file_path
stringlengths
21
202
content
stringlengths
19
1.02M
size
int64
19
1.02M
lang
stringclasses
8 values
avg_line_length
float64
5.88
100
max_line_length
int64
12
993
alphanum_fraction
float64
0.27
0.93
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/random/tests/test_generator_mt19937.py
import sys import hashlib import pytest import numpy as np from numpy.linalg import LinAlgError from numpy.testing import ( assert_, assert_raises, assert_equal, assert_allclose, assert_warns, assert_no_warnings, assert_array_equal, assert_array_almost_equal, suppress_warnings) from numpy.random import Generator, MT19937, SeedSequence, RandomState random = Generator(MT19937()) JUMP_TEST_DATA = [ { "seed": 0, "steps": 10, "initial": {"key_sha256": "bb1636883c2707b51c5b7fc26c6927af4430f2e0785a8c7bc886337f919f9edf", "pos": 9}, "jumped": {"key_sha256": "ff682ac12bb140f2d72fba8d3506cf4e46817a0db27aae1683867629031d8d55", "pos": 598}, }, { "seed":384908324, "steps":312, "initial": {"key_sha256": "16b791a1e04886ccbbb4d448d6ff791267dc458ae599475d08d5cced29d11614", "pos": 311}, "jumped": {"key_sha256": "a0110a2cf23b56be0feaed8f787a7fc84bef0cb5623003d75b26bdfa1c18002c", "pos": 276}, }, { "seed": [839438204, 980239840, 859048019, 821], "steps": 511, "initial": {"key_sha256": "d306cf01314d51bd37892d874308200951a35265ede54d200f1e065004c3e9ea", "pos": 510}, "jumped": {"key_sha256": "0e00ab449f01a5195a83b4aee0dfbc2ce8d46466a640b92e33977d2e42f777f8", "pos": 475}, }, ] @pytest.fixture(scope='module', params=[True, False]) def endpoint(request): return request.param class TestSeed: def test_scalar(self): s = Generator(MT19937(0)) assert_equal(s.integers(1000), 479) s = Generator(MT19937(4294967295)) assert_equal(s.integers(1000), 324) def test_array(self): s = Generator(MT19937(range(10))) assert_equal(s.integers(1000), 465) s = Generator(MT19937(np.arange(10))) assert_equal(s.integers(1000), 465) s = Generator(MT19937([0])) assert_equal(s.integers(1000), 479) s = Generator(MT19937([4294967295])) assert_equal(s.integers(1000), 324) def test_seedsequence(self): s = MT19937(SeedSequence(0)) assert_equal(s.random_raw(1), 2058676884) def test_invalid_scalar(self): # seed must be an unsigned 32 bit integer assert_raises(TypeError, MT19937, -0.5) assert_raises(ValueError, MT19937, -1) def test_invalid_array(self): # seed must be an unsigned integer assert_raises(TypeError, MT19937, [-0.5]) assert_raises(ValueError, MT19937, [-1]) assert_raises(ValueError, MT19937, [1, -2, 4294967296]) def test_noninstantized_bitgen(self): assert_raises(ValueError, Generator, MT19937) class TestBinomial: def test_n_zero(self): # Tests the corner case of n == 0 for the binomial distribution. # binomial(0, p) should be zero for any p in [0, 1]. # This test addresses issue #3480. zeros = np.zeros(2, dtype='int') for p in [0, .5, 1]: assert_(random.binomial(0, p) == 0) assert_array_equal(random.binomial(zeros, p), zeros) def test_p_is_nan(self): # Issue #4571. assert_raises(ValueError, random.binomial, 1, np.nan) class TestMultinomial: def test_basic(self): random.multinomial(100, [0.2, 0.8]) def test_zero_probability(self): random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0]) def test_int_negative_interval(self): assert_(-5 <= random.integers(-5, -1) < -1) x = random.integers(-5, -1, 5) assert_(np.all(-5 <= x)) assert_(np.all(x < -1)) def test_size(self): # gh-3173 p = [0.5, 0.5] assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) assert_equal(random.multinomial(1, p, np.array((2, 2))).shape, (2, 2, 2)) assert_raises(TypeError, random.multinomial, 1, p, float(1)) def test_invalid_prob(self): assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2]) assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9]) def test_invalid_n(self): assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2]) assert_raises(ValueError, random.multinomial, [-1] * 10, [0.8, 0.2]) def test_p_non_contiguous(self): p = np.arange(15.) p /= np.sum(p[1::3]) pvals = p[1::3] random = Generator(MT19937(1432985819)) non_contig = random.multinomial(100, pvals=pvals) random = Generator(MT19937(1432985819)) contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals)) assert_array_equal(non_contig, contig) def test_multinomial_pvals_float32(self): x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32) pvals = x / x.sum() random = Generator(MT19937(1432985819)) match = r"[\w\s]*pvals array is cast to 64-bit floating" with pytest.raises(ValueError, match=match): random.multinomial(1, pvals) class TestMultivariateHypergeometric: def setup_method(self): self.seed = 8675309 def test_argument_validation(self): # Error cases... # `colors` must be a 1-d sequence assert_raises(ValueError, random.multivariate_hypergeometric, 10, 4) # Negative nsample assert_raises(ValueError, random.multivariate_hypergeometric, [2, 3, 4], -1) # Negative color assert_raises(ValueError, random.multivariate_hypergeometric, [-1, 2, 3], 2) # nsample exceeds sum(colors) assert_raises(ValueError, random.multivariate_hypergeometric, [2, 3, 4], 10) # nsample exceeds sum(colors) (edge case of empty colors) assert_raises(ValueError, random.multivariate_hypergeometric, [], 1) # Validation errors associated with very large values in colors. assert_raises(ValueError, random.multivariate_hypergeometric, [999999999, 101], 5, 1, 'marginals') int64_info = np.iinfo(np.int64) max_int64 = int64_info.max max_int64_index = max_int64 // int64_info.dtype.itemsize assert_raises(ValueError, random.multivariate_hypergeometric, [max_int64_index - 100, 101], 5, 1, 'count') @pytest.mark.parametrize('method', ['count', 'marginals']) def test_edge_cases(self, method): # Set the seed, but in fact, all the results in this test are # deterministic, so we don't really need this. random = Generator(MT19937(self.seed)) x = random.multivariate_hypergeometric([0, 0, 0], 0, method=method) assert_array_equal(x, [0, 0, 0]) x = random.multivariate_hypergeometric([], 0, method=method) assert_array_equal(x, []) x = random.multivariate_hypergeometric([], 0, size=1, method=method) assert_array_equal(x, np.empty((1, 0), dtype=np.int64)) x = random.multivariate_hypergeometric([1, 2, 3], 0, method=method) assert_array_equal(x, [0, 0, 0]) x = random.multivariate_hypergeometric([9, 0, 0], 3, method=method) assert_array_equal(x, [3, 0, 0]) colors = [1, 1, 0, 1, 1] x = random.multivariate_hypergeometric(colors, sum(colors), method=method) assert_array_equal(x, colors) x = random.multivariate_hypergeometric([3, 4, 5], 12, size=3, method=method) assert_array_equal(x, [[3, 4, 5]]*3) # Cases for nsample: # nsample < 10 # 10 <= nsample < colors.sum()/2 # colors.sum()/2 < nsample < colors.sum() - 10 # colors.sum() - 10 < nsample < colors.sum() @pytest.mark.parametrize('nsample', [8, 25, 45, 55]) @pytest.mark.parametrize('method', ['count', 'marginals']) @pytest.mark.parametrize('size', [5, (2, 3), 150000]) def test_typical_cases(self, nsample, method, size): random = Generator(MT19937(self.seed)) colors = np.array([10, 5, 20, 25]) sample = random.multivariate_hypergeometric(colors, nsample, size, method=method) if isinstance(size, int): expected_shape = (size,) + colors.shape else: expected_shape = size + colors.shape assert_equal(sample.shape, expected_shape) assert_((sample >= 0).all()) assert_((sample <= colors).all()) assert_array_equal(sample.sum(axis=-1), np.full(size, fill_value=nsample, dtype=int)) if isinstance(size, int) and size >= 100000: # This sample is large enough to compare its mean to # the expected values. assert_allclose(sample.mean(axis=0), nsample * colors / colors.sum(), rtol=1e-3, atol=0.005) def test_repeatability1(self): random = Generator(MT19937(self.seed)) sample = random.multivariate_hypergeometric([3, 4, 5], 5, size=5, method='count') expected = np.array([[2, 1, 2], [2, 1, 2], [1, 1, 3], [2, 0, 3], [2, 1, 2]]) assert_array_equal(sample, expected) def test_repeatability2(self): random = Generator(MT19937(self.seed)) sample = random.multivariate_hypergeometric([20, 30, 50], 50, size=5, method='marginals') expected = np.array([[ 9, 17, 24], [ 7, 13, 30], [ 9, 15, 26], [ 9, 17, 24], [12, 14, 24]]) assert_array_equal(sample, expected) def test_repeatability3(self): random = Generator(MT19937(self.seed)) sample = random.multivariate_hypergeometric([20, 30, 50], 12, size=5, method='marginals') expected = np.array([[2, 3, 7], [5, 3, 4], [2, 5, 5], [5, 3, 4], [1, 5, 6]]) assert_array_equal(sample, expected) class TestSetState: def setup_method(self): self.seed = 1234567890 self.rg = Generator(MT19937(self.seed)) self.bit_generator = self.rg.bit_generator self.state = self.bit_generator.state self.legacy_state = (self.state['bit_generator'], self.state['state']['key'], self.state['state']['pos']) def test_gaussian_reset(self): # Make sure the cached every-other-Gaussian is reset. old = self.rg.standard_normal(size=3) self.bit_generator.state = self.state new = self.rg.standard_normal(size=3) assert_(np.all(old == new)) def test_gaussian_reset_in_media_res(self): # When the state is saved with a cached Gaussian, make sure the # cached Gaussian is restored. self.rg.standard_normal() state = self.bit_generator.state old = self.rg.standard_normal(size=3) self.bit_generator.state = state new = self.rg.standard_normal(size=3) assert_(np.all(old == new)) def test_negative_binomial(self): # Ensure that the negative binomial results take floating point # arguments without truncation. self.rg.negative_binomial(0.5, 0.5) class TestIntegers: rfunc = random.integers # valid integer/boolean types itype = [bool, np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.int64, np.uint64] def test_unsupported_type(self, endpoint): assert_raises(TypeError, self.rfunc, 1, endpoint=endpoint, dtype=float) def test_bounds_checking(self, endpoint): for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, ubnd, lbnd, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, 1, 0, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, [lbnd - 1], ubnd, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, [lbnd], [ubnd + 1], endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, [ubnd], [lbnd], endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, 1, [0], endpoint=endpoint, dtype=dt) def test_bounds_checking_array(self, endpoint): for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + (not endpoint) assert_raises(ValueError, self.rfunc, [lbnd - 1] * 2, [ubnd] * 2, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, [lbnd] * 2, [ubnd + 1] * 2, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, ubnd, [lbnd] * 2, endpoint=endpoint, dtype=dt) assert_raises(ValueError, self.rfunc, [1] * 2, 0, endpoint=endpoint, dtype=dt) def test_rng_zero_and_extremes(self, endpoint): for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd is_open = not endpoint tgt = ubnd - 1 assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, endpoint=endpoint, dtype=dt), tgt) assert_equal(self.rfunc([tgt], tgt + is_open, size=1000, endpoint=endpoint, dtype=dt), tgt) tgt = lbnd assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, endpoint=endpoint, dtype=dt), tgt) assert_equal(self.rfunc(tgt, [tgt + is_open], size=1000, endpoint=endpoint, dtype=dt), tgt) tgt = (lbnd + ubnd) // 2 assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, endpoint=endpoint, dtype=dt), tgt) assert_equal(self.rfunc([tgt], [tgt + is_open], size=1000, endpoint=endpoint, dtype=dt), tgt) def test_rng_zero_and_extremes_array(self, endpoint): size = 1000 for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd tgt = ubnd - 1 assert_equal(self.rfunc([tgt], [tgt + 1], size=size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) tgt = lbnd assert_equal(self.rfunc([tgt], [tgt + 1], size=size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) tgt = (lbnd + ubnd) // 2 assert_equal(self.rfunc([tgt], [tgt + 1], size=size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) assert_equal(self.rfunc( [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) def test_full_range(self, endpoint): # Test for ticket #1690 for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd try: self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) except Exception as e: raise AssertionError("No error should have been raised, " "but one was with the following " "message:\n\n%s" % str(e)) def test_full_range_array(self, endpoint): # Test for ticket #1690 for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd try: self.rfunc([lbnd] * 2, [ubnd], endpoint=endpoint, dtype=dt) except Exception as e: raise AssertionError("No error should have been raised, " "but one was with the following " "message:\n\n%s" % str(e)) def test_in_bounds_fuzz(self, endpoint): # Don't use fixed seed random = Generator(MT19937()) for dt in self.itype[1:]: for ubnd in [4, 8, 16]: vals = self.rfunc(2, ubnd - endpoint, size=2 ** 16, endpoint=endpoint, dtype=dt) assert_(vals.max() < ubnd) assert_(vals.min() >= 2) vals = self.rfunc(0, 2 - endpoint, size=2 ** 16, endpoint=endpoint, dtype=bool) assert_(vals.max() < 2) assert_(vals.min() >= 0) def test_scalar_array_equiv(self, endpoint): for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd size = 1000 random = Generator(MT19937(1234)) scalar = random.integers(lbnd, ubnd, size=size, endpoint=endpoint, dtype=dt) random = Generator(MT19937(1234)) scalar_array = random.integers([lbnd], [ubnd], size=size, endpoint=endpoint, dtype=dt) random = Generator(MT19937(1234)) array = random.integers([lbnd] * size, [ubnd] * size, size=size, endpoint=endpoint, dtype=dt) assert_array_equal(scalar, scalar_array) assert_array_equal(scalar, array) def test_repeatability(self, endpoint): # We use a sha256 hash of generated sequences of 1000 samples # in the range [0, 6) for all but bool, where the range # is [0, 2). Hashes are for little endian numbers. tgt = {'bool': '053594a9b82d656f967c54869bc6970aa0358cf94ad469c81478459c6a90eee3', 'int16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4', 'int32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b', 'int64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1', 'int8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1', 'uint16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4', 'uint32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b', 'uint64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1', 'uint8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1'} for dt in self.itype[1:]: random = Generator(MT19937(1234)) # view as little endian for hash if sys.byteorder == 'little': val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint, dtype=dt) else: val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint, dtype=dt).byteswap() res = hashlib.sha256(val).hexdigest() assert_(tgt[np.dtype(dt).name] == res) # bools do not depend on endianness random = Generator(MT19937(1234)) val = random.integers(0, 2 - endpoint, size=1000, endpoint=endpoint, dtype=bool).view(np.int8) res = hashlib.sha256(val).hexdigest() assert_(tgt[np.dtype(bool).name] == res) def test_repeatability_broadcasting(self, endpoint): for dt in self.itype: lbnd = 0 if dt in (bool, np.bool_) else np.iinfo(dt).min ubnd = 2 if dt in (bool, np.bool_) else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd # view as little endian for hash random = Generator(MT19937(1234)) val = random.integers(lbnd, ubnd, size=1000, endpoint=endpoint, dtype=dt) random = Generator(MT19937(1234)) val_bc = random.integers([lbnd] * 1000, ubnd, endpoint=endpoint, dtype=dt) assert_array_equal(val, val_bc) random = Generator(MT19937(1234)) val_bc = random.integers([lbnd] * 1000, [ubnd] * 1000, endpoint=endpoint, dtype=dt) assert_array_equal(val, val_bc) @pytest.mark.parametrize( 'bound, expected', [(2**32 - 1, np.array([517043486, 1364798665, 1733884389, 1353720612, 3769704066, 1170797179, 4108474671])), (2**32, np.array([517043487, 1364798666, 1733884390, 1353720613, 3769704067, 1170797180, 4108474672])), (2**32 + 1, np.array([517043487, 1733884390, 3769704068, 4108474673, 1831631863, 1215661561, 3869512430]))] ) def test_repeatability_32bit_boundary(self, bound, expected): for size in [None, len(expected)]: random = Generator(MT19937(1234)) x = random.integers(bound, size=size) assert_equal(x, expected if size is not None else expected[0]) def test_repeatability_32bit_boundary_broadcasting(self): desired = np.array([[[1622936284, 3620788691, 1659384060], [1417365545, 760222891, 1909653332], [3788118662, 660249498, 4092002593]], [[3625610153, 2979601262, 3844162757], [ 685800658, 120261497, 2694012896], [1207779440, 1586594375, 3854335050]], [[3004074748, 2310761796, 3012642217], [2067714190, 2786677879, 1363865881], [ 791663441, 1867303284, 2169727960]], [[1939603804, 1250951100, 298950036], [1040128489, 3791912209, 3317053765], [3155528714, 61360675, 2305155588]], [[ 817688762, 1335621943, 3288952434], [1770890872, 1102951817, 1957607470], [3099996017, 798043451, 48334215]]]) for size in [None, (5, 3, 3)]: random = Generator(MT19937(12345)) x = random.integers([[-1], [0], [1]], [2**32 - 1, 2**32, 2**32 + 1], size=size) assert_array_equal(x, desired if size is not None else desired[0]) def test_int64_uint64_broadcast_exceptions(self, endpoint): configs = {np.uint64: ((0, 2**65), (-1, 2**62), (10, 9), (0, 0)), np.int64: ((0, 2**64), (-(2**64), 2**62), (10, 9), (0, 0), (-2**63-1, -2**63-1))} for dtype in configs: for config in configs[dtype]: low, high = config high = high - endpoint low_a = np.array([[low]*10]) high_a = np.array([high] * 10) assert_raises(ValueError, random.integers, low, high, endpoint=endpoint, dtype=dtype) assert_raises(ValueError, random.integers, low_a, high, endpoint=endpoint, dtype=dtype) assert_raises(ValueError, random.integers, low, high_a, endpoint=endpoint, dtype=dtype) assert_raises(ValueError, random.integers, low_a, high_a, endpoint=endpoint, dtype=dtype) low_o = np.array([[low]*10], dtype=object) high_o = np.array([high] * 10, dtype=object) assert_raises(ValueError, random.integers, low_o, high, endpoint=endpoint, dtype=dtype) assert_raises(ValueError, random.integers, low, high_o, endpoint=endpoint, dtype=dtype) assert_raises(ValueError, random.integers, low_o, high_o, endpoint=endpoint, dtype=dtype) def test_int64_uint64_corner_case(self, endpoint): # When stored in Numpy arrays, `lbnd` is casted # as np.int64, and `ubnd` is casted as np.uint64. # Checking whether `lbnd` >= `ubnd` used to be # done solely via direct comparison, which is incorrect # because when Numpy tries to compare both numbers, # it casts both to np.float64 because there is # no integer superset of np.int64 and np.uint64. However, # `ubnd` is too large to be represented in np.float64, # causing it be round down to np.iinfo(np.int64).max, # leading to a ValueError because `lbnd` now equals # the new `ubnd`. dt = np.int64 tgt = np.iinfo(np.int64).max lbnd = np.int64(np.iinfo(np.int64).max) ubnd = np.uint64(np.iinfo(np.int64).max + 1 - endpoint) # None of these function calls should # generate a ValueError now. actual = random.integers(lbnd, ubnd, endpoint=endpoint, dtype=dt) assert_equal(actual, tgt) def test_respect_dtype_singleton(self, endpoint): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd dt = np.bool_ if dt is bool else dt sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) assert_equal(sample.dtype, dt) for dt in (bool, int, np.compat.long): lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd # gh-7284: Ensure that we get Python data types sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) assert not hasattr(sample, 'dtype') assert_equal(type(sample), dt) def test_respect_dtype_array(self, endpoint): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 ubnd = ubnd - 1 if endpoint else ubnd dt = np.bool_ if dt is bool else dt sample = self.rfunc([lbnd], [ubnd], endpoint=endpoint, dtype=dt) assert_equal(sample.dtype, dt) sample = self.rfunc([lbnd] * 2, [ubnd] * 2, endpoint=endpoint, dtype=dt) assert_equal(sample.dtype, dt) def test_zero_size(self, endpoint): # See gh-7203 for dt in self.itype: sample = self.rfunc(0, 0, (3, 0, 4), endpoint=endpoint, dtype=dt) assert sample.shape == (3, 0, 4) assert sample.dtype == dt assert self.rfunc(0, -10, 0, endpoint=endpoint, dtype=dt).shape == (0,) assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, (3, 0, 4)) assert_equal(random.integers(0, -10, size=0).shape, (0,)) assert_equal(random.integers(10, 10, size=0).shape, (0,)) def test_error_byteorder(self): other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4' with pytest.raises(ValueError): random.integers(0, 200, size=10, dtype=other_byteord_dt) # chi2max is the maximum acceptable chi-squared value. @pytest.mark.slow @pytest.mark.parametrize('sample_size,high,dtype,chi2max', [(5000000, 5, np.int8, 125.0), # p-value ~4.6e-25 (5000000, 7, np.uint8, 150.0), # p-value ~7.7e-30 (10000000, 2500, np.int16, 3300.0), # p-value ~3.0e-25 (50000000, 5000, np.uint16, 6500.0), # p-value ~3.5e-25 ]) def test_integers_small_dtype_chisquared(self, sample_size, high, dtype, chi2max): # Regression test for gh-14774. samples = random.integers(high, size=sample_size, dtype=dtype) values, counts = np.unique(samples, return_counts=True) expected = sample_size / high chi2 = ((counts - expected)**2 / expected).sum() assert chi2 < chi2max class TestRandomDist: # Make sure the random distribution returns the correct value for a # given seed def setup_method(self): self.seed = 1234567890 def test_integers(self): random = Generator(MT19937(self.seed)) actual = random.integers(-99, 99, size=(3, 2)) desired = np.array([[-80, -56], [41, 37], [-83, -16]]) assert_array_equal(actual, desired) def test_integers_masked(self): # Test masked rejection sampling algorithm to generate array of # uint32 in an interval. random = Generator(MT19937(self.seed)) actual = random.integers(0, 99, size=(3, 2), dtype=np.uint32) desired = np.array([[9, 21], [70, 68], [8, 41]], dtype=np.uint32) assert_array_equal(actual, desired) def test_integers_closed(self): random = Generator(MT19937(self.seed)) actual = random.integers(-99, 99, size=(3, 2), endpoint=True) desired = np.array([[-80, -56], [ 41, 38], [-83, -15]]) assert_array_equal(actual, desired) def test_integers_max_int(self): # Tests whether integers with closed=True can generate the # maximum allowed Python int that can be converted # into a C long. Previous implementations of this # method have thrown an OverflowError when attempting # to generate this integer. actual = random.integers(np.iinfo('l').max, np.iinfo('l').max, endpoint=True) desired = np.iinfo('l').max assert_equal(actual, desired) def test_random(self): random = Generator(MT19937(self.seed)) actual = random.random((3, 2)) desired = np.array([[0.096999199829214, 0.707517457682192], [0.084364834598269, 0.767731206553125], [0.665069021359413, 0.715487190596693]]) assert_array_almost_equal(actual, desired, decimal=15) random = Generator(MT19937(self.seed)) actual = random.random() assert_array_almost_equal(actual, desired[0, 0], decimal=15) def test_random_float(self): random = Generator(MT19937(self.seed)) actual = random.random((3, 2)) desired = np.array([[0.0969992 , 0.70751746], [0.08436483, 0.76773121], [0.66506902, 0.71548719]]) assert_array_almost_equal(actual, desired, decimal=7) def test_random_float_scalar(self): random = Generator(MT19937(self.seed)) actual = random.random(dtype=np.float32) desired = 0.0969992 assert_array_almost_equal(actual, desired, decimal=7) @pytest.mark.parametrize('dtype, uint_view_type', [(np.float32, np.uint32), (np.float64, np.uint64)]) def test_random_distribution_of_lsb(self, dtype, uint_view_type): random = Generator(MT19937(self.seed)) sample = random.random(100000, dtype=dtype) num_ones_in_lsb = np.count_nonzero(sample.view(uint_view_type) & 1) # The probability of a 1 in the least significant bit is 0.25. # With a sample size of 100000, the probability that num_ones_in_lsb # is outside the following range is less than 5e-11. assert 24100 < num_ones_in_lsb < 25900 def test_random_unsupported_type(self): assert_raises(TypeError, random.random, dtype='int32') def test_choice_uniform_replace(self): random = Generator(MT19937(self.seed)) actual = random.choice(4, 4) desired = np.array([0, 0, 2, 2], dtype=np.int64) assert_array_equal(actual, desired) def test_choice_nonuniform_replace(self): random = Generator(MT19937(self.seed)) actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1]) desired = np.array([0, 1, 0, 1], dtype=np.int64) assert_array_equal(actual, desired) def test_choice_uniform_noreplace(self): random = Generator(MT19937(self.seed)) actual = random.choice(4, 3, replace=False) desired = np.array([2, 0, 3], dtype=np.int64) assert_array_equal(actual, desired) actual = random.choice(4, 4, replace=False, shuffle=False) desired = np.arange(4, dtype=np.int64) assert_array_equal(actual, desired) def test_choice_nonuniform_noreplace(self): random = Generator(MT19937(self.seed)) actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1]) desired = np.array([0, 2, 3], dtype=np.int64) assert_array_equal(actual, desired) def test_choice_noninteger(self): random = Generator(MT19937(self.seed)) actual = random.choice(['a', 'b', 'c', 'd'], 4) desired = np.array(['a', 'a', 'c', 'c']) assert_array_equal(actual, desired) def test_choice_multidimensional_default_axis(self): random = Generator(MT19937(self.seed)) actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 3) desired = np.array([[0, 1], [0, 1], [4, 5]]) assert_array_equal(actual, desired) def test_choice_multidimensional_custom_axis(self): random = Generator(MT19937(self.seed)) actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 1, axis=1) desired = np.array([[0], [2], [4], [6]]) assert_array_equal(actual, desired) def test_choice_exceptions(self): sample = random.choice assert_raises(ValueError, sample, -1, 3) assert_raises(ValueError, sample, 3., 3) assert_raises(ValueError, sample, [], 3) assert_raises(ValueError, sample, [1, 2, 3, 4], 3, p=[[0.25, 0.25], [0.25, 0.25]]) assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2]) assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1]) assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4]) assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False) # gh-13087 assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False) assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False) assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False) assert_raises(ValueError, sample, [1, 2, 3], 2, replace=False, p=[1, 0, 0]) def test_choice_return_shape(self): p = [0.1, 0.9] # Check scalar assert_(np.isscalar(random.choice(2, replace=True))) assert_(np.isscalar(random.choice(2, replace=False))) assert_(np.isscalar(random.choice(2, replace=True, p=p))) assert_(np.isscalar(random.choice(2, replace=False, p=p))) assert_(np.isscalar(random.choice([1, 2], replace=True))) assert_(random.choice([None], replace=True) is None) a = np.array([1, 2]) arr = np.empty(1, dtype=object) arr[0] = a assert_(random.choice(arr, replace=True) is a) # Check 0-d array s = tuple() assert_(not np.isscalar(random.choice(2, s, replace=True))) assert_(not np.isscalar(random.choice(2, s, replace=False))) assert_(not np.isscalar(random.choice(2, s, replace=True, p=p))) assert_(not np.isscalar(random.choice(2, s, replace=False, p=p))) assert_(not np.isscalar(random.choice([1, 2], s, replace=True))) assert_(random.choice([None], s, replace=True).ndim == 0) a = np.array([1, 2]) arr = np.empty(1, dtype=object) arr[0] = a assert_(random.choice(arr, s, replace=True).item() is a) # Check multi dimensional array s = (2, 3) p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2] assert_equal(random.choice(6, s, replace=True).shape, s) assert_equal(random.choice(6, s, replace=False).shape, s) assert_equal(random.choice(6, s, replace=True, p=p).shape, s) assert_equal(random.choice(6, s, replace=False, p=p).shape, s) assert_equal(random.choice(np.arange(6), s, replace=True).shape, s) # Check zero-size assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, (3, 0, 4)) assert_equal(random.integers(0, -10, size=0).shape, (0,)) assert_equal(random.integers(10, 10, size=0).shape, (0,)) assert_equal(random.choice(0, size=0).shape, (0,)) assert_equal(random.choice([], size=(0,)).shape, (0,)) assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape, (3, 0, 4)) assert_raises(ValueError, random.choice, [], 10) def test_choice_nan_probabilities(self): a = np.array([42, 1, 2]) p = [None, None, None] assert_raises(ValueError, random.choice, a, p=p) def test_choice_p_non_contiguous(self): p = np.ones(10) / 5 p[1::2] = 3.0 random = Generator(MT19937(self.seed)) non_contig = random.choice(5, 3, p=p[::2]) random = Generator(MT19937(self.seed)) contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2])) assert_array_equal(non_contig, contig) def test_choice_return_type(self): # gh 9867 p = np.ones(4) / 4. actual = random.choice(4, 2) assert actual.dtype == np.int64 actual = random.choice(4, 2, replace=False) assert actual.dtype == np.int64 actual = random.choice(4, 2, p=p) assert actual.dtype == np.int64 actual = random.choice(4, 2, p=p, replace=False) assert actual.dtype == np.int64 def test_choice_large_sample(self): choice_hash = '4266599d12bfcfb815213303432341c06b4349f5455890446578877bb322e222' random = Generator(MT19937(self.seed)) actual = random.choice(10000, 5000, replace=False) if sys.byteorder != 'little': actual = actual.byteswap() res = hashlib.sha256(actual.view(np.int8)).hexdigest() assert_(choice_hash == res) def test_bytes(self): random = Generator(MT19937(self.seed)) actual = random.bytes(10) desired = b'\x86\xf0\xd4\x18\xe1\x81\t8%\xdd' assert_equal(actual, desired) def test_shuffle(self): # Test lists, arrays (of various dtypes), and multidimensional versions # of both, c-contiguous or not: for conv in [lambda x: np.array([]), lambda x: x, lambda x: np.asarray(x).astype(np.int8), lambda x: np.asarray(x).astype(np.float32), lambda x: np.asarray(x).astype(np.complex64), lambda x: np.asarray(x).astype(object), lambda x: [(i, i) for i in x], lambda x: np.asarray([[i, i] for i in x]), lambda x: np.vstack([x, x]).T, # gh-11442 lambda x: (np.asarray([(i, i) for i in x], [("a", int), ("b", int)]) .view(np.recarray)), # gh-4270 lambda x: np.asarray([(i, i) for i in x], [("a", object, (1,)), ("b", np.int32, (1,))])]: random = Generator(MT19937(self.seed)) alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) random.shuffle(alist) actual = alist desired = conv([4, 1, 9, 8, 0, 5, 3, 6, 2, 7]) assert_array_equal(actual, desired) def test_shuffle_custom_axis(self): random = Generator(MT19937(self.seed)) actual = np.arange(16).reshape((4, 4)) random.shuffle(actual, axis=1) desired = np.array([[ 0, 3, 1, 2], [ 4, 7, 5, 6], [ 8, 11, 9, 10], [12, 15, 13, 14]]) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = np.arange(16).reshape((4, 4)) random.shuffle(actual, axis=-1) assert_array_equal(actual, desired) def test_shuffle_custom_axis_empty(self): random = Generator(MT19937(self.seed)) desired = np.array([]).reshape((0, 6)) for axis in (0, 1): actual = np.array([]).reshape((0, 6)) random.shuffle(actual, axis=axis) assert_array_equal(actual, desired) def test_shuffle_axis_nonsquare(self): y1 = np.arange(20).reshape(2, 10) y2 = y1.copy() random = Generator(MT19937(self.seed)) random.shuffle(y1, axis=1) random = Generator(MT19937(self.seed)) random.shuffle(y2.T) assert_array_equal(y1, y2) def test_shuffle_masked(self): # gh-3263 a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1) b = np.ma.masked_values(np.arange(20) % 3 - 1, -1) a_orig = a.copy() b_orig = b.copy() for i in range(50): random.shuffle(a) assert_equal( sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask])) random.shuffle(b) assert_equal( sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask])) def test_shuffle_exceptions(self): random = Generator(MT19937(self.seed)) arr = np.arange(10) assert_raises(np.AxisError, random.shuffle, arr, 1) arr = np.arange(9).reshape((3, 3)) assert_raises(np.AxisError, random.shuffle, arr, 3) assert_raises(TypeError, random.shuffle, arr, slice(1, 2, None)) arr = [[1, 2, 3], [4, 5, 6]] assert_raises(NotImplementedError, random.shuffle, arr, 1) arr = np.array(3) assert_raises(TypeError, random.shuffle, arr) arr = np.ones((3, 2)) assert_raises(np.AxisError, random.shuffle, arr, 2) def test_shuffle_not_writeable(self): random = Generator(MT19937(self.seed)) a = np.zeros(5) a.flags.writeable = False with pytest.raises(ValueError, match='read-only'): random.shuffle(a) def test_permutation(self): random = Generator(MT19937(self.seed)) alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0] actual = random.permutation(alist) desired = [4, 1, 9, 8, 0, 5, 3, 6, 2, 7] assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T actual = random.permutation(arr_2d) assert_array_equal(actual, np.atleast_2d(desired).T) bad_x_str = "abcd" assert_raises(np.AxisError, random.permutation, bad_x_str) bad_x_float = 1.2 assert_raises(np.AxisError, random.permutation, bad_x_float) random = Generator(MT19937(self.seed)) integer_val = 10 desired = [3, 0, 8, 7, 9, 4, 2, 5, 1, 6] actual = random.permutation(integer_val) assert_array_equal(actual, desired) def test_permutation_custom_axis(self): a = np.arange(16).reshape((4, 4)) desired = np.array([[ 0, 3, 1, 2], [ 4, 7, 5, 6], [ 8, 11, 9, 10], [12, 15, 13, 14]]) random = Generator(MT19937(self.seed)) actual = random.permutation(a, axis=1) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = random.permutation(a, axis=-1) assert_array_equal(actual, desired) def test_permutation_exceptions(self): random = Generator(MT19937(self.seed)) arr = np.arange(10) assert_raises(np.AxisError, random.permutation, arr, 1) arr = np.arange(9).reshape((3, 3)) assert_raises(np.AxisError, random.permutation, arr, 3) assert_raises(TypeError, random.permutation, arr, slice(1, 2, None)) @pytest.mark.parametrize("dtype", [int, object]) @pytest.mark.parametrize("axis, expected", [(None, np.array([[3, 7, 0, 9, 10, 11], [8, 4, 2, 5, 1, 6]])), (0, np.array([[6, 1, 2, 9, 10, 11], [0, 7, 8, 3, 4, 5]])), (1, np.array([[ 5, 3, 4, 0, 2, 1], [11, 9, 10, 6, 8, 7]]))]) def test_permuted(self, dtype, axis, expected): random = Generator(MT19937(self.seed)) x = np.arange(12).reshape(2, 6).astype(dtype) random.permuted(x, axis=axis, out=x) assert_array_equal(x, expected) random = Generator(MT19937(self.seed)) x = np.arange(12).reshape(2, 6).astype(dtype) y = random.permuted(x, axis=axis) assert y.dtype == dtype assert_array_equal(y, expected) def test_permuted_with_strides(self): random = Generator(MT19937(self.seed)) x0 = np.arange(22).reshape(2, 11) x1 = x0.copy() x = x0[:, ::3] y = random.permuted(x, axis=1, out=x) expected = np.array([[0, 9, 3, 6], [14, 20, 11, 17]]) assert_array_equal(y, expected) x1[:, ::3] = expected # Verify that the original x0 was modified in-place as expected. assert_array_equal(x1, x0) def test_permuted_empty(self): y = random.permuted([]) assert_array_equal(y, []) @pytest.mark.parametrize('outshape', [(2, 3), 5]) def test_permuted_out_with_wrong_shape(self, outshape): a = np.array([1, 2, 3]) out = np.zeros(outshape, dtype=a.dtype) with pytest.raises(ValueError, match='same shape'): random.permuted(a, out=out) def test_permuted_out_with_wrong_type(self): out = np.zeros((3, 5), dtype=np.int32) x = np.ones((3, 5)) with pytest.raises(TypeError, match='Cannot cast'): random.permuted(x, axis=1, out=out) def test_permuted_not_writeable(self): x = np.zeros((2, 5)) x.flags.writeable = False with pytest.raises(ValueError, match='read-only'): random.permuted(x, axis=1, out=x) def test_beta(self): random = Generator(MT19937(self.seed)) actual = random.beta(.1, .9, size=(3, 2)) desired = np.array( [[1.083029353267698e-10, 2.449965303168024e-11], [2.397085162969853e-02, 3.590779671820755e-08], [2.830254190078299e-04, 1.744709918330393e-01]]) assert_array_almost_equal(actual, desired, decimal=15) def test_binomial(self): random = Generator(MT19937(self.seed)) actual = random.binomial(100.123, .456, size=(3, 2)) desired = np.array([[42, 41], [42, 48], [44, 50]]) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = random.binomial(100.123, .456) desired = 42 assert_array_equal(actual, desired) def test_chisquare(self): random = Generator(MT19937(self.seed)) actual = random.chisquare(50, size=(3, 2)) desired = np.array([[32.9850547060149, 39.0219480493301], [56.2006134779419, 57.3474165711485], [55.4243733880198, 55.4209797925213]]) assert_array_almost_equal(actual, desired, decimal=13) def test_dirichlet(self): random = Generator(MT19937(self.seed)) alpha = np.array([51.72840233779265162, 39.74494232180943953]) actual = random.dirichlet(alpha, size=(3, 2)) desired = np.array([[[0.5439892869558927, 0.45601071304410745], [0.5588917345860708, 0.4411082654139292 ]], [[0.5632074165063435, 0.43679258349365657], [0.54862581112627, 0.45137418887373015]], [[0.49961831357047226, 0.5003816864295278 ], [0.52374806183482, 0.47625193816517997]]]) assert_array_almost_equal(actual, desired, decimal=15) bad_alpha = np.array([5.4e-01, -1.0e-16]) assert_raises(ValueError, random.dirichlet, bad_alpha) random = Generator(MT19937(self.seed)) alpha = np.array([51.72840233779265162, 39.74494232180943953]) actual = random.dirichlet(alpha) assert_array_almost_equal(actual, desired[0, 0], decimal=15) def test_dirichlet_size(self): # gh-3173 p = np.array([51.72840233779265162, 39.74494232180943953]) assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2)) assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2)) assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2)) assert_raises(TypeError, random.dirichlet, p, float(1)) def test_dirichlet_bad_alpha(self): # gh-2089 alpha = np.array([5.4e-01, -1.0e-16]) assert_raises(ValueError, random.dirichlet, alpha) # gh-15876 assert_raises(ValueError, random.dirichlet, [[5, 1]]) assert_raises(ValueError, random.dirichlet, [[5], [1]]) assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]]) assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]])) def test_dirichlet_alpha_non_contiguous(self): a = np.array([51.72840233779265162, -1.0, 39.74494232180943953]) alpha = a[::2] random = Generator(MT19937(self.seed)) non_contig = random.dirichlet(alpha, size=(3, 2)) random = Generator(MT19937(self.seed)) contig = random.dirichlet(np.ascontiguousarray(alpha), size=(3, 2)) assert_array_almost_equal(non_contig, contig) def test_dirichlet_small_alpha(self): eps = 1.0e-9 # 1.0e-10 -> runtime x 10; 1e-11 -> runtime x 200, etc. alpha = eps * np.array([1., 1.0e-3]) random = Generator(MT19937(self.seed)) actual = random.dirichlet(alpha, size=(3, 2)) expected = np.array([ [[1., 0.], [1., 0.]], [[1., 0.], [1., 0.]], [[1., 0.], [1., 0.]] ]) assert_array_almost_equal(actual, expected, decimal=15) @pytest.mark.slow def test_dirichlet_moderately_small_alpha(self): # Use alpha.max() < 0.1 to trigger stick breaking code path alpha = np.array([0.02, 0.04, 0.03]) exact_mean = alpha / alpha.sum() random = Generator(MT19937(self.seed)) sample = random.dirichlet(alpha, size=20000000) sample_mean = sample.mean(axis=0) assert_allclose(sample_mean, exact_mean, rtol=1e-3) def test_exponential(self): random = Generator(MT19937(self.seed)) actual = random.exponential(1.1234, size=(3, 2)) desired = np.array([[0.098845481066258, 1.560752510746964], [0.075730916041636, 1.769098974710777], [1.488602544592235, 2.49684815275751 ]]) assert_array_almost_equal(actual, desired, decimal=15) def test_exponential_0(self): assert_equal(random.exponential(scale=0), 0) assert_raises(ValueError, random.exponential, scale=-0.) def test_f(self): random = Generator(MT19937(self.seed)) actual = random.f(12, 77, size=(3, 2)) desired = np.array([[0.461720027077085, 1.100441958872451], [1.100337455217484, 0.91421736740018 ], [0.500811891303113, 0.826802454552058]]) assert_array_almost_equal(actual, desired, decimal=15) def test_gamma(self): random = Generator(MT19937(self.seed)) actual = random.gamma(5, 3, size=(3, 2)) desired = np.array([[ 5.03850858902096, 7.9228656732049 ], [18.73983605132985, 19.57961681699238], [18.17897755150825, 18.17653912505234]]) assert_array_almost_equal(actual, desired, decimal=14) def test_gamma_0(self): assert_equal(random.gamma(shape=0, scale=0), 0) assert_raises(ValueError, random.gamma, shape=-0., scale=-0.) def test_geometric(self): random = Generator(MT19937(self.seed)) actual = random.geometric(.123456789, size=(3, 2)) desired = np.array([[1, 11], [1, 12], [11, 17]]) assert_array_equal(actual, desired) def test_geometric_exceptions(self): assert_raises(ValueError, random.geometric, 1.1) assert_raises(ValueError, random.geometric, [1.1] * 10) assert_raises(ValueError, random.geometric, -0.1) assert_raises(ValueError, random.geometric, [-0.1] * 10) with np.errstate(invalid='ignore'): assert_raises(ValueError, random.geometric, np.nan) assert_raises(ValueError, random.geometric, [np.nan] * 10) def test_gumbel(self): random = Generator(MT19937(self.seed)) actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[ 4.688397515056245, -0.289514845417841], [ 4.981176042584683, -0.633224272589149], [-0.055915275687488, -0.333962478257953]]) assert_array_almost_equal(actual, desired, decimal=15) def test_gumbel_0(self): assert_equal(random.gumbel(scale=0), 0) assert_raises(ValueError, random.gumbel, scale=-0.) def test_hypergeometric(self): random = Generator(MT19937(self.seed)) actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2)) desired = np.array([[ 9, 9], [ 9, 9], [10, 9]]) assert_array_equal(actual, desired) # Test nbad = 0 actual = random.hypergeometric(5, 0, 3, size=4) desired = np.array([3, 3, 3, 3]) assert_array_equal(actual, desired) actual = random.hypergeometric(15, 0, 12, size=4) desired = np.array([12, 12, 12, 12]) assert_array_equal(actual, desired) # Test ngood = 0 actual = random.hypergeometric(0, 5, 3, size=4) desired = np.array([0, 0, 0, 0]) assert_array_equal(actual, desired) actual = random.hypergeometric(0, 15, 12, size=4) desired = np.array([0, 0, 0, 0]) assert_array_equal(actual, desired) def test_laplace(self): random = Generator(MT19937(self.seed)) actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[-3.156353949272393, 1.195863024830054], [-3.435458081645966, 1.656882398925444], [ 0.924824032467446, 1.251116432209336]]) assert_array_almost_equal(actual, desired, decimal=15) def test_laplace_0(self): assert_equal(random.laplace(scale=0), 0) assert_raises(ValueError, random.laplace, scale=-0.) def test_logistic(self): random = Generator(MT19937(self.seed)) actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[-4.338584631510999, 1.890171436749954], [-4.64547787337966 , 2.514545562919217], [ 1.495389489198666, 1.967827627577474]]) assert_array_almost_equal(actual, desired, decimal=15) def test_lognormal(self): random = Generator(MT19937(self.seed)) actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2)) desired = np.array([[ 0.0268252166335, 13.9534486483053], [ 0.1204014788936, 2.2422077497792], [ 4.2484199496128, 12.0093343977523]]) assert_array_almost_equal(actual, desired, decimal=13) def test_lognormal_0(self): assert_equal(random.lognormal(sigma=0), 1) assert_raises(ValueError, random.lognormal, sigma=-0.) def test_logseries(self): random = Generator(MT19937(self.seed)) actual = random.logseries(p=.923456789, size=(3, 2)) desired = np.array([[14, 17], [3, 18], [5, 1]]) assert_array_equal(actual, desired) def test_logseries_zero(self): random = Generator(MT19937(self.seed)) assert random.logseries(0) == 1 @pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.]) def test_logseries_exceptions(self, value): random = Generator(MT19937(self.seed)) with np.errstate(invalid="ignore"): with pytest.raises(ValueError): random.logseries(value) with pytest.raises(ValueError): # contiguous path: random.logseries(np.array([value] * 10)) with pytest.raises(ValueError): # non-contiguous path: random.logseries(np.array([value] * 10)[::2]) def test_multinomial(self): random = Generator(MT19937(self.seed)) actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2)) desired = np.array([[[1, 5, 1, 6, 4, 3], [4, 2, 6, 2, 4, 2]], [[5, 3, 2, 6, 3, 1], [4, 4, 0, 2, 3, 7]], [[6, 3, 1, 5, 3, 2], [5, 5, 3, 1, 2, 4]]]) assert_array_equal(actual, desired) @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"]) def test_multivariate_normal(self, method): random = Generator(MT19937(self.seed)) mean = (.123456789, 10) cov = [[1, 0], [0, 1]] size = (3, 2) actual = random.multivariate_normal(mean, cov, size, method=method) desired = np.array([[[-1.747478062846581, 11.25613495182354 ], [-0.9967333370066214, 10.342002097029821 ]], [[ 0.7850019631242964, 11.181113712443013 ], [ 0.8901349653255224, 8.873825399642492 ]], [[ 0.7130260107430003, 9.551628690083056 ], [ 0.7127098726541128, 11.991709234143173 ]]]) assert_array_almost_equal(actual, desired, decimal=15) # Check for default size, was raising deprecation warning actual = random.multivariate_normal(mean, cov, method=method) desired = np.array([0.233278563284287, 9.424140804347195]) assert_array_almost_equal(actual, desired, decimal=15) # Check that non symmetric covariance input raises exception when # check_valid='raises' if using default svd method. mean = [0, 0] cov = [[1, 2], [1, 2]] assert_raises(ValueError, random.multivariate_normal, mean, cov, check_valid='raise') # Check that non positive-semidefinite covariance warns with # RuntimeWarning cov = [[1, 2], [2, 1]] assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov) assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov, method='eigh') assert_raises(LinAlgError, random.multivariate_normal, mean, cov, method='cholesky') # and that it doesn't warn with RuntimeWarning check_valid='ignore' assert_no_warnings(random.multivariate_normal, mean, cov, check_valid='ignore') # and that it raises with RuntimeWarning check_valid='raises' assert_raises(ValueError, random.multivariate_normal, mean, cov, check_valid='raise') assert_raises(ValueError, random.multivariate_normal, mean, cov, check_valid='raise', method='eigh') # check degenerate samples from singular covariance matrix cov = [[1, 1], [1, 1]] if method in ('svd', 'eigh'): samples = random.multivariate_normal(mean, cov, size=(3, 2), method=method) assert_array_almost_equal(samples[..., 0], samples[..., 1], decimal=6) else: assert_raises(LinAlgError, random.multivariate_normal, mean, cov, method='cholesky') cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32) with suppress_warnings() as sup: random.multivariate_normal(mean, cov, method=method) w = sup.record(RuntimeWarning) assert len(w) == 0 mu = np.zeros(2) cov = np.eye(2) assert_raises(ValueError, random.multivariate_normal, mean, cov, check_valid='other') assert_raises(ValueError, random.multivariate_normal, np.zeros((2, 1, 1)), cov) assert_raises(ValueError, random.multivariate_normal, mu, np.empty((3, 2))) assert_raises(ValueError, random.multivariate_normal, mu, np.eye(3)) @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"]) def test_multivariate_normal_basic_stats(self, method): random = Generator(MT19937(self.seed)) n_s = 1000 mean = np.array([1, 2]) cov = np.array([[2, 1], [1, 2]]) s = random.multivariate_normal(mean, cov, size=(n_s,), method=method) s_center = s - mean cov_emp = (s_center.T @ s_center) / (n_s - 1) # these are pretty loose and are only designed to detect major errors assert np.all(np.abs(s_center.mean(-2)) < 0.1) assert np.all(np.abs(cov_emp - cov) < 0.2) def test_negative_binomial(self): random = Generator(MT19937(self.seed)) actual = random.negative_binomial(n=100, p=.12345, size=(3, 2)) desired = np.array([[543, 727], [775, 760], [600, 674]]) assert_array_equal(actual, desired) def test_negative_binomial_exceptions(self): with np.errstate(invalid='ignore'): assert_raises(ValueError, random.negative_binomial, 100, np.nan) assert_raises(ValueError, random.negative_binomial, 100, [np.nan] * 10) def test_negative_binomial_p0_exception(self): # Verify that p=0 raises an exception. with assert_raises(ValueError): x = random.negative_binomial(1, 0) def test_negative_binomial_invalid_p_n_combination(self): # Verify that values of p and n that would result in an overflow # or infinite loop raise an exception. with np.errstate(invalid='ignore'): assert_raises(ValueError, random.negative_binomial, 2**62, 0.1) assert_raises(ValueError, random.negative_binomial, [2**62], [0.1]) def test_noncentral_chisquare(self): random = Generator(MT19937(self.seed)) actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2)) desired = np.array([[ 1.70561552362133, 15.97378184942111], [13.71483425173724, 20.17859633310629], [11.3615477156643 , 3.67891108738029]]) assert_array_almost_equal(actual, desired, decimal=14) actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2)) desired = np.array([[9.41427665607629e-04, 1.70473157518850e-04], [1.14554372041263e+00, 1.38187755933435e-03], [1.90659181905387e+00, 1.21772577941822e+00]]) assert_array_almost_equal(actual, desired, decimal=14) random = Generator(MT19937(self.seed)) actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2)) desired = np.array([[0.82947954590419, 1.80139670767078], [6.58720057417794, 7.00491463609814], [6.31101879073157, 6.30982307753005]]) assert_array_almost_equal(actual, desired, decimal=14) def test_noncentral_f(self): random = Generator(MT19937(self.seed)) actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1, size=(3, 2)) desired = np.array([[0.060310671139 , 0.23866058175939], [0.86860246709073, 0.2668510459738 ], [0.23375780078364, 1.88922102885943]]) assert_array_almost_equal(actual, desired, decimal=14) def test_noncentral_f_nan(self): random = Generator(MT19937(self.seed)) actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan) assert np.isnan(actual) def test_normal(self): random = Generator(MT19937(self.seed)) actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[-3.618412914693162, 2.635726692647081], [-2.116923463013243, 0.807460983059643], [ 1.446547137248593, 2.485684213886024]]) assert_array_almost_equal(actual, desired, decimal=15) def test_normal_0(self): assert_equal(random.normal(scale=0), 0) assert_raises(ValueError, random.normal, scale=-0.) def test_pareto(self): random = Generator(MT19937(self.seed)) actual = random.pareto(a=.123456789, size=(3, 2)) desired = np.array([[1.0394926776069018e+00, 7.7142534343505773e+04], [7.2640150889064703e-01, 3.4650454783825594e+05], [4.5852344481994740e+04, 6.5851383009539105e+07]]) # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this # matrix differs by 24 nulps. Discussion: # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html # Consensus is that this is probably some gcc quirk that affects # rounding but not in any important way, so we just use a looser # tolerance on this test: np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30) def test_poisson(self): random = Generator(MT19937(self.seed)) actual = random.poisson(lam=.123456789, size=(3, 2)) desired = np.array([[0, 0], [0, 0], [0, 0]]) assert_array_equal(actual, desired) def test_poisson_exceptions(self): lambig = np.iinfo('int64').max lamneg = -1 assert_raises(ValueError, random.poisson, lamneg) assert_raises(ValueError, random.poisson, [lamneg] * 10) assert_raises(ValueError, random.poisson, lambig) assert_raises(ValueError, random.poisson, [lambig] * 10) with np.errstate(invalid='ignore'): assert_raises(ValueError, random.poisson, np.nan) assert_raises(ValueError, random.poisson, [np.nan] * 10) def test_power(self): random = Generator(MT19937(self.seed)) actual = random.power(a=.123456789, size=(3, 2)) desired = np.array([[1.977857368842754e-09, 9.806792196620341e-02], [2.482442984543471e-10, 1.527108843266079e-01], [8.188283434244285e-02, 3.950547209346948e-01]]) assert_array_almost_equal(actual, desired, decimal=15) def test_rayleigh(self): random = Generator(MT19937(self.seed)) actual = random.rayleigh(scale=10, size=(3, 2)) desired = np.array([[4.19494429102666, 16.66920198906598], [3.67184544902662, 17.74695521962917], [16.27935397855501, 21.08355560691792]]) assert_array_almost_equal(actual, desired, decimal=14) def test_rayleigh_0(self): assert_equal(random.rayleigh(scale=0), 0) assert_raises(ValueError, random.rayleigh, scale=-0.) def test_standard_cauchy(self): random = Generator(MT19937(self.seed)) actual = random.standard_cauchy(size=(3, 2)) desired = np.array([[-1.489437778266206, -3.275389641569784], [ 0.560102864910406, -0.680780916282552], [-1.314912905226277, 0.295852965660225]]) assert_array_almost_equal(actual, desired, decimal=15) def test_standard_exponential(self): random = Generator(MT19937(self.seed)) actual = random.standard_exponential(size=(3, 2), method='inv') desired = np.array([[0.102031839440643, 1.229350298474972], [0.088137284693098, 1.459859985522667], [1.093830802293668, 1.256977002164613]]) assert_array_almost_equal(actual, desired, decimal=15) def test_standard_expoential_type_error(self): assert_raises(TypeError, random.standard_exponential, dtype=np.int32) def test_standard_gamma(self): random = Generator(MT19937(self.seed)) actual = random.standard_gamma(shape=3, size=(3, 2)) desired = np.array([[0.62970724056362, 1.22379851271008], [3.899412530884 , 4.12479964250139], [3.74994102464584, 3.74929307690815]]) assert_array_almost_equal(actual, desired, decimal=14) def test_standard_gammma_scalar_float(self): random = Generator(MT19937(self.seed)) actual = random.standard_gamma(3, dtype=np.float32) desired = 2.9242148399353027 assert_array_almost_equal(actual, desired, decimal=6) def test_standard_gamma_float(self): random = Generator(MT19937(self.seed)) actual = random.standard_gamma(shape=3, size=(3, 2)) desired = np.array([[0.62971, 1.2238 ], [3.89941, 4.1248 ], [3.74994, 3.74929]]) assert_array_almost_equal(actual, desired, decimal=5) def test_standard_gammma_float_out(self): actual = np.zeros((3, 2), dtype=np.float32) random = Generator(MT19937(self.seed)) random.standard_gamma(10.0, out=actual, dtype=np.float32) desired = np.array([[10.14987, 7.87012], [ 9.46284, 12.56832], [13.82495, 7.81533]], dtype=np.float32) assert_array_almost_equal(actual, desired, decimal=5) random = Generator(MT19937(self.seed)) random.standard_gamma(10.0, out=actual, size=(3, 2), dtype=np.float32) assert_array_almost_equal(actual, desired, decimal=5) def test_standard_gamma_unknown_type(self): assert_raises(TypeError, random.standard_gamma, 1., dtype='int32') def test_out_size_mismatch(self): out = np.zeros(10) assert_raises(ValueError, random.standard_gamma, 10.0, size=20, out=out) assert_raises(ValueError, random.standard_gamma, 10.0, size=(10, 1), out=out) def test_standard_gamma_0(self): assert_equal(random.standard_gamma(shape=0), 0) assert_raises(ValueError, random.standard_gamma, shape=-0.) def test_standard_normal(self): random = Generator(MT19937(self.seed)) actual = random.standard_normal(size=(3, 2)) desired = np.array([[-1.870934851846581, 1.25613495182354 ], [-1.120190126006621, 0.342002097029821], [ 0.661545174124296, 1.181113712443012]]) assert_array_almost_equal(actual, desired, decimal=15) def test_standard_normal_unsupported_type(self): assert_raises(TypeError, random.standard_normal, dtype=np.int32) def test_standard_t(self): random = Generator(MT19937(self.seed)) actual = random.standard_t(df=10, size=(3, 2)) desired = np.array([[-1.484666193042647, 0.30597891831161 ], [ 1.056684299648085, -0.407312602088507], [ 0.130704414281157, -2.038053410490321]]) assert_array_almost_equal(actual, desired, decimal=15) def test_triangular(self): random = Generator(MT19937(self.seed)) actual = random.triangular(left=5.12, mode=10.23, right=20.34, size=(3, 2)) desired = np.array([[ 7.86664070590917, 13.6313848513185 ], [ 7.68152445215983, 14.36169131136546], [13.16105603911429, 13.72341621856971]]) assert_array_almost_equal(actual, desired, decimal=14) def test_uniform(self): random = Generator(MT19937(self.seed)) actual = random.uniform(low=1.23, high=10.54, size=(3, 2)) desired = np.array([[2.13306255040998 , 7.816987531021207], [2.015436610109887, 8.377577533009589], [7.421792588856135, 7.891185744455209]]) assert_array_almost_equal(actual, desired, decimal=15) def test_uniform_range_bounds(self): fmin = np.finfo('float').min fmax = np.finfo('float').max func = random.uniform assert_raises(OverflowError, func, -np.inf, 0) assert_raises(OverflowError, func, 0, np.inf) assert_raises(OverflowError, func, fmin, fmax) assert_raises(OverflowError, func, [-np.inf], [0]) assert_raises(OverflowError, func, [0], [np.inf]) # (fmax / 1e17) - fmin is within range, so this should not throw # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX > # DBL_MAX by increasing fmin a bit random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17) def test_uniform_zero_range(self): func = random.uniform result = func(1.5, 1.5) assert_allclose(result, 1.5) result = func([0.0, np.pi], [0.0, np.pi]) assert_allclose(result, [0.0, np.pi]) result = func([[2145.12], [2145.12]], [2145.12, 2145.12]) assert_allclose(result, 2145.12 + np.zeros((2, 2))) def test_uniform_neg_range(self): func = random.uniform assert_raises(ValueError, func, 2, 1) assert_raises(ValueError, func, [1, 2], [1, 1]) assert_raises(ValueError, func, [[0, 1],[2, 3]], 2) def test_scalar_exception_propagation(self): # Tests that exceptions are correctly propagated in distributions # when called with objects that throw exceptions when converted to # scalars. # # Regression test for gh: 8865 class ThrowingFloat(np.ndarray): def __float__(self): raise TypeError throwing_float = np.array(1.0).view(ThrowingFloat) assert_raises(TypeError, random.uniform, throwing_float, throwing_float) class ThrowingInteger(np.ndarray): def __int__(self): raise TypeError throwing_int = np.array(1).view(ThrowingInteger) assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1) def test_vonmises(self): random = Generator(MT19937(self.seed)) actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2)) desired = np.array([[ 1.107972248690106, 2.841536476232361], [ 1.832602376042457, 1.945511926976032], [-0.260147475776542, 2.058047492231698]]) assert_array_almost_equal(actual, desired, decimal=15) def test_vonmises_small(self): # check infinite loop, gh-4720 random = Generator(MT19937(self.seed)) r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6) assert_(np.isfinite(r).all()) def test_vonmises_nan(self): random = Generator(MT19937(self.seed)) r = random.vonmises(mu=0., kappa=np.nan) assert_(np.isnan(r)) @pytest.mark.parametrize("kappa", [1e4, 1e15]) def test_vonmises_large_kappa(self, kappa): random = Generator(MT19937(self.seed)) rs = RandomState(random.bit_generator) state = random.bit_generator.state random_state_vals = rs.vonmises(0, kappa, size=10) random.bit_generator.state = state gen_vals = random.vonmises(0, kappa, size=10) if kappa < 1e6: assert_allclose(random_state_vals, gen_vals) else: assert np.all(random_state_vals != gen_vals) @pytest.mark.parametrize("mu", [-7., -np.pi, -3.1, np.pi, 3.2]) @pytest.mark.parametrize("kappa", [1e-9, 1e-6, 1, 1e3, 1e15]) def test_vonmises_large_kappa_range(self, mu, kappa): random = Generator(MT19937(self.seed)) r = random.vonmises(mu, kappa, 50) assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) def test_wald(self): random = Generator(MT19937(self.seed)) actual = random.wald(mean=1.23, scale=1.54, size=(3, 2)) desired = np.array([[0.26871721804551, 3.2233942732115 ], [2.20328374987066, 2.40958405189353], [2.07093587449261, 0.73073890064369]]) assert_array_almost_equal(actual, desired, decimal=14) def test_weibull(self): random = Generator(MT19937(self.seed)) actual = random.weibull(a=1.23, size=(3, 2)) desired = np.array([[0.138613914769468, 1.306463419753191], [0.111623365934763, 1.446570494646721], [1.257145775276011, 1.914247725027957]]) assert_array_almost_equal(actual, desired, decimal=15) def test_weibull_0(self): random = Generator(MT19937(self.seed)) assert_equal(random.weibull(a=0, size=12), np.zeros(12)) assert_raises(ValueError, random.weibull, a=-0.) def test_zipf(self): random = Generator(MT19937(self.seed)) actual = random.zipf(a=1.23, size=(3, 2)) desired = np.array([[ 1, 1], [ 10, 867], [354, 2]]) assert_array_equal(actual, desired) class TestBroadcast: # tests that functions that broadcast behave # correctly when presented with non-scalar arguments def setup_method(self): self.seed = 123456789 def test_uniform(self): random = Generator(MT19937(self.seed)) low = [0] high = [1] uniform = random.uniform desired = np.array([0.16693771389729, 0.19635129550675, 0.75563050964095]) random = Generator(MT19937(self.seed)) actual = random.uniform(low * 3, high) assert_array_almost_equal(actual, desired, decimal=14) random = Generator(MT19937(self.seed)) actual = random.uniform(low, high * 3) assert_array_almost_equal(actual, desired, decimal=14) def test_normal(self): loc = [0] scale = [1] bad_scale = [-1] random = Generator(MT19937(self.seed)) desired = np.array([-0.38736406738527, 0.79594375042255, 0.0197076236097]) random = Generator(MT19937(self.seed)) actual = random.normal(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.normal, loc * 3, bad_scale) random = Generator(MT19937(self.seed)) normal = random.normal actual = normal(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, normal, loc, bad_scale * 3) def test_beta(self): a = [1] b = [2] bad_a = [-1] bad_b = [-2] desired = np.array([0.18719338682602, 0.73234824491364, 0.17928615186455]) random = Generator(MT19937(self.seed)) beta = random.beta actual = beta(a * 3, b) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, beta, bad_a * 3, b) assert_raises(ValueError, beta, a * 3, bad_b) random = Generator(MT19937(self.seed)) actual = random.beta(a, b * 3) assert_array_almost_equal(actual, desired, decimal=14) def test_exponential(self): scale = [1] bad_scale = [-1] desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) random = Generator(MT19937(self.seed)) actual = random.exponential(scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.exponential, bad_scale * 3) def test_standard_gamma(self): shape = [1] bad_shape = [-1] desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) random = Generator(MT19937(self.seed)) std_gamma = random.standard_gamma actual = std_gamma(shape * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, std_gamma, bad_shape * 3) def test_gamma(self): shape = [1] scale = [2] bad_shape = [-1] bad_scale = [-2] desired = np.array([1.34491986425611, 0.42760990636187, 1.4355697857258]) random = Generator(MT19937(self.seed)) gamma = random.gamma actual = gamma(shape * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gamma, bad_shape * 3, scale) assert_raises(ValueError, gamma, shape * 3, bad_scale) random = Generator(MT19937(self.seed)) gamma = random.gamma actual = gamma(shape, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gamma, bad_shape, scale * 3) assert_raises(ValueError, gamma, shape, bad_scale * 3) def test_f(self): dfnum = [1] dfden = [2] bad_dfnum = [-1] bad_dfden = [-2] desired = np.array([0.07765056244107, 7.72951397913186, 0.05786093891763]) random = Generator(MT19937(self.seed)) f = random.f actual = f(dfnum * 3, dfden) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, f, bad_dfnum * 3, dfden) assert_raises(ValueError, f, dfnum * 3, bad_dfden) random = Generator(MT19937(self.seed)) f = random.f actual = f(dfnum, dfden * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, f, bad_dfnum, dfden * 3) assert_raises(ValueError, f, dfnum, bad_dfden * 3) def test_noncentral_f(self): dfnum = [2] dfden = [3] nonc = [4] bad_dfnum = [0] bad_dfden = [-1] bad_nonc = [-2] desired = np.array([2.02434240411421, 12.91838601070124, 1.24395160354629]) random = Generator(MT19937(self.seed)) nonc_f = random.noncentral_f actual = nonc_f(dfnum * 3, dfden, nonc) assert_array_almost_equal(actual, desired, decimal=14) assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3))) assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc) assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc) assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc) random = Generator(MT19937(self.seed)) nonc_f = random.noncentral_f actual = nonc_f(dfnum, dfden * 3, nonc) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc) assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc) assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc) random = Generator(MT19937(self.seed)) nonc_f = random.noncentral_f actual = nonc_f(dfnum, dfden, nonc * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3) assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3) assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3) def test_noncentral_f_small_df(self): random = Generator(MT19937(self.seed)) desired = np.array([0.04714867120827, 0.1239390327694]) actual = random.noncentral_f(0.9, 0.9, 2, size=2) assert_array_almost_equal(actual, desired, decimal=14) def test_chisquare(self): df = [1] bad_df = [-1] desired = np.array([0.05573640064251, 1.47220224353539, 2.9469379318589]) random = Generator(MT19937(self.seed)) actual = random.chisquare(df * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.chisquare, bad_df * 3) def test_noncentral_chisquare(self): df = [1] nonc = [2] bad_df = [-1] bad_nonc = [-2] desired = np.array([0.07710766249436, 5.27829115110304, 0.630732147399]) random = Generator(MT19937(self.seed)) nonc_chi = random.noncentral_chisquare actual = nonc_chi(df * 3, nonc) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_chi, bad_df * 3, nonc) assert_raises(ValueError, nonc_chi, df * 3, bad_nonc) random = Generator(MT19937(self.seed)) nonc_chi = random.noncentral_chisquare actual = nonc_chi(df, nonc * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_chi, bad_df, nonc * 3) assert_raises(ValueError, nonc_chi, df, bad_nonc * 3) def test_standard_t(self): df = [1] bad_df = [-1] desired = np.array([-1.39498829447098, -1.23058658835223, 0.17207021065983]) random = Generator(MT19937(self.seed)) actual = random.standard_t(df * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.standard_t, bad_df * 3) def test_vonmises(self): mu = [2] kappa = [1] bad_kappa = [-1] desired = np.array([2.25935584988528, 2.23326261461399, -2.84152146503326]) random = Generator(MT19937(self.seed)) actual = random.vonmises(mu * 3, kappa) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.vonmises, mu * 3, bad_kappa) random = Generator(MT19937(self.seed)) actual = random.vonmises(mu, kappa * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.vonmises, mu, bad_kappa * 3) def test_pareto(self): a = [1] bad_a = [-1] desired = np.array([0.95905052946317, 0.2383810889437 , 1.04988745750013]) random = Generator(MT19937(self.seed)) actual = random.pareto(a * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.pareto, bad_a * 3) def test_weibull(self): a = [1] bad_a = [-1] desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) random = Generator(MT19937(self.seed)) actual = random.weibull(a * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.weibull, bad_a * 3) def test_power(self): a = [1] bad_a = [-1] desired = np.array([0.48954864361052, 0.19249412888486, 0.51216834058807]) random = Generator(MT19937(self.seed)) actual = random.power(a * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.power, bad_a * 3) def test_laplace(self): loc = [0] scale = [1] bad_scale = [-1] desired = np.array([-1.09698732625119, -0.93470271947368, 0.71592671378202]) random = Generator(MT19937(self.seed)) laplace = random.laplace actual = laplace(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, laplace, loc * 3, bad_scale) random = Generator(MT19937(self.seed)) laplace = random.laplace actual = laplace(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, laplace, loc, bad_scale * 3) def test_gumbel(self): loc = [0] scale = [1] bad_scale = [-1] desired = np.array([1.70020068231762, 1.52054354273631, -0.34293267607081]) random = Generator(MT19937(self.seed)) gumbel = random.gumbel actual = gumbel(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gumbel, loc * 3, bad_scale) random = Generator(MT19937(self.seed)) gumbel = random.gumbel actual = gumbel(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gumbel, loc, bad_scale * 3) def test_logistic(self): loc = [0] scale = [1] bad_scale = [-1] desired = np.array([-1.607487640433, -1.40925686003678, 1.12887112820397]) random = Generator(MT19937(self.seed)) actual = random.logistic(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.logistic, loc * 3, bad_scale) random = Generator(MT19937(self.seed)) actual = random.logistic(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.logistic, loc, bad_scale * 3) assert_equal(random.logistic(1.0, 0.0), 1.0) def test_lognormal(self): mean = [0] sigma = [1] bad_sigma = [-1] desired = np.array([0.67884390500697, 2.21653186290321, 1.01990310084276]) random = Generator(MT19937(self.seed)) lognormal = random.lognormal actual = lognormal(mean * 3, sigma) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, lognormal, mean * 3, bad_sigma) random = Generator(MT19937(self.seed)) actual = random.lognormal(mean, sigma * 3) assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3) def test_rayleigh(self): scale = [1] bad_scale = [-1] desired = np.array( [1.1597068009872629, 0.6539188836253857, 1.1981526554349398] ) random = Generator(MT19937(self.seed)) actual = random.rayleigh(scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.rayleigh, bad_scale * 3) def test_wald(self): mean = [0.5] scale = [1] bad_mean = [0] bad_scale = [-2] desired = np.array([0.38052407392905, 0.50701641508592, 0.484935249864]) random = Generator(MT19937(self.seed)) actual = random.wald(mean * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.wald, bad_mean * 3, scale) assert_raises(ValueError, random.wald, mean * 3, bad_scale) random = Generator(MT19937(self.seed)) actual = random.wald(mean, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, random.wald, bad_mean, scale * 3) assert_raises(ValueError, random.wald, mean, bad_scale * 3) def test_triangular(self): left = [1] right = [3] mode = [2] bad_left_one = [3] bad_mode_one = [4] bad_left_two, bad_mode_two = right * 2 desired = np.array([1.57781954604754, 1.62665986867957, 2.30090130831326]) random = Generator(MT19937(self.seed)) triangular = random.triangular actual = triangular(left * 3, mode, right) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, triangular, bad_left_one * 3, mode, right) assert_raises(ValueError, triangular, left * 3, bad_mode_one, right) assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two, right) random = Generator(MT19937(self.seed)) triangular = random.triangular actual = triangular(left, mode * 3, right) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, triangular, bad_left_one, mode * 3, right) assert_raises(ValueError, triangular, left, bad_mode_one * 3, right) assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3, right) random = Generator(MT19937(self.seed)) triangular = random.triangular actual = triangular(left, mode, right * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, triangular, bad_left_one, mode, right * 3) assert_raises(ValueError, triangular, left, bad_mode_one, right * 3) assert_raises(ValueError, triangular, bad_left_two, bad_mode_two, right * 3) assert_raises(ValueError, triangular, 10., 0., 20.) assert_raises(ValueError, triangular, 10., 25., 20.) assert_raises(ValueError, triangular, 10., 10., 10.) def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] desired = np.array([0, 0, 1]) random = Generator(MT19937(self.seed)) binom = random.binomial actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) random = Generator(MT19937(self.seed)) actual = random.binomial(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3) def test_negative_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] desired = np.array([0, 2, 1], dtype=np.int64) random = Generator(MT19937(self.seed)) neg_binom = random.negative_binomial actual = neg_binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, neg_binom, bad_n * 3, p) assert_raises(ValueError, neg_binom, n * 3, bad_p_one) assert_raises(ValueError, neg_binom, n * 3, bad_p_two) random = Generator(MT19937(self.seed)) neg_binom = random.negative_binomial actual = neg_binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, neg_binom, bad_n, p * 3) assert_raises(ValueError, neg_binom, n, bad_p_one * 3) assert_raises(ValueError, neg_binom, n, bad_p_two * 3) def test_poisson(self): lam = [1] bad_lam_one = [-1] desired = np.array([0, 0, 3]) random = Generator(MT19937(self.seed)) max_lam = random._poisson_lam_max bad_lam_two = [max_lam * 2] poisson = random.poisson actual = poisson(lam * 3) assert_array_equal(actual, desired) assert_raises(ValueError, poisson, bad_lam_one * 3) assert_raises(ValueError, poisson, bad_lam_two * 3) def test_zipf(self): a = [2] bad_a = [0] desired = np.array([1, 8, 1]) random = Generator(MT19937(self.seed)) zipf = random.zipf actual = zipf(a * 3) assert_array_equal(actual, desired) assert_raises(ValueError, zipf, bad_a * 3) with np.errstate(invalid='ignore'): assert_raises(ValueError, zipf, np.nan) assert_raises(ValueError, zipf, [0, 0, np.nan]) def test_geometric(self): p = [0.5] bad_p_one = [-1] bad_p_two = [1.5] desired = np.array([1, 1, 3]) random = Generator(MT19937(self.seed)) geometric = random.geometric actual = geometric(p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, geometric, bad_p_one * 3) assert_raises(ValueError, geometric, bad_p_two * 3) def test_hypergeometric(self): ngood = [1] nbad = [2] nsample = [2] bad_ngood = [-1] bad_nbad = [-2] bad_nsample_one = [-1] bad_nsample_two = [4] desired = np.array([0, 0, 1]) random = Generator(MT19937(self.seed)) actual = random.hypergeometric(ngood * 3, nbad, nsample) assert_array_equal(actual, desired) assert_raises(ValueError, random.hypergeometric, bad_ngood * 3, nbad, nsample) assert_raises(ValueError, random.hypergeometric, ngood * 3, bad_nbad, nsample) assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_one) assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_two) random = Generator(MT19937(self.seed)) actual = random.hypergeometric(ngood, nbad * 3, nsample) assert_array_equal(actual, desired) assert_raises(ValueError, random.hypergeometric, bad_ngood, nbad * 3, nsample) assert_raises(ValueError, random.hypergeometric, ngood, bad_nbad * 3, nsample) assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_one) assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_two) random = Generator(MT19937(self.seed)) hypergeom = random.hypergeometric actual = hypergeom(ngood, nbad, nsample * 3) assert_array_equal(actual, desired) assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3) assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3) assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3) assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3) assert_raises(ValueError, hypergeom, -1, 10, 20) assert_raises(ValueError, hypergeom, 10, -1, 20) assert_raises(ValueError, hypergeom, 10, 10, -1) assert_raises(ValueError, hypergeom, 10, 10, 25) # ValueError for arguments that are too big. assert_raises(ValueError, hypergeom, 2**30, 10, 20) assert_raises(ValueError, hypergeom, 999, 2**31, 50) assert_raises(ValueError, hypergeom, 999, [2**29, 2**30], 1000) def test_logseries(self): p = [0.5] bad_p_one = [2] bad_p_two = [-1] desired = np.array([1, 1, 1]) random = Generator(MT19937(self.seed)) logseries = random.logseries actual = logseries(p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, logseries, bad_p_one * 3) assert_raises(ValueError, logseries, bad_p_two * 3) def test_multinomial(self): random = Generator(MT19937(self.seed)) actual = random.multinomial([5, 20], [1 / 6.] * 6, size=(3, 2)) desired = np.array([[[0, 0, 2, 1, 2, 0], [2, 3, 6, 4, 2, 3]], [[1, 0, 1, 0, 2, 1], [7, 2, 2, 1, 4, 4]], [[0, 2, 0, 1, 2, 0], [3, 2, 3, 3, 4, 5]]], dtype=np.int64) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = random.multinomial([5, 20], [1 / 6.] * 6) desired = np.array([[0, 0, 2, 1, 2, 0], [2, 3, 6, 4, 2, 3]], dtype=np.int64) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = random.multinomial([5, 20], [[1 / 6.] * 6] * 2) desired = np.array([[0, 0, 2, 1, 2, 0], [2, 3, 6, 4, 2, 3]], dtype=np.int64) assert_array_equal(actual, desired) random = Generator(MT19937(self.seed)) actual = random.multinomial([[5], [20]], [[1 / 6.] * 6] * 2) desired = np.array([[[0, 0, 2, 1, 2, 0], [0, 0, 2, 1, 1, 1]], [[4, 2, 3, 3, 5, 3], [7, 2, 2, 1, 4, 4]]], dtype=np.int64) assert_array_equal(actual, desired) @pytest.mark.parametrize("n", [10, np.array([10, 10]), np.array([[[10]], [[10]]]) ] ) def test_multinomial_pval_broadcast(self, n): random = Generator(MT19937(self.seed)) pvals = np.array([1 / 4] * 4) actual = random.multinomial(n, pvals) n_shape = tuple() if isinstance(n, int) else n.shape expected_shape = n_shape + (4,) assert actual.shape == expected_shape pvals = np.vstack([pvals, pvals]) actual = random.multinomial(n, pvals) expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1]) + (4,) assert actual.shape == expected_shape pvals = np.vstack([[pvals], [pvals]]) actual = random.multinomial(n, pvals) expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1]) assert actual.shape == expected_shape + (4,) actual = random.multinomial(n, pvals, size=(3, 2) + expected_shape) assert actual.shape == (3, 2) + expected_shape + (4,) with pytest.raises(ValueError): # Ensure that size is not broadcast actual = random.multinomial(n, pvals, size=(1,) * 6) def test_invalid_pvals_broadcast(self): random = Generator(MT19937(self.seed)) pvals = [[1 / 6] * 6, [1 / 4] * 6] assert_raises(ValueError, random.multinomial, 1, pvals) assert_raises(ValueError, random.multinomial, 6, 0.5) def test_empty_outputs(self): random = Generator(MT19937(self.seed)) actual = random.multinomial(np.empty((10, 0, 6), "i8"), [1 / 6] * 6) assert actual.shape == (10, 0, 6, 6) actual = random.multinomial(12, np.empty((10, 0, 10))) assert actual.shape == (10, 0, 10) actual = random.multinomial(np.empty((3, 0, 7), "i8"), np.empty((3, 0, 7, 4))) assert actual.shape == (3, 0, 7, 4) class TestThread: # make sure each state produces the same sequence even in threads def setup_method(self): self.seeds = range(4) def check_function(self, function, sz): from threading import Thread out1 = np.empty((len(self.seeds),) + sz) out2 = np.empty((len(self.seeds),) + sz) # threaded generation t = [Thread(target=function, args=(Generator(MT19937(s)), o)) for s, o in zip(self.seeds, out1)] [x.start() for x in t] [x.join() for x in t] # the same serial for s, o in zip(self.seeds, out2): function(Generator(MT19937(s)), o) # these platforms change x87 fpu precision mode in threads if np.intp().dtype.itemsize == 4 and sys.platform == "win32": assert_array_almost_equal(out1, out2) else: assert_array_equal(out1, out2) def test_normal(self): def gen_random(state, out): out[...] = state.normal(size=10000) self.check_function(gen_random, sz=(10000,)) def test_exp(self): def gen_random(state, out): out[...] = state.exponential(scale=np.ones((100, 1000))) self.check_function(gen_random, sz=(100, 1000)) def test_multinomial(self): def gen_random(state, out): out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000) self.check_function(gen_random, sz=(10000, 6)) # See Issue #4263 class TestSingleEltArrayInput: def setup_method(self): self.argOne = np.array([2]) self.argTwo = np.array([3]) self.argThree = np.array([4]) self.tgtShape = (1,) def test_one_arg_funcs(self): funcs = (random.exponential, random.standard_gamma, random.chisquare, random.standard_t, random.pareto, random.weibull, random.power, random.rayleigh, random.poisson, random.zipf, random.geometric, random.logseries) probfuncs = (random.geometric, random.logseries) for func in funcs: if func in probfuncs: # p < 1.0 out = func(np.array([0.5])) else: out = func(self.argOne) assert_equal(out.shape, self.tgtShape) def test_two_arg_funcs(self): funcs = (random.uniform, random.normal, random.beta, random.gamma, random.f, random.noncentral_chisquare, random.vonmises, random.laplace, random.gumbel, random.logistic, random.lognormal, random.wald, random.binomial, random.negative_binomial) probfuncs = (random.binomial, random.negative_binomial) for func in funcs: if func in probfuncs: # p <= 1 argTwo = np.array([0.5]) else: argTwo = self.argTwo out = func(self.argOne, argTwo) assert_equal(out.shape, self.tgtShape) out = func(self.argOne[0], argTwo) assert_equal(out.shape, self.tgtShape) out = func(self.argOne, argTwo[0]) assert_equal(out.shape, self.tgtShape) def test_integers(self, endpoint): itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.int64, np.uint64] func = random.integers high = np.array([1]) low = np.array([0]) for dt in itype: out = func(low, high, endpoint=endpoint, dtype=dt) assert_equal(out.shape, self.tgtShape) out = func(low[0], high, endpoint=endpoint, dtype=dt) assert_equal(out.shape, self.tgtShape) out = func(low, high[0], endpoint=endpoint, dtype=dt) assert_equal(out.shape, self.tgtShape) def test_three_arg_funcs(self): funcs = [random.noncentral_f, random.triangular, random.hypergeometric] for func in funcs: out = func(self.argOne, self.argTwo, self.argThree) assert_equal(out.shape, self.tgtShape) out = func(self.argOne[0], self.argTwo, self.argThree) assert_equal(out.shape, self.tgtShape) out = func(self.argOne, self.argTwo[0], self.argThree) assert_equal(out.shape, self.tgtShape) @pytest.mark.parametrize("config", JUMP_TEST_DATA) def test_jumped(config): # Each config contains the initial seed, a number of raw steps # the sha256 hashes of the initial and the final states' keys and # the position of the initial and the final state. # These were produced using the original C implementation. seed = config["seed"] steps = config["steps"] mt19937 = MT19937(seed) # Burn step mt19937.random_raw(steps) key = mt19937.state["state"]["key"] if sys.byteorder == 'big': key = key.byteswap() sha256 = hashlib.sha256(key) assert mt19937.state["state"]["pos"] == config["initial"]["pos"] assert sha256.hexdigest() == config["initial"]["key_sha256"] jumped = mt19937.jumped() key = jumped.state["state"]["key"] if sys.byteorder == 'big': key = key.byteswap() sha256 = hashlib.sha256(key) assert jumped.state["state"]["pos"] == config["jumped"]["pos"] assert sha256.hexdigest() == config["jumped"]["key_sha256"] def test_broadcast_size_error(): mu = np.ones(3) sigma = np.ones((4, 3)) size = (10, 4, 2) assert random.normal(mu, sigma, size=(5, 4, 3)).shape == (5, 4, 3) with pytest.raises(ValueError): random.normal(mu, sigma, size=size) with pytest.raises(ValueError): random.normal(mu, sigma, size=(1, 3)) with pytest.raises(ValueError): random.normal(mu, sigma, size=(4, 1, 1)) # 1 arg shape = np.ones((4, 3)) with pytest.raises(ValueError): random.standard_gamma(shape, size=size) with pytest.raises(ValueError): random.standard_gamma(shape, size=(3,)) with pytest.raises(ValueError): random.standard_gamma(shape, size=3) # Check out out = np.empty(size) with pytest.raises(ValueError): random.standard_gamma(shape, out=out) # 2 arg with pytest.raises(ValueError): random.binomial(1, [0.3, 0.7], size=(2, 1)) with pytest.raises(ValueError): random.binomial([1, 2], 0.3, size=(2, 1)) with pytest.raises(ValueError): random.binomial([1, 2], [0.3, 0.7], size=(2, 1)) with pytest.raises(ValueError): random.multinomial([2, 2], [.3, .7], size=(2, 1)) # 3 arg a = random.chisquare(5, size=3) b = random.chisquare(5, size=(4, 3)) c = random.chisquare(5, size=(5, 4, 3)) assert random.noncentral_f(a, b, c).shape == (5, 4, 3) with pytest.raises(ValueError, match=r"Output size \(6, 5, 1, 1\) is"): random.noncentral_f(a, b, c, size=(6, 5, 1, 1)) def test_broadcast_size_scalar(): mu = np.ones(3) sigma = np.ones(3) random.normal(mu, sigma, size=3) with pytest.raises(ValueError): random.normal(mu, sigma, size=2) def test_ragged_shuffle(): # GH 18142 seq = [[], [], 1] gen = Generator(MT19937(0)) assert_no_warnings(gen.shuffle, seq) assert seq == [1, [], []] @pytest.mark.parametrize("high", [-2, [-2]]) @pytest.mark.parametrize("endpoint", [True, False]) def test_single_arg_integer_exception(high, endpoint): # GH 14333 gen = Generator(MT19937(0)) msg = 'high < 0' if endpoint else 'high <= 0' with pytest.raises(ValueError, match=msg): gen.integers(high, endpoint=endpoint) msg = 'low > high' if endpoint else 'low >= high' with pytest.raises(ValueError, match=msg): gen.integers(-1, high, endpoint=endpoint) with pytest.raises(ValueError, match=msg): gen.integers([-1], high, endpoint=endpoint) @pytest.mark.parametrize("dtype", ["f4", "f8"]) def test_c_contig_req_out(dtype): # GH 18704 out = np.empty((2, 3), order="F", dtype=dtype) shape = [1, 2, 3] with pytest.raises(ValueError, match="Supplied output array"): random.standard_gamma(shape, out=out, dtype=dtype) with pytest.raises(ValueError, match="Supplied output array"): random.standard_gamma(shape, out=out, size=out.shape, dtype=dtype) @pytest.mark.parametrize("dtype", ["f4", "f8"]) @pytest.mark.parametrize("order", ["F", "C"]) @pytest.mark.parametrize("dist", [random.standard_normal, random.random]) def test_contig_req_out(dist, order, dtype): # GH 18704 out = np.empty((2, 3), dtype=dtype, order=order) variates = dist(out=out, dtype=dtype) assert variates is out variates = dist(out=out, dtype=dtype, size=out.shape) assert variates is out
113,856
Python
41.106879
114
0.567559
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/random/_examples/cython/setup.py
#!/usr/bin/env python3 """ Build the Cython demonstrations of low-level access to NumPy random Usage: python setup.py build_ext -i """ from os.path import dirname, join, abspath from setuptools import setup from setuptools.extension import Extension import numpy as np from Cython.Build import cythonize path = dirname(__file__) src_dir = join(dirname(path), '..', 'src') defs = [('NPY_NO_DEPRECATED_API', 0)] inc_path = np.get_include() # Add paths for npyrandom and npymath libraries: lib_path = [ abspath(join(np.get_include(), '..', '..', 'random', 'lib')), abspath(join(np.get_include(), '..', 'lib')) ] extending = Extension("extending", sources=[join('.', 'extending.pyx')], include_dirs=[ np.get_include(), join(path, '..', '..') ], define_macros=defs, ) distributions = Extension("extending_distributions", sources=[join('.', 'extending_distributions.pyx')], include_dirs=[inc_path], library_dirs=lib_path, libraries=['npyrandom', 'npymath'], define_macros=defs, ) extensions = [extending, distributions] setup( ext_modules=cythonize(extensions) )
1,401
Python
28.829787
77
0.533191
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/random/_examples/cffi/extending.py
""" Use cffi to access any of the underlying C functions from distributions.h """ import os import numpy as np import cffi from .parse import parse_distributions_h ffi = cffi.FFI() inc_dir = os.path.join(np.get_include(), 'numpy') # Basic numpy types ffi.cdef(''' typedef intptr_t npy_intp; typedef unsigned char npy_bool; ''') parse_distributions_h(ffi, inc_dir) lib = ffi.dlopen(np.random._generator.__file__) # Compare the distributions.h random_standard_normal_fill to # Generator.standard_random bit_gen = np.random.PCG64() rng = np.random.Generator(bit_gen) state = bit_gen.state interface = rng.bit_generator.cffi n = 100 vals_cffi = ffi.new('double[%d]' % n) lib.random_standard_normal_fill(interface.bit_generator, n, vals_cffi) # reset the state bit_gen.state = state vals = rng.standard_normal(n) for i in range(n): assert vals[i] == vals_cffi[i]
880
Python
20.487804
73
0.714773
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/random/_examples/cffi/parse.py
import os def parse_distributions_h(ffi, inc_dir): """ Parse distributions.h located in inc_dir for CFFI, filling in the ffi.cdef Read the function declarations without the "#define ..." macros that will be filled in when loading the library. """ with open(os.path.join(inc_dir, 'random', 'bitgen.h')) as fid: s = [] for line in fid: # massage the include file if line.strip().startswith('#'): continue s.append(line) ffi.cdef('\n'.join(s)) with open(os.path.join(inc_dir, 'random', 'distributions.h')) as fid: s = [] in_skip = 0 ignoring = False for line in fid: # check for and remove extern "C" guards if ignoring: if line.strip().startswith('#endif'): ignoring = False continue if line.strip().startswith('#ifdef __cplusplus'): ignoring = True # massage the include file if line.strip().startswith('#'): continue # skip any inlined function definition # which starts with 'static NPY_INLINE xxx(...) {' # and ends with a closing '}' if line.strip().startswith('static NPY_INLINE'): in_skip += line.count('{') continue elif in_skip > 0: in_skip += line.count('{') in_skip -= line.count('}') continue # replace defines with their value or remove them line = line.replace('DECLDIR', '') line = line.replace('NPY_INLINE', '') line = line.replace('RAND_INT_TYPE', 'int64_t') s.append(line) ffi.cdef('\n'.join(s))
1,829
Python
31.678571
78
0.50082
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/random/_examples/numba/extending.py
import numpy as np import numba as nb from numpy.random import PCG64 from timeit import timeit bit_gen = PCG64() next_d = bit_gen.cffi.next_double state_addr = bit_gen.cffi.state_address def normals(n, state): out = np.empty(n) for i in range((n + 1) // 2): x1 = 2.0 * next_d(state) - 1.0 x2 = 2.0 * next_d(state) - 1.0 r2 = x1 * x1 + x2 * x2 while r2 >= 1.0 or r2 == 0.0: x1 = 2.0 * next_d(state) - 1.0 x2 = 2.0 * next_d(state) - 1.0 r2 = x1 * x1 + x2 * x2 f = np.sqrt(-2.0 * np.log(r2) / r2) out[2 * i] = f * x1 if 2 * i + 1 < n: out[2 * i + 1] = f * x2 return out # Compile using Numba normalsj = nb.jit(normals, nopython=True) # Must use state address not state with numba n = 10000 def numbacall(): return normalsj(n, state_addr) rg = np.random.Generator(PCG64()) def numpycall(): return rg.normal(size=n) # Check that the functions work r1 = numbacall() r2 = numpycall() assert r1.shape == (n,) assert r1.shape == r2.shape t1 = timeit(numbacall, number=1000) print(f'{t1:.2f} secs for {n} PCG64 (Numba/PCG64) gaussian randoms') t2 = timeit(numpycall, number=1000) print(f'{t2:.2f} secs for {n} PCG64 (NumPy/PCG64) gaussian randoms') # example 2 next_u32 = bit_gen.ctypes.next_uint32 ctypes_state = bit_gen.ctypes.state @nb.jit(nopython=True) def bounded_uint(lb, ub, state): mask = delta = ub - lb mask |= mask >> 1 mask |= mask >> 2 mask |= mask >> 4 mask |= mask >> 8 mask |= mask >> 16 val = next_u32(state) & mask while val > delta: val = next_u32(state) & mask return lb + val print(bounded_uint(323, 2394691, ctypes_state.value)) @nb.jit(nopython=True) def bounded_uints(lb, ub, n, state): out = np.empty(n, dtype=np.uint32) for i in range(n): out[i] = bounded_uint(lb, ub, state) bounded_uints(323, 2394691, 10000000, ctypes_state.value)
1,957
Python
22.035294
68
0.594788
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/random/_examples/numba/extending_distributions.py
r""" Building the required library in this example requires a source distribution of NumPy or clone of the NumPy git repository since distributions.c is not included in binary distributions. On *nix, execute in numpy/random/src/distributions export ${PYTHON_VERSION}=3.8 # Python version export PYTHON_INCLUDE=#path to Python's include folder, usually \ ${PYTHON_HOME}/include/python${PYTHON_VERSION}m export NUMPY_INCLUDE=#path to numpy's include folder, usually \ ${PYTHON_HOME}/lib/python${PYTHON_VERSION}/site-packages/numpy/core/include gcc -shared -o libdistributions.so -fPIC distributions.c \ -I${NUMPY_INCLUDE} -I${PYTHON_INCLUDE} mv libdistributions.so ../../_examples/numba/ On Windows rem PYTHON_HOME and PYTHON_VERSION are setup dependent, this is an example set PYTHON_HOME=c:\Anaconda set PYTHON_VERSION=38 cl.exe /LD .\distributions.c -DDLL_EXPORT \ -I%PYTHON_HOME%\lib\site-packages\numpy\core\include \ -I%PYTHON_HOME%\include %PYTHON_HOME%\libs\python%PYTHON_VERSION%.lib move distributions.dll ../../_examples/numba/ """ import os import numba as nb import numpy as np from cffi import FFI from numpy.random import PCG64 ffi = FFI() if os.path.exists('./distributions.dll'): lib = ffi.dlopen('./distributions.dll') elif os.path.exists('./libdistributions.so'): lib = ffi.dlopen('./libdistributions.so') else: raise RuntimeError('Required DLL/so file was not found.') ffi.cdef(""" double random_standard_normal(void *bitgen_state); """) x = PCG64() xffi = x.cffi bit_generator = xffi.bit_generator random_standard_normal = lib.random_standard_normal def normals(n, bit_generator): out = np.empty(n) for i in range(n): out[i] = random_standard_normal(bit_generator) return out normalsj = nb.jit(normals, nopython=True) # Numba requires a memory address for void * # Can also get address from x.ctypes.bit_generator.value bit_generator_address = int(ffi.cast('uintptr_t', bit_generator)) norm = normalsj(1000, bit_generator_address) print(norm[:12])
2,034
Python
28.92647
79
0.735497
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/__init__.py
""" ============================ Typing (:mod:`numpy.typing`) ============================ .. versionadded:: 1.20 Large parts of the NumPy API have PEP-484-style type annotations. In addition a number of type aliases are available to users, most prominently the two below: - `ArrayLike`: objects that can be converted to arrays - `DTypeLike`: objects that can be converted to dtypes .. _typing-extensions: https://pypi.org/project/typing-extensions/ Mypy plugin ----------- .. versionadded:: 1.21 .. automodule:: numpy.typing.mypy_plugin .. currentmodule:: numpy.typing Differences from the runtime NumPy API -------------------------------------- NumPy is very flexible. Trying to describe the full range of possibilities statically would result in types that are not very helpful. For that reason, the typed NumPy API is often stricter than the runtime NumPy API. This section describes some notable differences. ArrayLike ~~~~~~~~~ The `ArrayLike` type tries to avoid creating object arrays. For example, .. code-block:: python >>> np.array(x**2 for x in range(10)) array(<generator object <genexpr> at ...>, dtype=object) is valid NumPy code which will create a 0-dimensional object array. Type checkers will complain about the above example when using the NumPy types however. If you really intended to do the above, then you can either use a ``# type: ignore`` comment: .. code-block:: python >>> np.array(x**2 for x in range(10)) # type: ignore or explicitly type the array like object as `~typing.Any`: .. code-block:: python >>> from typing import Any >>> array_like: Any = (x**2 for x in range(10)) >>> np.array(array_like) array(<generator object <genexpr> at ...>, dtype=object) ndarray ~~~~~~~ It's possible to mutate the dtype of an array at runtime. For example, the following code is valid: .. code-block:: python >>> x = np.array([1, 2]) >>> x.dtype = np.bool_ This sort of mutation is not allowed by the types. Users who want to write statically typed code should instead use the `numpy.ndarray.view` method to create a view of the array with a different dtype. DTypeLike ~~~~~~~~~ The `DTypeLike` type tries to avoid creation of dtype objects using dictionary of fields like below: .. code-block:: python >>> x = np.dtype({"field1": (float, 1), "field2": (int, 3)}) Although this is valid NumPy code, the type checker will complain about it, since its usage is discouraged. Please see : :ref:`Data type objects <arrays.dtypes>` Number precision ~~~~~~~~~~~~~~~~ The precision of `numpy.number` subclasses is treated as a covariant generic parameter (see :class:`~NBitBase`), simplifying the annotating of processes involving precision-based casting. .. code-block:: python >>> from typing import TypeVar >>> import numpy as np >>> import numpy.typing as npt >>> T = TypeVar("T", bound=npt.NBitBase) >>> def func(a: "np.floating[T]", b: "np.floating[T]") -> "np.floating[T]": ... ... Consequently, the likes of `~numpy.float16`, `~numpy.float32` and `~numpy.float64` are still sub-types of `~numpy.floating`, but, contrary to runtime, they're not necessarily considered as sub-classes. Timedelta64 ~~~~~~~~~~~ The `~numpy.timedelta64` class is not considered a subclass of `~numpy.signedinteger`, the former only inheriting from `~numpy.generic` while static type checking. 0D arrays ~~~~~~~~~ During runtime numpy aggressively casts any passed 0D arrays into their corresponding `~numpy.generic` instance. Until the introduction of shape typing (see :pep:`646`) it is unfortunately not possible to make the necessary distinction between 0D and >0D arrays. While thus not strictly correct, all operations are that can potentially perform a 0D-array -> scalar cast are currently annotated as exclusively returning an `ndarray`. If it is known in advance that an operation _will_ perform a 0D-array -> scalar cast, then one can consider manually remedying the situation with either `typing.cast` or a ``# type: ignore`` comment. Record array dtypes ~~~~~~~~~~~~~~~~~~~ The dtype of `numpy.recarray`, and the `numpy.rec` functions in general, can be specified in one of two ways: * Directly via the ``dtype`` argument. * With up to five helper arguments that operate via `numpy.format_parser`: ``formats``, ``names``, ``titles``, ``aligned`` and ``byteorder``. These two approaches are currently typed as being mutually exclusive, *i.e.* if ``dtype`` is specified than one may not specify ``formats``. While this mutual exclusivity is not (strictly) enforced during runtime, combining both dtype specifiers can lead to unexpected or even downright buggy behavior. API --- """ # NOTE: The API section will be appended with additional entries # further down in this file from numpy._typing import ( ArrayLike, DTypeLike, NBitBase, NDArray, ) __all__ = ["ArrayLike", "DTypeLike", "NBitBase", "NDArray"] if __doc__ is not None: from numpy._typing._add_docstring import _docstrings __doc__ += _docstrings __doc__ += '\n.. autoclass:: numpy.typing.NBitBase\n' del _docstrings from numpy._pytesttester import PytestTester test = PytestTester(__name__) del PytestTester
5,231
Python
28.727273
79
0.699293
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/setup.py
def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('typing', parent_package, top_path) config.add_subpackage('tests') config.add_data_dir('tests/data') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(configuration=configuration)
374
Python
30.249997
62
0.708556
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/mypy_plugin.py
"""A mypy_ plugin for managing a number of platform-specific annotations. Its functionality can be split into three distinct parts: * Assigning the (platform-dependent) precisions of certain `~numpy.number` subclasses, including the likes of `~numpy.int_`, `~numpy.intp` and `~numpy.longlong`. See the documentation on :ref:`scalar types <arrays.scalars.built-in>` for a comprehensive overview of the affected classes. Without the plugin the precision of all relevant classes will be inferred as `~typing.Any`. * Removing all extended-precision `~numpy.number` subclasses that are unavailable for the platform in question. Most notably this includes the likes of `~numpy.float128` and `~numpy.complex256`. Without the plugin *all* extended-precision types will, as far as mypy is concerned, be available to all platforms. * Assigning the (platform-dependent) precision of `~numpy.ctypeslib.c_intp`. Without the plugin the type will default to `ctypes.c_int64`. .. versionadded:: 1.22 Examples -------- To enable the plugin, one must add it to their mypy `configuration file`_: .. code-block:: ini [mypy] plugins = numpy.typing.mypy_plugin .. _mypy: http://mypy-lang.org/ .. _configuration file: https://mypy.readthedocs.io/en/stable/config_file.html """ from __future__ import annotations from collections.abc import Iterable from typing import Final, TYPE_CHECKING, Callable import numpy as np try: import mypy.types from mypy.types import Type from mypy.plugin import Plugin, AnalyzeTypeContext from mypy.nodes import MypyFile, ImportFrom, Statement from mypy.build import PRI_MED _HookFunc = Callable[[AnalyzeTypeContext], Type] MYPY_EX: None | ModuleNotFoundError = None except ModuleNotFoundError as ex: MYPY_EX = ex __all__: list[str] = [] def _get_precision_dict() -> dict[str, str]: names = [ ("_NBitByte", np.byte), ("_NBitShort", np.short), ("_NBitIntC", np.intc), ("_NBitIntP", np.intp), ("_NBitInt", np.int_), ("_NBitLongLong", np.longlong), ("_NBitHalf", np.half), ("_NBitSingle", np.single), ("_NBitDouble", np.double), ("_NBitLongDouble", np.longdouble), ] ret = {} for name, typ in names: n: int = 8 * typ().dtype.itemsize ret[f'numpy._typing._nbit.{name}'] = f"numpy._{n}Bit" return ret def _get_extended_precision_list() -> list[str]: extended_types = [np.ulonglong, np.longlong, np.longdouble, np.clongdouble] extended_names = { "uint128", "uint256", "int128", "int256", "float80", "float96", "float128", "float256", "complex160", "complex192", "complex256", "complex512", } return [i.__name__ for i in extended_types if i.__name__ in extended_names] def _get_c_intp_name() -> str: # Adapted from `np.core._internal._getintp_ctype` char = np.dtype('p').char if char == 'i': return "c_int" elif char == 'l': return "c_long" elif char == 'q': return "c_longlong" else: return "c_long" #: A dictionary mapping type-aliases in `numpy._typing._nbit` to #: concrete `numpy.typing.NBitBase` subclasses. _PRECISION_DICT: Final = _get_precision_dict() #: A list with the names of all extended precision `np.number` subclasses. _EXTENDED_PRECISION_LIST: Final = _get_extended_precision_list() #: The name of the ctypes quivalent of `np.intp` _C_INTP: Final = _get_c_intp_name() def _hook(ctx: AnalyzeTypeContext) -> Type: """Replace a type-alias with a concrete ``NBitBase`` subclass.""" typ, _, api = ctx name = typ.name.split(".")[-1] name_new = _PRECISION_DICT[f"numpy._typing._nbit.{name}"] return api.named_type(name_new) if TYPE_CHECKING or MYPY_EX is None: def _index(iterable: Iterable[Statement], id: str) -> int: """Identify the first ``ImportFrom`` instance the specified `id`.""" for i, value in enumerate(iterable): if getattr(value, "id", None) == id: return i raise ValueError("Failed to identify a `ImportFrom` instance " f"with the following id: {id!r}") def _override_imports( file: MypyFile, module: str, imports: list[tuple[str, None | str]], ) -> None: """Override the first `module`-based import with new `imports`.""" # Construct a new `from module import y` statement import_obj = ImportFrom(module, 0, names=imports) import_obj.is_top_level = True # Replace the first `module`-based import statement with `import_obj` for lst in [file.defs, file.imports]: # type: list[Statement] i = _index(lst, module) lst[i] = import_obj class _NumpyPlugin(Plugin): """A mypy plugin for handling versus numpy-specific typing tasks.""" def get_type_analyze_hook(self, fullname: str) -> None | _HookFunc: """Set the precision of platform-specific `numpy.number` subclasses. For example: `numpy.int_`, `numpy.longlong` and `numpy.longdouble`. """ if fullname in _PRECISION_DICT: return _hook return None def get_additional_deps( self, file: MypyFile ) -> list[tuple[int, str, int]]: """Handle all import-based overrides. * Import platform-specific extended-precision `numpy.number` subclasses (*e.g.* `numpy.float96`, `numpy.float128` and `numpy.complex256`). * Import the appropriate `ctypes` equivalent to `numpy.intp`. """ ret = [(PRI_MED, file.fullname, -1)] if file.fullname == "numpy": _override_imports( file, "numpy._typing._extended_precision", imports=[(v, v) for v in _EXTENDED_PRECISION_LIST], ) elif file.fullname == "numpy.ctypeslib": _override_imports( file, "ctypes", imports=[(_C_INTP, "_c_intp")], ) return ret def plugin(version: str) -> type[_NumpyPlugin]: """An entry-point for mypy.""" return _NumpyPlugin else: def plugin(version: str) -> type[_NumpyPlugin]: """An entry-point for mypy.""" raise MYPY_EX
6,479
Python
31.727273
79
0.605186
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/test_runtime.py
"""Test the runtime usage of `numpy.typing`.""" from __future__ import annotations import sys from typing import ( get_type_hints, Union, NamedTuple, get_args, get_origin, Any, ) import pytest import numpy as np import numpy.typing as npt import numpy._typing as _npt class TypeTup(NamedTuple): typ: type args: tuple[type, ...] origin: None | type if sys.version_info >= (3, 9): NDArrayTup = TypeTup(npt.NDArray, npt.NDArray.__args__, np.ndarray) else: NDArrayTup = TypeTup(npt.NDArray, (), None) TYPES = { "ArrayLike": TypeTup(npt.ArrayLike, npt.ArrayLike.__args__, Union), "DTypeLike": TypeTup(npt.DTypeLike, npt.DTypeLike.__args__, Union), "NBitBase": TypeTup(npt.NBitBase, (), None), "NDArray": NDArrayTup, } @pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) def test_get_args(name: type, tup: TypeTup) -> None: """Test `typing.get_args`.""" typ, ref = tup.typ, tup.args out = get_args(typ) assert out == ref @pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) def test_get_origin(name: type, tup: TypeTup) -> None: """Test `typing.get_origin`.""" typ, ref = tup.typ, tup.origin out = get_origin(typ) assert out == ref @pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) def test_get_type_hints(name: type, tup: TypeTup) -> None: """Test `typing.get_type_hints`.""" typ = tup.typ # Explicitly set `__annotations__` in order to circumvent the # stringification performed by `from __future__ import annotations` def func(a): pass func.__annotations__ = {"a": typ, "return": None} out = get_type_hints(func) ref = {"a": typ, "return": type(None)} assert out == ref @pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) def test_get_type_hints_str(name: type, tup: TypeTup) -> None: """Test `typing.get_type_hints` with string-representation of types.""" typ_str, typ = f"npt.{name}", tup.typ # Explicitly set `__annotations__` in order to circumvent the # stringification performed by `from __future__ import annotations` def func(a): pass func.__annotations__ = {"a": typ_str, "return": None} out = get_type_hints(func) ref = {"a": typ, "return": type(None)} assert out == ref def test_keys() -> None: """Test that ``TYPES.keys()`` and ``numpy.typing.__all__`` are synced.""" keys = TYPES.keys() ref = set(npt.__all__) assert keys == ref PROTOCOLS: dict[str, tuple[type[Any], object]] = { "_SupportsDType": (_npt._SupportsDType, np.int64(1)), "_SupportsArray": (_npt._SupportsArray, np.arange(10)), "_SupportsArrayFunc": (_npt._SupportsArrayFunc, np.arange(10)), "_NestedSequence": (_npt._NestedSequence, [1]), } @pytest.mark.parametrize("cls,obj", PROTOCOLS.values(), ids=PROTOCOLS.keys()) class TestRuntimeProtocol: def test_isinstance(self, cls: type[Any], obj: object) -> None: assert isinstance(obj, cls) assert not isinstance(None, cls) def test_issubclass(self, cls: type[Any], obj: object) -> None: if cls is _npt._SupportsDType: pytest.xfail( "Protocols with non-method members don't support issubclass()" ) assert issubclass(type(obj), cls) assert not issubclass(type(None), cls)
3,375
Python
28.614035
78
0.632296
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/test_generic_alias.py
from __future__ import annotations import sys import copy import types import pickle import weakref from typing import TypeVar, Any, Union, Callable import pytest import numpy as np from numpy._typing._generic_alias import _GenericAlias from typing_extensions import Unpack ScalarType = TypeVar("ScalarType", bound=np.generic, covariant=True) T1 = TypeVar("T1") T2 = TypeVar("T2") DType = _GenericAlias(np.dtype, (ScalarType,)) NDArray = _GenericAlias(np.ndarray, (Any, DType)) # NOTE: The `npt._GenericAlias` *class* isn't quite stable on python >=3.11. # This is not a problem during runtime (as it's 3.8-exclusive), but we still # need it for the >=3.9 in order to verify its semantics match # `types.GenericAlias` replacement. xref numpy/numpy#21526 if sys.version_info >= (3, 9): DType_ref = types.GenericAlias(np.dtype, (ScalarType,)) NDArray_ref = types.GenericAlias(np.ndarray, (Any, DType_ref)) FuncType = Callable[["_GenericAlias | types.GenericAlias"], Any] else: DType_ref = Any NDArray_ref = Any FuncType = Callable[["_GenericAlias"], Any] GETATTR_NAMES = sorted(set(dir(np.ndarray)) - _GenericAlias._ATTR_EXCEPTIONS) BUFFER = np.array([1], dtype=np.int64) BUFFER.setflags(write=False) def _get_subclass_mro(base: type) -> tuple[type, ...]: class Subclass(base): # type: ignore[misc,valid-type] pass return Subclass.__mro__[1:] class TestGenericAlias: """Tests for `numpy._typing._generic_alias._GenericAlias`.""" @pytest.mark.parametrize("name,func", [ ("__init__", lambda n: n), ("__init__", lambda n: _GenericAlias(np.ndarray, Any)), ("__init__", lambda n: _GenericAlias(np.ndarray, (Any,))), ("__init__", lambda n: _GenericAlias(np.ndarray, (Any, Any))), ("__init__", lambda n: _GenericAlias(np.ndarray, T1)), ("__init__", lambda n: _GenericAlias(np.ndarray, (T1,))), ("__init__", lambda n: _GenericAlias(np.ndarray, (T1, T2))), ("__origin__", lambda n: n.__origin__), ("__args__", lambda n: n.__args__), ("__parameters__", lambda n: n.__parameters__), ("__mro_entries__", lambda n: n.__mro_entries__([object])), ("__hash__", lambda n: hash(n)), ("__repr__", lambda n: repr(n)), ("__getitem__", lambda n: n[np.float64]), ("__getitem__", lambda n: n[ScalarType][np.float64]), ("__getitem__", lambda n: n[Union[np.int64, ScalarType]][np.float64]), ("__getitem__", lambda n: n[Union[T1, T2]][np.float32, np.float64]), ("__eq__", lambda n: n == n), ("__ne__", lambda n: n != np.ndarray), ("__call__", lambda n: n((1,), np.int64, BUFFER)), ("__call__", lambda n: n(shape=(1,), dtype=np.int64, buffer=BUFFER)), ("subclassing", lambda n: _get_subclass_mro(n)), ("pickle", lambda n: n == pickle.loads(pickle.dumps(n))), ]) def test_pass(self, name: str, func: FuncType) -> None: """Compare `types.GenericAlias` with its numpy-based backport. Checker whether ``func`` runs as intended and that both `GenericAlias` and `_GenericAlias` return the same result. """ value = func(NDArray) if sys.version_info >= (3, 9): value_ref = func(NDArray_ref) assert value == value_ref @pytest.mark.parametrize("name,func", [ ("__copy__", lambda n: n == copy.copy(n)), ("__deepcopy__", lambda n: n == copy.deepcopy(n)), ]) def test_copy(self, name: str, func: FuncType) -> None: value = func(NDArray) # xref bpo-45167 GE_398 = ( sys.version_info[:2] == (3, 9) and sys.version_info >= (3, 9, 8) ) if GE_398 or sys.version_info >= (3, 10, 1): value_ref = func(NDArray_ref) assert value == value_ref def test_dir(self) -> None: value = dir(NDArray) if sys.version_info < (3, 9): return # A number attributes only exist in `types.GenericAlias` in >= 3.11 if sys.version_info < (3, 11, 0, "beta", 3): value.remove("__typing_unpacked_tuple_args__") if sys.version_info < (3, 11, 0, "beta", 1): value.remove("__unpacked__") assert value == dir(NDArray_ref) @pytest.mark.parametrize("name,func,dev_version", [ ("__iter__", lambda n: len(list(n)), ("beta", 1)), ("__iter__", lambda n: next(iter(n)), ("beta", 1)), ("__unpacked__", lambda n: n.__unpacked__, ("beta", 1)), ("Unpack", lambda n: Unpack[n], ("beta", 1)), # The right operand should now have `__unpacked__ = True`, # and they are thus now longer equivalent ("__ne__", lambda n: n != next(iter(n)), ("beta", 1)), # >= beta3 ("__typing_unpacked_tuple_args__", lambda n: n.__typing_unpacked_tuple_args__, ("beta", 3)), # >= beta4 ("__class__", lambda n: n.__class__ == type(n), ("beta", 4)), ]) def test_py311_features( self, name: str, func: FuncType, dev_version: tuple[str, int], ) -> None: """Test Python 3.11 features.""" value = func(NDArray) if sys.version_info >= (3, 11, 0, *dev_version): value_ref = func(NDArray_ref) assert value == value_ref def test_weakref(self) -> None: """Test ``__weakref__``.""" value = weakref.ref(NDArray)() if sys.version_info >= (3, 9, 1): # xref bpo-42332 value_ref = weakref.ref(NDArray_ref)() assert value == value_ref @pytest.mark.parametrize("name", GETATTR_NAMES) def test_getattr(self, name: str) -> None: """Test that `getattr` wraps around the underlying type, aka ``__origin__``. """ value = getattr(NDArray, name) value_ref1 = getattr(np.ndarray, name) if sys.version_info >= (3, 9): value_ref2 = getattr(NDArray_ref, name) assert value == value_ref1 == value_ref2 else: assert value == value_ref1 @pytest.mark.parametrize("name,exc_type,func", [ ("__getitem__", TypeError, lambda n: n[()]), ("__getitem__", TypeError, lambda n: n[Any, Any]), ("__getitem__", TypeError, lambda n: n[Any][Any]), ("isinstance", TypeError, lambda n: isinstance(np.array(1), n)), ("issublass", TypeError, lambda n: issubclass(np.ndarray, n)), ("setattr", AttributeError, lambda n: setattr(n, "__origin__", int)), ("setattr", AttributeError, lambda n: setattr(n, "test", int)), ("getattr", AttributeError, lambda n: getattr(n, "test")), ]) def test_raise( self, name: str, exc_type: type[BaseException], func: FuncType, ) -> None: """Test operations that are supposed to raise.""" with pytest.raises(exc_type): func(NDArray) if sys.version_info >= (3, 9): with pytest.raises(exc_type): func(NDArray_ref)
7,030
Python
36.201058
78
0.559744
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/test_isfile.py
import os from pathlib import Path import numpy as np from numpy.testing import assert_ ROOT = Path(np.__file__).parents[0] FILES = [ ROOT / "py.typed", ROOT / "__init__.pyi", ROOT / "ctypeslib.pyi", ROOT / "core" / "__init__.pyi", ROOT / "distutils" / "__init__.pyi", ROOT / "f2py" / "__init__.pyi", ROOT / "fft" / "__init__.pyi", ROOT / "lib" / "__init__.pyi", ROOT / "linalg" / "__init__.pyi", ROOT / "ma" / "__init__.pyi", ROOT / "matrixlib" / "__init__.pyi", ROOT / "polynomial" / "__init__.pyi", ROOT / "random" / "__init__.pyi", ROOT / "testing" / "__init__.pyi", ] class TestIsFile: def test_isfile(self): """Test if all ``.pyi`` files are properly installed.""" for file in FILES: assert_(os.path.isfile(file))
812
Python
25.225806
64
0.524631
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/test_typing.py
from __future__ import annotations import importlib.util import itertools import os import re import shutil from collections import defaultdict from collections.abc import Iterator from typing import IO, TYPE_CHECKING import pytest import numpy as np import numpy.typing as npt from numpy.typing.mypy_plugin import ( _PRECISION_DICT, _EXTENDED_PRECISION_LIST, _C_INTP, ) try: from mypy import api except ImportError: NO_MYPY = True else: NO_MYPY = False if TYPE_CHECKING: # We need this as annotation, but it's located in a private namespace. # As a compromise, do *not* import it during runtime from _pytest.mark.structures import ParameterSet DATA_DIR = os.path.join(os.path.dirname(__file__), "data") PASS_DIR = os.path.join(DATA_DIR, "pass") FAIL_DIR = os.path.join(DATA_DIR, "fail") REVEAL_DIR = os.path.join(DATA_DIR, "reveal") MISC_DIR = os.path.join(DATA_DIR, "misc") MYPY_INI = os.path.join(DATA_DIR, "mypy.ini") CACHE_DIR = os.path.join(DATA_DIR, ".mypy_cache") #: A dictionary with file names as keys and lists of the mypy stdout as values. #: To-be populated by `run_mypy`. OUTPUT_MYPY: dict[str, list[str]] = {} def _key_func(key: str) -> str: """Split at the first occurrence of the ``:`` character. Windows drive-letters (*e.g.* ``C:``) are ignored herein. """ drive, tail = os.path.splitdrive(key) return os.path.join(drive, tail.split(":", 1)[0]) def _strip_filename(msg: str) -> str: """Strip the filename from a mypy message.""" _, tail = os.path.splitdrive(msg) return tail.split(":", 1)[-1] def strip_func(match: re.Match[str]) -> str: """`re.sub` helper function for stripping module names.""" return match.groups()[1] @pytest.mark.slow @pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") @pytest.fixture(scope="module", autouse=True) def run_mypy() -> None: """Clears the cache and run mypy before running any of the typing tests. The mypy results are cached in `OUTPUT_MYPY` for further use. The cache refresh can be skipped using NUMPY_TYPING_TEST_CLEAR_CACHE=0 pytest numpy/typing/tests """ if ( os.path.isdir(CACHE_DIR) and bool(os.environ.get("NUMPY_TYPING_TEST_CLEAR_CACHE", True)) ): shutil.rmtree(CACHE_DIR) for directory in (PASS_DIR, REVEAL_DIR, FAIL_DIR, MISC_DIR): # Run mypy stdout, stderr, exit_code = api.run([ "--config-file", MYPY_INI, "--cache-dir", CACHE_DIR, directory, ]) if stderr: pytest.fail(f"Unexpected mypy standard error\n\n{stderr}") elif exit_code not in {0, 1}: pytest.fail(f"Unexpected mypy exit code: {exit_code}\n\n{stdout}") stdout = stdout.replace('*', '') # Parse the output iterator = itertools.groupby(stdout.split("\n"), key=_key_func) OUTPUT_MYPY.update((k, list(v)) for k, v in iterator if k) def get_test_cases(directory: str) -> Iterator[ParameterSet]: for root, _, files in os.walk(directory): for fname in files: short_fname, ext = os.path.splitext(fname) if ext in (".pyi", ".py"): fullpath = os.path.join(root, fname) yield pytest.param(fullpath, id=short_fname) @pytest.mark.slow @pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") @pytest.mark.parametrize("path", get_test_cases(PASS_DIR)) def test_success(path) -> None: # Alias `OUTPUT_MYPY` so that it appears in the local namespace output_mypy = OUTPUT_MYPY if path in output_mypy: msg = "Unexpected mypy output\n\n" msg += "\n".join(_strip_filename(v) for v in output_mypy[path]) raise AssertionError(msg) @pytest.mark.slow @pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") @pytest.mark.parametrize("path", get_test_cases(FAIL_DIR)) def test_fail(path: str) -> None: __tracebackhide__ = True with open(path) as fin: lines = fin.readlines() errors = defaultdict(lambda: "") output_mypy = OUTPUT_MYPY assert path in output_mypy for error_line in output_mypy[path]: error_line = _strip_filename(error_line).split("\n", 1)[0] match = re.match( r"(?P<lineno>\d+): (error|note): .+$", error_line, ) if match is None: raise ValueError(f"Unexpected error line format: {error_line}") lineno = int(match.group('lineno')) errors[lineno] += f'{error_line}\n' for i, line in enumerate(lines): lineno = i + 1 if ( line.startswith('#') or (" E:" not in line and lineno not in errors) ): continue target_line = lines[lineno - 1] if "# E:" in target_line: expression, _, marker = target_line.partition(" # E: ") expected_error = errors[lineno].strip() marker = marker.strip() _test_fail(path, expression, marker, expected_error, lineno) else: pytest.fail( f"Unexpected mypy output at line {lineno}\n\n{errors[lineno]}" ) _FAIL_MSG1 = """Extra error at line {} Expression: {} Extra error: {!r} """ _FAIL_MSG2 = """Error mismatch at line {} Expression: {} Expected error: {!r} Observed error: {!r} """ def _test_fail( path: str, expression: str, error: str, expected_error: None | str, lineno: int, ) -> None: if expected_error is None: raise AssertionError(_FAIL_MSG1.format(lineno, expression, error)) elif error not in expected_error: raise AssertionError(_FAIL_MSG2.format( lineno, expression, expected_error, error )) def _construct_ctypes_dict() -> dict[str, str]: dct = { "ubyte": "c_ubyte", "ushort": "c_ushort", "uintc": "c_uint", "uint": "c_ulong", "ulonglong": "c_ulonglong", "byte": "c_byte", "short": "c_short", "intc": "c_int", "int_": "c_long", "longlong": "c_longlong", "single": "c_float", "double": "c_double", "longdouble": "c_longdouble", } # Match `ctypes` names to the first ctypes type with a given kind and # precision, e.g. {"c_double": "c_double", "c_longdouble": "c_double"} # if both types represent 64-bit floats. # In this context "first" is defined by the order of `dct` ret = {} visited: dict[tuple[str, int], str] = {} for np_name, ct_name in dct.items(): np_scalar = getattr(np, np_name)() # Find the first `ctypes` type for a given `kind`/`itemsize` combo key = (np_scalar.dtype.kind, np_scalar.dtype.itemsize) ret[ct_name] = visited.setdefault(key, f"ctypes.{ct_name}") return ret def _construct_format_dict() -> dict[str, str]: dct = {k.split(".")[-1]: v.replace("numpy", "numpy._typing") for k, v in _PRECISION_DICT.items()} return { "uint8": "numpy.unsignedinteger[numpy._typing._8Bit]", "uint16": "numpy.unsignedinteger[numpy._typing._16Bit]", "uint32": "numpy.unsignedinteger[numpy._typing._32Bit]", "uint64": "numpy.unsignedinteger[numpy._typing._64Bit]", "uint128": "numpy.unsignedinteger[numpy._typing._128Bit]", "uint256": "numpy.unsignedinteger[numpy._typing._256Bit]", "int8": "numpy.signedinteger[numpy._typing._8Bit]", "int16": "numpy.signedinteger[numpy._typing._16Bit]", "int32": "numpy.signedinteger[numpy._typing._32Bit]", "int64": "numpy.signedinteger[numpy._typing._64Bit]", "int128": "numpy.signedinteger[numpy._typing._128Bit]", "int256": "numpy.signedinteger[numpy._typing._256Bit]", "float16": "numpy.floating[numpy._typing._16Bit]", "float32": "numpy.floating[numpy._typing._32Bit]", "float64": "numpy.floating[numpy._typing._64Bit]", "float80": "numpy.floating[numpy._typing._80Bit]", "float96": "numpy.floating[numpy._typing._96Bit]", "float128": "numpy.floating[numpy._typing._128Bit]", "float256": "numpy.floating[numpy._typing._256Bit]", "complex64": ("numpy.complexfloating" "[numpy._typing._32Bit, numpy._typing._32Bit]"), "complex128": ("numpy.complexfloating" "[numpy._typing._64Bit, numpy._typing._64Bit]"), "complex160": ("numpy.complexfloating" "[numpy._typing._80Bit, numpy._typing._80Bit]"), "complex192": ("numpy.complexfloating" "[numpy._typing._96Bit, numpy._typing._96Bit]"), "complex256": ("numpy.complexfloating" "[numpy._typing._128Bit, numpy._typing._128Bit]"), "complex512": ("numpy.complexfloating" "[numpy._typing._256Bit, numpy._typing._256Bit]"), "ubyte": f"numpy.unsignedinteger[{dct['_NBitByte']}]", "ushort": f"numpy.unsignedinteger[{dct['_NBitShort']}]", "uintc": f"numpy.unsignedinteger[{dct['_NBitIntC']}]", "uintp": f"numpy.unsignedinteger[{dct['_NBitIntP']}]", "uint": f"numpy.unsignedinteger[{dct['_NBitInt']}]", "ulonglong": f"numpy.unsignedinteger[{dct['_NBitLongLong']}]", "byte": f"numpy.signedinteger[{dct['_NBitByte']}]", "short": f"numpy.signedinteger[{dct['_NBitShort']}]", "intc": f"numpy.signedinteger[{dct['_NBitIntC']}]", "intp": f"numpy.signedinteger[{dct['_NBitIntP']}]", "int_": f"numpy.signedinteger[{dct['_NBitInt']}]", "longlong": f"numpy.signedinteger[{dct['_NBitLongLong']}]", "half": f"numpy.floating[{dct['_NBitHalf']}]", "single": f"numpy.floating[{dct['_NBitSingle']}]", "double": f"numpy.floating[{dct['_NBitDouble']}]", "longdouble": f"numpy.floating[{dct['_NBitLongDouble']}]", "csingle": ("numpy.complexfloating" f"[{dct['_NBitSingle']}, {dct['_NBitSingle']}]"), "cdouble": ("numpy.complexfloating" f"[{dct['_NBitDouble']}, {dct['_NBitDouble']}]"), "clongdouble": ( "numpy.complexfloating" f"[{dct['_NBitLongDouble']}, {dct['_NBitLongDouble']}]" ), # numpy.typing "_NBitInt": dct['_NBitInt'], # numpy.ctypeslib "c_intp": f"ctypes.{_C_INTP}" } #: A dictionary with all supported format keys (as keys) #: and matching values FORMAT_DICT: dict[str, str] = _construct_format_dict() FORMAT_DICT.update(_construct_ctypes_dict()) def _parse_reveals(file: IO[str]) -> tuple[npt.NDArray[np.str_], list[str]]: """Extract and parse all ``" # E: "`` comments from the passed file-like object. All format keys will be substituted for their respective value from `FORMAT_DICT`, *e.g.* ``"{float64}"`` becomes ``"numpy.floating[numpy._typing._64Bit]"``. """ string = file.read().replace("*", "") # Grab all `# E:`-based comments and matching expressions expression_array, _, comments_array = np.char.partition( string.split("\n"), sep=" # E: " ).T comments = "/n".join(comments_array) # Only search for the `{*}` pattern within comments, otherwise # there is the risk of accidentally grabbing dictionaries and sets key_set = set(re.findall(r"\{(.*?)\}", comments)) kwargs = { k: FORMAT_DICT.get(k, f"<UNRECOGNIZED FORMAT KEY {k!r}>") for k in key_set } fmt_str = comments.format(**kwargs) return expression_array, fmt_str.split("/n") @pytest.mark.slow @pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") @pytest.mark.parametrize("path", get_test_cases(REVEAL_DIR)) def test_reveal(path: str) -> None: """Validate that mypy correctly infers the return-types of the expressions in `path`. """ __tracebackhide__ = True with open(path) as fin: expression_array, reveal_list = _parse_reveals(fin) output_mypy = OUTPUT_MYPY assert path in output_mypy for error_line in output_mypy[path]: error_line = _strip_filename(error_line) match = re.match( r"(?P<lineno>\d+): note: .+$", error_line, ) if match is None: raise ValueError(f"Unexpected reveal line format: {error_line}") lineno = int(match.group('lineno')) - 1 assert "Revealed type is" in error_line marker = reveal_list[lineno] expression = expression_array[lineno] _test_reveal(path, expression, marker, error_line, 1 + lineno) _REVEAL_MSG = """Reveal mismatch at line {} Expression: {} Expected reveal: {!r} Observed reveal: {!r} """ _STRIP_PATTERN = re.compile(r"(\w+\.)+(\w+)") def _test_reveal( path: str, expression: str, reveal: str, expected_reveal: str, lineno: int, ) -> None: """Error-reporting helper function for `test_reveal`.""" stripped_reveal = _STRIP_PATTERN.sub(strip_func, reveal) stripped_expected_reveal = _STRIP_PATTERN.sub(strip_func, expected_reveal) if stripped_reveal not in stripped_expected_reveal: raise AssertionError( _REVEAL_MSG.format(lineno, expression, stripped_expected_reveal, stripped_reveal) ) @pytest.mark.slow @pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") @pytest.mark.parametrize("path", get_test_cases(PASS_DIR)) def test_code_runs(path: str) -> None: """Validate that the code in `path` properly during runtime.""" path_without_extension, _ = os.path.splitext(path) dirname, filename = path.split(os.sep)[-2:] spec = importlib.util.spec_from_file_location( f"{dirname}.{filename}", path ) assert spec is not None assert spec.loader is not None test_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(test_module) LINENO_MAPPING = { 3: "uint128", 4: "uint256", 6: "int128", 7: "int256", 9: "float80", 10: "float96", 11: "float128", 12: "float256", 14: "complex160", 15: "complex192", 16: "complex256", 17: "complex512", } @pytest.mark.slow @pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") def test_extended_precision() -> None: path = os.path.join(MISC_DIR, "extended_precision.pyi") output_mypy = OUTPUT_MYPY assert path in output_mypy with open(path, "r") as f: expression_list = f.readlines() for _msg in output_mypy[path]: *_, _lineno, msg_typ, msg = _msg.split(":") msg = _strip_filename(msg) lineno = int(_lineno) expression = expression_list[lineno - 1].rstrip("\n") msg_typ = msg_typ.strip() assert msg_typ in {"error", "note"} if LINENO_MAPPING[lineno] in _EXTENDED_PRECISION_LIST: if msg_typ == "error": raise ValueError(f"Unexpected reveal line format: {lineno}") else: marker = FORMAT_DICT[LINENO_MAPPING[lineno]] _test_reveal(path, expression, marker, msg, lineno) else: if msg_typ == "error": marker = "Module has no attribute" _test_fail(path, expression, marker, msg, lineno)
