasattr(asset_cfg, "collision_group") and asset_cfg.collision_group == -1: asset_paths = sim_utils.find_matching_prim_paths(asset_cfg.prim_path) self._global_prim_paths += asset_paths
15,551
Python
40.69437
158
0.626262
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/scene/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package containing an interactive scene definition. A scene is a collection of entities (e.g., terrain, articulations, sensors, lights, etc.) that can be added to the simulation. However, only a subset of these entities are of direct interest for the user to interact with. For example, the user may want to interact with a robot in the scene, but not with the terrain or the lights. For this reason, we integrate the different entities into a single class called :class:`InteractiveScene`. The interactive scene performs the following tasks: 1. It parses the configuration class :class:`InteractiveSceneCfg` to create the scene. This configuration class is inherited by the user to add entities to the scene. 2. It clones the entities based on the number of environments specified by the user. 3. It clubs the entities into different groups based on their type (e.g., articulations, sensors, etc.). 4. It provides a set of methods to unify the common operations on the entities in the scene (e.g., resetting internal buffers, writing buffers to simulation and updating buffers from simulation). The interactive scene can be passed around to different modules in the framework to perform different tasks. For instance, computing the observations based on the state of the scene, or randomizing the scene, or applying actions to the scene. All these are handled by different "managers" in the framework. Please refer to the :mod:`omni.isaac.orbit.managers` sub-package for more details. """ from .interactive_scene import InteractiveScene from .interactive_scene_cfg import InteractiveSceneCfg
1,734
Python
56.833331
117
0.790657
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/terrain_generator_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Configuration classes defining the different terrains available. Each configuration class must inherit from ``omni.isaac.orbit.terrains.terrains_cfg.TerrainConfig`` and define the following attributes: - ``name``: Name of the terrain. This is used for the prim name in the USD stage. - ``function``: Function to generate the terrain. This function must take as input the terrain difficulty and the configuration parameters and return a `tuple with the `trimesh`` mesh object and terrain origin. """ from __future__ import annotations import numpy as np import trimesh from collections.abc import Callable from dataclasses import MISSING from typing import Literal from omni.isaac.orbit.utils import configclass @configclass class FlatPatchSamplingCfg: """Configuration for sampling flat patches on the sub-terrain. For a given sub-terrain, this configuration specifies how to sample flat patches on the terrain. The sampled flat patches can be used for spawning robots, targets, etc. Please check the function :meth:`~omni.isaac.orbit.terrains.utils.find_flat_patches` for more details. """ num_patches: int = MISSING """Number of patches to sample.""" patch_radius: float | list[float] = MISSING """Radius of the patches. A list of radii can be provided to check for patches of different sizes. This is useful to deal with cases where the terrain may have holes or obstacles in some areas. """ x_range: tuple[float, float] = (-1e6, 1e6) """The range of x-coordinates to sample from. Defaults to (-1e6, 1e6). This range is internally clamped to the size of the terrain mesh. """ y_range: tuple[float, float] = (-1e6, 1e6) """The range of y-coordinates to sample from. Defaults to (-1e6, 1e6). This range is internally clamped to the size of the terrain mesh. """ z_range: tuple[float, float] = (-1e6, 1e6) """Allowed range of z-coordinates for the sampled patch. Defaults to (-1e6, 1e6).""" max_height_diff: float = MISSING """Maximum allowed height difference between the highest and lowest points on the patch.""" @configclass class SubTerrainBaseCfg: """Base class for terrain configurations. All the sub-terrain configurations must inherit from this class. The :attr:`size` attribute is the size of the generated sub-terrain. Based on this, the terrain must extend from :math:`(0, 0)` to :math:`(size[0], size[1])`. """ function: Callable[[float, SubTerrainBaseCfg], tuple[list[trimesh.Trimesh], np.ndarray]] = MISSING """Function to generate the terrain. This function must take as input the terrain difficulty and the configuration parameters and return a tuple with a list of ``trimesh`` mesh objects and the terrain origin. """ proportion: float = 1.0 """Proportion of the terrain to generate. Defaults to 1.0. This is used to generate a mix of terrains. The proportion corresponds to the probability of sampling the particular terrain. For example, if there are two terrains, A and B, with proportions 0.3 and 0.7, respectively, then the probability of sampling terrain A is 0.3 and the probability of sampling terrain B is 0.7. """ size: tuple[float, float] = MISSING """The width (along x) and length (along y) of the terrain (in m).""" flat_patch_sampling: dict[str, FlatPatchSamplingCfg] | None = None """Dictionary of configurations for sampling flat patches on the sub-terrain. Defaults to None, in which case no flat patch sampling is performed. The keys correspond to the name of the flat patch sampling configuration and the values are the corresponding configurations. """ @configclass class TerrainGeneratorCfg: """Configuration for the terrain generator.""" seed: int | None = None """The seed for the random number generator. Defaults to None, in which case the seed is not set.""" curriculum: bool = False """Whether to use the curriculum mode. Defaults to False. If True, the terrains are generated based on their difficulty parameter. Otherwise, they are randomly generated. """ size: tuple[float, float] = MISSING """The width (along x) and length (along y) of each sub-terrain (in m). Note: This value is passed on to all the sub-terrain configurations. """ border_width: float = 0.0 """The width of the border around the terrain (in m). Defaults to 0.0.""" num_rows: int = 1 """Number of rows of sub-terrains to generate. Defaults to 1.""" num_cols: int = 1 """Number of columns of sub-terrains to generate. Defaults to 1.""" color_scheme: Literal["height", "random", "none"] = "none" """Color scheme to use for the terrain. Defaults to "none". The available color schemes are: - "height": Color based on the height of the terrain. - "random": Random color scheme. - "none": No color scheme. """ horizontal_scale: float = 0.1 """The discretization of the terrain along the x and y axes (in m). Defaults to 0.1. This value is passed on to all the height field sub-terrain configurations. """ vertical_scale: float = 0.005 """The discretization of the terrain along the z axis (in m). Defaults to 0.005. This value is passed on to all the height field sub-terrain configurations. """ slope_threshold: float | None = 0.75 """The slope threshold above which surfaces are made vertical. Defaults to 0.75. If None no correction is applied. This value is passed on to all the height field sub-terrain configurations. """ sub_terrains: dict[str, SubTerrainBaseCfg] = MISSING """Dictionary of sub-terrain configurations. The keys correspond to the name of the sub-terrain configuration and the values are the corresponding configurations. """ difficulty_range: tuple[float, float] = (0.0, 1.0) """The range of difficulty values for the sub-terrains. Defaults to (0.0, 1.0). If curriculum is enabled, the terrains will be generated based on this range in ascending order of difficulty. Otherwise, the terrains will be generated based on this range in a random order. """ use_cache: bool = False """Whether to load the terrain from cache if it exists. Defaults to True.""" cache_dir: str = "/tmp/orbit/terrains" """The directory where the terrain cache is stored. Defaults to "/tmp/orbit/terrains"."""
6,616
Python
35.15847
109
0.702086
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/terrain_importer_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from typing import TYPE_CHECKING, Literal import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.utils import configclass from .terrain_importer import TerrainImporter if TYPE_CHECKING: from .terrain_generator_cfg import TerrainGeneratorCfg @configclass class TerrainImporterCfg: """Configuration for the terrain manager.""" class_type: type = TerrainImporter """The class to use for the terrain importer. Defaults to :class:`omni.isaac.orbit.terrains.terrain_importer.TerrainImporter`. """ collision_group: int = -1 """The collision group of the terrain. Defaults to -1.""" prim_path: str = MISSING """The absolute path of the USD terrain prim. All sub-terrains are imported relative to this prim path. """ num_envs: int = MISSING """The number of environment origins to consider.""" terrain_type: Literal["generator", "plane", "usd"] = "generator" """The type of terrain to generate. Defaults to "generator". Available options are "plane", "usd", and "generator". """ terrain_generator: TerrainGeneratorCfg | None = None """The terrain generator configuration. Only used if ``terrain_type`` is set to "generator". """ usd_path: str | None = None """The path to the USD file containing the terrain. Only used if ``terrain_type`` is set to "usd". """ env_spacing: float | None = None """The spacing between environment origins when defined in a grid. Defaults to None. Note: This parameter is used only when the ``terrain_type`` is ``"plane"`` or ``"usd"``. """ visual_material: sim_utils.VisualMaterialCfg | None = sim_utils.PreviewSurfaceCfg( diffuse_color=(0.065, 0.0725, 0.080) ) """The visual material of the terrain. Defaults to a dark gray color material. The material is created at the path: ``{prim_path}/visualMaterial``. If `None`, then no material is created. .. note:: This parameter is used only when the ``terrain_type`` is ``"generator"``. """ physics_material: sim_utils.RigidBodyMaterialCfg = sim_utils.RigidBodyMaterialCfg() """The physics material of the terrain. Defaults to a default physics material. The material is created at the path: ``{prim_path}/physicsMaterial``. .. note:: This parameter is used only when the ``terrain_type`` is ``"generator"`` or ``"plane"``. """ max_init_terrain_level: int | None = None """The maximum initial terrain level for defining environment origins. Defaults to None. The terrain levels are specified by the number of rows in the grid arrangement of sub-terrains. If None, then the initial terrain level is set to the maximum terrain level available (``num_rows - 1``). Note: This parameter is used only when sub-terrain origins are defined. """ debug_vis: bool = False """Whether to enable visualization of terrain origins for the terrain. Defaults to False."""
3,187
Python
30.88
112
0.685284
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/terrain_generator.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import numpy as np import os import torch import trimesh import carb from omni.isaac.orbit.utils.dict import dict_to_md5_hash from omni.isaac.orbit.utils.io import dump_yaml from omni.isaac.orbit.utils.timer import Timer from omni.isaac.orbit.utils.warp import convert_to_warp_mesh from .height_field import HfTerrainBaseCfg from .terrain_generator_cfg import FlatPatchSamplingCfg, SubTerrainBaseCfg, TerrainGeneratorCfg from .trimesh.utils import make_border from .utils import color_meshes_by_height, find_flat_patches class TerrainGenerator: """Terrain generator to handle different terrain generation functions. The terrains are represented as meshes. These are obtained either from height fields or by using the `trimesh <https://trimsh.org/trimesh.html>`__ library. The height field representation is more flexible, but it is less computationally and memory efficient than the trimesh representation. All terrain generation functions take in the argument :obj:`difficulty` which determines the complexity of the terrain. The difficulty is a number between 0 and 1, where 0 is the easiest and 1 is the hardest. In most cases, the difficulty is used for linear interpolation between different terrain parameters. For example, in a pyramid stairs terrain the step height is interpolated between the specified minimum and maximum step height. Each sub-terrain has a corresponding configuration class that can be used to specify the parameters of the terrain. The configuration classes are inherited from the :class:`SubTerrainBaseCfg` class which contains the common parameters for all terrains. If a curriculum is used, the terrains are generated based on their difficulty parameter. The difficulty is varied linearly over the number of rows (i.e. along x). If a curriculum is not used, the terrains are generated randomly. If the :obj:`cfg.flat_patch_sampling` is specified for a sub-terrain, flat patches are sampled on the terrain. These can be used for spawning robots, targets, etc. The sampled patches are stored in the :obj:`flat_patches` dictionary. The key specifies the intention of the flat patches and the value is a tensor containing the flat patches for each sub-terrain. If the flag :obj:`cfg.use_cache` is set to True, the terrains are cached based on their sub-terrain configurations. This means that if the same sub-terrain configuration is used multiple times, the terrain is only generated once and then reused. This is useful when generating complex sub-terrains that take a long time to generate. """ terrain_mesh: trimesh.Trimesh """A single trimesh.Trimesh object for all the generated sub-terrains.""" terrain_meshes: list[trimesh.Trimesh] """List of trimesh.Trimesh objects for all the generated sub-terrains.""" terrain_origins: np.ndarray """The origin of each sub-terrain. Shape is (num_rows, num_cols, 3).""" flat_patches: dict[str, torch.Tensor] """A dictionary of sampled valid (flat) patches for each sub-terrain. The dictionary keys are the names of the flat patch sampling configurations. This maps to a tensor containing the flat patches for each sub-terrain. The shape of the tensor is (num_rows, num_cols, num_patches, 3). For instance, the key "root_spawn" maps to a tensor containing the flat patches for spawning an asset. Similarly, the key "target_spawn" maps to a tensor containing the flat patches for setting targets. """ def __init__(self, cfg: TerrainGeneratorCfg, device: str = "cpu"): """Initialize the terrain generator. Args: cfg: Configuration for the terrain generator. device: The device to use for the flat patches tensor. """ # check inputs if len(cfg.sub_terrains) == 0: raise ValueError("No sub-terrains specified! Please add at least one sub-terrain.") # store inputs self.cfg = cfg self.device = device # -- valid patches self.flat_patches = {} # set common values to all sub-terrains config for sub_cfg in self.cfg.sub_terrains.values(): # size of all terrains sub_cfg.size = self.cfg.size # params for height field terrains if isinstance(sub_cfg, HfTerrainBaseCfg): sub_cfg.horizontal_scale = self.cfg.horizontal_scale sub_cfg.vertical_scale = self.cfg.vertical_scale sub_cfg.slope_threshold = self.cfg.slope_threshold # set the seed for reproducibility if self.cfg.seed is not None: torch.manual_seed(self.cfg.seed) np.random.seed(self.cfg.seed) # create a list of all sub-terrains self.terrain_meshes = list() self.terrain_origins = np.zeros((self.cfg.num_rows, self.cfg.num_cols, 3)) # parse configuration and add sub-terrains # create terrains based on curriculum or randomly if self.cfg.curriculum: with Timer("[INFO] Generating terrains based on curriculum took"): self._generate_curriculum_terrains() else: with Timer("[INFO] Generating terrains randomly took"): self._generate_random_terrains() # add a border around the terrains self._add_terrain_border() # combine all the sub-terrains into a single mesh self.terrain_mesh = trimesh.util.concatenate(self.terrain_meshes) # color the terrain mesh if self.cfg.color_scheme == "height": self.terrain_mesh = color_meshes_by_height(self.terrain_mesh) elif self.cfg.color_scheme == "random": self.terrain_mesh.visual.vertex_colors = np.random.choice( range(256), size=(len(self.terrain_mesh.vertices), 4) ) elif self.cfg.color_scheme == "none": pass else: raise ValueError(f"Invalid color scheme: {self.cfg.color_scheme}.") # offset the entire terrain and origins so that it is centered # -- terrain mesh transform = np.eye(4) transform[:2, -1] = -self.cfg.size[0] * self.cfg.num_rows * 0.5, -self.cfg.size[1] * self.cfg.num_cols * 0.5 self.terrain_mesh.apply_transform(transform) # -- terrain origins self.terrain_origins += transform[:3, -1] # -- valid patches terrain_origins_torch = torch.tensor(self.terrain_origins, dtype=torch.float, device=self.device).unsqueeze(2) for name, value in self.flat_patches.items(): self.flat_patches[name] = value + terrain_origins_torch """ Terrain generator functions. """ def _generate_random_terrains(self): """Add terrains based on randomly sampled difficulty parameter.""" # normalize the proportions of the sub-terrains proportions = np.array([sub_cfg.proportion for sub_cfg in self.cfg.sub_terrains.values()]) proportions /= np.sum(proportions) # create a list of all terrain configs sub_terrains_cfgs = list(self.cfg.sub_terrains.values()) # randomly sample sub-terrains for index in range(self.cfg.num_rows * self.cfg.num_cols): # coordinate index of the sub-terrain (sub_row, sub_col) = np.unravel_index(index, (self.cfg.num_rows, self.cfg.num_cols)) # randomly sample terrain index sub_index = np.random.choice(len(proportions), p=proportions) # randomly sample difficulty parameter difficulty = np.random.uniform(*self.cfg.difficulty_range) # generate terrain mesh, origin = self._get_terrain_mesh(difficulty, sub_terrains_cfgs[sub_index]) # add to sub-terrains self._add_sub_terrain(mesh, origin, sub_row, sub_col, sub_terrains_cfgs[sub_index]) def _generate_curriculum_terrains(self): """Add terrains based on the difficulty parameter.""" # normalize the proportions of the sub-terrains proportions = np.array([sub_cfg.proportion for sub_cfg in self.cfg.sub_terrains.values()]) proportions /= np.sum(proportions) # find the sub-terrain index for each column # we generate the terrains based on their proportion (not randomly sampled) sub_indices = [] for index in range(self.cfg.num_cols): sub_index = np.min(np.where(index / self.cfg.num_cols + 0.001 < np.cumsum(proportions))[0]) sub_indices.append(sub_index) sub_indices = np.array(sub_indices, dtype=np.int32) # create a list of all terrain configs sub_terrains_cfgs = list(self.cfg.sub_terrains.values()) # curriculum-based sub-terrains for sub_col in range(self.cfg.num_cols): for sub_row in range(self.cfg.num_rows): # vary the difficulty parameter linearly over the number of rows lower, upper = self.cfg.difficulty_range difficulty = (sub_row + np.random.uniform()) / self.cfg.num_rows difficulty = lower + (upper - lower) * difficulty # generate terrain mesh, origin = self._get_terrain_mesh(difficulty, sub_terrains_cfgs[sub_indices[sub_col]]) # add to sub-terrains self._add_sub_terrain(mesh, origin, sub_row, sub_col, sub_terrains_cfgs[sub_indices[sub_col]]) """ Internal helper functions. """ def _add_terrain_border(self): """Add a surrounding border over all the sub-terrains into the terrain meshes.""" # border parameters border_size = ( self.cfg.num_rows * self.cfg.size[0] + 2 * self.cfg.border_width, self.cfg.num_cols * self.cfg.size[1] + 2 * self.cfg.border_width, ) inner_size = (self.cfg.num_rows * self.cfg.size[0], self.cfg.num_cols * self.cfg.size[1]) border_center = (self.cfg.num_rows * self.cfg.size[0] / 2, self.cfg.num_cols * self.cfg.size[1] / 2, -0.5) # border mesh border_meshes = make_border(border_size, inner_size, height=1.0, position=border_center) border = trimesh.util.concatenate(border_meshes) # update the faces to have minimal triangles selector = ~(np.asarray(border.triangles)[:, :, 2] < -0.1).any(1) border.update_faces(selector) # add the border to the list of meshes self.terrain_meshes.append(border) def _add_sub_terrain( self, mesh: trimesh.Trimesh, origin: np.ndarray, row: int, col: int, sub_terrain_cfg: SubTerrainBaseCfg ): """Add input sub-terrain to the list of sub-terrains. This function adds the input sub-terrain mesh to the list of sub-terrains and updates the origin of the sub-terrain in the list of origins. It also samples flat patches if specified. Args: mesh: The mesh of the sub-terrain. origin: The origin of the sub-terrain. row: The row index of the sub-terrain. col: The column index of the sub-terrain. """ # sample flat patches if specified if sub_terrain_cfg.flat_patch_sampling is not None: carb.log_info(f"Sampling flat patches for sub-terrain at (row, col): ({row}, {col})") # convert the mesh to warp mesh wp_mesh = convert_to_warp_mesh(mesh.vertices, mesh.faces, device=self.device) # sample flat patches based on each patch configuration for that sub-terrain for name, patch_cfg in sub_terrain_cfg.flat_patch_sampling.items(): patch_cfg: FlatPatchSamplingCfg # create the flat patches tensor (if not already created) if name not in self.flat_patches: self.flat_patches[name] = torch.zeros( (self.cfg.num_rows, self.cfg.num_cols, patch_cfg.num_patches, 3), device=self.device ) # add the flat patches to the tensor self.flat_patches[name][row, col] = find_flat_patches( wp_mesh=wp_mesh, origin=origin, num_patches=patch_cfg.num_patches, patch_radius=patch_cfg.patch_radius, x_range=patch_cfg.x_range, y_range=patch_cfg.y_range, z_range=patch_cfg.z_range, max_height_diff=patch_cfg.max_height_diff, ) # transform the mesh to the correct position transform = np.eye(4) transform[0:2, -1] = (row + 0.5) * self.cfg.size[0], (col + 0.5) * self.cfg.size[1] mesh.apply_transform(transform) # add mesh to the list self.terrain_meshes.append(mesh) # add origin to the list self.terrain_origins[row, col] = origin + transform[:3, -1] def _get_terrain_mesh(self, difficulty: float, cfg: SubTerrainBaseCfg) -> tuple[trimesh.Trimesh, np.ndarray]: """Generate a sub-terrain mesh based on the input difficulty parameter. If caching is enabled, the sub-terrain is cached and loaded from the cache if it exists. The cache is stored in the cache directory specified in the configuration. .. Note: This function centers the 2D center of the mesh and its specified origin such that the 2D center becomes :math:`(0, 0)` instead of :math:`(size[0] / 2, size[1] / 2). Args: difficulty: The difficulty parameter. cfg: The configuration of the sub-terrain. Returns: The sub-terrain mesh and origin. """ # add other parameters to the sub-terrain configuration cfg.difficulty = float(difficulty) cfg.seed = self.cfg.seed # generate hash for the sub-terrain sub_terrain_hash = dict_to_md5_hash(cfg.to_dict()) # generate the file name sub_terrain_cache_dir = os.path.join(self.cfg.cache_dir, sub_terrain_hash) sub_terrain_stl_filename = os.path.join(sub_terrain_cache_dir, "mesh.stl") sub_terrain_csv_filename = os.path.join(sub_terrain_cache_dir, "origin.csv") sub_terrain_meta_filename = os.path.join(sub_terrain_cache_dir, "cfg.yaml") # check if hash exists - if true, load the mesh and origin and return if self.cfg.use_cache and os.path.exists(sub_terrain_stl_filename): # load existing mesh mesh = trimesh.load_mesh(sub_terrain_stl_filename) origin = np.loadtxt(sub_terrain_csv_filename, delimiter=",") # return the generated mesh return mesh, origin # generate the terrain meshes, origin = cfg.function(difficulty, cfg) mesh = trimesh.util.concatenate(meshes) # offset mesh such that they are in their center transform = np.eye(4) transform[0:2, -1] = -cfg.size[0] * 0.5, -cfg.size[1] * 0.5 mesh.apply_transform(transform) # change origin to be in the center of the sub-terrain origin += transform[0:3, -1] # if caching is enabled, save the mesh and origin if self.cfg.use_cache: # create the cache directory os.makedirs(sub_terrain_cache_dir, exist_ok=True) # save the data mesh.export(sub_terrain_stl_filename) np.savetxt(sub_terrain_csv_filename, origin, delimiter=",", header="x,y,z") dump_yaml(sub_terrain_meta_filename, cfg) # return the generated mesh return mesh, origin
15,781
Python
47.709876
118
0.644509
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package with utilities for creating terrains procedurally. There are two main components in this package: * :class:`TerrainGenerator`: This class procedurally generates terrains based on the passed sub-terrain configuration. It creates a ``trimesh`` mesh object and contains the origins of each generated sub-terrain. * :class:`TerrainImporter`: This class mainly deals with importing terrains from different possible sources and adding them to the simulator as a prim object. It also stores the terrain mesh into a dictionary called :obj:`TerrainImporter.warp_meshes` that later can be used for ray-casting. The following functions are available for importing terrains: * :meth:`TerrainImporter.import_ground_plane`: spawn a grid plane which is default in isaacsim/orbit. * :meth:`TerrainImporter.import_mesh`: spawn a prim from a ``trimesh`` object. * :meth:`TerrainImporter.import_usd`: spawn a prim as reference to input USD file. """ from .height_field import * # noqa: F401, F403 from .terrain_generator import TerrainGenerator from .terrain_generator_cfg import FlatPatchSamplingCfg, SubTerrainBaseCfg, TerrainGeneratorCfg from .terrain_importer import TerrainImporter from .terrain_importer_cfg import TerrainImporterCfg from .trimesh import * # noqa: F401, F403 from .utils import color_meshes_by_height, create_prim_from_mesh
1,489
Python
47.064515
103
0.785091
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/utils.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import numpy as np import torch import trimesh import warp as wp from omni.isaac.orbit.utils.warp import raycast_mesh def color_meshes_by_height(meshes: list[trimesh.Trimesh], **kwargs) -> trimesh.Trimesh: """ Color the vertices of a trimesh object based on the z-coordinate (height) of each vertex, using the Turbo colormap. If the z-coordinates are all the same, the vertices will be colored with a single color. Args: meshes: A list of trimesh objects. Keyword Args: color: A list of 3 integers in the range [0,255] representing the RGB color of the mesh. Used when the z-coordinates of all vertices are the same. color_map: The name of the color map to be used. Defaults to "turbo". Returns: A trimesh object with the vertices colored based on the z-coordinate (height) of each vertex. """ # Combine all meshes into a single mesh mesh = trimesh.util.concatenate(meshes) # Get the z-coordinates of each vertex heights = mesh.vertices[:, 2] # Check if the z-coordinates are all the same if np.max(heights) == np.min(heights): # Obtain a single color: light blue color = kwargs.pop("color", [172, 216, 230, 255]) color = np.asarray(color, dtype=np.uint8) # Set the color for all vertices mesh.visual.vertex_colors = color else: # Normalize the heights to [0,1] heights_normalized = (heights - np.min(heights)) / (np.max(heights) - np.min(heights)) # clip lower and upper bounds to have better color mapping heights_normalized = np.clip(heights_normalized, 0.1, 0.9) # Get the color for each vertex based on the height color_map = kwargs.pop("color_map", "turbo") colors = trimesh.visual.color.interpolate(heights_normalized, color_map=color_map) # Set the vertex colors mesh.visual.vertex_colors = colors # Return the mesh return mesh def create_prim_from_mesh(prim_path: str, mesh: trimesh.Trimesh, **kwargs): """Create a USD prim with mesh defined from vertices and triangles. The function creates a USD prim with a mesh defined from vertices and triangles. It performs the following steps: - Create a USD Xform prim at the path :obj:`prim_path`. - Create a USD prim with a mesh defined from the input vertices and triangles at the path :obj:`{prim_path}/mesh`. - Assign a physics material to the mesh at the path :obj:`{prim_path}/physicsMaterial`. - Assign a visual material to the mesh at the path :obj:`{prim_path}/visualMaterial`. Args: prim_path: The path to the primitive to be created. mesh: The mesh to be used for the primitive. Keyword Args: translation: The translation of the terrain. Defaults to None. orientation: The orientation of the terrain. Defaults to None. visual_material: The visual material to apply. Defaults to None. physics_material: The physics material to apply. Defaults to None. """ # need to import these here to prevent isaacsim launching when importing this module import omni.isaac.core.utils.prims as prim_utils from pxr import UsdGeom import omni.isaac.orbit.sim as sim_utils # create parent prim prim_utils.create_prim(prim_path, "Xform") # create mesh prim prim = prim_utils.create_prim( f"{prim_path}/mesh", "Mesh", translation=kwargs.get("translation"), orientation=kwargs.get("orientation"), attributes={ "points": mesh.vertices, "faceVertexIndices": mesh.faces.flatten(), "faceVertexCounts": np.asarray([3] * len(mesh.faces)), "subdivisionScheme": "bilinear", }, ) # apply collider properties collider_cfg = sim_utils.CollisionPropertiesCfg(collision_enabled=True) sim_utils.define_collision_properties(prim.GetPrimPath(), collider_cfg) # add rgba color to the mesh primvars if mesh.visual.vertex_colors is not None: # obtain color from the mesh rgba_colors = np.asarray(mesh.visual.vertex_colors).astype(np.float32) / 255.0 # displayColor is a primvar attribute that is used to color the mesh color_prim_attr = prim.GetAttribute("primvars:displayColor") color_prim_var = UsdGeom.Primvar(color_prim_attr) color_prim_var.SetInterpolation(UsdGeom.Tokens.vertex) color_prim_attr.Set(rgba_colors[:, :3]) # displayOpacity is a primvar attribute that is used to set the opacity of the mesh display_prim_attr = prim.GetAttribute("primvars:displayOpacity") display_prim_var = UsdGeom.Primvar(display_prim_attr) display_prim_var.SetInterpolation(UsdGeom.Tokens.vertex) display_prim_var.Set(rgba_colors[:, 3]) # create visual material if kwargs.get("visual_material") is not None: visual_material_cfg: sim_utils.VisualMaterialCfg = kwargs.get("visual_material") # spawn the material visual_material_cfg.func(f"{prim_path}/visualMaterial", visual_material_cfg) sim_utils.bind_visual_material(prim.GetPrimPath(), f"{prim_path}/visualMaterial") # create physics material if kwargs.get("physics_material") is not None: physics_material_cfg: sim_utils.RigidBodyMaterialCfg = kwargs.get("physics_material") # spawn the material physics_material_cfg.func(f"{prim_path}/physicsMaterial", physics_material_cfg) sim_utils.bind_physics_material(prim.GetPrimPath(), f"{prim_path}/physicsMaterial") def find_flat_patches( wp_mesh: wp.Mesh, num_patches: int, patch_radius: float | list[float], origin: np.ndarray | torch.Tensor | tuple[float, float, float], x_range: tuple[float, float], y_range: tuple[float, float], z_range: tuple[float, float], max_height_diff: float, ): """Finds flat patches of given radius in the input mesh. The function finds flat patches of given radius based on the search space defined by the input ranges. The search space is characterized by origin in the mesh frame, and the x, y, and z ranges. The x and y ranges are used to sample points in the 2D region around the origin, and the z range is used to filter patches based on the height of the points. The function performs rejection sampling to find the patches based on the following steps: 1. Sample patch locations in the 2D region around the origin. 2. Define a ring of points around each patch location to query the height of the points using ray-casting. 3. Reject patches that are outside the z range or have a height difference that is too large. 4. Keep sampling until all patches are valid. Args: wp_mesh: The warp mesh to find patches in. num_patches: The desired number of patches to find. patch_radius: The radii used to form patches. If a list is provided, multiple patch sizes are checked. This is useful to deal with holes or other artifacts in the mesh. origin: The origin defining the center of the search space. This is specified in the mesh frame. x_range: The range of X coordinates to sample from. y_range: The range of Y coordinates to sample from. z_range: The range of valid Z coordinates used for filtering patches. max_height_diff: The maximum allowable distance between the lowest and highest points on a patch to consider it as valid. If the difference is greater than this value, the patch is rejected. Returns: A tensor of shape (num_patches, 3) containing the flat patches. The patches are defined in the mesh frame. Raises: RuntimeError: If the function fails to find valid patches. This can happen if the input parameters are not suitable for finding valid patches and maximum number of iterations is reached. """ # set device to warp mesh device device = wp.device_to_torch(wp_mesh.device) # resolve inputs to consistent type # -- patch radii if isinstance(patch_radius, float): patch_radius = [patch_radius] # -- origin if isinstance(origin, np.ndarray): origin = torch.from_numpy(origin).to(torch.float).to(device) elif isinstance(origin, torch.Tensor): origin = origin.to(device) else: origin = torch.tensor(origin, dtype=torch.float, device=device) # create ranges for the x and y coordinates around the origin. # The provided ranges are bounded by the mesh's bounding box. x_range = ( max(x_range[0] + origin[0].item(), wp_mesh.points.numpy()[:, 0].min()), min(x_range[1] + origin[0].item(), wp_mesh.points.numpy()[:, 0].max()), ) y_range = ( max(y_range[0] + origin[1].item(), wp_mesh.points.numpy()[:, 1].min()), min(y_range[1] + origin[1].item(), wp_mesh.points.numpy()[:, 1].max()), ) z_range = ( z_range[0] + origin[2].item(), z_range[1] + origin[2].item(), ) # create a circle of points around (0, 0) to query validity of the patches # the ring of points is uniformly distributed around the circle angle = torch.linspace(0, 2 * np.pi, 10, device=device) query_x = [] query_y = [] for radius in patch_radius: query_x.append(radius * torch.cos(angle)) query_y.append(radius * torch.sin(angle)) query_x = torch.cat(query_x).unsqueeze(1) # dim: (num_radii * 10, 1) query_y = torch.cat(query_y).unsqueeze(1) # dim: (num_radii * 10, 1) # dim: (num_radii * 10, 3) query_points = torch.cat([query_x, query_y, torch.zeros_like(query_x)], dim=-1) # create buffers # -- a buffer to store indices of points that are not valid points_ids = torch.arange(num_patches, device=device) # -- a buffer to store the flat patches locations flat_patches = torch.zeros(num_patches, 3, device=device) # sample points and raycast to find the height. # 1. Reject points that are outside the z_range or have a height difference that is too large. # 2. Keep sampling until all points are valid. iter_count = 0 while len(points_ids) > 0 and iter_count < 10000: # sample points in the 2D region around the origin pos_x = torch.empty(len(points_ids), device=device).uniform_(*x_range) pos_y = torch.empty(len(points_ids), device=device).uniform_(*y_range) flat_patches[points_ids, :2] = torch.stack([pos_x, pos_y], dim=-1) # define the query points to check validity of the patch # dim: (num_patches, num_radii * 10, 3) points = flat_patches[points_ids].unsqueeze(1) + query_points points[..., 2] = 100.0 # ray-cast direction is downwards dirs = torch.zeros_like(points) dirs[..., 2] = -1.0 # ray-cast to find the height of the patches ray_hits = raycast_mesh(points.view(-1, 3), dirs.view(-1, 3), wp_mesh)[0] heights = ray_hits.view(points.shape)[..., 2] # set the height of the patches # note: for invalid patches, they would be overwritten in the next iteration # so it's safe to set the height to the last value flat_patches[points_ids, 2] = heights[..., -1] # check validity # -- height is within the z range not_valid = torch.any(torch.logical_or(heights < z_range[0], heights > z_range[1]), dim=1) # -- height difference is within the max height difference not_valid = torch.logical_or(not_valid, (heights.max(dim=1)[0] - heights.min(dim=1)[0]) > max_height_diff) # remove invalid patches indices points_ids = points_ids[not_valid] # increment count iter_count += 1 # check all patches are valid if len(points_ids) > 0: raise RuntimeError( "Failed to find valid patches! Please check the input parameters." f"\n\tMaximum number of iterations reached: {iter_count}" f"\n\tNumber of invalid patches: {len(points_ids)}" f"\n\tMaximum height difference: {max_height_diff}" ) # return the flat patches (in the mesh frame) return flat_patches - origin
12,367
Python
44.138686
118
0.663297
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/terrain_importer.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import numpy as np import torch import trimesh from typing import TYPE_CHECKING import warp from pxr import UsdGeom import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.markers import VisualizationMarkers from omni.isaac.orbit.markers.config import FRAME_MARKER_CFG from omni.isaac.orbit.utils.warp import convert_to_warp_mesh from .terrain_generator import TerrainGenerator from .trimesh.utils import make_plane from .utils import create_prim_from_mesh if TYPE_CHECKING: from .terrain_importer_cfg import TerrainImporterCfg class TerrainImporter: r"""A class to handle terrain meshes and import them into the simulator. We assume that a terrain mesh comprises of sub-terrains that are arranged in a grid with rows ``num_rows`` and columns ``num_cols``. The terrain origins are the positions of the sub-terrains where the robot should be spawned. Based on the configuration, the terrain importer handles computing the environment origins from the sub-terrain origins. In a typical setup, the number of sub-terrains (:math:`num\_rows \times num\_cols`) is smaller than the number of environments (:math:`num\_envs`). In this case, the environment origins are computed by sampling the sub-terrain origins. If a curriculum is used, it is possible to update the environment origins to terrain origins that correspond to a harder difficulty. This is done by calling :func:`update_terrain_levels`. The idea comes from game-based curriculum. For example, in a game, the player starts with easy levels and progresses to harder levels. """ meshes: dict[str, trimesh.Trimesh] """A dictionary containing the names of the meshes and their keys.""" warp_meshes: dict[str, warp.Mesh] """A dictionary containing the names of the warp meshes and their keys.""" terrain_origins: torch.Tensor | None """The origins of the sub-terrains in the added terrain mesh. Shape is (num_rows, num_cols, 3). If None, then it is assumed no sub-terrains exist. The environment origins are computed in a grid. """ env_origins: torch.Tensor """The origins of the environments. Shape is (num_envs, 3).""" def __init__(self, cfg: TerrainImporterCfg): """Initialize the terrain importer. Args: cfg: The configuration for the terrain importer. Raises: ValueError: If input terrain type is not supported. ValueError: If terrain type is 'generator' and no configuration provided for ``terrain_generator``. ValueError: If terrain type is 'usd' and no configuration provided for ``usd_path``. ValueError: If terrain type is 'usd' or 'plane' and no configuration provided for ``env_spacing``. """ # store inputs self.cfg = cfg self.device = sim_utils.SimulationContext.instance().device # type: ignore # create a dict of meshes self.meshes = dict() self.warp_meshes = dict() self.env_origins = None self.terrain_origins = None # private variables self._terrain_flat_patches = dict() # auto-import the terrain based on the config if self.cfg.terrain_type == "generator": # check config is provided if self.cfg.terrain_generator is None: raise ValueError("Input terrain type is 'generator' but no value provided for 'terrain_generator'.") # generate the terrain terrain_generator = TerrainGenerator(cfg=self.cfg.terrain_generator, device=self.device) self.import_mesh("terrain", terrain_generator.terrain_mesh) # configure the terrain origins based on the terrain generator self.configure_env_origins(terrain_generator.terrain_origins) # refer to the flat patches self._terrain_flat_patches = terrain_generator.flat_patches elif self.cfg.terrain_type == "usd": # check if config is provided if self.cfg.usd_path is None: raise ValueError("Input terrain type is 'usd' but no value provided for 'usd_path'.") # import the terrain self.import_usd("terrain", self.cfg.usd_path) # configure the origins in a grid self.configure_env_origins() elif self.cfg.terrain_type == "plane": # load the plane self.import_ground_plane("terrain") # configure the origins in a grid self.configure_env_origins() else: raise ValueError(f"Terrain type '{self.cfg.terrain_type}' not available.") # set initial state of debug visualization self.set_debug_vis(self.cfg.debug_vis) """ Properties. """ @property def has_debug_vis_implementation(self) -> bool: """Whether the terrain importer has a debug visualization implemented. This always returns True. """ return True @property def flat_patches(self) -> dict[str, torch.Tensor]: """A dictionary containing the sampled valid (flat) patches for the terrain. This is only available if the terrain type is 'generator'. For other terrain types, this feature is not available and the function returns an empty dictionary. Please refer to the :attr:`TerrainGenerator.flat_patches` for more information. """ return self._terrain_flat_patches """ Operations - Visibility. """ def set_debug_vis(self, debug_vis: bool) -> bool: """Set the debug visualization of the terrain importer. Args: debug_vis: Whether to visualize the terrain origins. Returns: Whether the debug visualization was successfully set. False if the terrain importer does not support debug visualization. Raises: RuntimeError: If terrain origins are not configured. """ # create a marker if necessary if debug_vis: if not hasattr(self, "origin_visualizer"): self.origin_visualizer = VisualizationMarkers( cfg=FRAME_MARKER_CFG.replace(prim_path="/Visuals/TerrainOrigin") ) if self.terrain_origins is not None: self.origin_visualizer.visualize(self.terrain_origins.reshape(-1, 3)) elif self.env_origins is not None: self.origin_visualizer.visualize(self.env_origins.reshape(-1, 3)) else: raise RuntimeError("Terrain origins are not configured.") # set visibility self.origin_visualizer.set_visibility(True) else: if hasattr(self, "origin_visualizer"): self.origin_visualizer.set_visibility(False) # report success return True """ Operations - Import. """ def import_ground_plane(self, key: str, size: tuple[float, float] = (2.0e6, 2.0e6)): """Add a plane to the terrain importer. Args: key: The key to store the mesh. size: The size of the plane. Defaults to (2.0e6, 2.0e6). Raises: ValueError: If a terrain with the same key already exists. """ # check if key exists if key in self.meshes: raise ValueError(f"Mesh with key {key} already exists. Existing keys: {self.meshes.keys()}.") # create a plane mesh = make_plane(size, height=0.0, center_zero=True) # store the mesh self.meshes[key] = mesh # create a warp mesh device = "cuda" if "cuda" in self.device else "cpu" self.warp_meshes[key] = convert_to_warp_mesh(mesh.vertices, mesh.faces, device=device) # get the mesh ground_plane_cfg = sim_utils.GroundPlaneCfg(physics_material=self.cfg.physics_material, size=size) ground_plane_cfg.func(self.cfg.prim_path, ground_plane_cfg) def import_mesh(self, key: str, mesh: trimesh.Trimesh): """Import a mesh into the simulator. The mesh is imported into the simulator under the prim path ``cfg.prim_path/{key}``. The created path contains the mesh as a :class:`pxr.UsdGeom` instance along with visual or physics material prims. Args: key: The key to store the mesh. mesh: The mesh to import. Raises: ValueError: If a terrain with the same key already exists. """ # check if key exists if key in self.meshes: raise ValueError(f"Mesh with key {key} already exists. Existing keys: {self.meshes.keys()}.") # store the mesh self.meshes[key] = mesh # create a warp mesh device = "cuda" if "cuda" in self.device else "cpu" self.warp_meshes[key] = convert_to_warp_mesh(mesh.vertices, mesh.faces, device=device) # get the mesh mesh = self.meshes[key] mesh_prim_path = self.cfg.prim_path + f"/{key}" # import the mesh create_prim_from_mesh( mesh_prim_path, mesh, visual_material=self.cfg.visual_material, physics_material=self.cfg.physics_material, ) def import_usd(self, key: str, usd_path: str): """Import a mesh from a USD file. We assume that the USD file contains a single mesh. If the USD file contains multiple meshes, then the first mesh is used. The function mainly helps in registering the mesh into the warp meshes and the meshes dictionary. Note: We do not apply any material properties to the mesh. The material properties should be defined in the USD file. Args: key: The key to store the mesh. usd_path: The path to the USD file. Raises: ValueError: If a terrain with the same key already exists. """ # add mesh to the dict if key in self.meshes: raise ValueError(f"Mesh with key {key} already exists. Existing keys: {self.meshes.keys()}.") # add the prim path cfg = sim_utils.UsdFileCfg(usd_path=usd_path) cfg.func(self.cfg.prim_path + f"/{key}", cfg) # traverse the prim and get the collision mesh # THINK: Should the user specify the collision mesh? mesh_prim = sim_utils.get_first_matching_child_prim( self.cfg.prim_path + f"/{key}", lambda prim: prim.GetTypeName() == "Mesh" ) # check if the mesh is valid if mesh_prim is None: raise ValueError(f"Could not find any collision mesh in {usd_path}. Please check asset.") # cast into UsdGeomMesh mesh_prim = UsdGeom.Mesh(mesh_prim) # store the mesh vertices = np.asarray(mesh_prim.GetPointsAttr().Get()) faces = np.asarray(mesh_prim.GetFaceVertexIndicesAttr().Get()).reshape(-1, 3) self.meshes[key] = trimesh.Trimesh(vertices=vertices, faces=faces) # create a warp mesh device = "cuda" if "cuda" in self.device else "cpu" self.warp_meshes[key] = convert_to_warp_mesh(vertices, faces, device=device) """ Operations - Origins. """ def configure_env_origins(self, origins: np.ndarray | None = None): """Configure the origins of the environments based on the added terrain. Args: origins: The origins of the sub-terrains. Shape is (num_rows, num_cols, 3). """ # decide whether to compute origins in a grid or based on curriculum if origins is not None: # convert to numpy if isinstance(origins, np.ndarray): origins = torch.from_numpy(origins) # store the origins self.terrain_origins = origins.to(self.device, dtype=torch.float) # compute environment origins self.env_origins = self._compute_env_origins_curriculum(self.cfg.num_envs, self.terrain_origins) else: self.terrain_origins = None # check if env spacing is valid if self.cfg.env_spacing is None: raise ValueError("Environment spacing must be specified for configuring grid-like origins.") # compute environment origins self.env_origins = self._compute_env_origins_grid(self.cfg.num_envs, self.cfg.env_spacing) def update_env_origins(self, env_ids: torch.Tensor, move_up: torch.Tensor, move_down: torch.Tensor): """Update the environment origins based on the terrain levels.""" # check if grid-like spawning if self.terrain_origins is None: return # update terrain level for the envs self.terrain_levels[env_ids] += 1 * move_up - 1 * move_down # robots that solve the last level are sent to a random one # the minimum level is zero self.terrain_levels[env_ids] = torch.where( self.terrain_levels[env_ids] >= self.max_terrain_level, torch.randint_like(self.terrain_levels[env_ids], self.max_terrain_level), torch.clip(self.terrain_levels[env_ids], 0), ) # update the env origins self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]] """ Internal helpers. """ def _compute_env_origins_curriculum(self, num_envs: int, origins: torch.Tensor) -> torch.Tensor: """Compute the origins of the environments defined by the sub-terrains origins.""" # extract number of rows and cols num_rows, num_cols = origins.shape[:2] # maximum initial level possible for the terrains if self.cfg.max_init_terrain_level is None: max_init_level = num_rows - 1 else: max_init_level = min(self.cfg.max_init_terrain_level, num_rows - 1) # store maximum terrain level possible self.max_terrain_level = num_rows # define all terrain levels and types available self.terrain_levels = torch.randint(0, max_init_level + 1, (num_envs,), device=self.device) self.terrain_types = torch.div( torch.arange(num_envs, device=self.device), (num_envs / num_cols), rounding_mode="floor", ).to(torch.long) # create tensor based on number of environments env_origins = torch.zeros(num_envs, 3, device=self.device) env_origins[:] = origins[self.terrain_levels, self.terrain_types] return env_origins def _compute_env_origins_grid(self, num_envs: int, env_spacing: float) -> torch.Tensor: """Compute the origins of the environments in a grid based on configured spacing.""" # create tensor based on number of environments env_origins = torch.zeros(num_envs, 3, device=self.device) # create a grid of origins num_rows = np.ceil(num_envs / int(np.sqrt(num_envs))) num_cols = np.ceil(num_envs / num_rows) ii, jj = torch.meshgrid( torch.arange(num_rows, device=self.device), torch.arange(num_cols, device=self.device), indexing="ij" ) env_origins[:, 0] = -(ii.flatten()[:num_envs] - (num_rows - 1) / 2) * env_spacing env_origins[:, 1] = (jj.flatten()[:num_envs] - (num_cols - 1) / 2) * env_spacing env_origins[:, 2] = 0.0 return env_origins
15,546
Python
41.829201
116
0.632253
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/trimesh/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This sub-module provides methods to create different terrains using the ``trimesh`` library. In contrast to the height-field representation, the trimesh representation does not create arbitrarily small triangles. Instead, the terrain is represented as a single tri-mesh primitive. Thus, this representation is more computationally and memory efficient than the height-field representation, but it is not as flexible. """ from .mesh_terrains_cfg import ( MeshBoxTerrainCfg, MeshFloatingRingTerrainCfg, MeshGapTerrainCfg, MeshInvertedPyramidStairsTerrainCfg, MeshPitTerrainCfg, MeshPlaneTerrainCfg, MeshPyramidStairsTerrainCfg, MeshRailsTerrainCfg, MeshRandomGridTerrainCfg, MeshRepeatedBoxesTerrainCfg, MeshRepeatedCylindersTerrainCfg, MeshRepeatedPyramidsTerrainCfg, MeshStarTerrainCfg, )
970
Python
31.366666
92
0.791753
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/trimesh/mesh_terrains.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions to generate different terrains using the ``trimesh`` library.""" from __future__ import annotations import numpy as np import scipy.spatial.transform as tf import torch import trimesh from typing import TYPE_CHECKING from .utils import * # noqa: F401, F403 from .utils import make_border, make_plane if TYPE_CHECKING: from . import mesh_terrains_cfg def flat_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshPlaneTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a flat terrain as a plane. .. image:: ../../_static/terrains/trimesh/flat_terrain.jpg :width: 45% :align: center Note: The :obj:`difficulty` parameter is ignored for this terrain. Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # compute the position of the terrain origin = (cfg.size[0] / 2.0, cfg.size[1] / 2.0, 0.0) # compute the vertices of the terrain plane_mesh = make_plane(cfg.size, 0.0, center_zero=False) # return the tri-mesh and the position return [plane_mesh], np.array(origin) def pyramid_stairs_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshPyramidStairsTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a pyramid stair pattern. The terrain is a pyramid stair pattern which trims to a flat platform at the center of the terrain. If :obj:`cfg.holes` is True, the terrain will have pyramid stairs of length or width :obj:`cfg.platform_width` (depending on the direction) with no steps in the remaining area. Additionally, no border will be added. .. image:: ../../_static/terrains/trimesh/pyramid_stairs_terrain.jpg :width: 45% .. image:: ../../_static/terrains/trimesh/pyramid_stairs_terrain_with_holes.jpg :width: 45% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration step_height = cfg.step_height_range[0] + difficulty * (cfg.step_height_range[1] - cfg.step_height_range[0]) # compute number of steps in x and y direction num_steps_x = (cfg.size[0] - 2 * cfg.border_width - cfg.platform_width) // (2 * cfg.step_width) + 1 num_steps_y = (cfg.size[1] - 2 * cfg.border_width - cfg.platform_width) // (2 * cfg.step_width) + 1 # we take the minimum number of steps in x and y direction num_steps = int(min(num_steps_x, num_steps_y)) # initialize list of meshes meshes_list = list() # generate the border if needed if cfg.border_width > 0.0 and not cfg.holes: # obtain a list of meshes for the border border_center = [0.5 * cfg.size[0], 0.5 * cfg.size[1], -step_height / 2] border_inner_size = (cfg.size[0] - 2 * cfg.border_width, cfg.size[1] - 2 * cfg.border_width) make_borders = make_border(cfg.size, border_inner_size, step_height, border_center) # add the border meshes to the list of meshes meshes_list += make_borders # generate the terrain # -- compute the position of the center of the terrain terrain_center = [0.5 * cfg.size[0], 0.5 * cfg.size[1], 0.0] terrain_size = (cfg.size[0] - 2 * cfg.border_width, cfg.size[1] - 2 * cfg.border_width) # -- generate the stair pattern for k in range(num_steps): # check if we need to add holes around the steps if cfg.holes: box_size = (cfg.platform_width, cfg.platform_width) else: box_size = (terrain_size[0] - 2 * k * cfg.step_width, terrain_size[1] - 2 * k * cfg.step_width) # compute the quantities of the box # -- location box_z = terrain_center[2] + k * step_height / 2.0 box_offset = (k + 0.5) * cfg.step_width # -- dimensions box_height = (k + 2) * step_height # generate the boxes # top/bottom box_dims = (box_size[0], cfg.step_width, box_height) # -- top box_pos = (terrain_center[0], terrain_center[1] + terrain_size[1] / 2.0 - box_offset, box_z) box_top = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- bottom box_pos = (terrain_center[0], terrain_center[1] - terrain_size[1] / 2.0 + box_offset, box_z) box_bottom = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # right/left if cfg.holes: box_dims = (cfg.step_width, box_size[1], box_height) else: box_dims = (cfg.step_width, box_size[1] - 2 * cfg.step_width, box_height) # -- right box_pos = (terrain_center[0] + terrain_size[0] / 2.0 - box_offset, terrain_center[1], box_z) box_right = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- left box_pos = (terrain_center[0] - terrain_size[0] / 2.0 + box_offset, terrain_center[1], box_z) box_left = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # add the boxes to the list of meshes meshes_list += [box_top, box_bottom, box_right, box_left] # generate final box for the middle of the terrain box_dims = ( terrain_size[0] - 2 * num_steps * cfg.step_width, terrain_size[1] - 2 * num_steps * cfg.step_width, (num_steps + 2) * step_height, ) box_pos = (terrain_center[0], terrain_center[1], terrain_center[2] + num_steps * step_height / 2) box_middle = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) meshes_list.append(box_middle) # origin of the terrain origin = np.array([terrain_center[0], terrain_center[1], (num_steps + 1) * step_height]) return meshes_list, origin def inverted_pyramid_stairs_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshInvertedPyramidStairsTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a inverted pyramid stair pattern. The terrain is an inverted pyramid stair pattern which trims to a flat platform at the center of the terrain. If :obj:`cfg.holes` is True, the terrain will have pyramid stairs of length or width :obj:`cfg.platform_width` (depending on the direction) with no steps in the remaining area. Additionally, no border will be added. .. image:: ../../_static/terrains/trimesh/inverted_pyramid_stairs_terrain.jpg :width: 45% .. image:: ../../_static/terrains/trimesh/inverted_pyramid_stairs_terrain_with_holes.jpg :width: 45% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration step_height = cfg.step_height_range[0] + difficulty * (cfg.step_height_range[1] - cfg.step_height_range[0]) # compute number of steps in x and y direction num_steps_x = (cfg.size[0] - 2 * cfg.border_width - cfg.platform_width) // (2 * cfg.step_width) + 1 num_steps_y = (cfg.size[1] - 2 * cfg.border_width - cfg.platform_width) // (2 * cfg.step_width) + 1 # we take the minimum number of steps in x and y direction num_steps = int(min(num_steps_x, num_steps_y)) # total height of the terrain total_height = (num_steps + 1) * step_height # initialize list of meshes meshes_list = list() # generate the border if needed if cfg.border_width > 0.0 and not cfg.holes: # obtain a list of meshes for the border border_center = [0.5 * cfg.size[0], 0.5 * cfg.size[1], -0.5 * step_height] border_inner_size = (cfg.size[0] - 2 * cfg.border_width, cfg.size[1] - 2 * cfg.border_width) make_borders = make_border(cfg.size, border_inner_size, step_height, border_center) # add the border meshes to the list of meshes meshes_list += make_borders # generate the terrain # -- compute the position of the center of the terrain terrain_center = [0.5 * cfg.size[0], 0.5 * cfg.size[1], 0.0] terrain_size = (cfg.size[0] - 2 * cfg.border_width, cfg.size[1] - 2 * cfg.border_width) # -- generate the stair pattern for k in range(num_steps): # check if we need to add holes around the steps if cfg.holes: box_size = (cfg.platform_width, cfg.platform_width) else: box_size = (terrain_size[0] - 2 * k * cfg.step_width, terrain_size[1] - 2 * k * cfg.step_width) # compute the quantities of the box # -- location box_z = terrain_center[2] - total_height / 2 - (k + 1) * step_height / 2.0 box_offset = (k + 0.5) * cfg.step_width # -- dimensions box_height = total_height - (k + 1) * step_height # generate the boxes # top/bottom box_dims = (box_size[0], cfg.step_width, box_height) # -- top box_pos = (terrain_center[0], terrain_center[1] + terrain_size[1] / 2.0 - box_offset, box_z) box_top = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- bottom box_pos = (terrain_center[0], terrain_center[1] - terrain_size[1] / 2.0 + box_offset, box_z) box_bottom = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # right/left if cfg.holes: box_dims = (cfg.step_width, box_size[1], box_height) else: box_dims = (cfg.step_width, box_size[1] - 2 * cfg.step_width, box_height) # -- right box_pos = (terrain_center[0] + terrain_size[0] / 2.0 - box_offset, terrain_center[1], box_z) box_right = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- left box_pos = (terrain_center[0] - terrain_size[0] / 2.0 + box_offset, terrain_center[1], box_z) box_left = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # add the boxes to the list of meshes meshes_list += [box_top, box_bottom, box_right, box_left] # generate final box for the middle of the terrain box_dims = ( terrain_size[0] - 2 * num_steps * cfg.step_width, terrain_size[1] - 2 * num_steps * cfg.step_width, step_height, ) box_pos = (terrain_center[0], terrain_center[1], terrain_center[2] - total_height - step_height / 2) box_middle = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) meshes_list.append(box_middle) # origin of the terrain origin = np.array([terrain_center[0], terrain_center[1], -(num_steps + 1) * step_height]) return meshes_list, origin def random_grid_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshRandomGridTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with cells of random heights and fixed width. The terrain is generated in the x-y plane and has a height of 1.0. It is then divided into a grid of the specified size :obj:`cfg.grid_width`. Each grid cell is then randomly shifted in the z-direction by a value uniformly sampled between :obj:`cfg.grid_height_range`. At the center of the terrain, a platform of the specified width :obj:`cfg.platform_width` is generated. If :obj:`cfg.holes` is True, the terrain will have randomized grid cells only along the plane extending from the platform (like a plus sign). The remaining area remains empty and no border will be added. .. image:: ../../_static/terrains/trimesh/random_grid_terrain.jpg :width: 45% .. image:: ../../_static/terrains/trimesh/random_grid_terrain_with_holes.jpg :width: 45% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). Raises: ValueError: If the terrain is not square. This method only supports square terrains. RuntimeError: If the grid width is large such that the border width is negative. """ # check to ensure square terrain if cfg.size[0] != cfg.size[1]: raise ValueError(f"The terrain must be square. Received size: {cfg.size}.") # resolve the terrain configuration grid_height = cfg.grid_height_range[0] + difficulty * (cfg.grid_height_range[1] - cfg.grid_height_range[0]) # initialize list of meshes meshes_list = list() # compute the number of boxes in each direction num_boxes_x = int(cfg.size[0] / cfg.grid_width) num_boxes_y = int(cfg.size[1] / cfg.grid_width) # constant parameters terrain_height = 1.0 device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") # generate the border border_width = cfg.size[0] - min(num_boxes_x, num_boxes_y) * cfg.grid_width if border_width > 0: # compute parameters for the border border_center = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2) border_inner_size = (cfg.size[0] - border_width, cfg.size[1] - border_width) # create border meshes make_borders = make_border(cfg.size, border_inner_size, terrain_height, border_center) meshes_list += make_borders else: raise RuntimeError("Border width must be greater than 0! Adjust the parameter 'cfg.grid_width'.") # create a template grid of terrain height grid_dim = [cfg.grid_width, cfg.grid_width, terrain_height] grid_position = [0.5 * cfg.grid_width, 0.5 * cfg.grid_width, -terrain_height / 2] template_box = trimesh.creation.box(grid_dim, trimesh.transformations.translation_matrix(grid_position)) # extract vertices and faces of the box to create a template template_vertices = template_box.vertices # (8, 3) template_faces = template_box.faces # repeat the template box vertices to span the terrain (num_boxes_x * num_boxes_y, 8, 3) vertices = torch.tensor(template_vertices, device=device).repeat(num_boxes_x * num_boxes_y, 1, 1) # create a meshgrid to offset the vertices x = torch.arange(0, num_boxes_x, device=device) y = torch.arange(0, num_boxes_y, device=device) xx, yy = torch.meshgrid(x, y, indexing="ij") xx = xx.flatten().view(-1, 1) yy = yy.flatten().view(-1, 1) xx_yy = torch.cat((xx, yy), dim=1) # offset the vertices offsets = cfg.grid_width * xx_yy + border_width / 2 vertices[:, :, :2] += offsets.unsqueeze(1) # mask the vertices to create holes, s.t. only grids along the x and y axis are present if cfg.holes: # -- x-axis mask_x = torch.logical_and( (vertices[:, :, 0] > (cfg.size[0] - border_width - cfg.platform_width) / 