15,312
Python
32.58114
79
0.597309
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/misc/extended_precision.pyi
import numpy as np reveal_type(np.uint128()) reveal_type(np.uint256()) reveal_type(np.int128()) reveal_type(np.int256()) reveal_type(np.float80()) reveal_type(np.float96()) reveal_type(np.float128()) reveal_type(np.float256()) reveal_type(np.complex160()) reveal_type(np.complex192()) reveal_type(np.complex256()) reveal_type(np.complex512())
347
unknown
18.333332
28
0.73487
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/multiarray.py
import numpy as np import numpy.typing as npt AR_f8: npt.NDArray[np.float64] = np.array([1.0]) AR_i4 = np.array([1], dtype=np.int32) AR_u1 = np.array([1], dtype=np.uint8) AR_LIKE_f = [1.5] AR_LIKE_i = [1] b_f8 = np.broadcast(AR_f8) b_i4_f8_f8 = np.broadcast(AR_i4, AR_f8, AR_f8) next(b_f8) b_f8.reset() b_f8.index b_f8.iters b_f8.nd b_f8.ndim b_f8.numiter b_f8.shape b_f8.size next(b_i4_f8_f8) b_i4_f8_f8.reset() b_i4_f8_f8.ndim b_i4_f8_f8.index b_i4_f8_f8.iters b_i4_f8_f8.nd b_i4_f8_f8.numiter b_i4_f8_f8.shape b_i4_f8_f8.size np.inner(AR_f8, AR_i4) np.where([True, True, False]) np.where([True, True, False], 1, 0) np.lexsort([0, 1, 2]) np.can_cast(np.dtype("i8"), int) np.can_cast(AR_f8, "f8") np.can_cast(AR_f8, np.complex128, casting="unsafe") np.min_scalar_type([1]) np.min_scalar_type(AR_f8) np.result_type(int, AR_i4) np.result_type(AR_f8, AR_u1) np.result_type(AR_f8, np.complex128) np.dot(AR_LIKE_f, AR_i4) np.dot(AR_u1, 1) np.dot(1.5j, 1) np.dot(AR_u1, 1, out=AR_f8) np.vdot(AR_LIKE_f, AR_i4) np.vdot(AR_u1, 1) np.vdot(1.5j, 1) np.bincount(AR_i4) np.copyto(AR_f8, [1.6]) np.putmask(AR_f8, [True], 1.5) np.packbits(AR_i4) np.packbits(AR_u1) np.unpackbits(AR_u1) np.shares_memory(1, 2) np.shares_memory(AR_f8, AR_f8, max_work=1) np.may_share_memory(1, 2) np.may_share_memory(AR_f8, AR_f8, max_work=1)
1,331
Python
16.298701
51
0.658152
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/array_like.py
from __future__ import annotations from typing import Any import numpy as np from numpy._typing import ArrayLike, _SupportsArray x1: ArrayLike = True x2: ArrayLike = 5 x3: ArrayLike = 1.0 x4: ArrayLike = 1 + 1j x5: ArrayLike = np.int8(1) x6: ArrayLike = np.float64(1) x7: ArrayLike = np.complex128(1) x8: ArrayLike = np.array([1, 2, 3]) x9: ArrayLike = [1, 2, 3] x10: ArrayLike = (1, 2, 3) x11: ArrayLike = "foo" x12: ArrayLike = memoryview(b'foo') class A: def __array__(self, dtype: None | np.dtype[Any] = None) -> np.ndarray: return np.array([1, 2, 3]) x13: ArrayLike = A() scalar: _SupportsArray = np.int64(1) scalar.__array__() array: _SupportsArray = np.array(1) array.__array__() a: _SupportsArray = A() a.__array__() a.__array__() # Escape hatch for when you mean to make something like an object # array. object_array_scalar: Any = (i for i in range(10)) np.array(object_array_scalar)
916
Python
20.833333
74
0.662664
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/dtype.py
import numpy as np dtype_obj = np.dtype(np.str_) void_dtype_obj = np.dtype([("f0", np.float64), ("f1", np.float32)]) np.dtype(dtype=np.int64) np.dtype(int) np.dtype("int") np.dtype(None) np.dtype((int, 2)) np.dtype((int, (1,))) np.dtype({"names": ["a", "b"], "formats": [int, float]}) np.dtype({"names": ["a"], "formats": [int], "titles": [object]}) np.dtype({"names": ["a"], "formats": [int], "titles": [object()]}) np.dtype([("name", np.unicode_, 16), ("grades", np.float64, (2,)), ("age", "int32")]) np.dtype( { "names": ["a", "b"], "formats": [int, float], "itemsize": 9, "aligned": False, "titles": ["x", "y"], "offsets": [0, 1], } ) np.dtype((np.float_, float)) class Test: dtype = np.dtype(float) np.dtype(Test()) # Methods and attributes dtype_obj.base dtype_obj.subdtype dtype_obj.newbyteorder() dtype_obj.type dtype_obj.name dtype_obj.names dtype_obj * 0 dtype_obj * 2 0 * dtype_obj 2 * dtype_obj void_dtype_obj["f0"] void_dtype_obj[0] void_dtype_obj[["f0", "f1"]] void_dtype_obj[["f0"]]
1,073
Python
17.517241
85
0.572227
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/lib_utils.py
from __future__ import annotations from io import StringIO import numpy as np FILE = StringIO() AR = np.arange(10, dtype=np.float64) def func(a: int) -> bool: ... np.deprecate(func) np.deprecate() np.deprecate_with_doc("test") np.deprecate_with_doc(None) np.byte_bounds(AR) np.byte_bounds(np.float64()) np.info(1, output=FILE) np.source(np.interp, output=FILE) np.lookfor("binary representation", output=FILE)
420
Python
15.192307
48
0.719048
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/ufunclike.py
from __future__ import annotations from typing import Any import numpy as np class Object: def __ceil__(self) -> Object: return self def __floor__(self) -> Object: return self def __ge__(self, value: object) -> bool: return True def __array__(self) -> np.ndarray[Any, np.dtype[np.object_]]: ret = np.empty((), dtype=object) ret[()] = self return ret AR_LIKE_b = [True, True, False] AR_LIKE_u = [np.uint32(1), np.uint32(2), np.uint32(3)] AR_LIKE_i = [1, 2, 3] AR_LIKE_f = [1.0, 2.0, 3.0] AR_LIKE_O = [Object(), Object(), Object()] AR_U: np.ndarray[Any, np.dtype[np.str_]] = np.zeros(3, dtype="U5") np.fix(AR_LIKE_b) np.fix(AR_LIKE_u) np.fix(AR_LIKE_i) np.fix(AR_LIKE_f) np.fix(AR_LIKE_O) np.fix(AR_LIKE_f, out=AR_U) np.isposinf(AR_LIKE_b) np.isposinf(AR_LIKE_u) np.isposinf(AR_LIKE_i) np.isposinf(AR_LIKE_f) np.isposinf(AR_LIKE_f, out=AR_U) np.isneginf(AR_LIKE_b) np.isneginf(AR_LIKE_u) np.isneginf(AR_LIKE_i) np.isneginf(AR_LIKE_f) np.isneginf(AR_LIKE_f, out=AR_U)
1,039
Python
21.127659
66
0.616939
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/index_tricks.py
from __future__ import annotations from typing import Any import numpy as np AR_LIKE_b = [[True, True], [True, True]] AR_LIKE_i = [[1, 2], [3, 4]] AR_LIKE_f = [[1.0, 2.0], [3.0, 4.0]] AR_LIKE_U = [["1", "2"], ["3", "4"]] AR_i8: np.ndarray[Any, np.dtype[np.int64]] = np.array(AR_LIKE_i, dtype=np.int64) np.ndenumerate(AR_i8) np.ndenumerate(AR_LIKE_f) np.ndenumerate(AR_LIKE_U) np.ndenumerate(AR_i8).iter np.ndenumerate(AR_LIKE_f).iter np.ndenumerate(AR_LIKE_U).iter next(np.ndenumerate(AR_i8)) next(np.ndenumerate(AR_LIKE_f)) next(np.ndenumerate(AR_LIKE_U)) iter(np.ndenumerate(AR_i8)) iter(np.ndenumerate(AR_LIKE_f)) iter(np.ndenumerate(AR_LIKE_U)) iter(np.ndindex(1, 2, 3)) next(np.ndindex(1, 2, 3)) np.unravel_index([22, 41, 37], (7, 6)) np.unravel_index([31, 41, 13], (7, 6), order='F') np.unravel_index(1621, (6, 7, 8, 9)) np.ravel_multi_index(AR_LIKE_i, (7, 6)) np.ravel_multi_index(AR_LIKE_i, (7, 6), order='F') np.ravel_multi_index(AR_LIKE_i, (4, 6), mode='clip') np.ravel_multi_index(AR_LIKE_i, (4, 4), mode=('clip', 'wrap')) np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)) np.mgrid[1:1:2] np.mgrid[1:1:2, None:10] np.ogrid[1:1:2] np.ogrid[1:1:2, None:10] np.index_exp[0:1] np.index_exp[0:1, None:3] np.index_exp[0, 0:1, ..., [0, 1, 3]] np.s_[0:1] np.s_[0:1, None:3] np.s_[0, 0:1, ..., [0, 1, 3]] np.ix_(AR_LIKE_b[0]) np.ix_(AR_LIKE_i[0], AR_LIKE_f[0]) np.ix_(AR_i8[0]) np.fill_diagonal(AR_i8, 5) np.diag_indices(4) np.diag_indices(2, 3) np.diag_indices_from(AR_i8)
1,492
Python
21.96923
80
0.623995
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/literal.py
from __future__ import annotations from functools import partial from collections.abc import Callable import pytest # type: ignore import numpy as np AR = np.array(0) AR.setflags(write=False) KACF = frozenset({None, "K", "A", "C", "F"}) ACF = frozenset({None, "A", "C", "F"}) CF = frozenset({None, "C", "F"}) order_list: list[tuple[frozenset, Callable]] = [ (KACF, partial(np.ndarray, 1)), (KACF, AR.tobytes), (KACF, partial(AR.astype, int)), (KACF, AR.copy), (ACF, partial(AR.reshape, 1)), (KACF, AR.flatten), (KACF, AR.ravel), (KACF, partial(np.array, 1)), (CF, partial(np.zeros, 1)), (CF, partial(np.ones, 1)), (CF, partial(np.empty, 1)), (CF, partial(np.full, 1, 1)), (KACF, partial(np.zeros_like, AR)), (KACF, partial(np.ones_like, AR)), (KACF, partial(np.empty_like, AR)), (KACF, partial(np.full_like, AR, 1)), (KACF, partial(np.add, 1, 1)), # i.e. np.ufunc.__call__ (ACF, partial(np.reshape, AR, 1)), (KACF, partial(np.ravel, AR)), (KACF, partial(np.asarray, 1)), (KACF, partial(np.asanyarray, 1)), ] for order_set, func in order_list: for order in order_set: func(order=order) invalid_orders = KACF - order_set for order in invalid_orders: with pytest.raises(ValueError): func(order=order)
1,331
Python
26.749999
60
0.600301
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/ufunc_config.py
"""Typing tests for `numpy.core._ufunc_config`.""" import numpy as np def func1(a: str, b: int) -> None: ... def func2(a: str, b: int, c: float = ...) -> None: ... def func3(a: str, b: int) -> int: ... class Write1: def write(self, a: str) -> None: ... class Write2: def write(self, a: str, b: int = ...) -> None: ... class Write3: def write(self, a: str) -> int: ... _err_default = np.geterr() _bufsize_default = np.getbufsize() _errcall_default = np.geterrcall() try: np.seterr(all=None) np.seterr(divide="ignore") np.seterr(over="warn") np.seterr(under="call") np.seterr(invalid="raise") np.geterr() np.setbufsize(4096) np.getbufsize() np.seterrcall(func1) np.seterrcall(func2) np.seterrcall(func3) np.seterrcall(Write1()) np.seterrcall(Write2()) np.seterrcall(Write3()) np.geterrcall() with np.errstate(call=func1, all="call"): pass with np.errstate(call=Write1(), divide="log", over="log"): pass finally: np.seterr(**_err_default) np.setbufsize(_bufsize_default) np.seterrcall(_errcall_default)
1,120
Python
20.980392
62
0.60625
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/ndarray_shape_manipulation.py
import numpy as np nd1 = np.array([[1, 2], [3, 4]]) # reshape nd1.reshape(4) nd1.reshape(2, 2) nd1.reshape((2, 2)) nd1.reshape((2, 2), order="C") nd1.reshape(4, order="C") # resize nd1.resize() nd1.resize(4) nd1.resize(2, 2) nd1.resize((2, 2)) nd1.resize((2, 2), refcheck=True) nd1.resize(4, refcheck=True) nd2 = np.array([[1, 2], [3, 4]]) # transpose nd2.transpose() nd2.transpose(1, 0) nd2.transpose((1, 0)) # swapaxes nd2.swapaxes(0, 1) # flatten nd2.flatten() nd2.flatten("C") # ravel nd2.ravel() nd2.ravel("C") # squeeze nd2.squeeze() nd3 = np.array([[1, 2]]) nd3.squeeze(0) nd4 = np.array([[[1, 2]]]) nd4.squeeze((0, 1))
640
Python
12.354166
33
0.61875
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/fromnumeric.py
"""Tests for :mod:`numpy.core.fromnumeric`.""" import numpy as np A = np.array(True, ndmin=2, dtype=bool) B = np.array(1.0, ndmin=2, dtype=np.float32) A.setflags(write=False) B.setflags(write=False) a = np.bool_(True) b = np.float32(1.0) c = 1.0 d = np.array(1.0, dtype=np.float32) # writeable np.take(a, 0) np.take(b, 0) np.take(c, 0) np.take(A, 0) np.take(B, 0) np.take(A, [0]) np.take(B, [0]) np.reshape(a, 1) np.reshape(b, 1) np.reshape(c, 1) np.reshape(A, 1) np.reshape(B, 1) np.choose(a, [True, True]) np.choose(A, [1.0, 1.0]) np.repeat(a, 1) np.repeat(b, 1) np.repeat(c, 1) np.repeat(A, 1) np.repeat(B, 1) np.swapaxes(A, 0, 0) np.swapaxes(B, 0, 0) np.transpose(a) np.transpose(b) np.transpose(c) np.transpose(A) np.transpose(B) np.partition(a, 0, axis=None) np.partition(b, 0, axis=None) np.partition(c, 0, axis=None) np.partition(A, 0) np.partition(B, 0) np.argpartition(a, 0) np.argpartition(b, 0) np.argpartition(c, 0) np.argpartition(A, 0) np.argpartition(B, 0) np.sort(A, 0) np.sort(B, 0) np.argsort(A, 0) np.argsort(B, 0) np.argmax(A) np.argmax(B) np.argmax(A, axis=0) np.argmax(B, axis=0) np.argmin(A) np.argmin(B) np.argmin(A, axis=0) np.argmin(B, axis=0) np.searchsorted(A[0], 0) np.searchsorted(B[0], 0) np.searchsorted(A[0], [0]) np.searchsorted(B[0], [0]) np.resize(a, (5, 5)) np.resize(b, (5, 5)) np.resize(c, (5, 5)) np.resize(A, (5, 5)) np.resize(B, (5, 5)) np.squeeze(a) np.squeeze(b) np.squeeze(c) np.squeeze(A) np.squeeze(B) np.diagonal(A) np.diagonal(B) np.trace(A) np.trace(B) np.ravel(a) np.ravel(b) np.ravel(c) np.ravel(A) np.ravel(B) np.nonzero(A) np.nonzero(B) np.shape(a) np.shape(b) np.shape(c) np.shape(A) np.shape(B) np.compress([True], a) np.compress([True], b) np.compress([True], c) np.compress([True], A) np.compress([True], B) np.clip(a, 0, 1.0) np.clip(b, -1, 1) np.clip(a, 0, None) np.clip(b, None, 1) np.clip(c, 0, 1) np.clip(A, 0, 1) np.clip(B, 0, 1) np.clip(B, [0, 1], [1, 2]) np.sum(a) np.sum(b) np.sum(c) np.sum(A) np.sum(B) np.sum(A, axis=0) np.sum(B, axis=0) np.all(a) np.all(b) np.all(c) np.all(A) np.all(B) np.all(A, axis=0) np.all(B, axis=0) np.all(A, keepdims=True) np.all(B, keepdims=True) np.any(a) np.any(b) np.any(c) np.any(A) np.any(B) np.any(A, axis=0) np.any(B, axis=0) np.any(A, keepdims=True) np.any(B, keepdims=True) np.cumsum(a) np.cumsum(b) np.cumsum(c) np.cumsum(A) np.cumsum(B) np.ptp(b) np.ptp(c) np.ptp(B) np.ptp(B, axis=0) np.ptp(B, keepdims=True) np.amax(a) np.amax(b) np.amax(c) np.amax(A) np.amax(B) np.amax(A, axis=0) np.amax(B, axis=0) np.amax(A, keepdims=True) np.amax(B, keepdims=True) np.amin(a) np.amin(b) np.amin(c) np.amin(A) np.amin(B) np.amin(A, axis=0) np.amin(B, axis=0) np.amin(A, keepdims=True) np.amin(B, keepdims=True) np.prod(a) np.prod(b) np.prod(c) np.prod(A) np.prod(B) np.prod(a, dtype=None) np.prod(A, dtype=None) np.prod(A, axis=0) np.prod(B, axis=0) np.prod(A, keepdims=True) np.prod(B, keepdims=True) np.prod(b, out=d) np.prod(B, out=d) np.cumprod(a) np.cumprod(b) np.cumprod(c) np.cumprod(A) np.cumprod(B) np.ndim(a) np.ndim(b) np.ndim(c) np.ndim(A) np.ndim(B) np.size(a) np.size(b) np.size(c) np.size(A) np.size(B) np.around(a) np.around(b) np.around(c) np.around(A) np.around(B) np.mean(a) np.mean(b) np.mean(c) np.mean(A) np.mean(B) np.mean(A, axis=0) np.mean(B, axis=0) np.mean(A, keepdims=True) np.mean(B, keepdims=True) np.mean(b, out=d) np.mean(B, out=d) np.std(a) np.std(b) np.std(c) np.std(A) np.std(B) np.std(A, axis=0) np.std(B, axis=0) np.std(A, keepdims=True) np.std(B, keepdims=True) np.std(b, out=d) np.std(B, out=d) np.var(a) np.var(b) np.var(c) np.var(A) np.var(B) np.var(A, axis=0) np.var(B, axis=0) np.var(A, keepdims=True) np.var(B, keepdims=True) np.var(b, out=d) np.var(B, out=d)
3,742
Python
13.340996
48
0.643506
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/arrayprint.py
import numpy as np AR = np.arange(10) AR.setflags(write=False) with np.printoptions(): np.set_printoptions( precision=1, threshold=2, edgeitems=3, linewidth=4, suppress=False, nanstr="Bob", infstr="Bill", formatter={}, sign="+", floatmode="unique", ) np.get_printoptions() str(AR) np.array2string( AR, max_line_width=5, precision=2, suppress_small=True, separator=";", prefix="test", threshold=5, floatmode="fixed", suffix="?", legacy="1.13", ) np.format_float_scientific(1, precision=5) np.format_float_positional(1, trim="k") np.array_repr(AR) np.array_str(AR)
766
Python
19.18421
46
0.530026
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/numeric.py
""" Tests for :mod:`numpy.core.numeric`. Does not include tests which fall under ``array_constructors``. """ from __future__ import annotations import numpy as np class SubClass(np.ndarray): ... i8 = np.int64(1) A = np.arange(27).reshape(3, 3, 3) B: list[list[list[int]]] = A.tolist() C = np.empty((27, 27)).view(SubClass) np.count_nonzero(i8) np.count_nonzero(A) np.count_nonzero(B) np.count_nonzero(A, keepdims=True) np.count_nonzero(A, axis=0) np.isfortran(i8) np.isfortran(A) np.argwhere(i8) np.argwhere(A) np.flatnonzero(i8) np.flatnonzero(A) np.correlate(B[0][0], A.ravel(), mode="valid") np.correlate(A.ravel(), A.ravel(), mode="same") np.convolve(B[0][0], A.ravel(), mode="valid") np.convolve(A.ravel(), A.ravel(), mode="same") np.outer(i8, A) np.outer(B, A) np.outer(A, A) np.outer(A, A, out=C) np.tensordot(B, A) np.tensordot(A, A) np.tensordot(A, A, axes=0) np.tensordot(A, A, axes=(0, 1)) np.isscalar(i8) np.isscalar(A) np.isscalar(B) np.roll(A, 1) np.roll(A, (1, 2)) np.roll(B, 1) np.rollaxis(A, 0, 1) np.moveaxis(A, 0, 1) np.moveaxis(A, (0, 1), (1, 2)) np.cross(B, A) np.cross(A, A) np.indices([0, 1, 2]) np.indices([0, 1, 2], sparse=False) np.indices([0, 1, 2], sparse=True) np.binary_repr(1) np.base_repr(1) np.allclose(i8, A) np.allclose(B, A) np.allclose(A, A) np.isclose(i8, A) np.isclose(B, A) np.isclose(A, A) np.array_equal(i8, A) np.array_equal(B, A) np.array_equal(A, A) np.array_equiv(i8, A) np.array_equiv(B, A) np.array_equiv(A, A)
1,490
Python
15.384615
63
0.648993
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/modules.py
import numpy as np from numpy import f2py np.char np.ctypeslib np.emath np.fft np.lib np.linalg np.ma np.matrixlib np.polynomial np.random np.rec np.testing np.version np.lib.format np.lib.mixins np.lib.scimath np.lib.stride_tricks np.ma.extras np.polynomial.chebyshev np.polynomial.hermite np.polynomial.hermite_e np.polynomial.laguerre np.polynomial.legendre np.polynomial.polynomial np.__path__ np.__version__ np.__git_version__ np.__all__ np.char.__all__ np.ctypeslib.__all__ np.emath.__all__ np.lib.__all__ np.ma.__all__ np.random.__all__ np.rec.__all__ np.testing.__all__ f2py.__all__
595
Python
12.545454
24
0.731092
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/einsumfunc.py
from __future__ import annotations from typing import Any import numpy as np AR_LIKE_b = [True, True, True] AR_LIKE_u = [np.uint32(1), np.uint32(2), np.uint32(3)] AR_LIKE_i = [1, 2, 3] AR_LIKE_f = [1.0, 2.0, 3.0] AR_LIKE_c = [1j, 2j, 3j] AR_LIKE_U = ["1", "2", "3"] OUT_f: np.ndarray[Any, np.dtype[np.float64]] = np.empty(3, dtype=np.float64) OUT_c: np.ndarray[Any, np.dtype[np.complex128]] = np.empty(3, dtype=np.complex128) np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_b) np.einsum("i,i->i", AR_LIKE_u, AR_LIKE_u) np.einsum("i,i->i", AR_LIKE_i, AR_LIKE_i) np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f) np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c) np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_i) np.einsum("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c) np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, dtype="c16") np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe") np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, out=OUT_c) np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=int, casting="unsafe", out=OUT_f) np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_b) np.einsum_path("i,i->i", AR_LIKE_u, AR_LIKE_u) np.einsum_path("i,i->i", AR_LIKE_i, AR_LIKE_i) np.einsum_path("i,i->i", AR_LIKE_f, AR_LIKE_f) np.einsum_path("i,i->i", AR_LIKE_c, AR_LIKE_c) np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_i) np.einsum_path("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c)
1,370
Python
36.054053
82
0.619708
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/warnings_and_errors.py
import numpy as np np.AxisError("test") np.AxisError(1, ndim=2) np.AxisError(1, ndim=2, msg_prefix="error") np.AxisError(1, ndim=2, msg_prefix=None)
150
Python
20.571426
43
0.72
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/flatiter.py
import numpy as np a = np.empty((2, 2)).flat a.base a.copy() a.coords a.index iter(a) next(a) a[0] a[[0, 1, 2]] a[...] a[:] a.__array__() a.__array__(np.dtype(np.float64))
174
Python
9.294117
33
0.563218
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/arithmetic.py
from __future__ import annotations from typing import Any import numpy as np c16 = np.complex128(1) f8 = np.float64(1) i8 = np.int64(1) u8 = np.uint64(1) c8 = np.complex64(1) f4 = np.float32(1) i4 = np.int32(1) u4 = np.uint32(1) dt = np.datetime64(1, "D") td = np.timedelta64(1, "D") b_ = np.bool_(1) b = bool(1) c = complex(1) f = float(1) i = int(1) class Object: def __array__(self) -> np.ndarray[Any, np.dtype[np.object_]]: ret = np.empty((), dtype=object) ret[()] = self return ret def __sub__(self, value: Any) -> Object: return self def __rsub__(self, value: Any) -> Object: return self def __floordiv__(self, value: Any) -> Object: return self def __rfloordiv__(self, value: Any) -> Object: return self def __mul__(self, value: Any) -> Object: return self def __rmul__(self, value: Any) -> Object: return self def __pow__(self, value: Any) -> Object: return self def __rpow__(self, value: Any) -> Object: return self AR_b: np.ndarray[Any, np.dtype[np.bool_]] = np.array([True]) AR_u: np.ndarray[Any, np.dtype[np.uint32]] = np.array([1], dtype=np.uint32) AR_i: np.ndarray[Any, np.dtype[np.int64]] = np.array([1]) AR_f: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.0]) AR_c: np.ndarray[Any, np.dtype[np.complex128]] = np.array([1j]) AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] = np.array([np.timedelta64(1, "D")]) AR_M: np.ndarray[Any, np.dtype[np.datetime64]] = np.array([np.datetime64(1, "D")]) AR_O: np.ndarray[Any, np.dtype[np.object_]] = np.array([Object()]) AR_LIKE_b = [True] AR_LIKE_u = [np.uint32(1)] AR_LIKE_i = [1] AR_LIKE_f = [1.0] AR_LIKE_c = [1j] AR_LIKE_m = [np.timedelta64(1, "D")] AR_LIKE_M = [np.datetime64(1, "D")] AR_LIKE_O = [Object()] # Array subtractions AR_b - AR_LIKE_u AR_b - AR_LIKE_i AR_b - AR_LIKE_f AR_b - AR_LIKE_c AR_b - AR_LIKE_m AR_b - AR_LIKE_O AR_LIKE_u - AR_b AR_LIKE_i - AR_b AR_LIKE_f - AR_b AR_LIKE_c - AR_b AR_LIKE_m - AR_b AR_LIKE_M - AR_b AR_LIKE_O - AR_b AR_u - AR_LIKE_b AR_u - AR_LIKE_u AR_u - AR_LIKE_i AR_u - AR_LIKE_f AR_u - AR_LIKE_c AR_u - AR_LIKE_m AR_u - AR_LIKE_O AR_LIKE_b - AR_u AR_LIKE_u - AR_u AR_LIKE_i - AR_u AR_LIKE_f - AR_u AR_LIKE_c - AR_u AR_LIKE_m - AR_u AR_LIKE_M - AR_u AR_LIKE_O - AR_u AR_i - AR_LIKE_b AR_i - AR_LIKE_u AR_i - AR_LIKE_i AR_i - AR_LIKE_f AR_i - AR_LIKE_c AR_i - AR_LIKE_m AR_i - AR_LIKE_O AR_LIKE_b - AR_i AR_LIKE_u - AR_i AR_LIKE_i - AR_i AR_LIKE_f - AR_i AR_LIKE_c - AR_i AR_LIKE_m - AR_i AR_LIKE_M - AR_i AR_LIKE_O - AR_i AR_f - AR_LIKE_b AR_f - AR_LIKE_u AR_f - AR_LIKE_i AR_f - AR_LIKE_f AR_f - AR_LIKE_c AR_f - AR_LIKE_O AR_LIKE_b - AR_f AR_LIKE_u - AR_f AR_LIKE_i - AR_f AR_LIKE_f - AR_f AR_LIKE_c - AR_f AR_LIKE_O - AR_f AR_c - AR_LIKE_b AR_c - AR_LIKE_u AR_c - AR_LIKE_i AR_c - AR_LIKE_f AR_c - AR_LIKE_c AR_c - AR_LIKE_O AR_LIKE_b - AR_c AR_LIKE_u - AR_c AR_LIKE_i - AR_c AR_LIKE_f - AR_c AR_LIKE_c - AR_c AR_LIKE_O - AR_c AR_m - AR_LIKE_b AR_m - AR_LIKE_u AR_m - AR_LIKE_i AR_m - AR_LIKE_m AR_LIKE_b - AR_m AR_LIKE_u - AR_m AR_LIKE_i - AR_m AR_LIKE_m - AR_m AR_LIKE_M - AR_m AR_M - AR_LIKE_b AR_M - AR_LIKE_u AR_M - AR_LIKE_i AR_M - AR_LIKE_m AR_M - AR_LIKE_M AR_LIKE_M - AR_M AR_O - AR_LIKE_b AR_O - AR_LIKE_u AR_O - AR_LIKE_i AR_O - AR_LIKE_f AR_O - AR_LIKE_c AR_O - AR_LIKE_O AR_LIKE_b - AR_O AR_LIKE_u - AR_O AR_LIKE_i - AR_O AR_LIKE_f - AR_O AR_LIKE_c - AR_O AR_LIKE_O - AR_O AR_u += AR_b AR_u += AR_u AR_u += 1 # Allowed during runtime as long as the object is 0D and >=0 # Array floor division AR_b // AR_LIKE_b AR_b // AR_LIKE_u AR_b // AR_LIKE_i AR_b // AR_LIKE_f AR_b // AR_LIKE_O AR_LIKE_b // AR_b AR_LIKE_u // AR_b AR_LIKE_i // AR_b AR_LIKE_f // AR_b AR_LIKE_O // AR_b AR_u // AR_LIKE_b AR_u // AR_LIKE_u AR_u // AR_LIKE_i AR_u // AR_LIKE_f AR_u // AR_LIKE_O AR_LIKE_b // AR_u AR_LIKE_u // AR_u AR_LIKE_i // AR_u AR_LIKE_f // AR_u AR_LIKE_m // AR_u AR_LIKE_O // AR_u AR_i // AR_LIKE_b AR_i // AR_LIKE_u AR_i // AR_LIKE_i AR_i // AR_LIKE_f AR_i // AR_LIKE_O AR_LIKE_b // AR_i AR_LIKE_u // AR_i AR_LIKE_i // AR_i AR_LIKE_f // AR_i AR_LIKE_m // AR_i AR_LIKE_O // AR_i AR_f // AR_LIKE_b AR_f // AR_LIKE_u AR_f // AR_LIKE_i AR_f // AR_LIKE_f AR_f // AR_LIKE_O AR_LIKE_b // AR_f AR_LIKE_u // AR_f AR_LIKE_i // AR_f AR_LIKE_f // AR_f AR_LIKE_m // AR_f AR_LIKE_O // AR_f AR_m // AR_LIKE_u AR_m // AR_LIKE_i AR_m // AR_LIKE_f AR_m // AR_LIKE_m AR_LIKE_m // AR_m AR_O // AR_LIKE_b AR_O // AR_LIKE_u AR_O // AR_LIKE_i AR_O // AR_LIKE_f AR_O // AR_LIKE_O AR_LIKE_b // AR_O AR_LIKE_u // AR_O AR_LIKE_i // AR_O AR_LIKE_f // AR_O AR_LIKE_O // AR_O # Inplace multiplication AR_b *= AR_LIKE_b AR_u *= AR_LIKE_b AR_u *= AR_LIKE_u AR_i *= AR_LIKE_b AR_i *= AR_LIKE_u AR_i *= AR_LIKE_i AR_f *= AR_LIKE_b AR_f *= AR_LIKE_u AR_f *= AR_LIKE_i AR_f *= AR_LIKE_f AR_c *= AR_LIKE_b AR_c *= AR_LIKE_u AR_c *= AR_LIKE_i AR_c *= AR_LIKE_f AR_c *= AR_LIKE_c AR_m *= AR_LIKE_b AR_m *= AR_LIKE_u AR_m *= AR_LIKE_i AR_m *= AR_LIKE_f AR_O *= AR_LIKE_b AR_O *= AR_LIKE_u AR_O *= AR_LIKE_i AR_O *= AR_LIKE_f AR_O *= AR_LIKE_c AR_O *= AR_LIKE_O # Inplace power AR_u **= AR_LIKE_b AR_u **= AR_LIKE_u AR_i **= AR_LIKE_b AR_i **= AR_LIKE_u AR_i **= AR_LIKE_i AR_f **= AR_LIKE_b AR_f **= AR_LIKE_u AR_f **= AR_LIKE_i AR_f **= AR_LIKE_f AR_c **= AR_LIKE_b AR_c **= AR_LIKE_u AR_c **= AR_LIKE_i AR_c **= AR_LIKE_f AR_c **= AR_LIKE_c AR_O **= AR_LIKE_b AR_O **= AR_LIKE_u AR_O **= AR_LIKE_i AR_O **= AR_LIKE_f AR_O **= AR_LIKE_c AR_O **= AR_LIKE_O # unary ops -c16 -c8 -f8 -f4 -i8 -i4 -u8 -u4 -td -AR_f +c16 +c8 +f8 +f4 +i8 +i4 +u8 +u4 +td +AR_f abs(c16) abs(c8) abs(f8) abs(f4) abs(i8) abs(i4) abs(u8) abs(u4) abs(td) abs(b_) abs(AR_f) # Time structures dt + td dt + i dt + i4 dt + i8 dt - dt dt - i dt - i4 dt - i8 td + td td + i td + i4 td + i8 td - td td - i td - i4 td - i8 td / f td / f4 td / f8 td / td td // td td % td # boolean b_ / b b_ / b_ b_ / i b_ / i8 b_ / i4 b_ / u8 b_ / u4 b_ / f b_ / f8 b_ / f4 b_ / c b_ / c16 b_ / c8 b / b_ b_ / b_ i / b_ i8 / b_ i4 / b_ u8 / b_ u4 / b_ f / b_ f8 / b_ f4 / b_ c / b_ c16 / b_ c8 / b_ # Complex c16 + c16 c16 + f8 c16 + i8 c16 + c8 c16 + f4 c16 + i4 c16 + b_ c16 + b c16 + c c16 + f c16 + i c16 + AR_f c16 + c16 f8 + c16 i8 + c16 c8 + c16 f4 + c16 i4 + c16 b_ + c16 b + c16 c + c16 f + c16 i + c16 AR_f + c16 c8 + c16 c8 + f8 c8 + i8 c8 + c8 c8 + f4 c8 + i4 c8 + b_ c8 + b c8 + c c8 + f c8 + i c8 + AR_f c16 + c8 f8 + c8 i8 + c8 c8 + c8 f4 + c8 i4 + c8 b_ + c8 b + c8 c + c8 f + c8 i + c8 AR_f + c8 # Float f8 + f8 f8 + i8 f8 + f4 f8 + i4 f8 + b_ f8 + b f8 + c f8 + f f8 + i f8 + AR_f f8 + f8 i8 + f8 f4 + f8 i4 + f8 b_ + f8 b + f8 c + f8 f + f8 i + f8 AR_f + f8 f4 + f8 f4 + i8 f4 + f4 f4 + i4 f4 + b_ f4 + b f4 + c f4 + f f4 + i f4 + AR_f f8 + f4 i8 + f4 f4 + f4 i4 + f4 b_ + f4 b + f4 c + f4 f + f4 i + f4 AR_f + f4 # Int i8 + i8 i8 + u8 i8 + i4 i8 + u4 i8 + b_ i8 + b i8 + c i8 + f i8 + i i8 + AR_f u8 + u8 u8 + i4 u8 + u4 u8 + b_ u8 + b u8 + c u8 + f u8 + i u8 + AR_f i8 + i8 u8 + i8 i4 + i8 u4 + i8 b_ + i8 b + i8 c + i8 f + i8 i + i8 AR_f + i8 u8 + u8 i4 + u8 u4 + u8 b_ + u8 b + u8 c + u8 f + u8 i + u8 AR_f + u8 i4 + i8 i4 + i4 i4 + i i4 + b_ i4 + b i4 + AR_f u4 + i8 u4 + i4 u4 + u8 u4 + u4 u4 + i u4 + b_ u4 + b u4 + AR_f i8 + i4 i4 + i4 i + i4 b_ + i4 b + i4 AR_f + i4 i8 + u4 i4 + u4 u8 + u4 u4 + u4 b_ + u4 b + u4 i + u4 AR_f + u4
7,398
Python
11.477234
84
0.548256
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/scalars.py
import sys import datetime as dt import pytest import numpy as np b = np.bool_() u8 = np.uint64() i8 = np.int64() f8 = np.float64() c16 = np.complex128() U = np.str_() S = np.bytes_() # Construction class D: def __index__(self) -> int: return 0 class C: def __complex__(self) -> complex: return 3j class B: def __int__(self) -> int: return 4 class A: def __float__(self) -> float: return 4.0 np.complex64(3j) np.complex64(A()) np.complex64(C()) np.complex128(3j) np.complex128(C()) np.complex128(None) np.complex64("1.2") np.complex128(b"2j") np.int8(4) np.int16(3.4) np.int32(4) np.int64(-1) np.uint8(B()) np.uint32() np.int32("1") np.int64(b"2") np.float16(A()) np.float32(16) np.float64(3.0) np.float64(None) np.float32("1") np.float16(b"2.5") np.uint64(D()) np.float32(D()) np.complex64(D()) np.bytes_(b"hello") np.bytes_("hello", 'utf-8') np.bytes_("hello", encoding='utf-8') np.str_("hello") np.str_(b"hello", 'utf-8') np.str_(b"hello", encoding='utf-8') # Array-ish semantics np.int8().real np.int16().imag np.int32().data np.int64().flags np.uint8().itemsize * 2 np.uint16().ndim + 1 np.uint32().strides np.uint64().shape # Time structures np.datetime64() np.datetime64(0, "D") np.datetime64(0, b"D") np.datetime64(0, ('ms', 3)) np.datetime64("2019") np.datetime64(b"2019") np.datetime64("2019", "D") np.datetime64(np.datetime64()) np.datetime64(dt.datetime(2000, 5, 3)) np.datetime64(dt.date(2000, 5, 3)) np.datetime64(None) np.datetime64(None, "D") np.timedelta64() np.timedelta64(0) np.timedelta64(0, "D") np.timedelta64(0, ('ms', 3)) np.timedelta64(0, b"D") np.timedelta64("3") np.timedelta64(b"5") np.timedelta64(np.timedelta64(2)) np.timedelta64(dt.timedelta(2)) np.timedelta64(None) np.timedelta64(None, "D") np.void(1) np.void(np.int64(1)) np.void(True) np.void(np.bool_(True)) np.void(b"test") np.void(np.bytes_("test")) # Protocols i8 = np.int64() u8 = np.uint64() f8 = np.float64() c16 = np.complex128() b_ = np.bool_() td = np.timedelta64() U = np.str_("1") S = np.bytes_("1") AR = np.array(1, dtype=np.float64) int(i8) int(u8) int(f8) int(b_) int(td) int(U) int(S) int(AR) with pytest.warns(np.ComplexWarning): int(c16) float(i8) float(u8) float(f8) float(b_) float(td) float(U) float(S) float(AR) with pytest.warns(np.ComplexWarning): float(c16) complex(i8) complex(u8) complex(f8) complex(c16) complex(b_) complex(td) complex(U) complex(AR) # Misc c16.dtype c16.real c16.imag c16.real.real c16.real.imag c16.ndim c16.size c16.itemsize c16.shape c16.strides c16.squeeze() c16.byteswap() c16.transpose() # Aliases np.str0() np.bool8() np.bytes0() np.string_() np.object0() np.void0(0) np.byte() np.short() np.intc() np.intp() np.int0() np.int_() np.longlong() np.ubyte() np.ushort() np.uintc() np.uintp() np.uint0() np.uint() np.ulonglong() np.half() np.single() np.double() np.float_() np.longdouble() np.longfloat() np.csingle() np.singlecomplex() np.cdouble() np.complex_() np.cfloat() np.clongdouble() np.clongfloat() np.longcomplex() b.item() i8.item() u8.item() f8.item() c16.item() U.item() S.item() b.tolist() i8.tolist() u8.tolist() f8.tolist() c16.tolist() U.tolist() S.tolist() b.ravel() i8.ravel() u8.ravel() f8.ravel() c16.ravel() U.ravel() S.ravel() b.flatten() i8.flatten() u8.flatten() f8.flatten() c16.flatten() U.flatten() S.flatten() b.reshape(1) i8.reshape(1) u8.reshape(1) f8.reshape(1) c16.reshape(1) U.reshape(1) S.reshape(1)
3,464
Python
12.641732
38
0.657333
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/ufuncs.py
import numpy as np np.sin(1) np.sin([1, 2, 3]) np.sin(1, out=np.empty(1)) np.matmul(np.ones((2, 2, 2)), np.ones((2, 2, 2)), axes=[(0, 1), (0, 1), (0, 1)]) np.sin(1, signature="D->D") np.sin(1, extobj=[16, 1, lambda: None]) # NOTE: `np.generic` subclasses are not guaranteed to support addition; # re-enable this we can infer the exact return type of `np.sin(...)`. # # np.sin(1) + np.sin(1) np.sin.types[0] np.sin.__name__ np.sin.__doc__ np.abs(np.array([1]))
462
Python
24.722221
80
0.606061
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/mod.py
import numpy as np f8 = np.float64(1) i8 = np.int64(1) u8 = np.uint64(1) f4 = np.float32(1) i4 = np.int32(1) u4 = np.uint32(1) td = np.timedelta64(1, "D") b_ = np.bool_(1) b = bool(1) f = float(1) i = int(1) AR = np.array([1], dtype=np.bool_) AR.setflags(write=False) AR2 = np.array([1], dtype=np.timedelta64) AR2.setflags(write=False) # Time structures td % td td % AR2 AR2 % td divmod(td, td) divmod(td, AR2) divmod(AR2, td) # Bool b_ % b b_ % i b_ % f b_ % b_ b_ % i8 b_ % u8 b_ % f8 b_ % AR divmod(b_, b) divmod(b_, i) divmod(b_, f) divmod(b_, b_) divmod(b_, i8) divmod(b_, u8) divmod(b_, f8) divmod(b_, AR) b % b_ i % b_ f % b_ b_ % b_ i8 % b_ u8 % b_ f8 % b_ AR % b_ divmod(b, b_) divmod(i, b_) divmod(f, b_) divmod(b_, b_) divmod(i8, b_) divmod(u8, b_) divmod(f8, b_) divmod(AR, b_) # int i8 % b i8 % i i8 % f i8 % i8 i8 % f8 i4 % i8 i4 % f8 i4 % i4 i4 % f4 i8 % AR divmod(i8, b) divmod(i8, i) divmod(i8, f) divmod(i8, i8) divmod(i8, f8) divmod(i8, i4) divmod(i8, f4) divmod(i4, i4) divmod(i4, f4) divmod(i8, AR) b % i8 i % i8 f % i8 i8 % i8 f8 % i8 i8 % i4 f8 % i4 i4 % i4 f4 % i4 AR % i8 divmod(b, i8) divmod(i, i8) divmod(f, i8) divmod(i8, i8) divmod(f8, i8) divmod(i4, i8) divmod(f4, i8) divmod(i4, i4) divmod(f4, i4) divmod(AR, i8) # float f8 % b f8 % i f8 % f i8 % f4 f4 % f4 f8 % AR divmod(f8, b) divmod(f8, i) divmod(f8, f) divmod(f8, f8) divmod(f8, f4) divmod(f4, f4) divmod(f8, AR) b % f8 i % f8 f % f8 f8 % f8 f8 % f8 f4 % f4 AR % f8 divmod(b, f8) divmod(i, f8) divmod(f, f8) divmod(f8, f8) divmod(f4, f8) divmod(f4, f4) divmod(AR, f8)
1,578
Python
9.526667
41
0.577313
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/comparisons.py
from __future__ import annotations from typing import Any import numpy as np c16 = np.complex128() f8 = np.float64() i8 = np.int64() u8 = np.uint64() c8 = np.complex64() f4 = np.float32() i4 = np.int32() u4 = np.uint32() dt = np.datetime64(0, "D") td = np.timedelta64(0, "D") b_ = np.bool_() b = bool() c = complex() f = float() i = int() SEQ = (0, 1, 2, 3, 4) AR_b: np.ndarray[Any, np.dtype[np.bool_]] = np.array([True]) AR_u: np.ndarray[Any, np.dtype[np.uint32]] = np.array([1], dtype=np.uint32) AR_i: np.ndarray[Any, np.dtype[np.int_]] = np.array([1]) AR_f: np.ndarray[Any, np.dtype[np.float_]] = np.array([1.0]) AR_c: np.ndarray[Any, np.dtype[np.complex_]] = np.array([1.0j]) AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] = np.array([np.timedelta64("1")]) AR_M: np.ndarray[Any, np.dtype[np.datetime64]] = np.array([np.datetime64("1")]) AR_O: np.ndarray[Any, np.dtype[np.object_]] = np.array([1], dtype=object) # Arrays AR_b > AR_b AR_b > AR_u AR_b > AR_i AR_b > AR_f AR_b > AR_c AR_u > AR_b AR_u > AR_u AR_u > AR_i AR_u > AR_f AR_u > AR_c AR_i > AR_b AR_i > AR_u AR_i > AR_i AR_i > AR_f AR_i > AR_c AR_f > AR_b AR_f > AR_u AR_f > AR_i AR_f > AR_f AR_f > AR_c AR_c > AR_b AR_c > AR_u AR_c > AR_i AR_c > AR_f AR_c > AR_c AR_m > AR_b AR_m > AR_u AR_m > AR_i AR_b > AR_m AR_u > AR_m AR_i > AR_m AR_M > AR_M AR_O > AR_O 1 > AR_O AR_O > 1 # Time structures dt > dt td > td td > i td > i4 td > i8 td > AR_i td > SEQ # boolean b_ > b b_ > b_ b_ > i b_ > i8 b_ > i4 b_ > u8 b_ > u4 b_ > f b_ > f8 b_ > f4 b_ > c b_ > c16 b_ > c8 b_ > AR_i b_ > SEQ # Complex c16 > c16 c16 > f8 c16 > i8 c16 > c8 c16 > f4 c16 > i4 c16 > b_ c16 > b c16 > c c16 > f c16 > i c16 > AR_i c16 > SEQ c16 > c16 f8 > c16 i8 > c16 c8 > c16 f4 > c16 i4 > c16 b_ > c16 b > c16 c > c16 f > c16 i > c16 AR_i > c16 SEQ > c16 c8 > c16 c8 > f8 c8 > i8 c8 > c8 c8 > f4 c8 > i4 c8 > b_ c8 > b c8 > c c8 > f c8 > i c8 > AR_i c8 > SEQ c16 > c8 f8 > c8 i8 > c8 c8 > c8 f4 > c8 i4 > c8 b_ > c8 b > c8 c > c8 f > c8 i > c8 AR_i > c8 SEQ > c8 # Float f8 > f8 f8 > i8 f8 > f4 f8 > i4 f8 > b_ f8 > b f8 > c f8 > f f8 > i f8 > AR_i f8 > SEQ f8 > f8 i8 > f8 f4 > f8 i4 > f8 b_ > f8 b > f8 c > f8 f > f8 i > f8 AR_i > f8 SEQ > f8 f4 > f8 f4 > i8 f4 > f4 f4 > i4 f4 > b_ f4 > b f4 > c f4 > f f4 > i f4 > AR_i f4 > SEQ f8 > f4 i8 > f4 f4 > f4 i4 > f4 b_ > f4 b > f4 c > f4 f > f4 i > f4 AR_i > f4 SEQ > f4 # Int i8 > i8 i8 > u8 i8 > i4 i8 > u4 i8 > b_ i8 > b i8 > c i8 > f i8 > i i8 > AR_i i8 > SEQ u8 > u8 u8 > i4 u8 > u4 u8 > b_ u8 > b u8 > c u8 > f u8 > i u8 > AR_i u8 > SEQ i8 > i8 u8 > i8 i4 > i8 u4 > i8 b_ > i8 b > i8 c > i8 f > i8 i > i8 AR_i > i8 SEQ > i8 u8 > u8 i4 > u8 u4 > u8 b_ > u8 b > u8 c > u8 f > u8 i > u8 AR_i > u8 SEQ > u8 i4 > i8 i4 > i4 i4 > i i4 > b_ i4 > b i4 > AR_i i4 > SEQ u4 > i8 u4 > i4 u4 > u8 u4 > u4 u4 > i u4 > b_ u4 > b u4 > AR_i u4 > SEQ i8 > i4 i4 > i4 i > i4 b_ > i4 b > i4 AR_i > i4 SEQ > i4 i8 > u4 i4 > u4 u8 > u4 u4 > u4 b_ > u4 b > u4 i > u4 AR_i > u4 SEQ > u4
2,992
Python
8.910596
81
0.525735
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/ndarray_conversion.py
import os import tempfile import numpy as np nd = np.array([[1, 2], [3, 4]]) scalar_array = np.array(1) # item scalar_array.item() nd.item(1) nd.item(0, 1) nd.item((0, 1)) # tolist is pretty simple # itemset scalar_array.itemset(3) nd.itemset(3, 0) nd.itemset((0, 0), 3) # tobytes nd.tobytes() nd.tobytes("C") nd.tobytes(None) # tofile if os.name != "nt": with tempfile.NamedTemporaryFile(suffix=".txt") as tmp: nd.tofile(tmp.name) nd.tofile(tmp.name, "") nd.tofile(tmp.name, sep="") nd.tofile(tmp.name, "", "%s") nd.tofile(tmp.name, format="%s") nd.tofile(tmp) # dump is pretty simple # dumps is pretty simple # astype nd.astype("float") nd.astype(float) nd.astype(float, "K") nd.astype(float, order="K") nd.astype(float, "K", "unsafe") nd.astype(float, casting="unsafe") nd.astype(float, "K", "unsafe", True) nd.astype(float, subok=True) nd.astype(float, "K", "unsafe", True, True) nd.astype(float, copy=True) # byteswap nd.byteswap() nd.byteswap(True) # copy nd.copy() nd.copy("C") # view nd.view() nd.view(np.int64) nd.view(dtype=np.int64) nd.view(np.int64, np.matrix) nd.view(type=np.matrix) # getfield complex_array = np.array([[1 + 1j, 0], [0, 1 - 1j]], dtype=np.complex128) complex_array.getfield("float") complex_array.getfield(float) complex_array.getfield("float", 8) complex_array.getfield(float, offset=8) # setflags nd.setflags() nd.setflags(True) nd.setflags(write=True) nd.setflags(True, True) nd.setflags(write=True, align=True) nd.setflags(True, True, False) nd.setflags(write=True, align=True, uic=False) # fill is pretty simple
1,626
Python
16.126316
73
0.665437
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/arrayterator.py
from __future__ import annotations from typing import Any import numpy as np AR_i8: np.ndarray[Any, np.dtype[np.int_]] = np.arange(10) ar_iter = np.lib.Arrayterator(AR_i8) ar_iter.var ar_iter.buf_size ar_iter.start ar_iter.stop ar_iter.step ar_iter.shape ar_iter.flat ar_iter.__array__() for i in ar_iter: pass ar_iter[0] ar_iter[...] ar_iter[:] ar_iter[0, 0, 0] ar_iter[..., 0, :]
393
Python
13.071428
57
0.666667
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/array_constructors.py
import sys from typing import Any import numpy as np class Index: def __index__(self) -> int: return 0 class SubClass(np.ndarray): pass def func(i: int, j: int, **kwargs: Any) -> SubClass: return B i8 = np.int64(1) A = np.array([1]) B = A.view(SubClass).copy() B_stack = np.array([[1], [1]]).view(SubClass) C = [1] np.ndarray(Index()) np.ndarray([Index()]) np.array(1, dtype=float) np.array(1, copy=False) np.array(1, order='F') np.array(1, order=None) np.array(1, subok=True) np.array(1, ndmin=3) np.array(1, str, copy=True, order='C', subok=False, ndmin=2) np.asarray(A) np.asarray(B) np.asarray(C) np.asanyarray(A) np.asanyarray(B) np.asanyarray(B, dtype=int) np.asanyarray(C) np.ascontiguousarray(A) np.ascontiguousarray(B) np.ascontiguousarray(C) np.asfortranarray(A) np.asfortranarray(B) np.asfortranarray(C) np.require(A) np.require(B) np.require(B, dtype=int) np.require(B, requirements=None) np.require(B, requirements="E") np.require(B, requirements=["ENSUREARRAY"]) np.require(B, requirements={"F", "E"}) np.require(B, requirements=["C", "OWNDATA"]) np.require(B, requirements="W") np.require(B, requirements="A") np.require(C) np.linspace(0, 2) np.linspace(0.5, [0, 1, 2]) np.linspace([0, 1, 2], 3) np.linspace(0j, 2) np.linspace(0, 2, num=10) np.linspace(0, 2, endpoint=True) np.linspace(0, 2, retstep=True) np.linspace(0j, 2j, retstep=True) np.linspace(0, 2, dtype=bool) np.linspace([0, 1], [2, 3], axis=Index()) np.logspace(0, 2, base=2) np.logspace(0, 2, base=2) np.logspace(0, 2, base=[1j, 2j], num=2) np.geomspace(1, 2) np.zeros_like(A) np.zeros_like(C) np.zeros_like(B) np.zeros_like(B, dtype=np.int64) np.ones_like(A) np.ones_like(C) np.ones_like(B) np.ones_like(B, dtype=np.int64) np.empty_like(A) np.empty_like(C) np.empty_like(B) np.empty_like(B, dtype=np.int64) np.full_like(A, i8) np.full_like(C, i8) np.full_like(B, i8) np.full_like(B, i8, dtype=np.int64) np.ones(1) np.ones([1, 1, 1]) np.full(1, i8) np.full([1, 1, 1], i8) np.indices([1, 2, 3]) np.indices([1, 2, 3], sparse=True) np.fromfunction(func, (3, 5)) np.identity(10) np.atleast_1d(C) np.atleast_1d(A) np.atleast_1d(C, C) np.atleast_1d(C, A) np.atleast_1d(A, A) np.atleast_2d(C) np.atleast_3d(C) np.vstack([C, C]) np.vstack([C, A]) np.vstack([A, A]) np.hstack([C, C]) np.stack([C, C]) np.stack([C, C], axis=0) np.stack([C, C], out=B_stack) np.block([[C, C], [C, C]]) np.block(A)
2,419
Python
16.536232
60
0.657296
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/random.py
from __future__ import annotations from typing import Any import numpy as np SEED_NONE = None SEED_INT = 4579435749574957634658964293569 SEED_ARR: np.ndarray[Any, np.dtype[np.int64]] = np.array([1, 2, 3, 4], dtype=np.int64) SEED_ARRLIKE: list[int] = [1, 2, 3, 4] SEED_SEED_SEQ: np.random.SeedSequence = np.random.SeedSequence(0) SEED_MT19937: np.random.MT19937 = np.random.MT19937(0) SEED_PCG64: np.random.PCG64 = np.random.PCG64(0) SEED_PHILOX: np.random.Philox = np.random.Philox(0) SEED_SFC64: np.random.SFC64 = np.random.SFC64(0) # default rng np.random.default_rng() np.random.default_rng(SEED_NONE) np.random.default_rng(SEED_INT) np.random.default_rng(SEED_ARR) np.random.default_rng(SEED_ARRLIKE) np.random.default_rng(SEED_SEED_SEQ) np.random.default_rng(SEED_MT19937) np.random.default_rng(SEED_PCG64) np.random.default_rng(SEED_PHILOX) np.random.default_rng(SEED_SFC64) # Seed Sequence np.random.SeedSequence(SEED_NONE) np.random.SeedSequence(SEED_INT) np.random.SeedSequence(SEED_ARR) np.random.SeedSequence(SEED_ARRLIKE) # Bit Generators np.random.MT19937(SEED_NONE) np.random.MT19937(SEED_INT) np.random.MT19937(SEED_ARR) np.random.MT19937(SEED_ARRLIKE) np.random.MT19937(SEED_SEED_SEQ) np.random.PCG64(SEED_NONE) np.random.PCG64(SEED_INT) np.random.PCG64(SEED_ARR) np.random.PCG64(SEED_ARRLIKE) np.random.PCG64(SEED_SEED_SEQ) np.random.Philox(SEED_NONE) np.random.Philox(SEED_INT) np.random.Philox(SEED_ARR) np.random.Philox(SEED_ARRLIKE) np.random.Philox(SEED_SEED_SEQ) np.random.SFC64(SEED_NONE) np.random.SFC64(SEED_INT) np.random.SFC64(SEED_ARR) np.random.SFC64(SEED_ARRLIKE) np.random.SFC64(SEED_SEED_SEQ) seed_seq: np.random.bit_generator.SeedSequence = np.random.SeedSequence(SEED_NONE) seed_seq.spawn(10) seed_seq.generate_state(3) seed_seq.generate_state(3, "u4") seed_seq.generate_state(3, "uint32") seed_seq.generate_state(3, "u8") seed_seq.generate_state(3, "uint64") seed_seq.generate_state(3, np.uint32) seed_seq.generate_state(3, np.uint64) def_gen: np.random.Generator = np.random.default_rng() D_arr_0p1: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.1]) D_arr_0p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.5]) D_arr_0p9: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.9]) D_arr_1p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.5]) I_arr_10: np.ndarray[Any, np.dtype[np.int_]] = np.array([10], dtype=np.int_) I_arr_20: np.ndarray[Any, np.dtype[np.int_]] = np.array([20], dtype=np.int_) D_arr_like_0p1: list[float] = [0.1] D_arr_like_0p5: list[float] = [0.5] D_arr_like_0p9: list[float] = [0.9] D_arr_like_1p5: list[float] = [1.5] I_arr_like_10: list[int] = [10] I_arr_like_20: list[int] = [20] D_2D_like: list[list[float]] = [[1, 2], [2, 3], [3, 4], [4, 5.1]] D_2D: np.ndarray[Any, np.dtype[np.float64]] = np.array(D_2D_like) S_out: np.ndarray[Any, np.dtype[np.float32]] = np.empty(1, dtype=np.float32) D_out: np.ndarray[Any, np.dtype[np.float64]] = np.empty(1) def_gen.standard_normal() def_gen.standard_normal(dtype=np.float32) def_gen.standard_normal(dtype="float32") def_gen.standard_normal(dtype="double") def_gen.standard_normal(dtype=np.float64) def_gen.standard_normal(size=None) def_gen.standard_normal(size=1) def_gen.standard_normal(size=1, dtype=np.float32) def_gen.standard_normal(size=1, dtype="f4") def_gen.standard_normal(size=1, dtype="float32", out=S_out) def_gen.standard_normal(dtype=np.float32, out=S_out) def_gen.standard_normal(size=1, dtype=np.float64) def_gen.standard_normal(size=1, dtype="float64") def_gen.standard_normal(size=1, dtype="f8") def_gen.standard_normal(out=D_out) def_gen.standard_normal(size=1, dtype="float64") def_gen.standard_normal(size=1, dtype="float64", out=D_out) def_gen.random() def_gen.random(dtype=np.float32) def_gen.random(dtype="float32") def_gen.random(dtype="double") def_gen.random(dtype=np.float64) def_gen.random(size=None) def_gen.random(size=1) def_gen.random(size=1, dtype=np.float32) def_gen.random(size=1, dtype="f4") def_gen.random(size=1, dtype="float32", out=S_out) def_gen.random(dtype=np.float32, out=S_out) def_gen.random(size=1, dtype=np.float64) def_gen.random(size=1, dtype="float64") def_gen.random(size=1, dtype="f8") def_gen.random(out=D_out) def_gen.random(size=1, dtype="float64") def_gen.random(size=1, dtype="float64", out=D_out) def_gen.standard_cauchy() def_gen.standard_cauchy(size=None) def_gen.standard_cauchy(size=1) def_gen.standard_exponential() def_gen.standard_exponential(method="inv") def_gen.standard_exponential(dtype=np.float32) def_gen.standard_exponential(dtype="float32") def_gen.standard_exponential(dtype="double") def_gen.standard_exponential(dtype=np.float64) def_gen.standard_exponential(size=None) def_gen.standard_exponential(size=None, method="inv") def_gen.standard_exponential(size=1, method="inv") def_gen.standard_exponential(size=1, dtype=np.float32) def_gen.standard_exponential(size=1, dtype="f4", method="inv") def_gen.standard_exponential(size=1, dtype="float32", out=S_out) def_gen.standard_exponential(dtype=np.float32, out=S_out) def_gen.standard_exponential(size=1, dtype=np.float64, method="inv") def_gen.standard_exponential(size=1, dtype="float64") def_gen.standard_exponential(size=1, dtype="f8") def_gen.standard_exponential(out=D_out) def_gen.standard_exponential(size=1, dtype="float64") def_gen.standard_exponential(size=1, dtype="float64", out=D_out) def_gen.zipf(1.5) def_gen.zipf(1.5, size=None) def_gen.zipf(1.5, size=1) def_gen.zipf(D_arr_1p5) def_gen.zipf(D_arr_1p5, size=1) def_gen.zipf(D_arr_like_1p5) def_gen.zipf(D_arr_like_1p5, size=1) def_gen.weibull(0.5) def_gen.weibull(0.5, size=None) def_gen.weibull(0.5, size=1) def_gen.weibull(D_arr_0p5) def_gen.weibull(D_arr_0p5, size=1) def_gen.weibull(D_arr_like_0p5) def_gen.weibull(D_arr_like_0p5, size=1) def_gen.standard_t(0.5) def_gen.standard_t(0.5, size=None) def_gen.standard_t(0.5, size=1) def_gen.standard_t(D_arr_0p5) def_gen.standard_t(D_arr_0p5, size=1) def_gen.standard_t(D_arr_like_0p5) def_gen.standard_t(D_arr_like_0p5, size=1) def_gen.poisson(0.5) def_gen.poisson(0.5, size=None) def_gen.poisson(0.5, size=1) def_gen.poisson(D_arr_0p5) def_gen.poisson(D_arr_0p5, size=1) def_gen.poisson(D_arr_like_0p5) def_gen.poisson(D_arr_like_0p5, size=1) def_gen.power(0.5) def_gen.power(0.5, size=None) def_gen.power(0.5, size=1) def_gen.power(D_arr_0p5) def_gen.power(D_arr_0p5, size=1) def_gen.power(D_arr_like_0p5) def_gen.power(D_arr_like_0p5, size=1) def_gen.pareto(0.5) def_gen.pareto(0.5, size=None) def_gen.pareto(0.5, size=1) def_gen.pareto(D_arr_0p5) def_gen.pareto(D_arr_0p5, size=1) def_gen.pareto(D_arr_like_0p5) def_gen.pareto(D_arr_like_0p5, size=1) def_gen.chisquare(0.5) def_gen.chisquare(0.5, size=None) def_gen.chisquare(0.5, size=1) def_gen.chisquare(D_arr_0p5) def_gen.chisquare(D_arr_0p5, size=1) def_gen.chisquare(D_arr_like_0p5) def_gen.chisquare(D_arr_like_0p5, size=1) def_gen.exponential(0.5) def_gen.exponential(0.5, size=None) def_gen.exponential(0.5, size=1) def_gen.exponential(D_arr_0p5) def_gen.exponential(D_arr_0p5, size=1) def_gen.exponential(D_arr_like_0p5) def_gen.exponential(D_arr_like_0p5, size=1) def_gen.geometric(0.5) def_gen.geometric(0.5, size=None) def_gen.geometric(0.5, size=1) def_gen.geometric(D_arr_0p5) def_gen.geometric(D_arr_0p5, size=1) def_gen.geometric(D_arr_like_0p5) def_gen.geometric(D_arr_like_0p5, size=1) def_gen.logseries(0.5) def_gen.logseries(0.5, size=None) def_gen.logseries(0.5, size=1) def_gen.logseries(D_arr_0p5) def_gen.logseries(D_arr_0p5, size=1) def_gen.logseries(D_arr_like_0p5) def_gen.logseries(D_arr_like_0p5, size=1) def_gen.rayleigh(0.5) def_gen.rayleigh(0.5, size=None) def_gen.rayleigh(0.5, size=1) def_gen.rayleigh(D_arr_0p5) def_gen.rayleigh(D_arr_0p5, size=1) def_gen.rayleigh(D_arr_like_0p5) def_gen.rayleigh(D_arr_like_0p5, size=1) def_gen.standard_gamma(0.5) def_gen.standard_gamma(0.5, size=None) def_gen.standard_gamma(0.5, dtype="float32") def_gen.standard_gamma(0.5, size=None, dtype="float32") def_gen.standard_gamma(0.5, size=1) def_gen.standard_gamma(D_arr_0p5) def_gen.standard_gamma(D_arr_0p5, dtype="f4") def_gen.standard_gamma(0.5, size=1, dtype="float32", out=S_out) def_gen.standard_gamma(D_arr_0p5, dtype=np.float32, out=S_out) def_gen.standard_gamma(D_arr_0p5, size=1) def_gen.standard_gamma(D_arr_like_0p5) def_gen.standard_gamma(D_arr_like_0p5, size=1) def_gen.standard_gamma(0.5, out=D_out) def_gen.standard_gamma(D_arr_like_0p5, out=D_out) def_gen.standard_gamma(D_arr_like_0p5, size=1) def_gen.standard_gamma(D_arr_like_0p5, size=1, out=D_out, dtype=np.float64) def_gen.vonmises(0.5, 0.5) def_gen.vonmises(0.5, 0.5, size=None) def_gen.vonmises(0.5, 0.5, size=1) def_gen.vonmises(D_arr_0p5, 0.5) def_gen.vonmises(0.5, D_arr_0p5) def_gen.vonmises(D_arr_0p5, 0.5, size=1) def_gen.vonmises(0.5, D_arr_0p5, size=1) def_gen.vonmises(D_arr_like_0p5, 0.5) def_gen.vonmises(0.5, D_arr_like_0p5) def_gen.vonmises(D_arr_0p5, D_arr_0p5) def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5) def_gen.vonmises(D_arr_0p5, D_arr_0p5, size=1) def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.wald(0.5, 0.5) def_gen.wald(0.5, 0.5, size=None) def_gen.wald(0.5, 0.5, size=1) def_gen.wald(D_arr_0p5, 0.5) def_gen.wald(0.5, D_arr_0p5) def_gen.wald(D_arr_0p5, 0.5, size=1) def_gen.wald(0.5, D_arr_0p5, size=1) def_gen.wald(D_arr_like_0p5, 0.5) def_gen.wald(0.5, D_arr_like_0p5) def_gen.wald(D_arr_0p5, D_arr_0p5) def_gen.wald(D_arr_like_0p5, D_arr_like_0p5) def_gen.wald(D_arr_0p5, D_arr_0p5, size=1) def_gen.wald(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.uniform(0.5, 0.5) def_gen.uniform(0.5, 0.5, size=None) def_gen.uniform(0.5, 0.5, size=1) def_gen.uniform(D_arr_0p5, 0.5) def_gen.uniform(0.5, D_arr_0p5) def_gen.uniform(D_arr_0p5, 0.5, size=1) def_gen.uniform(0.5, D_arr_0p5, size=1) def_gen.uniform(D_arr_like_0p5, 0.5) def_gen.uniform(0.5, D_arr_like_0p5) def_gen.uniform(D_arr_0p5, D_arr_0p5) def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5) def_gen.uniform(D_arr_0p5, D_arr_0p5, size=1) def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.beta(0.5, 0.5) def_gen.beta(0.5, 0.5, size=None) def_gen.beta(0.5, 0.5, size=1) def_gen.beta(D_arr_0p5, 0.5) def_gen.beta(0.5, D_arr_0p5) def_gen.beta(D_arr_0p5, 0.5, size=1) def_gen.beta(0.5, D_arr_0p5, size=1) def_gen.beta(D_arr_like_0p5, 0.5) def_gen.beta(0.5, D_arr_like_0p5) def_gen.beta(D_arr_0p5, D_arr_0p5) def_gen.beta(D_arr_like_0p5, D_arr_like_0p5) def_gen.beta(D_arr_0p5, D_arr_0p5, size=1) def_gen.beta(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.f(0.5, 0.5) def_gen.f(0.5, 0.5, size=None) def_gen.f(0.5, 0.5, size=1) def_gen.f(D_arr_0p5, 0.5) def_gen.f(0.5, D_arr_0p5) def_gen.f(D_arr_0p5, 0.5, size=1) def_gen.f(0.5, D_arr_0p5, size=1) def_gen.f(D_arr_like_0p5, 0.5) def_gen.f(0.5, D_arr_like_0p5) def_gen.f(D_arr_0p5, D_arr_0p5) def_gen.f(D_arr_like_0p5, D_arr_like_0p5) def_gen.f(D_arr_0p5, D_arr_0p5, size=1) def_gen.f(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.gamma(0.5, 0.5) def_gen.gamma(0.5, 0.5, size=None) def_gen.gamma(0.5, 0.5, size=1) def_gen.gamma(D_arr_0p5, 0.5) def_gen.gamma(0.5, D_arr_0p5) def_gen.gamma(D_arr_0p5, 0.5, size=1) def_gen.gamma(0.5, D_arr_0p5, size=1) def_gen.gamma(D_arr_like_0p5, 0.5) def_gen.gamma(0.5, D_arr_like_0p5) def_gen.gamma(D_arr_0p5, D_arr_0p5) def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5) def_gen.gamma(D_arr_0p5, D_arr_0p5, size=1) def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.gumbel(0.5, 0.5) def_gen.gumbel(0.5, 0.5, size=None) def_gen.gumbel(0.5, 0.5, size=1) def_gen.gumbel(D_arr_0p5, 0.5) def_gen.gumbel(0.5, D_arr_0p5) def_gen.gumbel(D_arr_0p5, 0.5, size=1) def_gen.gumbel(0.5, D_arr_0p5, size=1) def_gen.gumbel(D_arr_like_0p5, 0.5) def_gen.gumbel(0.5, D_arr_like_0p5) def_gen.gumbel(D_arr_0p5, D_arr_0p5) def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5) def_gen.gumbel(D_arr_0p5, D_arr_0p5, size=1) def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.laplace(0.5, 0.5) def_gen.laplace(0.5, 0.5, size=None) def_gen.laplace(0.5, 0.5, size=1) def_gen.laplace(D_arr_0p5, 0.5) def_gen.laplace(0.5, D_arr_0p5) def_gen.laplace(D_arr_0p5, 0.5, size=1) def_gen.laplace(0.5, D_arr_0p5, size=1) def_gen.laplace(D_arr_like_0p5, 0.5) def_gen.laplace(0.5, D_arr_like_0p5) def_gen.laplace(D_arr_0p5, D_arr_0p5) def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5) def_gen.laplace(D_arr_0p5, D_arr_0p5, size=1) def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.logistic(0.5, 0.5) def_gen.logistic(0.5, 0.5, size=None) def_gen.logistic(0.5, 0.5, size=1) def_gen.logistic(D_arr_0p5, 0.5) def_gen.logistic(0.5, D_arr_0p5) def_gen.logistic(D_arr_0p5, 0.5, size=1) def_gen.logistic(0.5, D_arr_0p5, size=1) def_gen.logistic(D_arr_like_0p5, 0.5) def_gen.logistic(0.5, D_arr_like_0p5) def_gen.logistic(D_arr_0p5, D_arr_0p5) def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5) def_gen.logistic(D_arr_0p5, D_arr_0p5, size=1) def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.lognormal(0.5, 0.5) def_gen.lognormal(0.5, 0.5, size=None) def_gen.lognormal(0.5, 0.5, size=1) def_gen.lognormal(D_arr_0p5, 0.5) def_gen.lognormal(0.5, D_arr_0p5) def_gen.lognormal(D_arr_0p5, 0.5, size=1) def_gen.lognormal(0.5, D_arr_0p5, size=1) def_gen.lognormal(D_arr_like_0p5, 0.5) def_gen.lognormal(0.5, D_arr_like_0p5) def_gen.lognormal(D_arr_0p5, D_arr_0p5) def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5) def_gen.lognormal(D_arr_0p5, D_arr_0p5, size=1) def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.noncentral_chisquare(0.5, 0.5) def_gen.noncentral_chisquare(0.5, 0.5, size=None) def_gen.noncentral_chisquare(0.5, 0.5, size=1) def_gen.noncentral_chisquare(D_arr_0p5, 0.5) def_gen.noncentral_chisquare(0.5, D_arr_0p5) def_gen.noncentral_chisquare(D_arr_0p5, 0.5, size=1) def_gen.noncentral_chisquare(0.5, D_arr_0p5, size=1) def_gen.noncentral_chisquare(D_arr_like_0p5, 0.5) def_gen.noncentral_chisquare(0.5, D_arr_like_0p5) def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5) def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5) def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1) def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.normal(0.5, 0.5) def_gen.normal(0.5, 0.5, size=None) def_gen.normal(0.5, 0.5, size=1) def_gen.normal(D_arr_0p5, 0.5) def_gen.normal(0.5, D_arr_0p5) def_gen.normal(D_arr_0p5, 0.5, size=1) def_gen.normal(0.5, D_arr_0p5, size=1) def_gen.normal(D_arr_like_0p5, 0.5) def_gen.normal(0.5, D_arr_like_0p5) def_gen.normal(D_arr_0p5, D_arr_0p5) def_gen.normal(D_arr_like_0p5, D_arr_like_0p5) def_gen.normal(D_arr_0p5, D_arr_0p5, size=1) def_gen.normal(D_arr_like_0p5, D_arr_like_0p5, size=1) def_gen.triangular(0.1, 0.5, 0.9) def_gen.triangular(0.1, 0.5, 0.9, size=None) def_gen.triangular(0.1, 0.5, 0.9, size=1) def_gen.triangular(D_arr_0p1, 0.5, 0.9) def_gen.triangular(0.1, D_arr_0p5, 0.9) def_gen.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1) def_gen.triangular(0.1, D_arr_0p5, 0.9, size=1) def_gen.triangular(D_arr_like_0p1, 0.5, D_arr_0p9) def_gen.triangular(0.5, D_arr_like_0p5, 0.9) def_gen.triangular(D_arr_0p1, D_arr_0p5, 0.9) def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9) def_gen.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1) def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1) def_gen.noncentral_f(0.1, 0.5, 0.9) def_gen.noncentral_f(0.1, 0.5, 0.9, size=None) def_gen.noncentral_f(0.1, 0.5, 0.9, size=1) def_gen.noncentral_f(D_arr_0p1, 0.5, 0.9) def_gen.noncentral_f(0.1, D_arr_0p5, 0.9) def_gen.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1) def_gen.noncentral_f(0.1, D_arr_0p5, 0.9, size=1) def_gen.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9) def_gen.noncentral_f(0.5, D_arr_like_0p5, 0.9) def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9) def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9) def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1) def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1) def_gen.binomial(10, 0.5) def_gen.binomial(10, 0.5, size=None) def_gen.binomial(10, 0.5, size=1) def_gen.binomial(I_arr_10, 0.5) def_gen.binomial(10, D_arr_0p5) def_gen.binomial(I_arr_10, 0.5, size=1) def_gen.binomial(10, D_arr_0p5, size=1) def_gen.binomial(I_arr_like_10, 0.5) def_gen.binomial(10, D_arr_like_0p5) def_gen.binomial(I_arr_10, D_arr_0p5) def_gen.binomial(I_arr_like_10, D_arr_like_0p5) def_gen.binomial(I_arr_10, D_arr_0p5, size=1) def_gen.binomial(I_arr_like_10, D_arr_like_0p5, size=1) def_gen.negative_binomial(10, 0.5) def_gen.negative_binomial(10, 0.5, size=None) def_gen.negative_binomial(10, 0.5, size=1) def_gen.negative_binomial(I_arr_10, 0.5) def_gen.negative_binomial(10, D_arr_0p5) def_gen.negative_binomial(I_arr_10, 0.5, size=1) def_gen.negative_binomial(10, D_arr_0p5, size=1) def_gen.negative_binomial(I_arr_like_10, 0.5) def_gen.negative_binomial(10, D_arr_like_0p5) def_gen.negative_binomial(I_arr_10, D_arr_0p5) def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5) def_gen.negative_binomial(I_arr_10, D_arr_0p5, size=1) def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1) def_gen.hypergeometric(20, 20, 10) def_gen.hypergeometric(20, 20, 10, size=None) def_gen.hypergeometric(20, 20, 10, size=1) def_gen.hypergeometric(I_arr_20, 20, 10) def_gen.hypergeometric(20, I_arr_20, 10) def_gen.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1) def_gen.hypergeometric(20, I_arr_20, 10, size=1) def_gen.hypergeometric(I_arr_like_20, 20, I_arr_10) def_gen.hypergeometric(20, I_arr_like_20, 10) def_gen.hypergeometric(I_arr_20, I_arr_20, 10) def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, 10) def_gen.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1) def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1) I_int64_100: np.ndarray[Any, np.dtype[np.int64]] = np.array([100], dtype=np.int64) def_gen.integers(0, 100) def_gen.integers(100) def_gen.integers([100]) def_gen.integers(0, [100]) I_bool_low: np.ndarray[Any, np.dtype[np.bool_]] = np.array([0], dtype=np.bool_) I_bool_low_like: list[int] = [0] I_bool_high_open: np.ndarray[Any, np.dtype[np.bool_]] = np.array([1], dtype=np.bool_) I_bool_high_closed: np.ndarray[Any, np.dtype[np.bool_]] = np.array([1], dtype=np.bool_) def_gen.integers(2, dtype=bool) def_gen.integers(0, 2, dtype=bool) def_gen.integers(1, dtype=bool, endpoint=True) def_gen.integers(0, 1, dtype=bool, endpoint=True) def_gen.integers(I_bool_low_like, 1, dtype=bool, endpoint=True) def_gen.integers(I_bool_high_open, dtype=bool) def_gen.integers(I_bool_low, I_bool_high_open, dtype=bool) def_gen.integers(0, I_bool_high_open, dtype=bool) def_gen.integers(I_bool_high_closed, dtype=bool, endpoint=True) def_gen.integers(I_bool_low, I_bool_high_closed, dtype=bool, endpoint=True) def_gen.integers(0, I_bool_high_closed, dtype=bool, endpoint=True) def_gen.integers(2, dtype=np.bool_) def_gen.integers(0, 2, dtype=np.bool_) def_gen.integers(1, dtype=np.bool_, endpoint=True) def_gen.integers(0, 1, dtype=np.bool_, endpoint=True) def_gen.integers(I_bool_low_like, 1, dtype=np.bool_, endpoint=True) def_gen.integers(I_bool_high_open, dtype=np.bool_) def_gen.integers(I_bool_low, I_bool_high_open, dtype=np.bool_) def_gen.integers(0, I_bool_high_open, dtype=np.bool_) def_gen.integers(I_bool_high_closed, dtype=np.bool_, endpoint=True) def_gen.integers(I_bool_low, I_bool_high_closed, dtype=np.bool_, endpoint=True) def_gen.integers(0, I_bool_high_closed, dtype=np.bool_, endpoint=True) I_u1_low: np.ndarray[Any, np.dtype[np.uint8]] = np.array([0], dtype=np.uint8) I_u1_low_like: list[int] = [0] I_u1_high_open: np.ndarray[Any, np.dtype[np.uint8]] = np.array([255], dtype=np.uint8) I_u1_high_closed: np.ndarray[Any, np.dtype[np.uint8]] = np.array([255], dtype=np.uint8) def_gen.integers(256, dtype="u1") def_gen.integers(0, 256, dtype="u1") def_gen.integers(255, dtype="u1", endpoint=True) def_gen.integers(0, 255, dtype="u1", endpoint=True) def_gen.integers(I_u1_low_like, 255, dtype="u1", endpoint=True) def_gen.integers(I_u1_high_open, dtype="u1") def_gen.integers(I_u1_low, I_u1_high_open, dtype="u1") def_gen.integers(0, I_u1_high_open, dtype="u1") def_gen.integers(I_u1_high_closed, dtype="u1", endpoint=True) def_gen.integers(I_u1_low, I_u1_high_closed, dtype="u1", endpoint=True) def_gen.integers(0, I_u1_high_closed, dtype="u1", endpoint=True) def_gen.integers(256, dtype="uint8") def_gen.integers(0, 256, dtype="uint8") def_gen.integers(255, dtype="uint8", endpoint=True) def_gen.integers(0, 255, dtype="uint8", endpoint=True) def_gen.integers(I_u1_low_like, 255, dtype="uint8", endpoint=True) def_gen.integers(I_u1_high_open, dtype="uint8") def_gen.integers(I_u1_low, I_u1_high_open, dtype="uint8") def_gen.integers(0, I_u1_high_open, dtype="uint8") def_gen.integers(I_u1_high_closed, dtype="uint8", endpoint=True) def_gen.integers(I_u1_low, I_u1_high_closed, dtype="uint8", endpoint=True) def_gen.integers(0, I_u1_high_closed, dtype="uint8", endpoint=True) def_gen.integers(256, dtype=np.uint8) def_gen.integers(0, 256, dtype=np.uint8) def_gen.integers(255, dtype=np.uint8, endpoint=True) def_gen.integers(0, 255, dtype=np.uint8, endpoint=True) def_gen.integers(I_u1_low_like, 255, dtype=np.uint8, endpoint=True) def_gen.integers(I_u1_high_open, dtype=np.uint8) def_gen.integers(I_u1_low, I_u1_high_open, dtype=np.uint8) def_gen.integers(0, I_u1_high_open, dtype=np.uint8) def_gen.integers(I_u1_high_closed, dtype=np.uint8, endpoint=True) def_gen.integers(I_u1_low, I_u1_high_closed, dtype=np.uint8, endpoint=True) def_gen.integers(0, I_u1_high_closed, dtype=np.uint8, endpoint=True) I_u2_low: np.ndarray[Any, np.dtype[np.uint16]] = np.array([0], dtype=np.uint16) I_u2_low_like: list[int] = [0] I_u2_high_open: np.ndarray[Any, np.dtype[np.uint16]] = np.array([65535], dtype=np.uint16) I_u2_high_closed: np.ndarray[Any, np.dtype[np.uint16]] = np.array([65535], dtype=np.uint16) def_gen.integers(65536, dtype="u2") def_gen.integers(0, 65536, dtype="u2") def_gen.integers(65535, dtype="u2", endpoint=True) def_gen.integers(0, 65535, dtype="u2", endpoint=True) def_gen.integers(I_u2_low_like, 65535, dtype="u2", endpoint=True) def_gen.integers(I_u2_high_open, dtype="u2") def_gen.integers(I_u2_low, I_u2_high_open, dtype="u2") def_gen.integers(0, I_u2_high_open, dtype="u2") def_gen.integers(I_u2_high_closed, dtype="u2", endpoint=True) def_gen.integers(I_u2_low, I_u2_high_closed, dtype="u2", endpoint=True) def_gen.integers(0, I_u2_high_closed, dtype="u2", endpoint=True) def_gen.integers(65536, dtype="uint16") def_gen.integers(0, 65536, dtype="uint16") def_gen.integers(65535, dtype="uint16", endpoint=True) def_gen.integers(0, 65535, dtype="uint16", endpoint=True) def_gen.integers(I_u2_low_like, 65535, dtype="uint16", endpoint=True) def_gen.integers(I_u2_high_open, dtype="uint16") def_gen.integers(I_u2_low, I_u2_high_open, dtype="uint16") def_gen.integers(0, I_u2_high_open, dtype="uint16") def_gen.integers(I_u2_high_closed, dtype="uint16", endpoint=True) def_gen.integers(I_u2_low, I_u2_high_closed, dtype="uint16", endpoint=True) def_gen.integers(0, I_u2_high_closed, dtype="uint16", endpoint=True) def_gen.integers(65536, dtype=np.uint16) def_gen.integers(0, 65536, dtype=np.uint16) def_gen.integers(65535, dtype=np.uint16, endpoint=True) def_gen.integers(0, 65535, dtype=np.uint16, endpoint=True) def_gen.integers(I_u2_low_like, 65535, dtype=np.uint16, endpoint=True) def_gen.integers(I_u2_high_open, dtype=np.uint16) def_gen.integers(I_u2_low, I_u2_high_open, dtype=np.uint16) def_gen.integers(0, I_u2_high_open, dtype=np.uint16) def_gen.integers(I_u2_high_closed, dtype=np.uint16, endpoint=True) def_gen.integers(I_u2_low, I_u2_high_closed, dtype=np.uint16, endpoint=True) def_gen.integers(0, I_u2_high_closed, dtype=np.uint16, endpoint=True) I_u4_low: np.ndarray[Any, np.dtype[np.uint32]] = np.array([0], dtype=np.uint32) I_u4_low_like: list[int] = [0] I_u4_high_open: np.ndarray[Any, np.dtype[np.uint32]] = np.array([4294967295], dtype=np.uint32) I_u4_high_closed: np.ndarray[Any, np.dtype[np.uint32]] = np.array([4294967295], dtype=np.uint32) def_gen.integers(4294967296, dtype="u4") def_gen.integers(0, 4294967296, dtype="u4") def_gen.integers(4294967295, dtype="u4", endpoint=True) def_gen.integers(0, 4294967295, dtype="u4", endpoint=True) def_gen.integers(I_u4_low_like, 4294967295, dtype="u4", endpoint=True) def_gen.integers(I_u4_high_open, dtype="u4") def_gen.integers(I_u4_low, I_u4_high_open, dtype="u4") def_gen.integers(0, I_u4_high_open, dtype="u4") def_gen.integers(I_u4_high_closed, dtype="u4", endpoint=True) def_gen.integers(I_u4_low, I_u4_high_closed, dtype="u4", endpoint=True) def_gen.integers(0, I_u4_high_closed, dtype="u4", endpoint=True) def_gen.integers(4294967296, dtype="uint32") def_gen.integers(0, 4294967296, dtype="uint32") def_gen.integers(4294967295, dtype="uint32", endpoint=True) def_gen.integers(0, 4294967295, dtype="uint32", endpoint=True) def_gen.integers(I_u4_low_like, 4294967295, dtype="uint32", endpoint=True) def_gen.integers(I_u4_high_open, dtype="uint32") def_gen.integers(I_u4_low, I_u4_high_open, dtype="uint32") def_gen.integers(0, I_u4_high_open, dtype="uint32") def_gen.integers(I_u4_high_closed, dtype="uint32", endpoint=True) def_gen.integers(I_u4_low, I_u4_high_closed, dtype="uint32", endpoint=True) def_gen.integers(0, I_u4_high_closed, dtype="uint32", endpoint=True) def_gen.integers(4294967296, dtype=np.uint32) def_gen.integers(0, 4294967296, dtype=np.uint32) def_gen.integers(4294967295, dtype=np.uint32, endpoint=True) def_gen.integers(0, 4294967295, dtype=np.uint32, endpoint=True) def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint32, endpoint=True) def_gen.integers(I_u4_high_open, dtype=np.uint32) def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint32) def_gen.integers(0, I_u4_high_open, dtype=np.uint32) def_gen.integers(I_u4_high_closed, dtype=np.uint32, endpoint=True) def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint32, endpoint=True) def_gen.integers(0, I_u4_high_closed, dtype=np.uint32, endpoint=True) I_u8_low: np.ndarray[Any, np.dtype[np.uint64]] = np.array([0], dtype=np.uint64) I_u8_low_like: list[int] = [0] I_u8_high_open: np.ndarray[Any, np.dtype[np.uint64]] = np.array([18446744073709551615], dtype=np.uint64) I_u8_high_closed: np.ndarray[Any, np.dtype[np.uint64]] = np.array([18446744073709551615], dtype=np.uint64) def_gen.integers(18446744073709551616, dtype="u8") def_gen.integers(0, 18446744073709551616, dtype="u8") def_gen.integers(18446744073709551615, dtype="u8", endpoint=True) def_gen.integers(0, 18446744073709551615, dtype="u8", endpoint=True) def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="u8", endpoint=True) def_gen.integers(I_u8_high_open, dtype="u8") def_gen.integers(I_u8_low, I_u8_high_open, dtype="u8") def_gen.integers(0, I_u8_high_open, dtype="u8") def_gen.integers(I_u8_high_closed, dtype="u8", endpoint=True) def_gen.integers(I_u8_low, I_u8_high_closed, dtype="u8", endpoint=True) def_gen.integers(0, I_u8_high_closed, dtype="u8", endpoint=True) def_gen.integers(18446744073709551616, dtype="uint64") def_gen.integers(0, 18446744073709551616, dtype="uint64") def_gen.integers(18446744073709551615, dtype="uint64", endpoint=True) def_gen.integers(0, 18446744073709551615, dtype="uint64", endpoint=True) def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="uint64", endpoint=True) def_gen.integers(I_u8_high_open, dtype="uint64") def_gen.integers(I_u8_low, I_u8_high_open, dtype="uint64") def_gen.integers(0, I_u8_high_open, dtype="uint64") def_gen.integers(I_u8_high_closed, dtype="uint64", endpoint=True) def_gen.integers(I_u8_low, I_u8_high_closed, dtype="uint64", endpoint=True) def_gen.integers(0, I_u8_high_closed, dtype="uint64", endpoint=True) def_gen.integers(18446744073709551616, dtype=np.uint64) def_gen.integers(0, 18446744073709551616, dtype=np.uint64) def_gen.integers(18446744073709551615, dtype=np.uint64, endpoint=True) def_gen.integers(0, 18446744073709551615, dtype=np.uint64, endpoint=True) def_gen.integers(I_u8_low_like, 18446744073709551615, dtype=np.uint64, endpoint=True) def_gen.integers(I_u8_high_open, dtype=np.uint64) def_gen.integers(I_u8_low, I_u8_high_open, dtype=np.uint64) def_gen.integers(0, I_u8_high_open, dtype=np.uint64) def_gen.integers(I_u8_high_closed, dtype=np.uint64, endpoint=True) def_gen.integers(I_u8_low, I_u8_high_closed, dtype=np.uint64, endpoint=True) def_gen.integers(0, I_u8_high_closed, dtype=np.uint64, endpoint=True) I_i1_low: np.ndarray[Any, np.dtype[np.int8]] = np.array([-128], dtype=np.int8) I_i1_low_like: list[int] = [-128] I_i1_high_open: np.ndarray[Any, np.dtype[np.int8]] = np.array([127], dtype=np.int8) I_i1_high_closed: np.ndarray[Any, np.dtype[np.int8]] = np.array([127], dtype=np.int8) def_gen.integers(128, dtype="i1") def_gen.integers(-128, 128, dtype="i1") def_gen.integers(127, dtype="i1", endpoint=True) def_gen.integers(-128, 127, dtype="i1", endpoint=True) def_gen.integers(I_i1_low_like, 127, dtype="i1", endpoint=True) def_gen.integers(I_i1_high_open, dtype="i1") def_gen.integers(I_i1_low, I_i1_high_open, dtype="i1") def_gen.integers(-128, I_i1_high_open, dtype="i1") def_gen.integers(I_i1_high_closed, dtype="i1", endpoint=True) def_gen.integers(I_i1_low, I_i1_high_closed, dtype="i1", endpoint=True) def_gen.integers(-128, I_i1_high_closed, dtype="i1", endpoint=True) def_gen.integers(128, dtype="int8") def_gen.integers(-128, 128, dtype="int8") def_gen.integers(127, dtype="int8", endpoint=True) def_gen.integers(-128, 127, dtype="int8", endpoint=True) def_gen.integers(I_i1_low_like, 127, dtype="int8", endpoint=True) def_gen.integers(I_i1_high_open, dtype="int8") def_gen.integers(I_i1_low, I_i1_high_open, dtype="int8") def_gen.integers(-128, I_i1_high_open, dtype="int8") def_gen.integers(I_i1_high_closed, dtype="int8", endpoint=True) def_gen.integers(I_i1_low, I_i1_high_closed, dtype="int8", endpoint=True) def_gen.integers(-128, I_i1_high_closed, dtype="int8", endpoint=True) def_gen.integers(128, dtype=np.int8) def_gen.integers(-128, 128, dtype=np.int8) def_gen.integers(127, dtype=np.int8, endpoint=True) def_gen.integers(-128, 127, dtype=np.int8, endpoint=True) def_gen.integers(I_i1_low_like, 127, dtype=np.int8, endpoint=True) def_gen.integers(I_i1_high_open, dtype=np.int8) def_gen.integers(I_i1_low, I_i1_high_open, dtype=np.int8) def_gen.integers(-128, I_i1_high_open, dtype=np.int8) def_gen.integers(I_i1_high_closed, dtype=np.int8, endpoint=True) def_gen.integers(I_i1_low, I_i1_high_closed, dtype=np.int8, endpoint=True) def_gen.integers(-128, I_i1_high_closed, dtype=np.int8, endpoint=True) I_i2_low: np.ndarray[Any, np.dtype[np.int16]] = np.array([-32768], dtype=np.int16) I_i2_low_like: list[int] = [-32768] I_i2_high_open: np.ndarray[Any, np.dtype[np.int16]] = np.array([32767], dtype=np.int16) I_i2_high_closed: np.ndarray[Any, np.dtype[np.int16]] = np.array([32767], dtype=np.int16) def_gen.integers(32768, dtype="i2") def_gen.integers(-32768, 32768, dtype="i2") def_gen.integers(32767, dtype="i2", endpoint=True) def_gen.integers(-32768, 32767, dtype="i2", endpoint=True) def_gen.integers(I_i2_low_like, 32767, dtype="i2", endpoint=True) def_gen.integers(I_i2_high_open, dtype="i2") def_gen.integers(I_i2_low, I_i2_high_open, dtype="i2") def_gen.integers(-32768, I_i2_high_open, dtype="i2") def_gen.integers(I_i2_high_closed, dtype="i2", endpoint=True) def_gen.integers(I_i2_low, I_i2_high_closed, dtype="i2", endpoint=True) def_gen.integers(-32768, I_i2_high_closed, dtype="i2", endpoint=True) def_gen.integers(32768, dtype="int16") def_gen.integers(-32768, 32768, dtype="int16") def_gen.integers(32767, dtype="int16", endpoint=True) def_gen.integers(-32768, 32767, dtype="int16", endpoint=True) def_gen.integers(I_i2_low_like, 32767, dtype="int16", endpoint=True) def_gen.integers(I_i2_high_open, dtype="int16") def_gen.integers(I_i2_low, I_i2_high_open, dtype="int16") def_gen.integers(-32768, I_i2_high_open, dtype="int16") def_gen.integers(I_i2_high_closed, dtype="int16", endpoint=True) def_gen.integers(I_i2_low, I_i2_high_closed, dtype="int16", endpoint=True) def_gen.integers(-32768, I_i2_high_closed, dtype="int16", endpoint=True) def_gen.integers(32768, dtype=np.int16) def_gen.integers(-32768, 32768, dtype=np.int16) def_gen.integers(32767, dtype=np.int16, endpoint=True) def_gen.integers(-32768, 32767, dtype=np.int16, endpoint=True) def_gen.integers(I_i2_low_like, 32767, dtype=np.int16, endpoint=True) def_gen.integers(I_i2_high_open, dtype=np.int16) def_gen.integers(I_i2_low, I_i2_high_open, dtype=np.int16) def_gen.integers(-32768, I_i2_high_open, dtype=np.int16) def_gen.integers(I_i2_high_closed, dtype=np.int16, endpoint=True) def_gen.integers(I_i2_low, I_i2_high_closed, dtype=np.int16, endpoint=True) def_gen.integers(-32768, I_i2_high_closed, dtype=np.int16, endpoint=True) I_i4_low: np.ndarray[Any, np.dtype[np.int32]] = np.array([-2147483648], dtype=np.int32) I_i4_low_like: list[int] = [-2147483648] I_i4_high_open: np.ndarray[Any, np.dtype[np.int32]] = np.array([2147483647], dtype=np.int32) I_i4_high_closed: np.ndarray[Any, np.dtype[np.int32]] = np.array([2147483647], dtype=np.int32) def_gen.integers(2147483648, dtype="i4") def_gen.integers(-2147483648, 2147483648, dtype="i4") def_gen.integers(2147483647, dtype="i4", endpoint=True) def_gen.integers(-2147483648, 2147483647, dtype="i4", endpoint=True) def_gen.integers(I_i4_low_like, 2147483647, dtype="i4", endpoint=True) def_gen.integers(I_i4_high_open, dtype="i4") def_gen.integers(I_i4_low, I_i4_high_open, dtype="i4") def_gen.integers(-2147483648, I_i4_high_open, dtype="i4") def_gen.integers(I_i4_high_closed, dtype="i4", endpoint=True) def_gen.integers(I_i4_low, I_i4_high_closed, dtype="i4", endpoint=True) def_gen.integers(-2147483648, I_i4_high_closed, dtype="i4", endpoint=True) def_gen.integers(2147483648, dtype="int32") def_gen.integers(-2147483648, 2147483648, dtype="int32") def_gen.integers(2147483647, dtype="int32", endpoint=True) def_gen.integers(-2147483648, 2147483647, dtype="int32", endpoint=True) def_gen.integers(I_i4_low_like, 2147483647, dtype="int32", endpoint=True) def_gen.integers(I_i4_high_open, dtype="int32") def_gen.integers(I_i4_low, I_i4_high_open, dtype="int32") def_gen.integers(-2147483648, I_i4_high_open, dtype="int32") def_gen.integers(I_i4_high_closed, dtype="int32", endpoint=True) def_gen.integers(I_i4_low, I_i4_high_closed, dtype="int32", endpoint=True) def_gen.integers(-2147483648, I_i4_high_closed, dtype="int32", endpoint=True) def_gen.integers(2147483648, dtype=np.int32) def_gen.integers(-2147483648, 2147483648, dtype=np.int32) def_gen.integers(2147483647, dtype=np.int32, endpoint=True) def_gen.integers(-2147483648, 2147483647, dtype=np.int32, endpoint=True) def_gen.integers(I_i4_low_like, 2147483647, dtype=np.int32, endpoint=True) def_gen.integers(I_i4_high_open, dtype=np.int32) def_gen.integers(I_i4_low, I_i4_high_open, dtype=np.int32) def_gen.integers(-2147483648, I_i4_high_open, dtype=np.int32) def_gen.integers(I_i4_high_closed, dtype=np.int32, endpoint=True) def_gen.integers(I_i4_low, I_i4_high_closed, dtype=np.int32, endpoint=True) def_gen.integers(-2147483648, I_i4_high_closed, dtype=np.int32, endpoint=True) I_i8_low: np.ndarray[Any, np.dtype[np.int64]] = np.array([-9223372036854775808], dtype=np.int64) I_i8_low_like: list[int] = [-9223372036854775808] I_i8_high_open: np.ndarray[Any, np.dtype[np.int64]] = np.array([9223372036854775807], dtype=np.int64) I_i8_high_closed: np.ndarray[Any, np.dtype[np.int64]] = np.array([9223372036854775807], dtype=np.int64) def_gen.integers(9223372036854775808, dtype="i8") def_gen.integers(-9223372036854775808, 9223372036854775808, dtype="i8") def_gen.integers(9223372036854775807, dtype="i8", endpoint=True) def_gen.integers(-9223372036854775808, 9223372036854775807, dtype="i8", endpoint=True) def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="i8", endpoint=True) def_gen.integers(I_i8_high_open, dtype="i8") def_gen.integers(I_i8_low, I_i8_high_open, dtype="i8") def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="i8") def_gen.integers(I_i8_high_closed, dtype="i8", endpoint=True) def_gen.integers(I_i8_low, I_i8_high_closed, dtype="i8", endpoint=True) def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="i8", endpoint=True) def_gen.integers(9223372036854775808, dtype="int64") def_gen.integers(-9223372036854775808, 9223372036854775808, dtype="int64") def_gen.integers(9223372036854775807, dtype="int64", endpoint=True) def_gen.integers(-9223372036854775808, 9223372036854775807, dtype="int64", endpoint=True) def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="int64", endpoint=True) def_gen.integers(I_i8_high_open, dtype="int64") def_gen.integers(I_i8_low, I_i8_high_open, dtype="int64") def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="int64") def_gen.integers(I_i8_high_closed, dtype="int64", endpoint=True) def_gen.integers(I_i8_low, I_i8_high_closed, dtype="int64", endpoint=True) def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="int64", endpoint=True) def_gen.integers(9223372036854775808, dtype=np.int64) def_gen.integers(-9223372036854775808, 9223372036854775808, dtype=np.int64) def_gen.integers(9223372036854775807, dtype=np.int64, endpoint=True) def_gen.integers(-9223372036854775808, 9223372036854775807, dtype=np.int64, endpoint=True) def_gen.integers(I_i8_low_like, 9223372036854775807, dtype=np.int64, endpoint=True) def_gen.integers(I_i8_high_open, dtype=np.int64) def_gen.integers(I_i8_low, I_i8_high_open, dtype=np.int64) def_gen.integers(-9223372036854775808, I_i8_high_open, dtype=np.int64) def_gen.integers(I_i8_high_closed, dtype=np.int64, endpoint=True) def_gen.integers(I_i8_low, I_i8_high_closed, dtype=np.int64, endpoint=True) def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype=np.int64, endpoint=True) def_gen.bit_generator def_gen.bytes(2) def_gen.choice(5) def_gen.choice(5, 3) def_gen.choice(5, 3, replace=True) def_gen.choice(5, 3, p=[1 / 5] * 5) def_gen.choice(5, 3, p=[1 / 5] * 5, replace=False) def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"]) def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3) def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4) def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True) def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4])) def_gen.dirichlet([0.5, 0.5]) def_gen.dirichlet(np.array([0.5, 0.5])) def_gen.dirichlet(np.array([0.5, 0.5]), size=3) def_gen.multinomial(20, [1 / 6.0] * 6) def_gen.multinomial(20, np.array([0.5, 0.5])) def_gen.multinomial(20, [1 / 6.0] * 6, size=2) def_gen.multinomial([[10], [20]], [1 / 6.0] * 6, size=(2, 2)) def_gen.multinomial(np.array([[10], [20]]), np.array([0.5, 0.5]), size=(2, 2)) def_gen.multivariate_hypergeometric([3, 5, 7], 2) def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2) def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=4) def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=(4, 7)) def_gen.multivariate_hypergeometric([3, 5, 7], 2, method="count") def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, method="marginals") def_gen.multivariate_normal([0.0], [[1.0]]) def_gen.multivariate_normal([0.0], np.array([[1.0]])) def_gen.multivariate_normal(np.array([0.0]), [[1.0]]) def_gen.multivariate_normal([0.0], np.array([[1.0]])) def_gen.permutation(10) def_gen.permutation([1, 2, 3, 4]) def_gen.permutation(np.array([1, 2, 3, 4])) def_gen.permutation(D_2D, axis=1) def_gen.permuted(D_2D) def_gen.permuted(D_2D_like) def_gen.permuted(D_2D, axis=1) def_gen.permuted(D_2D, out=D_2D) def_gen.permuted(D_2D_like, out=D_2D) def_gen.permuted(D_2D_like, out=D_2D) def_gen.permuted(D_2D, axis=1, out=D_2D) def_gen.shuffle(np.arange(10)) def_gen.shuffle([1, 2, 3, 4, 5]) def_gen.shuffle(D_2D, axis=1) def_gen.__str__() def_gen.__repr__() def_gen_state: dict[str, Any] def_gen_state = def_gen.__getstate__() def_gen.__setstate__(def_gen_state) # RandomState random_st: np.random.RandomState = np.random.RandomState() random_st.standard_normal() random_st.standard_normal(size=None) random_st.standard_normal(size=1) random_st.random() random_st.random(size=None) random_st.random(size=1) random_st.standard_cauchy() random_st.standard_cauchy(size=None) random_st.standard_cauchy(size=1) random_st.standard_exponential() random_st.standard_exponential(size=None) random_st.standard_exponential(size=1) random_st.zipf(1.5) random_st.zipf(1.5, size=None) random_st.zipf(1.5, size=1) random_st.zipf(D_arr_1p5) random_st.zipf(D_arr_1p5, size=1) random_st.zipf(D_arr_like_1p5) random_st.zipf(D_arr_like_1p5, size=1) random_st.weibull(0.5) random_st.weibull(0.5, size=None) random_st.weibull(0.5, size=1) random_st.weibull(D_arr_0p5) random_st.weibull(D_arr_0p5, size=1) random_st.weibull(D_arr_like_0p5) random_st.weibull(D_arr_like_0p5, size=1) random_st.standard_t(0.5) random_st.standard_t(0.5, size=None) random_st.standard_t(0.5, size=1) random_st.standard_t(D_arr_0p5) random_st.standard_t(D_arr_0p5, size=1) random_st.standard_t(D_arr_like_0p5) random_st.standard_t(D_arr_like_0p5, size=1) random_st.poisson(0.5) random_st.poisson(0.5, size=None) random_st.poisson(0.5, size=1) random_st.poisson(D_arr_0p5) random_st.poisson(D_arr_0p5, size=1) random_st.poisson(D_arr_like_0p5) random_st.poisson(D_arr_like_0p5, size=1) random_st.power(0.5) random_st.power(0.5, size=None) random_st.power(0.5, size=1) random_st.power(D_arr_0p5) random_st.power(D_arr_0p5, size=1) random_st.power(D_arr_like_0p5) random_st.power(D_arr_like_0p5, size=1) random_st.pareto(0.5) random_st.pareto(0.5, size=None) random_st.pareto(0.5, size=1) random_st.pareto(D_arr_0p5) random_st.pareto(D_arr_0p5, size=1) random_st.pareto(D_arr_like_0p5) random_st.pareto(D_arr_like_0p5, size=1) random_st.chisquare(0.5) random_st.chisquare(0.5, size=None) random_st.chisquare(0.5, size=1) random_st.chisquare(D_arr_0p5) random_st.chisquare(D_arr_0p5, size=1) random_st.chisquare(D_arr_like_0p5) random_st.chisquare(D_arr_like_0p5, size=1) random_st.exponential(0.5) random_st.exponential(0.5, size=None) random_st.exponential(0.5, size=1) random_st.exponential(D_arr_0p5) random_st.exponential(D_arr_0p5, size=1) random_st.exponential(D_arr_like_0p5) random_st.exponential(D_arr_like_0p5, size=1) random_st.geometric(0.5) random_st.geometric(0.5, size=None) random_st.geometric(0.5, size=1) random_st.geometric(D_arr_0p5) random_st.geometric(D_arr_0p5, size=1) random_st.geometric(D_arr_like_0p5) random_st.geometric(D_arr_like_0p5, size=1) random_st.logseries(0.5) random_st.logseries(0.5, size=None) random_st.logseries(0.5, size=1) random_st.logseries(D_arr_0p5) random_st.logseries(D_arr_0p5, size=1) random_st.logseries(D_arr_like_0p5) random_st.logseries(D_arr_like_0p5, size=1) random_st.rayleigh(0.5) random_st.rayleigh(0.5, size=None) random_st.rayleigh(0.5, size=1) random_st.rayleigh(D_arr_0p5) random_st.rayleigh(D_arr_0p5, size=1) random_st.rayleigh(D_arr_like_0p5) random_st.rayleigh(D_arr_like_0p5, size=1) random_st.standard_gamma(0.5) random_st.standard_gamma(0.5, size=None) random_st.standard_gamma(0.5, size=1) random_st.standard_gamma(D_arr_0p5) random_st.standard_gamma(D_arr_0p5, size=1) random_st.standard_gamma(D_arr_like_0p5) random_st.standard_gamma(D_arr_like_0p5, size=1) random_st.standard_gamma(D_arr_like_0p5, size=1) random_st.vonmises(0.5, 0.5) random_st.vonmises(0.5, 0.5, size=None) random_st.vonmises(0.5, 0.5, size=1) random_st.vonmises(D_arr_0p5, 0.5) random_st.vonmises(0.5, D_arr_0p5) random_st.vonmises(D_arr_0p5, 0.5, size=1) random_st.vonmises(0.5, D_arr_0p5, size=1) random_st.vonmises(D_arr_like_0p5, 0.5) random_st.vonmises(0.5, D_arr_like_0p5) random_st.vonmises(D_arr_0p5, D_arr_0p5) random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5) random_st.vonmises(D_arr_0p5, D_arr_0p5, size=1) random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.wald(0.5, 0.5) random_st.wald(0.5, 0.5, size=None) random_st.wald(0.5, 0.5, size=1) random_st.wald(D_arr_0p5, 0.5) random_st.wald(0.5, D_arr_0p5) random_st.wald(D_arr_0p5, 0.5, size=1) random_st.wald(0.5, D_arr_0p5, size=1) random_st.wald(D_arr_like_0p5, 0.5) random_st.wald(0.5, D_arr_like_0p5) random_st.wald(D_arr_0p5, D_arr_0p5) random_st.wald(D_arr_like_0p5, D_arr_like_0p5) random_st.wald(D_arr_0p5, D_arr_0p5, size=1) random_st.wald(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.uniform(0.5, 0.5) random_st.uniform(0.5, 0.5, size=None) random_st.uniform(0.5, 0.5, size=1) random_st.uniform(D_arr_0p5, 0.5) random_st.uniform(0.5, D_arr_0p5) random_st.uniform(D_arr_0p5, 0.5, size=1) random_st.uniform(0.5, D_arr_0p5, size=1) random_st.uniform(D_arr_like_0p5, 0.5) random_st.uniform(0.5, D_arr_like_0p5) random_st.uniform(D_arr_0p5, D_arr_0p5) random_st.uniform(D_arr_like_0p5, D_arr_like_0p5) random_st.uniform(D_arr_0p5, D_arr_0p5, size=1) random_st.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.beta(0.5, 0.5) random_st.beta(0.5, 0.5, size=None) random_st.beta(0.5, 0.5, size=1) random_st.beta(D_arr_0p5, 0.5) random_st.beta(0.5, D_arr_0p5) random_st.beta(D_arr_0p5, 0.5, size=1) random_st.beta(0.5, D_arr_0p5, size=1) random_st.beta(D_arr_like_0p5, 0.5) random_st.beta(0.5, D_arr_like_0p5) random_st.beta(D_arr_0p5, D_arr_0p5) random_st.beta(D_arr_like_0p5, D_arr_like_0p5) random_st.beta(D_arr_0p5, D_arr_0p5, size=1) random_st.beta(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.f(0.5, 0.5) random_st.f(0.5, 0.5, size=None) random_st.f(0.5, 0.5, size=1) random_st.f(D_arr_0p5, 0.5) random_st.f(0.5, D_arr_0p5) random_st.f(D_arr_0p5, 0.5, size=1) random_st.f(0.5, D_arr_0p5, size=1) random_st.f(D_arr_like_0p5, 0.5) random_st.f(0.5, D_arr_like_0p5) random_st.f(D_arr_0p5, D_arr_0p5) random_st.f(D_arr_like_0p5, D_arr_like_0p5) random_st.f(D_arr_0p5, D_arr_0p5, size=1) random_st.f(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.gamma(0.5, 0.5) random_st.gamma(0.5, 0.5, size=None) random_st.gamma(0.5, 0.5, size=1) random_st.gamma(D_arr_0p5, 0.5) random_st.gamma(0.5, D_arr_0p5) random_st.gamma(D_arr_0p5, 0.5, size=1) random_st.gamma(0.5, D_arr_0p5, size=1) random_st.gamma(D_arr_like_0p5, 0.5) random_st.gamma(0.5, D_arr_like_0p5) random_st.gamma(D_arr_0p5, D_arr_0p5) random_st.gamma(D_arr_like_0p5, D_arr_like_0p5) random_st.gamma(D_arr_0p5, D_arr_0p5, size=1) random_st.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.gumbel(0.5, 0.5) random_st.gumbel(0.5, 0.5, size=None) random_st.gumbel(0.5, 0.5, size=1) random_st.gumbel(D_arr_0p5, 0.5) random_st.gumbel(0.5, D_arr_0p5) random_st.gumbel(D_arr_0p5, 0.5, size=1) random_st.gumbel(0.5, D_arr_0p5, size=1) random_st.gumbel(D_arr_like_0p5, 0.5) random_st.gumbel(0.5, D_arr_like_0p5) random_st.gumbel(D_arr_0p5, D_arr_0p5) random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5) random_st.gumbel(D_arr_0p5, D_arr_0p5, size=1) random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.laplace(0.5, 0.5) random_st.laplace(0.5, 0.5, size=None) random_st.laplace(0.5, 0.5, size=1) random_st.laplace(D_arr_0p5, 0.5) random_st.laplace(0.5, D_arr_0p5) random_st.laplace(D_arr_0p5, 0.5, size=1) random_st.laplace(0.5, D_arr_0p5, size=1) random_st.laplace(D_arr_like_0p5, 0.5) random_st.laplace(0.5, D_arr_like_0p5) random_st.laplace(D_arr_0p5, D_arr_0p5) random_st.laplace(D_arr_like_0p5, D_arr_like_0p5) random_st.laplace(D_arr_0p5, D_arr_0p5, size=1) random_st.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.logistic(0.5, 0.5) random_st.logistic(0.5, 0.5, size=None) random_st.logistic(0.5, 0.5, size=1) random_st.logistic(D_arr_0p5, 0.5) random_st.logistic(0.5, D_arr_0p5) random_st.logistic(D_arr_0p5, 0.5, size=1) random_st.logistic(0.5, D_arr_0p5, size=1) random_st.logistic(D_arr_like_0p5, 0.5) random_st.logistic(0.5, D_arr_like_0p5) random_st.logistic(D_arr_0p5, D_arr_0p5) random_st.logistic(D_arr_like_0p5, D_arr_like_0p5) random_st.logistic(D_arr_0p5, D_arr_0p5, size=1) random_st.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.lognormal(0.5, 0.5) random_st.lognormal(0.5, 0.5, size=None) random_st.lognormal(0.5, 0.5, size=1) random_st.lognormal(D_arr_0p5, 0.5) random_st.lognormal(0.5, D_arr_0p5) random_st.lognormal(D_arr_0p5, 0.5, size=1) random_st.lognormal(0.5, D_arr_0p5, size=1) random_st.lognormal(D_arr_like_0p5, 0.5) random_st.lognormal(0.5, D_arr_like_0p5) random_st.lognormal(D_arr_0p5, D_arr_0p5) random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5) random_st.lognormal(D_arr_0p5, D_arr_0p5, size=1) random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.noncentral_chisquare(0.5, 0.5) random_st.noncentral_chisquare(0.5, 0.5, size=None) random_st.noncentral_chisquare(0.5, 0.5, size=1) random_st.noncentral_chisquare(D_arr_0p5, 0.5) random_st.noncentral_chisquare(0.5, D_arr_0p5) random_st.noncentral_chisquare(D_arr_0p5, 0.5, size=1) random_st.noncentral_chisquare(0.5, D_arr_0p5, size=1) random_st.noncentral_chisquare(D_arr_like_0p5, 0.5) random_st.noncentral_chisquare(0.5, D_arr_like_0p5) random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5) random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5) random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1) random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.normal(0.5, 0.5) random_st.normal(0.5, 0.5, size=None) random_st.normal(0.5, 0.5, size=1) random_st.normal(D_arr_0p5, 0.5) random_st.normal(0.5, D_arr_0p5) random_st.normal(D_arr_0p5, 0.5, size=1) random_st.normal(0.5, D_arr_0p5, size=1) random_st.normal(D_arr_like_0p5, 0.5) random_st.normal(0.5, D_arr_like_0p5) random_st.normal(D_arr_0p5, D_arr_0p5) random_st.normal(D_arr_like_0p5, D_arr_like_0p5) random_st.normal(D_arr_0p5, D_arr_0p5, size=1) random_st.normal(D_arr_like_0p5, D_arr_like_0p5, size=1) random_st.triangular(0.1, 0.5, 0.9) random_st.triangular(0.1, 0.5, 0.9, size=None) random_st.triangular(0.1, 0.5, 0.9, size=1) random_st.triangular(D_arr_0p1, 0.5, 0.9) random_st.triangular(0.1, D_arr_0p5, 0.9) random_st.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1) random_st.triangular(0.1, D_arr_0p5, 0.9, size=1) random_st.triangular(D_arr_like_0p1, 0.5, D_arr_0p9) random_st.triangular(0.5, D_arr_like_0p5, 0.9) random_st.triangular(D_arr_0p1, D_arr_0p5, 0.9) random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9) random_st.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1) random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1) random_st.noncentral_f(0.1, 0.5, 0.9) random_st.noncentral_f(0.1, 0.5, 0.9, size=None) random_st.noncentral_f(0.1, 0.5, 0.9, size=1) random_st.noncentral_f(D_arr_0p1, 0.5, 0.9) random_st.noncentral_f(0.1, D_arr_0p5, 0.9) random_st.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1) random_st.noncentral_f(0.1, D_arr_0p5, 0.9, size=1) random_st.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9) random_st.noncentral_f(0.5, D_arr_like_0p5, 0.9) random_st.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9) random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9) random_st.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1) random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1) random_st.binomial(10, 0.5) random_st.binomial(10, 0.5, size=None) random_st.binomial(10, 0.5, size=1) random_st.binomial(I_arr_10, 0.5) random_st.binomial(10, D_arr_0p5) random_st.binomial(I_arr_10, 0.5, size=1) random_st.binomial(10, D_arr_0p5, size=1) random_st.binomial(I_arr_like_10, 0.5) random_st.binomial(10, D_arr_like_0p5) random_st.binomial(I_arr_10, D_arr_0p5) random_st.binomial(I_arr_like_10, D_arr_like_0p5) random_st.binomial(I_arr_10, D_arr_0p5, size=1) random_st.binomial(I_arr_like_10, D_arr_like_0p5, size=1) random_st.negative_binomial(10, 0.5) random_st.negative_binomial(10, 0.5, size=None) random_st.negative_binomial(10, 0.5, size=1) random_st.negative_binomial(I_arr_10, 0.5) random_st.negative_binomial(10, D_arr_0p5) random_st.negative_binomial(I_arr_10, 0.5, size=1) random_st.negative_binomial(10, D_arr_0p5, size=1) random_st.negative_binomial(I_arr_like_10, 0.5) random_st.negative_binomial(10, D_arr_like_0p5) random_st.negative_binomial(I_arr_10, D_arr_0p5) random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5) random_st.negative_binomial(I_arr_10, D_arr_0p5, size=1) random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1) random_st.hypergeometric(20, 20, 10) random_st.hypergeometric(20, 20, 10, size=None) random_st.hypergeometric(20, 20, 10, size=1) random_st.hypergeometric(I_arr_20, 20, 10) random_st.hypergeometric(20, I_arr_20, 10) random_st.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1) random_st.hypergeometric(20, I_arr_20, 10, size=1) random_st.hypergeometric(I_arr_like_20, 20, I_arr_10) random_st.hypergeometric(20, I_arr_like_20, 10) random_st.hypergeometric(I_arr_20, I_arr_20, 10) random_st.hypergeometric(I_arr_like_20, I_arr_like_20, 10) random_st.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1) random_st.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1) random_st.randint(0, 100) random_st.randint(100) random_st.randint([100]) random_st.randint(0, [100]) random_st.randint(2, dtype=bool) random_st.randint(0, 2, dtype=bool) random_st.randint(I_bool_high_open, dtype=bool) random_st.randint(I_bool_low, I_bool_high_open, dtype=bool) random_st.randint(0, I_bool_high_open, dtype=bool) random_st.randint(2, dtype=np.bool_) random_st.randint(0, 2, dtype=np.bool_) random_st.randint(I_bool_high_open, dtype=np.bool_) random_st.randint(I_bool_low, I_bool_high_open, dtype=np.bool_) random_st.randint(0, I_bool_high_open, dtype=np.bool_) random_st.randint(256, dtype="u1") random_st.randint(0, 256, dtype="u1") random_st.randint(I_u1_high_open, dtype="u1") random_st.randint(I_u1_low, I_u1_high_open, dtype="u1") random_st.randint(0, I_u1_high_open, dtype="u1") random_st.randint(256, dtype="uint8") random_st.randint(0, 256, dtype="uint8") random_st.randint(I_u1_high_open, dtype="uint8") random_st.randint(I_u1_low, I_u1_high_open, dtype="uint8") random_st.randint(0, I_u1_high_open, dtype="uint8") random_st.randint(256, dtype=np.uint8) random_st.randint(0, 256, dtype=np.uint8) random_st.randint(I_u1_high_open, dtype=np.uint8) random_st.randint(I_u1_low, I_u1_high_open, dtype=np.uint8) random_st.randint(0, I_u1_high_open, dtype=np.uint8) random_st.randint(65536, dtype="u2") random_st.randint(0, 65536, dtype="u2") random_st.randint(I_u2_high_open, dtype="u2") random_st.randint(I_u2_low, I_u2_high_open, dtype="u2") random_st.randint(0, I_u2_high_open, dtype="u2") random_st.randint(65536, dtype="uint16") random_st.randint(0, 65536, dtype="uint16") random_st.randint(I_u2_high_open, dtype="uint16") random_st.randint(I_u2_low, I_u2_high_open, dtype="uint16") random_st.randint(0, I_u2_high_open, dtype="uint16") random_st.randint(65536, dtype=np.uint16) random_st.randint(0, 65536, dtype=np.uint16) random_st.randint(I_u2_high_open, dtype=np.uint16) random_st.randint(I_u2_low, I_u2_high_open, dtype=np.uint16) random_st.randint(0, I_u2_high_open, dtype=np.uint16) random_st.randint(4294967296, dtype="u4") random_st.randint(0, 4294967296, dtype="u4") random_st.randint(I_u4_high_open, dtype="u4") random_st.randint(I_u4_low, I_u4_high_open, dtype="u4") random_st.randint(0, I_u4_high_open, dtype="u4") random_st.randint(4294967296, dtype="uint32") random_st.randint(0, 4294967296, dtype="uint32") random_st.randint(I_u4_high_open, dtype="uint32") random_st.randint(I_u4_low, I_u4_high_open, dtype="uint32") random_st.randint(0, I_u4_high_open, dtype="uint32") random_st.randint(4294967296, dtype=np.uint32) random_st.randint(0, 4294967296, dtype=np.uint32) random_st.randint(I_u4_high_open, dtype=np.uint32) random_st.randint(I_u4_low, I_u4_high_open, dtype=np.uint32) random_st.randint(0, I_u4_high_open, dtype=np.uint32) random_st.randint(18446744073709551616, dtype="u8") random_st.randint(0, 18446744073709551616, dtype="u8") random_st.randint(I_u8_high_open, dtype="u8") random_st.randint(I_u8_low, I_u8_high_open, dtype="u8") random_st.randint(0, I_u8_high_open, dtype="u8") random_st.randint(18446744073709551616, dtype="uint64") random_st.randint(0, 18446744073709551616, dtype="uint64") random_st.randint(I_u8_high_open, dtype="uint64") random_st.randint(I_u8_low, I_u8_high_open, dtype="uint64") random_st.randint(0, I_u8_high_open, dtype="uint64") random_st.randint(18446744073709551616, dtype=np.uint64) random_st.randint(0, 18446744073709551616, dtype=np.uint64) random_st.randint(I_u8_high_open, dtype=np.uint64) random_st.randint(I_u8_low, I_u8_high_open, dtype=np.uint64) random_st.randint(0, I_u8_high_open, dtype=np.uint64) random_st.randint(128, dtype="i1") random_st.randint(-128, 128, dtype="i1") random_st.randint(I_i1_high_open, dtype="i1") random_st.randint(I_i1_low, I_i1_high_open, dtype="i1") random_st.randint(-128, I_i1_high_open, dtype="i1") random_st.randint(128, dtype="int8") random_st.randint(-128, 128, dtype="int8") random_st.randint(I_i1_high_open, dtype="int8") random_st.randint(I_i1_low, I_i1_high_open, dtype="int8") random_st.randint(-128, I_i1_high_open, dtype="int8") random_st.randint(128, dtype=np.int8) random_st.randint(-128, 128, dtype=np.int8) random_st.randint(I_i1_high_open, dtype=np.int8) random_st.randint(I_i1_low, I_i1_high_open, dtype=np.int8) random_st.randint(-128, I_i1_high_open, dtype=np.int8) random_st.randint(32768, dtype="i2") random_st.randint(-32768, 32768, dtype="i2") random_st.randint(I_i2_high_open, dtype="i2") random_st.randint(I_i2_low, I_i2_high_open, dtype="i2") random_st.randint(-32768, I_i2_high_open, dtype="i2") random_st.randint(32768, dtype="int16") random_st.randint(-32768, 32768, dtype="int16") random_st.randint(I_i2_high_open, dtype="int16") random_st.randint(I_i2_low, I_i2_high_open, dtype="int16") random_st.randint(-32768, I_i2_high_open, dtype="int16") random_st.randint(32768, dtype=np.int16) random_st.randint(-32768, 32768, dtype=np.int16) random_st.randint(I_i2_high_open, dtype=np.int16) random_st.randint(I_i2_low, I_i2_high_open, dtype=np.int16) random_st.randint(-32768, I_i2_high_open, dtype=np.int16) random_st.randint(2147483648, dtype="i4") random_st.randint(-2147483648, 2147483648, dtype="i4") random_st.randint(I_i4_high_open, dtype="i4") random_st.randint(I_i4_low, I_i4_high_open, dtype="i4") random_st.randint(-2147483648, I_i4_high_open, dtype="i4") random_st.randint(2147483648, dtype="int32") random_st.randint(-2147483648, 2147483648, dtype="int32") random_st.randint(I_i4_high_open, dtype="int32") random_st.randint(I_i4_low, I_i4_high_open, dtype="int32") random_st.randint(-2147483648, I_i4_high_open, dtype="int32") random_st.randint(2147483648, dtype=np.int32) random_st.randint(-2147483648, 2147483648, dtype=np.int32) random_st.randint(I_i4_high_open, dtype=np.int32) random_st.randint(I_i4_low, I_i4_high_open, dtype=np.int32) random_st.randint(-2147483648, I_i4_high_open, dtype=np.int32) random_st.randint(9223372036854775808, dtype="i8") random_st.randint(-9223372036854775808, 9223372036854775808, dtype="i8") random_st.randint(I_i8_high_open, dtype="i8") random_st.randint(I_i8_low, I_i8_high_open, dtype="i8") random_st.randint(-9223372036854775808, I_i8_high_open, dtype="i8") random_st.randint(9223372036854775808, dtype="int64") random_st.randint(-9223372036854775808, 9223372036854775808, dtype="int64") random_st.randint(I_i8_high_open, dtype="int64") random_st.randint(I_i8_low, I_i8_high_open, dtype="int64") random_st.randint(-9223372036854775808, I_i8_high_open, dtype="int64") random_st.randint(9223372036854775808, dtype=np.int64) random_st.randint(-9223372036854775808, 9223372036854775808, dtype=np.int64) random_st.randint(I_i8_high_open, dtype=np.int64) random_st.randint(I_i8_low, I_i8_high_open, dtype=np.int64) random_st.randint(-9223372036854775808, I_i8_high_open, dtype=np.int64) bg: np.random.BitGenerator = random_st._bit_generator random_st.bytes(2) random_st.choice(5) random_st.choice(5, 3) random_st.choice(5, 3, replace=True) random_st.choice(5, 3, p=[1 / 5] * 5) random_st.choice(5, 3, p=[1 / 5] * 5, replace=False) random_st.choice(["pooh", "rabbit", "piglet", "Christopher"]) random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3) random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4) random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True) random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4])) random_st.dirichlet([0.5, 0.5]) random_st.dirichlet(np.array([0.5, 0.5])) random_st.dirichlet(np.array([0.5, 0.5]), size=3) random_st.multinomial(20, [1 / 6.0] * 6) random_st.multinomial(20, np.array([0.5, 0.5])) random_st.multinomial(20, [1 / 6.0] * 6, size=2) random_st.multivariate_normal([0.0], [[1.0]]) random_st.multivariate_normal([0.0], np.array([[1.0]])) random_st.multivariate_normal(np.array([0.0]), [[1.0]]) random_st.multivariate_normal([0.0], np.array([[1.0]])) random_st.permutation(10) random_st.permutation([1, 2, 3, 4]) random_st.permutation(np.array([1, 2, 3, 4])) random_st.permutation(D_2D) random_st.shuffle(np.arange(10)) random_st.shuffle([1, 2, 3, 4, 5]) random_st.shuffle(D_2D) np.random.RandomState(SEED_PCG64) np.random.RandomState(0) np.random.RandomState([0, 1, 2]) random_st.__str__() random_st.__repr__() random_st_state = random_st.__getstate__() random_st.__setstate__(random_st_state) random_st.seed() random_st.seed(1) random_st.seed([0, 1]) random_st_get_state = random_st.get_state() random_st_get_state_legacy = random_st.get_state(legacy=True) random_st.set_state(random_st_get_state) random_st.rand() random_st.rand(1) random_st.rand(1, 2) random_st.randn() random_st.randn(1) random_st.randn(1, 2) random_st.random_sample() random_st.random_sample(1) random_st.random_sample(size=(1, 2)) random_st.tomaxint() random_st.tomaxint(1) random_st.tomaxint((1,))
61,810
Python
40.289913
121
0.722569
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/simple.py
"""Simple expression that should pass with mypy.""" import operator import numpy as np from collections.abc import Iterable # Basic checks array = np.array([1, 2]) def ndarray_func(x): # type: (np.ndarray) -> np.ndarray return x ndarray_func(np.array([1, 2])) array == 1 array.dtype == float # Dtype construction np.dtype(float) np.dtype(np.float64) np.dtype(None) np.dtype("float64") np.dtype(np.dtype(float)) np.dtype(("U", 10)) np.dtype((np.int32, (2, 2))) # Define the arguments on the previous line to prevent bidirectional # type inference in mypy from broadening the types. two_tuples_dtype = [("R", "u1"), ("G", "u1"), ("B", "u1")] np.dtype(two_tuples_dtype) three_tuples_dtype = [("R", "u1", 2)] np.dtype(three_tuples_dtype) mixed_tuples_dtype = [("R", "u1"), ("G", np.unicode_, 1)] np.dtype(mixed_tuples_dtype) shape_tuple_dtype = [("R", "u1", (2, 2))] np.dtype(shape_tuple_dtype) shape_like_dtype = [("R", "u1", (2, 2)), ("G", np.unicode_, 1)] np.dtype(shape_like_dtype) object_dtype = [("field1", object)] np.dtype(object_dtype) np.dtype((np.int32, (np.int8, 4))) # Dtype comparison np.dtype(float) == float np.dtype(float) != np.float64 np.dtype(float) < None np.dtype(float) <= "float64" np.dtype(float) > np.dtype(float) np.dtype(float) >= np.dtype(("U", 10)) # Iteration and indexing def iterable_func(x): # type: (Iterable) -> Iterable return x iterable_func(array) [element for element in array] iter(array) zip(array, array) array[1] array[:] array[...] array[:] = 0 array_2d = np.ones((3, 3)) array_2d[:2, :2] array_2d[..., 0] array_2d[:2, :2] = 0 # Other special methods len(array) str(array) array_scalar = np.array(1) int(array_scalar) float(array_scalar) # currently does not work due to https://github.com/python/typeshed/issues/1904 # complex(array_scalar) bytes(array_scalar) operator.index(array_scalar) bool(array_scalar) # comparisons array < 1 array <= 1 array == 1 array != 1 array > 1 array >= 1 1 < array 1 <= array 1 == array 1 != array 1 > array 1 >= array # binary arithmetic array + 1 1 + array array += 1 array - 1 1 - array array -= 1 array * 1 1 * array array *= 1 nonzero_array = np.array([1, 2]) array / 1 1 / nonzero_array float_array = np.array([1.0, 2.0]) float_array /= 1 array // 1 1 // nonzero_array array //= 1 array % 1 1 % nonzero_array array %= 1 divmod(array, 1) divmod(1, nonzero_array) array ** 1 1 ** array array **= 1 array << 1 1 << array array <<= 1 array >> 1 1 >> array array >>= 1 array & 1 1 & array array &= 1 array ^ 1 1 ^ array array ^= 1 array | 1 1 | array array |= 1 # unary arithmetic -array +array abs(array) ~array # Other methods np.array([1, 2]).transpose()
2,684
Python
15.174699
79
0.649404
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/bitwise_ops.py
import numpy as np i8 = np.int64(1) u8 = np.uint64(1) i4 = np.int32(1) u4 = np.uint32(1) b_ = np.bool_(1) b = bool(1) i = int(1) AR = np.array([0, 1, 2], dtype=np.int32) AR.setflags(write=False) i8 << i8 i8 >> i8 i8 | i8 i8 ^ i8 i8 & i8 i8 << AR i8 >> AR i8 | AR i8 ^ AR i8 & AR i4 << i4 i4 >> i4 i4 | i4 i4 ^ i4 i4 & i4 i8 << i4 i8 >> i4 i8 | i4 i8 ^ i4 i8 & i4 i8 << i i8 >> i i8 | i i8 ^ i i8 & i i8 << b_ i8 >> b_ i8 | b_ i8 ^ b_ i8 & b_ i8 << b i8 >> b i8 | b i8 ^ b i8 & b u8 << u8 u8 >> u8 u8 | u8 u8 ^ u8 u8 & u8 u8 << AR u8 >> AR u8 | AR u8 ^ AR u8 & AR u4 << u4 u4 >> u4 u4 | u4 u4 ^ u4 u4 & u4 u4 << i4 u4 >> i4 u4 | i4 u4 ^ i4 u4 & i4 u4 << i u4 >> i u4 | i u4 ^ i u4 & i u8 << b_ u8 >> b_ u8 | b_ u8 ^ b_ u8 & b_ u8 << b u8 >> b u8 | b u8 ^ b u8 & b b_ << b_ b_ >> b_ b_ | b_ b_ ^ b_ b_ & b_ b_ << AR b_ >> AR b_ | AR b_ ^ AR b_ & AR b_ << b b_ >> b b_ | b b_ ^ b b_ & b b_ << i b_ >> i b_ | i b_ ^ i b_ & i ~i8 ~i4 ~u8 ~u4 ~b_ ~AR
970
Python
6.356061
40
0.439175
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/lib_version.py
from numpy.lib import NumpyVersion version = NumpyVersion("1.8.0") version.vstring version.version version.major version.minor version.bugfix version.pre_release version.is_devversion version == version version != version version < "1.8.0" version <= version version > version version >= "1.8.0"
299
Python
14.789473
34
0.765886
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/numerictypes.py
import numpy as np np.maximum_sctype("S8") np.maximum_sctype(object) np.issctype(object) np.issctype("S8") np.obj2sctype(list) np.obj2sctype(list, default=None) np.obj2sctype(list, default=np.string_) np.issubclass_(np.int32, int) np.issubclass_(np.float64, float) np.issubclass_(np.float64, (int, float)) np.issubsctype("int64", int) np.issubsctype(np.array([1]), np.array([1])) np.issubdtype("S1", np.string_) np.issubdtype(np.float64, np.float32) np.sctype2char("S1") np.sctype2char(list) np.find_common_type([], [np.int64, np.float32, complex]) np.find_common_type((), (np.int64, np.float32, complex)) np.find_common_type([np.int64, np.float32], []) np.find_common_type([np.float32], [np.int64, np.float64]) np.cast[int] np.cast["i8"] np.cast[np.int64] np.nbytes[int] np.nbytes["i8"] np.nbytes[np.int64] np.ScalarType np.ScalarType[0] np.ScalarType[3] np.ScalarType[8] np.ScalarType[10] np.typecodes["Character"] np.typecodes["Complex"] np.typecodes["All"]
973
Python
19.291666
57
0.719424
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/ndarray_misc.py
""" Tests for miscellaneous (non-magic) ``np.ndarray``/``np.generic`` methods. More extensive tests are performed for the methods' function-based counterpart in `../from_numeric.py`. """ from __future__ import annotations import operator from typing import cast, Any import numpy as np class SubClass(np.ndarray): ... i4 = np.int32(1) A: np.ndarray[Any, np.dtype[np.int32]] = np.array([[1]], dtype=np.int32) B0 = np.empty((), dtype=np.int32).view(SubClass) B1 = np.empty((1,), dtype=np.int32).view(SubClass) B2 = np.empty((1, 1), dtype=np.int32).view(SubClass) C: np.ndarray[Any, np.dtype[np.int32]] = np.array([0, 1, 2], dtype=np.int32) D = np.empty(3).view(SubClass) i4.all() A.all() A.all(axis=0) A.all(keepdims=True) A.all(out=B0) i4.any() A.any() A.any(axis=0) A.any(keepdims=True) A.any(out=B0) i4.argmax() A.argmax() A.argmax(axis=0) A.argmax(out=B0) i4.argmin() A.argmin() A.argmin(axis=0) A.argmin(out=B0) i4.argsort() A.argsort() i4.choose([()]) _choices = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype=np.int32) C.choose(_choices) C.choose(_choices, out=D) i4.clip(1) A.clip(1) A.clip(None, 1) A.clip(1, out=B2) A.clip(None, 1, out=B2) i4.compress([1]) A.compress([1]) A.compress([1], out=B1) i4.conj() A.conj() B0.conj() i4.conjugate() A.conjugate() B0.conjugate() i4.cumprod() A.cumprod() A.cumprod(out=B1) i4.cumsum() A.cumsum() A.cumsum(out=B1) i4.max() A.max() A.max(axis=0) A.max(keepdims=True) A.max(out=B0) i4.mean() A.mean() A.mean(axis=0) A.mean(keepdims=True) A.mean(out=B0) i4.min() A.min() A.min(axis=0) A.min(keepdims=True) A.min(out=B0) i4.newbyteorder() A.newbyteorder() B0.newbyteorder('|') i4.prod() A.prod() A.prod(axis=0) A.prod(keepdims=True) A.prod(out=B0) i4.ptp() A.ptp() A.ptp(axis=0) A.ptp(keepdims=True) A.astype(int).ptp(out=B0) i4.round() A.round() A.round(out=B2) i4.repeat(1) A.repeat(1) B0.repeat(1) i4.std() A.std() A.std(axis=0) A.std(keepdims=True) A.std(out=B0.astype(np.float64)) i4.sum() A.sum() A.sum(axis=0) A.sum(keepdims=True) A.sum(out=B0) i4.take(0) A.take(0) A.take([0]) A.take(0, out=B0) A.take([0], out=B1) i4.var() A.var() A.var(axis=0) A.var(keepdims=True) A.var(out=B0) A.argpartition([0]) A.diagonal() A.dot(1) A.dot(1, out=B0) A.nonzero() C.searchsorted(1) A.trace() A.trace(out=B0) void = cast(np.void, np.array(1, dtype=[("f", np.float64)]).take(0)) void.setfield(10, np.float64) A.item(0) C.item(0) A.ravel() C.ravel() A.flatten() C.flatten() A.reshape(1) C.reshape(3) int(np.array(1.0, dtype=np.float64)) int(np.array("1", dtype=np.str_)) float(np.array(1.0, dtype=np.float64)) float(np.array("1", dtype=np.str_)) complex(np.array(1.0, dtype=np.float64)) operator.index(np.array(1, dtype=np.int64))
2,716
Python
13.607527
76
0.656848
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/typing/tests/data/pass/simple_py3.py
import numpy as np array = np.array([1, 2]) # The @ operator is not in python 2 array @ array
96
Python
12.857141
35
0.666667
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/core.pyi
from collections.abc import Callable from typing import Any, TypeVar from numpy import ndarray, dtype, float64 from numpy import ( amax as amax, amin as amin, bool_ as bool_, expand_dims as expand_dims, diff as diff, clip as clip, indices as indices, ones_like as ones_like, squeeze as squeeze, zeros_like as zeros_like, ) from numpy.lib.function_base import ( angle as angle, ) # TODO: Set the `bound` to something more suitable once we # have proper shape support _ShapeType = TypeVar("_ShapeType", bound=Any) _DType_co = TypeVar("_DType_co", bound=dtype[Any], covariant=True) __all__: list[str] MaskType = bool_ nomask: bool_ class MaskedArrayFutureWarning(FutureWarning): ... class MAError(Exception): ... class MaskError(MAError): ... def default_fill_value(obj): ... def minimum_fill_value(obj): ... def maximum_fill_value(obj): ... def set_fill_value(a, fill_value): ... def common_fill_value(a, b): ... def filled(a, fill_value=...): ... def getdata(a, subok=...): ... get_data = getdata def fix_invalid(a, mask=..., copy=..., fill_value=...): ... class _MaskedUFunc: f: Any __doc__: Any __name__: Any def __init__(self, ufunc): ... class _MaskedUnaryOperation(_MaskedUFunc): fill: Any domain: Any def __init__(self, mufunc, fill=..., domain=...): ... def __call__(self, a, *args, **kwargs): ... class _MaskedBinaryOperation(_MaskedUFunc): fillx: Any filly: Any def __init__(self, mbfunc, fillx=..., filly=...): ... def __call__(self, a, b, *args, **kwargs): ... def reduce(self, target, axis=..., dtype=...): ... def outer(self, a, b): ... def accumulate(self, target, axis=...): ... class _DomainedBinaryOperation(_MaskedUFunc): domain: Any fillx: Any filly: Any def __init__(self, dbfunc, domain, fillx=..., filly=...): ... def __call__(self, a, b, *args, **kwargs): ... exp: _MaskedUnaryOperation conjugate: _MaskedUnaryOperation sin: _MaskedUnaryOperation cos: _MaskedUnaryOperation arctan: _MaskedUnaryOperation arcsinh: _MaskedUnaryOperation sinh: _MaskedUnaryOperation cosh: _MaskedUnaryOperation tanh: _MaskedUnaryOperation abs: _MaskedUnaryOperation absolute: _MaskedUnaryOperation fabs: _MaskedUnaryOperation negative: _MaskedUnaryOperation floor: _MaskedUnaryOperation ceil: _MaskedUnaryOperation around: _MaskedUnaryOperation logical_not: _MaskedUnaryOperation sqrt: _MaskedUnaryOperation log: _MaskedUnaryOperation log2: _MaskedUnaryOperation log10: _MaskedUnaryOperation tan: _MaskedUnaryOperation arcsin: _MaskedUnaryOperation arccos: _MaskedUnaryOperation arccosh: _MaskedUnaryOperation arctanh: _MaskedUnaryOperation add: _MaskedBinaryOperation subtract: _MaskedBinaryOperation multiply: _MaskedBinaryOperation arctan2: _MaskedBinaryOperation equal: _MaskedBinaryOperation not_equal: _MaskedBinaryOperation less_equal: _MaskedBinaryOperation greater_equal: _MaskedBinaryOperation less: _MaskedBinaryOperation greater: _MaskedBinaryOperation logical_and: _MaskedBinaryOperation alltrue: _MaskedBinaryOperation logical_or: _MaskedBinaryOperation sometrue: Callable[..., Any] logical_xor: _MaskedBinaryOperation bitwise_and: _MaskedBinaryOperation bitwise_or: _MaskedBinaryOperation bitwise_xor: _MaskedBinaryOperation hypot: _MaskedBinaryOperation divide: _MaskedBinaryOperation true_divide: _MaskedBinaryOperation floor_divide: _MaskedBinaryOperation remainder: _MaskedBinaryOperation fmod: _MaskedBinaryOperation mod: _MaskedBinaryOperation def make_mask_descr(ndtype): ... def getmask(a): ... get_mask = getmask def getmaskarray(arr): ... def is_mask(m): ... def make_mask(m, copy=..., shrink=..., dtype=...): ... def make_mask_none(newshape, dtype=...): ... def mask_or(m1, m2, copy=..., shrink=...): ... def flatten_mask(mask): ... def masked_where(condition, a, copy=...): ... def masked_greater(x, value, copy=...): ... def masked_greater_equal(x, value, copy=...): ... def masked_less(x, value, copy=...): ... def masked_less_equal(x, value, copy=...): ... def masked_not_equal(x, value, copy=...): ... def masked_equal(x, value, copy=...): ... def masked_inside(x, v1, v2, copy=...): ... def masked_outside(x, v1, v2, copy=...): ... def masked_object(x, value, copy=..., shrink=...): ... def masked_values(x, value, rtol=..., atol=..., copy=..., shrink=...): ... def masked_invalid(a, copy=...): ... class _MaskedPrintOption: def __init__(self, display): ... def display(self): ... def set_display(self, s): ... def enabled(self): ... def enable(self, shrink=...): ... masked_print_option: _MaskedPrintOption def flatten_structured_array(a): ... class MaskedIterator: ma: Any dataiter: Any maskiter: Any def __init__(self, ma): ... def __iter__(self): ... def __getitem__(self, indx): ... def __setitem__(self, index, value): ... def __next__(self): ... class MaskedArray(ndarray[_ShapeType, _DType_co]): __array_priority__: Any def __new__(cls, data=..., mask=..., dtype=..., copy=..., subok=..., ndmin=..., fill_value=..., keep_mask=..., hard_mask=..., shrink=..., order=...): ... def __array_finalize__(self, obj): ... def __array_wrap__(self, obj, context=...): ... def view(self, dtype=..., type=..., fill_value=...): ... def __getitem__(self, indx): ... def __setitem__(self, indx, value): ... @property def dtype(self): ... @dtype.setter def dtype(self, dtype): ... @property def shape(self): ... @shape.setter def shape(self, shape): ... def __setmask__(self, mask, copy=...): ... @property def mask(self): ... @mask.setter def mask(self, value): ... @property def recordmask(self): ... @recordmask.setter def recordmask(self, mask): ... def harden_mask(self): ... def soften_mask(self): ... @property def hardmask(self): ... def unshare_mask(self): ... @property def sharedmask(self): ... def shrink_mask(self): ... @property def baseclass(self): ... data: Any @property def flat(self): ... @flat.setter def flat(self, value): ... @property def fill_value(self): ... @fill_value.setter def fill_value(self, value=...): ... get_fill_value: Any set_fill_value: Any def filled(self, fill_value=...): ... def compressed(self): ... def compress(self, condition, axis=..., out=...): ... def __eq__(self, other): ... def __ne__(self, other): ... def __add__(self, other): ... def __radd__(self, other): ... def __sub__(self, other): ... def __rsub__(self, other): ... def __mul__(self, other): ... def __rmul__(self, other): ... def __div__(self, other): ... def __truediv__(self, other): ... def __rtruediv__(self, other): ... def __floordiv__(self, other): ... def __rfloordiv__(self, other): ... def __pow__(self, other): ... def __rpow__(self, other): ... def __iadd__(self, other): ... def __isub__(self, other): ... def __imul__(self, other): ... def __idiv__(self, other): ... def __ifloordiv__(self, other): ... def __itruediv__(self, other): ... def __ipow__(self, other): ... def __float__(self): ... def __int__(self): ... @property # type: ignore[misc] def imag(self): ... get_imag: Any @property # type: ignore[misc] def real(self): ... get_real: Any def count(self, axis=..., keepdims=...): ... def ravel(self, order=...): ... def reshape(self, *s, **kwargs): ... def resize(self, newshape, refcheck=..., order=...): ... def put(self, indices, values, mode=...): ... def ids(self): ... def iscontiguous(self): ... def all(self, axis=..., out=..., keepdims=...): ... def any(self, axis=..., out=..., keepdims=...): ... def nonzero(self): ... def trace(self, offset=..., axis1=..., axis2=..., dtype=..., out=...): ... def dot(self, b, out=..., strict=...): ... def sum(self, axis=..., dtype=..., out=..., keepdims=...): ... def cumsum(self, axis=..., dtype=..., out=...): ... def prod(self, axis=..., dtype=..., out=..., keepdims=...): ... product: Any def cumprod(self, axis=..., dtype=..., out=...): ... def mean(self, axis=..., dtype=..., out=..., keepdims=...): ... def anom(self, axis=..., dtype=...): ... def var(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ... def std(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ... def round(self, decimals=..., out=...): ... def argsort(self, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... def argmin(self, axis=..., fill_value=..., out=..., *, keepdims=...): ... def argmax(self, axis=..., fill_value=..., out=..., *, keepdims=...): ... def sort(self, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... def min(self, axis=..., out=..., fill_value=..., keepdims=...): ... # NOTE: deprecated # def mini(self, axis=...): ... # def tostring(self, fill_value=..., order=...): ... def max(self, axis=..., out=..., fill_value=..., keepdims=...): ... def ptp(self, axis=..., out=..., fill_value=..., keepdims=...): ... def partition(self, *args, **kwargs): ... def argpartition(self, *args, **kwargs): ... def take(self, indices, axis=..., out=..., mode=...): ... copy: Any diagonal: Any flatten: Any repeat: Any squeeze: Any swapaxes: Any T: Any transpose: Any def tolist(self, fill_value=...): ... def tobytes(self, fill_value=..., order=...): ... def tofile(self, fid, sep=..., format=...): ... def toflex(self): ... torecords: Any def __reduce__(self): ... def __deepcopy__(self, memo=...): ... class mvoid(MaskedArray[_ShapeType, _DType_co]): def __new__( self, data, mask=..., dtype=..., fill_value=..., hardmask=..., copy=..., subok=..., ): ... def __getitem__(self, indx): ... def __setitem__(self, indx, value): ... def __iter__(self): ... def __len__(self): ... def filled(self, fill_value=...): ... def tolist(self): ... def isMaskedArray(x): ... isarray = isMaskedArray isMA = isMaskedArray # 0D float64 array class MaskedConstant(MaskedArray[Any, dtype[float64]]): def __new__(cls): ... __class__: Any def __array_finalize__(self, obj): ... def __array_prepare__(self, obj, context=...): ... def __array_wrap__(self, obj, context=...): ... def __format__(self, format_spec): ... def __reduce__(self): ... def __iop__(self, other): ... __iadd__: Any __isub__: Any __imul__: Any __ifloordiv__: Any __itruediv__: Any __ipow__: Any def copy(self, *args, **kwargs): ... def __copy__(self): ... def __deepcopy__(self, memo): ... def __setattr__(self, attr, value): ... masked: MaskedConstant masked_singleton: MaskedConstant masked_array = MaskedArray def array( data, dtype=..., copy=..., order=..., mask=..., fill_value=..., keep_mask=..., hard_mask=..., shrink=..., subok=..., ndmin=..., ): ... def is_masked(x): ... class _extrema_operation(_MaskedUFunc): compare: Any fill_value_func: Any def __init__(self, ufunc, compare, fill_value): ... # NOTE: in practice `b` has a default value, but users should # explicitly provide a value here as the default is deprecated def __call__(self, a, b): ... def reduce(self, target, axis=...): ... def outer(self, a, b): ... def min(obj, axis=..., out=..., fill_value=..., keepdims=...): ... def max(obj, axis=..., out=..., fill_value=..., keepdims=...): ... def ptp(obj, axis=..., out=..., fill_value=..., keepdims=...): ... class _frommethod: __name__: Any __doc__: Any reversed: Any def __init__(self, methodname, reversed=...): ... def getdoc(self): ... def __call__(self, a, *args, **params): ... all: _frommethod anomalies: _frommethod anom: _frommethod any: _frommethod compress: _frommethod cumprod: _frommethod cumsum: _frommethod copy: _frommethod diagonal: _frommethod harden_mask: _frommethod ids: _frommethod mean: _frommethod nonzero: _frommethod prod: _frommethod product: _frommethod ravel: _frommethod repeat: _frommethod soften_mask: _frommethod std: _frommethod sum: _frommethod swapaxes: _frommethod trace: _frommethod var: _frommethod count: _frommethod argmin: _frommethod argmax: _frommethod minimum: _extrema_operation maximum: _extrema_operation def take(a, indices, axis=..., out=..., mode=...): ... def power(a, b, third=...): ... def argsort(a, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... def sort(a, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... def compressed(x): ... def concatenate(arrays, axis=...): ... def diag(v, k=...): ... def left_shift(a, n): ... def right_shift(a, n): ... def put(a, indices, values, mode=...): ... def putmask(a, mask, values): ... def transpose(a, axes=...): ... def reshape(a, new_shape, order=...): ... def resize(x, new_shape): ... def ndim(obj): ... def shape(obj): ... def size(obj, axis=...): ... def where(condition, x=..., y=...): ... def choose(indices, choices, out=..., mode=...): ... def round_(a, decimals=..., out=...): ... round = round_ def inner(a, b): ... innerproduct = inner def outer(a, b): ... outerproduct = outer def correlate(a, v, mode=..., propagate_mask=...): ... def convolve(a, v, mode=..., propagate_mask=...): ... def allequal(a, b, fill_value=...): ... def allclose(a, b, masked_equal=..., rtol=..., atol=...): ... def asarray(a, dtype=..., order=...): ... def asanyarray(a, dtype=...): ... def fromflex(fxarray): ... class _convert2ma: __doc__: Any def __init__(self, funcname, params=...): ... def getdoc(self): ... def __call__(self, *args, **params): ... arange: _convert2ma empty: _convert2ma empty_like: _convert2ma frombuffer: _convert2ma fromfunction: _convert2ma identity: _convert2ma ones: _convert2ma zeros: _convert2ma def append(a, b, axis=...): ... def dot(a, b, strict=..., out=...): ... def mask_rowcols(a, axis=...): ...