2).all(dim=1), (vertices[:, :, 0] < (cfg.size[0] + border_width + cfg.platform_width) / 2).all(dim=1), ) vertices_x = vertices[mask_x] # -- y-axis mask_y = torch.logical_and( (vertices[:, :, 1] > (cfg.size[1] - border_width - cfg.platform_width) / 2).all(dim=1), (vertices[:, :, 1] < (cfg.size[1] + border_width + cfg.platform_width) / 2).all(dim=1), ) vertices_y = vertices[mask_y] # -- combine these vertices vertices = torch.cat((vertices_x, vertices_y)) # add noise to the vertices to have a random height over each grid cell num_boxes = len(vertices) # create noise for the z-axis h_noise = torch.zeros((num_boxes, 3), device=device) h_noise[:, 2].uniform_(-grid_height, grid_height) # reshape noise to match the vertices (num_boxes, 4, 3) # only the top vertices of the box are affected vertices_noise = torch.zeros((num_boxes, 4, 3), device=device) vertices_noise += h_noise.unsqueeze(1) # add height only to the top vertices of the box vertices[vertices[:, :, 2] == 0] += vertices_noise.view(-1, 3) # move to numpy vertices = vertices.reshape(-1, 3).cpu().numpy() # create faces for boxes (num_boxes, 12, 3). Each box has 6 faces, each face has 2 triangles. faces = torch.tensor(template_faces, device=device).repeat(num_boxes, 1, 1) face_offsets = torch.arange(0, num_boxes, device=device).unsqueeze(1).repeat(1, 12) * 8 faces += face_offsets.unsqueeze(2) # move to numpy faces = faces.view(-1, 3).cpu().numpy() # convert to trimesh grid_mesh = trimesh.Trimesh(vertices=vertices, faces=faces) meshes_list.append(grid_mesh) # add a platform in the center of the terrain that is accessible from all sides dim = (cfg.platform_width, cfg.platform_width, terrain_height + grid_height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2 + grid_height / 2) box_platform = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(box_platform) # specify the origin of the terrain origin = np.array([0.5 * cfg.size[0], 0.5 * cfg.size[1], grid_height]) return meshes_list, origin def rails_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshRailsTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with box rails as extrusions. The terrain contains two sets of box rails created as extrusions. The first set (inner rails) is extruded from the platform at the center of the terrain, and the second set is extruded between the first set of rails and the terrain border. Each set of rails is extruded to the same height. .. image:: ../../_static/terrains/trimesh/rails_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. this is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration rail_height = cfg.rail_height_range[1] - difficulty * (cfg.rail_height_range[1] - cfg.rail_height_range[0]) # initialize list of meshes meshes_list = list() # extract quantities rail_1_thickness, rail_2_thickness = cfg.rail_thickness_range rail_center = (0.5 * cfg.size[0], 0.5 * cfg.size[1], rail_height * 0.5) # constants for terrain generation terrain_height = 1.0 rail_2_ratio = 0.6 # generate first set of rails rail_1_inner_size = (cfg.platform_width, cfg.platform_width) rail_1_outer_size = (cfg.platform_width + 2.0 * rail_1_thickness, cfg.platform_width + 2.0 * rail_1_thickness) meshes_list += make_border(rail_1_outer_size, rail_1_inner_size, rail_height, rail_center) # generate second set of rails rail_2_inner_x = cfg.platform_width + (cfg.size[0] - cfg.platform_width) * rail_2_ratio rail_2_inner_y = cfg.platform_width + (cfg.size[1] - cfg.platform_width) * rail_2_ratio rail_2_inner_size = (rail_2_inner_x, rail_2_inner_y) rail_2_outer_size = (rail_2_inner_x + 2.0 * rail_2_thickness, rail_2_inner_y + 2.0 * rail_2_thickness) meshes_list += make_border(rail_2_outer_size, rail_2_inner_size, rail_height, rail_center) # generate the ground dim = (cfg.size[0], cfg.size[1], terrain_height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2) ground_meshes = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(ground_meshes) # specify the origin of the terrain origin = np.array([pos[0], pos[1], 0.0]) return meshes_list, origin def pit_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshPitTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a pit with levels (stairs) leading out of the pit. The terrain contains a platform at the center and a staircase leading out of the pit. The staircase is a series of steps that are aligned along the x- and y- axis. The steps are created by extruding a ring along the x- and y- axis. If :obj:`is_double_pit` is True, the pit contains two levels. .. image:: ../../_static/terrains/trimesh/pit_terrain.jpg :width: 40% .. image:: ../../_static/terrains/trimesh/pit_terrain_with_two_levels.jpg :width: 40% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration pit_depth = cfg.pit_depth_range[0] + difficulty * (cfg.pit_depth_range[1] - cfg.pit_depth_range[0]) # initialize list of meshes meshes_list = list() # extract quantities inner_pit_size = (cfg.platform_width, cfg.platform_width) total_depth = pit_depth # constants for terrain generation terrain_height = 1.0 ring_2_ratio = 0.6 # if the pit is double, the inner ring is smaller to fit the second level if cfg.double_pit: # increase the total height of the pit total_depth *= 2.0 # reduce the size of the inner ring inner_pit_x = cfg.platform_width + (cfg.size[0] - cfg.platform_width) * ring_2_ratio inner_pit_y = cfg.platform_width + (cfg.size[1] - cfg.platform_width) * ring_2_ratio inner_pit_size = (inner_pit_x, inner_pit_y) # generate the pit (outer ring) pit_center = [0.5 * cfg.size[0], 0.5 * cfg.size[1], -total_depth * 0.5] meshes_list += make_border(cfg.size, inner_pit_size, total_depth, pit_center) # generate the second level of the pit (inner ring) if cfg.double_pit: pit_center[2] = -total_depth meshes_list += make_border(inner_pit_size, (cfg.platform_width, cfg.platform_width), total_depth, pit_center) # generate the ground dim = (cfg.size[0], cfg.size[1], terrain_height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -total_depth - terrain_height / 2) ground_meshes = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(ground_meshes) # specify the origin of the terrain origin = np.array([pos[0], pos[1], -total_depth]) return meshes_list, origin def box_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshBoxTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with boxes (similar to a pyramid). The terrain has a ground with boxes on top of it that are stacked on top of each other. The boxes are created by extruding a rectangle along the z-axis. If :obj:`double_box` is True, then two boxes of height :obj:`box_height` are stacked on top of each other. .. image:: ../../_static/terrains/trimesh/box_terrain.jpg :width: 40% .. image:: ../../_static/terrains/trimesh/box_terrain_with_two_boxes.jpg :width: 40% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration box_height = cfg.box_height_range[0] + difficulty * (cfg.box_height_range[1] - cfg.box_height_range[0]) # initialize list of meshes meshes_list = list() # extract quantities total_height = box_height if cfg.double_box: total_height *= 2.0 # constants for terrain generation terrain_height = 1.0 box_2_ratio = 0.6 # Generate the top box dim = (cfg.platform_width, cfg.platform_width, terrain_height + total_height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], (total_height - terrain_height) / 2) box_mesh = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(box_mesh) # Generate the lower box if cfg.double_box: # calculate the size of the lower box outer_box_x = cfg.platform_width + (cfg.size[0] - cfg.platform_width) * box_2_ratio outer_box_y = cfg.platform_width + (cfg.size[1] - cfg.platform_width) * box_2_ratio # create the lower box dim = (outer_box_x, outer_box_y, terrain_height + total_height / 2) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], (total_height - terrain_height) / 2 - total_height / 4) box_mesh = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(box_mesh) # Generate the ground pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2) dim = (cfg.size[0], cfg.size[1], terrain_height) ground_mesh = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(ground_mesh) # specify the origin of the terrain origin = np.array([pos[0], pos[1], total_height]) return meshes_list, origin def gap_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshGapTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a gap around the platform. The terrain has a ground with a platform in the middle. The platform is surrounded by a gap of width :obj:`gap_width` on all sides. .. image:: ../../_static/terrains/trimesh/gap_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration gap_width = cfg.gap_width_range[0] + difficulty * (cfg.gap_width_range[1] - cfg.gap_width_range[0]) # initialize list of meshes meshes_list = list() # constants for terrain generation terrain_height = 1.0 terrain_center = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2) # Generate the outer ring inner_size = (cfg.platform_width + 2 * gap_width, cfg.platform_width + 2 * gap_width) meshes_list += make_border(cfg.size, inner_size, terrain_height, terrain_center) # Generate the inner box box_dim = (cfg.platform_width, cfg.platform_width, terrain_height) box = trimesh.creation.box(box_dim, trimesh.transformations.translation_matrix(terrain_center)) meshes_list.append(box) # specify the origin of the terrain origin = np.array([terrain_center[0], terrain_center[1], 0.0]) return meshes_list, origin def floating_ring_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshFloatingRingTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a floating square ring. The terrain has a ground with a floating ring in the middle. The ring extends from the center from :obj:`platform_width` to :obj:`platform_width` + :obj:`ring_width` in the x and y directions. The thickness of the ring is :obj:`ring_thickness` and the height of the ring from the terrain is :obj:`ring_height`. .. image:: ../../_static/terrains/trimesh/floating_ring_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration ring_height = cfg.ring_height_range[1] - difficulty * (cfg.ring_height_range[1] - cfg.ring_height_range[0]) ring_width = cfg.ring_width_range[0] + difficulty * (cfg.ring_width_range[1] - cfg.ring_width_range[0]) # initialize list of meshes meshes_list = list() # constants for terrain generation terrain_height = 1.0 # Generate the floating ring ring_center = (0.5 * cfg.size[0], 0.5 * cfg.size[1], ring_height + 0.5 * cfg.ring_thickness) ring_outer_size = (cfg.platform_width + 2 * ring_width, cfg.platform_width + 2 * ring_width) ring_inner_size = (cfg.platform_width, cfg.platform_width) meshes_list += make_border(ring_outer_size, ring_inner_size, cfg.ring_thickness, ring_center) # Generate the ground dim = (cfg.size[0], cfg.size[1], terrain_height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2) ground = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(ground) # specify the origin of the terrain origin = np.asarray([pos[0], pos[1], 0.0]) return meshes_list, origin def star_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshStarTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a star. The terrain has a ground with a cylinder in the middle. The star is made of :obj:`num_bars` bars with a width of :obj:`bar_width` and a height of :obj:`bar_height`. The bars are evenly spaced around the cylinder and connect to the peripheral of the terrain. .. image:: ../../_static/terrains/trimesh/star_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). Raises: ValueError: If :obj:`num_bars` is less than 2. """ # check the number of bars if cfg.num_bars < 2: raise ValueError(f"The number of bars in the star must be greater than 2. Received: {cfg.num_bars}") # resolve the terrain configuration bar_height = cfg.bar_height_range[0] + difficulty * (cfg.bar_height_range[1] - cfg.bar_height_range[0]) bar_width = cfg.bar_width_range[1] - difficulty * (cfg.bar_width_range[1] - cfg.bar_width_range[0]) # initialize list of meshes meshes_list = list() # Generate a platform in the middle platform_center = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -bar_height / 2) platform_transform = trimesh.transformations.translation_matrix(platform_center) platform = trimesh.creation.cylinder( cfg.platform_width * 0.5, bar_height, sections=2 * cfg.num_bars, transform=platform_transform ) meshes_list.append(platform) # Generate bars to connect the platform to the terrain transform = np.eye(4) transform[:3, -1] = np.asarray(platform_center) yaw = 0.0 for _ in range(cfg.num_bars): # compute the length of the bar based on the yaw # length changes since the bar is connected to a square border bar_length = cfg.size[0] if yaw < 0.25 * np.pi: bar_length /= np.math.cos(yaw) elif yaw < 0.75 * np.pi: bar_length /= np.math.sin(yaw) else: bar_length /= np.math.cos(np.pi - yaw) # compute the transform of the bar transform[0:3, 0:3] = tf.Rotation.from_euler("z", yaw).as_matrix() # add the bar to the mesh dim = [bar_length - bar_width, bar_width, bar_height] bar = trimesh.creation.box(dim, transform) meshes_list.append(bar) # increment the yaw yaw += np.pi / cfg.num_bars # Generate the exterior border inner_size = (cfg.size[0] - 2 * bar_width, cfg.size[1] - 2 * bar_width) meshes_list += make_border(cfg.size, inner_size, bar_height, platform_center) # Generate the ground ground = make_plane(cfg.size, -bar_height, center_zero=False) meshes_list.append(ground) # specify the origin of the terrain origin = np.asarray([0.5 * cfg.size[0], 0.5 * cfg.size[1], 0.0]) return meshes_list, origin def repeated_objects_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshRepeatedObjectsTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a set of repeated objects. The terrain has a ground with a platform in the middle. The objects are randomly placed on the terrain s.t. they do not overlap with the platform. Depending on the object type, the objects are generated with different parameters. The objects The types of objects that can be generated are: ``"cylinder"``, ``"box"``, ``"cone"``. The object parameters are specified in the configuration as curriculum parameters. The difficulty is used to linearly interpolate between the minimum and maximum values of the parameters. .. image:: ../../_static/terrains/trimesh/repeated_objects_cylinder_terrain.jpg :width: 30% .. image:: ../../_static/terrains/trimesh/repeated_objects_box_terrain.jpg :width: 30% .. image:: ../../_static/terrains/trimesh/repeated_objects_pyramid_terrain.jpg :width: 30% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). Raises: ValueError: If the object type is not supported. It must be either a string or a callable. """ # import the object functions -- this is done here to avoid circular imports from .mesh_terrains_cfg import ( MeshRepeatedBoxesTerrainCfg, MeshRepeatedCylindersTerrainCfg, MeshRepeatedPyramidsTerrainCfg, ) # if object type is a string, get the function: make_{object_type} if isinstance(cfg.object_type, str): object_func = globals().get(f"make_{cfg.object_type}") else: object_func = cfg.object_type if not callable(object_func): raise ValueError(f"The attribute 'object_type' must be a string or a callable. Received: {object_func}") # Resolve the terrain configuration # -- pass parameters to make calling simpler cp_0 = cfg.object_params_start cp_1 = cfg.object_params_end # -- common parameters num_objects = cp_0.num_objects + int(difficulty * (cp_1.num_objects - cp_0.num_objects)) height = cp_0.height + difficulty * (cp_1.height - cp_0.height) # -- object specific parameters # note: SIM114 requires duplicated logical blocks under a single body. if isinstance(cfg, MeshRepeatedBoxesTerrainCfg): cp_0: MeshRepeatedBoxesTerrainCfg.ObjectCfg cp_1: MeshRepeatedBoxesTerrainCfg.ObjectCfg object_kwargs = { "length": cp_0.size[0] + difficulty * (cp_1.size[0] - cp_0.size[0]), "width": cp_0.size[1] + difficulty * (cp_1.size[1] - cp_0.size[1]), "max_yx_angle": cp_0.max_yx_angle + difficulty * (cp_1.max_yx_angle - cp_0.max_yx_angle), "degrees": cp_0.degrees, } elif isinstance(cfg, MeshRepeatedPyramidsTerrainCfg): # noqa: SIM114 cp_0: MeshRepeatedPyramidsTerrainCfg.ObjectCfg cp_1: MeshRepeatedPyramidsTerrainCfg.ObjectCfg object_kwargs = { "radius": cp_0.radius + difficulty * (cp_1.radius - cp_0.radius), "max_yx_angle": cp_0.max_yx_angle + difficulty * (cp_1.max_yx_angle - cp_0.max_yx_angle), "degrees": cp_0.degrees, } elif isinstance(cfg, MeshRepeatedCylindersTerrainCfg): # noqa: SIM114 cp_0: MeshRepeatedCylindersTerrainCfg.ObjectCfg cp_1: MeshRepeatedCylindersTerrainCfg.ObjectCfg object_kwargs = { "radius": cp_0.radius + difficulty * (cp_1.radius - cp_0.radius), "max_yx_angle": cp_0.max_yx_angle + difficulty * (cp_1.max_yx_angle - cp_0.max_yx_angle), "degrees": cp_0.degrees, } else: raise ValueError(f"Unknown terrain configuration: {cfg}") # constants for the terrain platform_clearance = 0.1 # initialize list of meshes meshes_list = list() # compute quantities origin = np.asarray((0.5 * cfg.size[0], 0.5 * cfg.size[1], 0.5 * height)) platform_corners = np.asarray([ [origin[0] - cfg.platform_width / 2, origin[1] - cfg.platform_width / 2], [origin[0] + cfg.platform_width / 2, origin[1] + cfg.platform_width / 2], ]) platform_corners[0, :] *= 1 - platform_clearance platform_corners[1, :] *= 1 + platform_clearance # sample center for objects while True: object_centers = np.zeros((num_objects, 3)) object_centers[:, 0] = np.random.uniform(0, cfg.size[0], num_objects) object_centers[:, 1] = np.random.uniform(0, cfg.size[1], num_objects) # filter out the centers that are on the platform is_within_platform_x = np.logical_and( object_centers[:, 0] >= platform_corners[0, 0], object_centers[:, 0] <= platform_corners[1, 0] ) is_within_platform_y = np.logical_and( object_centers[:, 1] >= platform_corners[0, 1], object_centers[:, 1] <= platform_corners[1, 1] ) masks = np.logical_and(is_within_platform_x, is_within_platform_y) # if there are no objects on the platform, break if not np.any(masks): break # generate obstacles (but keep platform clean) for index in range(len(object_centers)): # randomize the height of the object ob_height = height + np.random.uniform(-cfg.max_height_noise, cfg.max_height_noise) if ob_height > 0.0: object_mesh = object_func(center=object_centers[index], height=ob_height, **object_kwargs) meshes_list.append(object_mesh) # generate a ground plane for the terrain ground_plane = make_plane(cfg.size, height=0.0, center_zero=False) meshes_list.append(ground_plane) # generate a platform in the middle dim = (cfg.platform_width, cfg.platform_width, 0.5 * height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], 0.25 * height) platform = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(platform) return meshes_list, origin
38,422
Python
44.044549
121
0.652829
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/trimesh/utils.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import numpy as np import scipy.spatial.transform as tf import trimesh """ Primitive functions to generate meshes. """ def make_plane(size: tuple[float, float], height: float, center_zero: bool = True) -> trimesh.Trimesh: """Generate a plane mesh. If :obj:`center_zero` is True, the origin is at center of the plane mesh i.e. the mesh extends from :math:`(-size[0] / 2, -size[1] / 2, 0)` to :math:`(size[0] / 2, size[1] / 2, height)`. Otherwise, the origin is :math:`(size[0] / 2, size[1] / 2)` and the mesh extends from :math:`(0, 0, 0)` to :math:`(size[0], size[1], height)`. Args: size: The length (along x) and width (along y) of the terrain (in m). height: The height of the plane (in m). center_zero: Whether the 2D origin of the plane is set to the center of mesh. Defaults to True. Returns: A trimesh.Trimesh objects for the plane. """ # compute the vertices of the terrain x0 = [size[0], size[1], height] x1 = [size[0], 0.0, height] x2 = [0.0, size[1], height] x3 = [0.0, 0.0, height] # generate the tri-mesh with two triangles vertices = np.array([x0, x1, x2, x3]) faces = np.array([[1, 0, 2], [2, 3, 1]]) plane_mesh = trimesh.Trimesh(vertices=vertices, faces=faces) # center the plane at the origin if center_zero: plane_mesh.apply_translation(-np.array([size[0] / 2.0, size[1] / 2.0, 0.0])) # return the tri-mesh and the position return plane_mesh def make_border( size: tuple[float, float], inner_size: tuple[float, float], height: float, position: tuple[float, float, float] ) -> list[trimesh.Trimesh]: """Generate meshes for a rectangular border with a hole in the middle. .. code:: text +---------------------+ |#####################| |##+---------------+##| |##| |##| |##| |##| length |##| |##| (y-axis) |##| |##| |##+---------------+##| |#####################| +---------------------+ width (x-axis) Args: size: The length (along x) and width (along y) of the terrain (in m). inner_size: The inner length (along x) and width (along y) of the hole (in m). height: The height of the border (in m). position: The center of the border (in m). Returns: A list of trimesh.Trimesh objects that represent the border. """ # compute thickness of the border thickness_x = (size[0] - inner_size[0]) / 2.0 thickness_y = (size[1] - inner_size[1]) / 2.0 # generate tri-meshes for the border # top/bottom border box_dims = (size[0], thickness_y, height) # -- top box_pos = (position[0], position[1] + inner_size[1] / 2.0 + thickness_y / 2.0, position[2]) box_mesh_top = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- bottom box_pos = (position[0], position[1] - inner_size[1] / 2.0 - thickness_y / 2.0, position[2]) box_mesh_bottom = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # left/right border box_dims = (thickness_x, inner_size[1], height) # -- left box_pos = (position[0] - inner_size[0] / 2.0 - thickness_x / 2.0, position[1], position[2]) box_mesh_left = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- right box_pos = (position[0] + inner_size[0] / 2.0 + thickness_x / 2.0, position[1], position[2]) box_mesh_right = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # return the tri-meshes return [box_mesh_left, box_mesh_right, box_mesh_top, box_mesh_bottom] def make_box( length: float, width: float, height: float, center: tuple[float, float, float], max_yx_angle: float = 0, degrees: bool = True, ) -> trimesh.Trimesh: """Generate a box mesh with a random orientation. Args: length: The length (along x) of the box (in m). width: The width (along y) of the box (in m). height: The height of the cylinder (in m). center: The center of the cylinder (in m). max_yx_angle: The maximum angle along the y and x axis. Defaults to 0. degrees: Whether the angle is in degrees. Defaults to True. Returns: A trimesh.Trimesh object for the cylinder. """ # create a pose for the cylinder transform = np.eye(4) transform[0:3, -1] = np.asarray(center) # -- create a random rotation euler_zyx = tf.Rotation.random().as_euler("zyx") # returns rotation of shape (3,) # -- cap the rotation along the y and x axis if degrees: max_yx_angle = max_yx_angle / 180.0 euler_zyx[1:] *= max_yx_angle # -- apply the rotation transform[0:3, 0:3] = tf.Rotation.from_euler("zyx", euler_zyx).as_matrix() # create the box dims = (length, width, height) return trimesh.creation.box(dims, transform=transform) def make_cylinder( radius: float, height: float, center: tuple[float, float, float], max_yx_angle: float = 0, degrees: bool = True ) -> trimesh.Trimesh: """Generate a cylinder mesh with a random orientation. Args: radius: The radius of the cylinder (in m). height: The height of the cylinder (in m). center: The center of the cylinder (in m). max_yx_angle: The maximum angle along the y and x axis. Defaults to 0. degrees: Whether the angle is in degrees. Defaults to True. Returns: A trimesh.Trimesh object for the cylinder. """ # create a pose for the cylinder transform = np.eye(4) transform[0:3, -1] = np.asarray(center) # -- create a random rotation euler_zyx = tf.Rotation.random().as_euler("zyx") # returns rotation of shape (3,) # -- cap the rotation along the y and x axis if degrees: max_yx_angle = max_yx_angle / 180.0 euler_zyx[1:] *= max_yx_angle # -- apply the rotation transform[0:3, 0:3] = tf.Rotation.from_euler("zyx", euler_zyx).as_matrix() # create the cylinder return trimesh.creation.cylinder(radius, height, sections=np.random.randint(4, 6), transform=transform) def make_cone( radius: float, height: float, center: tuple[float, float, float], max_yx_angle: float = 0, degrees: bool = True ) -> trimesh.Trimesh: """Generate a cone mesh with a random orientation. Args: radius: The radius of the cone (in m). height: The height of the cone (in m). center: The center of the cone (in m). max_yx_angle: The maximum angle along the y and x axis. Defaults to 0. degrees: Whether the angle is in degrees. Defaults to True. Returns: A trimesh.Trimesh object for the cone. """ # create a pose for the cylinder transform = np.eye(4) transform[0:3, -1] = np.asarray(center) # -- create a random rotation euler_zyx = tf.Rotation.random().as_euler("zyx") # returns rotation of shape (3,) # -- cap the rotation along the y and x axis if degrees: max_yx_angle = max_yx_angle / 180.0 euler_zyx[1:] *= max_yx_angle # -- apply the rotation transform[0:3, 0:3] = tf.Rotation.from_euler("zyx", euler_zyx).as_matrix() # create the cone return trimesh.creation.cone(radius, height, sections=np.random.randint(4, 6), transform=transform)
7,614
Python
37.654822
115
0.609535
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/trimesh/mesh_terrains_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from typing import Literal import omni.isaac.orbit.terrains.trimesh.mesh_terrains as mesh_terrains import omni.isaac.orbit.terrains.trimesh.utils as mesh_utils_terrains from omni.isaac.orbit.utils import configclass from ..terrain_generator_cfg import SubTerrainBaseCfg """ Different trimesh terrain configurations. """ @configclass class MeshPlaneTerrainCfg(SubTerrainBaseCfg): """Configuration for a plane mesh terrain.""" function = mesh_terrains.flat_terrain @configclass class MeshPyramidStairsTerrainCfg(SubTerrainBaseCfg): """Configuration for a pyramid stair mesh terrain.""" function = mesh_terrains.pyramid_stairs_terrain border_width: float = 0.0 """The width of the border around the terrain (in m). Defaults to 0.0. The border is a flat terrain with the same height as the terrain. """ step_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the steps (in m).""" step_width: float = MISSING """The width of the steps (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" holes: bool = False """If True, the terrain will have holes in the steps. Defaults to False. If :obj:`holes` is True, the terrain will have pyramid stairs of length or width :obj:`platform_width` (depending on the direction) with no steps in the remaining area. Additionally, no border will be added. """ @configclass class MeshInvertedPyramidStairsTerrainCfg(MeshPyramidStairsTerrainCfg): """Configuration for an inverted pyramid stair mesh terrain. Note: This is the same as :class:`MeshPyramidStairsTerrainCfg` except that the steps are inverted. """ function = mesh_terrains.inverted_pyramid_stairs_terrain @configclass class MeshRandomGridTerrainCfg(SubTerrainBaseCfg): """Configuration for a random grid mesh terrain.""" function = mesh_terrains.random_grid_terrain grid_width: float = MISSING """The width of the grid cells (in m).""" grid_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the grid cells (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" holes: bool = False """If True, the terrain will have holes in the steps. Defaults to False. If :obj:`holes` is True, the terrain will have randomized grid cells only along the plane extending from the platform (like a plus sign). The remaining area remains empty and no border will be added. """ @configclass class MeshRailsTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with box rails as extrusions.""" function = mesh_terrains.rails_terrain rail_thickness_range: tuple[float, float] = MISSING """The thickness of the inner and outer rails (in m).""" rail_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the rails (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" @configclass class MeshPitTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with a pit that leads out of the pit.""" function = mesh_terrains.pit_terrain pit_depth_range: tuple[float, float] = MISSING """The minimum and maximum height of the pit (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" double_pit: bool = False """If True, the pit contains two levels of stairs. Defaults to False.""" @configclass class MeshBoxTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with boxes (similar to a pyramid).""" function = mesh_terrains.box_terrain box_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the box (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" double_box: bool = False """If True, the pit contains two levels of stairs/boxes. Defaults to False.""" @configclass class MeshGapTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with a gap around the platform.""" function = mesh_terrains.gap_terrain gap_width_range: tuple[float, float] = MISSING """The minimum and maximum width of the gap (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" @configclass class MeshFloatingRingTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with a floating ring around the center.""" function = mesh_terrains.floating_ring_terrain ring_width_range: tuple[float, float] = MISSING """The minimum and maximum width of the ring (in m).""" ring_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the ring (in m).""" ring_thickness: float = MISSING """The thickness (along z) of the ring (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" @configclass class MeshStarTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with a star pattern.""" function = mesh_terrains.star_terrain num_bars: int = MISSING """The number of bars per-side the star. Must be greater than 2.""" bar_width_range: tuple[float, float] = MISSING """The minimum and maximum width of the bars in the star (in m).""" bar_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the bars in the star (in m).""" platform_width: float = 1.0 """The width of the cylindrical platform at the center of the terrain. Defaults to 1.0.""" @configclass class MeshRepeatedObjectsTerrainCfg(SubTerrainBaseCfg): """Base configuration for a terrain with repeated objects.""" @configclass class ObjectCfg: """Configuration of repeated objects.""" num_objects: int = MISSING """The number of objects to add to the terrain.""" height: float = MISSING """The height (along z) of the object (in m).""" function = mesh_terrains.repeated_objects_terrain object_type: Literal["cylinder", "box", "cone"] | callable = MISSING """The type of object to generate. The type can be a string or a callable. If it is a string, the function will look for a function called ``make_{object_type}`` in the current module scope. If it is a callable, the function will use the callable to generate the object. """ object_params_start: ObjectCfg = MISSING """The object curriculum parameters at the start of the curriculum.""" object_params_end: ObjectCfg = MISSING """The object curriculum parameters at the end of the curriculum.""" max_height_noise: float = 0.0 """The maximum amount of noise to add to the height of the objects (in m). Defaults to 0.0.""" platform_width: float = 1.0 """The width of the cylindrical platform at the center of the terrain. Defaults to 1.0.""" @configclass class MeshRepeatedPyramidsTerrainCfg(MeshRepeatedObjectsTerrainCfg): """Configuration for a terrain with repeated pyramids.""" @configclass class ObjectCfg(MeshRepeatedObjectsTerrainCfg.ObjectCfg): """Configuration for a curriculum of repeated pyramids.""" radius: float = MISSING """The radius of the pyramids (in m).""" max_yx_angle: float = 0.0 """The maximum angle along the y and x axis. Defaults to 0.0.""" degrees: bool = True """Whether the angle is in degrees. Defaults to True.""" object_type = mesh_utils_terrains.make_cone object_params_start: ObjectCfg = MISSING """The object curriculum parameters at the start of the curriculum.""" object_params_end: ObjectCfg = MISSING """The object curriculum parameters at the end of the curriculum.""" @configclass class MeshRepeatedBoxesTerrainCfg(MeshRepeatedObjectsTerrainCfg): """Configuration for a terrain with repeated boxes.""" @configclass class ObjectCfg(MeshRepeatedObjectsTerrainCfg.ObjectCfg): """Configuration for repeated boxes.""" size: tuple[float, float] = MISSING """The width (along x) and length (along y) of the box (in m).""" max_yx_angle: float = 0.0 """The maximum angle along the y and x axis. Defaults to 0.0.""" degrees: bool = True """Whether the angle is in degrees. Defaults to True.""" object_type = mesh_utils_terrains.make_box object_params_start: ObjectCfg = MISSING """The box curriculum parameters at the start of the curriculum.""" object_params_end: ObjectCfg = MISSING """The box curriculum parameters at the end of the curriculum.""" @configclass class MeshRepeatedCylindersTerrainCfg(MeshRepeatedObjectsTerrainCfg): """Configuration for a terrain with repeated cylinders.""" @configclass class ObjectCfg(MeshRepeatedObjectsTerrainCfg.ObjectCfg): """Configuration for repeated cylinder.""" radius: float = MISSING """The radius of the pyramids (in m).""" max_yx_angle: float = 0.0 """The maximum angle along the y and x axis. Defaults to 0.0.""" degrees: bool = True """Whether the angle is in degrees. Defaults to True.""" object_type = mesh_utils_terrains.make_cylinder object_params_start: ObjectCfg = MISSING """The box curriculum parameters at the start of the curriculum.""" object_params_end: ObjectCfg = MISSING """The box curriculum parameters at the end of the curriculum."""
9,969
Python
35.654412
107
0.695857
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/height_field/hf_terrains.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions to generate height fields for different terrains.""" from __future__ import annotations import numpy as np import scipy.interpolate as interpolate from typing import TYPE_CHECKING from .utils import height_field_to_mesh if TYPE_CHECKING: from . import hf_terrains_cfg @height_field_to_mesh def random_uniform_terrain(difficulty: float, cfg: hf_terrains_cfg.HfRandomUniformTerrainCfg) -> np.ndarray: """Generate a terrain with height sampled uniformly from a specified range. .. image:: ../../_static/terrains/height_field/random_uniform_terrain.jpg :width: 40% :align: center Note: The :obj:`difficulty` parameter is ignored for this terrain. Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. Raises: ValueError: When the downsampled scale is smaller than the horizontal scale. """ # check parameters # -- horizontal scale if cfg.downsampled_scale is None: cfg.downsampled_scale = cfg.horizontal_scale elif cfg.downsampled_scale < cfg.horizontal_scale: raise ValueError( "Downsampled scale must be larger than or equal to the horizontal scale:" f" {cfg.downsampled_scale} < {cfg.horizontal_scale}." ) # switch parameters to discrete units # -- horizontal scale width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- downsampled scale width_downsampled = int(cfg.size[0] / cfg.downsampled_scale) length_downsampled = int(cfg.size[1] / cfg.downsampled_scale) # -- height height_min = int(cfg.noise_range[0] / cfg.vertical_scale) height_max = int(cfg.noise_range[1] / cfg.vertical_scale) height_step = int(cfg.noise_step / cfg.vertical_scale) # create range of heights possible height_range = np.arange(height_min, height_max + height_step, height_step) # sample heights randomly from the range along a grid height_field_downsampled = np.random.choice(height_range, size=(width_downsampled, length_downsampled)) # create interpolation function for the sampled heights x = np.linspace(0, cfg.size[0] * cfg.horizontal_scale, width_downsampled) y = np.linspace(0, cfg.size[1] * cfg.horizontal_scale, length_downsampled) func = interpolate.RectBivariateSpline(x, y, height_field_downsampled) # interpolate the sampled heights to obtain the height field x_upsampled = np.linspace(0, cfg.size[0] * cfg.horizontal_scale, width_pixels) y_upsampled = np.linspace(0, cfg.size[1] * cfg.horizontal_scale, length_pixels) z_upsampled = func(x_upsampled, y_upsampled) # round off the interpolated heights to the nearest vertical step return np.rint(z_upsampled).astype(np.int16) @height_field_to_mesh def pyramid_sloped_terrain(difficulty: float, cfg: hf_terrains_cfg.HfPyramidSlopedTerrainCfg) -> np.ndarray: """Generate a terrain with a truncated pyramid structure. The terrain is a pyramid-shaped sloped surface with a slope of :obj:`slope` that trims into a flat platform at the center. The slope is defined as the ratio of the height change along the x axis to the width along the x axis. For example, a slope of 1.0 means that the height changes by 1 unit for every 1 unit of width. If the :obj:`cfg.inverted` flag is set to :obj:`True`, the terrain is inverted such that the platform is at the bottom. .. image:: ../../_static/terrains/height_field/pyramid_sloped_terrain.jpg :width: 40% .. image:: ../../_static/terrains/height_field/inverted_pyramid_sloped_terrain.jpg :width: 40% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration if cfg.inverted: slope = -cfg.slope_range[0] - difficulty * (cfg.slope_range[1] - cfg.slope_range[0]) else: slope = cfg.slope_range[0] + difficulty * (cfg.slope_range[1] - cfg.slope_range[0]) # switch parameters to discrete units # -- horizontal scale width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- height # we want the height to be 1/2 of the width since the terrain is a pyramid height_max = int(slope * cfg.size[0] / 2 / cfg.vertical_scale) # -- center of the terrain center_x = int(width_pixels / 2) center_y = int(length_pixels / 2) # create a meshgrid of the terrain x = np.arange(0, width_pixels) y = np.arange(0, length_pixels) xx, yy = np.meshgrid(x, y, sparse=True) # offset the meshgrid to the center of the terrain xx = (center_x - np.abs(center_x - xx)) / center_x yy = (center_y - np.abs(center_y - yy)) / center_y # reshape the meshgrid to be 2D xx = xx.reshape(width_pixels, 1) yy = yy.reshape(1, length_pixels) # create a sloped surface hf_raw = np.zeros((width_pixels, length_pixels)) hf_raw = height_max * xx * yy # create a flat platform at the center of the terrain platform_width = int(cfg.platform_width / cfg.horizontal_scale / 2) # get the height of the platform at the corner of the platform x_pf = width_pixels // 2 - platform_width y_pf = length_pixels // 2 - platform_width z_pf = hf_raw[x_pf, y_pf] hf_raw = np.clip(hf_raw, min(0, z_pf), max(0, z_pf)) # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16) @height_field_to_mesh def pyramid_stairs_terrain(difficulty: float, cfg: hf_terrains_cfg.HfPyramidStairsTerrainCfg) -> np.ndarray: """Generate a terrain with a pyramid stair pattern. The terrain is a pyramid stair pattern which trims to a flat platform at the center of the terrain. If the :obj:`cfg.inverted` flag is set to :obj:`True`, the terrain is inverted such that the platform is at the bottom. .. image:: ../../_static/terrains/height_field/pyramid_stairs_terrain.jpg :width: 40% .. image:: ../../_static/terrains/height_field/inverted_pyramid_stairs_terrain.jpg :width: 40% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration step_height = cfg.step_height_range[0] + difficulty * (cfg.step_height_range[1] - cfg.step_height_range[0]) if cfg.inverted: step_height *= -1 # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- stairs step_width = int(cfg.step_width / cfg.horizontal_scale) step_height = int(step_height / cfg.vertical_scale) # -- platform platform_width = int(cfg.platform_width / cfg.horizontal_scale) # create a terrain with a flat platform at the center hf_raw = np.zeros((width_pixels, length_pixels)) # add the steps current_step_height = 0 start_x, start_y = 0, 0 stop_x, stop_y = width_pixels, length_pixels while (stop_x - start_x) > platform_width and (stop_y - start_y) > platform_width: # increment position # -- x start_x += step_width stop_x -= step_width # -- y start_y += step_width stop_y -= step_width # increment height current_step_height += step_height # add the step hf_raw[start_x:stop_x, start_y:stop_y] = current_step_height # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16) @height_field_to_mesh def discrete_obstacles_terrain(difficulty: float, cfg: hf_terrains_cfg.HfDiscreteObstaclesTerrainCfg) -> np.ndarray: """Generate a terrain with randomly generated obstacles as pillars with positive and negative heights. The terrain is a flat platform at the center of the terrain with randomly generated obstacles as pillars with positive and negative height. The obstacles are randomly generated cuboids with a random width and height. They are placed randomly on the terrain with a minimum distance of :obj:`cfg.platform_width` from the center of the terrain. .. image:: ../../_static/terrains/height_field/discrete_obstacles_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration obs_height = cfg.obstacle_height_range[0] + difficulty * ( cfg.obstacle_height_range[1] - cfg.obstacle_height_range[0] ) # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- obstacles obs_height = int(obs_height / cfg.vertical_scale) obs_width_min = int(cfg.obstacle_width_range[0] / cfg.horizontal_scale) obs_width_max = int(cfg.obstacle_width_range[1] / cfg.horizontal_scale) # -- center of the terrain platform_width = int(cfg.platform_width / cfg.horizontal_scale) # create discrete ranges for the obstacles # -- shape obs_width_range = np.arange(obs_width_min, obs_width_max, 4) obs_length_range = np.arange(obs_width_min, obs_width_max, 4) # -- position obs_x_range = np.arange(0, width_pixels, 4) obs_y_range = np.arange(0, length_pixels, 4) # create a terrain with a flat platform at the center hf_raw = np.zeros((width_pixels, length_pixels)) # generate the obstacles for _ in range(cfg.num_obstacles): # sample size if cfg.obstacle_height_mode == "choice": height = np.random.choice([-obs_height, -obs_height // 2, obs_height // 2, obs_height]) elif cfg.obstacle_height_mode == "fixed": height = obs_height else: raise ValueError(f"Unknown obstacle height mode '{cfg.obstacle_height_mode}'. Must be 'choice' or 'fixed'.") width = int(np.random.choice(obs_width_range)) length = int(np.random.choice(obs_length_range)) # sample position x_start = int(np.random.choice(obs_x_range)) y_start = int(np.random.choice(obs_y_range)) # clip start position to the terrain if x_start + width > width_pixels: x_start = width_pixels - width if y_start + length > length_pixels: y_start = length_pixels - length # add to terrain hf_raw[x_start : x_start + width, y_start : y_start + length] = height # clip the terrain to the platform x1 = (width_pixels - platform_width) // 2 x2 = (width_pixels + platform_width) // 2 y1 = (length_pixels - platform_width) // 2 y2 = (length_pixels + platform_width) // 2 hf_raw[x1:x2, y1:y2] = 0 # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16) @height_field_to_mesh def wave_terrain(difficulty: float, cfg: hf_terrains_cfg.HfWaveTerrainCfg) -> np.ndarray: r"""Generate a terrain with a wave pattern. The terrain is a flat platform at the center of the terrain with a wave pattern. The wave pattern is generated by adding sinusoidal waves based on the number of waves and the amplitude of the waves. The height of the terrain at a point :math:`(x, y)` is given by: .. math:: h(x, y) = A \left(\sin\left(\frac{2 \pi x}{\lambda}\right) + \cos\left(\frac{2 \pi y}{\lambda}\right) \right) where :math:`A` is the amplitude of the waves, :math:`\lambda` is the wavelength of the waves. .. image:: ../../_static/terrains/height_field/wave_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. Raises: ValueError: When the number of waves is non-positive. """ # check number of waves if cfg.num_waves < 0: raise ValueError(f"Number of waves must be a positive integer. Got: {cfg.num_waves}.") # resolve terrain configuration amplitude = cfg.amplitude_range[0] + difficulty * (cfg.amplitude_range[1] - cfg.amplitude_range[0]) # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) amplitude_pixels = int(0.5 * amplitude / cfg.vertical_scale) # compute the wave number: nu = 2 * pi / lambda wave_length = length_pixels / cfg.num_waves wave_number = 2 * np.pi / wave_length # create meshgrid for the terrain x = np.arange(0, width_pixels) y = np.arange(0, length_pixels) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(width_pixels, 1) yy = yy.reshape(1, length_pixels) # create a terrain with a flat platform at the center hf_raw = np.zeros((width_pixels, length_pixels)) # add the waves hf_raw += amplitude_pixels * (np.cos(yy * wave_number) + np.sin(xx * wave_number)) # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16) @height_field_to_mesh def stepping_stones_terrain(difficulty: float, cfg: hf_terrains_cfg.HfSteppingStonesTerrainCfg) -> np.ndarray: """Generate a terrain with a stepping stones pattern. The terrain is a stepping stones pattern which trims to a flat platform at the center of the terrain. .. image:: ../../_static/terrains/height_field/stepping_stones_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration stone_width = cfg.stone_width_range[1] - difficulty * (cfg.stone_width_range[1] - cfg.stone_width_range[0]) stone_distance = cfg.stone_distance_range[0] + difficulty * ( cfg.stone_distance_range[1] - cfg.stone_distance_range[0] ) # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- stones stone_distance = int(stone_distance / cfg.horizontal_scale) stone_width = int(stone_width / cfg.horizontal_scale) stone_height_max = int(cfg.stone_height_max / cfg.vertical_scale) # -- holes holes_depth = int(cfg.holes_depth / cfg.vertical_scale) # -- platform platform_width = int(cfg.platform_width / cfg.horizontal_scale) # create range of heights stone_height_range = np.arange(-stone_height_max - 1, stone_height_max, step=1) # create a terrain with a flat platform at the center hf_raw = np.full((width_pixels, length_pixels), holes_depth) # add the stones start_x, start_y = 0, 0 # -- if the terrain is longer than it is wide then fill the terrain column by column if length_pixels >= width_pixels: while start_y < length_pixels: # ensure that stone stops along y-axis stop_y = min(length_pixels, start_y + stone_width) # randomly sample x-position start_x = np.random.randint(0, stone_width) stop_x = max(0, start_x - stone_distance) # fill first stone hf_raw[0:stop_x, start_y:stop_y] = np.random.choice(stone_height_range) # fill row with stones while start_x < width_pixels: stop_x = min(width_pixels, start_x + stone_width) hf_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(stone_height_range) start_x += stone_width + stone_distance # update y-position start_y += stone_width + stone_distance elif width_pixels > length_pixels: while start_x < width_pixels: # ensure that stone stops along x-axis stop_x = min(width_pixels, start_x + stone_width) # randomly sample y-position start_y = np.random.randint(0, stone_width) stop_y = max(0, start_y - stone_distance) # fill first stone hf_raw[start_x:stop_x, 0:stop_y] = np.random.choice(stone_height_range) # fill column with stones while start_y < length_pixels: stop_y = min(length_pixels, start_y + stone_width) hf_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(stone_height_range) start_y += stone_width + stone_distance # update x-position start_x += stone_width + stone_distance # add the platform in the center x1 = (width_pixels - platform_width) // 2 x2 = (width_pixels + platform_width) // 2 y1 = (length_pixels - platform_width) // 2 y2 = (length_pixels + platform_width) // 2 hf_raw[x1:x2, y1:y2] = 0 # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16)
18,737
Python
41.878718
120
0.660138
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/height_field/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This sub-module provides utilities to create different terrains as height fields (HF). Height fields are a 2.5D terrain representation that is used in robotics to obtain the height of the terrain at a given point. This is useful for controls and planning algorithms. Each terrain is represented as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. The height of the terrain at a given point is obtained by indexing the array with the corresponding x and y coordinates. .. caution:: When working with height field terrains, it is important to remember that the terrain is generated from a discretized 3D representation. This means that the height of the terrain at a given point is only an approximation of the real height of the terrain at that point. The discretization error is proportional to the size of the discretization cells. Therefore, it is important to choose a discretization size that is small enough for the application. A larger discretization size will result in a faster simulation, but the terrain will be less accurate. """ from .hf_terrains_cfg import ( HfDiscreteObstaclesTerrainCfg, HfInvertedPyramidSlopedTerrainCfg, HfInvertedPyramidStairsTerrainCfg, HfPyramidSlopedTerrainCfg, HfPyramidStairsTerrainCfg, HfRandomUniformTerrainCfg, HfSteppingStonesTerrainCfg, HfTerrainBaseCfg, HfWaveTerrainCfg, )
1,637
Python
40.999999
102
0.782529
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/height_field/utils.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import copy import functools import numpy as np import trimesh from collections.abc import Callable from typing import TYPE_CHECKING if TYPE_CHECKING: from .hf_terrains_cfg import HfTerrainBaseCfg def height_field_to_mesh(func: Callable) -> Callable: """Decorator to convert a height field function to a mesh function. This decorator converts a height field function to a mesh function by sampling the heights at a specified resolution and performing interpolation to obtain the intermediate heights. Additionally, it adds a border around the terrain to avoid artifacts at the edges. Args: func: The height field function to convert. The function should return a 2D numpy array with the heights of the terrain. Returns: The mesh function. The mesh function returns a tuple containing a list of ``trimesh`` mesh objects and the origin of the terrain. """ @functools.wraps(func) def wrapper(difficulty: float, cfg: HfTerrainBaseCfg): # check valid border width if cfg.border_width > 0 and cfg.border_width < cfg.horizontal_scale: raise ValueError( f"The border width ({cfg.border_width}) must be greater than or equal to the" f" horizontal scale ({cfg.horizontal_scale})." ) # allocate buffer for height field (with border) width_pixels = int(cfg.size[0] / cfg.horizontal_scale) + 1 length_pixels = int(cfg.size[1] / cfg.horizontal_scale) + 1 border_pixels = int(cfg.border_width / cfg.horizontal_scale) + 1 heights = np.zeros((width_pixels, length_pixels), dtype=np.int16) # override size of the terrain to account for the border sub_terrain_size = [width_pixels - 2 * border_pixels, length_pixels - 2 * border_pixels] sub_terrain_size = [dim * cfg.horizontal_scale for dim in sub_terrain_size] # update the config terrain_size = copy.deepcopy(cfg.size) cfg.size = tuple(sub_terrain_size) # generate the height field z_gen = func(difficulty, cfg) # handle the border for the terrain heights[border_pixels:-border_pixels, border_pixels:-border_pixels] = z_gen # set terrain size back to config cfg.size = terrain_size # convert to trimesh vertices, triangles = convert_height_field_to_mesh( heights, cfg.horizontal_scale, cfg.vertical_scale, cfg.slope_threshold ) mesh = trimesh.Trimesh(vertices=vertices, faces=triangles) # compute origin x1 = int((cfg.size[0] * 0.5 - 1) / cfg.horizontal_scale) x2 = int((cfg.size[0] * 0.5 + 1) / cfg.horizontal_scale) y1 = int((cfg.size[1] * 0.5 - 1) / cfg.horizontal_scale) y2 = int((cfg.size[1] * 0.5 + 1) / cfg.horizontal_scale) origin_z = np.max(heights[x1:x2, y1:y2]) * cfg.vertical_scale origin = np.array([0.5 * cfg.size[0], 0.5 * cfg.size[1], origin_z]) # return mesh and origin return [mesh], origin return wrapper def convert_height_field_to_mesh( height_field: np.ndarray, horizontal_scale: float, vertical_scale: float, slope_threshold: float | None = None ) -> tuple[np.ndarray, np.ndarray]: """Convert a height-field array to a triangle mesh represented by vertices and triangles. This function converts a height-field array to a triangle mesh represented by vertices and triangles. The height-field array is assumed to be a 2D array of floats, where each element represents the height of the terrain at that location. The height-field array is assumed to be in the form of a matrix, where the first dimension represents the x-axis and the second dimension represents the y-axis. The function can also correct vertical surfaces above the provide slope threshold. This is helpful to avoid having long vertical surfaces in the mesh. The correction is done by moving the vertices of the vertical surfaces to minimum of the two neighboring vertices. The correction is done in the following way: If :math:`\\frac{y_2 - y_1}{x_2 - x_1} > threshold`, then move A to A' (i.e., set :math:`x_1' = x_2`). This is repeated along all directions. .. code-block:: none B(x_2,y_2) /| / | / | (x_1,y_1)A---A'(x_1',y_1) Args: height_field: The input height-field array. horizontal_scale: The discretization of the terrain along the x and y axis. vertical_scale: The discretization of the terrain along the z axis. slope_threshold: The slope threshold above which surfaces are made vertical. Defaults to None, in which case no correction is applied. Returns: The vertices and triangles of the mesh: - **vertices** (np.ndarray(float)): Array of shape (num_vertices, 3). Each row represents the location of each vertex (in m). - **triangles** (np.ndarray(int)): Array of shape (num_triangles, 3). Each row represents the indices of the 3 vertices connected by this triangle. """ # read height field num_rows, num_cols = height_field.shape # create a mesh grid of the height field y = np.linspace(0, (num_cols - 1) * horizontal_scale, num_cols) x = np.linspace(0, (num_rows - 1) * horizontal_scale, num_rows) yy, xx = np.meshgrid(y, x) # copy height field to avoid modifying the original array hf = height_field.copy() # correct vertical surfaces above the slope threshold if slope_threshold is not None: # scale slope threshold based on the horizontal and vertical scale slope_threshold *= horizontal_scale / vertical_scale # allocate arrays to store the movement of the vertices move_x = np.zeros((num_rows, num_cols)) move_y = np.zeros((num_rows, num_cols)) move_corners = np.zeros((num_rows, num_cols)) # move vertices along the x-axis move_x[: num_rows - 1, :] += hf[1:num_rows, :] - hf[: num_rows - 1, :] > slope_threshold move_x[1:num_rows, :] -= hf[: num_rows - 1, :] - hf[1:num_rows, :] > slope_threshold # move vertices along the y-axis move_y[:, : num_cols - 1] += hf[:, 1:num_cols] - hf[:, : num_cols - 1] > slope_threshold move_y[:, 1:num_cols] -= hf[:, : num_cols - 1] - hf[:, 1:num_cols] > slope_threshold # move vertices along the corners move_corners[: num_rows - 1, : num_cols - 1] += ( hf[1:num_rows, 1:num_cols] - hf[: num_rows - 1, : num_cols - 1] > slope_threshold ) move_corners[1:num_rows, 1:num_cols] -= ( hf[: num_rows - 1, : num_cols - 1] - hf[1:num_rows, 1:num_cols] > slope_threshold ) xx += (move_x + move_corners * (move_x == 0)) * horizontal_scale yy += (move_y + move_corners * (move_y == 0)) * horizontal_scale # create vertices for the mesh vertices = np.zeros((num_rows * num_cols, 3), dtype=np.float32) vertices[:, 0] = xx.flatten() vertices[:, 1] = yy.flatten() vertices[:, 2] = hf.flatten() * vertical_scale # create triangles for the mesh triangles = -np.ones((2 * (num_rows - 1) * (num_cols - 1), 3), dtype=np.uint32) for i in range(num_rows - 1): ind0 = np.arange(0, num_cols - 1) + i * num_cols ind1 = ind0 + 1 ind2 = ind0 + num_cols ind3 = ind2 + 1 start = 2 * i * (num_cols - 1) stop = start + 2 * (num_cols - 1) triangles[start:stop:2, 0] = ind0 triangles[start:stop:2, 1] = ind3 triangles[start:stop:2, 2] = ind1 triangles[start + 1 : stop : 2, 0] = ind0 triangles[start + 1 : stop : 2, 1] = ind2 triangles[start + 1 : stop : 2, 2] = ind3 return vertices, triangles
8,005
Python
45.011494
114
0.630231
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/height_field/hf_terrains_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from omni.isaac.orbit.utils import configclass from ..terrain_generator_cfg import SubTerrainBaseCfg from . import hf_terrains @configclass class HfTerrainBaseCfg(SubTerrainBaseCfg): """The base configuration for height field terrains.""" border_width: float = 0.0 """The width of the border/padding around the terrain (in m). Defaults to 0.0. The border width is subtracted from the :obj:`size` of the terrain. If non-zero, it must be greater than or equal to the :obj:`horizontal scale`. """ horizontal_scale: float = 0.1 """The discretization of the terrain along the x and y axes (in m). Defaults to 0.1.""" vertical_scale: float = 0.005 """The discretization of the terrain along the z axis (in m). Defaults to 0.005.""" slope_threshold: float | None = None """The slope threshold above which surfaces are made vertical. Defaults to None, in which case no correction is applied.""" """ Different height field terrain configurations. """ @configclass class HfRandomUniformTerrainCfg(HfTerrainBaseCfg): """Configuration for a random uniform height field terrain.""" function = hf_terrains.random_uniform_terrain noise_range: tuple[float, float] = MISSING """The minimum and maximum height noise (i.e. along z) of the terrain (in m).""" noise_step: float = MISSING """The minimum height (in m) change between two points.""" downsampled_scale: float | None = None """The distance between two randomly sampled points on the terrain. Defaults to None, in which case the :obj:`horizontal scale` is used. The heights are sampled at this resolution and interpolation is performed for intermediate points. This must be larger than or equal to the :obj:`horizontal scale`. """ @configclass class HfPyramidSlopedTerrainCfg(HfTerrainBaseCfg): """Configuration for a pyramid sloped height field terrain.""" function = hf_terrains.pyramid_sloped_terrain slope_range: tuple[float, float] = MISSING """The slope of the terrain (in radians).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" inverted: bool = False """Whether the pyramid is inverted. Defaults to False. If True, the terrain is inverted such that the platform is at the bottom and the slopes are upwards. """ @configclass class HfInvertedPyramidSlopedTerrainCfg(HfPyramidSlopedTerrainCfg): """Configuration for an inverted pyramid sloped height field terrain. Note: This is a subclass of :class:`HfPyramidSlopedTerrainCfg` with :obj:`inverted` set to True. We make it as a separate class to make it easier to distinguish between the two and match the naming convention of the other terrains. """ inverted: bool = True @configclass class HfPyramidStairsTerrainCfg(HfTerrainBaseCfg): """Configuration for a pyramid stairs height field terrain.""" function = hf_terrains.pyramid_stairs_terrain step_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the steps (in m).""" step_width: float = MISSING """The width of the steps (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" inverted: bool = False """Whether the pyramid stairs is inverted. Defaults to False. If True, the terrain is inverted such that the platform is at the bottom and the stairs are upwards. """ @configclass class HfInvertedPyramidStairsTerrainCfg(HfPyramidStairsTerrainCfg): """Configuration for an inverted pyramid stairs height field terrain. Note: This is a subclass of :class:`HfPyramidStairsTerrainCfg` with :obj:`inverted` set to True. We make it as a separate class to make it easier to distinguish between the two and match the naming convention of the other terrains. """ inverted: bool = True @configclass class HfDiscreteObstaclesTerrainCfg(HfTerrainBaseCfg): """Configuration for a discrete obstacles height field terrain.""" function = hf_terrains.discrete_obstacles_terrain obstacle_height_mode: str = "choice" """The mode to use for the obstacle height. Defaults to "choice". The following modes are supported: "choice", "fixed". """ obstacle_width_range: tuple[float, float] = MISSING """The minimum and maximum width of the obstacles (in m).""" obstacle_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the obstacles (in m).""" num_obstacles: int = MISSING """The number of obstacles to generate.""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" @configclass class HfWaveTerrainCfg(HfTerrainBaseCfg): """Configuration for a wave height field terrain.""" function = hf_terrains.wave_terrain amplitude_range: tuple[float, float] = MISSING """The minimum and maximum amplitude of the wave (in m).""" num_waves: int = 1.0 """The number of waves to generate. Defaults to 1.0.""" @configclass class HfSteppingStonesTerrainCfg(HfTerrainBaseCfg): """Configuration for a stepping stones height field terrain.""" function = hf_terrains.stepping_stones_terrain stone_height_max: float = MISSING """The maximum height of the stones (in m).""" stone_width_range: tuple[float, float] = MISSING """The minimum and maximum width of the stones (in m).""" stone_distance_range: tuple[float, float] = MISSING """The minimum and maximum distance between stones (in m).""" holes_depth: float = -10.0 """The depth of the holes (negative obstacles). Defaults to -10.0.""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0."""
6,104
Python
34.911765
104
0.706913
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/config/rough.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for custom terrains.""" from __future__ import annotations import omni.isaac.orbit.terrains as terrain_gen from ..terrain_generator_cfg import TerrainGeneratorCfg ROUGH_TERRAINS_CFG = TerrainGeneratorCfg( size=(8.0, 8.0), border_width=20.0, num_rows=10, num_cols=20, horizontal_scale=0.1, vertical_scale=0.005, slope_threshold=0.75, use_cache=False, sub_terrains={ "pyramid_stairs": terrain_gen.MeshPyramidStairsTerrainCfg( proportion=0.2, step_height_range=(0.05, 0.23), step_width=0.3, platform_width=3.0, border_width=1.0, holes=False, ), "pyramid_stairs_inv": terrain_gen.MeshInvertedPyramidStairsTerrainCfg( proportion=0.2, step_height_range=(0.05, 0.23), step_width=0.3, platform_width=3.0, border_width=1.0, holes=False, ), "boxes": terrain_gen.MeshRandomGridTerrainCfg( proportion=0.2, grid_width=0.45, grid_height_range=(0.05, 0.2), platform_width=2.0 ), "random_rough": terrain_gen.HfRandomUniformTerrainCfg( proportion=0.2, noise_range=(0.02, 0.10), noise_step=0.02, border_width=0.25 ), "hf_pyramid_slope": terrain_gen.HfPyramidSlopedTerrainCfg( proportion=0.1, slope_range=(0.0, 0.4), platform_width=2.0, border_width=0.25 ), "hf_pyramid_slope_inv": terrain_gen.HfInvertedPyramidSlopedTerrainCfg( proportion=0.1, slope_range=(0.0, 0.4), platform_width=2.0, border_width=0.25 ), }, ) """Rough terrains configuration."""
1,804
Python
31.818181
94
0.611973
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/timer.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for a timer class that can be used for performance measurements.""" from __future__ import annotations import time from contextlib import ContextDecorator from typing import Any class TimerError(Exception): """A custom exception used to report errors in use of :class:`Timer` class.""" pass class Timer(ContextDecorator): """A timer for performance measurements. A class to keep track of time for performance measurement. It allows timing via context managers and decorators as well. It uses the `time.perf_counter` function to measure time. This function returns the number of seconds since the epoch as a float. It has the highest resolution available on the system. As a regular object: .. code-block:: python import time from omni.isaac.orbit.utils.timer import Timer timer = Timer() timer.start() time.sleep(1) print(1 <= timer.time_elapsed <= 2) # Output: True time.sleep(1) timer.stop() print(2 <= stopwatch.total_run_time) # Output: True As a context manager: .. code-block:: python import time from omni.isaac.orbit.utils.timer import Timer with Timer() as timer: time.sleep(1) print(1 <= timer.time_elapsed <= 2) # Output: True Reference: https://gist.github.com/sumeet/1123871 """ def __init__(self, msg: str | None = None): """Initializes the timer. Args: msg: The message to display when using the timer class in a context manager. Defaults to None. """ self._msg = msg self._start_time = None self._stop_time = None self._elapsed_time = None def __str__(self) -> str: """A string representation of the class object. Returns: A string containing the elapsed time. """ return f"{self.time_elapsed:0.6f} seconds" """ Properties """ @property def time_elapsed(self) -> float: """The number of seconds that have elapsed since this timer started timing. Note: This is used for checking how much time has elapsed while the timer is still running. """ return time.perf_counter() - self._start_time @property def total_run_time(self) -> float: """The number of seconds that elapsed from when the timer started to when it ended.""" return self._elapsed_time """ Operations """ def start(self): """Start timing.""" if self._start_time is not None: raise TimerError("Timer is running. Use .stop() to stop it") self._start_time = time.perf_counter() def stop(self): """Stop timing.""" if self._start_time is None: raise TimerError("Timer is not running. Use .start() to start it") self._stop_time = time.perf_counter() self._elapsed_time = self._stop_time - self._start_time self._start_time = None """ Context managers """ def __enter__(self) -> Timer: """Start timing and return this `Timer` instance.""" self.start() return self def __exit__(self, *exc_info: Any): """Stop timing.""" self.stop() # print message if self._msg is not None: print(self._msg, f": {self._elapsed_time:0.6f} seconds")
3,572
Python
25.272059
97
0.599944
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/string.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing utilities for transforming strings and regular expressions.""" from __future__ import annotations import ast import importlib import inspect import re from collections.abc import Callable, Sequence from typing import Any """ String formatting. """ def to_camel_case(snake_str: str, to: str = "cC") -> str: """Converts a string from snake case to camel case. Args: snake_str: A string in snake case (i.e. with '_') to: Convention to convert string to. Defaults to "cC". Raises: ValueError: Invalid input argument `to`, i.e. not "cC" or "CC". Returns: A string in camel-case format. """ # check input is correct if to not in ["cC", "CC"]: msg = "to_camel_case(): Choose a valid `to` argument (CC or cC)" raise ValueError(msg) # convert string to lower case and split components = snake_str.lower().split("_") if to == "cC": # We capitalize the first letter of each component except the first one # with the 'title' method and join them together. return components[0] + "".join(x.title() for x in components[1:]) else: # Capitalize first letter in all the components return "".join(x.title() for x in components) def to_snake_case(camel_str: str) -> str: """Converts a string from camel case to snake case. Args: camel_str: A string in camel case. Returns: A string in snake case (i.e. with '_') """ camel_str = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", camel_str) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", camel_str).lower() """ String <-> Callable operations. """ def is_lambda_expression(name: str) -> bool: """Checks if the input string is a lambda expression. Args: name: The input string. Returns: Whether the input string is a lambda expression. """ try: ast.parse(name) return isinstance(ast.parse(name).body[0], ast.Expr) and isinstance(ast.parse(name).body[0].value, ast.Lambda) except SyntaxError: return False def callable_to_string(value: Callable) -> str: """Converts a callable object to a string. Args: value: A callable object. Raises: ValueError: When the input argument is not a callable object. Returns: A string representation of the callable object. """ # check if callable if not callable(value): raise ValueError(f"The input argument is not callable: {value}.") # check if lambda function if value.__name__ == "<lambda>": return f"lambda {inspect.getsourcelines(value)[0][0].strip().split('lambda')[1].strip().split(',')[0]}" else: # get the module and function name module_name = value.__module__ function_name = value.__name__ # return the string return f"{module_name}:{function_name}" def string_to_callable(name: str) -> Callable: """Resolves the module and function names to return the function. Args: name: The function name. The format should be 'module:attribute_name' or a lambda expression of format: 'lambda x: x'. Raises: ValueError: When the resolved attribute is not a function. ValueError: When the module cannot be found. Returns: Callable: The function loaded from the module. """ try: if is_lambda_expression(name): callable_object = eval(name) else: mod_name, attr_name = name.split(":") mod = importlib.import_module(mod_name) callable_object = getattr(mod, attr_name) # check if attribute is callable if callable(callable_object): return callable_object else: raise AttributeError(f"The imported object is not callable: '{name}'") except (ValueError, ModuleNotFoundError) as e: msg = ( f"Could not resolve the input string '{name}' into callable object." " The format of input should be 'module:attribute_name'.\n" f"Received the error:\n {e}." ) raise ValueError(msg) """ Regex operations. """ def resolve_matching_names( keys: str | Sequence[str], list_of_strings: Sequence[str], preserve_order: bool = False ) -> tuple[list[int], list[str]]: """Match a list of query regular expressions against a list of strings and return the matched indices and names. When a list of query regular expressions is provided, the function checks each target string against each query regular expression and returns the indices of the matched strings and the matched strings. If the :attr:`preserve_order` is True, the ordering of the matched indices and names is the same as the order of the provided list of strings. This means that the ordering is dictated by the order of the target strings and not the order of the query regular expressions. If the :attr:`preserve_order` is False, the ordering of the matched indices and names is the same as the order of the provided list of query regular expressions. For example, consider the list of strings is ['a', 'b', 'c', 'd', 'e'] and the regular expressions are ['a|c', 'b']. If :attr:`preserve_order` is False, then the function will return the indices of the matched strings and the strings as: ([0, 1, 2], ['a', 'b', 'c']). When :attr:`preserve_order` is True, it will return them as: ([0, 2, 1], ['a', 'c', 'b']). Note: The function does not sort the indices. It returns the indices in the order they are found. Args: keys: A regular expression or a list of regular expressions to match the strings in the list. list_of_strings: A list of strings to match. preserve_order: Whether to preserve the order of the query keys in the returned values. Defaults to False. Returns: A tuple of lists containing the matched indices and names. Raises: ValueError: When multiple matches are found for a string in the list. ValueError: When not all regular expressions are matched. """ # resolve name keys if isinstance(keys, str): keys = [keys] # find matching patterns index_list = [] names_list = [] key_idx_list = [] # book-keeping to check that we always have a one-to-one mapping # i.e. each target string should match only one regular expression target_strings_match_found = [None for _ in range(len(list_of_strings))] keys_match_found = [[] for _ in range(len(keys))] # loop over all target strings for target_index, potential_match_string in enumerate(list_of_strings): for key_index, re_key in enumerate(keys): if re.fullmatch(re_key, potential_match_string): # check if match already found if target_strings_match_found[target_index]: raise ValueError( f"Multiple matches for '{potential_match_string}':" f" '{target_strings_match_found[target_index]}' and '{re_key}'!" ) # add to list target_strings_match_found[target_index] = re_key index_list.append(target_index) names_list.append(potential_match_string) key_idx_list.append(key_index) # add for regex key keys_match_found[key_index].append(potential_match_string) # reorder keys if they should be returned in order of the query keys if preserve_order: reordered_index_list = [None] * len(index_list) global_index = 0 for key_index in range(len(keys)): for key_idx_position, key_idx_entry in enumerate(key_idx_list): if key_idx_entry == key_index: reordered_index_list[key_idx_position] = global_index global_index += 1 # reorder index and names list index_list_reorder = [None] * len(index_list) names_list_reorder = [None] * len(index_list) for idx, reorder_idx in enumerate(reordered_index_list): index_list_reorder[reorder_idx] = index_list[idx] names_list_reorder[reorder_idx] = names_list[idx] # update index_list = index_list_reorder names_list = names_list_reorder # check that all regular expressions are matched if not all(keys_match_found): # make this print nicely aligned for debugging msg = "\n" for key, value in zip(keys, keys_match_found): msg += f"\t{key}: {value}\n" msg += f"Available strings: {list_of_strings}\n" # raise error raise ValueError( f"Not all regular expressions are matched! Please check that the regular expressions are correct: {msg}" ) # return return index_list, names_list def resolve_matching_names_values( data: dict[str, Any], list_of_strings: Sequence[str], preserve_order: bool = False ) -> tuple[list[int], list[str], list[Any]]: """Match a list of regular expressions in a dictionary against a list of strings and return the matched indices, names, and values. If the :attr:`preserve_order` is True, the ordering of the matched indices and names is the same as the order of the provided list of strings. This means that the ordering is dictated by the order of the target strings and not the order of the query regular expressions. If the :attr:`preserve_order` is False, the ordering of the matched indices and names is the same as the order of the provided list of query regular expressions. For example, consider the dictionary is {"a|d|e": 1, "b|c": 2}, the list of strings is ['a', 'b', 'c', 'd', 'e']. If :attr:`preserve_order` is False, then the function will return the indices of the matched strings, the matched strings, and the values as: ([0, 1, 2, 3, 4], ['a', 'b', 'c', 'd', 'e'], [1, 2, 2, 1, 1]). When :attr:`preserve_order` is True, it will return them as: ([0, 3, 4, 1, 2], ['a', 'd', 'e', 'b', 'c'], [1, 1, 1, 2, 2]). Args: data: A dictionary of regular expressions and values to match the strings in the list. list_of_strings: A list of strings to match. preserve_order: Whether to preserve the order of the query keys in the returned values. Defaults to False. Returns: A tuple of lists containing the matched indices, names, and values. Raises: TypeError: When the input argument :attr:`data` is not a dictionary. ValueError: When multiple matches are found for a string in the dictionary. ValueError: When not all regular expressions in the data keys are matched. """ # check valid input if not isinstance(data, dict): raise TypeError(f"Input argument `data` should be a dictionary. Received: {data}") # find matching patterns index_list = [] names_list = [] values_list = [] key_idx_list = [] # book-keeping to check that we always have a one-to-one mapping # i.e. each target string should match only one regular expression target_strings_match_found = [None for _ in range(len(list_of_strings))] keys_match_found = [[] for _ in range(len(data))] # loop over all target strings for target_index, potential_match_string in enumerate(list_of_strings): for key_index, (re_key, value) in enumerate(data.items()): if re.fullmatch(re_key, potential_match_string): # check if match already found if target_strings_match_found[target_index]: raise ValueError( f"Multiple matches for '{potential_match_string}':" f" '{target_strings_match_found[target_index]}' and '{re_key}'!" ) # add to list target_strings_match_found[target_index] = re_key index_list.append(target_index) names_list.append(potential_match_string) values_list.append(value) key_idx_list.append(key_index) # add for regex key keys_match_found[key_index].append(potential_match_string) # reorder keys if they should be returned in order of the query keys if preserve_order: reordered_index_list = [None] * len(index_list) global_index = 0 for key_index in range(len(data)): for key_idx_position, key_idx_entry in enumerate(key_idx_list): if key_idx_entry == key_index: reordered_index_list[key_idx_position] = global_index global_index += 1 # reorder index and names list index_list_reorder = [None] * len(index_list) names_list_reorder = [None] * len(index_list) values_list_reorder = [None] * len(index_list) for idx, reorder_idx in enumerate(reordered_index_list): index_list_reorder[reorder_idx] = index_list[idx] names_list_reorder[reorder_idx] = names_list[idx] values_list_reorder[reorder_idx] = values_list[idx] # update index_list = index_list_reorder names_list = names_list_reorder values_list = values_list_reorder # check that all regular expressions are matched if not all(keys_match_found): # make this print nicely aligned for debugging msg = "\n" for key, value in zip(data.keys(), keys_match_found): msg += f"\t{key}: {value}\n" msg += f"Available strings: {list_of_strings}\n" # raise error raise ValueError( f"Not all regular expressions are matched! Please check that the regular expressions are correct: {msg}" ) # return return index_list, names_list, values_list
14,010
Python
40.087976
122
0.626053
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package containing utilities for common operations and helper functions.""" from .array import * from .configclass import configclass from .dict import * from .string import * from .timer import Timer
332
Python
24.615383
82
0.76506
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/array.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing utilities for working with different array backends.""" from __future__ import annotations import numpy as np import torch from typing import Union import warp as wp TensorData = Union[np.ndarray, torch.Tensor, wp.array] """Type definition for a tensor data. Union of numpy, torch, and warp arrays. """ TENSOR_TYPES = { "numpy": np.ndarray, "torch": torch.Tensor, "warp": wp.array, } """A dictionary containing the types for each backend. The keys are the name of the backend ("numpy", "torch", "warp") and the values are the corresponding type (``np.ndarray``, ``torch.Tensor``, ``wp.array``). """ TENSOR_TYPE_CONVERSIONS = { "numpy": {wp.array: lambda x: x.numpy(), torch.Tensor: lambda x: x.detach().cpu().numpy()}, "torch": {wp.array: lambda x: wp.torch.to_torch(x), np.ndarray: lambda x: torch.from_numpy(x)}, "warp": {np.array: lambda x: wp.array(x), torch.Tensor: lambda x: wp.torch.from_torch(x)}, } """A nested dictionary containing the conversion functions for each backend. The keys of the outer dictionary are the name of target backend ("numpy", "torch", "warp"). The keys of the inner dictionary are the source backend (``np.ndarray``, ``torch.Tensor``, ``wp.array``). """ def convert_to_torch( array: TensorData, dtype: torch.dtype = None, device: torch.device | str | None = None, ) -> torch.Tensor: """Converts a given array into a torch tensor. The function tries to convert the array to a torch tensor. If the array is a numpy/warp arrays, or python list/tuples, it is converted to a torch tensor. If the array is already a torch tensor, it is returned directly. If ``device`` is None, then the function deduces the current device of the data. For numpy arrays, this defaults to "cpu", for torch tensors it is "cpu" or "cuda", and for warp arrays it is "cuda". Note: Since PyTorch does not support unsigned integer types, unsigned integer arrays are converted to signed integer arrays. This is done by casting the array to the corresponding signed integer type. Args: array: The input array. It can be a numpy array, warp array, python list/tuple, or torch tensor. dtype: Target data-type for the tensor. device: The target device for the tensor. Defaults to None. Returns: The converted array as torch tensor. """ # Convert array to tensor # if the datatype is not currently supported by torch we need to improvise # supported types are: https://pytorch.org/docs/stable/tensors.html if isinstance(array, torch.Tensor): tensor = array elif isinstance(array, np.ndarray): if array.dtype == np.uint32: array = array.astype(np.int64) # need to deal with object arrays (np.void) separately tensor = torch.from_numpy(array) elif isinstance(array, wp.array): if array.dtype == wp.uint32: array = array.view(wp.int32) tensor = wp.to_torch(array) else: tensor = torch.Tensor(array) # Convert tensor to the right device if device is not None and str(tensor.device) != str(device): tensor = tensor.to(device) # Convert dtype of tensor if requested if dtype is not None and tensor.dtype != dtype: tensor = tensor.type(dtype) return tensor
3,480
Python
35.642105
109
0.679023
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/math.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing utilities for various math operations.""" from __future__ import annotations import numpy as np import torch import torch.nn.functional from typing import Literal """ General """ @torch.jit.script def scale_transform(x: torch.Tensor, lower: torch.Tensor, upper: torch.Tensor) -> torch.Tensor: """Normalizes a given input tensor to a range of [-1, 1]. .. note:: It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape is (N, dims) or (dims,). upper: The maximum value of the tensor. Shape is (N, dims) or (dims,). Returns: Normalized transform of the tensor. Shape is (N, dims). """ # default value of center offset = (lower + upper) * 0.5 # return normalized tensor return 2 * (x - offset) / (upper - lower) @torch.jit.script def unscale_transform(x: torch.Tensor, lower: torch.Tensor, upper: torch.Tensor) -> torch.Tensor: """De-normalizes a given input tensor from range of [-1, 1] to (lower, upper). .. note:: It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape is (N, dims) or (dims,). upper: The maximum value of the tensor. Shape is (N, dims) or (dims,). Returns: De-normalized transform of the tensor. Shape is (N, dims). """ # default value of center offset = (lower + upper) * 0.5 # return normalized tensor return x * (upper - lower) * 0.5 + offset @torch.jit.script def saturate(x: torch.Tensor, lower: torch.Tensor, upper: torch.Tensor) -> torch.Tensor: """Clamps a given input tensor to (lower, upper). It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape is (N, dims) or (dims,). upper: The maximum value of the tensor. Shape is (N, dims) or (dims,). Returns: Clamped transform of the tensor. Shape is (N, dims). """ return torch.max(torch.min(x, upper), lower) @torch.jit.script def normalize(x: torch.Tensor, eps: float = 1e-9) -> torch.Tensor: """Normalizes a given input tensor to unit length. Args: x: Input tensor of shape (N, dims). eps: A small value to avoid division by zero. Defaults to 1e-9. Returns: Normalized tensor of shape (N, dims). """ return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1) @torch.jit.script def wrap_to_pi(angles: torch.Tensor) -> torch.Tensor: """Wraps input angles (in radians) to the range [-pi, pi]. Args: angles: Input angles of any shape. Returns: Angles in the range [-pi, pi]. """ angles = angles.clone() angles %= 2 * torch.pi angles -= 2 * torch.pi * (angles > torch.pi) return angles @torch.jit.script def copysign(mag: float, other: torch.Tensor) -> torch.Tensor: """Create a new floating-point tensor with the magnitude of input and the sign of other, element-wise. Note: The implementation follows from `torch.copysign`. The function allows a scalar magnitude. Args: mag: The magnitude scalar. other: The tensor containing values whose signbits are applied to magnitude. Returns: The output tensor. """ mag = torch.tensor(mag, device=other.device, dtype=torch.float).repeat(other.shape[0]) return torch.abs(mag) * torch.sign(other) """ Rotation """ @torch.jit.script def matrix_from_quat(quaternions: torch.Tensor) -> torch.Tensor: """Convert rotations given as quaternions to rotation matrices. Args: quaternions: The quaternion orientation in (w, x, y, z). Shape is (..., 4). Returns: Rotation matrices. The shape is (..., 3, 3). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L41-L70 """ r, i, j, k = torch.unbind(quaternions, -1) # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def convert_quat(quat: torch.Tensor | np.ndarray, to: Literal["xyzw", "wxyz"] = "xyzw") -> torch.Tensor | np.ndarray: """Converts quaternion from one convention to another. The convention to convert TO is specified as an optional argument. If to == 'xyzw', then the input is in 'wxyz' format, and vice-versa. Args: quat: The quaternion of shape (..., 4). to: Convention to convert quaternion to.. Defaults to "xyzw". Returns: The converted quaternion in specified convention. Raises: ValueError: Invalid input argument `to`, i.e. not "xyzw" or "wxyz". ValueError: Invalid shape of input `quat`, i.e. not (..., 4,). """ # check input is correct if quat.shape[-1] != 4: msg = f"Expected input quaternion shape mismatch: {quat.shape} != (..., 4)." raise ValueError(msg) if to not in ["xyzw", "wxyz"]: msg = f"Expected input argument `to` to be 'xyzw' or 'wxyz'. Received: {to}." raise ValueError(msg) # check if input is numpy array (we support this backend since some classes use numpy) if isinstance(quat, np.ndarray): # use numpy functions if to == "xyzw": # wxyz -> xyzw return np.roll(quat, -1, axis=-1) else: # xyzw -> wxyz return np.roll(quat, 1, axis=-1) else: # convert to torch (sanity check) if not isinstance(quat, torch.Tensor): quat = torch.tensor(quat, dtype=float) # convert to specified quaternion type if to == "xyzw": # wxyz -> xyzw return quat.roll(-1, dims=-1) else: # xyzw -> wxyz return quat.roll(1, dims=-1) @torch.jit.script def quat_conjugate(q: torch.Tensor) -> torch.Tensor: """Computes the conjugate of a quaternion. Args: q: The quaternion orientation in (w, x, y, z). Shape is (..., 4). Returns: The conjugate quaternion in (w, x, y, z). Shape is (..., 4). """ shape = q.shape q = q.reshape(-1, 4) return torch.cat((q[:, 0:1], -q[:, 1:]), dim=-1).view(shape) @torch.jit.script def quat_inv(q: torch.Tensor) -> torch.Tensor: """Compute the inverse of a quaternion. Args: q: The quaternion orientation in (w, x, y, z). Shape is (N, 4). Returns: The inverse quaternion in (w, x, y, z). Shape is (N, 4). """ return normalize(quat_conjugate(q)) @torch.jit.script def quat_from_euler_xyz(roll: torch.Tensor, pitch: torch.Tensor, yaw: torch.Tensor) -> torch.Tensor: """Convert rotations given as Euler angles in radians to Quaternions. Note: The euler angles are assumed in XYZ convention. Args: roll: Rotation around x-axis (in radians). Shape is (N,). pitch: Rotation around y-axis (in radians). Shape is (N,). yaw: Rotation around z-axis (in radians). Shape is (N,). Returns: The quaternion in (w, x, y, z). Shape is (N, 4). """ cy = torch.cos(yaw * 0.5) sy = torch.sin(yaw * 0.5) cr = torch.cos(roll * 0.5) sr = torch.sin(roll * 0.5) cp = torch.cos(pitch * 0.5) sp = torch.sin(pitch * 0.5) # compute quaternion qw = cy * cr * cp + sy * sr * sp qx = cy * sr * cp - sy * cr * sp qy = cy * cr * sp + sy * sr * cp qz = sy * cr * cp - cy * sr * sp return torch.stack([qw, qx, qy, qz], dim=-1) @torch.jit.script def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: """Returns torch.sqrt(torch.max(0, x)) but with a zero sub-gradient where x is 0. Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L91-L99 """ ret = torch.zeros_like(x) positive_mask = x > 0 ret[positive_mask] = torch.sqrt(x[positive_mask]) return ret @torch.jit.script def quat_from_matrix(matrix: torch.Tensor) -> torch.Tensor: """Convert rotations given as rotation matrices to quaternions. Args: matrix: The rotation matrices. Shape is (..., 3, 3). Returns: The quaternion in (w, x, y, z). Shape is (..., 4). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L102-L161 """ if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") batch_dim = matrix.shape[:-2] m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(matrix.reshape(batch_dim + (9,)), dim=-1) q_abs = _sqrt_positive_part( torch.stack( [ 1.0 + m00 + m11 + m22, 1.0 + m00 - m11 - m22, 1.0 - m00 + m11 - m22, 1.0 - m00 - m11 + m22, ], dim=-1, ) ) # we produce the desired quaternion multiplied by each of r, i, j, k quat_by_rijk = torch.stack( [ # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), ], dim=-2, ) # We floor here at 0.1 but the exact level is not important; if q_abs is small, # the candidate won't be picked. flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) # if not for numerical problems, quat_candidates[i] should be same (up to a sign), # forall i; we pick the best-conditioned one (with the largest denominator) return quat_candidates[torch.nn.functional.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :].reshape( batch_dim + (4,) ) def _axis_angle_rotation(axis: Literal["X", "Y", "Z"], angle: torch.Tensor) -> torch.Tensor: """Return the rotation matrices for one of the rotations about an axis of which Euler angles describe, for each value of the angle given. Args: axis: Axis label "X" or "Y or "Z". angle: Euler angles in radians of any shape. Returns: Rotation matrices. Shape is (..., 3, 3). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L164-L191 """ cos = torch.cos(angle) sin = torch.sin(angle) one = torch.ones_like(angle) zero = torch.zeros_like(angle) if axis == "X": R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) elif axis == "Y": R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) elif axis == "Z": R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) else: raise ValueError("letter must be either X, Y or Z.") return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) def matrix_from_euler(euler_angles: torch.Tensor, convention: str) -> torch.Tensor: """ Convert rotations given as Euler angles in radians to rotation matrices. Args: euler_angles: Euler angles in radians. Shape is (..., 3). convention: Convention string of three uppercase letters from {"X", "Y", and "Z"}. For example, "XYZ" means that the rotations should be applied first about x, then y, then z. Returns: Rotation matrices. Shape is (..., 3, 3). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L194-L220 """ if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: raise ValueError("Invalid input euler angles.") if len(convention) != 3: raise ValueError("Convention must have 3 letters.") if convention[1] in (convention[0], convention[2]): raise ValueError(f"Invalid convention {convention}.") for letter in convention: if letter not in ("X", "Y", "Z"): raise ValueError(f"Invalid letter {letter} in convention string.") matrices = [_axis_angle_rotation(c, e) for c, e in zip(convention, torch.unbind(euler_angles, -1))] # return functools.reduce(torch.matmul, matrices) return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2]) @torch.jit.script def euler_xyz_from_quat(quat: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Convert rotations given as quaternions to Euler angles in radians. Note: The euler angles are assumed in XYZ convention. Args: quat: The quaternion orientation in (w, x, y, z). Shape is (N, 4). Returns: A tuple containing roll-pitch-yaw. Each element is a tensor of shape (N,). Reference: https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles """ q_w, q_x, q_y, q_z = quat[:, 0], quat[:, 1], quat[:, 2], quat[:, 3] # roll (x-axis rotation) sin_roll = 2.0 * (q_w * q_x + q_y * q_z) cos_roll = 1 - 2 * (q_x * q_x + q_y * q_y) roll = torch.atan2(sin_roll, cos_roll) # pitch (y-axis rotation) sin_pitch = 2.0 * (q_w * q_y - q_z * q_x) pitch = torch.where(torch.abs(sin_pitch) >= 1, copysign(torch.pi / 2.0, sin_pitch), torch.asin(sin_pitch)) # yaw (z-axis rotation) sin_yaw = 2.0 * (q_w * q_z + q_x * q_y) cos_yaw = 1 - 2 * (q_y * q_y + q_z * q_z) yaw = torch.atan2(sin_yaw, cos_yaw) return roll % (2 * torch.pi), pitch % (2 * torch.pi), yaw % (2 * torch.pi) # TODO: why not wrap_to_pi here ? @torch.jit.script def quat_mul(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: """Multiply two quaternions together. Args: q1: The first quaternion in (w, x, y, z). Shape is (..., 4). q2: The second quaternion in (w, x, y, z). Shape is (..., 4). Returns: The product of the two quaternions in (w, x, y, z). Shape is (..., 4). Raises: ValueError: Input shapes of ``q1`` and ``q2`` are not matching. """ # check input is correct if q1.shape != q2.shape: msg = f"Expected input quaternion shape mismatch: {q1.shape} != {q2.shape}." raise ValueError(msg) # reshape to (N, 4) for multiplication shape = q1.shape q1 = q1.reshape(-1, 4) q2 = q2.reshape(-1, 4) # extract components from quaternions w1, x1, y1, z1 = q1[:, 0], q1[:, 1], q1[:, 2], q1[:, 3] w2, x2, y2, z2 = q2[:, 0], q2[:, 1], q2[:, 2], q2[:, 3] # perform multiplication ww = (z1 + x1) * (x2 + y2) yy = (w1 - y1) * (w2 + z2) zz = (w1 + y1) * (w2 - z2) xx = ww + yy + zz qq = 0.5 * (xx + (z1 - x1) * (x2 - y2)) w = qq - ww + (z1 - y1) * (y2 - z2) x = qq - xx + (x1 + w1) * (x2 + w2) y = qq - yy + (w1 - x1) * (y2 + z2) z = qq - zz + (z1 + y1) * (w2 - x2) return torch.stack([w, x, y, z], dim=-1).view(shape) @torch.jit.script def quat_box_minus(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: """The box-minus operator (quaternion difference) between two quaternions. Args: q1: The first quaternion in (w, x, y, z). Shape is (N, 4). q2: The second quaternion in (w, x, y, z). Shape is (N, 4). Returns: The difference between the two quaternions. Shape is (N, 3). Reference: https://docs.leggedrobotics.com/kindr/cheatsheet_latest.pdf """ quat_diff = quat_mul(q1, quat_conjugate(q2)) # q1 * q2^-1 re = quat_diff[:, 0] # real part, q = [w, x, y, z] = [re, im] im = quat_diff[:, 1:] # imaginary part norm_im = torch.norm(im, dim=1) scale = 2.0 * torch.where(norm_im > 1.0e-7, torch.atan(norm_im / re) / norm_im, torch.sign(re)) return scale.unsqueeze(-1) * im @torch.jit.script def yaw_quat(quat: torch.Tensor) -> torch.Tensor: """Extract the yaw component of a quaternion. Args: quat: The orientation in (w, x, y, z). Shape is (..., 4) Returns: A quaternion with only yaw component. """ shape = quat.shape quat_yaw = quat.clone().view(-1, 4) qw = quat_yaw[:, 0] qx = quat_yaw[:, 1] qy = quat_yaw[:, 2] qz = quat_yaw[:, 3] yaw = torch.atan2(2 * (qw * qz + qx * qy), 1 - 2 * (qy * qy + qz * qz)) quat_yaw[:] = 0.0 quat_yaw[:, 3] = torch.sin(yaw / 2) quat_yaw[:, 0] = torch.cos(yaw / 2) quat_yaw = normalize(quat_yaw) return quat_yaw.view(shape) @torch.jit.script def quat_apply(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor: """Apply a quaternion rotation to a vector. Args: quat: The quaternion in (w, x, y, z). Shape is (..., 4). vec: The vector in (x, y, z). Shape is (..., 3). Returns: The rotated vector in (x, y, z). Shape is (..., 3). """ # store shape shape = vec.shape # reshape to (N, 3) for multiplication quat = quat.reshape(-1, 4) vec = vec.reshape(-1, 3) # extract components from quaternions xyz = quat[:, 1:] t = xyz.cross(vec, dim=-1) * 2 return (vec + quat[:, 0:1] * t + xyz.cross(t, dim=-1)).view(shape) @torch.jit.script def quat_apply_yaw(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor: """Rotate a vector only around the yaw-direction. Args: quat: The orientation in (w, x, y, z). Shape is (N, 4). vec: The vector in (x, y, z). Shape is (N, 3). Returns: The rotated vector in (x, y, z). Shape is (N, 3). """ quat_yaw = yaw_quat(quat) return quat_apply(quat_yaw, vec) @torch.jit.script def quat_rotate(q: torch.Tensor, v: torch.Tensor) -> torch.Tensor: """Rotate a vector by a quaternion. Args: q: The quaternion in (w, x, y, z). Shape is (N, 4). v: The vector in (x, y, z). Shape is (N, 3). Returns: The rotated vector in (x, y, z). Shape is (N, 3). """ shape = q.shape q_w = q[:, 0] q_vec = q[:, 1:] a = v * (2.0 * q_w**2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * torch.bmm(q_vec.view(shape[0], 1, 3), v.view(shape[0], 3, 1)).squeeze(-1) * 2.0 return a + b + c @torch.jit.script def quat_rotate_inverse(q: torch.Tensor, v: torch.Tensor) -> torch.Tensor: """Rotate a vector by the inverse of a quaternion. Args: q: The quaternion in (w, x, y, z). Shape is (N, 4). v: The vector in (x, y, z). Shape is (N, 3). Returns: The rotated vector in (x, y, z). Shape is (N, 3). """ shape = q.shape q_w = q[:, 0] q_vec = q[:, 1:] a = v * (2.0 * q_w**2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * torch.bmm(q_vec.view(shape[0], 1, 3), v.view(shape[0], 3, 1)).squeeze(-1) * 2.0 return a - b + c @torch.jit.script def quat_from_angle_axis(angle: torch.Tensor, axis: torch.Tensor) -> torch.Tensor: """Convert rotations given as angle-axis to quaternions. Args: angle: The angle turned anti-clockwise in radians around the vector's direction. Shape is (N,). axis: The axis of rotation. Shape is (N, 3). Returns: The quaternion in (w, x, y, z). Shape is (N, 4). """ theta = (angle / 2).unsqueeze(-1) xyz = normalize(axis) * theta.sin() w = theta.cos() return normalize(torch.cat([w, xyz], dim=-1)) @torch.jit.script def axis_angle_from_quat(quat: torch.Tensor, eps: float = 1.0e-6) -> torch.Tensor: """Convert rotations given as quaternions to axis/angle. Args: quat: The quaternion orientation in (w, x, y, z). Shape is (..., 4). eps: The tolerance for Taylor approximation. Defaults to 1.0e-6. Returns: Rotations given as a vector in axis angle form. Shape is (..., 3). The vector's magnitude is the angle turned anti-clockwise in radians around the vector's direction. Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L526-L554 """ # Modified to take in quat as [q_w, q_x, q_y, q_z] # Quaternion is [q_w, q_x, q_y, q_z] = [cos(theta/2), n_x * sin(theta/2), n_y * sin(theta/2), n_z * sin(theta/2)] # Axis-angle is [a_x, a_y, a_z] = [theta * n_x, theta * n_y, theta * n_z] # Thus, axis-angle is [q_x, q_y, q_z] / (sin(theta/2) / theta) # When theta = 0, (sin(theta/2) / theta) is undefined # However, as theta --> 0, we can use the Taylor approximation 1/2 - theta^2 / 48 quat = quat * (1.0 - 2.0 * (quat[..., 0:1] < 0.0)) mag = torch.linalg.norm(quat[..., 1:], dim=-1) half_angle = torch.atan2(mag, quat[..., 0]) angle = 2.0 * half_angle # check whether to apply Taylor approximation sin_half_angles_over_angles = torch.where( torch.abs(angle.abs()) > eps, torch.sin(half_angle) / angle, 0.5 - angle * angle / 48 ) return quat[..., 1:4] / sin_half_angles_over_angles.unsqueeze(-1) @torch.jit.script def quat_error_magnitude(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: """Computes the rotation difference between two quaternions. Args: q1: The first quaternion in (w, x, y, z). Shape is (..., 4). q2: The second quaternion in (w, x, y, z). Shape is (..., 4). Returns: Angular error between input quaternions in radians. """ quat_diff = quat_mul(q1, quat_conjugate(q2)) return torch.norm(axis_angle_from_quat(quat_diff), dim=-1) @torch.jit.script def skew_symmetric_matrix(vec: torch.Tensor) -> torch.Tensor: """Computes the skew-symmetric matrix of a vector. Args: vec: The input vector. Shape is (3,) or (N, 3). Returns: The skew-symmetric matrix. Shape is (1, 3, 3) or (N, 3, 3). Raises: ValueError: If input tensor is not of shape (..., 3). """ # check input is correct if vec.shape[-1] != 3: raise ValueError(f"Expected input vector shape mismatch: {vec.shape} != (..., 3).") # unsqueeze the last dimension if vec.ndim == 1: vec = vec.unsqueeze(0) # create a skew-symmetric matrix skew_sym_mat = torch.zeros(vec.shape[0], 3, 3, device=vec.device, dtype=vec.dtype) skew_sym_mat[:, 0, 1] = -vec[:, 2] skew_sym_mat[:, 0, 2] = vec[:, 1] skew_sym_mat[:, 1, 2] = -vec[:, 0] skew_sym_mat[:, 1, 0] = vec[:, 2] skew_sym_mat[:, 2, 0] = -vec[:, 1] skew_sym_mat[:, 2, 1] = vec[:, 0] return skew_sym_mat """ Transformations """ def is_identity_pose(pos: torch.tensor, rot: torch.tensor) -> bool: """Checks if input poses are identity transforms. The function checks if the input position and orientation are close to zero and identity respectively using L2-norm. It does NOT check the error in the orientation. Args: pos: The cartesian position. Shape is (N, 3). rot: The quaternion in (w, x, y, z). Shape is (N, 4). Returns: True if all the input poses result in identity transform. Otherwise, False. """ # create identity transformations pos_identity = torch.zeros_like(pos) rot_identity = torch.zeros_like(rot) rot_identity[..., 0] = 1 # compare input to identity return torch.allclose(pos, pos_identity) and torch.allclose(rot, rot_identity) # @torch.jit.script def combine_frame_transforms( t01: torch.Tensor, q01: torch.Tensor, t12: torch.Tensor | None = None, q12: torch.Tensor | None = None ) -> tuple[torch.Tensor, torch.Tensor]: r"""Combine transformations between two reference frames into a stationary frame. It performs the following transformation operation: :math:`T_{02} = T_{01} \times T_{12}`, where :math:`T_{AB}` is the homogeneous transformation matrix from frame A to B. Args: t01: Position of frame 1 w.r.t. frame 0. Shape is (N, 3). q01: Quaternion orientation of frame 1 w.r.t. frame 0 in (w, x, y, z). Shape is (N, 4). t12: Position of frame 2 w.r.t. frame 1. Shape is (N, 3). Defaults to None, in which case the position is assumed to be zero. q12: Quaternion orientation of frame 2 w.r.t. frame 1 in (w, x, y, z). Shape is (N, 4). Defaults to None, in which case the orientation is assumed to be identity. Returns: A tuple containing the position and orientation of frame 2 w.r.t. frame 0. Shape of the tensors are (N, 3) and (N, 4) respectively. """ # compute orientation if q12 is not None: q02 = quat_mul(q01, q12) else: q02 = q01 # compute translation if t12 is not None: t02 = t01 + quat_apply(q01, t12) else: t02 = t01 return t02, q02 # @torch.jit.script def subtract_frame_transforms( t01: torch.Tensor, q01: torch.Tensor, t02: torch.Tensor | None = None, q02: torch.Tensor | None = None ) -> tuple[torch.Tensor, torch.Tensor]: r"""Subtract transformations between two reference frames into a stationary frame. It performs the following transformation operation: :math:`T_{12} = T_{01}^{-1} \times T_{02}`, where :math:`T_{AB}` is the homogeneous transformation matrix from frame A to B. Args: t01: Position of frame 1 w.r.t. frame 0. Shape is (N, 3). q01: Quaternion orientation of frame 1 w.r.t. frame 0 in (w, x, y, z). Shape is (N, 4). t02: Position of frame 2 w.r.t. frame 0. Shape is (N, 3). Defaults to None, in which case the position is assumed to be zero. q02: Quaternion orientation of frame 2 w.r.t. frame 0 in (w, x, y, z). Shape is (N, 4). Defaults to None, in which case the orientation is assumed to be identity. Returns: A tuple containing the position and orientation of frame 2 w.r.t. frame 1. Shape of the tensors are (N, 3) and (N, 4) respectively. """ # compute orientation q10 = quat_inv(q01) if q02 is not None: q12 = quat_mul(q10, q02) else: q12 = q10 # compute translation if t02 is not None: t12 = quat_apply(q10, t02 - t01) else: t12 = quat_apply(q10, -t01) return t12, q12 # @torch.jit.script def compute_pose_error( t01: torch.Tensor, q01: torch.Tensor, t02: torch.Tensor, q02: torch.Tensor, rot_error_type: Literal["quat", "axis_angle"] = "axis_angle", ) -> tuple[torch.Tensor, torch.Tensor]: """Compute the position and orientation error between source and target frames. Args: t01: Position of source frame. Shape is (N, 3). q01: Quaternion orientation of source frame in (w, x, y, z). Shape is (N, 4). t02: Position of target frame. Shape is (N, 3). q02: Quaternion orientation of target frame in (w, x, y, z). Shape is (N, 4). rot_error_type: The rotation error type to return: "quat", "axis_angle". Defaults to "axis_angle". Returns: A tuple containing position and orientation error. Shape of position error is (N, 3). Shape of orientation error depends on the value of :attr:`rot_error_type`: - If :attr:`rot_error_type` is "quat", the orientation error is returned as a quaternion. Shape is (N, 4). - If :attr:`rot_error_type` is "axis_angle", the orientation error is returned as an axis-angle vector. Shape is (N, 3). Raises: ValueError: Invalid rotation error type. """ # Compute quaternion error (i.e., difference quaternion) # Reference: https://personal.utdallas.edu/~sxb027100/dock/quaternion.html # q_current_norm = q_current * q_current_conj source_quat_norm = quat_mul(q01, quat_conjugate(q01))[:, 0] # q_current_inv = q_current_conj / q_current_norm source_quat_inv = quat_conjugate(q01) / source_quat_norm.unsqueeze(-1) # q_error = q_target * q_current_inv quat_error = quat_mul(q02, source_quat_inv) # Compute position error pos_error = t02 - t01 # return error based on specified type if rot_error_type == "quat": return pos_error, quat_error elif rot_error_type == "axis_angle": # Convert to axis-angle error axis_angle_error = axis_angle_from_quat(quat_error) return pos_error, axis_angle_error else: raise ValueError(f"Unsupported orientation error type: {rot_error_type}. Valid: 'quat', 'axis_angle'.") @torch.jit.script def apply_delta_pose( source_pos: torch.Tensor, source_rot: torch.Tensor, delta_pose: torch.Tensor, eps: float = 1.0e-6 ) -> tuple[torch.Tensor, torch.Tensor]: """Applies delta pose transformation on source pose. The first three elements of `delta_pose` are interpreted as cartesian position displacement. The remaining three elements of `delta_pose` are interpreted as orientation displacement in the angle-axis format. Args: source_pos: Position of source frame. Shape is (N, 3). source_rot: Quaternion orientation of source frame in (w, x, y, z). Shape is (N, 4).. delta_pose: Position and orientation displacements. Shape is (N, 6). eps: The tolerance to consider orientation displacement as zero. Defaults to 1.0e-6. Returns: A tuple containing the displaced position and orientation frames. Shape of the tensors are (N, 3) and (N, 4) respectively. """ # number of poses given num_poses = source_pos.shape[0] device = source_pos.device # interpret delta_pose[:, 0:3] as target position displacements target_pos = source_pos + delta_pose[:, 0:3] # interpret delta_pose[:, 3:6] as target rotation displacements rot_actions = delta_pose[:, 3:6] angle = torch.linalg.vector_norm(rot_actions, dim=1) axis = rot_actions / angle.unsqueeze(-1) # change from axis-angle to quat convention identity_quat = torch.tensor([1.0, 0.0, 0.0, 0.0], device=device).repeat(num_poses, 1) rot_delta_quat = torch.where( angle.unsqueeze(-1).repeat(1, 4) > eps, quat_from_angle_axis(angle, axis), identity_quat ) # TODO: Check if this is the correct order for this multiplication. target_rot = quat_mul(rot_delta_quat, source_rot) return target_pos, target_rot # @torch.jit.script def transform_points( points: torch.Tensor, pos: torch.Tensor | None = None, quat: torch.Tensor | None = None ) -> torch.Tensor: r"""Transform input points in a given frame to a target frame. This function transform points from a source frame to a target frame. The transformation is defined by the position :math:`t` and orientation :math:`R` of the target frame in the source frame. .. math:: p_{target} = R_{target} \times p_{source} + t_{target} If the input `points` is a batch of points, the inputs `pos` and `quat` must be either a batch of positions and quaternions or a single position and quaternion. If the inputs `pos` and `quat` are a single position and quaternion, the same transformation is applied to all points in the batch. If either the inputs :attr:`pos` and :attr:`quat` are None, the corresponding transformation is not applied. Args: points: Points to transform. Shape is (N, P, 3) or (P, 3). pos: Position of the target frame. Shape is (N, 3) or (3,). Defaults to None, in which case the position is assumed to be zero. quat: Quaternion orientation of the target frame in (w, x, y, z). Shape is (N, 4) or (4,). Defaults to None, in which case the orientation is assumed to be identity. Returns: Transformed points in the target frame. Shape is (N, P, 3) or (P, 3). Raises: ValueError: If the inputs `points` is not of shape (N, P, 3) or (P, 3). ValueError: If the inputs `pos` is not of shape (N, 3) or (3,). ValueError: If the inputs `quat` is not of shape (N, 4) or (4,). """ points_batch = points.clone() # check if inputs are batched is_batched = points_batch.dim() == 3 # -- check inputs if points_batch.dim() == 2: points_batch = points_batch[None] # (P, 3) -> (1, P, 3) if points_batch.dim() != 3: raise ValueError(f"Expected points to have dim = 2 or dim = 3: got shape {points.shape}") if not (pos is None or pos.dim() == 1 or pos.dim() == 2): raise ValueError(f"Expected pos to have dim = 1 or dim = 2: got shape {pos.shape}") if not (quat is None or quat.dim() == 1 or quat.dim() == 2): raise ValueError(f"Expected quat to have dim = 1 or dim = 2: got shape {quat.shape}") # -- rotation if quat is not None: # convert to batched rotation matrix rot_mat = matrix_from_quat(quat) if rot_mat.dim() == 2: rot_mat = rot_mat[None] # (3, 3) -> (1, 3, 3) # convert points to matching batch size (N, P, 3) -> (N, 3, P) # and apply rotation points_batch = torch.matmul(rot_mat, points_batch.transpose_(1, 2)) # (N, 3, P) -> (N, P, 3) points_batch = points_batch.transpose_(1, 2) # -- translation if pos is not None: # convert to batched translation vector if pos.dim() == 1: pos = pos[None, None, :] # (3,) -> (1, 1, 3) else: pos = pos[:, None, :] # (N, 3) -> (N, 1, 3) # apply translation points_batch += pos # -- return points in same shape as input if not is_batched: points_batch = points_batch.squeeze(0) # (1, P, 3) -> (P, 3) return points_batch """ Projection operations. """ @torch.jit.script def unproject_depth(depth: torch.Tensor, intrinsics: torch.Tensor) -> torch.Tensor: r"""Unproject depth image into a pointcloud. This function converts depth images into points given the calibration matrix of the camera. .. math:: p_{3D} = K^{-1} \times [u, v, 1]^T \times d where :math:`p_{3D}` is the 3D point, :math:`d` is the depth value, :math:`u` and :math:`v` are the pixel coordinates and :math:`K` is the intrinsic matrix. If `depth` is a batch of depth images and `intrinsics` is a single intrinsic matrix, the same calibration matrix is applied to all depth images in the batch. The function assumes that the width and height are both greater than 1. This makes the function deal with many possible shapes of depth images and intrinsics matrices. Args: depth: The depth measurement. Shape is (H, W) or or (H, W, 1) or (N, H, W) or (N, H, W, 1). intrinsics: A tensor providing camera's calibration matrix. Shape is (3, 3) or (N, 3, 3). Returns: The 3D coordinates of points. Shape is (P, 3) or (N, P, 3). Raises: ValueError: When depth is not of shape (H, W) or (H, W, 1) or (N, H, W) or (N, H, W, 1). ValueError: When intrinsics is not of shape (3, 3) or (N, 3, 3). """ depth_batch = depth.clone() intrinsics_batch = intrinsics.clone() # check if inputs are batched is_batched = depth_batch.dim() == 4 or (depth_batch.dim() == 3 and depth_batch.shape[-1] != 1) # make sure inputs are batched if depth_batch.dim() == 3 and depth_batch.shape[-1] == 1: depth_batch = depth_batch.squeeze(dim=2) # (H, W, 1) -> (H, W) if depth_batch.dim() == 2: depth_batch = depth_batch[None] # (H, W) -> (1, H, W) if depth_batch.dim() == 4 and depth_batch.shape[-1] == 1: depth_batch = depth_batch.squeeze(dim=3) # (N, H, W, 1) -> (N, H, W) if intrinsics_batch.dim() == 2: intrinsics_batch = intrinsics_batch[None] # (3, 3) -> (1, 3, 3) # check shape of inputs if depth_batch.dim() != 3: raise ValueError(f"Expected depth images to have dim = 2 or 3 or 4: got shape {depth.shape}") if intrinsics_batch.dim() != 3: raise ValueError(f"Expected intrinsics to have shape (3, 3) or (N, 3, 3): got shape {intrinsics.shape}") # get image height and width im_height, im_width = depth_batch.shape[1:] # create image points in homogeneous coordinates (3, H x W) indices_u = torch.arange(im_width, device=depth.device, dtype=depth.dtype) indices_v = torch.arange(im_height, device=depth.device, dtype=depth.dtype) img_indices = torch.stack(torch.meshgrid([indices_u, indices_v], indexing="ij"), dim=0).reshape(2, -1) pixels = torch.nn.functional.pad(img_indices, (0, 0, 0, 1), mode="constant", value=1.0) pixels = pixels.unsqueeze(0) # (3, H x W) -> (1, 3, H x W) # unproject points into 3D space points = torch.matmul(torch.inverse(intrinsics_batch), pixels) # (N, 3, H x W) points = points / points[:, -1, :].unsqueeze(1) # normalize by last coordinate # flatten depth image (N, H, W) -> (N, H x W) depth_batch = depth_batch.transpose_(1, 2).reshape(depth_batch.shape[0], -1).unsqueeze(2) depth_batch = depth_batch.expand(-1, -1, 3) # scale points by depth points_xyz = points.transpose_(1, 2) * depth_batch # (N, H x W, 3) # return points in same shape as input if not is_batched: points_xyz = points_xyz.squeeze(0) return points_xyz @torch.jit.script def project_points(points: torch.Tensor, intrinsics: torch.Tensor) -> torch.Tensor: r"""Projects 3D points into 2D image plane. This project 3D points into a 2D image plane. The transformation is defined by the intrinsic matrix of the camera. .. math:: \begin{align} p &= K \times p_{3D} = \\ p_{2D} &= \begin{pmatrix} u \\ v \\ d \end{pmatrix} = \begin{pmatrix} p[0] / p[2] \\ p[1] / p[2] \\ Z \end{pmatrix} \end{align} where :math:`p_{2D} = (u, v, d)` is the projected 3D point, :math:`p_{3D} = (X, Y, Z)` is the 3D point and :math:`K \in \mathbb{R}^{3 \times 3}` is the intrinsic matrix. If `points` is a batch of 3D points and `intrinsics` is a single intrinsic matrix, the same calibration matrix is applied to all points in the batch. Args: points: The 3D coordinates of points. Shape is (P, 3) or (N, P, 3). intrinsics: Camera's calibration matrix. Shape is (3, 3) or (N, 3, 3). Returns: Projected 3D coordinates of points. Shape is (P, 3) or (N, P, 3). """ points_batch = points.clone() intrinsics_batch = intrinsics.clone() # check if inputs are batched is_batched = points_batch.dim() == 2 # make sure inputs are batched if points_batch.dim() == 2: points_batch = points_batch[None] # (P, 3) -> (1, P, 3) if intrinsics_batch.dim() == 2: intrinsics_batch = intrinsics_batch[None] # (3, 3) -> (1, 3, 3) # check shape of inputs if points_batch.dim() != 3: raise ValueError(f"Expected points to have dim = 3: got shape {points.shape}.") if intrinsics_batch.dim() != 3: raise ValueError(f"Expected intrinsics to have shape (3, 3) or (N, 3, 3): got shape {intrinsics.shape}.") # project points into 2D image plane points_2d = torch.matmul(intrinsics_batch, points_batch.transpose(1, 2)) points_2d = points_2d / points_2d[:, -1, :].unsqueeze(1) # normalize by last coordinate points_2d = points_2d.transpose_(1, 2) # (N, 3, P) -> (N, P, 3) # replace last coordinate with depth points_2d[:, :, -1] = points_batch[:, :, -1] # return points in same shape as input if not is_batched: points_2d = points_2d.squeeze(0) # (1, 3, P) -> (3, P) return points_2d """ Sampling """ @torch.jit.script def default_orientation(num: int, device: str) -> torch.Tensor: """Returns identity rotation transform. Args: num: The number of rotations to sample. device: Device to create tensor on. Returns: Identity quaternion in (w, x, y, z). Shape is (num, 4). """ quat = torch.zeros((num, 4), dtype=torch.float, device=device) quat[..., 0] = 1.0 return quat @torch.jit.script def random_orientation(num: int, device: str) -> torch.Tensor: """Returns sampled rotation in 3D as quaternion. Args: num: The number of rotations to sample. device: Device to create tensor on. Returns: Sampled quaternion in (w, x, y, z). Shape is (num, 4). Reference: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.random.html """ # sample random orientation from normal distribution quat = torch.randn((num, 4), dtype=torch.float, device=device) # normalize the quaternion return torch.nn.functional.normalize(quat, p=2.0, dim=-1, eps=1e-12) @torch.jit.script def random_yaw_orientation(num: int, device: str) -> torch.Tensor: """Returns sampled rotation around z-axis. Args: num: The number of rotations to sample. device: Device to create tensor on. Returns: Sampled quaternion in (w, x, y, z). Shape is (num, 4). """ roll = torch.zeros(num, dtype=torch.float, device=device) pitch = torch.zeros(num, dtype=torch.float, device=device) yaw = 2 * torch.pi * torch.rand(num, dtype=torch.float, device=device) return quat_from_euler_xyz(roll, pitch, yaw) def sample_triangle(lower: float, upper: float, size: int | tuple[int, ...], device: str) -> torch.Tensor: """Randomly samples tensor from a triangular distribution. Args: lower: The lower range of the sampled tensor. upper: The upper range of the sampled tensor. size: The shape of the tensor. device: Device to create tensor on. Returns: Sampled tensor. Shape is based on :attr:`size`. """ # convert to tuple if isinstance(size, int): size = (size,) # create random tensor in the range [-1, 1] r = 2 * torch.rand(*size, device=device) - 1 # convert to triangular distribution r = torch.where(r < 0.0, -torch.sqrt(-r), torch.sqrt(r)) # rescale back to [0, 1] r = (r + 1.0) / 2.0 # rescale to range [lower, upper] return (upper - lower) * r + lower def sample_uniform( lower: torch.Tensor | float, upper: torch.Tensor | float, size: int | tuple[int, ...], device: str ) -> torch.Tensor: """Sample uniformly within a range. Args: lower: Lower bound of uniform range. upper: Upper bound of uniform range. size: The shape of the tensor. device: Device to create tensor on. Returns: Sampled tensor. Shape is based on :attr:`size`. """ # convert to tuple if isinstance(size, int): size = (size,) # return tensor return torch.rand(*size, device=device) * (upper - lower) + lower def sample_cylinder( radius: float, h_range: tuple[float, float], size: int | tuple[int, ...], device: str ) -> torch.Tensor: """Sample 3D points uniformly on a cylinder's surface. The cylinder is centered at the origin and aligned with the z-axis. The height of the cylinder is sampled uniformly from the range :obj:`h_range`, while the radius is fixed to :obj:`radius`. The sampled points are returned as a tensor of shape :obj:`(*size, 3)`, i.e. the last dimension contains the x, y, and z coordinates of the sampled points. Args: radius: The radius of the cylinder. h_range: The minimum and maximum height of the cylinder. size: The shape of the tensor. device: Device to create tensor on. Returns: Sampled tensor. Shape is :obj:`(*size, 3)`. """ # sample angles angles = (torch.rand(size, device=device) * 2 - 1) * torch.pi h_min, h_max = h_range # add shape if isinstance(size, int): size = (size, 3) else: size += (3,) # allocate a tensor xyz = torch.zeros(size, device=device) xyz[..., 0] = radius * torch.cos(angles) xyz[..., 1] = radius * torch.sin(angles) xyz[..., 2].uniform_(h_min, h_max) # return positions return xyz
44,978
Python
35.598047
118
0.606296
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/dict.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for utilities for working with dictionaries.""" from __future__ import annotations import collections.abc import hashlib import json from collections.abc import Iterable, Mapping from typing import Any from .array import TENSOR_TYPE_CONVERSIONS, TENSOR_TYPES from .string import callable_to_string, string_to_callable """ Dictionary <-> Class operations. """ def class_to_dict(obj: object) -> dict[str, Any]: """Convert an object into dictionary recursively. Note: Ignores all names starting with "__" (i.e. built-in methods). Args: obj: An instance of a class to convert. Raises: ValueError: When input argument is not an object. Returns: Converted dictionary mapping. """ # check that input data is class instance if not hasattr(obj, "__class__"): raise ValueError(f"Expected a class instance. Received: {type(obj)}.") # convert object to dictionary if isinstance(obj, dict): obj_dict = obj else: obj_dict = obj.__dict__ # convert to dictionary data = dict() for key, value in obj_dict.items(): # disregard builtin attributes if key.startswith("__"): continue # check if attribute is callable -- function if callable(value): data[key] = callable_to_string(value) # check if attribute is a dictionary elif hasattr(value, "__dict__") or isinstance(value, dict): data[key] = class_to_dict(value) else: data[key] = value return data def update_class_from_dict(obj, data: dict[str, Any], _ns: str = "") -> None: """Reads a dictionary and sets object variables recursively. This function performs in-place update of the class member attributes. Args: obj: An instance of a class to update. data: Input dictionary to update from. _ns: Namespace of the current object. This is useful for nested configuration classes or dictionaries. Defaults to "". Raises: TypeError: When input is not a dictionary. ValueError: When dictionary has a value that does not match default config type. KeyError: When dictionary has a key that does not exist in the default config type. """ for key, value in data.items(): # key_ns is the full namespace of the key key_ns = _ns + "/" + key # check if key is present in the object if hasattr(obj, key): obj_mem = getattr(obj, key) if isinstance(obj_mem, Mapping): # Note: We don't handle two-level nested dictionaries. Just use configclass if this is needed. # iterate over the dictionary to look for callable values for k, v in obj_mem.items(): if callable(v): value[k] = string_to_callable(value[k]) setattr(obj, key, value) elif isinstance(value, Mapping): # recursively call if it is a dictionary update_class_from_dict(obj_mem, value, _ns=key_ns) elif isinstance(value, Iterable) and not isinstance(value, str): # check length of value to be safe if len(obj_mem) != len(value) and obj_mem is not None: raise ValueError( f"[Config]: Incorrect length under namespace: {key_ns}." f" Expected: {len(obj_mem)}, Received: {len(value)}." ) # set value setattr(obj, key, value) elif callable(obj_mem): # update function name value = string_to_callable(value) setattr(obj, key, value) elif isinstance(value, type(obj_mem)): # check that they are type-safe setattr(obj, key, value) else: raise ValueError( f"[Config]: Incorrect type under namespace: {key_ns}." f" Expected: {type(obj_mem)}, Received: {type(value)}." ) else: raise KeyError(f"[Config]: Key not found under namespace: {key_ns}.") """ Dictionary <-> Hashable operations. """ def dict_to_md5_hash(data: object) -> str: """Convert a dictionary into a hashable key using MD5 hash. Args: data: Input dictionary or configuration object to convert. Returns: A string object of double length containing only hexadecimal digits. """ # convert to dictionary if isinstance(data, dict): encoded_buffer = json.dumps(data, sort_keys=True).encode() else: encoded_buffer = json.dumps(class_to_dict(data), sort_keys=True).encode() # compute hash using MD5 data_hash = hashlib.md5() data_hash.update(encoded_buffer) # return the hash key return data_hash.hexdigest() """ Dictionary operations. """ def convert_dict_to_backend( data: dict, backend: str = "numpy", array_types: Iterable[str] = ("numpy", "torch", "warp") ) -> dict: """Convert all arrays or tensors in a dictionary to a given backend. This function iterates over the dictionary, converts all arrays or tensors with the given types to the desired backend, and stores them in a new dictionary. It also works with nested dictionaries. Currently supported backends are "numpy", "torch", and "warp". Note: This function only converts arrays or tensors. Other types of data are left unchanged. Mutable types (e.g. lists) are referenced by the new dictionary, so they are not copied. Args: data: An input dict containing array or tensor data as values. backend: The backend ("numpy", "torch", "warp") to which arrays in this dict should be converted. Defaults to "numpy". array_types: A list containing the types of arrays that should be converted to the desired backend. Defaults to ("numpy", "torch", "warp"). Raises: ValueError: If the specified ``backend`` or ``array_types`` are unknown, i.e. not in the list of supported backends ("numpy", "torch", "warp"). Returns: The updated dict with the data converted to the desired backend. """ # THINK: Should we also support converting to a specific device, e.g. "cuda:0"? # Check the backend is valid. if backend not in TENSOR_TYPE_CONVERSIONS: raise ValueError(f"Unknown backend '{backend}'. Supported backends are 'numpy', 'torch', and 'warp'.") # Define the conversion functions for each backend. tensor_type_conversions = TENSOR_TYPE_CONVERSIONS[backend] # Parse the array types and convert them to the corresponding types: "numpy" -> np.ndarray, etc. parsed_types = list() for t in array_types: # Check type is valid. if t not in TENSOR_TYPES: raise ValueError(f"Unknown array type: '{t}'. Supported array types are 'numpy', 'torch', and 'warp'.") # Exclude types that match the backend, since we do not need to convert these. if t == backend: continue # Convert the string types to the corresponding types. parsed_types.append(TENSOR_TYPES[t]) # Convert the data to the desired backend. output_dict = dict() for key, value in data.items(): # Obtain the data type of the current value. data_type = type(value) # -- arrays if data_type in parsed_types: # check if we have a known conversion. if data_type not in tensor_type_conversions: raise ValueError(f"No registered conversion for data type: {data_type} to {backend}!") # convert the data to the desired backend. output_dict[key] = tensor_type_conversions[data_type](value) # -- nested dictionaries elif isinstance(data[key], dict): output_dict[key] = convert_dict_to_backend(value) # -- everything else else: output_dict[key] = value return output_dict def update_dict(orig_dict: dict, new_dict: collections.abc.Mapping) -> dict: """Updates existing dictionary with values from a new dictionary. This function mimics the dict.update() function. However, it works for nested dictionaries as well. Reference: https://stackoverflow.com/questions/3232943/update-value-of-a-nested-dictionary-of-varying-depth Args: orig_dict: The original dictionary to insert items to. new_dict: The new dictionary to insert items from. Returns: The updated dictionary. """ for keyname, value in new_dict.items(): if isinstance(value, collections.abc.Mapping): orig_dict[keyname] = update_dict(orig_dict.get(keyname, {}), value) else: orig_dict[keyname] = value return orig_dict def print_dict(val, nesting: int = -4, start: bool = True): """Outputs a nested dictionary.""" if isinstance(val, dict): if not start: print("") nesting += 4 for k in val: print(nesting * " ", end="") print(k, end=": ") print_dict(val[k], nesting, start=False) else: # deal with functions in print statements if callable(val): print(callable_to_string(val)) else: print(val)
9,558
Python
35.624521
115
0.614773
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/configclass.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations """Sub-module that provides a wrapper around the Python 3.7 onwards ``dataclasses`` module.""" import inspect from collections.abc import Callable from copy import deepcopy from dataclasses import MISSING, Field, dataclass, field, replace from typing import Any, ClassVar from .dict import class_to_dict, update_class_from_dict _CONFIGCLASS_METHODS = ["to_dict", "from_dict", "replace", "copy"] """List of class methods added at runtime to dataclass.""" """ Wrapper around dataclass. """ def __dataclass_transform__(): """Add annotations decorator for PyLance.""" return lambda a: a @__dataclass_transform__() def configclass(cls, **kwargs): """Wrapper around `dataclass` functionality to add extra checks and utilities. As of Python 3.7, the standard dataclasses have two main issues which makes them non-generic for configuration use-cases. These include: 1. Requiring a type annotation for all its members. 2. Requiring explicit usage of :meth:`field(default_factory=...)` to reinitialize mutable variables. This function provides a decorator that wraps around Python's `dataclass`_ utility to deal with the above two issues. It also provides additional helper functions for dictionary <-> class conversion and easily copying class instances. Usage: .. code-block:: python from dataclasses import MISSING from omni.isaac.orbit.utils.configclass import configclass @configclass class ViewerCfg: eye: list = [7.5, 7.5, 7.5] # field missing on purpose lookat: list = field(default_factory=[0.0, 0.0, 0.0]) @configclass class EnvCfg: num_envs: int = MISSING episode_length: int = 2000 viewer: ViewerCfg = ViewerCfg() # create configuration instance env_cfg = EnvCfg(num_envs=24) # print information as a dictionary print(env_cfg.to_dict()) # create a copy of the configuration env_cfg_copy = env_cfg.copy() # replace arbitrary fields using keyword arguments env_cfg_copy = env_cfg_copy.replace(num_envs=32) Args: cls: The class to wrap around. **kwargs: Additional arguments to pass to :func:`dataclass`. Returns: The wrapped class. .. _dataclass: https://docs.python.org/3/library/dataclasses.html """ # add type annotations _add_annotation_types(cls) # add field factory _process_mutable_types(cls) # copy mutable members # note: we check if user defined __post_init__ function exists and augment it with our own if hasattr(cls, "__post_init__"): setattr(cls, "__post_init__", _combined_function(cls.__post_init__, _custom_post_init)) else: setattr(cls, "__post_init__", _custom_post_init) # add helper functions for dictionary conversion setattr(cls, "to_dict", _class_to_dict) setattr(cls, "from_dict", _update_class_from_dict) setattr(cls, "replace", _replace_class_with_kwargs) setattr(cls, "copy", _copy_class) # wrap around dataclass cls = dataclass(cls, **kwargs) # return wrapped class return cls """ Dictionary <-> Class operations. These are redefined here to add new docstrings. """ def _class_to_dict(obj: object) -> dict[str, Any]: """Convert an object into dictionary recursively. Returns: Converted dictionary mapping. """ return class_to_dict(obj) def _update_class_from_dict(obj, data: dict[str, Any]) -> None: """Reads a dictionary and sets object variables recursively. This function performs in-place update of the class member attributes. Args: data: Input (nested) dictionary to update from. Raises: TypeError: When input is not a dictionary. ValueError: When dictionary has a value that does not match default config type. KeyError: When dictionary has a key that does not exist in the default config type. """ return update_class_from_dict(obj, data, _ns="") def _replace_class_with_kwargs(obj: object, **kwargs) -> object: """Return a new object replacing specified fields with new values. This is especially useful for frozen classes. Example usage: .. code-block:: python @configclass(frozen=True) class C: x: int y: int c = C(1, 2) c1 = c.replace(x=3) assert c1.x == 3 and c1.y == 2 Args: obj: The object to replace. **kwargs: The fields to replace and their new values. Returns: The new object. """ return replace(obj, **kwargs) def _copy_class(obj: object) -> object: """Return a new object with the same fields as the original.""" return replace(obj) """ Private helper functions. """ def _add_annotation_types(cls): """Add annotations to all elements in the dataclass. By definition in Python, a field is defined as a class variable that has a type annotation. In case type annotations are not provided, dataclass ignores those members when :func:`__dict__()` is called. This function adds these annotations to the class variable to prevent any issues in case the user forgets to specify the type annotation. This makes the following a feasible operation: @dataclass class State: pos = (0.0, 0.0, 0.0) ^^ If the function is NOT used, the following type-error is returned: TypeError: 'pos' is a field but has no type annotation """ # get type hints hints = {} # iterate over class inheritance # we add annotations from base classes first for base in reversed(cls.__mro__): # check if base is object if base is object: continue # get base class annotations ann = base.__dict__.get("__annotations__", {}) # directly add all annotations from base class hints.update(ann) # iterate over base class members # Note: Do not change this to dir(base) since it orders the members alphabetically. # This is not desirable since the order of the members is important in some cases. for key in base.__dict__: # get class member value = getattr(base, key) # skip members if _skippable_class_member(key, value, hints): continue # add type annotations for members that don't have explicit type annotations # for these, we deduce the type from the default value if not isinstance(value, type): if key not in hints: # check if var type is not MISSING # we cannot deduce type from MISSING! if value is MISSING: raise TypeError( f"Missing type annotation for '{key}' in class '{cls.__name__}'." " Please add a type annotation or set a default value." ) # add type annotation hints[key] = type(value) elif key != value.__name__: # note: we don't want to add type annotations for nested configclass. Thus, we check if # the name of the type matches the name of the variable. # since Python 3.10, type hints are stored as strings hints[key] = f"type[{value.__name__}]" # Note: Do not change this line. `cls.__dict__.get("__annotations__", {})` is different from # `cls.__annotations__` because of inheritance. cls.__annotations__ = cls.__dict__.get("__annotations__", {}) cls.__annotations__ = hints def _process_mutable_types(cls): """Initialize all mutable elements through :obj:`dataclasses.Field` to avoid unnecessary complaints. By default, dataclass requires usage of :obj:`field(default_factory=...)` to reinitialize mutable objects every time a new class instance is created. If a member has a mutable type and it is created without specifying the `field(default_factory=...)`, then Python throws an error requiring the usage of `default_factory`. Additionally, Python only explicitly checks for field specification when the type is a list, set or dict. This misses the use-case where the type is class itself. Thus, the code silently carries a bug with it which can lead to undesirable effects. This function deals with this issue This makes the following a feasible operation: @dataclass class State: pos: list = [0.0, 0.0, 0.0] ^^ If the function is NOT used, the following value-error is returned: ValueError: mutable default <class 'list'> for field pos is not allowed: use default_factory """ # note: Need to set this up in the same order as annotations. Otherwise, it # complains about missing positional arguments. ann = cls.__dict__.get("__annotations__", {}) # iterate over all class members and store them in a dictionary class_members = {} for base in reversed(cls.__mro__): # check if base is object if base is object: continue # iterate over base class members for key in base.__dict__: # get class member f = getattr(base, key) # skip members if _skippable_class_member(key, f): continue # store class member if it is not a type or if it is already present in annotations if not isinstance(f, type) or key in ann: class_members[key] = f # iterate over base class data fields # in previous call, things that became a dataclass field were removed from class members # so we need to add them back here as a dataclass field directly for key, f in base.__dict__.get("__dataclass_fields__", {}).items(): # store class member if not isinstance(f, type): class_members[key] = f # check that all annotations are present in class members # note: mainly for debugging purposes if len(class_members) != len(ann): raise ValueError( f"In class '{cls.__name__}', number of annotations ({len(ann)}) does not match number of class members" f" ({len(class_members)}). Please check that all class members have type annotations and/or a default" " value. If you don't want to specify a default value, please use the literal `dataclasses.MISSING`." ) # iterate over annotations and add field factory for mutable types for key in ann: # find matching field in class value = class_members.get(key, MISSING) # check if key belongs to ClassVar # in that case, we cannot use default_factory! origin = getattr(ann[key], "__origin__", None) if origin is ClassVar: continue # check if f is MISSING # note: commented out for now since it causes issue with inheritance # of dataclasses when parent have some positional and some keyword arguments. # Ref: https://stackoverflow.com/questions/51575931/class-inheritance-in-python-3-7-dataclasses # TODO: check if this is fixed in Python 3.10 # if f is MISSING: # continue if isinstance(value, Field): setattr(cls, key, value) elif not isinstance(value, type): # create field factory for mutable types value = field(default_factory=_return_f(value)) setattr(cls, key, value) def _custom_post_init(obj): """Deepcopy all elements to avoid shared memory issues for mutable objects in dataclasses initialization. This function is called explicitly instead of as a part of :func:`_process_mutable_types()` to prevent mapping proxy type i.e. a read only proxy for mapping objects. The error is thrown when using hierarchical data-classes for configuration. """ for key in dir(obj): # skip dunder members if key.startswith("__"): continue # get data member value = getattr(obj, key) # duplicate data members if not callable(value): setattr(obj, key, deepcopy(value)) def _combined_function(f1: Callable, f2: Callable) -> Callable: """Combine two functions into one. Args: f1: The first function. f2: The second function. Returns: The combined function. """ def _combined(*args, **kwargs): # call both functions f1(*args, **kwargs) f2(*args, **kwargs) return _combined """ Helper functions """ def _skippable_class_member(key: str, value: Any, hints: dict | None = None) -> bool: """Check if the class member should be skipped in configclass processing. The following members are skipped: * Dunder members: ``__name__``, ``__module__``, ``__qualname__``, ``__annotations__``, ``__dict__``. * Manually-added special class functions: From :obj:`_CONFIGCLASS_METHODS`. * Members that are already present in the type annotations. * Functions bounded to class object or class. Args: key: The class member name. value: The class member value. hints: The type hints for the class. Defaults to None, in which case, the members existence in type hints are not checked. Returns: True if the class member should be skipped, False otherwise. """ # skip dunder members if key.startswith("__"): return True # skip manually-added special class functions if key in _CONFIGCLASS_METHODS: return True # check if key is already present if hints is not None and key in hints: return True # skip functions bounded to class if callable(value): signature = inspect.signature(value) if "self" in signature.parameters or "cls" in signature.parameters: return True # Otherwise, don't skip return False def _return_f(f: Any) -> Callable[[], Any]: """Returns default factory function for creating mutable/immutable variables. This function should be used to create default factory functions for variables. Example: .. code-block:: python value = field(default_factory=_return_f(value)) setattr(cls, key, value) """ def _wrap(): if isinstance(f, Field): if f.default_factory is MISSING: return deepcopy(f.default) else: return f.default_factory else: return f return _wrap
14,857
Python
34.125295
132
0.631016
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/assets.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module that defines the host-server where assets and resources are stored. By default, we use the Isaac Sim Nucleus Server for hosting assets and resources. This makes distribution of the assets easier and makes the repository smaller in size code-wise. For more information on Omniverse Nucleus: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html#omniverse-nucleus """ from __future__ import annotations import io import os import tempfile from typing import Literal import carb import omni.client import omni.isaac.core.utils.nucleus as nucleus_utils # check nucleus connection if nucleus_utils.get_assets_root_path() is None: msg = ( "Unable to perform Nucleus login on Omniverse. Assets root path is not set.\n" "\tPlease check: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html#omniverse-nucleus" ) carb.log_error(msg) raise RuntimeError(msg) NVIDIA_NUCLEUS_DIR = f"{nucleus_utils.get_assets_root_path()}/NVIDIA" """Path to the root directory on the NVIDIA Nucleus Server.""" ISAAC_NUCLEUS_DIR = f"{nucleus_utils.get_assets_root_path()}/Isaac" """Path to the `Isaac` directory on the NVIDIA Nucleus Server.""" ISAAC_ORBIT_NUCLEUS_DIR = f"{ISAAC_NUCLEUS_DIR}/Samples/Orbit" """Path to the `Isaac/Samples/Orbit` directory on the NVIDIA Nucleus Server.""" def check_file_path(path: str) -> Literal[0, 1, 2]: """Checks if a file exists on the Nucleus Server or locally. Args: path: The path to the file. Returns: The status of the file. Possible values are: * :obj:`0` if the file does not exist * :obj:`1` if the file exists locally * :obj:`2` if the file exists on the Nucleus Server """ if os.path.isfile(path): return 1 elif omni.client.stat(path)[0] == omni.client.Result.OK: return 2 else: return 0 def retrieve_file_path(path: str, download_dir: str | None = None, force_download: bool = True) -> str: """Retrieves the path to a file on the Nucleus Server or locally. If the file exists locally, then the absolute path to the file is returned. If the file exists on the Nucleus Server, then the file is downloaded to the local machine and the absolute path to the file is returned. Args: path: The path to the file. download_dir: The directory where the file should be downloaded. Defaults to None, in which case the file is downloaded to the system's temporary directory. force_download: Whether to force download the file from the Nucleus Server. This will overwrite the local file if it exists. Defaults to True. Returns: The path to the file on the local machine. Raises: FileNotFoundError: When the file not found locally or on Nucleus Server. RuntimeError: When the file cannot be copied from the Nucleus Server to the local machine. This can happen when the file already exists locally and :attr:`force_download` is set to False. """ # check file status file_status = check_file_path(path) if file_status == 1: return os.path.abspath(path) elif file_status == 2: # resolve download directory if download_dir is None: download_dir = tempfile.gettempdir() else: download_dir = os.path.abspath(download_dir) # create download directory if it does not exist if not os.path.exists(download_dir): os.makedirs(download_dir) # download file in temp directory using os file_name = os.path.basename(omni.client.break_url(path).path) target_path = os.path.join(download_dir, file_name) # check if file already exists locally if not os.path.isfile(target_path) or force_download: # copy file to local machine result = omni.client.copy(path, target_path) if result != omni.client.Result.OK and force_download: raise RuntimeError(f"Unable to copy file: '{path}'. Is the Nucleus Server running?") return os.path.abspath(target_path) else: raise FileNotFoundError(f"Unable to find the file: {path}") def read_file(path: str) -> io.BytesIO: """Reads a file from the Nucleus Server or locally. Args: path: The path to the file. Raises: FileNotFoundError: When the file not found locally or on Nucleus Server. Returns: The content of the file. """ # check file status file_status = check_file_path(path) if file_status == 1: with open(path, "rb") as f: return io.BytesIO(f.read()) elif file_status == 2: file_content = omni.client.read_file(path)[2] return io.BytesIO(memoryview(file_content).tobytes()) else: raise FileNotFoundError(f"Unable to find the file: {path}")
5,040
Python
35.79562
117
0.672222
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/io/yaml.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Utilities for file I/O with yaml.""" import os import yaml from omni.isaac.orbit.utils import class_to_dict def load_yaml(filename: str) -> dict: """Loads an input PKL file safely. Args: filename: The path to pickled file. Raises: FileNotFoundError: When the specified file does not exist. Returns: The data read from the input file. """ if not os.path.exists(filename): raise FileNotFoundError(f"File not found: {filename}") with open(filename) as f: data = yaml.full_load(f) return data def dump_yaml(filename: str, data: dict | object, sort_keys: bool = False): """Saves data into a YAML file safely. Note: The function creates any missing directory along the file's path. Args: filename: The path to save the file at. data: The data to save either a dictionary or class object. sort_keys: Whether to sort the keys in the output file. Defaults to False. """ # check ending if not filename.endswith("yaml"): filename += ".yaml" # create directory if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename), exist_ok=True) # convert data into dictionary if not isinstance(data, dict): data = class_to_dict(data) # save data with open(filename, "w") as f: yaml.dump(data, f, default_flow_style=False, sort_keys=sort_keys)
1,572
Python
27.089285
82
0.653308
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/io/pkl.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Utilities for file I/O with pickle.""" import os import pickle from typing import Any def load_pickle(filename: str) -> Any: """Loads an input PKL file safely. Args: filename: The path to pickled file. Raises: FileNotFoundError: When the specified file does not exist. Returns: The data read from the input file. """ if not os.path.exists(filename): raise FileNotFoundError(f"File not found: {filename}") with open(filename, "rb") as f: data = pickle.load(f) return data def dump_pickle(filename: str, data: Any): """Saves data into a pickle file safely. Note: The function creates any missing directory along the file's path. Args: filename: The path to save the file at. data: The data to save. """ # check ending if not filename.endswith("pkl"): filename += ".pkl" # create directory if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename), exist_ok=True) # save data with open(filename, "wb") as f: pickle.dump(data, f)
1,252
Python
23.568627
73
0.638978
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/warp/kernels.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Custom kernels for warp.""" import warp as wp @wp.kernel def raycast_mesh_kernel( mesh: wp.uint64, ray_starts: wp.array(dtype=wp.vec3), ray_directions: wp.array(dtype=wp.vec3), ray_hits: wp.array(dtype=wp.vec3), ray_distance: wp.array(dtype=wp.float32), ray_normal: wp.array(dtype=wp.vec3), ray_face_id: wp.array(dtype=wp.int32), max_dist: float = 1e6, return_distance: int = False, return_normal: int = False, return_face_id: int = False, ): """Performs ray-casting against a mesh. This function performs ray-casting against the given mesh using the provided ray start positions and directions. The resulting ray hit positions are stored in the :obj:`ray_hits` array. Note that the `ray_starts`, `ray_directions`, and `ray_hits` arrays should have compatible shapes and data types to ensure proper execution. Additionally, they all must be in the same frame. The function utilizes the `mesh_query_ray` method from the `wp` module to perform the actual ray-casting operation. The maximum ray-cast distance is set to `1e6` units. Args: mesh: The input mesh. The ray-casting is performed against this mesh on the device specified by the `mesh`'s `device` attribute. ray_starts: The input ray start positions. Shape is (N, 3). ray_directions: The input ray directions. Shape is (N, 3). ray_hits: The output ray hit positions. Shape is (N, 3). ray_distance: The output ray hit distances. Shape is (N,), if `return_distance` is True. Otherwise, this array is not used. ray_normal: The output ray hit normals. Shape is (N, 3), if `return_normal` is True. Otherwise, this array is not used. ray_face_id: The output ray hit face ids. Shape is (N,), if `return_face_id` is True. Otherwise, this array is not used. max_dist: The maximum ray-cast distance. Defaults to 1e6. return_distance: Whether to return the ray hit distances. Defaults to False. return_normal: Whether to return the ray hit normals. Defaults to False`. return_face_id: Whether to return the ray hit face ids. Defaults to False. """ # get the thread id tid = wp.tid() t = float(0.0) # hit distance along ray u = float(0.0) # hit face barycentric u v = float(0.0) # hit face barycentric v sign = float(0.0) # hit face sign n = wp.vec3() # hit face normal f = int(0) # hit face index # ray cast against the mesh and store the hit position hit_success = wp.mesh_query_ray(mesh, ray_starts[tid], ray_directions[tid], max_dist, t, u, v, sign, n, f) # if the ray hit, store the hit data if hit_success: ray_hits[tid] = ray_starts[tid] + t * ray_directions[tid] if return_distance == 1: ray_distance[tid] = t if return_normal == 1: ray_normal[tid] = n if return_face_id == 1: ray_face_id[tid] = f
3,123
Python
41.216216
110
0.651297
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/warp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing operations based on warp.""" from .ops import convert_to_warp_mesh, raycast_mesh
230
Python
24.666664
56
0.747826
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/warp/ops.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Wrapping around warp kernels for compatibility with torch tensors.""" from __future__ import annotations import numpy as np import torch import warp as wp from . import kernels def raycast_mesh( ray_starts: torch.Tensor, ray_directions: torch.Tensor, mesh: wp.Mesh, max_dist: float = 1e6, return_distance: bool = False, return_normal: bool = False, return_face_id: bool = False, ) -> tuple[torch.Tensor, torch.Tensor | None, torch.Tensor | None, torch.Tensor | None]: """Performs ray-casting against a mesh. Note that the `ray_starts` and `ray_directions`, and `ray_hits` should have compatible shapes and data types to ensure proper execution. Additionally, they all must be in the same frame. Args: ray_starts: The starting position of the rays. Shape (N, 3). ray_directions: The ray directions for each ray. Shape (N, 3). mesh: The warp mesh to ray-cast against. max_dist: The maximum distance to ray-cast. Defaults to 1e6. return_distance: Whether to return the distance of the ray until it hits the mesh. Defaults to False. return_normal: Whether to return the normal of the mesh face the ray hits. Defaults to False. return_face_id: Whether to return the face id of the mesh face the ray hits. Defaults to False. Returns: The ray hit position. Shape (N, 3). The returned tensor contains :obj:`float('inf')` for missed hits. The ray hit distance. Shape (N,). Will only return if :attr:`return_distance` is True, else returns None. The returned tensor contains :obj:`float('inf')` for missed hits. The ray hit normal. Shape (N, 3). Will only return if :attr:`return_normal` is True else returns None. The returned tensor contains :obj:`float('inf')` for missed hits. The ray hit face id. Shape (N,). Will only return if :attr:`return_face_id` is True else returns None. The returned tensor contains :obj:`int(-1)` for missed hits. """ # extract device and shape information shape = ray_starts.shape device = ray_starts.device # device of the mesh torch_device = wp.device_to_torch(mesh.device) # reshape the tensors ray_starts = ray_starts.to(torch_device).view(-1, 3).contiguous() ray_directions = ray_directions.to(torch_device).view(-1, 3).contiguous() num_rays = ray_starts.shape[0] # create output tensor for the ray hits ray_hits = torch.full((num_rays, 3), float("inf"), device=torch_device).contiguous() # map the memory to warp arrays ray_starts_wp = wp.from_torch(ray_starts, dtype=wp.vec3) ray_directions_wp = wp.from_torch(ray_directions, dtype=wp.vec3) ray_hits_wp = wp.from_torch(ray_hits, dtype=wp.vec3) if return_distance: ray_distance = torch.full((num_rays,), float("inf"), device=torch_device).contiguous() ray_distance_wp = wp.from_torch(ray_distance, dtype=wp.float32) else: ray_distance = None ray_distance_wp = wp.empty((1,), dtype=wp.float32, device=torch_device) if return_normal: ray_normal = torch.full((num_rays, 3), float("inf"), device=torch_device).contiguous() ray_normal_wp = wp.from_torch(ray_normal, dtype=wp.vec3) else: ray_normal = None ray_normal_wp = wp.empty((1,), dtype=wp.vec3, device=torch_device) if return_face_id: ray_face_id = torch.ones((num_rays,), dtype=torch.int32, device=torch_device).contiguous() * (-1) ray_face_id_wp = wp.from_torch(ray_face_id, dtype=wp.int32) else: ray_face_id = None ray_face_id_wp = wp.empty((1,), dtype=wp.int32, device=torch_device) # launch the warp kernel wp.launch( kernel=kernels.raycast_mesh_kernel, dim=num_rays, inputs=[ mesh.id, ray_starts_wp, ray_directions_wp, ray_hits_wp, ray_distance_wp, ray_normal_wp, ray_face_id_wp, float(max_dist), int(return_distance), int(return_normal), int(return_face_id), ], device=mesh.device, ) # NOTE: Synchronize is not needed anymore, but we keep it for now. Check with @dhoeller. wp.synchronize() if return_distance: ray_distance = ray_distance.to(device).view(shape[0], shape[1]) if return_normal: ray_normal = ray_normal.to(device).view(shape) if return_face_id: ray_face_id = ray_face_id.to(device).view(shape[0], shape[1]) return ray_hits.to(device).view(shape), ray_distance, ray_normal, ray_face_id def convert_to_warp_mesh(points: np.ndarray, indices: np.ndarray, device: str) -> wp.Mesh: """Create a warp mesh object with a mesh defined from vertices and triangles. Args: points: The vertices of the mesh. Shape is (N, 3), where N is the number of vertices. indices: The triangles of the mesh as references to vertices for each triangle. Shape is (M, 3), where M is the number of triangles / faces. device: The device to use for the mesh. Returns: The warp mesh object. """ return wp.Mesh( points=wp.array(points.astype(np.float32), dtype=wp.vec3, device=device), indices=wp.array(indices.astype(np.int32).flatten(), dtype=wp.int32, device=device), )
5,554
Python
38.678571
109
0.64152
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/noise/noise_model.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING if TYPE_CHECKING: from . import noise_cfg def constant_bias_noise(data: torch.Tensor, cfg: noise_cfg.ConstantBiasNoiseCfg) -> torch.Tensor: """Add a constant noise.""" return data + cfg.bias def additive_uniform_noise(data: torch.Tensor, cfg: noise_cfg.UniformNoiseCfg) -> torch.Tensor: """Adds a noise sampled from a uniform distribution.""" return data + torch.rand_like(data) * (cfg.n_max - cfg.n_min) + cfg.n_min def additive_gaussian_noise(data: torch.Tensor, cfg: noise_cfg.GaussianNoiseCfg) -> torch.Tensor: """Adds a noise sampled from a gaussian distribution.""" return data + cfg.mean + cfg.std * torch.randn_like(data)
870
Python
30.107142
97
0.717241
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/noise/noise_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from collections.abc import Callable from dataclasses import MISSING from omni.isaac.orbit.utils import configclass from . import noise_model @configclass class NoiseCfg: """Base configuration for a noise term.""" func: Callable[[torch.Tensor, NoiseCfg], torch.Tensor] = MISSING """The function to be called for applying the noise. Note: The shape of the input and output tensors must be the same. """ @configclass class AdditiveUniformNoiseCfg(NoiseCfg): """Configuration for a additive uniform noise term.""" func = noise_model.additive_uniform_noise n_min: float = -1.0 """The minimum value of the noise. Defaults to -1.0.""" n_max: float = 1.0 """The maximum value of the noise. Defaults to 1.0.""" @configclass class AdditiveGaussianNoiseCfg(NoiseCfg): """Configuration for a additive gaussian noise term.""" func = noise_model.additive_gaussian_noise mean: float = 0.0 """The mean of the noise. Defaults to 0.0.""" std: float = 1.0 """The standard deviation of the noise. Defaults to 1.0.""" @configclass class ConstantBiasNoiseCfg(NoiseCfg): """Configuration for a constant bias noise term.""" func = noise_model.constant_bias_noise bias: float = 0.0 """The bias to add. Defaults to 0.0."""