14,181
unknown
29.174468
157
0.58522
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/timer_comparison.py
import timeit from functools import reduce import numpy as np from numpy import float_ import numpy.core.fromnumeric as fromnumeric from numpy.testing import build_err_msg pi = np.pi class ModuleTester: def __init__(self, module): self.module = module self.allequal = module.allequal self.arange = module.arange self.array = module.array self.concatenate = module.concatenate self.count = module.count self.equal = module.equal self.filled = module.filled self.getmask = module.getmask self.getmaskarray = module.getmaskarray self.id = id self.inner = module.inner self.make_mask = module.make_mask self.masked = module.masked self.masked_array = module.masked_array self.masked_values = module.masked_values self.mask_or = module.mask_or self.nomask = module.nomask self.ones = module.ones self.outer = module.outer self.repeat = module.repeat self.resize = module.resize self.sort = module.sort self.take = module.take self.transpose = module.transpose self.zeros = module.zeros self.MaskType = module.MaskType try: self.umath = module.umath except AttributeError: self.umath = module.core.umath self.testnames = [] def assert_array_compare(self, comparison, x, y, err_msg='', header='', fill_value=True): """ Assert that a comparison of two masked arrays is satisfied elementwise. """ xf = self.filled(x) yf = self.filled(y) m = self.mask_or(self.getmask(x), self.getmask(y)) x = self.filled(self.masked_array(xf, mask=m), fill_value) y = self.filled(self.masked_array(yf, mask=m), fill_value) if (x.dtype.char != "O"): x = x.astype(float_) if isinstance(x, np.ndarray) and x.size > 1: x[np.isnan(x)] = 0 elif np.isnan(x): x = 0 if (y.dtype.char != "O"): y = y.astype(float_) if isinstance(y, np.ndarray) and y.size > 1: y[np.isnan(y)] = 0 elif np.isnan(y): y = 0 try: cond = (x.shape == () or y.shape == ()) or x.shape == y.shape if not cond: msg = build_err_msg([x, y], err_msg + f'\n(shapes {x.shape}, {y.shape} mismatch)', header=header, names=('x', 'y')) assert cond, msg val = comparison(x, y) if m is not self.nomask and fill_value: val = self.masked_array(val, mask=m) if isinstance(val, bool): cond = val reduced = [0] else: reduced = val.ravel() cond = reduced.all() reduced = reduced.tolist() if not cond: match = 100-100.0*reduced.count(1)/len(reduced) msg = build_err_msg([x, y], err_msg + '\n(mismatch %s%%)' % (match,), header=header, names=('x', 'y')) assert cond, msg except ValueError as e: msg = build_err_msg([x, y], err_msg, header=header, names=('x', 'y')) raise ValueError(msg) from e def assert_array_equal(self, x, y, err_msg=''): """ Checks the elementwise equality of two masked arrays. """ self.assert_array_compare(self.equal, x, y, err_msg=err_msg, header='Arrays are not equal') @np.errstate(all='ignore') def test_0(self): """ Tests creation """ x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] xm = self.masked_array(x, mask=m) xm[0] @np.errstate(all='ignore') def test_1(self): """ Tests creation """ x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = self.masked_array(x, mask=m1) ym = self.masked_array(y, mask=m2) xf = np.where(m1, 1.e+20, x) xm.set_fill_value(1.e+20) assert((xm-ym).filled(0).any()) s = x.shape assert(xm.size == reduce(lambda x, y:x*y, s)) assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1)) for s in [(4, 3), (6, 2)]: x.shape = s y.shape = s xm.shape = s ym.shape = s xf.shape = s assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1)) @np.errstate(all='ignore') def test_2(self): """ Tests conversions and indexing. """ x1 = np.array([1, 2, 4, 3]) x2 = self.array(x1, mask=[1, 0, 0, 0]) x3 = self.array(x1, mask=[0, 1, 0, 1]) x4 = self.array(x1) # test conversion to strings, no errors str(x2) repr(x2) # tests of indexing assert type(x2[1]) is type(x1[1]) assert x1[1] == x2[1] x1[2] = 9 x2[2] = 9 self.assert_array_equal(x1, x2) x1[1:3] = 99 x2[1:3] = 99 x2[1] = self.masked x2[1:3] = self.masked x2[:] = x1 x2[1] = self.masked x3[:] = self.masked_array([1, 2, 3, 4], [0, 1, 1, 0]) x4[:] = self.masked_array([1, 2, 3, 4], [0, 1, 1, 0]) x1 = np.arange(5)*1.0 x2 = self.masked_values(x1, 3.0) x1 = self.array([1, 'hello', 2, 3], object) x2 = np.array([1, 'hello', 2, 3], object) # check that no error occurs. x1[1] x2[1] assert x1[1:1].shape == (0,) # Tests copy-size n = [0, 0, 1, 0, 0] m = self.make_mask(n) m2 = self.make_mask(m) assert(m is m2) m3 = self.make_mask(m, copy=1) assert(m is not m3) @np.errstate(all='ignore') def test_3(self): """ Tests resize/repeat """ x4 = self.arange(4) x4[2] = self.masked y4 = self.resize(x4, (8,)) assert self.allequal(self.concatenate([x4, x4]), y4) assert self.allequal(self.getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]) y5 = self.repeat(x4, (2, 2, 2, 2), axis=0) self.assert_array_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3]) y6 = self.repeat(x4, 2, axis=0) assert self.allequal(y5, y6) y7 = x4.repeat((2, 2, 2, 2), axis=0) assert self.allequal(y5, y7) y8 = x4.repeat(2, 0) assert self.allequal(y5, y8) @np.errstate(all='ignore') def test_4(self): """ Test of take, transpose, inner, outer products. """ x = self.arange(24) y = np.arange(24) x[5:6] = self.masked x = x.reshape(2, 3, 4) y = y.reshape(2, 3, 4) assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1))) assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1)) assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)), self.inner(x, y)) assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)), self.outer(x, y)) y = self.array(['abc', 1, 'def', 2, 3], object) y[2] = self.masked t = self.take(y, [0, 3, 4]) assert t[0] == 'abc' assert t[1] == 2 assert t[2] == 3 @np.errstate(all='ignore') def test_5(self): """ Tests inplace w/ scalar """ x = self.arange(10) y = self.arange(10) xm = self.arange(10) xm[2] = self.masked x += 1 assert self.allequal(x, y+1) xm += 1 assert self.allequal(xm, y+1) x = self.arange(10) xm = self.arange(10) xm[2] = self.masked x -= 1 assert self.allequal(x, y-1) xm -= 1 assert self.allequal(xm, y-1) x = self.arange(10)*1.0 xm = self.arange(10)*1.0 xm[2] = self.masked x *= 2.0 assert self.allequal(x, y*2) xm *= 2.0 assert self.allequal(xm, y*2) x = self.arange(10)*2 xm = self.arange(10)*2 xm[2] = self.masked x /= 2 assert self.allequal(x, y) xm /= 2 assert self.allequal(xm, y) x = self.arange(10)*1.0 xm = self.arange(10)*1.0 xm[2] = self.masked x /= 2.0 assert self.allequal(x, y/2.0) xm /= self.arange(10) self.assert_array_equal(xm, self.ones((10,))) x = self.arange(10).astype(float_) xm = self.arange(10) xm[2] = self.masked x += 1. assert self.allequal(x, y + 1.) @np.errstate(all='ignore') def test_6(self): """ Tests inplace w/ array """ x = self.arange(10, dtype=float_) y = self.arange(10) xm = self.arange(10, dtype=float_) xm[2] = self.masked m = xm.mask a = self.arange(10, dtype=float_) a[-1] = self.masked x += a xm += a assert self.allequal(x, y+a) assert self.allequal(xm, y+a) assert self.allequal(xm.mask, self.mask_or(m, a.mask)) x = self.arange(10, dtype=float_) xm = self.arange(10, dtype=float_) xm[2] = self.masked m = xm.mask a = self.arange(10, dtype=float_) a[-1] = self.masked x -= a xm -= a assert self.allequal(x, y-a) assert self.allequal(xm, y-a) assert self.allequal(xm.mask, self.mask_or(m, a.mask)) x = self.arange(10, dtype=float_) xm = self.arange(10, dtype=float_) xm[2] = self.masked m = xm.mask a = self.arange(10, dtype=float_) a[-1] = self.masked x *= a xm *= a assert self.allequal(x, y*a) assert self.allequal(xm, y*a) assert self.allequal(xm.mask, self.mask_or(m, a.mask)) x = self.arange(10, dtype=float_) xm = self.arange(10, dtype=float_) xm[2] = self.masked m = xm.mask a = self.arange(10, dtype=float_) a[-1] = self.masked x /= a xm /= a @np.errstate(all='ignore') def test_7(self): "Tests ufunc" d = (self.array([1.0, 0, -1, pi/2]*2, mask=[0, 1]+[0]*6), self.array([1.0, 0, -1, pi/2]*2, mask=[1, 0]+[0]*6),) for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', # 'sin', 'cos', 'tan', # 'arcsin', 'arccos', 'arctan', # 'sinh', 'cosh', 'tanh', # 'arcsinh', # 'arccosh', # 'arctanh', # 'absolute', 'fabs', 'negative', # # 'nonzero', 'around', # 'floor', 'ceil', # # 'sometrue', 'alltrue', # 'logical_not', # 'add', 'subtract', 'multiply', # 'divide', 'true_divide', 'floor_divide', # 'remainder', 'fmod', 'hypot', 'arctan2', # 'equal', 'not_equal', 'less_equal', 'greater_equal', # 'less', 'greater', # 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(self.umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(self.module, f) args = d[:uf.nin] ur = uf(*args) mr = mf(*args) self.assert_array_equal(ur.filled(0), mr.filled(0), f) self.assert_array_equal(ur._mask, mr._mask) @np.errstate(all='ignore') def test_99(self): # test average ott = self.array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) self.assert_array_equal(2.0, self.average(ott, axis=0)) self.assert_array_equal(2.0, self.average(ott, weights=[1., 1., 2., 1.])) result, wts = self.average(ott, weights=[1., 1., 2., 1.], returned=1) self.assert_array_equal(2.0, result) assert(wts == 4.0) ott[:] = self.masked assert(self.average(ott, axis=0) is self.masked) ott = self.array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) ott = ott.reshape(2, 2) ott[:, 1] = self.masked self.assert_array_equal(self.average(ott, axis=0), [2.0, 0.0]) assert(self.average(ott, axis=1)[0] is self.masked) self.assert_array_equal([2., 0.], self.average(ott, axis=0)) result, wts = self.average(ott, axis=0, returned=1) self.assert_array_equal(wts, [1., 0.]) w1 = [0, 1, 1, 1, 1, 0] w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] x = self.arange(6) self.assert_array_equal(self.average(x, axis=0), 2.5) self.assert_array_equal(self.average(x, axis=0, weights=w1), 2.5) y = self.array([self.arange(6), 2.0*self.arange(6)]) self.assert_array_equal(self.average(y, None), np.add.reduce(np.arange(6))*3./12.) self.assert_array_equal(self.average(y, axis=0), np.arange(6) * 3./2.) self.assert_array_equal(self.average(y, axis=1), [self.average(x, axis=0), self.average(x, axis=0) * 2.0]) self.assert_array_equal(self.average(y, None, weights=w2), 20./6.) self.assert_array_equal(self.average(y, axis=0, weights=w2), [0., 1., 2., 3., 4., 10.]) self.assert_array_equal(self.average(y, axis=1), [self.average(x, axis=0), self.average(x, axis=0) * 2.0]) m1 = self.zeros(6) m2 = [0, 0, 1, 1, 0, 0] m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] m4 = self.ones(6) m5 = [0, 1, 1, 1, 1, 1] self.assert_array_equal(self.average(self.masked_array(x, m1), axis=0), 2.5) self.assert_array_equal(self.average(self.masked_array(x, m2), axis=0), 2.5) self.assert_array_equal(self.average(self.masked_array(x, m5), axis=0), 0.0) self.assert_array_equal(self.count(self.average(self.masked_array(x, m4), axis=0)), 0) z = self.masked_array(y, m3) self.assert_array_equal(self.average(z, None), 20./6.) self.assert_array_equal(self.average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5]) self.assert_array_equal(self.average(z, axis=1), [2.5, 5.0]) self.assert_array_equal(self.average(z, axis=0, weights=w2), [0., 1., 99., 99., 4.0, 10.0]) @np.errstate(all='ignore') def test_A(self): x = self.arange(24) x[5:6] = self.masked x = x.reshape(2, 3, 4) if __name__ == '__main__': setup_base = ("from __main__ import ModuleTester \n" "import numpy\n" "tester = ModuleTester(module)\n") setup_cur = "import numpy.ma.core as module\n" + setup_base (nrepeat, nloop) = (10, 10) for i in range(1, 8): func = 'tester.test_%i()' % i cur = timeit.Timer(func, setup_cur).repeat(nrepeat, nloop*10) cur = np.sort(cur) print("#%i" % i + 50*'.') print(eval("ModuleTester.test_%i.__doc__" % i)) print(f'core_current : {cur[0]:.3f} - {cur[1]:.3f}')
15,658
Python
34.268018
114
0.483203
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/__init__.py
""" ============= Masked Arrays ============= Arrays sometimes contain invalid or missing data. When doing operations on such arrays, we wish to suppress invalid values, which is the purpose masked arrays fulfill (an example of typical use is given below). For example, examine the following array: >>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan]) When we try to calculate the mean of the data, the result is undetermined: >>> np.mean(x) nan The mean is calculated using roughly ``np.sum(x)/len(x)``, but since any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work. Enter masked arrays: >>> m = np.ma.masked_array(x, np.isnan(x)) >>> m masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --], mask = [False False False True False False False True], fill_value=1e+20) Here, we construct a masked array that suppress all ``NaN`` values. We may now proceed to calculate the mean of the other values: >>> np.mean(m) 2.6666666666666665 .. [1] Not-a-Number, a floating point value that is the result of an invalid operation. .. moduleauthor:: Pierre Gerard-Marchant .. moduleauthor:: Jarrod Millman """ from . import core from .core import * from . import extras from .extras import * __all__ = ['core', 'extras'] __all__ += core.__all__ __all__ += extras.__all__ from numpy._pytesttester import PytestTester test = PytestTester(__name__) del PytestTester
1,404
Python
24.545454
79
0.672365
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/bench.py
#!/usr/bin/env python3 import timeit import numpy ############################################################################### # Global variables # ############################################################################### # Small arrays xs = numpy.random.uniform(-1, 1, 6).reshape(2, 3) ys = numpy.random.uniform(-1, 1, 6).reshape(2, 3) zs = xs + 1j * ys m1 = [[True, False, False], [False, False, True]] m2 = [[True, False, True], [False, False, True]] nmxs = numpy.ma.array(xs, mask=m1) nmys = numpy.ma.array(ys, mask=m2) nmzs = numpy.ma.array(zs, mask=m1) # Big arrays xl = numpy.random.uniform(-1, 1, 100*100).reshape(100, 100) yl = numpy.random.uniform(-1, 1, 100*100).reshape(100, 100) zl = xl + 1j * yl maskx = xl > 0.8 masky = yl < -0.8 nmxl = numpy.ma.array(xl, mask=maskx) nmyl = numpy.ma.array(yl, mask=masky) nmzl = numpy.ma.array(zl, mask=maskx) ############################################################################### # Functions # ############################################################################### def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order])) def compare_functions_1v(func, nloop=500, xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl): funcname = func.__name__ print("-"*50) print(f'{funcname} on small arrays') module, data = "numpy.ma", "nmxs" timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) print("%s on large arrays" % funcname) module, data = "numpy.ma", "nmxl" timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) return def compare_methods(methodname, args, vars='x', nloop=500, test=True, xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl): print("-"*50) print(f'{methodname} on small arrays') data, ver = f'nm{vars}l', 'numpy.ma' timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop) print("%s on large arrays" % methodname) data, ver = "nm%sl" % vars, 'numpy.ma' timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop) return def compare_functions_2v(func, nloop=500, test=True, xs=xs, nmxs=nmxs, ys=ys, nmys=nmys, xl=xl, nmxl=nmxl, yl=yl, nmyl=nmyl): funcname = func.__name__ print("-"*50) print(f'{funcname} on small arrays') module, data = "numpy.ma", "nmxs,nmys" timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) print(f'{funcname} on large arrays') module, data = "numpy.ma", "nmxl,nmyl" timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) return if __name__ == '__main__': compare_functions_1v(numpy.sin) compare_functions_1v(numpy.log) compare_functions_1v(numpy.sqrt) compare_functions_2v(numpy.multiply) compare_functions_2v(numpy.divide) compare_functions_2v(numpy.power) compare_methods('ravel', '', nloop=1000) compare_methods('conjugate', '', 'z', nloop=1000) compare_methods('transpose', '', nloop=1000) compare_methods('compressed', '', nloop=1000) compare_methods('__getitem__', '0', nloop=1000) compare_methods('__getitem__', '(0,0)', nloop=1000) compare_methods('__getitem__', '[0,-1]', nloop=1000) compare_methods('__setitem__', '0, 17', nloop=1000, test=False) compare_methods('__setitem__', '(0,0), 17', nloop=1000, test=False) print("-"*50) print("__setitem__ on small arrays") timer('nmxs.__setitem__((-1,0),numpy.ma.masked)', 'numpy.ma ', nloop=10000) print("-"*50) print("__setitem__ on large arrays") timer('nmxl.__setitem__((-1,0),numpy.ma.masked)', 'numpy.ma ', nloop=10000) print("-"*50) print("where on small arrays") timer('numpy.ma.where(nmxs>2,nmxs,nmys)', 'numpy.ma ', nloop=1000) print("-"*50) print("where on large arrays") timer('numpy.ma.where(nmxl>2,nmxl,nmyl)', 'numpy.ma ', nloop=100)
4,858
Python
36.091603
89
0.511733
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/core.py
""" numpy.ma : a package to handle missing or invalid values. This package was initially written for numarray by Paul F. Dubois at Lawrence Livermore National Laboratory. In 2006, the package was completely rewritten by Pierre Gerard-Marchant (University of Georgia) to make the MaskedArray class a subclass of ndarray, and to improve support of structured arrays. Copyright 1999, 2000, 2001 Regents of the University of California. Released for unlimited redistribution. * Adapted for numpy_core 2005 by Travis Oliphant and (mainly) Paul Dubois. * Subclassing of the base `ndarray` 2006 by Pierre Gerard-Marchant (pgmdevlist_AT_gmail_DOT_com) * Improvements suggested by Reggie Dugard (reggie_AT_merfinllc_DOT_com) .. moduleauthor:: Pierre Gerard-Marchant """ # pylint: disable-msg=E1002 import builtins import inspect import operator import warnings import textwrap import re from functools import reduce import numpy as np import numpy.core.umath as umath import numpy.core.numerictypes as ntypes from numpy import ndarray, amax, amin, iscomplexobj, bool_, _NoValue from numpy import array as narray from numpy.lib.function_base import angle from numpy.compat import ( getargspec, formatargspec, long, unicode, bytes ) from numpy import expand_dims from numpy.core.numeric import normalize_axis_tuple __all__ = [ 'MAError', 'MaskError', 'MaskType', 'MaskedArray', 'abs', 'absolute', 'add', 'all', 'allclose', 'allequal', 'alltrue', 'amax', 'amin', 'angle', 'anom', 'anomalies', 'any', 'append', 'arange', 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh', 'argmax', 'argmin', 'argsort', 'around', 'array', 'asanyarray', 'asarray', 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'bool_', 'ceil', 'choose', 'clip', 'common_fill_value', 'compress', 'compressed', 'concatenate', 'conjugate', 'convolve', 'copy', 'correlate', 'cos', 'cosh', 'count', 'cumprod', 'cumsum', 'default_fill_value', 'diag', 'diagonal', 'diff', 'divide', 'empty', 'empty_like', 'equal', 'exp', 'expand_dims', 'fabs', 'filled', 'fix_invalid', 'flatten_mask', 'flatten_structured_array', 'floor', 'floor_divide', 'fmod', 'frombuffer', 'fromflex', 'fromfunction', 'getdata', 'getmask', 'getmaskarray', 'greater', 'greater_equal', 'harden_mask', 'hypot', 'identity', 'ids', 'indices', 'inner', 'innerproduct', 'isMA', 'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'left_shift', 'less', 'less_equal', 'log', 'log10', 'log2', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'make_mask', 'make_mask_descr', 'make_mask_none', 'mask_or', 'masked', 'masked_array', 'masked_equal', 'masked_greater', 'masked_greater_equal', 'masked_inside', 'masked_invalid', 'masked_less', 'masked_less_equal', 'masked_not_equal', 'masked_object', 'masked_outside', 'masked_print_option', 'masked_singleton', 'masked_values', 'masked_where', 'max', 'maximum', 'maximum_fill_value', 'mean', 'min', 'minimum', 'minimum_fill_value', 'mod', 'multiply', 'mvoid', 'ndim', 'negative', 'nomask', 'nonzero', 'not_equal', 'ones', 'ones_like', 'outer', 'outerproduct', 'power', 'prod', 'product', 'ptp', 'put', 'putmask', 'ravel', 'remainder', 'repeat', 'reshape', 'resize', 'right_shift', 'round', 'round_', 'set_fill_value', 'shape', 'sin', 'sinh', 'size', 'soften_mask', 'sometrue', 'sort', 'sqrt', 'squeeze', 'std', 'subtract', 'sum', 'swapaxes', 'take', 'tan', 'tanh', 'trace', 'transpose', 'true_divide', 'var', 'where', 'zeros', 'zeros_like', ] MaskType = np.bool_ nomask = MaskType(0) class MaskedArrayFutureWarning(FutureWarning): pass def _deprecate_argsort_axis(arr): """ Adjust the axis passed to argsort, warning if necessary Parameters ---------- arr The array which argsort was called on np.ma.argsort has a long-term bug where the default of the axis argument is wrong (gh-8701), which now must be kept for backwards compatibility. Thankfully, this only makes a difference when arrays are 2- or more- dimensional, so we only need a warning then. """ if arr.ndim <= 1: # no warning needed - but switch to -1 anyway, to avoid surprising # subclasses, which are more likely to implement scalar axes. return -1 else: # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default warnings.warn( "In the future the default for argsort will be axis=-1, not the " "current None, to match its documentation and np.argsort. " "Explicitly pass -1 or None to silence this warning.", MaskedArrayFutureWarning, stacklevel=3) return None def doc_note(initialdoc, note): """ Adds a Notes section to an existing docstring. """ if initialdoc is None: return if note is None: return initialdoc notesplit = re.split(r'\n\s*?Notes\n\s*?-----', inspect.cleandoc(initialdoc)) notedoc = "\n\nNotes\n-----\n%s\n" % inspect.cleandoc(note) return ''.join(notesplit[:1] + [notedoc] + notesplit[1:]) def get_object_signature(obj): """ Get the signature from obj """ try: sig = formatargspec(*getargspec(obj)) except TypeError: sig = '' return sig ############################################################################### # Exceptions # ############################################################################### class MAError(Exception): """ Class for masked array related errors. """ pass class MaskError(MAError): """ Class for mask related errors. """ pass ############################################################################### # Filling options # ############################################################################### # b: boolean - c: complex - f: floats - i: integer - O: object - S: string default_filler = {'b': True, 'c': 1.e20 + 0.0j, 'f': 1.e20, 'i': 999999, 'O': '?', 'S': b'N/A', 'u': 999999, 'V': b'???', 'U': u'N/A' } # Add datetime64 and timedelta64 types for v in ["Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", "fs", "as"]: default_filler["M8[" + v + "]"] = np.datetime64("NaT", v) default_filler["m8[" + v + "]"] = np.timedelta64("NaT", v) float_types_list = [np.half, np.single, np.double, np.longdouble, np.csingle, np.cdouble, np.clongdouble] max_filler = ntypes._minvals max_filler.update([(k, -np.inf) for k in float_types_list[:4]]) max_filler.update([(k, complex(-np.inf, -np.inf)) for k in float_types_list[-3:]]) min_filler = ntypes._maxvals min_filler.update([(k, +np.inf) for k in float_types_list[:4]]) min_filler.update([(k, complex(+np.inf, +np.inf)) for k in float_types_list[-3:]]) del float_types_list def _recursive_fill_value(dtype, f): """ Recursively produce a fill value for `dtype`, calling f on scalar dtypes """ if dtype.names is not None: vals = tuple(_recursive_fill_value(dtype[name], f) for name in dtype.names) return np.array(vals, dtype=dtype)[()] # decay to void scalar from 0d elif dtype.subdtype: subtype, shape = dtype.subdtype subval = _recursive_fill_value(subtype, f) return np.full(shape, subval) else: return f(dtype) def _get_dtype_of(obj): """ Convert the argument for *_fill_value into a dtype """ if isinstance(obj, np.dtype): return obj elif hasattr(obj, 'dtype'): return obj.dtype else: return np.asanyarray(obj).dtype def default_fill_value(obj): """ Return the default fill value for the argument object. The default filling value depends on the datatype of the input array or the type of the input scalar: ======== ======== datatype default ======== ======== bool True int 999999 float 1.e20 complex 1.e20+0j object '?' string 'N/A' ======== ======== For structured types, a structured scalar is returned, with each field the default fill value for its type. For subarray types, the fill value is an array of the same size containing the default scalar fill value. Parameters ---------- obj : ndarray, dtype or scalar The array data-type or scalar for which the default fill value is returned. Returns ------- fill_value : scalar The default fill value. Examples -------- >>> np.ma.default_fill_value(1) 999999 >>> np.ma.default_fill_value(np.array([1.1, 2., np.pi])) 1e+20 >>> np.ma.default_fill_value(np.dtype(complex)) (1e+20+0j) """ def _scalar_fill_value(dtype): if dtype.kind in 'Mm': return default_filler.get(dtype.str[1:], '?') else: return default_filler.get(dtype.kind, '?') dtype = _get_dtype_of(obj) return _recursive_fill_value(dtype, _scalar_fill_value) def _extremum_fill_value(obj, extremum, extremum_name): def _scalar_fill_value(dtype): try: return extremum[dtype] except KeyError as e: raise TypeError( f"Unsuitable type {dtype} for calculating {extremum_name}." ) from None dtype = _get_dtype_of(obj) return _recursive_fill_value(dtype, _scalar_fill_value) def minimum_fill_value(obj): """ Return the maximum value that can be represented by the dtype of an object. This function is useful for calculating a fill value suitable for taking the minimum of an array with a given dtype. Parameters ---------- obj : ndarray, dtype or scalar An object that can be queried for it's numeric type. Returns ------- val : scalar The maximum representable value. Raises ------ TypeError If `obj` isn't a suitable numeric type. See Also -------- maximum_fill_value : The inverse function. set_fill_value : Set the filling value of a masked array. MaskedArray.fill_value : Return current fill value. Examples -------- >>> import numpy.ma as ma >>> a = np.int8() >>> ma.minimum_fill_value(a) 127 >>> a = np.int32() >>> ma.minimum_fill_value(a) 2147483647 An array of numeric data can also be passed. >>> a = np.array([1, 2, 3], dtype=np.int8) >>> ma.minimum_fill_value(a) 127 >>> a = np.array([1, 2, 3], dtype=np.float32) >>> ma.minimum_fill_value(a) inf """ return _extremum_fill_value(obj, min_filler, "minimum") def maximum_fill_value(obj): """ Return the minimum value that can be represented by the dtype of an object. This function is useful for calculating a fill value suitable for taking the maximum of an array with a given dtype. Parameters ---------- obj : ndarray, dtype or scalar An object that can be queried for it's numeric type. Returns ------- val : scalar The minimum representable value. Raises ------ TypeError If `obj` isn't a suitable numeric type. See Also -------- minimum_fill_value : The inverse function. set_fill_value : Set the filling value of a masked array. MaskedArray.fill_value : Return current fill value. Examples -------- >>> import numpy.ma as ma >>> a = np.int8() >>> ma.maximum_fill_value(a) -128 >>> a = np.int32() >>> ma.maximum_fill_value(a) -2147483648 An array of numeric data can also be passed. >>> a = np.array([1, 2, 3], dtype=np.int8) >>> ma.maximum_fill_value(a) -128 >>> a = np.array([1, 2, 3], dtype=np.float32) >>> ma.maximum_fill_value(a) -inf """ return _extremum_fill_value(obj, max_filler, "maximum") def _recursive_set_fill_value(fillvalue, dt): """ Create a fill value for a structured dtype. Parameters ---------- fillvalue : scalar or array_like Scalar or array representing the fill value. If it is of shorter length than the number of fields in dt, it will be resized. dt : dtype The structured dtype for which to create the fill value. Returns ------- val : tuple A tuple of values corresponding to the structured fill value. """ fillvalue = np.resize(fillvalue, len(dt.names)) output_value = [] for (fval, name) in zip(fillvalue, dt.names): cdtype = dt[name] if cdtype.subdtype: cdtype = cdtype.subdtype[0] if cdtype.names is not None: output_value.append(tuple(_recursive_set_fill_value(fval, cdtype))) else: output_value.append(np.array(fval, dtype=cdtype).item()) return tuple(output_value) def _check_fill_value(fill_value, ndtype): """ Private function validating the given `fill_value` for the given dtype. If fill_value is None, it is set to the default corresponding to the dtype. If fill_value is not None, its value is forced to the given dtype. The result is always a 0d array. """ ndtype = np.dtype(ndtype) if fill_value is None: fill_value = default_fill_value(ndtype) elif ndtype.names is not None: if isinstance(fill_value, (ndarray, np.void)): try: fill_value = np.array(fill_value, copy=False, dtype=ndtype) except ValueError as e: err_msg = "Unable to transform %s to dtype %s" raise ValueError(err_msg % (fill_value, ndtype)) from e else: fill_value = np.asarray(fill_value, dtype=object) fill_value = np.array(_recursive_set_fill_value(fill_value, ndtype), dtype=ndtype) else: if isinstance(fill_value, str) and (ndtype.char not in 'OSVU'): # Note this check doesn't work if fill_value is not a scalar err_msg = "Cannot set fill value of string with array of dtype %s" raise TypeError(err_msg % ndtype) else: # In case we want to convert 1e20 to int. # Also in case of converting string arrays. try: fill_value = np.array(fill_value, copy=False, dtype=ndtype) except (OverflowError, ValueError) as e: # Raise TypeError instead of OverflowError or ValueError. # OverflowError is seldom used, and the real problem here is # that the passed fill_value is not compatible with the ndtype. err_msg = "Cannot convert fill_value %s to dtype %s" raise TypeError(err_msg % (fill_value, ndtype)) from e return np.array(fill_value) def set_fill_value(a, fill_value): """ Set the filling value of a, if a is a masked array. This function changes the fill value of the masked array `a` in place. If `a` is not a masked array, the function returns silently, without doing anything. Parameters ---------- a : array_like Input array. fill_value : dtype Filling value. A consistency test is performed to make sure the value is compatible with the dtype of `a`. Returns ------- None Nothing returned by this function. See Also -------- maximum_fill_value : Return the default fill value for a dtype. MaskedArray.fill_value : Return current fill value. MaskedArray.set_fill_value : Equivalent method. Examples -------- >>> import numpy.ma as ma >>> a = np.arange(5) >>> a array([0, 1, 2, 3, 4]) >>> a = ma.masked_where(a < 3, a) >>> a masked_array(data=[--, --, --, 3, 4], mask=[ True, True, True, False, False], fill_value=999999) >>> ma.set_fill_value(a, -999) >>> a masked_array(data=[--, --, --, 3, 4], mask=[ True, True, True, False, False], fill_value=-999) Nothing happens if `a` is not a masked array. >>> a = list(range(5)) >>> a [0, 1, 2, 3, 4] >>> ma.set_fill_value(a, 100) >>> a [0, 1, 2, 3, 4] >>> a = np.arange(5) >>> a array([0, 1, 2, 3, 4]) >>> ma.set_fill_value(a, 100) >>> a array([0, 1, 2, 3, 4]) """ if isinstance(a, MaskedArray): a.set_fill_value(fill_value) return def get_fill_value(a): """ Return the filling value of a, if any. Otherwise, returns the default filling value for that type. """ if isinstance(a, MaskedArray): result = a.fill_value else: result = default_fill_value(a) return result def common_fill_value(a, b): """ Return the common filling value of two masked arrays, if any. If ``a.fill_value == b.fill_value``, return the fill value, otherwise return None. Parameters ---------- a, b : MaskedArray The masked arrays for which to compare fill values. Returns ------- fill_value : scalar or None The common fill value, or None. Examples -------- >>> x = np.ma.array([0, 1.], fill_value=3) >>> y = np.ma.array([0, 1.], fill_value=3) >>> np.ma.common_fill_value(x, y) 3.0 """ t1 = get_fill_value(a) t2 = get_fill_value(b) if t1 == t2: return t1 return None def filled(a, fill_value=None): """ Return input as an array with masked data replaced by a fill value. If `a` is not a `MaskedArray`, `a` itself is returned. If `a` is a `MaskedArray` and `fill_value` is None, `fill_value` is set to ``a.fill_value``. Parameters ---------- a : MaskedArray or array_like An input object. fill_value : array_like, optional. Can be scalar or non-scalar. If non-scalar, the resulting filled array should be broadcastable over input array. Default is None. Returns ------- a : ndarray The filled array. See Also -------- compressed Examples -------- >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], ... [1, 0, 0], ... [0, 0, 0]]) >>> x.filled() array([[999999, 1, 2], [999999, 4, 5], [ 6, 7, 8]]) >>> x.filled(fill_value=333) array([[333, 1, 2], [333, 4, 5], [ 6, 7, 8]]) >>> x.filled(fill_value=np.arange(3)) array([[0, 1, 2], [0, 4, 5], [6, 7, 8]]) """ if hasattr(a, 'filled'): return a.filled(fill_value) elif isinstance(a, ndarray): # Should we check for contiguity ? and a.flags['CONTIGUOUS']: return a elif isinstance(a, dict): return np.array(a, 'O') else: return np.array(a) def get_masked_subclass(*arrays): """ Return the youngest subclass of MaskedArray from a list of (masked) arrays. In case of siblings, the first listed takes over. """ if len(arrays) == 1: arr = arrays[0] if isinstance(arr, MaskedArray): rcls = type(arr) else: rcls = MaskedArray else: arrcls = [type(a) for a in arrays] rcls = arrcls[0] if not issubclass(rcls, MaskedArray): rcls = MaskedArray for cls in arrcls[1:]: if issubclass(cls, rcls): rcls = cls # Don't return MaskedConstant as result: revert to MaskedArray if rcls.__name__ == 'MaskedConstant': return MaskedArray return rcls def getdata(a, subok=True): """ Return the data of a masked array as an ndarray. Return the data of `a` (if any) as an ndarray if `a` is a ``MaskedArray``, else return `a` as a ndarray or subclass (depending on `subok`) if not. Parameters ---------- a : array_like Input ``MaskedArray``, alternatively a ndarray or a subclass thereof. subok : bool Whether to force the output to be a `pure` ndarray (False) or to return a subclass of ndarray if appropriate (True, default). See Also -------- getmask : Return the mask of a masked array, or nomask. getmaskarray : Return the mask of a masked array, or full array of False. Examples -------- >>> import numpy.ma as ma >>> a = ma.masked_equal([[1,2],[3,4]], 2) >>> a masked_array( data=[[1, --], [3, 4]], mask=[[False, True], [False, False]], fill_value=2) >>> ma.getdata(a) array([[1, 2], [3, 4]]) Equivalently use the ``MaskedArray`` `data` attribute. >>> a.data array([[1, 2], [3, 4]]) """ try: data = a._data except AttributeError: data = np.array(a, copy=False, subok=subok) if not subok: return data.view(ndarray) return data get_data = getdata def fix_invalid(a, mask=nomask, copy=True, fill_value=None): """ Return input with invalid data masked and replaced by a fill value. Invalid data means values of `nan`, `inf`, etc. Parameters ---------- a : array_like Input array, a (subclass of) ndarray. mask : sequence, optional Mask. Must be convertible to an array of booleans with the same shape as `data`. True indicates a masked (i.e. invalid) data. copy : bool, optional Whether to use a copy of `a` (True) or to fix `a` in place (False). Default is True. fill_value : scalar, optional Value used for fixing invalid data. Default is None, in which case the ``a.fill_value`` is used. Returns ------- b : MaskedArray The input array with invalid entries fixed. Notes ----- A copy is performed by default. Examples -------- >>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3) >>> x masked_array(data=[--, -1.0, nan, inf], mask=[ True, False, False, False], fill_value=1e+20) >>> np.ma.fix_invalid(x) masked_array(data=[--, -1.0, --, --], mask=[ True, False, True, True], fill_value=1e+20) >>> fixed = np.ma.fix_invalid(x) >>> fixed.data array([ 1.e+00, -1.e+00, 1.e+20, 1.e+20]) >>> x.data array([ 1., -1., nan, inf]) """ a = masked_array(a, copy=copy, mask=mask, subok=True) invalid = np.logical_not(np.isfinite(a._data)) if not invalid.any(): return a a._mask |= invalid if fill_value is None: fill_value = a.fill_value a._data[invalid] = fill_value return a def is_string_or_list_of_strings(val): return (isinstance(val, str) or (isinstance(val, list) and val and builtins.all(isinstance(s, str) for s in val))) ############################################################################### # Ufuncs # ############################################################################### ufunc_domain = {} ufunc_fills = {} class _DomainCheckInterval: """ Define a valid interval, so that : ``domain_check_interval(a,b)(x) == True`` where ``x < a`` or ``x > b``. """ def __init__(self, a, b): "domain_check_interval(a,b)(x) = true where x < a or y > b" if a > b: (a, b) = (b, a) self.a = a self.b = b def __call__(self, x): "Execute the call behavior." # nans at masked positions cause RuntimeWarnings, even though # they are masked. To avoid this we suppress warnings. with np.errstate(invalid='ignore'): return umath.logical_or(umath.greater(x, self.b), umath.less(x, self.a)) class _DomainTan: """ Define a valid interval for the `tan` function, so that: ``domain_tan(eps) = True`` where ``abs(cos(x)) < eps`` """ def __init__(self, eps): "domain_tan(eps) = true where abs(cos(x)) < eps)" self.eps = eps def __call__(self, x): "Executes the call behavior." with np.errstate(invalid='ignore'): return umath.less(umath.absolute(umath.cos(x)), self.eps) class _DomainSafeDivide: """ Define a domain for safe division. """ def __init__(self, tolerance=None): self.tolerance = tolerance def __call__(self, a, b): # Delay the selection of the tolerance to here in order to reduce numpy # import times. The calculation of these parameters is a substantial # component of numpy's import time. if self.tolerance is None: self.tolerance = np.finfo(float).tiny # don't call ma ufuncs from __array_wrap__ which would fail for scalars a, b = np.asarray(a), np.asarray(b) with np.errstate(invalid='ignore'): return umath.absolute(a) * self.tolerance >= umath.absolute(b) class _DomainGreater: """ DomainGreater(v)(x) is True where x <= v. """ def __init__(self, critical_value): "DomainGreater(v)(x) = true where x <= v" self.critical_value = critical_value def __call__(self, x): "Executes the call behavior." with np.errstate(invalid='ignore'): return umath.less_equal(x, self.critical_value) class _DomainGreaterEqual: """ DomainGreaterEqual(v)(x) is True where x < v. """ def __init__(self, critical_value): "DomainGreaterEqual(v)(x) = true where x < v" self.critical_value = critical_value def __call__(self, x): "Executes the call behavior." with np.errstate(invalid='ignore'): return umath.less(x, self.critical_value) class _MaskedUFunc: def __init__(self, ufunc): self.f = ufunc self.__doc__ = ufunc.__doc__ self.__name__ = ufunc.__name__ def __str__(self): return f"Masked version of {self.f}" class _MaskedUnaryOperation(_MaskedUFunc): """ Defines masked version of unary operations, where invalid values are pre-masked. Parameters ---------- mufunc : callable The function for which to define a masked version. Made available as ``_MaskedUnaryOperation.f``. fill : scalar, optional Filling value, default is 0. domain : class instance Domain for the function. Should be one of the ``_Domain*`` classes. Default is None. """ def __init__(self, mufunc, fill=0, domain=None): super().__init__(mufunc) self.fill = fill self.domain = domain ufunc_domain[mufunc] = domain ufunc_fills[mufunc] = fill def __call__(self, a, *args, **kwargs): """ Execute the call behavior. """ d = getdata(a) # Deal with domain if self.domain is not None: # Case 1.1. : Domained function # nans at masked positions cause RuntimeWarnings, even though # they are masked. To avoid this we suppress warnings. with np.errstate(divide='ignore', invalid='ignore'): result = self.f(d, *args, **kwargs) # Make a mask m = ~umath.isfinite(result) m |= self.domain(d) m |= getmask(a) else: # Case 1.2. : Function without a domain # Get the result and the mask with np.errstate(divide='ignore', invalid='ignore'): result = self.f(d, *args, **kwargs) m = getmask(a) if not result.ndim: # Case 2.1. : The result is scalarscalar if m: return masked return result if m is not nomask: # Case 2.2. The result is an array # We need to fill the invalid data back w/ the input Now, # that's plain silly: in C, we would just skip the element and # keep the original, but we do have to do it that way in Python # In case result has a lower dtype than the inputs (as in # equal) try: np.copyto(result, d, where=m) except TypeError: pass # Transform to masked_result = result.view(get_masked_subclass(a)) masked_result._mask = m masked_result._update_from(a) return masked_result class _MaskedBinaryOperation(_MaskedUFunc): """ Define masked version of binary operations, where invalid values are pre-masked. Parameters ---------- mbfunc : function The function for which to define a masked version. Made available as ``_MaskedBinaryOperation.f``. domain : class instance Default domain for the function. Should be one of the ``_Domain*`` classes. Default is None. fillx : scalar, optional Filling value for the first argument, default is 0. filly : scalar, optional Filling value for the second argument, default is 0. """ def __init__(self, mbfunc, fillx=0, filly=0): """ abfunc(fillx, filly) must be defined. abfunc(x, filly) = x for all x to enable reduce. """ super().__init__(mbfunc) self.fillx = fillx self.filly = filly ufunc_domain[mbfunc] = None ufunc_fills[mbfunc] = (fillx, filly) def __call__(self, a, b, *args, **kwargs): """ Execute the call behavior. """ # Get the data, as ndarray (da, db) = (getdata(a), getdata(b)) # Get the result with np.errstate(): np.seterr(divide='ignore', invalid='ignore') result = self.f(da, db, *args, **kwargs) # Get the mask for the result (ma, mb) = (getmask(a), getmask(b)) if ma is nomask: if mb is nomask: m = nomask else: m = umath.logical_or(getmaskarray(a), mb) elif mb is nomask: m = umath.logical_or(ma, getmaskarray(b)) else: m = umath.logical_or(ma, mb) # Case 1. : scalar if not result.ndim: if m: return masked return result # Case 2. : array # Revert result to da where masked if m is not nomask and m.any(): # any errors, just abort; impossible to guarantee masked values try: np.copyto(result, da, casting='unsafe', where=m) except Exception: pass # Transforms to a (subclass of) MaskedArray masked_result = result.view(get_masked_subclass(a, b)) masked_result._mask = m if isinstance(a, MaskedArray): masked_result._update_from(a) elif isinstance(b, MaskedArray): masked_result._update_from(b) return masked_result def reduce(self, target, axis=0, dtype=None): """ Reduce `target` along the given `axis`. """ tclass = get_masked_subclass(target) m = getmask(target) t = filled(target, self.filly) if t.shape == (): t = t.reshape(1) if m is not nomask: m = make_mask(m, copy=True) m.shape = (1,) if m is nomask: tr = self.f.reduce(t, axis) mr = nomask else: tr = self.f.reduce(t, axis, dtype=dtype) mr = umath.logical_and.reduce(m, axis) if not tr.shape: if mr: return masked else: return tr masked_tr = tr.view(tclass) masked_tr._mask = mr return masked_tr def outer(self, a, b): """ Return the function applied to the outer product of a and b. """ (da, db) = (getdata(a), getdata(b)) d = self.f.outer(da, db) ma = getmask(a) mb = getmask(b) if ma is nomask and mb is nomask: m = nomask else: ma = getmaskarray(a) mb = getmaskarray(b) m = umath.logical_or.outer(ma, mb) if (not m.ndim) and m: return masked if m is not nomask: np.copyto(d, da, where=m) if not d.shape: return d masked_d = d.view(get_masked_subclass(a, b)) masked_d._mask = m return masked_d def accumulate(self, target, axis=0): """Accumulate `target` along `axis` after filling with y fill value. """ tclass = get_masked_subclass(target) t = filled(target, self.filly) result = self.f.accumulate(t, axis) masked_result = result.view(tclass) return masked_result class _DomainedBinaryOperation(_MaskedUFunc): """ Define binary operations that have a domain, like divide. They have no reduce, outer or accumulate. Parameters ---------- mbfunc : function The function for which to define a masked version. Made available as ``_DomainedBinaryOperation.f``. domain : class instance Default domain for the function. Should be one of the ``_Domain*`` classes. fillx : scalar, optional Filling value for the first argument, default is 0. filly : scalar, optional Filling value for the second argument, default is 0. """ def __init__(self, dbfunc, domain, fillx=0, filly=0): """abfunc(fillx, filly) must be defined. abfunc(x, filly) = x for all x to enable reduce. """ super().__init__(dbfunc) self.domain = domain self.fillx = fillx self.filly = filly ufunc_domain[dbfunc] = domain ufunc_fills[dbfunc] = (fillx, filly) def __call__(self, a, b, *args, **kwargs): "Execute the call behavior." # Get the data (da, db) = (getdata(a), getdata(b)) # Get the result with np.errstate(divide='ignore', invalid='ignore'): result = self.f(da, db, *args, **kwargs) # Get the mask as a combination of the source masks and invalid m = ~umath.isfinite(result) m |= getmask(a) m |= getmask(b) # Apply the domain domain = ufunc_domain.get(self.f, None) if domain is not None: m |= domain(da, db) # Take care of the scalar case first if not m.ndim: if m: return masked else: return result # When the mask is True, put back da if possible # any errors, just abort; impossible to guarantee masked values try: np.copyto(result, 0, casting='unsafe', where=m) # avoid using "*" since this may be overlaid masked_da = umath.multiply(m, da) # only add back if it can be cast safely if np.can_cast(masked_da.dtype, result.dtype, casting='safe'): result += masked_da except Exception: pass # Transforms to a (subclass of) MaskedArray masked_result = result.view(get_masked_subclass(a, b)) masked_result._mask = m if isinstance(a, MaskedArray): masked_result._update_from(a) elif isinstance(b, MaskedArray): masked_result._update_from(b) return masked_result # Unary ufuncs exp = _MaskedUnaryOperation(umath.exp) conjugate = _MaskedUnaryOperation(umath.conjugate) sin = _MaskedUnaryOperation(umath.sin) cos = _MaskedUnaryOperation(umath.cos) arctan = _MaskedUnaryOperation(umath.arctan) arcsinh = _MaskedUnaryOperation(umath.arcsinh) sinh = _MaskedUnaryOperation(umath.sinh) cosh = _MaskedUnaryOperation(umath.cosh) tanh = _MaskedUnaryOperation(umath.tanh) abs = absolute = _MaskedUnaryOperation(umath.absolute) angle = _MaskedUnaryOperation(angle) # from numpy.lib.function_base fabs = _MaskedUnaryOperation(umath.fabs) negative = _MaskedUnaryOperation(umath.negative) floor = _MaskedUnaryOperation(umath.floor) ceil = _MaskedUnaryOperation(umath.ceil) around = _MaskedUnaryOperation(np.round_) logical_not = _MaskedUnaryOperation(umath.logical_not) # Domained unary ufuncs sqrt = _MaskedUnaryOperation(umath.sqrt, 0.0, _DomainGreaterEqual(0.0)) log = _MaskedUnaryOperation(umath.log, 1.0, _DomainGreater(0.0)) log2 = _MaskedUnaryOperation(umath.log2, 1.0, _DomainGreater(0.0)) log10 = _MaskedUnaryOperation(umath.log10, 1.0, _DomainGreater(0.0)) tan = _MaskedUnaryOperation(umath.tan, 0.0, _DomainTan(1e-35)) arcsin = _MaskedUnaryOperation(umath.arcsin, 0.0, _DomainCheckInterval(-1.0, 1.0)) arccos = _MaskedUnaryOperation(umath.arccos, 0.0, _DomainCheckInterval(-1.0, 1.0)) arccosh = _MaskedUnaryOperation(umath.arccosh, 1.0, _DomainGreaterEqual(1.0)) arctanh = _MaskedUnaryOperation(umath.arctanh, 0.0, _DomainCheckInterval(-1.0 + 1e-15, 1.0 - 1e-15)) # Binary ufuncs add = _MaskedBinaryOperation(umath.add) subtract = _MaskedBinaryOperation(umath.subtract) multiply = _MaskedBinaryOperation(umath.multiply, 1, 1) arctan2 = _MaskedBinaryOperation(umath.arctan2, 0.0, 1.0) equal = _MaskedBinaryOperation(umath.equal) equal.reduce = None not_equal = _MaskedBinaryOperation(umath.not_equal) not_equal.reduce = None less_equal = _MaskedBinaryOperation(umath.less_equal) less_equal.reduce = None greater_equal = _MaskedBinaryOperation(umath.greater_equal) greater_equal.reduce = None less = _MaskedBinaryOperation(umath.less) less.reduce = None greater = _MaskedBinaryOperation(umath.greater) greater.reduce = None logical_and = _MaskedBinaryOperation(umath.logical_and) alltrue = _MaskedBinaryOperation(umath.logical_and, 1, 1).reduce logical_or = _MaskedBinaryOperation(umath.logical_or) sometrue = logical_or.reduce logical_xor = _MaskedBinaryOperation(umath.logical_xor) bitwise_and = _MaskedBinaryOperation(umath.bitwise_and) bitwise_or = _MaskedBinaryOperation(umath.bitwise_or) bitwise_xor = _MaskedBinaryOperation(umath.bitwise_xor) hypot = _MaskedBinaryOperation(umath.hypot) # Domained binary ufuncs divide = _DomainedBinaryOperation(umath.divide, _DomainSafeDivide(), 0, 1) true_divide = _DomainedBinaryOperation(umath.true_divide, _DomainSafeDivide(), 0, 1) floor_divide = _DomainedBinaryOperation(umath.floor_divide, _DomainSafeDivide(), 0, 1) remainder = _DomainedBinaryOperation(umath.remainder, _DomainSafeDivide(), 0, 1) fmod = _DomainedBinaryOperation(umath.fmod, _DomainSafeDivide(), 0, 1) mod = _DomainedBinaryOperation(umath.mod, _DomainSafeDivide(), 0, 1) ############################################################################### # Mask creation functions # ############################################################################### def _replace_dtype_fields_recursive(dtype, primitive_dtype): "Private function allowing recursion in _replace_dtype_fields." _recurse = _replace_dtype_fields_recursive # Do we have some name fields ? if dtype.names is not None: descr = [] for name in dtype.names: field = dtype.fields[name] if len(field) == 3: # Prepend the title to the name name = (field[-1], name) descr.append((name, _recurse(field[0], primitive_dtype))) new_dtype = np.dtype(descr) # Is this some kind of composite a la (float,2) elif dtype.subdtype: descr = list(dtype.subdtype) descr[0] = _recurse(dtype.subdtype[0], primitive_dtype) new_dtype = np.dtype(tuple(descr)) # this is a primitive type, so do a direct replacement else: new_dtype = primitive_dtype # preserve identity of dtypes if new_dtype == dtype: new_dtype = dtype return new_dtype def _replace_dtype_fields(dtype, primitive_dtype): """ Construct a dtype description list from a given dtype. Returns a new dtype object, with all fields and subtypes in the given type recursively replaced with `primitive_dtype`. Arguments are coerced to dtypes first. """ dtype = np.dtype(dtype) primitive_dtype = np.dtype(primitive_dtype) return _replace_dtype_fields_recursive(dtype, primitive_dtype) def make_mask_descr(ndtype): """ Construct a dtype description list from a given dtype. Returns a new dtype object, with the type of all fields in `ndtype` to a boolean type. Field names are not altered. Parameters ---------- ndtype : dtype The dtype to convert. Returns ------- result : dtype A dtype that looks like `ndtype`, the type of all fields is boolean. Examples -------- >>> import numpy.ma as ma >>> dtype = np.dtype({'names':['foo', 'bar'], ... 'formats':[np.float32, np.int64]}) >>> dtype dtype([('foo', '<f4'), ('bar', '<i8')]) >>> ma.make_mask_descr(dtype) dtype([('foo', '|b1'), ('bar', '|b1')]) >>> ma.make_mask_descr(np.float32) dtype('bool') """ return _replace_dtype_fields(ndtype, MaskType) def getmask(a): """ Return the mask of a masked array, or nomask. Return the mask of `a` as an ndarray if `a` is a `MaskedArray` and the mask is not `nomask`, else return `nomask`. To guarantee a full array of booleans of the same shape as a, use `getmaskarray`. Parameters ---------- a : array_like Input `MaskedArray` for which the mask is required. See Also -------- getdata : Return the data of a masked array as an ndarray. getmaskarray : Return the mask of a masked array, or full array of False. Examples -------- >>> import numpy.ma as ma >>> a = ma.masked_equal([[1,2],[3,4]], 2) >>> a masked_array( data=[[1, --], [3, 4]], mask=[[False, True], [False, False]], fill_value=2) >>> ma.getmask(a) array([[False, True], [False, False]]) Equivalently use the `MaskedArray` `mask` attribute. >>> a.mask array([[False, True], [False, False]]) Result when mask == `nomask` >>> b = ma.masked_array([[1,2],[3,4]]) >>> b masked_array( data=[[1, 2], [3, 4]], mask=False, fill_value=999999) >>> ma.nomask False >>> ma.getmask(b) == ma.nomask True >>> b.mask == ma.nomask True """ return getattr(a, '_mask', nomask) get_mask = getmask def getmaskarray(arr): """ Return the mask of a masked array, or full boolean array of False. Return the mask of `arr` as an ndarray if `arr` is a `MaskedArray` and the mask is not `nomask`, else return a full boolean array of False of the same shape as `arr`. Parameters ---------- arr : array_like Input `MaskedArray` for which the mask is required. See Also -------- getmask : Return the mask of a masked array, or nomask. getdata : Return the data of a masked array as an ndarray. Examples -------- >>> import numpy.ma as ma >>> a = ma.masked_equal([[1,2],[3,4]], 2) >>> a masked_array( data=[[1, --], [3, 4]], mask=[[False, True], [False, False]], fill_value=2) >>> ma.getmaskarray(a) array([[False, True], [False, False]]) Result when mask == ``nomask`` >>> b = ma.masked_array([[1,2],[3,4]]) >>> b masked_array( data=[[1, 2], [3, 4]], mask=False, fill_value=999999) >>> ma.getmaskarray(b) array([[False, False], [False, False]]) """ mask = getmask(arr) if mask is nomask: mask = make_mask_none(np.shape(arr), getattr(arr, 'dtype', None)) return mask def is_mask(m): """ Return True if m is a valid, standard mask. This function does not check the contents of the input, only that the type is MaskType. In particular, this function returns False if the mask has a flexible dtype. Parameters ---------- m : array_like Array to test. Returns ------- result : bool True if `m.dtype.type` is MaskType, False otherwise. See Also -------- ma.isMaskedArray : Test whether input is an instance of MaskedArray. Examples -------- >>> import numpy.ma as ma >>> m = ma.masked_equal([0, 1, 0, 2, 3], 0) >>> m masked_array(data=[--, 1, --, 2, 3], mask=[ True, False, True, False, False], fill_value=0) >>> ma.is_mask(m) False >>> ma.is_mask(m.mask) True Input must be an ndarray (or have similar attributes) for it to be considered a valid mask. >>> m = [False, True, False] >>> ma.is_mask(m) False >>> m = np.array([False, True, False]) >>> m array([False, True, False]) >>> ma.is_mask(m) True Arrays with complex dtypes don't return True. >>> dtype = np.dtype({'names':['monty', 'pithon'], ... 'formats':[bool, bool]}) >>> dtype dtype([('monty', '|b1'), ('pithon', '|b1')]) >>> m = np.array([(True, False), (False, True), (True, False)], ... dtype=dtype) >>> m array([( True, False), (False, True), ( True, False)], dtype=[('monty', '?'), ('pithon', '?')]) >>> ma.is_mask(m) False """ try: return m.dtype.type is MaskType except AttributeError: return False def _shrink_mask(m): """ Shrink a mask to nomask if possible """ if m.dtype.names is None and not m.any(): return nomask else: return m def make_mask(m, copy=False, shrink=True, dtype=MaskType): """ Create a boolean mask from an array. Return `m` as a boolean mask, creating a copy if necessary or requested. The function can accept any sequence that is convertible to integers, or ``nomask``. Does not require that contents must be 0s and 1s, values of 0 are interpreted as False, everything else as True. Parameters ---------- m : array_like Potential mask. copy : bool, optional Whether to return a copy of `m` (True) or `m` itself (False). shrink : bool, optional Whether to shrink `m` to ``nomask`` if all its values are False. dtype : dtype, optional Data-type of the output mask. By default, the output mask has a dtype of MaskType (bool). If the dtype is flexible, each field has a boolean dtype. This is ignored when `m` is ``nomask``, in which case ``nomask`` is always returned. Returns ------- result : ndarray A boolean mask derived from `m`. Examples -------- >>> import numpy.ma as ma >>> m = [True, False, True, True] >>> ma.make_mask(m) array([ True, False, True, True]) >>> m = [1, 0, 1, 1] >>> ma.make_mask(m) array([ True, False, True, True]) >>> m = [1, 0, 2, -3] >>> ma.make_mask(m) array([ True, False, True, True]) Effect of the `shrink` parameter. >>> m = np.zeros(4) >>> m array([0., 0., 0., 0.]) >>> ma.make_mask(m) False >>> ma.make_mask(m, shrink=False) array([False, False, False, False]) Using a flexible `dtype`. >>> m = [1, 0, 1, 1] >>> n = [0, 1, 0, 0] >>> arr = [] >>> for man, mouse in zip(m, n): ... arr.append((man, mouse)) >>> arr [(1, 0), (0, 1), (1, 0), (1, 0)] >>> dtype = np.dtype({'names':['man', 'mouse'], ... 'formats':[np.int64, np.int64]}) >>> arr = np.array(arr, dtype=dtype) >>> arr array([(1, 0), (0, 1), (1, 0), (1, 0)], dtype=[('man', '<i8'), ('mouse', '<i8')]) >>> ma.make_mask(arr, dtype=dtype) array([(True, False), (False, True), (True, False), (True, False)], dtype=[('man', '|b1'), ('mouse', '|b1')]) """ if m is nomask: return nomask # Make sure the input dtype is valid. dtype = make_mask_descr(dtype) # legacy boolean special case: "existence of fields implies true" if isinstance(m, ndarray) and m.dtype.fields and dtype == np.bool_: return np.ones(m.shape, dtype=dtype) # Fill the mask in case there are missing data; turn it into an ndarray. result = np.array(filled(m, True), copy=copy, dtype=dtype, subok=True) # Bas les masques ! if shrink: result = _shrink_mask(result) return result def make_mask_none(newshape, dtype=None): """ Return a boolean mask of the given shape, filled with False. This function returns a boolean ndarray with all entries False, that can be used in common mask manipulations. If a complex dtype is specified, the type of each field is converted to a boolean type. Parameters ---------- newshape : tuple A tuple indicating the shape of the mask. dtype : {None, dtype}, optional If None, use a MaskType instance. Otherwise, use a new datatype with the same fields as `dtype`, converted to boolean types. Returns ------- result : ndarray An ndarray of appropriate shape and dtype, filled with False. See Also -------- make_mask : Create a boolean mask from an array. make_mask_descr : Construct a dtype description list from a given dtype. Examples -------- >>> import numpy.ma as ma >>> ma.make_mask_none((3,)) array([False, False, False]) Defining a more complex dtype. >>> dtype = np.dtype({'names':['foo', 'bar'], ... 'formats':[np.float32, np.int64]}) >>> dtype dtype([('foo', '<f4'), ('bar', '<i8')]) >>> ma.make_mask_none((3,), dtype=dtype) array([(False, False), (False, False), (False, False)], dtype=[('foo', '|b1'), ('bar', '|b1')]) """ if dtype is None: result = np.zeros(newshape, dtype=MaskType) else: result = np.zeros(newshape, dtype=make_mask_descr(dtype)) return result def _recursive_mask_or(m1, m2, newmask): names = m1.dtype.names for name in names: current1 = m1[name] if current1.dtype.names is not None: _recursive_mask_or(current1, m2[name], newmask[name]) else: umath.logical_or(current1, m2[name], newmask[name]) def mask_or(m1, m2, copy=False, shrink=True): """ Combine two masks with the ``logical_or`` operator. The result may be a view on `m1` or `m2` if the other is `nomask` (i.e. False). Parameters ---------- m1, m2 : array_like Input masks. copy : bool, optional If copy is False and one of the inputs is `nomask`, return a view of the other input mask. Defaults to False. shrink : bool, optional Whether to shrink the output to `nomask` if all its values are False. Defaults to True. Returns ------- mask : output mask The result masks values that are masked in either `m1` or `m2`. Raises ------ ValueError If `m1` and `m2` have different flexible dtypes. Examples -------- >>> m1 = np.ma.make_mask([0, 1, 1, 0]) >>> m2 = np.ma.make_mask([1, 0, 0, 0]) >>> np.ma.mask_or(m1, m2) array([ True, True, True, False]) """ if (m1 is nomask) or (m1 is False): dtype = getattr(m2, 'dtype', MaskType) return make_mask(m2, copy=copy, shrink=shrink, dtype=dtype) if (m2 is nomask) or (m2 is False): dtype = getattr(m1, 'dtype', MaskType) return make_mask(m1, copy=copy, shrink=shrink, dtype=dtype) if m1 is m2 and is_mask(m1): return m1 (dtype1, dtype2) = (getattr(m1, 'dtype', None), getattr(m2, 'dtype', None)) if dtype1 != dtype2: raise ValueError("Incompatible dtypes '%s'<>'%s'" % (dtype1, dtype2)) if dtype1.names is not None: # Allocate an output mask array with the properly broadcast shape. newmask = np.empty(np.broadcast(m1, m2).shape, dtype1) _recursive_mask_or(m1, m2, newmask) return newmask return make_mask(umath.logical_or(m1, m2), copy=copy, shrink=shrink) def flatten_mask(mask): """ Returns a completely flattened version of the mask, where nested fields are collapsed. Parameters ---------- mask : array_like Input array, which will be interpreted as booleans. Returns ------- flattened_mask : ndarray of bools The flattened input. Examples -------- >>> mask = np.array([0, 0, 1]) >>> np.ma.flatten_mask(mask) array([False, False, True]) >>> mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)]) >>> np.ma.flatten_mask(mask) array([False, False, False, True]) >>> mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] >>> mask = np.array([(0, (0, 0)), (0, (0, 1))], dtype=mdtype) >>> np.ma.flatten_mask(mask) array([False, False, False, False, False, True]) """ def _flatmask(mask): "Flatten the mask and returns a (maybe nested) sequence of booleans." mnames = mask.dtype.names if mnames is not None: return [flatten_mask(mask[name]) for name in mnames] else: return mask def _flatsequence(sequence): "Generates a flattened version of the sequence." try: for element in sequence: if hasattr(element, '__iter__'): yield from _flatsequence(element) else: yield element except TypeError: yield sequence mask = np.asarray(mask) flattened = _flatsequence(_flatmask(mask)) return np.array([_ for _ in flattened], dtype=bool) def _check_mask_axis(mask, axis, keepdims=np._NoValue): "Check whether there are masked values along the given axis" kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} if mask is not nomask: return mask.all(axis=axis, **kwargs) return nomask ############################################################################### # Masking functions # ############################################################################### def masked_where(condition, a, copy=True): """ Mask an array where a condition is met. Return `a` as an array masked where `condition` is True. Any masked values of `a` or `condition` are also masked in the output. Parameters ---------- condition : array_like Masking condition. When `condition` tests floating point values for equality, consider using ``masked_values`` instead. a : array_like Array to mask. copy : bool If True (default) make a copy of `a` in the result. If False modify `a` in place and return a view. Returns ------- result : MaskedArray The result of masking `a` where `condition` is True. See Also -------- masked_values : Mask using floating point equality. masked_equal : Mask where equal to a given value. masked_not_equal : Mask where `not` equal to a given value. masked_less_equal : Mask where less than or equal to a given value. masked_greater_equal : Mask where greater than or equal to a given value. masked_less : Mask where less than a given value. masked_greater : Mask where greater than a given value. masked_inside : Mask inside a given interval. masked_outside : Mask outside a given interval. masked_invalid : Mask invalid values (NaNs or infs). Examples -------- >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_where(a <= 2, a) masked_array(data=[--, --, --, 3], mask=[ True, True, True, False], fill_value=999999) Mask array `b` conditional on `a`. >>> b = ['a', 'b', 'c', 'd'] >>> ma.masked_where(a == 2, b) masked_array(data=['a', 'b', --, 'd'], mask=[False, False, True, False], fill_value='N/A', dtype='<U1') Effect of the `copy` argument. >>> c = ma.masked_where(a <= 2, a) >>> c masked_array(data=[--, --, --, 3], mask=[ True, True, True, False], fill_value=999999) >>> c[0] = 99 >>> c masked_array(data=[99, --, --, 3], mask=[False, True, True, False], fill_value=999999) >>> a array([0, 1, 2, 3]) >>> c = ma.masked_where(a <= 2, a, copy=False) >>> c[0] = 99 >>> c masked_array(data=[99, --, --, 3], mask=[False, True, True, False], fill_value=999999) >>> a array([99, 1, 2, 3]) When `condition` or `a` contain masked values. >>> a = np.arange(4) >>> a = ma.masked_where(a == 2, a) >>> a masked_array(data=[0, 1, --, 3], mask=[False, False, True, False], fill_value=999999) >>> b = np.arange(4) >>> b = ma.masked_where(b == 0, b) >>> b masked_array(data=[--, 1, 2, 3], mask=[ True, False, False, False], fill_value=999999) >>> ma.masked_where(a == 3, b) masked_array(data=[--, 1, --, --], mask=[ True, False, True, True], fill_value=999999) """ # Make sure that condition is a valid standard-type mask. cond = make_mask(condition, shrink=False) a = np.array(a, copy=copy, subok=True) (cshape, ashape) = (cond.shape, a.shape) if cshape and cshape != ashape: raise IndexError("Inconsistent shape between the condition and the input" " (got %s and %s)" % (cshape, ashape)) if hasattr(a, '_mask'): cond = mask_or(cond, a._mask) cls = type(a) else: cls = MaskedArray result = a.view(cls) # Assign to *.mask so that structured masks are handled correctly. result.mask = _shrink_mask(cond) # There is no view of a boolean so when 'a' is a MaskedArray with nomask # the update to the result's mask has no effect. if not copy and hasattr(a, '_mask') and getmask(a) is nomask: a._mask = result._mask.view() return result def masked_greater(x, value, copy=True): """ Mask an array where greater than a given value. This function is a shortcut to ``masked_where``, with `condition` = (x > value). See Also -------- masked_where : Mask where a condition is met. Examples -------- >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_greater(a, 2) masked_array(data=[0, 1, 2, --], mask=[False, False, False, True], fill_value=999999) """ return masked_where(greater(x, value), x, copy=copy) def masked_greater_equal(x, value, copy=True): """ Mask an array where greater than or equal to a given value. This function is a shortcut to ``masked_where``, with `condition` = (x >= value). See Also -------- masked_where : Mask where a condition is met. Examples -------- >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_greater_equal(a, 2) masked_array(data=[0, 1, --, --], mask=[False, False, True, True], fill_value=999999) """ return masked_where(greater_equal(x, value), x, copy=copy) def masked_less(x, value, copy=True): """ Mask an array where less than a given value. This function is a shortcut to ``masked_where``, with `condition` = (x < value). See Also -------- masked_where : Mask where a condition is met. Examples -------- >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_less(a, 2) masked_array(data=[--, --, 2, 3], mask=[ True, True, False, False], fill_value=999999) """ return masked_where(less(x, value), x, copy=copy) def masked_less_equal(x, value, copy=True): """ Mask an array where less than or equal to a given value. This function is a shortcut to ``masked_where``, with `condition` = (x <= value). See Also -------- masked_where : Mask where a condition is met. Examples -------- >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_less_equal(a, 2) masked_array(data=[--, --, --, 3], mask=[ True, True, True, False], fill_value=999999) """ return masked_where(less_equal(x, value), x, copy=copy) def masked_not_equal(x, value, copy=True): """ Mask an array where `not` equal to a given value. This function is a shortcut to ``masked_where``, with `condition` = (x != value). See Also -------- masked_where : Mask where a condition is met. Examples -------- >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_not_equal(a, 2) masked_array(data=[--, --, 2, --], mask=[ True, True, False, True], fill_value=999999) """ return masked_where(not_equal(x, value), x, copy=copy) def masked_equal(x, value, copy=True): """ Mask an array where equal to a given value. This function is a shortcut to ``masked_where``, with `condition` = (x == value). For floating point arrays, consider using ``masked_values(x, value)``. See Also -------- masked_where : Mask where a condition is met. masked_values : Mask using floating point equality. Examples -------- >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_equal(a, 2) masked_array(data=[0, 1, --, 3], mask=[False, False, True, False], fill_value=2) """ output = masked_where(equal(x, value), x, copy=copy) output.fill_value = value return output def masked_inside(x, v1, v2, copy=True): """ Mask an array inside a given interval. Shortcut to ``masked_where``, where `condition` is True for `x` inside the interval [v1,v2] (v1 <= x <= v2). The boundaries `v1` and `v2` can be given in either order. See Also -------- masked_where : Mask where a condition is met. Notes ----- The array `x` is prefilled with its filling value. Examples -------- >>> import numpy.ma as ma >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] >>> ma.masked_inside(x, -0.3, 0.3) masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1], mask=[False, False, True, True, False, False], fill_value=1e+20) The order of `v1` and `v2` doesn't matter. >>> ma.masked_inside(x, 0.3, -0.3) masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1], mask=[False, False, True, True, False, False], fill_value=1e+20) """ if v2 < v1: (v1, v2) = (v2, v1) xf = filled(x) condition = (xf >= v1) & (xf <= v2) return masked_where(condition, x, copy=copy) def masked_outside(x, v1, v2, copy=True): """ Mask an array outside a given interval. Shortcut to ``masked_where``, where `condition` is True for `x` outside the interval [v1,v2] (x < v1)|(x > v2). The boundaries `v1` and `v2` can be given in either order. See Also -------- masked_where : Mask where a condition is met. Notes ----- The array `x` is prefilled with its filling value. Examples -------- >>> import numpy.ma as ma >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] >>> ma.masked_outside(x, -0.3, 0.3) masked_array(data=[--, --, 0.01, 0.2, --, --], mask=[ True, True, False, False, True, True], fill_value=1e+20) The order of `v1` and `v2` doesn't matter. >>> ma.masked_outside(x, 0.3, -0.3) masked_array(data=[--, --, 0.01, 0.2, --, --], mask=[ True, True, False, False, True, True], fill_value=1e+20) """ if v2 < v1: (v1, v2) = (v2, v1) xf = filled(x) condition = (xf < v1) | (xf > v2) return masked_where(condition, x, copy=copy) def masked_object(x, value, copy=True, shrink=True): """ Mask the array `x` where the data are exactly equal to value. This function is similar to `masked_values`, but only suitable for object arrays: for floating point, use `masked_values` instead. Parameters ---------- x : array_like Array to mask value : object Comparison value copy : {True, False}, optional Whether to return a copy of `x`. shrink : {True, False}, optional Whether to collapse a mask full of False to nomask Returns ------- result : MaskedArray The result of masking `x` where equal to `value`. See Also -------- masked_where : Mask where a condition is met. masked_equal : Mask where equal to a given value (integers). masked_values : Mask using floating point equality. Examples -------- >>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> eat masked_array(data=[--, 'ham'], mask=[ True, False], fill_value='green_eggs', dtype=object) >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object) Note that `mask` is set to ``nomask`` if possible. >>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object) """ if isMaskedArray(x): condition = umath.equal(x._data, value) mask = x._mask else: condition = umath.equal(np.asarray(x), value) mask = nomask mask = mask_or(mask, make_mask(condition, shrink=shrink)) return masked_array(x, mask=mask, copy=copy, fill_value=value) def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True): """ Mask using floating point equality. Return a MaskedArray, masked where the data in array `x` are approximately equal to `value`, determined using `isclose`. The default tolerances for `masked_values` are the same as those for `isclose`. For integer types, exact equality is used, in the same way as `masked_equal`. The fill_value is set to `value` and the mask is set to ``nomask`` if possible. Parameters ---------- x : array_like Array to mask. value : float Masking value. rtol, atol : float, optional Tolerance parameters passed on to `isclose` copy : bool, optional Whether to return a copy of `x`. shrink : bool, optional Whether to collapse a mask full of False to ``nomask``. Returns ------- result : MaskedArray The result of masking `x` where approximately equal to `value`. See Also -------- masked_where : Mask where a condition is met. masked_equal : Mask where equal to a given value (integers). Examples -------- >>> import numpy.ma as ma >>> x = np.array([1, 1.1, 2, 1.1, 3]) >>> ma.masked_values(x, 1.1) masked_array(data=[1.0, --, 2.0, --, 3.0], mask=[False, True, False, True, False], fill_value=1.1) Note that `mask` is set to ``nomask`` if possible. >>> ma.masked_values(x, 1.5) masked_array(data=[1. , 1.1, 2. , 1.1, 3. ], mask=False, fill_value=1.5) For integers, the fill value will be different in general to the result of ``masked_equal``. >>> x = np.arange(5) >>> x array([0, 1, 2, 3, 4]) >>> ma.masked_values(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2) >>> ma.masked_equal(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2) """ xnew = filled(x, value) if np.issubdtype(xnew.dtype, np.floating): mask = np.isclose(xnew, value, atol=atol, rtol=rtol) else: mask = umath.equal(xnew, value) ret = masked_array(xnew, mask=mask, copy=copy, fill_value=value) if shrink: ret.shrink_mask() return ret def masked_invalid(a, copy=True): """ Mask an array where invalid values occur (NaNs or infs). This function is a shortcut to ``masked_where``, with `condition` = ~(np.isfinite(a)). Any pre-existing mask is conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types), but accepts any array_like object. See Also -------- masked_where : Mask where a condition is met. Examples -------- >>> import numpy.ma as ma >>> a = np.arange(5, dtype=float) >>> a[2] = np.NaN >>> a[3] = np.PINF >>> a array([ 0., 1., nan, inf, 4.]) >>> ma.masked_invalid(a) masked_array(data=[0.0, 1.0, --, --, 4.0], mask=[False, False, True, True, False], fill_value=1e+20) """ a = np.array(a, copy=copy, subok=True) mask = getattr(a, '_mask', None) if mask is not None: condition = ~(np.isfinite(getdata(a))) if mask is not nomask: condition |= mask cls = type(a) else: condition = ~(np.isfinite(a)) cls = MaskedArray result = a.view(cls) result._mask = condition return result ############################################################################### # Printing options # ############################################################################### class _MaskedPrintOption: """ Handle the string used to represent missing data in a masked array. """ def __init__(self, display): """ Create the masked_print_option object. """ self._display = display self._enabled = True def display(self): """ Display the string to print for masked values. """ return self._display def set_display(self, s): """ Set the string to print for masked values. """ self._display = s def enabled(self): """ Is the use of the display value enabled? """ return self._enabled def enable(self, shrink=1): """ Set the enabling shrink to `shrink`. """ self._enabled = shrink def __str__(self): return str(self._display) __repr__ = __str__ # if you single index into a masked location you get this object. masked_print_option = _MaskedPrintOption('--') def _recursive_printoption(result, mask, printopt): """ Puts printoptions in result where mask is True. Private function allowing for recursion """ names = result.dtype.names if names is not None: for name in names: curdata = result[name] curmask = mask[name] _recursive_printoption(curdata, curmask, printopt) else: np.copyto(result, printopt, where=mask) return # For better or worse, these end in a newline _legacy_print_templates = dict( long_std=textwrap.dedent("""\ masked_%(name)s(data = %(data)s, %(nlen)s mask = %(mask)s, %(nlen)s fill_value = %(fill)s) """), long_flx=textwrap.dedent("""\ masked_%(name)s(data = %(data)s, %(nlen)s mask = %(mask)s, %(nlen)s fill_value = %(fill)s, %(nlen)s dtype = %(dtype)s) """), short_std=textwrap.dedent("""\ masked_%(name)s(data = %(data)s, %(nlen)s mask = %(mask)s, %(nlen)s fill_value = %(fill)s) """), short_flx=textwrap.dedent("""\ masked_%(name)s(data = %(data)s, %(nlen)s mask = %(mask)s, %(nlen)s fill_value = %(fill)s, %(nlen)s dtype = %(dtype)s) """) ) ############################################################################### # MaskedArray class # ############################################################################### def _recursive_filled(a, mask, fill_value): """ Recursively fill `a` with `fill_value`. """ names = a.dtype.names for name in names: current = a[name] if current.dtype.names is not None: _recursive_filled(current, mask[name], fill_value[name]) else: np.copyto(current, fill_value[name], where=mask[name]) def flatten_structured_array(a): """ Flatten a structured array. The data type of the output is chosen such that it can represent all of the (nested) fields. Parameters ---------- a : structured array Returns ------- output : masked array or ndarray A flattened masked array if the input is a masked array, otherwise a standard ndarray. Examples -------- >>> ndtype = [('a', int), ('b', float)] >>> a = np.array([(1, 1), (2, 2)], dtype=ndtype) >>> np.ma.flatten_structured_array(a) array([[1., 1.], [2., 2.]]) """ def flatten_sequence(iterable): """ Flattens a compound of nested iterables. """ for elm in iter(iterable): if hasattr(elm, '__iter__'): yield from flatten_sequence(elm) else: yield elm a = np.asanyarray(a) inishape = a.shape a = a.ravel() if isinstance(a, MaskedArray): out = np.array([tuple(flatten_sequence(d.item())) for d in a._data]) out = out.view(MaskedArray) out._mask = np.array([tuple(flatten_sequence(d.item())) for d in getmaskarray(a)]) else: out = np.array([tuple(flatten_sequence(d.item())) for d in a]) if len(inishape) > 1: newshape = list(out.shape) newshape[0] = inishape out.shape = tuple(flatten_sequence(newshape)) return out def _arraymethod(funcname, onmask=True): """ Return a class method wrapper around a basic array method. Creates a class method which returns a masked array, where the new ``_data`` array is the output of the corresponding basic method called on the original ``_data``. If `onmask` is True, the new mask is the output of the method called on the initial mask. Otherwise, the new mask is just a reference to the initial mask. Parameters ---------- funcname : str Name of the function to apply on data. onmask : bool Whether the mask must be processed also (True) or left alone (False). Default is True. Make available as `_onmask` attribute. Returns ------- method : instancemethod Class method wrapper of the specified basic array method. """ def wrapped_method(self, *args, **params): result = getattr(self._data, funcname)(*args, **params) result = result.view(type(self)) result._update_from(self) mask = self._mask if not onmask: result.__setmask__(mask) elif mask is not nomask: # __setmask__ makes a copy, which we don't want result._mask = getattr(mask, funcname)(*args, **params) return result methdoc = getattr(ndarray, funcname, None) or getattr(np, funcname, None) if methdoc is not None: wrapped_method.__doc__ = methdoc.__doc__ wrapped_method.__name__ = funcname return wrapped_method class MaskedIterator: """ Flat iterator object to iterate over masked arrays. A `MaskedIterator` iterator is returned by ``x.flat`` for any masked array `x`. It allows iterating over the array as if it were a 1-D array, either in a for-loop or by calling its `next` method. Iteration is done in C-contiguous style, with the last index varying the fastest. The iterator can also be indexed using basic slicing or advanced indexing. See Also -------- MaskedArray.flat : Return a flat iterator over an array. MaskedArray.flatten : Returns a flattened copy of an array. Notes ----- `MaskedIterator` is not exported by the `ma` module. Instead of instantiating a `MaskedIterator` directly, use `MaskedArray.flat`. Examples -------- >>> x = np.ma.array(arange(6).reshape(2, 3)) >>> fl = x.flat >>> type(fl) <class 'numpy.ma.core.MaskedIterator'> >>> for item in fl: ... print(item) ... 0 1 2 3 4 5 Extracting more than a single element b indexing the `MaskedIterator` returns a masked array: >>> fl[2:4] masked_array(data = [2 3], mask = False, fill_value = 999999) """ def __init__(self, ma): self.ma = ma self.dataiter = ma._data.flat if ma._mask is nomask: self.maskiter = None else: self.maskiter = ma._mask.flat def __iter__(self): return self def __getitem__(self, indx): result = self.dataiter.__getitem__(indx).view(type(self.ma)) if self.maskiter is not None: _mask = self.maskiter.__getitem__(indx) if isinstance(_mask, ndarray): # set shape to match that of data; this is needed for matrices _mask.shape = result.shape result._mask = _mask elif isinstance(_mask, np.void): return mvoid(result, mask=_mask, hardmask=self.ma._hardmask) elif _mask: # Just a scalar, masked return masked return result # This won't work if ravel makes a copy def __setitem__(self, index, value): self.dataiter[index] = getdata(value) if self.maskiter is not None: self.maskiter[index] = getmaskarray(value) def __next__(self): """ Return the next value, or raise StopIteration. Examples -------- >>> x = np.ma.array([3, 2], mask=[0, 1]) >>> fl = x.flat >>> next(fl) 3 >>> next(fl) masked >>> next(fl) Traceback (most recent call last): ... StopIteration """ d = next(self.dataiter) if self.maskiter is not None: m = next(self.maskiter) if isinstance(m, np.void): return mvoid(d, mask=m, hardmask=self.ma._hardmask) elif m: # Just a scalar, masked return masked return d class MaskedArray(ndarray): """ An array class with possibly masked values. Masked values of True exclude the corresponding element from any computation. Construction:: x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True, ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, shrink=True, order=None) Parameters ---------- data : array_like Input data. mask : sequence, optional Mask. Must be convertible to an array of booleans with the same shape as `data`. True indicates a masked (i.e. invalid) data. dtype : dtype, optional Data type of the output. If `dtype` is None, the type of the data argument (``data.dtype``) is used. If `dtype` is not None and different from ``data.dtype``, a copy is performed. copy : bool, optional Whether to copy the input data (True), or to use a reference instead. Default is False. subok : bool, optional Whether to return a subclass of `MaskedArray` if possible (True) or a plain `MaskedArray`. Default is True. ndmin : int, optional Minimum number of dimensions. Default is 0. fill_value : scalar, optional Value used to fill in the masked values when necessary. If None, a default based on the data-type is used. keep_mask : bool, optional Whether to combine `mask` with the mask of the input data, if any (True), or to use only `mask` for the output (False). Default is True. hard_mask : bool, optional Whether to use a hard mask or not. With a hard mask, masked values cannot be unmasked. Default is False. shrink : bool, optional Whether to force compression of an empty mask. Default is True. order : {'C', 'F', 'A'}, optional Specify the order of the array. If order is 'C', then the array will be in C-contiguous order (last-index varies the fastest). If order is 'F', then the returned array will be in Fortran-contiguous order (first-index varies the fastest). If order is 'A' (default), then the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous), unless a copy is required, in which case it will be C-contiguous. Examples -------- The ``mask`` can be initialized with an array of boolean values with the same shape as ``data``. >>> data = np.arange(6).reshape((2, 3)) >>> np.ma.MaskedArray(data, mask=[[False, True, False], ... [False, False, True]]) masked_array( data=[[0, --, 2], [3, 4, --]], mask=[[False, True, False], [False, False, True]], fill_value=999999) Alternatively, the ``mask`` can be initialized to homogeneous boolean array with the same shape as ``data`` by passing in a scalar boolean value: >>> np.ma.MaskedArray(data, mask=False) masked_array( data=[[0, 1, 2], [3, 4, 5]], mask=[[False, False, False], [False, False, False]], fill_value=999999) >>> np.ma.MaskedArray(data, mask=True) masked_array( data=[[--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True]], fill_value=999999, dtype=int64) .. note:: The recommended practice for initializing ``mask`` with a scalar boolean value is to use ``True``/``False`` rather than ``np.True_``/``np.False_``. The reason is :attr:`nomask` is represented internally as ``np.False_``. >>> np.False_ is np.ma.nomask True """ __array_priority__ = 15 _defaultmask = nomask _defaulthardmask = False _baseclass = ndarray # Maximum number of elements per axis used when printing an array. The # 1d case is handled separately because we need more values in this case. _print_width = 100 _print_width_1d = 1500 def __new__(cls, data=None, mask=nomask, dtype=None, copy=False, subok=True, ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, shrink=True, order=None): """ Create a new masked array from scratch. Notes ----- A masked array can also be created by taking a .view(MaskedArray). """ # Process data. _data = np.array(data, dtype=dtype, copy=copy, order=order, subok=True, ndmin=ndmin) _baseclass = getattr(data, '_baseclass', type(_data)) # Check that we're not erasing the mask. if isinstance(data, MaskedArray) and (data.shape != _data.shape): copy = True # Here, we copy the _view_, so that we can attach new properties to it # we must never do .view(MaskedConstant), as that would create a new # instance of np.ma.masked, which make identity comparison fail if isinstance(data, cls) and subok and not isinstance(data, MaskedConstant): _data = ndarray.view(_data, type(data)) else: _data = ndarray.view(_data, cls) # Handle the case where data is not a subclass of ndarray, but # still has the _mask attribute like MaskedArrays if hasattr(data, '_mask') and not isinstance(data, ndarray): _data._mask = data._mask # FIXME: should we set `_data._sharedmask = True`? # Process mask. # Type of the mask mdtype = make_mask_descr(_data.dtype) if mask is nomask: # Case 1. : no mask in input. # Erase the current mask ? if not keep_mask: # With a reduced version if shrink: _data._mask = nomask # With full version else: _data._mask = np.zeros(_data.shape, dtype=mdtype) # Check whether we missed something elif isinstance(data, (tuple, list)): try: # If data is a sequence of masked array mask = np.array( [getmaskarray(np.asanyarray(m, dtype=_data.dtype)) for m in data], dtype=mdtype) except ValueError: # If data is nested mask = nomask # Force shrinking of the mask if needed (and possible) if (mdtype == MaskType) and mask.any(): _data._mask = mask _data._sharedmask = False else: _data._sharedmask = not copy if copy: _data._mask = _data._mask.copy() # Reset the shape of the original mask if getmask(data) is not nomask: data._mask.shape = data.shape else: # Case 2. : With a mask in input. # If mask is boolean, create an array of True or False if mask is True and mdtype == MaskType: mask = np.ones(_data.shape, dtype=mdtype) elif mask is False and mdtype == MaskType: mask = np.zeros(_data.shape, dtype=mdtype) else: # Read the mask with the current mdtype try: mask = np.array(mask, copy=copy, dtype=mdtype) # Or assume it's a sequence of bool/int except TypeError: mask = np.array([tuple([m] * len(mdtype)) for m in mask], dtype=mdtype) # Make sure the mask and the data have the same shape if mask.shape != _data.shape: (nd, nm) = (_data.size, mask.size) if nm == 1: mask = np.resize(mask, _data.shape) elif nm == nd: mask = np.reshape(mask, _data.shape) else: msg = "Mask and data not compatible: data size is %i, " + \ "mask size is %i." raise MaskError(msg % (nd, nm)) copy = True # Set the mask to the new value if _data._mask is nomask: _data._mask = mask _data._sharedmask = not copy else: if not keep_mask: _data._mask = mask _data._sharedmask = not copy else: if _data.dtype.names is not None: def _recursive_or(a, b): "do a|=b on each field of a, recursively" for name in a.dtype.names: (af, bf) = (a[name], b[name]) if af.dtype.names is not None: _recursive_or(af, bf) else: af |= bf _recursive_or(_data._mask, mask) else: _data._mask = np.logical_or(mask, _data._mask) _data._sharedmask = False # Update fill_value. if fill_value is None: fill_value = getattr(data, '_fill_value', None) # But don't run the check unless we have something to check. if fill_value is not None: _data._fill_value = _check_fill_value(fill_value, _data.dtype) # Process extra options .. if hard_mask is None: _data._hardmask = getattr(data, '_hardmask', False) else: _data._hardmask = hard_mask _data._baseclass = _baseclass return _data def _update_from(self, obj): """ Copies some attributes of obj to self. """ if isinstance(obj, ndarray): _baseclass = type(obj) else: _baseclass = ndarray # We need to copy the _basedict to avoid backward propagation _optinfo = {} _optinfo.update(getattr(obj, '_optinfo', {})) _optinfo.update(getattr(obj, '_basedict', {})) if not isinstance(obj, MaskedArray): _optinfo.update(getattr(obj, '__dict__', {})) _dict = dict(_fill_value=getattr(obj, '_fill_value', None), _hardmask=getattr(obj, '_hardmask', False), _sharedmask=getattr(obj, '_sharedmask', False), _isfield=getattr(obj, '_isfield', False), _baseclass=getattr(obj, '_baseclass', _baseclass), _optinfo=_optinfo, _basedict=_optinfo) self.__dict__.update(_dict) self.__dict__.update(_optinfo) return def __array_finalize__(self, obj): """ Finalizes the masked array. """ # Get main attributes. self._update_from(obj) # We have to decide how to initialize self.mask, based on # obj.mask. This is very difficult. There might be some # correspondence between the elements in the array we are being # created from (= obj) and us. Or there might not. This method can # be called in all kinds of places for all kinds of reasons -- could # be empty_like, could be slicing, could be a ufunc, could be a view. # The numpy subclassing interface simply doesn't give us any way # to know, which means that at best this method will be based on # guesswork and heuristics. To make things worse, there isn't even any # clear consensus about what the desired behavior is. For instance, # most users think that np.empty_like(marr) -- which goes via this # method -- should return a masked array with an empty mask (see # gh-3404 and linked discussions), but others disagree, and they have # existing code which depends on empty_like returning an array that # matches the input mask. # # Historically our algorithm was: if the template object mask had the # same *number of elements* as us, then we used *it's mask object # itself* as our mask, so that writes to us would also write to the # original array. This is horribly broken in multiple ways. # # Now what we do instead is, if the template object mask has the same # number of elements as us, and we do not have the same base pointer # as the template object (b/c views like arr[...] should keep the same # mask), then we make a copy of the template object mask and use # that. This is also horribly broken but somewhat less so. Maybe. if isinstance(obj, ndarray): # XX: This looks like a bug -- shouldn't it check self.dtype # instead? if obj.dtype.names is not None: _mask = getmaskarray(obj) else: _mask = getmask(obj) # If self and obj point to exactly the same data, then probably # self is a simple view of obj (e.g., self = obj[...]), so they # should share the same mask. (This isn't 100% reliable, e.g. self # could be the first row of obj, or have strange strides, but as a # heuristic it's not bad.) In all other cases, we make a copy of # the mask, so that future modifications to 'self' do not end up # side-effecting 'obj' as well. if (_mask is not nomask and obj.__array_interface__["data"][0] != self.__array_interface__["data"][0]): # We should make a copy. But we could get here via astype, # in which case the mask might need a new dtype as well # (e.g., changing to or from a structured dtype), and the # order could have changed. So, change the mask type if # needed and use astype instead of copy. if self.dtype == obj.dtype: _mask_dtype = _mask.dtype else: _mask_dtype = make_mask_descr(self.dtype) if self.flags.c_contiguous: order = "C" elif self.flags.f_contiguous: order = "F" else: order = "K" _mask = _mask.astype(_mask_dtype, order) else: # Take a view so shape changes, etc., do not propagate back. _mask = _mask.view() else: _mask = nomask self._mask = _mask # Finalize the mask if self._mask is not nomask: try: self._mask.shape = self.shape except ValueError: self._mask = nomask except (TypeError, AttributeError): # When _mask.shape is not writable (because it's a void) pass # Finalize the fill_value if self._fill_value is not None: self._fill_value = _check_fill_value(self._fill_value, self.dtype) elif self.dtype.names is not None: # Finalize the default fill_value for structured arrays self._fill_value = _check_fill_value(None, self.dtype) def __array_wrap__(self, obj, context=None): """ Special hook for ufuncs. Wraps the numpy array and sets the mask according to context. """ if obj is self: # for in-place operations result = obj else: result = obj.view(type(self)) result._update_from(self) if context is not None: result._mask = result._mask.copy() func, args, out_i = context # args sometimes contains outputs (gh-10459), which we don't want input_args = args[:func.nin] m = reduce(mask_or, [getmaskarray(arg) for arg in input_args]) # Get the domain mask domain = ufunc_domain.get(func, None) if domain is not None: # Take the domain, and make sure it's a ndarray with np.errstate(divide='ignore', invalid='ignore'): d = filled(domain(*input_args), True) if d.any(): # Fill the result where the domain is wrong try: # Binary domain: take the last value fill_value = ufunc_fills[func][-1] except TypeError: # Unary domain: just use this one fill_value = ufunc_fills[func] except KeyError: # Domain not recognized, use fill_value instead fill_value = self.fill_value np.copyto(result, fill_value, where=d) # Update the mask if m is nomask: m = d else: # Don't modify inplace, we risk back-propagation m = (m | d) # Make sure the mask has the proper size if result is not self and result.shape == () and m: return masked else: result._mask = m result._sharedmask = False return result def view(self, dtype=None, type=None, fill_value=None): """ Return a view of the MaskedArray data. Parameters ---------- dtype : data-type or ndarray sub-class, optional Data-type descriptor of the returned view, e.g., float32 or int16. The default, None, results in the view having the same data-type as `a`. As with ``ndarray.view``, dtype can also be specified as an ndarray sub-class, which then specifies the type of the returned object (this is equivalent to setting the ``type`` parameter). type : Python type, optional Type of the returned view, either ndarray or a subclass. The default None results in type preservation. fill_value : scalar, optional The value to use for invalid entries (None by default). If None, then this argument is inferred from the passed `dtype`, or in its absence the original array, as discussed in the notes below. See Also -------- numpy.ndarray.view : Equivalent method on ndarray object. Notes ----- ``a.view()`` is used two different ways: ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view of the array's memory with a different data-type. This can cause a reinterpretation of the bytes of memory. ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just returns an instance of `ndarray_subclass` that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation of the memory. If `fill_value` is not specified, but `dtype` is specified (and is not an ndarray sub-class), the `fill_value` of the MaskedArray will be reset. If neither `fill_value` nor `dtype` are specified (or if `dtype` is an ndarray sub-class), then the fill value is preserved. Finally, if `fill_value` is specified, but `dtype` is not, the fill value is set to the specified value. For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of bytes per entry than the previous dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot be predicted just from the superficial appearance of ``a`` (shown by ``print(a)``). It also depends on exactly how ``a`` is stored in memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus defined as a slice or transpose, etc., the view may give different results. """ if dtype is None: if type is None: output = ndarray.view(self) else: output = ndarray.view(self, type) elif type is None: try: if issubclass(dtype, ndarray): output = ndarray.view(self, dtype) dtype = None else: output = ndarray.view(self, dtype) except TypeError: output = ndarray.view(self, dtype) else: output = ndarray.view(self, dtype, type) # also make the mask be a view (so attr changes to the view's # mask do no affect original object's mask) # (especially important to avoid affecting np.masked singleton) if getmask(output) is not nomask: output._mask = output._mask.view() # Make sure to reset the _fill_value if needed if getattr(output, '_fill_value', None) is not None: if fill_value is None: if dtype is None: pass # leave _fill_value as is else: output._fill_value = None else: output.fill_value = fill_value return output def __getitem__(self, indx): """ x.__getitem__(y) <==> x[y] Return the item described by i, as a masked array. """ # We could directly use ndarray.__getitem__ on self. # But then we would have to modify __array_finalize__ to prevent the # mask of being reshaped if it hasn't been set up properly yet # So it's easier to stick to the current version dout = self.data[indx] _mask = self._mask def _is_scalar(m): return not isinstance(m, np.ndarray) def _scalar_heuristic(arr, elem): """ Return whether `elem` is a scalar result of indexing `arr`, or None if undecidable without promoting nomask to a full mask """ # obviously a scalar if not isinstance(elem, np.ndarray): return True # object array scalar indexing can return anything elif arr.dtype.type is np.object_: if arr.dtype is not elem.dtype: # elem is an array, but dtypes do not match, so must be # an element return True # well-behaved subclass that only returns 0d arrays when # expected - this is not a scalar elif type(arr).__getitem__ == ndarray.__getitem__: return False return None if _mask is not nomask: # _mask cannot be a subclass, so it tells us whether we should # expect a scalar. It also cannot be of dtype object. mout = _mask[indx] scalar_expected = _is_scalar(mout) else: # attempt to apply the heuristic to avoid constructing a full mask mout = nomask scalar_expected = _scalar_heuristic(self.data, dout) if scalar_expected is None: # heuristics have failed # construct a full array, so we can be certain. This is costly. # we could also fall back on ndarray.__getitem__(self.data, indx) scalar_expected = _is_scalar(getmaskarray(self)[indx]) # Did we extract a single item? if scalar_expected: # A record if isinstance(dout, np.void): # We should always re-cast to mvoid, otherwise users can # change masks on rows that already have masked values, but not # on rows that have no masked values, which is inconsistent. return mvoid(dout, mask=mout, hardmask=self._hardmask) # special case introduced in gh-5962 elif (self.dtype.type is np.object_ and isinstance(dout, np.ndarray) and dout is not masked): # If masked, turn into a MaskedArray, with everything masked. if mout: return MaskedArray(dout, mask=True) else: return dout # Just a scalar else: if mout: return masked else: return dout else: # Force dout to MA dout = dout.view(type(self)) # Inherit attributes from self dout._update_from(self) # Check the fill_value if is_string_or_list_of_strings(indx): if self._fill_value is not None: dout._fill_value = self._fill_value[indx] # Something like gh-15895 has happened if this check fails. # _fill_value should always be an ndarray. if not isinstance(dout._fill_value, np.ndarray): raise RuntimeError('Internal NumPy error.') # If we're indexing a multidimensional field in a # structured array (such as dtype("(2,)i2,(2,)i1")), # dimensionality goes up (M[field].ndim == M.ndim + # M.dtype[field].ndim). That's fine for # M[field] but problematic for M[field].fill_value # which should have shape () to avoid breaking several # methods. There is no great way out, so set to # first element. See issue #6723. if dout._fill_value.ndim > 0: if not (dout._fill_value == dout._fill_value.flat[0]).all(): warnings.warn( "Upon accessing multidimensional field " f"{indx!s}, need to keep dimensionality " "of fill_value at 0. Discarding " "heterogeneous fill_value and setting " f"all to {dout._fill_value[0]!s}.", stacklevel=2) # Need to use `.flat[0:1].squeeze(...)` instead of just # `.flat[0]` to ensure the result is a 0d array and not # a scalar. dout._fill_value = dout._fill_value.flat[0:1].squeeze(axis=0) dout._isfield = True # Update the mask if needed if mout is not nomask: # set shape to match that of data; this is needed for matrices dout._mask = reshape(mout, dout.shape) dout._sharedmask = True # Note: Don't try to check for m.any(), that'll take too long return dout def __setitem__(self, indx, value): """ x.__setitem__(i, y) <==> x[i]=y Set item described by index. If value is masked, masks those locations. """ if self is masked: raise MaskError('Cannot alter the masked element.') _data = self._data _mask = self._mask if isinstance(indx, str): _data[indx] = value if _mask is nomask: self._mask = _mask = make_mask_none(self.shape, self.dtype) _mask[indx] = getmask(value) return _dtype = _data.dtype if value is masked: # The mask wasn't set: create a full version. if _mask is nomask: _mask = self._mask = make_mask_none(self.shape, _dtype) # Now, set the mask to its value. if _dtype.names is not None: _mask[indx] = tuple([True] * len(_dtype.names)) else: _mask[indx] = True return # Get the _data part of the new value dval = getattr(value, '_data', value) # Get the _mask part of the new value mval = getmask(value) if _dtype.names is not None and mval is nomask: mval = tuple([False] * len(_dtype.names)) if _mask is nomask: # Set the data, then the mask _data[indx] = dval if mval is not nomask: _mask = self._mask = make_mask_none(self.shape, _dtype) _mask[indx] = mval elif not self._hardmask: # Set the data, then the mask if (isinstance(indx, masked_array) and not isinstance(value, masked_array)): _data[indx.data] = dval else: _data[indx] = dval _mask[indx] = mval elif hasattr(indx, 'dtype') and (indx.dtype == MaskType): indx = indx * umath.logical_not(_mask) _data[indx] = dval else: if _dtype.names is not None: err_msg = "Flexible 'hard' masks are not yet supported." raise NotImplementedError(err_msg) mindx = mask_or(_mask[indx], mval, copy=True) dindx = self._data[indx] if dindx.size > 1: np.copyto(dindx, dval, where=~mindx) elif mindx is nomask: dindx = dval _data[indx] = dindx _mask[indx] = mindx return # Define so that we can overwrite the setter. @property def dtype(self): return super().dtype @dtype.setter def dtype(self, dtype): super(MaskedArray, type(self)).dtype.__set__(self, dtype) if self._mask is not nomask: self._mask = self._mask.view(make_mask_descr(dtype), ndarray) # Try to reset the shape of the mask (if we don't have a void). # This raises a ValueError if the dtype change won't work. try: self._mask.shape = self.shape except (AttributeError, TypeError): pass @property def shape(self): return super().shape @shape.setter def shape(self, shape): super(MaskedArray, type(self)).shape.__set__(self, shape) # Cannot use self._mask, since it may not (yet) exist when a # masked matrix sets the shape. if getmask(self) is not nomask: self._mask.shape = self.shape def __setmask__(self, mask, copy=False): """ Set the mask. """ idtype = self.dtype current_mask = self._mask if mask is masked: mask = True if current_mask is nomask: # Make sure the mask is set # Just don't do anything if there's nothing to do. if mask is nomask: return current_mask = self._mask = make_mask_none(self.shape, idtype) if idtype.names is None: # No named fields. # Hardmask: don't unmask the data if self._hardmask: current_mask |= mask # Softmask: set everything to False # If it's obviously a compatible scalar, use a quick update # method. elif isinstance(mask, (int, float, np.bool_, np.number)): current_mask[...] = mask # Otherwise fall back to the slower, general purpose way. else: current_mask.flat = mask else: # Named fields w/ mdtype = current_mask.dtype mask = np.array(mask, copy=False) # Mask is a singleton if not mask.ndim: # It's a boolean : make a record if mask.dtype.kind == 'b': mask = np.array(tuple([mask.item()] * len(mdtype)), dtype=mdtype) # It's a record: make sure the dtype is correct else: mask = mask.astype(mdtype) # Mask is a sequence else: # Make sure the new mask is a ndarray with the proper dtype try: mask = np.array(mask, copy=copy, dtype=mdtype) # Or assume it's a sequence of bool/int except TypeError: mask = np.array([tuple([m] * len(mdtype)) for m in mask], dtype=mdtype) # Hardmask: don't unmask the data if self._hardmask: for n in idtype.names: current_mask[n] |= mask[n] # Softmask: set everything to False # If it's obviously a compatible scalar, use a quick update # method. elif isinstance(mask, (int, float, np.bool_, np.number)): current_mask[...] = mask # Otherwise fall back to the slower, general purpose way. else: current_mask.flat = mask # Reshape if needed if current_mask.shape: current_mask.shape = self.shape return _set_mask = __setmask__ @property def mask(self): """ Current mask. """ # We could try to force a reshape, but that wouldn't work in some # cases. # Return a view so that the dtype and shape cannot be changed in place # This still preserves nomask by identity return self._mask.view() @mask.setter def mask(self, value): self.__setmask__(value) @property def recordmask(self): """ Get or set the mask of the array if it has no named fields. For structured arrays, returns a ndarray of booleans where entries are ``True`` if **all** the fields are masked, ``False`` otherwise: >>> x = np.ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)], ... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)], ... dtype=[('a', int), ('b', int)]) >>> x.recordmask array([False, False, True, False, False]) """ _mask = self._mask.view(ndarray) if _mask.dtype.names is None: return _mask return np.all(flatten_structured_array(_mask), axis=-1) @recordmask.setter def recordmask(self, mask): raise NotImplementedError("Coming soon: setting the mask per records!") def harden_mask(self): """ Force the mask to hard, preventing unmasking by assignment. Whether the mask of a masked array is hard or soft is determined by its `~ma.MaskedArray.hardmask` property. `harden_mask` sets `~ma.MaskedArray.hardmask` to ``True`` (and returns the modified self). See Also -------- ma.MaskedArray.hardmask ma.MaskedArray.soften_mask """ self._hardmask = True return self def soften_mask(self): """ Force the mask to soft (default), allowing unmasking by assignment. Whether the mask of a masked array is hard or soft is determined by its `~ma.MaskedArray.hardmask` property. `soften_mask` sets `~ma.MaskedArray.hardmask` to ``False`` (and returns the modified self). See Also -------- ma.MaskedArray.hardmask ma.MaskedArray.harden_mask """ self._hardmask = False return self @property def hardmask(self): """ Specifies whether values can be unmasked through assignments. By default, assigning definite values to masked array entries will unmask them. When `hardmask` is ``True``, the mask will not change through assignments. See Also -------- ma.MaskedArray.harden_mask ma.MaskedArray.soften_mask Examples -------- >>> x = np.arange(10) >>> m = np.ma.masked_array(x, x>5) >>> assert not m.hardmask Since `m` has a soft mask, assigning an element value unmasks that element: >>> m[8] = 42 >>> m masked_array(data=[0, 1, 2, 3, 4, 5, --, --, 42, --], mask=[False, False, False, False, False, False, True, True, False, True], fill_value=999999) After hardening, the mask is not affected by assignments: >>> hardened = np.ma.harden_mask(m) >>> assert m.hardmask and hardened is m >>> m[:] = 23 >>> m masked_array(data=[23, 23, 23, 23, 23, 23, --, --, 23, --], mask=[False, False, False, False, False, False, True, True, False, True], fill_value=999999) """ return self._hardmask def unshare_mask(self): """ Copy the mask and set the `sharedmask` flag to ``False``. Whether the mask is shared between masked arrays can be seen from the `sharedmask` property. `unshare_mask` ensures the mask is not shared. A copy of the mask is only made if it was shared. See Also -------- sharedmask """ if self._sharedmask: self._mask = self._mask.copy() self._sharedmask = False return self @property def sharedmask(self): """ Share status of the mask (read-only). """ return self._sharedmask def shrink_mask(self): """ Reduce a mask to nomask when possible. Parameters ---------- None Returns ------- None Examples -------- >>> x = np.ma.array([[1,2 ], [3, 4]], mask=[0]*4) >>> x.mask array([[False, False], [False, False]]) >>> x.shrink_mask() masked_array( data=[[1, 2], [3, 4]], mask=False, fill_value=999999) >>> x.mask False """ self._mask = _shrink_mask(self._mask) return self @property def baseclass(self): """ Class of the underlying data (read-only). """ return self._baseclass def _get_data(self): """ Returns the underlying data, as a view of the masked array. If the underlying data is a subclass of :class:`numpy.ndarray`, it is returned as such. >>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]]) >>> x.data matrix([[1, 2], [3, 4]]) The type of the data can be accessed through the :attr:`baseclass` attribute. """ return ndarray.view(self, self._baseclass) _data = property(fget=_get_data) data = property(fget=_get_data) @property def flat(self): """ Return a flat iterator, or set a flattened version of self to value. """ return MaskedIterator(self) @flat.setter def flat(self, value): y = self.ravel() y[:] = value @property def fill_value(self): """ The filling value of the masked array is a scalar. When setting, None will set to a default based on the data type. Examples -------- >>> for dt in [np.int32, np.int64, np.float64, np.complex128]: ... np.ma.array([0, 1], dtype=dt).get_fill_value() ... 999999 999999 1e+20 (1e+20+0j) >>> x = np.ma.array([0, 1.], fill_value=-np.inf) >>> x.fill_value -inf >>> x.fill_value = np.pi >>> x.fill_value 3.1415926535897931 # may vary Reset to default: >>> x.fill_value = None >>> x.fill_value 1e+20 """ if self._fill_value is None: self._fill_value = _check_fill_value(None, self.dtype) # Temporary workaround to account for the fact that str and bytes # scalars cannot be indexed with (), whereas all other numpy # scalars can. See issues #7259 and #7267. # The if-block can be removed after #7267 has been fixed. if isinstance(self._fill_value, ndarray): return self._fill_value[()] return self._fill_value @fill_value.setter def fill_value(self, value=None): target = _check_fill_value(value, self.dtype) if not target.ndim == 0: # 2019-11-12, 1.18.0 warnings.warn( "Non-scalar arrays for the fill value are deprecated. Use " "arrays with scalar values instead. The filled function " "still supports any array as `fill_value`.", DeprecationWarning, stacklevel=2) _fill_value = self._fill_value if _fill_value is None: # Create the attribute if it was undefined self._fill_value = target else: # Don't overwrite the attribute, just fill it (for propagation) _fill_value[()] = target # kept for compatibility get_fill_value = fill_value.fget set_fill_value = fill_value.fset def filled(self, fill_value=None): """ Return a copy of self, with masked values filled with a given value. **However**, if there are no masked values to fill, self will be returned instead as an ndarray. Parameters ---------- fill_value : array_like, optional The value to use for invalid entries. Can be scalar or non-scalar. If non-scalar, the resulting ndarray must be broadcastable over input array. Default is None, in which case, the `fill_value` attribute of the array is used instead. Returns ------- filled_array : ndarray A copy of ``self`` with invalid entries replaced by *fill_value* (be it the function argument or the attribute of ``self``), or ``self`` itself as an ndarray if there are no invalid entries to be replaced. Notes ----- The result is **not** a MaskedArray! Examples -------- >>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999) >>> x.filled() array([ 1, 2, -999, 4, -999]) >>> x.filled(fill_value=1000) array([ 1, 2, 1000, 4, 1000]) >>> type(x.filled()) <class 'numpy.ndarray'> Subclassing is preserved. This means that if, e.g., the data part of the masked array is a recarray, `filled` returns a recarray: >>> x = np.array([(-1, 2), (-3, 4)], dtype='i8,i8').view(np.recarray) >>> m = np.ma.array(x, mask=[(True, False), (False, True)]) >>> m.filled() rec.array([(999999, 2), ( -3, 999999)], dtype=[('f0', '<i8'), ('f1', '<i8')]) """ m = self._mask if m is nomask: return self._data if fill_value is None: fill_value = self.fill_value else: fill_value = _check_fill_value(fill_value, self.dtype) if self is masked_singleton: return np.asanyarray(fill_value) if m.dtype.names is not None: result = self._data.copy('K') _recursive_filled(result, self._mask, fill_value) elif not m.any(): return self._data else: result = self._data.copy('K') try: np.copyto(result, fill_value, where=m) except (TypeError, AttributeError): fill_value = narray(fill_value, dtype=object) d = result.astype(object) result = np.choose(m, (d, fill_value)) except IndexError: # ok, if scalar if self._data.shape: raise elif m: result = np.array(fill_value, dtype=self.dtype) else: result = self._data return result def compressed(self): """ Return all the non-masked data as a 1-D array. Returns ------- data : ndarray A new `ndarray` holding the non-masked data is returned. Notes ----- The result is **not** a MaskedArray! Examples -------- >>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3) >>> x.compressed() array([0, 1]) >>> type(x.compressed()) <class 'numpy.ndarray'> """ data = ndarray.ravel(self._data) if self._mask is not nomask: data = data.compress(np.logical_not(ndarray.ravel(self._mask))) return data def compress(self, condition, axis=None, out=None): """ Return `a` where condition is ``True``. If condition is a `~ma.MaskedArray`, missing values are considered as ``False``. Parameters ---------- condition : var Boolean 1-d array selecting which entries to return. If len(condition) is less than the size of a along the axis, then output is truncated to length of condition array. axis : {None, int}, optional Axis along which the operation must be performed. out : {None, ndarray}, optional Alternative output array in which to place the result. It must have the same shape as the expected output but the type will be cast if necessary. Returns ------- result : MaskedArray A :class:`~ma.MaskedArray` object. Notes ----- Please note the difference with :meth:`compressed` ! The output of :meth:`compress` has a mask, the output of :meth:`compressed` does not. Examples -------- >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) >>> x masked_array( data=[[1, --, 3], [--, 5, --], [7, --, 9]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=999999) >>> x.compress([1, 0, 1]) masked_array(data=[1, 3], mask=[False, False], fill_value=999999) >>> x.compress([1, 0, 1], axis=1) masked_array( data=[[1, 3], [--, --], [7, 9]], mask=[[False, False], [ True, True], [False, False]], fill_value=999999) """ # Get the basic components (_data, _mask) = (self._data, self._mask) # Force the condition to a regular ndarray and forget the missing # values. condition = np.asarray(condition) _new = _data.compress(condition, axis=axis, out=out).view(type(self)) _new._update_from(self) if _mask is not nomask: _new._mask = _mask.compress(condition, axis=axis) return _new def _insert_masked_print(self): """ Replace masked values with masked_print_option, casting all innermost dtypes to object. """ if masked_print_option.enabled(): mask = self._mask if mask is nomask: res = self._data else: # convert to object array to make filled work data = self._data # For big arrays, to avoid a costly conversion to the # object dtype, extract the corners before the conversion. print_width = (self._print_width if self.ndim > 1 else self._print_width_1d) for axis in range(self.ndim): if data.shape[axis] > print_width: ind = print_width // 2 arr = np.split(data, (ind, -ind), axis=axis) data = np.concatenate((arr[0], arr[2]), axis=axis) arr = np.split(mask, (ind, -ind), axis=axis) mask = np.concatenate((arr[0], arr[2]), axis=axis) rdtype = _replace_dtype_fields(self.dtype, "O") res = data.astype(rdtype) _recursive_printoption(res, mask, masked_print_option) else: res = self.filled(self.fill_value) return res def __str__(self): return str(self._insert_masked_print()) def __repr__(self): """ Literal string representation. """ if self._baseclass is np.ndarray: name = 'array' else: name = self._baseclass.__name__ # 2016-11-19: Demoted to legacy format if np.core.arrayprint._get_legacy_print_mode() <= 113: is_long = self.ndim > 1 parameters = dict( name=name, nlen=" " * len(name), data=str(self), mask=str(self._mask), fill=str(self.fill_value), dtype=str(self.dtype) ) is_structured = bool(self.dtype.names) key = '{}_{}'.format( 'long' if is_long else 'short', 'flx' if is_structured else 'std' ) return _legacy_print_templates[key] % parameters prefix = f"masked_{name}(" dtype_needed = ( not np.core.arrayprint.dtype_is_implied(self.dtype) or np.all(self.mask) or self.size == 0 ) # determine which keyword args need to be shown keys = ['data', 'mask', 'fill_value'] if dtype_needed: keys.append('dtype') # array has only one row (non-column) is_one_row = builtins.all(dim == 1 for dim in self.shape[:-1]) # choose what to indent each keyword with min_indent = 2 if is_one_row: # first key on the same line as the type, remaining keys # aligned by equals indents = {} indents[keys[0]] = prefix for k in keys[1:]: n = builtins.max(min_indent, len(prefix + keys[0]) - len(k)) indents[k] = ' ' * n prefix = '' # absorbed into the first indent else: # each key on its own line, indented by two spaces indents = {k: ' ' * min_indent for k in keys} prefix = prefix + '\n' # first key on the next line # format the field values reprs = {} reprs['data'] = np.array2string( self._insert_masked_print(), separator=", ", prefix=indents['data'] + 'data=', suffix=',') reprs['mask'] = np.array2string( self._mask, separator=", ", prefix=indents['mask'] + 'mask=', suffix=',') reprs['fill_value'] = repr(self.fill_value) if dtype_needed: reprs['dtype'] = np.core.arrayprint.dtype_short_repr(self.dtype) # join keys with values and indentations result = ',\n'.join( '{}{}={}'.format(indents[k], k, reprs[k]) for k in keys ) return prefix + result + ')' def _delegate_binop(self, other): # This emulates the logic in # private/binop_override.h:forward_binop_should_defer if isinstance(other, type(self)): return False array_ufunc = getattr(other, "__array_ufunc__", False) if array_ufunc is False: other_priority = getattr(other, "__array_priority__", -1000000) return self.__array_priority__ < other_priority else: # If array_ufunc is not None, it will be called inside the ufunc; # None explicitly tells us to not call the ufunc, i.e., defer. return array_ufunc is None def _comparison(self, other, compare): """Compare self with other using operator.eq or operator.ne. When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set, with self and other considered equal if both are masked, and unequal otherwise. For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields were masked, with self and other considered equal only if both were fully masked. """ omask = getmask(other) smask = self.mask mask = mask_or(smask, omask, copy=True) odata = getdata(other) if mask.dtype.names is not None: # For possibly masked structured arrays we need to be careful, # since the standard structured array comparison will use all # fields, masked or not. To avoid masked fields influencing the # outcome, we set all masked fields in self to other, so they'll # count as equal. To prepare, we ensure we have the right shape. broadcast_shape = np.broadcast(self, odata).shape sbroadcast = np.broadcast_to(self, broadcast_shape, subok=True) sbroadcast._mask = mask sdata = sbroadcast.filled(odata) # Now take care of the mask; the merged mask should have an item # masked if all fields were masked (in one and/or other). mask = (mask == np.ones((), mask.dtype)) else: # For regular arrays, just use the data as they come. sdata = self.data check = compare(sdata, odata) if isinstance(check, (np.bool_, bool)): return masked if mask else check if mask is not nomask: # Adjust elements that were masked, which should be treated # as equal if masked in both, unequal if masked in one. # Note that this works automatically for structured arrays too. check = np.where(mask, compare(smask, omask), check) if mask.shape != check.shape: # Guarantee consistency of the shape, making a copy since the # the mask may need to get written to later. mask = np.broadcast_to(mask, check.shape).copy() check = check.view(type(self)) check._update_from(self) check._mask = mask # Cast fill value to bool_ if needed. If it cannot be cast, the # default boolean fill value is used. if check._fill_value is not None: try: fill = _check_fill_value(check._fill_value, np.bool_) except (TypeError, ValueError): fill = _check_fill_value(None, np.bool_) check._fill_value = fill return check def __eq__(self, other): """Check whether other equals self elementwise. When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set, with self and other considered equal if both are masked, and unequal otherwise. For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields were masked, with self and other considered equal only if both were fully masked. """ return self._comparison(other, operator.eq) def __ne__(self, other): """Check whether other does not equal self elementwise. When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set, with self and other considered equal if both are masked, and unequal otherwise. For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields were masked, with self and other considered equal only if both were fully masked. """ return self._comparison(other, operator.ne) def __add__(self, other): """ Add self to other, and return a new masked array. """ if self._delegate_binop(other): return NotImplemented return add(self, other) def __radd__(self, other): """ Add other to self, and return a new masked array. """ # In analogy with __rsub__ and __rdiv__, use original order: # we get here from `other + self`. return add(other, self) def __sub__(self, other): """ Subtract other from self, and return a new masked array. """ if self._delegate_binop(other): return NotImplemented return subtract(self, other) def __rsub__(self, other): """ Subtract self from other, and return a new masked array. """ return subtract(other, self) def __mul__(self, other): "Multiply self by other, and return a new masked array." if self._delegate_binop(other): return NotImplemented return multiply(self, other) def __rmul__(self, other): """ Multiply other by self, and return a new masked array. """ # In analogy with __rsub__ and __rdiv__, use original order: # we get here from `other * self`. return multiply(other, self) def __div__(self, other): """ Divide other into self, and return a new masked array. """ if self._delegate_binop(other): return NotImplemented return divide(self, other) def __truediv__(self, other): """ Divide other into self, and return a new masked array. """ if self._delegate_binop(other): return NotImplemented return true_divide(self, other) def __rtruediv__(self, other): """ Divide self into other, and return a new masked array. """ return true_divide(other, self) def __floordiv__(self, other): """ Divide other into self, and return a new masked array. """ if self._delegate_binop(other): return NotImplemented return floor_divide(self, other) def __rfloordiv__(self, other): """ Divide self into other, and return a new masked array. """ return floor_divide(other, self) def __pow__(self, other): """ Raise self to the power other, masking the potential NaNs/Infs """ if self._delegate_binop(other): return NotImplemented return power(self, other) def __rpow__(self, other): """ Raise other to the power self, masking the potential NaNs/Infs """ return power(other, self) def __iadd__(self, other): """ Add other to self in-place. """ m = getmask(other) if self._mask is nomask: if m is not nomask and m.any(): self._mask = make_mask_none(self.shape, self.dtype) self._mask += m else: if m is not nomask: self._mask += m self._data.__iadd__(np.where(self._mask, self.dtype.type(0), getdata(other))) return self def __isub__(self, other): """ Subtract other from self in-place. """ m = getmask(other) if self._mask is nomask: if m is not nomask and m.any(): self._mask = make_mask_none(self.shape, self.dtype) self._mask += m elif m is not nomask: self._mask += m self._data.__isub__(np.where(self._mask, self.dtype.type(0), getdata(other))) return self def __imul__(self, other): """ Multiply self by other in-place. """ m = getmask(other) if self._mask is nomask: if m is not nomask and m.any(): self._mask = make_mask_none(self.shape, self.dtype) self._mask += m elif m is not nomask: self._mask += m self._data.__imul__(np.where(self._mask, self.dtype.type(1), getdata(other))) return self def __idiv__(self, other): """ Divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__idiv__(np.where(self._mask, self.dtype.type(1), other_data)) return self def __ifloordiv__(self, other): """ Floor divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.floor_divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__ifloordiv__(np.where(self._mask, self.dtype.type(1), other_data)) return self def __itruediv__(self, other): """ True divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.true_divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__itruediv__(np.where(self._mask, self.dtype.type(1), other_data)) return self def __ipow__(self, other): """ Raise self to the power other, in place. """ other_data = getdata(other) other_mask = getmask(other) with np.errstate(divide='ignore', invalid='ignore'): self._data.__ipow__(np.where(self._mask, self.dtype.type(1), other_data)) invalid = np.logical_not(np.isfinite(self._data)) if invalid.any(): if self._mask is not nomask: self._mask |= invalid else: self._mask = invalid np.copyto(self._data, self.fill_value, where=invalid) new_mask = mask_or(other_mask, invalid) self._mask = mask_or(self._mask, new_mask) return self def __float__(self): """ Convert to float. """ if self.size > 1: raise TypeError("Only length-1 arrays can be converted " "to Python scalars") elif self._mask: warnings.warn("Warning: converting a masked element to nan.", stacklevel=2) return np.nan return float(self.item()) def __int__(self): """ Convert to int. """ if self.size > 1: raise TypeError("Only length-1 arrays can be converted " "to Python scalars") elif self._mask: raise MaskError('Cannot convert masked element to a Python int.') return int(self.item()) @property def imag(self): """ The imaginary part of the masked array. This property is a view on the imaginary part of this `MaskedArray`. See Also -------- real Examples -------- >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False]) >>> x.imag masked_array(data=[1.0, --, 1.6], mask=[False, True, False], fill_value=1e+20) """ result = self._data.imag.view(type(self)) result.__setmask__(self._mask) return result # kept for compatibility get_imag = imag.fget @property def real(self): """ The real part of the masked array. This property is a view on the real part of this `MaskedArray`. See Also -------- imag Examples -------- >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False]) >>> x.real masked_array(data=[1.0, --, 3.45], mask=[False, True, False], fill_value=1e+20) """ result = self._data.real.view(type(self)) result.__setmask__(self._mask) return result # kept for compatibility get_real = real.fget def count(self, axis=None, keepdims=np._NoValue): """ Count the non-masked elements of the array along the given axis. Parameters ---------- axis : None or int or tuple of ints, optional Axis or axes along which the count is performed. The default, None, performs the count over all the dimensions of the input array. `axis` may be negative, in which case it counts from the last to the first axis. .. versionadded:: 1.10.0 If this is a tuple of ints, the count is performed on multiple axes, instead of a single axis or all the axes as before. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the array. Returns ------- result : ndarray or scalar An array with the same shape as the input array, with the specified axis removed. If the array is a 0-d array, or if `axis` is None, a scalar is returned. See Also -------- ma.count_masked : Count masked elements in array or along a given axis. Examples -------- >>> import numpy.ma as ma >>> a = ma.arange(6).reshape((2, 3)) >>> a[1, :] = ma.masked >>> a masked_array( data=[[0, 1, 2], [--, --, --]], mask=[[False, False, False], [ True, True, True]], fill_value=999999) >>> a.count() 3 When the `axis` keyword is specified an array of appropriate size is returned. >>> a.count(axis=0) array([1, 1, 1]) >>> a.count(axis=1) array([3, 0]) """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} m = self._mask # special case for matrices (we assume no other subclasses modify # their dimensions) if isinstance(self.data, np.matrix): if m is nomask: m = np.zeros(self.shape, dtype=np.bool_) m = m.view(type(self.data)) if m is nomask: # compare to _count_reduce_items in _methods.py if self.shape == (): if axis not in (None, 0): raise np.AxisError(axis=axis, ndim=self.ndim) return 1 elif axis is None: if kwargs.get('keepdims', False): return np.array(self.size, dtype=np.intp, ndmin=self.ndim) return self.size axes = normalize_axis_tuple(axis, self.ndim) items = 1 for ax in axes: items *= self.shape[ax] if kwargs.get('keepdims', False): out_dims = list(self.shape) for a in axes: out_dims[a] = 1 else: out_dims = [d for n, d in enumerate(self.shape) if n not in axes] # make sure to return a 0-d array if axis is supplied return np.full(out_dims, items, dtype=np.intp) # take care of the masked singleton if self is masked: return 0 return (~m).sum(axis=axis, dtype=np.intp, **kwargs) def ravel(self, order='C'): """ Returns a 1D version of self, as a view. Parameters ---------- order : {'C', 'F', 'A', 'K'}, optional The elements of `a` are read using this index order. 'C' means to index the elements in C-like order, with the last axis index changing fastest, back to the first axis index changing slowest. 'F' means to index the elements in Fortran-like index order, with the first index changing fastest, and the last index changing slowest. Note that the 'C' and 'F' options take no account of the memory layout of the underlying array, and only refer to the order of axis indexing. 'A' means to read the elements in Fortran-like index order if `m` is Fortran *contiguous* in memory, C-like order otherwise. 'K' means to read the elements in the order they occur in memory, except for reversing the data when strides are negative. By default, 'C' index order is used. Returns ------- MaskedArray Output view is of shape ``(self.size,)`` (or ``(np.ma.product(self.shape),)``). Examples -------- >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) >>> x masked_array( data=[[1, --, 3], [--, 5, --], [7, --, 9]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=999999) >>> x.ravel() masked_array(data=[1, --, 3, --, 5, --, 7, --, 9], mask=[False, True, False, True, False, True, False, True, False], fill_value=999999) """ r = ndarray.ravel(self._data, order=order).view(type(self)) r._update_from(self) if self._mask is not nomask: r._mask = ndarray.ravel(self._mask, order=order).reshape(r.shape) else: r._mask = nomask return r def reshape(self, *s, **kwargs): """ Give a new shape to the array without changing its data. Returns a masked array containing the same data, but with a new shape. The result is a view on the original array; if this is not possible, a ValueError is raised. Parameters ---------- shape : int or tuple of ints The new shape should be compatible with the original shape. If an integer is supplied, then the result will be a 1-D array of that length. order : {'C', 'F'}, optional Determines whether the array data should be viewed as in C (row-major) or FORTRAN (column-major) order. Returns ------- reshaped_array : array A new view on the array. See Also -------- reshape : Equivalent function in the masked array module. numpy.ndarray.reshape : Equivalent method on ndarray object. numpy.reshape : Equivalent function in the NumPy module. Notes ----- The reshaping operation cannot guarantee that a copy will not be made, to modify the shape in place, use ``a.shape = s`` Examples -------- >>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1]) >>> x masked_array( data=[[--, 2], [3, --]], mask=[[ True, False], [False, True]], fill_value=999999) >>> x = x.reshape((4,1)) >>> x masked_array( data=[[--], [2], [3], [--]], mask=[[ True], [False], [False], [ True]], fill_value=999999) """ kwargs.update(order=kwargs.get('order', 'C')) result = self._data.reshape(*s, **kwargs).view(type(self)) result._update_from(self) mask = self._mask if mask is not nomask: result._mask = mask.reshape(*s, **kwargs) return result def resize(self, newshape, refcheck=True, order=False): """ .. warning:: This method does nothing, except raise a ValueError exception. A masked array does not own its data and therefore cannot safely be resized in place. Use the `numpy.ma.resize` function instead. This method is difficult to implement safely and may be deprecated in future releases of NumPy. """ # Note : the 'order' keyword looks broken, let's just drop it errmsg = "A masked array does not own its data "\ "and therefore cannot be resized.\n" \ "Use the numpy.ma.resize function instead." raise ValueError(errmsg) def put(self, indices, values, mode='raise'): """ Set storage-indexed locations to corresponding values. Sets self._data.flat[n] = values[n] for each n in indices. If `values` is shorter than `indices` then it will repeat. If `values` has some masked values, the initial mask is updated in consequence, else the corresponding values are unmasked. Parameters ---------- indices : 1-D array_like Target indices, interpreted as integers. values : array_like Values to place in self._data copy at target indices. mode : {'raise', 'wrap', 'clip'}, optional Specifies how out-of-bounds indices will behave. 'raise' : raise an error. 'wrap' : wrap around. 'clip' : clip to the range. Notes ----- `values` can be a scalar or length 1 array. Examples -------- >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) >>> x masked_array( data=[[1, --, 3], [--, 5, --], [7, --, 9]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=999999) >>> x.put([0,4,8],[10,20,30]) >>> x masked_array( data=[[10, --, 3], [--, 20, --], [7, --, 30]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=999999) >>> x.put(4,999) >>> x masked_array( data=[[10, --, 3], [--, 999, --], [7, --, 30]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=999999) """ # Hard mask: Get rid of the values/indices that fall on masked data if self._hardmask and self._mask is not nomask: mask = self._mask[indices] indices = narray(indices, copy=False) values = narray(values, copy=False, subok=True) values.resize(indices.shape) indices = indices[~mask] values = values[~mask] self._data.put(indices, values, mode=mode) # short circuit if neither self nor values are masked if self._mask is nomask and getmask(values) is nomask: return m = getmaskarray(self) if getmask(values) is nomask: m.put(indices, False, mode=mode) else: m.put(indices, values._mask, mode=mode) m = make_mask(m, copy=False, shrink=True) self._mask = m return def ids(self): """ Return the addresses of the data and mask areas. Parameters ---------- None Examples -------- >>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1]) >>> x.ids() (166670640, 166659832) # may vary If the array has no mask, the address of `nomask` is returned. This address is typically not close to the data in memory: >>> x = np.ma.array([1, 2, 3]) >>> x.ids() (166691080, 3083169284) # may vary """ if self._mask is nomask: return (self.ctypes.data, id(nomask)) return (self.ctypes.data, self._mask.ctypes.data) def iscontiguous(self): """ Return a boolean indicating whether the data is contiguous. Parameters ---------- None Examples -------- >>> x = np.ma.array([1, 2, 3]) >>> x.iscontiguous() True `iscontiguous` returns one of the flags of the masked array: >>> x.flags C_CONTIGUOUS : True F_CONTIGUOUS : True OWNDATA : False WRITEABLE : True ALIGNED : True WRITEBACKIFCOPY : False """ return self.flags['CONTIGUOUS'] def all(self, axis=None, out=None, keepdims=np._NoValue): """ Returns True if all elements evaluate to True. The output array is masked where all the values along the given axis are masked: if the output would have been a scalar and that all the values are masked, then the output is `masked`. Refer to `numpy.all` for full documentation. See Also -------- numpy.ndarray.all : corresponding function for ndarrays numpy.all : equivalent function Examples -------- >>> np.ma.array([1,2,3]).all() True >>> a = np.ma.array([1,2,3], mask=True) >>> (a.all() is np.ma.masked) True """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} mask = _check_mask_axis(self._mask, axis, **kwargs) if out is None: d = self.filled(True).all(axis=axis, **kwargs).view(type(self)) if d.ndim: d.__setmask__(mask) elif mask: return masked return d self.filled(True).all(axis=axis, out=out, **kwargs) if isinstance(out, MaskedArray): if out.ndim or mask: out.__setmask__(mask) return out def any(self, axis=None, out=None, keepdims=np._NoValue): """ Returns True if any of the elements of `a` evaluate to True. Masked values are considered as False during computation. Refer to `numpy.any` for full documentation. See Also -------- numpy.ndarray.any : corresponding function for ndarrays numpy.any : equivalent function """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} mask = _check_mask_axis(self._mask, axis, **kwargs) if out is None: d = self.filled(False).any(axis=axis, **kwargs).view(type(self)) if d.ndim: d.__setmask__(mask) elif mask: d = masked return d self.filled(False).any(axis=axis, out=out, **kwargs) if isinstance(out, MaskedArray): if out.ndim or mask: out.__setmask__(mask) return out def nonzero(self): """ Return the indices of unmasked elements that are not zero. Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that dimension. The corresponding non-zero values can be obtained with:: a[a.nonzero()] To group the indices by element, rather than dimension, use instead:: np.transpose(a.nonzero()) The result of this is always a 2d array, with a row for each non-zero element. Parameters ---------- None Returns ------- tuple_of_arrays : tuple Indices of elements that are non-zero. See Also -------- numpy.nonzero : Function operating on ndarrays. flatnonzero : Return indices that are non-zero in the flattened version of the input array. numpy.ndarray.nonzero : Equivalent ndarray method. count_nonzero : Counts the number of non-zero elements in the input array. Examples -------- >>> import numpy.ma as ma >>> x = ma.array(np.eye(3)) >>> x masked_array( data=[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]], mask=False, fill_value=1e+20) >>> x.nonzero() (array([0, 1, 2]), array([0, 1, 2])) Masked elements are ignored. >>> x[1, 1] = ma.masked >>> x masked_array( data=[[1.0, 0.0, 0.0], [0.0, --, 0.0], [0.0, 0.0, 1.0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1e+20) >>> x.nonzero() (array([0, 2]), array([0, 2])) Indices can also be grouped by element. >>> np.transpose(x.nonzero()) array([[0, 0], [2, 2]]) A common use for ``nonzero`` is to find the indices of an array, where a condition is True. Given an array `a`, the condition `a` > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the `a` where the condition is true. >>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]]) >>> a > 3 masked_array( data=[[False, False, False], [ True, True, True], [ True, True, True]], mask=False, fill_value=True) >>> ma.nonzero(a > 3) (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) The ``nonzero`` method of the condition array can also be called. >>> (a > 3).nonzero() (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) """ return narray(self.filled(0), copy=False).nonzero() def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None): """ (this docstring should be overwritten) """ #!!!: implement out + test! m = self._mask if m is nomask: result = super().trace(offset=offset, axis1=axis1, axis2=axis2, out=out) return result.astype(dtype) else: D = self.diagonal(offset=offset, axis1=axis1, axis2=axis2) return D.astype(dtype).filled(0).sum(axis=-1, out=out) trace.__doc__ = ndarray.trace.__doc__ def dot(self, b, out=None, strict=False): """ a.dot(b, out=None) Masked dot product of two arrays. Note that `out` and `strict` are located in different positions than in `ma.dot`. In order to maintain compatibility with the functional version, it is recommended that the optional arguments be treated as keyword only. At some point that may be mandatory. .. versionadded:: 1.10.0 Parameters ---------- b : masked_array_like Inputs array. out : masked_array, optional Output argument. This must have the exact kind that would be returned if it was not used. In particular, it must have the right type, must be C-contiguous, and its dtype must be the dtype that would be returned for `ma.dot(a,b)`. This is a performance feature. Therefore, if these conditions are not met, an exception is raised, instead of attempting to be flexible. strict : bool, optional Whether masked data are propagated (True) or set to 0 (False) for the computation. Default is False. Propagating the mask means that if a masked value appears in a row or column, the whole row or column is considered masked. .. versionadded:: 1.10.2 See Also -------- numpy.ma.dot : equivalent function """ return dot(self, b, out=out, strict=strict) def sum(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): """ Return the sum of the array elements over the given axis. Masked elements are set to 0 internally. Refer to `numpy.sum` for full documentation. See Also -------- numpy.ndarray.sum : corresponding function for ndarrays numpy.sum : equivalent function Examples -------- >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) >>> x masked_array( data=[[1, --, 3], [--, 5, --], [7, --, 9]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=999999) >>> x.sum() 25 >>> x.sum(axis=1) masked_array(data=[4, 5, 16], mask=[False, False, False], fill_value=999999) >>> x.sum(axis=0) masked_array(data=[8, 5, 12], mask=[False, False, False], fill_value=999999) >>> print(type(x.sum(axis=0, dtype=np.int64)[0])) <class 'numpy.int64'> """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} _mask = self._mask newmask = _check_mask_axis(_mask, axis, **kwargs) # No explicit output if out is None: result = self.filled(0).sum(axis, dtype=dtype, **kwargs) rndim = getattr(result, 'ndim', 0) if rndim: result = result.view(type(self)) result.__setmask__(newmask) elif newmask: result = masked return result # Explicit output result = self.filled(0).sum(axis, dtype=dtype, out=out, **kwargs) if isinstance(out, MaskedArray): outmask = getmask(out) if outmask is nomask: outmask = out._mask = make_mask_none(out.shape) outmask.flat = newmask return out def cumsum(self, axis=None, dtype=None, out=None): """ Return the cumulative sum of the array elements over the given axis. Masked values are set to 0 internally during the computation. However, their position is saved, and the result will be masked at the same locations. Refer to `numpy.cumsum` for full documentation. Notes ----- The mask is lost if `out` is not a valid :class:`ma.MaskedArray` ! Arithmetic is modular when using integer types, and no error is raised on overflow. See Also -------- numpy.ndarray.cumsum : corresponding function for ndarrays numpy.cumsum : equivalent function Examples -------- >>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0]) >>> marr.cumsum() masked_array(data=[0, 1, 3, --, --, --, 9, 16, 24, 33], mask=[False, False, False, True, True, True, False, False, False, False], fill_value=999999) """ result = self.filled(0).cumsum(axis=axis, dtype=dtype, out=out) if out is not None: if isinstance(out, MaskedArray): out.__setmask__(self.mask) return out result = result.view(type(self)) result.__setmask__(self._mask) return result def prod(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): """ Return the product of the array elements over the given axis. Masked elements are set to 1 internally for computation. Refer to `numpy.prod` for full documentation. Notes ----- Arithmetic is modular when using integer types, and no error is raised on overflow. See Also -------- numpy.ndarray.prod : corresponding function for ndarrays numpy.prod : equivalent function """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} _mask = self._mask newmask = _check_mask_axis(_mask, axis, **kwargs) # No explicit output if out is None: result = self.filled(1).prod(axis, dtype=dtype, **kwargs) rndim = getattr(result, 'ndim', 0) if rndim: result = result.view(type(self)) result.__setmask__(newmask) elif newmask: result = masked return result # Explicit output result = self.filled(1).prod(axis, dtype=dtype, out=out, **kwargs) if isinstance(out, MaskedArray): outmask = getmask(out) if outmask is nomask: outmask = out._mask = make_mask_none(out.shape) outmask.flat = newmask return out product = prod def cumprod(self, axis=None, dtype=None, out=None): """ Return the cumulative product of the array elements over the given axis. Masked values are set to 1 internally during the computation. However, their position is saved, and the result will be masked at the same locations. Refer to `numpy.cumprod` for full documentation. Notes ----- The mask is lost if `out` is not a valid MaskedArray ! Arithmetic is modular when using integer types, and no error is raised on overflow. See Also -------- numpy.ndarray.cumprod : corresponding function for ndarrays numpy.cumprod : equivalent function """ result = self.filled(1).cumprod(axis=axis, dtype=dtype, out=out) if out is not None: if isinstance(out, MaskedArray): out.__setmask__(self._mask) return out result = result.view(type(self)) result.__setmask__(self._mask) return result def mean(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): """ Returns the average of the array elements along given axis. Masked entries are ignored, and result elements which are not finite will be masked. Refer to `numpy.mean` for full documentation. See Also -------- numpy.ndarray.mean : corresponding function for ndarrays numpy.mean : Equivalent function numpy.ma.average : Weighted average. Examples -------- >>> a = np.ma.array([1,2,3], mask=[False, False, True]) >>> a masked_array(data=[1, 2, --], mask=[False, False, True], fill_value=999999) >>> a.mean() 1.5 """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} if self._mask is nomask: result = super().mean(axis=axis, dtype=dtype, **kwargs)[()] else: dsum = self.sum(axis=axis, dtype=dtype, **kwargs) cnt = self.count(axis=axis, **kwargs) if cnt.shape == () and (cnt == 0): result = masked else: result = dsum * 1. / cnt if out is not None: out.flat = result if isinstance(out, MaskedArray): outmask = getmask(out) if outmask is nomask: outmask = out._mask = make_mask_none(out.shape) outmask.flat = getmask(result) return out return result def anom(self, axis=None, dtype=None): """ Compute the anomalies (deviations from the arithmetic mean) along the given axis. Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed along the given axis. Parameters ---------- axis : int, optional Axis over which the anomalies are taken. The default is to use the mean of the flattened array as reference. dtype : dtype, optional Type to use in computing the variance. For arrays of integer type the default is float32; for arrays of float types it is the same as the array type. See Also -------- mean : Compute the mean of the array. Examples -------- >>> a = np.ma.array([1,2,3]) >>> a.anom() masked_array(data=[-1., 0., 1.], mask=False, fill_value=1e+20) """ m = self.mean(axis, dtype) if not axis: return self - m else: return self - expand_dims(m, axis) def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue): """ Returns the variance of the array elements along given axis. Masked entries are ignored, and result elements which are not finite will be masked. Refer to `numpy.var` for full documentation. See Also -------- numpy.ndarray.var : corresponding function for ndarrays numpy.var : Equivalent function """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} # Easy case: nomask, business as usual if self._mask is nomask: ret = super().var(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)[()] if out is not None: if isinstance(out, MaskedArray): out.__setmask__(nomask) return out return ret # Some data are masked, yay! cnt = self.count(axis=axis, **kwargs) - ddof danom = self - self.mean(axis, dtype, keepdims=True) if iscomplexobj(self): danom = umath.absolute(danom) ** 2 else: danom *= danom dvar = divide(danom.sum(axis, **kwargs), cnt).view(type(self)) # Apply the mask if it's not a scalar if dvar.ndim: dvar._mask = mask_or(self._mask.all(axis, **kwargs), (cnt <= 0)) dvar._update_from(self) elif getmask(dvar): # Make sure that masked is returned when the scalar is masked. dvar = masked if out is not None: if isinstance(out, MaskedArray): out.flat = 0 out.__setmask__(True) elif out.dtype.kind in 'biu': errmsg = "Masked data information would be lost in one or "\ "more location." raise MaskError(errmsg) else: out.flat = np.nan return out # In case with have an explicit output if out is not None: # Set the data out.flat = dvar # Set the mask if needed if isinstance(out, MaskedArray): out.__setmask__(dvar.mask) return out return dvar var.__doc__ = np.var.__doc__ def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue): """ Returns the standard deviation of the array elements along given axis. Masked entries are ignored. Refer to `numpy.std` for full documentation. See Also -------- numpy.ndarray.std : corresponding function for ndarrays numpy.std : Equivalent function """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} dvar = self.var(axis, dtype, out, ddof, **kwargs) if dvar is not masked: if out is not None: np.power(out, 0.5, out=out, casting='unsafe') return out dvar = sqrt(dvar) return dvar def round(self, decimals=0, out=None): """ Return each element rounded to the given number of decimals. Refer to `numpy.around` for full documentation. See Also -------- numpy.ndarray.round : corresponding function for ndarrays numpy.around : equivalent function """ result = self._data.round(decimals=decimals, out=out).view(type(self)) if result.ndim > 0: result._mask = self._mask result._update_from(self) elif self._mask: # Return masked when the scalar is masked result = masked # No explicit output: we're done if out is None: return result if isinstance(out, MaskedArray): out.__setmask__(self._mask) return out def argsort(self, axis=np._NoValue, kind=None, order=None, endwith=True, fill_value=None): """ Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to `fill_value`. Parameters ---------- axis : int, optional Axis along which to sort. If None, the default, the flattened array is used. .. versionchanged:: 1.13.0 Previously, the default was documented to be -1, but that was in error. At some future date, the default will change to -1, as originally intended. Until then, the axis should be given explicitly when ``arr.ndim > 1``, to avoid a FutureWarning. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional The sorting algorithm used. order : list, optional When `a` is an array with fields defined, this argument specifies which fields to compare first, second, etc. Not all fields need be specified. endwith : {True, False}, optional Whether missing values (if any) should be treated as the largest values (True) or the smallest values (False) When the array contains unmasked values at the same extremes of the datatype, the ordering of these values and the masked values is undefined. fill_value : scalar or None, optional Value used internally for the masked values. If ``fill_value`` is not None, it supersedes ``endwith``. Returns ------- index_array : ndarray, int Array of indices that sort `a` along the specified axis. In other words, ``a[index_array]`` yields a sorted `a`. See Also -------- ma.MaskedArray.sort : Describes sorting algorithms used. lexsort : Indirect stable sort with multiple keys. numpy.ndarray.sort : Inplace sort. Notes ----- See `sort` for notes on the different sorting algorithms. Examples -------- >>> a = np.ma.array([3,2,1], mask=[False, False, True]) >>> a masked_array(data=[3, 2, --], mask=[False, False, True], fill_value=999999) >>> a.argsort() array([1, 0, 2]) """ # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default if axis is np._NoValue: axis = _deprecate_argsort_axis(self) if fill_value is None: if endwith: # nan > inf if np.issubdtype(self.dtype, np.floating): fill_value = np.nan else: fill_value = minimum_fill_value(self) else: fill_value = maximum_fill_value(self) filled = self.filled(fill_value) return filled.argsort(axis=axis, kind=kind, order=order) def argmin(self, axis=None, fill_value=None, out=None, *, keepdims=np._NoValue): """ Return array of indices to the minimum values along the given axis. Parameters ---------- axis : {None, integer} If None, the index is into the flattened array, otherwise along the specified axis fill_value : scalar or None, optional Value used to fill in the masked values. If None, the output of minimum_fill_value(self._data) is used instead. out : {None, array}, optional Array into which the result can be placed. Its type is preserved and it must be of the right shape to hold the output. Returns ------- ndarray or scalar If multi-dimension input, returns a new ndarray of indices to the minimum values along the given axis. Otherwise, returns a scalar of index to the minimum values along the given axis. Examples -------- >>> x = np.ma.array(np.arange(4), mask=[1,1,0,0]) >>> x.shape = (2,2) >>> x masked_array( data=[[--, --], [2, 3]], mask=[[ True, True], [False, False]], fill_value=999999) >>> x.argmin(axis=0, fill_value=-1) array([0, 0]) >>> x.argmin(axis=0, fill_value=9) array([1, 1]) """ if fill_value is None: fill_value = minimum_fill_value(self) d = self.filled(fill_value).view(ndarray) keepdims = False if keepdims is np._NoValue else bool(keepdims) return d.argmin(axis, out=out, keepdims=keepdims) def argmax(self, axis=None, fill_value=None, out=None, *, keepdims=np._NoValue): """ Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had the value fill_value. Parameters ---------- axis : {None, integer} If None, the index is into the flattened array, otherwise along the specified axis fill_value : scalar or None, optional Value used to fill in the masked values. If None, the output of maximum_fill_value(self._data) is used instead. out : {None, array}, optional Array into which the result can be placed. Its type is preserved and it must be of the right shape to hold the output. Returns ------- index_array : {integer_array} Examples -------- >>> a = np.arange(6).reshape(2,3) >>> a.argmax() 5 >>> a.argmax(0) array([1, 1, 1]) >>> a.argmax(1) array([2, 2]) """ if fill_value is None: fill_value = maximum_fill_value(self._data) d = self.filled(fill_value).view(ndarray) keepdims = False if keepdims is np._NoValue else bool(keepdims) return d.argmax(axis, out=out, keepdims=keepdims) def sort(self, axis=-1, kind=None, order=None, endwith=True, fill_value=None): """ Sort the array, in-place Parameters ---------- a : array_like Array to be sorted. axis : int, optional Axis along which to sort. If None, the array is flattened before sorting. The default is -1, which sorts along the last axis. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional The sorting algorithm used. order : list, optional When `a` is a structured array, this argument specifies which fields to compare first, second, and so on. This list does not need to include all of the fields. endwith : {True, False}, optional Whether missing values (if any) should be treated as the largest values (True) or the smallest values (False) When the array contains unmasked values sorting at the same extremes of the datatype, the ordering of these values and the masked values is undefined. fill_value : scalar or None, optional Value used internally for the masked values. If ``fill_value`` is not None, it supersedes ``endwith``. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- numpy.ndarray.sort : Method to sort an array in-place. argsort : Indirect sort. lexsort : Indirect stable sort on multiple keys. searchsorted : Find elements in a sorted array. Notes ----- See ``sort`` for notes on the different sorting algorithms. Examples -------- >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) >>> # Default >>> a.sort() >>> a masked_array(data=[1, 3, 5, --, --], mask=[False, False, False, True, True], fill_value=999999) >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) >>> # Put missing values in the front >>> a.sort(endwith=False) >>> a masked_array(data=[--, --, 1, 3, 5], mask=[ True, True, False, False, False], fill_value=999999) >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) >>> # fill_value takes over endwith >>> a.sort(endwith=False, fill_value=3) >>> a masked_array(data=[1, --, --, 3, 5], mask=[False, True, True, False, False], fill_value=999999) """ if self._mask is nomask: ndarray.sort(self, axis=axis, kind=kind, order=order) return if self is masked: return sidx = self.argsort(axis=axis, kind=kind, order=order, fill_value=fill_value, endwith=endwith) self[...] = np.take_along_axis(self, sidx, axis=axis) def min(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue): """ Return the minimum along a given axis. Parameters ---------- axis : None or int or tuple of ints, optional Axis along which to operate. By default, ``axis`` is None and the flattened input is used. .. versionadded:: 1.7.0 If this is a tuple of ints, the minimum is selected over multiple axes, instead of a single axis or all the axes as before. out : array_like, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. fill_value : scalar or None, optional Value used to fill in the masked values. If None, use the output of `minimum_fill_value`. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the array. Returns ------- amin : array_like New array holding the result. If ``out`` was specified, ``out`` is returned. See Also -------- ma.minimum_fill_value Returns the minimum filling value for a given datatype. """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} _mask = self._mask newmask = _check_mask_axis(_mask, axis, **kwargs) if fill_value is None: fill_value = minimum_fill_value(self) # No explicit output if out is None: result = self.filled(fill_value).min( axis=axis, out=out, **kwargs).view(type(self)) if result.ndim: # Set the mask result.__setmask__(newmask) # Get rid of Infs if newmask.ndim: np.copyto(result, result.fill_value, where=newmask) elif newmask: result = masked return result # Explicit output result = self.filled(fill_value).min(axis=axis, out=out, **kwargs) if isinstance(out, MaskedArray): outmask = getmask(out) if outmask is nomask: outmask = out._mask = make_mask_none(out.shape) outmask.flat = newmask else: if out.dtype.kind in 'biu': errmsg = "Masked data information would be lost in one or more"\ " location." raise MaskError(errmsg) np.copyto(out, np.nan, where=newmask) return out # unique to masked arrays def mini(self, axis=None): """ Return the array minimum along the specified axis. .. deprecated:: 1.13.0 This function is identical to both: * ``self.min(keepdims=True, axis=axis).squeeze(axis=axis)`` * ``np.ma.minimum.reduce(self, axis=axis)`` Typically though, ``self.min(axis=axis)`` is sufficient. Parameters ---------- axis : int, optional The axis along which to find the minima. Default is None, in which case the minimum value in the whole array is returned. Returns ------- min : scalar or MaskedArray If `axis` is None, the result is a scalar. Otherwise, if `axis` is given and the array is at least 2-D, the result is a masked array with dimension one smaller than the array on which `mini` is called. Examples -------- >>> x = np.ma.array(np.arange(6), mask=[0 ,1, 0, 0, 0 ,1]).reshape(3, 2) >>> x masked_array( data=[[0, --], [2, 3], [4, --]], mask=[[False, True], [False, False], [False, True]], fill_value=999999) >>> x.mini() masked_array(data=0, mask=False, fill_value=999999) >>> x.mini(axis=0) masked_array(data=[0, 3], mask=[False, False], fill_value=999999) >>> x.mini(axis=1) masked_array(data=[0, 2, 4], mask=[False, False, False], fill_value=999999) There is a small difference between `mini` and `min`: >>> x[:,1].mini(axis=0) masked_array(data=3, mask=False, fill_value=999999) >>> x[:,1].min(axis=0) 3 """ # 2016-04-13, 1.13.0, gh-8764 warnings.warn( "`mini` is deprecated; use the `min` method or " "`np.ma.minimum.reduce instead.", DeprecationWarning, stacklevel=2) return minimum.reduce(self, axis) def max(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue): """ Return the maximum along a given axis. Parameters ---------- axis : None or int or tuple of ints, optional Axis along which to operate. By default, ``axis`` is None and the flattened input is used. .. versionadded:: 1.7.0 If this is a tuple of ints, the maximum is selected over multiple axes, instead of a single axis or all the axes as before. out : array_like, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. fill_value : scalar or None, optional Value used to fill in the masked values. If None, use the output of maximum_fill_value(). keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the array. Returns ------- amax : array_like New array holding the result. If ``out`` was specified, ``out`` is returned. See Also -------- ma.maximum_fill_value Returns the maximum filling value for a given datatype. """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} _mask = self._mask newmask = _check_mask_axis(_mask, axis, **kwargs) if fill_value is None: fill_value = maximum_fill_value(self) # No explicit output if out is None: result = self.filled(fill_value).max( axis=axis, out=out, **kwargs).view(type(self)) if result.ndim: # Set the mask result.__setmask__(newmask) # Get rid of Infs if newmask.ndim: np.copyto(result, result.fill_value, where=newmask) elif newmask: result = masked return result # Explicit output result = self.filled(fill_value).max(axis=axis, out=out, **kwargs) if isinstance(out, MaskedArray): outmask = getmask(out) if outmask is nomask: outmask = out._mask = make_mask_none(out.shape) outmask.flat = newmask else: if out.dtype.kind in 'biu': errmsg = "Masked data information would be lost in one or more"\ " location." raise MaskError(errmsg) np.copyto(out, np.nan, where=newmask) return out def ptp(self, axis=None, out=None, fill_value=None, keepdims=False): """ Return (maximum - minimum) along the given dimension (i.e. peak-to-peak value). .. warning:: `ptp` preserves the data type of the array. This means the return value for an input of signed integers with n bits (e.g. `np.int8`, `np.int16`, etc) is also a signed integer with n bits. In that case, peak-to-peak values greater than ``2**(n-1)-1`` will be returned as negative values. An example with a work-around is shown below. Parameters ---------- axis : {None, int}, optional Axis along which to find the peaks. If None (default) the flattened array is used. out : {None, array_like}, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output but the type will be cast if necessary. fill_value : scalar or None, optional Value used to fill in the masked values. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the array. Returns ------- ptp : ndarray. A new array holding the result, unless ``out`` was specified, in which case a reference to ``out`` is returned. Examples -------- >>> x = np.ma.MaskedArray([[4, 9, 2, 10], ... [6, 9, 7, 12]]) >>> x.ptp(axis=1) masked_array(data=[8, 6], mask=False, fill_value=999999) >>> x.ptp(axis=0) masked_array(data=[2, 0, 5, 2], mask=False, fill_value=999999) >>> x.ptp() 10 This example shows that a negative value can be returned when the input is an array of signed integers. >>> y = np.ma.MaskedArray([[1, 127], ... [0, 127], ... [-1, 127], ... [-2, 127]], dtype=np.int8) >>> y.ptp(axis=1) masked_array(data=[ 126, 127, -128, -127], mask=False, fill_value=999999, dtype=int8) A work-around is to use the `view()` method to view the result as unsigned integers with the same bit width: >>> y.ptp(axis=1).view(np.uint8) masked_array(data=[126, 127, 128, 129], mask=False, fill_value=999999, dtype=uint8) """ if out is None: result = self.max(axis=axis, fill_value=fill_value, keepdims=keepdims) result -= self.min(axis=axis, fill_value=fill_value, keepdims=keepdims) return result out.flat = self.max(axis=axis, out=out, fill_value=fill_value, keepdims=keepdims) min_value = self.min(axis=axis, fill_value=fill_value, keepdims=keepdims) np.subtract(out, min_value, out=out, casting='unsafe') return out def partition(self, *args, **kwargs): warnings.warn("Warning: 'partition' will ignore the 'mask' " f"of the {self.__class__.__name__}.", stacklevel=2) return super().partition(*args, **kwargs) def argpartition(self, *args, **kwargs): warnings.warn("Warning: 'argpartition' will ignore the 'mask' " f"of the {self.__class__.__name__}.", stacklevel=2) return super().argpartition(*args, **kwargs) def take(self, indices, axis=None, out=None, mode='raise'): """ """ (_data, _mask) = (self._data, self._mask) cls = type(self) # Make sure the indices are not masked maskindices = getmask(indices) if maskindices is not nomask: indices = indices.filled(0) # Get the data, promoting scalars to 0d arrays with [...] so that # .view works correctly if out is None: out = _data.take(indices, axis=axis, mode=mode)[...].view(cls) else: np.take(_data, indices, axis=axis, mode=mode, out=out) # Get the mask if isinstance(out, MaskedArray): if _mask is nomask: outmask = maskindices else: outmask = _mask.take(indices, axis=axis, mode=mode) outmask |= maskindices out.__setmask__(outmask) # demote 0d arrays back to scalars, for consistency with ndarray.take return out[()] # Array methods copy = _arraymethod('copy') diagonal = _arraymethod('diagonal') flatten = _arraymethod('flatten') repeat = _arraymethod('repeat') squeeze = _arraymethod('squeeze') swapaxes = _arraymethod('swapaxes') T = property(fget=lambda self: self.transpose()) transpose = _arraymethod('transpose') def tolist(self, fill_value=None): """ Return the data portion of the masked array as a hierarchical Python list. Data items are converted to the nearest compatible Python type. Masked values are converted to `fill_value`. If `fill_value` is None, the corresponding entries in the output list will be ``None``. Parameters ---------- fill_value : scalar, optional The value to use for invalid entries. Default is None. Returns ------- result : list The Python list representation of the masked array. Examples -------- >>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4) >>> x.tolist() [[1, None, 3], [None, 5, None], [7, None, 9]] >>> x.tolist(-999) [[1, -999, 3], [-999, 5, -999], [7, -999, 9]] """ _mask = self._mask # No mask ? Just return .data.tolist ? if _mask is nomask: return self._data.tolist() # Explicit fill_value: fill the array and get the list if fill_value is not None: return self.filled(fill_value).tolist() # Structured array. names = self.dtype.names if names: result = self._data.astype([(_, object) for _ in names]) for n in names: result[n][_mask[n]] = None return result.tolist() # Standard arrays. if _mask is nomask: return [None] # Set temps to save time when dealing w/ marrays. inishape = self.shape result = np.array(self._data.ravel(), dtype=object) result[_mask.ravel()] = None result.shape = inishape return result.tolist() def tostring(self, fill_value=None, order='C'): r""" A compatibility alias for `tobytes`, with exactly the same behavior. Despite its name, it returns `bytes` not `str`\ s. .. deprecated:: 1.19.0 """ # 2020-03-30, Numpy 1.19.0 warnings.warn( "tostring() is deprecated. Use tobytes() instead.", DeprecationWarning, stacklevel=2) return self.tobytes(fill_value, order=order) def tobytes(self, fill_value=None, order='C'): """ Return the array data as a string containing the raw bytes in the array. The array is filled with a fill value before the string conversion. .. versionadded:: 1.9.0 Parameters ---------- fill_value : scalar, optional Value used to fill in the masked values. Default is None, in which case `MaskedArray.fill_value` is used. order : {'C','F','A'}, optional Order of the data item in the copy. Default is 'C'. - 'C' -- C order (row major). - 'F' -- Fortran order (column major). - 'A' -- Any, current order of array. - None -- Same as 'A'. See Also -------- numpy.ndarray.tobytes tolist, tofile Notes ----- As for `ndarray.tobytes`, information about the shape, dtype, etc., but also about `fill_value`, will be lost. Examples -------- >>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]]) >>> x.tobytes() b'\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00' """ return self.filled(fill_value).tobytes(order=order) def tofile(self, fid, sep="", format="%s"): """ Save a masked array to a file in binary format. .. warning:: This function is not implemented yet. Raises ------ NotImplementedError When `tofile` is called. """ raise NotImplementedError("MaskedArray.tofile() not implemented yet.") def toflex(self): """ Transforms a masked array into a flexible-type array. The flexible type array that is returned will have two fields: * the ``_data`` field stores the ``_data`` part of the array. * the ``_mask`` field stores the ``_mask`` part of the array. Parameters ---------- None Returns ------- record : ndarray A new flexible-type `ndarray` with two fields: the first element containing a value, the second element containing the corresponding mask boolean. The returned record shape matches self.shape. Notes ----- A side-effect of transforming a masked array into a flexible `ndarray` is that meta information (``fill_value``, ...) will be lost. Examples -------- >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) >>> x masked_array( data=[[1, --, 3], [--, 5, --], [7, --, 9]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=999999) >>> x.toflex() array([[(1, False), (2, True), (3, False)], [(4, True), (5, False), (6, True)], [(7, False), (8, True), (9, False)]], dtype=[('_data', '<i8'), ('_mask', '?')]) """ # Get the basic dtype. ddtype = self.dtype # Make sure we have a mask _mask = self._mask if _mask is None: _mask = make_mask_none(self.shape, ddtype) # And get its dtype mdtype = self._mask.dtype record = np.ndarray(shape=self.shape, dtype=[('_data', ddtype), ('_mask', mdtype)]) record['_data'] = self._data record['_mask'] = self._mask return record torecords = toflex # Pickling def __getstate__(self): """Return the internal state of the masked array, for pickling purposes. """ cf = 'CF'[self.flags.fnc] data_state = super().__reduce__()[2] return data_state + (getmaskarray(self).tobytes(cf), self._fill_value) def __setstate__(self, state): """Restore the internal state of the masked array, for pickling purposes. ``state`` is typically the output of the ``__getstate__`` output, and is a 5-tuple: - class name - a tuple giving the shape of the data - a typecode for the data - a binary string for the data - a binary string for the mask. """ (_, shp, typ, isf, raw, msk, flv) = state super().__setstate__((shp, typ, isf, raw)) self._mask.__setstate__((shp, make_mask_descr(typ), isf, msk)) self.fill_value = flv def __reduce__(self): """Return a 3-tuple for pickling a MaskedArray. """ return (_mareconstruct, (self.__class__, self._baseclass, (0,), 'b',), self.__getstate__()) def __deepcopy__(self, memo=None): from copy import deepcopy copied = MaskedArray.__new__(type(self), self, copy=True) if memo is None: memo = {} memo[id(self)] = copied for (k, v) in self.__dict__.items(): copied.__dict__[k] = deepcopy(v, memo) return copied def _mareconstruct(subtype, baseclass, baseshape, basetype,): """Internal function that builds a new MaskedArray from the information stored in a pickle. """ _data = ndarray.__new__(baseclass, baseshape, basetype) _mask = ndarray.__new__(ndarray, baseshape, make_mask_descr(basetype)) return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,) class mvoid(MaskedArray): """ Fake a 'void' object to use for masked array with structured dtypes. """ def __new__(self, data, mask=nomask, dtype=None, fill_value=None, hardmask=False, copy=False, subok=True): _data = np.array(data, copy=copy, subok=subok, dtype=dtype) _data = _data.view(self) _data._hardmask = hardmask if mask is not nomask: if isinstance(mask, np.void): _data._mask = mask else: try: # Mask is already a 0D array _data._mask = np.void(mask) except TypeError: # Transform the mask to a void mdtype = make_mask_descr(dtype) _data._mask = np.array(mask, dtype=mdtype)[()] if fill_value is not None: _data.fill_value = fill_value return _data @property def _data(self): # Make sure that the _data part is a np.void return super()._data[()] def __getitem__(self, indx): """ Get the index. """ m = self._mask if isinstance(m[indx], ndarray): # Can happen when indx is a multi-dimensional field: # A = ma.masked_array(data=[([0,1],)], mask=[([True, # False],)], dtype=[("A", ">i2", (2,))]) # x = A[0]; y = x["A"]; then y.mask["A"].size==2 # and we can not say masked/unmasked. # The result is no longer mvoid! # See also issue #6724. return masked_array( data=self._data[indx], mask=m[indx], fill_value=self._fill_value[indx], hard_mask=self._hardmask) if m is not nomask and m[indx]: return masked return self._data[indx] def __setitem__(self, indx, value): self._data[indx] = value if self._hardmask: self._mask[indx] |= getattr(value, "_mask", False) else: self._mask[indx] = getattr(value, "_mask", False) def __str__(self): m = self._mask if m is nomask: return str(self._data) rdtype = _replace_dtype_fields(self._data.dtype, "O") data_arr = super()._data res = data_arr.astype(rdtype) _recursive_printoption(res, self._mask, masked_print_option) return str(res) __repr__ = __str__ def __iter__(self): "Defines an iterator for mvoid" (_data, _mask) = (self._data, self._mask) if _mask is nomask: yield from _data else: for (d, m) in zip(_data, _mask): if m: yield masked else: yield d def __len__(self): return self._data.__len__() def filled(self, fill_value=None): """ Return a copy with masked fields filled with a given value. Parameters ---------- fill_value : array_like, optional The value to use for invalid entries. Can be scalar or non-scalar. If latter is the case, the filled array should be broadcastable over input array. Default is None, in which case the `fill_value` attribute is used instead. Returns ------- filled_void A `np.void` object See Also -------- MaskedArray.filled """ return asarray(self).filled(fill_value)[()] def tolist(self): """ Transforms the mvoid object into a tuple. Masked fields are replaced by None. Returns ------- returned_tuple Tuple of fields """ _mask = self._mask if _mask is nomask: return self._data.tolist() result = [] for (d, m) in zip(self._data, self._mask): if m: result.append(None) else: # .item() makes sure we return a standard Python object result.append(d.item()) return tuple(result) ############################################################################## # Shortcuts # ############################################################################## def isMaskedArray(x): """ Test whether input is an instance of MaskedArray. This function returns True if `x` is an instance of MaskedArray and returns False otherwise. Any object is accepted as input. Parameters ---------- x : object Object to test. Returns ------- result : bool True if `x` is a MaskedArray. See Also -------- isMA : Alias to isMaskedArray. isarray : Alias to isMaskedArray. Examples -------- >>> import numpy.ma as ma >>> a = np.eye(3, 3) >>> a array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) >>> m = ma.masked_values(a, 0) >>> m masked_array( data=[[1.0, --, --], [--, 1.0, --], [--, --, 1.0]], mask=[[False, True, True], [ True, False, True], [ True, True, False]], fill_value=0.0) >>> ma.isMaskedArray(a) False >>> ma.isMaskedArray(m) True >>> ma.isMaskedArray([0, 1, 2]) False """ return isinstance(x, MaskedArray) isarray = isMaskedArray isMA = isMaskedArray # backward compatibility class MaskedConstant(MaskedArray): # the lone np.ma.masked instance __singleton = None @classmethod def __has_singleton(cls): # second case ensures `cls.__singleton` is not just a view on the # superclass singleton return cls.__singleton is not None and type(cls.__singleton) is cls def __new__(cls): if not cls.__has_singleton(): # We define the masked singleton as a float for higher precedence. # Note that it can be tricky sometimes w/ type comparison data = np.array(0.) mask = np.array(True) # prevent any modifications data.flags.writeable = False mask.flags.writeable = False # don't fall back on MaskedArray.__new__(MaskedConstant), since # that might confuse it - this way, the construction is entirely # within our control cls.__singleton = MaskedArray(data, mask=mask).view(cls) return cls.__singleton def __array_finalize__(self, obj): if not self.__has_singleton(): # this handles the `.view` in __new__, which we want to copy across # properties normally return super().__array_finalize__(obj) elif self is self.__singleton: # not clear how this can happen, play it safe pass else: # everywhere else, we want to downcast to MaskedArray, to prevent a # duplicate maskedconstant. self.__class__ = MaskedArray MaskedArray.__array_finalize__(self, obj) def __array_prepare__(self, obj, context=None): return self.view(MaskedArray).__array_prepare__(obj, context) def __array_wrap__(self, obj, context=None): return self.view(MaskedArray).__array_wrap__(obj, context) def __str__(self): return str(masked_print_option._display) def __repr__(self): if self is MaskedConstant.__singleton: return 'masked' else: # it's a subclass, or something is wrong, make it obvious return object.__repr__(self) def __format__(self, format_spec): # Replace ndarray.__format__ with the default, which supports no format characters. # Supporting format characters is unwise here, because we do not know what type # the user was expecting - better to not guess. try: return object.__format__(self, format_spec) except TypeError: # 2020-03-23, NumPy 1.19.0 warnings.warn( "Format strings passed to MaskedConstant are ignored, but in future may " "error or produce different behavior", FutureWarning, stacklevel=2 ) return object.__format__(self, "") def __reduce__(self): """Override of MaskedArray's __reduce__. """ return (self.__class__, ()) # inplace operations have no effect. We have to override them to avoid # trying to modify the readonly data and mask arrays def __iop__(self, other): return self __iadd__ = \ __isub__ = \ __imul__ = \ __ifloordiv__ = \ __itruediv__ = \ __ipow__ = \ __iop__ del __iop__ # don't leave this around def copy(self, *args, **kwargs): """ Copy is a no-op on the maskedconstant, as it is a scalar """ # maskedconstant is a scalar, so copy doesn't need to copy. There's # precedent for this with `np.bool_` scalars. return self def __copy__(self): return self def __deepcopy__(self, memo): return self def __setattr__(self, attr, value): if not self.__has_singleton(): # allow the singleton to be initialized return super().__setattr__(attr, value) elif self is self.__singleton: raise AttributeError( f"attributes of {self!r} are not writeable") else: # duplicate instance - we can end up here from __array_finalize__, # where we set the __class__ attribute return super().__setattr__(attr, value) masked = masked_singleton = MaskedConstant() masked_array = MaskedArray def array(data, dtype=None, copy=False, order=None, mask=nomask, fill_value=None, keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0): """ Shortcut to MaskedArray. The options are in a different order for convenience and backwards compatibility. """ return MaskedArray(data, mask=mask, dtype=dtype, copy=copy, subok=subok, keep_mask=keep_mask, hard_mask=hard_mask, fill_value=fill_value, ndmin=ndmin, shrink=shrink, order=order) array.__doc__ = masked_array.__doc__ def is_masked(x): """ Determine whether input has masked values. Accepts any object as input, but always returns False unless the input is a MaskedArray containing masked values. Parameters ---------- x : array_like Array to check for masked values. Returns ------- result : bool True if `x` is a MaskedArray with masked values, False otherwise. Examples -------- >>> import numpy.ma as ma >>> x = ma.masked_equal([0, 1, 0, 2, 3], 0) >>> x masked_array(data=[--, 1, --, 2, 3], mask=[ True, False, True, False, False], fill_value=0) >>> ma.is_masked(x) True >>> x = ma.masked_equal([0, 1, 0, 2, 3], 42) >>> x masked_array(data=[0, 1, 0, 2, 3], mask=False, fill_value=42) >>> ma.is_masked(x) False Always returns False if `x` isn't a MaskedArray. >>> x = [False, True, False] >>> ma.is_masked(x) False >>> x = 'a string' >>> ma.is_masked(x) False """ m = getmask(x) if m is nomask: return False elif m.any(): return True return False ############################################################################## # Extrema functions # ############################################################################## class _extrema_operation(_MaskedUFunc): """ Generic class for maximum/minimum functions. .. note:: This is the base class for `_maximum_operation` and `_minimum_operation`. """ def __init__(self, ufunc, compare, fill_value): super().__init__(ufunc) self.compare = compare self.fill_value_func = fill_value def __call__(self, a, b=None): "Executes the call behavior." if b is None: # 2016-04-13, 1.13.0 warnings.warn( f"Single-argument form of np.ma.{self.__name__} is deprecated. Use " f"np.ma.{self.__name__}.reduce instead.", DeprecationWarning, stacklevel=2) return self.reduce(a) return where(self.compare(a, b), a, b) def reduce(self, target, axis=np._NoValue): "Reduce target along the given axis." target = narray(target, copy=False, subok=True) m = getmask(target) if axis is np._NoValue and target.ndim > 1: # 2017-05-06, Numpy 1.13.0: warn on axis default warnings.warn( f"In the future the default for ma.{self.__name__}.reduce will be axis=0, " f"not the current None, to match np.{self.__name__}.reduce. " "Explicitly pass 0 or None to silence this warning.", MaskedArrayFutureWarning, stacklevel=2) axis = None if axis is not np._NoValue: kwargs = dict(axis=axis) else: kwargs = dict() if m is nomask: t = self.f.reduce(target, **kwargs) else: target = target.filled( self.fill_value_func(target)).view(type(target)) t = self.f.reduce(target, **kwargs) m = umath.logical_and.reduce(m, **kwargs) if hasattr(t, '_mask'): t._mask = m elif m: t = masked return t def outer(self, a, b): "Return the function applied to the outer product of a and b." ma = getmask(a) mb = getmask(b) if ma is nomask and mb is nomask: m = nomask else: ma = getmaskarray(a) mb = getmaskarray(b) m = logical_or.outer(ma, mb) result = self.f.outer(filled(a), filled(b)) if not isinstance(result, MaskedArray): result = result.view(MaskedArray) result._mask = m return result def min(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} try: return obj.min(axis=axis, fill_value=fill_value, out=out, **kwargs) except (AttributeError, TypeError): # If obj doesn't have a min method, or if the method doesn't accept a # fill_value argument return asanyarray(obj).min(axis=axis, fill_value=fill_value, out=out, **kwargs) min.__doc__ = MaskedArray.min.__doc__ def max(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} try: return obj.max(axis=axis, fill_value=fill_value, out=out, **kwargs) except (AttributeError, TypeError): # If obj doesn't have a max method, or if the method doesn't accept a # fill_value argument return asanyarray(obj).max(axis=axis, fill_value=fill_value, out=out, **kwargs) max.__doc__ = MaskedArray.max.__doc__ def ptp(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} try: return obj.ptp(axis, out=out, fill_value=fill_value, **kwargs) except (AttributeError, TypeError): # If obj doesn't have a ptp method or if the method doesn't accept # a fill_value argument return asanyarray(obj).ptp(axis=axis, fill_value=fill_value, out=out, **kwargs) ptp.__doc__ = MaskedArray.ptp.__doc__ ############################################################################## # Definition of functions from the corresponding methods # ############################################################################## class _frommethod: """ Define functions from existing MaskedArray methods. Parameters ---------- methodname : str Name of the method to transform. """ def __init__(self, methodname, reversed=False): self.__name__ = methodname self.__doc__ = self.getdoc() self.reversed = reversed def getdoc(self): "Return the doc of the function (from the doc of the method)." meth = getattr(MaskedArray, self.__name__, None) or\ getattr(np, self.__name__, None) signature = self.__name__ + get_object_signature(meth) if meth is not None: doc = """ %s\n%s""" % ( signature, getattr(meth, '__doc__', None)) return doc def __call__(self, a, *args, **params): if self.reversed: args = list(args) a, args[0] = args[0], a marr = asanyarray(a) method_name = self.__name__ method = getattr(type(marr), method_name, None) if method is None: # use the corresponding np function method = getattr(np, method_name) return method(marr, *args, **params) all = _frommethod('all') anomalies = anom = _frommethod('anom') any = _frommethod('any') compress = _frommethod('compress', reversed=True) cumprod = _frommethod('cumprod') cumsum = _frommethod('cumsum') copy = _frommethod('copy') diagonal = _frommethod('diagonal') harden_mask = _frommethod('harden_mask') ids = _frommethod('ids') maximum = _extrema_operation(umath.maximum, greater, maximum_fill_value) mean = _frommethod('mean') minimum = _extrema_operation(umath.minimum, less, minimum_fill_value) nonzero = _frommethod('nonzero') prod = _frommethod('prod') product = _frommethod('prod') ravel = _frommethod('ravel') repeat = _frommethod('repeat') shrink_mask = _frommethod('shrink_mask') soften_mask = _frommethod('soften_mask') std = _frommethod('std') sum = _frommethod('sum') swapaxes = _frommethod('swapaxes') #take = _frommethod('take') trace = _frommethod('trace') var = _frommethod('var') count = _frommethod('count') def take(a, indices, axis=None, out=None, mode='raise'): """ """ a = masked_array(a) return a.take(indices, axis=axis, out=out, mode=mode) def power(a, b, third=None): """ Returns element-wise base array raised to power from second array. This is the masked array version of `numpy.power`. For details see `numpy.power`. See Also -------- numpy.power Notes ----- The *out* argument to `numpy.power` is not supported, `third` has to be None. """ if third is not None: raise MaskError("3-argument power not supported.") # Get the masks ma = getmask(a) mb = getmask(b) m = mask_or(ma, mb) # Get the rawdata fa = getdata(a) fb = getdata(b) # Get the type of the result (so that we preserve subclasses) if isinstance(a, MaskedArray): basetype = type(a) else: basetype = MaskedArray # Get the result and view it as a (subclass of) MaskedArray with np.errstate(divide='ignore', invalid='ignore'): result = np.where(m, fa, umath.power(fa, fb)).view(basetype) result._update_from(a) # Find where we're in trouble w/ NaNs and Infs invalid = np.logical_not(np.isfinite(result.view(ndarray))) # Add the initial mask if m is not nomask: if not result.ndim: return masked result._mask = np.logical_or(m, invalid) # Fix the invalid parts if invalid.any(): if not result.ndim: return masked elif result._mask is nomask: result._mask = invalid result._data[invalid] = result.fill_value return result argmin = _frommethod('argmin') argmax = _frommethod('argmax') def argsort(a, axis=np._NoValue, kind=None, order=None, endwith=True, fill_value=None): "Function version of the eponymous method." a = np.asanyarray(a) # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default if axis is np._NoValue: axis = _deprecate_argsort_axis(a) if isinstance(a, MaskedArray): return a.argsort(axis=axis, kind=kind, order=order, endwith=endwith, fill_value=fill_value) else: return a.argsort(axis=axis, kind=kind, order=order) argsort.__doc__ = MaskedArray.argsort.__doc__ def sort(a, axis=-1, kind=None, order=None, endwith=True, fill_value=None): """ Return a sorted copy of the masked array. Equivalent to creating a copy of the array and applying the MaskedArray ``sort()`` method. Refer to ``MaskedArray.sort`` for the full documentation See Also -------- MaskedArray.sort : equivalent method """ a = np.array(a, copy=True, subok=True) if axis is None: a = a.flatten() axis = 0 if isinstance(a, MaskedArray): a.sort(axis=axis, kind=kind, order=order, endwith=endwith, fill_value=fill_value) else: a.sort(axis=axis, kind=kind, order=order) return a def compressed(x): """ Return all the non-masked data as a 1-D array. This function is equivalent to calling the "compressed" method of a `ma.MaskedArray`, see `ma.MaskedArray.compressed` for details. See Also -------- ma.MaskedArray.compressed : Equivalent method. """ return asanyarray(x).compressed() def concatenate(arrays, axis=0): """ Concatenate a sequence of arrays along the given axis. Parameters ---------- arrays : sequence of array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int, optional The axis along which the arrays will be joined. Default is 0. Returns ------- result : MaskedArray The concatenated array with any masked entries preserved. See Also -------- numpy.concatenate : Equivalent function in the top-level NumPy module. Examples -------- >>> import numpy.ma as ma >>> a = ma.arange(3) >>> a[1] = ma.masked >>> b = ma.arange(2, 5) >>> a masked_array(data=[0, --, 2], mask=[False, True, False], fill_value=999999) >>> b masked_array(data=[2, 3, 4], mask=False, fill_value=999999) >>> ma.concatenate([a, b]) masked_array(data=[0, --, 2, 2, 3, 4], mask=[False, True, False, False, False, False], fill_value=999999) """ d = np.concatenate([getdata(a) for a in arrays], axis) rcls = get_masked_subclass(*arrays) data = d.view(rcls) # Check whether one of the arrays has a non-empty mask. for x in arrays: if getmask(x) is not nomask: break else: return data # OK, so we have to concatenate the masks dm = np.concatenate([getmaskarray(a) for a in arrays], axis) dm = dm.reshape(d.shape) # If we decide to keep a '_shrinkmask' option, we want to check that # all of them are True, and then check for dm.any() data._mask = _shrink_mask(dm) return data def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. This function is the equivalent of `numpy.diag` that takes masked values into account, see `numpy.diag` for details. See Also -------- numpy.diag : Equivalent function for ndarrays. """ output = np.diag(v, k).view(MaskedArray) if getmask(v) is not nomask: output._mask = np.diag(v._mask, k) return output def left_shift(a, n): """ Shift the bits of an integer to the left. This is the masked array version of `numpy.left_shift`, for details see that function. See Also -------- numpy.left_shift """ m = getmask(a) if m is nomask: d = umath.left_shift(filled(a), n) return masked_array(d) else: d = umath.left_shift(filled(a, 0), n) return masked_array(d, mask=m) def right_shift(a, n): """ Shift the bits of an integer to the right. This is the masked array version of `numpy.right_shift`, for details see that function. See Also -------- numpy.right_shift """ m = getmask(a) if m is nomask: d = umath.right_shift(filled(a), n) return masked_array(d) else: d = umath.right_shift(filled(a, 0), n) return masked_array(d, mask=m) def put(a, indices, values, mode='raise'): """ Set storage-indexed locations to corresponding values. This function is equivalent to `MaskedArray.put`, see that method for details. See Also -------- MaskedArray.put """ # We can't use 'frommethod', the order of arguments is different try: return a.put(indices, values, mode=mode) except AttributeError: return narray(a, copy=False).put(indices, values, mode=mode) def putmask(a, mask, values): # , mode='raise'): """ Changes elements of an array based on conditional and input values. This is the masked array version of `numpy.putmask`, for details see `numpy.putmask`. See Also -------- numpy.putmask Notes ----- Using a masked array as `values` will **not** transform a `ndarray` into a `MaskedArray`. """ # We can't use 'frommethod', the order of arguments is different if not isinstance(a, MaskedArray): a = a.view(MaskedArray) (valdata, valmask) = (getdata(values), getmask(values)) if getmask(a) is nomask: if valmask is not nomask: a._sharedmask = True a._mask = make_mask_none(a.shape, a.dtype) np.copyto(a._mask, valmask, where=mask) elif a._hardmask: if valmask is not nomask: m = a._mask.copy() np.copyto(m, valmask, where=mask) a.mask |= m else: if valmask is nomask: valmask = getmaskarray(values) np.copyto(a._mask, valmask, where=mask) np.copyto(a._data, valdata, where=mask) return def transpose(a, axes=None): """ Permute the dimensions of an array. This function is exactly equivalent to `numpy.transpose`. See Also -------- numpy.transpose : Equivalent function in top-level NumPy module. Examples -------- >>> import numpy.ma as ma >>> x = ma.arange(4).reshape((2,2)) >>> x[1, 1] = ma.masked >>> x masked_array( data=[[0, 1], [2, --]], mask=[[False, False], [False, True]], fill_value=999999) >>> ma.transpose(x) masked_array( data=[[0, 2], [1, --]], mask=[[False, False], [False, True]], fill_value=999999) """ # We can't use 'frommethod', as 'transpose' doesn't take keywords try: return a.transpose(axes) except AttributeError: return narray(a, copy=False).transpose(axes).view(MaskedArray) def reshape(a, new_shape, order='C'): """ Returns an array containing the same data with a new shape. Refer to `MaskedArray.reshape` for full documentation. See Also -------- MaskedArray.reshape : equivalent function """ # We can't use 'frommethod', it whine about some parameters. Dmmit. try: return a.reshape(new_shape, order=order) except AttributeError: _tmp = narray(a, copy=False).reshape(new_shape, order=order) return _tmp.view(MaskedArray) def resize(x, new_shape): """ Return a new masked array with the specified size and shape. This is the masked equivalent of the `numpy.resize` function. The new array is filled with repeated copies of `x` (in the order that the data are stored in memory). If `x` is masked, the new array will be masked, and the new mask will be a repetition of the old one. See Also -------- numpy.resize : Equivalent function in the top level NumPy module. Examples -------- >>> import numpy.ma as ma >>> a = ma.array([[1, 2] ,[3, 4]]) >>> a[0, 1] = ma.masked >>> a masked_array( data=[[1, --], [3, 4]], mask=[[False, True], [False, False]], fill_value=999999) >>> np.resize(a, (3, 3)) masked_array( data=[[1, 2, 3], [4, 1, 2], [3, 4, 1]], mask=False, fill_value=999999) >>> ma.resize(a, (3, 3)) masked_array( data=[[1, --, 3], [4, 1, --], [3, 4, 1]], mask=[[False, True, False], [False, False, True], [False, False, False]], fill_value=999999) A MaskedArray is always returned, regardless of the input type. >>> a = np.array([[1, 2] ,[3, 4]]) >>> ma.resize(a, (3, 3)) masked_array( data=[[1, 2, 3], [4, 1, 2], [3, 4, 1]], mask=False, fill_value=999999) """ # We can't use _frommethods here, as N.resize is notoriously whiny. m = getmask(x) if m is not nomask: m = np.resize(m, new_shape) result = np.resize(x, new_shape).view(get_masked_subclass(x)) if result.ndim: result._mask = m return result def ndim(obj): """ maskedarray version of the numpy function. """ return np.ndim(getdata(obj)) ndim.__doc__ = np.ndim.__doc__ def shape(obj): "maskedarray version of the numpy function." return np.shape(getdata(obj)) shape.__doc__ = np.shape.__doc__ def size(obj, axis=None): "maskedarray version of the numpy function." return np.size(getdata(obj), axis) size.__doc__ = np.size.__doc__ ############################################################################## # Extra functions # ############################################################################## def where(condition, x=_NoValue, y=_NoValue): """ Return a masked array with elements from `x` or `y`, depending on condition. .. note:: When only `condition` is provided, this function is identical to `nonzero`. The rest of this documentation covers only the case where all three arguments are provided. Parameters ---------- condition : array_like, bool Where True, yield `x`, otherwise yield `y`. x, y : array_like, optional Values from which to choose. `x`, `y` and `condition` need to be broadcastable to some shape. Returns ------- out : MaskedArray An masked array with `masked` elements where the condition is masked, elements from `x` where `condition` is True, and elements from `y` elsewhere. See Also -------- numpy.where : Equivalent function in the top-level NumPy module. nonzero : The function that is called when x and y are omitted Examples -------- >>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0], ... [1, 0, 1], ... [0, 1, 0]]) >>> x masked_array( data=[[0.0, --, 2.0], [--, 4.0, --], [6.0, --, 8.0]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=1e+20) >>> np.ma.where(x > 5, x, -3.1416) masked_array( data=[[-3.1416, --, -3.1416], [--, -3.1416, --], [6.0, --, 8.0]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=1e+20) """ # handle the single-argument case missing = (x is _NoValue, y is _NoValue).count(True) if missing == 1: raise ValueError("Must provide both 'x' and 'y' or neither.") if missing == 2: return nonzero(condition) # we only care if the condition is true - false or masked pick y cf = filled(condition, False) xd = getdata(x) yd = getdata(y) # we need the full arrays here for correct final dimensions cm = getmaskarray(condition) xm = getmaskarray(x) ym = getmaskarray(y) # deal with the fact that masked.dtype == float64, but we don't actually # want to treat it as that. if x is masked and y is not masked: xd = np.zeros((), dtype=yd.dtype) xm = np.ones((), dtype=ym.dtype) elif y is masked and x is not masked: yd = np.zeros((), dtype=xd.dtype) ym = np.ones((), dtype=xm.dtype) data = np.where(cf, xd, yd) mask = np.where(cf, xm, ym) mask = np.where(cm, np.ones((), dtype=mask.dtype), mask) # collapse the mask, for backwards compatibility mask = _shrink_mask(mask) return masked_array(data, mask=mask) def choose(indices, choices, out=None, mode='raise'): """ Use an index array to construct a new array from a list of choices. Given an array of integers and a list of n choice arrays, this method will create a new array that merges each of the choice arrays. Where a value in `index` is i, the new array will have the value that choices[i] contains in the same place. Parameters ---------- indices : ndarray of ints This array must contain integers in ``[0, n-1]``, where n is the number of choices. choices : sequence of arrays Choice arrays. The index array and all of the choices should be broadcastable to the same shape. out : array, optional If provided, the result will be inserted into this array. It should be of the appropriate shape and `dtype`. mode : {'raise', 'wrap', 'clip'}, optional Specifies how out-of-bounds indices will behave. * 'raise' : raise an error * 'wrap' : wrap around * 'clip' : clip to the range Returns ------- merged_array : array See Also -------- choose : equivalent function Examples -------- >>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]]) >>> a = np.array([2, 1, 0]) >>> np.ma.choose(a, choice) masked_array(data=[3, 2, 1], mask=False, fill_value=999999) """ def fmask(x): "Returns the filled array, or True if masked." if x is masked: return True return filled(x) def nmask(x): "Returns the mask, True if ``masked``, False if ``nomask``." if x is masked: return True return getmask(x) # Get the indices. c = filled(indices, 0) # Get the masks. masks = [nmask(x) for x in choices] data = [fmask(x) for x in choices] # Construct the mask outputmask = np.choose(c, masks, mode=mode) outputmask = make_mask(mask_or(outputmask, getmask(indices)), copy=False, shrink=True) # Get the choices. d = np.choose(c, data, mode=mode, out=out).view(MaskedArray) if out is not None: if isinstance(out, MaskedArray): out.__setmask__(outputmask) return out d.__setmask__(outputmask) return d def round_(a, decimals=0, out=None): """ Return a copy of a, rounded to 'decimals' places. When 'decimals' is negative, it specifies the number of positions to the left of the decimal point. The real and imaginary parts of complex numbers are rounded separately. Nothing is done if the array is not of float type and 'decimals' is greater than or equal to 0. Parameters ---------- decimals : int Number of decimals to round to. May be negative. out : array_like Existing array to use for output. If not given, returns a default copy of a. Notes ----- If out is given and does not have a mask attribute, the mask of a is lost! """ if out is None: return np.round_(a, decimals, out) else: np.round_(getdata(a), decimals, out) if hasattr(out, '_mask'): out._mask = getmask(a) return out round = round_ # Needed by dot, so move here from extras.py. It will still be exported # from extras.py for compatibility. def mask_rowcols(a, axis=None): """ Mask rows and/or columns of a 2D array that contain masked values. Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the `axis` parameter. - If `axis` is None, rows *and* columns are masked. - If `axis` is 0, only rows are masked. - If `axis` is 1 or -1, only columns are masked. Parameters ---------- a : array_like, MaskedArray The array to mask. If not a MaskedArray instance (or if no array elements are masked). The result is a MaskedArray with `mask` set to `nomask` (False). Must be a 2D array. axis : int, optional Axis along which to perform the operation. If None, applies to a flattened version of the array. Returns ------- a : MaskedArray A modified version of the input array, masked depending on the value of the `axis` parameter. Raises ------ NotImplementedError If input array `a` is not 2D. See Also -------- mask_rows : Mask rows of a 2D array that contain masked values. mask_cols : Mask cols of a 2D array that contain masked values. masked_where : Mask where a condition is met. Notes ----- The input array's mask is modified by this function. Examples -------- >>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> ma.mask_rowcols(a) masked_array( data=[[0, --, 0], [--, --, --], [0, --, 0]], mask=[[False, True, False], [ True, True, True], [False, True, False]], fill_value=1) """ a = array(a, subok=False) if a.ndim != 2: raise NotImplementedError("mask_rowcols works for 2D arrays only.") m = getmask(a) # Nothing is masked: return a if m is nomask or not m.any(): return a maskedval = m.nonzero() a._mask = a._mask.copy() if not axis: a[np.unique(maskedval[0])] = masked if axis in [None, 1, -1]: a[:, np.unique(maskedval[1])] = masked return a # Include masked dot here to avoid import problems in getting it from # extras.py. Note that it is not included in __all__, but rather exported # from extras in order to avoid backward compatibility problems. def dot(a, b, strict=False, out=None): """ Return the dot product of two arrays. This function is the equivalent of `numpy.dot` that takes masked values into account. Note that `strict` and `out` are in different position than in the method version. In order to maintain compatibility with the corresponding method, it is recommended that the optional arguments be treated as keyword only. At some point that may be mandatory. .. note:: Works only with 2-D arrays at the moment. Parameters ---------- a, b : masked_array_like Inputs arrays. strict : bool, optional Whether masked data are propagated (True) or set to 0 (False) for the computation. Default is False. Propagating the mask means that if a masked value appears in a row or column, the whole row or column is considered masked. out : masked_array, optional Output argument. This must have the exact kind that would be returned if it was not used. In particular, it must have the right type, must be C-contiguous, and its dtype must be the dtype that would be returned for `dot(a,b)`. This is a performance feature. Therefore, if these conditions are not met, an exception is raised, instead of attempting to be flexible. .. versionadded:: 1.10.2 See Also -------- numpy.dot : Equivalent function for ndarrays. Examples -------- >>> a = np.ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]]) >>> b = np.ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]]) >>> np.ma.dot(a, b) masked_array( data=[[21, 26], [45, 64]], mask=[[False, False], [False, False]], fill_value=999999) >>> np.ma.dot(a, b, strict=True) masked_array( data=[[--, --], [--, 64]], mask=[[ True, True], [ True, False]], fill_value=999999) """ # !!!: Works only with 2D arrays. There should be a way to get it to run # with higher dimension if strict and (a.ndim == 2) and (b.ndim == 2): a = mask_rowcols(a, 0) b = mask_rowcols(b, 1) am = ~getmaskarray(a) bm = ~getmaskarray(b) if out is None: d = np.dot(filled(a, 0), filled(b, 0)) m = ~np.dot(am, bm) if d.ndim == 0: d = np.asarray(d) r = d.view(get_masked_subclass(a, b)) r.__setmask__(m) return r else: d = np.dot(filled(a, 0), filled(b, 0), out._data) if out.mask.shape != d.shape: out._mask = np.empty(d.shape, MaskType) np.dot(am, bm, out._mask) np.logical_not(out._mask, out._mask) return out def inner(a, b): """ Returns the inner product of a and b for arrays of floating point types. Like the generic NumPy equivalent the product sum is over the last dimension of a and b. The first argument is not conjugated. """ fa = filled(a, 0) fb = filled(b, 0) if fa.ndim == 0: fa.shape = (1,) if fb.ndim == 0: fb.shape = (1,) return np.inner(fa, fb).view(MaskedArray) inner.__doc__ = doc_note(np.inner.__doc__, "Masked values are replaced by 0.") innerproduct = inner def outer(a, b): "maskedarray version of the numpy function." fa = filled(a, 0).ravel() fb = filled(b, 0).ravel() d = np.outer(fa, fb) ma = getmask(a) mb = getmask(b) if ma is nomask and mb is nomask: return masked_array(d) ma = getmaskarray(a) mb = getmaskarray(b) m = make_mask(1 - np.outer(1 - ma, 1 - mb), copy=False) return masked_array(d, mask=m) outer.__doc__ = doc_note(np.outer.__doc__, "Masked values are replaced by 0.") outerproduct = outer def _convolve_or_correlate(f, a, v, mode, propagate_mask): """ Helper function for ma.correlate and ma.convolve """ if propagate_mask: # results which are contributed to by either item in any pair being invalid mask = ( f(getmaskarray(a), np.ones(np.shape(v), dtype=bool), mode=mode) | f(np.ones(np.shape(a), dtype=bool), getmaskarray(v), mode=mode) ) data = f(getdata(a), getdata(v), mode=mode) else: # results which are not contributed to by any pair of valid elements mask = ~f(~getmaskarray(a), ~getmaskarray(v)) data = f(filled(a, 0), filled(v, 0), mode=mode) return masked_array(data, mask=mask) def correlate(a, v, mode='valid', propagate_mask=True): """ Cross-correlation of two 1-dimensional sequences. Parameters ---------- a, v : array_like Input sequences. mode : {'valid', 'same', 'full'}, optional Refer to the `np.convolve` docstring. Note that the default is 'valid', unlike `convolve`, which uses 'full'. propagate_mask : bool If True, then a result element is masked if any masked element contributes towards it. If False, then a result element is only masked if no non-masked element contribute towards it Returns ------- out : MaskedArray Discrete cross-correlation of `a` and `v`. See Also -------- numpy.correlate : Equivalent function in the top-level NumPy module. """ return _convolve_or_correlate(np.correlate, a, v, mode, propagate_mask) def convolve(a, v, mode='full', propagate_mask=True): """ Returns the discrete, linear convolution of two one-dimensional sequences. Parameters ---------- a, v : array_like Input sequences. mode : {'valid', 'same', 'full'}, optional Refer to the `np.convolve` docstring. propagate_mask : bool If True, then if any masked element is included in the sum for a result element, then the result is masked. If False, then the result element is only masked if no non-masked cells contribute towards it Returns ------- out : MaskedArray Discrete, linear convolution of `a` and `v`. See Also -------- numpy.convolve : Equivalent function in the top-level NumPy module. """ return _convolve_or_correlate(np.convolve, a, v, mode, propagate_mask) def allequal(a, b, fill_value=True): """ Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked. Parameters ---------- a, b : array_like Input arrays to compare. fill_value : bool, optional Whether masked values in a or b are considered equal (True) or not (False). Returns ------- y : bool Returns True if the two arrays are equal within the given tolerance, False otherwise. If either array contains NaN, then False is returned. See Also -------- all, any numpy.ma.allclose Examples -------- >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) >>> a masked_array(data=[10000000000.0, 1e-07, --], mask=[False, False, True], fill_value=1e+20) >>> b = np.array([1e10, 1e-7, -42.0]) >>> b array([ 1.00000000e+10, 1.00000000e-07, -4.20000000e+01]) >>> np.ma.allequal(a, b, fill_value=False) False >>> np.ma.allequal(a, b) True """ m = mask_or(getmask(a), getmask(b)) if m is nomask: x = getdata(a) y = getdata(b) d = umath.equal(x, y) return d.all() elif fill_value: x = getdata(a) y = getdata(b) d = umath.equal(x, y) dm = array(d, mask=m, copy=False) return dm.filled(True).all(None) else: return False def allclose(a, b, masked_equal=True, rtol=1e-5, atol=1e-8): """ Returns True if two arrays are element-wise equal within a tolerance. This function is equivalent to `allclose` except that masked values are treated as equal (default) or unequal, depending on the `masked_equal` argument. Parameters ---------- a, b : array_like Input arrays to compare. masked_equal : bool, optional Whether masked values in `a` and `b` are considered equal (True) or not (False). They are considered equal by default. rtol : float, optional Relative tolerance. The relative difference is equal to ``rtol * b``. Default is 1e-5. atol : float, optional Absolute tolerance. The absolute difference is equal to `atol`. Default is 1e-8. Returns ------- y : bool Returns True if the two arrays are equal within the given tolerance, False otherwise. If either array contains NaN, then False is returned. See Also -------- all, any numpy.allclose : the non-masked `allclose`. Notes ----- If the following equation is element-wise True, then `allclose` returns True:: absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`)) Return True if all elements of `a` and `b` are equal subject to given tolerances. Examples -------- >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) >>> a masked_array(data=[10000000000.0, 1e-07, --], mask=[False, False, True], fill_value=1e+20) >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) False >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) True >>> np.ma.allclose(a, b, masked_equal=False) False Masked values are not compared directly. >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) True >>> np.ma.allclose(a, b, masked_equal=False) False """ x = masked_array(a, copy=False) y = masked_array(b, copy=False) # make sure y is an inexact type to avoid abs(MIN_INT); will cause # casting of x later. # NOTE: We explicitly allow timedelta, which used to work. This could # possibly be deprecated. See also gh-18286. # timedelta works if `atol` is an integer or also a timedelta. # Although, the default tolerances are unlikely to be useful if y.dtype.kind != "m": dtype = np.result_type(y, 1.) if y.dtype != dtype: y = masked_array(y, dtype=dtype, copy=False) m = mask_or(getmask(x), getmask(y)) xinf = np.isinf(masked_array(x, copy=False, mask=m)).filled(False) # If we have some infs, they should fall at the same place. if not np.all(xinf == filled(np.isinf(y), False)): return False # No infs at all if not np.any(xinf): d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)), masked_equal) return np.all(d) if not np.all(filled(x[xinf] == y[xinf], masked_equal)): return False x = x[~xinf] y = y[~xinf] d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)), masked_equal) return np.all(d) def asarray(a, dtype=None, order=None): """ Convert the input to a masked array of the given data-type. No copy is performed if the input is already an `ndarray`. If `a` is a subclass of `MaskedArray`, a base class `MaskedArray` is returned. Parameters ---------- a : array_like Input data, in any form that can be converted to a masked array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays. dtype : dtype, optional By default, the data-type is inferred from the input data. order : {'C', 'F'}, optional Whether to use row-major ('C') or column-major ('FORTRAN') memory representation. Default is 'C'. Returns ------- out : MaskedArray Masked array interpretation of `a`. See Also -------- asanyarray : Similar to `asarray`, but conserves subclasses. Examples -------- >>> x = np.arange(10.).reshape(2, 5) >>> x array([[0., 1., 2., 3., 4.], [5., 6., 7., 8., 9.]]) >>> np.ma.asarray(x) masked_array( data=[[0., 1., 2., 3., 4.], [5., 6., 7., 8., 9.]], mask=False, fill_value=1e+20) >>> type(np.ma.asarray(x)) <class 'numpy.ma.core.MaskedArray'> """ order = order or 'C' return masked_array(a, dtype=dtype, copy=False, keep_mask=True, subok=False, order=order) def asanyarray(a, dtype=None): """ Convert the input to a masked array, conserving subclasses. If `a` is a subclass of `MaskedArray`, its class is conserved. No copy is performed if the input is already an `ndarray`. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. dtype : dtype, optional By default, the data-type is inferred from the input data. order : {'C', 'F'}, optional Whether to use row-major ('C') or column-major ('FORTRAN') memory representation. Default is 'C'. Returns ------- out : MaskedArray MaskedArray interpretation of `a`. See Also -------- asarray : Similar to `asanyarray`, but does not conserve subclass. Examples -------- >>> x = np.arange(10.).reshape(2, 5) >>> x array([[0., 1., 2., 3., 4.], [5., 6., 7., 8., 9.]]) >>> np.ma.asanyarray(x) masked_array( data=[[0., 1., 2., 3., 4.], [5., 6., 7., 8., 9.]], mask=False, fill_value=1e+20) >>> type(np.ma.asanyarray(x)) <class 'numpy.ma.core.MaskedArray'> """ # workaround for #8666, to preserve identity. Ideally the bottom line # would handle this for us. if isinstance(a, MaskedArray) and (dtype is None or dtype == a.dtype): return a return masked_array(a, dtype=dtype, copy=False, keep_mask=True, subok=True) ############################################################################## # Pickling # ############################################################################## def _pickle_warn(method): # NumPy 1.15.0, 2017-12-10 warnings.warn( f"np.ma.{method} is deprecated, use pickle.{method} instead", DeprecationWarning, stacklevel=3) def fromfile(file, dtype=float, count=-1, sep=''): raise NotImplementedError( "fromfile() not yet implemented for a MaskedArray.") def fromflex(fxarray): """ Build a masked array from a suitable flexible-type array. The input array has to have a data-type with ``_data`` and ``_mask`` fields. This type of array is output by `MaskedArray.toflex`. Parameters ---------- fxarray : ndarray The structured input array, containing ``_data`` and ``_mask`` fields. If present, other fields are discarded. Returns ------- result : MaskedArray The constructed masked array. See Also -------- MaskedArray.toflex : Build a flexible-type array from a masked array. Examples -------- >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[0] + [1, 0] * 4) >>> rec = x.toflex() >>> rec array([[(0, False), (1, True), (2, False)], [(3, True), (4, False), (5, True)], [(6, False), (7, True), (8, False)]], dtype=[('_data', '<i8'), ('_mask', '?')]) >>> x2 = np.ma.fromflex(rec) >>> x2 masked_array( data=[[0, --, 2], [--, 4, --], [6, --, 8]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=999999) Extra fields can be present in the structured array but are discarded: >>> dt = [('_data', '<i4'), ('_mask', '|b1'), ('field3', '<f4')] >>> rec2 = np.zeros((2, 2), dtype=dt) >>> rec2 array([[(0, False, 0.), (0, False, 0.)], [(0, False, 0.), (0, False, 0.)]], dtype=[('_data', '<i4'), ('_mask', '?'), ('field3', '<f4')]) >>> y = np.ma.fromflex(rec2) >>> y masked_array( data=[[0, 0], [0, 0]], mask=[[False, False], [False, False]], fill_value=999999, dtype=int32) """ return masked_array(fxarray['_data'], mask=fxarray['_mask']) class _convert2ma: """ Convert functions from numpy to numpy.ma. Parameters ---------- _methodname : string Name of the method to transform. """ __doc__ = None def __init__(self, funcname, np_ret, np_ma_ret, params=None): self._func = getattr(np, funcname) self.__doc__ = self.getdoc(np_ret, np_ma_ret) self._extras = params or {} def getdoc(self, np_ret, np_ma_ret): "Return the doc of the function (from the doc of the method)." doc = getattr(self._func, '__doc__', None) sig = get_object_signature(self._func) if doc: doc = self._replace_return_type(doc, np_ret, np_ma_ret) # Add the signature of the function at the beginning of the doc if sig: sig = "%s%s\n" % (self._func.__name__, sig) doc = sig + doc return doc def _replace_return_type(self, doc, np_ret, np_ma_ret): """ Replace documentation of ``np`` function's return type. Replaces it with the proper type for the ``np.ma`` function. Parameters ---------- doc : str The documentation of the ``np`` method. np_ret : str The return type string of the ``np`` method that we want to replace. (e.g. "out : ndarray") np_ma_ret : str The return type string of the ``np.ma`` method. (e.g. "out : MaskedArray") """ if np_ret not in doc: raise RuntimeError( f"Failed to replace `{np_ret}` with `{np_ma_ret}`. " f"The documentation string for return type, {np_ret}, is not " f"found in the docstring for `np.{self._func.__name__}`. " f"Fix the docstring for `np.{self._func.__name__}` or " "update the expected string for return type." ) return doc.replace(np_ret, np_ma_ret) def __call__(self, *args, **params): # Find the common parameters to the call and the definition _extras = self._extras common_params = set(params).intersection(_extras) # Drop the common parameters from the call for p in common_params: _extras[p] = params.pop(p) # Get the result result = self._func.__call__(*args, **params).view(MaskedArray) if "fill_value" in common_params: result.fill_value = _extras.get("fill_value", None) if "hardmask" in common_params: result._hardmask = bool(_extras.get("hard_mask", False)) return result arange = _convert2ma( 'arange', params=dict(fill_value=None, hardmask=False), np_ret='arange : ndarray', np_ma_ret='arange : MaskedArray', ) clip = _convert2ma( 'clip', params=dict(fill_value=None, hardmask=False), np_ret='clipped_array : ndarray', np_ma_ret='clipped_array : MaskedArray', ) diff = _convert2ma( 'diff', params=dict(fill_value=None, hardmask=False), np_ret='diff : ndarray', np_ma_ret='diff : MaskedArray', ) empty = _convert2ma( 'empty', params=dict(fill_value=None, hardmask=False), np_ret='out : ndarray', np_ma_ret='out : MaskedArray', ) empty_like = _convert2ma( 'empty_like', np_ret='out : ndarray', np_ma_ret='out : MaskedArray', ) frombuffer = _convert2ma( 'frombuffer', np_ret='out : ndarray', np_ma_ret='out: MaskedArray', ) fromfunction = _convert2ma( 'fromfunction', np_ret='fromfunction : any', np_ma_ret='fromfunction: MaskedArray', ) identity = _convert2ma( 'identity', params=dict(fill_value=None, hardmask=False), np_ret='out : ndarray', np_ma_ret='out : MaskedArray', ) indices = _convert2ma( 'indices', params=dict(fill_value=None, hardmask=False), np_ret='grid : one ndarray or tuple of ndarrays', np_ma_ret='grid : one MaskedArray or tuple of MaskedArrays', ) ones = _convert2ma( 'ones', params=dict(fill_value=None, hardmask=False), np_ret='out : ndarray', np_ma_ret='out : MaskedArray', ) ones_like = _convert2ma( 'ones_like', np_ret='out : ndarray', np_ma_ret='out : MaskedArray', ) squeeze = _convert2ma( 'squeeze', params=dict(fill_value=None, hardmask=False), np_ret='squeezed : ndarray', np_ma_ret='squeezed : MaskedArray', ) zeros = _convert2ma( 'zeros', params=dict(fill_value=None, hardmask=False), np_ret='out : ndarray', np_ma_ret='out : MaskedArray', ) zeros_like = _convert2ma( 'zeros_like', np_ret='out : ndarray', np_ma_ret='out : MaskedArray', ) def append(a, b, axis=None): """Append values to the end of an array. .. versionadded:: 1.9.0 Parameters ---------- a : array_like Values are appended to a copy of this array. b : array_like These values are appended to a copy of `a`. It must be of the correct shape (the same shape as `a`, excluding `axis`). If `axis` is not specified, `b` can be any shape and will be flattened before use. axis : int, optional The axis along which `v` are appended. If `axis` is not given, both `a` and `b` are flattened before use. Returns ------- append : MaskedArray A copy of `a` with `b` appended to `axis`. Note that `append` does not occur in-place: a new array is allocated and filled. If `axis` is None, the result is a flattened array. See Also -------- numpy.append : Equivalent function in the top-level NumPy module. Examples -------- >>> import numpy.ma as ma >>> a = ma.masked_values([1, 2, 3], 2) >>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7) >>> ma.append(a, b) masked_array(data=[1, --, 3, 4, 5, 6, --, 8, 9], mask=[False, True, False, False, False, False, True, False, False], fill_value=999999) """ return concatenate([a, b], axis)
269,111
Python
31.298608
155
0.541888
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/setup.py
#!/usr/bin/env python3 def configuration(parent_package='',top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('ma', parent_package, top_path) config.add_subpackage('tests') config.add_data_files('*.pyi') return config if __name__ == "__main__": from numpy.distutils.core import setup config = configuration(top_path='').todict() setup(**config)
418
Python
31.230767
58
0.681818
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/mrecords.pyi
from typing import Any, TypeVar from numpy import dtype from numpy.ma import MaskedArray __all__: list[str] # TODO: Set the `bound` to something more suitable once we # have proper shape support _ShapeType = TypeVar("_ShapeType", bound=Any) _DType_co = TypeVar("_DType_co", bound=dtype[Any], covariant=True) class MaskedRecords(MaskedArray[_ShapeType, _DType_co]): def __new__( cls, shape, dtype=..., buf=..., offset=..., strides=..., formats=..., names=..., titles=..., byteorder=..., aligned=..., mask=..., hard_mask=..., fill_value=..., keep_mask=..., copy=..., **options, ): ... _mask: Any _fill_value: Any @property def _data(self): ... @property def _fieldmask(self): ... def __array_finalize__(self, obj): ... def __len__(self): ... def __getattribute__(self, attr): ... def __setattr__(self, attr, val): ... def __getitem__(self, indx): ... def __setitem__(self, indx, value): ... def view(self, dtype=..., type=...): ... def harden_mask(self): ... def soften_mask(self): ... def copy(self): ... def tolist(self, fill_value=...): ... def __reduce__(self): ... mrecarray = MaskedRecords def fromarrays( arraylist, dtype=..., shape=..., formats=..., names=..., titles=..., aligned=..., byteorder=..., fill_value=..., ): ... def fromrecords( reclist, dtype=..., shape=..., formats=..., names=..., titles=..., aligned=..., byteorder=..., fill_value=..., mask=..., ): ... def fromtextfile( fname, delimiter=..., commentchar=..., missingchar=..., varnames=..., vartypes=..., # NOTE: deprecated: NumPy 1.22.0, 2021-09-23 # delimitor=..., ): ... def addfield(mrecord, newfield, newfieldname=...): ...
1,934
unknown
20.263736
66
0.50879
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/testutils.py
"""Miscellaneous functions for testing masked arrays and subclasses :author: Pierre Gerard-Marchant :contact: pierregm_at_uga_dot_edu :version: $Id: testutils.py 3529 2007-11-13 08:01:14Z jarrod.millman $ """ import operator import numpy as np from numpy import ndarray, float_ import numpy.core.umath as umath import numpy.testing from numpy.testing import ( assert_, assert_allclose, assert_array_almost_equal_nulp, assert_raises, build_err_msg ) from .core import mask_or, getmask, masked_array, nomask, masked, filled __all__masked = [ 'almost', 'approx', 'assert_almost_equal', 'assert_array_almost_equal', 'assert_array_approx_equal', 'assert_array_compare', 'assert_array_equal', 'assert_array_less', 'assert_close', 'assert_equal', 'assert_equal_records', 'assert_mask_equal', 'assert_not_equal', 'fail_if_array_equal', ] # Include some normal test functions to avoid breaking other projects who # have mistakenly included them from this file. SciPy is one. That is # unfortunate, as some of these functions are not intended to work with # masked arrays. But there was no way to tell before. from unittest import TestCase __some__from_testing = [ 'TestCase', 'assert_', 'assert_allclose', 'assert_array_almost_equal_nulp', 'assert_raises' ] __all__ = __all__masked + __some__from_testing def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): """ Returns true if all components of a and b are equal to given tolerances. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) return d.ravel() def almost(a, b, decimal=6, fill_value=True): """ Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) return d.ravel() def _assert_equal_on_sequences(actual, desired, err_msg=''): """ Asserts the equality of two non-array sequences. """ assert_equal(len(actual), len(desired), err_msg) for k in range(len(desired)): assert_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}') return def assert_equal_records(a, b): """ Asserts that two records are equal. Pretty crude for now. """ assert_equal(a.dtype, b.dtype) for f in a.dtype.names: (af, bf) = (operator.getitem(a, f), operator.getitem(b, f)) if not (af is masked) and not (bf is masked): assert_equal(operator.getitem(a, f), operator.getitem(b, f)) return def assert_equal(actual, desired, err_msg=''): """ Asserts that two items are equal. """ # Case #1: dictionary ..... if isinstance(desired, dict): if not isinstance(actual, dict): raise AssertionError(repr(type(actual))) assert_equal(len(actual), len(desired), err_msg) for k, i in desired.items(): if k not in actual: raise AssertionError(f"{k} not in {actual}") assert_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}') return # Case #2: lists ..... if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): return _assert_equal_on_sequences(actual, desired, err_msg='') if not (isinstance(actual, ndarray) or isinstance(desired, ndarray)): msg = build_err_msg([actual, desired], err_msg,) if not desired == actual: raise AssertionError(msg) return # Case #4. arrays or equivalent if ((actual is masked) and not (desired is masked)) or \ ((desired is masked) and not (actual is masked)): msg = build_err_msg([actual, desired], err_msg, header='', names=('x', 'y')) raise ValueError(msg) actual = np.asanyarray(actual) desired = np.asanyarray(desired) (actual_dtype, desired_dtype) = (actual.dtype, desired.dtype) if actual_dtype.char == "S" and desired_dtype.char == "S": return _assert_equal_on_sequences(actual.tolist(), desired.tolist(), err_msg='') return assert_array_equal(actual, desired, err_msg) def fail_if_equal(actual, desired, err_msg='',): """ Raises an assertion error if two items are equal. """ if isinstance(desired, dict): if not isinstance(actual, dict): raise AssertionError(repr(type(actual))) fail_if_equal(len(actual), len(desired), err_msg) for k, i in desired.items(): if k not in actual: raise AssertionError(repr(k)) fail_if_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}') return if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): fail_if_equal(len(actual), len(desired), err_msg) for k in range(len(desired)): fail_if_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}') return if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray): return fail_if_array_equal(actual, desired, err_msg) msg = build_err_msg([actual, desired], err_msg) if not desired != actual: raise AssertionError(msg) assert_not_equal = fail_if_equal def assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True): """ Asserts that two items are almost equal. The test is equivalent to abs(desired-actual) < 0.5 * 10**(-decimal). """ if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray): return assert_array_almost_equal(actual, desired, decimal=decimal, err_msg=err_msg, verbose=verbose) msg = build_err_msg([actual, desired], err_msg=err_msg, verbose=verbose) if not round(abs(desired - actual), decimal) == 0: raise AssertionError(msg) assert_close = assert_almost_equal def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='', fill_value=True): """ Asserts that comparison between two masked arrays is satisfied. The comparison is elementwise. """ # Allocate a common mask and refill m = mask_or(getmask(x), getmask(y)) x = masked_array(x, copy=False, mask=m, keep_mask=False, subok=False) y = masked_array(y, copy=False, mask=m, keep_mask=False, subok=False) if ((x is masked) and not (y is masked)) or \ ((y is masked) and not (x is masked)): msg = build_err_msg([x, y], err_msg=err_msg, verbose=verbose, header=header, names=('x', 'y')) raise ValueError(msg) # OK, now run the basic tests on filled versions return np.testing.assert_array_compare(comparison, x.filled(fill_value), y.filled(fill_value), err_msg=err_msg, verbose=verbose, header=header) def assert_array_equal(x, y, err_msg='', verbose=True): """ Checks the elementwise equality of two masked arrays. """ assert_array_compare(operator.__eq__, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not equal') def fail_if_array_equal(x, y, err_msg='', verbose=True): """ Raises an assertion error if two masked arrays are not equal elementwise. """ def compare(x, y): return (not np.alltrue(approx(x, y))) assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not equal') def assert_array_approx_equal(x, y, decimal=6, err_msg='', verbose=True): """ Checks the equality of two masked arrays, up to given number odecimals. The equality is checked elementwise. """ def compare(x, y): "Returns the result of the loose comparison between x and y)." return approx(x, y, rtol=10. ** -decimal) assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not almost equal') def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True): """ Checks the equality of two masked arrays, up to given number odecimals. The equality is checked elementwise. """ def compare(x, y): "Returns the result of the loose comparison between x and y)." return almost(x, y, decimal) assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not almost equal') def assert_array_less(x, y, err_msg='', verbose=True): """ Checks that x is smaller than y elementwise. """ assert_array_compare(operator.__lt__, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not less-ordered') def assert_mask_equal(m1, m2, err_msg=''): """ Asserts the equality of two masks. """ if m1 is nomask: assert_(m2 is nomask) if m2 is nomask: assert_(m1 is nomask) assert_array_equal(m1, m2, err_msg=err_msg)
10,239
Python
34.432526
80
0.608263
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/mrecords.py
""":mod:`numpy.ma..mrecords` Defines the equivalent of :class:`numpy.recarrays` for masked arrays, where fields can be accessed as attributes. Note that :class:`numpy.ma.MaskedArray` already supports structured datatypes and the masking of individual fields. .. moduleauthor:: Pierre Gerard-Marchant """ # We should make sure that no field is called '_mask','mask','_fieldmask', # or whatever restricted keywords. An idea would be to no bother in the # first place, and then rename the invalid fields with a trailing # underscore. Maybe we could just overload the parser function ? from numpy.ma import ( MAError, MaskedArray, masked, nomask, masked_array, getdata, getmaskarray, filled ) import numpy.ma as ma import warnings import numpy as np from numpy import ( bool_, dtype, ndarray, recarray, array as narray ) from numpy.core.records import ( fromarrays as recfromarrays, fromrecords as recfromrecords ) _byteorderconv = np.core.records._byteorderconv _check_fill_value = ma.core._check_fill_value __all__ = [ 'MaskedRecords', 'mrecarray', 'fromarrays', 'fromrecords', 'fromtextfile', 'addfield', ] reserved_fields = ['_data', '_mask', '_fieldmask', 'dtype'] def _checknames(descr, names=None): """ Checks that field names ``descr`` are not reserved keywords. If this is the case, a default 'f%i' is substituted. If the argument `names` is not None, updates the field names to valid names. """ ndescr = len(descr) default_names = ['f%i' % i for i in range(ndescr)] if names is None: new_names = default_names else: if isinstance(names, (tuple, list)): new_names = names elif isinstance(names, str): new_names = names.split(',') else: raise NameError(f'illegal input names {names!r}') nnames = len(new_names) if nnames < ndescr: new_names += default_names[nnames:] ndescr = [] for (n, d, t) in zip(new_names, default_names, descr.descr): if n in reserved_fields: if t[0] in reserved_fields: ndescr.append((d, t[1])) else: ndescr.append(t) else: ndescr.append((n, t[1])) return np.dtype(ndescr) def _get_fieldmask(self): mdescr = [(n, '|b1') for n in self.dtype.names] fdmask = np.empty(self.shape, dtype=mdescr) fdmask.flat = tuple([False] * len(mdescr)) return fdmask class MaskedRecords(MaskedArray): """ Attributes ---------- _data : recarray Underlying data, as a record array. _mask : boolean array Mask of the records. A record is masked when all its fields are masked. _fieldmask : boolean recarray Record array of booleans, setting the mask of each individual field of each record. _fill_value : record Filling values for each field. """ def __new__(cls, shape, dtype=None, buf=None, offset=0, strides=None, formats=None, names=None, titles=None, byteorder=None, aligned=False, mask=nomask, hard_mask=False, fill_value=None, keep_mask=True, copy=False, **options): self = recarray.__new__(cls, shape, dtype=dtype, buf=buf, offset=offset, strides=strides, formats=formats, names=names, titles=titles, byteorder=byteorder, aligned=aligned,) mdtype = ma.make_mask_descr(self.dtype) if mask is nomask or not np.size(mask): if not keep_mask: self._mask = tuple([False] * len(mdtype)) else: mask = np.array(mask, copy=copy) if mask.shape != self.shape: (nd, nm) = (self.size, mask.size) if nm == 1: mask = np.resize(mask, self.shape) elif nm == nd: mask = np.reshape(mask, self.shape) else: msg = "Mask and data not compatible: data size is %i, " + \ "mask size is %i." raise MAError(msg % (nd, nm)) if not keep_mask: self.__setmask__(mask) self._sharedmask = True else: if mask.dtype == mdtype: _mask = mask else: _mask = np.array([tuple([m] * len(mdtype)) for m in mask], dtype=mdtype) self._mask = _mask return self def __array_finalize__(self, obj): # Make sure we have a _fieldmask by default _mask = getattr(obj, '_mask', None) if _mask is None: objmask = getattr(obj, '_mask', nomask) _dtype = ndarray.__getattribute__(self, 'dtype') if objmask is nomask: _mask = ma.make_mask_none(self.shape, dtype=_dtype) else: mdescr = ma.make_mask_descr(_dtype) _mask = narray([tuple([m] * len(mdescr)) for m in objmask], dtype=mdescr).view(recarray) # Update some of the attributes _dict = self.__dict__ _dict.update(_mask=_mask) self._update_from(obj) if _dict['_baseclass'] == ndarray: _dict['_baseclass'] = recarray return @property def _data(self): """ Returns the data as a recarray. """ return ndarray.view(self, recarray) @property def _fieldmask(self): """ Alias to mask. """ return self._mask def __len__(self): """ Returns the length """ # We have more than one record if self.ndim: return len(self._data) # We have only one record: return the nb of fields return len(self.dtype) def __getattribute__(self, attr): try: return object.__getattribute__(self, attr) except AttributeError: # attr must be a fieldname pass fielddict = ndarray.__getattribute__(self, 'dtype').fields try: res = fielddict[attr][:2] except (TypeError, KeyError) as e: raise AttributeError( f'record array has no attribute {attr}') from e # So far, so good _localdict = ndarray.__getattribute__(self, '__dict__') _data = ndarray.view(self, _localdict['_baseclass']) obj = _data.getfield(*res) if obj.dtype.names is not None: raise NotImplementedError("MaskedRecords is currently limited to" "simple records.") # Get some special attributes # Reset the object's mask hasmasked = False _mask = _localdict.get('_mask', None) if _mask is not None: try: _mask = _mask[attr] except IndexError: # Couldn't find a mask: use the default (nomask) pass tp_len = len(_mask.dtype) hasmasked = _mask.view((bool, ((tp_len,) if tp_len else ()))).any() if (obj.shape or hasmasked): obj = obj.view(MaskedArray) obj._baseclass = ndarray obj._isfield = True obj._mask = _mask # Reset the field values _fill_value = _localdict.get('_fill_value', None) if _fill_value is not None: try: obj._fill_value = _fill_value[attr] except ValueError: obj._fill_value = None else: obj = obj.item() return obj def __setattr__(self, attr, val): """ Sets the attribute attr to the value val. """ # Should we call __setmask__ first ? if attr in ['mask', 'fieldmask']: self.__setmask__(val) return # Create a shortcut (so that we don't have to call getattr all the time) _localdict = object.__getattribute__(self, '__dict__') # Check whether we're creating a new field newattr = attr not in _localdict try: # Is attr a generic attribute ? ret = object.__setattr__(self, attr, val) except Exception: # Not a generic attribute: exit if it's not a valid field fielddict = ndarray.__getattribute__(self, 'dtype').fields or {} optinfo = ndarray.__getattribute__(self, '_optinfo') or {} if not (attr in fielddict or attr in optinfo): raise else: # Get the list of names fielddict = ndarray.__getattribute__(self, 'dtype').fields or {} # Check the attribute if attr not in fielddict: return ret if newattr: # We just added this one or this setattr worked on an # internal attribute. try: object.__delattr__(self, attr) except Exception: return ret # Let's try to set the field try: res = fielddict[attr][:2] except (TypeError, KeyError) as e: raise AttributeError( f'record array has no attribute {attr}') from e if val is masked: _fill_value = _localdict['_fill_value'] if _fill_value is not None: dval = _localdict['_fill_value'][attr] else: dval = val mval = True else: dval = filled(val) mval = getmaskarray(val) obj = ndarray.__getattribute__(self, '_data').setfield(dval, *res) _localdict['_mask'].__setitem__(attr, mval) return obj def __getitem__(self, indx): """ Returns all the fields sharing the same fieldname base. The fieldname base is either `_data` or `_mask`. """ _localdict = self.__dict__ _mask = ndarray.__getattribute__(self, '_mask') _data = ndarray.view(self, _localdict['_baseclass']) # We want a field if isinstance(indx, str): # Make sure _sharedmask is True to propagate back to _fieldmask # Don't use _set_mask, there are some copies being made that # break propagation Don't force the mask to nomask, that wreaks # easy masking obj = _data[indx].view(MaskedArray) obj._mask = _mask[indx] obj._sharedmask = True fval = _localdict['_fill_value'] if fval is not None: obj._fill_value = fval[indx] # Force to masked if the mask is True if not obj.ndim and obj._mask: return masked return obj # We want some elements. # First, the data. obj = np.array(_data[indx], copy=False).view(mrecarray) obj._mask = np.array(_mask[indx], copy=False).view(recarray) return obj def __setitem__(self, indx, value): """ Sets the given record to value. """ MaskedArray.__setitem__(self, indx, value) if isinstance(indx, str): self._mask[indx] = ma.getmaskarray(value) def __str__(self): """ Calculates the string representation. """ if self.size > 1: mstr = [f"({','.join([str(i) for i in s])})" for s in zip(*[getattr(self, f) for f in self.dtype.names])] return f"[{', '.join(mstr)}]" else: mstr = [f"{','.join([str(i) for i in s])}" for s in zip([getattr(self, f) for f in self.dtype.names])] return f"({', '.join(mstr)})" def __repr__(self): """ Calculates the repr representation. """ _names = self.dtype.names fmt = "%%%is : %%s" % (max([len(n) for n in _names]) + 4,) reprstr = [fmt % (f, getattr(self, f)) for f in self.dtype.names] reprstr.insert(0, 'masked_records(') reprstr.extend([fmt % (' fill_value', self.fill_value), ' )']) return str("\n".join(reprstr)) def view(self, dtype=None, type=None): """ Returns a view of the mrecarray. """ # OK, basic copy-paste from MaskedArray.view. if dtype is None: if type is None: output = ndarray.view(self) else: output = ndarray.view(self, type) # Here again. elif type is None: try: if issubclass(dtype, ndarray): output = ndarray.view(self, dtype) else: output = ndarray.view(self, dtype) # OK, there's the change except TypeError: dtype = np.dtype(dtype) # we need to revert to MaskedArray, but keeping the possibility # of subclasses (eg, TimeSeriesRecords), so we'll force a type # set to the first parent if dtype.fields is None: basetype = self.__class__.__bases__[0] output = self.__array__().view(dtype, basetype) output._update_from(self) else: output = ndarray.view(self, dtype) output._fill_value = None else: output = ndarray.view(self, dtype, type) # Update the mask, just like in MaskedArray.view if (getattr(output, '_mask', nomask) is not nomask): mdtype = ma.make_mask_descr(output.dtype) output._mask = self._mask.view(mdtype, ndarray) output._mask.shape = output.shape return output def harden_mask(self): """ Forces the mask to hard. """ self._hardmask = True def soften_mask(self): """ Forces the mask to soft """ self._hardmask = False def copy(self): """ Returns a copy of the masked record. """ copied = self._data.copy().view(type(self)) copied._mask = self._mask.copy() return copied def tolist(self, fill_value=None): """ Return the data portion of the array as a list. Data items are converted to the nearest compatible Python type. Masked values are converted to fill_value. If fill_value is None, the corresponding entries in the output list will be ``None``. """ if fill_value is not None: return self.filled(fill_value).tolist() result = narray(self.filled().tolist(), dtype=object) mask = narray(self._mask.tolist()) result[mask] = None return result.tolist() def __getstate__(self): """Return the internal state of the masked array. This is for pickling. """ state = (1, self.shape, self.dtype, self.flags.fnc, self._data.tobytes(), self._mask.tobytes(), self._fill_value, ) return state def __setstate__(self, state): """ Restore the internal state of the masked array. This is for pickling. ``state`` is typically the output of the ``__getstate__`` output, and is a 5-tuple: - class name - a tuple giving the shape of the data - a typecode for the data - a binary string for the data - a binary string for the mask. """ (ver, shp, typ, isf, raw, msk, flv) = state ndarray.__setstate__(self, (shp, typ, isf, raw)) mdtype = dtype([(k, bool_) for (k, _) in self.dtype.descr]) self.__dict__['_mask'].__setstate__((shp, mdtype, isf, msk)) self.fill_value = flv def __reduce__(self): """ Return a 3-tuple for pickling a MaskedArray. """ return (_mrreconstruct, (self.__class__, self._baseclass, (0,), 'b',), self.__getstate__()) def _mrreconstruct(subtype, baseclass, baseshape, basetype,): """ Build a new MaskedArray from the information stored in a pickle. """ _data = ndarray.__new__(baseclass, baseshape, basetype).view(subtype) _mask = ndarray.__new__(ndarray, baseshape, 'b1') return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,) mrecarray = MaskedRecords ############################################################################### # Constructors # ############################################################################### def fromarrays(arraylist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None): """ Creates a mrecarray from a (flat) list of masked arrays. Parameters ---------- arraylist : sequence A list of (masked) arrays. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None, integer}, optional Number of records. If None, shape is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ datalist = [getdata(x) for x in arraylist] masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] _array = recfromarrays(datalist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) _array._mask.flat = list(zip(*masklist)) if fill_value is not None: _array.fill_value = fill_value return _array def fromrecords(reclist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None, mask=nomask): """ Creates a MaskedRecords from a list of records. Parameters ---------- reclist : sequence A list of records. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None,int}, optional Number of records. If None, ``shape`` is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. mask : {nomask, sequence}, optional. External mask to apply on the data. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ # Grab the initial _fieldmask, if needed: _mask = getattr(reclist, '_mask', None) # Get the list of records. if isinstance(reclist, ndarray): # Make sure we don't have some hidden mask if isinstance(reclist, MaskedArray): reclist = reclist.filled().view(ndarray) # Grab the initial dtype, just in case if dtype is None: dtype = reclist.dtype reclist = reclist.tolist() mrec = recfromrecords(reclist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) # Set the fill_value if needed if fill_value is not None: mrec.fill_value = fill_value # Now, let's deal w/ the mask if mask is not nomask: mask = np.array(mask, copy=False) maskrecordlength = len(mask.dtype) if maskrecordlength: mrec._mask.flat = mask elif mask.ndim == 2: mrec._mask.flat = [tuple(m) for m in mask] else: mrec.__setmask__(mask) if _mask is not None: mrec._mask[:] = _mask return mrec def _guessvartypes(arr): """ Tries to guess the dtypes of the str_ ndarray `arr`. Guesses by testing element-wise conversion. Returns a list of dtypes. The array is first converted to ndarray. If the array is 2D, the test is performed on the first line. An exception is raised if the file is 3D or more. """ vartypes = [] arr = np.asarray(arr) if arr.ndim == 2: arr = arr[0] elif arr.ndim > 2: raise ValueError("The array should be 2D at most!") # Start the conversion loop. for f in arr: try: int(f) except (ValueError, TypeError): try: float(f) except (ValueError, TypeError): try: complex(f) except (ValueError, TypeError): vartypes.append(arr.dtype) else: vartypes.append(np.dtype(complex)) else: vartypes.append(np.dtype(float)) else: vartypes.append(np.dtype(int)) return vartypes def openfile(fname): """ Opens the file handle of file `fname`. """ # A file handle if hasattr(fname, 'readline'): return fname # Try to open the file and guess its type try: f = open(fname) except FileNotFoundError as e: raise FileNotFoundError(f"No such file: '{fname}'") from e if f.readline()[:2] != "\\x": f.seek(0, 0) return f f.close() raise NotImplementedError("Wow, binary file") def fromtextfile(fname, delimiter=None, commentchar='#', missingchar='', varnames=None, vartypes=None, *, delimitor=np._NoValue): # backwards compatibility """ Creates a mrecarray from data stored in the file `filename`. Parameters ---------- fname : {file name/handle} Handle of an opened file. delimiter : {None, string}, optional Alphanumeric character used to separate columns in the file. If None, any (group of) white spacestring(s) will be used. commentchar : {'#', string}, optional Alphanumeric character used to mark the start of a comment. missingchar : {'', string}, optional String indicating missing data, and used to create the masks. varnames : {None, sequence}, optional Sequence of the variable names. If None, a list will be created from the first non empty line of the file. vartypes : {None, sequence}, optional Sequence of the variables dtypes. If None, it will be estimated from the first non-commented line. Ultra simple: the varnames are in the header, one line""" if delimitor is not np._NoValue: if delimiter is not None: raise TypeError("fromtextfile() got multiple values for argument " "'delimiter'") # NumPy 1.22.0, 2021-09-23 warnings.warn("The 'delimitor' keyword argument of " "numpy.ma.mrecords.fromtextfile() is deprecated " "since NumPy 1.22.0, use 'delimiter' instead.", DeprecationWarning, stacklevel=2) delimiter = delimitor # Try to open the file. ftext = openfile(fname) # Get the first non-empty line as the varnames while True: line = ftext.readline() firstline = line[:line.find(commentchar)].strip() _varnames = firstline.split(delimiter) if len(_varnames) > 1: break if varnames is None: varnames = _varnames # Get the data. _variables = masked_array([line.strip().split(delimiter) for line in ftext if line[0] != commentchar and len(line) > 1]) (_, nfields) = _variables.shape ftext.close() # Try to guess the dtype. if vartypes is None: vartypes = _guessvartypes(_variables[0]) else: vartypes = [np.dtype(v) for v in vartypes] if len(vartypes) != nfields: msg = "Attempting to %i dtypes for %i fields!" msg += " Reverting to default." warnings.warn(msg % (len(vartypes), nfields), stacklevel=2) vartypes = _guessvartypes(_variables[0]) # Construct the descriptor. mdescr = [(n, f) for (n, f) in zip(varnames, vartypes)] mfillv = [ma.default_fill_value(f) for f in vartypes] # Get the data and the mask. # We just need a list of masked_arrays. It's easier to create it like that: _mask = (_variables.T == missingchar) _datalist = [masked_array(a, mask=m, dtype=t, fill_value=f) for (a, m, t, f) in zip(_variables.T, _mask, vartypes, mfillv)] return fromarrays(_datalist, dtype=mdescr) def addfield(mrecord, newfield, newfieldname=None): """Adds a new field to the masked record array Uses `newfield` as data and `newfieldname` as name. If `newfieldname` is None, the new field name is set to 'fi', where `i` is the number of existing fields. """ _data = mrecord._data _mask = mrecord._mask if newfieldname is None or newfieldname in reserved_fields: newfieldname = 'f%i' % len(_data.dtype) newfield = ma.array(newfield) # Get the new data. # Create a new empty recarray newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) newdata = recarray(_data.shape, newdtype) # Add the existing field [newdata.setfield(_data.getfield(*f), *f) for f in _data.dtype.fields.values()] # Add the new field newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) newdata = newdata.view(MaskedRecords) # Get the new mask # Create a new empty recarray newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) newmask = recarray(_data.shape, newmdtype) # Add the old masks [newmask.setfield(_mask.getfield(*f), *f) for f in _mask.dtype.fields.values()] # Add the mask of the new field newmask.setfield(getmaskarray(newfield), *newmask.dtype.fields[newfieldname]) newdata._mask = newmask return newdata
27,232
Python
33.735969
82
0.553981
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/extras.py
""" Masked arrays add-ons. A collection of utilities for `numpy.ma`. :author: Pierre Gerard-Marchant :contact: pierregm_at_uga_dot_edu :version: $Id: extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $ """ __all__ = [ 'apply_along_axis', 'apply_over_axes', 'atleast_1d', 'atleast_2d', 'atleast_3d', 'average', 'clump_masked', 'clump_unmasked', 'column_stack', 'compress_cols', 'compress_nd', 'compress_rowcols', 'compress_rows', 'count_masked', 'corrcoef', 'cov', 'diagflat', 'dot', 'dstack', 'ediff1d', 'flatnotmasked_contiguous', 'flatnotmasked_edges', 'hsplit', 'hstack', 'isin', 'in1d', 'intersect1d', 'mask_cols', 'mask_rowcols', 'mask_rows', 'masked_all', 'masked_all_like', 'median', 'mr_', 'ndenumerate', 'notmasked_contiguous', 'notmasked_edges', 'polyfit', 'row_stack', 'setdiff1d', 'setxor1d', 'stack', 'unique', 'union1d', 'vander', 'vstack', ] import itertools import warnings from . import core as ma from .core import ( MaskedArray, MAError, add, array, asarray, concatenate, filled, count, getmask, getmaskarray, make_mask_descr, masked, masked_array, mask_or, nomask, ones, sort, zeros, getdata, get_masked_subclass, dot, mask_rowcols ) import numpy as np from numpy import ndarray, array as nxarray from numpy.core.multiarray import normalize_axis_index from numpy.core.numeric import normalize_axis_tuple from numpy.lib.function_base import _ureduce from numpy.lib.index_tricks import AxisConcatenator def issequence(seq): """ Is seq a sequence (ndarray, list or tuple)? """ return isinstance(seq, (ndarray, tuple, list)) def count_masked(arr, axis=None): """ Count the number of masked elements along the given axis. Parameters ---------- arr : array_like An array with (possibly) masked elements. axis : int, optional Axis along which to count. If None (default), a flattened version of the array is used. Returns ------- count : int, ndarray The total number of masked elements (axis=None) or the number of masked elements along each slice of the given axis. See Also -------- MaskedArray.count : Count non-masked elements. Examples -------- >>> import numpy.ma as ma >>> a = np.arange(9).reshape((3,3)) >>> a = ma.array(a) >>> a[1, 0] = ma.masked >>> a[1, 2] = ma.masked >>> a[2, 1] = ma.masked >>> a masked_array( data=[[0, 1, 2], [--, 4, --], [6, --, 8]], mask=[[False, False, False], [ True, False, True], [False, True, False]], fill_value=999999) >>> ma.count_masked(a) 3 When the `axis` keyword is used an array is returned. >>> ma.count_masked(a, axis=0) array([1, 1, 1]) >>> ma.count_masked(a, axis=1) array([0, 2, 1]) """ m = getmaskarray(arr) return m.sum(axis) def masked_all(shape, dtype=float): """ Empty masked array with all elements masked. Return an empty masked array of the given shape and dtype, where all the data are masked. Parameters ---------- shape : int or tuple of ints Shape of the required MaskedArray, e.g., ``(2, 3)`` or ``2``. dtype : dtype, optional Data type of the output. Returns ------- a : MaskedArray A masked array with all data masked. See Also -------- masked_all_like : Empty masked array modelled on an existing array. Examples -------- >>> import numpy.ma as ma >>> ma.masked_all((3, 3)) masked_array( data=[[--, --, --], [--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True], [ True, True, True]], fill_value=1e+20, dtype=float64) The `dtype` parameter defines the underlying data type. >>> a = ma.masked_all((3, 3)) >>> a.dtype dtype('float64') >>> a = ma.masked_all((3, 3), dtype=np.int32) >>> a.dtype dtype('int32') """ a = masked_array(np.empty(shape, dtype), mask=np.ones(shape, make_mask_descr(dtype))) return a def masked_all_like(arr): """ Empty masked array with the properties of an existing array. Return an empty masked array of the same shape and dtype as the array `arr`, where all the data are masked. Parameters ---------- arr : ndarray An array describing the shape and dtype of the required MaskedArray. Returns ------- a : MaskedArray A masked array with all data masked. Raises ------ AttributeError If `arr` doesn't have a shape attribute (i.e. not an ndarray) See Also -------- masked_all : Empty masked array with all elements masked. Examples -------- >>> import numpy.ma as ma >>> arr = np.zeros((2, 3), dtype=np.float32) >>> arr array([[0., 0., 0.], [0., 0., 0.]], dtype=float32) >>> ma.masked_all_like(arr) masked_array( data=[[--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True]], fill_value=1e+20, dtype=float32) The dtype of the masked array matches the dtype of `arr`. >>> arr.dtype dtype('float32') >>> ma.masked_all_like(arr).dtype dtype('float32') """ a = np.empty_like(arr).view(MaskedArray) a._mask = np.ones(a.shape, dtype=make_mask_descr(a.dtype)) return a #####-------------------------------------------------------------------------- #---- --- Standard functions --- #####-------------------------------------------------------------------------- class _fromnxfunction: """ Defines a wrapper to adapt NumPy functions to masked arrays. An instance of `_fromnxfunction` can be called with the same parameters as the wrapped NumPy function. The docstring of `newfunc` is adapted from the wrapped function as well, see `getdoc`. This class should not be used directly. Instead, one of its extensions that provides support for a specific type of input should be used. Parameters ---------- funcname : str The name of the function to be adapted. The function should be in the NumPy namespace (i.e. ``np.funcname``). """ def __init__(self, funcname): self.__name__ = funcname self.__doc__ = self.getdoc() def getdoc(self): """ Retrieve the docstring and signature from the function. The ``__doc__`` attribute of the function is used as the docstring for the new masked array version of the function. A note on application of the function to the mask is appended. Parameters ---------- None """ npfunc = getattr(np, self.__name__, None) doc = getattr(npfunc, '__doc__', None) if doc: sig = self.__name__ + ma.get_object_signature(npfunc) doc = ma.doc_note(doc, "The function is applied to both the _data " "and the _mask, if any.") return '\n\n'.join((sig, doc)) return def __call__(self, *args, **params): pass class _fromnxfunction_single(_fromnxfunction): """ A version of `_fromnxfunction` that is called with a single array argument followed by auxiliary args that are passed verbatim for both the data and mask calls. """ def __call__(self, x, *args, **params): func = getattr(np, self.__name__) if isinstance(x, ndarray): _d = func(x.__array__(), *args, **params) _m = func(getmaskarray(x), *args, **params) return masked_array(_d, mask=_m) else: _d = func(np.asarray(x), *args, **params) _m = func(getmaskarray(x), *args, **params) return masked_array(_d, mask=_m) class _fromnxfunction_seq(_fromnxfunction): """ A version of `_fromnxfunction` that is called with a single sequence of arrays followed by auxiliary args that are passed verbatim for both the data and mask calls. """ def __call__(self, x, *args, **params): func = getattr(np, self.__name__) _d = func(tuple([np.asarray(a) for a in x]), *args, **params) _m = func(tuple([getmaskarray(a) for a in x]), *args, **params) return masked_array(_d, mask=_m) class _fromnxfunction_args(_fromnxfunction): """ A version of `_fromnxfunction` that is called with multiple array arguments. The first non-array-like input marks the beginning of the arguments that are passed verbatim for both the data and mask calls. Array arguments are processed independently and the results are returned in a list. If only one array is found, the return value is just the processed array instead of a list. """ def __call__(self, *args, **params): func = getattr(np, self.__name__) arrays = [] args = list(args) while len(args) > 0 and issequence(args[0]): arrays.append(args.pop(0)) res = [] for x in arrays: _d = func(np.asarray(x), *args, **params) _m = func(getmaskarray(x), *args, **params) res.append(masked_array(_d, mask=_m)) if len(arrays) == 1: return res[0] return res class _fromnxfunction_allargs(_fromnxfunction): """ A version of `_fromnxfunction` that is called with multiple array arguments. Similar to `_fromnxfunction_args` except that all args are converted to arrays even if they are not so already. This makes it possible to process scalars as 1-D arrays. Only keyword arguments are passed through verbatim for the data and mask calls. Arrays arguments are processed independently and the results are returned in a list. If only one arg is present, the return value is just the processed array instead of a list. """ def __call__(self, *args, **params): func = getattr(np, self.__name__) res = [] for x in args: _d = func(np.asarray(x), **params) _m = func(getmaskarray(x), **params) res.append(masked_array(_d, mask=_m)) if len(args) == 1: return res[0] return res atleast_1d = _fromnxfunction_allargs('atleast_1d') atleast_2d = _fromnxfunction_allargs('atleast_2d') atleast_3d = _fromnxfunction_allargs('atleast_3d') vstack = row_stack = _fromnxfunction_seq('vstack') hstack = _fromnxfunction_seq('hstack') column_stack = _fromnxfunction_seq('column_stack') dstack = _fromnxfunction_seq('dstack') stack = _fromnxfunction_seq('stack') hsplit = _fromnxfunction_single('hsplit') diagflat = _fromnxfunction_single('diagflat') #####-------------------------------------------------------------------------- #---- #####-------------------------------------------------------------------------- def flatten_inplace(seq): """Flatten a sequence in place.""" k = 0 while (k != len(seq)): while hasattr(seq[k], '__iter__'): seq[k:(k + 1)] = seq[k] k += 1 return seq def apply_along_axis(func1d, axis, arr, *args, **kwargs): """ (This docstring should be overwritten) """ arr = array(arr, copy=False, subok=True) nd = arr.ndim axis = normalize_axis_index(axis, nd) ind = [0] * (nd - 1) i = np.zeros(nd, 'O') indlist = list(range(nd)) indlist.remove(axis) i[axis] = slice(None, None) outshape = np.asarray(arr.shape).take(indlist) i.put(indlist, ind) res = func1d(arr[tuple(i.tolist())], *args, **kwargs) # if res is a number, then we have a smaller output array asscalar = np.isscalar(res) if not asscalar: try: len(res) except TypeError: asscalar = True # Note: we shouldn't set the dtype of the output from the first result # so we force the type to object, and build a list of dtypes. We'll # just take the largest, to avoid some downcasting dtypes = [] if asscalar: dtypes.append(np.asarray(res).dtype) outarr = zeros(outshape, object) outarr[tuple(ind)] = res Ntot = np.product(outshape) k = 1 while k < Ntot: # increment the index ind[-1] += 1 n = -1 while (ind[n] >= outshape[n]) and (n > (1 - nd)): ind[n - 1] += 1 ind[n] = 0 n -= 1 i.put(indlist, ind) res = func1d(arr[tuple(i.tolist())], *args, **kwargs) outarr[tuple(ind)] = res dtypes.append(asarray(res).dtype) k += 1 else: res = array(res, copy=False, subok=True) j = i.copy() j[axis] = ([slice(None, None)] * res.ndim) j.put(indlist, ind) Ntot = np.product(outshape) holdshape = outshape outshape = list(arr.shape) outshape[axis] = res.shape dtypes.append(asarray(res).dtype) outshape = flatten_inplace(outshape) outarr = zeros(outshape, object) outarr[tuple(flatten_inplace(j.tolist()))] = res k = 1 while k < Ntot: # increment the index ind[-1] += 1 n = -1 while (ind[n] >= holdshape[n]) and (n > (1 - nd)): ind[n - 1] += 1 ind[n] = 0 n -= 1 i.put(indlist, ind) j.put(indlist, ind) res = func1d(arr[tuple(i.tolist())], *args, **kwargs) outarr[tuple(flatten_inplace(j.tolist()))] = res dtypes.append(asarray(res).dtype) k += 1 max_dtypes = np.dtype(np.asarray(dtypes).max()) if not hasattr(arr, '_mask'): result = np.asarray(outarr, dtype=max_dtypes) else: result = asarray(outarr, dtype=max_dtypes) result.fill_value = ma.default_fill_value(result) return result apply_along_axis.__doc__ = np.apply_along_axis.__doc__ def apply_over_axes(func, a, axes): """ (This docstring will be overwritten) """ val = asarray(a) N = a.ndim if array(axes).ndim == 0: axes = (axes,) for axis in axes: if axis < 0: axis = N + axis args = (val, axis) res = func(*args) if res.ndim == val.ndim: val = res else: res = ma.expand_dims(res, axis) if res.ndim == val.ndim: val = res else: raise ValueError("function is not returning " "an array of the correct shape") return val if apply_over_axes.__doc__ is not None: apply_over_axes.__doc__ = np.apply_over_axes.__doc__[ :np.apply_over_axes.__doc__.find('Notes')].rstrip() + \ """ Examples -------- >>> a = np.ma.arange(24).reshape(2,3,4) >>> a[:,0,1] = np.ma.masked >>> a[:,1,:] = np.ma.masked >>> a masked_array( data=[[[0, --, 2, 3], [--, --, --, --], [8, 9, 10, 11]], [[12, --, 14, 15], [--, --, --, --], [20, 21, 22, 23]]], mask=[[[False, True, False, False], [ True, True, True, True], [False, False, False, False]], [[False, True, False, False], [ True, True, True, True], [False, False, False, False]]], fill_value=999999) >>> np.ma.apply_over_axes(np.ma.sum, a, [0,2]) masked_array( data=[[[46], [--], [124]]], mask=[[[False], [ True], [False]]], fill_value=999999) Tuple axis arguments to ufuncs are equivalent: >>> np.ma.sum(a, axis=(0,2)).reshape((1,-1,1)) masked_array( data=[[[46], [--], [124]]], mask=[[[False], [ True], [False]]], fill_value=999999) """ def average(a, axis=None, weights=None, returned=False, *, keepdims=np._NoValue): """ Return the weighted average of array over the given axis. Parameters ---------- a : array_like Data to be averaged. Masked entries are not taken into account in the computation. axis : int, optional Axis along which to average `a`. If None, averaging is done over the flattened array. weights : array_like, optional The importance that each element has in the computation of the average. The weights array can either be 1-D (in which case its length must be the size of `a` along the given axis) or of the same shape as `a`. If ``weights=None``, then all data in `a` are assumed to have a weight equal to one. The 1-D calculation is:: avg = sum(a * weights) / sum(weights) The only constraint on `weights` is that `sum(weights)` must not be 0. returned : bool, optional Flag indicating whether a tuple ``(result, sum of weights)`` should be returned as output (True), or just the result (False). Default is False. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `a`. *Note:* `keepdims` will not work with instances of `numpy.matrix` or other classes whose methods do not support `keepdims`. .. versionadded:: 1.23.0 Returns ------- average, [sum_of_weights] : (tuple of) scalar or MaskedArray The average along the specified axis. When returned is `True`, return a tuple with the average as the first element and the sum of the weights as the second element. The return type is `np.float64` if `a` is of integer type and floats smaller than `float64`, or the input data-type, otherwise. If returned, `sum_of_weights` is always `float64`. Examples -------- >>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True]) >>> np.ma.average(a, weights=[3, 1, 0, 0]) 1.25 >>> x = np.ma.arange(6.).reshape(3, 2) >>> x masked_array( data=[[0., 1.], [2., 3.], [4., 5.]], mask=False, fill_value=1e+20) >>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3], ... returned=True) >>> avg masked_array(data=[2.6666666666666665, 3.6666666666666665], mask=[False, False], fill_value=1e+20) With ``keepdims=True``, the following result has shape (3, 1). >>> np.ma.average(x, axis=1, keepdims=True) masked_array( data=[[0.5], [2.5], [4.5]], mask=False, fill_value=1e+20) """ a = asarray(a) m = getmask(a) # inspired by 'average' in numpy/lib/function_base.py if keepdims is np._NoValue: # Don't pass on the keepdims argument if one wasn't given. keepdims_kw = {} else: keepdims_kw = {'keepdims': keepdims} if weights is None: avg = a.mean(axis, **keepdims_kw) scl = avg.dtype.type(a.count(axis)) else: wgt = asarray(weights) if issubclass(a.dtype.type, (np.integer, np.bool_)): result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8') else: result_dtype = np.result_type(a.dtype, wgt.dtype) # Sanity checks if a.shape != wgt.shape: if axis is None: raise TypeError( "Axis must be specified when shapes of a and weights " "differ.") if wgt.ndim != 1: raise TypeError( "1D weights expected when shapes of a and weights differ.") if wgt.shape[0] != a.shape[axis]: raise ValueError( "Length of weights not compatible with specified axis.") # setup wgt to broadcast along axis wgt = np.broadcast_to(wgt, (a.ndim-1)*(1,) + wgt.shape, subok=True) wgt = wgt.swapaxes(-1, axis) if m is not nomask: wgt = wgt*(~a.mask) wgt.mask |= a.mask scl = wgt.sum(axis=axis, dtype=result_dtype, **keepdims_kw) avg = np.multiply(a, wgt, dtype=result_dtype).sum(axis, **keepdims_kw) / scl if returned: if scl.shape != avg.shape: scl = np.broadcast_to(scl, avg.shape).copy() return avg, scl else: return avg def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): """ Compute the median along the specified axis. Returns the median of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int, optional Axis along which the medians are computed. The default (None) is to compute the median along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output but the type will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if `overwrite_input` is True, and the input is not already an `ndarray`, an error will be raised. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. .. versionadded:: 1.10.0 Returns ------- median : ndarray A new array holding the result is returned unless out is specified, in which case a reference to out is returned. Return data-type is `float64` for integers and floats smaller than `float64`, or the input data-type, otherwise. See Also -------- mean Notes ----- Given a vector ``V`` with ``N`` non masked values, the median of ``V`` is the middle value of a sorted copy of ``V`` (``Vs``) - i.e. ``Vs[(N-1)/2]``, when ``N`` is odd, or ``{Vs[N/2 - 1] + Vs[N/2]}/2`` when ``N`` is even. Examples -------- >>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4) >>> np.ma.median(x) 1.5 >>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4) >>> np.ma.median(x) 2.5 >>> np.ma.median(x, axis=-1, overwrite_input=True) masked_array(data=[2.0, 5.0], mask=[False, False], fill_value=1e+20) """ if not hasattr(a, 'mask'): m = np.median(getdata(a, subok=True), axis=axis, out=out, overwrite_input=overwrite_input, keepdims=keepdims) if isinstance(m, np.ndarray) and 1 <= m.ndim: return masked_array(m, copy=False) else: return m r, k = _ureduce(a, func=_median, axis=axis, out=out, overwrite_input=overwrite_input) if keepdims: return r.reshape(k) else: return r def _median(a, axis=None, out=None, overwrite_input=False): # when an unmasked NaN is present return it, so we need to sort the NaN # values behind the mask if np.issubdtype(a.dtype, np.inexact): fill_value = np.inf else: fill_value = None if overwrite_input: if axis is None: asorted = a.ravel() asorted.sort(fill_value=fill_value) else: a.sort(axis=axis, fill_value=fill_value) asorted = a else: asorted = sort(a, axis=axis, fill_value=fill_value) if axis is None: axis = 0 else: axis = normalize_axis_index(axis, asorted.ndim) if asorted.shape[axis] == 0: # for empty axis integer indices fail so use slicing to get same result # as median (which is mean of empty slice = nan) indexer = [slice(None)] * asorted.ndim indexer[axis] = slice(0, 0) indexer = tuple(indexer) return np.ma.mean(asorted[indexer], axis=axis, out=out) if asorted.ndim == 1: idx, odd = divmod(count(asorted), 2) mid = asorted[idx + odd - 1:idx + 1] if np.issubdtype(asorted.dtype, np.inexact) and asorted.size > 0: # avoid inf / x = masked s = mid.sum(out=out) if not odd: s = np.true_divide(s, 2., casting='safe', out=out) s = np.lib.utils._median_nancheck(asorted, s, axis) else: s = mid.mean(out=out) # if result is masked either the input contained enough # minimum_fill_value so that it would be the median or all values # masked if np.ma.is_masked(s) and not np.all(asorted.mask): return np.ma.minimum_fill_value(asorted) return s counts = count(asorted, axis=axis, keepdims=True) h = counts // 2 # duplicate high if odd number of elements so mean does nothing odd = counts % 2 == 1 l = np.where(odd, h, h-1) lh = np.concatenate([l,h], axis=axis) # get low and high median low_high = np.take_along_axis(asorted, lh, axis=axis) def replace_masked(s): # Replace masked entries with minimum_full_value unless it all values # are masked. This is required as the sort order of values equal or # larger than the fill value is undefined and a valid value placed # elsewhere, e.g. [4, --, inf]. if np.ma.is_masked(s): rep = (~np.all(asorted.mask, axis=axis, keepdims=True)) & s.mask s.data[rep] = np.ma.minimum_fill_value(asorted) s.mask[rep] = False replace_masked(low_high) if np.issubdtype(asorted.dtype, np.inexact): # avoid inf / x = masked s = np.ma.sum(low_high, axis=axis, out=out) np.true_divide(s.data, 2., casting='unsafe', out=s.data) s = np.lib.utils._median_nancheck(asorted, s, axis) else: s = np.ma.mean(low_high, axis=axis, out=out) return s def compress_nd(x, axis=None): """Suppress slices from multiple dimensions which contain masked values. Parameters ---------- x : array_like, MaskedArray The array to operate on. If not a MaskedArray instance (or if no array elements are masked), `x` is interpreted as a MaskedArray with `mask` set to `nomask`. axis : tuple of ints or int, optional Which dimensions to suppress slices from can be configured with this parameter. - If axis is a tuple of ints, those are the axes to suppress slices from. - If axis is an int, then that is the only axis to suppress slices from. - If axis is None, all axis are selected. Returns ------- compress_array : ndarray The compressed array. """ x = asarray(x) m = getmask(x) # Set axis to tuple of ints if axis is None: axis = tuple(range(x.ndim)) else: axis = normalize_axis_tuple(axis, x.ndim) # Nothing is masked: return x if m is nomask or not m.any(): return x._data # All is masked: return empty if m.all(): return nxarray([]) # Filter elements through boolean indexing data = x._data for ax in axis: axes = tuple(list(range(ax)) + list(range(ax + 1, x.ndim))) data = data[(slice(None),)*ax + (~m.any(axis=axes),)] return data def compress_rowcols(x, axis=None): """ Suppress the rows and/or columns of a 2-D array that contain masked values. The suppression behavior is selected with the `axis` parameter. - If axis is None, both rows and columns are suppressed. - If axis is 0, only rows are suppressed. - If axis is 1 or -1, only columns are suppressed. Parameters ---------- x : array_like, MaskedArray The array to operate on. If not a MaskedArray instance (or if no array elements are masked), `x` is interpreted as a MaskedArray with `mask` set to `nomask`. Must be a 2D array. axis : int, optional Axis along which to perform the operation. Default is None. Returns ------- compressed_array : ndarray The compressed array. Examples -------- >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], ... [1, 0, 0], ... [0, 0, 0]]) >>> x masked_array( data=[[--, 1, 2], [--, 4, 5], [6, 7, 8]], mask=[[ True, False, False], [ True, False, False], [False, False, False]], fill_value=999999) >>> np.ma.compress_rowcols(x) array([[7, 8]]) >>> np.ma.compress_rowcols(x, 0) array([[6, 7, 8]]) >>> np.ma.compress_rowcols(x, 1) array([[1, 2], [4, 5], [7, 8]]) """ if asarray(x).ndim != 2: raise NotImplementedError("compress_rowcols works for 2D arrays only.") return compress_nd(x, axis=axis) def compress_rows(a): """ Suppress whole rows of a 2-D array that contain masked values. This is equivalent to ``np.ma.compress_rowcols(a, 0)``, see `compress_rowcols` for details. See Also -------- compress_rowcols """ a = asarray(a) if a.ndim != 2: raise NotImplementedError("compress_rows works for 2D arrays only.") return compress_rowcols(a, 0) def compress_cols(a): """ Suppress whole columns of a 2-D array that contain masked values. This is equivalent to ``np.ma.compress_rowcols(a, 1)``, see `compress_rowcols` for details. See Also -------- compress_rowcols """ a = asarray(a) if a.ndim != 2: raise NotImplementedError("compress_cols works for 2D arrays only.") return compress_rowcols(a, 1) def mask_rows(a, axis=np._NoValue): """ Mask rows of a 2D array that contain masked values. This function is a shortcut to ``mask_rowcols`` with `axis` equal to 0. See Also -------- mask_rowcols : Mask rows and/or columns of a 2D array. masked_where : Mask where a condition is met. Examples -------- >>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> ma.mask_rows(a) masked_array( data=[[0, 0, 0], [--, --, --], [0, 0, 0]], mask=[[False, False, False], [ True, True, True], [False, False, False]], fill_value=1) """ if axis is not np._NoValue: # remove the axis argument when this deprecation expires # NumPy 1.18.0, 2019-11-28 warnings.warn( "The axis argument has always been ignored, in future passing it " "will raise TypeError", DeprecationWarning, stacklevel=2) return mask_rowcols(a, 0) def mask_cols(a, axis=np._NoValue): """ Mask columns of a 2D array that contain masked values. This function is a shortcut to ``mask_rowcols`` with `axis` equal to 1. See Also -------- mask_rowcols : Mask rows and/or columns of a 2D array. masked_where : Mask where a condition is met. Examples -------- >>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> ma.mask_cols(a) masked_array( data=[[0, --, 0], [0, --, 0], [0, --, 0]], mask=[[False, True, False], [False, True, False], [False, True, False]], fill_value=1) """ if axis is not np._NoValue: # remove the axis argument when this deprecation expires # NumPy 1.18.0, 2019-11-28 warnings.warn( "The axis argument has always been ignored, in future passing it " "will raise TypeError", DeprecationWarning, stacklevel=2) return mask_rowcols(a, 1) #####-------------------------------------------------------------------------- #---- --- arraysetops --- #####-------------------------------------------------------------------------- def ediff1d(arr, to_end=None, to_begin=None): """ Compute the differences between consecutive elements of an array. This function is the equivalent of `numpy.ediff1d` that takes masked values into account, see `numpy.ediff1d` for details. See Also -------- numpy.ediff1d : Equivalent function for ndarrays. """ arr = ma.asanyarray(arr).flat ed = arr[1:] - arr[:-1] arrays = [ed] # if to_begin is not None: arrays.insert(0, to_begin) if to_end is not None: arrays.append(to_end) # if len(arrays) != 1: # We'll save ourselves a copy of a potentially large array in the common # case where neither to_begin or to_end was given. ed = hstack(arrays) # return ed def unique(ar1, return_index=False, return_inverse=False): """ Finds the unique elements of an array. Masked values are considered the same element (masked). The output array is always a masked array. See `numpy.unique` for more details. See Also -------- numpy.unique : Equivalent function for ndarrays. """ output = np.unique(ar1, return_index=return_index, return_inverse=return_inverse) if isinstance(output, tuple): output = list(output) output[0] = output[0].view(MaskedArray) output = tuple(output) else: output = output.view(MaskedArray) return output def intersect1d(ar1, ar2, assume_unique=False): """ Returns the unique elements common to both arrays. Masked values are considered equal one to the other. The output is always a masked array. See `numpy.intersect1d` for more details. See Also -------- numpy.intersect1d : Equivalent function for ndarrays. Examples -------- >>> x = np.ma.array([1, 3, 3, 3], mask=[0, 0, 0, 1]) >>> y = np.ma.array([3, 1, 1, 1], mask=[0, 0, 0, 1]) >>> np.ma.intersect1d(x, y) masked_array(data=[1, 3, --], mask=[False, False, True], fill_value=999999) """ if assume_unique: aux = ma.concatenate((ar1, ar2)) else: # Might be faster than unique( intersect1d( ar1, ar2 ) )? aux = ma.concatenate((unique(ar1), unique(ar2))) aux.sort() return aux[:-1][aux[1:] == aux[:-1]] def setxor1d(ar1, ar2, assume_unique=False): """ Set exclusive-or of 1-D arrays with unique elements. The output is always a masked array. See `numpy.setxor1d` for more details. See Also -------- numpy.setxor1d : Equivalent function for ndarrays. """ if not assume_unique: ar1 = unique(ar1) ar2 = unique(ar2) aux = ma.concatenate((ar1, ar2)) if aux.size == 0: return aux aux.sort() auxf = aux.filled() # flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 flag = ma.concatenate(([True], (auxf[1:] != auxf[:-1]), [True])) # flag2 = ediff1d( flag ) == 0 flag2 = (flag[1:] == flag[:-1]) return aux[flag2] def in1d(ar1, ar2, assume_unique=False, invert=False): """ Test whether each element of an array is also present in a second array. The output is always a masked array. See `numpy.in1d` for more details. We recommend using :func:`isin` instead of `in1d` for new code. See Also -------- isin : Version of this function that preserves the shape of ar1. numpy.in1d : Equivalent function for ndarrays. Notes ----- .. versionadded:: 1.4.0 """ if not assume_unique: ar1, rev_idx = unique(ar1, return_inverse=True) ar2 = unique(ar2) ar = ma.concatenate((ar1, ar2)) # We need this to be a stable sort, so always use 'mergesort' # here. The values from the first array should always come before # the values from the second array. order = ar.argsort(kind='mergesort') sar = ar[order] if invert: bool_ar = (sar[1:] != sar[:-1]) else: bool_ar = (sar[1:] == sar[:-1]) flag = ma.concatenate((bool_ar, [invert])) indx = order.argsort(kind='mergesort')[:len(ar1)] if assume_unique: return flag[indx] else: return flag[indx][rev_idx] def isin(element, test_elements, assume_unique=False, invert=False): """ Calculates `element in test_elements`, broadcasting over `element` only. The output is always a masked array of the same shape as `element`. See `numpy.isin` for more details. See Also -------- in1d : Flattened version of this function. numpy.isin : Equivalent function for ndarrays. Notes ----- .. versionadded:: 1.13.0 """ element = ma.asarray(element) return in1d(element, test_elements, assume_unique=assume_unique, invert=invert).reshape(element.shape) def union1d(ar1, ar2): """ Union of two arrays. The output is always a masked array. See `numpy.union1d` for more details. See Also -------- numpy.union1d : Equivalent function for ndarrays. """ return unique(ma.concatenate((ar1, ar2), axis=None)) def setdiff1d(ar1, ar2, assume_unique=False): """ Set difference of 1D arrays with unique elements. The output is always a masked array. See `numpy.setdiff1d` for more details. See Also -------- numpy.setdiff1d : Equivalent function for ndarrays. Examples -------- >>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1]) >>> np.ma.setdiff1d(x, [1, 2]) masked_array(data=[3, --], mask=[False, True], fill_value=999999) """ if assume_unique: ar1 = ma.asarray(ar1).ravel() else: ar1 = unique(ar1) ar2 = unique(ar2) return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)] ############################################################################### # Covariance # ############################################################################### def _covhelper(x, y=None, rowvar=True, allow_masked=True): """ Private function for the computation of covariance and correlation coefficients. """ x = ma.array(x, ndmin=2, copy=True, dtype=float) xmask = ma.getmaskarray(x) # Quick exit if we can't process masked data if not allow_masked and xmask.any(): raise ValueError("Cannot process masked data.") # if x.shape[0] == 1: rowvar = True # Make sure that rowvar is either 0 or 1 rowvar = int(bool(rowvar)) axis = 1 - rowvar if rowvar: tup = (slice(None), None) else: tup = (None, slice(None)) # if y is None: xnotmask = np.logical_not(xmask).astype(int) else: y = array(y, copy=False, ndmin=2, dtype=float) ymask = ma.getmaskarray(y) if not allow_masked and ymask.any(): raise ValueError("Cannot process masked data.") if xmask.any() or ymask.any(): if y.shape == x.shape: # Define some common mask common_mask = np.logical_or(xmask, ymask) if common_mask is not nomask: xmask = x._mask = y._mask = ymask = common_mask x._sharedmask = False y._sharedmask = False x = ma.concatenate((x, y), axis) xnotmask = np.logical_not(np.concatenate((xmask, ymask), axis)).astype(int) x -= x.mean(axis=rowvar)[tup] return (x, xnotmask, rowvar) def cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None): """ Estimate the covariance matrix. Except for the handling of missing data this function does the same as `numpy.cov`. For more details and examples, see `numpy.cov`. By default, masked values are recognized as such. If `x` and `y` have the same shape, a common mask is allocated: if ``x[i,j]`` is masked, then ``y[i,j]`` will also be masked. Setting `allow_masked` to False will raise an exception if values are missing in either of the input arrays. Parameters ---------- x : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `x` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same shape as `x`. rowvar : bool, optional If `rowvar` is True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : bool, optional Default normalization (False) is by ``(N-1)``, where ``N`` is the number of observations given (unbiased estimate). If `bias` is True, then normalization is by ``N``. This keyword can be overridden by the keyword ``ddof`` in numpy versions >= 1.5. allow_masked : bool, optional If True, masked values are propagated pair-wise: if a value is masked in `x`, the corresponding value is masked in `y`. If False, raises a `ValueError` exception when some values are missing. ddof : {None, int}, optional If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by ``bias``. The default value is ``None``. .. versionadded:: 1.5 Raises ------ ValueError Raised if some values are missing and `allow_masked` is False. See Also -------- numpy.cov """ # Check inputs if ddof is not None and ddof != int(ddof): raise ValueError("ddof must be an integer") # Set up ddof if ddof is None: if bias: ddof = 0 else: ddof = 1 (x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked) if not rowvar: fact = np.dot(xnotmask.T, xnotmask) * 1. - ddof result = (dot(x.T, x.conj(), strict=False) / fact).squeeze() else: fact = np.dot(xnotmask, xnotmask.T) * 1. - ddof result = (dot(x, x.T.conj(), strict=False) / fact).squeeze() return result def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, allow_masked=True, ddof=np._NoValue): """ Return Pearson product-moment correlation coefficients. Except for the handling of missing data this function does the same as `numpy.corrcoef`. For more details and examples, see `numpy.corrcoef`. Parameters ---------- x : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `x` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same shape as `x`. rowvar : bool, optional If `rowvar` is True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : _NoValue, optional Has no effect, do not use. .. deprecated:: 1.10.0 allow_masked : bool, optional If True, masked values are propagated pair-wise: if a value is masked in `x`, the corresponding value is masked in `y`. If False, raises an exception. Because `bias` is deprecated, this argument needs to be treated as keyword only to avoid a warning. ddof : _NoValue, optional Has no effect, do not use. .. deprecated:: 1.10.0 See Also -------- numpy.corrcoef : Equivalent function in top-level NumPy module. cov : Estimate the covariance matrix. Notes ----- This function accepts but discards arguments `bias` and `ddof`. This is for backwards compatibility with previous versions of this function. These arguments had no effect on the return values of the function and can be safely ignored in this and previous versions of numpy. """ msg = 'bias and ddof have no effect and are deprecated' if bias is not np._NoValue or ddof is not np._NoValue: # 2015-03-15, 1.10 warnings.warn(msg, DeprecationWarning, stacklevel=2) # Get the data (x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked) # Compute the covariance matrix if not rowvar: fact = np.dot(xnotmask.T, xnotmask) * 1. c = (dot(x.T, x.conj(), strict=False) / fact).squeeze() else: fact = np.dot(xnotmask, xnotmask.T) * 1. c = (dot(x, x.T.conj(), strict=False) / fact).squeeze() # Check whether we have a scalar try: diag = ma.diagonal(c) except ValueError: return 1 # if xnotmask.all(): _denom = ma.sqrt(ma.multiply.outer(diag, diag)) else: _denom = diagflat(diag) _denom._sharedmask = False # We know return is always a copy n = x.shape[1 - rowvar] if rowvar: for i in range(n - 1): for j in range(i + 1, n): _x = mask_cols(vstack((x[i], x[j]))).var(axis=1) _denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x)) else: for i in range(n - 1): for j in range(i + 1, n): _x = mask_cols( vstack((x[:, i], x[:, j]))).var(axis=1) _denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x)) return c / _denom #####-------------------------------------------------------------------------- #---- --- Concatenation helpers --- #####-------------------------------------------------------------------------- class MAxisConcatenator(AxisConcatenator): """ Translate slice objects to concatenation along an axis. For documentation on usage, see `mr_class`. See Also -------- mr_class """ concatenate = staticmethod(concatenate) @classmethod def makemat(cls, arr): # There used to be a view as np.matrix here, but we may eventually # deprecate that class. In preparation, we use the unmasked version # to construct the matrix (with copy=False for backwards compatibility # with the .view) data = super().makemat(arr.data, copy=False) return array(data, mask=arr.mask) def __getitem__(self, key): # matrix builder syntax, like 'a, b; c, d' if isinstance(key, str): raise MAError("Unavailable for masked array.") return super().__getitem__(key) class mr_class(MAxisConcatenator): """ Translate slice objects to concatenation along the first axis. This is the masked array version of `lib.index_tricks.RClass`. See Also -------- lib.index_tricks.RClass Examples -------- >>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])] masked_array(data=[1, 2, 3, ..., 4, 5, 6], mask=False, fill_value=999999) """ def __init__(self): MAxisConcatenator.__init__(self, 0) mr_ = mr_class() #####-------------------------------------------------------------------------- #---- Find unmasked data --- #####-------------------------------------------------------------------------- def ndenumerate(a, compressed=True): """ Multidimensional index iterator. Return an iterator yielding pairs of array coordinates and values, skipping elements that are masked. With `compressed=False`, `ma.masked` is yielded as the value of masked elements. This behavior differs from that of `numpy.ndenumerate`, which yields the value of the underlying data array. Notes ----- .. versionadded:: 1.23.0 Parameters ---------- a : array_like An array with (possibly) masked elements. compressed : bool, optional If True (default), masked elements are skipped. See Also -------- numpy.ndenumerate : Equivalent function ignoring any mask. Examples -------- >>> a = np.ma.arange(9).reshape((3, 3)) >>> a[1, 0] = np.ma.masked >>> a[1, 2] = np.ma.masked >>> a[2, 1] = np.ma.masked >>> a masked_array( data=[[0, 1, 2], [--, 4, --], [6, --, 8]], mask=[[False, False, False], [ True, False, True], [False, True, False]], fill_value=999999) >>> for index, x in np.ma.ndenumerate(a): ... print(index, x) (0, 0) 0 (0, 1) 1 (0, 2) 2 (1, 1) 4 (2, 0) 6 (2, 2) 8 >>> for index, x in np.ma.ndenumerate(a, compressed=False): ... print(index, x) (0, 0) 0 (0, 1) 1 (0, 2) 2 (1, 0) -- (1, 1) 4 (1, 2) -- (2, 0) 6 (2, 1) -- (2, 2) 8 """ for it, mask in zip(np.ndenumerate(a), getmaskarray(a).flat): if not mask: yield it elif not compressed: yield it[0], masked def flatnotmasked_edges(a): """ Find the indices of the first and last unmasked values. Expects a 1-D `MaskedArray`, returns None if all values are masked. Parameters ---------- a : array_like Input 1-D `MaskedArray` Returns ------- edges : ndarray or None The indices of first and last non-masked value in the array. Returns None if all values are masked. See Also -------- flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges clump_masked, clump_unmasked Notes ----- Only accepts 1-D arrays. Examples -------- >>> a = np.ma.arange(10) >>> np.ma.flatnotmasked_edges(a) array([0, 9]) >>> mask = (a < 3) | (a > 8) | (a == 5) >>> a[mask] = np.ma.masked >>> np.array(a[~a.mask]) array([3, 4, 6, 7, 8]) >>> np.ma.flatnotmasked_edges(a) array([3, 8]) >>> a[:] = np.ma.masked >>> print(np.ma.flatnotmasked_edges(a)) None """ m = getmask(a) if m is nomask or not np.any(m): return np.array([0, a.size - 1]) unmasked = np.flatnonzero(~m) if len(unmasked) > 0: return unmasked[[0, -1]] else: return None def notmasked_edges(a, axis=None): """ Find the indices of the first and last unmasked values along an axis. If all values are masked, return None. Otherwise, return a list of two tuples, corresponding to the indices of the first and last unmasked values respectively. Parameters ---------- a : array_like The input array. axis : int, optional Axis along which to perform the operation. If None (default), applies to a flattened version of the array. Returns ------- edges : ndarray or list An array of start and end indexes if there are any masked data in the array. If there are no masked data in the array, `edges` is a list of the first and last index. See Also -------- flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous clump_masked, clump_unmasked Examples -------- >>> a = np.arange(9).reshape((3, 3)) >>> m = np.zeros_like(a) >>> m[1:, 1:] = 1 >>> am = np.ma.array(a, mask=m) >>> np.array(am[~am.mask]) array([0, 1, 2, 3, 6]) >>> np.ma.notmasked_edges(am) array([0, 6]) """ a = asarray(a) if axis is None or a.ndim == 1: return flatnotmasked_edges(a) m = getmaskarray(a) idx = array(np.indices(a.shape), mask=np.asarray([m] * a.ndim)) return [tuple([idx[i].min(axis).compressed() for i in range(a.ndim)]), tuple([idx[i].max(axis).compressed() for i in range(a.ndim)]), ] def flatnotmasked_contiguous(a): """ Find contiguous unmasked data in a masked array. Parameters ---------- a : array_like The input array. Returns ------- slice_list : list A sorted sequence of `slice` objects (start index, end index). .. versionchanged:: 1.15.0 Now returns an empty list instead of None for a fully masked array See Also -------- flatnotmasked_edges, notmasked_contiguous, notmasked_edges clump_masked, clump_unmasked Notes ----- Only accepts 2-D arrays at most. Examples -------- >>> a = np.ma.arange(10) >>> np.ma.flatnotmasked_contiguous(a) [slice(0, 10, None)] >>> mask = (a < 3) | (a > 8) | (a == 5) >>> a[mask] = np.ma.masked >>> np.array(a[~a.mask]) array([3, 4, 6, 7, 8]) >>> np.ma.flatnotmasked_contiguous(a) [slice(3, 5, None), slice(6, 9, None)] >>> a[:] = np.ma.masked >>> np.ma.flatnotmasked_contiguous(a) [] """ m = getmask(a) if m is nomask: return [slice(0, a.size)] i = 0 result = [] for (k, g) in itertools.groupby(m.ravel()): n = len(list(g)) if not k: result.append(slice(i, i + n)) i += n return result def notmasked_contiguous(a, axis=None): """ Find contiguous unmasked data in a masked array along the given axis. Parameters ---------- a : array_like The input array. axis : int, optional Axis along which to perform the operation. If None (default), applies to a flattened version of the array, and this is the same as `flatnotmasked_contiguous`. Returns ------- endpoints : list A list of slices (start and end indexes) of unmasked indexes in the array. If the input is 2d and axis is specified, the result is a list of lists. See Also -------- flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges clump_masked, clump_unmasked Notes ----- Only accepts 2-D arrays at most. Examples -------- >>> a = np.arange(12).reshape((3, 4)) >>> mask = np.zeros_like(a) >>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0 >>> ma = np.ma.array(a, mask=mask) >>> ma masked_array( data=[[0, --, 2, 3], [--, --, --, 7], [8, --, --, 11]], mask=[[False, True, False, False], [ True, True, True, False], [False, True, True, False]], fill_value=999999) >>> np.array(ma[~ma.mask]) array([ 0, 2, 3, 7, 8, 11]) >>> np.ma.notmasked_contiguous(ma) [slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)] >>> np.ma.notmasked_contiguous(ma, axis=0) [[slice(0, 1, None), slice(2, 3, None)], [], [slice(0, 1, None)], [slice(0, 3, None)]] >>> np.ma.notmasked_contiguous(ma, axis=1) [[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]] """ a = asarray(a) nd = a.ndim if nd > 2: raise NotImplementedError("Currently limited to atmost 2D array.") if axis is None or nd == 1: return flatnotmasked_contiguous(a) # result = [] # other = (axis + 1) % 2 idx = [0, 0] idx[axis] = slice(None, None) # for i in range(a.shape[other]): idx[other] = i result.append(flatnotmasked_contiguous(a[tuple(idx)])) return result def _ezclump(mask): """ Finds the clumps (groups of data with the same values) for a 1D bool array. Returns a series of slices. """ if mask.ndim > 1: mask = mask.ravel() idx = (mask[1:] ^ mask[:-1]).nonzero() idx = idx[0] + 1 if mask[0]: if len(idx) == 0: return [slice(0, mask.size)] r = [slice(0, idx[0])] r.extend((slice(left, right) for left, right in zip(idx[1:-1:2], idx[2::2]))) else: if len(idx) == 0: return [] r = [slice(left, right) for left, right in zip(idx[:-1:2], idx[1::2])] if mask[-1]: r.append(slice(idx[-1], mask.size)) return r def clump_unmasked(a): """ Return list of slices corresponding to the unmasked clumps of a 1-D array. (A "clump" is defined as a contiguous region of the array). Parameters ---------- a : ndarray A one-dimensional masked array. Returns ------- slices : list of slice The list of slices, one for each continuous region of unmasked elements in `a`. Notes ----- .. versionadded:: 1.4.0 See Also -------- flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges notmasked_contiguous, clump_masked Examples -------- >>> a = np.ma.masked_array(np.arange(10)) >>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked >>> np.ma.clump_unmasked(a) [slice(3, 6, None), slice(7, 8, None)] """ mask = getattr(a, '_mask', nomask) if mask is nomask: return [slice(0, a.size)] return _ezclump(~mask) def clump_masked(a): """ Returns a list of slices corresponding to the masked clumps of a 1-D array. (A "clump" is defined as a contiguous region of the array). Parameters ---------- a : ndarray A one-dimensional masked array. Returns ------- slices : list of slice The list of slices, one for each continuous region of masked elements in `a`. Notes ----- .. versionadded:: 1.4.0 See Also -------- flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges notmasked_contiguous, clump_unmasked Examples -------- >>> a = np.ma.masked_array(np.arange(10)) >>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked >>> np.ma.clump_masked(a) [slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)] """ mask = ma.getmask(a) if mask is nomask: return [] return _ezclump(mask) ############################################################################### # Polynomial fit # ############################################################################### def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander vander.__doc__ = ma.doc_note(np.vander.__doc__, vander.__doc__) def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): """ Any masked values in x is propagated in y, and vice-versa. """ x = asarray(x) y = asarray(y) m = getmask(x) if y.ndim == 1: m = mask_or(m, getmask(y)) elif y.ndim == 2: my = getmask(mask_rows(y)) if my is not nomask: m = mask_or(m, my[:, 0]) else: raise TypeError("Expected a 1D or 2D array for y!") if w is not None: w = asarray(w) if w.ndim != 1: raise TypeError("expected a 1-d array for weights") if w.shape[0] != y.shape[0]: raise TypeError("expected w and y to have the same length") m = mask_or(m, getmask(w)) if m is not nomask: not_m = ~m if w is not None: w = w[not_m] return np.polyfit(x[not_m], y[not_m], deg, rcond, full, w, cov) else: return np.polyfit(x, y, deg, rcond, full, w, cov) polyfit.__doc__ = ma.doc_note(np.polyfit.__doc__, polyfit.__doc__)
60,910
Python
29.094368
105
0.554654
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/extras.pyi
from typing import Any from numpy.lib.index_tricks import AxisConcatenator from numpy.ma.core import ( dot as dot, mask_rowcols as mask_rowcols, ) __all__: list[str] def count_masked(arr, axis=...): ... def masked_all(shape, dtype = ...): ... def masked_all_like(arr): ... class _fromnxfunction: __name__: Any __doc__: Any def __init__(self, funcname): ... def getdoc(self): ... def __call__(self, *args, **params): ... class _fromnxfunction_single(_fromnxfunction): def __call__(self, x, *args, **params): ... class _fromnxfunction_seq(_fromnxfunction): def __call__(self, x, *args, **params): ... class _fromnxfunction_allargs(_fromnxfunction): def __call__(self, *args, **params): ... atleast_1d: _fromnxfunction_allargs atleast_2d: _fromnxfunction_allargs atleast_3d: _fromnxfunction_allargs vstack: _fromnxfunction_seq row_stack: _fromnxfunction_seq hstack: _fromnxfunction_seq column_stack: _fromnxfunction_seq dstack: _fromnxfunction_seq stack: _fromnxfunction_seq hsplit: _fromnxfunction_single diagflat: _fromnxfunction_single def apply_along_axis(func1d, axis, arr, *args, **kwargs): ... def apply_over_axes(func, a, axes): ... def average(a, axis=..., weights=..., returned=..., keepdims=...): ... def median(a, axis=..., out=..., overwrite_input=..., keepdims=...): ... def compress_nd(x, axis=...): ... def compress_rowcols(x, axis=...): ... def compress_rows(a): ... def compress_cols(a): ... def mask_rows(a, axis = ...): ... def mask_cols(a, axis = ...): ... def ediff1d(arr, to_end=..., to_begin=...): ... def unique(ar1, return_index=..., return_inverse=...): ... def intersect1d(ar1, ar2, assume_unique=...): ... def setxor1d(ar1, ar2, assume_unique=...): ... def in1d(ar1, ar2, assume_unique=..., invert=...): ... def isin(element, test_elements, assume_unique=..., invert=...): ... def union1d(ar1, ar2): ... def setdiff1d(ar1, ar2, assume_unique=...): ... def cov(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...): ... def corrcoef(x, y=..., rowvar=..., bias = ..., allow_masked=..., ddof = ...): ... class MAxisConcatenator(AxisConcatenator): concatenate: Any @classmethod def makemat(cls, arr): ... def __getitem__(self, key): ... class mr_class(MAxisConcatenator): def __init__(self): ... mr_: mr_class def ndenumerate(a, compressed=...): ... def flatnotmasked_edges(a): ... def notmasked_edges(a, axis=...): ... def flatnotmasked_contiguous(a): ... def notmasked_contiguous(a, axis=...): ... def clump_unmasked(a): ... def clump_masked(a): ... def vander(x, n=...): ... def polyfit(x, y, deg, rcond=..., full=..., w=..., cov=...): ...