1,480
Python
23.278688
68
0.693243
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/utils/noise/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing different noise models implementations. The noise models are implemented as functions that take in a tensor and a configuration and return a tensor with the noise applied. These functions are then used in the :class:`NoiseCfg` configuration class. Usage: .. code-block:: python import torch from omni.isaac.orbit.utils.noise import AdditiveGaussianNoiseCfg # create a random tensor my_tensor = torch.rand(128, 128, device="cuda") # create a noise configuration cfg = AdditiveGaussianNoiseCfg(mean=0.0, std=1.0) # apply the noise my_noisified_tensor = cfg.func(my_tensor, cfg) """ from .noise_cfg import NoiseCfg # noqa: F401 from .noise_cfg import AdditiveGaussianNoiseCfg, AdditiveUniformNoiseCfg, ConstantBiasNoiseCfg
909
Python
29.333332
107
0.753575
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/asset_base_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from typing import Literal from omni.isaac.orbit.sim import SpawnerCfg from omni.isaac.orbit.utils import configclass from .asset_base import AssetBase @configclass class AssetBaseCfg: """The base configuration class for an asset's parameters. Please see the :class:`AssetBase` class for more information on the asset class. """ @configclass class InitialStateCfg: """Initial state of the asset. This defines the default initial state of the asset when it is spawned into the simulation, as well as the default state when the simulation is reset. After parsing the initial state, the asset class stores this information in the :attr:`data` attribute of the asset class. This can then be accessed by the user to modify the state of the asset during the simulation, for example, at resets. """ # root position pos: tuple[float, float, float] = (0.0, 0.0, 0.0) """Position of the root in simulation world frame. Defaults to (0.0, 0.0, 0.0).""" rot: tuple[float, float, float, float] = (1.0, 0.0, 0.0, 0.0) """Quaternion rotation (w, x, y, z) of the root in simulation world frame. Defaults to (1.0, 0.0, 0.0, 0.0). """ class_type: type[AssetBase] = MISSING """The associated asset class. The class should inherit from :class:`omni.isaac.orbit.assets.asset_base.AssetBase`. """ prim_path: str = MISSING """Prim path (or expression) to the asset. .. note:: The expression can contain the environment namespace regex ``{ENV_REGEX_NS}`` which will be replaced with the environment namespace. Example: ``{ENV_REGEX_NS}/Robot`` will be replaced with ``/World/envs/env_.*/Robot``. """ spawn: SpawnerCfg | None = None """Spawn configuration for the asset. Defaults to None. If None, then no prims are spawned by the asset class. Instead, it is assumed that the asset is already present in the scene. """ init_state: InitialStateCfg = InitialStateCfg() """Initial state of the rigid object. Defaults to identity pose.""" collision_group: Literal[0, -1] = 0 """Collision group of the asset. Defaults to ``0``. * ``-1``: global collision group (collides with all assets in the scene). * ``0``: local collision group (collides with other assets in the same environment). """ debug_vis: bool = False """Whether to enable debug visualization for the asset. Defaults to ``False``."""
2,721
Python
33.455696
108
0.668872
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package for different assets, such as rigid objects and articulations. An asset is a physical object that can be spawned in the simulation. The class handles both the spawning of the asset into the USD stage as well as initialization of necessary physics handles to interact with the asset. Upon construction of the asset instance, the prim corresponding to the asset is spawned into the USD stage if the spawn configuration is not None. The spawn configuration is defined in the :attr:`AssetBaseCfg.spawn` attribute. In case the configured :attr:`AssetBaseCfg.prim_path` is an expression, then the prim is spawned at all the matching paths. Otherwise, a single prim is spawned at the configured path. For more information on the spawn configuration, see the :mod:`omni.isaac.orbit.sim.spawners` module. The asset class also registers callbacks for the stage play/stop events. These are used to construct the physics handles for the asset as the physics engine is only available when the stage is playing. Additionally, the class registers a callback for debug visualization of the asset. This can be enabled by setting the :attr:`AssetBaseCfg.debug_vis` attribute to True. The asset class follows the following naming convention for its methods: * **set_xxx()**: These are used to only set the buffers into the :attr:`data` instance. However, they do not write the data into the simulator. The writing of data only happens when the :meth:`write_data_to_sim` method is called. * **write_xxx_to_sim()**: These are used to set the buffers into the :attr:`data` instance and write the corresponding data into the simulator as well. * **update(dt)**: These are used to update the buffers in the :attr:`data` instance. This should be called after a simulation step is performed. The main reason to separate the ``set`` and ``write`` operations is to provide flexibility to the user when they need to perform a post-processing operation of the buffers before applying them into the simulator. A common example for this is dealing with explicit actuator models where the specified joint targets are not directly applied to the simulator but are instead used to compute the corresponding actuator torques. """ from .articulation import Articulation, ArticulationCfg, ArticulationData from .asset_base import AssetBase from .asset_base_cfg import AssetBaseCfg from .rigid_object import RigidObject, RigidObjectCfg, RigidObjectData
2,567
Python
56.066665
101
0.791196
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/asset_base.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import inspect import re import weakref from abc import ABC, abstractmethod from collections.abc import Sequence from typing import TYPE_CHECKING, Any import omni.kit.app import omni.timeline import omni.isaac.orbit.sim as sim_utils if TYPE_CHECKING: from .asset_base_cfg import AssetBaseCfg class AssetBase(ABC): """The base interface class for assets. An asset corresponds to any physics-enabled object that can be spawned in the simulation. These include rigid objects, articulated objects, deformable objects etc. The core functionality of an asset is to provide a set of buffers that can be used to interact with the simulator. The buffers are updated by the asset class and can be written into the simulator using the their respective ``write`` methods. This allows a convenient way to perform post-processing operations on the buffers before writing them into the simulator and obtaining the corresponding simulation results. The class handles both the spawning of the asset into the USD stage as well as initialization of necessary physics handles to interact with the asset. Upon construction of the asset instance, the prim corresponding to the asset is spawned into the USD stage if the spawn configuration is not None. The spawn configuration is defined in the :attr:`AssetBaseCfg.spawn` attribute. In case the configured :attr:`AssetBaseCfg.prim_path` is an expression, then the prim is spawned at all the matching paths. Otherwise, a single prim is spawned at the configured path. For more information on the spawn configuration, see the :mod:`omni.isaac.orbit.sim.spawners` module. Unlike Isaac Sim interface, where one usually needs to call the :meth:`omni.isaac.core.prims.XFormPrimView.initialize` method to initialize the PhysX handles, the asset class automatically initializes and invalidates the PhysX handles when the stage is played/stopped. This is done by registering callbacks for the stage play/stop events. Additionally, the class registers a callback for debug visualization of the asset if a debug visualization is implemented in the asset class. This can be enabled by setting the :attr:`AssetBaseCfg.debug_vis` attribute to True. The debug visualization is implemented through the :meth:`_set_debug_vis_impl` and :meth:`_debug_vis_callback` methods. """ def __init__(self, cfg: AssetBaseCfg): """Initialize the asset base. Args: cfg: The configuration class for the asset. Raises: RuntimeError: If no prims found at input prim path or prim path expression. """ # store inputs self.cfg = cfg # flag for whether the asset is initialized self._is_initialized = False # check if base asset path is valid # note: currently the spawner does not work if there is a regex pattern in the leaf # For example, if the prim path is "/World/Robot_[1,2]" since the spawner will not # know which prim to spawn. This is a limitation of the spawner and not the asset. asset_path = self.cfg.prim_path.split("/")[-1] asset_path_is_regex = re.match(r"^[a-zA-Z0-9/_]+$", asset_path) is None # spawn the asset if self.cfg.spawn is not None and not asset_path_is_regex: self.cfg.spawn.func( self.cfg.prim_path, self.cfg.spawn, translation=self.cfg.init_state.pos, orientation=self.cfg.init_state.rot, ) # check that spawn was successful matching_prims = sim_utils.find_matching_prims(self.cfg.prim_path) if len(matching_prims) == 0: raise RuntimeError(f"Could not find prim with path {self.cfg.prim_path}.") # note: Use weakref on all callbacks to ensure that this object can be deleted when its destructor is called. # add callbacks for stage play/stop # The order is set to 10 which is arbitrary but should be lower priority than the default order of 0 timeline_event_stream = omni.timeline.get_timeline_interface().get_timeline_event_stream() self._initialize_handle = timeline_event_stream.create_subscription_to_pop_by_type( int(omni.timeline.TimelineEventType.PLAY), lambda event, obj=weakref.proxy(self): obj._initialize_callback(event), order=10, ) self._invalidate_initialize_handle = timeline_event_stream.create_subscription_to_pop_by_type( int(omni.timeline.TimelineEventType.STOP), lambda event, obj=weakref.proxy(self): obj._invalidate_initialize_callback(event), order=10, ) # add handle for debug visualization (this is set to a valid handle inside set_debug_vis) self._debug_vis_handle = None # set initial state of debug visualization self.set_debug_vis(self.cfg.debug_vis) def __del__(self): """Unsubscribe from the callbacks.""" # clear physics events handles if self._initialize_handle: self._initialize_handle.unsubscribe() self._initialize_handle = None if self._invalidate_initialize_handle: self._invalidate_initialize_handle.unsubscribe() self._invalidate_initialize_handle = None # clear debug visualization if self._debug_vis_handle: self._debug_vis_handle.unsubscribe() self._debug_vis_handle = None """ Properties """ @property @abstractmethod def num_instances(self) -> int: """Number of instances of the asset. This is equal to the number of asset instances per environment multiplied by the number of environments. """ return NotImplementedError @property def device(self) -> str: """Memory device for computation.""" return self._device @property @abstractmethod def data(self) -> Any: """Data related to the asset.""" return NotImplementedError @property def has_debug_vis_implementation(self) -> bool: """Whether the asset has a debug visualization implemented.""" # check if function raises NotImplementedError source_code = inspect.getsource(self._set_debug_vis_impl) return "NotImplementedError" not in source_code """ Operations. """ def set_debug_vis(self, debug_vis: bool) -> bool: """Sets whether to visualize the asset data. Args: debug_vis: Whether to visualize the asset data. Returns: Whether the debug visualization was successfully set. False if the asset does not support debug visualization. """ # check if debug visualization is supported if not self.has_debug_vis_implementation: return False # toggle debug visualization objects self._set_debug_vis_impl(debug_vis) # toggle debug visualization handles if debug_vis: # create a subscriber for the post update event if it doesn't exist if self._debug_vis_handle is None: app_interface = omni.kit.app.get_app_interface() self._debug_vis_handle = app_interface.get_post_update_event_stream().create_subscription_to_pop( lambda event, obj=weakref.proxy(self): obj._debug_vis_callback(event) ) else: # remove the subscriber if it exists if self._debug_vis_handle is not None: self._debug_vis_handle.unsubscribe() self._debug_vis_handle = None # return success return True @abstractmethod def reset(self, env_ids: Sequence[int] | None = None): """Resets all internal buffers of selected environments. Args: env_ids: The indices of the object to reset. Defaults to None (all instances). """ raise NotImplementedError @abstractmethod def write_data_to_sim(self): """Writes data to the simulator.""" raise NotImplementedError @abstractmethod def update(self, dt: float): """Update the internal buffers. The time step ``dt`` is used to compute numerical derivatives of quantities such as joint accelerations which are not provided by the simulator. Args: dt: The amount of time passed from last ``update`` call. """ raise NotImplementedError """ Implementation specific. """ @abstractmethod def _initialize_impl(self): """Initializes the PhysX handles and internal buffers.""" raise NotImplementedError def _set_debug_vis_impl(self, debug_vis: bool): """Set debug visualization into visualization objects. This function is responsible for creating the visualization objects if they don't exist and input ``debug_vis`` is True. If the visualization objects exist, the function should set their visibility into the stage. """ raise NotImplementedError(f"Debug visualization is not implemented for {self.__class__.__name__}.") def _debug_vis_callback(self, event): """Callback for debug visualization. This function calls the visualization objects and sets the data to visualize into them. """ raise NotImplementedError(f"Debug visualization is not implemented for {self.__class__.__name__}.") """ Internal simulation callbacks. """ def _initialize_callback(self, event): """Initializes the scene elements. Note: PhysX handles are only enabled once the simulator starts playing. Hence, this function needs to be called whenever the simulator "plays" from a "stop" state. """ if not self._is_initialized: # obtain simulation related information sim = sim_utils.SimulationContext.instance() if sim is None: raise RuntimeError("SimulationContext is not initialized! Please initialize SimulationContext first.") self._backend = sim.backend self._device = sim.device # initialize the asset self._initialize_impl() # set flag self._is_initialized = True def _invalidate_initialize_callback(self, event): """Invalidates the scene elements.""" self._is_initialized = False
10,684
Python
39.782443
118
0.659023
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/rigid_object/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for rigid object assets.""" from .rigid_object import RigidObject from .rigid_object_cfg import RigidObjectCfg from .rigid_object_data import RigidObjectData
296
Python
25.999998
56
0.777027
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/rigid_object/rigid_object_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from omni.isaac.orbit.utils import configclass from ..asset_base_cfg import AssetBaseCfg from .rigid_object import RigidObject @configclass class RigidObjectCfg(AssetBaseCfg): """Configuration parameters for a rigid object.""" @configclass class InitialStateCfg(AssetBaseCfg.InitialStateCfg): """Initial state of the rigid body.""" lin_vel: tuple[float, float, float] = (0.0, 0.0, 0.0) """Linear velocity of the root in simulation world frame. Defaults to (0.0, 0.0, 0.0).""" ang_vel: tuple[float, float, float] = (0.0, 0.0, 0.0) """Angular velocity of the root in simulation world frame. Defaults to (0.0, 0.0, 0.0).""" ## # Initialize configurations. ## class_type: type = RigidObject init_state: InitialStateCfg = InitialStateCfg() """Initial state of the rigid object. Defaults to identity pose with zero velocity."""
1,065
Python
29.457142
98
0.683568
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/rigid_object/rigid_object_data.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from dataclasses import dataclass @dataclass class RigidObjectData: """Data container for a rigid object.""" ## # Properties. ## body_names: list[str] = None """Body names in the order parsed by the simulation view.""" ## # Default states. ## default_root_state: torch.Tensor = None """Default root state ``[pos, quat, lin_vel, ang_vel]`` in local environment frame. Shape is (num_instances, 13).""" ## # Frame states. ## root_state_w: torch.Tensor = None """Root state ``[pos, quat, lin_vel, ang_vel]`` in simulation world frame. Shape is (num_instances, 13).""" root_vel_b: torch.Tensor = None """Root velocity `[lin_vel, ang_vel]` in base frame. Shape is (num_instances, 6).""" projected_gravity_b: torch.Tensor = None """Projection of the gravity direction on base frame. Shape is (num_instances, 3).""" heading_w: torch.Tensor = None """Yaw heading of the base frame (in radians). Shape is (num_instances,). Note: This quantity is computed by assuming that the forward-direction of the base frame is along x-direction, i.e. :math:`(1, 0, 0)`. """ body_state_w: torch.Tensor = None """State of all bodies `[pos, quat, lin_vel, ang_vel]` in simulation world frame. Shape is (num_instances, num_bodies, 13).""" body_acc_w: torch.Tensor = None """Acceleration of all bodies. Shape is (num_instances, num_bodies, 6). Note: This quantity is computed based on the rigid body state from the last step. """ """ Properties """ @property def root_pos_w(self) -> torch.Tensor: """Root position in simulation world frame. Shape is (num_instances, 3).""" return self.root_state_w[:, :3] @property def root_quat_w(self) -> torch.Tensor: """Root orientation (w, x, y, z) in simulation world frame. Shape is (num_instances, 4).""" return self.root_state_w[:, 3:7] @property def root_vel_w(self) -> torch.Tensor: """Root velocity in simulation world frame. Shape is (num_instances, 6).""" return self.root_state_w[:, 7:13] @property def root_lin_vel_w(self) -> torch.Tensor: """Root linear velocity in simulation world frame. Shape is (num_instances, 3).""" return self.root_state_w[:, 7:10] @property def root_ang_vel_w(self) -> torch.Tensor: """Root angular velocity in simulation world frame. Shape is (num_instances, 3).""" return self.root_state_w[:, 10:13] @property def root_lin_vel_b(self) -> torch.Tensor: """Root linear velocity in base frame. Shape is (num_instances, 3).""" return self.root_vel_b[:, 0:3] @property def root_ang_vel_b(self) -> torch.Tensor: """Root angular velocity in base world frame. Shape is (num_instances, 3).""" return self.root_vel_b[:, 3:6] @property def body_pos_w(self) -> torch.Tensor: """Positions of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 3).""" return self.body_state_w[..., :3] @property def body_quat_w(self) -> torch.Tensor: """Orientation (w, x, y, z) of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 4).""" return self.body_state_w[..., 3:7] @property def body_vel_w(self) -> torch.Tensor: """Velocity of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 6).""" return self.body_state_w[..., 7:13] @property def body_lin_vel_w(self) -> torch.Tensor: """Linear velocity of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 3).""" return self.body_state_w[..., 7:10] @property def body_ang_vel_w(self) -> torch.Tensor: """Angular velocity of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 3).""" return self.body_state_w[..., 10:13] @property def body_lin_acc_w(self) -> torch.Tensor: """Linear acceleration of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 3).""" return self.body_acc_w[..., 0:3] @property def body_ang_acc_w(self) -> torch.Tensor: """Angular acceleration of all bodies in simulation world frame. Shape is (num_instances, num_bodies, 3).""" return self.body_acc_w[..., 3:6]
4,594
Python
33.037037
120
0.622987
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/rigid_object/rigid_object.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch import warnings from collections.abc import Sequence from typing import TYPE_CHECKING import carb import omni.physics.tensors.impl.api as physx from pxr import UsdPhysics import omni.isaac.orbit.sim as sim_utils import omni.isaac.orbit.utils.math as math_utils import omni.isaac.orbit.utils.string as string_utils from ..asset_base import AssetBase from .rigid_object_data import RigidObjectData if TYPE_CHECKING: from .rigid_object_cfg import RigidObjectCfg class RigidObject(AssetBase): """A rigid object asset class. Rigid objects are assets comprising of rigid bodies. They can be used to represent dynamic objects such as boxes, spheres, etc. A rigid body is described by its pose, velocity and mass distribution. For an asset to be considered a rigid object, the root prim of the asset must have the `USD RigidBodyAPI`_ applied to it. This API is used to define the simulation properties of the rigid body. On playing the simulation, the physics engine will automatically register the rigid body and create a corresponding rigid body handle. This handle can be accessed using the :attr:`root_physx_view` attribute. .. note:: For users familiar with Isaac Sim, the PhysX view class API is not the exactly same as Isaac Sim view class API. Similar to Orbit, Isaac Sim wraps around the PhysX view API. However, as of now (2023.1 release), we see a large difference in initializing the view classes in Isaac Sim. This is because the view classes in Isaac Sim perform additional USD-related operations which are slow and also not required. .. _`USD RigidBodyAPI`: https://openusd.org/dev/api/class_usd_physics_rigid_body_a_p_i.html """ cfg: RigidObjectCfg """Configuration instance for the rigid object.""" def __init__(self, cfg: RigidObjectCfg): """Initialize the rigid object. Args: cfg: A configuration instance. """ super().__init__(cfg) # container for data access self._data = RigidObjectData() """ Properties """ @property def data(self) -> RigidObjectData: return self._data @property def num_instances(self) -> int: return self.root_physx_view.count @property def num_bodies(self) -> int: """Number of bodies in the asset.""" return 1 @property def body_names(self) -> list[str]: """Ordered names of bodies in articulation.""" prim_paths = self.root_physx_view.prim_paths[: self.num_bodies] return [path.split("/")[-1] for path in prim_paths] @property def root_physx_view(self) -> physx.RigidBodyView: """Rigid body view for the asset (PhysX). Note: Use this view with caution. It requires handling of tensors in a specific way. """ return self._root_physx_view @property def body_physx_view(self) -> physx.RigidBodyView: """Rigid body view for the asset (PhysX). .. deprecated:: v0.3.0 The attribute 'body_physx_view' will be removed in v0.4.0. Please use :attr:`root_physx_view` instead. """ dep_msg = "The attribute 'body_physx_view' will be removed in v0.4.0. Please use 'root_physx_view' instead." warnings.warn(dep_msg, DeprecationWarning) carb.log_error(dep_msg) return self.root_physx_view """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None): # resolve all indices if env_ids is None: env_ids = slice(None) # reset external wrench self._external_force_b[env_ids] = 0.0 self._external_torque_b[env_ids] = 0.0 # reset last body vel self._last_body_vel_w[env_ids] = 0.0 def write_data_to_sim(self): """Write external wrench to the simulation. Note: We write external wrench to the simulation here since this function is called before the simulation step. This ensures that the external wrench is applied at every simulation step. """ # write external wrench if self.has_external_wrench: self.root_physx_view.apply_forces_and_torques_at_position( force_data=self._external_force_b.view(-1, 3), torque_data=self._external_torque_b.view(-1, 3), position_data=None, indices=self._ALL_BODY_INDICES, is_global=False, ) def update(self, dt: float): # -- root-state (note: we roll the quaternion to match the convention used in Isaac Sim -- wxyz) self._data.root_state_w[:, :7] = self.root_physx_view.get_transforms() self._data.root_state_w[:, 3:7] = math_utils.convert_quat(self._data.root_state_w[:, 3:7], to="wxyz") self._data.root_state_w[:, 7:] = self.root_physx_view.get_velocities() # -- body-state (note: for rigid objects, we only have one body so we just copy the root state) self._data.body_state_w[:] = self._data.root_state_w.view(-1, self.num_bodies, 13) # -- update common data self._update_common_data(dt) def find_bodies(self, name_keys: str | Sequence[str], preserve_order: bool = False) -> tuple[list[int], list[str]]: """Find bodies in the articulation based on the name keys. Please check the :meth:`omni.isaac.orbit.utils.string_utils.resolve_matching_names` function for more information on the name matching. Args: name_keys: A regular expression or a list of regular expressions to match the body names. preserve_order: Whether to preserve the order of the name keys in the output. Defaults to False. Returns: A tuple of lists containing the body indices and names. """ return string_utils.resolve_matching_names(name_keys, self.body_names, preserve_order) """ Operations - Write to simulation. """ def write_root_state_to_sim(self, root_state: torch.Tensor, env_ids: Sequence[int] | None = None): """Set the root state over selected environment indices into the simulation. The root state comprises of the cartesian position, quaternion orientation in (w, x, y, z), and linear and angular velocity. All the quantities are in the simulation frame. Args: root_state: Root state in simulation frame. Shape is (len(env_ids), 13). env_ids: Environment indices. If None, then all indices are used. """ # set into simulation self.write_root_pose_to_sim(root_state[:, :7], env_ids=env_ids) self.write_root_velocity_to_sim(root_state[:, 7:], env_ids=env_ids) def write_root_pose_to_sim(self, root_pose: torch.Tensor, env_ids: Sequence[int] | None = None): """Set the root pose over selected environment indices into the simulation. The root pose comprises of the cartesian position and quaternion orientation in (w, x, y, z). Args: root_pose: Root poses in simulation frame. Shape is (len(env_ids), 7). env_ids: Environment indices. If None, then all indices are used. """ # resolve all indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES # note: we need to do this here since tensors are not set into simulation until step. # set into internal buffers self._data.root_state_w[env_ids, :7] = root_pose.clone() # convert root quaternion from wxyz to xyzw root_poses_xyzw = self._data.root_state_w[:, :7].clone() root_poses_xyzw[:, 3:] = math_utils.convert_quat(root_poses_xyzw[:, 3:], to="xyzw") # set into simulation self.root_physx_view.set_transforms(root_poses_xyzw, indices=physx_env_ids) def write_root_velocity_to_sim(self, root_velocity: torch.Tensor, env_ids: Sequence[int] | None = None): """Set the root velocity over selected environment indices into the simulation. Args: root_velocity: Root velocities in simulation frame. Shape is (len(env_ids), 6). env_ids: Environment indices. If None, then all indices are used. """ # resolve all indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES # note: we need to do this here since tensors are not set into simulation until step. # set into internal buffers self._data.root_state_w[env_ids, 7:] = root_velocity.clone() # set into simulation self.root_physx_view.set_velocities(self._data.root_state_w[:, 7:], indices=physx_env_ids) """ Operations - Setters. """ def set_external_force_and_torque( self, forces: torch.Tensor, torques: torch.Tensor, body_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Set external force and torque to apply on the asset's bodies in their local frame. For many applications, we want to keep the applied external force on rigid bodies constant over a period of time (for instance, during the policy control). This function allows us to store the external force and torque into buffers which are then applied to the simulation at every step. .. caution:: If the function is called with empty forces and torques, then this function disables the application of external wrench to the simulation. .. code-block:: python # example of disabling external wrench asset.set_external_force_and_torque(forces=torch.zeros(0, 3), torques=torch.zeros(0, 3)) .. note:: This function does not apply the external wrench to the simulation. It only fills the buffers with the desired values. To apply the external wrench, call the :meth:`write_data_to_sim` function right before the simulation step. Args: forces: External forces in bodies' local frame. Shape is (len(env_ids), len(body_ids), 3). torques: External torques in bodies' local frame. Shape is (len(env_ids), len(body_ids), 3). body_ids: Body indices to apply external wrench to. Defaults to None (all bodies). env_ids: Environment indices to apply external wrench to. Defaults to None (all instances). """ if forces.any() or torques.any(): self.has_external_wrench = True # resolve all indices # -- env_ids if env_ids is None: env_ids = self._ALL_INDICES elif not isinstance(env_ids, torch.Tensor): env_ids = torch.tensor(env_ids, dtype=torch.long, device=self.device) # -- body_ids if body_ids is None: body_ids = torch.arange(self.num_bodies, dtype=torch.long, device=self.device) elif isinstance(body_ids, slice): body_ids = torch.arange(self.num_bodies, dtype=torch.long, device=self.device)[body_ids] elif not isinstance(body_ids, torch.Tensor): body_ids = torch.tensor(body_ids, dtype=torch.long, device=self.device) # note: we need to do this complicated indexing since torch doesn't support multi-indexing # create global body indices from env_ids and env_body_ids # (env_id * total_bodies_per_env) + body_id indices = body_ids.repeat(len(env_ids), 1) + env_ids.unsqueeze(1) * self.num_bodies indices = indices.view(-1) # set into internal buffers # note: these are applied in the write_to_sim function self._external_force_b.flatten(0, 1)[indices] = forces.flatten(0, 1) self._external_torque_b.flatten(0, 1)[indices] = torques.flatten(0, 1) else: self.has_external_wrench = False """ Internal helper. """ def _initialize_impl(self): # create simulation view self._physics_sim_view = physx.create_simulation_view(self._backend) self._physics_sim_view.set_subspace_roots("/") # obtain the first prim in the regex expression (all others are assumed to be a copy of this) template_prim = sim_utils.find_first_matching_prim(self.cfg.prim_path) if template_prim is None: raise RuntimeError(f"Failed to find prim for expression: '{self.cfg.prim_path}'.") template_prim_path = template_prim.GetPath().pathString # find rigid root prims root_prims = sim_utils.get_all_matching_child_prims( template_prim_path, predicate=lambda prim: prim.HasAPI(UsdPhysics.RigidBodyAPI) ) if len(root_prims) != 1: raise RuntimeError( f"Failed to find a single rigid body when resolving '{self.cfg.prim_path}'." f" Found multiple '{root_prims}' under '{template_prim_path}'." ) # resolve root prim back into regex expression root_prim_path = root_prims[0].GetPath().pathString root_prim_path_expr = self.cfg.prim_path + root_prim_path[len(template_prim_path) :] # -- object view self._root_physx_view = self._physics_sim_view.create_rigid_body_view(root_prim_path_expr.replace(".*", "*")) # log information about the articulation carb.log_info(f"Rigid body initialized at: {self.cfg.prim_path} with root '{root_prim_path_expr}'.") carb.log_info(f"Number of instances: {self.num_instances}") carb.log_info(f"Number of bodies: {self.num_bodies}") carb.log_info(f"Body names: {self.body_names}") # create buffers self._create_buffers() # process configuration self._process_cfg() def _create_buffers(self): """Create buffers for storing data.""" # constants self._ALL_INDICES = torch.arange(self.num_instances, dtype=torch.long, device=self.device) self._ALL_BODY_INDICES = torch.arange( self.root_physx_view.count * self.num_bodies, dtype=torch.long, device=self.device ) self.GRAVITY_VEC_W = torch.tensor((0.0, 0.0, -1.0), device=self.device).repeat(self.num_instances, 1) self.FORWARD_VEC_B = torch.tensor((1.0, 0.0, 0.0), device=self.device).repeat(self.num_instances, 1) # external forces and torques self.has_external_wrench = False self._external_force_b = torch.zeros((self.num_instances, self.num_bodies, 3), device=self.device) self._external_torque_b = torch.zeros_like(self._external_force_b) # asset data # -- properties self._data.body_names = self.body_names # -- root states self._data.root_state_w = torch.zeros(self.num_instances, 13, device=self.device) self._data.root_state_w[:, 3] = 1.0 # set default quaternion to (1, 0, 0, 0) self._data.default_root_state = torch.zeros_like(self._data.root_state_w) self._data.default_root_state[:, 3] = 1.0 # set default quaternion to (1, 0, 0, 0) # -- body states self._data.body_state_w = torch.zeros(self.num_instances, self.num_bodies, 13, device=self.device) self._data.body_state_w[:, :, 3] = 1.0 # set default quaternion to (1, 0, 0, 0) # -- post-computed self._data.root_vel_b = torch.zeros(self.num_instances, 6, device=self.device) self._data.projected_gravity_b = torch.zeros(self.num_instances, 3, device=self.device) self._data.heading_w = torch.zeros(self.num_instances, device=self.device) self._data.body_acc_w = torch.zeros(self.num_instances, self.num_bodies, 6, device=self.device) # history buffers for quantities # -- used to compute body accelerations numerically self._last_body_vel_w = torch.zeros(self.num_instances, self.num_bodies, 6, device=self.device) def _process_cfg(self): """Post processing of configuration parameters.""" # default state # -- root state # note: we cast to tuple to avoid torch/numpy type mismatch. default_root_state = ( tuple(self.cfg.init_state.pos) + tuple(self.cfg.init_state.rot) + tuple(self.cfg.init_state.lin_vel) + tuple(self.cfg.init_state.ang_vel) ) default_root_state = torch.tensor(default_root_state, dtype=torch.float, device=self.device) self._data.default_root_state = default_root_state.repeat(self.num_instances, 1) def _update_common_data(self, dt: float): """Update common quantities related to rigid objects. Note: This has been separated from the update function to allow for the child classes to override the update function without having to worry about updating the common data. """ # -- body acceleration self._data.body_acc_w[:] = (self._data.body_state_w[..., 7:] - self._last_body_vel_w) / dt self._last_body_vel_w[:] = self._data.body_state_w[..., 7:] # -- root state in body frame self._data.root_vel_b[:, 0:3] = math_utils.quat_rotate_inverse( self._data.root_quat_w, self._data.root_lin_vel_w ) self._data.root_vel_b[:, 3:6] = math_utils.quat_rotate_inverse( self._data.root_quat_w, self._data.root_ang_vel_w ) self._data.projected_gravity_b[:] = math_utils.quat_rotate_inverse(self._data.root_quat_w, self.GRAVITY_VEC_W) # -- heading direction of root forward_w = math_utils.quat_apply(self._data.root_quat_w, self.FORWARD_VEC_B) self._data.heading_w[:] = torch.atan2(forward_w[:, 1], forward_w[:, 0]) """ Internal simulation callbacks. """ def _invalidate_initialize_callback(self, event): """Invalidates the scene elements.""" # call parent super()._invalidate_initialize_callback(event) # set all existing views to None to invalidate them self._physics_sim_view = None self._root_physx_view = None
18,412
Python
44.01956
119
0.632305
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/config/cassie.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for Agility robots. The following configurations are available: * :obj:`CASSIE_CFG`: Agility Cassie robot with simple PD controller for the legs Reference: https://github.com/UMich-BipedLab/Cassie_Model/blob/master/urdf/cassie.urdf """ from __future__ import annotations import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR from ..articulation import ArticulationCfg ## # Configuration ## CASSIE_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/Agility/Cassie/cassie.usd", activate_contact_sensors=True, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, retain_accelerations=False, linear_damping=0.0, angular_damping=0.0, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=1.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=4, solver_velocity_iteration_count=0 ), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.9), joint_pos={ "hip_abduction_left": 0.1, "hip_rotation_left": 0.0, "hip_flexion_left": 1.0, "thigh_joint_left": -1.8, "ankle_joint_left": 1.57, "toe_joint_left": -1.57, "hip_abduction_right": -0.1, "hip_rotation_right": 0.0, "hip_flexion_right": 1.0, "thigh_joint_right": -1.8, "ankle_joint_right": 1.57, "toe_joint_right": -1.57, }, joint_vel={".*": 0.0}, ), soft_joint_pos_limit_factor=0.9, actuators={ "legs": ImplicitActuatorCfg( joint_names_expr=["hip_.*", "thigh_.*", "ankle_.*"], effort_limit=200.0, velocity_limit=10.0, stiffness={ "hip_abduction.*": 100.0, "hip_rotation.*": 100.0, "hip_flexion.*": 200.0, "thigh_joint.*": 200.0, "ankle_joint.*": 200.0, }, damping={ "hip_abduction.*": 3.0, "hip_rotation.*": 3.0, "hip_flexion.*": 6.0, "thigh_joint.*": 6.0, "ankle_joint.*": 6.0, }, ), "toes": ImplicitActuatorCfg( joint_names_expr=["toe_.*"], effort_limit=20.0, velocity_limit=10.0, stiffness={ "toe_joint.*": 20.0, }, damping={ "toe_joint.*": 1.0, }, ), }, )
2,980
Python
29.731958
110
0.537919
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/articulation/articulation_data.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch from dataclasses import dataclass from ..rigid_object import RigidObjectData @dataclass class ArticulationData(RigidObjectData): """Data container for an articulation.""" ## # Properties. ## joint_names: list[str] = None """Joint names in the order parsed by the simulation view.""" ## # Default states. ## default_joint_pos: torch.Tensor = None """Default joint positions of all joints. Shape is (num_instances, num_joints).""" default_joint_vel: torch.Tensor = None """Default joint velocities of all joints. Shape is (num_instances, num_joints).""" ## # Joint states <- From simulation. ## joint_pos: torch.Tensor = None """Joint positions of all joints. Shape is (num_instances, num_joints).""" joint_vel: torch.Tensor = None """Joint velocities of all joints. Shape is (num_instances, num_joints).""" joint_acc: torch.Tensor = None """Joint acceleration of all joints. Shape is (num_instances, num_joints).""" ## # Joint commands -- Set into simulation. ## joint_pos_target: torch.Tensor = None """Joint position targets commanded by the user. Shape is (num_instances, num_joints). For an implicit actuator model, the targets are directly set into the simulation. For an explicit actuator model, the targets are used to compute the joint torques (see :attr:`applied_torque`), which are then set into the simulation. """ joint_vel_target: torch.Tensor = None """Joint velocity targets commanded by the user. Shape is (num_instances, num_joints). For an implicit actuator model, the targets are directly set into the simulation. For an explicit actuator model, the targets are used to compute the joint torques (see :attr:`applied_torque`), which are then set into the simulation. """ joint_effort_target: torch.Tensor = None """Joint effort targets commanded by the user. Shape is (num_instances, num_joints). For an implicit actuator model, the targets are directly set into the simulation. For an explicit actuator model, the targets are used to compute the joint torques (see :attr:`applied_torque`), which are then set into the simulation. """ joint_stiffness: torch.Tensor = None """Joint stiffness provided to simulation. Shape is (num_instances, num_joints).""" joint_damping: torch.Tensor = None """Joint damping provided to simulation. Shape is (num_instances, num_joints).""" joint_armature: torch.Tensor = None """Joint armature provided to simulation. Shape is (num_instances, num_joints).""" joint_friction: torch.Tensor = None """Joint friction provided to simulation. Shape is (num_instances, num_joints).""" ## # Joint commands -- Explicit actuators. ## computed_torque: torch.Tensor = None """Joint torques computed from the actuator model (before clipping). Shape is (num_instances, num_joints). This quantity is the raw torque output from the actuator mode, before any clipping is applied. It is exposed for users who want to inspect the computations inside the actuator model. For instance, to penalize the learning agent for a difference between the computed and applied torques. Note: The torques are zero for implicit actuator models. """ applied_torque: torch.Tensor = None """Joint torques applied from the actuator model (after clipping). Shape is (num_instances, num_joints). These torques are set into the simulation, after clipping the :attr:`computed_torque` based on the actuator model. Note: The torques are zero for implicit actuator models. """ ## # Other Data. ## soft_joint_pos_limits: torch.Tensor = None """Joint positions limits for all joints. Shape is (num_instances, num_joints, 2).""" soft_joint_vel_limits: torch.Tensor = None """Joint velocity limits for all joints. Shape is (num_instances, num_joints).""" gear_ratio: torch.Tensor = None """Gear ratio for relating motor torques to applied Joint torques. Shape is (num_instances, num_joints)."""