2,646
unknown
29.779069
81
0.620559
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/__init__.pyi
from numpy._pytesttester import PytestTester from numpy.ma import extras as extras from numpy.ma.core import ( MAError as MAError, MaskError as MaskError, MaskType as MaskType, MaskedArray as MaskedArray, abs as abs, absolute as absolute, add as add, all as all, allclose as allclose, allequal as allequal, alltrue as alltrue, amax as amax, amin as amin, angle as angle, anom as anom, anomalies as anomalies, any as any, append as append, arange as arange, arccos as arccos, arccosh as arccosh, arcsin as arcsin, arcsinh as arcsinh, arctan as arctan, arctan2 as arctan2, arctanh as arctanh, argmax as argmax, argmin as argmin, argsort as argsort, around as around, array as array, asanyarray as asanyarray, asarray as asarray, bitwise_and as bitwise_and, bitwise_or as bitwise_or, bitwise_xor as bitwise_xor, bool_ as bool_, ceil as ceil, choose as choose, clip as clip, common_fill_value as common_fill_value, compress as compress, compressed as compressed, concatenate as concatenate, conjugate as conjugate, convolve as convolve, copy as copy, correlate as correlate, cos as cos, cosh as cosh, count as count, cumprod as cumprod, cumsum as cumsum, default_fill_value as default_fill_value, diag as diag, diagonal as diagonal, diff as diff, divide as divide, empty as empty, empty_like as empty_like, equal as equal, exp as exp, expand_dims as expand_dims, fabs as fabs, filled as filled, fix_invalid as fix_invalid, flatten_mask as flatten_mask, flatten_structured_array as flatten_structured_array, floor as floor, floor_divide as floor_divide, fmod as fmod, frombuffer as frombuffer, fromflex as fromflex, fromfunction as fromfunction, getdata as getdata, getmask as getmask, getmaskarray as getmaskarray, greater as greater, greater_equal as greater_equal, harden_mask as harden_mask, hypot as hypot, identity as identity, ids as ids, indices as indices, inner as inner, innerproduct as innerproduct, isMA as isMA, isMaskedArray as isMaskedArray, is_mask as is_mask, is_masked as is_masked, isarray as isarray, left_shift as left_shift, less as less, less_equal as less_equal, log as log, log10 as log10, log2 as log2, logical_and as logical_and, logical_not as logical_not, logical_or as logical_or, logical_xor as logical_xor, make_mask as make_mask, make_mask_descr as make_mask_descr, make_mask_none as make_mask_none, mask_or as mask_or, masked as masked, masked_array as masked_array, masked_equal as masked_equal, masked_greater as masked_greater, masked_greater_equal as masked_greater_equal, masked_inside as masked_inside, masked_invalid as masked_invalid, masked_less as masked_less, masked_less_equal as masked_less_equal, masked_not_equal as masked_not_equal, masked_object as masked_object, masked_outside as masked_outside, masked_print_option as masked_print_option, masked_singleton as masked_singleton, masked_values as masked_values, masked_where as masked_where, max as max, maximum as maximum, maximum_fill_value as maximum_fill_value, mean as mean, min as min, minimum as minimum, minimum_fill_value as minimum_fill_value, mod as mod, multiply as multiply, mvoid as mvoid, ndim as ndim, negative as negative, nomask as nomask, nonzero as nonzero, not_equal as not_equal, ones as ones, outer as outer, outerproduct as outerproduct, power as power, prod as prod, product as product, ptp as ptp, put as put, putmask as putmask, ravel as ravel, remainder as remainder, repeat as repeat, reshape as reshape, resize as resize, right_shift as right_shift, round as round, round_ as round_, set_fill_value as set_fill_value, shape as shape, sin as sin, sinh as sinh, size as size, soften_mask as soften_mask, sometrue as sometrue, sort as sort, sqrt as sqrt, squeeze as squeeze, std as std, subtract as subtract, sum as sum, swapaxes as swapaxes, take as take, tan as tan, tanh as tanh, trace as trace, transpose as transpose, true_divide as true_divide, var as var, where as where, zeros as zeros, ) from numpy.ma.extras import ( apply_along_axis as apply_along_axis, apply_over_axes as apply_over_axes, atleast_1d as atleast_1d, atleast_2d as atleast_2d, atleast_3d as atleast_3d, average as average, clump_masked as clump_masked, clump_unmasked as clump_unmasked, column_stack as column_stack, compress_cols as compress_cols, compress_nd as compress_nd, compress_rowcols as compress_rowcols, compress_rows as compress_rows, count_masked as count_masked, corrcoef as corrcoef, cov as cov, diagflat as diagflat, dot as dot, dstack as dstack, ediff1d as ediff1d, flatnotmasked_contiguous as flatnotmasked_contiguous, flatnotmasked_edges as flatnotmasked_edges, hsplit as hsplit, hstack as hstack, isin as isin, in1d as in1d, intersect1d as intersect1d, mask_cols as mask_cols, mask_rowcols as mask_rowcols, mask_rows as mask_rows, masked_all as masked_all, masked_all_like as masked_all_like, median as median, mr_ as mr_, ndenumerate as ndenumerate, notmasked_contiguous as notmasked_contiguous, notmasked_edges as notmasked_edges, polyfit as polyfit, row_stack as row_stack, setdiff1d as setdiff1d, setxor1d as setxor1d, stack as stack, unique as unique, union1d as union1d, vander as vander, vstack as vstack, ) __all__: list[str] __path__: list[str] test: PytestTester
6,085
unknown
24.788135
57
0.670008
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/tests/test_core.py
# pylint: disable-msg=W0400,W0511,W0611,W0612,W0614,R0201,E1102 """Tests suite for MaskedArray & subclassing. :author: Pierre Gerard-Marchant :contact: pierregm_at_uga_dot_edu """ __author__ = "Pierre GF Gerard-Marchant" import sys import warnings import operator import itertools import textwrap import pytest from functools import reduce import numpy as np import numpy.ma.core import numpy.core.fromnumeric as fromnumeric import numpy.core.umath as umath from numpy.testing import ( assert_raises, assert_warns, suppress_warnings ) from numpy import ndarray from numpy.compat import asbytes from numpy.ma.testutils import ( assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal ) from numpy.ma.core import ( MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, doc_note, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, ones_like, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros, zeros_like, ) from numpy.compat import pickle pi = np.pi suppress_copy_mask_on_assignment = suppress_warnings() suppress_copy_mask_on_assignment.filter( numpy.ma.core.MaskedArrayFutureWarning, "setting an item on a masked array which has a shared mask will not copy") # For parametrized numeric testing num_dts = [np.dtype(dt_) for dt_ in '?bhilqBHILQefdgFD'] num_ids = [dt_.char for dt_ in num_dts] class TestMaskedArray: # Base test class for MaskedArrays. def setup_method(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) def test_basicattributes(self): # Tests some basic array attributes. a = array([1, 3, 2]) b = array([1, 3, 2], mask=[1, 0, 1]) assert_equal(a.ndim, 1) assert_equal(b.ndim, 1) assert_equal(a.size, 3) assert_equal(b.size, 3) assert_equal(a.shape, (3,)) assert_equal(b.shape, (3,)) def test_basic0d(self): # Checks masking a scalar x = masked_array(0) assert_equal(str(x), '0') x = masked_array(0, mask=True) assert_equal(str(x), str(masked_print_option)) x = masked_array(0, mask=False) assert_equal(str(x), '0') x = array(0, mask=1) assert_(x.filled().dtype is x._data.dtype) def test_basic1d(self): # Test of basic array creation and properties in 1 dimension. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_(not isMaskedArray(x)) assert_(isMaskedArray(xm)) assert_((xm - ym).filled(0).any()) fail_if_equal(xm.mask.astype(int), ym.mask.astype(int)) s = x.shape assert_equal(np.shape(xm), s) assert_equal(xm.shape, s) assert_equal(xm.dtype, x.dtype) assert_equal(zm.dtype, z.dtype) assert_equal(xm.size, reduce(lambda x, y:x * y, s)) assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) assert_array_equal(xm, xf) assert_array_equal(filled(xm, 1.e20), xf) assert_array_equal(x, xm) def test_basic2d(self): # Test of basic array creation and properties in 2 dimensions. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d for s in [(4, 3), (6, 2)]: x.shape = s y.shape = s xm.shape = s ym.shape = s xf.shape = s assert_(not isMaskedArray(x)) assert_(isMaskedArray(xm)) assert_equal(shape(xm), s) assert_equal(xm.shape, s) assert_equal(xm.size, reduce(lambda x, y:x * y, s)) assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) assert_equal(xm, xf) assert_equal(filled(xm, 1.e20), xf) assert_equal(x, xm) def test_concatenate_basic(self): # Tests concatenations. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # basic concatenation assert_equal(np.concatenate((x, y)), concatenate((xm, ym))) assert_equal(np.concatenate((x, y)), concatenate((x, y))) assert_equal(np.concatenate((x, y)), concatenate((xm, y))) assert_equal(np.concatenate((x, y, x)), concatenate((x, ym, x))) def test_concatenate_alongaxis(self): # Tests concatenations. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # Concatenation along an axis s = (3, 4) x.shape = y.shape = xm.shape = ym.shape = s assert_equal(xm.mask, np.reshape(m1, s)) assert_equal(ym.mask, np.reshape(m2, s)) xmym = concatenate((xm, ym), 1) assert_equal(np.concatenate((x, y), 1), xmym) assert_equal(np.concatenate((xm.mask, ym.mask), 1), xmym._mask) x = zeros(2) y = array(ones(2), mask=[False, True]) z = concatenate((x, y)) assert_array_equal(z, [0, 0, 1, 1]) assert_array_equal(z.mask, [False, False, False, True]) z = concatenate((y, x)) assert_array_equal(z, [1, 1, 0, 0]) assert_array_equal(z.mask, [False, True, False, False]) def test_concatenate_flexible(self): # Tests the concatenation on flexible arrays. data = masked_array(list(zip(np.random.rand(10), np.arange(10))), dtype=[('a', float), ('b', int)]) test = concatenate([data[:5], data[5:]]) assert_equal_records(test, data) def test_creation_ndmin(self): # Check the use of ndmin x = array([1, 2, 3], mask=[1, 0, 0], ndmin=2) assert_equal(x.shape, (1, 3)) assert_equal(x._data, [[1, 2, 3]]) assert_equal(x._mask, [[1, 0, 0]]) def test_creation_ndmin_from_maskedarray(self): # Make sure we're not losing the original mask w/ ndmin x = array([1, 2, 3]) x[-1] = masked xx = array(x, ndmin=2, dtype=float) assert_equal(x.shape, x._mask.shape) assert_equal(xx.shape, xx._mask.shape) def test_creation_maskcreation(self): # Tests how masks are initialized at the creation of Maskedarrays. data = arange(24, dtype=float) data[[3, 6, 15]] = masked dma_1 = MaskedArray(data) assert_equal(dma_1.mask, data.mask) dma_2 = MaskedArray(dma_1) assert_equal(dma_2.mask, dma_1.mask) dma_3 = MaskedArray(dma_1, mask=[1, 0, 0, 0] * 6) fail_if_equal(dma_3.mask, dma_1.mask) x = array([1, 2, 3], mask=True) assert_equal(x._mask, [True, True, True]) x = array([1, 2, 3], mask=False) assert_equal(x._mask, [False, False, False]) y = array([1, 2, 3], mask=x._mask, copy=False) assert_(np.may_share_memory(x.mask, y.mask)) y = array([1, 2, 3], mask=x._mask, copy=True) assert_(not np.may_share_memory(x.mask, y.mask)) def test_masked_singleton_array_creation_warns(self): # The first works, but should not (ideally), there may be no way # to solve this, however, as long as `np.ma.masked` is an ndarray. np.array(np.ma.masked) with pytest.warns(UserWarning): # Tries to create a float array, using `float(np.ma.masked)`. # We may want to define this is invalid behaviour in the future! # (requiring np.ma.masked to be a known NumPy scalar probably # with a DType.) np.array([3., np.ma.masked]) def test_creation_with_list_of_maskedarrays(self): # Tests creating a masked array from a list of masked arrays. x = array(np.arange(5), mask=[1, 0, 0, 0, 0]) data = array((x, x[::-1])) assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]) assert_equal(data._mask, [[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]]) x.mask = nomask data = array((x, x[::-1])) assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]) assert_(data.mask is nomask) def test_creation_with_list_of_maskedarrays_no_bool_cast(self): # Tests the regression in gh-18551 masked_str = np.ma.masked_array(['a', 'b'], mask=[True, False]) normal_int = np.arange(2) res = np.ma.asarray([masked_str, normal_int], dtype="U21") assert_array_equal(res.mask, [[True, False], [False, False]]) # The above only failed due a long chain of oddity, try also with # an object array that cannot be converted to bool always: class NotBool(): def __bool__(self): raise ValueError("not a bool!") masked_obj = np.ma.masked_array([NotBool(), 'b'], mask=[True, False]) # Check that the NotBool actually fails like we would expect: with pytest.raises(ValueError, match="not a bool!"): np.asarray([masked_obj], dtype=bool) res = np.ma.asarray([masked_obj, normal_int]) assert_array_equal(res.mask, [[True, False], [False, False]]) def test_creation_from_ndarray_with_padding(self): x = np.array([('A', 0)], dtype={'names':['f0','f1'], 'formats':['S4','i8'], 'offsets':[0,8]}) array(x) # used to fail due to 'V' padding field in x.dtype.descr def test_unknown_keyword_parameter(self): with pytest.raises(TypeError, match="unexpected keyword argument"): MaskedArray([1, 2, 3], maks=[0, 1, 0]) # `mask` is misspelled. def test_asarray(self): (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d xm.fill_value = -9999 xm._hardmask = True xmm = asarray(xm) assert_equal(xmm._data, xm._data) assert_equal(xmm._mask, xm._mask) assert_equal(xmm.fill_value, xm.fill_value) assert_equal(xmm._hardmask, xm._hardmask) def test_asarray_default_order(self): # See Issue #6646 m = np.eye(3).T assert_(not m.flags.c_contiguous) new_m = asarray(m) assert_(new_m.flags.c_contiguous) def test_asarray_enforce_order(self): # See Issue #6646 m = np.eye(3).T assert_(not m.flags.c_contiguous) new_m = asarray(m, order='C') assert_(new_m.flags.c_contiguous) def test_fix_invalid(self): # Checks fix_invalid. with np.errstate(invalid='ignore'): data = masked_array([np.nan, 0., 1.], mask=[0, 0, 1]) data_fixed = fix_invalid(data) assert_equal(data_fixed._data, [data.fill_value, 0., 1.]) assert_equal(data_fixed._mask, [1., 0., 1.]) def test_maskedelement(self): # Test of masked element x = arange(6) x[1] = masked assert_(str(masked) == '--') assert_(x[1] is masked) assert_equal(filled(x[1], 0), 0) def test_set_element_as_object(self): # Tests setting elements with object a = empty(1, dtype=object) x = (1, 2, 3, 4, 5) a[0] = x assert_equal(a[0], x) assert_(a[0] is x) import datetime dt = datetime.datetime.now() a[0] = dt assert_(a[0] is dt) def test_indexing(self): # Tests conversions and indexing x1 = np.array([1, 2, 4, 3]) x2 = array(x1, mask=[1, 0, 0, 0]) x3 = array(x1, mask=[0, 1, 0, 1]) x4 = array(x1) # test conversion to strings str(x2) # raises? repr(x2) # raises? assert_equal(np.sort(x1), sort(x2, endwith=False)) # tests of indexing assert_(type(x2[1]) is type(x1[1])) assert_(x1[1] == x2[1]) assert_(x2[0] is masked) assert_equal(x1[2], x2[2]) assert_equal(x1[2:5], x2[2:5]) assert_equal(x1[:], x2[:]) assert_equal(x1[1:], x3[1:]) x1[2] = 9 x2[2] = 9 assert_equal(x1, x2) x1[1:3] = 99 x2[1:3] = 99 assert_equal(x1, x2) x2[1] = masked assert_equal(x1, x2) x2[1:3] = masked assert_equal(x1, x2) x2[:] = x1 x2[1] = masked assert_(allequal(getmask(x2), array([0, 1, 0, 0]))) x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x3), array([0, 1, 1, 0]))) x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x4), array([0, 1, 1, 0]))) assert_(allequal(x4, array([1, 2, 3, 4]))) x1 = np.arange(5) * 1.0 x2 = masked_values(x1, 3.0) assert_equal(x1, x2) assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) assert_equal(3.0, x2.fill_value) x1 = array([1, 'hello', 2, 3], object) x2 = np.array([1, 'hello', 2, 3], object) s1 = x1[1] s2 = x2[1] assert_equal(type(s2), str) assert_equal(type(s1), str) assert_equal(s1, s2) assert_(x1[1:1].shape == (0,)) @suppress_copy_mask_on_assignment def test_copy(self): # Tests of some subtle points of copying and sizing. n = [0, 0, 1, 0, 0] m = make_mask(n) m2 = make_mask(m) assert_(m is m2) m3 = make_mask(m, copy=True) assert_(m is not m3) x1 = np.arange(5) y1 = array(x1, mask=m) assert_equal(y1._data.__array_interface__, x1.__array_interface__) assert_(allequal(x1, y1.data)) assert_equal(y1._mask.__array_interface__, m.__array_interface__) y1a = array(y1) # Default for masked array is not to copy; see gh-10318. assert_(y1a._data.__array_interface__ == y1._data.__array_interface__) assert_(y1a._mask.__array_interface__ == y1._mask.__array_interface__) y2 = array(x1, mask=m3) assert_(y2._data.__array_interface__ == x1.__array_interface__) assert_(y2._mask.__array_interface__ == m3.__array_interface__) assert_(y2[2] is masked) y2[2] = 9 assert_(y2[2] is not masked) assert_(y2._mask.__array_interface__ == m3.__array_interface__) assert_(allequal(y2.mask, 0)) y2a = array(x1, mask=m, copy=1) assert_(y2a._data.__array_interface__ != x1.__array_interface__) #assert_( y2a._mask is not m) assert_(y2a._mask.__array_interface__ != m.__array_interface__) assert_(y2a[2] is masked) y2a[2] = 9 assert_(y2a[2] is not masked) #assert_( y2a._mask is not m) assert_(y2a._mask.__array_interface__ != m.__array_interface__) assert_(allequal(y2a.mask, 0)) y3 = array(x1 * 1.0, mask=m) assert_(filled(y3).dtype is (x1 * 1.0).dtype) x4 = arange(4) x4[2] = masked y4 = resize(x4, (8,)) assert_equal(concatenate([x4, x4]), y4) assert_equal(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]) y5 = repeat(x4, (2, 2, 2, 2), axis=0) assert_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3]) y6 = repeat(x4, 2, axis=0) assert_equal(y5, y6) y7 = x4.repeat((2, 2, 2, 2), axis=0) assert_equal(y5, y7) y8 = x4.repeat(2, 0) assert_equal(y5, y8) y9 = x4.copy() assert_equal(y9._data, x4._data) assert_equal(y9._mask, x4._mask) x = masked_array([1, 2, 3], mask=[0, 1, 0]) # Copy is False by default y = masked_array(x) assert_equal(y._data.ctypes.data, x._data.ctypes.data) assert_equal(y._mask.ctypes.data, x._mask.ctypes.data) y = masked_array(x, copy=True) assert_not_equal(y._data.ctypes.data, x._data.ctypes.data) assert_not_equal(y._mask.ctypes.data, x._mask.ctypes.data) def test_copy_0d(self): # gh-9430 x = np.ma.array(43, mask=True) xc = x.copy() assert_equal(xc.mask, True) def test_copy_on_python_builtins(self): # Tests copy works on python builtins (issue#8019) assert_(isMaskedArray(np.ma.copy([1,2,3]))) assert_(isMaskedArray(np.ma.copy((1,2,3)))) def test_copy_immutable(self): # Tests that the copy method is immutable, GitHub issue #5247 a = np.ma.array([1, 2, 3]) b = np.ma.array([4, 5, 6]) a_copy_method = a.copy b.copy assert_equal(a_copy_method(), [1, 2, 3]) def test_deepcopy(self): from copy import deepcopy a = array([0, 1, 2], mask=[False, True, False]) copied = deepcopy(a) assert_equal(copied.mask, a.mask) assert_not_equal(id(a._mask), id(copied._mask)) copied[1] = 1 assert_equal(copied.mask, [0, 0, 0]) assert_equal(a.mask, [0, 1, 0]) copied = deepcopy(a) assert_equal(copied.mask, a.mask) copied.mask[1] = False assert_equal(copied.mask, [0, 0, 0]) assert_equal(a.mask, [0, 1, 0]) def test_format(self): a = array([0, 1, 2], mask=[False, True, False]) assert_equal(format(a), "[0 -- 2]") assert_equal(format(masked), "--") assert_equal(format(masked, ""), "--") # Postponed from PR #15410, perhaps address in the future. # assert_equal(format(masked, " >5"), " --") # assert_equal(format(masked, " <5"), "-- ") # Expect a FutureWarning for using format_spec with MaskedElement with assert_warns(FutureWarning): with_format_string = format(masked, " >5") assert_equal(with_format_string, "--") def test_str_repr(self): a = array([0, 1, 2], mask=[False, True, False]) assert_equal(str(a), '[0 -- 2]') assert_equal( repr(a), textwrap.dedent('''\ masked_array(data=[0, --, 2], mask=[False, True, False], fill_value=999999)''') ) # arrays with a continuation a = np.ma.arange(2000) a[1:50] = np.ma.masked assert_equal( repr(a), textwrap.dedent('''\ masked_array(data=[0, --, --, ..., 1997, 1998, 1999], mask=[False, True, True, ..., False, False, False], fill_value=999999)''') ) # line-wrapped 1d arrays are correctly aligned a = np.ma.arange(20) assert_equal( repr(a), textwrap.dedent('''\ masked_array(data=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], mask=False, fill_value=999999)''') ) # 2d arrays cause wrapping a = array([[1, 2, 3], [4, 5, 6]], dtype=np.int8) a[1,1] = np.ma.masked assert_equal( repr(a), textwrap.dedent('''\ masked_array( data=[[1, 2, 3], [4, --, 6]], mask=[[False, False, False], [False, True, False]], fill_value=999999, dtype=int8)''') ) # but not it they're a row vector assert_equal( repr(a[:1]), textwrap.dedent('''\ masked_array(data=[[1, 2, 3]], mask=[[False, False, False]], fill_value=999999, dtype=int8)''') ) # dtype=int is implied, so not shown assert_equal( repr(a.astype(int)), textwrap.dedent('''\ masked_array( data=[[1, 2, 3], [4, --, 6]], mask=[[False, False, False], [False, True, False]], fill_value=999999)''') ) def test_str_repr_legacy(self): oldopts = np.get_printoptions() np.set_printoptions(legacy='1.13') try: a = array([0, 1, 2], mask=[False, True, False]) assert_equal(str(a), '[0 -- 2]') assert_equal(repr(a), 'masked_array(data = [0 -- 2],\n' ' mask = [False True False],\n' ' fill_value = 999999)\n') a = np.ma.arange(2000) a[1:50] = np.ma.masked assert_equal( repr(a), 'masked_array(data = [0 -- -- ..., 1997 1998 1999],\n' ' mask = [False True True ..., False False False],\n' ' fill_value = 999999)\n' ) finally: np.set_printoptions(**oldopts) def test_0d_unicode(self): u = u'caf\xe9' utype = type(u) arr_nomask = np.ma.array(u) arr_masked = np.ma.array(u, mask=True) assert_equal(utype(arr_nomask), u) assert_equal(utype(arr_masked), u'--') def test_pickling(self): # Tests pickling for dtype in (int, float, str, object): a = arange(10).astype(dtype) a.fill_value = 999 masks = ([0, 0, 0, 1, 0, 1, 0, 1, 0, 1], # partially masked True, # Fully masked False) # Fully unmasked for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): for mask in masks: a.mask = mask a_pickled = pickle.loads(pickle.dumps(a, protocol=proto)) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled._data, a._data) if dtype in (object, int): assert_equal(a_pickled.fill_value, 999) else: assert_equal(a_pickled.fill_value, dtype(999)) assert_array_equal(a_pickled.mask, mask) def test_pickling_subbaseclass(self): # Test pickling w/ a subclass of ndarray x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)]).view(np.recarray) a = masked_array(x, mask=[(True, False), (False, True)]) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): a_pickled = pickle.loads(pickle.dumps(a, protocol=proto)) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled, a) assert_(isinstance(a_pickled._data, np.recarray)) def test_pickling_maskedconstant(self): # Test pickling MaskedConstant mc = np.ma.masked for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): mc_pickled = pickle.loads(pickle.dumps(mc, protocol=proto)) assert_equal(mc_pickled._baseclass, mc._baseclass) assert_equal(mc_pickled._mask, mc._mask) assert_equal(mc_pickled._data, mc._data) def test_pickling_wstructured(self): # Tests pickling w/ structured array a = array([(1, 1.), (2, 2.)], mask=[(0, 0), (0, 1)], dtype=[('a', int), ('b', float)]) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): a_pickled = pickle.loads(pickle.dumps(a, protocol=proto)) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled, a) def test_pickling_keepalignment(self): # Tests pickling w/ F_CONTIGUOUS arrays a = arange(10) a.shape = (-1, 2) b = a.T for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): test = pickle.loads(pickle.dumps(b, protocol=proto)) assert_equal(test, b) def test_single_element_subscript(self): # Tests single element subscripts of Maskedarrays. a = array([1, 3, 2]) b = array([1, 3, 2], mask=[1, 0, 1]) assert_equal(a[0].shape, ()) assert_equal(b[0].shape, ()) assert_equal(b[1].shape, ()) def test_topython(self): # Tests some communication issues with Python. assert_equal(1, int(array(1))) assert_equal(1.0, float(array(1))) assert_equal(1, int(array([[[1]]]))) assert_equal(1.0, float(array([[1]]))) assert_raises(TypeError, float, array([1, 1])) with suppress_warnings() as sup: sup.filter(UserWarning, 'Warning: converting a masked element') assert_(np.isnan(float(array([1], mask=[1])))) a = array([1, 2, 3], mask=[1, 0, 0]) assert_raises(TypeError, lambda: float(a)) assert_equal(float(a[-1]), 3.) assert_(np.isnan(float(a[0]))) assert_raises(TypeError, int, a) assert_equal(int(a[-1]), 3) assert_raises(MAError, lambda:int(a[0])) def test_oddfeatures_1(self): # Test of other odd features x = arange(20) x = x.reshape(4, 5) x.flat[5] = 12 assert_(x[1, 0] == 12) z = x + 10j * x assert_equal(z.real, x) assert_equal(z.imag, 10 * x) assert_equal((z * conjugate(z)).real, 101 * x * x) z.imag[...] = 0.0 x = arange(10) x[3] = masked assert_(str(x[3]) == str(masked)) c = x >= 8 assert_(count(where(c, masked, masked)) == 0) assert_(shape(where(c, masked, masked)) == c.shape) z = masked_where(c, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) assert_equal(x, z) def test_oddfeatures_2(self): # Tests some more features. x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) @suppress_copy_mask_on_assignment def test_oddfeatures_3(self): # Tests some generic features atest = array([10], mask=True) btest = array([20]) idx = atest.mask atest[idx] = btest[idx] assert_equal(atest, [20]) def test_filled_with_object_dtype(self): a = np.ma.masked_all(1, dtype='O') assert_equal(a.filled('x')[0], 'x') def test_filled_with_flexible_dtype(self): # Test filled w/ flexible dtype flexi = array([(1, 1, 1)], dtype=[('i', int), ('s', '|S8'), ('f', float)]) flexi[0] = masked assert_equal(flexi.filled(), np.array([(default_fill_value(0), default_fill_value('0'), default_fill_value(0.),)], dtype=flexi.dtype)) flexi[0] = masked assert_equal(flexi.filled(1), np.array([(1, '1', 1.)], dtype=flexi.dtype)) def test_filled_with_mvoid(self): # Test filled w/ mvoid ndtype = [('a', int), ('b', float)] a = mvoid((1, 2.), mask=[(0, 1)], dtype=ndtype) # Filled using default test = a.filled() assert_equal(tuple(test), (1, default_fill_value(1.))) # Explicit fill_value test = a.filled((-1, -1)) assert_equal(tuple(test), (1, -1)) # Using predefined filling values a.fill_value = (-999, -999) assert_equal(tuple(a.filled()), (1, -999)) def test_filled_with_nested_dtype(self): # Test filled w/ nested dtype ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] a = array([(1, (1, 1)), (2, (2, 2))], mask=[(0, (1, 0)), (0, (0, 1))], dtype=ndtype) test = a.filled(0) control = np.array([(1, (0, 1)), (2, (2, 0))], dtype=ndtype) assert_equal(test, control) test = a['B'].filled(0) control = np.array([(0, 1), (2, 0)], dtype=a['B'].dtype) assert_equal(test, control) # test if mask gets set correctly (see #6760) Z = numpy.ma.zeros(2, numpy.dtype([("A", "(2,2)i1,(2,2)i1", (2,2))])) assert_equal(Z.data.dtype, numpy.dtype([('A', [('f0', 'i1', (2, 2)), ('f1', 'i1', (2, 2))], (2, 2))])) assert_equal(Z.mask.dtype, numpy.dtype([('A', [('f0', '?', (2, 2)), ('f1', '?', (2, 2))], (2, 2))])) def test_filled_with_f_order(self): # Test filled w/ F-contiguous array a = array(np.array([(0, 1, 2), (4, 5, 6)], order='F'), mask=np.array([(0, 0, 1), (1, 0, 0)], order='F'), order='F') # this is currently ignored assert_(a.flags['F_CONTIGUOUS']) assert_(a.filled(0).flags['F_CONTIGUOUS']) def test_optinfo_propagation(self): # Checks that _optinfo dictionary isn't back-propagated x = array([1, 2, 3, ], dtype=float) x._optinfo['info'] = '???' y = x.copy() assert_equal(y._optinfo['info'], '???') y._optinfo['info'] = '!!!' assert_equal(x._optinfo['info'], '???') def test_optinfo_forward_propagation(self): a = array([1,2,2,4]) a._optinfo["key"] = "value" assert_equal(a._optinfo["key"], (a == 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a != 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a > 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a >= 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a <= 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a + 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a - 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a * 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a / 2)._optinfo["key"]) assert_equal(a._optinfo["key"], a[:2]._optinfo["key"]) assert_equal(a._optinfo["key"], a[[0,0,2]]._optinfo["key"]) assert_equal(a._optinfo["key"], np.exp(a)._optinfo["key"]) assert_equal(a._optinfo["key"], np.abs(a)._optinfo["key"]) assert_equal(a._optinfo["key"], array(a, copy=True)._optinfo["key"]) assert_equal(a._optinfo["key"], np.zeros_like(a)._optinfo["key"]) def test_fancy_printoptions(self): # Test printing a masked array w/ fancy dtype. fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) test = array([(1, (2, 3.0)), (4, (5, 6.0))], mask=[(1, (0, 1)), (0, (1, 0))], dtype=fancydtype) control = "[(--, (2, --)) (4, (--, 6.0))]" assert_equal(str(test), control) # Test 0-d array with multi-dimensional dtype t_2d0 = masked_array(data = (0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], 0.0), mask = (False, [[True, False, True], [False, False, True]], False), dtype = "int, (2,3)float, float") control = "(0, [[--, 0.0, --], [0.0, 0.0, --]], 0.0)" assert_equal(str(t_2d0), control) def test_flatten_structured_array(self): # Test flatten_structured_array on arrays # On ndarray ndtype = [('a', int), ('b', float)] a = np.array([(1, 1), (2, 2)], dtype=ndtype) test = flatten_structured_array(a) control = np.array([[1., 1.], [2., 2.]], dtype=float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) # On masked_array a = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = flatten_structured_array(a) control = array([[1., 1.], [2., 2.]], mask=[[0, 1], [1, 0]], dtype=float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) assert_equal(test.mask, control.mask) # On masked array with nested structure ndtype = [('a', int), ('b', [('ba', int), ('bb', float)])] a = array([(1, (1, 1.1)), (2, (2, 2.2))], mask=[(0, (1, 0)), (1, (0, 1))], dtype=ndtype) test = flatten_structured_array(a) control = array([[1., 1., 1.1], [2., 2., 2.2]], mask=[[0, 1, 0], [1, 0, 1]], dtype=float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) assert_equal(test.mask, control.mask) # Keeping the initial shape ndtype = [('a', int), ('b', float)] a = np.array([[(1, 1), ], [(2, 2), ]], dtype=ndtype) test = flatten_structured_array(a) control = np.array([[[1., 1.], ], [[2., 2.], ]], dtype=float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) def test_void0d(self): # Test creating a mvoid object ndtype = [('a', int), ('b', int)] a = np.array([(1, 2,)], dtype=ndtype)[0] f = mvoid(a) assert_(isinstance(f, mvoid)) a = masked_array([(1, 2)], mask=[(1, 0)], dtype=ndtype)[0] assert_(isinstance(a, mvoid)) a = masked_array([(1, 2), (1, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) f = mvoid(a._data[0], a._mask[0]) assert_(isinstance(f, mvoid)) def test_mvoid_getitem(self): # Test mvoid.__getitem__ ndtype = [('a', int), ('b', int)] a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)], dtype=ndtype) # w/o mask f = a[0] assert_(isinstance(f, mvoid)) assert_equal((f[0], f['a']), (1, 1)) assert_equal(f['b'], 2) # w/ mask f = a[1] assert_(isinstance(f, mvoid)) assert_(f[0] is masked) assert_(f['a'] is masked) assert_equal(f[1], 4) # exotic dtype A = masked_array(data=[([0,1],)], mask=[([True, False],)], dtype=[("A", ">i2", (2,))]) assert_equal(A[0]["A"], A["A"][0]) assert_equal(A[0]["A"], masked_array(data=[0, 1], mask=[True, False], dtype=">i2")) def test_mvoid_iter(self): # Test iteration on __getitem__ ndtype = [('a', int), ('b', int)] a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)], dtype=ndtype) # w/o mask assert_equal(list(a[0]), [1, 2]) # w/ mask assert_equal(list(a[1]), [masked, 4]) def test_mvoid_print(self): # Test printing a mvoid mx = array([(1, 1), (2, 2)], dtype=[('a', int), ('b', int)]) assert_equal(str(mx[0]), "(1, 1)") mx['b'][0] = masked ini_display = masked_print_option._display masked_print_option.set_display("-X-") try: assert_equal(str(mx[0]), "(1, -X-)") assert_equal(repr(mx[0]), "(1, -X-)") finally: masked_print_option.set_display(ini_display) # also check if there are object datatypes (see gh-7493) mx = array([(1,), (2,)], dtype=[('a', 'O')]) assert_equal(str(mx[0]), "(1,)") def test_mvoid_multidim_print(self): # regression test for gh-6019 t_ma = masked_array(data = [([1, 2, 3],)], mask = [([False, True, False],)], fill_value = ([999999, 999999, 999999],), dtype = [('a', '<i4', (3,))]) assert_(str(t_ma[0]) == "([1, --, 3],)") assert_(repr(t_ma[0]) == "([1, --, 3],)") # additional tests with structured arrays t_2d = masked_array(data = [([[1, 2], [3,4]],)], mask = [([[False, True], [True, False]],)], dtype = [('a', '<i4', (2,2))]) assert_(str(t_2d[0]) == "([[1, --], [--, 4]],)") assert_(repr(t_2d[0]) == "([[1, --], [--, 4]],)") t_0d = masked_array(data = [(1,2)], mask = [(True,False)], dtype = [('a', '<i4'), ('b', '<i4')]) assert_(str(t_0d[0]) == "(--, 2)") assert_(repr(t_0d[0]) == "(--, 2)") t_2d = masked_array(data = [([[1, 2], [3,4]], 1)], mask = [([[False, True], [True, False]], False)], dtype = [('a', '<i4', (2,2)), ('b', float)]) assert_(str(t_2d[0]) == "([[1, --], [--, 4]], 1.0)") assert_(repr(t_2d[0]) == "([[1, --], [--, 4]], 1.0)") t_ne = masked_array(data=[(1, (1, 1))], mask=[(True, (True, False))], dtype = [('a', '<i4'), ('b', 'i4,i4')]) assert_(str(t_ne[0]) == "(--, (--, 1))") assert_(repr(t_ne[0]) == "(--, (--, 1))") def test_object_with_array(self): mx1 = masked_array([1.], mask=[True]) mx2 = masked_array([1., 2.]) mx = masked_array([mx1, mx2], mask=[False, True], dtype=object) assert_(mx[0] is mx1) assert_(mx[1] is not mx2) assert_(np.all(mx[1].data == mx2.data)) assert_(np.all(mx[1].mask)) # check that we return a view. mx[1].data[0] = 0. assert_(mx2[0] == 0.) class TestMaskedArrayArithmetic: # Base test class for MaskedArrays. def setup_method(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore') def teardown_method(self): np.seterr(**self.err_status) def test_basic_arithmetic(self): # Test of basic arithmetic. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d a2d = array([[1, 2], [0, 4]]) a2dm = masked_array(a2d, [[0, 0], [1, 0]]) assert_equal(a2d * a2d, a2d * a2dm) assert_equal(a2d + a2d, a2d + a2dm) assert_equal(a2d - a2d, a2d - a2dm) for s in [(12,), (4, 3), (2, 6)]: x = x.reshape(s) y = y.reshape(s) xm = xm.reshape(s) ym = ym.reshape(s) xf = xf.reshape(s) assert_equal(-x, -xm) assert_equal(x + y, xm + ym) assert_equal(x - y, xm - ym) assert_equal(x * y, xm * ym) assert_equal(x / y, xm / ym) assert_equal(a10 + y, a10 + ym) assert_equal(a10 - y, a10 - ym) assert_equal(a10 * y, a10 * ym) assert_equal(a10 / y, a10 / ym) assert_equal(x + a10, xm + a10) assert_equal(x - a10, xm - a10) assert_equal(x * a10, xm * a10) assert_equal(x / a10, xm / a10) assert_equal(x ** 2, xm ** 2) assert_equal(abs(x) ** 2.5, abs(xm) ** 2.5) assert_equal(x ** y, xm ** ym) assert_equal(np.add(x, y), add(xm, ym)) assert_equal(np.subtract(x, y), subtract(xm, ym)) assert_equal(np.multiply(x, y), multiply(xm, ym)) assert_equal(np.divide(x, y), divide(xm, ym)) def test_divide_on_different_shapes(self): x = arange(6, dtype=float) x.shape = (2, 3) y = arange(3, dtype=float) z = x / y assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]]) assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]]) z = x / y[None,:] assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]]) assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]]) y = arange(2, dtype=float) z = x / y[:, None] assert_equal(z, [[-1., -1., -1.], [3., 4., 5.]]) assert_equal(z.mask, [[1, 1, 1], [0, 0, 0]]) def test_mixed_arithmetic(self): # Tests mixed arithmetic. na = np.array([1]) ma = array([1]) assert_(isinstance(na + ma, MaskedArray)) assert_(isinstance(ma + na, MaskedArray)) def test_limits_arithmetic(self): tiny = np.finfo(float).tiny a = array([tiny, 1. / tiny, 0.]) assert_equal(getmaskarray(a / 2), [0, 0, 0]) assert_equal(getmaskarray(2 / a), [1, 0, 1]) def test_masked_singleton_arithmetic(self): # Tests some scalar arithmetic on MaskedArrays. # Masked singleton should remain masked no matter what xm = array(0, mask=1) assert_((1 / array(0)).mask) assert_((1 + xm).mask) assert_((-xm).mask) assert_(maximum(xm, xm).mask) assert_(minimum(xm, xm).mask) def test_masked_singleton_equality(self): # Tests (in)equality on masked singleton a = array([1, 2, 3], mask=[1, 1, 0]) assert_((a[0] == 0) is masked) assert_((a[0] != 0) is masked) assert_equal((a[-1] == 0), False) assert_equal((a[-1] != 0), True) def test_arithmetic_with_masked_singleton(self): # Checks that there's no collapsing to masked x = masked_array([1, 2]) y = x * masked assert_equal(y.shape, x.shape) assert_equal(y._mask, [True, True]) y = x[0] * masked assert_(y is masked) y = x + masked assert_equal(y.shape, x.shape) assert_equal(y._mask, [True, True]) def test_arithmetic_with_masked_singleton_on_1d_singleton(self): # Check that we're not losing the shape of a singleton x = masked_array([1, ]) y = x + masked assert_equal(y.shape, x.shape) assert_equal(y.mask, [True, ]) def test_scalar_arithmetic(self): x = array(0, mask=0) assert_equal(x.filled().ctypes.data, x.ctypes.data) # Make sure we don't lose the shape in some circumstances xm = array((0, 0)) / 0. assert_equal(xm.shape, (2,)) assert_equal(xm.mask, [1, 1]) def test_basic_ufuncs(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.cos(x), cos(xm)) assert_equal(np.cosh(x), cosh(xm)) assert_equal(np.sin(x), sin(xm)) assert_equal(np.sinh(x), sinh(xm)) assert_equal(np.tan(x), tan(xm)) assert_equal(np.tanh(x), tanh(xm)) assert_equal(np.sqrt(abs(x)), sqrt(xm)) assert_equal(np.log(abs(x)), log(xm)) assert_equal(np.log10(abs(x)), log10(xm)) assert_equal(np.exp(x), exp(xm)) assert_equal(np.arcsin(z), arcsin(zm)) assert_equal(np.arccos(z), arccos(zm)) assert_equal(np.arctan(z), arctan(zm)) assert_equal(np.arctan2(x, y), arctan2(xm, ym)) assert_equal(np.absolute(x), absolute(xm)) assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym)) assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True)) assert_equal(np.equal(x, y), equal(xm, ym)) assert_equal(np.not_equal(x, y), not_equal(xm, ym)) assert_equal(np.less(x, y), less(xm, ym)) assert_equal(np.greater(x, y), greater(xm, ym)) assert_equal(np.less_equal(x, y), less_equal(xm, ym)) assert_equal(np.greater_equal(x, y), greater_equal(xm, ym)) assert_equal(np.conjugate(x), conjugate(xm)) def test_count_func(self): # Tests count assert_equal(1, count(1)) assert_equal(0, array(1, mask=[1])) ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) res = count(ott) assert_(res.dtype.type is np.intp) assert_equal(3, res) ott = ott.reshape((2, 2)) res = count(ott) assert_(res.dtype.type is np.intp) assert_equal(3, res) res = count(ott, 0) assert_(isinstance(res, ndarray)) assert_equal([1, 2], res) assert_(getmask(res) is nomask) ott = array([0., 1., 2., 3.]) res = count(ott, 0) assert_(isinstance(res, ndarray)) assert_(res.dtype.type is np.intp) assert_raises(np.AxisError, ott.count, axis=1) def test_count_on_python_builtins(self): # Tests count works on python builtins (issue#8019) assert_equal(3, count([1,2,3])) assert_equal(2, count((1,2))) def test_minmax_func(self): # Tests minimum and maximum. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # max doesn't work if shaped xr = np.ravel(x) xmr = ravel(xm) # following are true because of careful selection of data assert_equal(max(xr), maximum.reduce(xmr)) assert_equal(min(xr), minimum.reduce(xmr)) assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3]) assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9]) x = arange(5) y = arange(5) - 2 x[3] = masked y[0] = masked assert_equal(minimum(x, y), where(less(x, y), x, y)) assert_equal(maximum(x, y), where(greater(x, y), x, y)) assert_(minimum.reduce(x) == 0) assert_(maximum.reduce(x) == 4) x = arange(4).reshape(2, 2) x[-1, -1] = masked assert_equal(maximum.reduce(x, axis=None), 2) def test_minimummaximum_func(self): a = np.ones((2, 2)) aminimum = minimum(a, a) assert_(isinstance(aminimum, MaskedArray)) assert_equal(aminimum, np.minimum(a, a)) aminimum = minimum.outer(a, a) assert_(isinstance(aminimum, MaskedArray)) assert_equal(aminimum, np.minimum.outer(a, a)) amaximum = maximum(a, a) assert_(isinstance(amaximum, MaskedArray)) assert_equal(amaximum, np.maximum(a, a)) amaximum = maximum.outer(a, a) assert_(isinstance(amaximum, MaskedArray)) assert_equal(amaximum, np.maximum.outer(a, a)) def test_minmax_reduce(self): # Test np.min/maximum.reduce on array w/ full False mask a = array([1, 2, 3], mask=[False, False, False]) b = np.maximum.reduce(a) assert_equal(b, 3) def test_minmax_funcs_with_output(self): # Tests the min/max functions with explicit outputs mask = np.random.rand(12).round() xm = array(np.random.uniform(0, 10, 12), mask=mask) xm.shape = (3, 4) for funcname in ('min', 'max'): # Initialize npfunc = getattr(np, funcname) mafunc = getattr(numpy.ma.core, funcname) # Use the np version nout = np.empty((4,), dtype=int) try: result = npfunc(xm, axis=0, out=nout) except MaskError: pass nout = np.empty((4,), dtype=float) result = npfunc(xm, axis=0, out=nout) assert_(result is nout) # Use the ma version nout.fill(-999) result = mafunc(xm, axis=0, out=nout) assert_(result is nout) def test_minmax_methods(self): # Additional tests on max/min (_, _, _, _, _, xm, _, _, _, _) = self.d xm.shape = (xm.size,) assert_equal(xm.max(), 10) assert_(xm[0].max() is masked) assert_(xm[0].max(0) is masked) assert_(xm[0].max(-1) is masked) assert_equal(xm.min(), -10.) assert_(xm[0].min() is masked) assert_(xm[0].min(0) is masked) assert_(xm[0].min(-1) is masked) assert_equal(xm.ptp(), 20.) assert_(xm[0].ptp() is masked) assert_(xm[0].ptp(0) is masked) assert_(xm[0].ptp(-1) is masked) x = array([1, 2, 3], mask=True) assert_(x.min() is masked) assert_(x.max() is masked) assert_(x.ptp() is masked) def test_minmax_dtypes(self): # Additional tests on max/min for non-standard float and complex dtypes x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) a10 = 10. an10 = -10.0 m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] xm = masked_array(x, mask=m1) xm.set_fill_value(1e+20) float_dtypes = [np.half, np.single, np.double, np.longdouble, np.cfloat, np.cdouble, np.clongdouble] for float_dtype in float_dtypes: assert_equal(masked_array(x, mask=m1, dtype=float_dtype).max(), float_dtype(a10)) assert_equal(masked_array(x, mask=m1, dtype=float_dtype).min(), float_dtype(an10)) assert_equal(xm.min(), an10) assert_equal(xm.max(), a10) # Non-complex type only test for float_dtype in float_dtypes[:4]: assert_equal(masked_array(x, mask=m1, dtype=float_dtype).max(), float_dtype(a10)) assert_equal(masked_array(x, mask=m1, dtype=float_dtype).min(), float_dtype(an10)) # Complex types only test for float_dtype in float_dtypes[-3:]: ym = masked_array([1e20+1j, 1e20-2j, 1e20-1j], mask=[0, 1, 0], dtype=float_dtype) assert_equal(ym.min(), float_dtype(1e20-1j)) assert_equal(ym.max(), float_dtype(1e20+1j)) zm = masked_array([np.inf+2j, np.inf+3j, -np.inf-1j], mask=[0, 1, 0], dtype=float_dtype) assert_equal(zm.min(), float_dtype(-np.inf-1j)) assert_equal(zm.max(), float_dtype(np.inf+2j)) cmax = np.inf - 1j * np.finfo(np.float64).max assert masked_array([-cmax, 0], mask=[0, 1]).max() == -cmax assert masked_array([cmax, 0], mask=[0, 1]).min() == cmax def test_addsumprod(self): # Tests add, sum, product. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.add.reduce(x), add.reduce(x)) assert_equal(np.add.accumulate(x), add.accumulate(x)) assert_equal(4, sum(array(4), axis=0)) assert_equal(4, sum(array(4), axis=0)) assert_equal(np.sum(x, axis=0), sum(x, axis=0)) assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)) assert_equal(np.sum(x, 0), sum(x, 0)) assert_equal(np.product(x, axis=0), product(x, axis=0)) assert_equal(np.product(x, 0), product(x, 0)) assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0)) s = (3, 4) x.shape = y.shape = xm.shape = ym.shape = s if len(s) > 1: assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1)) assert_equal(np.add.reduce(x, 1), add.reduce(x, 1)) assert_equal(np.sum(x, 1), sum(x, 1)) assert_equal(np.product(x, 1), product(x, 1)) def test_binops_d2D(self): # Test binary operations on 2D data a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]]) b = array([[2., 3.], [4., 5.], [6., 7.]]) test = a * b control = array([[2., 3.], [2., 2.], [3., 3.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b * a control = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) a = array([[1.], [2.], [3.]]) b = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [0, 0], [0, 1]]) test = a * b control = array([[2, 3], [8, 10], [18, 3]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b * a control = array([[2, 3], [8, 10], [18, 7]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) def test_domained_binops_d2D(self): # Test domained binary operations on 2D data a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]]) b = array([[2., 3.], [4., 5.], [6., 7.]]) test = a / b control = array([[1. / 2., 1. / 3.], [2., 2.], [3., 3.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b / a control = array([[2. / 1., 3. / 1.], [4., 5.], [6., 7.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) a = array([[1.], [2.], [3.]]) b = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [0, 0], [0, 1]]) test = a / b control = array([[1. / 2, 1. / 3], [2. / 4, 2. / 5], [3. / 6, 3]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b / a control = array([[2 / 1., 3 / 1.], [4 / 2., 5 / 2.], [6 / 3., 7]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) def test_noshrinking(self): # Check that we don't shrink a mask when not wanted # Binary operations a = masked_array([1., 2., 3.], mask=[False, False, False], shrink=False) b = a + 1 assert_equal(b.mask, [0, 0, 0]) # In place binary operation a += 1 assert_equal(a.mask, [0, 0, 0]) # Domained binary operation b = a / 1. assert_equal(b.mask, [0, 0, 0]) # In place binary operation a /= 1. assert_equal(a.mask, [0, 0, 0]) def test_ufunc_nomask(self): # check the case ufuncs should set the mask to false m = np.ma.array([1]) # check we don't get array([False], dtype=bool) assert_equal(np.true_divide(m, 5).mask.shape, ()) def test_noshink_on_creation(self): # Check that the mask is not shrunk on array creation when not wanted a = np.ma.masked_values([1., 2.5, 3.1], 1.5, shrink=False) assert_equal(a.mask, [0, 0, 0]) def test_mod(self): # Tests mod (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(mod(x, y), mod(xm, ym)) test = mod(ym, xm) assert_equal(test, np.mod(ym, xm)) assert_equal(test.mask, mask_or(xm.mask, ym.mask)) test = mod(xm, ym) assert_equal(test, np.mod(xm, ym)) assert_equal(test.mask, mask_or(mask_or(xm.mask, ym.mask), (ym == 0))) def test_TakeTransposeInnerOuter(self): # Test of take, transpose, inner, outer products x = arange(24) y = np.arange(24) x[5:6] = masked x = x.reshape(2, 3, 4) y = y.reshape(2, 3, 4) assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))) assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)) assert_equal(np.inner(filled(x, 0), filled(y, 0)), inner(x, y)) assert_equal(np.outer(filled(x, 0), filled(y, 0)), outer(x, y)) y = array(['abc', 1, 'def', 2, 3], object) y[2] = masked t = take(y, [0, 3, 4]) assert_(t[0] == 'abc') assert_(t[1] == 2) assert_(t[2] == 3) def test_imag_real(self): # Check complex xx = array([1 + 10j, 20 + 2j], mask=[1, 0]) assert_equal(xx.imag, [10, 2]) assert_equal(xx.imag.filled(), [1e+20, 2]) assert_equal(xx.imag.dtype, xx._data.imag.dtype) assert_equal(xx.real, [1, 20]) assert_equal(xx.real.filled(), [1e+20, 20]) assert_equal(xx.real.dtype, xx._data.real.dtype) def test_methods_with_output(self): xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked funclist = ('sum', 'prod', 'var', 'std', 'max', 'min', 'ptp', 'mean',) for funcname in funclist: npfunc = getattr(np, funcname) xmmeth = getattr(xm, funcname) # A ndarray as explicit input output = np.empty(4, dtype=float) output.fill(-9999) result = npfunc(xm, axis=0, out=output) # ... the result should be the given output assert_(result is output) assert_equal(result, xmmeth(axis=0, out=output)) output = empty(4, dtype=int) result = xmmeth(axis=0, out=output) assert_(result is output) assert_(output[0] is masked) def test_eq_on_structured(self): # Test the equality of structured arrays ndtype = [('A', int), ('B', int)] a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype) test = (a == a) assert_equal(test.data, [True, True]) assert_equal(test.mask, [False, False]) assert_(test.fill_value == True) test = (a == a[0]) assert_equal(test.data, [True, False]) assert_equal(test.mask, [False, False]) assert_(test.fill_value == True) b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) test = (a == b) assert_equal(test.data, [False, True]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) test = (a[0] == b) assert_equal(test.data, [False, False]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = (a == b) assert_equal(test.data, [True, True]) assert_equal(test.mask, [False, False]) assert_(test.fill_value == True) # complicated dtype, 2-dimensional array. ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] a = array([[(1, (1, 1)), (2, (2, 2))], [(3, (3, 3)), (4, (4, 4))]], mask=[[(0, (1, 0)), (0, (0, 1))], [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype) test = (a[0, 0] == a) assert_equal(test.data, [[True, False], [False, False]]) assert_equal(test.mask, [[False, False], [False, True]]) assert_(test.fill_value == True) def test_ne_on_structured(self): # Test the equality of structured arrays ndtype = [('A', int), ('B', int)] a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype) test = (a != a) assert_equal(test.data, [False, False]) assert_equal(test.mask, [False, False]) assert_(test.fill_value == True) test = (a != a[0]) assert_equal(test.data, [False, True]) assert_equal(test.mask, [False, False]) assert_(test.fill_value == True) b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) test = (a != b) assert_equal(test.data, [True, False]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) test = (a[0] != b) assert_equal(test.data, [True, True]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = (a != b) assert_equal(test.data, [False, False]) assert_equal(test.mask, [False, False]) assert_(test.fill_value == True) # complicated dtype, 2-dimensional array. ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] a = array([[(1, (1, 1)), (2, (2, 2))], [(3, (3, 3)), (4, (4, 4))]], mask=[[(0, (1, 0)), (0, (0, 1))], [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype) test = (a[0, 0] != a) assert_equal(test.data, [[False, True], [True, True]]) assert_equal(test.mask, [[False, False], [False, True]]) assert_(test.fill_value == True) def test_eq_ne_structured_extra(self): # ensure simple examples are symmetric and make sense. # from https://github.com/numpy/numpy/pull/8590#discussion_r101126465 dt = np.dtype('i4,i4') for m1 in (mvoid((1, 2), mask=(0, 0), dtype=dt), mvoid((1, 2), mask=(0, 1), dtype=dt), mvoid((1, 2), mask=(1, 0), dtype=dt), mvoid((1, 2), mask=(1, 1), dtype=dt)): ma1 = m1.view(MaskedArray) r1 = ma1.view('2i4') for m2 in (np.array((1, 1), dtype=dt), mvoid((1, 1), dtype=dt), mvoid((1, 0), mask=(0, 1), dtype=dt), mvoid((3, 2), mask=(0, 1), dtype=dt)): ma2 = m2.view(MaskedArray) r2 = ma2.view('2i4') eq_expected = (r1 == r2).all() assert_equal(m1 == m2, eq_expected) assert_equal(m2 == m1, eq_expected) assert_equal(ma1 == m2, eq_expected) assert_equal(m1 == ma2, eq_expected) assert_equal(ma1 == ma2, eq_expected) # Also check it is the same if we do it element by element. el_by_el = [m1[name] == m2[name] for name in dt.names] assert_equal(array(el_by_el, dtype=bool).all(), eq_expected) ne_expected = (r1 != r2).any() assert_equal(m1 != m2, ne_expected) assert_equal(m2 != m1, ne_expected) assert_equal(ma1 != m2, ne_expected) assert_equal(m1 != ma2, ne_expected) assert_equal(ma1 != ma2, ne_expected) el_by_el = [m1[name] != m2[name] for name in dt.names] assert_equal(array(el_by_el, dtype=bool).any(), ne_expected) @pytest.mark.parametrize('dt', ['S', 'U']) @pytest.mark.parametrize('fill', [None, 'A']) def test_eq_for_strings(self, dt, fill): # Test the equality of structured arrays a = array(['a', 'b'], dtype=dt, mask=[0, 1], fill_value=fill) test = (a == a) assert_equal(test.data, [True, True]) assert_equal(test.mask, [False, True]) assert_(test.fill_value == True) test = (a == a[0]) assert_equal(test.data, [True, False]) assert_equal(test.mask, [False, True]) assert_(test.fill_value == True) b = array(['a', 'b'], dtype=dt, mask=[1, 0], fill_value=fill) test = (a == b) assert_equal(test.data, [False, False]) assert_equal(test.mask, [True, True]) assert_(test.fill_value == True) test = (a[0] == b) assert_equal(test.data, [False, False]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) test = (b == a[0]) assert_equal(test.data, [False, False]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) @pytest.mark.parametrize('dt', ['S', 'U']) @pytest.mark.parametrize('fill', [None, 'A']) def test_ne_for_strings(self, dt, fill): # Test the equality of structured arrays a = array(['a', 'b'], dtype=dt, mask=[0, 1], fill_value=fill) test = (a != a) assert_equal(test.data, [False, False]) assert_equal(test.mask, [False, True]) assert_(test.fill_value == True) test = (a != a[0]) assert_equal(test.data, [False, True]) assert_equal(test.mask, [False, True]) assert_(test.fill_value == True) b = array(['a', 'b'], dtype=dt, mask=[1, 0], fill_value=fill) test = (a != b) assert_equal(test.data, [True, True]) assert_equal(test.mask, [True, True]) assert_(test.fill_value == True) test = (a[0] != b) assert_equal(test.data, [True, True]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) test = (b != a[0]) assert_equal(test.data, [True, True]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) @pytest.mark.parametrize('dt1', num_dts, ids=num_ids) @pytest.mark.parametrize('dt2', num_dts, ids=num_ids) @pytest.mark.parametrize('fill', [None, 1]) def test_eq_for_numeric(self, dt1, dt2, fill): # Test the equality of structured arrays a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill) test = (a == a) assert_equal(test.data, [True, True]) assert_equal(test.mask, [False, True]) assert_(test.fill_value == True) test = (a == a[0]) assert_equal(test.data, [True, False]) assert_equal(test.mask, [False, True]) assert_(test.fill_value == True) b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill) test = (a == b) assert_equal(test.data, [False, False]) assert_equal(test.mask, [True, True]) assert_(test.fill_value == True) test = (a[0] == b) assert_equal(test.data, [False, False]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) test = (b == a[0]) assert_equal(test.data, [False, False]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) @pytest.mark.parametrize('dt1', num_dts, ids=num_ids) @pytest.mark.parametrize('dt2', num_dts, ids=num_ids) @pytest.mark.parametrize('fill', [None, 1]) def test_ne_for_numeric(self, dt1, dt2, fill): # Test the equality of structured arrays a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill) test = (a != a) assert_equal(test.data, [False, False]) assert_equal(test.mask, [False, True]) assert_(test.fill_value == True) test = (a != a[0]) assert_equal(test.data, [False, True]) assert_equal(test.mask, [False, True]) assert_(test.fill_value == True) b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill) test = (a != b) assert_equal(test.data, [True, True]) assert_equal(test.mask, [True, True]) assert_(test.fill_value == True) test = (a[0] != b) assert_equal(test.data, [True, True]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) test = (b != a[0]) assert_equal(test.data, [True, True]) assert_equal(test.mask, [True, False]) assert_(test.fill_value == True) def test_eq_with_None(self): # Really, comparisons with None should not be done, but check them # anyway. Note that pep8 will flag these tests. # Deprecation is in place for arrays, and when it happens this # test will fail (and have to be changed accordingly). # With partial mask with suppress_warnings() as sup: sup.filter(FutureWarning, "Comparison to `None`") a = array([None, 1], mask=[0, 1]) assert_equal(a == None, array([True, False], mask=[0, 1])) assert_equal(a.data == None, [True, False]) assert_equal(a != None, array([False, True], mask=[0, 1])) # With nomask a = array([None, 1], mask=False) assert_equal(a == None, [True, False]) assert_equal(a != None, [False, True]) # With complete mask a = array([None, 2], mask=True) assert_equal(a == None, array([False, True], mask=True)) assert_equal(a != None, array([True, False], mask=True)) # Fully masked, even comparison to None should return "masked" a = masked assert_equal(a == None, masked) def test_eq_with_scalar(self): a = array(1) assert_equal(a == 1, True) assert_equal(a == 0, False) assert_equal(a != 1, False) assert_equal(a != 0, True) b = array(1, mask=True) assert_equal(b == 0, masked) assert_equal(b == 1, masked) assert_equal(b != 0, masked) assert_equal(b != 1, masked) def test_eq_different_dimensions(self): m1 = array([1, 1], mask=[0, 1]) # test comparison with both masked and regular arrays. for m2 in (array([[0, 1], [1, 2]]), np.array([[0, 1], [1, 2]])): test = (m1 == m2) assert_equal(test.data, [[False, False], [True, False]]) assert_equal(test.mask, [[False, True], [False, True]]) def test_numpyarithmetic(self): # Check that the mask is not back-propagated when using numpy functions a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1]) control = masked_array([np.nan, np.nan, 0, np.log(2), -1], mask=[1, 1, 0, 0, 1]) test = log(a) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(a.mask, [0, 0, 0, 0, 1]) test = np.log(a) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(a.mask, [0, 0, 0, 0, 1]) class TestMaskedArrayAttributes: def test_keepmask(self): # Tests the keep mask flag x = masked_array([1, 2, 3], mask=[1, 0, 0]) mx = masked_array(x) assert_equal(mx.mask, x.mask) mx = masked_array(x, mask=[0, 1, 0], keep_mask=False) assert_equal(mx.mask, [0, 1, 0]) mx = masked_array(x, mask=[0, 1, 0], keep_mask=True) assert_equal(mx.mask, [1, 1, 0]) # We default to true mx = masked_array(x, mask=[0, 1, 0]) assert_equal(mx.mask, [1, 1, 0]) def test_hardmask(self): # Test hard_mask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d, mask=m, hard_mask=True) # We need to copy, to avoid updating d in xh ! xs = array(d, mask=m, hard_mask=False, copy=True) xh[[1, 4]] = [10, 40] xs[[1, 4]] = [10, 40] assert_equal(xh._data, [0, 10, 2, 3, 4]) assert_equal(xs._data, [0, 10, 2, 3, 40]) assert_equal(xs.mask, [0, 0, 0, 1, 0]) assert_(xh._hardmask) assert_(not xs._hardmask) xh[1:4] = [10, 20, 30] xs[1:4] = [10, 20, 30] assert_equal(xh._data, [0, 10, 20, 3, 4]) assert_equal(xs._data, [0, 10, 20, 30, 40]) assert_equal(xs.mask, nomask) xh[0] = masked xs[0] = masked assert_equal(xh.mask, [1, 0, 0, 1, 1]) assert_equal(xs.mask, [1, 0, 0, 0, 0]) xh[:] = 1 xs[:] = 1 assert_equal(xh._data, [0, 1, 1, 3, 4]) assert_equal(xs._data, [1, 1, 1, 1, 1]) assert_equal(xh.mask, [1, 0, 0, 1, 1]) assert_equal(xs.mask, nomask) # Switch to soft mask xh.soften_mask() xh[:] = arange(5) assert_equal(xh._data, [0, 1, 2, 3, 4]) assert_equal(xh.mask, nomask) # Switch back to hard mask xh.harden_mask() xh[xh < 3] = masked assert_equal(xh._data, [0, 1, 2, 3, 4]) assert_equal(xh._mask, [1, 1, 1, 0, 0]) xh[filled(xh > 1, False)] = 5 assert_equal(xh._data, [0, 1, 2, 5, 5]) assert_equal(xh._mask, [1, 1, 1, 0, 0]) xh = array([[1, 2], [3, 4]], mask=[[1, 0], [0, 0]], hard_mask=True) xh[0] = 0 assert_equal(xh._data, [[1, 0], [3, 4]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) xh[-1, -1] = 5 assert_equal(xh._data, [[1, 0], [3, 5]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) xh[filled(xh < 5, False)] = 2 assert_equal(xh._data, [[1, 2], [2, 5]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) def test_hardmask_again(self): # Another test of hardmask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d, mask=m, hard_mask=True) xh[4:5] = 999 xh[0:1] = 999 assert_equal(xh._data, [999, 1, 2, 3, 4]) def test_hardmask_oncemore_yay(self): # OK, yet another test of hardmask # Make sure that harden_mask/soften_mask//unshare_mask returns self a = array([1, 2, 3], mask=[1, 0, 0]) b = a.harden_mask() assert_equal(a, b) b[0] = 0 assert_equal(a, b) assert_equal(b, array([1, 2, 3], mask=[1, 0, 0])) a = b.soften_mask() a[0] = 0 assert_equal(a, b) assert_equal(b, array([0, 2, 3], mask=[0, 0, 0])) def test_smallmask(self): # Checks the behaviour of _smallmask a = arange(10) a[1] = masked a[1] = 1 assert_equal(a._mask, nomask) a = arange(10) a._smallmask = False a[1] = masked a[1] = 1 assert_equal(a._mask, zeros(10)) def test_shrink_mask(self): # Tests .shrink_mask() a = array([1, 2, 3], mask=[0, 0, 0]) b = a.shrink_mask() assert_equal(a, b) assert_equal(a.mask, nomask) # Mask cannot be shrunk on structured types, so is a no-op a = np.ma.array([(1, 2.0)], [('a', int), ('b', float)]) b = a.copy() a.shrink_mask() assert_equal(a.mask, b.mask) def test_flat(self): # Test that flat can return all types of items [#4585, #4615] # test 2-D record array # ... on structured array w/ masked records x = array([[(1, 1.1, 'one'), (2, 2.2, 'two'), (3, 3.3, 'thr')], [(4, 4.4, 'fou'), (5, 5.5, 'fiv'), (6, 6.6, 'six')]], dtype=[('a', int), ('b', float), ('c', '|S8')]) x['a'][0, 1] = masked x['b'][1, 0] = masked x['c'][0, 2] = masked x[-1, -1] = masked xflat = x.flat assert_equal(xflat[0], x[0, 0]) assert_equal(xflat[1], x[0, 1]) assert_equal(xflat[2], x[0, 2]) assert_equal(xflat[:3], x[0]) assert_equal(xflat[3], x[1, 0]) assert_equal(xflat[4], x[1, 1]) assert_equal(xflat[5], x[1, 2]) assert_equal(xflat[3:], x[1]) assert_equal(xflat[-1], x[-1, -1]) i = 0 j = 0 for xf in xflat: assert_equal(xf, x[j, i]) i += 1 if i >= x.shape[-1]: i = 0 j += 1 def test_assign_dtype(self): # check that the mask's dtype is updated when dtype is changed a = np.zeros(4, dtype='f4,i4') m = np.ma.array(a) m.dtype = np.dtype('f4') repr(m) # raises? assert_equal(m.dtype, np.dtype('f4')) # check that dtype changes that change shape of mask too much # are not allowed def assign(): m = np.ma.array(a) m.dtype = np.dtype('f8') assert_raises(ValueError, assign) b = a.view(dtype='f4', type=np.ma.MaskedArray) # raises? assert_equal(b.dtype, np.dtype('f4')) # check that nomask is preserved a = np.zeros(4, dtype='f4') m = np.ma.array(a) m.dtype = np.dtype('f4,i4') assert_equal(m.dtype, np.dtype('f4,i4')) assert_equal(m._mask, np.ma.nomask) class TestFillingValues: def test_check_on_scalar(self): # Test _check_fill_value set to valid and invalid values _check_fill_value = np.ma.core._check_fill_value fval = _check_fill_value(0, int) assert_equal(fval, 0) fval = _check_fill_value(None, int) assert_equal(fval, default_fill_value(0)) fval = _check_fill_value(0, "|S3") assert_equal(fval, b"0") fval = _check_fill_value(None, "|S3") assert_equal(fval, default_fill_value(b"camelot!")) assert_raises(TypeError, _check_fill_value, 1e+20, int) assert_raises(TypeError, _check_fill_value, 'stuff', int) def test_check_on_fields(self): # Tests _check_fill_value with records _check_fill_value = np.ma.core._check_fill_value ndtype = [('a', int), ('b', float), ('c', "|S3")] # A check on a list should return a single record fval = _check_fill_value([-999, -12345678.9, "???"], ndtype) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) # A check on None should output the defaults fval = _check_fill_value(None, ndtype) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), [default_fill_value(0), default_fill_value(0.), asbytes(default_fill_value("0"))]) #.....Using a structured type as fill_value should work fill_val = np.array((-999, -12345678.9, "???"), dtype=ndtype) fval = _check_fill_value(fill_val, ndtype) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) #.....Using a flexible type w/ a different type shouldn't matter # BEHAVIOR in 1.5 and earlier, and 1.13 and later: match structured # types by position fill_val = np.array((-999, -12345678.9, "???"), dtype=[("A", int), ("B", float), ("C", "|S3")]) fval = _check_fill_value(fill_val, ndtype) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) #.....Using an object-array shouldn't matter either fill_val = np.ndarray(shape=(1,), dtype=object) fill_val[0] = (-999, -12345678.9, b"???") fval = _check_fill_value(fill_val, object) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) # NOTE: This test was never run properly as "fill_value" rather than # "fill_val" was assigned. Written properly, it fails. #fill_val = np.array((-999, -12345678.9, "???")) #fval = _check_fill_value(fill_val, ndtype) #assert_(isinstance(fval, ndarray)) #assert_equal(fval.item(), [-999, -12345678.9, b"???"]) #.....One-field-only flexible type should work as well ndtype = [("a", int)] fval = _check_fill_value(-999999999, ndtype) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), (-999999999,)) def test_fillvalue_conversion(self): # Tests the behavior of fill_value during conversion # We had a tailored comment to make sure special attributes are # properly dealt with a = array([b'3', b'4', b'5']) a._optinfo.update({'comment':"updated!"}) b = array(a, dtype=int) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0)) b = array(a, dtype=float) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0.)) b = a.astype(int) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0)) assert_equal(b._optinfo['comment'], "updated!") b = a.astype([('a', '|S3')]) assert_equal(b['a']._data, a._data) assert_equal(b['a'].fill_value, a.fill_value) def test_default_fill_value(self): # check all calling conventions f1 = default_fill_value(1.) f2 = default_fill_value(np.array(1.)) f3 = default_fill_value(np.array(1.).dtype) assert_equal(f1, f2) assert_equal(f1, f3) def test_default_fill_value_structured(self): fields = array([(1, 1, 1)], dtype=[('i', int), ('s', '|S8'), ('f', float)]) f1 = default_fill_value(fields) f2 = default_fill_value(fields.dtype) expected = np.array((default_fill_value(0), default_fill_value('0'), default_fill_value(0.)), dtype=fields.dtype) assert_equal(f1, expected) assert_equal(f2, expected) def test_default_fill_value_void(self): dt = np.dtype([('v', 'V7')]) f = default_fill_value(dt) assert_equal(f['v'], np.array(default_fill_value(dt['v']), dt['v'])) def test_fillvalue(self): # Yet more fun with the fill_value data = masked_array([1, 2, 3], fill_value=-999) series = data[[0, 2, 1]] assert_equal(series._fill_value, data._fill_value) mtype = [('f', float), ('s', '|S3')] x = array([(1, 'a'), (2, 'b'), (pi, 'pi')], dtype=mtype) x.fill_value = 999 assert_equal(x.fill_value.item(), [999., b'999']) assert_equal(x['f'].fill_value, 999) assert_equal(x['s'].fill_value, b'999') x.fill_value = (9, '???') assert_equal(x.fill_value.item(), (9, b'???')) assert_equal(x['f'].fill_value, 9) assert_equal(x['s'].fill_value, b'???') x = array([1, 2, 3.1]) x.fill_value = 999 assert_equal(np.asarray(x.fill_value).dtype, float) assert_equal(x.fill_value, 999.) assert_equal(x._fill_value, np.array(999.)) def test_subarray_fillvalue(self): # gh-10483 test multi-field index fill value fields = array([(1, 1, 1)], dtype=[('i', int), ('s', '|S8'), ('f', float)]) with suppress_warnings() as sup: sup.filter(FutureWarning, "Numpy has detected") subfields = fields[['i', 'f']] assert_equal(tuple(subfields.fill_value), (999999, 1.e+20)) # test comparison does not raise: subfields[1:] == subfields[:-1] def test_fillvalue_exotic_dtype(self): # Tests yet more exotic flexible dtypes _check_fill_value = np.ma.core._check_fill_value ndtype = [('i', int), ('s', '|S8'), ('f', float)] control = np.array((default_fill_value(0), default_fill_value('0'), default_fill_value(0.),), dtype=ndtype) assert_equal(_check_fill_value(None, ndtype), control) # The shape shouldn't matter ndtype = [('f0', float, (2, 2))] control = np.array((default_fill_value(0.),), dtype=[('f0', float)]).astype(ndtype) assert_equal(_check_fill_value(None, ndtype), control) control = np.array((0,), dtype=[('f0', float)]).astype(ndtype) assert_equal(_check_fill_value(0, ndtype), control) ndtype = np.dtype("int, (2,3)float, float") control = np.array((default_fill_value(0), default_fill_value(0.), default_fill_value(0.),), dtype="int, float, float").astype(ndtype) test = _check_fill_value(None, ndtype) assert_equal(test, control) control = np.array((0, 0, 0), dtype="int, float, float").astype(ndtype) assert_equal(_check_fill_value(0, ndtype), control) # but when indexing, fill value should become scalar not tuple # See issue #6723 M = masked_array(control) assert_equal(M["f1"].fill_value.ndim, 0) def test_fillvalue_datetime_timedelta(self): # Test default fillvalue for datetime64 and timedelta64 types. # See issue #4476, this would return '?' which would cause errors # elsewhere for timecode in ("as", "fs", "ps", "ns", "us", "ms", "s", "m", "h", "D", "W", "M", "Y"): control = numpy.datetime64("NaT", timecode) test = default_fill_value(numpy.dtype("<M8[" + timecode + "]")) np.testing.assert_equal(test, control) control = numpy.timedelta64("NaT", timecode) test = default_fill_value(numpy.dtype("<m8[" + timecode + "]")) np.testing.assert_equal(test, control) def test_extremum_fill_value(self): # Tests extremum fill values for flexible type. a = array([(1, (2, 3)), (4, (5, 6))], dtype=[('A', int), ('B', [('BA', int), ('BB', int)])]) test = a.fill_value assert_equal(test.dtype, a.dtype) assert_equal(test['A'], default_fill_value(a['A'])) assert_equal(test['B']['BA'], default_fill_value(a['B']['BA'])) assert_equal(test['B']['BB'], default_fill_value(a['B']['BB'])) test = minimum_fill_value(a) assert_equal(test.dtype, a.dtype) assert_equal(test[0], minimum_fill_value(a['A'])) assert_equal(test[1][0], minimum_fill_value(a['B']['BA'])) assert_equal(test[1][1], minimum_fill_value(a['B']['BB'])) assert_equal(test[1], minimum_fill_value(a['B'])) test = maximum_fill_value(a) assert_equal(test.dtype, a.dtype) assert_equal(test[0], maximum_fill_value(a['A'])) assert_equal(test[1][0], maximum_fill_value(a['B']['BA'])) assert_equal(test[1][1], maximum_fill_value(a['B']['BB'])) assert_equal(test[1], maximum_fill_value(a['B'])) def test_extremum_fill_value_subdtype(self): a = array(([2, 3, 4],), dtype=[('value', np.int8, 3)]) test = minimum_fill_value(a) assert_equal(test.dtype, a.dtype) assert_equal(test[0], np.full(3, minimum_fill_value(a['value']))) test = maximum_fill_value(a) assert_equal(test.dtype, a.dtype) assert_equal(test[0], np.full(3, maximum_fill_value(a['value']))) def test_fillvalue_individual_fields(self): # Test setting fill_value on individual fields ndtype = [('a', int), ('b', int)] # Explicit fill_value a = array(list(zip([1, 2, 3], [4, 5, 6])), fill_value=(-999, -999), dtype=ndtype) aa = a['a'] aa.set_fill_value(10) assert_equal(aa._fill_value, np.array(10)) assert_equal(tuple(a.fill_value), (10, -999)) a.fill_value['b'] = -10 assert_equal(tuple(a.fill_value), (10, -10)) # Implicit fill_value t = array(list(zip([1, 2, 3], [4, 5, 6])), dtype=ndtype) tt = t['a'] tt.set_fill_value(10) assert_equal(tt._fill_value, np.array(10)) assert_equal(tuple(t.fill_value), (10, default_fill_value(0))) def test_fillvalue_implicit_structured_array(self): # Check that fill_value is always defined for structured arrays ndtype = ('b', float) adtype = ('a', float) a = array([(1.,), (2.,)], mask=[(False,), (False,)], fill_value=(np.nan,), dtype=np.dtype([adtype])) b = empty(a.shape, dtype=[adtype, ndtype]) b['a'] = a['a'] b['a'].set_fill_value(a['a'].fill_value) f = b._fill_value[()] assert_(np.isnan(f[0])) assert_equal(f[-1], default_fill_value(1.)) def test_fillvalue_as_arguments(self): # Test adding a fill_value parameter to empty/ones/zeros a = empty(3, fill_value=999.) assert_equal(a.fill_value, 999.) a = ones(3, fill_value=999., dtype=float) assert_equal(a.fill_value, 999.) a = zeros(3, fill_value=0., dtype=complex) assert_equal(a.fill_value, 0.) a = identity(3, fill_value=0., dtype=complex) assert_equal(a.fill_value, 0.) def test_shape_argument(self): # Test that shape can be provides as an argument # GH issue 6106 a = empty(shape=(3, )) assert_equal(a.shape, (3, )) a = ones(shape=(3, ), dtype=float) assert_equal(a.shape, (3, )) a = zeros(shape=(3, ), dtype=complex) assert_equal(a.shape, (3, )) def test_fillvalue_in_view(self): # Test the behavior of fill_value in view # Create initial masked array x = array([1, 2, 3], fill_value=1, dtype=np.int64) # Check that fill_value is preserved by default y = x.view() assert_(y.fill_value == 1) # Check that fill_value is preserved if dtype is specified and the # dtype is an ndarray sub-class and has a _fill_value attribute y = x.view(MaskedArray) assert_(y.fill_value == 1) # Check that fill_value is preserved if type is specified and the # dtype is an ndarray sub-class and has a _fill_value attribute (by # default, the first argument is dtype, not type) y = x.view(type=MaskedArray) assert_(y.fill_value == 1) # Check that code does not crash if passed an ndarray sub-class that # does not have a _fill_value attribute y = x.view(np.ndarray) y = x.view(type=np.ndarray) # Check that fill_value can be overridden with view y = x.view(MaskedArray, fill_value=2) assert_(y.fill_value == 2) # Check that fill_value can be overridden with view (using type=) y = x.view(type=MaskedArray, fill_value=2) assert_(y.fill_value == 2) # Check that fill_value gets reset if passed a dtype but not a # fill_value. This is because even though in some cases one can safely # cast the fill_value, e.g. if taking an int64 view of an int32 array, # in other cases, this cannot be done (e.g. int32 view of an int64 # array with a large fill_value). y = x.view(dtype=np.int32) assert_(y.fill_value == 999999) def test_fillvalue_bytes_or_str(self): # Test whether fill values work as expected for structured dtypes # containing bytes or str. See issue #7259. a = empty(shape=(3, ), dtype="(2)3S,(2)3U") assert_equal(a["f0"].fill_value, default_fill_value(b"spam")) assert_equal(a["f1"].fill_value, default_fill_value("eggs")) class TestUfuncs: # Test class for the application of ufuncs on MaskedArrays. def setup_method(self): # Base data definition. self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6), array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore') def teardown_method(self): np.seterr(**self.err_status) def test_testUfuncRegression(self): # Tests new ufuncs on MaskedArrays. for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(numpy.ma.core, f) args = self.d[:uf.nin] ur = uf(*args) mr = mf(*args) assert_equal(ur.filled(0), mr.filled(0), f) assert_mask_equal(ur.mask, mr.mask, err_msg=f) def test_reduce(self): # Tests reduce on MaskedArrays. a = self.d[0] assert_(not alltrue(a, axis=0)) assert_(sometrue(a, axis=0)) assert_equal(sum(a[:3], axis=0), 0) assert_equal(product(a, axis=0), 0) assert_equal(add.reduce(a), pi) def test_minmax(self): # Tests extrema on MaskedArrays. a = arange(1, 13).reshape(3, 4) amask = masked_where(a < 5, a) assert_equal(amask.max(), a.max()) assert_equal(amask.min(), 5) assert_equal(amask.max(0), a.max(0)) assert_equal(amask.min(0), [5, 6, 7, 8]) assert_(amask.max(1)[0].mask) assert_(amask.min(1)[0].mask) def test_ndarray_mask(self): # Check that the mask of the result is a ndarray (not a MaskedArray...) a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1]) test = np.sqrt(a) control = masked_array([-1, 0, 1, np.sqrt(2), -1], mask=[1, 0, 0, 0, 1]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_(not isinstance(test.mask, MaskedArray)) def test_treatment_of_NotImplemented(self): # Check that NotImplemented is returned at appropriate places a = masked_array([1., 2.], mask=[1, 0]) assert_raises(TypeError, operator.mul, a, "abc") assert_raises(TypeError, operator.truediv, a, "abc") class MyClass: __array_priority__ = a.__array_priority__ + 1 def __mul__(self, other): return "My mul" def __rmul__(self, other): return "My rmul" me = MyClass() assert_(me * a == "My mul") assert_(a * me == "My rmul") # and that __array_priority__ is respected class MyClass2: __array_priority__ = 100 def __mul__(self, other): return "Me2mul" def __rmul__(self, other): return "Me2rmul" def __rdiv__(self, other): return "Me2rdiv" __rtruediv__ = __rdiv__ me_too = MyClass2() assert_(a.__mul__(me_too) is NotImplemented) assert_(all(multiply.outer(a, me_too) == "Me2rmul")) assert_(a.__truediv__(me_too) is NotImplemented) assert_(me_too * a == "Me2mul") assert_(a * me_too == "Me2rmul") assert_(a / me_too == "Me2rdiv") def test_no_masked_nan_warnings(self): # check that a nan in masked position does not # cause ufunc warnings m = np.ma.array([0.5, np.nan], mask=[0,1]) with warnings.catch_warnings(): warnings.filterwarnings("error") # test unary and binary ufuncs exp(m) add(m, 1) m > 0 # test different unary domains sqrt(m) log(m) tan(m) arcsin(m) arccos(m) arccosh(m) # test binary domains divide(m, 2) # also check that allclose uses ma ufuncs, to avoid warning allclose(m, 0.5) class TestMaskedArrayInPlaceArithmetic: # Test MaskedArray Arithmetic def setup_method(self): x = arange(10) y = arange(10) xm = arange(10) xm[2] = masked self.intdata = (x, y, xm) self.floatdata = (x.astype(float), y.astype(float), xm.astype(float)) self.othertypes = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] self.othertypes = [np.dtype(_).type for _ in self.othertypes] self.uint8data = ( x.astype(np.uint8), y.astype(np.uint8), xm.astype(np.uint8) ) def test_inplace_addition_scalar(self): # Test of inplace additions (x, y, xm) = self.intdata xm[2] = masked x += 1 assert_equal(x, y + 1) xm += 1 assert_equal(xm, y + 1) (x, _, xm) = self.floatdata id1 = x.data.ctypes.data x += 1. assert_(id1 == x.data.ctypes.data) assert_equal(x, y + 1.) def test_inplace_addition_array(self): # Test of inplace additions (x, y, xm) = self.intdata m = xm.mask a = arange(10, dtype=np.int16) a[-1] = masked x += a xm += a assert_equal(x, y + a) assert_equal(xm, y + a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_subtraction_scalar(self): # Test of inplace subtractions (x, y, xm) = self.intdata x -= 1 assert_equal(x, y - 1) xm -= 1 assert_equal(xm, y - 1) def test_inplace_subtraction_array(self): # Test of inplace subtractions (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x -= a xm -= a assert_equal(x, y - a) assert_equal(xm, y - a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_multiplication_scalar(self): # Test of inplace multiplication (x, y, xm) = self.floatdata x *= 2.0 assert_equal(x, y * 2) xm *= 2.0 assert_equal(xm, y * 2) def test_inplace_multiplication_array(self): # Test of inplace multiplication (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x *= a xm *= a assert_equal(x, y * a) assert_equal(xm, y * a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_division_scalar_int(self): # Test of inplace division (x, y, xm) = self.intdata x = arange(10) * 2 xm = arange(10) * 2 xm[2] = masked x //= 2 assert_equal(x, y) xm //= 2 assert_equal(xm, y) def test_inplace_division_scalar_float(self): # Test of inplace division (x, y, xm) = self.floatdata x /= 2.0 assert_equal(x, y / 2.0) xm /= arange(10) assert_equal(xm, ones((10,))) def test_inplace_division_array_float(self): # Test of inplace division (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x /= a xm /= a assert_equal(x, y / a) assert_equal(xm, y / a) assert_equal(xm.mask, mask_or(mask_or(m, a.mask), (a == 0))) def test_inplace_division_misc(self): x = [1., 1., 1., -2., pi / 2., 4., 5., -10., 10., 1., 2., 3.] y = [5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.] m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = xm / ym assert_equal(z._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]) assert_equal(z._data, [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.]) xm = xm.copy() xm /= ym assert_equal(xm._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]) assert_equal(z._data, [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.]) def test_datafriendly_add(self): # Test keeping data w/ (inplace) addition x = array([1, 2, 3], mask=[0, 0, 1]) # Test add w/ scalar xx = x + 1 assert_equal(xx.data, [2, 3, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test iadd w/ scalar x += 1 assert_equal(x.data, [2, 3, 3]) assert_equal(x.mask, [0, 0, 1]) # Test add w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x + array([1, 2, 3], mask=[1, 0, 0]) assert_equal(xx.data, [1, 4, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test iadd w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x += array([1, 2, 3], mask=[1, 0, 0]) assert_equal(x.data, [1, 4, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_sub(self): # Test keeping data w/ (inplace) subtraction # Test sub w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x - 1 assert_equal(xx.data, [0, 1, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test isub w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) x -= 1 assert_equal(x.data, [0, 1, 3]) assert_equal(x.mask, [0, 0, 1]) # Test sub w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x - array([1, 2, 3], mask=[1, 0, 0]) assert_equal(xx.data, [1, 0, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test isub w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x -= array([1, 2, 3], mask=[1, 0, 0]) assert_equal(x.data, [1, 0, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_mul(self): # Test keeping data w/ (inplace) multiplication # Test mul w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x * 2 assert_equal(xx.data, [2, 4, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test imul w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) x *= 2 assert_equal(x.data, [2, 4, 3]) assert_equal(x.mask, [0, 0, 1]) # Test mul w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x * array([10, 20, 30], mask=[1, 0, 0]) assert_equal(xx.data, [1, 40, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test imul w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x *= array([10, 20, 30], mask=[1, 0, 0]) assert_equal(x.data, [1, 40, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_div(self): # Test keeping data w/ (inplace) division # Test div on scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x / 2. assert_equal(xx.data, [1 / 2., 2 / 2., 3]) assert_equal(xx.mask, [0, 0, 1]) # Test idiv on scalar x = array([1., 2., 3.], mask=[0, 0, 1]) x /= 2. assert_equal(x.data, [1 / 2., 2 / 2., 3]) assert_equal(x.mask, [0, 0, 1]) # Test div on array x = array([1., 2., 3.], mask=[0, 0, 1]) xx = x / array([10., 20., 30.], mask=[1, 0, 0]) assert_equal(xx.data, [1., 2. / 20., 3.]) assert_equal(xx.mask, [1, 0, 1]) # Test idiv on array x = array([1., 2., 3.], mask=[0, 0, 1]) x /= array([10., 20., 30.], mask=[1, 0, 0]) assert_equal(x.data, [1., 2 / 20., 3.]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_pow(self): # Test keeping data w/ (inplace) power # Test pow on scalar x = array([1., 2., 3.], mask=[0, 0, 1]) xx = x ** 2.5 assert_equal(xx.data, [1., 2. ** 2.5, 3.]) assert_equal(xx.mask, [0, 0, 1]) # Test ipow on scalar x **= 2.5 assert_equal(x.data, [1., 2. ** 2.5, 3]) assert_equal(x.mask, [0, 0, 1]) def test_datafriendly_add_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a += b assert_equal(a, [[2, 2], [4, 4]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a += b assert_equal(a, [[2, 2], [4, 4]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_datafriendly_sub_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a -= b assert_equal(a, [[0, 0], [2, 2]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a -= b assert_equal(a, [[0, 0], [2, 2]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_datafriendly_mul_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a *= b assert_equal(a, [[1, 1], [3, 3]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a *= b assert_equal(a, [[1, 1], [3, 3]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_inplace_addition_scalar_type(self): # Test of inplace additions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) xm[2] = masked x += t(1) assert_equal(x, y + t(1)) xm += t(1) assert_equal(xm, y + t(1)) assert_equal(len(w), 0, f'Failed on type={t}.') def test_inplace_addition_array_type(self): # Test of inplace additions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x += a xm += a assert_equal(x, y + a) assert_equal(xm, y + a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, f'Failed on type={t}.') def test_inplace_subtraction_scalar_type(self): # Test of inplace subtractions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x -= t(1) assert_equal(x, y - t(1)) xm -= t(1) assert_equal(xm, y - t(1)) assert_equal(len(w), 0, f'Failed on type={t}.') def test_inplace_subtraction_array_type(self): # Test of inplace subtractions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x -= a xm -= a assert_equal(x, y - a) assert_equal(xm, y - a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, f'Failed on type={t}.') def test_inplace_multiplication_scalar_type(self): # Test of inplace multiplication for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x *= t(2) assert_equal(x, y * t(2)) xm *= t(2) assert_equal(xm, y * t(2)) assert_equal(len(w), 0, f'Failed on type={t}.') def test_inplace_multiplication_array_type(self): # Test of inplace multiplication for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x *= a xm *= a assert_equal(x, y * a) assert_equal(xm, y * a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, f'Failed on type={t}.') def test_inplace_floor_division_scalar_type(self): # Test of inplace division # Check for TypeError in case of unsupported types unsupported = {np.dtype(t).type for t in np.typecodes["Complex"]} for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x = arange(10, dtype=t) * t(2) xm = arange(10, dtype=t) * t(2) xm[2] = masked try: x //= t(2) xm //= t(2) assert_equal(x, y) assert_equal(xm, y) assert_equal(len(w), 0, "Failed on type=%s." % t) except TypeError: msg = f"Supported type {t} throwing TypeError" assert t in unsupported, msg def test_inplace_floor_division_array_type(self): # Test of inplace division # Check for TypeError in case of unsupported types unsupported = {np.dtype(t).type for t in np.typecodes["Complex"]} for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked try: x //= a xm //= a assert_equal(x, y // a) assert_equal(xm, y // a) assert_equal( xm.mask, mask_or(mask_or(m, a.mask), (a == t(0))) ) assert_equal(len(w), 0, f'Failed on type={t}.') except TypeError: msg = f"Supported type {t} throwing TypeError" assert t in unsupported, msg def test_inplace_division_scalar_type(self): # Test of inplace division for t in self.othertypes: with suppress_warnings() as sup: sup.record(UserWarning) (x, y, xm) = (_.astype(t) for _ in self.uint8data) x = arange(10, dtype=t) * t(2) xm = arange(10, dtype=t) * t(2) xm[2] = masked # May get a DeprecationWarning or a TypeError. # # This is a consequence of the fact that this is true divide # and will require casting to float for calculation and # casting back to the original type. This will only be raised # with integers. Whether it is an error or warning is only # dependent on how stringent the casting rules are. # # Will handle the same way. try: x /= t(2) assert_equal(x, y) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) try: xm /= t(2) assert_equal(xm, y) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) if issubclass(t, np.integer): assert_equal(len(sup.log), 2, f'Failed on type={t}.') else: assert_equal(len(sup.log), 0, f'Failed on type={t}.') def test_inplace_division_array_type(self): # Test of inplace division for t in self.othertypes: with suppress_warnings() as sup: sup.record(UserWarning) (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked # May get a DeprecationWarning or a TypeError. # # This is a consequence of the fact that this is true divide # and will require casting to float for calculation and # casting back to the original type. This will only be raised # with integers. Whether it is an error or warning is only # dependent on how stringent the casting rules are. # # Will handle the same way. try: x /= a assert_equal(x, y / a) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) try: xm /= a assert_equal(xm, y / a) assert_equal( xm.mask, mask_or(mask_or(m, a.mask), (a == t(0))) ) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) if issubclass(t, np.integer): assert_equal(len(sup.log), 2, f'Failed on type={t}.') else: assert_equal(len(sup.log), 0, f'Failed on type={t}.') def test_inplace_pow_type(self): # Test keeping data w/ (inplace) power for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") # Test pow on scalar x = array([1, 2, 3], mask=[0, 0, 1], dtype=t) xx = x ** t(2) xx_r = array([1, 2 ** 2, 3], mask=[0, 0, 1], dtype=t) assert_equal(xx.data, xx_r.data) assert_equal(xx.mask, xx_r.mask) # Test ipow on scalar x **= t(2) assert_equal(x.data, xx_r.data) assert_equal(x.mask, xx_r.mask) assert_equal(len(w), 0, f'Failed on type={t}.') class TestMaskedArrayMethods: # Test class for miscellaneous MaskedArrays methods. def setup_method(self): # Base data definition. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_generic_methods(self): # Tests some MaskedArray methods. a = array([1, 3, 2]) assert_equal(a.any(), a._data.any()) assert_equal(a.all(), a._data.all()) assert_equal(a.argmax(), a._data.argmax()) assert_equal(a.argmin(), a._data.argmin()) assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4)) assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])) assert_equal(a.conj(), a._data.conj()) assert_equal(a.conjugate(), a._data.conjugate()) m = array([[1, 2], [3, 4]]) assert_equal(m.diagonal(), m._data.diagonal()) assert_equal(a.sum(), a._data.sum()) assert_equal(a.take([1, 2]), a._data.take([1, 2])) assert_equal(m.transpose(), m._data.transpose()) def test_allclose(self): # Tests allclose on arrays a = np.random.rand(10) b = a + np.random.rand(10) * 1e-8 assert_(allclose(a, b)) # Test allclose w/ infs a[0] = np.inf assert_(not allclose(a, b)) b[0] = np.inf assert_(allclose(a, b)) # Test allclose w/ masked a = masked_array(a) a[-1] = masked assert_(allclose(a, b, masked_equal=True)) assert_(not allclose(a, b, masked_equal=False)) # Test comparison w/ scalar a *= 1e-8 a[0] = 0 assert_(allclose(a, 0, masked_equal=True)) # Test that the function works for MIN_INT integer typed arrays a = masked_array([np.iinfo(np.int_).min], dtype=np.int_) assert_(allclose(a, a)) def test_allclose_timedelta(self): # Allclose currently works for timedelta64 as long as `atol` is # an integer or also a timedelta64 a = np.array([[1, 2, 3, 4]], dtype="m8[ns]") assert allclose(a, a, atol=0) assert allclose(a, a, atol=np.timedelta64(1, "ns")) def test_allany(self): # Checks the any/all methods/functions. x = np.array([[0.13, 0.26, 0.90], [0.28, 0.33, 0.63], [0.31, 0.87, 0.70]]) m = np.array([[True, False, False], [False, False, False], [True, True, False]], dtype=np.bool_) mx = masked_array(x, mask=m) mxbig = (mx > 0.5) mxsmall = (mx < 0.5) assert_(not mxbig.all()) assert_(mxbig.any()) assert_equal(mxbig.all(0), [False, False, True]) assert_equal(mxbig.all(1), [False, False, True]) assert_equal(mxbig.any(0), [False, False, True]) assert_equal(mxbig.any(1), [True, True, True]) assert_(not mxsmall.all()) assert_(mxsmall.any()) assert_equal(mxsmall.all(0), [True, True, False]) assert_equal(mxsmall.all(1), [False, False, False]) assert_equal(mxsmall.any(0), [True, True, False]) assert_equal(mxsmall.any(1), [True, True, False]) def test_allany_oddities(self): # Some fun with all and any store = empty((), dtype=bool) full = array([1, 2, 3], mask=True) assert_(full.all() is masked) full.all(out=store) assert_(store) assert_(store._mask, True) assert_(store is not masked) store = empty((), dtype=bool) assert_(full.any() is masked) full.any(out=store) assert_(not store) assert_(store._mask, True) assert_(store is not masked) def test_argmax_argmin(self): # Tests argmin & argmax on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_equal(mx.argmin(), 35) assert_equal(mX.argmin(), 35) assert_equal(m2x.argmin(), 4) assert_equal(m2X.argmin(), 4) assert_equal(mx.argmax(), 28) assert_equal(mX.argmax(), 28) assert_equal(m2x.argmax(), 31) assert_equal(m2X.argmax(), 31) assert_equal(mX.argmin(0), [2, 2, 2, 5, 0, 5]) assert_equal(m2X.argmin(0), [2, 2, 4, 5, 0, 4]) assert_equal(mX.argmax(0), [0, 5, 0, 5, 4, 0]) assert_equal(m2X.argmax(0), [5, 5, 0, 5, 1, 0]) assert_equal(mX.argmin(1), [4, 1, 0, 0, 5, 5, ]) assert_equal(m2X.argmin(1), [4, 4, 0, 0, 5, 3]) assert_equal(mX.argmax(1), [2, 4, 1, 1, 4, 1]) assert_equal(m2X.argmax(1), [2, 4, 1, 1, 1, 1]) def test_clip(self): # Tests clip on MaskedArrays. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(x, mask=m) clipped = mx.clip(2, 8) assert_equal(clipped.mask, mx.mask) assert_equal(clipped._data, x.clip(2, 8)) assert_equal(clipped._data, mx._data.clip(2, 8)) def test_clip_out(self): # gh-14140 a = np.arange(10) m = np.ma.MaskedArray(a, mask=[0, 1] * 5) m.clip(0, 5, out=m) assert_equal(m.mask, [0, 1] * 5) def test_compress(self): # test compress a = masked_array([1., 2., 3., 4., 5.], fill_value=9999) condition = (a > 1.5) & (a < 3.5) assert_equal(a.compress(condition), [2., 3.]) a[[2, 3]] = masked b = a.compress(condition) assert_equal(b._data, [2., 3.]) assert_equal(b._mask, [0, 1]) assert_equal(b.fill_value, 9999) assert_equal(b, a[condition]) condition = (a < 4.) b = a.compress(condition) assert_equal(b._data, [1., 2., 3.]) assert_equal(b._mask, [0, 0, 1]) assert_equal(b.fill_value, 9999) assert_equal(b, a[condition]) a = masked_array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0]]) b = a.compress(a.ravel() >= 22) assert_equal(b._data, [30, 40, 50, 60]) assert_equal(b._mask, [1, 1, 0, 0]) x = np.array([3, 1, 2]) b = a.compress(x >= 2, axis=1) assert_equal(b._data, [[10, 30], [40, 60]]) assert_equal(b._mask, [[0, 1], [1, 0]]) def test_compressed(self): # Tests compressed a = array([1, 2, 3, 4], mask=[0, 0, 0, 0]) b = a.compressed() assert_equal(b, a) a[0] = masked b = a.compressed() assert_equal(b, [2, 3, 4]) def test_empty(self): # Tests empty/like datatype = [('a', int), ('b', float), ('c', '|S8')] a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')], dtype=datatype) assert_equal(len(a.fill_value.item()), len(datatype)) b = empty_like(a) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) b = empty(len(a), dtype=datatype) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) # check empty_like mask handling a = masked_array([1, 2, 3], mask=[False, True, False]) b = empty_like(a) assert_(not np.may_share_memory(a.mask, b.mask)) b = a.view(masked_array) assert_(np.may_share_memory(a.mask, b.mask)) def test_zeros(self): # Tests zeros/like datatype = [('a', int), ('b', float), ('c', '|S8')] a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')], dtype=datatype) assert_equal(len(a.fill_value.item()), len(datatype)) b = zeros(len(a), dtype=datatype) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) b = zeros_like(a) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) # check zeros_like mask handling a = masked_array([1, 2, 3], mask=[False, True, False]) b = zeros_like(a) assert_(not np.may_share_memory(a.mask, b.mask)) b = a.view() assert_(np.may_share_memory(a.mask, b.mask)) def test_ones(self): # Tests ones/like datatype = [('a', int), ('b', float), ('c', '|S8')] a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')], dtype=datatype) assert_equal(len(a.fill_value.item()), len(datatype)) b = ones(len(a), dtype=datatype) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) b = ones_like(a) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) # check ones_like mask handling a = masked_array([1, 2, 3], mask=[False, True, False]) b = ones_like(a) assert_(not np.may_share_memory(a.mask, b.mask)) b = a.view() assert_(np.may_share_memory(a.mask, b.mask)) @suppress_copy_mask_on_assignment def test_put(self): # Tests put. d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) x = array(d, mask=m) assert_(x[3] is masked) assert_(x[4] is masked) x[[1, 4]] = [10, 40] assert_(x[3] is masked) assert_(x[4] is not masked) assert_equal(x, [0, 10, 2, -1, 40]) x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2) i = [0, 2, 4, 6] x.put(i, [6, 4, 2, 0]) assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ])) assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]) x.put(i, masked_array([0, 2, 4, 6], [1, 0, 1, 0])) assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ]) assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0]) x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2) put(x, i, [6, 4, 2, 0]) assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ])) assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]) put(x, i, masked_array([0, 2, 4, 6], [1, 0, 1, 0])) assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ]) assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0]) def test_put_nomask(self): # GitHub issue 6425 x = zeros(10) z = array([3., -1.], mask=[False, True]) x.put([1, 2], z) assert_(x[0] is not masked) assert_equal(x[0], 0) assert_(x[1] is not masked) assert_equal(x[1], 3) assert_(x[2] is masked) assert_(x[3] is not masked) assert_equal(x[3], 0) def test_put_hardmask(self): # Tests put on hardmask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d + 1, mask=m, hard_mask=True, copy=True) xh.put([4, 2, 0, 1, 3], [1, 2, 3, 4, 5]) assert_equal(xh._data, [3, 4, 2, 4, 5]) def test_putmask(self): x = arange(6) + 1 mx = array(x, mask=[0, 0, 0, 1, 1, 1]) mask = [0, 0, 1, 0, 0, 1] # w/o mask, w/o masked values xx = x.copy() putmask(xx, mask, 99) assert_equal(xx, [1, 2, 99, 4, 5, 99]) # w/ mask, w/o masked values mxx = mx.copy() putmask(mxx, mask, 99) assert_equal(mxx._data, [1, 2, 99, 4, 5, 99]) assert_equal(mxx._mask, [0, 0, 0, 1, 1, 0]) # w/o mask, w/ masked values values = array([10, 20, 30, 40, 50, 60], mask=[1, 1, 1, 0, 0, 0]) xx = x.copy() putmask(xx, mask, values) assert_equal(xx._data, [1, 2, 30, 4, 5, 60]) assert_equal(xx._mask, [0, 0, 1, 0, 0, 0]) # w/ mask, w/ masked values mxx = mx.copy() putmask(mxx, mask, values) assert_equal(mxx._data, [1, 2, 30, 4, 5, 60]) assert_equal(mxx._mask, [0, 0, 1, 1, 1, 0]) # w/ mask, w/ masked values + hardmask mxx = mx.copy() mxx.harden_mask() putmask(mxx, mask, values) assert_equal(mxx, [1, 2, 30, 4, 5, 60]) def test_ravel(self): # Tests ravel a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]]) aravel = a.ravel() assert_equal(aravel._mask.shape, aravel.shape) a = array([0, 0], mask=[1, 1]) aravel = a.ravel() assert_equal(aravel._mask.shape, a.shape) # Checks that small_mask is preserved a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False) assert_equal(a.ravel()._mask, [0, 0, 0, 0]) # Test that the fill_value is preserved a.fill_value = -99 a.shape = (2, 2) ar = a.ravel() assert_equal(ar._mask, [0, 0, 0, 0]) assert_equal(ar._data, [1, 2, 3, 4]) assert_equal(ar.fill_value, -99) # Test index ordering assert_equal(a.ravel(order='C'), [1, 2, 3, 4]) assert_equal(a.ravel(order='F'), [1, 3, 2, 4]) def test_reshape(self): # Tests reshape x = arange(4) x[0] = masked y = x.reshape(2, 2) assert_equal(y.shape, (2, 2,)) assert_equal(y._mask.shape, (2, 2,)) assert_equal(x.shape, (4,)) assert_equal(x._mask.shape, (4,)) def test_sort(self): # Test sort x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) sortedx = sort(x) assert_equal(sortedx._data, [1, 2, 3, 4]) assert_equal(sortedx._mask, [0, 0, 0, 1]) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [4, 1, 2, 3]) assert_equal(sortedx._mask, [1, 0, 0, 0]) x.sort() assert_equal(x._data, [1, 2, 3, 4]) assert_equal(x._mask, [0, 0, 0, 1]) x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) x.sort(endwith=False) assert_equal(x._data, [4, 1, 2, 3]) assert_equal(x._mask, [1, 0, 0, 0]) x = [1, 4, 2, 3] sortedx = sort(x) assert_(not isinstance(sorted, MaskedArray)) x = array([0, 1, -1, -2, 2], mask=nomask, dtype=np.int8) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [-2, -1, 0, 1, 2]) x = array([0, 1, -1, -2, 2], mask=[0, 1, 0, 0, 1], dtype=np.int8) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [1, 2, -2, -1, 0]) assert_equal(sortedx._mask, [1, 1, 0, 0, 0]) x = array([0, -1], dtype=np.int8) sortedx = sort(x, kind="stable") assert_equal(sortedx, array([-1, 0], dtype=np.int8)) def test_stable_sort(self): x = array([1, 2, 3, 1, 2, 3], dtype=np.uint8) expected = array([0, 3, 1, 4, 2, 5]) computed = argsort(x, kind='stable') assert_equal(computed, expected) def test_argsort_matches_sort(self): x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) for kwargs in [dict(), dict(endwith=True), dict(endwith=False), dict(fill_value=2), dict(fill_value=2, endwith=True), dict(fill_value=2, endwith=False)]: sortedx = sort(x, **kwargs) argsortedx = x[argsort(x, **kwargs)] assert_equal(sortedx._data, argsortedx._data) assert_equal(sortedx._mask, argsortedx._mask) def test_sort_2d(self): # Check sort of 2D array. # 2D array w/o mask a = masked_array([[8, 4, 1], [2, 0, 9]]) a.sort(0) assert_equal(a, [[2, 0, 1], [8, 4, 9]]) a = masked_array([[8, 4, 1], [2, 0, 9]]) a.sort(1) assert_equal(a, [[1, 4, 8], [0, 2, 9]]) # 2D array w/mask a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]]) a.sort(0) assert_equal(a, [[2, 0, 1], [8, 4, 9]]) assert_equal(a._mask, [[0, 0, 0], [1, 0, 1]]) a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]]) a.sort(1) assert_equal(a, [[1, 4, 8], [0, 2, 9]]) assert_equal(a._mask, [[0, 0, 1], [0, 0, 1]]) # 3D a = masked_array([[[7, 8, 9], [4, 5, 6], [1, 2, 3]], [[1, 2, 3], [7, 8, 9], [4, 5, 6]], [[7, 8, 9], [1, 2, 3], [4, 5, 6]], [[4, 5, 6], [1, 2, 3], [7, 8, 9]]]) a[a % 4 == 0] = masked am = a.copy() an = a.filled(99) am.sort(0) an.sort(0) assert_equal(am, an) am = a.copy() an = a.filled(99) am.sort(1) an.sort(1) assert_equal(am, an) am = a.copy() an = a.filled(99) am.sort(2) an.sort(2) assert_equal(am, an) def test_sort_flexible(self): # Test sort on structured dtype. a = array( data=[(3, 3), (3, 2), (2, 2), (2, 1), (1, 0), (1, 1), (1, 2)], mask=[(0, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0)], dtype=[('A', int), ('B', int)]) mask_last = array( data=[(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 2), (1, 0)], mask=[(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)], dtype=[('A', int), ('B', int)]) mask_first = array( data=[(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)], mask=[(1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0)], dtype=[('A', int), ('B', int)]) test = sort(a) assert_equal(test, mask_last) assert_equal(test.mask, mask_last.mask) test = sort(a, endwith=False) assert_equal(test, mask_first) assert_equal(test.mask, mask_first.mask) # Test sort on dtype with subarray (gh-8069) # Just check that the sort does not error, structured array subarrays # are treated as byte strings and that leads to differing behavior # depending on endianness and `endwith`. dt = np.dtype([('v', int, 2)]) a = a.view(dt) test = sort(a) test = sort(a, endwith=False) def test_argsort(self): # Test argsort a = array([1, 5, 2, 4, 3], mask=[1, 0, 0, 1, 0]) assert_equal(np.argsort(a), argsort(a)) def test_squeeze(self): # Check squeeze data = masked_array([[1, 2, 3]]) assert_equal(data.squeeze(), [1, 2, 3]) data = masked_array([[1, 2, 3]], mask=[[1, 1, 1]]) assert_equal(data.squeeze(), [1, 2, 3]) assert_equal(data.squeeze()._mask, [1, 1, 1]) # normal ndarrays return a view arr = np.array([[1]]) arr_sq = arr.squeeze() assert_equal(arr_sq, 1) arr_sq[...] = 2 assert_equal(arr[0,0], 2) # so maskedarrays should too m_arr = masked_array([[1]], mask=True) m_arr_sq = m_arr.squeeze() assert_(m_arr_sq is not np.ma.masked) assert_equal(m_arr_sq.mask, True) m_arr_sq[...] = 2 assert_equal(m_arr[0,0], 2) def test_swapaxes(self): # Tests swapaxes on MaskedArrays. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mX = array(x, mask=m).reshape(6, 6) mXX = mX.reshape(3, 2, 2, 3) mXswapped = mX.swapaxes(0, 1) assert_equal(mXswapped[-1], mX[:, -1]) mXXswapped = mXX.swapaxes(0, 2) assert_equal(mXXswapped.shape, (2, 2, 3, 3)) def test_take(self): # Tests take x = masked_array([10, 20, 30, 40], [0, 1, 0, 1]) assert_equal(x.take([0, 0, 3]), masked_array([10, 10, 40], [0, 0, 1])) assert_equal(x.take([0, 0, 3]), x[[0, 0, 3]]) assert_equal(x.take([[0, 1], [0, 1]]), masked_array([[10, 20], [10, 20]], [[0, 1], [0, 1]])) # assert_equal crashes when passed np.ma.mask assert_(x[1] is np.ma.masked) assert_(x.take(1) is np.ma.masked) x = array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0, ]]) assert_equal(x.take([0, 2], axis=1), array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])) assert_equal(take(x, [0, 2], axis=1), array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])) def test_take_masked_indices(self): # Test take w/ masked indices a = np.array((40, 18, 37, 9, 22)) indices = np.arange(3)[None,:] + np.arange(5)[:, None] mindices = array(indices, mask=(indices >= len(a))) # No mask test = take(a, mindices, mode='clip') ctrl = array([[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 22], [22, 22, 22]]) assert_equal(test, ctrl) # Masked indices test = take(a, mindices) ctrl = array([[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 40], [22, 40, 40]]) ctrl[3, 2] = ctrl[4, 1] = ctrl[4, 2] = masked assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) # Masked input + masked indices a = array((40, 18, 37, 9, 22), mask=(0, 1, 0, 0, 0)) test = take(a, mindices) ctrl[0, 1] = ctrl[1, 0] = masked assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) def test_tolist(self): # Tests to list # ... on 1D x = array(np.arange(12)) x[[1, -2]] = masked xlist = x.tolist() assert_(xlist[1] is None) assert_(xlist[-2] is None) # ... on 2D x.shape = (3, 4) xlist = x.tolist() ctrl = [[0, None, 2, 3], [4, 5, 6, 7], [8, 9, None, 11]] assert_equal(xlist[0], [0, None, 2, 3]) assert_equal(xlist[1], [4, 5, 6, 7]) assert_equal(xlist[2], [8, 9, None, 11]) assert_equal(xlist, ctrl) # ... on structured array w/ masked records x = array(list(zip([1, 2, 3], [1.1, 2.2, 3.3], ['one', 'two', 'thr'])), dtype=[('a', int), ('b', float), ('c', '|S8')]) x[-1] = masked assert_equal(x.tolist(), [(1, 1.1, b'one'), (2, 2.2, b'two'), (None, None, None)]) # ... on structured array w/ masked fields a = array([(1, 2,), (3, 4)], mask=[(0, 1), (0, 0)], dtype=[('a', int), ('b', int)]) test = a.tolist() assert_equal(test, [[1, None], [3, 4]]) # ... on mvoid a = a[0] test = a.tolist() assert_equal(test, [1, None]) def test_tolist_specialcase(self): # Test mvoid.tolist: make sure we return a standard Python object a = array([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)]) # w/o mask: each entry is a np.void whose elements are standard Python for entry in a: for item in entry.tolist(): assert_(not isinstance(item, np.generic)) # w/ mask: each entry is a ma.void whose elements should be # standard Python a.mask[0] = (0, 1) for entry in a: for item in entry.tolist(): assert_(not isinstance(item, np.generic)) def test_toflex(self): # Test the conversion to records data = arange(10) record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) ndtype = [('i', int), ('s', '|S3'), ('f', float)] data = array([(i, s, f) for (i, s, f) in zip(np.arange(10), 'ABCDEFGHIJKLM', np.random.rand(10))], dtype=ndtype) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) ndtype = np.dtype("int, (2,3)float, float") data = array([(i, f, ff) for (i, f, ff) in zip(np.arange(10), np.random.rand(10), np.random.rand(10))], dtype=ndtype) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal_records(record['_data'], data._data) assert_equal_records(record['_mask'], data._mask) def test_fromflex(self): # Test the reconstruction of a masked_array from a record a = array([1, 2, 3]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.mask, a.mask) a = array([1, 2, 3], mask=[0, 0, 1]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.mask, a.mask) a = array([(1, 1.), (2, 2.), (3, 3.)], mask=[(1, 0), (0, 0), (0, 1)], dtype=[('A', int), ('B', float)]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.data, a.data) def test_arraymethod(self): # Test a _arraymethod w/ n argument marray = masked_array([[1, 2, 3, 4, 5]], mask=[0, 0, 1, 0, 0]) control = masked_array([[1], [2], [3], [4], [5]], mask=[0, 0, 1, 0, 0]) assert_equal(marray.T, control) assert_equal(marray.transpose(), control) assert_equal(MaskedArray.cumsum(marray.T, 0), control.cumsum(0)) def test_arraymethod_0d(self): # gh-9430 x = np.ma.array(42, mask=True) assert_equal(x.T.mask, x.mask) assert_equal(x.T.data, x.data) def test_transpose_view(self): x = np.ma.array([[1, 2, 3], [4, 5, 6]]) x[0,1] = np.ma.masked xt = x.T xt[1,0] = 10 xt[0,1] = np.ma.masked assert_equal(x.data, xt.T.data) assert_equal(x.mask, xt.T.mask) def test_diagonal_view(self): x = np.ma.zeros((3,3)) x[0,0] = 10 x[1,1] = np.ma.masked x[2,2] = 20 xd = x.diagonal() x[1,1] = 15 assert_equal(xd.mask, x.diagonal().mask) assert_equal(xd.data, x.diagonal().data) class TestMaskedArrayMathMethods: def setup_method(self): # Base data definition. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_cumsumprod(self): # Tests cumsum & cumprod on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d mXcp = mX.cumsum(0) assert_equal(mXcp._data, mX.filled(0).cumsum(0)) mXcp = mX.cumsum(1) assert_equal(mXcp._data, mX.filled(0).cumsum(1)) mXcp = mX.cumprod(0) assert_equal(mXcp._data, mX.filled(1).cumprod(0)) mXcp = mX.cumprod(1) assert_equal(mXcp._data, mX.filled(1).cumprod(1)) def test_cumsumprod_with_output(self): # Tests cumsum/cumprod w/ output xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked for funcname in ('cumsum', 'cumprod'): npfunc = getattr(np, funcname) xmmeth = getattr(xm, funcname) # A ndarray as explicit input output = np.empty((3, 4), dtype=float) output.fill(-9999) result = npfunc(xm, axis=0, out=output) # ... the result should be the given output assert_(result is output) assert_equal(result, xmmeth(axis=0, out=output)) output = empty((3, 4), dtype=int) result = xmmeth(axis=0, out=output) assert_(result is output) def test_ptp(self): # Tests ptp on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d (n, m) = X.shape assert_equal(mx.ptp(), mx.compressed().ptp()) rows = np.zeros(n, float) cols = np.zeros(m, float) for k in range(m): cols[k] = mX[:, k].compressed().ptp() for k in range(n): rows[k] = mX[k].compressed().ptp() assert_equal(mX.ptp(0), cols) assert_equal(mX.ptp(1), rows) def test_add_object(self): x = masked_array(['a', 'b'], mask=[1, 0], dtype=object) y = x + 'x' assert_equal(y[1], 'bx') assert_(y.mask[0]) def test_sum_object(self): # Test sum on object dtype a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object) assert_equal(a.sum(), 5) a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object) assert_equal(a.sum(axis=0), [5, 7, 9]) def test_prod_object(self): # Test prod on object dtype a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object) assert_equal(a.prod(), 2 * 3) a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object) assert_equal(a.prod(axis=0), [4, 10, 18]) def test_meananom_object(self): # Test mean/anom on object dtype a = masked_array([1, 2, 3], dtype=object) assert_equal(a.mean(), 2) assert_equal(a.anom(), [-1, 0, 1]) def test_anom_shape(self): a = masked_array([1, 2, 3]) assert_equal(a.anom().shape, a.shape) a.mask = True assert_equal(a.anom().shape, a.shape) assert_(np.ma.is_masked(a.anom())) def test_anom(self): a = masked_array(np.arange(1, 7).reshape(2, 3)) assert_almost_equal(a.anom(), [[-2.5, -1.5, -0.5], [0.5, 1.5, 2.5]]) assert_almost_equal(a.anom(axis=0), [[-1.5, -1.5, -1.5], [1.5, 1.5, 1.5]]) assert_almost_equal(a.anom(axis=1), [[-1., 0., 1.], [-1., 0., 1.]]) a.mask = [[0, 0, 1], [0, 1, 0]] mval = -99 assert_almost_equal(a.anom().filled(mval), [[-2.25, -1.25, mval], [0.75, mval, 2.75]]) assert_almost_equal(a.anom(axis=0).filled(mval), [[-1.5, 0.0, mval], [1.5, mval, 0.0]]) assert_almost_equal(a.anom(axis=1).filled(mval), [[-0.5, 0.5, mval], [-1.0, mval, 1.0]]) def test_trace(self): # Tests trace on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d mXdiag = mX.diagonal() assert_equal(mX.trace(), mX.diagonal().compressed().sum()) assert_almost_equal(mX.trace(), X.trace() - sum(mXdiag.mask * X.diagonal(), axis=0)) assert_equal(np.trace(mX), mX.trace()) # gh-5560 arr = np.arange(2*4*4).reshape(2,4,4) m_arr = np.ma.masked_array(arr, False) assert_equal(arr.trace(axis1=1, axis2=2), m_arr.trace(axis1=1, axis2=2)) def test_dot(self): # Tests dot on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d fx = mx.filled(0) r = mx.dot(mx) assert_almost_equal(r.filled(0), fx.dot(fx)) assert_(r.mask is nomask) fX = mX.filled(0) r = mX.dot(mX) assert_almost_equal(r.filled(0), fX.dot(fX)) assert_(r.mask[1,3]) r1 = empty_like(r) mX.dot(mX, out=r1) assert_almost_equal(r, r1) mYY = mXX.swapaxes(-1, -2) fXX, fYY = mXX.filled(0), mYY.filled(0) r = mXX.dot(mYY) assert_almost_equal(r.filled(0), fXX.dot(fYY)) r1 = empty_like(r) mXX.dot(mYY, out=r1) assert_almost_equal(r, r1) def test_dot_shape_mismatch(self): # regression test x = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]]) y = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]]) z = masked_array([[0,1],[3,3]]) x.dot(y, out=z) assert_almost_equal(z.filled(0), [[1, 0], [15, 16]]) assert_almost_equal(z.mask, [[0, 1], [0, 0]]) def test_varmean_nomask(self): # gh-5769 foo = array([1,2,3,4], dtype='f8') bar = array([1,2,3,4], dtype='f8') assert_equal(type(foo.mean()), np.float64) assert_equal(type(foo.var()), np.float64) assert((foo.mean() == bar.mean()) is np.bool_(True)) # check array type is preserved and out works foo = array(np.arange(16).reshape((4,4)), dtype='f8') bar = empty(4, dtype='f4') assert_equal(type(foo.mean(axis=1)), MaskedArray) assert_equal(type(foo.var(axis=1)), MaskedArray) assert_(foo.mean(axis=1, out=bar) is bar) assert_(foo.var(axis=1, out=bar) is bar) def test_varstd(self): # Tests var & std on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_almost_equal(mX.var(axis=None), mX.compressed().var()) assert_almost_equal(mX.std(axis=None), mX.compressed().std()) assert_almost_equal(mX.std(axis=None, ddof=1), mX.compressed().std(ddof=1)) assert_almost_equal(mX.var(axis=None, ddof=1), mX.compressed().var(ddof=1)) assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape) assert_equal(mX.var().shape, X.var().shape) (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) assert_almost_equal(mX.var(axis=None, ddof=2), mX.compressed().var(ddof=2)) assert_almost_equal(mX.std(axis=None, ddof=2), mX.compressed().std(ddof=2)) for k in range(6): assert_almost_equal(mXvar1[k], mX[k].compressed().var()) assert_almost_equal(mXvar0[k], mX[:, k].compressed().var()) assert_almost_equal(np.sqrt(mXvar0[k]), mX[:, k].compressed().std()) @suppress_copy_mask_on_assignment def test_varstd_specialcases(self): # Test a special case for var nout = np.array(-1, dtype=float) mout = array(-1, dtype=float) x = array(arange(10), mask=True) for methodname in ('var', 'std'): method = getattr(x, methodname) assert_(method() is masked) assert_(method(0) is masked) assert_(method(-1) is masked) # Using a masked array as explicit output method(out=mout) assert_(mout is not masked) assert_equal(mout.mask, True) # Using a ndarray as explicit output method(out=nout) assert_(np.isnan(nout)) x = array(arange(10), mask=True) x[-1] = 9 for methodname in ('var', 'std'): method = getattr(x, methodname) assert_(method(ddof=1) is masked) assert_(method(0, ddof=1) is masked) assert_(method(-1, ddof=1) is masked) # Using a masked array as explicit output method(out=mout, ddof=1) assert_(mout is not masked) assert_equal(mout.mask, True) # Using a ndarray as explicit output method(out=nout, ddof=1) assert_(np.isnan(nout)) def test_varstd_ddof(self): a = array([[1, 1, 0], [1, 1, 0]], mask=[[0, 0, 1], [0, 0, 1]]) test = a.std(axis=0, ddof=0) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [0, 0, 1]) test = a.std(axis=0, ddof=1) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [0, 0, 1]) test = a.std(axis=0, ddof=2) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [1, 1, 1]) def test_diag(self): # Test diag x = arange(9).reshape((3, 3)) x[1, 1] = masked out = np.diag(x) assert_equal(out, [0, 4, 8]) out = diag(x) assert_equal(out, [0, 4, 8]) assert_equal(out.mask, [0, 1, 0]) out = diag(out) control = array([[0, 0, 0], [0, 4, 0], [0, 0, 8]], mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) assert_equal(out, control) def test_axis_methods_nomask(self): # Test the combination nomask & methods w/ axis a = array([[1, 2, 3], [4, 5, 6]]) assert_equal(a.sum(0), [5, 7, 9]) assert_equal(a.sum(-1), [6, 15]) assert_equal(a.sum(1), [6, 15]) assert_equal(a.prod(0), [4, 10, 18]) assert_equal(a.prod(-1), [6, 120]) assert_equal(a.prod(1), [6, 120]) assert_equal(a.min(0), [1, 2, 3]) assert_equal(a.min(-1), [1, 4]) assert_equal(a.min(1), [1, 4]) assert_equal(a.max(0), [4, 5, 6]) assert_equal(a.max(-1), [3, 6]) assert_equal(a.max(1), [3, 6]) class TestMaskedArrayMathMethodsComplex: # Test class for miscellaneous MaskedArrays methods. def setup_method(self): # Base data definition. x = np.array([8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479j, 7.189j, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993j]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_varstd(self): # Tests var & std on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_almost_equal(mX.var(axis=None), mX.compressed().var()) assert_almost_equal(mX.std(axis=None), mX.compressed().std()) assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape) assert_equal(mX.var().shape, X.var().shape) (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) assert_almost_equal(mX.var(axis=None, ddof=2), mX.compressed().var(ddof=2)) assert_almost_equal(mX.std(axis=None, ddof=2), mX.compressed().std(ddof=2)) for k in range(6): assert_almost_equal(mXvar1[k], mX[k].compressed().var()) assert_almost_equal(mXvar0[k], mX[:, k].compressed().var()) assert_almost_equal(np.sqrt(mXvar0[k]), mX[:, k].compressed().std()) class TestMaskedArrayFunctions: # Test class for miscellaneous functions. def setup_method(self): x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) xm.set_fill_value(1e+20) self.info = (xm, ym) def test_masked_where_bool(self): x = [1, 2] y = masked_where(False, x) assert_equal(y, [1, 2]) assert_equal(y[1], 2) def test_masked_equal_wlist(self): x = [1, 2, 3] mx = masked_equal(x, 3) assert_equal(mx, x) assert_equal(mx._mask, [0, 0, 1]) mx = masked_not_equal(x, 3) assert_equal(mx, x) assert_equal(mx._mask, [1, 1, 0]) def test_masked_equal_fill_value(self): x = [1, 2, 3] mx = masked_equal(x, 3) assert_equal(mx._mask, [0, 0, 1]) assert_equal(mx.fill_value, 3) def test_masked_where_condition(self): # Tests masking functions. x = array([1., 2., 3., 4., 5.]) x[2] = masked assert_equal(masked_where(greater(x, 2), x), masked_greater(x, 2)) assert_equal(masked_where(greater_equal(x, 2), x), masked_greater_equal(x, 2)) assert_equal(masked_where(less(x, 2), x), masked_less(x, 2)) assert_equal(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2)) assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) assert_equal(masked_where(equal(x, 2), x), masked_equal(x, 2)) assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) assert_equal(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]), [99, 99, 3, 4, 5]) def test_masked_where_oddities(self): # Tests some generic features. atest = ones((10, 10, 10), dtype=float) btest = zeros(atest.shape, MaskType) ctest = masked_where(btest, atest) assert_equal(atest, ctest) def test_masked_where_shape_constraint(self): a = arange(10) with assert_raises(IndexError): masked_equal(1, a) test = masked_equal(a, 1) assert_equal(test.mask, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) def test_masked_where_structured(self): # test that masked_where on a structured array sets a structured # mask (see issue #2972) a = np.zeros(10, dtype=[("A", "<f2"), ("B", "<f4")]) am = np.ma.masked_where(a["A"] < 5, a) assert_equal(am.mask.dtype.names, am.dtype.names) assert_equal(am["A"], np.ma.masked_array(np.zeros(10), np.ones(10))) def test_masked_where_mismatch(self): # gh-4520 x = np.arange(10) y = np.arange(5) assert_raises(IndexError, np.ma.masked_where, y > 6, x) def test_masked_otherfunctions(self): assert_equal(masked_inside(list(range(5)), 1, 3), [0, 199, 199, 199, 4]) assert_equal(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199]) assert_equal(masked_inside(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 1, 3).mask, [1, 1, 1, 1, 0]) assert_equal(masked_outside(array(list(range(5)), mask=[0, 1, 0, 0, 0]), 1, 3).mask, [1, 1, 0, 0, 1]) assert_equal(masked_equal(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 0]) assert_equal(masked_not_equal(array([2, 2, 1, 2, 1], mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 1]) def test_round(self): a = array([1.23456, 2.34567, 3.45678, 4.56789, 5.67890], mask=[0, 1, 0, 0, 0]) assert_equal(a.round(), [1., 2., 3., 5., 6.]) assert_equal(a.round(1), [1.2, 2.3, 3.5, 4.6, 5.7]) assert_equal(a.round(3), [1.235, 2.346, 3.457, 4.568, 5.679]) b = empty_like(a) a.round(out=b) assert_equal(b, [1., 2., 3., 5., 6.]) x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) def test_round_with_output(self): # Testing round with an explicit output xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked # A ndarray as explicit input output = np.empty((3, 4), dtype=float) output.fill(-9999) result = np.round(xm, decimals=2, out=output) # ... the result should be the given output assert_(result is output) assert_equal(result, xm.round(decimals=2, out=output)) output = empty((3, 4), dtype=float) result = xm.round(decimals=2, out=output) assert_(result is output) def test_round_with_scalar(self): # Testing round with scalar/zero dimension input # GH issue 2244 a = array(1.1, mask=[False]) assert_equal(a.round(), 1) a = array(1.1, mask=[True]) assert_(a.round() is masked) a = array(1.1, mask=[False]) output = np.empty(1, dtype=float) output.fill(-9999) a.round(out=output) assert_equal(output, 1) a = array(1.1, mask=[False]) output = array(-9999., mask=[True]) a.round(out=output) assert_equal(output[()], 1) a = array(1.1, mask=[True]) output = array(-9999., mask=[False]) a.round(out=output) assert_(output[()] is masked) def test_identity(self): a = identity(5) assert_(isinstance(a, MaskedArray)) assert_equal(a, np.identity(5)) def test_power(self): x = -1.1 assert_almost_equal(power(x, 2.), 1.21) assert_(power(x, masked) is masked) x = array([-1.1, -1.1, 1.1, 1.1, 0.]) b = array([0.5, 2., 0.5, 2., -1.], mask=[0, 0, 0, 0, 1]) y = power(x, b) assert_almost_equal(y, [0, 1.21, 1.04880884817, 1.21, 0.]) assert_equal(y._mask, [1, 0, 0, 0, 1]) b.mask = nomask y = power(x, b) assert_equal(y._mask, [1, 0, 0, 0, 1]) z = x ** b assert_equal(z._mask, y._mask) assert_almost_equal(z, y) assert_almost_equal(z._data, y._data) x **= b assert_equal(x._mask, y._mask) assert_almost_equal(x, y) assert_almost_equal(x._data, y._data) def test_power_with_broadcasting(self): # Test power w/ broadcasting a2 = np.array([[1., 2., 3.], [4., 5., 6.]]) a2m = array(a2, mask=[[1, 0, 0], [0, 0, 1]]) b1 = np.array([2, 4, 3]) b2 = np.array([b1, b1]) b2m = array(b2, mask=[[0, 1, 0], [0, 1, 0]]) ctrl = array([[1 ** 2, 2 ** 4, 3 ** 3], [4 ** 2, 5 ** 4, 6 ** 3]], mask=[[1, 1, 0], [0, 1, 1]]) # No broadcasting, base & exp w/ mask test = a2m ** b2m assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) # No broadcasting, base w/ mask, exp w/o mask test = a2m ** b2 assert_equal(test, ctrl) assert_equal(test.mask, a2m.mask) # No broadcasting, base w/o mask, exp w/ mask test = a2 ** b2m assert_equal(test, ctrl) assert_equal(test.mask, b2m.mask) ctrl = array([[2 ** 2, 4 ** 4, 3 ** 3], [2 ** 2, 4 ** 4, 3 ** 3]], mask=[[0, 1, 0], [0, 1, 0]]) test = b1 ** b2m assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) test = b2m ** b1 assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) def test_where(self): # Test the where function x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) xm.set_fill_value(1e+20) d = where(xm > 2, xm, -9) assert_equal(d, [-9., -9., -9., -9., -9., 4., -9., -9., 10., -9., -9., 3.]) assert_equal(d._mask, xm._mask) d = where(xm > 2, -9, ym) assert_equal(d, [5., 0., 3., 2., -1., -9., -9., -10., -9., 1., 0., -9.]) assert_equal(d._mask, [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]) d = where(xm > 2, xm, masked) assert_equal(d, [-9., -9., -9., -9., -9., 4., -9., -9., 10., -9., -9., 3.]) tmp = xm._mask.copy() tmp[(xm <= 2).filled(True)] = True assert_equal(d._mask, tmp) ixm = xm.astype(int) d = where(ixm > 2, ixm, masked) assert_equal(d, [-9, -9, -9, -9, -9, 4, -9, -9, 10, -9, -9, 3]) assert_equal(d.dtype, ixm.dtype) def test_where_object(self): a = np.array(None) b = masked_array(None) r = b.copy() assert_equal(np.ma.where(True, a, a), r) assert_equal(np.ma.where(True, b, b), r) def test_where_with_masked_choice(self): x = arange(10) x[3] = masked c = x >= 8 # Set False to masked z = where(c, x, masked) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is masked) assert_(z[7] is masked) assert_(z[8] is not masked) assert_(z[9] is not masked) assert_equal(x, z) # Set True to masked z = where(c, masked, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) def test_where_with_masked_condition(self): x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) x = arange(1, 6) x[-1] = masked y = arange(1, 6) * 10 y[2] = masked c = array([1, 1, 1, 0, 0], mask=[1, 0, 0, 0, 0]) cm = c.filled(1) z = where(c, x, y) zm = where(cm, x, y) assert_equal(z, zm) assert_(getmask(zm) is nomask) assert_equal(zm, [1, 2, 3, 40, 50]) z = where(c, masked, 1) assert_equal(z, [99, 99, 99, 1, 1]) z = where(c, 1, masked) assert_equal(z, [99, 1, 1, 99, 99]) def test_where_type(self): # Test the type conservation with where x = np.arange(4, dtype=np.int32) y = np.arange(4, dtype=np.float32) * 2.2 test = where(x > 1.5, y, x).dtype control = np.find_common_type([np.int32, np.float32], []) assert_equal(test, control) def test_where_broadcast(self): # Issue 8599 x = np.arange(9).reshape(3, 3) y = np.zeros(3) core = np.where([1, 0, 1], x, y) ma = where([1, 0, 1], x, y) assert_equal(core, ma) assert_equal(core.dtype, ma.dtype) def test_where_structured(self): # Issue 8600 dt = np.dtype([('a', int), ('b', int)]) x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt) y = np.array((10, 20), dtype=dt) core = np.where([0, 1, 1], x, y) ma = np.where([0, 1, 1], x, y) assert_equal(core, ma) assert_equal(core.dtype, ma.dtype) def test_where_structured_masked(self): dt = np.dtype([('a', int), ('b', int)]) x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt) ma = where([0, 1, 1], x, masked) expected = masked_where([1, 0, 0], x) assert_equal(ma.dtype, expected.dtype) assert_equal(ma, expected) assert_equal(ma.mask, expected.mask) def test_choose(self): # Test choose choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] chosen = choose([2, 3, 1, 0], choices) assert_equal(chosen, array([20, 31, 12, 3])) chosen = choose([2, 4, 1, 0], choices, mode='clip') assert_equal(chosen, array([20, 31, 12, 3])) chosen = choose([2, 4, 1, 0], choices, mode='wrap') assert_equal(chosen, array([20, 1, 12, 3])) # Check with some masked indices indices_ = array([2, 4, 1, 0], mask=[1, 0, 0, 1]) chosen = choose(indices_, choices, mode='wrap') assert_equal(chosen, array([99, 1, 12, 99])) assert_equal(chosen.mask, [1, 0, 0, 1]) # Check with some masked choices choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]]) indices_ = [2, 3, 1, 0] chosen = choose(indices_, choices, mode='wrap') assert_equal(chosen, array([20, 31, 12, 3])) assert_equal(chosen.mask, [1, 0, 0, 1]) def test_choose_with_out(self): # Test choose with an explicit out keyword choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] store = empty(4, dtype=int) chosen = choose([2, 3, 1, 0], choices, out=store) assert_equal(store, array([20, 31, 12, 3])) assert_(store is chosen) # Check with some masked indices + out store = empty(4, dtype=int) indices_ = array([2, 3, 1, 0], mask=[1, 0, 0, 1]) chosen = choose(indices_, choices, mode='wrap', out=store) assert_equal(store, array([99, 31, 12, 99])) assert_equal(store.mask, [1, 0, 0, 1]) # Check with some masked choices + out ina ndarray ! choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]]) indices_ = [2, 3, 1, 0] store = empty(4, dtype=int).view(ndarray) chosen = choose(indices_, choices, mode='wrap', out=store) assert_equal(store, array([999999, 31, 12, 999999])) def test_reshape(self): a = arange(10) a[0] = masked # Try the default b = a.reshape((5, 2)) assert_equal(b.shape, (5, 2)) assert_(b.flags['C']) # Try w/ arguments as list instead of tuple b = a.reshape(5, 2) assert_equal(b.shape, (5, 2)) assert_(b.flags['C']) # Try w/ order b = a.reshape((5, 2), order='F') assert_equal(b.shape, (5, 2)) assert_(b.flags['F']) # Try w/ order b = a.reshape(5, 2, order='F') assert_equal(b.shape, (5, 2)) assert_(b.flags['F']) c = np.reshape(a, (2, 5)) assert_(isinstance(c, MaskedArray)) assert_equal(c.shape, (2, 5)) assert_(c[0, 0] is masked) assert_(c.flags['C']) def test_make_mask_descr(self): # Flexible ntype = [('a', float), ('b', float)] test = make_mask_descr(ntype) assert_equal(test, [('a', bool), ('b', bool)]) assert_(test is make_mask_descr(test)) # Standard w/ shape ntype = (float, 2) test = make_mask_descr(ntype) assert_equal(test, (bool, 2)) assert_(test is make_mask_descr(test)) # Standard standard ntype = float test = make_mask_descr(ntype) assert_equal(test, np.dtype(bool)) assert_(test is make_mask_descr(test)) # Nested ntype = [('a', float), ('b', [('ba', float), ('bb', float)])] test = make_mask_descr(ntype) control = np.dtype([('a', 'b1'), ('b', [('ba', 'b1'), ('bb', 'b1')])]) assert_equal(test, control) assert_(test is make_mask_descr(test)) # Named+ shape ntype = [('a', (float, 2))] test = make_mask_descr(ntype) assert_equal(test, np.dtype([('a', (bool, 2))])) assert_(test is make_mask_descr(test)) # 2 names ntype = [(('A', 'a'), float)] test = make_mask_descr(ntype) assert_equal(test, np.dtype([(('A', 'a'), bool)])) assert_(test is make_mask_descr(test)) # nested boolean types should preserve identity base_type = np.dtype([('a', int, 3)]) base_mtype = make_mask_descr(base_type) sub_type = np.dtype([('a', int), ('b', base_mtype)]) test = make_mask_descr(sub_type) assert_equal(test, np.dtype([('a', bool), ('b', [('a', bool, 3)])])) assert_(test.fields['b'][0] is base_mtype) def test_make_mask(self): # Test make_mask # w/ a list as an input mask = [0, 1] test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [0, 1]) # w/ a ndarray as an input mask = np.array([0, 1], dtype=bool) test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [0, 1]) # w/ a flexible-type ndarray as an input - use default mdtype = [('a', bool), ('b', bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [1, 1]) # w/ a flexible-type ndarray as an input - use input dtype mdtype = [('a', bool), ('b', bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask, dtype=mask.dtype) assert_equal(test.dtype, mdtype) assert_equal(test, mask) # w/ a flexible-type ndarray as an input - use input dtype mdtype = [('a', float), ('b', float)] bdtype = [('a', bool), ('b', bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask, dtype=mask.dtype) assert_equal(test.dtype, bdtype) assert_equal(test, np.array([(0, 0), (0, 1)], dtype=bdtype)) # Ensure this also works for void mask = np.array((False, True), dtype='?,?')