4,271
Python
34.305785
115
0.694919
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/articulation/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for rigid articulated assets.""" from .articulation import Articulation from .articulation_cfg import ArticulationCfg from .articulation_data import ArticulationData
304
Python
26.72727
56
0.792763
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/articulation/articulation.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Flag for pyright to ignore type errors in this file. # pyright: reportPrivateUsage=false from __future__ import annotations import torch import warnings from collections.abc import Sequence from prettytable import PrettyTable from typing import TYPE_CHECKING import carb import omni.physics.tensors.impl.api as physx from omni.isaac.core.utils.types import ArticulationActions from pxr import UsdPhysics import omni.isaac.orbit.sim as sim_utils import omni.isaac.orbit.utils.math as math_utils import omni.isaac.orbit.utils.string as string_utils from omni.isaac.orbit.actuators import ActuatorBase, ActuatorBaseCfg, ImplicitActuator from ..rigid_object import RigidObject from .articulation_data import ArticulationData if TYPE_CHECKING: from .articulation_cfg import ArticulationCfg class Articulation(RigidObject): """An articulation asset class. An articulation is a collection of rigid bodies connected by joints. The joints can be either fixed or actuated. The joints can be of different types, such as revolute, prismatic, D-6, etc. However, the articulation class has currently been tested with revolute and prismatic joints. The class supports both floating-base and fixed-base articulations. The type of articulation is determined based on the root joint of the articulation. If the root joint is fixed, then the articulation is considered a fixed-base system. Otherwise, it is considered a floating-base system. This can be checked using the :attr:`Articulation.is_fixed_base` attribute. For an asset to be considered an articulation, the root prim of the asset must have the `USD ArticulationRootAPI`_. This API is used to define the sub-tree of the articulation using the reduced coordinate formulation. On playing the simulation, the physics engine parses the articulation root prim and creates the corresponding articulation in the physics engine. The articulation root prim can be specified using the :attr:`AssetBaseCfg.prim_path` attribute. The articulation class is a subclass of the :class:`RigidObject` class. Therefore, it inherits all the functionality of the rigid object class. In case of an articulation, the :attr:`root_physx_view` attribute corresponds to the articulation root view and can be used to access the articulation related data. The articulation class also provides the functionality to augment the simulation of an articulated system with custom actuator models. These models can either be explicit or implicit, as detailed in the :mod:`omni.isaac.orbit.actuators` module. The actuator models are specified using the :attr:`ArticulationCfg.actuators` attribute. These are then parsed and used to initialize the corresponding actuator models, when the simulation is played. During the simulation step, the articulation class first applies the actuator models to compute the joint commands based on the user-specified targets. These joint commands are then applied into the simulation. The joint commands can be either position, velocity, or effort commands. As an example, the following snippet shows how this can be used for position commands: .. code-block:: python # an example instance of the articulation class my_articulation = Articulation(cfg) # set joint position targets my_articulation.set_joint_position_target(position) # propagate the actuator models and apply the computed commands into the simulation my_articulation.write_data_to_sim() # step the simulation using the simulation context sim_context.step() # update the articulation state, where dt is the simulation time step my_articulation.update(dt) .. _`USD ArticulationRootAPI`: https://openusd.org/dev/api/class_usd_physics_articulation_root_a_p_i.html """ cfg: ArticulationCfg """Configuration instance for the articulations.""" def __init__(self, cfg: ArticulationCfg): """Initialize the articulation. Args: cfg: A configuration instance. """ super().__init__(cfg) # container for data access self._data = ArticulationData() # data for storing actuator group self.actuators: dict[str, ActuatorBase] = dict.fromkeys(self.cfg.actuators.keys()) """ Properties """ @property def data(self) -> ArticulationData: return self._data @property def is_fixed_base(self) -> bool: """Whether the articulation is a fixed-base or floating-base system.""" return self.root_physx_view.shared_metatype.fixed_base @property def num_joints(self) -> int: """Number of joints in articulation.""" return self.root_physx_view.shared_metatype.dof_count @property def num_fixed_tendons(self) -> int: """Number of fixed tendons in articulation.""" return self.root_physx_view.max_fixed_tendons @property def num_bodies(self) -> int: """Number of bodies in articulation.""" return self.root_physx_view.shared_metatype.link_count @property def joint_names(self) -> list[str]: """Ordered names of joints in articulation.""" return self.root_physx_view.shared_metatype.dof_names @property def body_names(self) -> list[str]: """Ordered names of bodies in articulation.""" return self.root_physx_view.shared_metatype.link_names @property def root_physx_view(self) -> physx.ArticulationView: """Articulation view for the asset (PhysX). Note: Use this view with caution. It requires handling of tensors in a specific way. """ return self._root_physx_view @property def body_physx_view(self) -> physx.RigidBodyView: """Rigid body view for the asset (PhysX). .. deprecated:: v0.3.0 In previous versions, this attribute returned the rigid body view over all the links of the articulation. However, this led to confusion with the link ordering as they were not ordered in the same way as the articulation view. Therefore, this attribute will be removed in v0.4.0. Please use the :attr:`root_physx_view` attribute instead. """ dep_msg = "The attribute 'body_physx_view' will be removed in v0.4.0. Please use 'root_physx_view' instead." warnings.warn(dep_msg, DeprecationWarning) carb.log_error(dep_msg) return self._body_physx_view """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None): super().reset(env_ids) # use ellipses object to skip initial indices. if env_ids is None: env_ids = slice(None) # reset actuators for actuator in self.actuators.values(): actuator.reset(env_ids) def write_data_to_sim(self): """Write external wrenches and joint commands to the simulation. If any explicit actuators are present, then the actuator models are used to compute the joint commands. Otherwise, the joint commands are directly set into the simulation. """ # write external wrench if self.has_external_wrench: # apply external forces and torques self._body_physx_view.apply_forces_and_torques_at_position( force_data=self._external_force_body_view_b.view(-1, 3), torque_data=self._external_torque_body_view_b.view(-1, 3), position_data=None, indices=self._ALL_BODY_INDICES, is_global=False, ) # apply actuator models self._apply_actuator_model() # write actions into simulation self.root_physx_view.set_dof_actuation_forces(self._joint_effort_target_sim, self._ALL_INDICES) # position and velocity targets only for implicit actuators if self._has_implicit_actuators: self.root_physx_view.set_dof_position_targets(self._joint_pos_target_sim, self._ALL_INDICES) self.root_physx_view.set_dof_velocity_targets(self._joint_vel_target_sim, self._ALL_INDICES) def update(self, dt: float): # -- root state (note: we roll the quaternion to match the convention used in Isaac Sim -- wxyz) self._data.root_state_w[:, :7] = self.root_physx_view.get_root_transforms() self._data.root_state_w[:, 3:7] = math_utils.convert_quat(self._data.root_state_w[:, 3:7], to="wxyz") self._data.root_state_w[:, 7:] = self.root_physx_view.get_root_velocities() # -- body-state (note: we roll the quaternion to match the convention used in Isaac Sim -- wxyz) self._data.body_state_w[..., :7] = self.root_physx_view.get_link_transforms() self._data.body_state_w[..., 3:7] = math_utils.convert_quat(self._data.body_state_w[..., 3:7], to="wxyz") self._data.body_state_w[..., 7:] = self.root_physx_view.get_link_velocities() # -- joint states self._data.joint_pos[:] = self.root_physx_view.get_dof_positions() self._data.joint_vel[:] = self.root_physx_view.get_dof_velocities() self._data.joint_acc[:] = (self._data.joint_vel - self._previous_joint_vel) / dt # -- update common data # note: these are computed in the base class self._update_common_data(dt) # -- update history buffers self._previous_joint_vel[:] = self._data.joint_vel[:] def find_joints( self, name_keys: str | Sequence[str], joint_subset: list[str] | None = None, preserve_order: bool = False ) -> tuple[list[int], list[str]]: """Find joints in the articulation based on the name keys. Please see the :func:`omni.isaac.orbit.utils.string.resolve_matching_names` function for more information on the name matching. Args: name_keys: A regular expression or a list of regular expressions to match the joint names. joint_subset: A subset of joints to search for. Defaults to None, which means all joints in the articulation are searched. preserve_order: Whether to preserve the order of the name keys in the output. Defaults to False. Returns: A tuple of lists containing the joint indices and names. """ if joint_subset is None: joint_subset = self.joint_names # find joints return string_utils.resolve_matching_names(name_keys, joint_subset, preserve_order) """ Operations - Setters. """ def set_external_force_and_torque( self, forces: torch.Tensor, torques: torch.Tensor, body_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): # call parent to set the external forces and torques into buffers super().set_external_force_and_torque(forces, torques, body_ids, env_ids) # reordering of the external forces and torques to match the body view ordering if self.has_external_wrench: self._external_force_body_view_b = self._external_force_b[:, self._body_view_ordering] self._external_torque_body_view_b = self._external_torque_b[:, self._body_view_ordering] """ Operations - Writers. """ def write_root_pose_to_sim(self, root_pose: torch.Tensor, env_ids: Sequence[int] | None = None): # resolve all indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES # note: we need to do this here since tensors are not set into simulation until step. # set into internal buffers self._data.root_state_w[env_ids, :7] = root_pose.clone() # convert root quaternion from wxyz to xyzw root_poses_xyzw = self._data.root_state_w[:, :7].clone() root_poses_xyzw[:, 3:] = math_utils.convert_quat(root_poses_xyzw[:, 3:], to="xyzw") # set into simulation self.root_physx_view.set_root_transforms(root_poses_xyzw, indices=physx_env_ids) def write_root_velocity_to_sim(self, root_velocity: torch.Tensor, env_ids: Sequence[int] | None = None): # resolve all indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES # note: we need to do this here since tensors are not set into simulation until step. # set into internal buffers self._data.root_state_w[env_ids, 7:] = root_velocity.clone() # set into simulation self.root_physx_view.set_root_velocities(self._data.root_state_w[:, 7:], indices=physx_env_ids) def write_joint_state_to_sim( self, position: torch.Tensor, velocity: torch.Tensor, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | slice | None = None, ): """Write joint positions and velocities to the simulation. Args: position: Joint positions. Shape is (len(env_ids), len(joint_ids)). velocity: Joint velocities. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the targets for. Defaults to None (all joints). env_ids: The environment indices to set the targets for. Defaults to None (all environments). """ # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) # set into internal buffers self._data.joint_pos[env_ids, joint_ids] = position self._data.joint_vel[env_ids, joint_ids] = velocity self._previous_joint_vel[env_ids, joint_ids] = velocity self._data.joint_acc[env_ids, joint_ids] = 0.0 # set into simulation self.root_physx_view.set_dof_positions(self._data.joint_pos, indices=physx_env_ids) self.root_physx_view.set_dof_velocities(self._data.joint_vel, indices=physx_env_ids) def write_joint_stiffness_to_sim( self, stiffness: torch.Tensor | float, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write joint stiffness into the simulation. Args: stiffness: Joint stiffness. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the stiffness for. Defaults to None (all joints). env_ids: The environment indices to set the stiffness for. Defaults to None (all environments). """ # note: This function isn't setting the values for actuator models. (#128) # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) # set into internal buffers self._data.joint_stiffness[env_ids, joint_ids] = stiffness # set into simulation self.root_physx_view.set_dof_stiffnesses(self._data.joint_stiffness.cpu(), indices=physx_env_ids.cpu()) def write_joint_damping_to_sim( self, damping: torch.Tensor | float, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write joint damping into the simulation. Args: damping: Joint damping. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the damping for. Defaults to None (all joints). env_ids: The environment indices to set the damping for. Defaults to None (all environments). """ # note: This function isn't setting the values for actuator models. (#128) # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) # set into internal buffers self._data.joint_damping[env_ids, joint_ids] = damping # set into simulation self.root_physx_view.set_dof_dampings(self._data.joint_damping.cpu(), indices=physx_env_ids.cpu()) def write_joint_effort_limit_to_sim( self, limits: torch.Tensor | float, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write joint effort limits into the simulation. Args: limits: Joint torque limits. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the joint torque limits for. Defaults to None (all joints). env_ids: The environment indices to set the joint torque limits for. Defaults to None (all environments). """ # note: This function isn't setting the values for actuator models. (#128) # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) # move tensor to cpu if needed if isinstance(limits, torch.Tensor): limits = limits.cpu() # set into internal buffers torque_limit_all = self.root_physx_view.get_dof_max_forces() torque_limit_all[env_ids, joint_ids] = limits # set into simulation self.root_physx_view.set_dof_max_forces(torque_limit_all.cpu(), indices=physx_env_ids.cpu()) def write_joint_armature_to_sim( self, armature: torch.Tensor | float, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write joint armature into the simulation. Args: armature: Joint armature. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the joint torque limits for. Defaults to None (all joints). env_ids: The environment indices to set the joint torque limits for. Defaults to None (all environments). """ # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) # set into internal buffers self._data.joint_armature[env_ids, joint_ids] = armature # set into simulation self.root_physx_view.set_dof_armatures(self._data.joint_armature.cpu(), indices=physx_env_ids.cpu()) def write_joint_friction_to_sim( self, joint_friction: torch.Tensor | float, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None, ): """Write joint friction into the simulation. Args: joint_friction: Joint friction. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the joint torque limits for. Defaults to None (all joints). env_ids: The environment indices to set the joint torque limits for. Defaults to None (all environments). """ # resolve indices physx_env_ids = env_ids if env_ids is None: env_ids = slice(None) physx_env_ids = self._ALL_INDICES if joint_ids is None: joint_ids = slice(None) # set into internal buffers self._data.joint_friction[env_ids, joint_ids] = joint_friction # set into simulation self.root_physx_view.set_dof_friction_coefficients(self._data.joint_friction.cpu(), indices=physx_env_ids.cpu()) """ Operations - State. """ def set_joint_position_target( self, target: torch.Tensor, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None ): """Set joint position targets into internal buffers. .. note:: This function does not apply the joint targets to the simulation. It only fills the buffers with the desired values. To apply the joint targets, call the :meth:`write_data_to_sim` function. Args: target: Joint position targets. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the targets for. Defaults to None (all joints). env_ids: The environment indices to set the targets for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if joint_ids is None: joint_ids = slice(None) # set targets self._data.joint_pos_target[env_ids, joint_ids] = target def set_joint_velocity_target( self, target: torch.Tensor, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None ): """Set joint velocity targets into internal buffers. .. note:: This function does not apply the joint targets to the simulation. It only fills the buffers with the desired values. To apply the joint targets, call the :meth:`write_data_to_sim` function. Args: target: Joint velocity targets. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the targets for. Defaults to None (all joints). env_ids: The environment indices to set the targets for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if joint_ids is None: joint_ids = slice(None) # set targets self._data.joint_vel_target[env_ids, joint_ids] = target def set_joint_effort_target( self, target: torch.Tensor, joint_ids: Sequence[int] | slice | None = None, env_ids: Sequence[int] | None = None ): """Set joint efforts into internal buffers. .. note:: This function does not apply the joint targets to the simulation. It only fills the buffers with the desired values. To apply the joint targets, call the :meth:`write_data_to_sim` function. Args: target: Joint effort targets. Shape is (len(env_ids), len(joint_ids)). joint_ids: The joint indices to set the targets for. Defaults to None (all joints). env_ids: The environment indices to set the targets for. Defaults to None (all environments). """ # resolve indices if env_ids is None: env_ids = slice(None) if joint_ids is None: joint_ids = slice(None) # set targets self._data.joint_effort_target[env_ids, joint_ids] = target """ Internal helper. """ def _initialize_impl(self): # create simulation view self._physics_sim_view = physx.create_simulation_view(self._backend) self._physics_sim_view.set_subspace_roots("/") # obtain the first prim in the regex expression (all others are assumed to be a copy of this) template_prim = sim_utils.find_first_matching_prim(self.cfg.prim_path) if template_prim is None: raise RuntimeError(f"Failed to find prim for expression: '{self.cfg.prim_path}'.") template_prim_path = template_prim.GetPath().pathString # find articulation root prims root_prims = sim_utils.get_all_matching_child_prims( template_prim_path, predicate=lambda prim: prim.HasAPI(UsdPhysics.ArticulationRootAPI) ) if len(root_prims) != 1: raise RuntimeError( f"Failed to find a single articulation root when resolving '{self.cfg.prim_path}'." f" Found roots '{root_prims}' under '{template_prim_path}'." ) # resolve articulation root prim back into regex expression root_prim_path = root_prims[0].GetPath().pathString root_prim_path_expr = self.cfg.prim_path + root_prim_path[len(template_prim_path) :] # -- articulation self._root_physx_view = self._physics_sim_view.create_articulation_view(root_prim_path_expr.replace(".*", "*")) # -- link views # note: we use the root view to get the body names, but we use the body view to get the # actual data. This is mainly needed to apply external forces to the bodies. physx_body_names = self.root_physx_view.shared_metatype.link_names body_names_regex = r"(" + "|".join(physx_body_names) + r")" body_names_regex = f"{self.cfg.prim_path}/{body_names_regex}" self._body_physx_view = self._physics_sim_view.create_rigid_body_view(body_names_regex.replace(".*", "*")) # create ordering from articulation view to body view for body names # note: we need to do this since the body view is not ordered in the same way as the articulation view # -- root view root_view_body_names = self.body_names # -- body view prim_paths = self._body_physx_view.prim_paths[: self.num_bodies] body_view_body_names = [path.split("/")[-1] for path in prim_paths] # -- mapping from articulation view to body view self._body_view_ordering = [body_view_body_names.index(name) for name in root_view_body_names] self._body_view_ordering = torch.tensor(self._body_view_ordering, dtype=torch.long, device=self.device) # log information about the articulation carb.log_info(f"Articulation initialized at: {self.cfg.prim_path} with root '{root_prim_path_expr}'.") carb.log_info(f"Is fixed root: {self.is_fixed_base}") carb.log_info(f"Number of bodies: {self.num_bodies}") carb.log_info(f"Body names: {self.body_names}") carb.log_info(f"Number of joints: {self.num_joints}") carb.log_info(f"Joint names: {self.joint_names}") carb.log_info(f"Number of fixed tendons: {self.num_fixed_tendons}") # -- assert that parsing was successful if set(physx_body_names) != set(self.body_names): raise RuntimeError("Failed to parse all bodies properly in the articulation.") # create buffers self._create_buffers() # process configuration self._process_cfg() self._process_actuators_cfg() # validate configuration self._validate_cfg() # log joint information self._log_articulation_joint_info() def _create_buffers(self): # allocate buffers super()._create_buffers() # history buffers self._previous_joint_vel = torch.zeros(self.num_instances, self.num_joints, device=self.device) # asset data # -- properties self._data.joint_names = self.joint_names # -- joint states self._data.joint_pos = torch.zeros(self.num_instances, self.num_joints, device=self.device) self._data.joint_vel = torch.zeros_like(self._data.joint_pos) self._data.joint_acc = torch.zeros_like(self._data.joint_pos) self._data.default_joint_pos = torch.zeros_like(self._data.joint_pos) self._data.default_joint_vel = torch.zeros_like(self._data.joint_pos) # -- joint commands self._data.joint_pos_target = torch.zeros_like(self._data.joint_pos) self._data.joint_vel_target = torch.zeros_like(self._data.joint_pos) self._data.joint_effort_target = torch.zeros_like(self._data.joint_pos) self._data.joint_stiffness = torch.zeros_like(self._data.joint_pos) self._data.joint_damping = torch.zeros_like(self._data.joint_pos) self._data.joint_armature = torch.zeros_like(self._data.joint_pos) self._data.joint_friction = torch.zeros_like(self._data.joint_pos) # -- joint commands (explicit) self._data.computed_torque = torch.zeros_like(self._data.joint_pos) self._data.applied_torque = torch.zeros_like(self._data.joint_pos) # -- other data self._data.soft_joint_pos_limits = torch.zeros(self.num_instances, self.num_joints, 2, device=self.device) self._data.soft_joint_vel_limits = torch.zeros(self.num_instances, self.num_joints, device=self.device) self._data.gear_ratio = torch.ones(self.num_instances, self.num_joints, device=self.device) # soft joint position limits (recommended not to be too close to limits). joint_pos_limits = self.root_physx_view.get_dof_limits() joint_pos_mean = (joint_pos_limits[..., 0] + joint_pos_limits[..., 1]) / 2 joint_pos_range = joint_pos_limits[..., 1] - joint_pos_limits[..., 0] soft_limit_factor = self.cfg.soft_joint_pos_limit_factor # add to data self._data.soft_joint_pos_limits[..., 0] = joint_pos_mean - 0.5 * joint_pos_range * soft_limit_factor self._data.soft_joint_pos_limits[..., 1] = joint_pos_mean + 0.5 * joint_pos_range * soft_limit_factor # create buffers to store processed actions from actuator models self._joint_pos_target_sim = torch.zeros_like(self._data.joint_pos_target) self._joint_vel_target_sim = torch.zeros_like(self._data.joint_pos_target) self._joint_effort_target_sim = torch.zeros_like(self._data.joint_pos_target) def _process_cfg(self): """Post processing of configuration parameters.""" # default state super()._process_cfg() # -- joint state # joint pos indices_list, _, values_list = string_utils.resolve_matching_names_values( self.cfg.init_state.joint_pos, self.joint_names ) self._data.default_joint_pos[:, indices_list] = torch.tensor(values_list, device=self.device) # joint vel indices_list, _, values_list = string_utils.resolve_matching_names_values( self.cfg.init_state.joint_vel, self.joint_names ) self._data.default_joint_vel[:, indices_list] = torch.tensor(values_list, device=self.device) """ Internal helpers -- Actuators. """ def _process_actuators_cfg(self): """Process and apply articulation joint properties.""" # flag for implicit actuators # if this is false, we by-pass certain checks when doing actuator-related operations self._has_implicit_actuators = False # cache the values coming from the usd usd_stiffness = self.root_physx_view.get_dof_stiffnesses().clone() usd_damping = self.root_physx_view.get_dof_dampings().clone() usd_armature = self.root_physx_view.get_dof_armatures().clone() usd_friction = self.root_physx_view.get_dof_friction_coefficients().clone() usd_effort_limit = self.root_physx_view.get_dof_max_forces().clone() usd_velocity_limit = self.root_physx_view.get_dof_max_velocities().clone() # iterate over all actuator configurations for actuator_name, actuator_cfg in self.cfg.actuators.items(): # type annotation for type checkers actuator_cfg: ActuatorBaseCfg # create actuator group joint_ids, joint_names = self.find_joints(actuator_cfg.joint_names_expr) # check if any joints are found if len(joint_names) == 0: raise ValueError( f"No joints found for actuator group: {actuator_name} with joint name expression:" f" {actuator_cfg.joint_names_expr}." ) # create actuator collection # note: for efficiency avoid indexing when over all indices actuator: ActuatorBase = actuator_cfg.class_type( cfg=actuator_cfg, joint_names=joint_names, joint_ids=slice(None) if len(joint_names) == self.num_joints else joint_ids, num_envs=self.num_instances, device=self.device, stiffness=usd_stiffness[:, joint_ids], damping=usd_damping[:, joint_ids], armature=usd_armature[:, joint_ids], friction=usd_friction[:, joint_ids], effort_limit=usd_effort_limit[:, joint_ids], velocity_limit=usd_velocity_limit[:, joint_ids], ) # log information on actuator groups carb.log_info( f"Actuator collection: {actuator_name} with model '{actuator_cfg.class_type.__name__}' and" f" joint names: {joint_names} [{joint_ids}]." ) # store actuator group self.actuators[actuator_name] = actuator # set the passed gains and limits into the simulation if isinstance(actuator, ImplicitActuator): self._has_implicit_actuators = True # the gains and limits are set into the simulation since actuator model is implicit self.write_joint_stiffness_to_sim(actuator.stiffness, joint_ids=actuator.joint_indices) self.write_joint_damping_to_sim(actuator.damping, joint_ids=actuator.joint_indices) self.write_joint_effort_limit_to_sim(actuator.effort_limit, joint_ids=actuator.joint_indices) self.write_joint_armature_to_sim(actuator.armature, joint_ids=actuator.joint_indices) self.write_joint_friction_to_sim(actuator.friction, joint_ids=actuator.joint_indices) else: # the gains and limits are processed by the actuator model # we set gains to zero, and torque limit to a high value in simulation to avoid any interference self.write_joint_stiffness_to_sim(0.0, joint_ids=actuator.joint_indices) self.write_joint_damping_to_sim(0.0, joint_ids=actuator.joint_indices) self.write_joint_effort_limit_to_sim(1.0e9, joint_ids=actuator.joint_indices) self.write_joint_armature_to_sim(actuator.armature, joint_ids=actuator.joint_indices) self.write_joint_friction_to_sim(actuator.friction, joint_ids=actuator.joint_indices) # perform some sanity checks to ensure actuators are prepared correctly total_act_joints = sum(actuator.num_joints for actuator in self.actuators.values()) if total_act_joints != (self.num_joints - self.num_fixed_tendons): carb.log_warn( "Not all actuators are configured! Total number of actuated joints not equal to number of" f" joints available: {total_act_joints} != {self.num_joints}." ) def _apply_actuator_model(self): """Processes joint commands for the articulation by forwarding them to the actuators. The actions are first processed using actuator models. Depending on the robot configuration, the actuator models compute the joint level simulation commands and sets them into the PhysX buffers. """ # process actions per group for actuator in self.actuators.values(): # prepare input for actuator model based on cached data # TODO : A tensor dict would be nice to do the indexing of all tensors together control_action = ArticulationActions( joint_positions=self._data.joint_pos_target[:, actuator.joint_indices], joint_velocities=self._data.joint_vel_target[:, actuator.joint_indices], joint_efforts=self._data.joint_effort_target[:, actuator.joint_indices], joint_indices=actuator.joint_indices, ) # compute joint command from the actuator model control_action = actuator.compute( control_action, joint_pos=self._data.joint_pos[:, actuator.joint_indices], joint_vel=self._data.joint_vel[:, actuator.joint_indices], ) # update targets (these are set into the simulation) if control_action.joint_positions is not None: self._joint_pos_target_sim[:, actuator.joint_indices] = control_action.joint_positions if control_action.joint_velocities is not None: self._joint_vel_target_sim[:, actuator.joint_indices] = control_action.joint_velocities if control_action.joint_efforts is not None: self._joint_effort_target_sim[:, actuator.joint_indices] = control_action.joint_efforts # update state of the actuator model # -- torques self._data.computed_torque[:, actuator.joint_indices] = actuator.computed_effort self._data.applied_torque[:, actuator.joint_indices] = actuator.applied_effort # -- actuator data self._data.soft_joint_vel_limits[:, actuator.joint_indices] = actuator.velocity_limit # TODO: find a cleaner way to handle gear ratio. Only needed for variable gear ratio actuators. if hasattr(actuator, "gear_ratio"): self._data.gear_ratio[:, actuator.joint_indices] = actuator.gear_ratio """ Internal helpers -- Debugging. """ def _validate_cfg(self): """Validate the configuration after processing. Note: This function should be called only after the configuration has been processed and the buffers have been created. Otherwise, some settings that are altered during processing may not be validated. For instance, the actuator models may change the joint max velocity limits. """ # check that the default values are within the limits joint_pos_limits = self.root_physx_view.get_dof_limits()[0].to(self.device) out_of_range = self._data.default_joint_pos[0] < joint_pos_limits[:, 0] out_of_range |= self._data.default_joint_pos[0] > joint_pos_limits[:, 1] violated_indices = torch.nonzero(out_of_range, as_tuple=False).squeeze(-1) # throw error if any of the default joint positions are out of the limits if len(violated_indices) > 0: # prepare message for violated joints msg = "The following joints have default positions out of the limits: \n" for idx in violated_indices: joint_name = self.data.joint_names[idx] joint_limits = joint_pos_limits[idx] joint_pos = self.data.default_joint_pos[0, idx] # add to message msg += f"\t- '{joint_name}': {joint_pos:.3f} not in [{joint_limits[0]:.3f}, {joint_limits[1]:.3f}]\n" raise ValueError(msg) # check that the default joint velocities are within the limits joint_max_vel = self.root_physx_view.get_dof_max_velocities()[0].to(self.device) out_of_range = torch.abs(self._data.default_joint_vel[0]) > joint_max_vel violated_indices = torch.nonzero(out_of_range, as_tuple=False).squeeze(-1) if len(violated_indices) > 0: # prepare message for violated joints msg = "The following joints have default velocities out of the limits: \n" for idx in violated_indices: joint_name = self.data.joint_names[idx] joint_limits = [-joint_max_vel[idx], joint_max_vel[idx]] joint_vel = self.data.default_joint_vel[0, idx] # add to message msg += f"\t- '{joint_name}': {joint_vel:.3f} not in [{joint_limits[0]:.3f}, {joint_limits[1]:.3f}]\n" raise ValueError(msg) def _log_articulation_joint_info(self): """Log information about the articulation's simulated joints.""" # read out all joint parameters from simulation # -- gains stiffnesses = self.root_physx_view.get_dof_stiffnesses()[0].tolist() dampings = self.root_physx_view.get_dof_dampings()[0].tolist() # -- properties armatures = self.root_physx_view.get_dof_armatures()[0].tolist() frictions = self.root_physx_view.get_dof_friction_coefficients()[0].tolist() # -- limits position_limits = self.root_physx_view.get_dof_limits()[0].tolist() velocity_limits = self.root_physx_view.get_dof_max_velocities()[0].tolist() effort_limits = self.root_physx_view.get_dof_max_forces()[0].tolist() # create table for term information table = PrettyTable(float_format=".3f") table.title = f"Simulation Joint Information (Prim path: {self.cfg.prim_path})" table.field_names = [ "Index", "Name", "Stiffness", "Damping", "Armature", "Friction", "Position Limits", "Velocity Limits", "Effort Limits", ] # set alignment of table columns table.align["Name"] = "l" # add info on each term for index, name in enumerate(self.joint_names): table.add_row([ index, name, stiffnesses[index], dampings[index], armatures[index], frictions[index], position_limits[index], velocity_limits[index], effort_limits[index], ]) # convert table to string carb.log_info(f"Simulation parameters for joints in {self.cfg.prim_path}:\n" + table.get_string()) # read out all tendon parameters from simulation if self.num_fixed_tendons > 0: # -- gains ft_stiffnesses = self.root_physx_view.get_fixed_tendon_stiffnesses()[0].tolist() ft_dampings = self.root_physx_view.get_fixed_tendon_dampings()[0].tolist() # -- limits ft_limit_stiffnesses = self.root_physx_view.get_fixed_tendon_limit_stiffnesses()[0].tolist() ft_limits = self.root_physx_view.get_fixed_tendon_limits()[0].tolist() ft_rest_lengths = self.root_physx_view.get_fixed_tendon_rest_lengths()[0].tolist() ft_offsets = self.root_physx_view.get_fixed_tendon_offsets()[0].tolist() # create table for term information tendon_table = PrettyTable(float_format=".3f") tendon_table.title = f"Simulation Tendon Information (Prim path: {self.cfg.prim_path})" tendon_table.field_names = [ "Index", "Stiffness", "Damping", "Limit Stiffness", "Limit", "Rest Length", "Offset", ] # add info on each term for index in range(self.num_fixed_tendons): tendon_table.add_row([ index, ft_stiffnesses[index], ft_dampings[index], ft_limit_stiffnesses[index], ft_limits[index], ft_rest_lengths[index], ft_offsets[index], ]) # convert table to string carb.log_info(f"Simulation parameters for tendons in {self.cfg.prim_path}:\n" + tendon_table.get_string())
43,405
Python
47.015487
120
0.627808
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/assets/articulation/articulation_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from omni.isaac.orbit.actuators import ActuatorBaseCfg from omni.isaac.orbit.utils import configclass from ..rigid_object import RigidObjectCfg from .articulation import Articulation @configclass class ArticulationCfg(RigidObjectCfg): """Configuration parameters for an articulation.""" class_type: type = Articulation @configclass class InitialStateCfg(RigidObjectCfg.InitialStateCfg): """Initial state of the articulation.""" # root position joint_pos: dict[str, float] = {".*": 0.0} """Joint positions of the joints. Defaults to 0.0 for all joints.""" joint_vel: dict[str, float] = {".*": 0.0} """Joint velocities of the joints. Defaults to 0.0 for all joints.""" ## # Initialize configurations. ## init_state: InitialStateCfg = InitialStateCfg() """Initial state of the articulated object. Defaults to identity pose with zero velocity and zero joint state.""" soft_joint_pos_limit_factor: float = 1.0 """Fraction specifying the range of DOF position limits (parsed from the asset) to use. Defaults to 1.0.""" actuators: dict[str, ActuatorBaseCfg] = MISSING """Actuators for the robot with corresponding joint names."""
1,427
Python
31.454545
117
0.703574
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/markers/visualization_markers.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """A class to coordinate groups of visual markers (such as spheres, frames or arrows) using `UsdGeom.PointInstancer`_ class. The class :class:`VisualizationMarkers` is used to create a group of visual markers and visualize them in the viewport. The markers are represented as :class:`UsdGeom.PointInstancer` prims in the USD stage. The markers are created as prototypes in the :class:`UsdGeom.PointInstancer` prim and are instanced in the :class:`UsdGeom.PointInstancer` prim. The markers can be visualized by passing the indices of the marker prototypes and their translations, orientations and scales. The marker prototypes can be configured with the :class:`VisualizationMarkersCfg` class. .. _UsdGeom.PointInstancer: https://graphics.pixar.com/usd/dev/api/class_usd_geom_point_instancer.html """ from __future__ import annotations import numpy as np import torch from dataclasses import MISSING import omni.isaac.core.utils.stage as stage_utils import omni.kit.commands import omni.physx.scripts.utils as physx_utils from pxr import Gf, PhysxSchema, Sdf, Usd, UsdGeom, UsdPhysics, Vt import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.sim.spawners import SpawnerCfg from omni.isaac.orbit.utils.configclass import configclass from omni.isaac.orbit.utils.math import convert_quat @configclass class VisualizationMarkersCfg: """A class to configure a :class:`VisualizationMarkers`.""" prim_path: str = MISSING """The prim path where the :class:`UsdGeom.PointInstancer` will be created.""" markers: dict[str, SpawnerCfg] = MISSING """The dictionary of marker configurations. The key is the name of the marker, and the value is the configuration of the marker. The key is used to identify the marker in the class. """ class VisualizationMarkers: """A class to coordinate groups of visual markers (loaded from USD). This class allows visualization of different UI markers in the scene, such as points and frames. The class wraps around the `UsdGeom.PointInstancer`_ for efficient handling of objects in the stage via instancing the created marker prototype prims. A marker prototype prim is a reusable template prim used for defining variations of objects in the scene. For example, a sphere prim can be used as a marker prototype prim to create multiple sphere prims in the scene at different locations. Thus, prototype prims are useful for creating multiple instances of the same prim in the scene. The class parses the configuration to create different the marker prototypes into the stage. Each marker prototype prim is created as a child of the :class:`UsdGeom.PointInstancer` prim. The prim path for the the marker prim is resolved using the key of the marker in the :attr:`VisualizationMarkersCfg.markers` dictionary. The marker prototypes are created using the :meth:`omni.isaac.core.utils.create_prim` function, and then then instanced using :class:`UsdGeom.PointInstancer` prim to allow creating multiple instances of the marker prims. Switching between different marker prototypes is possible by calling the :meth:`visualize` method with the prototype indices corresponding to the marker prototype. The prototype indices are based on the order in the :attr:`VisualizationMarkersCfg.markers` dictionary. For example, if the dictionary has two markers, "marker1" and "marker2", then their prototype indices are 0 and 1 respectively. The prototype indices can be passed as a list or array of integers. Usage: The following snippet shows how to create 24 sphere markers with a radius of 1.0 at random translations within the range [-1.0, 1.0]. The first 12 markers will be colored red and the rest will be colored green. .. code-block:: python import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.markers import VisualizationMarkersCfg, VisualizationMarkers # Create the markers configuration # This creates two marker prototypes, "marker1" and "marker2" which are spheres with a radius of 1.0. # The color of "marker1" is red and the color of "marker2" is green. cfg = VisualizationMarkersCfg( prim_path="/World/Visuals/testMarkers", markers={ "marker1": sim_utils.SphereCfg( radius=1.0, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ), "marker2": VisualizationMarkersCfg.SphereCfg( radius=1.0, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), ), } ) # Create the markers instance # This will create a UsdGeom.PointInstancer prim at the given path along with the marker prototypes. marker = VisualizationMarkers(cfg) # Set position of the marker # -- randomly sample translations between -1.0 and 1.0 marker_translations = np.random.uniform(-1.0, 1.0, (24, 3)) # -- this will create 24 markers at the given translations # note: the markers will all be `marker1` since the marker indices are not given marker.visualize(translations=marker_translations) # alter the markers based on their prototypes indices # first 12 markers will be marker1 and the rest will be marker2 # 0 -> marker1, 1 -> marker2 marker_indices = [0] * 12 + [1] * 12 # this will change the marker prototypes at the given indices # note: the translations of the markers will not be changed from the previous call # since the translations are not given. marker.visualize(marker_indices=marker_indices) # alter the markers based on their prototypes indices and translations marker.visualize(marker_indices=marker_indices, translations=marker_translations) .. _UsdGeom.PointInstancer: https://graphics.pixar.com/usd/dev/api/class_usd_geom_point_instancer.html """ def __init__(self, cfg: VisualizationMarkersCfg): """Initialize the class. When the class is initialized, the :class:`UsdGeom.PointInstancer` is created into the stage and the marker prims are registered into it. .. note:: If a prim already exists at the given path, the function will find the next free path and create the :class:`UsdGeom.PointInstancer` prim there. Args: cfg: The configuration for the markers. Raises: ValueError: When no markers are provided in the :obj:`cfg`. """ # get next free path for the prim prim_path = stage_utils.get_next_free_path(cfg.prim_path) # create a new prim stage = stage_utils.get_current_stage() self._instancer_manager = UsdGeom.PointInstancer.Define(stage, prim_path) # store inputs self.prim_path = prim_path self.cfg = cfg # check if any markers is provided if len(self.cfg.markers) == 0: raise ValueError(f"The `cfg.markers` cannot be empty. Received: {self.cfg.markers}") # create a child prim for the marker self._add_markers_prototypes(self.cfg.markers) # Note: We need to do this the first time to initialize the instancer. # Otherwise, the instancer will not be "created" and the function `GetInstanceIndices()` will fail. self._instancer_manager.GetProtoIndicesAttr().Set(list(range(self.num_prototypes))) self._instancer_manager.GetPositionsAttr().Set([Gf.Vec3f(0.0)] * self.num_prototypes) self._count = self.num_prototypes def __str__(self) -> str: """Return: A string representation of the class.""" msg = f"VisualizationMarkers(prim_path={self.prim_path})" msg += f"\n\tCount: {self.count}" msg += f"\n\tNumber of prototypes: {self.num_prototypes}" msg += "\n\tMarkers Prototypes:" for index, (name, marker) in enumerate(self.cfg.markers.items()): msg += f"\n\t\t[Index: {index}]: {name}: {marker.to_dict()}" return msg """ Properties. """ @property def num_prototypes(self) -> int: """The number of marker prototypes available.""" return len(self.cfg.markers) @property def count(self) -> int: """The total number of marker instances.""" # TODO: Update this when the USD API is available (Isaac Sim 2023.1) # return self._instancer_manager.GetInstanceCount() return self._count """ Operations. """ def set_visibility(self, visible: bool): """Sets the visibility of the markers. The method does this through the USD API. Args: visible: flag to set the visibility. """ imageable = UsdGeom.Imageable(self._instancer_manager) if visible: imageable.MakeVisible() else: imageable.MakeInvisible() def is_visible(self) -> bool: """Checks the visibility of the markers. Returns: True if the markers are visible, False otherwise. """ return self._instancer_manager.GetVisibilityAttr().Get() != UsdGeom.Tokens.invisible def visualize( self, translations: np.ndarray | torch.Tensor | None = None, orientations: np.ndarray | torch.Tensor | None = None, scales: np.ndarray | torch.Tensor | None = None, marker_indices: list[int] | np.ndarray | torch.Tensor | None = None, ): """Update markers in the viewport. .. note:: If the prim `PointInstancer` is hidden in the stage, the function will simply return without updating the markers. This helps in unnecessary computation when the markers are not visible. Whenever updating the markers, the input arrays must have the same number of elements in the first dimension. If the number of elements is different, the `UsdGeom.PointInstancer` will raise an error complaining about the mismatch. Additionally, the function supports dynamic update of the markers. This means that the number of markers can change between calls. For example, if you have 24 points that you want to visualize, you can pass 24 translations, orientations, and scales. If you want to visualize only 12 points, you can pass 12 translations, orientations, and scales. The function will automatically update the number of markers in the scene. The function will also update the marker prototypes based on their prototype indices. For instance, if you have two marker prototypes, and you pass the following marker indices: [0, 1, 0, 1], the function will update the first and third markers with the first prototype, and the second and fourth markers with the second prototype. This is useful when you want to visualize different markers in the same scene. The list of marker indices must have the same number of elements as the translations, orientations, or scales. If the number of elements is different, the function will raise an error. .. caution:: This function will update all the markers instanced from the prototypes. That means if you have 24 markers, you will need to pass 24 translations, orientations, and scales. If you want to update only a subset of the markers, you will need to handle the indices yourself and pass the complete arrays to this function. Args: translations: Translations w.r.t. parent prim frame. Shape is (M, 3). Defaults to None, which means left unchanged. orientations: Quaternion orientations (w, x, y, z) w.r.t. parent prim frame. Shape is (M, 4). Defaults to None, which means left unchanged. scales: Scale applied before any rotation is applied. Shape is (M, 3). Defaults to None, which means left unchanged. marker_indices: Decides which marker prototype to visualize. Shape is (M). Defaults to None, which means left unchanged provided that the total number of markers is the same as the previous call. If the number of markers is different, the function will update the number of markers in the scene. Raises: ValueError: When input arrays do not follow the expected shapes. ValueError: When the function is called with all None arguments. """ # check if it is visible (if not then let's not waste time) if not self.is_visible(): return # check if we have any markers to visualize num_markers = 0 # resolve inputs # -- position if translations is not None: if isinstance(translations, torch.Tensor): translations = translations.detach().cpu().numpy() # check that shape is correct if translations.shape[1] != 3 or len(translations.shape) != 2: raise ValueError(f"Expected `translations` to have shape (M, 3). Received: {translations.shape}.") # apply translations self._instancer_manager.GetPositionsAttr().Set(Vt.Vec3fArray.FromNumpy(translations)) # update number of markers num_markers = translations.shape[0] # -- orientation if orientations is not None: if isinstance(orientations, torch.Tensor): orientations = orientations.detach().cpu().numpy() # check that shape is correct if orientations.shape[1] != 4 or len(orientations.shape) != 2: raise ValueError(f"Expected `orientations` to have shape (M, 4). Received: {orientations.shape}.") # roll orientations from (w, x, y, z) to (x, y, z, w) # internally USD expects (x, y, z, w) orientations = convert_quat(orientations, to="xyzw") # apply orientations self._instancer_manager.GetOrientationsAttr().Set(Vt.QuathArray.FromNumpy(orientations)) # update number of markers num_markers = orientations.shape[0] # -- scales if scales is not None: if isinstance(scales, torch.Tensor): scales = scales.detach().cpu().numpy() # check that shape is correct if scales.shape[1] != 3 or len(scales.shape) != 2: raise ValueError(f"Expected `scales` to have shape (M, 3). Received: {scales.shape}.") # apply scales self._instancer_manager.GetScalesAttr().Set(Vt.Vec3fArray.FromNumpy(scales)) # update number of markers num_markers = scales.shape[0] # -- status if marker_indices is not None or num_markers != self._count: # apply marker indices if marker_indices is not None: if isinstance(marker_indices, torch.Tensor): marker_indices = marker_indices.detach().cpu().numpy() elif isinstance(marker_indices, list): marker_indices = np.array(marker_indices) # check that shape is correct if len(marker_indices.shape) != 1: raise ValueError(f"Expected `marker_indices` to have shape (M,). Received: {marker_indices.shape}.") # apply proto indices self._instancer_manager.GetProtoIndicesAttr().Set(Vt.IntArray.FromNumpy(marker_indices)) # update number of markers num_markers = marker_indices.shape[0] else: # check that number of markers is not zero if num_markers == 0: raise ValueError("Number of markers cannot be zero! Hint: The function was called with no inputs?") # set all markers to be the first prototype self._instancer_manager.GetProtoIndicesAttr().Set([0] * num_markers) # set number of markers self._count = num_markers """ Helper functions. """ def _add_markers_prototypes(self, markers_cfg: dict[str, sim_utils.SpawnerCfg]): """Adds markers prototypes to the scene and sets the markers instancer to use them.""" # add markers based on config for name, cfg in markers_cfg.items(): # resolve prim path marker_prim_path = f"{self.prim_path}/{name}" # create a child prim for the marker prim = cfg.func(prim_path=marker_prim_path, cfg=cfg) # make the asset uninstanceable (in case it is) # point instancer defines its own prototypes so if an asset is already instanced, this doesn't work. self._process_prototype_prim(prim) # remove any physics on the markers because they are only for visualization! physx_utils.removeRigidBodySubtree(prim) # add child reference to point instancer self._instancer_manager.GetPrototypesRel().AddTarget(marker_prim_path) # check that we loaded all the prototypes prototypes = self._instancer_manager.GetPrototypesRel().GetTargets() if len(prototypes) != len(markers_cfg): raise RuntimeError( f"Failed to load all the prototypes. Expected: {len(markers_cfg)}. Received: {len(prototypes)}." ) def _process_prototype_prim(self, prim: Usd.Prim): """Process a prim and its descendants to make them suitable for defining prototypes. Point instancer defines its own prototypes so if an asset is already instanced, this doesn't work. This function checks if the prim at the specified prim path and its descendants are instanced. If so, it makes the respective prim uninstanceable by disabling instancing on the prim. Additionally, it makes the prim invisible to secondary rays. This is useful when we do not want to see the marker prims on camera images. Args: prim_path: The prim path to check. stage: The stage where the prim exists. Defaults to None, in which case the current stage is used. """ # check if prim is valid if not prim.IsValid(): raise ValueError(f"Prim at path '{prim.GetPrimAtPath()}' is not valid.") # iterate over all prims under prim-path all_prims = [prim] while len(all_prims) > 0: # get current prim child_prim = all_prims.pop(0) # check if it is physics body -> if so, remove it if child_prim.HasAPI(UsdPhysics.ArticulationRootAPI): child_prim.RemoveAPI(UsdPhysics.ArticulationRootAPI) child_prim.RemoveAPI(PhysxSchema.PhysxArticulationAPI) if child_prim.HasAPI(UsdPhysics.RigidBodyAPI): child_prim.RemoveAPI(UsdPhysics.RigidBodyAPI) child_prim.RemoveAPI(PhysxSchema.PhysxRigidBodyAPI) if child_prim.IsA(UsdPhysics.Joint): child_prim.GetAttribute("physics:jointEnabled").Set(False) # check if prim is instanced -> if so, make it uninstanceable if child_prim.IsInstance(): child_prim.SetInstanceable(False) # check if prim is a mesh -> if so, make it invisible to secondary rays if child_prim.IsA(UsdGeom.Gprim): # invisible to secondary rays such as depth images omni.kit.commands.execute( "ChangePropertyCommand", prop_path=Sdf.Path(f"{child_prim.GetPrimPath().pathString}.primvars:invisibleToSecondaryRays"), value=True, prev=None, type_to_create_if_not_exist=Sdf.ValueTypeNames.Bool, ) # add children to list all_prims += child_prim.GetChildren()
20,362
Python
48.787286
120
0.646646
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/markers/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package for marker utilities to simplify creation of UI elements in the GUI. Currently, the sub-package provides the following classes: * :class:`VisualizationMarkers` for creating a group of markers using `UsdGeom.PointInstancer <https://graphics.pixar.com/usd/dev/api/class_usd_geom_point_instancer.html>`_. .. note:: For some simple use-cases, it may be sufficient to use the debug drawing utilities from Isaac Sim. The debug drawing API is available in the `omni.isaac.debug_drawing`_ module. It allows drawing of points and splines efficiently on the UI. .. _omni.isaac.debug_drawing: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_debug_drawing.html """ from __future__ import annotations from .config import * # noqa: F401, F403 from .visualization_markers import VisualizationMarkers, VisualizationMarkersCfg
1,003
Python
34.857142
127
0.761715
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/markers/config/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.markers.visualization_markers import VisualizationMarkersCfg from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR ## # Sensors. ## RAY_CASTER_MARKER_CFG = VisualizationMarkersCfg( markers={ "hit": sim_utils.SphereCfg( radius=0.02, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ), }, ) """Configuration for the ray-caster marker.""" CONTACT_SENSOR_MARKER_CFG = VisualizationMarkersCfg( markers={ "contact": sim_utils.SphereCfg( radius=0.02, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ), "no_contact": sim_utils.SphereCfg( radius=0.02, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), visible=False, ), }, ) """Configuration for the contact sensor marker.""" ## # Frames. ## FRAME_MARKER_CFG = VisualizationMarkersCfg( markers={ "frame": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/frame_prim.usd", scale=(0.5, 0.5, 0.5), ) } ) """Configuration for the frame marker.""" RED_ARROW_X_MARKER_CFG = VisualizationMarkersCfg( markers={ "arrow": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/arrow_x.usd", scale=(1.0, 0.1, 0.1), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ) } ) """Configuration for the red arrow marker (along x-direction).""" BLUE_ARROW_X_MARKER_CFG = VisualizationMarkersCfg( markers={ "arrow": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/arrow_x.usd", scale=(1.0, 0.1, 0.1), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 0.0, 1.0)), ) } ) """Configuration for the blue arrow marker (along x-direction).""" GREEN_ARROW_X_MARKER_CFG = VisualizationMarkersCfg( markers={ "arrow": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/arrow_x.usd", scale=(1.0, 0.1, 0.1), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), ) } ) """Configuration for the green arrow marker (along x-direction).""" ## # Goals. ## CUBOID_MARKER_CFG = VisualizationMarkersCfg( markers={ "cuboid": sim_utils.CuboidCfg( size=(0.1, 0.1, 0.1), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ), } ) """Configuration for the cuboid marker.""" POSITION_GOAL_MARKER_CFG = VisualizationMarkersCfg( markers={ "target_far": sim_utils.SphereCfg( radius=0.01, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ), "target_near": sim_utils.SphereCfg( radius=0.01, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), ), "target_invisible": sim_utils.SphereCfg( radius=0.01, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 0.0, 1.0)), visible=False, ), } ) """Configuration for the end-effector tracking marker."""
3,547
Python
27.384
87
0.610939
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/docs/CHANGELOG.rst
Changelog --------- 0.15.10 (2024-04-11) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed sharing of the same memory address between returned tensors from observation terms in the :class:`omni.isaac.orbit.managers.ObservationManager` class. Earlier, the returned tensors could map to the same memory address, causing issues when the tensors were modified during scaling, clipping or other operations. 0.15.9 (2024-04-04) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed assignment of individual termination terms inside the :class:`omni.isaac.orbit.managers.TerminationManager` class. Earlier, the terms were being assigned their values through an OR operation which resulted in incorrect values. This regression was introduced in version 0.15.1. 0.15.8 (2024-04-02) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added option to define ordering of points for the mesh-grid generation in the :func:`omni.isaac.orbit.sensors.ray_caster.patterns.grid_pattern`. This parameter defaults to 'xy' for backward compatibility. 0.15.7 (2024-03-28) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Adds option to return indices/data in the specified query keys order in :class:`omni.isaac.orbit.managers.SceneEntityCfg` class, and the respective :func:`omni.isaac.orbit.utils.string.resolve_matching_names_values` and :func:`omni.isaac.orbit.utils.string.resolve_matching_names` functions. 0.15.6 (2024-03-28) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Extended the :class:`omni.isaac.orbit.app.AppLauncher` class to support the loading of experience files from the command line. This allows users to load a specific experience file when running the application (such as for multi-camera rendering or headless mode). Changed ^^^^^^^ * Changed default loading of experience files in the :class:`omni.isaac.orbit.app.AppLauncher` class from the ones provided by Isaac Sim to the ones provided in Orbit's ``source/apps`` directory. 0.15.5 (2024-03-23) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the env origins in :meth:`_compute_env_origins_grid` of :class:`omni.isaac.orbit.terrain.TerrainImporter` to match that obtained from the Isaac Sim :class:`omni.isaac.cloner.GridCloner` class. Added ^^^^^ * Added unit test to ensure consistency between environment origins generated by IsaacSim's Grid Cloner and those produced by the TerrainImporter. 0.15.4 (2024-03-22) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :class:`omni.isaac.orbit.envs.mdp.actions.NonHolonomicActionCfg` class to use the correct variable when applying actions. 0.15.3 (2024-03-21) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added unit test to check that :class:`omni.isaac.orbit.scene.InteractiveScene` entity data is not shared between separate instances. Fixed ^^^^^ * Moved class variables in :class:`omni.isaac.orbit.scene.InteractiveScene` to correctly be assigned as instance variables. * Removed custom ``__del__`` magic method from :class:`omni.isaac.orbit.scene.InteractiveScene`. 0.15.2 (2024-03-21) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added resolving of relative paths for the main asset USD file when using the :class:`omni.isaac.orbit.sim.converters.UrdfConverter` class. This is to ensure that the material paths are resolved correctly when the main asset file is moved to a different location. 0.15.1 (2024-03-19) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the imitation learning workflow example script, updating Orbit and Robomimic API calls. * Removed the resetting of :attr:`_term_dones` in the :meth:`omni.isaac.orbit.managers.TerminationManager.reset`. Previously, the environment cleared out all the terms. However, it impaired reading the specific term's values externally. 0.15.0 (2024-03-17) ~~~~~~~~~~~~~~~~~~~ Deprecated ^^^^^^^^^^ * Renamed :class:`omni.isaac.orbit.managers.RandomizationManager` to :class:`omni.isaac.orbit.managers.EventManager` class for clarification as the manager takes care of events such as reset in addition to pure randomizations. * Renamed :class:`omni.isaac.orbit.managers.RandomizationTermCfg` to :class:`omni.isaac.orbit.managers.EventTermCfg` for consistency with the class name change. 0.14.1 (2024-03-16) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added simulation schemas for joint drive and fixed tendons. These can be configured for assets imported from file formats. * Added logging of tendon properties to the articulation class (if they are present in the USD prim). 0.14.0 (2024-03-15) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the ordering of body names used in the :class:`omni.isaac.orbit.assets.Articulation` class. Earlier, the body names were not following the same ordering as the bodies in the articulation. This led to issues when using the body names to access data related to the links from the articulation view (such as Jacobians, mass matrices, etc.). Removed ^^^^^^^ * Removed the attribute :attr:`body_physx_view` from the :class:`omni.isaac.orbit.assets.RigidObject` and :class:`omni.isaac.orbit.assets.Articulation` classes. These were causing confusions when used with articulation view since the body names were not following the same ordering. 0.13.1 (2024-03-14) ~~~~~~~~~~~~~~~~~~~ Removed ^^^^^^^ * Removed the :mod:`omni.isaac.orbit.compat` module. This module was used to provide compatibility with older versions of Isaac Sim. It is no longer needed since we have most of the functionality absorbed into the main classes. 0.13.0 (2024-03-12) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added support for the following data types inside the :class:`omni.isaac.orbit.sensors.Camera` class: ``instance_segmentation_fast`` and ``instance_id_segmentation_fast``. These are are GPU-supported annotations and are faster than the regular annotations. Fixed ^^^^^ * Fixed handling of semantic filtering inside the :class:`omni.isaac.orbit.sensors.Camera` class. Earlier, the annotator was given ``semanticTypes`` as an argument. However, with Isaac Sim 2023.1, the annotator does not accept this argument. Instead the mapping needs to be set to the synthetic data interface directly. * Fixed the return shape of colored images for segmentation data types inside the :class:`omni.isaac.orbit.sensors.Camera` class. Earlier, the images were always returned as ``int32``. Now, they are casted to ``uint8`` 4-channel array before returning if colorization is enabled for the annotation type. Removed ^^^^^^^ * Dropped support for ``instance_segmentation`` and ``instance_id_segmentation`` annotations in the :class:`omni.isaac.orbit.sensors.Camera` class. Their "fast" counterparts should be used instead. * Renamed the argument :attr:`omni.isaac.orbit.sensors.CameraCfg.semantic_types` to :attr:`omni.isaac.orbit.sensors.CameraCfg.semantic_filter`. This is more aligned with Replicator's terminology for semantic filter predicates. * Replaced the argument :attr:`omni.isaac.orbit.sensors.CameraCfg.colorize` with separate colorized arguments for each annotation type (:attr:`~omni.isaac.orbit.sensors.CameraCfg.colorize_instance_segmentation`, :attr:`~omni.isaac.orbit.sensors.CameraCfg.colorize_instance_id_segmentation`, and :attr:`~omni.isaac.orbit.sensors.CameraCfg.colorize_semantic_segmentation`). 0.12.4 (2024-03-11) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Adapted randomization terms to deal with ``slice`` for the body indices. Earlier, the terms were not able to handle the slice object and were throwing an error. * Added ``slice`` type-hinting to all body and joint related methods in the rigid body and articulation classes. This is to make it clear that the methods can handle both list of indices and slices. 0.12.3 (2024-03-11) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added signal handler to the :class:`omni.isaac.orbit.app.AppLauncher` class to catch the ``SIGINT`` signal and close the application gracefully. This is to prevent the application from crashing when the user presses ``Ctrl+C`` to close the application. 0.12.2 (2024-03-10) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added observation terms for states of a rigid object in world frame. * Added randomization terms to set root state with randomized orientation and joint state within user-specified limits. * Added reward term for penalizing specific termination terms. Fixed ^^^^^ * Improved sampling of states inside randomization terms. Earlier, the code did multiple torch calls for sampling different components of the vector. Now, it uses a single call to sample the entire vector. 0.12.1 (2024-03-09) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added an option to the last actions observation term to get a specific term by name from the action manager. If None, the behavior remains the same as before (the entire action is returned). 0.12.0 (2024-03-08) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added functionality to sample flat patches on a generated terrain. This can be configured using :attr:`omni.isaac.orbit.terrains.SubTerrainBaseCfg.flat_patch_sampling` attribute. * Added a randomization function for setting terrain-aware root state. Through this, an asset can be reset to a randomly sampled flat patches. Fixed ^^^^^ * Separated normal and terrain-base position commands. The terrain based commands rely on the terrain to sample flat patches for setting the target position. * Fixed command resample termination function. Changed ^^^^^^^ * Added the attribute :attr:`omni.isaac.orbit.envs.mdp.commands.UniformVelocityCommandCfg.heading_control_stiffness` to control the stiffness of the heading control term in the velocity command term. Earlier, this was hard-coded to 0.5 inside the term. Removed ^^^^^^^ * Removed the function :meth:`sample_new_targets` in the terrain importer. Instead the attribute :attr:`omni.isaac.orbit.terrains.TerrainImporter.flat_patches` should be used to sample new targets. 0.11.3 (2024-03-04) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Corrects the functions :func:`omni.isaac.orbit.utils.math.axis_angle_from_quat` and :func:`omni.isaac.orbit.utils.math.quat_error_magnitude` to accept tensors of the form (..., 4) instead of (N, 4). This brings us in line with our documentation and also upgrades one of our functions to handle higher dimensions. 0.11.2 (2024-03-04) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added checks for default joint position and joint velocity in the articulation class. This is to prevent users from configuring values for these quantities that might be outside the valid range from the simulation. 0.11.1 (2024-02-29) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Replaced the default values for ``joint_ids`` and ``body_ids`` from ``None`` to ``slice(None)`` in the :class:`omni.isaac.orbit.managers.SceneEntityCfg`. * Adapted rewards and observations terms so that the users can query a subset of joints and bodies. 0.11.0 (2024-02-27) ~~~~~~~~~~~~~~~~~~~ Removed ^^^^^^^ * Dropped support for Isaac Sim<=2022.2. As part of this, removed the components of :class:`omni.isaac.orbit.app.AppLauncher` which handled ROS extension loading. We no longer need them in Isaac Sim>=2023.1 to control the load order to avoid crashes. * Upgraded Dockerfile to use ISAACSIM_VERSION=2023.1.1 by default. 0.10.28 (2024-02-29) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Implemented relative and moving average joint position action terms. These allow the user to specify the target joint positions as relative to the current joint positions or as a moving average of the joint positions over a window of time. 0.10.27 (2024-02-28) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added UI feature to start and stop animation recording in the stage when running an environment. To enable this feature, please pass the argument ``--disable_fabric`` to the environment script to allow USD read/write operations. Be aware that this will slow down the simulation. 0.10.26 (2024-02-26) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a viewport camera controller class to the :class:`omni.isaac.orbit.envs.BaseEnv`. This is useful for applications where the user wants to render the viewport from different perspectives even when the simulation is running in headless mode. 0.10.25 (2024-02-26) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Ensures that all path arguments in :mod:`omni.isaac.orbit.sim.utils` are cast to ``str``. Previously, we had handled path types as strings without casting. 0.10.24 (2024-02-26) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added tracking of contact time in the :class:`omni.isaac.orbit.sensors.ContactSensor` class. Previously, only the air time was being tracked. * Added contact force threshold, :attr:`omni.isaac.orbit.sensors.ContactSensorCfg.force_threshold`, to detect when the contact sensor is in contact. Previously, this was set to hard-coded 1.0 in the sensor class. 0.10.23 (2024-02-21) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixes the order of size arguments in :meth:`omni.isaac.orbit.terrains.height_field.random_uniform_terrain`. Previously, the function would crash if the size along x and y were not the same. 0.10.22 (2024-02-14) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed "divide by zero" bug in :class:`~omni.isaac.orbit.sim.SimulationContext` when setting gravity vector. Now, it is correctly disabled when the gravity vector is set to zero. 0.10.21 (2024-02-12) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the printing of articulation joint information when the articulation has only one joint. Earlier, the function was performing a squeeze operation on the tensor, which caused an error when trying to index the tensor of shape (1,). 0.10.20 (2024-02-12) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Adds :attr:`omni.isaac.orbit.sim.PhysxCfg.enable_enhanced_determinism` to enable improved determinism from PhysX. Please note this comes at the expense of performance. 0.10.19 (2024-02-08) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed environment closing so that articulations, objects, and sensors are cleared properly. 0.10.18 (2024-02-05) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Pinned :mod:`torch` version to 2.0.1 in the setup.py to keep parity version of :mod:`torch` supplied by Isaac 2023.1.1, and prevent version incompatibility between :mod:`torch` ==2.2 and :mod:`typing-extensions` ==3.7.4.3 0.10.17 (2024-02-02) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^^ * Fixed carb setting ``/app/livestream/enabled`` to be set as False unless live-streaming is specified by :class:`omni.isaac.orbit.app.AppLauncher` settings. This fixes the logic of :meth:`SimulationContext.render`, which depended on the config in previous versions of Isaac defaulting to false for this setting. 0.10.16 (2024-01-29) ~~~~~~~~~~~~~~~~~~~~ Added ^^^^^^ * Added an offset parameter to the height scan observation term. This allows the user to specify the height offset of the scan from the tracked body. Previously it was hard-coded to be 0.5. 0.10.15 (2024-01-29) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed joint torque computation for implicit actuators. Earlier, the torque was always zero for implicit actuators. Now, it is computed approximately by applying the PD law. 0.10.14 (2024-01-22) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the tensor shape of :attr:`omni.isaac.orbit.sensors.ContactSensorData.force_matrix_w`. Earlier, the reshaping led to a mismatch with the data obtained from PhysX. 0.10.13 (2024-01-15) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed running of environments with a single instance even if the :attr:`replicate_physics`` flag is set to True. 0.10.12 (2024-01-10) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed indexing of source and target frames in the :class:`omni.isaac.orbit.sensors.FrameTransformer` class. Earlier, it always assumed that the source frame body is at index 0. Now, it uses the body index of the source frame to compute the transformation. Deprecated ^^^^^^^^^^ * Renamed quantities in the :class:`omni.isaac.orbit.sensors.FrameTransformerData` class to be more consistent with the terminology used in the asset classes. The following quantities are deprecated: * ``target_rot_w`` -> ``target_quat_w`` * ``source_rot_w`` -> ``source_quat_w`` * ``target_rot_source`` -> ``target_quat_source`` 0.10.11 (2024-01-08) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed attribute error raised when calling the :class:`omni.isaac.orbit.envs.mdp.TerrainBasedPositionCommand` command term. * Added a dummy function in :class:`omni.isaac.orbit.terrain.TerrainImporter` that returns environment origins as terrain-aware sampled targets. This function should be implemented by child classes based on the terrain type. 0.10.10 (2023-12-21) ~~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed reliance on non-existent ``Viewport`` in :class:`omni.isaac.orbit.sim.SimulationContext` when loading livestreaming by ensuring that the extension ``omni.kit.viewport.window`` is enabled in :class:`omni.isaac.orbit.app.AppLauncher` when livestreaming is enabled 0.10.9 (2023-12-21) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed invalidation of physics views inside the asset and sensor classes. Earlier, they were left initialized even when the simulation was stopped. This caused issues when closing the application. 0.10.8 (2023-12-20) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :class:`omni.isaac.orbit.envs.mdp.actions.DifferentialInverseKinematicsAction` class to account for the offset pose of the end-effector. 0.10.7 (2023-12-19) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added a check to ray-cast and camera sensor classes to ensure that the sensor prim path does not have a regex expression at its leaf. For instance, ``/World/Robot/camera_.*`` is not supported for these sensor types. This behavior needs to be fixed in the future. 0.10.6 (2023-12-19) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added support for using articulations as visualization markers. This disables all physics APIs from the articulation and allows the user to use it as a visualization marker. It is useful for creating visualization markers for the end-effectors or base of the robot. Fixed ^^^^^ * Fixed hiding of debug markers from secondary images when using the :class:`omni.isaac.orbit.markers.VisualizationMarkers` class. Earlier, the properties were applied on the XForm prim instead of the Mesh prim. 0.10.5 (2023-12-18) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed test ``check_base_env_anymal_locomotion.py``, which previously called :func:`torch.jit.load` with the path to a policy (which would work for a local file), rather than calling :func:`omni.isaac.orbit.utils.assets.read_file` on the path to get the file itself. 0.10.4 (2023-12-14) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed potentially breaking import of omni.kit.widget.toolbar by ensuring that if live-stream is enabled, then the :mod:`omni.kit.widget.toolbar` extension is loaded. 0.10.3 (2023-12-12) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the attribute :attr:`omni.isaac.orbit.actuators.ActuatorNetMLPCfg.input_order` to specify the order of the input tensors to the MLP network. Fixed ^^^^^ * Fixed computation of metrics for the velocity command term. Earlier, the norm was being computed over the entire batch instead of the last dimension. * Fixed the clipping inside the :class:`omni.isaac.orbit.actuators.DCMotor` class. Earlier, it was not able to handle the case when configured saturation limit was set to None. 0.10.2 (2023-12-12) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added a check in the simulation stop callback in the :class:`omni.isaac.orbit.sim.SimulationContext` class to not render when an exception is raised. The while loop in the callback was preventing the application from closing when an exception was raised. 0.10.1 (2023-12-06) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added command manager class with terms defined by :class:`omni.isaac.orbit.managers.CommandTerm`. This allow for multiple types of command generators to be used in the same environment. 0.10.0 (2023-12-04) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Modified the sensor and asset base classes to use the underlying PhysX views instead of Isaac Sim views. Using Isaac Sim classes led to a very high load time (of the order of minutes) when using a scene with many assets. This is because Isaac Sim supports USD paths which are slow and not required. Added ^^^^^ * Added faster implementation of USD stage traversal methods inside the :class:`omni.isaac.orbit.sim.utils` module. * Added properties :attr:`omni.isaac.orbit.assets.AssetBase.num_instances` and :attr:`omni.isaac.orbit.sensor.SensorBase.num_instances` to obtain the number of instances of the asset or sensor in the simulation respectively. Removed ^^^^^^^ * Removed dependencies on Isaac Sim view classes. It is no longer possible to use :attr:`root_view` and :attr:`body_view`. Instead use :attr:`root_physx_view` and :attr:`body_physx_view` to access the underlying PhysX views. 0.9.55 (2023-12-03) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the Nucleus directory path in the :attr:`omni.isaac.orbit.utils.assets.NVIDIA_NUCLEUS_DIR`. Earlier, it was referring to the ``NVIDIA/Assets`` directory instead of ``NVIDIA``. 0.9.54 (2023-11-29) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed pose computation in the :class:`omni.isaac.orbit.sensors.Camera` class to obtain them from XFormPrimView instead of using ``UsdGeomCamera.ComputeLocalToWorldTransform`` method. The latter is not updated correctly during GPU simulation. * Fixed initialization of the annotator info in the class :class:`omni.isaac.orbit.sensors.Camera`. Previously all dicts had the same memory address which caused all annotators to have the same info. * Fixed the conversion of ``uint32`` warp arrays inside the :meth:`omni.isaac.orbit.utils.array.convert_to_torch` method. PyTorch does not support this type, so it is converted to ``int32`` before converting to PyTorch tensor. * Added render call inside :meth:`omni.isaac.orbit.sim.SimulationContext.reset` to initialize Replicator buffers when the simulation is reset. 0.9.53 (2023-11-29) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the behavior of passing :obj:`None` to the :class:`omni.isaac.orbit.actuators.ActuatorBaseCfg` class. Earlier, they were resolved to fixed default values. Now, they imply that the values are loaded from the USD joint drive configuration. Added ^^^^^ * Added setting of joint armature and friction quantities to the articulation class. 0.9.52 (2023-11-29) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the warning print in :meth:`omni.isaac.orbit.sim.utils.apply_nested` method to be more descriptive. Earlier, it was printing a warning for every instanced prim. Now, it only prints a warning if it could not apply the attribute to any of the prims. Added ^^^^^ * Added the method :meth:`omni.isaac.orbit.utils.assets.retrieve_file_path` to obtain the absolute path of a file on the Nucleus server or locally. Fixed ^^^^^ * Fixed hiding of STOP button in the :class:`AppLauncher` class when running the simulation in headless mode. * Fixed a bug with :meth:`omni.isaac.orbit.sim.utils.clone` failing when the input prim path had no parent (example: "/Table"). 0.9.51 (2023-11-29) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the :meth:`omni.isaac.orbit.sensor.SensorBase.update` method to always recompute the buffers if the sensor is in visualization mode. Added ^^^^^ * Added available entities to the error message when accessing a non-existent entity in the :class:`InteractiveScene` class. * Added a warning message when the user tries to reference an invalid prim in the :class:`FrameTransformer` sensor. 0.9.50 (2023-11-28) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Hid the ``STOP`` button in the UI when running standalone Python scripts. This is to prevent users from accidentally clicking the button and stopping the simulation. They should only be able to play and pause the simulation from the UI. Removed ^^^^^^^ * Removed :attr:`omni.isaac.orbit.sim.SimulationCfg.shutdown_app_on_stop`. The simulation is always rendering if it is stopped from the UI. The user needs to close the window or press ``Ctrl+C`` to close the simulation. 0.9.49 (2023-11-27) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added an interface class, :class:`omni.isaac.orbit.managers.ManagerTermBase`, to serve as the parent class for term implementations that are functional classes. * Adapted all managers to support terms that are classes and not just functions clearer. This allows the user to create more complex terms that require additional state information. 0.9.48 (2023-11-24) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed initialization of drift in the :class:`omni.isaac.orbit.sensors.RayCasterCamera` class. 0.9.47 (2023-11-24) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Automated identification of the root prim in the :class:`omni.isaac.orbit.assets.RigidObject` and :class:`omni.isaac.orbit.assets.Articulation` classes. Earlier, the root prim was hard-coded to the spawn prim path. Now, the class searches for the root prim under the spawn prim path. 0.9.46 (2023-11-24) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed a critical issue in the asset classes with writing states into physics handles. Earlier, the states were written over all the indices instead of the indices of the asset that were being updated. This caused the physics handles to refresh the states of all the assets in the scene, which is not desirable. 0.9.45 (2023-11-24) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added :class:`omni.isaac.orbit.command_generators.UniformPoseCommandGenerator` to generate poses in the asset's root frame by uniformly sampling from a given range. 0.9.44 (2023-11-16) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added methods :meth:`reset` and :meth:`step` to the :class:`omni.isaac.orbit.envs.BaseEnv`. This unifies the environment interface for simple standalone applications with the class. 0.9.43 (2023-11-16) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Replaced subscription of physics play and stop events in the :class:`omni.isaac.orbit.assets.AssetBase` and :class:`omni.isaac.orbit.sensors.SensorBase` classes with subscription to time-line play and stop events. This is to prevent issues in cases where physics first needs to perform mesh cooking and handles are not available immediately. For instance, with deformable meshes. 0.9.42 (2023-11-16) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed setting of damping values from the configuration for :class:`ActuatorBase` class. Earlier, the stiffness values were being set into damping when a dictionary configuration was passed to the actuator model. * Added dealing with :class:`int` and :class:`float` values in the configurations of :class:`ActuatorBase`. Earlier, a type-error was thrown when integer values were passed to the actuator model. 0.9.41 (2023-11-16) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the naming and shaping issues in the binary joint action term. 0.9.40 (2023-11-09) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Simplified the manual initialization of Isaac Sim :class:`ArticulationView` class. Earlier, we basically copied the code from the Isaac Sim source code. Now, we just call their initialize method. Changed ^^^^^^^ * Changed the name of attribute :attr:`default_root_state_w` to :attr:`default_root_state`. The latter is more correct since the data is actually in the local environment frame and not the simulation world frame. 0.9.39 (2023-11-08) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Changed the reference of private ``_body_view`` variable inside the :class:`RigidObject` class to the public ``body_view`` property. For a rigid object, the private variable is not defined. 0.9.38 (2023-11-07) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Upgraded the :class:`omni.isaac.orbit.envs.RLTaskEnv` class to support Gym 0.29.0 environment definition. Added ^^^^^ * Added computation of ``time_outs`` and ``terminated`` signals inside the termination manager. These follow the definition mentioned in `Gym 0.29.0 <https://gymnasium.farama.org/tutorials/gymnasium_basics/handling_time_limits/>`_. * Added proper handling of observation and action spaces in the :class:`omni.isaac.orbit.envs.RLTaskEnv` class. These now follow closely to how Gym VecEnv handles the spaces. 0.9.37 (2023-11-06) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed broken visualization in :mod:`omni.isaac.orbit.sensors.FrameTramsformer` class by overwriting the correct ``_debug_vis_callback`` function. * Moved the visualization marker configurations of sensors to their respective sensor configuration classes. This allows users to set these configurations from the configuration object itself. 0.9.36 (2023-11-03) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added explicit deleting of different managers in the :class:`omni.isaac.orbit.envs.BaseEnv` and :class:`omni.isaac.orbit.envs.RLTaskEnv` classes. This is required since deleting the managers is order-sensitive (many managers need to be deleted before the scene is deleted). 0.9.35 (2023-11-02) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the error: ``'str' object has no attribute '__module__'`` introduced by adding the future import inside the :mod:`omni.isaac.orbit.utils.warp.kernels` module. Warp language does not support the ``__future__`` imports. 0.9.34 (2023-11-02) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added missing import of ``from __future__ import annotations`` in the :mod:`omni.isaac.orbit.utils.warp` module. This is needed to have a consistent behavior across Python versions. 0.9.33 (2023-11-02) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :class:`omni.isaac.orbit.command_generators.NullCommandGenerator` class. Earlier, it was having a runtime error due to infinity in the resampling time range. Now, the class just overrides the parent methods to perform no operations. 0.9.32 (2023-11-02) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Renamed the :class:`omni.isaac.orbit.envs.RLEnv` class to :class:`omni.isaac.orbit.envs.RLTaskEnv` to avoid confusions in terminologies between environments and tasks. 0.9.31 (2023-11-02) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`omni.isaac.orbit.sensors.RayCasterCamera` class, as a ray-casting based camera for "distance_to_camera", "distance_to_image_plane" and "normals" annotations. It has the same interface and functionalities as the USD Camera while it is on average 30% faster. 0.9.30 (2023-11-01) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added skipping of None values in the :class:`InteractiveScene` class when creating the scene from configuration objects. Earlier, it was throwing an error when the user passed a None value for a scene element. * Added ``kwargs`` to the :class:`RLEnv` class to allow passing additional arguments from gym registry function. This is now needed since the registry function passes args beyond the ones specified in the constructor. 0.9.29 (2023-11-01) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the material path resolution inside the :class:`omni.isaac.orbit.sim.converters.UrdfConverter` class. With Isaac Sim 2023.1, the material paths from the importer are always saved as absolute paths. This caused issues when the generated USD file was moved to a different location. The fix now resolves the material paths relative to the USD file location. 0.9.28 (2023-11-01) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the way the :func:`omni.isaac.orbit.sim.spawners.from_files.spawn_ground_plane` function sets the height of the ground. Earlier, it was reading the height from the configuration object. Now, it expects the desired transformation as inputs to the function. This makes it consistent with the other spawner functions. 0.9.27 (2023-10-31) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Removed the default value of the argument ``camel_case`` in setters of USD attributes. This is to avoid confusion with the naming of the attributes in the USD file. Fixed ^^^^^ * Fixed the selection of material prim in the :class:`omni.isaac.orbit.sim.spawners.materials.spawn_preview_surface` method. Earlier, the created prim was being selected in the viewport which interfered with the selection of prims by the user. * Updated :class:`omni.isaac.orbit.sim.converters.MeshConverter` to use a different stage than the default stage for the conversion. This is to avoid the issue of the stage being closed when the conversion is done. 0.9.26 (2023-10-31) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the sensor implementation for :class:`omni.isaac.orbit.sensors.FrameTransformer` class. Currently, it handles obtaining the transformation between two frames in the same articulation. 0.9.25 (2023-10-27) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :mod:`omni.isaac.orbit.envs.ui` module to put all the UI-related classes in one place. This currently implements the :class:`omni.isaac.orbit.envs.ui.BaseEnvWindow` and :class:`omni.isaac.orbit.envs.ui.RLEnvWindow` classes. Users can inherit from these classes to create their own UI windows. * Added the attribute :attr:`omni.isaac.orbit.envs.BaseEnvCfg.ui_window_class_type` to specify the UI window class to be used for the environment. This allows the user to specify their own UI window class to be used for the environment. 0.9.24 (2023-10-27) ~~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the behavior of setting up debug visualization for assets, sensors and command generators. Earlier it was raising an error if debug visualization was not enabled in the configuration object. Now it checks whether debug visualization is implemented and only sets up the callback if it is implemented. 0.9.23 (2023-10-27) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed a typo in the :class:`AssetBase` and :class:`SensorBase` that effected the class destructor. Earlier, a tuple was being created in the constructor instead of the actual object. 0.9.22 (2023-10-26) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a :class:`omni.isaac.orbit.command_generators.NullCommandGenerator` class for no command environments. This is easier to work with than having checks for :obj:`None` in the command generator. Fixed ^^^^^ * Moved the randomization manager to the :class:`omni.isaac.orbit.envs.BaseEnv` class with the default settings to reset the scene to the defaults specified in the configurations of assets. * Moved command generator to the :class:`omni.isaac.orbit.envs.RlEnv` class to have all task-specification related classes in the same place. 0.9.21 (2023-10-26) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Decreased the priority of callbacks in asset and sensor base classes. This may help in preventing crashes when warm starting the simulation. * Fixed no rendering mode when running the environment from the GUI. Earlier the function :meth:`SimulationContext.set_render_mode` was erroring out. 0.9.20 (2023-10-25) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Changed naming in :class:`omni.isaac.orbit.sim.SimulationContext.RenderMode` to use ``NO_GUI_OR_RENDERING`` and ``NO_RENDERING`` instead of ``HEADLESS`` for clarity. * Changed :class:`omni.isaac.orbit.sim.SimulationContext` to be capable of handling livestreaming and offscreen rendering. * Changed :class:`omni.isaac.orbit.app.AppLauncher` envvar ``VIEWPORT_RECORD`` to the more descriptive ``OFFSCREEN_RENDER``. 0.9.19 (2023-10-25) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added Gym observation and action spaces for the :class:`omni.isaac.orbit.envs.RLEnv` class. 0.9.18 (2023-10-23) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Created :class:`omni.issac.orbit.sim.converters.asset_converter.AssetConverter` to serve as a base class for all asset converters. * Added :class:`omni.issac.orbit.sim.converters.mesh_converter.MeshConverter` to handle loading and conversion of mesh files (OBJ, STL and FBX) into USD format. * Added script ``convert_mesh.py`` to ``source/tools`` to allow users to convert a mesh to USD via command line arguments. Changed ^^^^^^^ * Renamed the submodule :mod:`omni.isaac.orbit.sim.loaders` to :mod:`omni.isaac.orbit.sim.converters` to be more general with the functionality of the module. * Updated ``check_instanceable.py`` script to convert relative paths to absolute paths. 0.9.17 (2023-10-22) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added setters and getters for term configurations in the :class:`RandomizationManager`, :class:`RewardManager` and :class:`TerminationManager` classes. This allows the user to modify the term configurations after the manager has been created. * Added the method :meth:`compute_group` to the :class:`omni.isaac.orbit.managers.ObservationManager` class to compute the observations for only a given group. * Added the curriculum term for modifying reward weights after certain environment steps. 0.9.16 (2023-10-22) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added support for keyword arguments for terms in the :class:`omni.isaac.orbit.managers.ManagerBase`. Fixed ^^^^^ * Fixed resetting of buffers in the :class:`TerminationManager` class. Earlier, the values were being set to ``0.0`` instead of ``False``. 0.9.15 (2023-10-22) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added base yaw heading and body acceleration into :class:`omni.isaac.orbit.assets.RigidObjectData` class. These quantities are computed inside the :class:`RigidObject` class. Fixed ^^^^^ * Fixed the :meth:`omni.isaac.orbit.assets.RigidObject.set_external_force_and_torque` method to correctly deal with the body indices. * Fixed a bug in the :meth:`omni.isaac.orbit.utils.math.wrap_to_pi` method to prevent self-assignment of the input tensor. 0.9.14 (2023-10-21) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added 2-D drift (i.e. along x and y) to the :class:`omni.isaac.orbit.sensors.RayCaster` class. * Added flags to the :class:`omni.isaac.orbit.sensors.ContactSensorCfg` to optionally obtain the sensor origin and air time information. Since these are not required by default, they are disabled by default. Fixed ^^^^^ * Fixed the handling of contact sensor history buffer in the :class:`omni.isaac.orbit.sensors.ContactSensor` class. Earlier, the buffer was not being updated correctly. 0.9.13 (2023-10-20) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the issue with double :obj:`Ellipsis` when indexing tensors with multiple dimensions. The fix now uses :obj:`slice(None)` instead of :obj:`Ellipsis` to index the tensors. 0.9.12 (2023-10-18) ~~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed bugs in actuator model implementation for actuator nets. Earlier the DC motor clipping was not working. * Fixed bug in applying actuator model in the :class:`omni.isaac.orbit.asset.Articulation` class. The new implementation caches the outputs from explicit actuator model into the ``joint_pos_*_sim`` buffer to avoid feedback loops in the tensor operation. 0.9.11 (2023-10-17) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the support for semantic tags into the :class:`omni.isaac.orbit.sim.spawner.SpawnerCfg` class. This allows the user to specify the semantic tags for a prim when spawning it into the scene. It follows the same format as Omniverse Replicator. 0.9.10 (2023-10-16) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added ``--livestream`` and ``--ros`` CLI args to :class:`omni.isaac.orbit.app.AppLauncher` class. * Added a static function :meth:`omni.isaac.orbit.app.AppLauncher.add_app_launcher_args`, which appends the arguments needed for :class:`omni.isaac.orbit.app.AppLauncher` to the argument parser. Changed ^^^^^^^ * Within :class:`omni.isaac.orbit.app.AppLauncher`, removed ``REMOTE_DEPLOYMENT`` env-var processing in the favor of ``HEADLESS`` and ``LIVESTREAM`` env-vars. These have clearer uses and better parity with the CLI args. 0.9.9 (2023-10-12) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the property :attr:`omni.isaac.orbit.assets.Articulation.is_fixed_base` to the articulation class to check if the base of the articulation is fixed or floating. * Added the task-space action term corresponding to the differential inverse-kinematics controller. Fixed ^^^^^ * Simplified the :class:`omni.isaac.orbit.controllers.DifferentialIKController` to assume that user provides the correct end-effector poses and Jacobians. Earlier it was doing internal frame transformations which made the code more complicated and error-prone. 0.9.8 (2023-09-30) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the boundedness of class objects that register callbacks into the simulator. These include devices, :class:`AssetBase`, :class:`SensorBase` and :class:`CommandGenerator`. The fix ensures that object gets deleted when the user deletes the object. 0.9.7 (2023-09-26) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Modified the :class:`omni.isaac.orbit.markers.VisualizationMarkers` to use the :class:`omni.isaac.orbit.sim.spawner.SpawnerCfg` class instead of their own configuration objects. This makes it consistent with the other ways to spawn assets in the scene. Added ^^^^^ * Added the method :meth:`copy` to configclass to allow copying of configuration objects. 0.9.6 (2023-09-26) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Changed class-level configuration classes to refer to class types using ``class_type`` attribute instead of ``cls`` or ``cls_name``. 0.9.5 (2023-09-25) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Added future import of ``annotations`` to have a consistent behavior across Python versions. * Removed the type-hinting from docstrings to simplify maintenance of the documentation. All type-hints are now in the code itself. 0.9.4 (2023-08-29) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added :class:`omni.isaac.orbit.scene.InteractiveScene`, as the central scene unit that contains all entities that are part of the simulation. These include the terrain, sensors, articulations, rigid objects etc. The scene groups the common operations of these entities and allows to access them via their unique names. * Added :mod:`omni.isaac.orbit.envs` module that contains environment definitions that encapsulate the different general (scene, action manager, observation manager) and RL-specific (reward and termination manager) managers. * Added :class:`omni.isaac.orbit.managers.SceneEntityCfg` to handle which scene elements are required by the manager's terms. This allows the manager to parse useful information from the scene elements, such as the joint and body indices, and pass them to the term. * Added :class:`omni.isaac.orbit.sim.SimulationContext.RenderMode` to handle different rendering modes based on what the user wants to update (viewport, cameras, or UI elements). Fixed ^^^^^ * Fixed the :class:`omni.isaac.orbit.command_generators.CommandGeneratorBase` to register a debug visualization callback similar to how sensors and robots handle visualization. 0.9.3 (2023-08-23) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Enabled the `faulthander <https://docs.python.org/3/library/faulthandler.html>`_ to catch segfaults and print the stack trace. This is enabled by default in the :class:`omni.isaac.orbit.app.AppLauncher` class. Fixed ^^^^^ * Re-added the :mod:`omni.isaac.orbit.utils.kit` to the ``compat`` directory and fixed all the references to it. * Fixed the deletion of Replicator nodes for the :class:`omni.isaac.orbit.sensors.Camera` class. Earlier, the Replicator nodes were not being deleted when the camera was deleted. However, this does not prevent the random crashes that happen when the camera is deleted. * Fixed the :meth:`omni.isaac.orbit.utils.math.convert_quat` to support both numpy and torch tensors. Changed ^^^^^^^ * Renamed all the scripts inside the ``test`` directory to follow the convention: * ``test_<module_name>.py``: Tests for the module ``<module_name>`` using unittest. * ``check_<module_name>``: Check for the module ``<module_name>`` using python main function. 0.9.2 (2023-08-22) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the ability to color meshes in the :class:`omni.isaac.orbit.terrain.TerrainGenerator` class. Currently, it only supports coloring the mesh randomly (``"random"``), based on the terrain height (``"height"``), and no coloring (``"none"``). Fixed ^^^^^ * Modified the :class:`omni.isaac.orbit.terrain.TerrainImporter` class to configure visual and physics materials based on the configuration object. 0.9.1 (2023-08-18) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Introduced three different rotation conventions in the :class:`omni.isaac.orbit.sensors.Camera` class. These conventions are: * ``opengl``: the camera is looking down the -Z axis with the +Y axis pointing up * ``ros``: the camera is looking down the +Z axis with the +Y axis pointing down * ``world``: the camera is looking along the +X axis with the -Z axis pointing down These can be used to declare the camera offset in :class:`omni.isaac.orbit.sensors.CameraCfg.OffsetCfg` class and in :meth:`omni.isaac.orbit.sensors.Camera.set_world_pose` method. Additionally, all conventions are saved to :class:`omni.isaac.orbit.sensors.CameraData` class for easy access. Changed ^^^^^^^ * Adapted all the sensor classes to follow a structure similar to the :class:`omni.issac.orbit.assets.AssetBase`. Hence, the spawning and initialization of sensors manually by the users is avoided. * Removed the :meth:`debug_vis` function since that this functionality is handled by a render callback automatically (based on the passed configuration for the :class:`omni.isaac.orbit.sensors.SensorBaseCfg.debug_vis` flag). 0.9.0 (2023-08-18) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Introduces a new set of asset interfaces. These interfaces simplify the spawning of assets into the scene and initializing the physics handle by putting that inside post-startup physics callbacks. With this, users no longer need to worry about the :meth:`spawn` and :meth:`initialize` calls. * Added utility methods to :mod:`omni.isaac.orbit.utils.string` module that resolve regex expressions based on passed list of target keys. Changed ^^^^^^^ * Renamed all references of joints in an articulation from "dof" to "joint". This makes it consistent with the terminology used in robotics. Deprecated ^^^^^^^^^^ * Removed the previous modules for objects and robots. Instead the :class:`Articulation` and :class:`RigidObject` should be used. 0.8.12 (2023-08-18) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added other properties provided by ``PhysicsScene`` to the :class:`omni.isaac.orbit.sim.SimulationContext` class to allow setting CCD, solver iterations, etc. * Added commonly used functions to the :class:`SimulationContext` class itself to avoid having additional imports from Isaac Sim when doing simple tasks such as setting camera view or retrieving the simulation settings. Fixed ^^^^^ * Switched the notations of default buffer values in :class:`omni.isaac.orbit.sim.PhysxCfg` from multiplication to scientific notation to avoid confusion with the values. 0.8.11 (2023-08-18) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Adds utility functions and configuration objects in the :mod:`omni.isaac.orbit.sim.spawners` to create the following prims in the scene: * :mod:`omni.isaac.orbit.sim.spawners.from_file`: Create a prim from a USD/URDF file. * :mod:`omni.isaac.orbit.sim.spawners.shapes`: Create USDGeom prims for shapes (box, sphere, cylinder, capsule, etc.). * :mod:`omni.isaac.orbit.sim.spawners.materials`: Create a visual or physics material prim. * :mod:`omni.isaac.orbit.sim.spawners.lights`: Create a USDLux prim for different types of lights. * :mod:`omni.isaac.orbit.sim.spawners.sensors`: Create a USD prim for supported sensors. Changed ^^^^^^^ * Modified the :class:`SimulationContext` class to take the default physics material using the material spawn configuration object. 0.8.10 (2023-08-17) ~~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added methods for defining different physics-based schemas in the :mod:`omni.isaac.orbit.sim.schemas` module. These methods allow creating the schema if it doesn't exist at the specified prim path and modify its properties based on the configuration object. 0.8.9 (2023-08-09) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Moved the :class:`omni.isaac.orbit.asset_loader.UrdfLoader` class to the :mod:`omni.isaac.orbit.sim.loaders` module to make it more accessible to the user. 0.8.8 (2023-08-09) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added configuration classes and functions for setting different physics-based schemas in the :mod:`omni.isaac.orbit.sim.schemas` module. These allow modifying properties of the physics solver on the asset using configuration objects. 0.8.7 (2023-08-03) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added support for `__post_init__ <https://docs.python.org/3/library/dataclasses.html#post-init-processing>`_ in the :class:`omni.isaac.orbit.utils.configclass` decorator. 0.8.6 (2023-08-03) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added support for callable classes in the :class:`omni.isaac.orbit.managers.ManagerBase`. 0.8.5 (2023-08-03) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :class:`omni.isaac.orbit.markers.Visualizationmarkers` class so that the markers are not visible in camera rendering mode. Changed ^^^^^^^ * Simplified the creation of the point instancer in the :class:`omni.isaac.orbit.markers.Visualizationmarkers` class. It now creates a new prim at the next available prim path if a prim already exists at the given path. 0.8.4 (2023-08-02) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`omni.isaac.orbit.sim.SimulationContext` class to the :mod:`omni.isaac.orbit.sim` module. This class inherits from the :class:`omni.isaac.core.simulation_context.SimulationContext` class and adds the ability to create a simulation context from a configuration object. 0.8.3 (2023-08-02) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Moved the :class:`ActuatorBase` class to the :mod:`omni.isaac.orbit.actuators.actuator_base` module. * Renamed the :mod:`omni.isaac.orbit.actuators.actuator` module to :mod:`omni.isaac.orbit.actuators.actuator_pd` to make it more explicit that it contains the PD actuator models. 0.8.2 (2023-08-02) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Cleaned up the :class:`omni.isaac.orbit.terrain.TerrainImporter` class to take all the parameters from the configuration object. This makes it consistent with the other classes in the package. * Moved the configuration classes for terrain generator and terrain importer into separate files to resolve circular dependency issues. 0.8.1 (2023-08-02) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added a hack into :class:`omni.isaac.orbit.app.AppLauncher` class to remove orbit packages from the path before launching the simulation application. This prevents the warning messages that appears when the user launches the ``SimulationApp``. Added ^^^^^ * Enabled necessary viewport extensions in the :class:`omni.isaac.orbit.app.AppLauncher` class itself if ``VIEWPORT_ENABLED`` flag is true. 0.8.0 (2023-07-26) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`ActionManager` class to the :mod:`omni.isaac.orbit.managers` module to handle actions in the environment through action terms. * Added contact force history to the :class:`omni.isaac.orbit.sensors.ContactSensor` class. The history is stored in the ``net_forces_w_history`` attribute of the sensor data. Changed ^^^^^^^ * Implemented lazy update of buffers in the :class:`omni.isaac.orbit.sensors.SensorBase` class. This allows the user to update the sensor data only when required, i.e. when the data is requested by the user. This helps avoid double computation of sensor data when a reset is called in the environment. Deprecated ^^^^^^^^^^ * Removed the support for different backends in the sensor class. We only use Pytorch as the backend now. * Removed the concept of actuator groups. They are now handled by the :class:`omni.isaac.orbit.managers.ActionManager` class. The actuator models are now directly handled by the robot class itself. 0.7.4 (2023-07-26) ~~~~~~~~~~~~~~~~~~ Changed ^^^^^^^ * Changed the behavior of the :class:`omni.isaac.orbit.terrains.TerrainImporter` class. It now expects the terrain type to be specified in the configuration object. This allows the user to specify everything in the configuration object and not have to do an explicit call to import a terrain. Fixed ^^^^^ * Fixed setting of quaternion orientations inside the :class:`omni.isaac.orbit.markers.Visualizationmarkers` class. Earlier, the orientation was being set into the point instancer in the wrong order (``wxyz`` instead of ``xyzw``). 0.7.3 (2023-07-25) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the issue with multiple inheritance in the :class:`omni.isaac.orbit.utils.configclass` decorator. Earlier, if the inheritance tree was more than one level deep and the lowest level configuration class was not updating its values from the middle level classes. 0.7.2 (2023-07-24) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the method :meth:`replace` to the :class:`omni.isaac.orbit.utils.configclass` decorator to allow creating a new configuration object with values replaced from keyword arguments. This function internally calls the `dataclasses.replace <https://docs.python.org/3/library/dataclasses.html#dataclasses.replace>`_. Fixed ^^^^^ * Fixed the handling of class types as member values in the :meth:`omni.isaac.orbit.utils.configclass`. Earlier it was throwing an error since class types were skipped in the if-else block. 0.7.1 (2023-07-22) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`TerminationManager`, :class:`CurriculumManager`, and :class:`RandomizationManager` classes to the :mod:`omni.isaac.orbit.managers` module to handle termination, curriculum, and randomization respectively. 0.7.0 (2023-07-22) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Created a new :mod:`omni.isaac.orbit.managers` module for all the managers related to the environment / scene. This includes the :class:`omni.isaac.orbit.managers.ObservationManager` and :class:`omni.isaac.orbit.managers.RewardManager` classes that were previously in the :mod:`omni.isaac.orbit.utils.mdp` module. * Added the :class:`omni.isaac.orbit.managers.ManagerBase` class to handle the creation of managers. * Added configuration classes for :class:`ObservationTermCfg` and :class:`RewardTermCfg` to allow easy creation of observation and reward terms. Changed ^^^^^^^ * Changed the behavior of :class:`ObservationManager` and :class:`RewardManager` classes to accept the key ``func`` in each configuration term to be a callable. This removes the need to inherit from the base class and allows more reusability of the functions across different environments. * Moved the old managers to the :mod:`omni.isaac.orbit.compat.utils.mdp` module. * Modified the necessary scripts to use the :mod:`omni.isaac.orbit.compat.utils.mdp` module. 0.6.2 (2023-07-21) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :mod:`omni.isaac.orbit.command_generators` to generate different commands based on the desired task. It allows the user to generate commands for different tasks in the same environment without having to write custom code for each task. 0.6.1 (2023-07-16) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :meth:`omni.isaac.orbit.utils.math.quat_apply_yaw` to compute the yaw quaternion correctly. Added ^^^^^ * Added functions to convert string and callable objects in :mod:`omni.isaac.orbit.utils.string`. 0.6.0 (2023-07-16) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the argument :attr:`sort_keys` to the :meth:`omni.isaac.orbit.utils.io.yaml.dump_yaml` method to allow enabling/disabling of sorting of keys in the output yaml file. Fixed ^^^^^ * Fixed the ordering of terms in :mod:`omni.isaac.orbit.utils.configclass` to be consistent in the order in which they are defined. Previously, the ordering was done alphabetically which made it inconsistent with the order in which the parameters were defined. Changed ^^^^^^^ * Changed the default value of the argument :attr:`sort_keys` in the :meth:`omni.isaac.orbit.utils.io.yaml.dump_yaml` method to ``False``. * Moved the old config classes in :mod:`omni.isaac.orbit.utils.configclass` to :mod:`omni.isaac.orbit.compat.utils.configclass` so that users can still run their old code where alphabetical ordering was used. 0.5.0 (2023-07-04) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a generalized :class:`omni.isaac.orbit.sensors.SensorBase` class that leverages the ideas of views to handle multiple sensors in a single class. * Added the classes :class:`omni.isaac.orbit.sensors.RayCaster`, :class:`omni.isaac.orbit.sensors.ContactSensor`, and :class:`omni.isaac.orbit.sensors.Camera` that output a batched tensor of sensor data. Changed ^^^^^^^ * Renamed the parameter ``sensor_tick`` to ``update_freq`` to make it more intuitive. * Moved the old sensors in :mod:`omni.isaac.orbit.sensors` to :mod:`omni.isaac.orbit.compat.sensors`. * Modified the standalone scripts to use the :mod:`omni.isaac.orbit.compat.sensors` module. 0.4.4 (2023-07-05) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :meth:`omni.isaac.orbit.terrains.trimesh.utils.make_plane` method to handle the case when the plane origin does not need to be centered. * Added the :attr:`omni.isaac.orbit.terrains.TerrainGeneratorCfg.seed` to make generation of terrains reproducible. The default value is ``None`` which means that the seed is not set. Changed ^^^^^^^ * Changed the saving of ``origins`` in :class:`omni.isaac.orbit.terrains.TerrainGenerator` class to be in CSV format instead of NPY format. 0.4.3 (2023-06-28) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`omni.isaac.orbit.markers.PointInstancerMarker` class that wraps around `UsdGeom.PointInstancer <https://graphics.pixar.com/usd/dev/api/class_usd_geom_point_instancer.html>`_ to directly work with torch and numpy arrays. Changed ^^^^^^^ * Moved the old markers in :mod:`omni.isaac.orbit.markers` to :mod:`omni.isaac.orbit.compat.markers`. * Modified the standalone scripts to use the :mod:`omni.isaac.orbit.compat.markers` module. 0.4.2 (2023-06-28) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the sub-module :mod:`omni.isaac.orbit.terrains` to allow procedural generation of terrains and supporting importing of terrains from different sources (meshes, usd files or default ground plane). 0.4.1 (2023-06-27) ~~~~~~~~~~~~~~~~~~ * Added the :class:`omni.isaac.orbit.app.AppLauncher` class to allow controlled instantiation of the `SimulationApp <https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.kit/docs/index.html>`_ and extension loading for remote deployment and ROS bridges. Changed ^^^^^^^ * Modified all standalone scripts to use the :class:`omni.isaac.orbit.app.AppLauncher` class. 0.4.0 (2023-05-27) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a helper class :class:`omni.isaac.orbit.asset_loader.UrdfLoader` that converts a URDF file to instanceable USD file based on the input configuration object. 0.3.2 (2023-04-27) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added safe-printing of functions while using the :meth:`omni.isaac.orbit.utils.dict.print_dict` function. 0.3.1 (2023-04-23) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added a modified version of ``lula_franka_gen.urdf`` which includes an end-effector frame. * Added a standalone script ``play_rmpflow.py`` to show RMPFlow controller. Fixed ^^^^^ * Fixed the splitting of commands in the :meth:`ActuatorGroup.compute` method. Earlier it was reshaping the commands to the shape ``(num_actuators, num_commands)`` which was causing the commands to be split incorrectly. * Fixed the processing of actuator command in the :meth:`RobotBase._process_actuators_cfg` to deal with multiple command types when using "implicit" actuator group. 0.3.0 (2023-04-20) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Added the destructor to the keyboard devices to unsubscribe from carb. Added ^^^^^ * Added the :class:`Se2Gamepad` and :class:`Se3Gamepad` for gamepad teleoperation support. 0.2.8 (2023-04-10) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed bugs in :meth:`axis_angle_from_quat` in the ``omni.isaac.orbit.utils.math`` to handle quaternion with negative w component. * Fixed bugs in :meth:`subtract_frame_transforms` in the ``omni.isaac.orbit.utils.math`` by adding the missing final rotation. 0.2.7 (2023-04-07) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed repetition in applying mimic multiplier for "p_abs" in the :class:`GripperActuatorGroup` class. * Fixed bugs in :meth:`reset_buffers` in the :class:`RobotBase` and :class:`LeggedRobot` classes. 0.2.6 (2023-03-16) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added the :class:`CollisionPropertiesCfg` to rigid/articulated object and robot base classes. * Added the :class:`PhysicsMaterialCfg` to the :class:`SingleArm` class for tool sites. Changed ^^^^^^^ * Changed the default control mode of the :obj:`PANDA_HAND_MIMIC_GROUP_CFG` to be from ``"v_abs"`` to ``"p_abs"``. Using velocity control for the mimic group can cause the hand to move in a jerky manner. 0.2.5 (2023-03-08) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the indices used for the Jacobian and dynamics quantities in the :class:`MobileManipulator` class. 0.2.4 (2023-03-04) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added :meth:`apply_nested_physics_material` to the ``omni.isaac.orbit.utils.kit``. * Added the :meth:`sample_cylinder` to sample points from a cylinder's surface. * Added documentation about the issue in using instanceable asset as markers. Fixed ^^^^^ * Simplified the physics material application in the rigid object and legged robot classes. Removed ^^^^^^^ * Removed the ``geom_prim_rel_path`` argument in the :class:`RigidObjectCfg.MetaInfoCfg` class. 0.2.3 (2023-02-24) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the end-effector body index used for getting the Jacobian in the :class:`SingleArm` and :class:`MobileManipulator` classes. 0.2.2 (2023-01-27) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :meth:`set_world_pose_ros` and :meth:`set_world_pose_from_view` in the :class:`Camera` class. Deprecated ^^^^^^^^^^ * Removed the :meth:`set_world_pose_from_ypr` method from the :class:`Camera` class. 0.2.1 (2023-01-26) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed the :class:`Camera` class to support different fisheye projection types. 0.2.0 (2023-01-25) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added support for warp backend in camera utilities. * Extended the ``play_camera.py`` with ``--gpu`` flag to use GPU replicator backend. 0.1.1 (2023-01-24) ~~~~~~~~~~~~~~~~~~ Fixed ^^^^^ * Fixed setting of physics material on the ground plane when using :meth:`omni.isaac.orbit.utils.kit.create_ground_plane` function. 0.1.0 (2023-01-17) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Initial release of the extension with experimental API. * Available robot configurations: * **Quadrupeds:** Unitree A1, ANYmal B, ANYmal C * **Single-arm manipulators:** Franka Emika arm, UR5 * **Mobile manipulators:** Clearpath Ridgeback with Franka Emika arm or UR5
63,088
reStructuredText
29.820225
191
0.713337
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/docs/README.md
# Orbit: Framework Orbit includes its own set of interfaces and wrappers around Isaac Sim classes. One of the main goals behind this decision is to have a unified description for different systems. While isaac Sim tries to be general for a wider variety of simulation requires, our goal has been to specialize these for learning requirements. These include features such as augmenting simulators with non-ideal actuator models, managing different observation and reward settings, integrate different sensors, as well as provide interfaces to features that are currently not available in Isaac Sim but are available from the physics side (such as deformable bodies). We recommend the users to try out the demo scripts present in `standalone/demos` that display how different parts of the framework can be integrated together.
827
Markdown
67.999994
116
0.822249
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "0.1.2" # Description title = "ORBIT Assets" description="Extension containing configuration instances of different assets and sensors" readme = "docs/README.md" repository = "https://github.com/NVIDIA-Omniverse/Orbit" category = "robotics" keywords = ["kit", "robotics", "assets", "orbit"] [dependencies] "omni.isaac.orbit" = {} # Main python module this extension provides. [[python.module]] name = "omni.isaac.orbit_assets"
503
TOML
25.526314
90
0.73161
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/omni/isaac/orbit_assets/unitree.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for Unitree robots. The following configurations are available: * :obj:`UNITREE_A1_CFG`: Unitree A1 robot with DC motor model for the legs * :obj:`UNITREE_GO1_CFG`: Unitree Go1 robot with actuator net model for the legs * :obj:`UNITREE_GO2_CFG`: Unitree Go2 robot with DC motor model for the legs Reference: https://github.com/unitreerobotics/unitree_ros """ import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ActuatorNetMLPCfg, DCMotorCfg from omni.isaac.orbit.assets.articulation import ArticulationCfg from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR ## # Configuration - Actuators. ## GO1_ACTUATOR_CFG = ActuatorNetMLPCfg( joint_names_expr=[".*_hip_joint", ".*_thigh_joint", ".*_calf_joint"], network_file=f"{ISAAC_ORBIT_NUCLEUS_DIR}/ActuatorNets/Unitree/unitree_go1.pt", pos_scale=-1.0, vel_scale=1.0, torque_scale=1.0, input_order="pos_vel", input_idx=[0, 1, 2], effort_limit=23.7, # taken from spec sheet velocity_limit=30.0, # taken from spec sheet saturation_effort=23.7, # same as effort limit ) """Configuration of Go1 actuators using MLP model. Actuator specifications: https://shop.unitree.com/products/go1-motor This model is taken from: https://github.com/Improbable-AI/walk-these-ways """ ## # Configuration ## UNITREE_A1_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/Unitree/A1/a1.usd", activate_contact_sensors=True, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, retain_accelerations=False, linear_damping=0.0, angular_damping=0.0, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=1.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0 ), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.42), joint_pos={ ".*L_hip_joint": 0.1, ".*R_hip_joint": -0.1, "F[L,R]_thigh_joint": 0.8, "R[L,R]_thigh_joint": 1.0, ".*_calf_joint": -1.5, }, joint_vel={".*": 0.0}, ), soft_joint_pos_limit_factor=0.9, actuators={ "base_legs": DCMotorCfg( joint_names_expr=[".*_hip_joint", ".*_thigh_joint", ".*_calf_joint"], effort_limit=33.5, saturation_effort=33.5, velocity_limit=21.0, stiffness=25.0, damping=0.5, friction=0.0, ), }, ) """Configuration of Unitree A1 using DC motor. Note: Specifications taken from: https://www.trossenrobotics.com/a1-quadruped#specifications """ UNITREE_GO1_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/Unitree/Go1/go1.usd", activate_contact_sensors=True, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, retain_accelerations=False, linear_damping=0.0, angular_damping=0.0, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=1.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0 ), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.4), joint_pos={ ".*L_hip_joint": 0.1, ".*R_hip_joint": -0.1, "F[L,R]_thigh_joint": 0.8, "R[L,R]_thigh_joint": 1.0, ".*_calf_joint": -1.5, }, joint_vel={".*": 0.0}, ), soft_joint_pos_limit_factor=0.9, actuators={ "base_legs": GO1_ACTUATOR_CFG, }, ) """Configuration of Unitree Go1 using MLP-based actuator model.""" UNITREE_GO2_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/Unitree/Go2/go2.usd", activate_contact_sensors=True, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, retain_accelerations=False, linear_damping=0.0, angular_damping=0.0, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=1.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0 ), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.4), joint_pos={ ".*L_hip_joint": 0.1, ".*R_hip_joint": -0.1, "F[L,R]_thigh_joint": 0.8, "R[L,R]_thigh_joint": 1.0, ".*_calf_joint": -1.5, }, joint_vel={".*": 0.0}, ), soft_joint_pos_limit_factor=0.9, actuators={ "base_legs": DCMotorCfg( joint_names_expr=[".*_hip_joint", ".*_thigh_joint", ".*_calf_joint"], effort_limit=23.5, saturation_effort=23.5, velocity_limit=30.0, stiffness=25.0, damping=0.5, friction=0.0, ), }, ) """Configuration of Unitree Go2 using DC-Motor actuator model."""
5,691
Python
31.340909
111
0.601652
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/omni/isaac/orbit_assets/shadow_hand.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for the dexterous hand from Shadow Robot. The following configurations are available: * :obj:`SHADOW_HAND_CFG`: Shadow Hand with implicit actuator model. Reference: * https://www.shadowrobot.com/dexterous-hand-series/ """ from __future__ import annotations import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators.actuator_cfg import ImplicitActuatorCfg from omni.isaac.orbit.assets.articulation import ArticulationCfg from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR ## # Configuration ## SHADOW_HAND_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/ShadowHand/shadow_hand_instanceable.usd", activate_contact_sensors=False, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=True, retain_accelerations=True, max_depenetration_velocity=1000.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.0005, ), # collision_props=sim_utils.CollisionPropertiesCfg(contact_offset=0.005, rest_offset=0.0), joint_drive_props=sim_utils.JointDrivePropertiesCfg(drive_type="force"), fixed_tendons_props=sim_utils.FixedTendonPropertiesCfg(limit_stiffness=30.0, damping=0.1), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.5), rot=(0.0, 0.0, -0.7071, 0.7071), joint_pos={".*": 0.0}, ), actuators={ "fingers": ImplicitActuatorCfg( joint_names_expr=["robot0_WR.*", "robot0_(FF|MF|RF|LF|TH)J(3|2|1)", "robot0_(LF|TH)J4", "robot0_THJ0"], effort_limit={ "robot0_WRJ1": 4.785, "robot0_WRJ0": 2.175, "robot0_(FF|MF|RF|LF)J1": 0.7245, "robot0_FFJ(3|2)": 0.9, "robot0_MFJ(3|2)": 0.9, "robot0_RFJ(3|2)": 0.9, "robot0_LFJ(4|3|2)": 0.9, "robot0_THJ4": 2.3722, "robot0_THJ3": 1.45, "robot0_THJ(2|1)": 0.99, "robot0_THJ0": 0.81, }, stiffness={ "robot0_WRJ.*": 5.0, "robot0_(FF|MF|RF|LF|TH)J(3|2|1)": 1.0, "robot0_(LF|TH)J4": 1.0, "robot0_THJ0": 1.0, }, damping={ "robot0_WRJ.*": 0.5, "robot0_(FF|MF|RF|LF|TH)J(3|2|1)": 0.1, "robot0_(LF|TH)J4": 0.1, "robot0_THJ0": 0.1, }, ), }, soft_joint_pos_limit_factor=1.0, ) """Configuration of Shadow Hand robot."""
2,953
Python
32.954023
115
0.573315
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/omni/isaac/orbit_assets/sawyer.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for the Rethink Robotics arms. The following configuration parameters are available: * :obj:`SAWYER_CFG`: The Sawyer arm without any tool attached. Reference: https://github.com/RethinkRobotics/sawyer_robot """ import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.assets.articulation import ArticulationCfg from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR ## # Configuration ## SAWYER_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/RethinkRobotics/sawyer_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=5.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0 ), activate_contact_sensors=False, ), init_state=ArticulationCfg.InitialStateCfg( joint_pos={ "head_pan": 0.0, "right_j0": 0.0, "right_j1": -0.785, "right_j2": 0.0, "right_j3": 1.05, "right_j4": 0.0, "right_j5": 1.3, "right_j6": 0.0, }, ), actuators={ "head": ImplicitActuatorCfg( joint_names_expr=["head_pan"], velocity_limit=100.0, effort_limit=8.0, stiffness=800.0, damping=40.0, ), "arm": ImplicitActuatorCfg( joint_names_expr=["right_j[0-6]"], velocity_limit=100.0, effort_limit={ "right_j[0-1]": 80.0, "right_j[2-3]": 40.0, "right_j[4-6]": 9.0, }, stiffness=100.0, damping=4.0, ), }, ) """Configuration of Rethink Robotics Sawyer arm."""
2,083
Python
27.944444
110
0.590494
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/omni/isaac/orbit_assets/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Package containing asset and sensor configurations.""" import os import toml # Conveniences to other module directories via relative paths ORBIT_ASSETS_EXT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../")) """Path to the extension source directory.""" ORBIT_ASSETS_DATA_DIR = os.path.join(ORBIT_ASSETS_EXT_DIR, "data") """Path to the extension data directory.""" ORBIT_ASSETS_METADATA = toml.load(os.path.join(ORBIT_ASSETS_EXT_DIR, "config", "extension.toml")) """Extension metadata dictionary parsed from the extension.toml file.""" # Configure the module-level variables __version__ = ORBIT_ASSETS_METADATA["package"]["version"] ## # Configuration for different assets. ## from .allegro import * from .anymal import * from .cartpole import * from .franka import * from .kinova import * from .ridgeback_franka import * from .sawyer import * from .shadow_hand import * from .unitree import * from .universal_robots import *
1,243
Python
27.272727
97
0.736122
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/omni/isaac/orbit_assets/ridgeback_franka.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for the Ridgeback-Manipulation robots. The following configurations are available: * :obj:`RIDGEBACK_FRANKA_PANDA_CFG`: Clearpath Ridgeback base with Franka Emika arm Reference: https://github.com/ridgeback/ridgeback_manipulation """ import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.assets.articulation import ArticulationCfg from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR RIDGEBACK_FRANKA_PANDA_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Clearpath/RidgebackFranka/ridgeback_franka.usd", activate_contact_sensors=False, ), init_state=ArticulationCfg.InitialStateCfg( joint_pos={ # base "dummy_base_prismatic_y_joint": 0.0, "dummy_base_prismatic_x_joint": 0.0, "dummy_base_revolute_z_joint": 0.0, # franka arm "panda_joint1": 0.0, "panda_joint2": -0.569, "panda_joint3": 0.0, "panda_joint4": -2.810, "panda_joint5": 0.0, "panda_joint6": 3.037, "panda_joint7": 0.741, # tool "panda_finger_joint.*": 0.035, }, joint_vel={".*": 0.0}, ), actuators={ "base": ImplicitActuatorCfg( joint_names_expr=["dummy_base_.*"], velocity_limit=100.0, effort_limit=1000.0, stiffness=0.0, damping=1e5, ), "panda_shoulder": ImplicitActuatorCfg( joint_names_expr=["panda_joint[1-4]"], effort_limit=87.0, velocity_limit=100.0, stiffness=800.0, damping=40.0, ), "panda_forearm": ImplicitActuatorCfg( joint_names_expr=["panda_joint[5-7]"], effort_limit=12.0, velocity_limit=100.0, stiffness=800.0, damping=40.0, ), "panda_hand": ImplicitActuatorCfg( joint_names_expr=["panda_finger_joint.*"], effort_limit=200.0, velocity_limit=0.2, stiffness=1e5, damping=1e3, ), }, ) """Configuration of Franka arm with Franka Hand on a Clearpath Ridgeback base using implicit actuator models. The following control configuration is used: * Base: velocity control with damping * Arm: position control with damping (contains default position offsets) * Hand: mimic control """
2,651
Python
30.571428
109
0.599774
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/omni/isaac/orbit_assets/universal_robots.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for the Universal Robots. The following configuration parameters are available: * :obj:`UR10_CFG`: The UR10 arm without a gripper. Reference: https://github.com/ros-industrial/universal_robot """ import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.assets.articulation import ArticulationCfg from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR ## # Configuration ## UR10_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/UniversalRobots/UR10/ur10_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=5.0, ), activate_contact_sensors=False, ), init_state=ArticulationCfg.InitialStateCfg( joint_pos={ "shoulder_pan_joint": 0.0, "shoulder_lift_joint": -1.712, "elbow_joint": 1.712, "wrist_1_joint": 0.0, "wrist_2_joint": 0.0, "wrist_3_joint": 0.0, }, ), actuators={ "arm": ImplicitActuatorCfg( joint_names_expr=[".*"], velocity_limit=100.0, effort_limit=87.0, stiffness=800.0, damping=40.0, ), }, ) """Configuration of UR-10 arm using implicit actuator models."""
1,542
Python
27.054545
96
0.637484
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/omni/isaac/orbit_assets/franka.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for the Franka Emika robots. The following configurations are available: * :obj:`FRANKA_PANDA_CFG`: Franka Emika Panda robot with Panda hand * :obj:`FRANKA_PANDA_HIGH_PD_CFG`: Franka Emika Panda robot with Panda hand with stiffer PD control Reference: https://github.com/frankaemika/franka_ros """ import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.assets.articulation import ArticulationCfg from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR ## # Configuration ## FRANKA_PANDA_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/FrankaEmika/panda_instanceable.usd", activate_contact_sensors=False, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=5.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0 ), # collision_props=sim_utils.CollisionPropertiesCfg(contact_offset=0.005, rest_offset=0.0), ), init_state=ArticulationCfg.InitialStateCfg( joint_pos={ "panda_joint1": 0.0, "panda_joint2": -0.569, "panda_joint3": 0.0, "panda_joint4": -2.810, "panda_joint5": 0.0, "panda_joint6": 3.037, "panda_joint7": 0.741, "panda_finger_joint.*": 0.04, }, ), actuators={ "panda_shoulder": ImplicitActuatorCfg( joint_names_expr=["panda_joint[1-4]"], effort_limit=87.0, velocity_limit=2.175, stiffness=80.0, damping=4.0, ), "panda_forearm": ImplicitActuatorCfg( joint_names_expr=["panda_joint[5-7]"], effort_limit=12.0, velocity_limit=2.61, stiffness=80.0, damping=4.0, ), "panda_hand": ImplicitActuatorCfg( joint_names_expr=["panda_finger_joint.*"], effort_limit=200.0, velocity_limit=0.2, stiffness=2e3, damping=1e2, ), }, soft_joint_pos_limit_factor=1.0, ) """Configuration of Franka Emika Panda robot.""" FRANKA_PANDA_HIGH_PD_CFG = FRANKA_PANDA_CFG.copy() FRANKA_PANDA_HIGH_PD_CFG.spawn.rigid_props.disable_gravity = True FRANKA_PANDA_HIGH_PD_CFG.actuators["panda_shoulder"].stiffness = 400.0 FRANKA_PANDA_HIGH_PD_CFG.actuators["panda_shoulder"].damping = 80.0 FRANKA_PANDA_HIGH_PD_CFG.actuators["panda_forearm"].stiffness = 400.0 FRANKA_PANDA_HIGH_PD_CFG.actuators["panda_forearm"].damping = 80.0 """Configuration of Franka Emika Panda robot with stiffer PD control. This configuration is useful for task-space control using differential IK. """
3,036
Python
33.511363
110
0.64888
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/omni/isaac/orbit_assets/cartpole.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for a simple Cartpole robot.""" from __future__ import annotations import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.assets import ArticulationCfg from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR CARTPOLE_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/Classic/Cartpole/cartpole.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( rigid_body_enabled=True, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=100.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 2.0), joint_pos={"slider_to_cart": 0.0, "cart_to_pole": 0.0} ), actuators={ "cart_actuator": ImplicitActuatorCfg( joint_names_expr=["slider_to_cart"], effort_limit=400.0, velocity_limit=100.0, stiffness=0.0, damping=10.0, ), "pole_actuator": ImplicitActuatorCfg( joint_names_expr=["cart_to_pole"], effort_limit=400.0, velocity_limit=100.0, stiffness=0.0, damping=0.0 ), }, )
1,711
Python
33.938775
115
0.641146
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/omni/isaac/orbit_assets/allegro.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for the Allegro Hand robots from Wonik Robotics. The following configurations are available: * :obj:`ALLEGRO_HAND_CFG`: Allegro Hand with implicit actuator model. Reference: * https://www.wonikrobotics.com/robot-hand """ from __future__ import annotations import math import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators.actuator_cfg import ImplicitActuatorCfg from omni.isaac.orbit.assets.articulation import ArticulationCfg from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR ## # Configuration ## ALLEGRO_HAND_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/AllegroHand/allegro_hand_instanceable.usd", activate_contact_sensors=False, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=True, retain_accelerations=False, enable_gyroscopic_forces=False, angular_damping=0.01, max_linear_velocity=1000.0, max_angular_velocity=64 / math.pi * 180.0, max_depenetration_velocity=1000.0, max_contact_impulse=1e32, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.0005, ), # collision_props=sim_utils.CollisionPropertiesCfg(contact_offset=0.005, rest_offset=0.0), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.5), rot=(0.257551, 0.283045, 0.683330, -0.621782), joint_pos={"^(?!thumb_joint_0).*": 0.0, "thumb_joint_0": 0.28}, ), actuators={ "fingers": ImplicitActuatorCfg( joint_names_expr=[".*"], effort_limit=0.5, velocity_limit=100.0, stiffness=3.0, damping=0.1, friction=0.01, ), }, soft_joint_pos_limit_factor=1.0, ) """Configuration of Allegro Hand robot."""
2,220
Python
29.847222
98
0.647748
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/omni/isaac/orbit_assets/kinova.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for the Kinova Robotics arms. The following configuration parameters are available: * :obj:`KINOVA_JACO2_N7S300_CFG`: The Kinova JACO2 (7-Dof) arm with a 3-finger gripper. * :obj:`KINOVA_JACO2_N6S300_CFG`: The Kinova JACO2 (6-Dof) arm with a 3-finger gripper. * :obj:`KINOVA_GEN3_N7_CFG`: The Kinova Gen3 (7-Dof) arm with no gripper. Reference: https://github.com/Kinovarobotics/kinova-ros """ import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.assets.articulation import ArticulationCfg from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR ## # Configuration ## KINOVA_JACO2_N7S300_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Kinova/Jaco2/J2N7S300/j2n7s300_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=5.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0 ), activate_contact_sensors=False, ), init_state=ArticulationCfg.InitialStateCfg( joint_pos={ "j2n7s300_joint_1": 0.0, "j2n7s300_joint_2": 2.76, "j2n7s300_joint_3": 0.0, "j2n7s300_joint_4": 2.0, "j2n7s300_joint_5": 2.0, "j2n7s300_joint_6": 0.0, "j2n7s300_joint_7": 0.0, "j2n7s300_joint_finger_[1-3]": 0.2, # close: 1.2, open: 0.2 "j2n7s300_joint_finger_tip_[1-3]": 0.2, # close: 1.2, open: 0.2 }, ), actuators={ "arm": ImplicitActuatorCfg( joint_names_expr=[".*_joint_[1-7]"], velocity_limit=100.0, effort_limit={ ".*_joint_[1-2]": 80.0, ".*_joint_[3-4]": 40.0, ".*_joint_[5-7]": 20.0, }, stiffness={ ".*_joint_[1-4]": 40.0, ".*_joint_[5-7]": 15.0, }, damping={ ".*_joint_[1-4]": 1.0, ".*_joint_[5-7]": 0.5, }, ), "gripper": ImplicitActuatorCfg( joint_names_expr=[".*_finger_[1-3]", ".*_finger_tip_[1-3]"], velocity_limit=100.0, effort_limit=2.0, stiffness=1.2, damping=0.01, ), }, ) """Configuration of Kinova JACO2 (7-Dof) arm with 3-finger gripper.""" KINOVA_JACO2_N6S300_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Kinova/Jaco2/J2N6S300/j2n6s300_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=5.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0 ), activate_contact_sensors=False, ), init_state=ArticulationCfg.InitialStateCfg( joint_pos={ "j2n6s300_joint_1": 0.0, "j2n6s300_joint_2": 2.76, "j2n6s300_joint_3": 2.76, "j2n6s300_joint_4": 2.5, "j2n6s300_joint_5": 2.0, "j2n6s300_joint_6": 0.0, "j2n6s300_joint_finger_[1-3]": 0.2, # close: 1.2, open: 0.2 "j2n6s300_joint_finger_tip_[1-3]": 0.2, # close: 1.2, open: 0.2 }, ), actuators={ "arm": ImplicitActuatorCfg( joint_names_expr=[".*_joint_[1-6]"], velocity_limit=100.0, effort_limit={ ".*_joint_[1-2]": 80.0, ".*_joint_3": 40.0, ".*_joint_[4-6]": 20.0, }, stiffness={ ".*_joint_[1-3]": 40.0, ".*_joint_[4-6]": 15.0, }, damping={ ".*_joint_[1-3]": 1.0, ".*_joint_[4-6]": 0.5, }, ), "gripper": ImplicitActuatorCfg( joint_names_expr=[".*_finger_[1-3]", ".*_finger_tip_[1-3]"], velocity_limit=100.0, effort_limit=2.0, stiffness=1.2, damping=0.01, ), }, ) """Configuration of Kinova JACO2 (6-Dof) arm with 3-finger gripper.""" KINOVA_GEN3_N7_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Kinova/Gen3/gen3n7_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=5.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0 ), activate_contact_sensors=False, ), init_state=ArticulationCfg.InitialStateCfg( joint_pos={ "joint_1": 0.0, "joint_2": 0.65, "joint_3": 0.0, "joint_4": 1.89, "joint_5": 0.0, "joint_6": 0.6, "joint_7": -1.57, }, ), actuators={ "arm": ImplicitActuatorCfg( joint_names_expr=["joint_[1-7]"], velocity_limit=100.0, effort_limit={ "joint_[1-4]": 39.0, "joint_[5-7]": 9.0, }, stiffness={ "joint_[1-4]": 40.0, "joint_[5-7]": 15.0, }, damping={ "joint_[1-4]": 1.0, "joint_[5-7]": 0.5, }, ), }, ) """Configuration of Kinova Gen3 (7-Dof) arm with no gripper."""
5,949
Python
32.055555
110
0.525971
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/omni/isaac/orbit_assets/anymal.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for the ANYbotics robots. The following configuration parameters are available: * :obj:`ANYMAL_B_CFG`: The ANYmal-B robot with ANYdrives 3.0 * :obj:`ANYMAL_C_CFG`: The ANYmal-C robot with ANYdrives 3.0 * :obj:`ANYMAL_D_CFG`: The ANYmal-D robot with ANYdrives 3.0 Reference: * https://github.com/ANYbotics/anymal_b_simple_description * https://github.com/ANYbotics/anymal_c_simple_description * https://github.com/ANYbotics/anymal_d_simple_description """ import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ActuatorNetLSTMCfg, DCMotorCfg from omni.isaac.orbit.assets.articulation import ArticulationCfg from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR ## # Configuration - Actuators. ## ANYDRIVE_3_SIMPLE_ACTUATOR_CFG = DCMotorCfg( joint_names_expr=[".*HAA", ".*HFE", ".*KFE"], saturation_effort=120.0, effort_limit=80.0, velocity_limit=7.5, stiffness={".*": 40.0}, damping={".*": 5.0}, ) """Configuration for ANYdrive 3.x with DC actuator model.""" ANYDRIVE_3_LSTM_ACTUATOR_CFG = ActuatorNetLSTMCfg( joint_names_expr=[".*HAA", ".*HFE", ".*KFE"], network_file=f"{ISAAC_ORBIT_NUCLEUS_DIR}/ActuatorNets/ANYbotics/anydrive_3_lstm_jit.pt", saturation_effort=120.0, effort_limit=80.0, velocity_limit=7.5, ) """Configuration for ANYdrive 3.0 (used on ANYmal-C) with LSTM actuator model.""" ## # Configuration - Articulation. ## ANYMAL_B_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-B/anymal_b.usd", activate_contact_sensors=True, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, retain_accelerations=False, linear_damping=0.0, angular_damping=0.0, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=1.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=4, solver_velocity_iteration_count=0 ), # collision_props=sim_utils.CollisionPropertiesCfg(contact_offset=0.02, rest_offset=0.0), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.6), joint_pos={ ".*HAA": 0.0, # all HAA ".*F_HFE": 0.4, # both front HFE ".*H_HFE": -0.4, # both hind HFE ".*F_KFE": -0.8, # both front KFE ".*H_KFE": 0.8, # both hind KFE }, ), actuators={"legs": ANYDRIVE_3_LSTM_ACTUATOR_CFG}, soft_joint_pos_limit_factor=0.95, ) """Configuration of ANYmal-B robot using actuator-net.""" ANYMAL_C_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-C/anymal_c.usd", # usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/ANYbotics/anymal_instanceable.usd", activate_contact_sensors=True, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, retain_accelerations=False, linear_damping=0.0, angular_damping=0.0, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=1.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=4, solver_velocity_iteration_count=0 ), # collision_props=sim_utils.CollisionPropertiesCfg(contact_offset=0.02, rest_offset=0.0), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.6), joint_pos={ ".*HAA": 0.0, # all HAA ".*F_HFE": 0.4, # both front HFE ".*H_HFE": -0.4, # both hind HFE ".*F_KFE": -0.8, # both front KFE ".*H_KFE": 0.8, # both hind KFE }, ), actuators={"legs": ANYDRIVE_3_LSTM_ACTUATOR_CFG}, soft_joint_pos_limit_factor=0.95, ) """Configuration of ANYmal-C robot using actuator-net.""" ANYMAL_D_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-D/anymal_d.usd", # usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-D/anymal_d_minimal.usd", activate_contact_sensors=True, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, retain_accelerations=False, linear_damping=0.0, angular_damping=0.0, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=1.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=4, solver_velocity_iteration_count=0 ), # collision_props=sim_utils.CollisionPropertiesCfg(contact_offset=0.02, rest_offset=0.0), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.6), joint_pos={ ".*HAA": 0.0, # all HAA ".*F_HFE": 0.4, # both front HFE ".*H_HFE": -0.4, # both hind HFE ".*F_KFE": -0.8, # both front KFE ".*H_KFE": 0.8, # both hind KFE }, ), actuators={"legs": ANYDRIVE_3_LSTM_ACTUATOR_CFG}, soft_joint_pos_limit_factor=0.95, ) """Configuration of ANYmal-D robot using actuator-net. Note: Since we don't have a publicly available actuator network for ANYmal-D, we use the same network as ANYmal-C. This may impact the sim-to-real transfer performance. """
5,833
Python
34.791411
112
0.633636
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/docs/CHANGELOG.rst
Changelog --------- 0.1.2 (2024-04-03) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added configurations for different arms from Kinova Robotics and Rethink Robotics. 0.1.1 (2024-03-11) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Added configurations for allegro and shadow hand assets. 0.1.0 (2023-12-20) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Moved all assets' configuration from ``omni.isaac.orbit`` to ``omni.isaac.orbit_assets`` extension.