[()] assert_(isinstance(mask, np.void)) test = make_mask(mask, dtype=mask.dtype) assert_equal(test, mask) assert_(test is not mask) mask = np.array((0, 1), dtype='i4,i4')[()] test2 = make_mask(mask, dtype=mask.dtype) assert_equal(test2, test) # test that nomask is returned when m is nomask. bools = [True, False] dtypes = [MaskType, float] msgformat = 'copy=%s, shrink=%s, dtype=%s' for cpy, shr, dt in itertools.product(bools, bools, dtypes): res = make_mask(nomask, copy=cpy, shrink=shr, dtype=dt) assert_(res is nomask, msgformat % (cpy, shr, dt)) def test_mask_or(self): # Initialize mtype = [('a', bool), ('b', bool)] mask = np.array([(0, 0), (0, 1), (1, 0), (0, 0)], dtype=mtype) # Test using nomask as input test = mask_or(mask, nomask) assert_equal(test, mask) test = mask_or(nomask, mask) assert_equal(test, mask) # Using False as input test = mask_or(mask, False) assert_equal(test, mask) # Using another array w / the same dtype other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=mtype) test = mask_or(mask, other) control = np.array([(0, 1), (0, 1), (1, 1), (0, 1)], dtype=mtype) assert_equal(test, control) # Using another array w / a different dtype othertype = [('A', bool), ('B', bool)] other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=othertype) try: test = mask_or(mask, other) except ValueError: pass # Using nested arrays dtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] amask = np.array([(0, (1, 0)), (0, (1, 0))], dtype=dtype) bmask = np.array([(1, (0, 1)), (0, (0, 0))], dtype=dtype) cntrl = np.array([(1, (1, 1)), (0, (1, 0))], dtype=dtype) assert_equal(mask_or(amask, bmask), cntrl) def test_flatten_mask(self): # Tests flatten mask # Standard dtype mask = np.array([0, 0, 1], dtype=bool) assert_equal(flatten_mask(mask), mask) # Flexible dtype mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)]) test = flatten_mask(mask) control = np.array([0, 0, 0, 1], dtype=bool) assert_equal(test, control) mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] data = [(0, (0, 0)), (0, (0, 1))] mask = np.array(data, dtype=mdtype) test = flatten_mask(mask) control = np.array([0, 0, 0, 0, 0, 1], dtype=bool) assert_equal(test, control) def test_on_ndarray(self): # Test functions on ndarrays a = np.array([1, 2, 3, 4]) m = array(a, mask=False) test = anom(a) assert_equal(test, m.anom()) test = reshape(a, (2, 2)) assert_equal(test, m.reshape(2, 2)) def test_compress(self): # Test compress function on ndarray and masked array # Address Github #2495. arr = np.arange(8) arr.shape = 4, 2 cond = np.array([True, False, True, True]) control = arr[[0, 2, 3]] test = np.ma.compress(cond, arr, axis=0) assert_equal(test, control) marr = np.ma.array(arr) test = np.ma.compress(cond, marr, axis=0) assert_equal(test, control) def test_compressed(self): # Test ma.compressed function. # Address gh-4026 a = np.ma.array([1, 2]) test = np.ma.compressed(a) assert_(type(test) is np.ndarray) # Test case when input data is ndarray subclass class A(np.ndarray): pass a = np.ma.array(A(shape=0)) test = np.ma.compressed(a) assert_(type(test) is A) # Test that compress flattens test = np.ma.compressed([[1],[2]]) assert_equal(test.ndim, 1) test = np.ma.compressed([[[[[1]]]]]) assert_equal(test.ndim, 1) # Test case when input is MaskedArray subclass class M(MaskedArray): pass test = np.ma.compressed(M([[[]], [[]]])) assert_equal(test.ndim, 1) # with .compressed() overridden class M(MaskedArray): def compressed(self): return 42 test = np.ma.compressed(M([[[]], [[]]])) assert_equal(test, 42) def test_convolve(self): a = masked_equal(np.arange(5), 2) b = np.array([1, 1]) test = np.ma.convolve(a, b) assert_equal(test, masked_equal([0, 1, -1, -1, 7, 4], -1)) test = np.ma.convolve(a, b, propagate_mask=False) assert_equal(test, masked_equal([0, 1, 1, 3, 7, 4], -1)) test = np.ma.convolve([1, 1], [1, 1, 1]) assert_equal(test, masked_equal([1, 2, 2, 1], -1)) a = [1, 1] b = masked_equal([1, -1, -1, 1], -1) test = np.ma.convolve(a, b, propagate_mask=False) assert_equal(test, masked_equal([1, 1, -1, 1, 1], -1)) test = np.ma.convolve(a, b, propagate_mask=True) assert_equal(test, masked_equal([-1, -1, -1, -1, -1], -1)) class TestMaskedFields: def setup_method(self): ilist = [1, 2, 3, 4, 5] flist = [1.1, 2.2, 3.3, 4.4, 5.5] slist = ['one', 'two', 'three', 'four', 'five'] ddtype = [('a', int), ('b', float), ('c', '|S8')] mdtype = [('a', bool), ('b', bool), ('c', bool)] mask = [0, 1, 0, 0, 1] base = array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype) self.data = dict(base=base, mask=mask, ddtype=ddtype, mdtype=mdtype) def test_set_records_masks(self): base = self.data['base'] mdtype = self.data['mdtype'] # Set w/ nomask or masked base.mask = nomask assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype)) base.mask = masked assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype)) # Set w/ simple boolean base.mask = False assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype)) base.mask = True assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype)) # Set w/ list base.mask = [0, 0, 0, 1, 1] assert_equal_records(base._mask, np.array([(x, x, x) for x in [0, 0, 0, 1, 1]], dtype=mdtype)) def test_set_record_element(self): # Check setting an element of a record) base = self.data['base'] (base_a, base_b, base_c) = (base['a'], base['b'], base['c']) base[0] = (pi, pi, 'pi') assert_equal(base_a.dtype, int) assert_equal(base_a._data, [3, 2, 3, 4, 5]) assert_equal(base_b.dtype, float) assert_equal(base_b._data, [pi, 2.2, 3.3, 4.4, 5.5]) assert_equal(base_c.dtype, '|S8') assert_equal(base_c._data, [b'pi', b'two', b'three', b'four', b'five']) def test_set_record_slice(self): base = self.data['base'] (base_a, base_b, base_c) = (base['a'], base['b'], base['c']) base[:3] = (pi, pi, 'pi') assert_equal(base_a.dtype, int) assert_equal(base_a._data, [3, 3, 3, 4, 5]) assert_equal(base_b.dtype, float) assert_equal(base_b._data, [pi, pi, pi, 4.4, 5.5]) assert_equal(base_c.dtype, '|S8') assert_equal(base_c._data, [b'pi', b'pi', b'pi', b'four', b'five']) def test_mask_element(self): "Check record access" base = self.data['base'] base[0] = masked for n in ('a', 'b', 'c'): assert_equal(base[n].mask, [1, 1, 0, 0, 1]) assert_equal(base[n]._data, base._data[n]) def test_getmaskarray(self): # Test getmaskarray on flexible dtype ndtype = [('a', int), ('b', float)] test = empty(3, dtype=ndtype) assert_equal(getmaskarray(test), np.array([(0, 0), (0, 0), (0, 0)], dtype=[('a', '|b1'), ('b', '|b1')])) test[:] = masked assert_equal(getmaskarray(test), np.array([(1, 1), (1, 1), (1, 1)], dtype=[('a', '|b1'), ('b', '|b1')])) def test_view(self): # Test view w/ flexible dtype iterator = list(zip(np.arange(10), np.random.rand(10))) data = np.array(iterator) a = array(iterator, dtype=[('a', float), ('b', float)]) a.mask[0] = (1, 0) controlmask = np.array([1] + 19 * [0], dtype=bool) # Transform globally to simple dtype test = a.view(float) assert_equal(test, data.ravel()) assert_equal(test.mask, controlmask) # Transform globally to dty test = a.view((float, 2)) assert_equal(test, data) assert_equal(test.mask, controlmask.reshape(-1, 2)) def test_getitem(self): ndtype = [('a', float), ('b', float)] a = array(list(zip(np.random.rand(10), np.arange(10))), dtype=ndtype) a.mask = np.array(list(zip([0, 0, 0, 0, 0, 0, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0, 1, 0])), dtype=[('a', bool), ('b', bool)]) def _test_index(i): assert_equal(type(a[i]), mvoid) assert_equal_records(a[i]._data, a._data[i]) assert_equal_records(a[i]._mask, a._mask[i]) assert_equal(type(a[i, ...]), MaskedArray) assert_equal_records(a[i,...]._data, a._data[i,...]) assert_equal_records(a[i,...]._mask, a._mask[i,...]) _test_index(1) # No mask _test_index(0) # One element masked _test_index(-2) # All element masked def test_setitem(self): # Issue 4866: check that one can set individual items in [record][col] # and [col][record] order ndtype = np.dtype([('a', float), ('b', int)]) ma = np.ma.MaskedArray([(1.0, 1), (2.0, 2)], dtype=ndtype) ma['a'][1] = 3.0 assert_equal(ma['a'], np.array([1.0, 3.0])) ma[1]['a'] = 4.0 assert_equal(ma['a'], np.array([1.0, 4.0])) # Issue 2403 mdtype = np.dtype([('a', bool), ('b', bool)]) # soft mask control = np.array([(False, True), (True, True)], dtype=mdtype) a = np.ma.masked_all((2,), dtype=ndtype) a['a'][0] = 2 assert_equal(a.mask, control) a = np.ma.masked_all((2,), dtype=ndtype) a[0]['a'] = 2 assert_equal(a.mask, control) # hard mask control = np.array([(True, True), (True, True)], dtype=mdtype) a = np.ma.masked_all((2,), dtype=ndtype) a.harden_mask() a['a'][0] = 2 assert_equal(a.mask, control) a = np.ma.masked_all((2,), dtype=ndtype) a.harden_mask() a[0]['a'] = 2 assert_equal(a.mask, control) def test_setitem_scalar(self): # 8510 mask_0d = np.ma.masked_array(1, mask=True) arr = np.ma.arange(3) arr[0] = mask_0d assert_array_equal(arr.mask, [True, False, False]) def test_element_len(self): # check that len() works for mvoid (Github issue #576) for rec in self.data['base']: assert_equal(len(rec), len(self.data['ddtype'])) class TestMaskedObjectArray: def test_getitem(self): arr = np.ma.array([None, None]) for dt in [float, object]: a0 = np.eye(2).astype(dt) a1 = np.eye(3).astype(dt) arr[0] = a0 arr[1] = a1 assert_(arr[0] is a0) assert_(arr[1] is a1) assert_(isinstance(arr[0,...], MaskedArray)) assert_(isinstance(arr[1,...], MaskedArray)) assert_(arr[0,...][()] is a0) assert_(arr[1,...][()] is a1) arr[0] = np.ma.masked assert_(arr[1] is a1) assert_(isinstance(arr[0,...], MaskedArray)) assert_(isinstance(arr[1,...], MaskedArray)) assert_equal(arr[0,...].mask, True) assert_(arr[1,...][()] is a1) # gh-5962 - object arrays of arrays do something special assert_equal(arr[0].data, a0) assert_equal(arr[0].mask, True) assert_equal(arr[0,...][()].data, a0) assert_equal(arr[0,...][()].mask, True) def test_nested_ma(self): arr = np.ma.array([None, None]) # set the first object to be an unmasked masked constant. A little fiddly arr[0,...] = np.array([np.ma.masked], object)[0,...] # check the above line did what we were aiming for assert_(arr.data[0] is np.ma.masked) # test that getitem returned the value by identity assert_(arr[0] is np.ma.masked) # now mask the masked value! arr[0] = np.ma.masked assert_(arr[0] is np.ma.masked) class TestMaskedView: def setup_method(self): iterator = list(zip(np.arange(10), np.random.rand(10))) data = np.array(iterator) a = array(iterator, dtype=[('a', float), ('b', float)]) a.mask[0] = (1, 0) controlmask = np.array([1] + 19 * [0], dtype=bool) self.data = (data, a, controlmask) def test_view_to_nothing(self): (data, a, controlmask) = self.data test = a.view() assert_(isinstance(test, MaskedArray)) assert_equal(test._data, a._data) assert_equal(test._mask, a._mask) def test_view_to_type(self): (data, a, controlmask) = self.data test = a.view(np.ndarray) assert_(not isinstance(test, MaskedArray)) assert_equal(test, a._data) assert_equal_records(test, data.view(a.dtype).squeeze()) def test_view_to_simple_dtype(self): (data, a, controlmask) = self.data # View globally test = a.view(float) assert_(isinstance(test, MaskedArray)) assert_equal(test, data.ravel()) assert_equal(test.mask, controlmask) def test_view_to_flexible_dtype(self): (data, a, controlmask) = self.data test = a.view([('A', float), ('B', float)]) assert_equal(test.mask.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a']) assert_equal(test['B'], a['b']) test = a[0].view([('A', float), ('B', float)]) assert_(isinstance(test, MaskedArray)) assert_equal(test.mask.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a'][0]) assert_equal(test['B'], a['b'][0]) test = a[-1].view([('A', float), ('B', float)]) assert_(isinstance(test, MaskedArray)) assert_equal(test.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a'][-1]) assert_equal(test['B'], a['b'][-1]) def test_view_to_subdtype(self): (data, a, controlmask) = self.data # View globally test = a.view((float, 2)) assert_(isinstance(test, MaskedArray)) assert_equal(test, data) assert_equal(test.mask, controlmask.reshape(-1, 2)) # View on 1 masked element test = a[0].view((float, 2)) assert_(isinstance(test, MaskedArray)) assert_equal(test, data[0]) assert_equal(test.mask, (1, 0)) # View on 1 unmasked element test = a[-1].view((float, 2)) assert_(isinstance(test, MaskedArray)) assert_equal(test, data[-1]) def test_view_to_dtype_and_type(self): (data, a, controlmask) = self.data test = a.view((float, 2), np.recarray) assert_equal(test, data) assert_(isinstance(test, np.recarray)) assert_(not isinstance(test, MaskedArray)) class TestOptionalArgs: def test_ndarrayfuncs(self): # test axis arg behaves the same as ndarray (including multiple axes) d = np.arange(24.0).reshape((2,3,4)) m = np.zeros(24, dtype=bool).reshape((2,3,4)) # mask out last element of last dimension m[:,:,-1] = True a = np.ma.array(d, mask=m) def testaxis(f, a, d): numpy_f = numpy.__getattribute__(f) ma_f = np.ma.__getattribute__(f) # test axis arg assert_equal(ma_f(a, axis=1)[...,:-1], numpy_f(d[...,:-1], axis=1)) assert_equal(ma_f(a, axis=(0,1))[...,:-1], numpy_f(d[...,:-1], axis=(0,1))) def testkeepdims(f, a, d): numpy_f = numpy.__getattribute__(f) ma_f = np.ma.__getattribute__(f) # test keepdims arg assert_equal(ma_f(a, keepdims=True).shape, numpy_f(d, keepdims=True).shape) assert_equal(ma_f(a, keepdims=False).shape, numpy_f(d, keepdims=False).shape) # test both at once assert_equal(ma_f(a, axis=1, keepdims=True)[...,:-1], numpy_f(d[...,:-1], axis=1, keepdims=True)) assert_equal(ma_f(a, axis=(0,1), keepdims=True)[...,:-1], numpy_f(d[...,:-1], axis=(0,1), keepdims=True)) for f in ['sum', 'prod', 'mean', 'var', 'std']: testaxis(f, a, d) testkeepdims(f, a, d) for f in ['min', 'max']: testaxis(f, a, d) d = (np.arange(24).reshape((2,3,4))%2 == 0) a = np.ma.array(d, mask=m) for f in ['all', 'any']: testaxis(f, a, d) testkeepdims(f, a, d) def test_count(self): # test np.ma.count specially d = np.arange(24.0).reshape((2,3,4)) m = np.zeros(24, dtype=bool).reshape((2,3,4)) m[:,0,:] = True a = np.ma.array(d, mask=m) assert_equal(count(a), 16) assert_equal(count(a, axis=1), 2*ones((2,4))) assert_equal(count(a, axis=(0,1)), 4*ones((4,))) assert_equal(count(a, keepdims=True), 16*ones((1,1,1))) assert_equal(count(a, axis=1, keepdims=True), 2*ones((2,1,4))) assert_equal(count(a, axis=(0,1), keepdims=True), 4*ones((1,1,4))) assert_equal(count(a, axis=-2), 2*ones((2,4))) assert_raises(ValueError, count, a, axis=(1,1)) assert_raises(np.AxisError, count, a, axis=3) # check the 'nomask' path a = np.ma.array(d, mask=nomask) assert_equal(count(a), 24) assert_equal(count(a, axis=1), 3*ones((2,4))) assert_equal(count(a, axis=(0,1)), 6*ones((4,))) assert_equal(count(a, keepdims=True), 24*ones((1,1,1))) assert_equal(np.ndim(count(a, keepdims=True)), 3) assert_equal(count(a, axis=1, keepdims=True), 3*ones((2,1,4))) assert_equal(count(a, axis=(0,1), keepdims=True), 6*ones((1,1,4))) assert_equal(count(a, axis=-2), 3*ones((2,4))) assert_raises(ValueError, count, a, axis=(1,1)) assert_raises(np.AxisError, count, a, axis=3) # check the 'masked' singleton assert_equal(count(np.ma.masked), 0) # check 0-d arrays do not allow axis > 0 assert_raises(np.AxisError, count, np.ma.array(1), axis=1) class TestMaskedConstant: def _do_add_test(self, add): # sanity check assert_(add(np.ma.masked, 1) is np.ma.masked) # now try with a vector vector = np.array([1, 2, 3]) result = add(np.ma.masked, vector) # lots of things could go wrong here assert_(result is not np.ma.masked) assert_(not isinstance(result, np.ma.core.MaskedConstant)) assert_equal(result.shape, vector.shape) assert_equal(np.ma.getmask(result), np.ones(vector.shape, dtype=bool)) def test_ufunc(self): self._do_add_test(np.add) def test_operator(self): self._do_add_test(lambda a, b: a + b) def test_ctor(self): m = np.ma.array(np.ma.masked) # most importantly, we do not want to create a new MaskedConstant # instance assert_(not isinstance(m, np.ma.core.MaskedConstant)) assert_(m is not np.ma.masked) def test_repr(self): # copies should not exist, but if they do, it should be obvious that # something is wrong assert_equal(repr(np.ma.masked), 'masked') # create a new instance in a weird way masked2 = np.ma.MaskedArray.__new__(np.ma.core.MaskedConstant) assert_not_equal(repr(masked2), 'masked') def test_pickle(self): from io import BytesIO for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): with BytesIO() as f: pickle.dump(np.ma.masked, f, protocol=proto) f.seek(0) res = pickle.load(f) assert_(res is np.ma.masked) def test_copy(self): # gh-9328 # copy is a no-op, like it is with np.True_ assert_equal( np.ma.masked.copy() is np.ma.masked, np.True_.copy() is np.True_) def test__copy(self): import copy assert_( copy.copy(np.ma.masked) is np.ma.masked) def test_deepcopy(self): import copy assert_( copy.deepcopy(np.ma.masked) is np.ma.masked) def test_immutable(self): orig = np.ma.masked assert_raises(np.ma.core.MaskError, operator.setitem, orig, (), 1) assert_raises(ValueError,operator.setitem, orig.data, (), 1) assert_raises(ValueError, operator.setitem, orig.mask, (), False) view = np.ma.masked.view(np.ma.MaskedArray) assert_raises(ValueError, operator.setitem, view, (), 1) assert_raises(ValueError, operator.setitem, view.data, (), 1) assert_raises(ValueError, operator.setitem, view.mask, (), False) def test_coercion_int(self): a_i = np.zeros((), int) assert_raises(MaskError, operator.setitem, a_i, (), np.ma.masked) assert_raises(MaskError, int, np.ma.masked) def test_coercion_float(self): a_f = np.zeros((), float) assert_warns(UserWarning, operator.setitem, a_f, (), np.ma.masked) assert_(np.isnan(a_f[()])) @pytest.mark.xfail(reason="See gh-9750") def test_coercion_unicode(self): a_u = np.zeros((), 'U10') a_u[()] = np.ma.masked assert_equal(a_u[()], u'--') @pytest.mark.xfail(reason="See gh-9750") def test_coercion_bytes(self): a_b = np.zeros((), 'S10') a_b[()] = np.ma.masked assert_equal(a_b[()], b'--') def test_subclass(self): # https://github.com/astropy/astropy/issues/6645 class Sub(type(np.ma.masked)): pass a = Sub() assert_(a is Sub()) assert_(a is not np.ma.masked) assert_not_equal(repr(a), 'masked') def test_attributes_readonly(self): assert_raises(AttributeError, setattr, np.ma.masked, 'shape', (1,)) assert_raises(AttributeError, setattr, np.ma.masked, 'dtype', np.int64) class TestMaskedWhereAliases: # TODO: Test masked_object, masked_equal, ... def test_masked_values(self): res = masked_values(np.array([-32768.0]), np.int16(-32768)) assert_equal(res.mask, [True]) res = masked_values(np.inf, np.inf) assert_equal(res.mask, True) res = np.ma.masked_values(np.inf, -np.inf) assert_equal(res.mask, False) res = np.ma.masked_values([1, 2, 3, 4], 5, shrink=True) assert_(res.mask is np.ma.nomask) res = np.ma.masked_values([1, 2, 3, 4], 5, shrink=False) assert_equal(res.mask, [False] * 4) def test_masked_array(): a = np.ma.array([0, 1, 2, 3], mask=[0, 0, 1, 0]) assert_equal(np.argwhere(a), [[1], [3]]) def test_masked_array_no_copy(): # check nomask array is updated in place a = np.ma.array([1, 2, 3, 4]) _ = np.ma.masked_where(a == 3, a, copy=False) assert_array_equal(a.mask, [False, False, True, False]) # check masked array is updated in place a = np.ma.array([1, 2, 3, 4], mask=[1, 0, 0, 0]) _ = np.ma.masked_where(a == 3, a, copy=False) assert_array_equal(a.mask, [True, False, True, False]) def test_append_masked_array(): a = np.ma.masked_equal([1,2,3], value=2) b = np.ma.masked_equal([4,3,2], value=2) result = np.ma.append(a, b) expected_data = [1, 2, 3, 4, 3, 2] expected_mask = [False, True, False, False, False, True] assert_array_equal(result.data, expected_data) assert_array_equal(result.mask, expected_mask) a = np.ma.masked_all((2,2)) b = np.ma.ones((3,1)) result = np.ma.append(a, b) expected_data = [1] * 3 expected_mask = [True] * 4 + [False] * 3 assert_array_equal(result.data[-3], expected_data) assert_array_equal(result.mask, expected_mask) result = np.ma.append(a, b, axis=None) assert_array_equal(result.data[-3], expected_data) assert_array_equal(result.mask, expected_mask) def test_append_masked_array_along_axis(): a = np.ma.masked_equal([1,2,3], value=2) b = np.ma.masked_values([[4, 5, 6], [7, 8, 9]], 7) # When `axis` is specified, `values` must have the correct shape. assert_raises(ValueError, np.ma.append, a, b, axis=0) result = np.ma.append(a[np.newaxis,:], b, axis=0) expected = np.ma.arange(1, 10) expected[[1, 6]] = np.ma.masked expected = expected.reshape((3,3)) assert_array_equal(result.data, expected.data) assert_array_equal(result.mask, expected.mask) def test_default_fill_value_complex(): # regression test for Python 3, where 'unicode' was not defined assert_(default_fill_value(1 + 1j) == 1.e20 + 0.0j) def test_ufunc_with_output(): # check that giving an output argument always returns that output. # Regression test for gh-8416. x = array([1., 2., 3.], mask=[0, 0, 1]) y = np.add(x, 1., out=x) assert_(y is x) def test_ufunc_with_out_varied(): """ Test that masked arrays are immune to gh-10459 """ # the mask of the output should not affect the result, however it is passed a = array([ 1, 2, 3], mask=[1, 0, 0]) b = array([10, 20, 30], mask=[1, 0, 0]) out = array([ 0, 0, 0], mask=[0, 0, 1]) expected = array([11, 22, 33], mask=[1, 0, 0]) out_pos = out.copy() res_pos = np.add(a, b, out_pos) out_kw = out.copy() res_kw = np.add(a, b, out=out_kw) out_tup = out.copy() res_tup = np.add(a, b, out=(out_tup,)) assert_equal(res_kw.mask, expected.mask) assert_equal(res_kw.data, expected.data) assert_equal(res_tup.mask, expected.mask) assert_equal(res_tup.data, expected.data) assert_equal(res_pos.mask, expected.mask) assert_equal(res_pos.data, expected.data) def test_astype_mask_ordering(): descr = [('v', int, 3), ('x', [('y', float)])] x = array([ [([1, 2, 3], (1.0,)), ([1, 2, 3], (2.0,))], [([1, 2, 3], (3.0,)), ([1, 2, 3], (4.0,))]], dtype=descr) x[0]['v'][0] = np.ma.masked x_a = x.astype(descr) assert x_a.dtype.names == np.dtype(descr).names assert x_a.mask.dtype.names == np.dtype(descr).names assert_equal(x, x_a) assert_(x is x.astype(x.dtype, copy=False)) assert_equal(type(x.astype(x.dtype, subok=False)), np.ndarray) x_f = x.astype(x.dtype, order='F') assert_(x_f.flags.f_contiguous) assert_(x_f.mask.flags.f_contiguous) # Also test the same indirectly, via np.array x_a2 = np.array(x, dtype=descr, subok=True) assert x_a2.dtype.names == np.dtype(descr).names assert x_a2.mask.dtype.names == np.dtype(descr).names assert_equal(x, x_a2) assert_(x is np.array(x, dtype=descr, copy=False, subok=True)) x_f2 = np.array(x, dtype=x.dtype, order='F', subok=True) assert_(x_f2.flags.f_contiguous) assert_(x_f2.mask.flags.f_contiguous) @pytest.mark.parametrize('dt1', num_dts, ids=num_ids) @pytest.mark.parametrize('dt2', num_dts, ids=num_ids) @pytest.mark.filterwarnings('ignore::numpy.ComplexWarning') def test_astype_basic(dt1, dt2): # See gh-12070 src = np.ma.array(ones(3, dt1), fill_value=1) dst = src.astype(dt2) assert_(src.fill_value == 1) assert_(src.dtype == dt1) assert_(src.fill_value.dtype == dt1) assert_(dst.fill_value == 1) assert_(dst.dtype == dt2) assert_(dst.fill_value.dtype == dt2) assert_equal(src, dst) def test_fieldless_void(): dt = np.dtype([]) # a void dtype with no fields x = np.empty(4, dt) # these arrays contain no values, so there's little to test - but this # shouldn't crash mx = np.ma.array(x) assert_equal(mx.dtype, x.dtype) assert_equal(mx.shape, x.shape) mx = np.ma.array(x, mask=x) assert_equal(mx.dtype, x.dtype) assert_equal(mx.shape, x.shape) def test_mask_shape_assignment_does_not_break_masked(): a = np.ma.masked b = np.ma.array(1, mask=a.mask) b.shape = (1,) assert_equal(a.mask.shape, ()) @pytest.mark.skipif(sys.flags.optimize > 1, reason="no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1") def test_doc_note(): def method(self): """This docstring Has multiple lines And notes Notes ----- original note """ pass expected_doc = """This docstring Has multiple lines And notes Notes ----- note original note""" assert_equal(np.ma.core.doc_note(method.__doc__, "note"), expected_doc)
205,567
Python
36.725821
102
0.500387
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/tests/test_deprecations.py
"""Test deprecation and future warnings. """ import pytest import numpy as np from numpy.testing import assert_warns from numpy.ma.testutils import assert_equal from numpy.ma.core import MaskedArrayFutureWarning import io import textwrap class TestArgsort: """ gh-8701 """ def _test_base(self, argsort, cls): arr_0d = np.array(1).view(cls) argsort(arr_0d) arr_1d = np.array([1, 2, 3]).view(cls) argsort(arr_1d) # argsort has a bad default for >1d arrays arr_2d = np.array([[1, 2], [3, 4]]).view(cls) result = assert_warns( np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d) assert_equal(result, argsort(arr_2d, axis=None)) # should be no warnings for explicitly specifying it argsort(arr_2d, axis=None) argsort(arr_2d, axis=-1) def test_function_ndarray(self): return self._test_base(np.ma.argsort, np.ndarray) def test_function_maskedarray(self): return self._test_base(np.ma.argsort, np.ma.MaskedArray) def test_method(self): return self._test_base(np.ma.MaskedArray.argsort, np.ma.MaskedArray) class TestMinimumMaximum: def test_minimum(self): assert_warns(DeprecationWarning, np.ma.minimum, np.ma.array([1, 2])) def test_maximum(self): assert_warns(DeprecationWarning, np.ma.maximum, np.ma.array([1, 2])) def test_axis_default(self): # NumPy 1.13, 2017-05-06 data1d = np.ma.arange(6) data2d = data1d.reshape(2, 3) ma_min = np.ma.minimum.reduce ma_max = np.ma.maximum.reduce # check that the default axis is still None, but warns on 2d arrays result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d) assert_equal(result, ma_max(data2d, axis=None)) result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d) assert_equal(result, ma_min(data2d, axis=None)) # no warnings on 1d, as both new and old defaults are equivalent result = ma_min(data1d) assert_equal(result, ma_min(data1d, axis=None)) assert_equal(result, ma_min(data1d, axis=0)) result = ma_max(data1d) assert_equal(result, ma_max(data1d, axis=None)) assert_equal(result, ma_max(data1d, axis=0)) class TestFromtextfile: def test_fromtextfile_delimitor(self): # NumPy 1.22.0, 2021-09-23 textfile = io.StringIO(textwrap.dedent( """ A,B,C,D 'string 1';1;1.0;'mixed column' 'string 2';2;2.0; 'string 3';3;3.0;123 'string 4';4;4.0;3.14 """ )) with pytest.warns(DeprecationWarning): result = np.ma.mrecords.fromtextfile(textfile, delimitor=';')
2,777
Python
29.866666
76
0.621534
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/tests/test_regression.py
import numpy as np from numpy.testing import ( assert_, assert_array_equal, assert_allclose, suppress_warnings ) class TestRegression: def test_masked_array_create(self): # Ticket #17 x = np.ma.masked_array([0, 1, 2, 3, 0, 4, 5, 6], mask=[0, 0, 0, 1, 1, 1, 0, 0]) assert_array_equal(np.ma.nonzero(x), [[1, 2, 6, 7]]) def test_masked_array(self): # Ticket #61 np.ma.array(1, mask=[1]) def test_mem_masked_where(self): # Ticket #62 from numpy.ma import masked_where, MaskType a = np.zeros((1, 1)) b = np.zeros(a.shape, MaskType) c = masked_where(b, a) a-c def test_masked_array_multiply(self): # Ticket #254 a = np.ma.zeros((4, 1)) a[2, 0] = np.ma.masked b = np.zeros((4, 2)) a*b b*a def test_masked_array_repeat(self): # Ticket #271 np.ma.array([1], mask=False).repeat(10) def test_masked_array_repr_unicode(self): # Ticket #1256 repr(np.ma.array(u"Unicode")) def test_atleast_2d(self): # Ticket #1559 a = np.ma.masked_array([0.0, 1.2, 3.5], mask=[False, True, False]) b = np.atleast_2d(a) assert_(a.mask.ndim == 1) assert_(b.mask.ndim == 2) def test_set_fill_value_unicode_py3(self): # Ticket #2733 a = np.ma.masked_array(['a', 'b', 'c'], mask=[1, 0, 0]) a.fill_value = 'X' assert_(a.fill_value == 'X') def test_var_sets_maskedarray_scalar(self): # Issue gh-2757 a = np.ma.array(np.arange(5), mask=True) mout = np.ma.array(-1, dtype=float) a.var(out=mout) assert_(mout._data == 0) def test_ddof_corrcoef(self): # See gh-3336 x = np.ma.masked_equal([1, 2, 3, 4, 5], 4) y = np.array([2, 2.5, 3.1, 3, 5]) # this test can be removed after deprecation. with suppress_warnings() as sup: sup.filter(DeprecationWarning, "bias and ddof have no effect") r0 = np.ma.corrcoef(x, y, ddof=0) r1 = np.ma.corrcoef(x, y, ddof=1) # ddof should not have an effect (it gets cancelled out) assert_allclose(r0.data, r1.data) def test_mask_not_backmangled(self): # See gh-10314. Test case taken from gh-3140. a = np.ma.MaskedArray([1., 2.], mask=[False, False]) assert_(a.mask.shape == (2,)) b = np.tile(a, (2, 1)) # Check that the above no longer changes a.shape to (1, 2) assert_(a.mask.shape == (2,)) assert_(b.shape == (2, 2)) assert_(b.mask.shape == (2, 2)) def test_empty_list_on_structured(self): # See gh-12464. Indexing with empty list should give empty result. ma = np.ma.MaskedArray([(1, 1.), (2, 2.), (3, 3.)], dtype='i4,f4') assert_array_equal(ma[[]], ma[:0]) def test_masked_array_tobytes_fortran(self): ma = np.ma.arange(4).reshape((2,2)) assert_array_equal(ma.tobytes(order='F'), ma.T.tobytes())
3,079
Python
32.478261
74
0.537187
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/tests/test_extras.py
# pylint: disable-msg=W0611, W0612, W0511 """Tests suite for MaskedArray. Adapted from the original test_ma by Pierre Gerard-Marchant :author: Pierre Gerard-Marchant :contact: pierregm_at_uga_dot_edu :version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $ """ import warnings import itertools import pytest import numpy as np from numpy.testing import ( assert_warns, suppress_warnings ) from numpy.ma.testutils import ( assert_, assert_array_equal, assert_equal, assert_almost_equal ) from numpy.ma.core import ( array, arange, masked, MaskedArray, masked_array, getmaskarray, shape, nomask, ones, zeros, count ) from numpy.ma.extras import ( atleast_1d, atleast_2d, atleast_3d, mr_, dot, polyfit, cov, corrcoef, median, average, unique, setxor1d, setdiff1d, union1d, intersect1d, in1d, ediff1d, apply_over_axes, apply_along_axis, compress_nd, compress_rowcols, mask_rowcols, clump_masked, clump_unmasked, flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges, masked_all, masked_all_like, isin, diagflat, ndenumerate, stack, vstack ) class TestGeneric: # def test_masked_all(self): # Tests masked_all # Standard dtype test = masked_all((2,), dtype=float) control = array([1, 1], mask=[1, 1], dtype=float) assert_equal(test, control) # Flexible dtype dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']}) test = masked_all((2,), dtype=dt) control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt) assert_equal(test, control) test = masked_all((2, 2), dtype=dt) control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]], mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]], dtype=dt) assert_equal(test, control) # Nested dtype dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])]) test = masked_all((2,), dtype=dt) control = array([(1, (1, 1)), (1, (1, 1))], mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) assert_equal(test, control) test = masked_all((2,), dtype=dt) control = array([(1, (1, 1)), (1, (1, 1))], mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) assert_equal(test, control) test = masked_all((1, 1), dtype=dt) control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt) assert_equal(test, control) def test_masked_all_with_object_nested(self): # Test masked_all works with nested array with dtype of an 'object' # refers to issue #15895 my_dtype = np.dtype([('b', ([('c', object)], (1,)))]) masked_arr = np.ma.masked_all((1,), my_dtype) assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray) assert_equal(type(masked_arr['b']['c']), np.ma.core.MaskedArray) assert_equal(len(masked_arr['b']['c']), 1) assert_equal(masked_arr['b']['c'].shape, (1, 1)) assert_equal(masked_arr['b']['c']._fill_value.shape, ()) def test_masked_all_with_object(self): # same as above except that the array is not nested my_dtype = np.dtype([('b', (object, (1,)))]) masked_arr = np.ma.masked_all((1,), my_dtype) assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray) assert_equal(len(masked_arr['b']), 1) assert_equal(masked_arr['b'].shape, (1, 1)) assert_equal(masked_arr['b']._fill_value.shape, ()) def test_masked_all_like(self): # Tests masked_all # Standard dtype base = array([1, 2], dtype=float) test = masked_all_like(base) control = array([1, 1], mask=[1, 1], dtype=float) assert_equal(test, control) # Flexible dtype dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']}) base = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt) test = masked_all_like(base) control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt) assert_equal(test, control) # Nested dtype dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])]) control = array([(1, (1, 1)), (1, (1, 1))], mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) test = masked_all_like(control) assert_equal(test, control) def check_clump(self, f): for i in range(1, 7): for j in range(2**i): k = np.arange(i, dtype=int) ja = np.full(i, j, dtype=int) a = masked_array(2**k) a.mask = (ja & (2**k)) != 0 s = 0 for sl in f(a): s += a.data[sl].sum() if f == clump_unmasked: assert_equal(a.compressed().sum(), s) else: a.mask = ~a.mask assert_equal(a.compressed().sum(), s) def test_clump_masked(self): # Test clump_masked a = masked_array(np.arange(10)) a[[0, 1, 2, 6, 8, 9]] = masked # test = clump_masked(a) control = [slice(0, 3), slice(6, 7), slice(8, 10)] assert_equal(test, control) self.check_clump(clump_masked) def test_clump_unmasked(self): # Test clump_unmasked a = masked_array(np.arange(10)) a[[0, 1, 2, 6, 8, 9]] = masked test = clump_unmasked(a) control = [slice(3, 6), slice(7, 8), ] assert_equal(test, control) self.check_clump(clump_unmasked) def test_flatnotmasked_contiguous(self): # Test flatnotmasked_contiguous a = arange(10) # No mask test = flatnotmasked_contiguous(a) assert_equal(test, [slice(0, a.size)]) # mask of all false a.mask = np.zeros(10, dtype=bool) assert_equal(test, [slice(0, a.size)]) # Some mask a[(a < 3) | (a > 8) | (a == 5)] = masked test = flatnotmasked_contiguous(a) assert_equal(test, [slice(3, 5), slice(6, 9)]) # a[:] = masked test = flatnotmasked_contiguous(a) assert_equal(test, []) class TestAverage: # Several tests of average. Why so many ? Good point... def test_testAverage1(self): # Test of average. ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) assert_equal(2.0, average(ott, axis=0)) assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.])) result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True) assert_equal(2.0, result) assert_(wts == 4.0) ott[:] = masked assert_equal(average(ott, axis=0).mask, [True]) ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) ott = ott.reshape(2, 2) ott[:, 1] = masked assert_equal(average(ott, axis=0), [2.0, 0.0]) assert_equal(average(ott, axis=1).mask[0], [True]) assert_equal([2., 0.], average(ott, axis=0)) result, wts = average(ott, axis=0, returned=True) assert_equal(wts, [1., 0.]) def test_testAverage2(self): # More tests of average. w1 = [0, 1, 1, 1, 1, 0] w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] x = arange(6, dtype=np.float_) assert_equal(average(x, axis=0), 2.5) assert_equal(average(x, axis=0, weights=w1), 2.5) y = array([arange(6, dtype=np.float_), 2.0 * arange(6)]) assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.) assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.) assert_equal(average(y, axis=1), [average(x, axis=0), average(x, axis=0) * 2.0]) assert_equal(average(y, None, weights=w2), 20. / 6.) assert_equal(average(y, axis=0, weights=w2), [0., 1., 2., 3., 4., 10.]) assert_equal(average(y, axis=1), [average(x, axis=0), average(x, axis=0) * 2.0]) m1 = zeros(6) m2 = [0, 0, 1, 1, 0, 0] m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] m4 = ones(6) m5 = [0, 1, 1, 1, 1, 1] assert_equal(average(masked_array(x, m1), axis=0), 2.5) assert_equal(average(masked_array(x, m2), axis=0), 2.5) assert_equal(average(masked_array(x, m4), axis=0).mask, [True]) assert_equal(average(masked_array(x, m5), axis=0), 0.0) assert_equal(count(average(masked_array(x, m4), axis=0)), 0) z = masked_array(y, m3) assert_equal(average(z, None), 20. / 6.) assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5]) assert_equal(average(z, axis=1), [2.5, 5.0]) assert_equal(average(z, axis=0, weights=w2), [0., 1., 99., 99., 4.0, 10.0]) def test_testAverage3(self): # Yet more tests of average! a = arange(6) b = arange(6) * 3 r1, w1 = average([[a, b], [b, a]], axis=1, returned=True) assert_equal(shape(r1), shape(w1)) assert_equal(r1.shape, w1.shape) r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True) assert_equal(shape(w2), shape(r2)) r2, w2 = average(ones((2, 2, 3)), returned=True) assert_equal(shape(w2), shape(r2)) r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True) assert_equal(shape(w2), shape(r2)) a2d = array([[1, 2], [0, 4]], float) a2dm = masked_array(a2d, [[False, False], [True, False]]) a2da = average(a2d, axis=0) assert_equal(a2da, [0.5, 3.0]) a2dma = average(a2dm, axis=0) assert_equal(a2dma, [1.0, 3.0]) a2dma = average(a2dm, axis=None) assert_equal(a2dma, 7. / 3.) a2dma = average(a2dm, axis=1) assert_equal(a2dma, [1.5, 4.0]) def test_testAverage4(self): # Test that `keepdims` works with average x = np.array([2, 3, 4]).reshape(3, 1) b = np.ma.array(x, mask=[[False], [False], [True]]) w = np.array([4, 5, 6]).reshape(3, 1) actual = average(b, weights=w, axis=1, keepdims=True) desired = masked_array([[2.], [3.], [4.]], [[False], [False], [True]]) assert_equal(actual, desired) def test_onintegers_with_mask(self): # Test average on integers with mask a = average(array([1, 2])) assert_equal(a, 1.5) a = average(array([1, 2, 3, 4], mask=[False, False, True, True])) assert_equal(a, 1.5) def test_complex(self): # Test with complex data. # (Regression test for https://github.com/numpy/numpy/issues/2684) mask = np.array([[0, 0, 0, 1, 0], [0, 1, 0, 0, 0]], dtype=bool) a = masked_array([[0, 1+2j, 3+4j, 5+6j, 7+8j], [9j, 0+1j, 2+3j, 4+5j, 7+7j]], mask=mask) av = average(a) expected = np.average(a.compressed()) assert_almost_equal(av.real, expected.real) assert_almost_equal(av.imag, expected.imag) av0 = average(a, axis=0) expected0 = average(a.real, axis=0) + average(a.imag, axis=0)*1j assert_almost_equal(av0.real, expected0.real) assert_almost_equal(av0.imag, expected0.imag) av1 = average(a, axis=1) expected1 = average(a.real, axis=1) + average(a.imag, axis=1)*1j assert_almost_equal(av1.real, expected1.real) assert_almost_equal(av1.imag, expected1.imag) # Test with the 'weights' argument. wts = np.array([[0.5, 1.0, 2.0, 1.0, 0.5], [1.0, 1.0, 1.0, 1.0, 1.0]]) wav = average(a, weights=wts) expected = np.average(a.compressed(), weights=wts[~mask]) assert_almost_equal(wav.real, expected.real) assert_almost_equal(wav.imag, expected.imag) wav0 = average(a, weights=wts, axis=0) expected0 = (average(a.real, weights=wts, axis=0) + average(a.imag, weights=wts, axis=0)*1j) assert_almost_equal(wav0.real, expected0.real) assert_almost_equal(wav0.imag, expected0.imag) wav1 = average(a, weights=wts, axis=1) expected1 = (average(a.real, weights=wts, axis=1) + average(a.imag, weights=wts, axis=1)*1j) assert_almost_equal(wav1.real, expected1.real) assert_almost_equal(wav1.imag, expected1.imag) @pytest.mark.parametrize( 'x, axis, expected_avg, weights, expected_wavg, expected_wsum', [([1, 2, 3], None, [2.0], [3, 4, 1], [1.75], [8.0]), ([[1, 2, 5], [1, 6, 11]], 0, [[1.0, 4.0, 8.0]], [1, 3], [[1.0, 5.0, 9.5]], [[4, 4, 4]])], ) def test_basic_keepdims(self, x, axis, expected_avg, weights, expected_wavg, expected_wsum): avg = np.ma.average(x, axis=axis, keepdims=True) assert avg.shape == np.shape(expected_avg) assert_array_equal(avg, expected_avg) wavg = np.ma.average(x, axis=axis, weights=weights, keepdims=True) assert wavg.shape == np.shape(expected_wavg) assert_array_equal(wavg, expected_wavg) wavg, wsum = np.ma.average(x, axis=axis, weights=weights, returned=True, keepdims=True) assert wavg.shape == np.shape(expected_wavg) assert_array_equal(wavg, expected_wavg) assert wsum.shape == np.shape(expected_wsum) assert_array_equal(wsum, expected_wsum) def test_masked_weights(self): # Test with masked weights. # (Regression test for https://github.com/numpy/numpy/issues/10438) a = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], [1, 0, 0], [0, 0, 0]]) weights_unmasked = masked_array([5, 28, 31], mask=False) weights_masked = masked_array([5, 28, 31], mask=[1, 0, 0]) avg_unmasked = average(a, axis=0, weights=weights_unmasked, returned=False) expected_unmasked = np.array([6.0, 5.21875, 6.21875]) assert_almost_equal(avg_unmasked, expected_unmasked) avg_masked = average(a, axis=0, weights=weights_masked, returned=False) expected_masked = np.array([6.0, 5.576271186440678, 6.576271186440678]) assert_almost_equal(avg_masked, expected_masked) # weights should be masked if needed # depending on the array mask. This is to avoid summing # masked nan or other values that are not cancelled by a zero a = np.ma.array([1.0, 2.0, 3.0, 4.0], mask=[False, False, True, True]) avg_unmasked = average(a, weights=[1, 1, 1, np.nan]) assert_almost_equal(avg_unmasked, 1.5) a = np.ma.array([ [1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 1.0, 2.0, 3.0], ], mask=[ [False, True, True, False], [True, False, True, True], [True, False, True, False], ]) avg_masked = np.ma.average(a, weights=[1, np.nan, 1], axis=0) avg_expected = np.ma.array([1.0, np.nan, np.nan, 3.5], mask=[False, True, True, False]) assert_almost_equal(avg_masked, avg_expected) assert_equal(avg_masked.mask, avg_expected.mask) class TestConcatenator: # Tests for mr_, the equivalent of r_ for masked arrays. def test_1d(self): # Tests mr_ on 1D arrays. assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6])) b = ones(5) m = [1, 0, 0, 0, 0] d = masked_array(b, mask=m) c = mr_[d, 0, 0, d] assert_(isinstance(c, MaskedArray)) assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]) assert_array_equal(c.mask, mr_[m, 0, 0, m]) def test_2d(self): # Tests mr_ on 2D arrays. a_1 = np.random.rand(5, 5) a_2 = np.random.rand(5, 5) m_1 = np.round_(np.random.rand(5, 5), 0) m_2 = np.round_(np.random.rand(5, 5), 0) b_1 = masked_array(a_1, mask=m_1) b_2 = masked_array(a_2, mask=m_2) # append columns d = mr_['1', b_1, b_2] assert_(d.shape == (5, 10)) assert_array_equal(d[:, :5], b_1) assert_array_equal(d[:, 5:], b_2) assert_array_equal(d.mask, np.r_['1', m_1, m_2]) d = mr_[b_1, b_2] assert_(d.shape == (10, 5)) assert_array_equal(d[:5,:], b_1) assert_array_equal(d[5:,:], b_2) assert_array_equal(d.mask, np.r_[m_1, m_2]) def test_masked_constant(self): actual = mr_[np.ma.masked, 1] assert_equal(actual.mask, [True, False]) assert_equal(actual.data[1], 1) actual = mr_[[1, 2], np.ma.masked] assert_equal(actual.mask, [False, False, True]) assert_equal(actual.data[:2], [1, 2]) class TestNotMasked: # Tests notmasked_edges and notmasked_contiguous. def test_edges(self): # Tests unmasked_edges data = masked_array(np.arange(25).reshape(5, 5), mask=[[0, 0, 1, 0, 0], [0, 0, 0, 1, 1], [1, 1, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 0, 0]],) test = notmasked_edges(data, None) assert_equal(test, [0, 24]) test = notmasked_edges(data, 0) assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)]) assert_equal(test[1], [(3, 3, 3, 4, 4), (0, 1, 2, 3, 4)]) test = notmasked_edges(data, 1) assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 2, 0, 3)]) assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 2, 4, 4, 4)]) # test = notmasked_edges(data.data, None) assert_equal(test, [0, 24]) test = notmasked_edges(data.data, 0) assert_equal(test[0], [(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)]) assert_equal(test[1], [(4, 4, 4, 4, 4), (0, 1, 2, 3, 4)]) test = notmasked_edges(data.data, -1) assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 0, 0, 0)]) assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 4, 4, 4, 4)]) # data[-2] = masked test = notmasked_edges(data, 0) assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)]) assert_equal(test[1], [(1, 1, 2, 4, 4), (0, 1, 2, 3, 4)]) test = notmasked_edges(data, -1) assert_equal(test[0], [(0, 1, 2, 4), (0, 0, 2, 3)]) assert_equal(test[1], [(0, 1, 2, 4), (4, 2, 4, 4)]) def test_contiguous(self): # Tests notmasked_contiguous a = masked_array(np.arange(24).reshape(3, 8), mask=[[0, 0, 0, 0, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 0]]) tmp = notmasked_contiguous(a, None) assert_equal(tmp, [ slice(0, 4, None), slice(16, 22, None), slice(23, 24, None) ]) tmp = notmasked_contiguous(a, 0) assert_equal(tmp, [ [slice(0, 1, None), slice(2, 3, None)], [slice(0, 1, None), slice(2, 3, None)], [slice(0, 1, None), slice(2, 3, None)], [slice(0, 1, None), slice(2, 3, None)], [slice(2, 3, None)], [slice(2, 3, None)], [], [slice(2, 3, None)] ]) # tmp = notmasked_contiguous(a, 1) assert_equal(tmp, [ [slice(0, 4, None)], [], [slice(0, 6, None), slice(7, 8, None)] ]) class TestCompressFunctions: def test_compress_nd(self): # Tests compress_nd x = np.array(list(range(3*4*5))).reshape(3, 4, 5) m = np.zeros((3,4,5)).astype(bool) m[1,1,1] = True x = array(x, mask=m) # axis=None a = compress_nd(x) assert_equal(a, [[[ 0, 2, 3, 4], [10, 12, 13, 14], [15, 17, 18, 19]], [[40, 42, 43, 44], [50, 52, 53, 54], [55, 57, 58, 59]]]) # axis=0 a = compress_nd(x, 0) assert_equal(a, [[[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]], [[40, 41, 42, 43, 44], [45, 46, 47, 48, 49], [50, 51, 52, 53, 54], [55, 56, 57, 58, 59]]]) # axis=1 a = compress_nd(x, 1) assert_equal(a, [[[ 0, 1, 2, 3, 4], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]], [[20, 21, 22, 23, 24], [30, 31, 32, 33, 34], [35, 36, 37, 38, 39]], [[40, 41, 42, 43, 44], [50, 51, 52, 53, 54], [55, 56, 57, 58, 59]]]) a2 = compress_nd(x, (1,)) a3 = compress_nd(x, -2) a4 = compress_nd(x, (-2,)) assert_equal(a, a2) assert_equal(a, a3) assert_equal(a, a4) # axis=2 a = compress_nd(x, 2) assert_equal(a, [[[ 0, 2, 3, 4], [ 5, 7, 8, 9], [10, 12, 13, 14], [15, 17, 18, 19]], [[20, 22, 23, 24], [25, 27, 28, 29], [30, 32, 33, 34], [35, 37, 38, 39]], [[40, 42, 43, 44], [45, 47, 48, 49], [50, 52, 53, 54], [55, 57, 58, 59]]]) a2 = compress_nd(x, (2,)) a3 = compress_nd(x, -1) a4 = compress_nd(x, (-1,)) assert_equal(a, a2) assert_equal(a, a3) assert_equal(a, a4) # axis=(0, 1) a = compress_nd(x, (0, 1)) assert_equal(a, [[[ 0, 1, 2, 3, 4], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]], [[40, 41, 42, 43, 44], [50, 51, 52, 53, 54], [55, 56, 57, 58, 59]]]) a2 = compress_nd(x, (0, -2)) assert_equal(a, a2) # axis=(1, 2) a = compress_nd(x, (1, 2)) assert_equal(a, [[[ 0, 2, 3, 4], [10, 12, 13, 14], [15, 17, 18, 19]], [[20, 22, 23, 24], [30, 32, 33, 34], [35, 37, 38, 39]], [[40, 42, 43, 44], [50, 52, 53, 54], [55, 57, 58, 59]]]) a2 = compress_nd(x, (-2, 2)) a3 = compress_nd(x, (1, -1)) a4 = compress_nd(x, (-2, -1)) assert_equal(a, a2) assert_equal(a, a3) assert_equal(a, a4) # axis=(0, 2) a = compress_nd(x, (0, 2)) assert_equal(a, [[[ 0, 2, 3, 4], [ 5, 7, 8, 9], [10, 12, 13, 14], [15, 17, 18, 19]], [[40, 42, 43, 44], [45, 47, 48, 49], [50, 52, 53, 54], [55, 57, 58, 59]]]) a2 = compress_nd(x, (0, -1)) assert_equal(a, a2) def test_compress_rowcols(self): # Tests compress_rowcols x = array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) assert_equal(compress_rowcols(x), [[4, 5], [7, 8]]) assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]]) assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]]) x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) assert_equal(compress_rowcols(x), [[0, 2], [6, 8]]) assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]]) assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]]) x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]]) assert_equal(compress_rowcols(x), [[8]]) assert_equal(compress_rowcols(x, 0), [[6, 7, 8]]) assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]]) x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]]) assert_equal(compress_rowcols(x).size, 0) assert_equal(compress_rowcols(x, 0).size, 0) assert_equal(compress_rowcols(x, 1).size, 0) def test_mask_rowcols(self): # Tests mask_rowcols. x = array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) assert_equal(mask_rowcols(x).mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]]) assert_equal(mask_rowcols(x, 0).mask, [[1, 1, 1], [0, 0, 0], [0, 0, 0]]) assert_equal(mask_rowcols(x, 1).mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]]) x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) assert_equal(mask_rowcols(x).mask, [[0, 1, 0], [1, 1, 1], [0, 1, 0]]) assert_equal(mask_rowcols(x, 0).mask, [[0, 0, 0], [1, 1, 1], [0, 0, 0]]) assert_equal(mask_rowcols(x, 1).mask, [[0, 1, 0], [0, 1, 0], [0, 1, 0]]) x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]]) assert_equal(mask_rowcols(x).mask, [[1, 1, 1], [1, 1, 1], [1, 1, 0]]) assert_equal(mask_rowcols(x, 0).mask, [[1, 1, 1], [1, 1, 1], [0, 0, 0]]) assert_equal(mask_rowcols(x, 1,).mask, [[1, 1, 0], [1, 1, 0], [1, 1, 0]]) x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]]) assert_(mask_rowcols(x).all() is masked) assert_(mask_rowcols(x, 0).all() is masked) assert_(mask_rowcols(x, 1).all() is masked) assert_(mask_rowcols(x).mask.all()) assert_(mask_rowcols(x, 0).mask.all()) assert_(mask_rowcols(x, 1).mask.all()) @pytest.mark.parametrize("axis", [None, 0, 1]) @pytest.mark.parametrize(["func", "rowcols_axis"], [(np.ma.mask_rows, 0), (np.ma.mask_cols, 1)]) def test_mask_row_cols_axis_deprecation(self, axis, func, rowcols_axis): # Test deprecation of the axis argument to `mask_rows` and `mask_cols` x = array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) with assert_warns(DeprecationWarning): res = func(x, axis=axis) assert_equal(res, mask_rowcols(x, rowcols_axis)) def test_dot(self): # Tests dot product n = np.arange(1, 7) # m = [1, 0, 0, 0, 0, 0] a = masked_array(n, mask=m).reshape(2, 3) b = masked_array(n, mask=m).reshape(3, 2) c = dot(a, b, strict=True) assert_equal(c.mask, [[1, 1], [1, 0]]) c = dot(b, a, strict=True) assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]]) c = dot(a, b, strict=False) assert_equal(c, np.dot(a.filled(0), b.filled(0))) c = dot(b, a, strict=False) assert_equal(c, np.dot(b.filled(0), a.filled(0))) # m = [0, 0, 0, 0, 0, 1] a = masked_array(n, mask=m).reshape(2, 3) b = masked_array(n, mask=m).reshape(3, 2) c = dot(a, b, strict=True) assert_equal(c.mask, [[0, 1], [1, 1]]) c = dot(b, a, strict=True) assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]]) c = dot(a, b, strict=False) assert_equal(c, np.dot(a.filled(0), b.filled(0))) assert_equal(c, dot(a, b)) c = dot(b, a, strict=False) assert_equal(c, np.dot(b.filled(0), a.filled(0))) # m = [0, 0, 0, 0, 0, 0] a = masked_array(n, mask=m).reshape(2, 3) b = masked_array(n, mask=m).reshape(3, 2) c = dot(a, b) assert_equal(c.mask, nomask) c = dot(b, a) assert_equal(c.mask, nomask) # a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3) b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2) c = dot(a, b, strict=True) assert_equal(c.mask, [[1, 1], [0, 0]]) c = dot(a, b, strict=False) assert_equal(c, np.dot(a.filled(0), b.filled(0))) c = dot(b, a, strict=True) assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]]) c = dot(b, a, strict=False) assert_equal(c, np.dot(b.filled(0), a.filled(0))) # a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3) b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2) c = dot(a, b, strict=True) assert_equal(c.mask, [[0, 0], [1, 1]]) c = dot(a, b) assert_equal(c, np.dot(a.filled(0), b.filled(0))) c = dot(b, a, strict=True) assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]]) c = dot(b, a, strict=False) assert_equal(c, np.dot(b.filled(0), a.filled(0))) # a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3) b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2) c = dot(a, b, strict=True) assert_equal(c.mask, [[1, 0], [1, 1]]) c = dot(a, b, strict=False) assert_equal(c, np.dot(a.filled(0), b.filled(0))) c = dot(b, a, strict=True) assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]]) c = dot(b, a, strict=False) assert_equal(c, np.dot(b.filled(0), a.filled(0))) def test_dot_returns_maskedarray(self): # See gh-6611 a = np.eye(3) b = array(a) assert_(type(dot(a, a)) is MaskedArray) assert_(type(dot(a, b)) is MaskedArray) assert_(type(dot(b, a)) is MaskedArray) assert_(type(dot(b, b)) is MaskedArray) def test_dot_out(self): a = array(np.eye(3)) out = array(np.zeros((3, 3))) res = dot(a, a, out=out) assert_(res is out) assert_equal(a, res) class TestApplyAlongAxis: # Tests 2D functions def test_3d(self): a = arange(12.).reshape(2, 2, 3) def myfunc(b): return b[1] xa = apply_along_axis(myfunc, 2, a) assert_equal(xa, [[1, 4], [7, 10]]) # Tests kwargs functions def test_3d_kwargs(self): a = arange(12).reshape(2, 2, 3) def myfunc(b, offset=0): return b[1+offset] xa = apply_along_axis(myfunc, 2, a, offset=1) assert_equal(xa, [[2, 5], [8, 11]]) class TestApplyOverAxes: # Tests apply_over_axes def test_basic(self): a = arange(24).reshape(2, 3, 4) test = apply_over_axes(np.sum, a, [0, 2]) ctrl = np.array([[[60], [92], [124]]]) assert_equal(test, ctrl) a[(a % 2).astype(bool)] = masked test = apply_over_axes(np.sum, a, [0, 2]) ctrl = np.array([[[28], [44], [60]]]) assert_equal(test, ctrl) class TestMedian: def test_pytype(self): r = np.ma.median([[np.inf, np.inf], [np.inf, np.inf]], axis=-1) assert_equal(r, np.inf) def test_inf(self): # test that even which computes handles inf / x = masked r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], [np.inf, np.inf]]), axis=-1) assert_equal(r, np.inf) r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], [np.inf, np.inf]]), axis=None) assert_equal(r, np.inf) # all masked r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], [np.inf, np.inf]], mask=True), axis=-1) assert_equal(r.mask, True) r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], [np.inf, np.inf]], mask=True), axis=None) assert_equal(r.mask, True) def test_non_masked(self): x = np.arange(9) assert_equal(np.ma.median(x), 4.) assert_(type(np.ma.median(x)) is not MaskedArray) x = range(8) assert_equal(np.ma.median(x), 3.5) assert_(type(np.ma.median(x)) is not MaskedArray) x = 5 assert_equal(np.ma.median(x), 5.) assert_(type(np.ma.median(x)) is not MaskedArray) # integer x = np.arange(9 * 8).reshape(9, 8) assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0)) assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1)) assert_(np.ma.median(x, axis=1) is not MaskedArray) # float x = np.arange(9 * 8.).reshape(9, 8) assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0)) assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1)) assert_(np.ma.median(x, axis=1) is not MaskedArray) def test_docstring_examples(self): "test the examples given in the docstring of ma.median" x = array(np.arange(8), mask=[0]*4 + [1]*4) assert_equal(np.ma.median(x), 1.5) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) x = array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4) assert_equal(np.ma.median(x), 2.5) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) ma_x = np.ma.median(x, axis=-1, overwrite_input=True) assert_equal(ma_x, [2., 5.]) assert_equal(ma_x.shape, (2,), "shape mismatch") assert_(type(ma_x) is MaskedArray) def test_axis_argument_errors(self): msg = "mask = %s, ndim = %s, axis = %s, overwrite_input = %s" for ndmin in range(5): for mask in [False, True]: x = array(1, ndmin=ndmin, mask=mask) # Valid axis values should not raise exception args = itertools.product(range(-ndmin, ndmin), [False, True]) for axis, over in args: try: np.ma.median(x, axis=axis, overwrite_input=over) except Exception: raise AssertionError(msg % (mask, ndmin, axis, over)) # Invalid axis values should raise exception args = itertools.product([-(ndmin + 1), ndmin], [False, True]) for axis, over in args: try: np.ma.median(x, axis=axis, overwrite_input=over) except np.AxisError: pass else: raise AssertionError(msg % (mask, ndmin, axis, over)) def test_masked_0d(self): # Check values x = array(1, mask=False) assert_equal(np.ma.median(x), 1) x = array(1, mask=True) assert_equal(np.ma.median(x), np.ma.masked) def test_masked_1d(self): x = array(np.arange(5), mask=True) assert_equal(np.ma.median(x), np.ma.masked) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is np.ma.core.MaskedConstant) x = array(np.arange(5), mask=False) assert_equal(np.ma.median(x), 2.) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) x = array(np.arange(5), mask=[0,1,0,0,0]) assert_equal(np.ma.median(x), 2.5) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) x = array(np.arange(5), mask=[0,1,1,1,1]) assert_equal(np.ma.median(x), 0.) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) # integer x = array(np.arange(5), mask=[0,1,1,0,0]) assert_equal(np.ma.median(x), 3.) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) # float x = array(np.arange(5.), mask=[0,1,1,0,0]) assert_equal(np.ma.median(x), 3.) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) # integer x = array(np.arange(6), mask=[0,1,1,1,1,0]) assert_equal(np.ma.median(x), 2.5) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) # float x = array(np.arange(6.), mask=[0,1,1,1,1,0]) assert_equal(np.ma.median(x), 2.5) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) def test_1d_shape_consistency(self): assert_equal(np.ma.median(array([1,2,3],mask=[0,0,0])).shape, np.ma.median(array([1,2,3],mask=[0,1,0])).shape ) def test_2d(self): # Tests median w/ 2D (n, p) = (101, 30) x = masked_array(np.linspace(-1., 1., n),) x[:10] = x[-10:] = masked z = masked_array(np.empty((n, p), dtype=float)) z[:, 0] = x[:] idx = np.arange(len(x)) for i in range(1, p): np.random.shuffle(idx) z[:, i] = x[idx] assert_equal(median(z[:, 0]), 0) assert_equal(median(z), 0) assert_equal(median(z, axis=0), np.zeros(p)) assert_equal(median(z.T, axis=1), np.zeros(p)) def test_2d_waxis(self): # Tests median w/ 2D arrays and different axis. x = masked_array(np.arange(30).reshape(10, 3)) x[:3] = x[-3:] = masked assert_equal(median(x), 14.5) assert_(type(np.ma.median(x)) is not MaskedArray) assert_equal(median(x, axis=0), [13.5, 14.5, 15.5]) assert_(type(np.ma.median(x, axis=0)) is MaskedArray) assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0]) assert_(type(np.ma.median(x, axis=1)) is MaskedArray) assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1]) def test_3d(self): # Tests median w/ 3D x = np.ma.arange(24).reshape(3, 4, 2) x[x % 3 == 0] = masked assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]]) x.shape = (4, 3, 2) assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]]) x = np.ma.arange(24).reshape(4, 3, 2) x[x % 5 == 0] = masked assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]]) def test_neg_axis(self): x = masked_array(np.arange(30).reshape(10, 3)) x[:3] = x[-3:] = masked assert_equal(median(x, axis=-1), median(x, axis=1)) def test_out_1d(self): # integer float even odd for v in (30, 30., 31, 31.): x = masked_array(np.arange(v)) x[:3] = x[-3:] = masked out = masked_array(np.ones(())) r = median(x, out=out) if v == 30: assert_equal(out, 14.5) else: assert_equal(out, 15.) assert_(r is out) assert_(type(r) is MaskedArray) def test_out(self): # integer float even odd for v in (40, 40., 30, 30.): x = masked_array(np.arange(v).reshape(10, -1)) x[:3] = x[-3:] = masked out = masked_array(np.ones(10)) r = median(x, axis=1, out=out) if v == 30: e = masked_array([0.]*3 + [10, 13, 16, 19] + [0.]*3, mask=[True] * 3 + [False] * 4 + [True] * 3) else: e = masked_array([0.]*3 + [13.5, 17.5, 21.5, 25.5] + [0.]*3, mask=[True]*3 + [False]*4 + [True]*3) assert_equal(r, e) assert_(r is out) assert_(type(r) is MaskedArray) def test_single_non_masked_value_on_axis(self): data = [[1., 0.], [0., 3.], [0., 0.]] masked_arr = np.ma.masked_equal(data, 0) expected = [1., 3.] assert_array_equal(np.ma.median(masked_arr, axis=0), expected) def test_nan(self): for mask in (False, np.zeros(6, dtype=bool)): dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]]) dm.mask = mask # scalar result r = np.ma.median(dm, axis=None) assert_(np.isscalar(r)) assert_array_equal(r, np.nan) r = np.ma.median(dm.ravel(), axis=0) assert_(np.isscalar(r)) assert_array_equal(r, np.nan) r = np.ma.median(dm, axis=0) assert_equal(type(r), MaskedArray) assert_array_equal(r, [1, np.nan, 3]) r = np.ma.median(dm, axis=1) assert_equal(type(r), MaskedArray) assert_array_equal(r, [np.nan, 2]) r = np.ma.median(dm, axis=-1) assert_equal(type(r), MaskedArray) assert_array_equal(r, [np.nan, 2]) dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]]) dm[:, 2] = np.ma.masked assert_array_equal(np.ma.median(dm, axis=None), np.nan) assert_array_equal(np.ma.median(dm, axis=0), [1, np.nan, 3]) assert_array_equal(np.ma.median(dm, axis=1), [np.nan, 1.5]) def test_out_nan(self): o = np.ma.masked_array(np.zeros((4,))) d = np.ma.masked_array(np.ones((3, 4))) d[2, 1] = np.nan d[2, 2] = np.ma.masked assert_equal(np.ma.median(d, 0, out=o), o) o = np.ma.masked_array(np.zeros((3,))) assert_equal(np.ma.median(d, 1, out=o), o) o = np.ma.masked_array(np.zeros(())) assert_equal(np.ma.median(d, out=o), o) def test_nan_behavior(self): a = np.ma.masked_array(np.arange(24, dtype=float)) a[::3] = np.ma.masked a[2] = np.nan assert_array_equal(np.ma.median(a), np.nan) assert_array_equal(np.ma.median(a, axis=0), np.nan) a = np.ma.masked_array(np.arange(24, dtype=float).reshape(2, 3, 4)) a.mask = np.arange(a.size) % 2 == 1 aorig = a.copy() a[1, 2, 3] = np.nan a[1, 1, 2] = np.nan # no axis assert_array_equal(np.ma.median(a), np.nan) assert_(np.isscalar(np.ma.median(a))) # axis0 b = np.ma.median(aorig, axis=0) b[2, 3] = np.nan b[1, 2] = np.nan assert_equal(np.ma.median(a, 0), b) # axis1 b = np.ma.median(aorig, axis=1) b[1, 3] = np.nan b[1, 2] = np.nan assert_equal(np.ma.median(a, 1), b) # axis02 b = np.ma.median(aorig, axis=(0, 2)) b[1] = np.nan b[2] = np.nan assert_equal(np.ma.median(a, (0, 2)), b) def test_ambigous_fill(self): # 255 is max value, used as filler for sort a = np.array([[3, 3, 255], [3, 3, 255]], dtype=np.uint8) a = np.ma.masked_array(a, mask=a == 3) assert_array_equal(np.ma.median(a, axis=1), 255) assert_array_equal(np.ma.median(a, axis=1).mask, False) assert_array_equal(np.ma.median(a, axis=0), a[0]) assert_array_equal(np.ma.median(a), 255) def test_special(self): for inf in [np.inf, -np.inf]: a = np.array([[inf, np.nan], [np.nan, np.nan]]) a = np.ma.masked_array(a, mask=np.isnan(a)) assert_equal(np.ma.median(a, axis=0), [inf, np.nan]) assert_equal(np.ma.median(a, axis=1), [inf, np.nan]) assert_equal(np.ma.median(a), inf) a = np.array([[np.nan, np.nan, inf], [np.nan, np.nan, inf]]) a = np.ma.masked_array(a, mask=np.isnan(a)) assert_array_equal(np.ma.median(a, axis=1), inf) assert_array_equal(np.ma.median(a, axis=1).mask, False) assert_array_equal(np.ma.median(a, axis=0), a[0]) assert_array_equal(np.ma.median(a), inf) # no mask a = np.array([[inf, inf], [inf, inf]]) assert_equal(np.ma.median(a), inf) assert_equal(np.ma.median(a, axis=0), inf) assert_equal(np.ma.median(a, axis=1), inf) a = np.array([[inf, 7, -inf, -9], [-10, np.nan, np.nan, 5], [4, np.nan, np.nan, inf]], dtype=np.float32) a = np.ma.masked_array(a, mask=np.isnan(a)) if inf > 0: assert_equal(np.ma.median(a, axis=0), [4., 7., -inf, 5.]) assert_equal(np.ma.median(a), 4.5) else: assert_equal(np.ma.median(a, axis=0), [-10., 7., -inf, -9.]) assert_equal(np.ma.median(a), -2.5) assert_equal(np.ma.median(a, axis=1), [-1., -2.5, inf]) for i in range(0, 10): for j in range(1, 10): a = np.array([([np.nan] * i) + ([inf] * j)] * 2) a = np.ma.masked_array(a, mask=np.isnan(a)) assert_equal(np.ma.median(a), inf) assert_equal(np.ma.median(a, axis=1), inf) assert_equal(np.ma.median(a, axis=0), ([np.nan] * i) + [inf] * j) def test_empty(self): # empty arrays a = np.ma.masked_array(np.array([], dtype=float)) with suppress_warnings() as w: w.record(RuntimeWarning) assert_array_equal(np.ma.median(a), np.nan) assert_(w.log[0].category is RuntimeWarning) # multiple dimensions a = np.ma.masked_array(np.array([], dtype=float, ndmin=3)) # no axis with suppress_warnings() as w: w.record(RuntimeWarning) warnings.filterwarnings('always', '', RuntimeWarning) assert_array_equal(np.ma.median(a), np.nan) assert_(w.log[0].category is RuntimeWarning) # axis 0 and 1 b = np.ma.masked_array(np.array([], dtype=float, ndmin=2)) assert_equal(np.ma.median(a, axis=0), b) assert_equal(np.ma.median(a, axis=1), b) # axis 2 b = np.ma.masked_array(np.array(np.nan, dtype=float, ndmin=2)) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.ma.median(a, axis=2), b) assert_(w[0].category is RuntimeWarning) def test_object(self): o = np.ma.masked_array(np.arange(7.)) assert_(type(np.ma.median(o.astype(object))), float) o[2] = np.nan assert_(type(np.ma.median(o.astype(object))), float) class TestCov: def setup_method(self): self.data = array(np.random.rand(12)) def test_1d_without_missing(self): # Test cov on 1D variable w/o missing values x = self.data assert_almost_equal(np.cov(x), cov(x)) assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False)) assert_almost_equal(np.cov(x, rowvar=False, bias=True), cov(x, rowvar=False, bias=True)) def test_2d_without_missing(self): # Test cov on 1 2D variable w/o missing values x = self.data.reshape(3, 4) assert_almost_equal(np.cov(x), cov(x)) assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False)) assert_almost_equal(np.cov(x, rowvar=False, bias=True), cov(x, rowvar=False, bias=True)) def test_1d_with_missing(self): # Test cov 1 1D variable w/missing values x = self.data x[-1] = masked x -= x.mean() nx = x.compressed() assert_almost_equal(np.cov(nx), cov(x)) assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False)) assert_almost_equal(np.cov(nx, rowvar=False, bias=True), cov(x, rowvar=False, bias=True)) # try: cov(x, allow_masked=False) except ValueError: pass # # 2 1D variables w/ missing values nx = x[1:-1] assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1])) assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False), cov(x, x[::-1], rowvar=False)) assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True), cov(x, x[::-1], rowvar=False, bias=True)) def test_2d_with_missing(self): # Test cov on 2D variable w/ missing value x = self.data x[-1] = masked x = x.reshape(3, 4) valid = np.logical_not(getmaskarray(x)).astype(int) frac = np.dot(valid, valid.T) xf = (x - x.mean(1)[:, None]).filled(0) assert_almost_equal(cov(x), np.cov(xf) * (x.shape[1] - 1) / (frac - 1.)) assert_almost_equal(cov(x, bias=True), np.cov(xf, bias=True) * x.shape[1] / frac) frac = np.dot(valid.T, valid) xf = (x - x.mean(0)).filled(0) assert_almost_equal(cov(x, rowvar=False), (np.cov(xf, rowvar=False) * (x.shape[0] - 1) / (frac - 1.))) assert_almost_equal(cov(x, rowvar=False, bias=True), (np.cov(xf, rowvar=False, bias=True) * x.shape[0] / frac)) class TestCorrcoef: def setup_method(self): self.data = array(np.random.rand(12)) self.data2 = array(np.random.rand(12)) def test_ddof(self): # ddof raises DeprecationWarning x, y = self.data, self.data2 expected = np.corrcoef(x) expected2 = np.corrcoef(x, y) with suppress_warnings() as sup: warnings.simplefilter("always") assert_warns(DeprecationWarning, corrcoef, x, ddof=-1) sup.filter(DeprecationWarning, "bias and ddof have no effect") # ddof has no or negligible effect on the function assert_almost_equal(np.corrcoef(x, ddof=0), corrcoef(x, ddof=0)) assert_almost_equal(corrcoef(x, ddof=-1), expected) assert_almost_equal(corrcoef(x, y, ddof=-1), expected2) assert_almost_equal(corrcoef(x, ddof=3), expected) assert_almost_equal(corrcoef(x, y, ddof=3), expected2) def test_bias(self): x, y = self.data, self.data2 expected = np.corrcoef(x) # bias raises DeprecationWarning with suppress_warnings() as sup: warnings.simplefilter("always") assert_warns(DeprecationWarning, corrcoef, x, y, True, False) assert_warns(DeprecationWarning, corrcoef, x, y, True, True) assert_warns(DeprecationWarning, corrcoef, x, bias=False) sup.filter(DeprecationWarning, "bias and ddof have no effect") # bias has no or negligible effect on the function assert_almost_equal(corrcoef(x, bias=1), expected) def test_1d_without_missing(self): # Test cov on 1D variable w/o missing values x = self.data assert_almost_equal(np.corrcoef(x), corrcoef(x)) assert_almost_equal(np.corrcoef(x, rowvar=False), corrcoef(x, rowvar=False)) with suppress_warnings() as sup: sup.filter(DeprecationWarning, "bias and ddof have no effect") assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True), corrcoef(x, rowvar=False, bias=True)) def test_2d_without_missing(self): # Test corrcoef on 1 2D variable w/o missing values x = self.data.reshape(3, 4) assert_almost_equal(np.corrcoef(x), corrcoef(x)) assert_almost_equal(np.corrcoef(x, rowvar=False), corrcoef(x, rowvar=False)) with suppress_warnings() as sup: sup.filter(DeprecationWarning, "bias and ddof have no effect") assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True), corrcoef(x, rowvar=False, bias=True)) def test_1d_with_missing(self): # Test corrcoef 1 1D variable w/missing values x = self.data x[-1] = masked x -= x.mean() nx = x.compressed() assert_almost_equal(np.corrcoef(nx), corrcoef(x)) assert_almost_equal(np.corrcoef(nx, rowvar=False), corrcoef(x, rowvar=False)) with suppress_warnings() as sup: sup.filter(DeprecationWarning, "bias and ddof have no effect") assert_almost_equal(np.corrcoef(nx, rowvar=False, bias=True), corrcoef(x, rowvar=False, bias=True)) try: corrcoef(x, allow_masked=False) except ValueError: pass # 2 1D variables w/ missing values nx = x[1:-1] assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1])) assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False), corrcoef(x, x[::-1], rowvar=False)) with suppress_warnings() as sup: sup.filter(DeprecationWarning, "bias and ddof have no effect") # ddof and bias have no or negligible effect on the function assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1], bias=1)) assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1], ddof=2)) def test_2d_with_missing(self): # Test corrcoef on 2D variable w/ missing value x = self.data x[-1] = masked x = x.reshape(3, 4) test = corrcoef(x) control = np.corrcoef(x) assert_almost_equal(test[:-1, :-1], control[:-1, :-1]) with suppress_warnings() as sup: sup.filter(DeprecationWarning, "bias and ddof have no effect") # ddof and bias have no or negligible effect on the function assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1], control[:-1, :-1]) assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1], control[:-1, :-1]) assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1], control[:-1, :-1]) class TestPolynomial: # def test_polyfit(self): # Tests polyfit # On ndarrays x = np.random.rand(10) y = np.random.rand(20).reshape(-1, 2) assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3)) # ON 1D maskedarrays x = x.view(MaskedArray) x[0] = masked y = y.view(MaskedArray) y[0, 0] = y[-1, -1] = masked # (C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True) (c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3, full=True) for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): assert_almost_equal(a, a_) # (C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True) (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True) for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): assert_almost_equal(a, a_) # (C, R, K, S, D) = polyfit(x, y, 3, full=True) (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True) for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): assert_almost_equal(a, a_) # w = np.random.rand(10) + 1 wo = w.copy() xs = x[1:-1] ys = y[1:-1] ws = w[1:-1] (C, R, K, S, D) = polyfit(x, y, 3, full=True, w=w) (c, r, k, s, d) = np.polyfit(xs, ys, 3, full=True, w=ws) assert_equal(w, wo) for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): assert_almost_equal(a, a_) def test_polyfit_with_masked_NaNs(self): x = np.random.rand(10) y = np.random.rand(20).reshape(-1, 2) x[0] = np.nan y[-1,-1] = np.nan x = x.view(MaskedArray) y = y.view(MaskedArray) x[0] = masked y[-1,-1] = masked (C, R, K, S, D) = polyfit(x, y, 3, full=True) (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True) for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): assert_almost_equal(a, a_) class TestArraySetOps: def test_unique_onlist(self): # Test unique on list data = [1, 1, 1, 2, 2, 3] test = unique(data, return_index=True, return_inverse=True) assert_(isinstance(test[0], MaskedArray)) assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0])) assert_equal(test[1], [0, 3, 5]) assert_equal(test[2], [0, 0, 0, 1, 1, 2]) def test_unique_onmaskedarray(self): # Test unique on masked data w/use_mask=True data = masked_array([1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0]) test = unique(data, return_index=True, return_inverse=True) assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1])) assert_equal(test[1], [0, 3, 5, 2]) assert_equal(test[2], [0, 0, 3, 1, 3, 2]) # data.fill_value = 3 data = masked_array(data=[1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0], fill_value=3) test = unique(data, return_index=True, return_inverse=True) assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1])) assert_equal(test[1], [0, 3, 5, 2]) assert_equal(test[2], [0, 0, 3, 1, 3, 2]) def test_unique_allmasked(self): # Test all masked data = masked_array([1, 1, 1], mask=True) test = unique(data, return_index=True, return_inverse=True) assert_equal(test[0], masked_array([1, ], mask=[True])) assert_equal(test[1], [0]) assert_equal(test[2], [0, 0, 0]) # # Test masked data = masked test = unique(data, return_index=True, return_inverse=True) assert_equal(test[0], masked_array(masked)) assert_equal(test[1], [0]) assert_equal(test[2], [0]) def test_ediff1d(self): # Tests mediff1d x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) control = array([1, 1, 1, 4], mask=[1, 0, 0, 1]) test = ediff1d(x) assert_equal(test, control) assert_equal(test.filled(0), control.filled(0)) assert_equal(test.mask, control.mask) def test_ediff1d_tobegin(self): # Test ediff1d w/ to_begin x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) test = ediff1d(x, to_begin=masked) control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1]) assert_equal(test, control) assert_equal(test.filled(0), control.filled(0)) assert_equal(test.mask, control.mask) # test = ediff1d(x, to_begin=[1, 2, 3]) control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1]) assert_equal(test, control) assert_equal(test.filled(0), control.filled(0)) assert_equal(test.mask, control.mask) def test_ediff1d_toend(self): # Test ediff1d w/ to_end x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) test = ediff1d(x, to_end=masked) control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1]) assert_equal(test, control) assert_equal(test.filled(0), control.filled(0)) assert_equal(test.mask, control.mask) # test = ediff1d(x, to_end=[1, 2, 3]) control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0]) assert_equal(test, control) assert_equal(test.filled(0), control.filled(0)) assert_equal(test.mask, control.mask) def test_ediff1d_tobegin_toend(self): # Test ediff1d w/ to_begin and to_end x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) test = ediff1d(x, to_end=masked, to_begin=masked) control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1]) assert_equal(test, control) assert_equal(test.filled(0), control.filled(0)) assert_equal(test.mask, control.mask) # test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked) control = array([0, 1, 1, 1, 4, 1, 2, 3], mask=[1, 1, 0, 0, 1, 0, 0, 0]) assert_equal(test, control) assert_equal(test.filled(0), control.filled(0)) assert_equal(test.mask, control.mask) def test_ediff1d_ndarray(self): # Test ediff1d w/ a ndarray x = np.arange(5) test = ediff1d(x) control = array([1, 1, 1, 1], mask=[0, 0, 0, 0]) assert_equal(test, control) assert_(isinstance(test, MaskedArray)) assert_equal(test.filled(0), control.filled(0)) assert_equal(test.mask, control.mask) # test = ediff1d(x, to_end=masked, to_begin=masked) control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1]) assert_(isinstance(test, MaskedArray)) assert_equal(test.filled(0), control.filled(0)) assert_equal(test.mask, control.mask) def test_intersect1d(self): # Test intersect1d x = array([1, 3, 3, 3], mask=[0, 0, 0, 1]) y = array([3, 1, 1, 1], mask=[0, 0, 0, 1]) test = intersect1d(x, y) control = array([1, 3, -1], mask=[0, 0, 1]) assert_equal(test, control) def test_setxor1d(self): # Test setxor1d a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) test = setxor1d(a, b) assert_equal(test, array([3, 4, 7])) # a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) b = [1, 2, 3, 4, 5] test = setxor1d(a, b) assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1])) # a = array([1, 2, 3]) b = array([6, 5, 4]) test = setxor1d(a, b) assert_(isinstance(test, MaskedArray)) assert_equal(test, [1, 2, 3, 4, 5, 6]) # a = array([1, 8, 2, 3], mask=[0, 1, 0, 0]) b = array([6, 5, 4, 8], mask=[0, 0, 0, 1]) test = setxor1d(a, b) assert_(isinstance(test, MaskedArray)) assert_equal(test, [1, 2, 3, 4, 5, 6]) # assert_array_equal([], setxor1d([], [])) def test_isin(self): # the tests for in1d cover most of isin's behavior # if in1d is removed, would need to change those tests to test # isin instead. a = np.arange(24).reshape([2, 3, 4]) mask = np.zeros([2, 3, 4]) mask[1, 2, 0] = 1 a = array(a, mask=mask) b = array(data=[0, 10, 20, 30, 1, 3, 11, 22, 33], mask=[0, 1, 0, 1, 0, 1, 0, 1, 0]) ec = zeros((2, 3, 4), dtype=bool) ec[0, 0, 0] = True ec[0, 0, 1] = True ec[0, 2, 3] = True c = isin(a, b) assert_(isinstance(c, MaskedArray)) assert_array_equal(c, ec) #compare results of np.isin to ma.isin d = np.isin(a, b[~b.mask]) & ~a.mask assert_array_equal(c, d) def test_in1d(self): # Test in1d a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) test = in1d(a, b) assert_equal(test, [True, True, True, False, True]) # a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1]) b = array([1, 5, -1], mask=[0, 0, 1]) test = in1d(a, b) assert_equal(test, [True, True, False, True, True]) # assert_array_equal([], in1d([], [])) def test_in1d_invert(self): # Test in1d's invert parameter a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1]) b = array([1, 5, -1], mask=[0, 0, 1]) assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) assert_array_equal([], in1d([], [], invert=True)) def test_union1d(self): # Test union1d a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1]) b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) test = union1d(a, b) control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1]) assert_equal(test, control) # Tests gh-10340, arguments to union1d should be # flattened if they are not already 1D x = array([[0, 1, 2], [3, 4, 5]], mask=[[0, 0, 0], [0, 0, 1]]) y = array([0, 1, 2, 3, 4], mask=[0, 0, 0, 0, 1]) ez = array([0, 1, 2, 3, 4, 5], mask=[0, 0, 0, 0, 0, 1]) z = union1d(x, y) assert_equal(z, ez) # assert_array_equal([], union1d([], [])) def test_setdiff1d(self): # Test setdiff1d a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1]) b = array([2, 4, 3, 3, 2, 1, 5]) test = setdiff1d(a, b) assert_equal(test, array([6, 7, -1], mask=[0, 0, 1])) # a = arange(10) b = arange(8) assert_equal(setdiff1d(a, b), array([8, 9])) a = array([], np.uint32, mask=[]) assert_equal(setdiff1d(a, []).dtype, np.uint32) def test_setdiff1d_char_array(self): # Test setdiff1d_charray a = np.array(['a', 'b', 'c']) b = np.array(['a', 'b', 's']) assert_array_equal(setdiff1d(a, b), np.array(['c'])) class TestShapeBase: def test_atleast_2d(self): # Test atleast_2d a = masked_array([0, 1, 2], mask=[0, 1, 0]) b = atleast_2d(a) assert_equal(b.shape, (1, 3)) assert_equal(b.mask.shape, b.data.shape) assert_equal(a.shape, (3,)) assert_equal(a.mask.shape, a.data.shape) assert_equal(b.mask.shape, b.data.shape) def test_shape_scalar(self): # the atleast and diagflat function should work with scalars # GitHub issue #3367 # Additionally, the atleast functions should accept multiple scalars # correctly b = atleast_1d(1.0) assert_equal(b.shape, (1,)) assert_equal(b.mask.shape, b.shape) assert_equal(b.data.shape, b.shape) b = atleast_1d(1.0, 2.0) for a in b: assert_equal(a.shape, (1,)) assert_equal(a.mask.shape, a.shape) assert_equal(a.data.shape, a.shape) b = atleast_2d(1.0) assert_equal(b.shape, (1, 1)) assert_equal(b.mask.shape, b.shape) assert_equal(b.data.shape, b.shape) b = atleast_2d(1.0, 2.0) for a in b: assert_equal(a.shape, (1, 1)) assert_equal(a.mask.shape, a.shape) assert_equal(a.data.shape, a.shape) b = atleast_3d(1.0) assert_equal(b.shape, (1, 1, 1)) assert_equal(b.mask.shape, b.shape) assert_equal(b.data.shape, b.shape) b = atleast_3d(1.0, 2.0) for a in b: assert_equal(a.shape, (1, 1, 1)) assert_equal(a.mask.shape, a.shape) assert_equal(a.data.shape, a.shape) b = diagflat(1.0) assert_equal(b.shape, (1, 1)) assert_equal(b.mask.shape, b.data.shape) class TestNDEnumerate: def test_ndenumerate_nomasked(self): ordinary = np.arange(6.).reshape((1, 3, 2)) empty_mask = np.zeros_like(ordinary, dtype=bool) with_mask = masked_array(ordinary, mask=empty_mask) assert_equal(list(np.ndenumerate(ordinary)), list(ndenumerate(ordinary))) assert_equal(list(ndenumerate(ordinary)), list(ndenumerate(with_mask))) assert_equal(list(ndenumerate(with_mask)), list(ndenumerate(with_mask, compressed=False))) def test_ndenumerate_allmasked(self): a = masked_all(()) b = masked_all((100,)) c = masked_all((2, 3, 4)) assert_equal(list(ndenumerate(a)), []) assert_equal(list(ndenumerate(b)), []) assert_equal(list(ndenumerate(b, compressed=False)), list(zip(np.ndindex((100,)), 100 * [masked]))) assert_equal(list(ndenumerate(c)), []) assert_equal(list(ndenumerate(c, compressed=False)), list(zip(np.ndindex((2, 3, 4)), 2 * 3 * 4 * [masked]))) def test_ndenumerate_mixedmasked(self): a = masked_array(np.arange(12).reshape((3, 4)), mask=[[1, 1, 1, 1], [1, 1, 0, 1], [0, 0, 0, 0]]) items = [((1, 2), 6), ((2, 0), 8), ((2, 1), 9), ((2, 2), 10), ((2, 3), 11)] assert_equal(list(ndenumerate(a)), items) assert_equal(len(list(ndenumerate(a, compressed=False))), a.size) for coordinate, value in ndenumerate(a, compressed=False): assert_equal(a[coordinate], value) class TestStack: def test_stack_1d(self): a = masked_array([0, 1, 2], mask=[0, 1, 0]) b = masked_array([9, 8, 7], mask=[1, 0, 0]) c = stack([a, b], axis=0) assert_equal(c.shape, (2, 3)) assert_array_equal(a.mask, c[0].mask) assert_array_equal(b.mask, c[1].mask) d = vstack([a, b]) assert_array_equal(c.data, d.data) assert_array_equal(c.mask, d.mask) c = stack([a, b], axis=1) assert_equal(c.shape, (3, 2)) assert_array_equal(a.mask, c[:, 0].mask) assert_array_equal(b.mask, c[:, 1].mask) def test_stack_masks(self): a = masked_array([0, 1, 2], mask=True) b = masked_array([9, 8, 7], mask=False) c = stack([a, b], axis=0) assert_equal(c.shape, (2, 3)) assert_array_equal(a.mask, c[0].mask) assert_array_equal(b.mask, c[1].mask) d = vstack([a, b]) assert_array_equal(c.data, d.data) assert_array_equal(c.mask, d.mask) c = stack([a, b], axis=1) assert_equal(c.shape, (3, 2)) assert_array_equal(a.mask, c[:, 0].mask) assert_array_equal(b.mask, c[:, 1].mask) def test_stack_nd(self): # 2D shp = (3, 2) d1 = np.random.randint(0, 10, shp) d2 = np.random.randint(0, 10, shp) m1 = np.random.randint(0, 2, shp).astype(bool) m2 = np.random.randint(0, 2, shp).astype(bool) a1 = masked_array(d1, mask=m1) a2 = masked_array(d2, mask=m2) c = stack([a1, a2], axis=0) c_shp = (2,) + shp assert_equal(c.shape, c_shp) assert_array_equal(a1.mask, c[0].mask) assert_array_equal(a2.mask, c[1].mask) c = stack([a1, a2], axis=-1) c_shp = shp + (2,) assert_equal(c.shape, c_shp) assert_array_equal(a1.mask, c[..., 0].mask) assert_array_equal(a2.mask, c[..., 1].mask) # 4D shp = (3, 2, 4, 5,) d1 = np.random.randint(0, 10, shp) d2 = np.random.randint(0, 10, shp) m1 = np.random.randint(0, 2, shp).astype(bool) m2 = np.random.randint(0, 2, shp).astype(bool) a1 = masked_array(d1, mask=m1) a2 = masked_array(d2, mask=m2) c = stack([a1, a2], axis=0) c_shp = (2,) + shp assert_equal(c.shape, c_shp) assert_array_equal(a1.mask, c[0].mask) assert_array_equal(a2.mask, c[1].mask) c = stack([a1, a2], axis=-1) c_shp = shp + (2,) assert_equal(c.shape, c_shp) assert_array_equal(a1.mask, c[..., 0].mask) assert_array_equal(a2.mask, c[..., 1].mask)
71,958
Python
38.955025
81
0.494455
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/tests/test_mrecords.py
# pylint: disable-msg=W0611, W0612, W0511,R0201 """Tests suite for mrecords. :author: Pierre Gerard-Marchant :contact: pierregm_at_uga_dot_edu """ import numpy as np import numpy.ma as ma from numpy import recarray from numpy.ma import masked, nomask from numpy.testing import temppath from numpy.core.records import ( fromrecords as recfromrecords, fromarrays as recfromarrays ) from numpy.ma.mrecords import ( MaskedRecords, mrecarray, fromarrays, fromtextfile, fromrecords, addfield ) from numpy.ma.testutils import ( assert_, assert_equal, assert_equal_records, ) from numpy.compat import pickle class TestMRecords: ilist = [1, 2, 3, 4, 5] flist = [1.1, 2.2, 3.3, 4.4, 5.5] slist = [b'one', b'two', b'three', b'four', b'five'] ddtype = [('a', int), ('b', float), ('c', '|S8')] mask = [0, 1, 0, 0, 1] base = ma.array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype) def test_byview(self): # Test creation by view base = self.base mbase = base.view(mrecarray) assert_equal(mbase.recordmask, base.recordmask) assert_equal_records(mbase._mask, base._mask) assert_(isinstance(mbase._data, recarray)) assert_equal_records(mbase._data, base._data.view(recarray)) for field in ('a', 'b', 'c'): assert_equal(base[field], mbase[field]) assert_equal_records(mbase.view(mrecarray), mbase) def test_get(self): # Tests fields retrieval base = self.base.copy() mbase = base.view(mrecarray) # As fields.......... for field in ('a', 'b', 'c'): assert_equal(getattr(mbase, field), mbase[field]) assert_equal(base[field], mbase[field]) # as elements ....... mbase_first = mbase[0] assert_(isinstance(mbase_first, mrecarray)) assert_equal(mbase_first.dtype, mbase.dtype) assert_equal(mbase_first.tolist(), (1, 1.1, b'one')) # Used to be mask, now it's recordmask assert_equal(mbase_first.recordmask, nomask) assert_equal(mbase_first._mask.item(), (False, False, False)) assert_equal(mbase_first['a'], mbase['a'][0]) mbase_last = mbase[-1] assert_(isinstance(mbase_last, mrecarray)) assert_equal(mbase_last.dtype, mbase.dtype) assert_equal(mbase_last.tolist(), (None, None, None)) # Used to be mask, now it's recordmask assert_equal(mbase_last.recordmask, True) assert_equal(mbase_last._mask.item(), (True, True, True)) assert_equal(mbase_last['a'], mbase['a'][-1]) assert_((mbase_last['a'] is masked)) # as slice .......... mbase_sl = mbase[:2] assert_(isinstance(mbase_sl, mrecarray)) assert_equal(mbase_sl.dtype, mbase.dtype) # Used to be mask, now it's recordmask assert_equal(mbase_sl.recordmask, [0, 1]) assert_equal_records(mbase_sl.mask, np.array([(False, False, False), (True, True, True)], dtype=mbase._mask.dtype)) assert_equal_records(mbase_sl, base[:2].view(mrecarray)) for field in ('a', 'b', 'c'): assert_equal(getattr(mbase_sl, field), base[:2][field]) def test_set_fields(self): # Tests setting fields. base = self.base.copy() mbase = base.view(mrecarray) mbase = mbase.copy() mbase.fill_value = (999999, 1e20, 'N/A') # Change the data, the mask should be conserved mbase.a._data[:] = 5 assert_equal(mbase['a']._data, [5, 5, 5, 5, 5]) assert_equal(mbase['a']._mask, [0, 1, 0, 0, 1]) # Change the elements, and the mask will follow mbase.a = 1 assert_equal(mbase['a']._data, [1]*5) assert_equal(ma.getmaskarray(mbase['a']), [0]*5) # Use to be _mask, now it's recordmask assert_equal(mbase.recordmask, [False]*5) assert_equal(mbase._mask.tolist(), np.array([(0, 0, 0), (0, 1, 1), (0, 0, 0), (0, 0, 0), (0, 1, 1)], dtype=bool)) # Set a field to mask ........................ mbase.c = masked # Use to be mask, and now it's still mask ! assert_equal(mbase.c.mask, [1]*5) assert_equal(mbase.c.recordmask, [1]*5) assert_equal(ma.getmaskarray(mbase['c']), [1]*5) assert_equal(ma.getdata(mbase['c']), [b'N/A']*5) assert_equal(mbase._mask.tolist(), np.array([(0, 0, 1), (0, 1, 1), (0, 0, 1), (0, 0, 1), (0, 1, 1)], dtype=bool)) # Set fields by slices ....................... mbase = base.view(mrecarray).copy() mbase.a[3:] = 5 assert_equal(mbase.a, [1, 2, 3, 5, 5]) assert_equal(mbase.a._mask, [0, 1, 0, 0, 0]) mbase.b[3:] = masked assert_equal(mbase.b, base['b']) assert_equal(mbase.b._mask, [0, 1, 0, 1, 1]) # Set fields globally.......................... ndtype = [('alpha', '|S1'), ('num', int)] data = ma.array([('a', 1), ('b', 2), ('c', 3)], dtype=ndtype) rdata = data.view(MaskedRecords) val = ma.array([10, 20, 30], mask=[1, 0, 0]) rdata['num'] = val assert_equal(rdata.num, val) assert_equal(rdata.num.mask, [1, 0, 0]) def test_set_fields_mask(self): # Tests setting the mask of a field. base = self.base.copy() # This one has already a mask.... mbase = base.view(mrecarray) mbase['a'][-2] = masked assert_equal(mbase.a, [1, 2, 3, 4, 5]) assert_equal(mbase.a._mask, [0, 1, 0, 1, 1]) # This one has not yet mbase = fromarrays([np.arange(5), np.random.rand(5)], dtype=[('a', int), ('b', float)]) mbase['a'][-2] = masked assert_equal(mbase.a, [0, 1, 2, 3, 4]) assert_equal(mbase.a._mask, [0, 0, 0, 1, 0]) def test_set_mask(self): base = self.base.copy() mbase = base.view(mrecarray) # Set the mask to True ....................... mbase.mask = masked assert_equal(ma.getmaskarray(mbase['b']), [1]*5) assert_equal(mbase['a']._mask, mbase['b']._mask) assert_equal(mbase['a']._mask, mbase['c']._mask) assert_equal(mbase._mask.tolist(), np.array([(1, 1, 1)]*5, dtype=bool)) # Delete the mask ............................ mbase.mask = nomask assert_equal(ma.getmaskarray(mbase['c']), [0]*5) assert_equal(mbase._mask.tolist(), np.array([(0, 0, 0)]*5, dtype=bool)) def test_set_mask_fromarray(self): base = self.base.copy() mbase = base.view(mrecarray) # Sets the mask w/ an array mbase.mask = [1, 0, 0, 0, 1] assert_equal(mbase.a.mask, [1, 0, 0, 0, 1]) assert_equal(mbase.b.mask, [1, 0, 0, 0, 1]) assert_equal(mbase.c.mask, [1, 0, 0, 0, 1]) # Yay, once more ! mbase.mask = [0, 0, 0, 0, 1] assert_equal(mbase.a.mask, [0, 0, 0, 0, 1]) assert_equal(mbase.b.mask, [0, 0, 0, 0, 1]) assert_equal(mbase.c.mask, [0, 0, 0, 0, 1]) def test_set_mask_fromfields(self): mbase = self.base.copy().view(mrecarray) nmask = np.array( [(0, 1, 0), (0, 1, 0), (1, 0, 1), (1, 0, 1), (0, 0, 0)], dtype=[('a', bool), ('b', bool), ('c', bool)]) mbase.mask = nmask assert_equal(mbase.a.mask, [0, 0, 1, 1, 0]) assert_equal(mbase.b.mask, [1, 1, 0, 0, 0]) assert_equal(mbase.c.mask, [0, 0, 1, 1, 0]) # Reinitialize and redo mbase.mask = False mbase.fieldmask = nmask assert_equal(mbase.a.mask, [0, 0, 1, 1, 0]) assert_equal(mbase.b.mask, [1, 1, 0, 0, 0]) assert_equal(mbase.c.mask, [0, 0, 1, 1, 0]) def test_set_elements(self): base = self.base.copy() # Set an element to mask ..................... mbase = base.view(mrecarray).copy() mbase[-2] = masked assert_equal( mbase._mask.tolist(), np.array([(0, 0, 0), (1, 1, 1), (0, 0, 0), (1, 1, 1), (1, 1, 1)], dtype=bool)) # Used to be mask, now it's recordmask! assert_equal(mbase.recordmask, [0, 1, 0, 1, 1]) # Set slices ................................. mbase = base.view(mrecarray).copy() mbase[:2] = (5, 5, 5) assert_equal(mbase.a._data, [5, 5, 3, 4, 5]) assert_equal(mbase.a._mask, [0, 0, 0, 0, 1]) assert_equal(mbase.b._data, [5., 5., 3.3, 4.4, 5.5]) assert_equal(mbase.b._mask, [0, 0, 0, 0, 1]) assert_equal(mbase.c._data, [b'5', b'5', b'three', b'four', b'five']) assert_equal(mbase.b._mask, [0, 0, 0, 0, 1]) mbase = base.view(mrecarray).copy() mbase[:2] = masked assert_equal(mbase.a._data, [1, 2, 3, 4, 5]) assert_equal(mbase.a._mask, [1, 1, 0, 0, 1]) assert_equal(mbase.b._data, [1.1, 2.2, 3.3, 4.4, 5.5]) assert_equal(mbase.b._mask, [1, 1, 0, 0, 1]) assert_equal(mbase.c._data, [b'one', b'two', b'three', b'four', b'five']) assert_equal(mbase.b._mask, [1, 1, 0, 0, 1]) def test_setslices_hardmask(self): # Tests setting slices w/ hardmask. base = self.base.copy() mbase = base.view(mrecarray) mbase.harden_mask() try: mbase[-2:] = (5, 5, 5) assert_equal(mbase.a._data, [1, 2, 3, 5, 5]) assert_equal(mbase.b._data, [1.1, 2.2, 3.3, 5, 5.5]) assert_equal(mbase.c._data, [b'one', b'two', b'three', b'5', b'five']) assert_equal(mbase.a._mask, [0, 1, 0, 0, 1]) assert_equal(mbase.b._mask, mbase.a._mask) assert_equal(mbase.b._mask, mbase.c._mask) except NotImplementedError: # OK, not implemented yet... pass except AssertionError: raise else: raise Exception("Flexible hard masks should be supported !") # Not using a tuple should crash try: mbase[-2:] = 3 except (NotImplementedError, TypeError): pass else: raise TypeError("Should have expected a readable buffer object!") def test_hardmask(self): # Test hardmask base = self.base.copy() mbase = base.view(mrecarray) mbase.harden_mask() assert_(mbase._hardmask) mbase.mask = nomask assert_equal_records(mbase._mask, base._mask) mbase.soften_mask() assert_(not mbase._hardmask) mbase.mask = nomask # So, the mask of a field is no longer set to nomask... assert_equal_records(mbase._mask, ma.make_mask_none(base.shape, base.dtype)) assert_(ma.make_mask(mbase['b']._mask) is nomask) assert_equal(mbase['a']._mask, mbase['b']._mask) def test_pickling(self): # Test pickling base = self.base.copy() mrec = base.view(mrecarray) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): _ = pickle.dumps(mrec, protocol=proto) mrec_ = pickle.loads(_) assert_equal(mrec_.dtype, mrec.dtype) assert_equal_records(mrec_._data, mrec._data) assert_equal(mrec_._mask, mrec._mask) assert_equal_records(mrec_._mask, mrec._mask) def test_filled(self): # Test filling the array _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int) _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float) _c = ma.array(['one', 'two', 'three'], mask=[0, 0, 1], dtype='|S8') ddtype = [('a', int), ('b', float), ('c', '|S8')] mrec = fromarrays([_a, _b, _c], dtype=ddtype, fill_value=(99999, 99999., 'N/A')) mrecfilled = mrec.filled() assert_equal(mrecfilled['a'], np.array((1, 2, 99999), dtype=int)) assert_equal(mrecfilled['b'], np.array((1.1, 2.2, 99999.), dtype=float)) assert_equal(mrecfilled['c'], np.array(('one', 'two', 'N/A'), dtype='|S8')) def test_tolist(self): # Test tolist. _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int) _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float) _c = ma.array(['one', 'two', 'three'], mask=[1, 0, 0], dtype='|S8') ddtype = [('a', int), ('b', float), ('c', '|S8')] mrec = fromarrays([_a, _b, _c], dtype=ddtype, fill_value=(99999, 99999., 'N/A')) assert_equal(mrec.tolist(), [(1, 1.1, None), (2, 2.2, b'two'), (None, None, b'three')]) def test_withnames(self): # Test the creation w/ format and names x = mrecarray(1, formats=float, names='base') x[0]['base'] = 10 assert_equal(x['base'][0], 10) def test_exotic_formats(self): # Test that 'exotic' formats are processed properly easy = mrecarray(1, dtype=[('i', int), ('s', '|S8'), ('f', float)]) easy[0] = masked assert_equal(easy.filled(1).item(), (1, b'1', 1.)) solo = mrecarray(1, dtype=[('f0', '<f8', (2, 2))]) solo[0] = masked assert_equal(solo.filled(1).item(), np.array((1,), dtype=solo.dtype).item()) mult = mrecarray(2, dtype="i4, (2,3)float, float") mult[0] = masked mult[1] = (1, 1, 1) mult.filled(0) assert_equal_records(mult.filled(0), np.array([(0, 0, 0), (1, 1, 1)], dtype=mult.dtype)) class TestView: def setup_method(self): (a, b) = (np.arange(10), np.random.rand(10)) ndtype = [('a', float), ('b', float)] arr = np.array(list(zip(a, b)), dtype=ndtype) mrec = fromarrays([a, b], dtype=ndtype, fill_value=(-9., -99.)) mrec.mask[3] = (False, True) self.data = (mrec, a, b, arr) def test_view_by_itself(self): (mrec, a, b, arr) = self.data test = mrec.view() assert_(isinstance(test, MaskedRecords)) assert_equal_records(test, mrec) assert_equal_records(test._mask, mrec._mask) def test_view_simple_dtype(self): (mrec, a, b, arr) = self.data ntype = (float, 2) test = mrec.view(ntype) assert_(isinstance(test, ma.MaskedArray)) assert_equal(test, np.array(list(zip(a, b)), dtype=float)) assert_(test[3, 1] is ma.masked) def test_view_flexible_type(self): (mrec, a, b, arr) = self.data alttype = [('A', float), ('B', float)] test = mrec.view(alttype) assert_(isinstance(test, MaskedRecords)) assert_equal_records(test, arr.view(alttype)) assert_(test['B'][3] is masked) assert_equal(test.dtype, np.dtype(alttype)) assert_(test._fill_value is None) ############################################################################## class TestMRecordsImport: _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int) _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float) _c = ma.array([b'one', b'two', b'three'], mask=[0, 0, 1], dtype='|S8') ddtype = [('a', int), ('b', float), ('c', '|S8')] mrec = fromarrays([_a, _b, _c], dtype=ddtype, fill_value=(b'99999', b'99999.', b'N/A')) nrec = recfromarrays((_a._data, _b._data, _c._data), dtype=ddtype) data = (mrec, nrec, ddtype) def test_fromarrays(self): _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int) _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float) _c = ma.array(['one', 'two', 'three'], mask=[0, 0, 1], dtype='|S8') (mrec, nrec, _) = self.data for (f, l) in zip(('a', 'b', 'c'), (_a, _b, _c)): assert_equal(getattr(mrec, f)._mask, l._mask) # One record only _x = ma.array([1, 1.1, 'one'], mask=[1, 0, 0], dtype=object) assert_equal_records(fromarrays(_x, dtype=mrec.dtype), mrec[0]) def test_fromrecords(self): # Test construction from records. (mrec, nrec, ddtype) = self.data #...... palist = [(1, 'abc', 3.7000002861022949, 0), (2, 'xy', 6.6999998092651367, 1), (0, ' ', 0.40000000596046448, 0)] pa = recfromrecords(palist, names='c1, c2, c3, c4') mpa = fromrecords(palist, names='c1, c2, c3, c4') assert_equal_records(pa, mpa) #..... _mrec = fromrecords(nrec) assert_equal(_mrec.dtype, mrec.dtype) for field in _mrec.dtype.names: assert_equal(getattr(_mrec, field), getattr(mrec._data, field)) _mrec = fromrecords(nrec.tolist(), names='c1,c2,c3') assert_equal(_mrec.dtype, [('c1', int), ('c2', float), ('c3', '|S5')]) for (f, n) in zip(('c1', 'c2', 'c3'), ('a', 'b', 'c')): assert_equal(getattr(_mrec, f), getattr(mrec._data, n)) _mrec = fromrecords(mrec) assert_equal(_mrec.dtype, mrec.dtype) assert_equal_records(_mrec._data, mrec.filled()) assert_equal_records(_mrec._mask, mrec._mask) def test_fromrecords_wmask(self): # Tests construction from records w/ mask. (mrec, nrec, ddtype) = self.data _mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=[0, 1, 0,]) assert_equal_records(_mrec._data, mrec._data) assert_equal(_mrec._mask.tolist(), [(0, 0, 0), (1, 1, 1), (0, 0, 0)]) _mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=True) assert_equal_records(_mrec._data, mrec._data) assert_equal(_mrec._mask.tolist(), [(1, 1, 1), (1, 1, 1), (1, 1, 1)]) _mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=mrec._mask) assert_equal_records(_mrec._data, mrec._data) assert_equal(_mrec._mask.tolist(), mrec._mask.tolist()) _mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=mrec._mask.tolist()) assert_equal_records(_mrec._data, mrec._data) assert_equal(_mrec._mask.tolist(), mrec._mask.tolist()) def test_fromtextfile(self): # Tests reading from a text file. fcontent = ( """# 'One (S)','Two (I)','Three (F)','Four (M)','Five (-)','Six (C)' 'strings',1,1.0,'mixed column',,1 'with embedded "double quotes"',2,2.0,1.0,,1 'strings',3,3.0E5,3,,1 'strings',4,-1e-10,,,1 """) with temppath() as path: with open(path, 'w') as f: f.write(fcontent) mrectxt = fromtextfile(path, delimiter=',', varnames='ABCDEFG') assert_(isinstance(mrectxt, MaskedRecords)) assert_equal(mrectxt.F, [1, 1, 1, 1]) assert_equal(mrectxt.E._mask, [1, 1, 1, 1]) assert_equal(mrectxt.C, [1, 2, 3.e+5, -1e-10]) def test_addfield(self): # Tests addfield (mrec, nrec, ddtype) = self.data (d, m) = ([100, 200, 300], [1, 0, 0]) mrec = addfield(mrec, ma.array(d, mask=m)) assert_equal(mrec.f3, d) assert_equal(mrec.f3._mask, m) def test_record_array_with_object_field(): # Trac #1839 y = ma.masked_array( [(1, '2'), (3, '4')], mask=[(0, 0), (0, 1)], dtype=[('a', int), ('b', object)]) # getting an item used to fail y[1]
19,890
Python
39.265182
78
0.507089
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/tests/test_old_ma.py
from functools import reduce import pytest import numpy as np import numpy.core.umath as umath import numpy.core.fromnumeric as fromnumeric from numpy.testing import ( assert_, assert_raises, assert_equal, ) from numpy.ma import ( MaskType, MaskedArray, absolute, add, all, allclose, allequal, alltrue, arange, arccos, arcsin, arctan, arctan2, array, average, choose, concatenate, conjugate, cos, cosh, count, divide, equal, exp, filled, getmask, greater, greater_equal, inner, isMaskedArray, less, less_equal, log, log10, make_mask, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, maximum, minimum, multiply, nomask, nonzero, not_equal, ones, outer, product, put, ravel, repeat, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros, ) from numpy.compat import pickle pi = np.pi def eq(v, w, msg=''): result = allclose(v, w) if not result: print(f'Not eq:{msg}\n{v}\n----{w}') return result class TestMa: def setup_method(self): x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = array(x, mask=m1) ym = array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) s = x.shape xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) def test_testBasic1d(self): # Test of basic array creation and properties in 1 dimension. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d assert_(not isMaskedArray(x)) assert_(isMaskedArray(xm)) assert_equal(shape(xm), s) assert_equal(xm.shape, s) assert_equal(xm.dtype, x.dtype) assert_equal(xm.size, reduce(lambda x, y:x * y, s)) assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) assert_(eq(xm, xf)) assert_(eq(filled(xm, 1.e20), xf)) assert_(eq(x, xm)) @pytest.mark.parametrize("s", [(4, 3), (6, 2)]) def test_testBasic2d(self, s): # Test of basic array creation and properties in 2 dimensions. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d x.shape = s y.shape = s xm.shape = s ym.shape = s xf.shape = s assert_(not isMaskedArray(x)) assert_(isMaskedArray(xm)) assert_equal(shape(xm), s) assert_equal(xm.shape, s) assert_equal(xm.size, reduce(lambda x, y: x * y, s)) assert_equal(count(xm), len(m1) - reduce(lambda x, y: x + y, m1)) assert_(eq(xm, xf)) assert_(eq(filled(xm, 1.e20), xf)) assert_(eq(x, xm)) def test_testArithmetic(self): # Test of basic arithmetic. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d a2d = array([[1, 2], [0, 4]]) a2dm = masked_array(a2d, [[0, 0], [1, 0]]) assert_(eq(a2d * a2d, a2d * a2dm)) assert_(eq(a2d + a2d, a2d + a2dm)) assert_(eq(a2d - a2d, a2d - a2dm)) for s in [(12,), (4, 3), (2, 6)]: x = x.reshape(s) y = y.reshape(s) xm = xm.reshape(s) ym = ym.reshape(s) xf = xf.reshape(s) assert_(eq(-x, -xm)) assert_(eq(x + y, xm + ym)) assert_(eq(x - y, xm - ym)) assert_(eq(x * y, xm * ym)) with np.errstate(divide='ignore', invalid='ignore'): assert_(eq(x / y, xm / ym)) assert_(eq(a10 + y, a10 + ym)) assert_(eq(a10 - y, a10 - ym)) assert_(eq(a10 * y, a10 * ym)) with np.errstate(divide='ignore', invalid='ignore'): assert_(eq(a10 / y, a10 / ym)) assert_(eq(x + a10, xm + a10)) assert_(eq(x - a10, xm - a10)) assert_(eq(x * a10, xm * a10)) assert_(eq(x / a10, xm / a10)) assert_(eq(x ** 2, xm ** 2)) assert_(eq(abs(x) ** 2.5, abs(xm) ** 2.5)) assert_(eq(x ** y, xm ** ym)) assert_(eq(np.add(x, y), add(xm, ym))) assert_(eq(np.subtract(x, y), subtract(xm, ym))) assert_(eq(np.multiply(x, y), multiply(xm, ym))) with np.errstate(divide='ignore', invalid='ignore'): assert_(eq(np.divide(x, y), divide(xm, ym))) def test_testMixedArithmetic(self): na = np.array([1]) ma = array([1]) assert_(isinstance(na + ma, MaskedArray)) assert_(isinstance(ma + na, MaskedArray)) def test_testUfuncs1(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d assert_(eq(np.cos(x), cos(xm))) assert_(eq(np.cosh(x), cosh(xm))) assert_(eq(np.sin(x), sin(xm))) assert_(eq(np.sinh(x), sinh(xm))) assert_(eq(np.tan(x), tan(xm))) assert_(eq(np.tanh(x), tanh(xm))) with np.errstate(divide='ignore', invalid='ignore'): assert_(eq(np.sqrt(abs(x)), sqrt(xm))) assert_(eq(np.log(abs(x)), log(xm))) assert_(eq(np.log10(abs(x)), log10(xm))) assert_(eq(np.exp(x), exp(xm))) assert_(eq(np.arcsin(z), arcsin(zm))) assert_(eq(np.arccos(z), arccos(zm))) assert_(eq(np.arctan(z), arctan(zm))) assert_(eq(np.arctan2(x, y), arctan2(xm, ym))) assert_(eq(np.absolute(x), absolute(xm))) assert_(eq(np.equal(x, y), equal(xm, ym))) assert_(eq(np.not_equal(x, y), not_equal(xm, ym))) assert_(eq(np.less(x, y), less(xm, ym))) assert_(eq(np.greater(x, y), greater(xm, ym))) assert_(eq(np.less_equal(x, y), less_equal(xm, ym))) assert_(eq(np.greater_equal(x, y), greater_equal(xm, ym))) assert_(eq(np.conjugate(x), conjugate(xm))) assert_(eq(np.concatenate((x, y)), concatenate((xm, ym)))) assert_(eq(np.concatenate((x, y)), concatenate((x, y)))) assert_(eq(np.concatenate((x, y)), concatenate((xm, y)))) assert_(eq(np.concatenate((x, y, x)), concatenate((x, ym, x)))) def test_xtestCount(self): # Test count ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) assert_(count(ott).dtype.type is np.intp) assert_equal(3, count(ott)) assert_equal(1, count(1)) assert_(eq(0, array(1, mask=[1]))) ott = ott.reshape((2, 2)) assert_(count(ott).dtype.type is np.intp) assert_(isinstance(count(ott, 0), np.ndarray)) assert_(count(ott).dtype.type is np.intp) assert_(eq(3, count(ott))) assert_(getmask(count(ott, 0)) is nomask) assert_(eq([1, 2], count(ott, 0))) def test_testMinMax(self): # Test minimum and maximum. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d xr = np.ravel(x) # max doesn't work if shaped xmr = ravel(xm) # true because of careful selection of data assert_(eq(max(xr), maximum.reduce(xmr))) assert_(eq(min(xr), minimum.reduce(xmr))) def test_testAddSumProd(self): # Test add, sum, product. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d assert_(eq(np.add.reduce(x), add.reduce(x))) assert_(eq(np.add.accumulate(x), add.accumulate(x))) assert_(eq(4, sum(array(4), axis=0))) assert_(eq(4, sum(array(4), axis=0))) assert_(eq(np.sum(x, axis=0), sum(x, axis=0))) assert_(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))) assert_(eq(np.sum(x, 0), sum(x, 0))) assert_(eq(np.product(x, axis=0), product(x, axis=0))) assert_(eq(np.product(x, 0), product(x, 0))) assert_(eq(np.product(filled(xm, 1), axis=0), product(xm, axis=0))) if len(s) > 1: assert_(eq(np.concatenate((x, y), 1), concatenate((xm, ym), 1))) assert_(eq(np.add.reduce(x, 1), add.reduce(x, 1))) assert_(eq(np.sum(x, 1), sum(x, 1))) assert_(eq(np.product(x, 1), product(x, 1))) def test_testCI(self): # Test of conversions and indexing x1 = np.array([1, 2, 4, 3]) x2 = array(x1, mask=[1, 0, 0, 0]) x3 = array(x1, mask=[0, 1, 0, 1]) x4 = array(x1) # test conversion to strings str(x2) # raises? repr(x2) # raises? assert_(eq(np.sort(x1), sort(x2, fill_value=0))) # tests of indexing assert_(type(x2[1]) is type(x1[1])) assert_(x1[1] == x2[1]) assert_(x2[0] is masked) assert_(eq(x1[2], x2[2])) assert_(eq(x1[2:5], x2[2:5])) assert_(eq(x1[:], x2[:])) assert_(eq(x1[1:], x3[1:])) x1[2] = 9 x2[2] = 9 assert_(eq(x1, x2)) x1[1:3] = 99 x2[1:3] = 99 assert_(eq(x1, x2)) x2[1] = masked assert_(eq(x1, x2)) x2[1:3] = masked assert_(eq(x1, x2)) x2[:] = x1 x2[1] = masked assert_(allequal(getmask(x2), array([0, 1, 0, 0]))) x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x3), array([0, 1, 1, 0]))) x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x4), array([0, 1, 1, 0]))) assert_(allequal(x4, array([1, 2, 3, 4]))) x1 = np.arange(5) * 1.0 x2 = masked_values(x1, 3.0) assert_(eq(x1, x2)) assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) assert_(eq(3.0, x2.fill_value)) x1 = array([1, 'hello', 2, 3], object) x2 = np.array([1, 'hello', 2, 3], object) s1 = x1[1] s2 = x2[1] assert_equal(type(s2), str) assert_equal(type(s1), str) assert_equal(s1, s2) assert_(x1[1:1].shape == (0,)) def test_testCopySize(self): # Tests of some subtle points of copying and sizing. n = [0, 0, 1, 0, 0] m = make_mask(n) m2 = make_mask(m) assert_(m is m2) m3 = make_mask(m, copy=True) assert_(m is not m3) x1 = np.arange(5) y1 = array(x1, mask=m) assert_(y1._data is not x1) assert_(allequal(x1, y1._data)) assert_(y1._mask is m) y1a = array(y1, copy=0) # For copy=False, one might expect that the array would just # passed on, i.e., that it would be "is" instead of "==". # See gh-4043 for discussion. assert_(y1a._mask.__array_interface__ == y1._mask.__array_interface__) y2 = array(x1, mask=m3, copy=0) assert_(y2._mask is m3) assert_(y2[2] is masked) y2[2] = 9 assert_(y2[2] is not masked) assert_(y2._mask is m3) assert_(allequal(y2.mask, 0)) y2a = array(x1, mask=m, copy=1) assert_(y2a._mask is not m) assert_(y2a[2] is masked) y2a[2] = 9 assert_(y2a[2] is not masked) assert_(y2a._mask is not m) assert_(allequal(y2a.mask, 0)) y3 = array(x1 * 1.0, mask=m) assert_(filled(y3).dtype is (x1 * 1.0).dtype) x4 = arange(4) x4[2] = masked y4 = resize(x4, (8,)) assert_(eq(concatenate([x4, x4]), y4)) assert_(eq(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0])) y5 = repeat(x4, (2, 2, 2, 2), axis=0) assert_(eq(y5, [0, 0, 1, 1, 2, 2, 3, 3])) y6 = repeat(x4, 2, axis=0) assert_(eq(y5, y6)) def test_testPut(self): # Test of put d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) m2 = m.copy() x = array(d, mask=m) assert_(x[3] is masked) assert_(x[4] is masked) x[[1, 4]] = [10, 40] assert_(x._mask is m) assert_(x[3] is masked) assert_(x[4] is not masked) assert_(eq(x, [0, 10, 2, -1, 40])) x = array(d, mask=m2, copy=True) x.put([0, 1, 2], [-1, 100, 200]) assert_(x._mask is not m2) assert_(x[3] is masked) assert_(x[4] is masked) assert_(eq(x, [-1, 100, 200, 0, 0])) def test_testPut2(self): # Test of put d = arange(5) x = array(d, mask=[0, 0, 0, 0, 0]) z = array([10, 40], mask=[1, 0]) assert_(x[2] is not masked) assert_(x[3] is not masked) x[2:4] = z assert_(x[2] is masked) assert_(x[3] is not masked) assert_(eq(x, [0, 1, 10, 40, 4])) d = arange(5) x = array(d, mask=[0, 0, 0, 0, 0]) y = x[2:4] z = array([10, 40], mask=[1, 0]) assert_(x[2] is not masked) assert_(x[3] is not masked) y[:] = z assert_(y[0] is masked) assert_(y[1] is not masked) assert_(eq(y, [10, 40])) assert_(x[2] is masked) assert_(x[3] is not masked) assert_(eq(x, [0, 1, 10, 40, 4])) def test_testMaPut(self): (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1] i = np.nonzero(m)[0] put(ym, i, zm) assert_(all(take(ym, i, axis=0) == zm)) def test_testOddFeatures(self): # Test of other odd features x = arange(20) x = x.reshape(4, 5) x.flat[5] = 12 assert_(x[1, 0] == 12) z = x + 10j * x assert_(eq(z.real, x)) assert_(eq(z.imag, 10 * x)) assert_(eq((z * conjugate(z)).real, 101 * x * x)) z.imag[...] = 0.0 x = arange(10) x[3] = masked assert_(str(x[3]) == str(masked)) c = x >= 8 assert_(count(where(c, masked, masked)) == 0) assert_(shape(where(c, masked, masked)) == c.shape) z = where(c, x, masked) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is masked) assert_(z[7] is masked) assert_(z[8] is not masked) assert_(z[9] is not masked) assert_(eq(x, z)) z = where(c, masked, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) z = masked_where(c, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) assert_(eq(x, z)) x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_(eq(z, [1., 2., 0., -4., -5])) c[0] = masked z = where(c, x, -x) assert_(eq(z, [1., 2., 0., -4., -5])) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) assert_(eq(masked_where(greater(x, 2), x), masked_greater(x, 2))) assert_(eq(masked_where(greater_equal(x, 2), x), masked_greater_equal(x, 2))) assert_(eq(masked_where(less(x, 2), x), masked_less(x, 2))) assert_(eq(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2))) assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))) assert_(eq(masked_where(equal(x, 2), x), masked_equal(x, 2))) assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))) assert_(eq(masked_inside(list(range(5)), 1, 3), [0, 199, 199, 199, 4])) assert_(eq(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199])) assert_(eq(masked_inside(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 1, 3).mask, [1, 1, 1, 1, 0])) assert_(eq(masked_outside(array(list(range(5)), mask=[0, 1, 0, 0, 0]), 1, 3).mask, [1, 1, 0, 0, 1])) assert_(eq(masked_equal(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 0])) assert_(eq(masked_not_equal(array([2, 2, 1, 2, 1], mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 1])) assert_(eq(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]), [99, 99, 3, 4, 5])) atest = ones((10, 10, 10), dtype=np.float32) btest = zeros(atest.shape, MaskType) ctest = masked_where(btest, atest) assert_(eq(atest, ctest)) z = choose(c, (-x, x)) assert_(eq(z, [1., 2., 0., -4., -5])) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) x = arange(6) x[5] = masked y = arange(6) * 10 y[2] = masked c = array([1, 1, 1, 0, 0, 0], mask=[1, 0, 0, 0, 0, 0]) cm = c.filled(1) z = where(c, x, y) zm = where(cm, x, y) assert_(eq(z, zm)) assert_(getmask(zm) is nomask) assert_(eq(zm, [0, 1, 2, 30, 40, 50])) z = where(c, masked, 1) assert_(eq(z, [99, 99, 99, 1, 1, 1])) z = where(c, 1, masked) assert_(eq(z, [99, 1, 1, 99, 99, 99])) def test_testMinMax2(self): # Test of minimum, maximum. assert_(eq(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])) assert_(eq(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])) x = arange(5) y = arange(5) - 2 x[3] = masked y[0] = masked assert_(eq(minimum(x, y), where(less(x, y), x, y))) assert_(eq(maximum(x, y), where(greater(x, y), x, y))) assert_(minimum.reduce(x) == 0) assert_(maximum.reduce(x) == 4) def test_testTakeTransposeInnerOuter(self): # Test of take, transpose, inner, outer products x = arange(24) y = np.arange(24) x[5:6] = masked x = x.reshape(2, 3, 4) y = y.reshape(2, 3, 4) assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))) assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))) assert_(eq(np.inner(filled(x, 0), filled(y, 0)), inner(x, y))) assert_(eq(np.outer(filled(x, 0), filled(y, 0)), outer(x, y))) y = array(['abc', 1, 'def', 2, 3], object) y[2] = masked t = take(y, [0, 3, 4]) assert_(t[0] == 'abc') assert_(t[1] == 2) assert_(t[2] == 3) def test_testInplace(self): # Test of inplace operations and rich comparisons y = arange(10) x = arange(10) xm = arange(10) xm[2] = masked x += 1 assert_(eq(x, y + 1)) xm += 1 assert_(eq(x, y + 1)) x = arange(10) xm = arange(10) xm[2] = masked x -= 1 assert_(eq(x, y - 1)) xm -= 1 assert_(eq(xm, y - 1)) x = arange(10) * 1.0 xm = arange(10) * 1.0 xm[2] = masked x *= 2.0 assert_(eq(x, y * 2)) xm *= 2.0 assert_(eq(xm, y * 2)) x = arange(10) * 2 xm = arange(10) xm[2] = masked x //= 2 assert_(eq(x, y)) xm //= 2 assert_(eq(x, y)) x = arange(10) * 1.0 xm = arange(10) * 1.0 xm[2] = masked x /= 2.0 assert_(eq(x, y / 2.0)) xm /= arange(10) assert_(eq(xm, ones((10,)))) x = arange(10).astype(np.float32) xm = arange(10) xm[2] = masked x += 1. assert_(eq(x, y + 1.)) def test_testPickle(self): # Test of pickling x = arange(12) x[4:10:2] = masked x = x.reshape(4, 3) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): s = pickle.dumps(x, protocol=proto) y = pickle.loads(s) assert_(eq(x, y)) def test_testMasked(self): # Test of masked element xx = arange(6) xx[1] = masked assert_(str(masked) == '--') assert_(xx[1] is masked) assert_equal(filled(xx[1], 0), 0) def test_testAverage1(self): # Test of average. ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) assert_(eq(2.0, average(ott, axis=0))) assert_(eq(2.0, average(ott, weights=[1., 1., 2., 1.]))) result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True) assert_(eq(2.0, result)) assert_(wts == 4.0) ott[:] = masked assert_(average(ott, axis=0) is masked) ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) ott = ott.reshape(2, 2) ott[:, 1] = masked assert_(eq(average(ott, axis=0), [2.0, 0.0])) assert_(average(ott, axis=1)[0] is masked) assert_(eq([2., 0.], average(ott, axis=0))) result, wts = average(ott, axis=0, returned=True) assert_(eq(wts, [1., 0.])) def test_testAverage2(self): # More tests of average. w1 = [0, 1, 1, 1, 1, 0] w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] x = arange(6) assert_(allclose(average(x, axis=0), 2.5)) assert_(allclose(average(x, axis=0, weights=w1), 2.5)) y = array([arange(6), 2.0 * arange(6)]) assert_(allclose(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.)) assert_(allclose(average(y, axis=0), np.arange(6) * 3. / 2.)) assert_(allclose(average(y, axis=1), [average(x, axis=0), average(x, axis=0)*2.0])) assert_(allclose(average(y, None, weights=w2), 20. / 6.)) assert_(allclose(average(y, axis=0, weights=w2), [0., 1., 2., 3., 4., 10.])) assert_(allclose(average(y, axis=1), [average(x, axis=0), average(x, axis=0)*2.0])) m1 = zeros(6) m2 = [0, 0, 1, 1, 0, 0] m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] m4 = ones(6) m5 = [0, 1, 1, 1, 1, 1] assert_(allclose(average(masked_array(x, m1), axis=0), 2.5)) assert_(allclose(average(masked_array(x, m2), axis=0), 2.5)) assert_(average(masked_array(x, m4), axis=0) is masked) assert_equal(average(masked_array(x, m5), axis=0), 0.0) assert_equal(count(average(masked_array(x, m4), axis=0)), 0) z = masked_array(y, m3) assert_(allclose(average(z, None), 20. / 6.)) assert_(allclose(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])) assert_(allclose(average(z, axis=1), [2.5, 5.0])) assert_(allclose(average(z, axis=0, weights=w2), [0., 1., 99., 99., 4.0, 10.0])) a = arange(6) b = arange(6) * 3 r1, w1 = average([[a, b], [b, a]], axis=1, returned=True) assert_equal(shape(r1), shape(w1)) assert_equal(r1.shape, w1.shape) r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True) assert_equal(shape(w2), shape(r2)) r2, w2 = average(ones((2, 2, 3)), returned=True) assert_equal(shape(w2), shape(r2)) r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True) assert_(shape(w2) == shape(r2)) a2d = array([[1, 2], [0, 4]], float) a2dm = masked_array(a2d, [[0, 0], [1, 0]]) a2da = average(a2d, axis=0) assert_(eq(a2da, [0.5, 3.0])) a2dma = average(a2dm, axis=0) assert_(eq(a2dma, [1.0, 3.0])) a2dma = average(a2dm, axis=None) assert_(eq(a2dma, 7. / 3.)) a2dma = average(a2dm, axis=1) assert_(eq(a2dma, [1.5, 4.0])) def test_testToPython(self): assert_equal(1, int(array(1))) assert_equal(1.0, float(array(1))) assert_equal(1, int(array([[[1]]]))) assert_equal(1.0, float(array([[1]]))) assert_raises(TypeError, float, array([1, 1])) assert_raises(ValueError, bool, array([0, 1])) assert_raises(ValueError, bool, array([0, 0], mask=[0, 1])) def test_testScalarArithmetic(self): xm = array(0, mask=1) #TODO FIXME: Find out what the following raises a warning in r8247 with np.errstate(divide='ignore'): assert_((1 / array(0)).mask) assert_((1 + xm).mask) assert_((-xm).mask) assert_((-xm).mask) assert_(maximum(xm, xm).mask) assert_(minimum(xm, xm).mask) assert_(xm.filled().dtype is xm._data.dtype) x = array(0, mask=0) assert_(x.filled() == x._data) assert_equal(str(xm), str(masked_print_option)) def test_testArrayMethods(self): a = array([1, 3, 2]) assert_(eq(a.any(), a._data.any())) assert_(eq(a.all(), a._data.all())) assert_(eq(a.argmax(), a._data.argmax())) assert_(eq(a.argmin(), a._data.argmin())) assert_(eq(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))) assert_(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))) assert_(eq(a.conj(), a._data.conj())) assert_(eq(a.conjugate(), a._data.conjugate())) m = array([[1, 2], [3, 4]]) assert_(eq(m.diagonal(), m._data.diagonal())) assert_(eq(a.sum(), a._data.sum())) assert_(eq(a.take([1, 2]), a._data.take([1, 2]))) assert_(eq(m.transpose(), m._data.transpose())) def test_testArrayAttributes(self): a = array([1, 3, 2]) assert_equal(a.ndim, 1) def test_testAPI(self): assert_(not [m for m in dir(np.ndarray) if m not in dir(MaskedArray) and not m.startswith('_')]) def test_testSingleElementSubscript(self): a = array([1, 3, 2]) b = array([1, 3, 2], mask=[1, 0, 1]) assert_equal(a[0].shape, ()) assert_equal(b[0].shape, ()) assert_equal(b[1].shape, ()) def test_assignment_by_condition(self): # Test for gh-18951 a = array([1, 2, 3, 4], mask=[1, 0, 1, 0]) c = a >= 3 a[c] = 5 assert_(a[2] is masked) def test_assignment_by_condition_2(self): # gh-19721 a = masked_array([0, 1], mask=[False, False]) b = masked_array([0, 1], mask=[True, True]) mask = a < 1 b[mask] = a[mask] expected_mask = [False, True] assert_equal(b.mask, expected_mask) class TestUfuncs: def setup_method(self): self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6), array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),) def test_testUfuncRegression(self): f_invalid_ignore = [ 'sqrt', 'arctanh', 'arcsin', 'arccos', 'arccosh', 'arctanh', 'log', 'log10', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod'] for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor']: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(np.ma, f) args = self.d[:uf.nin] with np.errstate(): if f in f_invalid_ignore: np.seterr(invalid='ignore') if f in ['arctanh', 'log', 'log10']: np.seterr(divide='ignore') ur = uf(*args) mr = mf(*args) assert_(eq(ur.filled(0), mr.filled(0), f)) assert_(eqmask(ur.mask, mr.mask)) def test_reduce(self): a = self.d[0] assert_(not alltrue(a, axis=0)) assert_(sometrue(a, axis=0)) assert_equal(sum(a[:3], axis=0), 0) assert_equal(product(a, axis=0), 0) def test_minmax(self): a = arange(1, 13).reshape(3, 4) amask = masked_where(a < 5, a) assert_equal(amask.max(), a.max()) assert_equal(amask.min(), 5) assert_((amask.max(0) == a.max(0)).all()) assert_((amask.min(0) == [5, 6, 7, 8]).all()) assert_(amask.max(1)[0].mask) assert_(amask.min(1)[0].mask) def test_nonzero(self): for t in "?bhilqpBHILQPfdgFDGO": x = array([1, 0, 2, 0], mask=[0, 0, 1, 1]) assert_(eq(nonzero(x), [0])) class TestArrayMethods: def setup_method(self): x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX) def test_trace(self): (x, X, XX, m, mx, mX, mXX,) = self.d mXdiag = mX.diagonal() assert_equal(mX.trace(), mX.diagonal().compressed().sum()) assert_(eq(mX.trace(), X.trace() - sum(mXdiag.mask * X.diagonal(), axis=0))) def test_clip(self): (x, X, XX, m, mx, mX, mXX,) = self.d clipped = mx.clip(2, 8) assert_(eq(clipped.mask, mx.mask)) assert_(eq(clipped._data, x.clip(2, 8))) assert_(eq(clipped._data, mx._data.clip(2, 8))) def test_ptp(self): (x, X, XX, m, mx, mX, mXX,) = self.d (n, m) = X.shape assert_equal(mx.ptp(), mx.compressed().ptp()) rows = np.zeros(n, np.float_) cols = np.zeros(m, np.float_) for k in range(m): cols[k] = mX[:, k].compressed().ptp() for k in range(n): rows[k] = mX[k].compressed().ptp() assert_(eq(mX.ptp(0), cols)) assert_(eq(mX.ptp(1), rows)) def test_swapaxes(self): (x, X, XX, m, mx, mX, mXX,) = self.d mXswapped = mX.swapaxes(0, 1) assert_(eq(mXswapped[-1], mX[:, -1])) mXXswapped = mXX.swapaxes(0, 2) assert_equal(mXXswapped.shape, (2, 2, 3, 3)) def test_cumprod(self): (x, X, XX, m, mx, mX, mXX,) = self.d mXcp = mX.cumprod(0) assert_(eq(mXcp._data, mX.filled(1).cumprod(0))) mXcp = mX.cumprod(1) assert_(eq(mXcp._data, mX.filled(1).cumprod(1))) def test_cumsum(self): (x, X, XX, m, mx, mX, mXX,) = self.d mXcp = mX.cumsum(0) assert_(eq(mXcp._data, mX.filled(0).cumsum(0))) mXcp = mX.cumsum(1) assert_(eq(mXcp._data, mX.filled(0).cumsum(1))) def test_varstd(self): (x, X, XX, m, mx, mX, mXX,) = self.d assert_(eq(mX.var(axis=None), mX.compressed().var())) assert_(eq(mX.std(axis=None), mX.compressed().std())) assert_(eq(mXX.var(axis=3).shape, XX.var(axis=3).shape)) assert_(eq(mX.var().shape, X.var().shape)) (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) for k in range(6): assert_(eq(mXvar1[k], mX[k].compressed().var())) assert_(eq(mXvar0[k], mX[:, k].compressed().var())) assert_(eq(np.sqrt(mXvar0[k]), mX[:, k].compressed().std())) def eqmask(m1, m2): if m1 is nomask: return m2 is nomask if m2 is nomask: return m1 is nomask return (m1 == m2).all()
32,702
Python
36.374857
81
0.47835
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/ma/tests/test_subclassing.py
# pylint: disable-msg=W0611, W0612, W0511,R0201 """Tests suite for MaskedArray & subclassing. :author: Pierre Gerard-Marchant :contact: pierregm_at_uga_dot_edu :version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $ """ import numpy as np from numpy.lib.mixins import NDArrayOperatorsMixin from numpy.testing import assert_, assert_raises from numpy.ma.testutils import assert_equal from numpy.ma.core import ( array, arange, masked, MaskedArray, masked_array, log, add, hypot, divide, asarray, asanyarray, nomask ) # from numpy.ma.core import ( def assert_startswith(a, b): # produces a better error message than assert_(a.startswith(b)) assert_equal(a[:len(b)], b) class SubArray(np.ndarray): # Defines a generic np.ndarray subclass, that stores some metadata # in the dictionary `info`. def __new__(cls,arr,info={}): x = np.asanyarray(arr).view(cls) x.info = info.copy() return x def __array_finalize__(self, obj): super().__array_finalize__(obj) self.info = getattr(obj, 'info', {}).copy() return def __add__(self, other): result = super().__add__(other) result.info['added'] = result.info.get('added', 0) + 1 return result def __iadd__(self, other): result = super().__iadd__(other) result.info['iadded'] = result.info.get('iadded', 0) + 1 return result subarray = SubArray class SubMaskedArray(MaskedArray): """Pure subclass of MaskedArray, keeping some info on subclass.""" def __new__(cls, info=None, **kwargs): obj = super().__new__(cls, **kwargs) obj._optinfo['info'] = info return obj class MSubArray(SubArray, MaskedArray): def __new__(cls, data, info={}, mask=nomask): subarr = SubArray(data, info) _data = MaskedArray.__new__(cls, data=subarr, mask=mask) _data.info = subarr.info return _data @property def _series(self): _view = self.view(MaskedArray) _view._sharedmask = False return _view msubarray = MSubArray # Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing # setting to non-class values (and thus np.ma.core.masked_print_option) # and overrides __array_wrap__, updating the info dict, to check that this # doesn't get destroyed by MaskedArray._update_from. But this one also needs # its own iterator... class CSAIterator: """ Flat iterator object that uses its own setter/getter (works around ndarray.flat not propagating subclass setters/getters see https://github.com/numpy/numpy/issues/4564) roughly following MaskedIterator """ def __init__(self, a): self._original = a self._dataiter = a.view(np.ndarray).flat def __iter__(self): return self def __getitem__(self, indx): out = self._dataiter.__getitem__(indx) if not isinstance(out, np.ndarray): out = out.__array__() out = out.view(type(self._original)) return out def __setitem__(self, index, value): self._dataiter[index] = self._original._validate_input(value) def __next__(self): return next(self._dataiter).__array__().view(type(self._original)) class ComplicatedSubArray(SubArray): def __str__(self): return f'myprefix {self.view(SubArray)} mypostfix' def __repr__(self): # Return a repr that does not start with 'name(' return f'<{self.__class__.__name__} {self}>' def _validate_input(self, value): if not isinstance(value, ComplicatedSubArray): raise ValueError("Can only set to MySubArray values") return value def __setitem__(self, item, value): # validation ensures direct assignment with ndarray or # masked_print_option will fail super().__setitem__(item, self._validate_input(value)) def __getitem__(self, item): # ensure getter returns our own class also for scalars value = super().__getitem__(item) if not isinstance(value, np.ndarray): # scalar value = value.__array__().view(ComplicatedSubArray) return value @property def flat(self): return CSAIterator(self) @flat.setter def flat(self, value): y = self.ravel() y[:] = value def __array_wrap__(self, obj, context=None): obj = super().__array_wrap__(obj, context) if context is not None and context[0] is np.multiply: obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1 return obj class WrappedArray(NDArrayOperatorsMixin): """ Wrapping a MaskedArray rather than subclassing to test that ufunc deferrals are commutative. See: https://github.com/numpy/numpy/issues/15200) """ __array_priority__ = 20 def __init__(self, array, **attrs): self._array = array self.attrs = attrs def __repr__(self): return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)" def __array__(self): return np.asarray(self._array) def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): if method == '__call__': inputs = [arg._array if isinstance(arg, self.__class__) else arg for arg in inputs] return self.__class__(ufunc(*inputs, **kwargs), **self.attrs) else: return NotImplemented class TestSubclassing: # Test suite for masked subclasses of ndarray. def setup_method(self): x = np.arange(5, dtype='float') mx = msubarray(x, mask=[0, 1, 0, 0, 0]) self.data = (x, mx) def test_data_subclassing(self): # Tests whether the subclass is kept. x = np.arange(5) m = [0, 0, 1, 0, 0] xsub = SubArray(x) xmsub = masked_array(xsub, mask=m) assert_(isinstance(xmsub, MaskedArray)) assert_equal(xmsub._data, xsub) assert_(isinstance(xmsub._data, SubArray)) def test_maskedarray_subclassing(self): # Tests subclassing MaskedArray (x, mx) = self.data assert_(isinstance(mx._data, subarray)) def test_masked_unary_operations(self): # Tests masked_unary_operation (x, mx) = self.data with np.errstate(divide='ignore'): assert_(isinstance(log(mx), msubarray)) assert_equal(log(x), np.log(x)) def test_masked_binary_operations(self): # Tests masked_binary_operation (x, mx) = self.data # Result should be a msubarray assert_(isinstance(add(mx, mx), msubarray)) assert_(isinstance(add(mx, x), msubarray)) # Result should work assert_equal(add(mx, x), mx+x) assert_(isinstance(add(mx, mx)._data, subarray)) assert_(isinstance(add.outer(mx, mx), msubarray)) assert_(isinstance(hypot(mx, mx), msubarray)) assert_(isinstance(hypot(mx, x), msubarray)) def test_masked_binary_operations2(self): # Tests domained_masked_binary_operation (x, mx) = self.data xmx = masked_array(mx.data.__array__(), mask=mx.mask) assert_(isinstance(divide(mx, mx), msubarray)) assert_(isinstance(divide(mx, x), msubarray)) assert_equal(divide(mx, mx), divide(xmx, xmx)) def test_attributepropagation(self): x = array(arange(5), mask=[0]+[1]*4) my = masked_array(subarray(x)) ym = msubarray(x) # z = (my+1) assert_(isinstance(z, MaskedArray)) assert_(not isinstance(z, MSubArray)) assert_(isinstance(z._data, SubArray)) assert_equal(z._data.info, {}) # z = (ym+1) assert_(isinstance(z, MaskedArray)) assert_(isinstance(z, MSubArray)) assert_(isinstance(z._data, SubArray)) assert_(z._data.info['added'] > 0) # Test that inplace methods from data get used (gh-4617) ym += 1 assert_(isinstance(ym, MaskedArray)) assert_(isinstance(ym, MSubArray)) assert_(isinstance(ym._data, SubArray)) assert_(ym._data.info['iadded'] > 0) # ym._set_mask([1, 0, 0, 0, 1]) assert_equal(ym._mask, [1, 0, 0, 0, 1]) ym._series._set_mask([0, 0, 0, 0, 1]) assert_equal(ym._mask, [0, 0, 0, 0, 1]) # xsub = subarray(x, info={'name':'x'}) mxsub = masked_array(xsub) assert_(hasattr(mxsub, 'info')) assert_equal(mxsub.info, xsub.info) def test_subclasspreservation(self): # Checks that masked_array(...,subok=True) preserves the class. x = np.arange(5) m = [0, 0, 1, 0, 0] xinfo = [(i, j) for (i, j) in zip(x, m)] xsub = MSubArray(x, mask=m, info={'xsub':xinfo}) # mxsub = masked_array(xsub, subok=False) assert_(not isinstance(mxsub, MSubArray)) assert_(isinstance(mxsub, MaskedArray)) assert_equal(mxsub._mask, m) # mxsub = asarray(xsub) assert_(not isinstance(mxsub, MSubArray)) assert_(isinstance(mxsub, MaskedArray)) assert_equal(mxsub._mask, m) # mxsub = masked_array(xsub, subok=True) assert_(isinstance(mxsub, MSubArray)) assert_equal(mxsub.info, xsub.info) assert_equal(mxsub._mask, xsub._mask) # mxsub = asanyarray(xsub) assert_(isinstance(mxsub, MSubArray)) assert_equal(mxsub.info, xsub.info) assert_equal(mxsub._mask, m) def test_subclass_items(self): """test that getter and setter go via baseclass""" x = np.arange(5) xcsub = ComplicatedSubArray(x) mxcsub = masked_array(xcsub, mask=[True, False, True, False, False]) # getter should return a ComplicatedSubArray, even for single item # first check we wrote ComplicatedSubArray correctly assert_(isinstance(xcsub[1], ComplicatedSubArray)) assert_(isinstance(xcsub[1,...], ComplicatedSubArray)) assert_(isinstance(xcsub[1:4], ComplicatedSubArray)) # now that it propagates inside the MaskedArray assert_(isinstance(mxcsub[1], ComplicatedSubArray)) assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray)) assert_(mxcsub[0] is masked) assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray)) assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray)) # also for flattened version (which goes via MaskedIterator) assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray)) assert_(mxcsub.flat[0] is masked) assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray)) # setter should only work with ComplicatedSubArray input # first check we wrote ComplicatedSubArray correctly assert_raises(ValueError, xcsub.__setitem__, 1, x[4]) # now that it propagates inside the MaskedArray assert_raises(ValueError, mxcsub.__setitem__, 1, x[4]) assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4]) mxcsub[1] = xcsub[4] mxcsub[1:4] = xcsub[1:4] # also for flattened version (which goes via MaskedIterator) assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4]) assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4]) mxcsub.flat[1] = xcsub[4] mxcsub.flat[1:4] = xcsub[1:4] def test_subclass_nomask_items(self): x = np.arange(5) xcsub = ComplicatedSubArray(x) mxcsub_nomask = masked_array(xcsub) assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray)) assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray)) assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray)) assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray)) def test_subclass_repr(self): """test that repr uses the name of the subclass and 'array' for np.ndarray""" x = np.arange(5) mx = masked_array(x, mask=[True, False, True, False, False]) assert_startswith(repr(mx), 'masked_array') xsub = SubArray(x) mxsub = masked_array(xsub, mask=[True, False, True, False, False]) assert_startswith(repr(mxsub), f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]') def test_subclass_str(self): """test str with subclass that has overridden str, setitem""" # first without override x = np.arange(5) xsub = SubArray(x) mxsub = masked_array(xsub, mask=[True, False, True, False, False]) assert_equal(str(mxsub), '[-- 1 -- 3 4]') xcsub = ComplicatedSubArray(x) assert_raises(ValueError, xcsub.__setitem__, 0, np.ma.core.masked_print_option) mxcsub = masked_array(xcsub, mask=[True, False, True, False, False]) assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix') def test_pure_subclass_info_preservation(self): # Test that ufuncs and methods conserve extra information consistently; # see gh-7122. arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6]) arr2 = SubMaskedArray(data=[0,1,2,3,4,5]) diff1 = np.subtract(arr1, arr2) assert_('info' in diff1._optinfo) assert_(diff1._optinfo['info'] == 'test') diff2 = arr1 - arr2 assert_('info' in diff2._optinfo) assert_(diff2._optinfo['info'] == 'test') class ArrayNoInheritance: """Quantity-like class that does not inherit from ndarray""" def __init__(self, data, units): self.magnitude = data self.units = units def __getattr__(self, attr): return getattr(self.magnitude, attr) def test_array_no_inheritance(): data_masked = np.ma.array([1, 2, 3], mask=[True, False, True]) data_masked_units = ArrayNoInheritance(data_masked, 'meters') # Get the masked representation of the Quantity-like class new_array = np.ma.array(data_masked_units) assert_equal(data_masked.data, new_array.data) assert_equal(data_masked.mask, new_array.mask) # Test sharing the mask data_masked.mask = [True, False, False] assert_equal(data_masked.mask, new_array.mask) assert_(new_array.sharedmask) # Get the masked representation of the Quantity-like class new_array = np.ma.array(data_masked_units, copy=True) assert_equal(data_masked.data, new_array.data) assert_equal(data_masked.mask, new_array.mask) # Test that the mask is not shared when copy=True data_masked.mask = [True, False, True] assert_equal([True, False, False], new_array.mask) assert_(not new_array.sharedmask) # Get the masked representation of the Quantity-like class new_array = np.ma.array(data_masked_units, keep_mask=False) assert_equal(data_masked.data, new_array.data) # The change did not affect the original mask assert_equal(data_masked.mask, [True, False, True]) # Test that the mask is False and not shared when keep_mask=False assert_(not new_array.mask) assert_(not new_array.sharedmask) class TestClassWrapping: # Test suite for classes that wrap MaskedArrays def setup_method(self): m = np.ma.masked_array([1, 3, 5], mask=[False, True, False]) wm = WrappedArray(m) self.data = (m, wm) def test_masked_unary_operations(self): # Tests masked_unary_operation (m, wm) = self.data with np.errstate(divide='ignore'): assert_(isinstance(np.log(wm), WrappedArray)) def test_masked_binary_operations(self): # Tests masked_binary_operation (m, wm) = self.data # Result should be a WrappedArray assert_(isinstance(np.add(wm, wm), WrappedArray)) assert_(isinstance(np.add(m, wm), WrappedArray)) assert_(isinstance(np.add(wm, m), WrappedArray)) # add and '+' should call the same ufunc assert_equal(np.add(m, wm), m + wm) assert_(isinstance(np.hypot(m, wm), WrappedArray)) assert_(isinstance(np.hypot(wm, m), WrappedArray)) # Test domained binary operations assert_(isinstance(np.divide(wm, m), WrappedArray)) assert_(isinstance(np.divide(m, wm), WrappedArray)) assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm) # Test broadcasting m2 = np.stack([m, m]) assert_(isinstance(np.divide(wm, m2), WrappedArray)) assert_(isinstance(np.divide(m2, wm), WrappedArray)) assert_equal(np.divide(m2, wm), np.divide(wm, m2))
16,570
Python
35.742794
79
0.613398
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/print_coercion_tables.py
#!/usr/bin/env python3 """Prints type-coercion tables for the built-in NumPy types """ import numpy as np from collections import namedtuple # Generic object that can be added, but doesn't do anything else class GenericObject: def __init__(self, v): self.v = v def __add__(self, other): return self def __radd__(self, other): return self dtype = np.dtype('O') def print_cancast_table(ntypes): print('X', end=' ') for char in ntypes: print(char, end=' ') print() for row in ntypes: print(row, end=' ') for col in ntypes: if np.can_cast(row, col, "equiv"): cast = "#" elif np.can_cast(row, col, "safe"): cast = "=" elif np.can_cast(row, col, "same_kind"): cast = "~" elif np.can_cast(row, col, "unsafe"): cast = "." else: cast = " " print(cast, end=' ') print() def print_coercion_table(ntypes, inputfirstvalue, inputsecondvalue, firstarray, use_promote_types=False): print('+', end=' ') for char in ntypes: print(char, end=' ') print() for row in ntypes: if row == 'O': rowtype = GenericObject else: rowtype = np.obj2sctype(row) print(row, end=' ') for col in ntypes: if col == 'O': coltype = GenericObject else: coltype = np.obj2sctype(col) try: if firstarray: rowvalue = np.array([rowtype(inputfirstvalue)], dtype=rowtype) else: rowvalue = rowtype(inputfirstvalue) colvalue = coltype(inputsecondvalue) if use_promote_types: char = np.promote_types(rowvalue.dtype, colvalue.dtype).char else: value = np.add(rowvalue, colvalue) if isinstance(value, np.ndarray): char = value.dtype.char else: char = np.dtype(type(value)).char except ValueError: char = '!' except OverflowError: char = '@' except TypeError: char = '#' print(char, end=' ') print() def print_new_cast_table(*, can_cast=True, legacy=False, flags=False): """Prints new casts, the values given are default "can-cast" values, not actual ones. """ from numpy.core._multiarray_tests import get_all_cast_information cast_table = { -1: " ", 0: "#", # No cast (classify as equivalent here) 1: "#", # equivalent casting 2: "=", # safe casting 3: "~", # same-kind casting 4: ".", # unsafe casting } flags_table = { 0 : "▗", 7: "█", 1: "▚", 2: "▐", 4: "▄", 3: "▜", 5: "▙", 6: "▟", } cast_info = namedtuple("cast_info", ["can_cast", "legacy", "flags"]) no_cast_info = cast_info(" ", " ", " ") casts = get_all_cast_information() table = {} dtypes = set() for cast in casts: dtypes.add(cast["from"]) dtypes.add(cast["to"]) if cast["from"] not in table: table[cast["from"]] = {} to_dict = table[cast["from"]] can_cast = cast_table[cast["casting"]] legacy = "L" if cast["legacy"] else "." flags = 0 if cast["requires_pyapi"]: flags |= 1 if cast["supports_unaligned"]: flags |= 2 if cast["no_floatingpoint_errors"]: flags |= 4 flags = flags_table[flags] to_dict[cast["to"]] = cast_info(can_cast=can_cast, legacy=legacy, flags=flags) # The np.dtype(x.type) is a bit strange, because dtype classes do # not expose much yet. types = np.typecodes["All"] def sorter(x): # This is a bit weird hack, to get a table as close as possible to # the one printing all typecodes (but expecting user-dtypes). dtype = np.dtype(x.type) try: indx = types.index(dtype.char) except ValueError: indx = np.inf return (indx, dtype.char) dtypes = sorted(dtypes, key=sorter) def print_table(field="can_cast"): print('X', end=' ') for dt in dtypes: print(np.dtype(dt.type).char, end=' ') print() for from_dt in dtypes: print(np.dtype(from_dt.type).char, end=' ') row = table.get(from_dt, {}) for to_dt in dtypes: print(getattr(row.get(to_dt, no_cast_info), field), end=' ') print() if can_cast: # Print the actual table: print() print("Casting: # is equivalent, = is safe, ~ is same-kind, and . is unsafe") print() print_table("can_cast") if legacy: print() print("L denotes a legacy cast . a non-legacy one.") print() print_table("legacy") if flags: print() print(f"{flags_table[0]}: no flags, {flags_table[1]}: PyAPI, " f"{flags_table[2]}: supports unaligned, {flags_table[4]}: no-float-errors") print() print_table("flags") if __name__ == '__main__': print("can cast") print_cancast_table(np.typecodes['All']) print() print("In these tables, ValueError is '!', OverflowError is '@', TypeError is '#'") print() print("scalar + scalar") print_coercion_table(np.typecodes['All'], 0, 0, False) print() print("scalar + neg scalar") print_coercion_table(np.typecodes['All'], 0, -1, False) print() print("array + scalar") print_coercion_table(np.typecodes['All'], 0, 0, True) print() print("array + neg scalar") print_coercion_table(np.typecodes['All'], 0, -1, True) print() print("promote_types") print_coercion_table(np.typecodes['All'], 0, 0, False, True) print("New casting type promotion:") print_new_cast_table(can_cast=True, legacy=True, flags=True)
6,164
Python
29.671642
105
0.513465
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/__init__.py
"""Common test support for all numpy test scripts. This single module should provide all the common functionality for numpy tests in a single location, so that test scripts can just import it and work right away. """ from unittest import TestCase from ._private.utils import * from ._private.utils import (_assert_valid_refcount, _gen_alignment_data) from ._private import extbuild, decorators as dec from ._private.nosetester import ( run_module_suite, NoseTester as Tester ) __all__ = _private.utils.__all__ + ['TestCase', 'run_module_suite'] from numpy._pytesttester import PytestTester test = PytestTester(__name__) del PytestTester
650
Python
28.590908
78
0.752308
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/utils.py
""" Back compatibility utils module. It will import the appropriate set of tools """ import warnings # 2018-04-04, numpy 1.15.0 ImportWarning # 2019-09-18, numpy 1.18.0 DeprecatonWarning (changed) warnings.warn("Importing from numpy.testing.utils is deprecated " "since 1.15.0, import from numpy.testing instead.", DeprecationWarning, stacklevel=2) from ._private.utils import * from ._private.utils import _assert_valid_refcount, _gen_alignment_data __all__ = [ 'assert_equal', 'assert_almost_equal', 'assert_approx_equal', 'assert_array_equal', 'assert_array_less', 'assert_string_equal', 'assert_array_almost_equal', 'assert_raises', 'build_err_msg', 'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal', 'raises', 'rundocs', 'runstring', 'verbose', 'measure', 'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex', 'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings', 'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings', 'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY', 'HAS_REFCOUNT', 'suppress_warnings', 'assert_array_compare', 'assert_no_gc_cycles' ]
1,255
Python
40.866665
78
0.658167
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/__init__.pyi
from numpy._pytesttester import PytestTester from unittest import ( TestCase as TestCase, ) from numpy.testing._private.utils import ( assert_equal as assert_equal, assert_almost_equal as assert_almost_equal, assert_approx_equal as assert_approx_equal, assert_array_equal as assert_array_equal, assert_array_less as assert_array_less, assert_string_equal as assert_string_equal, assert_array_almost_equal as assert_array_almost_equal, assert_raises as assert_raises, build_err_msg as build_err_msg, decorate_methods as decorate_methods, jiffies as jiffies, memusage as memusage, print_assert_equal as print_assert_equal, raises as raises, rundocs as rundocs, runstring as runstring, verbose as verbose, measure as measure, assert_ as assert_, assert_array_almost_equal_nulp as assert_array_almost_equal_nulp, assert_raises_regex as assert_raises_regex, assert_array_max_ulp as assert_array_max_ulp, assert_warns as assert_warns, assert_no_warnings as assert_no_warnings, assert_allclose as assert_allclose, IgnoreException as IgnoreException, clear_and_catch_warnings as clear_and_catch_warnings, SkipTest as SkipTest, KnownFailureException as KnownFailureException, temppath as temppath, tempdir as tempdir, IS_PYPY as IS_PYPY, IS_PYSTON as IS_PYSTON, HAS_REFCOUNT as HAS_REFCOUNT, suppress_warnings as suppress_warnings, assert_array_compare as assert_array_compare, assert_no_gc_cycles as assert_no_gc_cycles, break_cycles as break_cycles, HAS_LAPACK64 as HAS_LAPACK64, ) __all__: list[str] __path__: list[str] test: PytestTester def run_module_suite( file_to_run: None | str = ..., argv: None | list[str] = ..., ) -> None: ...
1,803
unknown
30.649122
69
0.712146
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/_private/noseclasses.py
# These classes implement a doctest runner plugin for nose, a "known failure" # error class, and a customized TestProgram for NumPy. # Because this module imports nose directly, it should not # be used except by nosetester.py to avoid a general NumPy # dependency on nose. import os import sys import doctest import inspect import numpy import nose from nose.plugins import doctests as npd from nose.plugins.errorclass import ErrorClass, ErrorClassPlugin from nose.plugins.base import Plugin from nose.util import src from .nosetester import get_package_name from .utils import KnownFailureException, KnownFailureTest # Some of the classes in this module begin with 'Numpy' to clearly distinguish # them from the plethora of very similar names from nose/unittest/doctest #----------------------------------------------------------------------------- # Modified version of the one in the stdlib, that fixes a python bug (doctests # not found in extension modules, https://bugs.python.org/issue3158) class NumpyDocTestFinder(doctest.DocTestFinder): def _from_module(self, module, object): """ Return true if the given object is defined in the given module. """ if module is None: return True elif inspect.isfunction(object): return module.__dict__ is object.__globals__ elif inspect.isbuiltin(object): return module.__name__ == object.__module__ elif inspect.isclass(object): return module.__name__ == object.__module__ elif inspect.ismethod(object): # This one may be a bug in cython that fails to correctly set the # __module__ attribute of methods, but since the same error is easy # to make by extension code writers, having this safety in place # isn't such a bad idea return module.__name__ == object.__self__.__class__.__module__ elif inspect.getmodule(object) is not None: return module is inspect.getmodule(object) elif hasattr(object, '__module__'): return module.__name__ == object.__module__ elif isinstance(object, property): return True # [XX] no way not be sure. else: raise ValueError("object must be a class or function") def _find(self, tests, obj, name, module, source_lines, globs, seen): """ Find tests for the given object and any contained objects, and add them to `tests`. """ doctest.DocTestFinder._find(self, tests, obj, name, module, source_lines, globs, seen) # Below we re-run pieces of the above method with manual modifications, # because the original code is buggy and fails to correctly identify # doctests in extension modules. # Local shorthands from inspect import ( isroutine, isclass, ismodule, isfunction, ismethod ) # Look for tests in a module's contained objects. if ismodule(obj) and self._recurse: for valname, val in obj.__dict__.items(): valname1 = f'{name}.{valname}' if ( (isroutine(val) or isclass(val)) and self._from_module(module, val)): self._find(tests, val, valname1, module, source_lines, globs, seen) # Look for tests in a class's contained objects. if isclass(obj) and self._recurse: for valname, val in obj.__dict__.items(): # Special handling for staticmethod/classmethod. if isinstance(val, staticmethod): val = getattr(obj, valname) if isinstance(val, classmethod): val = getattr(obj, valname).__func__ # Recurse to methods, properties, and nested classes. if ((isfunction(val) or isclass(val) or ismethod(val) or isinstance(val, property)) and self._from_module(module, val)): valname = f'{name}.{valname}' self._find(tests, val, valname, module, source_lines, globs, seen) # second-chance checker; if the default comparison doesn't # pass, then see if the expected output string contains flags that # tell us to ignore the output class NumpyOutputChecker(doctest.OutputChecker): def check_output(self, want, got, optionflags): ret = doctest.OutputChecker.check_output(self, want, got, optionflags) if not ret: if "#random" in want: return True # it would be useful to normalize endianness so that # bigendian machines don't fail all the tests (and there are # actually some bigendian examples in the doctests). Let's try # making them all little endian got = got.replace("'>", "'<") want = want.replace("'>", "'<") # try to normalize out 32 and 64 bit default int sizes for sz in [4, 8]: got = got.replace("'<i%d'" % sz, "int") want = want.replace("'<i%d'" % sz, "int") ret = doctest.OutputChecker.check_output(self, want, got, optionflags) return ret # Subclass nose.plugins.doctests.DocTestCase to work around a bug in # its constructor that blocks non-default arguments from being passed # down into doctest.DocTestCase class NumpyDocTestCase(npd.DocTestCase): def __init__(self, test, optionflags=0, setUp=None, tearDown=None, checker=None, obj=None, result_var='_'): self._result_var = result_var self._nose_obj = obj doctest.DocTestCase.__init__(self, test, optionflags=optionflags, setUp=setUp, tearDown=tearDown, checker=checker) print_state = numpy.get_printoptions() class NumpyDoctest(npd.Doctest): name = 'numpydoctest' # call nosetests with --with-numpydoctest score = 1000 # load late, after doctest builtin # always use whitespace and ellipsis options for doctests doctest_optflags = doctest.NORMALIZE_WHITESPACE | doctest.ELLIPSIS # files that should be ignored for doctests doctest_ignore = ['generate_numpy_api.py', 'setup.py'] # Custom classes; class variables to allow subclassing doctest_case_class = NumpyDocTestCase out_check_class = NumpyOutputChecker test_finder_class = NumpyDocTestFinder # Don't use the standard doctest option handler; hard-code the option values def options(self, parser, env=os.environ): Plugin.options(self, parser, env) # Test doctests in 'test' files / directories. Standard plugin default # is False self.doctest_tests = True # Variable name; if defined, doctest results stored in this variable in # the top-level namespace. None is the standard default self.doctest_result_var = None def configure(self, options, config): # parent method sets enabled flag from command line --with-numpydoctest Plugin.configure(self, options, config) self.finder = self.test_finder_class() self.parser = doctest.DocTestParser() if self.enabled: # Pull standard doctest out of plugin list; there's no reason to run # both. In practice the Unplugger plugin above would cover us when # run from a standard numpy.test() call; this is just in case # someone wants to run our plugin outside the numpy.test() machinery config.plugins.plugins = [p for p in config.plugins.plugins if p.name != 'doctest'] def set_test_context(self, test): """ Configure `test` object to set test context We set the numpy / scipy standard doctest namespace Parameters ---------- test : test object with ``globs`` dictionary defining namespace Returns ------- None Notes ----- `test` object modified in place """ # set the namespace for tests pkg_name = get_package_name(os.path.dirname(test.filename)) # Each doctest should execute in an environment equivalent to # starting Python and executing "import numpy as np", and, # for SciPy packages, an additional import of the local # package (so that scipy.linalg.basic.py's doctests have an # implicit "from scipy import linalg" as well). # # Note: __file__ allows the doctest in NoseTester to run # without producing an error test.globs = {'__builtins__':__builtins__, '__file__':'__main__', '__name__':'__main__', 'np':numpy} # add appropriate scipy import for SciPy tests if 'scipy' in pkg_name: p = pkg_name.split('.') p2 = p[-1] test.globs[p2] = __import__(pkg_name, test.globs, {}, [p2]) # Override test loading to customize test context (with set_test_context # method), set standard docstring options, and install our own test output # checker def loadTestsFromModule(self, module): if not self.matches(module.__name__): npd.log.debug("Doctest doesn't want module %s", module) return try: tests = self.finder.find(module) except AttributeError: # nose allows module.__test__ = False; doctest does not and # throws AttributeError return if not tests: return tests.sort() module_file = src(module.__file__) for test in tests: if not test.examples: continue if not test.filename: test.filename = module_file # Set test namespace; test altered in place self.set_test_context(test) yield self.doctest_case_class(test, optionflags=self.doctest_optflags, checker=self.out_check_class(), result_var=self.doctest_result_var) # Add an afterContext method to nose.plugins.doctests.Doctest in order # to restore print options to the original state after each doctest def afterContext(self): numpy.set_printoptions(**print_state) # Ignore NumPy-specific build files that shouldn't be searched for tests def wantFile(self, file): bn = os.path.basename(file) if bn in self.doctest_ignore: return False return npd.Doctest.wantFile(self, file) class Unplugger: """ Nose plugin to remove named plugin late in loading By default it removes the "doctest" plugin. """ name = 'unplugger' enabled = True # always enabled score = 4000 # load late in order to be after builtins def __init__(self, to_unplug='doctest'): self.to_unplug = to_unplug def options(self, parser, env): pass def configure(self, options, config): # Pull named plugin out of plugins list config.plugins.plugins = [p for p in config.plugins.plugins if p.name != self.to_unplug] class KnownFailurePlugin(ErrorClassPlugin): '''Plugin that installs a KNOWNFAIL error class for the KnownFailureClass exception. When KnownFailure is raised, the exception will be logged in the knownfail attribute of the result, 'K' or 'KNOWNFAIL' (verbose) will be output, and the exception will not be counted as an error or failure.''' enabled = True knownfail = ErrorClass(KnownFailureException, label='KNOWNFAIL', isfailure=False) def options(self, parser, env=os.environ): env_opt = 'NOSE_WITHOUT_KNOWNFAIL' parser.add_option('--no-knownfail', action='store_true', dest='noKnownFail', default=env.get(env_opt, False), help='Disable special handling of KnownFailure ' 'exceptions') def configure(self, options, conf): if not self.can_configure: return self.conf = conf disable = getattr(options, 'noKnownFail', False) if disable: self.enabled = False KnownFailure = KnownFailurePlugin # backwards compat class FPUModeCheckPlugin(Plugin): """ Plugin that checks the FPU mode before and after each test, raising failures if the test changed the mode. """ def prepareTestCase(self, test): from numpy.core._multiarray_tests import get_fpu_mode def run(result): old_mode = get_fpu_mode() test.test(result) new_mode = get_fpu_mode() if old_mode != new_mode: try: raise AssertionError( "FPU mode changed from {0:#x} to {1:#x} during the " "test".format(old_mode, new_mode)) except AssertionError: result.addFailure(test, sys.exc_info()) return run # Class allows us to save the results of the tests in runTests - see runTests # method docstring for details class NumpyTestProgram(nose.core.TestProgram): def runTests(self): """Run Tests. Returns true on success, false on failure, and sets self.success to the same value. Because nose currently discards the test result object, but we need to return it to the user, override TestProgram.runTests to retain the result """ if self.testRunner is None: self.testRunner = nose.core.TextTestRunner(stream=self.config.stream, verbosity=self.config.verbosity, config=self.config) plug_runner = self.config.plugins.prepareTestRunner(self.testRunner) if plug_runner is not None: self.testRunner = plug_runner self.result = self.testRunner.run(self.test) self.success = self.result.wasSuccessful() return self.success
14,516
Python
38.772603
87
0.592312
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/_private/parameterized.py
""" tl;dr: all code is licensed under simplified BSD, unless stated otherwise. Unless stated otherwise in the source files, all code is copyright 2010 David Wolever <[email protected]>. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY <COPYRIGHT HOLDER> ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of David Wolever. """ import re import inspect import warnings from functools import wraps from types import MethodType from collections import namedtuple from unittest import TestCase _param = namedtuple("param", "args kwargs") class param(_param): """ Represents a single parameter to a test case. For example:: >>> p = param("foo", bar=16) >>> p param("foo", bar=16) >>> p.args ('foo', ) >>> p.kwargs {'bar': 16} Intended to be used as an argument to ``@parameterized``:: @parameterized([ param("foo", bar=16), ]) def test_stuff(foo, bar=16): pass """ def __new__(cls, *args , **kwargs): return _param.__new__(cls, args, kwargs) @classmethod def explicit(cls, args=None, kwargs=None): """ Creates a ``param`` by explicitly specifying ``args`` and ``kwargs``:: >>> param.explicit([1,2,3]) param(*(1, 2, 3)) >>> param.explicit(kwargs={"foo": 42}) param(*(), **{"foo": "42"}) """ args = args or () kwargs = kwargs or {} return cls(*args, **kwargs) @classmethod def from_decorator(cls, args): """ Returns an instance of ``param()`` for ``@parameterized`` argument ``args``:: >>> param.from_decorator((42, )) param(args=(42, ), kwargs={}) >>> param.from_decorator("foo") param(args=("foo", ), kwargs={}) """ if isinstance(args, param): return args elif isinstance(args, (str,)): args = (args, ) try: return cls(*args) except TypeError as e: if "after * must be" not in str(e): raise raise TypeError( "Parameters must be tuples, but %r is not (hint: use '(%r, )')" %(args, args), ) def __repr__(self): return "param(*%r, **%r)" %self def parameterized_argument_value_pairs(func, p): """Return tuples of parameterized arguments and their values. This is useful if you are writing your own doc_func function and need to know the values for each parameter name:: >>> def func(a, foo=None, bar=42, **kwargs): pass >>> p = param(1, foo=7, extra=99) >>> parameterized_argument_value_pairs(func, p) [("a", 1), ("foo", 7), ("bar", 42), ("**kwargs", {"extra": 99})] If the function's first argument is named ``self`` then it will be ignored:: >>> def func(self, a): pass >>> p = param(1) >>> parameterized_argument_value_pairs(func, p) [("a", 1)] Additionally, empty ``*args`` or ``**kwargs`` will be ignored:: >>> def func(foo, *args): pass >>> p = param(1) >>> parameterized_argument_value_pairs(func, p) [("foo", 1)] >>> p = param(1, 16) >>> parameterized_argument_value_pairs(func, p) [("foo", 1), ("*args", (16, ))] """ argspec = inspect.getargspec(func) arg_offset = 1 if argspec.args[:1] == ["self"] else 0 named_args = argspec.args[arg_offset:] result = list(zip(named_args, p.args)) named_args = argspec.args[len(result) + arg_offset:] varargs = p.args[len(result):] result.extend([ (name, p.kwargs.get(name, default)) for (name, default) in zip(named_args, argspec.defaults or []) ]) seen_arg_names = {n for (n, _) in result} keywords = dict(sorted([ (name, p.kwargs[name]) for name in p.kwargs if name not in seen_arg_names ])) if varargs: result.append(("*%s" %(argspec.varargs, ), tuple(varargs))) if keywords: result.append(("**%s" %(argspec.keywords, ), keywords)) return result def short_repr(x, n=64): """ A shortened repr of ``x`` which is guaranteed to be ``unicode``:: >>> short_repr("foo") u"foo" >>> short_repr("123456789", n=4) u"12...89" """ x_repr = repr(x) if isinstance(x_repr, bytes): try: x_repr = str(x_repr, "utf-8") except UnicodeDecodeError: x_repr = str(x_repr, "latin1") if len(x_repr) > n: x_repr = x_repr[:n//2] + "..." + x_repr[len(x_repr) - n//2:] return x_repr def default_doc_func(func, num, p): if func.__doc__ is None: return None all_args_with_values = parameterized_argument_value_pairs(func, p) # Assumes that the function passed is a bound method. descs = [f'{n}={short_repr(v)}' for n, v in all_args_with_values] # The documentation might be a multiline string, so split it # and just work with the first string, ignoring the period # at the end if there is one. first, nl, rest = func.__doc__.lstrip().partition("\n") suffix = "" if first.endswith("."): suffix = "." first = first[:-1] args = "%s[with %s]" %(len(first) and " " or "", ", ".join(descs)) return "".join([first.rstrip(), args, suffix, nl, rest]) def default_name_func(func, num, p): base_name = func.__name__ name_suffix = "_%s" %(num, ) if len(p.args) > 0 and isinstance(p.args[0], (str,)): name_suffix += "_" + parameterized.to_safe_name(p.args[0]) return base_name + name_suffix # force nose for numpy purposes. _test_runner_override = 'nose' _test_runner_guess = False _test_runners = set(["unittest", "unittest2", "nose", "nose2", "pytest"]) _test_runner_aliases = { "_pytest": "pytest", } def set_test_runner(name): global _test_runner_override if name not in _test_runners: raise TypeError( "Invalid test runner: %r (must be one of: %s)" %(name, ", ".join(_test_runners)), ) _test_runner_override = name def detect_runner(): """ Guess which test runner we're using by traversing the stack and looking for the first matching module. This *should* be reasonably safe, as it's done during test discovery where the test runner should be the stack frame immediately outside. """ if _test_runner_override is not None: return _test_runner_override global _test_runner_guess if _test_runner_guess is False: stack = inspect.stack() for record in reversed(stack): frame = record[0] module = frame.f_globals.get("__name__").partition(".")[0] if module in _test_runner_aliases: module = _test_runner_aliases[module] if module in _test_runners: _test_runner_guess = module break else: _test_runner_guess = None return _test_runner_guess class parameterized: """ Parameterize a test case:: class TestInt: @parameterized([ ("A", 10), ("F", 15), param("10", 42, base=42) ]) def test_int(self, input, expected, base=16): actual = int(input, base=base) assert_equal(actual, expected) @parameterized([ (2, 3, 5) (3, 5, 8), ]) def test_add(a, b, expected): assert_equal(a + b, expected) """ def __init__(self, input, doc_func=None): self.get_input = self.input_as_callable(input) self.doc_func = doc_func or default_doc_func def __call__(self, test_func): self.assert_not_in_testcase_subclass() @wraps(test_func) def wrapper(test_self=None): test_cls = test_self and type(test_self) original_doc = wrapper.__doc__ for num, args in enumerate(wrapper.parameterized_input): p = param.from_decorator(args) unbound_func, nose_tuple = self.param_as_nose_tuple(test_self, test_func, num, p) try: wrapper.__doc__ = nose_tuple[0].__doc__ # Nose uses `getattr(instance, test_func.__name__)` to get # a method bound to the test instance (as opposed to a # method bound to the instance of the class created when # tests were being enumerated). Set a value here to make # sure nose can get the correct test method. if test_self is not None: setattr(test_cls, test_func.__name__, unbound_func) yield nose_tuple finally: if test_self is not None: delattr(test_cls, test_func.__name__) wrapper.__doc__ = original_doc wrapper.parameterized_input = self.get_input() wrapper.parameterized_func = test_func test_func.__name__ = "_parameterized_original_%s" %(test_func.__name__, ) return wrapper def param_as_nose_tuple(self, test_self, func, num, p): nose_func = wraps(func)(lambda *args: func(*args[:-1], **args[-1])) nose_func.__doc__ = self.doc_func(func, num, p) # Track the unbound function because we need to setattr the unbound # function onto the class for nose to work (see comments above), and # Python 3 doesn't let us pull the function out of a bound method. unbound_func = nose_func if test_self is not None: nose_func = MethodType(nose_func, test_self) return unbound_func, (nose_func, ) + p.args + (p.kwargs or {}, ) def assert_not_in_testcase_subclass(self): parent_classes = self._terrible_magic_get_defining_classes() if any(issubclass(cls, TestCase) for cls in parent_classes): raise Exception("Warning: '@parameterized' tests won't work " "inside subclasses of 'TestCase' - use " "'@parameterized.expand' instead.") def _terrible_magic_get_defining_classes(self): """ Returns the list of parent classes of the class currently being defined. Will likely only work if called from the ``parameterized`` decorator. This function is entirely @brandon_rhodes's fault, as he suggested the implementation: http://stackoverflow.com/a/8793684/71522 """ stack = inspect.stack() if len(stack) <= 4: return [] frame = stack[4] code_context = frame[4] and frame[4][0].strip() if not (code_context and code_context.startswith("class ")): return [] _, _, parents = code_context.partition("(") parents, _, _ = parents.partition(")") return eval("[" + parents + "]", frame[0].f_globals, frame[0].f_locals) @classmethod def input_as_callable(cls, input): if callable(input): return lambda: cls.check_input_values(input()) input_values = cls.check_input_values(input) return lambda: input_values @classmethod def check_input_values(cls, input_values): # Explicitly convert non-list inputs to a list so that: # 1. A helpful exception will be raised if they aren't iterable, and # 2. Generators are unwrapped exactly once (otherwise `nosetests # --processes=n` has issues; see: # https://github.com/wolever/nose-parameterized/pull/31) if not isinstance(input_values, list): input_values = list(input_values) return [ param.from_decorator(p) for p in input_values ] @classmethod def expand(cls, input, name_func=None, doc_func=None, **legacy): """ A "brute force" method of parameterizing test cases. Creates new test cases and injects them into the namespace that the wrapped function is being defined in. Useful for parameterizing tests in subclasses of 'UnitTest', where Nose test generators don't work. >>> @parameterized.expand([("foo", 1, 2)]) ... def test_add1(name, input, expected): ... actual = add1(input) ... assert_equal(actual, expected) ... >>> locals() ... 'test_add1_foo_0': <function ...> ... >>> """ if "testcase_func_name" in legacy: warnings.warn("testcase_func_name= is deprecated; use name_func=", DeprecationWarning, stacklevel=2) if not name_func: name_func = legacy["testcase_func_name"] if "testcase_func_doc" in legacy: warnings.warn("testcase_func_doc= is deprecated; use doc_func=", DeprecationWarning, stacklevel=2) if not doc_func: doc_func = legacy["testcase_func_doc"] doc_func = doc_func or default_doc_func name_func = name_func or default_name_func def parameterized_expand_wrapper(f, instance=None): stack = inspect.stack() frame = stack[1] frame_locals = frame[0].f_locals parameters = cls.input_as_callable(input)() for num, p in enumerate(parameters): name = name_func(f, num, p) frame_locals[name] = cls.param_as_standalone_func(p, f, name) frame_locals[name].__doc__ = doc_func(f, num, p) f.__test__ = False return parameterized_expand_wrapper @classmethod def param_as_standalone_func(cls, p, func, name): @wraps(func) def standalone_func(*a): return func(*(a + p.args), **p.kwargs) standalone_func.__name__ = name # place_as is used by py.test to determine what source file should be # used for this test. standalone_func.place_as = func # Remove __wrapped__ because py.test will try to look at __wrapped__ # to determine which parameters should be used with this test case, # and obviously we don't need it to do any parameterization. try: del standalone_func.__wrapped__ except AttributeError: pass return standalone_func @classmethod def to_safe_name(cls, s): return str(re.sub("[^a-zA-Z0-9_]+", "_", s))
16,156
Python
36.314088
97
0.569572
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/_private/utils.pyi
import os import sys import ast import types import warnings import unittest import contextlib from re import Pattern from collections.abc import Callable, Iterable, Sequence from typing import ( Literal as L, Any, AnyStr, ClassVar, NoReturn, overload, type_check_only, TypeVar, Union, Final, SupportsIndex, ) from typing_extensions import ParamSpec from numpy import generic, dtype, number, object_, bool_, _FloatValue from numpy._typing import ( NDArray, ArrayLike, DTypeLike, _ArrayLikeNumber_co, _ArrayLikeObject_co, _ArrayLikeTD64_co, _ArrayLikeDT64_co, ) from unittest.case import ( SkipTest as SkipTest, ) _P = ParamSpec("_P") _T = TypeVar("_T") _ET = TypeVar("_ET", bound=BaseException) _FT = TypeVar("_FT", bound=Callable[..., Any]) # Must return a bool or an ndarray/generic type # that is supported by `np.logical_and.reduce` _ComparisonFunc = Callable[ [NDArray[Any], NDArray[Any]], Union[ bool, bool_, number[Any], NDArray[Union[bool_, number[Any], object_]], ], ] __all__: list[str] class KnownFailureException(Exception): ... class IgnoreException(Exception): ... class clear_and_catch_warnings(warnings.catch_warnings): class_modules: ClassVar[tuple[types.ModuleType, ...]] modules: set[types.ModuleType] @overload def __new__( cls, record: L[False] = ..., modules: Iterable[types.ModuleType] = ..., ) -> _clear_and_catch_warnings_without_records: ... @overload def __new__( cls, record: L[True], modules: Iterable[types.ModuleType] = ..., ) -> _clear_and_catch_warnings_with_records: ... @overload def __new__( cls, record: bool, modules: Iterable[types.ModuleType] = ..., ) -> clear_and_catch_warnings: ... def __enter__(self) -> None | list[warnings.WarningMessage]: ... def __exit__( self, __exc_type: None | type[BaseException] = ..., __exc_val: None | BaseException = ..., __exc_tb: None | types.TracebackType = ..., ) -> None: ... # Type-check only `clear_and_catch_warnings` subclasses for both values of the # `record` parameter. Copied from the stdlib `warnings` stubs. @type_check_only class _clear_and_catch_warnings_with_records(clear_and_catch_warnings): def __enter__(self) -> list[warnings.WarningMessage]: ... @type_check_only class _clear_and_catch_warnings_without_records(clear_and_catch_warnings): def __enter__(self) -> None: ... class suppress_warnings: log: list[warnings.WarningMessage] def __init__( self, forwarding_rule: L["always", "module", "once", "location"] = ..., ) -> None: ... def filter( self, category: type[Warning] = ..., message: str = ..., module: None | types.ModuleType = ..., ) -> None: ... def record( self, category: type[Warning] = ..., message: str = ..., module: None | types.ModuleType = ..., ) -> list[warnings.WarningMessage]: ... def __enter__(self: _T) -> _T: ... def __exit__( self, __exc_type: None | type[BaseException] = ..., __exc_val: None | BaseException = ..., __exc_tb: None | types.TracebackType = ..., ) -> None: ... def __call__(self, func: _FT) -> _FT: ... verbose: int IS_PYPY: Final[bool] IS_PYSTON: Final[bool] HAS_REFCOUNT: Final[bool] HAS_LAPACK64: Final[bool] def assert_(val: object, msg: str | Callable[[], str] = ...) -> None: ... # Contrary to runtime we can't do `os.name` checks while type checking, # only `sys.platform` checks if sys.platform == "win32" or sys.platform == "cygwin": def memusage(processName: str = ..., instance: int = ...) -> int: ... elif sys.platform == "linux": def memusage(_proc_pid_stat: str | bytes | os.PathLike[Any] = ...) -> None | int: ... else: def memusage() -> NoReturn: ... if sys.platform == "linux": def jiffies( _proc_pid_stat: str | bytes | os.PathLike[Any] = ..., _load_time: list[float] = ..., ) -> int: ... else: def jiffies(_load_time: list[float] = ...) -> int: ... def build_err_msg( arrays: Iterable[object], err_msg: str, header: str = ..., verbose: bool = ..., names: Sequence[str] = ..., precision: None | SupportsIndex = ..., ) -> str: ... def assert_equal( actual: object, desired: object, err_msg: str = ..., verbose: bool = ..., ) -> None: ... def print_assert_equal( test_string: str, actual: object, desired: object, ) -> None: ... def assert_almost_equal( actual: _ArrayLikeNumber_co | _ArrayLikeObject_co, desired: _ArrayLikeNumber_co | _ArrayLikeObject_co, decimal: int = ..., err_msg: str = ..., verbose: bool = ..., ) -> None: ... # Anything that can be coerced into `builtins.float` def assert_approx_equal( actual: _FloatValue, desired: _FloatValue, significant: int = ..., err_msg: str = ..., verbose: bool = ..., ) -> None: ... def assert_array_compare( comparison: _ComparisonFunc, x: ArrayLike, y: ArrayLike, err_msg: str = ..., verbose: bool = ..., header: str = ..., precision: SupportsIndex = ..., equal_nan: bool = ..., equal_inf: bool = ..., ) -> None: ... def assert_array_equal( x: ArrayLike, y: ArrayLike, err_msg: str = ..., verbose: bool = ..., ) -> None: ... def assert_array_almost_equal( x: _ArrayLikeNumber_co | _ArrayLikeObject_co, y: _ArrayLikeNumber_co | _ArrayLikeObject_co, decimal: float = ..., err_msg: str = ..., verbose: bool = ..., ) -> None: ... @overload def assert_array_less( x: _ArrayLikeNumber_co | _ArrayLikeObject_co, y: _ArrayLikeNumber_co | _ArrayLikeObject_co, err_msg: str = ..., verbose: bool = ..., ) -> None: ... @overload def assert_array_less( x: _ArrayLikeTD64_co, y: _ArrayLikeTD64_co, err_msg: str = ..., verbose: bool = ..., ) -> None: ... @overload def assert_array_less( x: _ArrayLikeDT64_co, y: _ArrayLikeDT64_co, err_msg: str = ..., verbose: bool = ..., ) -> None: ... def runstring( astr: str | bytes | types.CodeType, dict: None | dict[str, Any], ) -> Any: ... def assert_string_equal(actual: str, desired: str) -> None: ... def rundocs( filename: None | str | os.PathLike[str] = ..., raise_on_error: bool = ..., ) -> None: ... def raises(*args: type[BaseException]) -> Callable[[_FT], _FT]: ... @overload def assert_raises( # type: ignore expected_exception: type[BaseException] | tuple[type[BaseException], ...], callable: Callable[_P, Any], /, *args: _P.args, **kwargs: _P.kwargs, ) -> None: ... @overload def assert_raises( expected_exception: type[_ET] | tuple[type[_ET], ...], *, msg: None | str = ..., ) -> unittest.case._AssertRaisesContext[_ET]: ... @overload def assert_raises_regex( expected_exception: type[BaseException] | tuple[type[BaseException], ...], expected_regex: str | bytes | Pattern[Any], callable: Callable[_P, Any], /, *args: _P.args, **kwargs: _P.kwargs, ) -> None: ... @overload def assert_raises_regex( expected_exception: type[_ET] | tuple[type[_ET], ...], expected_regex: str | bytes | Pattern[Any], *, msg: None | str = ..., ) -> unittest.case._AssertRaisesContext[_ET]: ... def decorate_methods( cls: type[Any], decorator: Callable[[Callable[..., Any]], Any], testmatch: None | str | bytes | Pattern[Any] = ..., ) -> None: ... def measure( code_str: str | bytes | ast.mod | ast.AST, times: int = ..., label: None | str = ..., ) -> float: ... @overload def assert_allclose( actual: _ArrayLikeNumber_co | _ArrayLikeObject_co, desired: _ArrayLikeNumber_co | _ArrayLikeObject_co, rtol: float = ..., atol: float = ..., equal_nan: bool = ..., err_msg: str = ..., verbose: bool = ..., ) -> None: ... @overload def assert_allclose( actual: _ArrayLikeTD64_co, desired: _ArrayLikeTD64_co, rtol: float = ..., atol: float = ..., equal_nan: bool = ..., err_msg: str = ..., verbose: bool = ..., ) -> None: ... def assert_array_almost_equal_nulp( x: _ArrayLikeNumber_co, y: _ArrayLikeNumber_co, nulp: float = ..., ) -> None: ... def assert_array_max_ulp( a: _ArrayLikeNumber_co, b: _ArrayLikeNumber_co, maxulp: float = ..., dtype: DTypeLike = ..., ) -> NDArray[Any]: ... @overload def assert_warns( warning_class: type[Warning], ) -> contextlib._GeneratorContextManager[None]: ... @overload def assert_warns( warning_class: type[Warning], func: Callable[_P, _T], /, *args: _P.args, **kwargs: _P.kwargs, ) -> _T: ... @overload def assert_no_warnings() -> contextlib._GeneratorContextManager[None]: ... @overload def assert_no_warnings( func: Callable[_P, _T], /, *args: _P.args, **kwargs: _P.kwargs, ) -> _T: ... @overload def tempdir( suffix: None = ..., prefix: None = ..., dir: None = ..., ) -> contextlib._GeneratorContextManager[str]: ... @overload def tempdir( suffix: None | AnyStr = ..., prefix: None | AnyStr = ..., dir: None | AnyStr | os.PathLike[AnyStr] = ..., ) -> contextlib._GeneratorContextManager[AnyStr]: ... @overload def temppath( suffix: None = ..., prefix: None = ..., dir: None = ..., text: bool = ..., ) -> contextlib._GeneratorContextManager[str]: ... @overload def temppath( suffix: None | AnyStr = ..., prefix: None | AnyStr = ..., dir: None | AnyStr | os.PathLike[AnyStr] = ..., text: bool = ..., ) -> contextlib._GeneratorContextManager[AnyStr]: ... @overload def assert_no_gc_cycles() -> contextlib._GeneratorContextManager[None]: ... @overload def assert_no_gc_cycles( func: Callable[_P, Any], /, *args: _P.args, **kwargs: _P.kwargs, ) -> None: ... def break_cycles() -> None: ...
9,988
unknown
24.224747
89
0.582199
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/_private/utils.py
""" Utility function to facilitate testing. """ import os import sys import platform import re import gc import operator import warnings from functools import partial, wraps import shutil import contextlib from tempfile import mkdtemp, mkstemp from unittest.case import SkipTest from warnings import WarningMessage import pprint import numpy as np from numpy.core import( intp, float32, empty, arange, array_repr, ndarray, isnat, array) import numpy.linalg.lapack_lite from io import StringIO __all__ = [ 'assert_equal', 'assert_almost_equal', 'assert_approx_equal', 'assert_array_equal', 'assert_array_less', 'assert_string_equal', 'assert_array_almost_equal', 'assert_raises', 'build_err_msg', 'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal', 'raises', 'rundocs', 'runstring', 'verbose', 'measure', 'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex', 'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings', 'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings', 'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY', 'HAS_REFCOUNT', 'suppress_warnings', 'assert_array_compare', 'assert_no_gc_cycles', 'break_cycles', 'HAS_LAPACK64', 'IS_PYSTON', ] class KnownFailureException(Exception): '''Raise this exception to mark a test as a known failing test.''' pass KnownFailureTest = KnownFailureException # backwards compat verbose = 0 IS_PYPY = platform.python_implementation() == 'PyPy' IS_PYSTON = hasattr(sys, "pyston_version_info") HAS_REFCOUNT = getattr(sys, 'getrefcount', None) is not None and not IS_PYSTON HAS_LAPACK64 = numpy.linalg.lapack_lite._ilp64 def import_nose(): """ Import nose only when needed. """ nose_is_good = True minimum_nose_version = (1, 0, 0) try: import nose except ImportError: nose_is_good = False else: if nose.__versioninfo__ < minimum_nose_version: nose_is_good = False if not nose_is_good: msg = ('Need nose >= %d.%d.%d for tests - see ' 'https://nose.readthedocs.io' % minimum_nose_version) raise ImportError(msg) return nose def assert_(val, msg=''): """ Assert that works in release mode. Accepts callable msg to allow deferring evaluation until failure. The Python built-in ``assert`` does not work when executing code in optimized mode (the ``-O`` flag) - no byte-code is generated for it. For documentation on usage, refer to the Python documentation. """ __tracebackhide__ = True # Hide traceback for py.test if not val: try: smsg = msg() except TypeError: smsg = msg raise AssertionError(smsg) def gisnan(x): """like isnan, but always raise an error if type not supported instead of returning a TypeError object. Notes ----- isnan and other ufunc sometimes return a NotImplementedType object instead of raising any exception. This function is a wrapper to make sure an exception is always raised. This should be removed once this problem is solved at the Ufunc level.""" from numpy.core import isnan st = isnan(x) if isinstance(st, type(NotImplemented)): raise TypeError("isnan not supported for this type") return st def gisfinite(x): """like isfinite, but always raise an error if type not supported instead of returning a TypeError object. Notes ----- isfinite and other ufunc sometimes return a NotImplementedType object instead of raising any exception. This function is a wrapper to make sure an exception is always raised. This should be removed once this problem is solved at the Ufunc level.""" from numpy.core import isfinite, errstate with errstate(invalid='ignore'): st = isfinite(x) if isinstance(st, type(NotImplemented)): raise TypeError("isfinite not supported for this type") return st def gisinf(x): """like isinf, but always raise an error if type not supported instead of returning a TypeError object. Notes ----- isinf and other ufunc sometimes return a NotImplementedType object instead of raising any exception. This function is a wrapper to make sure an exception is always raised. This should be removed once this problem is solved at the Ufunc level.""" from numpy.core import isinf, errstate with errstate(invalid='ignore'): st = isinf(x) if isinstance(st, type(NotImplemented)): raise TypeError("isinf not supported for this type") return st if os.name == 'nt': # Code "stolen" from enthought/debug/memusage.py def GetPerformanceAttributes(object, counter, instance=None, inum=-1, format=None, machine=None): # NOTE: Many counters require 2 samples to give accurate results, # including "% Processor Time" (as by definition, at any instant, a # thread's CPU usage is either 0 or 100). To read counters like this, # you should copy this function, but keep the counter open, and call # CollectQueryData() each time you need to know. # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp (dead link) # My older explanation for this was that the "AddCounter" process # forced the CPU to 100%, but the above makes more sense :) import win32pdh if format is None: format = win32pdh.PDH_FMT_LONG path = win32pdh.MakeCounterPath( (machine, object, instance, None, inum, counter)) hq = win32pdh.OpenQuery() try: hc = win32pdh.AddCounter(hq, path) try: win32pdh.CollectQueryData(hq) type, val = win32pdh.GetFormattedCounterValue(hc, format) return val finally: win32pdh.RemoveCounter(hc) finally: win32pdh.CloseQuery(hq) def memusage(processName="python", instance=0): # from win32pdhutil, part of the win32all package import win32pdh return GetPerformanceAttributes("Process", "Virtual Bytes", processName, instance, win32pdh.PDH_FMT_LONG, None) elif sys.platform[:5] == 'linux': def memusage(_proc_pid_stat=f'/proc/{os.getpid()}/stat'): """ Return virtual memory size in bytes of the running python. """ try: with open(_proc_pid_stat, 'r') as f: l = f.readline().split(' ') return int(l[22]) except Exception: return else: def memusage(): """ Return memory usage of running python. [Not implemented] """ raise NotImplementedError if sys.platform[:5] == 'linux': def jiffies(_proc_pid_stat=f'/proc/{os.getpid()}/stat', _load_time=[]): """ Return number of jiffies elapsed. Return number of jiffies (1/100ths of a second) that this process has been scheduled in user mode. See man 5 proc. """ import time if not _load_time: _load_time.append(time.time()) try: with open(_proc_pid_stat, 'r') as f: l = f.readline().split(' ') return int(l[13]) except Exception: return int(100*(time.time()-_load_time[0])) else: # os.getpid is not in all platforms available. # Using time is safe but inaccurate, especially when process # was suspended or sleeping. def jiffies(_load_time=[]): """ Return number of jiffies elapsed. Return number of jiffies (1/100ths of a second) that this process has been scheduled in user mode. See man 5 proc. """ import time if not _load_time: _load_time.append(time.time()) return int(100*(time.time()-_load_time[0])) def build_err_msg(arrays, err_msg, header='Items are not equal:', verbose=True, names=('ACTUAL', 'DESIRED'), precision=8): msg = ['\n' + header] if err_msg: if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header): msg = [msg[0] + ' ' + err_msg] else: msg.append(err_msg) if verbose: for i, a in enumerate(arrays): if isinstance(a, ndarray): # precision argument is only needed if the objects are ndarrays r_func = partial(array_repr, precision=precision) else: r_func = repr try: r = r_func(a) except Exception as exc: r = f'[repr failed for <{type(a).__name__}>: {exc}]' if r.count('\n') > 3: r = '\n'.join(r.splitlines()[:3]) r += '...' msg.append(f' {names[i]}: {r}') return '\n'.join(msg) def assert_equal(actual, desired, err_msg='', verbose=True): """ Raises an AssertionError if two objects are not equal. Given two objects (scalars, lists, tuples, dictionaries or numpy arrays), check that all elements of these objects are equal. An exception is raised at the first conflicting values. When one of `actual` and `desired` is a scalar and the other is array_like, the function checks that each element of the array_like object is equal to the scalar. This function handles NaN comparisons as if NaN was a "normal" number. That is, AssertionError is not raised if both objects have NaNs in the same positions. This is in contrast to the IEEE standard on NaNs, which says that NaN compared to anything must return False. Parameters ---------- actual : array_like The object to check. desired : array_like The expected object. err_msg : str, optional The error message to be printed in case of failure. verbose : bool, optional If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired are not equal. Examples -------- >>> np.testing.assert_equal([4,5], [4,6]) Traceback (most recent call last): ... AssertionError: Items are not equal: item=1 ACTUAL: 5 DESIRED: 6 The following comparison does not raise an exception. There are NaNs in the inputs, but they are in the same positions. >>> np.testing.assert_equal(np.array([1.0, 2.0, np.nan]), [1, 2, np.nan]) """ __tracebackhide__ = True # Hide traceback for py.test if isinstance(desired, dict): if not isinstance(actual, dict): raise AssertionError(repr(type(actual))) assert_equal(len(actual), len(desired), err_msg, verbose) for k, i in desired.items(): if k not in actual: raise AssertionError(repr(k)) assert_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}', verbose) return if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): assert_equal(len(actual), len(desired), err_msg, verbose) for k in range(len(desired)): assert_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}', verbose) return from numpy.core import ndarray, isscalar, signbit from numpy.lib import iscomplexobj, real, imag if isinstance(actual, ndarray) or isinstance(desired, ndarray): return assert_array_equal(actual, desired, err_msg, verbose) msg = build_err_msg([actual, desired], err_msg, verbose=verbose) # Handle complex numbers: separate into real/imag to handle # nan/inf/negative zero correctly # XXX: catch ValueError for subclasses of ndarray where iscomplex fail try: usecomplex = iscomplexobj(actual) or iscomplexobj(desired) except (ValueError, TypeError): usecomplex = False if usecomplex: if iscomplexobj(actual): actualr = real(actual) actuali = imag(actual) else: actualr = actual actuali = 0 if iscomplexobj(desired): desiredr = real(desired) desiredi = imag(desired) else: desiredr = desired desiredi = 0 try: assert_equal(actualr, desiredr) assert_equal(actuali, desiredi) except AssertionError: raise AssertionError(msg) # isscalar test to check cases such as [np.nan] != np.nan if isscalar(desired) != isscalar(actual): raise AssertionError(msg) try: isdesnat = isnat(desired) isactnat = isnat(actual) dtypes_match = (np.asarray(desired).dtype.type == np.asarray(actual).dtype.type) if isdesnat and isactnat: # If both are NaT (and have the same dtype -- datetime or # timedelta) they are considered equal. if dtypes_match: return else: raise AssertionError(msg) except (TypeError, ValueError, NotImplementedError): pass # Inf/nan/negative zero handling try: isdesnan = gisnan(desired) isactnan = gisnan(actual) if isdesnan and isactnan: return # both nan, so equal # handle signed zero specially for floats array_actual = np.asarray(actual) array_desired = np.asarray(desired) if (array_actual.dtype.char in 'Mm' or array_desired.dtype.char in 'Mm'): # version 1.18 # until this version, gisnan failed for datetime64 and timedelta64. # Now it succeeds but comparison to scalar with a different type # emits a DeprecationWarning. # Avoid that by skipping the next check raise NotImplementedError('cannot compare to a scalar ' 'with a different type') if desired == 0 and actual == 0: if not signbit(desired) == signbit(actual): raise AssertionError(msg) except (TypeError, ValueError, NotImplementedError): pass try: # Explicitly use __eq__ for comparison, gh-2552 if not (desired == actual): raise AssertionError(msg) except (DeprecationWarning, FutureWarning) as e: # this handles the case when the two types are not even comparable if 'elementwise == comparison' in e.args[0]: raise AssertionError(msg) else: raise def print_assert_equal(test_string, actual, desired): """ Test if two objects are equal, and print an error message if test fails. The test is performed with ``actual == desired``. Parameters ---------- test_string : str The message supplied to AssertionError. actual : object The object to test for equality against `desired`. desired : object The expected result. Examples -------- >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1]) >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2]) Traceback (most recent call last): ... AssertionError: Test XYZ of func xyz failed ACTUAL: [0, 1] DESIRED: [0, 2] """ __tracebackhide__ = True # Hide traceback for py.test import pprint if not (actual == desired): msg = StringIO() msg.write(test_string) msg.write(' failed\nACTUAL: \n') pprint.pprint(actual, msg) msg.write('DESIRED: \n') pprint.pprint(desired, msg) raise AssertionError(msg.getvalue()) def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=True): """ Raises an AssertionError if two items are not equal up to desired precision. .. note:: It is recommended to use one of `assert_allclose`, `assert_array_almost_equal_nulp` or `assert_array_max_ulp` instead of this function for more consistent floating point comparisons. The test verifies that the elements of `actual` and `desired` satisfy. ``abs(desired-actual) < 1.5 * 10**(-decimal)`` That is a looser test than originally documented, but agrees with what the actual implementation in `assert_array_almost_equal` did up to rounding vagaries. An exception is raised at conflicting values. For ndarrays this delegates to assert_array_almost_equal Parameters ---------- actual : array_like The object to check. desired : array_like The expected object. decimal : int, optional Desired precision, default is 7. err_msg : str, optional The error message to be printed in case of failure. verbose : bool, optional If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired are not equal up to specified precision. See Also -------- assert_allclose: Compare two array_like objects for equality with desired relative and/or absolute precision. assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal Examples -------- >>> from numpy.testing import assert_almost_equal >>> assert_almost_equal(2.3333333333333, 2.33333334) >>> assert_almost_equal(2.3333333333333, 2.33333334, decimal=10) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 10 decimals ACTUAL: 2.3333333333333 DESIRED: 2.33333334 >>> assert_almost_equal(np.array([1.0,2.3333333333333]), ... np.array([1.0,2.33333334]), decimal=9) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 9 decimals <BLANKLINE> Mismatched elements: 1 / 2 (50%) Max absolute difference: 6.66669964e-09 Max relative difference: 2.85715698e-09 x: array([1. , 2.333333333]) y: array([1. , 2.33333334]) """ __tracebackhide__ = True # Hide traceback for py.test from numpy.core import ndarray from numpy.lib import iscomplexobj, real, imag # Handle complex numbers: separate into real/imag to handle # nan/inf/negative zero correctly # XXX: catch ValueError for subclasses of ndarray where iscomplex fail try: usecomplex = iscomplexobj(actual) or iscomplexobj(desired) except ValueError: usecomplex = False def _build_err_msg(): header = ('Arrays are not almost equal to %d decimals' % decimal) return build_err_msg([actual, desired], err_msg, verbose=verbose, header=header) if usecomplex: if iscomplexobj(actual): actualr = real(actual) actuali = imag(actual) else: actualr = actual actuali = 0 if iscomplexobj(desired): desiredr = real(desired) desiredi = imag(desired) else: desiredr = desired desiredi = 0 try: assert_almost_equal(actualr, desiredr, decimal=decimal) assert_almost_equal(actuali, desiredi, decimal=decimal) except AssertionError: raise AssertionError(_build_err_msg()) if isinstance(actual, (ndarray, tuple, list)) \ or isinstance(desired, (ndarray, tuple, list)): return assert_array_almost_equal(actual, desired, decimal, err_msg) try: # If one of desired/actual is not finite, handle it specially here: # check that both are nan if any is a nan, and test for equality # otherwise if not (gisfinite(desired) and gisfinite(actual)): if gisnan(desired) or gisnan(actual): if not (gisnan(desired) and gisnan(actual)): raise AssertionError(_build_err_msg()) else: if not desired == actual: raise AssertionError(_build_err_msg()) return except (NotImplementedError, TypeError): pass if abs(desired - actual) >= 1.5 * 10.0**(-decimal): raise AssertionError(_build_err_msg()) def assert_approx_equal(actual,desired,significant=7,err_msg='',verbose=True): """ Raises an AssertionError if two items are not equal up to significant digits. .. note:: It is recommended to use one of `assert_allclose`, `assert_array_almost_equal_nulp` or `assert_array_max_ulp` instead of this function for more consistent floating point comparisons. Given two numbers, check that they are approximately equal. Approximately equal is defined as the number of significant digits that agree. Parameters ---------- actual : scalar The object to check. desired : scalar The expected object. significant : int, optional Desired precision, default is 7. err_msg : str, optional The error message to be printed in case of failure. verbose : bool, optional If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired are not equal up to specified precision. See Also -------- assert_allclose: Compare two array_like objects for equality with desired relative and/or absolute precision. assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal Examples -------- >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20) >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20, ... significant=8) >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20, ... significant=8) Traceback (most recent call last): ... AssertionError: Items are not equal to 8 significant digits: ACTUAL: 1.234567e-21 DESIRED: 1.2345672e-21 the evaluated condition that raises the exception is >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1) True """ __tracebackhide__ = True # Hide traceback for py.test import numpy as np (actual, desired) = map(float, (actual, desired)) if desired == actual: return # Normalized the numbers to be in range (-10.0,10.0) # scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual)))))) with np.errstate(invalid='ignore'): scale = 0.5*(np.abs(desired) + np.abs(actual)) scale = np.power(10, np.floor(np.log10(scale))) try: sc_desired = desired/scale except ZeroDivisionError: sc_desired = 0.0 try: sc_actual = actual/scale except ZeroDivisionError: sc_actual = 0.0 msg = build_err_msg( [actual, desired], err_msg, header='Items are not equal to %d significant digits:' % significant, verbose=verbose) try: # If one of desired/actual is not finite, handle it specially here: # check that both are nan if any is a nan, and test for equality # otherwise if not (gisfinite(desired) and gisfinite(actual)): if gisnan(desired) or gisnan(actual): if not (gisnan(desired) and gisnan(actual)): raise AssertionError(msg) else: if not desired == actual: raise AssertionError(msg) return except (TypeError, NotImplementedError): pass if np.abs(sc_desired - sc_actual) >= np.power(10., -(significant-1)): raise AssertionError(msg) def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='', precision=6, equal_nan=True, equal_inf=True): __tracebackhide__ = True # Hide traceback for py.test from numpy.core import array, array2string, isnan, inf, bool_, errstate, all, max, object_ x = np.asanyarray(x) y = np.asanyarray(y) # original array for output formatting ox, oy = x, y def isnumber(x): return x.dtype.char in '?bhilqpBHILQPefdgFDG' def istime(x): return x.dtype.char in "Mm" def func_assert_same_pos(x, y, func=isnan, hasval='nan'): """Handling nan/inf. Combine results of running func on x and y, checking that they are True at the same locations. """ __tracebackhide__ = True # Hide traceback for py.test x_id = func(x) y_id = func(y) # We include work-arounds here to handle three types of slightly # pathological ndarray subclasses: # (1) all() on `masked` array scalars can return masked arrays, so we # use != True # (2) __eq__ on some ndarray subclasses returns Python booleans # instead of element-wise comparisons, so we cast to bool_() and # use isinstance(..., bool) checks # (3) subclasses with bare-bones __array_function__ implementations may # not implement np.all(), so favor using the .all() method # We are not committed to supporting such subclasses, but it's nice to # support them if possible. if bool_(x_id == y_id).all() != True: msg = build_err_msg([x, y], err_msg + '\nx and y %s location mismatch:' % (hasval), verbose=verbose, header=header, names=('x', 'y'), precision=precision) raise AssertionError(msg) # If there is a scalar, then here we know the array has the same # flag as it everywhere, so we should return the scalar flag. if isinstance(x_id, bool) or x_id.ndim == 0: return bool_(x_id) elif isinstance(y_id, bool) or y_id.ndim == 0: return bool_(y_id) else: return y_id try: cond = (x.shape == () or y.shape == ()) or x.shape == y.shape if not cond: msg = build_err_msg([x, y], err_msg + f'\n(shapes {x.shape}, {y.shape} mismatch)', verbose=verbose, header=header, names=('x', 'y'), precision=precision) raise AssertionError(msg) flagged = bool_(False) if isnumber(x) and isnumber(y): if equal_nan: flagged = func_assert_same_pos(x, y, func=isnan, hasval='nan') if equal_inf: flagged |= func_assert_same_pos(x, y, func=lambda xy: xy == +inf, hasval='+inf') flagged |= func_assert_same_pos(x, y, func=lambda xy: xy == -inf, hasval='-inf') elif istime(x) and istime(y): # If one is datetime64 and the other timedelta64 there is no point if equal_nan and x.dtype.type == y.dtype.type: flagged = func_assert_same_pos(x, y, func=isnat, hasval="NaT") if flagged.ndim > 0: x, y = x[~flagged], y[~flagged] # Only do the comparison if actual values are left if x.size == 0: return elif flagged: # no sense doing comparison if everything is flagged. return val = comparison(x, y) if isinstance(val, bool): cond = val reduced = array([val]) else: reduced = val.ravel() cond = reduced.all() # The below comparison is a hack to ensure that fully masked # results, for which val.ravel().all() returns np.ma.masked, # do not trigger a failure (np.ma.masked != True evaluates as # np.ma.masked, which is falsy). if cond != True: n_mismatch = reduced.size - reduced.sum(dtype=intp) n_elements = flagged.size if flagged.ndim != 0 else reduced.size percent_mismatch = 100 * n_mismatch / n_elements remarks = [ 'Mismatched elements: {} / {} ({:.3g}%)'.format( n_mismatch, n_elements, percent_mismatch)] with errstate(all='ignore'): # ignore errors for non-numeric types with contextlib.suppress(TypeError): error = abs(x - y) max_abs_error = max(error) if getattr(error, 'dtype', object_) == object_: remarks.append('Max absolute difference: ' + str(max_abs_error)) else: remarks.append('Max absolute difference: ' + array2string(max_abs_error)) # note: this definition of relative error matches that one # used by assert_allclose (found in np.isclose) # Filter values where the divisor would be zero nonzero = bool_(y != 0) if all(~nonzero): max_rel_error = array(inf) else: max_rel_error = max(error[nonzero] / abs(y[nonzero])) if getattr(error, 'dtype', object_) == object_: remarks.append('Max relative difference: ' + str(max_rel_error)) else: remarks.append('Max relative difference: ' + array2string(max_rel_error)) err_msg += '\n' + '\n'.join(remarks) msg = build_err_msg([ox, oy], err_msg, verbose=verbose, header=header, names=('x', 'y'), precision=precision) raise AssertionError(msg) except ValueError: import traceback efmt = traceback.format_exc() header = f'error during assertion:\n\n{efmt}\n\n{header}' msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header, names=('x', 'y'), precision=precision) raise ValueError(msg) def assert_array_equal(x, y, err_msg='', verbose=True): """ Raises an AssertionError if two array_like objects are not equal. Given two array_like objects, check that the shape is equal and all elements of these objects are equal (but see the Notes for the special handling of a scalar). An exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same positions. The usual caution for verifying equality with floating point numbers is advised. Parameters ---------- x : array_like The actual object to check. y : array_like The desired, expected object. err_msg : str, optional The error message to be printed in case of failure. verbose : bool, optional If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired objects are not equal. See Also -------- assert_allclose: Compare two array_like objects for equality with desired relative and/or absolute precision. assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal Notes ----- When one of `x` and `y` is a scalar and the other is array_like, the function checks that each element of the array_like object is equal to the scalar. Examples -------- The first assert does not raise an exception: >>> np.testing.assert_array_equal([1.0,2.33333,np.nan], ... [np.exp(0),2.33333, np.nan]) Assert fails with numerical imprecision with floats: >>> np.testing.assert_array_equal([1.0,np.pi,np.nan], ... [1, np.sqrt(np.pi)**2, np.nan]) Traceback (most recent call last): ... AssertionError: Arrays are not equal <BLANKLINE> Mismatched elements: 1 / 3 (33.3%) Max absolute difference: 4.4408921e-16 Max relative difference: 1.41357986e-16 x: array([1. , 3.141593, nan]) y: array([1. , 3.141593, nan]) Use `assert_allclose` or one of the nulp (number of floating point values) functions for these cases instead: >>> np.testing.assert_allclose([1.0,np.pi,np.nan], ... [1, np.sqrt(np.pi)**2, np.nan], ... rtol=1e-10, atol=0) As mentioned in the Notes section, `assert_array_equal` has special handling for scalars. Here the test checks that each value in `x` is 3: >>> x = np.full((2, 5), fill_value=3) >>> np.testing.assert_array_equal(x, 3) """ __tracebackhide__ = True # Hide traceback for py.test assert_array_compare(operator.__eq__, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not equal') def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True): """ Raises an AssertionError if two objects are not equal up to desired precision. .. note:: It is recommended to use one of `assert_allclose`, `assert_array_almost_equal_nulp` or `assert_array_max_ulp` instead of this function for more consistent floating point comparisons. The test verifies identical shapes and that the elements of ``actual`` and ``desired`` satisfy. ``abs(desired-actual) < 1.5 * 10**(-decimal)`` That is a looser test than originally documented, but agrees with what the actual implementation did up to rounding vagaries. An exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same positions. Parameters ---------- x : array_like The actual object to check. y : array_like The desired, expected object. decimal : int, optional Desired precision, default is 6. err_msg : str, optional The error message to be printed in case of failure. verbose : bool, optional If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired are not equal up to specified precision. See Also -------- assert_allclose: Compare two array_like objects for equality with desired relative and/or absolute precision. assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal Examples -------- the first assert does not raise an exception >>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan], ... [1.0,2.333,np.nan]) >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], ... [1.0,2.33339,np.nan], decimal=5) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 5 decimals <BLANKLINE> Mismatched elements: 1 / 3 (33.3%) Max absolute difference: 6.e-05 Max relative difference: 2.57136612e-05 x: array([1. , 2.33333, nan]) y: array([1. , 2.33339, nan]) >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], ... [1.0,2.33333, 5], decimal=5) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 5 decimals <BLANKLINE> x and y nan location mismatch: x: array([1. , 2.33333, nan]) y: array([1. , 2.33333, 5. ]) """ __tracebackhide__ = True # Hide traceback for py.test from numpy.core import number, float_, result_type, array from numpy.core.numerictypes import issubdtype from numpy.core.fromnumeric import any as npany def compare(x, y): try: if npany(gisinf(x)) or npany( gisinf(y)): xinfid = gisinf(x) yinfid = gisinf(y) if not (xinfid == yinfid).all(): return False # if one item, x and y is +- inf if x.size == y.size == 1: return x == y x = x[~xinfid] y = y[~yinfid] except (TypeError, NotImplementedError): pass # make sure y is an inexact type to avoid abs(MIN_INT); will cause # casting of x later. dtype = result_type(y, 1.) y = np.asanyarray(y, dtype) z = abs(x - y) if not issubdtype(z.dtype, number): z = z.astype(float_) # handle object arrays return z < 1.5 * 10.0**(-decimal) assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, header=('Arrays are not almost equal to %d decimals' % decimal), precision=decimal) def assert_array_less(x, y, err_msg='', verbose=True): """ Raises an AssertionError if two array_like objects are not ordered by less than. Given two array_like objects, check that the shape is equal and all elements of the first object are strictly smaller than those of the second object. An exception is raised at shape mismatch or incorrectly ordered values. Shape mismatch does not raise if an object has zero dimension. In contrast to the standard usage in numpy, NaNs are compared, no assertion is raised if both objects have NaNs in the same positions. Parameters ---------- x : array_like The smaller object to check. y : array_like The larger object to compare. err_msg : string The error message to be printed in case of failure. verbose : bool If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired objects are not equal. See Also -------- assert_array_equal: tests objects for equality assert_array_almost_equal: test objects for equality up to precision Examples -------- >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan]) >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan]) Traceback (most recent call last): ... AssertionError: Arrays are not less-ordered <BLANKLINE> Mismatched elements: 1 / 3 (33.3%) Max absolute difference: 1. Max relative difference: 0.5 x: array([ 1., 1., nan]) y: array([ 1., 2., nan]) >>> np.testing.assert_array_less([1.0, 4.0], 3) Traceback (most recent call last): ... AssertionError: Arrays are not less-ordered <BLANKLINE> Mismatched elements: 1 / 2 (50%) Max absolute difference: 2. Max relative difference: 0.66666667 x: array([1., 4.]) y: array(3) >>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4]) Traceback (most recent call last): ... AssertionError: Arrays are not less-ordered <BLANKLINE> (shapes (3,), (1,) mismatch) x: array([1., 2., 3.]) y: array([4]) """ __tracebackhide__ = True # Hide traceback for py.test assert_array_compare(operator.__lt__, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not less-ordered', equal_inf=False) def runstring(astr, dict): exec(astr, dict) def assert_string_equal(actual, desired): """ Test if two strings are equal. If the given strings are equal, `assert_string_equal` does nothing. If they are not equal, an AssertionError is raised, and the diff between the strings is shown. Parameters ---------- actual : str The string to test for equality against the expected string. desired : str The expected string. Examples -------- >>> np.testing.assert_string_equal('abc', 'abc') >>> np.testing.assert_string_equal('abc', 'abcd') Traceback (most recent call last): File "<stdin>", line 1, in <module> ... AssertionError: Differences in strings: - abc+ abcd? + """ # delay import of difflib to reduce startup time __tracebackhide__ = True # Hide traceback for py.test import difflib if not isinstance(actual, str): raise AssertionError(repr(type(actual))) if not isinstance(desired, str): raise AssertionError(repr(type(desired))) if desired == actual: return diff = list(difflib.Differ().compare(actual.splitlines(True), desired.splitlines(True))) diff_list = [] while diff: d1 = diff.pop(0) if d1.startswith(' '): continue if d1.startswith('- '): l = [d1] d2 = diff.pop(0) if d2.startswith('? '): l.append(d2) d2 = diff.pop(0) if not d2.startswith('+ '): raise AssertionError(repr(d2)) l.append(d2) if diff: d3 = diff.pop(0) if d3.startswith('? '): l.append(d3) else: diff.insert(0, d3) if d2[2:] == d1[2:]: continue diff_list.extend(l) continue raise AssertionError(repr(d1)) if not diff_list: return msg = f"Differences in strings:\n{''.join(diff_list).rstrip()}" if actual != desired: raise AssertionError(msg) def rundocs(filename=None, raise_on_error=True): """ Run doctests found in the given file. By default `rundocs` raises an AssertionError on failure. Parameters ---------- filename : str The path to the file for which the doctests are run. raise_on_error : bool Whether to raise an AssertionError when a doctest fails. Default is True. Notes ----- The doctests can be run by the user/developer by adding the ``doctests`` argument to the ``test()`` call. For example, to run all tests (including doctests) for `numpy.lib`: >>> np.lib.test(doctests=True) # doctest: +SKIP """ from numpy.distutils.misc_util import exec_mod_from_location import doctest if filename is None: f = sys._getframe(1) filename = f.f_globals['__file__'] name = os.path.splitext(os.path.basename(filename))[0] m = exec_mod_from_location(name, filename) tests = doctest.DocTestFinder().find(m) runner = doctest.DocTestRunner(verbose=False) msg = [] if raise_on_error: out = lambda s: msg.append(s) else: out = None for test in tests: runner.run(test, out=out) if runner.failures > 0 and raise_on_error: raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg)) def raises(*args): """Decorator to check for raised exceptions. The decorated test function must raise one of the passed exceptions to pass. If you want to test many assertions about exceptions in a single test, you may want to use `assert_raises` instead. .. warning:: This decorator is nose specific, do not use it if you are using a different test framework. Parameters ---------- args : exceptions The test passes if any of the passed exceptions is raised. Raises ------ AssertionError Examples -------- Usage:: @raises(TypeError, ValueError) def test_raises_type_error(): raise TypeError("This test passes") @raises(Exception) def test_that_fails_by_passing(): pass """ nose = import_nose() return nose.tools.raises(*args) # # assert_raises and assert_raises_regex are taken from unittest. # import unittest class _Dummy(unittest.TestCase): def nop(self): pass _d = _Dummy('nop') def assert_raises(*args, **kwargs): """ assert_raises(exception_class, callable, *args, **kwargs) assert_raises(exception_class) Fail unless an exception of class exception_class is thrown by callable when invoked with arguments args and keyword arguments kwargs. If a different type of exception is thrown, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception. Alternatively, `assert_raises` can be used as a context manager: >>> from numpy.testing import assert_raises >>> with assert_raises(ZeroDivisionError): ... 1 / 0 is equivalent to >>> def div(x, y): ... return x / y >>> assert_raises(ZeroDivisionError, div, 1, 0) """ __tracebackhide__ = True # Hide traceback for py.test return _d.assertRaises(*args,**kwargs) def assert_raises_regex(exception_class, expected_regexp, *args, **kwargs): """ assert_raises_regex(exception_class, expected_regexp, callable, *args, **kwargs) assert_raises_regex(exception_class, expected_regexp) Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by callable when invoked with arguments args and keyword arguments kwargs. Alternatively, can be used as a context manager like `assert_raises`. Notes ----- .. versionadded:: 1.9.0 """ __tracebackhide__ = True # Hide traceback for py.test return _d.assertRaisesRegex(exception_class, expected_regexp, *args, **kwargs) def decorate_methods(cls, decorator, testmatch=None): """ Apply a decorator to all methods in a class matching a regular expression. The given decorator is applied to all public methods of `cls` that are matched by the regular expression `testmatch` (``testmatch.search(methodname)``). Methods that are private, i.e. start with an underscore, are ignored. Parameters ---------- cls : class Class whose methods to decorate. decorator : function Decorator to apply to methods testmatch : compiled regexp or str, optional The regular expression. Default value is None, in which case the nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``) is used. If `testmatch` is a string, it is compiled to a regular expression first. """ if testmatch is None: testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep) else: testmatch = re.compile(testmatch) cls_attr = cls.__dict__ # delayed import to reduce startup time from inspect import isfunction methods = [_m for _m in cls_attr.values() if isfunction(_m)] for function in methods: try: if hasattr(function, 'compat_func_name'): funcname = function.compat_func_name else: funcname = function.__name__ except AttributeError: # not a function continue if testmatch.search(funcname) and not funcname.startswith('_'): setattr(cls, funcname, decorator(function)) return def measure(code_str, times=1, label=None): """ Return elapsed time for executing code in the namespace of the caller. The supplied code string is compiled with the Python builtin ``compile``. The precision of the timing is 10 milli-seconds. If the code will execute fast on this timescale, it can be executed many times to get reasonable timing accuracy. Parameters ---------- code_str : str The code to be timed. times : int, optional The number of times the code is executed. Default is 1. The code is only compiled once. label : str, optional A label to identify `code_str` with. This is passed into ``compile`` as the second argument (for run-time error messages). Returns ------- elapsed : float Total elapsed time in seconds for executing `code_str` `times` times. Examples -------- >>> times = 10 >>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)', times=times) >>> print("Time for a single execution : ", etime / times, "s") # doctest: +SKIP Time for a single execution : 0.005 s """ frame = sys._getframe(1) locs, globs = frame.f_locals, frame.f_globals code = compile(code_str, f'Test name: {label} ', 'exec') i = 0 elapsed = jiffies() while i < times: i += 1 exec(code, globs, locs) elapsed = jiffies() - elapsed return 0.01*elapsed def _assert_valid_refcount(op): """ Check that ufuncs don't mishandle refcount of object `1`. Used in a few regression tests. """ if not HAS_REFCOUNT: return True import gc import numpy as np b = np.arange(100*100).reshape(100, 100) c = b i = 1 gc.disable() try: rc = sys.getrefcount(i) for j in range(15): d = op(b, c) assert_(sys.getrefcount(i) >= rc) finally: gc.enable() del d # for pyflakes def assert_allclose(actual, desired, rtol=1e-7, atol=0, equal_nan=True, err_msg='', verbose=True): """ Raises an AssertionError if two objects are not equal up to desired tolerance. The test is equivalent to ``allclose(actual, desired, rtol, atol)`` (note that ``allclose`` has different default values). It compares the difference between `actual` and `desired` to ``atol + rtol * abs(desired)``. .. versionadded:: 1.5.0 Parameters ---------- actual : array_like Array obtained. desired : array_like Array desired. rtol : float, optional Relative tolerance. atol : float, optional Absolute tolerance. equal_nan : bool, optional. If True, NaNs will compare equal. err_msg : str, optional The error message to be printed in case of failure. verbose : bool, optional If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired are not equal up to specified precision. See Also -------- assert_array_almost_equal_nulp, assert_array_max_ulp Examples -------- >>> x = [1e-5, 1e-3, 1e-1] >>> y = np.arccos(np.cos(x)) >>> np.testing.assert_allclose(x, y, rtol=1e-5, atol=0) """ __tracebackhide__ = True # Hide traceback for py.test import numpy as np def compare(x, y): return np.core.numeric.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan) actual, desired = np.asanyarray(actual), np.asanyarray(desired) header = f'Not equal to tolerance rtol={rtol:g}, atol={atol:g}' assert_array_compare(compare, actual, desired, err_msg=str(err_msg), verbose=verbose, header=header, equal_nan=equal_nan) def assert_array_almost_equal_nulp(x, y, nulp=1): """ Compare two arrays relatively to their spacing. This is a relatively robust method to compare two arrays whose amplitude is variable. Parameters ---------- x, y : array_like Input arrays. nulp : int, optional The maximum number of unit in the last place for tolerance (see Notes). Default is 1. Returns ------- None Raises ------ AssertionError If the spacing between `x` and `y` for one or more elements is larger than `nulp`. See Also -------- assert_array_max_ulp : Check that all items of arrays differ in at most N Units in the Last Place. spacing : Return the distance between x and the nearest adjacent number. Notes ----- An assertion is raised if the following condition is not met:: abs(x - y) <= nulps * spacing(maximum(abs(x), abs(y))) Examples -------- >>> x = np.array([1., 1e-10, 1e-20]) >>> eps = np.finfo(x.dtype).eps >>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x) >>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x) Traceback (most recent call last): ... AssertionError: X and Y are not equal to 1 ULP (max is 2) """ __tracebackhide__ = True # Hide traceback for py.test import numpy as np ax = np.abs(x) ay = np.abs(y) ref = nulp * np.spacing(np.where(ax > ay, ax, ay)) if not np.all(np.abs(x-y) <= ref): if np.iscomplexobj(x) or np.iscomplexobj(y): msg = "X and Y are not equal to %d ULP" % nulp else: max_nulp = np.max(nulp_diff(x, y)) msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp) raise AssertionError(msg) def assert_array_max_ulp(a, b, maxulp=1, dtype=None): """ Check that all items of arrays differ in at most N Units in the Last Place. Parameters ---------- a, b : array_like Input arrays to be compared. maxulp : int, optional The maximum number of units in the last place that elements of `a` and `b` can differ. Default is 1. dtype : dtype, optional Data-type to convert `a` and `b` to if given. Default is None. Returns ------- ret : ndarray Array containing number of representable floating point numbers between items in `a` and `b`. Raises ------ AssertionError If one or more elements differ by more than `maxulp`. Notes ----- For computing the ULP difference, this API does not differentiate between various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 is zero). See Also -------- assert_array_almost_equal_nulp : Compare two arrays relatively to their spacing. Examples -------- >>> a = np.linspace(0., 1., 100) >>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a))) """ __tracebackhide__ = True # Hide traceback for py.test import numpy as np ret = nulp_diff(a, b, dtype) if not np.all(ret <= maxulp): raise AssertionError("Arrays are not almost equal up to %g " "ULP (max difference is %g ULP)" % (maxulp, np.max(ret))) return ret def nulp_diff(x, y, dtype=None): """For each item in x and y, return the number of representable floating points between them. Parameters ---------- x : array_like first input array y : array_like second input array dtype : dtype, optional Data-type to convert `x` and `y` to if given. Default is None. Returns ------- nulp : array_like number of representable floating point numbers between each item in x and y. Notes ----- For computing the ULP difference, this API does not differentiate between various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 is zero). Examples -------- # By definition, epsilon is the smallest number such as 1 + eps != 1, so # there should be exactly one ULP between 1 and 1 + eps >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps) 1.0 """ import numpy as np if dtype: x = np.asarray(x, dtype=dtype) y = np.asarray(y, dtype=dtype) else: x = np.asarray(x) y = np.asarray(y) t = np.common_type(x, y) if np.iscomplexobj(x) or np.iscomplexobj(y): raise NotImplementedError("_nulp not implemented for complex array") x = np.array([x], dtype=t) y = np.array([y], dtype=t) x[np.isnan(x)] = np.nan y[np.isnan(y)] = np.nan if not x.shape == y.shape: raise ValueError("x and y do not have the same shape: %s - %s" % (x.shape, y.shape)) def _diff(rx, ry, vdt): diff = np.asarray(rx-ry, dtype=vdt) return np.abs(diff) rx = integer_repr(x) ry = integer_repr(y) return _diff(rx, ry, t) def _integer_repr(x, vdt, comp): # Reinterpret binary representation of the float as sign-magnitude: # take into account two-complement representation # See also # https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ rx = x.view(vdt) if not (rx.size == 1): rx[rx < 0] = comp - rx[rx < 0] else: if rx < 0: rx = comp - rx return rx def integer_repr(x): """Return the signed-magnitude interpretation of the binary representation of x.""" import numpy as np if x.dtype == np.float16: return _integer_repr(x, np.int16, np.int16(-2**15)) elif x.dtype == np.float32: return _integer_repr(x, np.int32, np.int32(-2**31)) elif x.dtype == np.float64: return _integer_repr(x, np.int64, np.int64(-2**63)) else: raise ValueError(f'Unsupported dtype {x.dtype}') @contextlib.contextmanager def _assert_warns_context(warning_class, name=None): __tracebackhide__ = True # Hide traceback for py.test with suppress_warnings() as sup: l = sup.record(warning_class) yield if not len(l) > 0: name_str = f' when calling {name}' if name is not None else '' raise AssertionError("No warning raised" + name_str) def assert_warns(warning_class, *args, **kwargs): """ Fail unless the given callable throws the specified warning. A warning of class warning_class should be thrown by the callable when invoked with arguments args and keyword arguments kwargs. If a different type of warning is thrown, it will not be caught. If called with all arguments other than the warning class omitted, may be used as a context manager: with assert_warns(SomeWarning): do_something() The ability to be used as a context manager is new in NumPy v1.11.0. .. versionadded:: 1.4.0 Parameters ---------- warning_class : class The class defining the warning that `func` is expected to throw. func : callable, optional Callable to test *args : Arguments Arguments for `func`. **kwargs : Kwargs Keyword arguments for `func`. Returns ------- The value returned by `func`. Examples -------- >>> import warnings >>> def deprecated_func(num): ... warnings.warn("Please upgrade", DeprecationWarning) ... return num*num >>> with np.testing.assert_warns(DeprecationWarning): ... assert deprecated_func(4) == 16 >>> # or passing a func >>> ret = np.testing.assert_warns(DeprecationWarning, deprecated_func, 4) >>> assert ret == 16 """ if not args: return _assert_warns_context(warning_class) func = args[0] args = args[1:] with _assert_warns_context(warning_class, name=func.__name__): return func(*args, **kwargs) @contextlib.contextmanager def _assert_no_warnings_context(name=None): __tracebackhide__ = True # Hide traceback for py.test with warnings.catch_warnings(record=True) as l: warnings.simplefilter('always') yield if len(l) > 0: name_str = f' when calling {name}' if name is not None else '' raise AssertionError(f'Got warnings{name_str}: {l}') def assert_no_warnings(*args, **kwargs): """ Fail if the given callable produces any warnings. If called with all arguments omitted, may be used as a context manager: with assert_no_warnings(): do_something() The ability to be used as a context manager is new in NumPy v1.11.0. .. versionadded:: 1.7.0 Parameters ---------- func : callable The callable to test. \\*args : Arguments Arguments passed to `func`. \\*\\*kwargs : Kwargs Keyword arguments passed to `func`. Returns ------- The value returned by `func`. """ if not args: return _assert_no_warnings_context() func = args[0] args = args[1:] with _assert_no_warnings_context(name=func.__name__): return func(*args, **kwargs) def _gen_alignment_data(dtype=float32, type='binary', max_size=24): """ generator producing data with different alignment and offsets to test simd vectorization Parameters ---------- dtype : dtype data type to produce type : string 'unary': create data for unary operations, creates one input and output array 'binary': create data for unary operations, creates two input and output array max_size : integer maximum size of data to produce Returns ------- if type is 'unary' yields one output, one input array and a message containing information on the data if type is 'binary' yields one output array, two input array and a message containing information on the data """ ufmt = 'unary offset=(%d, %d), size=%d, dtype=%r, %s' bfmt = 'binary offset=(%d, %d, %d), size=%d, dtype=%r, %s' for o in range(3): for s in range(o + 2, max(o + 3, max_size)): if type == 'unary': inp = lambda: arange(s, dtype=dtype)[o:] out = empty((s,), dtype=dtype)[o:] yield out, inp(), ufmt % (o, o, s, dtype, 'out of place') d = inp() yield d, d, ufmt % (o, o, s, dtype, 'in place') yield out[1:], inp()[:-1], ufmt % \ (o + 1, o, s - 1, dtype, 'out of place') yield out[:-1], inp()[1:], ufmt % \ (o, o + 1, s - 1, dtype, 'out of place') yield inp()[:-1], inp()[1:], ufmt % \ (o, o + 1, s - 1, dtype, 'aliased') yield inp()[1:], inp()[:-1], ufmt % \ (o + 1, o, s - 1, dtype, 'aliased') if type == 'binary': inp1 = lambda: arange(s, dtype=dtype)[o:] inp2 = lambda: arange(s, dtype=dtype)[o:] out = empty((s,), dtype=dtype)[o:] yield out, inp1(), inp2(), bfmt % \ (o, o, o, s, dtype, 'out of place') d = inp1() yield d, d, inp2(), bfmt % \ (o, o, o, s, dtype, 'in place1') d = inp2() yield d, inp1(), d, bfmt % \ (o, o, o, s, dtype, 'in place2') yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % \ (o + 1, o, o, s - 1, dtype, 'out of place') yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % \ (o, o + 1, o, s - 1, dtype, 'out of place') yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % \ (o, o, o + 1, s - 1, dtype, 'out of place') yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % \ (o + 1, o, o, s - 1, dtype, 'aliased') yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % \ (o, o + 1, o, s - 1, dtype, 'aliased') yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % \ (o, o, o + 1, s - 1, dtype, 'aliased') class IgnoreException(Exception): "Ignoring this exception due to disabled feature" pass @contextlib.contextmanager def tempdir(*args, **kwargs): """Context manager to provide a temporary test folder. All arguments are passed as this to the underlying tempfile.mkdtemp function. """ tmpdir = mkdtemp(*args, **kwargs) try: yield tmpdir finally: shutil.rmtree(tmpdir) @contextlib.contextmanager def temppath(*args, **kwargs): """Context manager for temporary files. Context manager that returns the path to a closed temporary file. Its parameters are the same as for tempfile.mkstemp and are passed directly to that function. The underlying file is removed when the context is exited, so it should be closed at that time. Windows does not allow a temporary file to be opened if it is already open, so the underlying file must be closed after opening before it can be opened again. """ fd, path = mkstemp(*args, **kwargs) os.close(fd) try: yield path finally: os.remove(path) class clear_and_catch_warnings(warnings.catch_warnings): """ Context manager that resets warning registry for catching warnings Warnings can be slippery, because, whenever a warning is triggered, Python adds a ``__warningregistry__`` member to the *calling* module. This makes it impossible to retrigger the warning in this module, whatever you put in the warnings filters. This context manager accepts a sequence of `modules` as a keyword argument to its constructor and: * stores and removes any ``__warningregistry__`` entries in given `modules` on entry; * resets ``__warningregistry__`` to its previous state on exit. This makes it possible to trigger any warning afresh inside the context manager without disturbing the state of warnings outside. For compatibility with Python 3.0, please consider all arguments to be keyword-only. Parameters ---------- record : bool, optional Specifies whether warnings should be captured by a custom implementation of ``warnings.showwarning()`` and be appended to a list returned by the context manager. Otherwise None is returned by the context manager. The objects appended to the list are arguments whose attributes mirror the arguments to ``showwarning()``. modules : sequence, optional Sequence of modules for which to reset warnings registry on entry and restore on exit. To work correctly, all 'ignore' filters should filter by one of these modules. Examples -------- >>> import warnings >>> with np.testing.clear_and_catch_warnings( ... modules=[np.core.fromnumeric]): ... warnings.simplefilter('always') ... warnings.filterwarnings('ignore', module='np.core.fromnumeric') ... # do something that raises a warning but ignore those in ... # np.core.fromnumeric """ class_modules = () def __init__(self, record=False, modules=()): self.modules = set(modules).union(self.class_modules) self._warnreg_copies = {} super().__init__(record=record) def __enter__(self): for mod in self.modules: if hasattr(mod, '__warningregistry__'): mod_reg = mod.__warningregistry__ self._warnreg_copies[mod] = mod_reg.copy() mod_reg.clear() return super().__enter__() def __exit__(self, *exc_info): super().__exit__(*exc_info) for mod in self.modules: if hasattr(mod, '__warningregistry__'): mod.__warningregistry__.clear() if mod in self._warnreg_copies: mod.__warningregistry__.update(self._warnreg_copies[mod]) class suppress_warnings: """ Context manager and decorator doing much the same as ``warnings.catch_warnings``. However, it also provides a filter mechanism to work around https://bugs.python.org/issue4180. This bug causes Python before 3.4 to not reliably show warnings again after they have been ignored once (even within catch_warnings). It means that no "ignore" filter can be used easily, since following tests might need to see the warning. Additionally it allows easier specificity for testing warnings and can be nested. Parameters ---------- forwarding_rule : str, optional One of "always", "once", "module", or "location". Analogous to the usual warnings module filter mode, it is useful to reduce noise mostly on the outmost level. Unsuppressed and unrecorded warnings will be forwarded based on this rule. Defaults to "always". "location" is equivalent to the warnings "default", match by exact location the warning warning originated from. Notes ----- Filters added inside the context manager will be discarded again when leaving it. Upon entering all filters defined outside a context will be applied automatically. When a recording filter is added, matching warnings are stored in the ``log`` attribute as well as in the list returned by ``record``. If filters are added and the ``module`` keyword is given, the warning registry of this module will additionally be cleared when applying it, entering the context, or exiting it. This could cause warnings to appear a second time after leaving the context if they were configured to be printed once (default) and were already printed before the context was entered. Nesting this context manager will work as expected when the forwarding rule is "always" (default). Unfiltered and unrecorded warnings will be passed out and be matched by the outer level. On the outmost level they will be printed (or caught by another warnings context). The forwarding rule argument can modify this behaviour. Like ``catch_warnings`` this context manager is not threadsafe. Examples -------- With a context manager:: with np.testing.suppress_warnings() as sup: sup.filter(DeprecationWarning, "Some text") sup.filter(module=np.ma.core) log = sup.record(FutureWarning, "Does this occur?") command_giving_warnings() # The FutureWarning was given once, the filtered warnings were # ignored. All other warnings abide outside settings (may be # printed/error) assert_(len(log) == 1) assert_(len(sup.log) == 1) # also stored in log attribute Or as a decorator:: sup = np.testing.suppress_warnings() sup.filter(module=np.ma.core) # module must match exactly @sup def some_function(): # do something which causes a warning in np.ma.core pass """ def __init__(self, forwarding_rule="always"): self._entered = False # Suppressions are either instance or defined inside one with block: self._suppressions = [] if forwarding_rule not in {"always", "module", "once", "location"}: raise ValueError("unsupported forwarding rule.") self._forwarding_rule = forwarding_rule def _clear_registries(self): if hasattr(warnings, "_filters_mutated"): # clearing the registry should not be necessary on new pythons, # instead the filters should be mutated. warnings._filters_mutated() return # Simply clear the registry, this should normally be harmless, # note that on new pythons it would be invalidated anyway. for module in self._tmp_modules: if hasattr(module, "__warningregistry__"): module.__warningregistry__.clear() def _filter(self, category=Warning, message="", module=None, record=False): if record: record = [] # The log where to store warnings else: record = None if self._entered: if module is None: warnings.filterwarnings( "always", category=category, message=message) else: module_regex = module.__name__.replace('.', r'\.') + '$' warnings.filterwarnings( "always", category=category, message=message, module=module_regex) self._tmp_modules.add(module) self._clear_registries() self._tmp_suppressions.append( (category, message, re.compile(message, re.I), module, record)) else: self._suppressions.append( (category, message, re.compile(message, re.I), module, record)) return record def filter(self, category=Warning, message="", module=None): """ Add a new suppressing filter or apply it if the state is entered. Parameters ---------- category : class, optional Warning class to filter message : string, optional Regular expression matching the warning message. module : module, optional Module to filter for. Note that the module (and its file) must match exactly and cannot be a submodule. This may make it unreliable for external modules. Notes ----- When added within a context, filters are only added inside the context and will be forgotten when the context is exited. """ self._filter(category=category, message=message, module=module, record=False) def record(self, category=Warning, message="", module=None): """ Append a new recording filter or apply it if the state is entered. All warnings matching will be appended to the ``log`` attribute. Parameters ---------- category : class, optional Warning class to filter message : string, optional Regular expression matching the warning message. module : module, optional Module to filter for. Note that the module (and its file) must match exactly and cannot be a submodule. This may make it unreliable for external modules. Returns ------- log : list A list which will be filled with all matched warnings. Notes ----- When added within a context, filters are only added inside the context and will be forgotten when the context is exited. """ return self._filter(category=category, message=message, module=module, record=True) def __enter__(self): if self._entered: raise RuntimeError("cannot enter suppress_warnings twice.") self._orig_show = warnings.showwarning self._filters = warnings.filters warnings.filters = self._filters[:] self._entered = True self._tmp_suppressions = [] self._tmp_modules = set() self._forwarded = set() self.log = [] # reset global log (no need to keep same list) for cat, mess, _, mod, log in self._suppressions: if log is not None: del log[:] # clear the log if mod is None: warnings.filterwarnings( "always", category=cat, message=mess) else: module_regex = mod.__name__.replace('.', r'\.') + '$' warnings.filterwarnings( "always", category=cat, message=mess, module=module_regex) self._tmp_modules.add(mod) warnings.showwarning = self._showwarning self._clear_registries() return self def __exit__(self, *exc_info): warnings.showwarning = self._orig_show warnings.filters = self._filters self._clear_registries() self._entered = False del self._orig_show del self._filters def _showwarning(self, message, category, filename, lineno, *args, use_warnmsg=None, **kwargs): for cat, _, pattern, mod, rec in ( self._suppressions + self._tmp_suppressions)[::-1]: if (issubclass(category, cat) and pattern.match(message.args[0]) is not None): if mod is None: # Message and category match, either recorded or ignored if rec is not None: msg = WarningMessage(message, category, filename, lineno, **kwargs) self.log.append(msg) rec.append(msg) return # Use startswith, because warnings strips the c or o from # .pyc/.pyo files. elif mod.__file__.startswith(filename): # The message and module (filename) match if rec is not None: msg = WarningMessage(message, category, filename, lineno, **kwargs) self.log.append(msg) rec.append(msg) return # There is no filter in place, so pass to the outside handler # unless we should only pass it once if self._forwarding_rule == "always": if use_warnmsg is None: self._orig_show(message, category, filename, lineno, *args, **kwargs) else: self._orig_showmsg(use_warnmsg) return if self._forwarding_rule == "once": signature = (message.args, category) elif self._forwarding_rule == "module": signature = (message.args, category, filename) elif self._forwarding_rule == "location": signature = (message.args, category, filename, lineno) if signature in self._forwarded: return self._forwarded.add(signature) if use_warnmsg is None: self._orig_show(message, category, filename, lineno, *args, **kwargs) else: self._orig_showmsg(use_warnmsg) def __call__(self, func): """ Function decorator to apply certain suppressions to a whole function. """ @wraps(func) def new_func(*args, **kwargs): with self: return func(*args, **kwargs) return new_func @contextlib.contextmanager def _assert_no_gc_cycles_context(name=None): __tracebackhide__ = True # Hide traceback for py.test # not meaningful to test if there is no refcounting if not HAS_REFCOUNT: yield return assert_(gc.isenabled()) gc.disable() gc_debug = gc.get_debug() try: for i in range(100): if gc.collect() == 0: break else: raise RuntimeError( "Unable to fully collect garbage - perhaps a __del__ method " "is creating more reference cycles?") gc.set_debug(gc.DEBUG_SAVEALL) yield # gc.collect returns the number of unreachable objects in cycles that # were found -- we are checking that no cycles were created in the context n_objects_in_cycles = gc.collect() objects_in_cycles = gc.garbage[:] finally: del gc.garbage[:] gc.set_debug(gc_debug) gc.enable() if n_objects_in_cycles: name_str = f' when calling {name}' if name is not None else '' raise AssertionError( "Reference cycles were found{}: {} objects were collected, " "of which {} are shown below:{}" .format( name_str, n_objects_in_cycles, len(objects_in_cycles), ''.join( "\n {} object with id={}:\n {}".format( type(o).__name__, id(o), pprint.pformat(o).replace('\n', '\n ') ) for o in objects_in_cycles ) ) ) def assert_no_gc_cycles(*args, **kwargs): """ Fail if the given callable produces any reference cycles. If called with all arguments omitted, may be used as a context manager: with assert_no_gc_cycles(): do_something() .. versionadded:: 1.15.0 Parameters ---------- func : callable The callable to test. \\*args : Arguments Arguments passed to `func`. \\*\\*kwargs : Kwargs Keyword arguments passed to `func`. Returns ------- Nothing. The result is deliberately discarded to ensure that all cycles are found. """ if not args: return _assert_no_gc_cycles_context() func = args[0] args = args[1:] with _assert_no_gc_cycles_context(name=func.__name__): func(*args, **kwargs) def break_cycles(): """ Break reference cycles by calling gc.collect Objects can call other objects' methods (for instance, another object's __del__) inside their own __del__. On PyPy, the interpreter only runs between calls to gc.collect, so multiple calls are needed to completely release all cycles. """ gc.collect() if IS_PYPY: # a few more, just to make sure all the finalizers are called gc.collect() gc.collect() gc.collect() gc.collect() def requires_memory(free_bytes): """Decorator to skip a test if not enough memory is available""" import pytest def decorator(func): @wraps(func) def wrapper(*a, **kw): msg = check_free_memory(free_bytes) if msg is not None: pytest.skip(msg) try: return func(*a, **kw) except MemoryError: # Probably ran out of memory regardless: don't regard as failure pytest.xfail("MemoryError raised") return wrapper return decorator def check_free_memory(free_bytes): """ Check whether `free_bytes` amount of memory is currently free. Returns: None if enough memory available, otherwise error message """ env_var = 'NPY_AVAILABLE_MEM' env_value = os.environ.get(env_var) if env_value is not None: try: mem_free = _parse_size(env_value) except ValueError as exc: raise ValueError(f'Invalid environment variable {env_var}: {exc}') msg = (f'{free_bytes/1e9} GB memory required, but environment variable ' f'NPY_AVAILABLE_MEM={env_value} set') else: mem_free = _get_mem_available() if mem_free is None: msg = ("Could not determine available memory; set NPY_AVAILABLE_MEM " "environment variable (e.g. NPY_AVAILABLE_MEM=16GB) to run " "the test.") mem_free = -1 else: msg = f'{free_bytes/1e9} GB memory required, but {mem_free/1e9} GB available' return msg if mem_free < free_bytes else None def _parse_size(size_str): """Convert memory size strings ('12 GB' etc.) to float""" suffixes = {'': 1, 'b': 1, 'k': 1000, 'm': 1000**2, 'g': 1000**3, 't': 1000**4, 'kb': 1000, 'mb': 1000**2, 'gb': 1000**3, 'tb': 1000**4, 'kib': 1024, 'mib': 1024**2, 'gib': 1024**3, 'tib': 1024**4} size_re = re.compile(r'^\s*(\d+|\d+\.\d+)\s*({0})\s*$'.format( '|'.join(suffixes.keys())), re.I) m = size_re.match(size_str.lower()) if not m or m.group(2) not in suffixes: raise ValueError(f'value {size_str!r} not a valid size') return int(float(m.group(1)) * suffixes[m.group(2)]) def _get_mem_available(): """Return available memory in bytes, or None if unknown.""" try: import psutil return psutil.virtual_memory().available except (ImportError, AttributeError): pass if sys.platform.startswith('linux'): info = {} with open('/proc/meminfo', 'r') as f: for line in f: p = line.split() info[p[0].strip(':').lower()] = int(p[1]) * 1024 if 'memavailable' in info: # Linux >= 3.14 return info['memavailable'] else: return info['memfree'] + info['cached'] return None def _no_tracing(func): """ Decorator to temporarily turn off tracing for the duration of a test. Needed in tests that check refcounting, otherwise the tracing itself influences the refcounts """ if not hasattr(sys, 'gettrace'): return func else: @wraps(func) def wrapper(*args, **kwargs): original_trace = sys.gettrace() try: sys.settrace(None) return func(*args, **kwargs) finally: sys.settrace(original_trace) return wrapper def _get_glibc_version(): try: ver = os.confstr('CS_GNU_LIBC_VERSION').rsplit(' ')[1] except Exception as inst: ver = '0.0' return ver _glibcver = _get_glibc_version() _glibc_older_than = lambda x: (_glibcver != '0.0' and _glibcver < x)