427
reStructuredText
13.75862
101
0.590164
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_assets/docs/README.md
# Orbit: Assets for Robots and Objects This extension contains configurations for various assets and sensors. The configuration instances are used to spawn and configure the instances in the simulation. They are passed to their corresponding classes during construction. ## Organizing custom assets For Orbit, we primarily store assets on the Omniverse Nucleus server. However, at times, it may be needed to store the assets locally (for debugging purposes). In such cases, the extension's `data` directory can be used for temporary hosting of assets. Inside the `data` directory, we recommend following the same structure as our Nucleus directory `Isaac/Samples/Orbit`. This helps us later to move these assets to the Nucleus server seamlessly. The recommended directory structure inside `data` is as follows: * **`Robots/<Company-Name>/<Robot-Name>`**: The USD files should be inside `<Robot-Name>` directory with the name of the robot. * **`Props/<Prop-Type>/<Prop-Name>`**: The USD files should be inside `<Prop-Name>` directory with the name of the prop. This includes mounts, objects and markers. * **`ActuatorNets/<Company-Name>`**: The actuator networks should inside `<Company-Name` directory with the name of the actuator that it models. * **`Policies/<Task-Name>`**: The policy should be JIT/ONNX compiled with the name `policy.pt`. It should also contain the parameters used for training the checkpoint. This is to ensure reproducibility. * **`Test/<Test-Name>`**: The asset used for unit testing purposes. ## Referring to the assets in your code You can use the following snippet to refer to the assets: ```python from omni.isaac.orbit_assets import ORBIT_ASSETS_DATA_DIR # ANYmal-C ANYMAL_C_USD_PATH = f"{ORBIT_ASSETS_DATA_DIR}/Robots/ANYbotics/ANYmal-C/anymal_c.usd" # ANYmal-D ANYMAL_D_USD_PATH = f"{ORBIT_ASSETS_DATA_DIR}/Robots/ANYbotics/ANYmal-D/anymal_d.usd" ```
1,903
Markdown
44.333332
110
0.763531
NVIDIA-Omniverse/orbit/source/standalone/tools/convert_mesh.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Utility to convert a OBJ/STL/FBX into USD format. The OBJ file format is a simple data-format that represents 3D geometry alone — namely, the position of each vertex, the UV position of each texture coordinate vertex, vertex normals, and the faces that make each polygon defined as a list of vertices, and texture vertices. An STL file describes a raw, unstructured triangulated surface by the unit normal and vertices (ordered by the right-hand rule) of the triangles using a three-dimensional Cartesian coordinate system. FBX files are a type of 3D model file created using the Autodesk FBX software. They can be designed and modified in various modeling applications, such as Maya, 3ds Max, and Blender. Moreover, FBX files typically contain mesh, material, texture, and skeletal animation data. Link: https://www.autodesk.com/products/fbx/overview This script uses the asset converter extension from Isaac Sim (``omni.kit.asset_converter``) to convert a OBJ/STL/FBX asset into USD format. It is designed as a convenience script for command-line use. positional arguments: input The path to the input mesh (.OBJ/.STL/.FBX) file. output The path to store the USD file. optional arguments: -h, --help Show this help message and exit --make-instanceable, Make the asset instanceable for efficient cloning. (default: False) --collision-approximation The method used for approximating collision mesh. Defaults to convexDecomposition. Set to \"none\" to not add a collision mesh to the converted mesh. (default: convexDecomposition) --mass The mass (in kg) to assign to the converted asset. (default: None) """ """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Utility to convert a mesh file into USD format.") parser.add_argument("input", type=str, help="The path to the input mesh file.") parser.add_argument("output", type=str, help="The path to store the USD file.") parser.add_argument( "--make-instanceable", action="store_true", default=False, help="Make the asset instanceable for efficient cloning.", ) parser.add_argument( "--collision-approximation", type=str, default="convexDecomposition", choices=["convexDecomposition", "convexHull", "none"], help=( 'The method used for approximating collision mesh. Set to "none" ' "to not add a collision mesh to the converted mesh." ), ) parser.add_argument( "--mass", type=float, default=None, help="The mass (in kg) to assign to the converted asset. If not provided, then no mass is added.", ) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import contextlib import os import carb import omni.isaac.core.utils.stage as stage_utils import omni.kit.app from omni.isaac.orbit.sim.converters import MeshConverter, MeshConverterCfg from omni.isaac.orbit.sim.schemas import schemas_cfg from omni.isaac.orbit.utils.assets import check_file_path from omni.isaac.orbit.utils.dict import print_dict def main(): # check valid file path mesh_path = args_cli.input if not os.path.isabs(mesh_path): mesh_path = os.path.abspath(mesh_path) if not check_file_path(mesh_path): raise ValueError(f"Invalid mesh file path: {mesh_path}") # create destination path dest_path = args_cli.output if not os.path.isabs(dest_path): dest_path = os.path.abspath(dest_path) print(dest_path) print(os.path.dirname(dest_path)) print(os.path.basename(dest_path)) # Mass properties if args_cli.mass is not None: mass_props = schemas_cfg.MassPropertiesCfg(mass=args_cli.mass) rigid_props = schemas_cfg.RigidBodyPropertiesCfg() else: mass_props = None rigid_props = None # Collision properties collision_props = schemas_cfg.CollisionPropertiesCfg(collision_enabled=args_cli.collision_approximation != "none") # Create Mesh converter config mesh_converter_cfg = MeshConverterCfg( mass_props=mass_props, rigid_props=rigid_props, collision_props=collision_props, asset_path=mesh_path, force_usd_conversion=True, usd_dir=os.path.dirname(dest_path), usd_file_name=os.path.basename(dest_path), make_instanceable=args_cli.make_instanceable, collision_approximation=args_cli.collision_approximation, ) # Print info print("-" * 80) print("-" * 80) print(f"Input Mesh file: {mesh_path}") print("Mesh importer config:") print_dict(mesh_converter_cfg.to_dict(), nesting=0) print("-" * 80) print("-" * 80) # Create Mesh converter and import the file mesh_converter = MeshConverter(mesh_converter_cfg) # print output print("Mesh importer output:") print(f"Generated USD file: {mesh_converter.usd_path}") print("-" * 80) print("-" * 80) # Determine if there is a GUI to update: # acquire settings interface carb_settings_iface = carb.settings.get_settings() # read flag for whether a local GUI is enabled local_gui = carb_settings_iface.get("/app/window/enabled") # read flag for whether livestreaming GUI is enabled livestream_gui = carb_settings_iface.get("/app/livestream/enabled") # Simulate scene (if not headless) if local_gui or livestream_gui: # Open the stage with USD stage_utils.open_stage(mesh_converter.usd_path) # Reinitialize the simulation app = omni.kit.app.get_app_interface() # Run simulation with contextlib.suppress(KeyboardInterrupt): while app.is_running(): # perform step app.update() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
6,290
Python
33.95
129
0.692846
NVIDIA-Omniverse/orbit/source/standalone/tools/check_instanceable.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script uses the cloner API to check if asset has been instanced properly. Usage with different inputs (replace `<Asset-Path>` and `<Asset-Path-Instanced>` with the path to the original asset and the instanced asset respectively): ```bash ./orbit.sh -p source/tools/check_instanceable.py <Asset-Path> -n 4096 --headless --physics ./orbit.sh -p source/tools/check_instanceable.py <Asset-Path-Instanced> -n 4096 --headless --physics ./orbit.sh -p source/tools/check_instanceable.py <Asset-Path> -n 4096 --headless ./orbit.sh -p source/tools/check_instanceable.py <Asset-Path-Instanced> -n 4096 --headless ``` Output from the above commands: ```bash >>> Cloning time (cloner.clone): 0.648198 seconds >>> Setup time (sim.reset): : 5.843589 seconds [#clones: 4096, physics: True] Asset: <Asset-Path-Instanced> : 6.491870 seconds >>> Cloning time (cloner.clone): 0.693133 seconds >>> Setup time (sim.reset): 50.860526 seconds [#clones: 4096, physics: True] Asset: <Asset-Path> : 51.553743 seconds >>> Cloning time (cloner.clone) : 0.687201 seconds >>> Setup time (sim.reset) : 6.302215 seconds [#clones: 4096, physics: False] Asset: <Asset-Path-Instanced> : 6.989500 seconds >>> Cloning time (cloner.clone) : 0.678150 seconds >>> Setup time (sim.reset) : 52.854054 seconds [#clones: 4096, physics: False] Asset: <Asset-Path> : 53.532287 seconds ``` """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse import contextlib import os # omni-isaac-orbit from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser("Utility to empirically check if asset in instanced properly.") parser.add_argument("input", type=str, help="The path to the USD file.") parser.add_argument("-n", "--num_clones", type=int, default=128, help="Number of clones to spawn.") parser.add_argument("-s", "--spacing", type=float, default=1.5, help="Spacing between instances in a grid.") parser.add_argument("-p", "--physics", action="store_true", default=False, help="Clone assets using physics cloner.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import omni.isaac.core.utils.prims as prim_utils from omni.isaac.cloner import GridCloner from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.carb import set_carb_setting from omni.isaac.orbit.utils import Timer from omni.isaac.orbit.utils.assets import check_file_path def main(): """Spawns the USD asset robot and clones it using Isaac Gym Cloner API.""" # check valid file path if not check_file_path(args_cli.input): raise ValueError(f"Invalid file path: {args_cli.input}") # Load kit helper sim = SimulationContext( stage_units_in_meters=1.0, physics_dt=0.01, rendering_dt=0.01, backend="torch", device="cuda:0" ) # enable flatcache which avoids passing data over to USD structure # this speeds up the read-write operation of GPU buffers if sim.get_physics_context().use_gpu_pipeline: sim.get_physics_context().enable_flatcache(True) # enable hydra scene-graph instancing # this is needed to visualize the scene when flatcache is enabled set_carb_setting(sim._settings, "/persistent/omnihydra/useSceneGraphInstancing", True) # Create interface to clone the scene cloner = GridCloner(spacing=args_cli.spacing) cloner.define_base_env("/World/envs") prim_utils.define_prim("/World/envs/env_0") # Spawn things into stage prim_utils.create_prim("/World/Light", "DistantLight") # Everything under the namespace "/World/envs/env_0" will be cloned prim_utils.create_prim("/World/envs/env_0/Asset", "Xform", usd_path=os.path.abspath(args_cli.input)) # Clone the scene num_clones = args_cli.num_clones # Create a timer to measure the cloning time with Timer(f"[#clones: {num_clones}, physics: {args_cli.physics}] Asset: {args_cli.input}"): # Clone the scene with Timer(">>> Cloning time (cloner.clone)"): cloner.define_base_env("/World/envs") envs_prim_paths = cloner.generate_paths("/World/envs/env", num_paths=num_clones) _ = cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=envs_prim_paths, replicate_physics=args_cli.physics ) # Play the simulator with Timer(">>> Setup time (sim.reset)"): sim.reset() # Simulate scene (if not headless) if not args_cli.headless: with contextlib.suppress(KeyboardInterrupt): while sim.is_playing(): # perform step sim.step() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
5,076
Python
36.607407
117
0.6974
NVIDIA-Omniverse/orbit/source/standalone/tools/blender_obj.py
#!/usr/bin/env python # Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Convert a mesh file to `.obj` using blender. This file processes a given dae mesh file and saves the resulting mesh file in obj format. It needs to be called using the python packaged with blender, i.e.: blender --background --python blender_obj.py -- -in_file FILE -out_file FILE For more information: https://docs.blender.org/api/current/index.html The script was tested on Blender 3.2 on Ubuntu 20.04LTS. """ from __future__ import annotations import bpy import os import sys def parse_cli_args(): """Parse the input command line arguments. Reference: https://developer.blender.org/diffusion/B/browse/master/release/scripts/templates_py/background_job.py """ import argparse # get the args passed to blender after "--", all of which are ignored by # blender so scripts may receive their own arguments argv = sys.argv if "--" not in argv: argv = [] # as if no args are passed else: argv = argv[argv.index("--") + 1 :] # get all args after "--" # When --help or no args are given, print this help usage_text = ( f"Run blender in background mode with this script:\n\tblender --background --python {__file__} -- [options]" ) parser = argparse.ArgumentParser(description=usage_text) # Add arguments parser.add_argument("-i", "--in_file", metavar="FILE", type=str, required=True, help="Path to input OBJ file.") parser.add_argument("-o", "--out_file", metavar="FILE", type=str, required=True, help="Path to output OBJ file.") args = parser.parse_args(argv) # Check if any arguments provided if not argv or not args.in_file or not args.out_file: parser.print_help() return None # return arguments return args def convert_to_obj(in_file: str, out_file: str, save_usd: bool = False): """Convert a mesh file to `.obj` using blender. Args: in_file: Input mesh file to process. out_file: Path to store output obj file. """ # check valid input file if not os.path.exists(in_file): raise FileNotFoundError(in_file) # add ending of file format if not out_file.endswith(".obj"): out_file += ".obj" # create directory if it doesn't exist for destination file if not os.path.exists(os.path.dirname(out_file)): os.makedirs(os.path.dirname(out_file), exist_ok=True) # reset scene to empty bpy.ops.wm.read_factory_settings(use_empty=True) # load object into scene if in_file.endswith(".dae"): bpy.ops.wm.collada_import(filepath=in_file) elif in_file.endswith(".stl") or in_file.endswith(".STL"): bpy.ops.import_mesh.stl(filepath=in_file) else: raise ValueError(f"Input file not in dae/stl format: {in_file}") # convert to obj format and store with z up # TODO: Read the convention from dae file instead of manually fixing it. # Reference: https://docs.blender.org/api/2.79/bpy.ops.export_scene.html bpy.ops.export_scene.obj( filepath=out_file, check_existing=False, axis_forward="Y", axis_up="Z", global_scale=1, path_mode="RELATIVE" ) # save it as usd as well if save_usd: out_file = out_file.replace("obj", "usd") bpy.ops.wm.usd_export(filepath=out_file, check_existing=False) if __name__ == "__main__": # read arguments cli_args = parse_cli_args() # check CLI args if cli_args is None: sys.exit() # process via blender convert_to_obj(cli_args.in_file, cli_args.out_file)
3,662
Python
33.233645
117
0.659203
NVIDIA-Omniverse/orbit/source/standalone/tools/process_meshes_to_obj.py
#!/usr/bin/env python # Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Convert all mesh files to `.obj` in given folders.""" from __future__ import annotations import argparse import os import shutil import subprocess # Constants # Path to blender BLENDER_EXE_PATH = shutil.which("blender") def parse_cli_args(): """Parse the input command line arguments. Reference: https://developer.blender.org/diffusion/B/browse/master/release/scripts/templates_py/background_job.py """ # add argparse arguments parser = argparse.ArgumentParser("Utility to convert all mesh files to `.obj` in given folders.") parser.add_argument("input_dir", type=str, help="The input directory from which to load meshes.") parser.add_argument( "-o", "--output_dir", type=str, default=None, help="The output directory to save converted meshes into. Default is same as input directory.", ) args_cli = parser.parse_args() # resolve output directory if args_cli.output_dir is None: args_cli.output_dir = args_cli.input_dir # return arguments return args_cli def run_blender_convert2obj(in_file: str, out_file: str): """Calls the python script using `subprocess` to perform processing of mesh file. Args: in_file: Input mesh file. out_file: Output obj file. """ # resolve for python file tools_dirname = os.path.dirname(os.path.abspath(__file__)) script_file = os.path.join(tools_dirname, "blender_obj.py") # complete command command_exe = f"{BLENDER_EXE_PATH} --background --python {script_file} -- -i {in_file} -o {out_file}" # break command into list command_exe_list = command_exe.split(" ") # run command subprocess.run(command_exe_list) def convert_meshes(source_folders: list[str], destination_folders: list[str]): """Processes all mesh files of supported format into OBJ file using blender. Args: source_folders: List of directories to search for meshes. destination_folders: List of directories to dump converted files. """ # create folder for corresponding destination for folder in destination_folders: os.makedirs(folder, exist_ok=True) # iterate over each folder for in_folder, out_folder in zip(source_folders, destination_folders): # extract all dae files in the directory mesh_filenames = [f for f in os.listdir(in_folder) if f.endswith("dae")] mesh_filenames += [f for f in os.listdir(in_folder) if f.endswith("stl")] mesh_filenames += [f for f in os.listdir(in_folder) if f.endswith("STL")] # print status print(f"Found {len(mesh_filenames)} files to process in directory: {in_folder}") # iterate over each OBJ file for mesh_file in mesh_filenames: # extract meshname mesh_name = os.path.splitext(mesh_file)[0] # complete path of input and output files in_file_path = os.path.join(in_folder, mesh_file) out_file_path = os.path.join(out_folder, mesh_name + ".obj") # perform blender processing print("Processing: ", in_file_path) run_blender_convert2obj(in_file_path, out_file_path) if __name__ == "__main__": # Parse command line arguments args = parse_cli_args() # Run conversion convert_meshes([args.input_dir], [args.output_dir])
3,502
Python
34.744898
117
0.659909
NVIDIA-Omniverse/orbit/source/standalone/tools/convert_urdf.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Utility to convert a URDF into USD format. Unified Robot Description Format (URDF) is an XML file format used in ROS to describe all elements of a robot. For more information, see: http://wiki.ros.org/urdf This script uses the URDF importer extension from Isaac Sim (``omni.isaac.urdf_importer``) to convert a URDF asset into USD format. It is designed as a convenience script for command-line use. For more information on the URDF importer, see the documentation for the extension: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_urdf.html positional arguments: input The path to the input URDF file. output The path to store the USD file. optional arguments: -h, --help Show this help message and exit --merge-joints Consolidate links that are connected by fixed joints. (default: False) --fix-base Fix the base to where it is imported. (default: False) --make-instanceable Make the asset instanceable for efficient cloning. (default: False) """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Utility to convert a URDF into USD format.") parser.add_argument("input", type=str, help="The path to the input URDF file.") parser.add_argument("output", type=str, help="The path to store the USD file.") parser.add_argument( "--merge-joints", action="store_true", default=False, help="Consolidate links that are connected by fixed joints.", ) parser.add_argument("--fix-base", action="store_true", default=False, help="Fix the base to where it is imported.") parser.add_argument( "--make-instanceable", action="store_true", default=False, help="Make the asset instanceable for efficient cloning.", ) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import contextlib import os import carb import omni.isaac.core.utils.stage as stage_utils import omni.kit.app from omni.isaac.orbit.sim.converters import UrdfConverter, UrdfConverterCfg from omni.isaac.orbit.utils.assets import check_file_path from omni.isaac.orbit.utils.dict import print_dict def main(): # check valid file path urdf_path = args_cli.input if not os.path.isabs(urdf_path): urdf_path = os.path.abspath(urdf_path) if not check_file_path(urdf_path): raise ValueError(f"Invalid file path: {urdf_path}") # create destination path dest_path = args_cli.output if not os.path.isabs(dest_path): dest_path = os.path.abspath(dest_path) # Create Urdf converter config urdf_converter_cfg = UrdfConverterCfg( asset_path=urdf_path, usd_dir=os.path.dirname(dest_path), usd_file_name=os.path.basename(dest_path), fix_base=args_cli.fix_base, merge_fixed_joints=args_cli.merge_joints, force_usd_conversion=True, make_instanceable=args_cli.make_instanceable, ) # Print info print("-" * 80) print("-" * 80) print(f"Input URDF file: {urdf_path}") print("URDF importer config:") print_dict(urdf_converter_cfg.to_dict(), nesting=0) print("-" * 80) print("-" * 80) # Create Urdf converter and import the file urdf_converter = UrdfConverter(urdf_converter_cfg) # print output print("URDF importer output:") print(f"Generated USD file: {urdf_converter.usd_path}") print("-" * 80) print("-" * 80) # Determine if there is a GUI to update: # acquire settings interface carb_settings_iface = carb.settings.get_settings() # read flag for whether a local GUI is enabled local_gui = carb_settings_iface.get("/app/window/enabled") # read flag for whether livestreaming GUI is enabled livestream_gui = carb_settings_iface.get("/app/livestream/enabled") # Simulate scene (if not headless) if local_gui or livestream_gui: # Open the stage with USD stage_utils.open_stage(urdf_converter.usd_path) # Reinitialize the simulation app = omni.kit.app.get_app_interface() # Run simulation with contextlib.suppress(KeyboardInterrupt): while app.is_running(): # perform step app.update() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
4,784
Python
32
115
0.687709
NVIDIA-Omniverse/orbit/source/standalone/tutorials/01_assets/run_articulation.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This script demonstrates how to spawn a cart-pole and interact with it. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/01_assets/run_articulation.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Tutorial on spawning and interacting with an articulation.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import torch import omni.isaac.core.utils.prims as prim_utils import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.sim import SimulationContext ## # Pre-defined configs ## from omni.isaac.orbit_assets import CARTPOLE_CFG # isort:skip def design_scene() -> tuple[dict, list[list[float]]]: """Designs the scene.""" # Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # Lights cfg = sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)) cfg.func("/World/Light", cfg) # Create separate groups called "Origin1", "Origin2", "Origin3" # Each group will have a robot in it origins = [[0.0, 0.0, 0.0], [-1.0, 0.0, 0.0]] # Origin 1 prim_utils.create_prim("/World/Origin1", "Xform", translation=origins[0]) # Origin 2 prim_utils.create_prim("/World/Origin2", "Xform", translation=origins[1]) # Articulation cartpole_cfg = CARTPOLE_CFG.copy() cartpole_cfg.prim_path = "/World/Origin.*/Robot" cartpole = Articulation(cfg=cartpole_cfg) # return the scene information scene_entities = {"cartpole": cartpole} return scene_entities, origins def run_simulator(sim: sim_utils.SimulationContext, entities: dict[str, Articulation], origins: torch.Tensor): """Runs the simulation loop.""" # Extract scene entities # note: we only do this here for readability. In general, it is better to access the entities directly from # the dictionary. This dictionary is replaced by the InteractiveScene class in the next tutorial. robot = entities["cartpole"] # Define simulation stepping sim_dt = sim.get_physics_dt() count = 0 # Simulation loop while simulation_app.is_running(): # Reset if count % 500 == 0: # reset counter count = 0 # reset the scene entities # root state # we offset the root state by the origin since the states are written in simulation world frame # if this is not done, then the robots will be spawned at the (0, 0, 0) of the simulation world root_state = robot.data.default_root_state.clone() root_state[:, :3] += origins robot.write_root_state_to_sim(root_state) # set joint positions with some noise joint_pos, joint_vel = robot.data.default_joint_pos.clone(), robot.data.default_joint_vel.clone() joint_pos += torch.rand_like(joint_pos) * 0.1 robot.write_joint_state_to_sim(joint_pos, joint_vel) # clear internal buffers robot.reset() print("[INFO]: Resetting robot state...") # Apply random action # -- generate random joint efforts efforts = torch.randn_like(robot.data.joint_pos) * 5.0 # -- apply action to the robot robot.set_joint_effort_target(efforts) # -- write data to sim robot.write_data_to_sim() # Perform step sim.step() # Increment counter count += 1 # Update buffers robot.update(sim_dt) def main(): """Main function.""" # Load kit helper sim_cfg = sim_utils.SimulationCfg(device="cpu", use_gpu_pipeline=False) sim = SimulationContext(sim_cfg) # Set main camera sim.set_camera_view([2.5, 0.0, 4.0], [0.0, 0.0, 2.0]) # Design scene scene_entities, scene_origins = design_scene() scene_origins = torch.tensor(scene_origins, device=sim.device) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run the simulator run_simulator(sim, scene_entities, scene_origins) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
4,689
Python
31.344827
111
0.655577
NVIDIA-Omniverse/orbit/source/standalone/tutorials/01_assets/run_rigid_object.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to create a rigid object and interact with it. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/01_assets/run_rigid_object.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Tutorial on spawning and interacting with a rigid object.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import torch import omni.isaac.core.utils.prims as prim_utils import omni.isaac.orbit.sim as sim_utils import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.assets import RigidObject, RigidObjectCfg from omni.isaac.orbit.sim import SimulationContext def design_scene(): """Designs the scene.""" # Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # Lights cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.8, 0.8, 0.8)) cfg.func("/World/Light", cfg) # Create separate groups called "Origin1", "Origin2", "Origin3" # Each group will have a robot in it origins = [[0.25, 0.25, 0.0], [-0.25, 0.25, 0.0], [0.25, -0.25, 0.0], [-0.25, -0.25, 0.0]] for i, origin in enumerate(origins): prim_utils.create_prim(f"/World/Origin{i}", "Xform", translation=origin) # Rigid Object cone_cfg = RigidObjectCfg( prim_path="/World/Origin.*/Cone", spawn=sim_utils.ConeCfg( radius=0.1, height=0.2, rigid_props=sim_utils.RigidBodyPropertiesCfg(), mass_props=sim_utils.MassPropertiesCfg(mass=1.0), collision_props=sim_utils.CollisionPropertiesCfg(), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0), metallic=0.2), ), init_state=RigidObjectCfg.InitialStateCfg(), ) cone_object = RigidObject(cfg=cone_cfg) # return the scene information scene_entities = {"cone": cone_object} return scene_entities, origins def run_simulator(sim: sim_utils.SimulationContext, entities: dict[str, RigidObject], origins: torch.Tensor): """Runs the simulation loop.""" # Extract scene entities # note: we only do this here for readability. In general, it is better to access the entities directly from # the dictionary. This dictionary is replaced by the InteractiveScene class in the next tutorial. cone_object = entities["cone"] # Define simulation stepping sim_dt = sim.get_physics_dt() sim_time = 0.0 count = 0 # Simulate physics while simulation_app.is_running(): # reset if count % 250 == 0: # reset counters sim_time = 0.0 count = 0 # reset root state root_state = cone_object.data.default_root_state.clone() # sample a random position on a cylinder around the origins root_state[:, :3] += origins root_state[:, :3] += math_utils.sample_cylinder( radius=0.1, h_range=(0.25, 0.5), size=cone_object.num_instances, device=cone_object.device ) # write root state to simulation cone_object.write_root_state_to_sim(root_state) # reset buffers cone_object.reset() print("----------------------------------------") print("[INFO]: Resetting object state...") # apply sim data cone_object.write_data_to_sim() # perform step sim.step() # update sim-time sim_time += sim_dt count += 1 # update buffers cone_object.update(sim_dt) # print the root position if count % 50 == 0: print(f"Root position (in world): {cone_object.data.root_state_w[:, :3]}") def main(): """Main function.""" # Load kit helper sim_cfg = sim_utils.SimulationCfg() sim = SimulationContext(sim_cfg) # Set main camera sim.set_camera_view(eye=[1.5, 0.0, 1.0], target=[0.0, 0.0, 0.0]) # Design scene scene_entities, scene_origins = design_scene() scene_origins = torch.tensor(scene_origins, device=sim.device) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run the simulator run_simulator(sim, scene_entities, scene_origins) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
4,847
Python
31.32
111
0.632763
NVIDIA-Omniverse/orbit/source/standalone/tutorials/02_scene/create_scene.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This script demonstrates how to use the interactive scene interface to setup a scene with multiple prims. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/03_scene/create_scene.py --num_envs 32 """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Tutorial on using the interactive scene interface.") parser.add_argument("--num_envs", type=int, default=2, help="Number of environments to spawn.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import torch import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.scene import InteractiveScene, InteractiveSceneCfg from omni.isaac.orbit.sim import SimulationContext from omni.isaac.orbit.utils import configclass ## # Pre-defined configs ## from omni.isaac.orbit_assets import CARTPOLE_CFG # isort:skip @configclass class CartpoleSceneCfg(InteractiveSceneCfg): """Configuration for a cart-pole scene.""" # ground plane ground = AssetBaseCfg(prim_path="/World/defaultGroundPlane", spawn=sim_utils.GroundPlaneCfg()) # lights dome_light = AssetBaseCfg( prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)) ) # articulation cartpole: ArticulationCfg = CARTPOLE_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene): """Runs the simulation loop.""" # Extract scene entities # note: we only do this here for readability. robot = scene["cartpole"] # Define simulation stepping sim_dt = sim.get_physics_dt() count = 0 # Simulation loop while simulation_app.is_running(): # Reset if count % 500 == 0: # reset counter count = 0 # reset the scene entities # root state # we offset the root state by the origin since the states are written in simulation world frame # if this is not done, then the robots will be spawned at the (0, 0, 0) of the simulation world root_state = robot.data.default_root_state.clone() root_state[:, :3] += scene.env_origins robot.write_root_state_to_sim(root_state) # set joint positions with some noise joint_pos, joint_vel = robot.data.default_joint_pos.clone(), robot.data.default_joint_vel.clone() joint_pos += torch.rand_like(joint_pos) * 0.1 robot.write_joint_state_to_sim(joint_pos, joint_vel) # clear internal buffers scene.reset() print("[INFO]: Resetting robot state...") # Apply random action # -- generate random joint efforts efforts = torch.randn_like(robot.data.joint_pos) * 5.0 # -- apply action to the robot robot.set_joint_effort_target(efforts) # -- write data to sim scene.write_data_to_sim() # Perform step sim.step() # Increment counter count += 1 # Update buffers scene.update(sim_dt) def main(): """Main function.""" # Load kit helper sim_cfg = sim_utils.SimulationCfg(device="cpu", use_gpu_pipeline=False) sim = SimulationContext(sim_cfg) # Set main camera sim.set_camera_view([2.5, 0.0, 4.0], [0.0, 0.0, 2.0]) # Design scene scene_cfg = CartpoleSceneCfg(num_envs=args_cli.num_envs, env_spacing=2.0) scene = InteractiveScene(scene_cfg) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run the simulator run_simulator(sim, scene) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
4,251
Python
30.731343
109
0.663844
NVIDIA-Omniverse/orbit/source/standalone/tutorials/03_envs/create_cartpole_base_env.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to create a simple environment with a cartpole. It combines the concepts of scene, action, observation and event managers to create an environment. """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Tutorial on creating a cartpole base environment.") parser.add_argument("--num_envs", type=int, default=16, help="Number of environments to spawn.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import math import torch import omni.isaac.orbit.envs.mdp as mdp from omni.isaac.orbit.envs import BaseEnv, BaseEnvCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.classic.cartpole.cartpole_env_cfg import CartpoleSceneCfg @configclass class ActionsCfg: """Action specifications for the environment.""" joint_efforts = mdp.JointEffortActionCfg(asset_name="robot", joint_names=["slider_to_cart"], scale=5.0) @configclass class ObservationsCfg: """Observation specifications for the environment.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) joint_pos_rel = ObsTerm(func=mdp.joint_pos_rel) joint_vel_rel = ObsTerm(func=mdp.joint_vel_rel) def __post_init__(self) -> None: self.enable_corruption = False self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" # on startup add_pole_mass = EventTerm( func=mdp.add_body_mass, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names=["pole"]), "mass_range": (0.1, 0.5), }, ) # on reset reset_cart_position = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"]), "position_range": (-1.0, 1.0), "velocity_range": (-0.1, 0.1), }, ) reset_pole_position = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"]), "position_range": (-0.125 * math.pi, 0.125 * math.pi), "velocity_range": (-0.01 * math.pi, 0.01 * math.pi), }, ) @configclass class CartpoleEnvCfg(BaseEnvCfg): """Configuration for the cartpole environment.""" # Scene settings scene = CartpoleSceneCfg(num_envs=1024, env_spacing=2.5) # Basic settings observations = ObservationsCfg() actions = ActionsCfg() events = EventCfg() def __post_init__(self): """Post initialization.""" # viewer settings self.viewer.eye = [4.5, 0.0, 6.0] self.viewer.lookat = [0.0, 0.0, 2.0] # step settings self.decimation = 4 # env step every 4 sim steps: 200Hz / 4 = 50Hz # simulation settings self.sim.dt = 0.005 # sim step every 5ms: 200Hz def main(): """Main function.""" # parse the arguments env_cfg = CartpoleEnvCfg() env_cfg.scene.num_envs = args_cli.num_envs # setup base environment env = BaseEnv(cfg=env_cfg) # simulate physics count = 0 while simulation_app.is_running(): with torch.inference_mode(): # reset if count % 300 == 0: count = 0 env.reset() print("-" * 80) print("[INFO]: Resetting environment...") # sample random actions joint_efforts = torch.randn_like(env.action_manager.action) # step the environment obs, _ = env.step(joint_efforts) # print current orientation of pole print("[Env 0]: Pole joint: ", obs["policy"][0][1].item()) # update counter count += 1 # close the environment env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
4,839
Python
27.470588
107
0.633602
NVIDIA-Omniverse/orbit/source/standalone/tutorials/03_envs/run_cartpole_rl_env.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to run the RL environment for the cartpole balancing task. """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Tutorial on running the cartpole RL environment.") parser.add_argument("--num_envs", type=int, default=16, help="Number of environments to spawn.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import torch from omni.isaac.orbit.envs import RLTaskEnv from omni.isaac.orbit_tasks.classic.cartpole.cartpole_env_cfg import CartpoleEnvCfg def main(): """Main function.""" # create environment configuration env_cfg = CartpoleEnvCfg() env_cfg.scene.num_envs = args_cli.num_envs # setup RL environment env = RLTaskEnv(cfg=env_cfg) # simulate physics count = 0 while simulation_app.is_running(): with torch.inference_mode(): # reset if count % 300 == 0: count = 0 env.reset() print("-" * 80) print("[INFO]: Resetting environment...") # sample random actions joint_efforts = torch.randn_like(env.action_manager.action) # step the environment obs, rew, terminated, truncated, info = env.step(joint_efforts) # print current orientation of pole print("[Env 0]: Pole joint: ", obs["policy"][0][1].item()) # update counter count += 1 # close the environment env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
2,054
Python
25.688311
96
0.648978
NVIDIA-Omniverse/orbit/source/standalone/tutorials/05_controllers/run_diff_ik.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to use the differential inverse kinematics controller with the simulator. The differential IK controller can be configured in different modes. It uses the Jacobians computed by PhysX. This helps perform parallelized computation of the inverse kinematics. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/05_controllers/ik_control.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Tutorial on using the differential IK controller.") parser.add_argument("--robot", type=str, default="franka_panda", help="Name of the robot.") parser.add_argument("--num_envs", type=int, default=128, help="Number of environments to spawn.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import torch import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import AssetBaseCfg from omni.isaac.orbit.controllers import DifferentialIKController, DifferentialIKControllerCfg from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.markers import VisualizationMarkers from omni.isaac.orbit.markers.config import FRAME_MARKER_CFG from omni.isaac.orbit.scene import InteractiveScene, InteractiveSceneCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.orbit.utils.math import subtract_frame_transforms ## # Pre-defined configs ## from omni.isaac.orbit_assets import FRANKA_PANDA_HIGH_PD_CFG, UR10_CFG # isort:skip @configclass class TableTopSceneCfg(InteractiveSceneCfg): """Configuration for a cart-pole scene.""" # ground plane ground = AssetBaseCfg( prim_path="/World/defaultGroundPlane", spawn=sim_utils.GroundPlaneCfg(), init_state=AssetBaseCfg.InitialStateCfg(pos=(0.0, 0.0, -1.05)), ) # lights dome_light = AssetBaseCfg( prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)) ) # mount table = AssetBaseCfg( prim_path="{ENV_REGEX_NS}/Table", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/Stand/stand_instanceable.usd", scale=(2.0, 2.0, 2.0) ), ) # articulation if args_cli.robot == "franka_panda": robot = FRANKA_PANDA_HIGH_PD_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") elif args_cli.robot == "ur10": robot = UR10_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") else: raise ValueError(f"Robot {args_cli.robot} is not supported. Valid: franka_panda, ur10") def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene): """Runs the simulation loop.""" # Extract scene entities # note: we only do this here for readability. robot = scene["robot"] # Create controller diff_ik_cfg = DifferentialIKControllerCfg(command_type="pose", use_relative_mode=False, ik_method="dls") diff_ik_controller = DifferentialIKController(diff_ik_cfg, num_envs=scene.num_envs, device=sim.device) # Markers frame_marker_cfg = FRAME_MARKER_CFG.copy() frame_marker_cfg.markers["frame"].scale = (0.1, 0.1, 0.1) ee_marker = VisualizationMarkers(frame_marker_cfg.replace(prim_path="/Visuals/ee_current")) goal_marker = VisualizationMarkers(frame_marker_cfg.replace(prim_path="/Visuals/ee_goal")) # Define goals for the arm ee_goals = [ [0.5, 0.5, 0.7, 0.707, 0, 0.707, 0], [0.5, -0.4, 0.6, 0.707, 0.707, 0.0, 0.0], [0.5, 0, 0.5, 0.0, 1.0, 0.0, 0.0], ] ee_goals = torch.tensor(ee_goals, device=sim.device) # Track the given command current_goal_idx = 0 # Create buffers to store actions ik_commands = torch.zeros(scene.num_envs, diff_ik_controller.action_dim, device=robot.device) ik_commands[:] = ee_goals[current_goal_idx] # Specify robot-specific parameters if args_cli.robot == "franka_panda": robot_entity_cfg = SceneEntityCfg("robot", joint_names=["panda_joint.*"], body_names=["panda_hand"]) elif args_cli.robot == "ur10": robot_entity_cfg = SceneEntityCfg("robot", joint_names=[".*"], body_names=["ee_link"]) else: raise ValueError(f"Robot {args_cli.robot} is not supported. Valid: franka_panda, ur10") # Resolving the scene entities robot_entity_cfg.resolve(scene) # Obtain the frame index of the end-effector # For a fixed base robot, the frame index is one less than the body index. This is because # the root body is not included in the returned Jacobians. if robot.is_fixed_base: ee_jacobi_idx = robot_entity_cfg.body_ids[0] - 1 else: ee_jacobi_idx = robot_entity_cfg.body_ids[0] # Define simulation stepping sim_dt = sim.get_physics_dt() count = 0 # Simulation loop while simulation_app.is_running(): # reset if count % 150 == 0: # reset time count = 0 # reset joint state joint_pos = robot.data.default_joint_pos.clone() joint_vel = robot.data.default_joint_vel.clone() robot.write_joint_state_to_sim(joint_pos, joint_vel) robot.reset() # reset actions ik_commands[:] = ee_goals[current_goal_idx] joint_pos_des = joint_pos[:, robot_entity_cfg.joint_ids].clone() # reset controller diff_ik_controller.reset() diff_ik_controller.set_command(ik_commands) # change goal current_goal_idx = (current_goal_idx + 1) % len(ee_goals) else: # obtain quantities from simulation jacobian = robot.root_physx_view.get_jacobians()[:, ee_jacobi_idx, :, robot_entity_cfg.joint_ids] ee_pose_w = robot.data.body_state_w[:, robot_entity_cfg.body_ids[0], 0:7] root_pose_w = robot.data.root_state_w[:, 0:7] joint_pos = robot.data.joint_pos[:, robot_entity_cfg.joint_ids] # compute frame in root frame ee_pos_b, ee_quat_b = subtract_frame_transforms( root_pose_w[:, 0:3], root_pose_w[:, 3:7], ee_pose_w[:, 0:3], ee_pose_w[:, 3:7] ) # compute the joint commands joint_pos_des = diff_ik_controller.compute(ee_pos_b, ee_quat_b, jacobian, joint_pos) # apply actions robot.set_joint_position_target(joint_pos_des, joint_ids=robot_entity_cfg.joint_ids) scene.write_data_to_sim() # perform step sim.step() # update sim-time count += 1 # update buffers scene.update(sim_dt) # obtain quantities from simulation ee_pose_w = robot.data.body_state_w[:, robot_entity_cfg.body_ids[0], 0:7] # update marker positions ee_marker.visualize(ee_pose_w[:, 0:3], ee_pose_w[:, 3:7]) goal_marker.visualize(ik_commands[:, 0:3] + scene.env_origins, ik_commands[:, 3:7]) def main(): """Main function.""" # Load kit helper sim_cfg = sim_utils.SimulationCfg(dt=0.01) sim = sim_utils.SimulationContext(sim_cfg) # Set main camera sim.set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0]) # Design scene scene_cfg = TableTopSceneCfg(num_envs=args_cli.num_envs, env_spacing=2.0) scene = InteractiveScene(scene_cfg) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run the simulator run_simulator(sim, scene) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
8,021
Python
36.311628
109
0.657399
NVIDIA-Omniverse/orbit/source/standalone/tutorials/04_sensors/run_usd_camera.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script shows how to use the camera sensor from the Orbit framework. The camera sensor is created and interfaced through the Omniverse Replicator API. However, instead of using the simulator or OpenGL convention for the camera, we use the robotics or ROS convention. .. code-block:: bash # Usage with GUI ./orbit.sh -p source/standalone/tutorials/04_sensors/run_usd_camera.py # Usage with headless ./orbit.sh -p source/standalone/tutorials/04_sensors/run_usd_camera.py --headless --offscreen_render """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates how to use the camera sensor.") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU device for camera output.") parser.add_argument( "--draw", action="store_true", default=False, help="Draw the pointcloud from camera at index specified by ``--camera_id``.", ) parser.add_argument( "--save", action="store_true", default=False, help="Save the data from camera at index specified by ``--camera_id``.", ) parser.add_argument( "--camera_id", type=int, choices={0, 1}, default=0, help=( "The camera ID to use for displaying points or saving the camera data. Default is 0." " The viewport will always initialize with the perspective of camera 0." ), ) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import numpy as np import os import random import torch import omni.isaac.core.utils.prims as prim_utils import omni.replicator.core as rep import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import RigidObject, RigidObjectCfg from omni.isaac.orbit.markers import VisualizationMarkers from omni.isaac.orbit.markers.config import RAY_CASTER_MARKER_CFG from omni.isaac.orbit.sensors.camera import Camera, CameraCfg from omni.isaac.orbit.sensors.camera.utils import create_pointcloud_from_depth from omni.isaac.orbit.utils import convert_dict_to_backend def define_sensor() -> Camera: """Defines the camera sensor to add to the scene.""" # Setup camera sensor # In contrast to the ray-cast camera, we spawn the prim at these locations. # This means the camera sensor will be attached to these prims. prim_utils.create_prim("/World/Origin_00", "Xform") prim_utils.create_prim("/World/Origin_01", "Xform") camera_cfg = CameraCfg( prim_path="/World/Origin_.*/CameraSensor", update_period=0, height=480, width=640, data_types=[ "rgb", "distance_to_image_plane", "normals", "semantic_segmentation", "instance_segmentation_fast", "instance_id_segmentation_fast", ], colorize_semantic_segmentation=True, colorize_instance_id_segmentation=True, colorize_instance_segmentation=True, spawn=sim_utils.PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 1.0e5) ), ) # Create camera camera = Camera(cfg=camera_cfg) return camera def design_scene() -> dict: """Design the scene.""" # Populate scene # -- Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # -- Lights cfg = sim_utils.DistantLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)) cfg.func("/World/Light", cfg) # Create a dictionary for the scene entities scene_entities = {} # Xform to hold objects prim_utils.create_prim("/World/Objects", "Xform") # Random objects for i in range(8): # sample random position position = np.random.rand(3) - np.asarray([0.05, 0.05, -1.0]) position *= np.asarray([1.5, 1.5, 0.5]) # sample random color color = (random.random(), random.random(), random.random()) # choose random prim type prim_type = random.choice(["Cube", "Cone", "Cylinder"]) common_properties = { "rigid_props": sim_utils.RigidBodyPropertiesCfg(), "mass_props": sim_utils.MassPropertiesCfg(mass=5.0), "collision_props": sim_utils.CollisionPropertiesCfg(), "visual_material": sim_utils.PreviewSurfaceCfg(diffuse_color=color, metallic=0.5), "semantic_tags": [("class", prim_type)], } if prim_type == "Cube": shape_cfg = sim_utils.CuboidCfg(size=(0.25, 0.25, 0.25), **common_properties) elif prim_type == "Cone": shape_cfg = sim_utils.ConeCfg(radius=0.1, height=0.25, **common_properties) elif prim_type == "Cylinder": shape_cfg = sim_utils.CylinderCfg(radius=0.25, height=0.25, **common_properties) # Rigid Object obj_cfg = RigidObjectCfg( prim_path=f"/World/Objects/Obj_{i:02d}", spawn=shape_cfg, init_state=RigidObjectCfg.InitialStateCfg(pos=position), ) scene_entities[f"rigid_object{i}"] = RigidObject(cfg=obj_cfg) # Sensors camera = define_sensor() # return the scene information scene_entities["camera"] = camera return scene_entities def run_simulator(sim: sim_utils.SimulationContext, scene_entities: dict): """Run the simulator.""" # extract entities for simplified notation camera: Camera = scene_entities["camera"] # Create replicator writer output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output", "camera") rep_writer = rep.BasicWriter( output_dir=output_dir, frame_padding=0, colorize_instance_id_segmentation=camera.cfg.colorize_instance_id_segmentation, colorize_instance_segmentation=camera.cfg.colorize_instance_segmentation, colorize_semantic_segmentation=camera.cfg.colorize_semantic_segmentation, ) # Camera positions, targets, orientations camera_positions = torch.tensor([[2.5, 2.5, 2.5], [-2.5, -2.5, 2.5]], device=sim.device) camera_targets = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], device=sim.device) # These orientations are in ROS-convention, and will position the cameras to view the origin camera_orientations = torch.tensor( # noqa: F841 [[-0.1759, 0.3399, 0.8205, -0.4247], [-0.4247, 0.8205, -0.3399, 0.1759]], device=sim.device ) # Set pose: There are two ways to set the pose of the camera. # -- Option-1: Set pose using view camera.set_world_poses_from_view(camera_positions, camera_targets) # -- Option-2: Set pose using ROS # camera.set_world_poses(camera_positions, camera_orientations, convention="ros") # Index of the camera to use for visualization and saving camera_index = args_cli.camera_id # Create the markers for the --draw option outside of is_running() loop if sim.has_gui() and args_cli.draw: cfg = RAY_CASTER_MARKER_CFG.replace(prim_path="/Visuals/CameraPointCloud") cfg.markers["hit"].radius = 0.002 pc_markers = VisualizationMarkers(cfg) # Simulate physics while simulation_app.is_running(): # Step simulation sim.step() # Update camera data camera.update(dt=sim.get_physics_dt()) # Print camera info print(camera) if "rgb" in camera.data.output.keys(): print("Received shape of rgb image : ", camera.data.output["rgb"].shape) if "distance_to_image_plane" in camera.data.output.keys(): print("Received shape of depth image : ", camera.data.output["distance_to_image_plane"].shape) if "normals" in camera.data.output.keys(): print("Received shape of normals : ", camera.data.output["normals"].shape) if "semantic_segmentation" in camera.data.output.keys(): print("Received shape of semantic segm. : ", camera.data.output["semantic_segmentation"].shape) if "instance_segmentation_fast" in camera.data.output.keys(): print("Received shape of instance segm. : ", camera.data.output["instance_segmentation_fast"].shape) if "instance_id_segmentation_fast" in camera.data.output.keys(): print("Received shape of instance id segm.: ", camera.data.output["instance_id_segmentation_fast"].shape) print("-------------------------------") # Extract camera data if args_cli.save: # Save images from camera at camera_index # note: BasicWriter only supports saving data in numpy format, so we need to convert the data to numpy. # tensordict allows easy indexing of tensors in the dictionary single_cam_data = convert_dict_to_backend(camera.data.output[camera_index], backend="numpy") # Extract the other information single_cam_info = camera.data.info[camera_index] # Pack data back into replicator format to save them using its writer rep_output = dict() for key, data, info in zip(single_cam_data.keys(), single_cam_data.values(), single_cam_info.values()): if info is not None: rep_output[key] = {"data": data, "info": info} else: rep_output[key] = data # Save images # Note: We need to provide On-time data for Replicator to save the images. rep_output["trigger_outputs"] = {"on_time": camera.frame[camera_index]} rep_writer.write(rep_output) # Draw pointcloud if there is a GUI and --draw has been passed if sim.has_gui() and args_cli.draw and "distance_to_image_plane" in camera.data.output.keys(): # Derive pointcloud from camera at camera_index pointcloud = create_pointcloud_from_depth( intrinsic_matrix=camera.data.intrinsic_matrices[camera_index], depth=camera.data.output[camera_index]["distance_to_image_plane"], position=camera.data.pos_w[camera_index], orientation=camera.data.quat_w_ros[camera_index], device=sim.device, ) # In the first few steps, things are still being instanced and Camera.data # can be empty. If we attempt to visualize an empty pointcloud it will crash # the sim, so we check that the pointcloud is not empty. if pointcloud.size()[0] > 0: pc_markers.visualize(translations=pointcloud) def main(): """Main function.""" # Load simulation context sim_cfg = sim_utils.SimulationCfg(device="cpu" if args_cli.cpu else "cuda") sim = sim_utils.SimulationContext(sim_cfg) # Set main camera sim.set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0]) # design the scene scene_entities = design_scene() # Play simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run simulator run_simulator(sim, scene_entities) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
11,535
Python
38.642612
117
0.646034
NVIDIA-Omniverse/orbit/source/standalone/tutorials/04_sensors/run_frame_transformer.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates the FrameTransformer sensor by visualizing the frames that it creates. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/04_sensors/run_frame_transformer.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser( description="This script checks the FrameTransformer sensor by visualizing the frames that it creates." ) AppLauncher.add_app_launcher_args(parser) args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(headless=args_cli.headless) simulation_app = app_launcher.app """Rest everything follows.""" import math import torch import omni.isaac.debug_draw._debug_draw as omni_debug_draw import omni.isaac.orbit.sim as sim_utils import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.markers import VisualizationMarkers from omni.isaac.orbit.markers.config import FRAME_MARKER_CFG from omni.isaac.orbit.sensors import FrameTransformer, FrameTransformerCfg, OffsetCfg from omni.isaac.orbit.sim import SimulationContext ## # Pre-defined configs ## from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG # isort:skip def define_sensor() -> FrameTransformer: """Defines the FrameTransformer sensor to add to the scene.""" # define offset rot_offset = math_utils.quat_from_euler_xyz(torch.zeros(1), torch.zeros(1), torch.tensor(-math.pi / 2)) pos_offset = math_utils.quat_apply(rot_offset, torch.tensor([0.08795, 0.01305, -0.33797])) # Example using .* to get full body + LF_FOOT frame_transformer_cfg = FrameTransformerCfg( prim_path="/World/Robot/base", target_frames=[ FrameTransformerCfg.FrameCfg(prim_path="/World/Robot/.*"), FrameTransformerCfg.FrameCfg( prim_path="/World/Robot/LF_SHANK", name="LF_FOOT_USER", offset=OffsetCfg(pos=tuple(pos_offset.tolist()), rot=tuple(rot_offset[0].tolist())), ), ], debug_vis=False, ) frame_transformer = FrameTransformer(frame_transformer_cfg) return frame_transformer def design_scene() -> dict: """Design the scene.""" # Populate scene # -- Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # -- Lights cfg = sim_utils.DistantLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)) cfg.func("/World/Light", cfg) # -- Robot robot = Articulation(ANYMAL_C_CFG.replace(prim_path="/World/Robot")) # -- Sensors frame_transformer = define_sensor() # return the scene information scene_entities = {"robot": robot, "frame_transformer": frame_transformer} return scene_entities def run_simulator(sim: sim_utils.SimulationContext, scene_entities: dict): """Run the simulator.""" # Define simulation stepping sim_dt = sim.get_physics_dt() sim_time = 0.0 count = 0 # extract entities for simplified notation robot: Articulation = scene_entities["robot"] frame_transformer: FrameTransformer = scene_entities["frame_transformer"] # We only want one visualization at a time. This visualizer will be used # to step through each frame so the user can verify that the correct frame # is being visualized as the frame names are printing to console if not args_cli.headless: cfg = FRAME_MARKER_CFG.replace(prim_path="/Visuals/FrameVisualizerFromScript") cfg.markers["frame"].scale = (0.1, 0.1, 0.1) transform_visualizer = VisualizationMarkers(cfg) # debug drawing for lines connecting the frame draw_interface = omni_debug_draw.acquire_debug_draw_interface() else: transform_visualizer = None draw_interface = None frame_index = 0 # Simulate physics while simulation_app.is_running(): # perform this loop at policy control freq (50 Hz) robot.set_joint_position_target(robot.data.default_joint_pos.clone()) robot.write_data_to_sim() # perform step sim.step() # update sim-time sim_time += sim_dt count += 1 # read data from sim robot.update(sim_dt) frame_transformer.update(dt=sim_dt) # Change the frame that we are visualizing to ensure that frame names # are correctly associated with the frames if not args_cli.headless: if count % 50 == 0: # get frame names frame_names = frame_transformer.data.target_frame_names print(f"Displaying Frame ID {frame_index}: {frame_names[frame_index]}") # increment frame index frame_index += 1 frame_index = frame_index % len(frame_names) # visualize frame source_pos = frame_transformer.data.source_pos_w source_quat = frame_transformer.data.source_quat_w target_pos = frame_transformer.data.target_pos_w[:, frame_index] target_quat = frame_transformer.data.target_quat_w[:, frame_index] # draw the frames transform_visualizer.visualize( torch.cat([source_pos, target_pos], dim=0), torch.cat([source_quat, target_quat], dim=0) ) # draw the line connecting the frames draw_interface.clear_lines() # plain color for lines lines_colors = [[1.0, 1.0, 0.0, 1.0]] * source_pos.shape[0] line_thicknesses = [5.0] * source_pos.shape[0] draw_interface.draw_lines(source_pos.tolist(), target_pos.tolist(), lines_colors, line_thicknesses) def main(): """Main function.""" # Load kit helper sim = SimulationContext(sim_utils.SimulationCfg(dt=0.005)) # Set main camera sim.set_camera_view(eye=[2.5, 2.5, 2.5], target=[0.0, 0.0, 0.0]) # Design the scene scene_entities = design_scene() # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run the simulator run_simulator(sim, scene_entities) if __name__ == "__main__": # Run the main function main() # Close the simulator simulation_app.close()
6,473
Python
33.43617
111
0.657346
NVIDIA-Omniverse/orbit/source/standalone/tutorials/04_sensors/run_ray_caster_camera.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script shows how to use the ray-cast camera sensor from the Orbit framework. The camera sensor is based on using Warp kernels which do ray-casting against static meshes. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/04_sensors/run_ray_caster_camera.py """ """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates how to use the ray-cast camera sensor.") parser.add_argument("--num_envs", type=int, default=16, help="Number of environments to generate.") parser.add_argument("--save", action="store_true", default=False, help="Save the obtained data to disk.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import os import torch import omni.isaac.core.utils.prims as prim_utils import omni.replicator.core as rep import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.sensors.ray_caster import RayCasterCamera, RayCasterCameraCfg, patterns from omni.isaac.orbit.utils import convert_dict_to_backend from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.orbit.utils.math import project_points, unproject_depth def define_sensor() -> RayCasterCamera: """Defines the ray-cast camera sensor to add to the scene.""" # Camera base frames # In contras to the USD camera, we associate the sensor to the prims at these locations. # This means that parent prim of the sensor is the prim at this location. prim_utils.create_prim("/World/Origin_00/CameraSensor", "Xform") prim_utils.create_prim("/World/Origin_01/CameraSensor", "Xform") # Setup camera sensor camera_cfg = RayCasterCameraCfg( prim_path="/World/Origin_.*/CameraSensor", mesh_prim_paths=["/World/ground"], update_period=0.1, offset=RayCasterCameraCfg.OffsetCfg(pos=(0.0, 0.0, 0.0), rot=(1.0, 0.0, 0.0, 0.0)), data_types=["distance_to_image_plane", "normals", "distance_to_camera"], debug_vis=True, pattern_cfg=patterns.PinholeCameraPatternCfg( focal_length=24.0, horizontal_aperture=20.955, height=480, width=640, ), ) # Create camera camera = RayCasterCamera(cfg=camera_cfg) return camera def design_scene(): # Populate scene # -- Rough terrain cfg = sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Environments/Terrains/rough_plane.usd") cfg.func("/World/ground", cfg) # -- Lights cfg = sim_utils.DistantLightCfg(intensity=600.0, color=(0.75, 0.75, 0.75)) cfg.func("/World/Light", cfg) # -- Sensors camera = define_sensor() # return the scene information scene_entities = {"camera": camera} return scene_entities def run_simulator(sim: sim_utils.SimulationContext, scene_entities: dict): """Run the simulator.""" # extract entities for simplified notation camera: RayCasterCamera = scene_entities["camera"] # Create replicator writer output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output", "ray_caster_camera") rep_writer = rep.BasicWriter(output_dir=output_dir, frame_padding=3) # Set pose: There are two ways to set the pose of the camera. # -- Option-1: Set pose using view eyes = torch.tensor([[2.5, 2.5, 2.5], [-2.5, -2.5, 2.5]], device=sim.device) targets = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], device=sim.device) camera.set_world_poses_from_view(eyes, targets) # -- Option-2: Set pose using ROS # position = torch.tensor([[2.5, 2.5, 2.5]], device=sim.device) # orientation = torch.tensor([[-0.17591989, 0.33985114, 0.82047325, -0.42470819]], device=sim.device) # camera.set_world_poses(position, orientation, indices=[0], convention="ros") # Simulate physics while simulation_app.is_running(): # Step simulation sim.step() # Update camera data camera.update(dt=sim.get_physics_dt()) # Print camera info print(camera) print("Received shape of depth image: ", camera.data.output["distance_to_image_plane"].shape) print("-------------------------------") # Extract camera data if args_cli.save: # Extract camera data camera_index = 0 # note: BasicWriter only supports saving data in numpy format, so we need to convert the data to numpy. if sim.backend == "torch": # tensordict allows easy indexing of tensors in the dictionary single_cam_data = convert_dict_to_backend(camera.data.output[camera_index], backend="numpy") else: # for numpy, we need to manually index the data single_cam_data = dict() for key, value in camera.data.output.items(): single_cam_data[key] = value[camera_index] # Extract the other information single_cam_info = camera.data.info[camera_index] # Pack data back into replicator format to save them using its writer rep_output = dict() for key, data, info in zip(single_cam_data.keys(), single_cam_data.values(), single_cam_info.values()): if info is not None: rep_output[key] = {"data": data, "info": info} else: rep_output[key] = data # Save images rep_output["trigger_outputs"] = {"on_time": camera.frame[camera_index]} rep_writer.write(rep_output) # Pointcloud in world frame points_3d_cam = unproject_depth( camera.data.output["distance_to_image_plane"], camera.data.intrinsic_matrices ) # Check methods are valid im_height, im_width = camera.image_shape # -- project points to (u, v, d) reproj_points = project_points(points_3d_cam, camera.data.intrinsic_matrices) reproj_depths = reproj_points[..., -1].view(-1, im_width, im_height).transpose_(1, 2) sim_depths = camera.data.output["distance_to_image_plane"].squeeze(-1) torch.testing.assert_close(reproj_depths, sim_depths) def main(): """Main function.""" # Load kit helper sim = sim_utils.SimulationContext() # Set main camera sim.set_camera_view([2.5, 2.5, 3.5], [0.0, 0.0, 0.0]) # design the scene scene_entities = design_scene() # Play simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run simulator run_simulator(sim=sim, scene_entities=scene_entities) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
7,126
Python
36.708995
115
0.642015
NVIDIA-Omniverse/orbit/source/standalone/tutorials/04_sensors/add_sensors_on_robot.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to add and simulate on-board sensors for a robot. We add the following sensors on the quadruped robot, ANYmal-C (ANYbotics): * USD-Camera: This is a camera sensor that is attached to the robot's base. * Height Scanner: This is a height scanner sensor that is attached to the robot's base. * Contact Sensor: This is a contact sensor that is attached to the robot's feet. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/04_sensors/add_sensors_on_robot.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Tutorial on adding sensors on a robot.") parser.add_argument("--num_envs", type=int, default=2, help="Number of environments to spawn.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import torch import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.scene import InteractiveScene, InteractiveSceneCfg from omni.isaac.orbit.sensors import CameraCfg, ContactSensorCfg, RayCasterCfg, patterns from omni.isaac.orbit.utils import configclass ## # Pre-defined configs ## from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG # isort: skip @configclass class SensorsSceneCfg(InteractiveSceneCfg): """Design the scene with sensors on the robot.""" # ground plane ground = AssetBaseCfg(prim_path="/World/defaultGroundPlane", spawn=sim_utils.GroundPlaneCfg()) # lights dome_light = AssetBaseCfg( prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)) ) # robot robot: ArticulationCfg = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # sensors camera = CameraCfg( prim_path="{ENV_REGEX_NS}/Robot/base/front_cam", update_period=0.1, height=480, width=640, data_types=["rgb", "distance_to_image_plane"], spawn=sim_utils.PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 1.0e5) ), offset=CameraCfg.OffsetCfg(pos=(0.510, 0.0, 0.015), rot=(0.5, -0.5, 0.5, -0.5), convention="ros"), ) height_scanner = RayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot/base", update_period=0.02, offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 20.0)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=True, mesh_prim_paths=["/World/defaultGroundPlane"], ) contact_forces = ContactSensorCfg( prim_path="{ENV_REGEX_NS}/Robot/.*_FOOT", update_period=0.0, history_length=6, debug_vis=True ) def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene): """Run the simulator.""" # Define simulation stepping sim_dt = sim.get_physics_dt() sim_time = 0.0 count = 0 # Simulate physics while simulation_app.is_running(): # Reset if count % 500 == 0: # reset counter count = 0 # reset the scene entities # root state # we offset the root state by the origin since the states are written in simulation world frame # if this is not done, then the robots will be spawned at the (0, 0, 0) of the simulation world root_state = scene["robot"].data.default_root_state.clone() root_state[:, :3] += scene.env_origins scene["robot"].write_root_state_to_sim(root_state) # set joint positions with some noise joint_pos, joint_vel = ( scene["robot"].data.default_joint_pos.clone(), scene["robot"].data.default_joint_vel.clone(), ) joint_pos += torch.rand_like(joint_pos) * 0.1 scene["robot"].write_joint_state_to_sim(joint_pos, joint_vel) # clear internal buffers scene.reset() print("[INFO]: Resetting robot state...") # Apply default actions to the robot # -- generate actions/commands targets = scene["robot"].data.default_joint_pos # -- apply action to the robot scene["robot"].set_joint_position_target(targets) # -- write data to sim scene.write_data_to_sim() # perform step sim.step() # update sim-time sim_time += sim_dt count += 1 # update buffers scene.update(sim_dt) # print information from the sensors print("-------------------------------") print(scene["camera"]) print("Received shape of rgb image: ", scene["camera"].data.output["rgb"].shape) print("Received shape of depth image: ", scene["camera"].data.output["distance_to_image_plane"].shape) print("-------------------------------") print(scene["height_scanner"]) print("Received max height value: ", torch.max(scene["height_scanner"].data.ray_hits_w[..., -1]).item()) print("-------------------------------") print(scene["contact_forces"]) print("Received max contact force of: ", torch.max(scene["contact_forces"].data.net_forces_w).item()) def main(): """Main function.""" # Initialize the simulation context sim_cfg = sim_utils.SimulationCfg(dt=0.005, substeps=1) sim = sim_utils.SimulationContext(sim_cfg) # Set main camera sim.set_camera_view(eye=[3.5, 3.5, 3.5], target=[0.0, 0.0, 0.0]) # design scene scene_cfg = SensorsSceneCfg(num_envs=args_cli.num_envs, env_spacing=2.0) scene = InteractiveScene(scene_cfg) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run the simulator run_simulator(sim, scene) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
6,365
Python
33.978022
112
0.635192
NVIDIA-Omniverse/orbit/source/standalone/tutorials/04_sensors/run_ray_caster.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to use the ray-caster sensor. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/04_sensors/run_ray_caster.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Ray Caster Test Script") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import torch import omni.isaac.core.utils.prims as prim_utils import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import RigidObject, RigidObjectCfg from omni.isaac.orbit.sensors.ray_caster import RayCaster, RayCasterCfg, patterns from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.orbit.utils.timer import Timer def define_sensor() -> RayCaster: """Defines the ray-caster sensor to add to the scene.""" # Create a ray-caster sensor ray_caster_cfg = RayCasterCfg( prim_path="/World/Origin.*/ball", mesh_prim_paths=["/World/ground"], pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=(2.0, 2.0)), attach_yaw_only=True, debug_vis=not args_cli.headless, ) ray_caster = RayCaster(cfg=ray_caster_cfg) return ray_caster def design_scene() -> dict: """Design the scene.""" # Populate scene # -- Rough terrain cfg = sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Environments/Terrains/rough_plane.usd") cfg.func("/World/ground", cfg) # -- Light cfg = sim_utils.DistantLightCfg(intensity=2000) cfg.func("/World/light", cfg) # Create separate groups called "Origin1", "Origin2", "Origin3" # Each group will have a robot in it origins = [[0.25, 0.25, 0.0], [-0.25, 0.25, 0.0], [0.25, -0.25, 0.0], [-0.25, -0.25, 0.0]] for i, origin in enumerate(origins): prim_utils.create_prim(f"/World/Origin{i}", "Xform", translation=origin) # -- Balls cfg = RigidObjectCfg( prim_path="/World/Origin.*/ball", spawn=sim_utils.SphereCfg( radius=0.25, rigid_props=sim_utils.RigidBodyPropertiesCfg(), mass_props=sim_utils.MassPropertiesCfg(mass=0.5), collision_props=sim_utils.CollisionPropertiesCfg(), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 0.0, 1.0)), ), ) balls = RigidObject(cfg) # -- Sensors ray_caster = define_sensor() # return the scene information scene_entities = {"balls": balls, "ray_caster": ray_caster} return scene_entities def run_simulator(sim: sim_utils.SimulationContext, scene_entities: dict): """Run the simulator.""" # Extract scene_entities for simplified notation ray_caster: RayCaster = scene_entities["ray_caster"] balls: RigidObject = scene_entities["balls"] # define an initial position of the sensor ball_default_state = balls.data.default_root_state.clone() ball_default_state[:, :3] = torch.rand_like(ball_default_state[:, :3]) * 10 # Create a counter for resetting the scene step_count = 0 # Simulate physics while simulation_app.is_running(): # Reset the scene if step_count % 250 == 0: # reset the balls balls.write_root_state_to_sim(ball_default_state) # reset the sensor ray_caster.reset() # reset the counter step_count = 0 # Step simulation sim.step() # Update the ray-caster with Timer( f"Ray-caster update with {4} x {ray_caster.num_rays} rays with max height of" f" {torch.max(ray_caster.data.pos_w).item():.2f}" ): ray_caster.update(dt=sim.get_physics_dt(), force_recompute=True) # Update counter step_count += 1 def main(): """Main function.""" # Load simulation context sim_cfg = sim_utils.SimulationCfg() sim = sim_utils.SimulationContext(sim_cfg) # Set main camera sim.set_camera_view([0.0, 15.0, 15.0], [0.0, 0.0, -2.5]) # Design the scene scene_entities = design_scene() # Play simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run simulator run_simulator(sim=sim, scene_entities=scene_entities) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
4,764
Python
30.143791
101
0.649664
NVIDIA-Omniverse/orbit/source/standalone/tutorials/00_sim/launch_app.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to run IsaacSim via the AppLauncher .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/00_sim/launch_app.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # create argparser parser = argparse.ArgumentParser(description="Tutorial on running IsaacSim via the AppLauncher.") parser.add_argument("--size", type=float, default=1.0, help="Side-length of cuboid") # SimulationApp arguments https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.kit/docs/index.html?highlight=simulationapp#omni.isaac.kit.SimulationApp parser.add_argument( "--width", type=int, default=1280, help="Width of the viewport and generated images. Defaults to 1280" ) parser.add_argument( "--height", type=int, default=720, help="Height of the viewport and generated images. Defaults to 720" ) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import omni.isaac.orbit.sim as sim_utils def design_scene(): """Designs the scene by spawning ground plane, light, objects and meshes from usd files.""" # Ground-plane cfg_ground = sim_utils.GroundPlaneCfg() cfg_ground.func("/World/defaultGroundPlane", cfg_ground) # spawn distant light cfg_light_distant = sim_utils.DistantLightCfg( intensity=3000.0, color=(0.75, 0.75, 0.75), ) cfg_light_distant.func("/World/lightDistant", cfg_light_distant, translation=(1, 0, 10)) # spawn a cuboid cfg_cuboid = sim_utils.CuboidCfg( size=[args_cli.size] * 3, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 1.0, 1.0)), ) # Spawn cuboid, altering translation on the z-axis to scale to its size cfg_cuboid.func("/World/Object", cfg_cuboid, translation=(0.0, 0.0, args_cli.size / 2)) def main(): """Main function.""" # Initialize the simulation context sim_cfg = sim_utils.SimulationCfg(dt=0.01, substeps=1) sim = sim_utils.SimulationContext(sim_cfg) # Set main camera sim.set_camera_view([2.0, 0.0, 2.5], [-0.5, 0.0, 0.5]) # Design scene by adding assets to it design_scene() # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Simulate physics while simulation_app.is_running(): # perform step sim.step() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
2,854
Python
28.432989
173
0.689909
NVIDIA-Omniverse/orbit/source/standalone/tutorials/00_sim/create_empty.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This script demonstrates how to create a simple stage in Isaac Sim. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/00_sim/create_empty.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # create argparser parser = argparse.ArgumentParser(description="Tutorial on creating an empty stage.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" from omni.isaac.orbit.sim import SimulationCfg, SimulationContext def main(): """Main function.""" # Initialize the simulation context sim_cfg = SimulationCfg(dt=0.01, substeps=1) sim = SimulationContext(sim_cfg) # Set main camera sim.set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0]) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Simulate physics while simulation_app.is_running(): # perform step sim.step() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
1,436
Python
22.177419
84
0.685933
NVIDIA-Omniverse/orbit/source/standalone/tutorials/00_sim/spawn_prims.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This script demonstrates how to spawn prims into the scene. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/00_sim/spawn_prims.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # create argparser parser = argparse.ArgumentParser(description="Tutorial on spawning prims into the scene.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import omni.isaac.core.utils.prims as prim_utils import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR def design_scene(): """Designs the scene by spawning ground plane, light, objects and meshes from usd files.""" # Ground-plane cfg_ground = sim_utils.GroundPlaneCfg() cfg_ground.func("/World/defaultGroundPlane", cfg_ground) # spawn distant light cfg_light_distant = sim_utils.DistantLightCfg( intensity=3000.0, color=(0.75, 0.75, 0.75), ) cfg_light_distant.func("/World/lightDistant", cfg_light_distant, translation=(1, 0, 10)) # create a new xform prim for all objects to be spawned under prim_utils.create_prim("/World/Objects", "Xform") # spawn a red cone cfg_cone = sim_utils.ConeCfg( radius=0.15, height=0.5, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ) cfg_cone.func("/World/Objects/Cone1", cfg_cone, translation=(-1.0, 1.0, 1.0)) cfg_cone.func("/World/Objects/Cone2", cfg_cone, translation=(-1.0, -1.0, 1.0)) # spawn a green cone with colliders and rigid body cfg_cone_rigid = sim_utils.ConeCfg( radius=0.15, height=0.5, rigid_props=sim_utils.RigidBodyPropertiesCfg(), mass_props=sim_utils.MassPropertiesCfg(mass=1.0), collision_props=sim_utils.CollisionPropertiesCfg(), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), ) cfg_cone_rigid.func( "/World/Objects/ConeRigid", cfg_cone_rigid, translation=(0.0, 0.0, 2.0), orientation=(0.5, 0.0, 0.5, 0.0) ) # spawn a usd file of a table into the scene cfg = sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/SeattleLabTable/table_instanceable.usd") cfg.func("/World/Objects/Table", cfg, translation=(0.0, 0.0, 1.05)) def main(): """Main function.""" # Initialize the simulation context sim_cfg = sim_utils.SimulationCfg(dt=0.01, substeps=1) sim = sim_utils.SimulationContext(sim_cfg) # Set main camera sim.set_camera_view([2.0, 0.0, 2.5], [-0.5, 0.0, 0.5]) # Design scene by adding assets to it design_scene() # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Simulate physics while simulation_app.is_running(): # perform step sim.step() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
3,338
Python
29.354545
115
0.670761
NVIDIA-Omniverse/orbit/source/standalone/tutorials/00_sim/log_time.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to generate log outputs while the simulation plays. It accompanies the tutorial on docker usage. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/tutorials/00_sim/log_time.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse import os from omni.isaac.orbit.app import AppLauncher # create argparser parser = argparse.ArgumentParser(description="Tutorial on creating logs from within the docker container.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" from omni.isaac.orbit.sim import SimulationCfg, SimulationContext def main(): """Main function.""" # Specify that the logs must be in logs/docker_tutorial log_dir_path = os.path.join("logs", "docker_tutorial") # In the container, the absolute path will be # /workspace/orbit/logs/docker_tutorial, because # all python execution is done through /workspace/orbit/orbit.sh # and the calling process' path will be /workspace/orbit log_dir_path = os.path.abspath(log_dir_path) if not os.path.isdir(log_dir_path): os.mkdir(log_dir_path) print(f"[INFO] Logging experiment to directory: {log_dir_path}") # Initialize the simulation context sim_cfg = SimulationCfg(dt=0.01, substeps=1) sim = SimulationContext(sim_cfg) # Set main camera sim.set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0]) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Prepare to count sim_time sim_dt = sim.get_physics_dt() sim_time = 0.0 # Open logging file with open(os.path.join(log_dir_path, "log.txt"), "w") as log_file: # Simulate physics while simulation_app.is_running(): log_file.write(f"{sim_time}" + "\n") # perform step sim.step() sim_time += sim_dt if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
2,342
Python
27.228915
107
0.673356
NVIDIA-Omniverse/orbit/source/standalone/demos/markers.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This script demonstrates different types of markers. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/demos/markers.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates different types of markers.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import torch import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.markers import VisualizationMarkers, VisualizationMarkersCfg from omni.isaac.orbit.sim import SimulationContext from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR, ISAAC_ORBIT_NUCLEUS_DIR from omni.isaac.orbit.utils.math import quat_from_angle_axis def define_markers() -> VisualizationMarkers: """Define markers with various different shapes.""" marker_cfg = VisualizationMarkersCfg( prim_path="/Visuals/myMarkers", markers={ "frame": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/frame_prim.usd", scale=(0.5, 0.5, 0.5), ), "arrow_x": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/arrow_x.usd", scale=(1.0, 0.5, 0.5), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 1.0)), ), "cube": sim_utils.CuboidCfg( size=(1.0, 1.0, 1.0), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)), ), "sphere": sim_utils.SphereCfg( radius=0.5, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), ), "cylinder": sim_utils.CylinderCfg( radius=0.5, height=1.0, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 0.0, 1.0)), ), "cone": sim_utils.ConeCfg( radius=0.5, height=1.0, visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 1.0, 0.0)), ), "mesh": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd", scale=(10.0, 10.0, 10.0), ), "mesh_recolored": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd", scale=(10.0, 10.0, 10.0), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.25, 0.0)), ), "robot_mesh": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-D/anymal_d.usd", scale=(2.0, 2.0, 2.0), visual_material=sim_utils.GlassMdlCfg(glass_color=(0.0, 0.1, 0.0)), ), }, ) return VisualizationMarkers(marker_cfg) def main(): """Main function.""" # Load kit helper sim = SimulationContext(sim_utils.SimulationCfg(dt=0.01, substeps=1)) # Set main camera sim.set_camera_view([0.0, 18.0, 12.0], [0.0, 3.0, 0.0]) # Spawn things into stage # Lights cfg = sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)) cfg.func("/World/Light", cfg) # create markers my_visualizer = define_markers() # define a grid of positions where the markers should be placed num_markers_per_type = 5 grid_spacing = 2.0 # Calculate the half-width and half-height half_width = (num_markers_per_type - 1) / 2.0 half_height = (my_visualizer.num_prototypes - 1) / 2.0 # Create the x and y ranges centered around the origin x_range = torch.arange(-half_width * grid_spacing, (half_width + 1) * grid_spacing, grid_spacing) y_range = torch.arange(-half_height * grid_spacing, (half_height + 1) * grid_spacing, grid_spacing) # Create the grid x_grid, y_grid = torch.meshgrid(x_range, y_range, indexing="ij") x_grid = x_grid.reshape(-1) y_grid = y_grid.reshape(-1) z_grid = torch.zeros_like(x_grid) # marker locations marker_locations = torch.stack([x_grid, y_grid, z_grid], dim=1) marker_indices = torch.arange(my_visualizer.num_prototypes).repeat(num_markers_per_type) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Yaw angle yaw = torch.zeros_like(marker_locations[:, 0]) # Simulate physics while simulation_app.is_running(): # rotate the markers around the z-axis for visualization marker_orientations = quat_from_angle_axis(yaw, torch.tensor([0.0, 0.0, 1.0])) # visualize my_visualizer.visualize(marker_locations, marker_orientations, marker_indices=marker_indices) # roll corresponding indices to show how marker prototype can be changed if yaw[0].item() % (0.5 * torch.pi) < 0.01: marker_indices = torch.roll(marker_indices, 1) # perform step sim.step() # increment yaw yaw += 0.01 if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
5,641
Python
34.936306
103
0.617089
NVIDIA-Omniverse/orbit/source/standalone/demos/hands.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates different dexterous hands. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/demos/hands.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates different dexterous hands.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import numpy as np import torch import omni.isaac.core.utils.prims as prim_utils import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import Articulation ## # Pre-defined configs ## from omni.isaac.orbit_assets.allegro import ALLEGRO_HAND_CFG # isort:skip from omni.isaac.orbit_assets.shadow_hand import SHADOW_HAND_CFG # isort:skip def define_origins(num_origins: int, spacing: float) -> list[list[float]]: """Defines the origins of the the scene.""" # create tensor based on number of environments env_origins = torch.zeros(num_origins, 3) # create a grid of origins num_cols = np.floor(np.sqrt(num_origins)) num_rows = np.ceil(num_origins / num_cols) xx, yy = torch.meshgrid(torch.arange(num_rows), torch.arange(num_cols), indexing="xy") env_origins[:, 0] = spacing * xx.flatten()[:num_origins] - spacing * (num_rows - 1) / 2 env_origins[:, 1] = spacing * yy.flatten()[:num_origins] - spacing * (num_cols - 1) / 2 env_origins[:, 2] = 0.0 # return the origins return env_origins.tolist() def design_scene() -> tuple[dict, list[list[float]]]: """Designs the scene.""" # Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # Lights cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) cfg.func("/World/Light", cfg) # Create separate groups called "Origin1", "Origin2", "Origin3" # Each group will have a mount and a robot on top of it origins = define_origins(num_origins=2, spacing=0.5) # Origin 1 with Allegro Hand prim_utils.create_prim("/World/Origin1", "Xform", translation=origins[0]) # -- Robot allegro = Articulation(ALLEGRO_HAND_CFG.replace(prim_path="/World/Origin1/Robot")) # Origin 2 with Shadow Hand prim_utils.create_prim("/World/Origin2", "Xform", translation=origins[1]) # -- Robot shadow_hand = Articulation(SHADOW_HAND_CFG.replace(prim_path="/World/Origin2/Robot")) # return the scene information scene_entities = { "allegro": allegro, "shadow_hand": shadow_hand, } return scene_entities, origins def run_simulator(sim: sim_utils.SimulationContext, entities: dict[str, Articulation], origins: torch.Tensor): """Runs the simulation loop.""" # Define simulation stepping sim_dt = sim.get_physics_dt() sim_time = 0.0 count = 0 # Start with hand open grasp_mode = 0 # Simulate physics while simulation_app.is_running(): # reset if count % 1000 == 0: # reset counters sim_time = 0.0 count = 0 # reset robots for index, robot in enumerate(entities.values()): # root state root_state = robot.data.default_root_state.clone() root_state[:, :3] += origins[index] robot.write_root_state_to_sim(root_state) # joint state joint_pos, joint_vel = robot.data.default_joint_pos.clone(), robot.data.default_joint_vel.clone() robot.write_joint_state_to_sim(joint_pos, joint_vel) # reset the internal state robot.reset() print("[INFO]: Resetting robots state...") # toggle grasp mode if count % 100 == 0: grasp_mode = 1 - grasp_mode # apply default actions to the hands robots for robot in entities.values(): # generate joint positions joint_pos_target = robot.data.soft_joint_pos_limits[..., grasp_mode] # apply action to the robot robot.set_joint_position_target(joint_pos_target) # write data to sim robot.write_data_to_sim() # perform step sim.step() # update sim-time sim_time += sim_dt count += 1 # update buffers for robot in entities.values(): robot.update(sim_dt) def main(): """Main function.""" # Initialize the simulation context sim = sim_utils.SimulationContext(sim_utils.SimulationCfg(dt=0.01, substeps=1)) # Set main camera sim.set_camera_view(eye=[0.0, -0.5, 1.5], target=[0.0, -0.2, 0.5]) # design scene scene_entities, scene_origins = design_scene() scene_origins = torch.tensor(scene_origins, device=sim.device) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run the simulator run_simulator(sim, scene_entities, scene_origins) if __name__ == "__main__": # run the main execution main() # close sim app simulation_app.close()
5,446
Python
31.041176
113
0.637716
NVIDIA-Omniverse/orbit/source/standalone/demos/arms.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates different single-arm manipulators. .. code-block:: bash # Usage ./orbit.sh -p source/standalone/demos/arms.py """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates different single-arm manipulators.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import numpy as np import torch import omni.isaac.core.utils.prims as prim_utils import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR ## # Pre-defined configs ## # isort: off from omni.isaac.orbit_assets import ( FRANKA_PANDA_CFG, UR10_CFG, KINOVA_JACO2_N7S300_CFG, KINOVA_JACO2_N6S300_CFG, KINOVA_GEN3_N7_CFG, SAWYER_CFG, ) # isort: on def define_origins(num_origins: int, spacing: float) -> list[list[float]]: """Defines the origins of the the scene.""" # create tensor based on number of environments env_origins = torch.zeros(num_origins, 3) # create a grid of origins num_rows = np.floor(np.sqrt(num_origins)) num_cols = np.ceil(num_origins / num_rows) xx, yy = torch.meshgrid(torch.arange(num_rows), torch.arange(num_cols), indexing="xy") env_origins[:, 0] = spacing * xx.flatten()[:num_origins] - spacing * (num_rows - 1) / 2 env_origins[:, 1] = spacing * yy.flatten()[:num_origins] - spacing * (num_cols - 1) / 2 env_origins[:, 2] = 0.0 # return the origins return env_origins.tolist() def design_scene() -> tuple[dict, list[list[float]]]: """Designs the scene.""" # Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # Lights cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) cfg.func("/World/Light", cfg) # Create separate groups called "Origin1", "Origin2", "Origin3" # Each group will have a mount and a robot on top of it origins = define_origins(num_origins=6, spacing=2.0) # Origin 1 with Franka Panda prim_utils.create_prim("/World/Origin1", "Xform", translation=origins[0]) # -- Table cfg = sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/SeattleLabTable/table_instanceable.usd") cfg.func("/World/Origin1/Table", cfg, translation=(0.55, 0.0, 1.05)) # -- Robot franka_arm_cfg = FRANKA_PANDA_CFG.replace(prim_path="/World/Origin1/Robot") franka_arm_cfg.init_state.pos = (0.0, 0.0, 1.05) franka_panda = Articulation(cfg=franka_arm_cfg) # Origin 2 with UR10 prim_utils.create_prim("/World/Origin2", "Xform", translation=origins[1]) # -- Table cfg = sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/Stand/stand_instanceable.usd", scale=(2.0, 2.0, 2.0) ) cfg.func("/World/Origin2/Table", cfg, translation=(0.0, 0.0, 1.03)) # -- Robot ur10_cfg = UR10_CFG.replace(prim_path="/World/Origin2/Robot") ur10_cfg.init_state.pos = (0.0, 0.0, 1.03) ur10 = Articulation(cfg=ur10_cfg) # Origin 3 with Kinova JACO2 (7-Dof) arm prim_utils.create_prim("/World/Origin3", "Xform", translation=origins[2]) # -- Table cfg = sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/ThorlabsTable/table_instanceable.usd") cfg.func("/World/Origin3/Table", cfg, translation=(0.0, 0.0, 0.8)) # -- Robot kinova_arm_cfg = KINOVA_JACO2_N7S300_CFG.replace(prim_path="/World/Origin3/Robot") kinova_arm_cfg.init_state.pos = (0.0, 0.0, 0.8) kinova_j2n7s300 = Articulation(cfg=kinova_arm_cfg) # Origin 4 with Kinova JACO2 (6-Dof) arm prim_utils.create_prim("/World/Origin4", "Xform", translation=origins[3]) # -- Table cfg = sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/ThorlabsTable/table_instanceable.usd") cfg.func("/World/Origin4/Table", cfg, translation=(0.0, 0.0, 0.8)) # -- Robot kinova_arm_cfg = KINOVA_JACO2_N6S300_CFG.replace(prim_path="/World/Origin4/Robot") kinova_arm_cfg.init_state.pos = (0.0, 0.0, 0.8) kinova_j2n6s300 = Articulation(cfg=kinova_arm_cfg) # Origin 5 with Sawyer prim_utils.create_prim("/World/Origin5", "Xform", translation=origins[4]) # -- Table cfg = sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/SeattleLabTable/table_instanceable.usd") cfg.func("/World/Origin5/Table", cfg, translation=(0.55, 0.0, 1.05)) # -- Robot kinova_arm_cfg = KINOVA_GEN3_N7_CFG.replace(prim_path="/World/Origin5/Robot") kinova_arm_cfg.init_state.pos = (0.0, 0.0, 1.05) kinova_gen3n7 = Articulation(cfg=kinova_arm_cfg) # Origin 6 with Kinova Gen3 (7-Dof) arm prim_utils.create_prim("/World/Origin6", "Xform", translation=origins[5]) # -- Table cfg = sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/Stand/stand_instanceable.usd", scale=(2.0, 2.0, 2.0) ) cfg.func("/World/Origin6/Table", cfg, translation=(0.0, 0.0, 1.03)) # -- Robot sawyer_arm_cfg = SAWYER_CFG.replace(prim_path="/World/Origin6/Robot") sawyer_arm_cfg.init_state.pos = (0.0, 0.0, 1.03) sawyer = Articulation(cfg=sawyer_arm_cfg) # return the scene information scene_entities = { "franka_panda": franka_panda, "ur10": ur10, "kinova_j2n7s300": kinova_j2n7s300, "kinova_j2n6s300": kinova_j2n6s300, "kinova_gen3n7": kinova_gen3n7, "sawyer": sawyer, } return scene_entities, origins def run_simulator(sim: sim_utils.SimulationContext, entities: dict[str, Articulation], origins: torch.Tensor): """Runs the simulation loop.""" # Define simulation stepping sim_dt = sim.get_physics_dt() sim_time = 0.0 count = 0 # Simulate physics while simulation_app.is_running(): # reset if count % 200 == 0: # reset counters sim_time = 0.0 count = 0 # reset the scene entities for index, robot in enumerate(entities.values()): # root state root_state = robot.data.default_root_state.clone() root_state[:, :3] += origins[index] robot.write_root_state_to_sim(root_state) # set joint positions joint_pos, joint_vel = robot.data.default_joint_pos.clone(), robot.data.default_joint_vel.clone() robot.write_joint_state_to_sim(joint_pos, joint_vel) # clear internal buffers robot.reset() print("[INFO]: Resetting robots state...") # apply random actions to the robots for robot in entities.values(): # generate random joint positions joint_pos_target = robot.data.default_joint_pos + torch.randn_like(robot.data.joint_pos) * 0.1 joint_pos_target = joint_pos_target.clamp_( robot.data.soft_joint_pos_limits[..., 0], robot.data.soft_joint_pos_limits[..., 1] ) # apply action to the robot robot.set_joint_position_target(joint_pos_target) # write data to sim robot.write_data_to_sim() # perform step sim.step() # update sim-time sim_time += sim_dt count += 1 # update buffers for robot in entities.values(): robot.update(sim_dt) def main(): """Main function.""" # Initialize the simulation context sim_cfg = sim_utils.SimulationCfg() sim = sim_utils.SimulationContext(sim_cfg) # Set main camera sim.set_camera_view([3.5, 0.0, 3.2], [0.0, 0.0, 0.5]) # design scene scene_entities, scene_origins = design_scene() scene_origins = torch.tensor(scene_origins, device=sim.device) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run the simulator run_simulator(sim, scene_entities, scene_origins) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
8,481
Python
34.940678
115
0.643438
NVIDIA-Omniverse/orbit/source/standalone/demos/bipeds.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to simulate a bipedal robot. """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates how to simulate a bipedal robot.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.sim import SimulationContext ## # Pre-defined configs ## from omni.isaac.orbit_assets.cassie import CASSIE_CFG # isort:skip def main(): """Main function.""" # Load kit helper sim = SimulationContext( sim_utils.SimulationCfg(device="cpu", use_gpu_pipeline=False, dt=0.005, physx=sim_utils.PhysxCfg(use_gpu=False)) ) # Set main camera sim.set_camera_view(eye=[3.5, 3.5, 3.5], target=[0.0, 0.0, 0.0]) # Spawn things into stage # Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # Lights cfg = sim_utils.DistantLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)) cfg.func("/World/Light", cfg) # Robots robot_cfg = CASSIE_CFG robot_cfg.spawn.func("/World/Cassie/Robot_1", robot_cfg.spawn, translation=(1.5, 0.5, 0.42)) # create handles for the robots robots = Articulation(robot_cfg.replace(prim_path="/World/Cassie/Robot.*")) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Define simulation stepping sim_dt = sim.get_physics_dt() sim_time = 0.0 count = 0 # Simulate physics while simulation_app.is_running(): # reset if count % 200 == 0: # reset counters sim_time = 0.0 count = 0 # reset dof state joint_pos, joint_vel = robots.data.default_joint_pos, robots.data.default_joint_vel robots.write_joint_state_to_sim(joint_pos, joint_vel) robots.write_root_pose_to_sim(robots.data.default_root_state[:, :7]) robots.write_root_velocity_to_sim(robots.data.default_root_state[:, 7:]) robots.reset() # reset command print(">>>>>>>> Reset!") # apply action to the robot robots.set_joint_position_target(robots.data.default_joint_pos.clone()) robots.write_data_to_sim() # perform step sim.step() # update sim-time sim_time += sim_dt count += 1 # update buffers robots.update(sim_dt) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
3,056
Python
26.790909
120
0.643652
NVIDIA-Omniverse/orbit/source/standalone/demos/procedural_terrain.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates procedural terrains with flat patches. Example usage: .. code-block:: bash # Generate terrain with height color scheme ./orbit.sh -p source/standalone/demos/procedural_terrain.py --color_scheme height # Generate terrain with random color scheme ./orbit.sh -p source/standalone/demos/procedural_terrain.py --color_scheme random # Generate terrain with no color scheme ./orbit.sh -p source/standalone/demos/procedural_terrain.py --color_scheme none # Generate terrain with curriculum ./orbit.sh -p source/standalone/demos/procedural_terrain.py --use_curriculum # Generate terrain with curriculum along with flat patches ./orbit.sh -p source/standalone/demos/procedural_terrain.py --use_curriculum --show_flat_patches """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates procedural terrain generation.") parser.add_argument( "--color_scheme", type=str, default="none", choices=["height", "random", "none"], help="Color scheme to use for the terrain generation.", ) parser.add_argument( "--use_curriculum", action="store_true", default=False, help="Whether to use the curriculum for the terrain generation.", ) parser.add_argument( "--show_flat_patches", action="store_true", default=False, help="Whether to show the flat patches computed during the terrain generation.", ) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import random import torch import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import AssetBase from omni.isaac.orbit.markers import VisualizationMarkers, VisualizationMarkersCfg from omni.isaac.orbit.terrains import FlatPatchSamplingCfg, TerrainImporter, TerrainImporterCfg ## # Pre-defined configs ## from omni.isaac.orbit.terrains.config.rough import ROUGH_TERRAINS_CFG # isort:skip def design_scene() -> tuple[dict, torch.Tensor]: """Designs the scene.""" # Lights cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) cfg.func("/World/Light", cfg) # Parse terrain generation terrain_gen_cfg = ROUGH_TERRAINS_CFG.replace(curriculum=args_cli.use_curriculum, color_scheme=args_cli.color_scheme) # Add flat patch configuration # Note: To have separate colors for each sub-terrain type, we set the flat patch sampling configuration name # to the sub-terrain name. However, this is not how it should be used in practice. The key name should be # the intention of the flat patch. For instance, "source" or "target" for spawn and command related flat patches. if args_cli.show_flat_patches: for sub_terrain_name, sub_terrain_cfg in terrain_gen_cfg.sub_terrains.items(): sub_terrain_cfg.flat_patch_sampling = { sub_terrain_name: FlatPatchSamplingCfg(num_patches=10, patch_radius=0.5, max_height_diff=0.05) } # Handler for terrains importing terrain_importer_cfg = TerrainImporterCfg( num_envs=2048, env_spacing=3.0, prim_path="/World/ground", max_init_terrain_level=None, terrain_type="generator", terrain_generator=terrain_gen_cfg, debug_vis=True, ) # Remove visual material for height and random color schemes to use the default material if args_cli.color_scheme in ["height", "random"]: terrain_importer_cfg.visual_material = None # Create terrain importer terrain_importer = TerrainImporter(terrain_importer_cfg) # Show the flat patches computed if args_cli.show_flat_patches: # Configure the flat patches vis_cfg = VisualizationMarkersCfg(prim_path="/Visuals/TerrainFlatPatches", markers={}) for name in terrain_importer.flat_patches: vis_cfg.markers[name] = sim_utils.CylinderCfg( radius=0.5, # note: manually set to the patch radius for visualization height=0.1, visual_material=sim_utils.GlassMdlCfg(glass_color=(random.random(), random.random(), random.random())), ) flat_patches_visualizer = VisualizationMarkers(vis_cfg) # Visualize the flat patches all_patch_locations = [] all_patch_indices = [] for i, patch_locations in enumerate(terrain_importer.flat_patches.values()): num_patch_locations = patch_locations.view(-1, 3).shape[0] # store the patch locations and indices all_patch_locations.append(patch_locations.view(-1, 3)) all_patch_indices += [i] * num_patch_locations # combine the patch locations and indices flat_patches_visualizer.visualize(torch.cat(all_patch_locations), marker_indices=all_patch_indices) # return the scene information scene_entities = {"terrain": terrain_importer} return scene_entities, terrain_importer.env_origins def run_simulator(sim: sim_utils.SimulationContext, entities: dict[str, AssetBase], origins: torch.Tensor): """Runs the simulation loop.""" # Simulate physics while simulation_app.is_running(): # perform step sim.step() def main(): """Main function.""" # Initialize the simulation context sim = sim_utils.SimulationContext(sim_utils.SimulationCfg(dt=0.01, substeps=1)) # Set main camera sim.set_camera_view(eye=[2.5, 2.5, 2.5], target=[0.0, 0.0, 0.0]) # design scene scene_entities, scene_origins = design_scene() # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run the simulator run_simulator(sim, scene_entities, scene_origins) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
6,249
Python
34.112359
120
0.692591
NVIDIA-Omniverse/orbit/source/standalone/environments/random_agent.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Script to an environment with random action agent.""" from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Random agent for Orbit environments.") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default=None, help="Name of the task.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils import parse_env_cfg def main(): """Random actions agent with Orbit environment.""" # create environment configuration env_cfg = parse_env_cfg( args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric ) # create environment env = gym.make(args_cli.task, cfg=env_cfg) # print info (this is vectorized environment) print(f"[INFO]: Gym observation space: {env.observation_space}") print(f"[INFO]: Gym action space: {env.action_space}") # reset environment env.reset() # simulate environment while simulation_app.is_running(): # run everything in inference mode with torch.inference_mode(): # sample actions from -1 to 1 actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions env.step(actions) # close the simulator env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
2,276
Python
29.36
115
0.695079
NVIDIA-Omniverse/orbit/source/standalone/environments/list_envs.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Script to print all the available environments in ORBIT. The script iterates over all registered environments and stores the details in a table. It prints the name of the environment, the entry point and the config file. All the environments are registered in the `omni.isaac.orbit_tasks` extension. They start with `Isaac` in their name. """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher # launch omniverse app app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym from prettytable import PrettyTable import omni.isaac.orbit_tasks # noqa: F401 def main(): """Print all environments registered in `omni.isaac.orbit_tasks` extension.""" # print all the available environments table = PrettyTable(["S. No.", "Task Name", "Entry Point", "Config"]) table.title = "Available Environments in ORBIT" # set alignment of table columns table.align["Task Name"] = "l" table.align["Entry Point"] = "l" table.align["Config"] = "l" # count of environments index = 0 # acquire all Isaac environments names for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: # add details to table table.add_row([index + 1, task_spec.id, task_spec.entry_point, task_spec.kwargs["env_cfg_entry_point"]]) # increment count index += 1 print(table) if __name__ == "__main__": try: # run the main function main() except Exception as e: raise e finally: # close the app simulation_app.close()
1,827
Python
25.882353
116
0.67214
NVIDIA-Omniverse/orbit/source/standalone/environments/teleoperation/teleop_se3_agent.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Script to run a keyboard teleoperation with Orbit manipulation environments.""" from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Keyboard teleoperation for Orbit environments.") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--num_envs", type=int, default=1, help="Number of environments to simulate.") parser.add_argument("--device", type=str, default="keyboard", help="Device for interacting with environment") parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument("--sensitivity", type=float, default=1.0, help="Sensitivity factor.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(headless=args_cli.headless) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import carb from omni.isaac.orbit.devices import Se3Gamepad, Se3Keyboard, Se3SpaceMouse import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils import parse_env_cfg def pre_process_actions(delta_pose: torch.Tensor, gripper_command: bool) -> torch.Tensor: """Pre-process actions for the environment.""" # compute actions based on environment if "Reach" in args_cli.task: # note: reach is the only one that uses a different action space # compute actions return delta_pose else: # resolve gripper command gripper_vel = torch.zeros(delta_pose.shape[0], 1, device=delta_pose.device) gripper_vel[:] = -1.0 if gripper_command else 1.0 # compute actions return torch.concat([delta_pose, gripper_vel], dim=1) def main(): """Running keyboard teleoperation with Orbit manipulation environment.""" # parse configuration env_cfg = parse_env_cfg( args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric ) # modify configuration env_cfg.terminations.time_out = None # create environment env = gym.make(args_cli.task, cfg=env_cfg) # check environment name (for reach , we don't allow the gripper) if "Reach" in args_cli.task: carb.log_warn( f"The environment '{args_cli.task}' does not support gripper control. The device command will be ignored." ) # create controller if args_cli.device.lower() == "keyboard": teleop_interface = Se3Keyboard( pos_sensitivity=0.005 * args_cli.sensitivity, rot_sensitivity=0.005 * args_cli.sensitivity ) elif args_cli.device.lower() == "spacemouse": teleop_interface = Se3SpaceMouse( pos_sensitivity=0.05 * args_cli.sensitivity, rot_sensitivity=0.005 * args_cli.sensitivity ) elif args_cli.device.lower() == "gamepad": teleop_interface = Se3Gamepad( pos_sensitivity=0.1 * args_cli.sensitivity, rot_sensitivity=0.1 * args_cli.sensitivity ) else: raise ValueError(f"Invalid device interface '{args_cli.device}'. Supported: 'keyboard', 'spacemouse'.") # add teleoperation key for env reset teleop_interface.add_callback("L", env.reset) # print helper for keyboard print(teleop_interface) # reset environment env.reset() teleop_interface.reset() # simulate environment while simulation_app.is_running(): # run everything in inference mode with torch.inference_mode(): # get keyboard command delta_pose, gripper_command = teleop_interface.advance() delta_pose = delta_pose.astype("float32") # convert to torch delta_pose = torch.tensor(delta_pose, device=env.unwrapped.device).repeat(env.unwrapped.num_envs, 1) # pre-process actions actions = pre_process_actions(delta_pose, gripper_command) # apply actions env.step(actions) # close the simulator env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
4,590
Python
34.589147
118
0.682135
NVIDIA-Omniverse/orbit/source/standalone/environments/state_machine/lift_cube_sm.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Script to run an environment with a pick and lift state machine. The state machine is implemented in the kernel function `infer_state_machine`. It uses the `warp` library to run the state machine in parallel on the GPU. .. code-block:: bash ./orbit.sh -p source/standalone/environments/state_machine/lift_cube_sm.py --num_envs 32 """ """Launch Omniverse Toolkit first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Pick and lift state machine for lift environments.") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(headless=args_cli.headless) simulation_app = app_launcher.app """Rest everything else.""" import gymnasium as gym import torch from collections.abc import Sequence import warp as wp from omni.isaac.orbit.assets.rigid_object.rigid_object_data import RigidObjectData import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.manipulation.lift.lift_env_cfg import LiftEnvCfg from omni.isaac.orbit_tasks.utils.parse_cfg import parse_env_cfg # initialize warp wp.init() class GripperState: """States for the gripper.""" OPEN = wp.constant(1.0) CLOSE = wp.constant(-1.0) class PickSmState: """States for the pick state machine.""" REST = wp.constant(0) APPROACH_ABOVE_OBJECT = wp.constant(1) APPROACH_OBJECT = wp.constant(2) GRASP_OBJECT = wp.constant(3) LIFT_OBJECT = wp.constant(4) class PickSmWaitTime: """Additional wait times (in s) for states for before switching.""" REST = wp.constant(0.2) APPROACH_ABOVE_OBJECT = wp.constant(0.5) APPROACH_OBJECT = wp.constant(0.6) GRASP_OBJECT = wp.constant(0.3) LIFT_OBJECT = wp.constant(1.0) @wp.kernel def infer_state_machine( dt: wp.array(dtype=float), sm_state: wp.array(dtype=int), sm_wait_time: wp.array(dtype=float), ee_pose: wp.array(dtype=wp.transform), object_pose: wp.array(dtype=wp.transform), des_object_pose: wp.array(dtype=wp.transform), des_ee_pose: wp.array(dtype=wp.transform), gripper_state: wp.array(dtype=float), offset: wp.array(dtype=wp.transform), ): # retrieve thread id tid = wp.tid() # retrieve state machine state state = sm_state[tid] # decide next state if state == PickSmState.REST: des_ee_pose[tid] = ee_pose[tid] gripper_state[tid] = GripperState.OPEN # wait for a while if sm_wait_time[tid] >= PickSmWaitTime.REST: # move to next state and reset wait time sm_state[tid] = PickSmState.APPROACH_ABOVE_OBJECT sm_wait_time[tid] = 0.0 elif state == PickSmState.APPROACH_ABOVE_OBJECT: des_ee_pose[tid] = wp.transform_multiply(offset[tid], object_pose[tid]) gripper_state[tid] = GripperState.OPEN # TODO: error between current and desired ee pose below threshold # wait for a while if sm_wait_time[tid] >= PickSmWaitTime.APPROACH_OBJECT: # move to next state and reset wait time sm_state[tid] = PickSmState.APPROACH_OBJECT sm_wait_time[tid] = 0.0 elif state == PickSmState.APPROACH_OBJECT: des_ee_pose[tid] = object_pose[tid] gripper_state[tid] = GripperState.OPEN # TODO: error between current and desired ee pose below threshold # wait for a while if sm_wait_time[tid] >= PickSmWaitTime.APPROACH_OBJECT: # move to next state and reset wait time sm_state[tid] = PickSmState.GRASP_OBJECT sm_wait_time[tid] = 0.0 elif state == PickSmState.GRASP_OBJECT: des_ee_pose[tid] = object_pose[tid] gripper_state[tid] = GripperState.CLOSE # wait for a while if sm_wait_time[tid] >= PickSmWaitTime.GRASP_OBJECT: # move to next state and reset wait time sm_state[tid] = PickSmState.LIFT_OBJECT sm_wait_time[tid] = 0.0 elif state == PickSmState.LIFT_OBJECT: des_ee_pose[tid] = des_object_pose[tid] gripper_state[tid] = GripperState.CLOSE # TODO: error between current and desired ee pose below threshold # wait for a while if sm_wait_time[tid] >= PickSmWaitTime.LIFT_OBJECT: # move to next state and reset wait time sm_state[tid] = PickSmState.LIFT_OBJECT sm_wait_time[tid] = 0.0 # increment wait time sm_wait_time[tid] = sm_wait_time[tid] + dt[tid] class PickAndLiftSm: """A simple state machine in a robot's task space to pick and lift an object. The state machine is implemented as a warp kernel. It takes in the current state of the robot's end-effector and the object, and outputs the desired state of the robot's end-effector and the gripper. The state machine is implemented as a finite state machine with the following states: 1. REST: The robot is at rest. 2. APPROACH_ABOVE_OBJECT: The robot moves above the object. 3. APPROACH_OBJECT: The robot moves to the object. 4. GRASP_OBJECT: The robot grasps the object. 5. LIFT_OBJECT: The robot lifts the object to the desired pose. This is the final state. """ def __init__(self, dt: float, num_envs: int, device: torch.device | str = "cpu"): """Initialize the state machine. Args: dt: The environment time step. num_envs: The number of environments to simulate. device: The device to run the state machine on. """ # save parameters self.dt = float(dt) self.num_envs = num_envs self.device = device # initialize state machine self.sm_dt = torch.full((self.num_envs,), self.dt, device=self.device) self.sm_state = torch.full((self.num_envs,), 0, dtype=torch.int32, device=self.device) self.sm_wait_time = torch.zeros((self.num_envs,), device=self.device) # desired state self.des_ee_pose = torch.zeros((self.num_envs, 7), device=self.device) self.des_gripper_state = torch.full((self.num_envs,), 0.0, device=self.device) # approach above object offset self.offset = torch.zeros((self.num_envs, 7), device=self.device) self.offset[:, 2] = 0.1 self.offset[:, -1] = 1.0 # warp expects quaternion as (x, y, z, w) # convert to warp self.sm_dt_wp = wp.from_torch(self.sm_dt, wp.float32) self.sm_state_wp = wp.from_torch(self.sm_state, wp.int32) self.sm_wait_time_wp = wp.from_torch(self.sm_wait_time, wp.float32) self.des_ee_pose_wp = wp.from_torch(self.des_ee_pose, wp.transform) self.des_gripper_state_wp = wp.from_torch(self.des_gripper_state, wp.float32) self.offset_wp = wp.from_torch(self.offset, wp.transform) def reset_idx(self, env_ids: Sequence[int] = None): """Reset the state machine.""" if env_ids is None: env_ids = slice(None) self.sm_state[env_ids] = 0 self.sm_wait_time[env_ids] = 0.0 def compute(self, ee_pose: torch.Tensor, object_pose: torch.Tensor, des_object_pose: torch.Tensor): """Compute the desired state of the robot's end-effector and the gripper.""" # convert all transformations from (w, x, y, z) to (x, y, z, w) ee_pose = ee_pose[:, [0, 1, 2, 4, 5, 6, 3]] object_pose = object_pose[:, [0, 1, 2, 4, 5, 6, 3]] des_object_pose = des_object_pose[:, [0, 1, 2, 4, 5, 6, 3]] # convert to warp ee_pose_wp = wp.from_torch(ee_pose.contiguous(), wp.transform) object_pose_wp = wp.from_torch(object_pose.contiguous(), wp.transform) des_object_pose_wp = wp.from_torch(des_object_pose.contiguous(), wp.transform) # run state machine wp.launch( kernel=infer_state_machine, dim=self.num_envs, inputs=[ self.sm_dt_wp, self.sm_state_wp, self.sm_wait_time_wp, ee_pose_wp, object_pose_wp, des_object_pose_wp, self.des_ee_pose_wp, self.des_gripper_state_wp, self.offset_wp, ], device=self.device, ) # convert transformations back to (w, x, y, z) des_ee_pose = self.des_ee_pose[:, [0, 1, 2, 6, 3, 4, 5]] # convert to torch return torch.cat([des_ee_pose, self.des_gripper_state.unsqueeze(-1)], dim=-1) def main(): # parse configuration env_cfg: LiftEnvCfg = parse_env_cfg( "Isaac-Lift-Cube-Franka-IK-Abs-v0", use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric, ) # create environment env = gym.make("Isaac-Lift-Cube-Franka-IK-Abs-v0", cfg=env_cfg) # reset environment at start env.reset() # create action buffers (position + quaternion) actions = torch.zeros(env.unwrapped.action_space.shape, device=env.unwrapped.device) actions[:, 3] = 1.0 # desired object orientation (we only do position control of object) desired_orientation = torch.zeros((env.unwrapped.num_envs, 4), device=env.unwrapped.device) desired_orientation[:, 1] = 1.0 # create state machine pick_sm = PickAndLiftSm(env_cfg.sim.dt * env_cfg.decimation, env.unwrapped.num_envs, env.unwrapped.device) while simulation_app.is_running(): # run everything in inference mode with torch.inference_mode(): # step environment dones = env.step(actions)[-2] # observations # -- end-effector frame ee_frame_sensor = env.unwrapped.scene["ee_frame"] tcp_rest_position = ee_frame_sensor.data.target_pos_w[..., 0, :].clone() - env.unwrapped.scene.env_origins tcp_rest_orientation = ee_frame_sensor.data.target_quat_w[..., 0, :].clone() # -- object frame object_data: RigidObjectData = env.unwrapped.scene["object"].data object_position = object_data.root_pos_w - env.unwrapped.scene.env_origins # -- target object frame desired_position = env.unwrapped.command_manager.get_command("object_pose")[..., :3] # advance state machine actions = pick_sm.compute( torch.cat([tcp_rest_position, tcp_rest_orientation], dim=-1), torch.cat([object_position, desired_orientation], dim=-1), torch.cat([desired_position, desired_orientation], dim=-1), ) # reset state machine if dones.any(): pick_sm.reset_idx(dones.nonzero(as_tuple=False).squeeze(-1)) # close the environment env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
11,404
Python
37.016667
118
0.632673
NVIDIA-Omniverse/orbit/source/standalone/environments/state_machine/open_cabinet_sm.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Script to run an environment with a cabinet opening state machine. The state machine is implemented in the kernel function `infer_state_machine`. It uses the `warp` library to run the state machine in parallel on the GPU. .. code-block:: bash ./orbit.sh -p source/standalone/environments/state_machine/lift_cube_sm.py --num_envs 32 """ """Launch Omniverse Toolkit first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Pick and lift state machine for cabinet environments.") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(headless=args_cli.headless) simulation_app = app_launcher.app """Rest everything else.""" import gymnasium as gym import torch import traceback from collections.abc import Sequence import carb import warp as wp from omni.isaac.orbit.sensors import FrameTransformer import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.manipulation.cabinet.cabinet_env_cfg import CabinetEnvCfg from omni.isaac.orbit_tasks.utils.parse_cfg import parse_env_cfg # initialize warp wp.init() class GripperState: """States for the gripper.""" OPEN = wp.constant(1.0) CLOSE = wp.constant(-1.0) class OpenDrawerSmState: """States for the cabinet drawer opening state machine.""" REST = wp.constant(0) APPROACH_INFRONT_HANDLE = wp.constant(1) APPROACH_HANDLE = wp.constant(2) GRASP_HANDLE = wp.constant(3) OPEN_DRAWER = wp.constant(4) RELEASE_HANDLE = wp.constant(5) class OpenDrawerSmWaitTime: """Additional wait times (in s) for states for before switching.""" REST = wp.constant(0.5) APPROACH_INFRONT_HANDLE = wp.constant(1.25) APPROACH_HANDLE = wp.constant(1.0) GRASP_HANDLE = wp.constant(1.0) OPEN_DRAWER = wp.constant(3.0) RELEASE_HANDLE = wp.constant(0.2) @wp.kernel def infer_state_machine( dt: wp.array(dtype=float), sm_state: wp.array(dtype=int), sm_wait_time: wp.array(dtype=float), ee_pose: wp.array(dtype=wp.transform), handle_pose: wp.array(dtype=wp.transform), des_ee_pose: wp.array(dtype=wp.transform), gripper_state: wp.array(dtype=float), handle_approach_offset: wp.array(dtype=wp.transform), handle_grasp_offset: wp.array(dtype=wp.transform), drawer_opening_rate: wp.array(dtype=wp.transform), ): # retrieve thread id tid = wp.tid() # retrieve state machine state state = sm_state[tid] # decide next state if state == OpenDrawerSmState.REST: des_ee_pose[tid] = ee_pose[tid] gripper_state[tid] = GripperState.OPEN # wait for a while if sm_wait_time[tid] >= OpenDrawerSmWaitTime.REST: # move to next state and reset wait time sm_state[tid] = OpenDrawerSmState.APPROACH_INFRONT_HANDLE sm_wait_time[tid] = 0.0 elif state == OpenDrawerSmState.APPROACH_INFRONT_HANDLE: des_ee_pose[tid] = wp.transform_multiply(handle_approach_offset[tid], handle_pose[tid]) gripper_state[tid] = GripperState.OPEN # TODO: error between current and desired ee pose below threshold # wait for a while if sm_wait_time[tid] >= OpenDrawerSmWaitTime.APPROACH_INFRONT_HANDLE: # move to next state and reset wait time sm_state[tid] = OpenDrawerSmState.APPROACH_HANDLE sm_wait_time[tid] = 0.0 elif state == OpenDrawerSmState.APPROACH_HANDLE: des_ee_pose[tid] = handle_pose[tid] gripper_state[tid] = GripperState.OPEN # TODO: error between current and desired ee pose below threshold # wait for a while if sm_wait_time[tid] >= OpenDrawerSmWaitTime.APPROACH_HANDLE: # move to next state and reset wait time sm_state[tid] = OpenDrawerSmState.GRASP_HANDLE sm_wait_time[tid] = 0.0 elif state == OpenDrawerSmState.GRASP_HANDLE: des_ee_pose[tid] = wp.transform_multiply(handle_grasp_offset[tid], handle_pose[tid]) gripper_state[tid] = GripperState.CLOSE # wait for a while if sm_wait_time[tid] >= OpenDrawerSmWaitTime.GRASP_HANDLE: # move to next state and reset wait time sm_state[tid] = OpenDrawerSmState.OPEN_DRAWER sm_wait_time[tid] = 0.0 elif state == OpenDrawerSmState.OPEN_DRAWER: des_ee_pose[tid] = wp.transform_multiply(drawer_opening_rate[tid], handle_pose[tid]) gripper_state[tid] = GripperState.CLOSE # wait for a while if sm_wait_time[tid] >= OpenDrawerSmWaitTime.OPEN_DRAWER: # move to next state and reset wait time sm_state[tid] = OpenDrawerSmState.RELEASE_HANDLE sm_wait_time[tid] = 0.0 elif state == OpenDrawerSmState.RELEASE_HANDLE: des_ee_pose[tid] = ee_pose[tid] gripper_state[tid] = GripperState.CLOSE # wait for a while if sm_wait_time[tid] >= OpenDrawerSmWaitTime.RELEASE_HANDLE: # move to next state and reset wait time sm_state[tid] = OpenDrawerSmState.RELEASE_HANDLE sm_wait_time[tid] = 0.0 # increment wait time sm_wait_time[tid] = sm_wait_time[tid] + dt[tid] class OpenDrawerSm: """A simple state machine in a robot's task space to open a drawer in the cabinet. The state machine is implemented as a warp kernel. It takes in the current state of the robot's end-effector and the object, and outputs the desired state of the robot's end-effector and the gripper. The state machine is implemented as a finite state machine with the following states: 1. REST: The robot is at rest. 2. APPROACH_HANDLE: The robot moves towards the handle of the drawer. 3. GRASP_HANDLE: The robot grasps the handle of the drawer. 4. OPEN_DRAWER: The robot opens the drawer. 5. RELEASE_HANDLE: The robot releases the handle of the drawer. This is the final state. """ def __init__(self, dt: float, num_envs: int, device: torch.device | str = "cpu"): """Initialize the state machine. Args: dt: The environment time step. num_envs: The number of environments to simulate. device: The device to run the state machine on. """ # save parameters self.dt = float(dt) self.num_envs = num_envs self.device = device # initialize state machine self.sm_dt = torch.full((self.num_envs,), self.dt, device=self.device) self.sm_state = torch.full((self.num_envs,), 0, dtype=torch.int32, device=self.device) self.sm_wait_time = torch.zeros((self.num_envs,), device=self.device) # desired state self.des_ee_pose = torch.zeros((self.num_envs, 7), device=self.device) self.des_gripper_state = torch.full((self.num_envs,), 0.0, device=self.device) # approach infront of the handle self.handle_approach_offset = torch.zeros((self.num_envs, 7), device=self.device) self.handle_approach_offset[:, 0] = -0.1 self.handle_approach_offset[:, -1] = 1.0 # warp expects quaternion as (x, y, z, w) # handle grasp offset self.handle_grasp_offset = torch.zeros((self.num_envs, 7), device=self.device) self.handle_grasp_offset[:, 0] = 0.025 self.handle_grasp_offset[:, -1] = 1.0 # warp expects quaternion as (x, y, z, w) # drawer opening rate self.drawer_opening_rate = torch.zeros((self.num_envs, 7), device=self.device) self.drawer_opening_rate[:, 0] = -0.015 self.drawer_opening_rate[:, -1] = 1.0 # warp expects quaternion as (x, y, z, w) # convert to warp self.sm_dt_wp = wp.from_torch(self.sm_dt, wp.float32) self.sm_state_wp = wp.from_torch(self.sm_state, wp.int32) self.sm_wait_time_wp = wp.from_torch(self.sm_wait_time, wp.float32) self.des_ee_pose_wp = wp.from_torch(self.des_ee_pose, wp.transform) self.des_gripper_state_wp = wp.from_torch(self.des_gripper_state, wp.float32) self.handle_approach_offset_wp = wp.from_torch(self.handle_approach_offset, wp.transform) self.handle_grasp_offset_wp = wp.from_torch(self.handle_grasp_offset, wp.transform) self.drawer_opening_rate_wp = wp.from_torch(self.drawer_opening_rate, wp.transform) def reset_idx(self, env_ids: Sequence[int] | None = None): """Reset the state machine.""" if env_ids is None: env_ids = slice(None) # reset state machine self.sm_state[env_ids] = 0 self.sm_wait_time[env_ids] = 0.0 def compute(self, ee_pose: torch.Tensor, handle_pose: torch.Tensor): """Compute the desired state of the robot's end-effector and the gripper.""" # convert all transformations from (w, x, y, z) to (x, y, z, w) ee_pose = ee_pose[:, [0, 1, 2, 4, 5, 6, 3]] handle_pose = handle_pose[:, [0, 1, 2, 4, 5, 6, 3]] # convert to warp ee_pose_wp = wp.from_torch(ee_pose.contiguous(), wp.transform) handle_pose_wp = wp.from_torch(handle_pose.contiguous(), wp.transform) # run state machine wp.launch( kernel=infer_state_machine, dim=self.num_envs, inputs=[ self.sm_dt_wp, self.sm_state_wp, self.sm_wait_time_wp, ee_pose_wp, handle_pose_wp, self.des_ee_pose_wp, self.des_gripper_state_wp, self.handle_approach_offset_wp, self.handle_grasp_offset_wp, self.drawer_opening_rate_wp, ], device=self.device, ) # convert transformations back to (w, x, y, z) des_ee_pose = self.des_ee_pose[:, [0, 1, 2, 6, 3, 4, 5]] # convert to torch return torch.cat([des_ee_pose, self.des_gripper_state.unsqueeze(-1)], dim=-1) def main(): # parse configuration env_cfg: CabinetEnvCfg = parse_env_cfg( "Isaac-Open-Drawer-Franka-IK-Abs-v0", use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric, ) # create environment env = gym.make("Isaac-Open-Drawer-Franka-IK-Abs-v0", cfg=env_cfg) # reset environment at start env.reset() # create action buffers (position + quaternion) actions = torch.zeros(env.unwrapped.action_space.shape, device=env.unwrapped.device) actions[:, 3] = 1.0 # desired object orientation (we only do position control of object) desired_orientation = torch.zeros((env.unwrapped.num_envs, 4), device=env.unwrapped.device) desired_orientation[:, 1] = 1.0 # create state machine open_sm = OpenDrawerSm(env_cfg.sim.dt * env_cfg.decimation, env.unwrapped.num_envs, env.unwrapped.device) while simulation_app.is_running(): # run everything in inference mode with torch.inference_mode(): # step environment dones = env.step(actions)[-2] # observations # -- end-effector frame ee_frame_tf: FrameTransformer = env.unwrapped.scene["ee_frame"] tcp_rest_position = ee_frame_tf.data.target_pos_w[..., 0, :].clone() - env.unwrapped.scene.env_origins tcp_rest_orientation = ee_frame_tf.data.target_quat_w[..., 0, :].clone() # -- handle frame cabinet_frame_tf: FrameTransformer = env.unwrapped.scene["cabinet_frame"] cabinet_position = cabinet_frame_tf.data.target_pos_w[..., 0, :].clone() - env.unwrapped.scene.env_origins cabinet_orientation = cabinet_frame_tf.data.target_quat_w[..., 0, :].clone() # advance state machine actions = open_sm.compute( torch.cat([tcp_rest_position, tcp_rest_orientation], dim=-1), torch.cat([cabinet_position, cabinet_orientation], dim=-1), ) # reset state machine if dones.any(): open_sm.reset_idx(dones.nonzero(as_tuple=False).squeeze(-1)) # close the environment env.close() if __name__ == "__main__": try: # run the main execution main() except Exception as err: carb.log_error(err) carb.log_error(traceback.format_exc()) raise finally: # close sim app simulation_app.close()
12,935
Python
38.559633
118
0.639351
NVIDIA-Omniverse/orbit/source/standalone/workflows/skrl/play.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Script to play a checkpoint of an RL agent from skrl. Visit the skrl documentation (https://skrl.readthedocs.io) to see the examples structured in a more user-friendly way. """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Play a checkpoint of an RL agent from skrl.") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument("--checkpoint", type=str, default=None, help="Path to model checkpoint.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import os import torch from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.utils.model_instantiators.torch import deterministic_model, gaussian_model, shared_model import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils import get_checkpoint_path, load_cfg_from_registry, parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.skrl import SkrlVecEnvWrapper, process_skrl_cfg def main(): """Play with skrl agent.""" # parse env configuration env_cfg = parse_env_cfg( args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric ) experiment_cfg = load_cfg_from_registry(args_cli.task, "skrl_cfg_entry_point") # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg) # wrap around environment for skrl env = SkrlVecEnvWrapper(env) # same as: `wrap_env(env, wrapper="isaac-orbit")` # instantiate models using skrl model instantiator utility # https://skrl.readthedocs.io/en/latest/modules/skrl.utils.model_instantiators.html models = {} # non-shared models if experiment_cfg["models"]["separate"]: models["policy"] = gaussian_model( observation_space=env.observation_space, action_space=env.action_space, device=env.device, **process_skrl_cfg(experiment_cfg["models"]["policy"]), ) models["value"] = deterministic_model( observation_space=env.observation_space, action_space=env.action_space, device=env.device, **process_skrl_cfg(experiment_cfg["models"]["value"]), ) # shared models else: models["policy"] = shared_model( observation_space=env.observation_space, action_space=env.action_space, device=env.device, structure=None, roles=["policy", "value"], parameters=[ process_skrl_cfg(experiment_cfg["models"]["policy"]), process_skrl_cfg(experiment_cfg["models"]["value"]), ], ) models["value"] = models["policy"] # configure and instantiate PPO agent # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent_cfg = PPO_DEFAULT_CONFIG.copy() experiment_cfg["agent"]["rewards_shaper"] = None # avoid 'dictionary changed size during iteration' agent_cfg.update(process_skrl_cfg(experiment_cfg["agent"])) agent_cfg["state_preprocessor_kwargs"].update({"size": env.observation_space, "device": env.device}) agent_cfg["value_preprocessor_kwargs"].update({"size": 1, "device": env.device}) agent_cfg["experiment"]["write_interval"] = 0 # don't log to Tensorboard agent_cfg["experiment"]["checkpoint_interval"] = 0 # don't generate checkpoints agent = PPO( models=models, memory=None, # memory is optional during evaluation cfg=agent_cfg, observation_space=env.observation_space, action_space=env.action_space, device=env.device, ) # specify directory for logging experiments (load checkpoint) log_root_path = os.path.join("logs", "skrl", experiment_cfg["agent"]["experiment"]["directory"]) log_root_path = os.path.abspath(log_root_path) print(f"[INFO] Loading experiment from directory: {log_root_path}") # get checkpoint path if args_cli.checkpoint: resume_path = os.path.abspath(args_cli.checkpoint) else: resume_path = get_checkpoint_path(log_root_path, other_dirs=["checkpoints"]) print(f"[INFO] Loading model checkpoint from: {resume_path}") # initialize agent agent.init() agent.load(resume_path) # set agent to evaluation mode agent.set_running_mode("eval") # reset environment obs, _ = env.reset() # simulate environment while simulation_app.is_running(): # run everything in inference mode with torch.inference_mode(): # agent stepping actions = agent.act(obs, timestep=0, timesteps=0)[0] # env stepping obs, _, _, _, _ = env.step(actions) # close the simulator env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
5,657
Python
35.269231
115
0.668022
NVIDIA-Omniverse/orbit/source/standalone/workflows/skrl/train.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Script to train RL agent with skrl. Visit the skrl documentation (https://skrl.readthedocs.io) to see the examples structured in a more user-friendly way. """ from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Train an RL agent with skrl.") parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.") parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).") parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import os from datetime import datetime from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.memories.torch import RandomMemory from skrl.utils import set_seed from skrl.utils.model_instantiators.torch import deterministic_model, gaussian_model, shared_model from omni.isaac.orbit.utils.dict import print_dict from omni.isaac.orbit.utils.io import dump_pickle, dump_yaml import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils import load_cfg_from_registry, parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.skrl import SkrlSequentialLogTrainer, SkrlVecEnvWrapper, process_skrl_cfg def main(): """Train with skrl agent.""" # read the seed from command line args_cli_seed = args_cli.seed # parse configuration env_cfg = parse_env_cfg( args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric ) experiment_cfg = load_cfg_from_registry(args_cli.task, "skrl_cfg_entry_point") # specify directory for logging experiments log_root_path = os.path.join("logs", "skrl", experiment_cfg["agent"]["experiment"]["directory"]) log_root_path = os.path.abspath(log_root_path) print(f"[INFO] Logging experiment in directory: {log_root_path}") # specify directory for logging runs: {time-stamp}_{run_name} log_dir = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") if experiment_cfg["agent"]["experiment"]["experiment_name"]: log_dir += f'_{experiment_cfg["agent"]["experiment"]["experiment_name"]}' # set directory into agent config experiment_cfg["agent"]["experiment"]["directory"] = log_root_path experiment_cfg["agent"]["experiment"]["experiment_name"] = log_dir # update log_dir log_dir = os.path.join(log_root_path, log_dir) # dump the configuration into log-directory dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg) dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), experiment_cfg) dump_pickle(os.path.join(log_dir, "params", "env.pkl"), env_cfg) dump_pickle(os.path.join(log_dir, "params", "agent.pkl"), experiment_cfg) # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None) # wrap for video recording if args_cli.video: video_kwargs = { "video_folder": os.path.join(log_dir, "videos"), "step_trigger": lambda step: step % args_cli.video_interval == 0, "video_length": args_cli.video_length, "disable_logger": True, } print("[INFO] Recording videos during training.") print_dict(video_kwargs, nesting=4) env = gym.wrappers.RecordVideo(env, **video_kwargs) # wrap around environment for skrl env = SkrlVecEnvWrapper(env) # same as: `wrap_env(env, wrapper="isaac-orbit")` # set seed for the experiment (override from command line) set_seed(args_cli_seed if args_cli_seed is not None else experiment_cfg["seed"]) # instantiate models using skrl model instantiator utility # https://skrl.readthedocs.io/en/latest/modules/skrl.utils.model_instantiators.html models = {} # non-shared models if experiment_cfg["models"]["separate"]: models["policy"] = gaussian_model( observation_space=env.observation_space, action_space=env.action_space, device=env.device, **process_skrl_cfg(experiment_cfg["models"]["policy"]), ) models["value"] = deterministic_model( observation_space=env.observation_space, action_space=env.action_space, device=env.device, **process_skrl_cfg(experiment_cfg["models"]["value"]), ) # shared models else: models["policy"] = shared_model( observation_space=env.observation_space, action_space=env.action_space, device=env.device, structure=None, roles=["policy", "value"], parameters=[ process_skrl_cfg(experiment_cfg["models"]["policy"]), process_skrl_cfg(experiment_cfg["models"]["value"]), ], ) models["value"] = models["policy"] # instantiate a RandomMemory as rollout buffer (any memory can be used for this) # https://skrl.readthedocs.io/en/latest/modules/skrl.memories.random.html memory_size = experiment_cfg["agent"]["rollouts"] # memory_size is the agent's number of rollouts memory = RandomMemory(memory_size=memory_size, num_envs=env.num_envs, device=env.device) # configure and instantiate PPO agent # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent_cfg = PPO_DEFAULT_CONFIG.copy() experiment_cfg["agent"]["rewards_shaper"] = None # avoid 'dictionary changed size during iteration' agent_cfg.update(process_skrl_cfg(experiment_cfg["agent"])) agent_cfg["state_preprocessor_kwargs"].update({"size": env.observation_space, "device": env.device}) agent_cfg["value_preprocessor_kwargs"].update({"size": 1, "device": env.device}) agent = PPO( models=models, memory=memory, cfg=agent_cfg, observation_space=env.observation_space, action_space=env.action_space, device=env.device, ) # configure and instantiate a custom RL trainer for logging episode events # https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.base_class.html trainer_cfg = experiment_cfg["trainer"] trainer = SkrlSequentialLogTrainer(cfg=trainer_cfg, env=env, agents=agent) # train the agent trainer.train() # close the simulator env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
7,471
Python
39.608695
117
0.680498
NVIDIA-Omniverse/orbit/source/standalone/workflows/robomimic/play.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Script to run a trained policy from robomimic.""" from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Play policy trained using robomimic for Orbit environments.") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument("--checkpoint", type=str, default=None, help="Pytorch model checkpoint to load.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import robomimic # noqa: F401 import robomimic.utils.file_utils as FileUtils import robomimic.utils.torch_utils as TorchUtils import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils import parse_env_cfg def main(): """Run a trained policy from robomimic with Orbit environment.""" # parse configuration env_cfg = parse_env_cfg(args_cli.task, use_gpu=not args_cli.cpu, num_envs=1, use_fabric=not args_cli.disable_fabric) # we want to have the terms in the observations returned as a dictionary # rather than a concatenated tensor env_cfg.observations.policy.concatenate_terms = False # create environment env = gym.make(args_cli.task, cfg=env_cfg) # acquire device device = TorchUtils.get_torch_device(try_to_use_cuda=True) # restore policy policy, _ = FileUtils.policy_from_checkpoint(ckpt_path=args_cli.checkpoint, device=device, verbose=True) # reset environment obs_dict, _ = env.reset() # robomimic only cares about policy observations obs = obs_dict["policy"] # simulate environment while simulation_app.is_running(): # run everything in inference mode with torch.inference_mode(): # compute actions actions = policy(obs) actions = torch.from_numpy(actions).to(device=device).view(1, env.action_space.shape[1]) # apply actions obs_dict = env.step(actions)[0] # robomimic only cares about policy observations obs = obs_dict["policy"] # close the simulator env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
2,845
Python
31.340909
120
0.702988