85,421
Python
32.750296
97
0.585594
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/_private/decorators.py
""" Decorators for labeling and modifying behavior of test objects. Decorators that merely return a modified version of the original function object are straightforward. Decorators that return a new function object need to use :: nose.tools.make_decorator(original_function)(decorator) in returning the decorator, in order to preserve meta-data such as function name, setup and teardown functions and so on - see ``nose.tools`` for more information. """ import collections.abc import warnings from .utils import SkipTest, assert_warns, HAS_REFCOUNT __all__ = ['slow', 'setastest', 'skipif', 'knownfailureif', 'deprecated', 'parametrize', '_needs_refcount',] def slow(t): """ .. deprecated:: 1.21 This decorator is retained for compatibility with the nose testing framework, which is being phased out. Please use the nose2 or pytest frameworks instead. Label a test as 'slow'. The exact definition of a slow test is obviously both subjective and hardware-dependent, but in general any individual test that requires more than a second or two should be labeled as slow (the whole suite consists of thousands of tests, so even a second is significant). Parameters ---------- t : callable The test to label as slow. Returns ------- t : callable The decorated test `t`. Examples -------- The `numpy.testing` module includes ``import decorators as dec``. A test can be decorated as slow like this:: from numpy.testing import * @dec.slow def test_big(self): print('Big, slow test') """ # Numpy 1.21, 2020-12-20 warnings.warn('the np.testing.dec decorators are included for nose support, and are ' 'deprecated since NumPy v1.21. Use the nose2 or pytest frameworks instead.', DeprecationWarning, stacklevel=2) t.slow = True return t def setastest(tf=True): """ .. deprecated:: 1.21 This decorator is retained for compatibility with the nose testing framework, which is being phased out. Please use the nose2 or pytest frameworks instead. Signals to nose that this function is or is not a test. Parameters ---------- tf : bool If True, specifies that the decorated callable is a test. If False, specifies that the decorated callable is not a test. Default is True. Notes ----- This decorator can't use the nose namespace, because it can be called from a non-test module. See also ``istest`` and ``nottest`` in ``nose.tools``. Examples -------- `setastest` can be used in the following way:: from numpy.testing import dec @dec.setastest(False) def func_with_test_in_name(arg1, arg2): pass """ # Numpy 1.21, 2020-12-20 warnings.warn('the np.testing.dec decorators are included for nose support, and are ' 'deprecated since NumPy v1.21. Use the nose2 or pytest frameworks instead.', DeprecationWarning, stacklevel=2) def set_test(t): t.__test__ = tf return t return set_test def skipif(skip_condition, msg=None): """ .. deprecated:: 1.21 This decorator is retained for compatibility with the nose testing framework, which is being phased out. Please use the nose2 or pytest frameworks instead. Make function raise SkipTest exception if a given condition is true. If the condition is a callable, it is used at runtime to dynamically make the decision. This is useful for tests that may require costly imports, to delay the cost until the test suite is actually executed. Parameters ---------- skip_condition : bool or callable Flag to determine whether to skip the decorated test. msg : str, optional Message to give on raising a SkipTest exception. Default is None. Returns ------- decorator : function Decorator which, when applied to a function, causes SkipTest to be raised when `skip_condition` is True, and the function to be called normally otherwise. Notes ----- The decorator itself is decorated with the ``nose.tools.make_decorator`` function in order to transmit function name, and various other metadata. """ def skip_decorator(f): # Local import to avoid a hard nose dependency and only incur the # import time overhead at actual test-time. import nose # Numpy 1.21, 2020-12-20 warnings.warn('the np.testing.dec decorators are included for nose support, and are ' 'deprecated since NumPy v1.21. Use the nose2 or pytest frameworks instead.', DeprecationWarning, stacklevel=2) # Allow for both boolean or callable skip conditions. if isinstance(skip_condition, collections.abc.Callable): skip_val = lambda: skip_condition() else: skip_val = lambda: skip_condition def get_msg(func,msg=None): """Skip message with information about function being skipped.""" if msg is None: out = 'Test skipped due to test condition' else: out = msg return f'Skipping test: {func.__name__}: {out}' # We need to define *two* skippers because Python doesn't allow both # return with value and yield inside the same function. def skipper_func(*args, **kwargs): """Skipper for normal test functions.""" if skip_val(): raise SkipTest(get_msg(f, msg)) else: return f(*args, **kwargs) def skipper_gen(*args, **kwargs): """Skipper for test generators.""" if skip_val(): raise SkipTest(get_msg(f, msg)) else: yield from f(*args, **kwargs) # Choose the right skipper to use when building the actual decorator. if nose.util.isgenerator(f): skipper = skipper_gen else: skipper = skipper_func return nose.tools.make_decorator(f)(skipper) return skip_decorator def knownfailureif(fail_condition, msg=None): """ .. deprecated:: 1.21 This decorator is retained for compatibility with the nose testing framework, which is being phased out. Please use the nose2 or pytest frameworks instead. Make function raise KnownFailureException exception if given condition is true. If the condition is a callable, it is used at runtime to dynamically make the decision. This is useful for tests that may require costly imports, to delay the cost until the test suite is actually executed. Parameters ---------- fail_condition : bool or callable Flag to determine whether to mark the decorated test as a known failure (if True) or not (if False). msg : str, optional Message to give on raising a KnownFailureException exception. Default is None. Returns ------- decorator : function Decorator, which, when applied to a function, causes KnownFailureException to be raised when `fail_condition` is True, and the function to be called normally otherwise. Notes ----- The decorator itself is decorated with the ``nose.tools.make_decorator`` function in order to transmit function name, and various other metadata. """ # Numpy 1.21, 2020-12-20 warnings.warn('the np.testing.dec decorators are included for nose support, and are ' 'deprecated since NumPy v1.21. Use the nose2 or pytest frameworks instead.', DeprecationWarning, stacklevel=2) if msg is None: msg = 'Test skipped due to known failure' # Allow for both boolean or callable known failure conditions. if isinstance(fail_condition, collections.abc.Callable): fail_val = lambda: fail_condition() else: fail_val = lambda: fail_condition def knownfail_decorator(f): # Local import to avoid a hard nose dependency and only incur the # import time overhead at actual test-time. import nose from .noseclasses import KnownFailureException def knownfailer(*args, **kwargs): if fail_val(): raise KnownFailureException(msg) else: return f(*args, **kwargs) return nose.tools.make_decorator(f)(knownfailer) return knownfail_decorator def deprecated(conditional=True): """ .. deprecated:: 1.21 This decorator is retained for compatibility with the nose testing framework, which is being phased out. Please use the nose2 or pytest frameworks instead. Filter deprecation warnings while running the test suite. This decorator can be used to filter DeprecationWarning's, to avoid printing them during the test suite run, while checking that the test actually raises a DeprecationWarning. Parameters ---------- conditional : bool or callable, optional Flag to determine whether to mark test as deprecated or not. If the condition is a callable, it is used at runtime to dynamically make the decision. Default is True. Returns ------- decorator : function The `deprecated` decorator itself. Notes ----- .. versionadded:: 1.4.0 """ def deprecate_decorator(f): # Local import to avoid a hard nose dependency and only incur the # import time overhead at actual test-time. import nose # Numpy 1.21, 2020-12-20 warnings.warn('the np.testing.dec decorators are included for nose support, and are ' 'deprecated since NumPy v1.21. Use the nose2 or pytest frameworks instead.', DeprecationWarning, stacklevel=2) def _deprecated_imp(*args, **kwargs): # Poor man's replacement for the with statement with assert_warns(DeprecationWarning): f(*args, **kwargs) if isinstance(conditional, collections.abc.Callable): cond = conditional() else: cond = conditional if cond: return nose.tools.make_decorator(f)(_deprecated_imp) else: return f return deprecate_decorator def parametrize(vars, input): """ .. deprecated:: 1.21 This decorator is retained for compatibility with the nose testing framework, which is being phased out. Please use the nose2 or pytest frameworks instead. Pytest compatibility class. This implements the simplest level of pytest.mark.parametrize for use in nose as an aid in making the transition to pytest. It achieves that by adding a dummy var parameter and ignoring the doc_func parameter of the base class. It does not support variable substitution by name, nor does it support nesting or classes. See the pytest documentation for usage. .. versionadded:: 1.14.0 """ from .parameterized import parameterized # Numpy 1.21, 2020-12-20 warnings.warn('the np.testing.dec decorators are included for nose support, and are ' 'deprecated since NumPy v1.21. Use the nose2 or pytest frameworks instead.', DeprecationWarning, stacklevel=2) return parameterized(input) _needs_refcount = skipif(not HAS_REFCOUNT, "python has no sys.getrefcount")
11,401
Python
33.343373
126
0.656609
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/_private/extbuild.py
""" Build a c-extension module on-the-fly in tests. See build_and_import_extensions for usage hints """ import os import pathlib import sys import sysconfig __all__ = ['build_and_import_extension', 'compile_extension_module'] def build_and_import_extension( modname, functions, *, prologue="", build_dir=None, include_dirs=[], more_init=""): """ Build and imports a c-extension module `modname` from a list of function fragments `functions`. Parameters ---------- functions : list of fragments Each fragment is a sequence of func_name, calling convention, snippet. prologue : string Code to precede the rest, usually extra ``#include`` or ``#define`` macros. build_dir : pathlib.Path Where to build the module, usually a temporary directory include_dirs : list Extra directories to find include files when compiling more_init : string Code to appear in the module PyMODINIT_FUNC Returns ------- out: module The module will have been loaded and is ready for use Examples -------- >>> functions = [("test_bytes", "METH_O", \"\"\" if ( !PyBytesCheck(args)) { Py_RETURN_FALSE; } Py_RETURN_TRUE; \"\"\")] >>> mod = build_and_import_extension("testme", functions) >>> assert not mod.test_bytes(u'abc') >>> assert mod.test_bytes(b'abc') """ from distutils.errors import CompileError body = prologue + _make_methods(functions, modname) init = """PyObject *mod = PyModule_Create(&moduledef); """ if not build_dir: build_dir = pathlib.Path('.') if more_init: init += """#define INITERROR return NULL """ init += more_init init += "\nreturn mod;" source_string = _make_source(modname, init, body) try: mod_so = compile_extension_module( modname, build_dir, include_dirs, source_string) except CompileError as e: # shorten the exception chain raise RuntimeError(f"could not compile in {build_dir}:") from e import importlib.util spec = importlib.util.spec_from_file_location(modname, mod_so) foo = importlib.util.module_from_spec(spec) spec.loader.exec_module(foo) return foo def compile_extension_module( name, builddir, include_dirs, source_string, libraries=[], library_dirs=[]): """ Build an extension module and return the filename of the resulting native code file. Parameters ---------- name : string name of the module, possibly including dots if it is a module inside a package. builddir : pathlib.Path Where to build the module, usually a temporary directory include_dirs : list Extra directories to find include files when compiling libraries : list Libraries to link into the extension module library_dirs: list Where to find the libraries, ``-L`` passed to the linker """ modname = name.split('.')[-1] dirname = builddir / name dirname.mkdir(exist_ok=True) cfile = _convert_str_to_file(source_string, dirname) include_dirs = include_dirs + [sysconfig.get_config_var('INCLUDEPY')] return _c_compile( cfile, outputfilename=dirname / modname, include_dirs=include_dirs, libraries=[], library_dirs=[], ) def _convert_str_to_file(source, dirname): """Helper function to create a file ``source.c`` in `dirname` that contains the string in `source`. Returns the file name """ filename = dirname / 'source.c' with filename.open('w') as f: f.write(str(source)) return filename def _make_methods(functions, modname): """ Turns the name, signature, code in functions into complete functions and lists them in a methods_table. Then turns the methods_table into a ``PyMethodDef`` structure and returns the resulting code fragment ready for compilation """ methods_table = [] codes = [] for funcname, flags, code in functions: cfuncname = "%s_%s" % (modname, funcname) if 'METH_KEYWORDS' in flags: signature = '(PyObject *self, PyObject *args, PyObject *kwargs)' else: signature = '(PyObject *self, PyObject *args)' methods_table.append( "{\"%s\", (PyCFunction)%s, %s}," % (funcname, cfuncname, flags)) func_code = """ static PyObject* {cfuncname}{signature} {{ {code} }} """.format(cfuncname=cfuncname, signature=signature, code=code) codes.append(func_code) body = "\n".join(codes) + """ static PyMethodDef methods[] = { %(methods)s { NULL } }; static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "%(modname)s", /* m_name */ NULL, /* m_doc */ -1, /* m_size */ methods, /* m_methods */ }; """ % dict(methods='\n'.join(methods_table), modname=modname) return body def _make_source(name, init, body): """ Combines the code fragments into source code ready to be compiled """ code = """ #include <Python.h> %(body)s PyMODINIT_FUNC PyInit_%(name)s(void) { %(init)s } """ % dict( name=name, init=init, body=body, ) return code def _c_compile(cfile, outputfilename, include_dirs=[], libraries=[], library_dirs=[]): if sys.platform == 'win32': compile_extra = ["/we4013"] link_extra = ["/LIBPATH:" + os.path.join(sys.base_prefix, 'libs')] elif sys.platform.startswith('linux'): compile_extra = [ "-O0", "-g", "-Werror=implicit-function-declaration", "-fPIC"] link_extra = None else: compile_extra = link_extra = None pass if sys.platform == 'win32': link_extra = link_extra + ['/DEBUG'] # generate .pdb file if sys.platform == 'darwin': # support Fink & Darwinports for s in ('/sw/', '/opt/local/'): if (s + 'include' not in include_dirs and os.path.exists(s + 'include')): include_dirs.append(s + 'include') if s + 'lib' not in library_dirs and os.path.exists(s + 'lib'): library_dirs.append(s + 'lib') outputfilename = outputfilename.with_suffix(get_so_suffix()) saved_environ = os.environ.copy() try: build( cfile, outputfilename, compile_extra, link_extra, include_dirs, libraries, library_dirs) finally: # workaround for a distutils bugs where some env vars can # become longer and longer every time it is used for key, value in saved_environ.items(): if os.environ.get(key) != value: os.environ[key] = value return outputfilename def build(cfile, outputfilename, compile_extra, link_extra, include_dirs, libraries, library_dirs): "cd into the directory where the cfile is, use distutils to build" from numpy.distutils.ccompiler import new_compiler compiler = new_compiler(force=1, verbose=2) compiler.customize('') objects = [] old = os.getcwd() os.chdir(cfile.parent) try: res = compiler.compile( [str(cfile.name)], include_dirs=include_dirs, extra_preargs=compile_extra ) objects += [str(cfile.parent / r) for r in res] finally: os.chdir(old) compiler.link_shared_object( objects, str(outputfilename), libraries=libraries, extra_preargs=link_extra, library_dirs=library_dirs) def get_so_suffix(): ret = sysconfig.get_config_var('EXT_SUFFIX') assert ret return ret
7,816
Python
30.019841
79
0.597492
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/_private/nosetester.py
""" Nose test running. This module implements ``test()`` and ``bench()`` functions for NumPy modules. """ import os import sys import warnings import numpy as np from .utils import import_nose, suppress_warnings __all__ = ['get_package_name', 'run_module_suite', 'NoseTester', '_numpy_tester', 'get_package_name', 'import_nose', 'suppress_warnings'] def get_package_name(filepath): """ Given a path where a package is installed, determine its name. Parameters ---------- filepath : str Path to a file. If the determination fails, "numpy" is returned. Examples -------- >>> np.testing.nosetester.get_package_name('nonsense') 'numpy' """ fullpath = filepath[:] pkg_name = [] while 'site-packages' in filepath or 'dist-packages' in filepath: filepath, p2 = os.path.split(filepath) if p2 in ('site-packages', 'dist-packages'): break pkg_name.append(p2) # if package name determination failed, just default to numpy/scipy if not pkg_name: if 'scipy' in fullpath: return 'scipy' else: return 'numpy' # otherwise, reverse to get correct order and return pkg_name.reverse() # don't include the outer egg directory if pkg_name[0].endswith('.egg'): pkg_name.pop(0) return '.'.join(pkg_name) def run_module_suite(file_to_run=None, argv=None): """ Run a test module. Equivalent to calling ``$ nosetests <argv> <file_to_run>`` from the command line Parameters ---------- file_to_run : str, optional Path to test module, or None. By default, run the module from which this function is called. argv : list of strings Arguments to be passed to the nose test runner. ``argv[0]`` is ignored. All command line arguments accepted by ``nosetests`` will work. If it is the default value None, sys.argv is used. .. versionadded:: 1.9.0 Examples -------- Adding the following:: if __name__ == "__main__" : run_module_suite(argv=sys.argv) at the end of a test module will run the tests when that module is called in the python interpreter. Alternatively, calling:: >>> run_module_suite(file_to_run="numpy/tests/test_matlib.py") # doctest: +SKIP from an interpreter will run all the test routine in 'test_matlib.py'. """ if file_to_run is None: f = sys._getframe(1) file_to_run = f.f_locals.get('__file__', None) if file_to_run is None: raise AssertionError if argv is None: argv = sys.argv + [file_to_run] else: argv = argv + [file_to_run] nose = import_nose() from .noseclasses import KnownFailurePlugin nose.run(argv=argv, addplugins=[KnownFailurePlugin()]) class NoseTester: """ Nose test runner. This class is made available as numpy.testing.Tester, and a test function is typically added to a package's __init__.py like so:: from numpy.testing import Tester test = Tester().test Calling this test function finds and runs all tests associated with the package and all its sub-packages. Attributes ---------- package_path : str Full path to the package to test. package_name : str Name of the package to test. Parameters ---------- package : module, str or None, optional The package to test. If a string, this should be the full path to the package. If None (default), `package` is set to the module from which `NoseTester` is initialized. raise_warnings : None, str or sequence of warnings, optional This specifies which warnings to configure as 'raise' instead of being shown once during the test execution. Valid strings are: - "develop" : equals ``(Warning,)`` - "release" : equals ``()``, don't raise on any warnings. Default is "release". depth : int, optional If `package` is None, then this can be used to initialize from the module of the caller of (the caller of (...)) the code that initializes `NoseTester`. Default of 0 means the module of the immediate caller; higher values are useful for utility routines that want to initialize `NoseTester` objects on behalf of other code. """ def __init__(self, package=None, raise_warnings="release", depth=0, check_fpu_mode=False): # Back-compat: 'None' used to mean either "release" or "develop" # depending on whether this was a release or develop version of # numpy. Those semantics were fine for testing numpy, but not so # helpful for downstream projects like scipy that use # numpy.testing. (They want to set this based on whether *they* are a # release or develop version, not whether numpy is.) So we continue to # accept 'None' for back-compat, but it's now just an alias for the # default "release". if raise_warnings is None: raise_warnings = "release" package_name = None if package is None: f = sys._getframe(1 + depth) package_path = f.f_locals.get('__file__', None) if package_path is None: raise AssertionError package_path = os.path.dirname(package_path) package_name = f.f_locals.get('__name__', None) elif isinstance(package, type(os)): package_path = os.path.dirname(package.__file__) package_name = getattr(package, '__name__', None) else: package_path = str(package) self.package_path = package_path # Find the package name under test; this name is used to limit coverage # reporting (if enabled). if package_name is None: package_name = get_package_name(package_path) self.package_name = package_name # Set to "release" in constructor in maintenance branches. self.raise_warnings = raise_warnings # Whether to check for FPU mode changes self.check_fpu_mode = check_fpu_mode def _test_argv(self, label, verbose, extra_argv): ''' Generate argv for nosetest command Parameters ---------- label : {'fast', 'full', '', attribute identifier}, optional see ``test`` docstring verbose : int, optional Verbosity value for test outputs, in the range 1-10. Default is 1. extra_argv : list, optional List with any extra arguments to pass to nosetests. Returns ------- argv : list command line arguments that will be passed to nose ''' argv = [__file__, self.package_path, '-s'] if label and label != 'full': if not isinstance(label, str): raise TypeError('Selection label should be a string') if label == 'fast': label = 'not slow' argv += ['-A', label] argv += ['--verbosity', str(verbose)] # When installing with setuptools, and also in some other cases, the # test_*.py files end up marked +x executable. Nose, by default, does # not run files marked with +x as they might be scripts. However, in # our case nose only looks for test_*.py files under the package # directory, which should be safe. argv += ['--exe'] if extra_argv: argv += extra_argv return argv def _show_system_info(self): nose = import_nose() import numpy print(f'NumPy version {numpy.__version__}') relaxed_strides = numpy.ones((10, 1), order="C").flags.f_contiguous print("NumPy relaxed strides checking option:", relaxed_strides) npdir = os.path.dirname(numpy.__file__) print(f'NumPy is installed in {npdir}') if 'scipy' in self.package_name: import scipy print(f'SciPy version {scipy.__version__}') spdir = os.path.dirname(scipy.__file__) print(f'SciPy is installed in {spdir}') pyversion = sys.version.replace('\n', '') print(f'Python version {pyversion}') print("nose version %d.%d.%d" % nose.__versioninfo__) def _get_custom_doctester(self): """ Return instantiated plugin for doctests Allows subclassing of this class to override doctester A return value of None means use the nose builtin doctest plugin """ from .noseclasses import NumpyDoctest return NumpyDoctest() def prepare_test_args(self, label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, timer=False): """ Run tests for module using nose. This method does the heavy lifting for the `test` method. It takes all the same arguments, for details see `test`. See Also -------- test """ # fail with nice error message if nose is not present import_nose() # compile argv argv = self._test_argv(label, verbose, extra_argv) # our way of doing coverage if coverage: argv += [f'--cover-package={self.package_name}', '--with-coverage', '--cover-tests', '--cover-erase'] if timer: if timer is True: argv += ['--with-timer'] elif isinstance(timer, int): argv += ['--with-timer', '--timer-top-n', str(timer)] # construct list of plugins import nose.plugins.builtin from nose.plugins import EntryPointPluginManager from .noseclasses import (KnownFailurePlugin, Unplugger, FPUModeCheckPlugin) plugins = [KnownFailurePlugin()] plugins += [p() for p in nose.plugins.builtin.plugins] if self.check_fpu_mode: plugins += [FPUModeCheckPlugin()] argv += ["--with-fpumodecheckplugin"] try: # External plugins (like nose-timer) entrypoint_manager = EntryPointPluginManager() entrypoint_manager.loadPlugins() plugins += [p for p in entrypoint_manager.plugins] except ImportError: # Relies on pkg_resources, not a hard dependency pass # add doctesting if required doctest_argv = '--with-doctest' in argv if doctests == False and doctest_argv: doctests = True plug = self._get_custom_doctester() if plug is None: # use standard doctesting if doctests and not doctest_argv: argv += ['--with-doctest'] else: # custom doctesting if doctest_argv: # in fact the unplugger would take care of this argv.remove('--with-doctest') plugins += [Unplugger('doctest'), plug] if doctests: argv += ['--with-' + plug.name] return argv, plugins def test(self, label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, raise_warnings=None, timer=False): """ Run tests for module using nose. Parameters ---------- label : {'fast', 'full', '', attribute identifier}, optional Identifies the tests to run. This can be a string to pass to the nosetests executable with the '-A' option, or one of several special values. Special values are: * 'fast' - the default - which corresponds to the ``nosetests -A`` option of 'not slow'. * 'full' - fast (as above) and slow tests as in the 'no -A' option to nosetests - this is the same as ''. * None or '' - run all tests. * attribute_identifier - string passed directly to nosetests as '-A'. verbose : int, optional Verbosity value for test outputs, in the range 1-10. Default is 1. extra_argv : list, optional List with any extra arguments to pass to nosetests. doctests : bool, optional If True, run doctests in module. Default is False. coverage : bool, optional If True, report coverage of NumPy code. Default is False. (This requires the `coverage module <https://pypi.org/project/coverage/>`_). raise_warnings : None, str or sequence of warnings, optional This specifies which warnings to configure as 'raise' instead of being shown once during the test execution. Valid strings are: * "develop" : equals ``(Warning,)`` * "release" : equals ``()``, do not raise on any warnings. timer : bool or int, optional Timing of individual tests with ``nose-timer`` (which needs to be installed). If True, time tests and report on all of them. If an integer (say ``N``), report timing results for ``N`` slowest tests. Returns ------- result : object Returns the result of running the tests as a ``nose.result.TextTestResult`` object. Notes ----- Each NumPy module exposes `test` in its namespace to run all tests for it. For example, to run all tests for numpy.lib: >>> np.lib.test() #doctest: +SKIP Examples -------- >>> result = np.lib.test() #doctest: +SKIP Running unit tests for numpy.lib ... Ran 976 tests in 3.933s OK >>> result.errors #doctest: +SKIP [] >>> result.knownfail #doctest: +SKIP [] """ # cap verbosity at 3 because nose becomes *very* verbose beyond that verbose = min(verbose, 3) from . import utils utils.verbose = verbose argv, plugins = self.prepare_test_args( label, verbose, extra_argv, doctests, coverage, timer) if doctests: print(f'Running unit tests and doctests for {self.package_name}') else: print(f'Running unit tests for {self.package_name}') self._show_system_info() # reset doctest state on every run import doctest doctest.master = None if raise_warnings is None: raise_warnings = self.raise_warnings _warn_opts = dict(develop=(Warning,), release=()) if isinstance(raise_warnings, str): raise_warnings = _warn_opts[raise_warnings] with suppress_warnings("location") as sup: # Reset the warning filters to the default state, # so that running the tests is more repeatable. warnings.resetwarnings() # Set all warnings to 'warn', this is because the default 'once' # has the bad property of possibly shadowing later warnings. warnings.filterwarnings('always') # Force the requested warnings to raise for warningtype in raise_warnings: warnings.filterwarnings('error', category=warningtype) # Filter out annoying import messages. sup.filter(message='Not importing directory') sup.filter(message="numpy.dtype size changed") sup.filter(message="numpy.ufunc size changed") sup.filter(category=np.ModuleDeprecationWarning) # Filter out boolean '-' deprecation messages. This allows # older versions of scipy to test without a flood of messages. sup.filter(message=".*boolean negative.*") sup.filter(message=".*boolean subtract.*") # Filter out distutils cpu warnings (could be localized to # distutils tests). ASV has problems with top level import, # so fetch module for suppression here. with warnings.catch_warnings(): warnings.simplefilter("always") from ...distutils import cpuinfo sup.filter(category=UserWarning, module=cpuinfo) # Filter out some deprecation warnings inside nose 1.3.7 when run # on python 3.5b2. See # https://github.com/nose-devs/nose/issues/929 # Note: it is hard to filter based on module for sup (lineno could # be implemented). warnings.filterwarnings("ignore", message=".*getargspec.*", category=DeprecationWarning, module=r"nose\.") from .noseclasses import NumpyTestProgram t = NumpyTestProgram(argv=argv, exit=False, plugins=plugins) return t.result def bench(self, label='fast', verbose=1, extra_argv=None): """ Run benchmarks for module using nose. Parameters ---------- label : {'fast', 'full', '', attribute identifier}, optional Identifies the benchmarks to run. This can be a string to pass to the nosetests executable with the '-A' option, or one of several special values. Special values are: * 'fast' - the default - which corresponds to the ``nosetests -A`` option of 'not slow'. * 'full' - fast (as above) and slow benchmarks as in the 'no -A' option to nosetests - this is the same as ''. * None or '' - run all tests. * attribute_identifier - string passed directly to nosetests as '-A'. verbose : int, optional Verbosity value for benchmark outputs, in the range 1-10. Default is 1. extra_argv : list, optional List with any extra arguments to pass to nosetests. Returns ------- success : bool Returns True if running the benchmarks works, False if an error occurred. Notes ----- Benchmarks are like tests, but have names starting with "bench" instead of "test", and can be found under the "benchmarks" sub-directory of the module. Each NumPy module exposes `bench` in its namespace to run all benchmarks for it. Examples -------- >>> success = np.lib.bench() #doctest: +SKIP Running benchmarks for numpy.lib ... using 562341 items: unique: 0.11 unique1d: 0.11 ratio: 1.0 nUnique: 56230 == 56230 ... OK >>> success #doctest: +SKIP True """ print(f'Running benchmarks for {self.package_name}') self._show_system_info() argv = self._test_argv(label, verbose, extra_argv) argv += ['--match', r'(?:^|[\\b_\\.%s-])[Bb]ench' % os.sep] # import nose or make informative error nose = import_nose() # get plugin to disable doctests from .noseclasses import Unplugger add_plugins = [Unplugger('doctest')] return nose.run(argv=argv, addplugins=add_plugins) def _numpy_tester(): if hasattr(np, "__version__") and ".dev0" in np.__version__: mode = "develop" else: mode = "release" return NoseTester(raise_warnings=mode, depth=1, check_fpu_mode=True)
19,435
Python
34.59707
84
0.581785
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/tests/test_utils.py
import warnings import sys import os import itertools import pytest import weakref import numpy as np from numpy.testing import ( assert_equal, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_array_less, build_err_msg, raises, assert_raises, assert_warns, assert_no_warnings, assert_allclose, assert_approx_equal, assert_array_almost_equal_nulp, assert_array_max_ulp, clear_and_catch_warnings, suppress_warnings, assert_string_equal, assert_, tempdir, temppath, assert_no_gc_cycles, HAS_REFCOUNT ) from numpy.core.overrides import ARRAY_FUNCTION_ENABLED class _GenericTest: def _test_equal(self, a, b): self._assert_func(a, b) def _test_not_equal(self, a, b): with assert_raises(AssertionError): self._assert_func(a, b) def test_array_rank1_eq(self): """Test two equal array of rank 1 are found equal.""" a = np.array([1, 2]) b = np.array([1, 2]) self._test_equal(a, b) def test_array_rank1_noteq(self): """Test two different array of rank 1 are found not equal.""" a = np.array([1, 2]) b = np.array([2, 2]) self._test_not_equal(a, b) def test_array_rank2_eq(self): """Test two equal array of rank 2 are found equal.""" a = np.array([[1, 2], [3, 4]]) b = np.array([[1, 2], [3, 4]]) self._test_equal(a, b) def test_array_diffshape(self): """Test two arrays with different shapes are found not equal.""" a = np.array([1, 2]) b = np.array([[1, 2], [1, 2]]) self._test_not_equal(a, b) def test_objarray(self): """Test object arrays.""" a = np.array([1, 1], dtype=object) self._test_equal(a, 1) def test_array_likes(self): self._test_equal([1, 2, 3], (1, 2, 3)) class TestArrayEqual(_GenericTest): def setup_method(self): self._assert_func = assert_array_equal def test_generic_rank1(self): """Test rank 1 array for all dtypes.""" def foo(t): a = np.empty(2, t) a.fill(1) b = a.copy() c = a.copy() c.fill(0) self._test_equal(a, b) self._test_not_equal(c, b) # Test numeric types and object for t in '?bhilqpBHILQPfdgFDG': foo(t) # Test strings for t in ['S1', 'U1']: foo(t) def test_0_ndim_array(self): x = np.array(473963742225900817127911193656584771) y = np.array(18535119325151578301457182298393896) assert_raises(AssertionError, self._assert_func, x, y) y = x self._assert_func(x, y) x = np.array(43) y = np.array(10) assert_raises(AssertionError, self._assert_func, x, y) y = x self._assert_func(x, y) def test_generic_rank3(self): """Test rank 3 array for all dtypes.""" def foo(t): a = np.empty((4, 2, 3), t) a.fill(1) b = a.copy() c = a.copy() c.fill(0) self._test_equal(a, b) self._test_not_equal(c, b) # Test numeric types and object for t in '?bhilqpBHILQPfdgFDG': foo(t) # Test strings for t in ['S1', 'U1']: foo(t) def test_nan_array(self): """Test arrays with nan values in them.""" a = np.array([1, 2, np.nan]) b = np.array([1, 2, np.nan]) self._test_equal(a, b) c = np.array([1, 2, 3]) self._test_not_equal(c, b) def test_string_arrays(self): """Test two arrays with different shapes are found not equal.""" a = np.array(['floupi', 'floupa']) b = np.array(['floupi', 'floupa']) self._test_equal(a, b) c = np.array(['floupipi', 'floupa']) self._test_not_equal(c, b) def test_recarrays(self): """Test record arrays.""" a = np.empty(2, [('floupi', float), ('floupa', float)]) a['floupi'] = [1, 2] a['floupa'] = [1, 2] b = a.copy() self._test_equal(a, b) c = np.empty(2, [('floupipi', float), ('floupi', float), ('floupa', float)]) c['floupipi'] = a['floupi'].copy() c['floupa'] = a['floupa'].copy() with pytest.raises(TypeError): self._test_not_equal(c, b) def test_masked_nan_inf(self): # Regression test for gh-11121 a = np.ma.MaskedArray([3., 4., 6.5], mask=[False, True, False]) b = np.array([3., np.nan, 6.5]) self._test_equal(a, b) self._test_equal(b, a) a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, False, False]) b = np.array([np.inf, 4., 6.5]) self._test_equal(a, b) self._test_equal(b, a) def test_subclass_that_overrides_eq(self): # While we cannot guarantee testing functions will always work for # subclasses, the tests should ideally rely only on subclasses having # comparison operators, not on them being able to store booleans # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. class MyArray(np.ndarray): def __eq__(self, other): return bool(np.equal(self, other).all()) def __ne__(self, other): return not self == other a = np.array([1., 2.]).view(MyArray) b = np.array([2., 3.]).view(MyArray) assert_(type(a == a), bool) assert_(a == a) assert_(a != b) self._test_equal(a, a) self._test_not_equal(a, b) self._test_not_equal(b, a) @pytest.mark.skipif( not ARRAY_FUNCTION_ENABLED, reason='requires __array_function__') def test_subclass_that_does_not_implement_npall(self): class MyArray(np.ndarray): def __array_function__(self, *args, **kwargs): return NotImplemented a = np.array([1., 2.]).view(MyArray) b = np.array([2., 3.]).view(MyArray) with assert_raises(TypeError): np.all(a) self._test_equal(a, a) self._test_not_equal(a, b) self._test_not_equal(b, a) def test_suppress_overflow_warnings(self): # Based on issue #18992 with pytest.raises(AssertionError): with np.errstate(all="raise"): np.testing.assert_array_equal( np.array([1, 2, 3], np.float32), np.array([1, 1e-40, 3], np.float32)) class TestBuildErrorMessage: def test_build_err_msg_defaults(self): x = np.array([1.00001, 2.00002, 3.00003]) y = np.array([1.00002, 2.00003, 3.00004]) err_msg = 'There is a mismatch' a = build_err_msg([x, y], err_msg) b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array([' '1.00001, 2.00002, 3.00003])\n DESIRED: array([1.00002, ' '2.00003, 3.00004])') assert_equal(a, b) def test_build_err_msg_no_verbose(self): x = np.array([1.00001, 2.00002, 3.00003]) y = np.array([1.00002, 2.00003, 3.00004]) err_msg = 'There is a mismatch' a = build_err_msg([x, y], err_msg, verbose=False) b = '\nItems are not equal: There is a mismatch' assert_equal(a, b) def test_build_err_msg_custom_names(self): x = np.array([1.00001, 2.00002, 3.00003]) y = np.array([1.00002, 2.00003, 3.00004]) err_msg = 'There is a mismatch' a = build_err_msg([x, y], err_msg, names=('FOO', 'BAR')) b = ('\nItems are not equal: There is a mismatch\n FOO: array([' '1.00001, 2.00002, 3.00003])\n BAR: array([1.00002, 2.00003, ' '3.00004])') assert_equal(a, b) def test_build_err_msg_custom_precision(self): x = np.array([1.000000001, 2.00002, 3.00003]) y = np.array([1.000000002, 2.00003, 3.00004]) err_msg = 'There is a mismatch' a = build_err_msg([x, y], err_msg, precision=10) b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array([' '1.000000001, 2.00002 , 3.00003 ])\n DESIRED: array([' '1.000000002, 2.00003 , 3.00004 ])') assert_equal(a, b) class TestEqual(TestArrayEqual): def setup_method(self): self._assert_func = assert_equal def test_nan_items(self): self._assert_func(np.nan, np.nan) self._assert_func([np.nan], [np.nan]) self._test_not_equal(np.nan, [np.nan]) self._test_not_equal(np.nan, 1) def test_inf_items(self): self._assert_func(np.inf, np.inf) self._assert_func([np.inf], [np.inf]) self._test_not_equal(np.inf, [np.inf]) def test_datetime(self): self._test_equal( np.datetime64("2017-01-01", "s"), np.datetime64("2017-01-01", "s") ) self._test_equal( np.datetime64("2017-01-01", "s"), np.datetime64("2017-01-01", "m") ) # gh-10081 self._test_not_equal( np.datetime64("2017-01-01", "s"), np.datetime64("2017-01-02", "s") ) self._test_not_equal( np.datetime64("2017-01-01", "s"), np.datetime64("2017-01-02", "m") ) def test_nat_items(self): # not a datetime nadt_no_unit = np.datetime64("NaT") nadt_s = np.datetime64("NaT", "s") nadt_d = np.datetime64("NaT", "ns") # not a timedelta natd_no_unit = np.timedelta64("NaT") natd_s = np.timedelta64("NaT", "s") natd_d = np.timedelta64("NaT", "ns") dts = [nadt_no_unit, nadt_s, nadt_d] tds = [natd_no_unit, natd_s, natd_d] for a, b in itertools.product(dts, dts): self._assert_func(a, b) self._assert_func([a], [b]) self._test_not_equal([a], b) for a, b in itertools.product(tds, tds): self._assert_func(a, b) self._assert_func([a], [b]) self._test_not_equal([a], b) for a, b in itertools.product(tds, dts): self._test_not_equal(a, b) self._test_not_equal(a, [b]) self._test_not_equal([a], [b]) self._test_not_equal([a], np.datetime64("2017-01-01", "s")) self._test_not_equal([b], np.datetime64("2017-01-01", "s")) self._test_not_equal([a], np.timedelta64(123, "s")) self._test_not_equal([b], np.timedelta64(123, "s")) def test_non_numeric(self): self._assert_func('ab', 'ab') self._test_not_equal('ab', 'abb') def test_complex_item(self): self._assert_func(complex(1, 2), complex(1, 2)) self._assert_func(complex(1, np.nan), complex(1, np.nan)) self._test_not_equal(complex(1, np.nan), complex(1, 2)) self._test_not_equal(complex(np.nan, 1), complex(1, np.nan)) self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2)) def test_negative_zero(self): self._test_not_equal(np.PZERO, np.NZERO) def test_complex(self): x = np.array([complex(1, 2), complex(1, np.nan)]) y = np.array([complex(1, 2), complex(1, 2)]) self._assert_func(x, x) self._test_not_equal(x, y) def test_object(self): #gh-12942 import datetime a = np.array([datetime.datetime(2000, 1, 1), datetime.datetime(2000, 1, 2)]) self._test_not_equal(a, a[::-1]) class TestArrayAlmostEqual(_GenericTest): def setup_method(self): self._assert_func = assert_array_almost_equal def test_closeness(self): # Note that in the course of time we ended up with # `abs(x - y) < 1.5 * 10**(-decimal)` # instead of the previously documented # `abs(x - y) < 0.5 * 10**(-decimal)` # so this check serves to preserve the wrongness. # test scalars self._assert_func(1.499999, 0.0, decimal=0) assert_raises(AssertionError, lambda: self._assert_func(1.5, 0.0, decimal=0)) # test arrays self._assert_func([1.499999], [0.0], decimal=0) assert_raises(AssertionError, lambda: self._assert_func([1.5], [0.0], decimal=0)) def test_simple(self): x = np.array([1234.2222]) y = np.array([1234.2223]) self._assert_func(x, y, decimal=3) self._assert_func(x, y, decimal=4) assert_raises(AssertionError, lambda: self._assert_func(x, y, decimal=5)) def test_nan(self): anan = np.array([np.nan]) aone = np.array([1]) ainf = np.array([np.inf]) self._assert_func(anan, anan) assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) def test_inf(self): a = np.array([[1., 2.], [3., 4.]]) b = a.copy() a[0, 0] = np.inf assert_raises(AssertionError, lambda: self._assert_func(a, b)) b[0, 0] = -np.inf assert_raises(AssertionError, lambda: self._assert_func(a, b)) def test_subclass(self): a = np.array([[1., 2.], [3., 4.]]) b = np.ma.masked_array([[1., 2.], [0., 4.]], [[False, False], [True, False]]) self._assert_func(a, b) self._assert_func(b, a) self._assert_func(b, b) # Test fully masked as well (see gh-11123). a = np.ma.MaskedArray(3.5, mask=True) b = np.array([3., 4., 6.5]) self._test_equal(a, b) self._test_equal(b, a) a = np.ma.masked b = np.array([3., 4., 6.5]) self._test_equal(a, b) self._test_equal(b, a) a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True]) b = np.array([1., 2., 3.]) self._test_equal(a, b) self._test_equal(b, a) a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True]) b = np.array(1.) self._test_equal(a, b) self._test_equal(b, a) def test_subclass_that_cannot_be_bool(self): # While we cannot guarantee testing functions will always work for # subclasses, the tests should ideally rely only on subclasses having # comparison operators, not on them being able to store booleans # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. class MyArray(np.ndarray): def __eq__(self, other): return super().__eq__(other).view(np.ndarray) def __lt__(self, other): return super().__lt__(other).view(np.ndarray) def all(self, *args, **kwargs): raise NotImplementedError a = np.array([1., 2.]).view(MyArray) self._assert_func(a, a) class TestAlmostEqual(_GenericTest): def setup_method(self): self._assert_func = assert_almost_equal def test_closeness(self): # Note that in the course of time we ended up with # `abs(x - y) < 1.5 * 10**(-decimal)` # instead of the previously documented # `abs(x - y) < 0.5 * 10**(-decimal)` # so this check serves to preserve the wrongness. # test scalars self._assert_func(1.499999, 0.0, decimal=0) assert_raises(AssertionError, lambda: self._assert_func(1.5, 0.0, decimal=0)) # test arrays self._assert_func([1.499999], [0.0], decimal=0) assert_raises(AssertionError, lambda: self._assert_func([1.5], [0.0], decimal=0)) def test_nan_item(self): self._assert_func(np.nan, np.nan) assert_raises(AssertionError, lambda: self._assert_func(np.nan, 1)) assert_raises(AssertionError, lambda: self._assert_func(np.nan, np.inf)) assert_raises(AssertionError, lambda: self._assert_func(np.inf, np.nan)) def test_inf_item(self): self._assert_func(np.inf, np.inf) self._assert_func(-np.inf, -np.inf) assert_raises(AssertionError, lambda: self._assert_func(np.inf, 1)) assert_raises(AssertionError, lambda: self._assert_func(-np.inf, np.inf)) def test_simple_item(self): self._test_not_equal(1, 2) def test_complex_item(self): self._assert_func(complex(1, 2), complex(1, 2)) self._assert_func(complex(1, np.nan), complex(1, np.nan)) self._assert_func(complex(np.inf, np.nan), complex(np.inf, np.nan)) self._test_not_equal(complex(1, np.nan), complex(1, 2)) self._test_not_equal(complex(np.nan, 1), complex(1, np.nan)) self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2)) def test_complex(self): x = np.array([complex(1, 2), complex(1, np.nan)]) z = np.array([complex(1, 2), complex(np.nan, 1)]) y = np.array([complex(1, 2), complex(1, 2)]) self._assert_func(x, x) self._test_not_equal(x, y) self._test_not_equal(x, z) def test_error_message(self): """Check the message is formatted correctly for the decimal value. Also check the message when input includes inf or nan (gh12200)""" x = np.array([1.00000000001, 2.00000000002, 3.00003]) y = np.array([1.00000000002, 2.00000000003, 3.00004]) # Test with a different amount of decimal digits with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y, decimal=12) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 3 / 3 (100%)') assert_equal(msgs[4], 'Max absolute difference: 1.e-05') assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06') assert_equal( msgs[6], ' x: array([1.00000000001, 2.00000000002, 3.00003 ])') assert_equal( msgs[7], ' y: array([1.00000000002, 2.00000000003, 3.00004 ])') # With the default value of decimal digits, only the 3rd element # differs. Note that we only check for the formatting of the arrays # themselves. with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 1 / 3 (33.3%)') assert_equal(msgs[4], 'Max absolute difference: 1.e-05') assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06') assert_equal(msgs[6], ' x: array([1. , 2. , 3.00003])') assert_equal(msgs[7], ' y: array([1. , 2. , 3.00004])') # Check the error message when input includes inf x = np.array([np.inf, 0]) y = np.array([np.inf, 1]) with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 1 / 2 (50%)') assert_equal(msgs[4], 'Max absolute difference: 1.') assert_equal(msgs[5], 'Max relative difference: 1.') assert_equal(msgs[6], ' x: array([inf, 0.])') assert_equal(msgs[7], ' y: array([inf, 1.])') # Check the error message when dividing by zero x = np.array([1, 2]) y = np.array([0, 0]) with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 2 / 2 (100%)') assert_equal(msgs[4], 'Max absolute difference: 2') assert_equal(msgs[5], 'Max relative difference: inf') def test_error_message_2(self): """Check the message is formatted correctly when either x or y is a scalar.""" x = 2 y = np.ones(20) with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)') assert_equal(msgs[4], 'Max absolute difference: 1.') assert_equal(msgs[5], 'Max relative difference: 1.') y = 2 x = np.ones(20) with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)') assert_equal(msgs[4], 'Max absolute difference: 1.') assert_equal(msgs[5], 'Max relative difference: 0.5') def test_subclass_that_cannot_be_bool(self): # While we cannot guarantee testing functions will always work for # subclasses, the tests should ideally rely only on subclasses having # comparison operators, not on them being able to store booleans # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. class MyArray(np.ndarray): def __eq__(self, other): return super().__eq__(other).view(np.ndarray) def __lt__(self, other): return super().__lt__(other).view(np.ndarray) def all(self, *args, **kwargs): raise NotImplementedError a = np.array([1., 2.]).view(MyArray) self._assert_func(a, a) class TestApproxEqual: def setup_method(self): self._assert_func = assert_approx_equal def test_simple_0d_arrays(self): x = np.array(1234.22) y = np.array(1234.23) self._assert_func(x, y, significant=5) self._assert_func(x, y, significant=6) assert_raises(AssertionError, lambda: self._assert_func(x, y, significant=7)) def test_simple_items(self): x = 1234.22 y = 1234.23 self._assert_func(x, y, significant=4) self._assert_func(x, y, significant=5) self._assert_func(x, y, significant=6) assert_raises(AssertionError, lambda: self._assert_func(x, y, significant=7)) def test_nan_array(self): anan = np.array(np.nan) aone = np.array(1) ainf = np.array(np.inf) self._assert_func(anan, anan) assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) def test_nan_items(self): anan = np.array(np.nan) aone = np.array(1) ainf = np.array(np.inf) self._assert_func(anan, anan) assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) class TestArrayAssertLess: def setup_method(self): self._assert_func = assert_array_less def test_simple_arrays(self): x = np.array([1.1, 2.2]) y = np.array([1.2, 2.3]) self._assert_func(x, y) assert_raises(AssertionError, lambda: self._assert_func(y, x)) y = np.array([1.0, 2.3]) assert_raises(AssertionError, lambda: self._assert_func(x, y)) assert_raises(AssertionError, lambda: self._assert_func(y, x)) def test_rank2(self): x = np.array([[1.1, 2.2], [3.3, 4.4]]) y = np.array([[1.2, 2.3], [3.4, 4.5]]) self._assert_func(x, y) assert_raises(AssertionError, lambda: self._assert_func(y, x)) y = np.array([[1.0, 2.3], [3.4, 4.5]]) assert_raises(AssertionError, lambda: self._assert_func(x, y)) assert_raises(AssertionError, lambda: self._assert_func(y, x)) def test_rank3(self): x = np.ones(shape=(2, 2, 2)) y = np.ones(shape=(2, 2, 2))+1 self._assert_func(x, y) assert_raises(AssertionError, lambda: self._assert_func(y, x)) y[0, 0, 0] = 0 assert_raises(AssertionError, lambda: self._assert_func(x, y)) assert_raises(AssertionError, lambda: self._assert_func(y, x)) def test_simple_items(self): x = 1.1 y = 2.2 self._assert_func(x, y) assert_raises(AssertionError, lambda: self._assert_func(y, x)) y = np.array([2.2, 3.3]) self._assert_func(x, y) assert_raises(AssertionError, lambda: self._assert_func(y, x)) y = np.array([1.0, 3.3]) assert_raises(AssertionError, lambda: self._assert_func(x, y)) def test_nan_noncompare(self): anan = np.array(np.nan) aone = np.array(1) ainf = np.array(np.inf) self._assert_func(anan, anan) assert_raises(AssertionError, lambda: self._assert_func(aone, anan)) assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) def test_nan_noncompare_array(self): x = np.array([1.1, 2.2, 3.3]) anan = np.array(np.nan) assert_raises(AssertionError, lambda: self._assert_func(x, anan)) assert_raises(AssertionError, lambda: self._assert_func(anan, x)) x = np.array([1.1, 2.2, np.nan]) assert_raises(AssertionError, lambda: self._assert_func(x, anan)) assert_raises(AssertionError, lambda: self._assert_func(anan, x)) y = np.array([1.0, 2.0, np.nan]) self._assert_func(y, x) assert_raises(AssertionError, lambda: self._assert_func(x, y)) def test_inf_compare(self): aone = np.array(1) ainf = np.array(np.inf) self._assert_func(aone, ainf) self._assert_func(-ainf, aone) self._assert_func(-ainf, ainf) assert_raises(AssertionError, lambda: self._assert_func(ainf, aone)) assert_raises(AssertionError, lambda: self._assert_func(aone, -ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, -ainf)) assert_raises(AssertionError, lambda: self._assert_func(-ainf, -ainf)) def test_inf_compare_array(self): x = np.array([1.1, 2.2, np.inf]) ainf = np.array(np.inf) assert_raises(AssertionError, lambda: self._assert_func(x, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, x)) assert_raises(AssertionError, lambda: self._assert_func(x, -ainf)) assert_raises(AssertionError, lambda: self._assert_func(-x, -ainf)) assert_raises(AssertionError, lambda: self._assert_func(-ainf, -x)) self._assert_func(-ainf, x) @pytest.mark.skip(reason="The raises decorator depends on Nose") class TestRaises: def setup_method(self): class MyException(Exception): pass self.e = MyException def raises_exception(self, e): raise e def does_not_raise_exception(self): pass def test_correct_catch(self): raises(self.e)(self.raises_exception)(self.e) # raises? def test_wrong_exception(self): try: raises(self.e)(self.raises_exception)(RuntimeError) # raises? except RuntimeError: return else: raise AssertionError("should have caught RuntimeError") def test_catch_no_raise(self): try: raises(self.e)(self.does_not_raise_exception)() # raises? except AssertionError: return else: raise AssertionError("should have raised an AssertionError") class TestWarns: def test_warn(self): def f(): warnings.warn("yo") return 3 before_filters = sys.modules['warnings'].filters[:] assert_equal(assert_warns(UserWarning, f), 3) after_filters = sys.modules['warnings'].filters assert_raises(AssertionError, assert_no_warnings, f) assert_equal(assert_no_warnings(lambda x: x, 1), 1) # Check that the warnings state is unchanged assert_equal(before_filters, after_filters, "assert_warns does not preserver warnings state") def test_context_manager(self): before_filters = sys.modules['warnings'].filters[:] with assert_warns(UserWarning): warnings.warn("yo") after_filters = sys.modules['warnings'].filters def no_warnings(): with assert_no_warnings(): warnings.warn("yo") assert_raises(AssertionError, no_warnings) assert_equal(before_filters, after_filters, "assert_warns does not preserver warnings state") def test_warn_wrong_warning(self): def f(): warnings.warn("yo", DeprecationWarning) failed = False with warnings.catch_warnings(): warnings.simplefilter("error", DeprecationWarning) try: # Should raise a DeprecationWarning assert_warns(UserWarning, f) failed = True except DeprecationWarning: pass if failed: raise AssertionError("wrong warning caught by assert_warn") class TestAssertAllclose: def test_simple(self): x = 1e-3 y = 1e-9 assert_allclose(x, y, atol=1) assert_raises(AssertionError, assert_allclose, x, y) a = np.array([x, y, x, y]) b = np.array([x, y, x, x]) assert_allclose(a, b, atol=1) assert_raises(AssertionError, assert_allclose, a, b) b[-1] = y * (1 + 1e-8) assert_allclose(a, b) assert_raises(AssertionError, assert_allclose, a, b, rtol=1e-9) assert_allclose(6, 10, rtol=0.5) assert_raises(AssertionError, assert_allclose, 10, 6, rtol=0.5) def test_min_int(self): a = np.array([np.iinfo(np.int_).min], dtype=np.int_) # Should not raise: assert_allclose(a, a) def test_report_fail_percentage(self): a = np.array([1, 1, 1, 1]) b = np.array([1, 1, 1, 2]) with pytest.raises(AssertionError) as exc_info: assert_allclose(a, b) msg = str(exc_info.value) assert_('Mismatched elements: 1 / 4 (25%)\n' 'Max absolute difference: 1\n' 'Max relative difference: 0.5' in msg) def test_equal_nan(self): a = np.array([np.nan]) b = np.array([np.nan]) # Should not raise: assert_allclose(a, b, equal_nan=True) def test_not_equal_nan(self): a = np.array([np.nan]) b = np.array([np.nan]) assert_raises(AssertionError, assert_allclose, a, b, equal_nan=False) def test_equal_nan_default(self): # Make sure equal_nan default behavior remains unchanged. (All # of these functions use assert_array_compare under the hood.) # None of these should raise. a = np.array([np.nan]) b = np.array([np.nan]) assert_array_equal(a, b) assert_array_almost_equal(a, b) assert_array_less(a, b) assert_allclose(a, b) def test_report_max_relative_error(self): a = np.array([0, 1]) b = np.array([0, 2]) with pytest.raises(AssertionError) as exc_info: assert_allclose(a, b) msg = str(exc_info.value) assert_('Max relative difference: 0.5' in msg) def test_timedelta(self): # see gh-18286 a = np.array([[1, 2, 3, "NaT"]], dtype="m8[ns]") assert_allclose(a, a) class TestArrayAlmostEqualNulp: def test_float64_pass(self): # The number of units of least precision # In this case, use a few places above the lowest level (ie nulp=1) nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float64) x = 10**x x = np.r_[-x, x] # Addition eps = np.finfo(x.dtype).eps y = x + x*eps*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) # Subtraction epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) def test_float64_fail(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float64) x = 10**x x = np.r_[-x, x] eps = np.finfo(x.dtype).eps y = x + x*eps*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) def test_float64_ignore_nan(self): # Ignore ULP differences between various NAN's # Note that MIPS may reverse quiet and signaling nans # so we use the builtin version as a base. offset = np.uint64(0xffffffff) nan1_i64 = np.array(np.nan, dtype=np.float64).view(np.uint64) nan2_i64 = nan1_i64 ^ offset # nan payload on MIPS is all ones. nan1_f64 = nan1_i64.view(np.float64) nan2_f64 = nan2_i64.view(np.float64) assert_array_max_ulp(nan1_f64, nan2_f64, 0) def test_float32_pass(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float32) x = 10**x x = np.r_[-x, x] eps = np.finfo(x.dtype).eps y = x + x*eps*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) def test_float32_fail(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float32) x = 10**x x = np.r_[-x, x] eps = np.finfo(x.dtype).eps y = x + x*eps*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) def test_float32_ignore_nan(self): # Ignore ULP differences between various NAN's # Note that MIPS may reverse quiet and signaling nans # so we use the builtin version as a base. offset = np.uint32(0xffff) nan1_i32 = np.array(np.nan, dtype=np.float32).view(np.uint32) nan2_i32 = nan1_i32 ^ offset # nan payload on MIPS is all ones. nan1_f32 = nan1_i32.view(np.float32) nan2_f32 = nan2_i32.view(np.float32) assert_array_max_ulp(nan1_f32, nan2_f32, 0) def test_float16_pass(self): nulp = 5 x = np.linspace(-4, 4, 10, dtype=np.float16) x = 10**x x = np.r_[-x, x] eps = np.finfo(x.dtype).eps y = x + x*eps*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) def test_float16_fail(self): nulp = 5 x = np.linspace(-4, 4, 10, dtype=np.float16) x = 10**x x = np.r_[-x, x] eps = np.finfo(x.dtype).eps y = x + x*eps*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) def test_float16_ignore_nan(self): # Ignore ULP differences between various NAN's # Note that MIPS may reverse quiet and signaling nans # so we use the builtin version as a base. offset = np.uint16(0xff) nan1_i16 = np.array(np.nan, dtype=np.float16).view(np.uint16) nan2_i16 = nan1_i16 ^ offset # nan payload on MIPS is all ones. nan1_f16 = nan1_i16.view(np.float16) nan2_f16 = nan2_i16.view(np.float16) assert_array_max_ulp(nan1_f16, nan2_f16, 0) def test_complex128_pass(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float64) x = 10**x x = np.r_[-x, x] xi = x + x*1j eps = np.finfo(x.dtype).eps y = x + x*eps*nulp/2. assert_array_almost_equal_nulp(xi, x + y*1j, nulp) assert_array_almost_equal_nulp(xi, y + x*1j, nulp) # The test condition needs to be at least a factor of sqrt(2) smaller # because the real and imaginary parts both change y = x + x*eps*nulp/4. assert_array_almost_equal_nulp(xi, y + y*1j, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp/2. assert_array_almost_equal_nulp(xi, x + y*1j, nulp) assert_array_almost_equal_nulp(xi, y + x*1j, nulp) y = x - x*epsneg*nulp/4. assert_array_almost_equal_nulp(xi, y + y*1j, nulp) def test_complex128_fail(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float64) x = 10**x x = np.r_[-x, x] xi = x + x*1j eps = np.finfo(x.dtype).eps y = x + x*eps*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, x + y*1j, nulp) assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + x*1j, nulp) # The test condition needs to be at least a factor of sqrt(2) smaller # because the real and imaginary parts both change y = x + x*eps*nulp assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + y*1j, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, x + y*1j, nulp) assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + x*1j, nulp) y = x - x*epsneg*nulp assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + y*1j, nulp) def test_complex64_pass(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float32) x = 10**x x = np.r_[-x, x] xi = x + x*1j eps = np.finfo(x.dtype).eps y = x + x*eps*nulp/2. assert_array_almost_equal_nulp(xi, x + y*1j, nulp) assert_array_almost_equal_nulp(xi, y + x*1j, nulp) y = x + x*eps*nulp/4. assert_array_almost_equal_nulp(xi, y + y*1j, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp/2. assert_array_almost_equal_nulp(xi, x + y*1j, nulp) assert_array_almost_equal_nulp(xi, y + x*1j, nulp) y = x - x*epsneg*nulp/4. assert_array_almost_equal_nulp(xi, y + y*1j, nulp) def test_complex64_fail(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float32) x = 10**x x = np.r_[-x, x] xi = x + x*1j eps = np.finfo(x.dtype).eps y = x + x*eps*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, x + y*1j, nulp) assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + x*1j, nulp) y = x + x*eps*nulp assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + y*1j, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, x + y*1j, nulp) assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + x*1j, nulp) y = x - x*epsneg*nulp assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + y*1j, nulp) class TestULP: def test_equal(self): x = np.random.randn(10) assert_array_max_ulp(x, x, maxulp=0) def test_single(self): # Generate 1 + small deviation, check that adding eps gives a few UNL x = np.ones(10).astype(np.float32) x += 0.01 * np.random.randn(10).astype(np.float32) eps = np.finfo(np.float32).eps assert_array_max_ulp(x, x+eps, maxulp=20) def test_double(self): # Generate 1 + small deviation, check that adding eps gives a few UNL x = np.ones(10).astype(np.float64) x += 0.01 * np.random.randn(10).astype(np.float64) eps = np.finfo(np.float64).eps assert_array_max_ulp(x, x+eps, maxulp=200) def test_inf(self): for dt in [np.float32, np.float64]: inf = np.array([np.inf]).astype(dt) big = np.array([np.finfo(dt).max]) assert_array_max_ulp(inf, big, maxulp=200) def test_nan(self): # Test that nan is 'far' from small, tiny, inf, max and min for dt in [np.float32, np.float64]: if dt == np.float32: maxulp = 1e6 else: maxulp = 1e12 inf = np.array([np.inf]).astype(dt) nan = np.array([np.nan]).astype(dt) big = np.array([np.finfo(dt).max]) tiny = np.array([np.finfo(dt).tiny]) zero = np.array([np.PZERO]).astype(dt) nzero = np.array([np.NZERO]).astype(dt) assert_raises(AssertionError, lambda: assert_array_max_ulp(nan, inf, maxulp=maxulp)) assert_raises(AssertionError, lambda: assert_array_max_ulp(nan, big, maxulp=maxulp)) assert_raises(AssertionError, lambda: assert_array_max_ulp(nan, tiny, maxulp=maxulp)) assert_raises(AssertionError, lambda: assert_array_max_ulp(nan, zero, maxulp=maxulp)) assert_raises(AssertionError, lambda: assert_array_max_ulp(nan, nzero, maxulp=maxulp)) class TestStringEqual: def test_simple(self): assert_string_equal("hello", "hello") assert_string_equal("hello\nmultiline", "hello\nmultiline") with pytest.raises(AssertionError) as exc_info: assert_string_equal("foo\nbar", "hello\nbar") msg = str(exc_info.value) assert_equal(msg, "Differences in strings:\n- foo\n+ hello") assert_raises(AssertionError, lambda: assert_string_equal("foo", "hello")) def test_regex(self): assert_string_equal("a+*b", "a+*b") assert_raises(AssertionError, lambda: assert_string_equal("aaa", "a+b")) def assert_warn_len_equal(mod, n_in_context): try: mod_warns = mod.__warningregistry__ except AttributeError: # the lack of a __warningregistry__ # attribute means that no warning has # occurred; this can be triggered in # a parallel test scenario, while in # a serial test scenario an initial # warning (and therefore the attribute) # are always created first mod_warns = {} num_warns = len(mod_warns) if 'version' in mod_warns: # Python 3 adds a 'version' entry to the registry, # do not count it. num_warns -= 1 assert_equal(num_warns, n_in_context) def test_warn_len_equal_call_scenarios(): # assert_warn_len_equal is called under # varying circumstances depending on serial # vs. parallel test scenarios; this test # simply aims to probe both code paths and # check that no assertion is uncaught # parallel scenario -- no warning issued yet class mod: pass mod_inst = mod() assert_warn_len_equal(mod=mod_inst, n_in_context=0) # serial test scenario -- the __warningregistry__ # attribute should be present class mod: def __init__(self): self.__warningregistry__ = {'warning1':1, 'warning2':2} mod_inst = mod() assert_warn_len_equal(mod=mod_inst, n_in_context=2) def _get_fresh_mod(): # Get this module, with warning registry empty my_mod = sys.modules[__name__] try: my_mod.__warningregistry__.clear() except AttributeError: # will not have a __warningregistry__ unless warning has been # raised in the module at some point pass return my_mod def test_clear_and_catch_warnings(): # Initial state of module, no warnings my_mod = _get_fresh_mod() assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) with clear_and_catch_warnings(modules=[my_mod]): warnings.simplefilter('ignore') warnings.warn('Some warning') assert_equal(my_mod.__warningregistry__, {}) # Without specified modules, don't clear warnings during context. # catch_warnings doesn't make an entry for 'ignore'. with clear_and_catch_warnings(): warnings.simplefilter('ignore') warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) # Manually adding two warnings to the registry: my_mod.__warningregistry__ = {'warning1': 1, 'warning2': 2} # Confirm that specifying module keeps old warning, does not add new with clear_and_catch_warnings(modules=[my_mod]): warnings.simplefilter('ignore') warnings.warn('Another warning') assert_warn_len_equal(my_mod, 2) # Another warning, no module spec it clears up registry with clear_and_catch_warnings(): warnings.simplefilter('ignore') warnings.warn('Another warning') assert_warn_len_equal(my_mod, 0) def test_suppress_warnings_module(): # Initial state of module, no warnings my_mod = _get_fresh_mod() assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) def warn_other_module(): # Apply along axis is implemented in python; stacklevel=2 means # we end up inside its module, not ours. def warn(arr): warnings.warn("Some warning 2", stacklevel=2) return arr np.apply_along_axis(warn, 0, [0]) # Test module based warning suppression: assert_warn_len_equal(my_mod, 0) with suppress_warnings() as sup: sup.record(UserWarning) # suppress warning from other module (may have .pyc ending), # if apply_along_axis is moved, had to be changed. sup.filter(module=np.lib.shape_base) warnings.warn("Some warning") warn_other_module() # Check that the suppression did test the file correctly (this module # got filtered) assert_equal(len(sup.log), 1) assert_equal(sup.log[0].message.args[0], "Some warning") assert_warn_len_equal(my_mod, 0) sup = suppress_warnings() # Will have to be changed if apply_along_axis is moved: sup.filter(module=my_mod) with sup: warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) # And test repeat works: sup.filter(module=my_mod) with sup: warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) # Without specified modules with suppress_warnings(): warnings.simplefilter('ignore') warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) def test_suppress_warnings_type(): # Initial state of module, no warnings my_mod = _get_fresh_mod() assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) # Test module based warning suppression: with suppress_warnings() as sup: sup.filter(UserWarning) warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) sup = suppress_warnings() sup.filter(UserWarning) with sup: warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) # And test repeat works: sup.filter(module=my_mod) with sup: warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) # Without specified modules with suppress_warnings(): warnings.simplefilter('ignore') warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) def test_suppress_warnings_decorate_no_record(): sup = suppress_warnings() sup.filter(UserWarning) @sup def warn(category): warnings.warn('Some warning', category) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") warn(UserWarning) # should be supppressed warn(RuntimeWarning) assert_equal(len(w), 1) def test_suppress_warnings_record(): sup = suppress_warnings() log1 = sup.record() with sup: log2 = sup.record(message='Some other warning 2') sup.filter(message='Some warning') warnings.warn('Some warning') warnings.warn('Some other warning') warnings.warn('Some other warning 2') assert_equal(len(sup.log), 2) assert_equal(len(log1), 1) assert_equal(len(log2),1) assert_equal(log2[0].message.args[0], 'Some other warning 2') # Do it again, with the same context to see if some warnings survived: with sup: log2 = sup.record(message='Some other warning 2') sup.filter(message='Some warning') warnings.warn('Some warning') warnings.warn('Some other warning') warnings.warn('Some other warning 2') assert_equal(len(sup.log), 2) assert_equal(len(log1), 1) assert_equal(len(log2), 1) assert_equal(log2[0].message.args[0], 'Some other warning 2') # Test nested: with suppress_warnings() as sup: sup.record() with suppress_warnings() as sup2: sup2.record(message='Some warning') warnings.warn('Some warning') warnings.warn('Some other warning') assert_equal(len(sup2.log), 1) assert_equal(len(sup.log), 1) def test_suppress_warnings_forwarding(): def warn_other_module(): # Apply along axis is implemented in python; stacklevel=2 means # we end up inside its module, not ours. def warn(arr): warnings.warn("Some warning", stacklevel=2) return arr np.apply_along_axis(warn, 0, [0]) with suppress_warnings() as sup: sup.record() with suppress_warnings("always"): for i in range(2): warnings.warn("Some warning") assert_equal(len(sup.log), 2) with suppress_warnings() as sup: sup.record() with suppress_warnings("location"): for i in range(2): warnings.warn("Some warning") warnings.warn("Some warning") assert_equal(len(sup.log), 2) with suppress_warnings() as sup: sup.record() with suppress_warnings("module"): for i in range(2): warnings.warn("Some warning") warnings.warn("Some warning") warn_other_module() assert_equal(len(sup.log), 2) with suppress_warnings() as sup: sup.record() with suppress_warnings("once"): for i in range(2): warnings.warn("Some warning") warnings.warn("Some other warning") warn_other_module() assert_equal(len(sup.log), 2) def test_tempdir(): with tempdir() as tdir: fpath = os.path.join(tdir, 'tmp') with open(fpath, 'w'): pass assert_(not os.path.isdir(tdir)) raised = False try: with tempdir() as tdir: raise ValueError() except ValueError: raised = True assert_(raised) assert_(not os.path.isdir(tdir)) def test_temppath(): with temppath() as fpath: with open(fpath, 'w'): pass assert_(not os.path.isfile(fpath)) raised = False try: with temppath() as fpath: raise ValueError() except ValueError: raised = True assert_(raised) assert_(not os.path.isfile(fpath)) class my_cacw(clear_and_catch_warnings): class_modules = (sys.modules[__name__],) def test_clear_and_catch_warnings_inherit(): # Test can subclass and add default modules my_mod = _get_fresh_mod() with my_cacw(): warnings.simplefilter('ignore') warnings.warn('Some warning') assert_equal(my_mod.__warningregistry__, {}) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") class TestAssertNoGcCycles: """ Test assert_no_gc_cycles """ def test_passes(self): def no_cycle(): b = [] b.append([]) return b with assert_no_gc_cycles(): no_cycle() assert_no_gc_cycles(no_cycle) def test_asserts(self): def make_cycle(): a = [] a.append(a) a.append(a) return a with assert_raises(AssertionError): with assert_no_gc_cycles(): make_cycle() with assert_raises(AssertionError): assert_no_gc_cycles(make_cycle) @pytest.mark.slow def test_fails(self): """ Test that in cases where the garbage cannot be collected, we raise an error, instead of hanging forever trying to clear it. """ class ReferenceCycleInDel: """ An object that not only contains a reference cycle, but creates new cycles whenever it's garbage-collected and its __del__ runs """ make_cycle = True def __init__(self): self.cycle = self def __del__(self): # break the current cycle so that `self` can be freed self.cycle = None if ReferenceCycleInDel.make_cycle: # but create a new one so that the garbage collector has more # work to do. ReferenceCycleInDel() try: w = weakref.ref(ReferenceCycleInDel()) try: with assert_raises(RuntimeError): # this will be unable to get a baseline empty garbage assert_no_gc_cycles(lambda: None) except AssertionError: # the above test is only necessary if the GC actually tried to free # our object anyway, which python 2.7 does not. if w() is not None: pytest.skip("GC does not call __del__ on cyclic objects") raise finally: # make sure that we stop creating reference cycles ReferenceCycleInDel.make_cycle = False
55,074
Python
33.123296
86
0.562788
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/testing/tests/test_doctesting.py
""" Doctests for NumPy-specific nose/doctest modifications """ #FIXME: None of these tests is run, because 'check' is not a recognized # testing prefix. # try the #random directive on the output line def check_random_directive(): ''' >>> 2+2 <BadExample object at 0x084D05AC> #random: may vary on your system ''' # check the implicit "import numpy as np" def check_implicit_np(): ''' >>> np.array([1,2,3]) array([1, 2, 3]) ''' # there's some extraneous whitespace around the correct responses def check_whitespace_enabled(): ''' # whitespace after the 3 >>> 1+2 3 # whitespace before the 7 >>> 3+4 7 ''' def check_empty_output(): """ Check that no output does not cause an error. This is related to nose bug 445; the numpy plugin changed the doctest-result-variable default and therefore hit this bug: http://code.google.com/p/python-nose/issues/detail?id=445 >>> a = 10 """ def check_skip(): """ Check skip directive The test below should not run >>> 1/0 #doctest: +SKIP """ if __name__ == '__main__': # Run tests outside numpy test rig import nose from numpy.testing.noseclasses import NumpyDoctest argv = ['', __file__, '--with-numpydoctest'] nose.core.TestProgram(argv=argv, addplugins=[NumpyDoctest()])
1,347
Python
22.241379
71
0.634744
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/_pyinstaller/test_pyinstaller.py
import subprocess from pathlib import Path import pytest # PyInstaller has been very unproactive about replacing 'imp' with 'importlib'. @pytest.mark.filterwarnings('ignore::DeprecationWarning') # It also leaks io.BytesIO()s. @pytest.mark.filterwarnings('ignore::ResourceWarning') @pytest.mark.parametrize("mode", ["--onedir", "--onefile"]) @pytest.mark.slow def test_pyinstaller(mode, tmp_path): """Compile and run pyinstaller-smoke.py using PyInstaller.""" pyinstaller_cli = pytest.importorskip("PyInstaller.__main__").run source = Path(__file__).with_name("pyinstaller-smoke.py").resolve() args = [ # Place all generated files in ``tmp_path``. '--workpath', str(tmp_path / "build"), '--distpath', str(tmp_path / "dist"), '--specpath', str(tmp_path), mode, str(source), ] pyinstaller_cli(args) if mode == "--onefile": exe = tmp_path / "dist" / source.stem else: exe = tmp_path / "dist" / source.stem / source.stem p = subprocess.run([str(exe)], check=True, stdout=subprocess.PIPE) assert p.stdout.strip() == b"I made it!"
1,135
Python
30.555555
79
0.643172
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/_pyinstaller/pyinstaller-smoke.py
"""A crude *bit of everything* smoke test to verify PyInstaller compatibility. PyInstaller typically goes wrong by forgetting to package modules, extension modules or shared libraries. This script should aim to touch as many of those as possible in an attempt to trip a ModuleNotFoundError or a DLL load failure due to an uncollected resource. Missing resources are unlikely to lead to arithmitic errors so there's generally no need to verify any calculation's output - merely that it made it to the end OK. This script should not explicitly import any of numpy's submodules as that gives PyInstaller undue hints that those submodules exist and should be collected (accessing implicitly loaded submodules is OK). """ import numpy as np a = np.arange(1., 10.).reshape((3, 3)) % 5 np.linalg.det(a) a @ a a @ a.T np.linalg.inv(a) np.sin(np.exp(a)) np.linalg.svd(a) np.linalg.eigh(a) np.unique(np.random.randint(0, 10, 100)) np.sort(np.random.uniform(0, 10, 100)) np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) np.ma.masked_array(np.arange(10), np.random.rand(10) < .5).sum() np.polynomial.Legendre([7, 8, 9]).roots() print("I made it!")
1,143
Python
33.666666
79
0.746282
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/_pyinstaller/hook-numpy.py
"""This hook should collect all binary files and any hidden modules that numpy needs. Our (some-what inadequate) docs for writing PyInstaller hooks are kept here: https://pyinstaller.readthedocs.io/en/stable/hooks.html """ from PyInstaller.compat import is_conda, is_pure_conda from PyInstaller.utils.hooks import collect_dynamic_libs, is_module_satisfies # Collect all DLLs inside numpy's installation folder, dump them into built # app's root. binaries = collect_dynamic_libs("numpy", ".") # If using Conda without any non-conda virtual environment manager: if is_pure_conda: # Assume running the NumPy from Conda-forge and collect it's DLLs from the # communal Conda bin directory. DLLs from NumPy's dependencies must also be # collected to capture MKL, OpenBlas, OpenMP, etc. from PyInstaller.utils.hooks import conda_support datas = conda_support.collect_dynamic_libs("numpy", dependencies=True) # Submodules PyInstaller cannot detect (probably because they are only imported # by extension modules, which PyInstaller cannot read). hiddenimports = ['numpy.core._dtype_ctypes'] if is_conda: hiddenimports.append("six") # Remove testing and building code and packages that are referenced throughout # NumPy but are not really dependencies. excludedimports = [ "scipy", "pytest", "nose", "f2py", "setuptools", "numpy.f2py", "distutils", "numpy.distutils", ]
1,422
Python
33.707316
79
0.746132
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/__version__.py
from numpy.version import version
34
Python
16.499992
33
0.852941
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/func2subr.py
#!/usr/bin/env python3 """ Rules for building C/API module with f2py2e. Copyright 1999,2000 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2004/11/26 11:13:06 $ Pearu Peterson """ __version__ = "$Revision: 1.16 $"[10:-1] f2py_version = 'See `f2py -v`' import copy from .auxfuncs import ( getfortranname, isexternal, isfunction, isfunction_wrap, isintent_in, isintent_out, islogicalfunction, ismoduleroutine, isscalar, issubroutine, issubroutine_wrap, outmess, show ) def var2fixfortran(vars, a, fa=None, f90mode=None): if fa is None: fa = a if a not in vars: show(vars) outmess('var2fixfortran: No definition for argument "%s".\n' % a) return '' if 'typespec' not in vars[a]: show(vars[a]) outmess('var2fixfortran: No typespec for argument "%s".\n' % a) return '' vardef = vars[a]['typespec'] if vardef == 'type' and 'typename' in vars[a]: vardef = '%s(%s)' % (vardef, vars[a]['typename']) selector = {} lk = '' if 'kindselector' in vars[a]: selector = vars[a]['kindselector'] lk = 'kind' elif 'charselector' in vars[a]: selector = vars[a]['charselector'] lk = 'len' if '*' in selector: if f90mode: if selector['*'] in ['*', ':', '(*)']: vardef = '%s(len=*)' % (vardef) else: vardef = '%s(%s=%s)' % (vardef, lk, selector['*']) else: if selector['*'] in ['*', ':']: vardef = '%s*(%s)' % (vardef, selector['*']) else: vardef = '%s*%s' % (vardef, selector['*']) else: if 'len' in selector: vardef = '%s(len=%s' % (vardef, selector['len']) if 'kind' in selector: vardef = '%s,kind=%s)' % (vardef, selector['kind']) else: vardef = '%s)' % (vardef) elif 'kind' in selector: vardef = '%s(kind=%s)' % (vardef, selector['kind']) vardef = '%s %s' % (vardef, fa) if 'dimension' in vars[a]: vardef = '%s(%s)' % (vardef, ','.join(vars[a]['dimension'])) return vardef def createfuncwrapper(rout, signature=0): assert isfunction(rout) extra_args = [] vars = rout['vars'] for a in rout['args']: v = rout['vars'][a] for i, d in enumerate(v.get('dimension', [])): if d == ':': dn = 'f2py_%s_d%s' % (a, i) dv = dict(typespec='integer', intent=['hide']) dv['='] = 'shape(%s, %s)' % (a, i) extra_args.append(dn) vars[dn] = dv v['dimension'][i] = dn rout['args'].extend(extra_args) need_interface = bool(extra_args) ret = [''] def add(line, ret=ret): ret[0] = '%s\n %s' % (ret[0], line) name = rout['name'] fortranname = getfortranname(rout) f90mode = ismoduleroutine(rout) newname = '%sf2pywrap' % (name) if newname not in vars: vars[newname] = vars[name] args = [newname] + rout['args'][1:] else: args = [newname] + rout['args'] l = var2fixfortran(vars, name, newname, f90mode) if l[:13] == 'character*(*)': if f90mode: l = 'character(len=10)' + l[13:] else: l = 'character*10' + l[13:] charselect = vars[name]['charselector'] if charselect.get('*', '') == '(*)': charselect['*'] = '10' sargs = ', '.join(args) if f90mode: add('subroutine f2pywrap_%s_%s (%s)' % (rout['modulename'], name, sargs)) if not signature: add('use %s, only : %s' % (rout['modulename'], fortranname)) else: add('subroutine f2pywrap%s (%s)' % (name, sargs)) if not need_interface: add('external %s' % (fortranname)) l = l + ', ' + fortranname if need_interface: for line in rout['saved_interface'].split('\n'): if line.lstrip().startswith('use ') and '__user__' not in line: add(line) args = args[1:] dumped_args = [] for a in args: if isexternal(vars[a]): add('external %s' % (a)) dumped_args.append(a) for a in args: if a in dumped_args: continue if isscalar(vars[a]): add(var2fixfortran(vars, a, f90mode=f90mode)) dumped_args.append(a) for a in args: if a in dumped_args: continue if isintent_in(vars[a]): add(var2fixfortran(vars, a, f90mode=f90mode)) dumped_args.append(a) for a in args: if a in dumped_args: continue add(var2fixfortran(vars, a, f90mode=f90mode)) add(l) if need_interface: if f90mode: # f90 module already defines needed interface pass else: add('interface') add(rout['saved_interface'].lstrip()) add('end interface') sargs = ', '.join([a for a in args if a not in extra_args]) if not signature: if islogicalfunction(rout): add('%s = .not.(.not.%s(%s))' % (newname, fortranname, sargs)) else: add('%s = %s(%s)' % (newname, fortranname, sargs)) if f90mode: add('end subroutine f2pywrap_%s_%s' % (rout['modulename'], name)) else: add('end') return ret[0] def createsubrwrapper(rout, signature=0): assert issubroutine(rout) extra_args = [] vars = rout['vars'] for a in rout['args']: v = rout['vars'][a] for i, d in enumerate(v.get('dimension', [])): if d == ':': dn = 'f2py_%s_d%s' % (a, i) dv = dict(typespec='integer', intent=['hide']) dv['='] = 'shape(%s, %s)' % (a, i) extra_args.append(dn) vars[dn] = dv v['dimension'][i] = dn rout['args'].extend(extra_args) need_interface = bool(extra_args) ret = [''] def add(line, ret=ret): ret[0] = '%s\n %s' % (ret[0], line) name = rout['name'] fortranname = getfortranname(rout) f90mode = ismoduleroutine(rout) args = rout['args'] sargs = ', '.join(args) if f90mode: add('subroutine f2pywrap_%s_%s (%s)' % (rout['modulename'], name, sargs)) if not signature: add('use %s, only : %s' % (rout['modulename'], fortranname)) else: add('subroutine f2pywrap%s (%s)' % (name, sargs)) if not need_interface: add('external %s' % (fortranname)) if need_interface: for line in rout['saved_interface'].split('\n'): if line.lstrip().startswith('use ') and '__user__' not in line: add(line) dumped_args = [] for a in args: if isexternal(vars[a]): add('external %s' % (a)) dumped_args.append(a) for a in args: if a in dumped_args: continue if isscalar(vars[a]): add(var2fixfortran(vars, a, f90mode=f90mode)) dumped_args.append(a) for a in args: if a in dumped_args: continue add(var2fixfortran(vars, a, f90mode=f90mode)) if need_interface: if f90mode: # f90 module already defines needed interface pass else: add('interface') for line in rout['saved_interface'].split('\n'): if line.lstrip().startswith('use ') and '__user__' in line: continue add(line) add('end interface') sargs = ', '.join([a for a in args if a not in extra_args]) if not signature: add('call %s(%s)' % (fortranname, sargs)) if f90mode: add('end subroutine f2pywrap_%s_%s' % (rout['modulename'], name)) else: add('end') return ret[0] def assubr(rout): if isfunction_wrap(rout): fortranname = getfortranname(rout) name = rout['name'] outmess('\t\tCreating wrapper for Fortran function "%s"("%s")...\n' % ( name, fortranname)) rout = copy.copy(rout) fname = name rname = fname if 'result' in rout: rname = rout['result'] rout['vars'][fname] = rout['vars'][rname] fvar = rout['vars'][fname] if not isintent_out(fvar): if 'intent' not in fvar: fvar['intent'] = [] fvar['intent'].append('out') flag = 1 for i in fvar['intent']: if i.startswith('out='): flag = 0 break if flag: fvar['intent'].append('out=%s' % (rname)) rout['args'][:] = [fname] + rout['args'] return rout, createfuncwrapper(rout) if issubroutine_wrap(rout): fortranname = getfortranname(rout) name = rout['name'] outmess('\t\tCreating wrapper for Fortran subroutine "%s"("%s")...\n' % ( name, fortranname)) rout = copy.copy(rout) return rout, createsubrwrapper(rout) return rout, ''
9,355
Python
30.083056
81
0.509139
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/cfuncs.py
#!/usr/bin/env python3 """ C declarations, CPP macros, and C functions for f2py2e. Only required declarations/macros/functions will be used. Copyright 1999,2000 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/05/06 11:42:34 $ Pearu Peterson """ import sys import copy from . import __version__ f2py_version = __version__.version errmess = sys.stderr.write ##################### Definitions ################## outneeds = {'includes0': [], 'includes': [], 'typedefs': [], 'typedefs_generated': [], 'userincludes': [], 'cppmacros': [], 'cfuncs': [], 'callbacks': [], 'f90modhooks': [], 'commonhooks': []} needs = {} includes0 = {'includes0': '/*need_includes0*/'} includes = {'includes': '/*need_includes*/'} userincludes = {'userincludes': '/*need_userincludes*/'} typedefs = {'typedefs': '/*need_typedefs*/'} typedefs_generated = {'typedefs_generated': '/*need_typedefs_generated*/'} cppmacros = {'cppmacros': '/*need_cppmacros*/'} cfuncs = {'cfuncs': '/*need_cfuncs*/'} callbacks = {'callbacks': '/*need_callbacks*/'} f90modhooks = {'f90modhooks': '/*need_f90modhooks*/', 'initf90modhooksstatic': '/*initf90modhooksstatic*/', 'initf90modhooksdynamic': '/*initf90modhooksdynamic*/', } commonhooks = {'commonhooks': '/*need_commonhooks*/', 'initcommonhooks': '/*need_initcommonhooks*/', } ############ Includes ################### includes0['math.h'] = '#include <math.h>' includes0['string.h'] = '#include <string.h>' includes0['setjmp.h'] = '#include <setjmp.h>' includes['arrayobject.h'] = '''#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API #include "arrayobject.h"''' includes['arrayobject.h'] = '#include "fortranobject.h"' includes['stdarg.h'] = '#include <stdarg.h>' ############# Type definitions ############### typedefs['unsigned_char'] = 'typedef unsigned char unsigned_char;' typedefs['unsigned_short'] = 'typedef unsigned short unsigned_short;' typedefs['unsigned_long'] = 'typedef unsigned long unsigned_long;' typedefs['signed_char'] = 'typedef signed char signed_char;' typedefs['long_long'] = """\ #if defined(NPY_OS_WIN32) typedef __int64 long_long; #else typedef long long long_long; typedef unsigned long long unsigned_long_long; #endif """ typedefs['unsigned_long_long'] = """\ #if defined(NPY_OS_WIN32) typedef __uint64 long_long; #else typedef unsigned long long unsigned_long_long; #endif """ typedefs['long_double'] = """\ #ifndef _LONG_DOUBLE typedef long double long_double; #endif """ typedefs[ 'complex_long_double'] = 'typedef struct {long double r,i;} complex_long_double;' typedefs['complex_float'] = 'typedef struct {float r,i;} complex_float;' typedefs['complex_double'] = 'typedef struct {double r,i;} complex_double;' typedefs['string'] = """typedef char * string;""" ############### CPP macros #################### cppmacros['CFUNCSMESS'] = """\ #ifdef DEBUGCFUNCS #define CFUNCSMESS(mess) fprintf(stderr,\"debug-capi:\"mess); #define CFUNCSMESSPY(mess,obj) CFUNCSMESS(mess) \\ PyObject_Print((PyObject *)obj,stderr,Py_PRINT_RAW);\\ fprintf(stderr,\"\\n\"); #else #define CFUNCSMESS(mess) #define CFUNCSMESSPY(mess,obj) #endif """ cppmacros['F_FUNC'] = """\ #if defined(PREPEND_FORTRAN) #if defined(NO_APPEND_FORTRAN) #if defined(UPPERCASE_FORTRAN) #define F_FUNC(f,F) _##F #else #define F_FUNC(f,F) _##f #endif #else #if defined(UPPERCASE_FORTRAN) #define F_FUNC(f,F) _##F##_ #else #define F_FUNC(f,F) _##f##_ #endif #endif #else #if defined(NO_APPEND_FORTRAN) #if defined(UPPERCASE_FORTRAN) #define F_FUNC(f,F) F #else #define F_FUNC(f,F) f #endif #else #if defined(UPPERCASE_FORTRAN) #define F_FUNC(f,F) F##_ #else #define F_FUNC(f,F) f##_ #endif #endif #endif #if defined(UNDERSCORE_G77) #define F_FUNC_US(f,F) F_FUNC(f##_,F##_) #else #define F_FUNC_US(f,F) F_FUNC(f,F) #endif """ cppmacros['F_WRAPPEDFUNC'] = """\ #if defined(PREPEND_FORTRAN) #if defined(NO_APPEND_FORTRAN) #if defined(UPPERCASE_FORTRAN) #define F_WRAPPEDFUNC(f,F) _F2PYWRAP##F #else #define F_WRAPPEDFUNC(f,F) _f2pywrap##f #endif #else #if defined(UPPERCASE_FORTRAN) #define F_WRAPPEDFUNC(f,F) _F2PYWRAP##F##_ #else #define F_WRAPPEDFUNC(f,F) _f2pywrap##f##_ #endif #endif #else #if defined(NO_APPEND_FORTRAN) #if defined(UPPERCASE_FORTRAN) #define F_WRAPPEDFUNC(f,F) F2PYWRAP##F #else #define F_WRAPPEDFUNC(f,F) f2pywrap##f #endif #else #if defined(UPPERCASE_FORTRAN) #define F_WRAPPEDFUNC(f,F) F2PYWRAP##F##_ #else #define F_WRAPPEDFUNC(f,F) f2pywrap##f##_ #endif #endif #endif #if defined(UNDERSCORE_G77) #define F_WRAPPEDFUNC_US(f,F) F_WRAPPEDFUNC(f##_,F##_) #else #define F_WRAPPEDFUNC_US(f,F) F_WRAPPEDFUNC(f,F) #endif """ cppmacros['F_MODFUNC'] = """\ #if defined(F90MOD2CCONV1) /*E.g. Compaq Fortran */ #if defined(NO_APPEND_FORTRAN) #define F_MODFUNCNAME(m,f) $ ## m ## $ ## f #else #define F_MODFUNCNAME(m,f) $ ## m ## $ ## f ## _ #endif #endif #if defined(F90MOD2CCONV2) /*E.g. IBM XL Fortran, not tested though */ #if defined(NO_APPEND_FORTRAN) #define F_MODFUNCNAME(m,f) __ ## m ## _MOD_ ## f #else #define F_MODFUNCNAME(m,f) __ ## m ## _MOD_ ## f ## _ #endif #endif #if defined(F90MOD2CCONV3) /*E.g. MIPSPro Compilers */ #if defined(NO_APPEND_FORTRAN) #define F_MODFUNCNAME(m,f) f ## .in. ## m #else #define F_MODFUNCNAME(m,f) f ## .in. ## m ## _ #endif #endif /* #if defined(UPPERCASE_FORTRAN) #define F_MODFUNC(m,M,f,F) F_MODFUNCNAME(M,F) #else #define F_MODFUNC(m,M,f,F) F_MODFUNCNAME(m,f) #endif */ #define F_MODFUNC(m,f) (*(f2pymodstruct##m##.##f)) """ cppmacros['SWAPUNSAFE'] = """\ #define SWAP(a,b) (size_t)(a) = ((size_t)(a) ^ (size_t)(b));\\ (size_t)(b) = ((size_t)(a) ^ (size_t)(b));\\ (size_t)(a) = ((size_t)(a) ^ (size_t)(b)) """ cppmacros['SWAP'] = """\ #define SWAP(a,b,t) {\\ t *c;\\ c = a;\\ a = b;\\ b = c;} """ # cppmacros['ISCONTIGUOUS']='#define ISCONTIGUOUS(m) (PyArray_FLAGS(m) & # NPY_ARRAY_C_CONTIGUOUS)' cppmacros['PRINTPYOBJERR'] = """\ #define PRINTPYOBJERR(obj)\\ fprintf(stderr,\"#modulename#.error is related to \");\\ PyObject_Print((PyObject *)obj,stderr,Py_PRINT_RAW);\\ fprintf(stderr,\"\\n\"); """ cppmacros['MINMAX'] = """\ #ifndef max #define max(a,b) ((a > b) ? (a) : (b)) #endif #ifndef min #define min(a,b) ((a < b) ? (a) : (b)) #endif #ifndef MAX #define MAX(a,b) ((a > b) ? (a) : (b)) #endif #ifndef MIN #define MIN(a,b) ((a < b) ? (a) : (b)) #endif """ needs['len..'] = ['f2py_size'] cppmacros['len..'] = """\ #define rank(var) var ## _Rank #define shape(var,dim) var ## _Dims[dim] #define old_rank(var) (PyArray_NDIM((PyArrayObject *)(capi_ ## var ## _tmp))) #define old_shape(var,dim) PyArray_DIM(((PyArrayObject *)(capi_ ## var ## _tmp)),dim) #define fshape(var,dim) shape(var,rank(var)-dim-1) #define len(var) shape(var,0) #define flen(var) fshape(var,0) #define old_size(var) PyArray_SIZE((PyArrayObject *)(capi_ ## var ## _tmp)) /* #define index(i) capi_i ## i */ #define slen(var) capi_ ## var ## _len #define size(var, ...) f2py_size((PyArrayObject *)(capi_ ## var ## _tmp), ## __VA_ARGS__, -1) """ needs['f2py_size'] = ['stdarg.h'] cfuncs['f2py_size'] = """\ static int f2py_size(PyArrayObject* var, ...) { npy_int sz = 0; npy_int dim; npy_int rank; va_list argp; va_start(argp, var); dim = va_arg(argp, npy_int); if (dim==-1) { sz = PyArray_SIZE(var); } else { rank = PyArray_NDIM(var); if (dim>=1 && dim<=rank) sz = PyArray_DIM(var, dim-1); else fprintf(stderr, \"f2py_size: 2nd argument value=%d fails to satisfy 1<=value<=%d. Result will be 0.\\n\", dim, rank); } va_end(argp); return sz; } """ cppmacros[ 'pyobj_from_char1'] = '#define pyobj_from_char1(v) (PyLong_FromLong(v))' cppmacros[ 'pyobj_from_short1'] = '#define pyobj_from_short1(v) (PyLong_FromLong(v))' needs['pyobj_from_int1'] = ['signed_char'] cppmacros['pyobj_from_int1'] = '#define pyobj_from_int1(v) (PyLong_FromLong(v))' cppmacros[ 'pyobj_from_long1'] = '#define pyobj_from_long1(v) (PyLong_FromLong(v))' needs['pyobj_from_long_long1'] = ['long_long'] cppmacros['pyobj_from_long_long1'] = """\ #ifdef HAVE_LONG_LONG #define pyobj_from_long_long1(v) (PyLong_FromLongLong(v)) #else #warning HAVE_LONG_LONG is not available. Redefining pyobj_from_long_long. #define pyobj_from_long_long1(v) (PyLong_FromLong(v)) #endif """ needs['pyobj_from_long_double1'] = ['long_double'] cppmacros[ 'pyobj_from_long_double1'] = '#define pyobj_from_long_double1(v) (PyFloat_FromDouble(v))' cppmacros[ 'pyobj_from_double1'] = '#define pyobj_from_double1(v) (PyFloat_FromDouble(v))' cppmacros[ 'pyobj_from_float1'] = '#define pyobj_from_float1(v) (PyFloat_FromDouble(v))' needs['pyobj_from_complex_long_double1'] = ['complex_long_double'] cppmacros[ 'pyobj_from_complex_long_double1'] = '#define pyobj_from_complex_long_double1(v) (PyComplex_FromDoubles(v.r,v.i))' needs['pyobj_from_complex_double1'] = ['complex_double'] cppmacros[ 'pyobj_from_complex_double1'] = '#define pyobj_from_complex_double1(v) (PyComplex_FromDoubles(v.r,v.i))' needs['pyobj_from_complex_float1'] = ['complex_float'] cppmacros[ 'pyobj_from_complex_float1'] = '#define pyobj_from_complex_float1(v) (PyComplex_FromDoubles(v.r,v.i))' needs['pyobj_from_string1'] = ['string'] cppmacros[ 'pyobj_from_string1'] = '#define pyobj_from_string1(v) (PyUnicode_FromString((char *)v))' needs['pyobj_from_string1size'] = ['string'] cppmacros[ 'pyobj_from_string1size'] = '#define pyobj_from_string1size(v,len) (PyUnicode_FromStringAndSize((char *)v, len))' needs['TRYPYARRAYTEMPLATE'] = ['PRINTPYOBJERR'] cppmacros['TRYPYARRAYTEMPLATE'] = """\ /* New SciPy */ #define TRYPYARRAYTEMPLATECHAR case NPY_STRING: *(char *)(PyArray_DATA(arr))=*v; break; #define TRYPYARRAYTEMPLATELONG case NPY_LONG: *(long *)(PyArray_DATA(arr))=*v; break; #define TRYPYARRAYTEMPLATEOBJECT case NPY_OBJECT: PyArray_SETITEM(arr,PyArray_DATA(arr),pyobj_from_ ## ctype ## 1(*v)); break; #define TRYPYARRAYTEMPLATE(ctype,typecode) \\ PyArrayObject *arr = NULL;\\ if (!obj) return -2;\\ if (!PyArray_Check(obj)) return -1;\\ if (!(arr=(PyArrayObject *)obj)) {fprintf(stderr,\"TRYPYARRAYTEMPLATE:\");PRINTPYOBJERR(obj);return 0;}\\ if (PyArray_DESCR(arr)->type==typecode) {*(ctype *)(PyArray_DATA(arr))=*v; return 1;}\\ switch (PyArray_TYPE(arr)) {\\ case NPY_DOUBLE: *(npy_double *)(PyArray_DATA(arr))=*v; break;\\ case NPY_INT: *(npy_int *)(PyArray_DATA(arr))=*v; break;\\ case NPY_LONG: *(npy_long *)(PyArray_DATA(arr))=*v; break;\\ case NPY_FLOAT: *(npy_float *)(PyArray_DATA(arr))=*v; break;\\ case NPY_CDOUBLE: *(npy_double *)(PyArray_DATA(arr))=*v; break;\\ case NPY_CFLOAT: *(npy_float *)(PyArray_DATA(arr))=*v; break;\\ case NPY_BOOL: *(npy_bool *)(PyArray_DATA(arr))=(*v!=0); break;\\ case NPY_UBYTE: *(npy_ubyte *)(PyArray_DATA(arr))=*v; break;\\ case NPY_BYTE: *(npy_byte *)(PyArray_DATA(arr))=*v; break;\\ case NPY_SHORT: *(npy_short *)(PyArray_DATA(arr))=*v; break;\\ case NPY_USHORT: *(npy_ushort *)(PyArray_DATA(arr))=*v; break;\\ case NPY_UINT: *(npy_uint *)(PyArray_DATA(arr))=*v; break;\\ case NPY_ULONG: *(npy_ulong *)(PyArray_DATA(arr))=*v; break;\\ case NPY_LONGLONG: *(npy_longlong *)(PyArray_DATA(arr))=*v; break;\\ case NPY_ULONGLONG: *(npy_ulonglong *)(PyArray_DATA(arr))=*v; break;\\ case NPY_LONGDOUBLE: *(npy_longdouble *)(PyArray_DATA(arr))=*v; break;\\ case NPY_CLONGDOUBLE: *(npy_longdouble *)(PyArray_DATA(arr))=*v; break;\\ case NPY_OBJECT: PyArray_SETITEM(arr, PyArray_DATA(arr), pyobj_from_ ## ctype ## 1(*v)); break;\\ default: return -2;\\ };\\ return 1 """ needs['TRYCOMPLEXPYARRAYTEMPLATE'] = ['PRINTPYOBJERR'] cppmacros['TRYCOMPLEXPYARRAYTEMPLATE'] = """\ #define TRYCOMPLEXPYARRAYTEMPLATEOBJECT case NPY_OBJECT: PyArray_SETITEM(arr, PyArray_DATA(arr), pyobj_from_complex_ ## ctype ## 1((*v))); break; #define TRYCOMPLEXPYARRAYTEMPLATE(ctype,typecode)\\ PyArrayObject *arr = NULL;\\ if (!obj) return -2;\\ if (!PyArray_Check(obj)) return -1;\\ if (!(arr=(PyArrayObject *)obj)) {fprintf(stderr,\"TRYCOMPLEXPYARRAYTEMPLATE:\");PRINTPYOBJERR(obj);return 0;}\\ if (PyArray_DESCR(arr)->type==typecode) {\\ *(ctype *)(PyArray_DATA(arr))=(*v).r;\\ *(ctype *)(PyArray_DATA(arr)+sizeof(ctype))=(*v).i;\\ return 1;\\ }\\ switch (PyArray_TYPE(arr)) {\\ case NPY_CDOUBLE: *(npy_double *)(PyArray_DATA(arr))=(*v).r;\\ *(npy_double *)(PyArray_DATA(arr)+sizeof(npy_double))=(*v).i;\\ break;\\ case NPY_CFLOAT: *(npy_float *)(PyArray_DATA(arr))=(*v).r;\\ *(npy_float *)(PyArray_DATA(arr)+sizeof(npy_float))=(*v).i;\\ break;\\ case NPY_DOUBLE: *(npy_double *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_LONG: *(npy_long *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_FLOAT: *(npy_float *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_INT: *(npy_int *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_SHORT: *(npy_short *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_UBYTE: *(npy_ubyte *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_BYTE: *(npy_byte *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_BOOL: *(npy_bool *)(PyArray_DATA(arr))=((*v).r!=0 && (*v).i!=0); break;\\ case NPY_USHORT: *(npy_ushort *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_UINT: *(npy_uint *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_ULONG: *(npy_ulong *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_LONGLONG: *(npy_longlong *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_ULONGLONG: *(npy_ulonglong *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_LONGDOUBLE: *(npy_longdouble *)(PyArray_DATA(arr))=(*v).r; break;\\ case NPY_CLONGDOUBLE: *(npy_longdouble *)(PyArray_DATA(arr))=(*v).r;\\ *(npy_longdouble *)(PyArray_DATA(arr)+sizeof(npy_longdouble))=(*v).i;\\ break;\\ case NPY_OBJECT: PyArray_SETITEM(arr, PyArray_DATA(arr), pyobj_from_complex_ ## ctype ## 1((*v))); break;\\ default: return -2;\\ };\\ return -1; """ # cppmacros['NUMFROMARROBJ']="""\ # define NUMFROMARROBJ(typenum,ctype) \\ # if (PyArray_Check(obj)) arr = (PyArrayObject *)obj;\\ # else arr = (PyArrayObject *)PyArray_ContiguousFromObject(obj,typenum,0,0);\\ # if (arr) {\\ # if (PyArray_TYPE(arr)==NPY_OBJECT) {\\ # if (!ctype ## _from_pyobj(v,(PyArray_DESCR(arr)->getitem)(PyArray_DATA(arr)),\"\"))\\ # goto capi_fail;\\ # } else {\\ # (PyArray_DESCR(arr)->cast[typenum])(PyArray_DATA(arr),1,(char*)v,1,1);\\ # }\\ # if ((PyObject *)arr != obj) { Py_DECREF(arr); }\\ # return 1;\\ # } # """ # XXX: Note that CNUMFROMARROBJ is identical with NUMFROMARROBJ # cppmacros['CNUMFROMARROBJ']="""\ # define CNUMFROMARROBJ(typenum,ctype) \\ # if (PyArray_Check(obj)) arr = (PyArrayObject *)obj;\\ # else arr = (PyArrayObject *)PyArray_ContiguousFromObject(obj,typenum,0,0);\\ # if (arr) {\\ # if (PyArray_TYPE(arr)==NPY_OBJECT) {\\ # if (!ctype ## _from_pyobj(v,(PyArray_DESCR(arr)->getitem)(PyArray_DATA(arr)),\"\"))\\ # goto capi_fail;\\ # } else {\\ # (PyArray_DESCR(arr)->cast[typenum])((void *)(PyArray_DATA(arr)),1,(void *)(v),1,1);\\ # }\\ # if ((PyObject *)arr != obj) { Py_DECREF(arr); }\\ # return 1;\\ # } # """ needs['GETSTRFROMPYTUPLE'] = ['STRINGCOPYN', 'PRINTPYOBJERR'] cppmacros['GETSTRFROMPYTUPLE'] = """\ #define GETSTRFROMPYTUPLE(tuple,index,str,len) {\\ PyObject *rv_cb_str = PyTuple_GetItem((tuple),(index));\\ if (rv_cb_str == NULL)\\ goto capi_fail;\\ if (PyBytes_Check(rv_cb_str)) {\\ str[len-1]='\\0';\\ STRINGCOPYN((str),PyBytes_AS_STRING((PyBytesObject*)rv_cb_str),(len));\\ } else {\\ PRINTPYOBJERR(rv_cb_str);\\ PyErr_SetString(#modulename#_error,\"string object expected\");\\ goto capi_fail;\\ }\\ } """ cppmacros['GETSCALARFROMPYTUPLE'] = """\ #define GETSCALARFROMPYTUPLE(tuple,index,var,ctype,mess) {\\ if ((capi_tmp = PyTuple_GetItem((tuple),(index)))==NULL) goto capi_fail;\\ if (!(ctype ## _from_pyobj((var),capi_tmp,mess)))\\ goto capi_fail;\\ } """ cppmacros['FAILNULL'] = """\\ #define FAILNULL(p) do { \\ if ((p) == NULL) { \\ PyErr_SetString(PyExc_MemoryError, "NULL pointer found"); \\ goto capi_fail; \\ } \\ } while (0) """ needs['MEMCOPY'] = ['string.h', 'FAILNULL'] cppmacros['MEMCOPY'] = """\ #define MEMCOPY(to,from,n)\\ do { FAILNULL(to); FAILNULL(from); (void)memcpy(to,from,n); } while (0) """ cppmacros['STRINGMALLOC'] = """\ #define STRINGMALLOC(str,len)\\ if ((str = (string)malloc(len+1)) == NULL) {\\ PyErr_SetString(PyExc_MemoryError, \"out of memory\");\\ goto capi_fail;\\ } else {\\ (str)[len] = '\\0';\\ } """ cppmacros['STRINGFREE'] = """\ #define STRINGFREE(str) do {if (!(str == NULL)) free(str);} while (0) """ needs['STRINGPADN'] = ['string.h'] cppmacros['STRINGPADN'] = """\ /* STRINGPADN replaces null values with padding values from the right. `to` must have size of at least N bytes. If the `to[N-1]` has null value, then replace it and all the preceding, nulls with the given padding. STRINGPADN(to, N, PADDING, NULLVALUE) is an inverse operation. */ #define STRINGPADN(to, N, NULLVALUE, PADDING) \\ do { \\ int _m = (N); \\ char *_to = (to); \\ for (_m -= 1; _m >= 0 && _to[_m] == NULLVALUE; _m--) { \\ _to[_m] = PADDING; \\ } \\ } while (0) """ needs['STRINGCOPYN'] = ['string.h', 'FAILNULL'] cppmacros['STRINGCOPYN'] = """\ /* STRINGCOPYN copies N bytes. `to` and `from` buffers must have sizes of at least N bytes. */ #define STRINGCOPYN(to,from,N) \\ do { \\ int _m = (N); \\ char *_to = (to); \\ char *_from = (from); \\ FAILNULL(_to); FAILNULL(_from); \\ (void)strncpy(_to, _from, _m); \\ } while (0) """ needs['STRINGCOPY'] = ['string.h', 'FAILNULL'] cppmacros['STRINGCOPY'] = """\ #define STRINGCOPY(to,from)\\ do { FAILNULL(to); FAILNULL(from); (void)strcpy(to,from); } while (0) """ cppmacros['CHECKGENERIC'] = """\ #define CHECKGENERIC(check,tcheck,name) \\ if (!(check)) {\\ PyErr_SetString(#modulename#_error,\"(\"tcheck\") failed for \"name);\\ /*goto capi_fail;*/\\ } else """ cppmacros['CHECKARRAY'] = """\ #define CHECKARRAY(check,tcheck,name) \\ if (!(check)) {\\ PyErr_SetString(#modulename#_error,\"(\"tcheck\") failed for \"name);\\ /*goto capi_fail;*/\\ } else """ cppmacros['CHECKSTRING'] = """\ #define CHECKSTRING(check,tcheck,name,show,var)\\ if (!(check)) {\\ char errstring[256];\\ sprintf(errstring, \"%s: \"show, \"(\"tcheck\") failed for \"name, slen(var), var);\\ PyErr_SetString(#modulename#_error, errstring);\\ /*goto capi_fail;*/\\ } else """ cppmacros['CHECKSCALAR'] = """\ #define CHECKSCALAR(check,tcheck,name,show,var)\\ if (!(check)) {\\ char errstring[256];\\ sprintf(errstring, \"%s: \"show, \"(\"tcheck\") failed for \"name, var);\\ PyErr_SetString(#modulename#_error,errstring);\\ /*goto capi_fail;*/\\ } else """ # cppmacros['CHECKDIMS']="""\ # define CHECKDIMS(dims,rank) \\ # for (int i=0;i<(rank);i++)\\ # if (dims[i]<0) {\\ # fprintf(stderr,\"Unspecified array argument requires a complete dimension specification.\\n\");\\ # goto capi_fail;\\ # } # """ cppmacros[ 'ARRSIZE'] = '#define ARRSIZE(dims,rank) (_PyArray_multiply_list(dims,rank))' cppmacros['OLDPYNUM'] = """\ #ifdef OLDPYNUM #error You need to install NumPy version 0.13 or higher. See https://scipy.org/install.html #endif """ cppmacros["F2PY_THREAD_LOCAL_DECL"] = """\ #ifndef F2PY_THREAD_LOCAL_DECL #if defined(_MSC_VER) #define F2PY_THREAD_LOCAL_DECL __declspec(thread) #elif defined(NPY_OS_MINGW) #define F2PY_THREAD_LOCAL_DECL __thread #elif defined(__STDC_VERSION__) \\ && (__STDC_VERSION__ >= 201112L) \\ && !defined(__STDC_NO_THREADS__) \\ && (!defined(__GLIBC__) || __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 12)) \\ && !defined(NPY_OS_OPENBSD) /* __STDC_NO_THREADS__ was first defined in a maintenance release of glibc 2.12, see https://lists.gnu.org/archive/html/commit-hurd/2012-07/msg00180.html, so `!defined(__STDC_NO_THREADS__)` may give false positive for the existence of `threads.h` when using an older release of glibc 2.12 See gh-19437 for details on OpenBSD */ #include <threads.h> #define F2PY_THREAD_LOCAL_DECL thread_local #elif defined(__GNUC__) \\ && (__GNUC__ > 4 || (__GNUC__ == 4 && (__GNUC_MINOR__ >= 4))) #define F2PY_THREAD_LOCAL_DECL __thread #endif #endif """ ################# C functions ############### cfuncs['calcarrindex'] = """\ static int calcarrindex(int *i,PyArrayObject *arr) { int k,ii = i[0]; for (k=1; k < PyArray_NDIM(arr); k++) ii += (ii*(PyArray_DIM(arr,k) - 1)+i[k]); /* assuming contiguous arr */ return ii; }""" cfuncs['calcarrindextr'] = """\ static int calcarrindextr(int *i,PyArrayObject *arr) { int k,ii = i[PyArray_NDIM(arr)-1]; for (k=1; k < PyArray_NDIM(arr); k++) ii += (ii*(PyArray_DIM(arr,PyArray_NDIM(arr)-k-1) - 1)+i[PyArray_NDIM(arr)-k-1]); /* assuming contiguous arr */ return ii; }""" cfuncs['forcomb'] = """\ static struct { int nd;npy_intp *d;int *i,*i_tr,tr; } forcombcache; static int initforcomb(npy_intp *dims,int nd,int tr) { int k; if (dims==NULL) return 0; if (nd<0) return 0; forcombcache.nd = nd; forcombcache.d = dims; forcombcache.tr = tr; if ((forcombcache.i = (int *)malloc(sizeof(int)*nd))==NULL) return 0; if ((forcombcache.i_tr = (int *)malloc(sizeof(int)*nd))==NULL) return 0; for (k=1;k<nd;k++) { forcombcache.i[k] = forcombcache.i_tr[nd-k-1] = 0; } forcombcache.i[0] = forcombcache.i_tr[nd-1] = -1; return 1; } static int *nextforcomb(void) { int j,*i,*i_tr,k; int nd=forcombcache.nd; if ((i=forcombcache.i) == NULL) return NULL; if ((i_tr=forcombcache.i_tr) == NULL) return NULL; if (forcombcache.d == NULL) return NULL; i[0]++; if (i[0]==forcombcache.d[0]) { j=1; while ((j<nd) && (i[j]==forcombcache.d[j]-1)) j++; if (j==nd) { free(i); free(i_tr); return NULL; } for (k=0;k<j;k++) i[k] = i_tr[nd-k-1] = 0; i[j]++; i_tr[nd-j-1]++; } else i_tr[nd-1]++; if (forcombcache.tr) return i_tr; return i; }""" needs['try_pyarr_from_string'] = ['STRINGCOPYN', 'PRINTPYOBJERR', 'string'] cfuncs['try_pyarr_from_string'] = """\ /* try_pyarr_from_string copies str[:len(obj)] to the data of an `ndarray`. If obj is an `ndarray`, it is assumed to be contiguous. If the specified len==-1, str must be null-terminated. */ static int try_pyarr_from_string(PyObject *obj, const string str, const int len) { #ifdef DEBUGCFUNCS fprintf(stderr, "try_pyarr_from_string(str='%s', len=%d, obj=%p)\\n", (char*)str,len, obj); #endif if (PyArray_Check(obj)) { PyArrayObject *arr = (PyArrayObject *)obj; assert(ISCONTIGUOUS(arr)); string buf = PyArray_DATA(arr); npy_intp n = len; if (n == -1) { /* Assuming null-terminated str. */ n = strlen(str); } if (n > PyArray_NBYTES(arr)) { n = PyArray_NBYTES(arr); } STRINGCOPYN(buf, str, n); return 1; } capi_fail: PRINTPYOBJERR(obj); PyErr_SetString(#modulename#_error, \"try_pyarr_from_string failed\"); return 0; } """ needs['string_from_pyobj'] = ['string', 'STRINGMALLOC', 'STRINGCOPYN'] cfuncs['string_from_pyobj'] = """\ /* Create a new string buffer `str` of at most length `len` from a Python string-like object `obj`. The string buffer has given size (len) or the size of inistr when len==-1. The string buffer is padded with blanks: in Fortran, trailing blanks are insignificant contrary to C nulls. */ static int string_from_pyobj(string *str, int *len, const string inistr, PyObject *obj, const char *errmess) { PyObject *tmp = NULL; string buf = NULL; npy_intp n = -1; #ifdef DEBUGCFUNCS fprintf(stderr,\"string_from_pyobj(str='%s',len=%d,inistr='%s',obj=%p)\\n\", (char*)str, *len, (char *)inistr, obj); #endif if (obj == Py_None) { n = strlen(inistr); buf = inistr; } else if (PyArray_Check(obj)) { PyArrayObject *arr = (PyArrayObject *)obj; if (!ISCONTIGUOUS(arr)) { PyErr_SetString(PyExc_ValueError, \"array object is non-contiguous.\"); goto capi_fail; } n = PyArray_NBYTES(arr); buf = PyArray_DATA(arr); n = strnlen(buf, n); } else { if (PyBytes_Check(obj)) { tmp = obj; Py_INCREF(tmp); } else if (PyUnicode_Check(obj)) { tmp = PyUnicode_AsASCIIString(obj); } else { PyObject *tmp2; tmp2 = PyObject_Str(obj); if (tmp2) { tmp = PyUnicode_AsASCIIString(tmp2); Py_DECREF(tmp2); } else { tmp = NULL; } } if (tmp == NULL) goto capi_fail; n = PyBytes_GET_SIZE(tmp); buf = PyBytes_AS_STRING(tmp); } if (*len == -1) { /* TODO: change the type of `len` so that we can remove this */ if (n > NPY_MAX_INT) { PyErr_SetString(PyExc_OverflowError, "object too large for a 32-bit int"); goto capi_fail; } *len = n; } else if (*len < n) { /* discard the last (len-n) bytes of input buf */ n = *len; } if (n < 0 || *len < 0 || buf == NULL) { goto capi_fail; } STRINGMALLOC(*str, *len); // *str is allocated with size (*len + 1) if (n < *len) { /* Pad fixed-width string with nulls. The caller will replace nulls with blanks when the corresponding argument is not intent(c). */ memset(*str + n, '\\0', *len - n); } STRINGCOPYN(*str, buf, n); Py_XDECREF(tmp); return 1; capi_fail: Py_XDECREF(tmp); { PyObject* err = PyErr_Occurred(); if (err == NULL) { err = #modulename#_error; } PyErr_SetString(err, errmess); } return 0; } """ needs['char_from_pyobj'] = ['int_from_pyobj'] cfuncs['char_from_pyobj'] = """\ static int char_from_pyobj(char* v, PyObject *obj, const char *errmess) { int i = 0; if (int_from_pyobj(&i, obj, errmess)) { *v = (char)i; return 1; } return 0; } """ needs['signed_char_from_pyobj'] = ['int_from_pyobj', 'signed_char'] cfuncs['signed_char_from_pyobj'] = """\ static int signed_char_from_pyobj(signed_char* v, PyObject *obj, const char *errmess) { int i = 0; if (int_from_pyobj(&i, obj, errmess)) { *v = (signed_char)i; return 1; } return 0; } """ needs['short_from_pyobj'] = ['int_from_pyobj'] cfuncs['short_from_pyobj'] = """\ static int short_from_pyobj(short* v, PyObject *obj, const char *errmess) { int i = 0; if (int_from_pyobj(&i, obj, errmess)) { *v = (short)i; return 1; } return 0; } """ cfuncs['int_from_pyobj'] = """\ static int int_from_pyobj(int* v, PyObject *obj, const char *errmess) { PyObject* tmp = NULL; if (PyLong_Check(obj)) { *v = Npy__PyLong_AsInt(obj); return !(*v == -1 && PyErr_Occurred()); } tmp = PyNumber_Long(obj); if (tmp) { *v = Npy__PyLong_AsInt(tmp); Py_DECREF(tmp); return !(*v == -1 && PyErr_Occurred()); } if (PyComplex_Check(obj)) { PyErr_Clear(); tmp = PyObject_GetAttrString(obj,\"real\"); } else if (PyBytes_Check(obj) || PyUnicode_Check(obj)) { /*pass*/; } else if (PySequence_Check(obj)) { PyErr_Clear(); tmp = PySequence_GetItem(obj, 0); } if (tmp) { if (int_from_pyobj(v, tmp, errmess)) { Py_DECREF(tmp); return 1; } Py_DECREF(tmp); } { PyObject* err = PyErr_Occurred(); if (err == NULL) { err = #modulename#_error; } PyErr_SetString(err, errmess); } return 0; } """ cfuncs['long_from_pyobj'] = """\ static int long_from_pyobj(long* v, PyObject *obj, const char *errmess) { PyObject* tmp = NULL; if (PyLong_Check(obj)) { *v = PyLong_AsLong(obj); return !(*v == -1 && PyErr_Occurred()); } tmp = PyNumber_Long(obj); if (tmp) { *v = PyLong_AsLong(tmp); Py_DECREF(tmp); return !(*v == -1 && PyErr_Occurred()); } if (PyComplex_Check(obj)) { PyErr_Clear(); tmp = PyObject_GetAttrString(obj,\"real\"); } else if (PyBytes_Check(obj) || PyUnicode_Check(obj)) { /*pass*/; } else if (PySequence_Check(obj)) { PyErr_Clear(); tmp = PySequence_GetItem(obj, 0); } if (tmp) { if (long_from_pyobj(v, tmp, errmess)) { Py_DECREF(tmp); return 1; } Py_DECREF(tmp); } { PyObject* err = PyErr_Occurred(); if (err == NULL) { err = #modulename#_error; } PyErr_SetString(err, errmess); } return 0; } """ needs['long_long_from_pyobj'] = ['long_long'] cfuncs['long_long_from_pyobj'] = """\ static int long_long_from_pyobj(long_long* v, PyObject *obj, const char *errmess) { PyObject* tmp = NULL; if (PyLong_Check(obj)) { *v = PyLong_AsLongLong(obj); return !(*v == -1 && PyErr_Occurred()); } tmp = PyNumber_Long(obj); if (tmp) { *v = PyLong_AsLongLong(tmp); Py_DECREF(tmp); return !(*v == -1 && PyErr_Occurred()); } if (PyComplex_Check(obj)) { PyErr_Clear(); tmp = PyObject_GetAttrString(obj,\"real\"); } else if (PyBytes_Check(obj) || PyUnicode_Check(obj)) { /*pass*/; } else if (PySequence_Check(obj)) { PyErr_Clear(); tmp = PySequence_GetItem(obj, 0); } if (tmp) { if (long_long_from_pyobj(v, tmp, errmess)) { Py_DECREF(tmp); return 1; } Py_DECREF(tmp); } { PyObject* err = PyErr_Occurred(); if (err == NULL) { err = #modulename#_error; } PyErr_SetString(err,errmess); } return 0; } """ needs['long_double_from_pyobj'] = ['double_from_pyobj', 'long_double'] cfuncs['long_double_from_pyobj'] = """\ static int long_double_from_pyobj(long_double* v, PyObject *obj, const char *errmess) { double d=0; if (PyArray_CheckScalar(obj)){ if PyArray_IsScalar(obj, LongDouble) { PyArray_ScalarAsCtype(obj, v); return 1; } else if (PyArray_Check(obj) && PyArray_TYPE(obj) == NPY_LONGDOUBLE) { (*v) = *((npy_longdouble *)PyArray_DATA(obj)); return 1; } } if (double_from_pyobj(&d, obj, errmess)) { *v = (long_double)d; return 1; } return 0; } """ cfuncs['double_from_pyobj'] = """\ static int double_from_pyobj(double* v, PyObject *obj, const char *errmess) { PyObject* tmp = NULL; if (PyFloat_Check(obj)) { *v = PyFloat_AsDouble(obj); return !(*v == -1.0 && PyErr_Occurred()); } tmp = PyNumber_Float(obj); if (tmp) { *v = PyFloat_AsDouble(tmp); Py_DECREF(tmp); return !(*v == -1.0 && PyErr_Occurred()); } if (PyComplex_Check(obj)) { PyErr_Clear(); tmp = PyObject_GetAttrString(obj,\"real\"); } else if (PyBytes_Check(obj) || PyUnicode_Check(obj)) { /*pass*/; } else if (PySequence_Check(obj)) { PyErr_Clear(); tmp = PySequence_GetItem(obj, 0); } if (tmp) { if (double_from_pyobj(v,tmp,errmess)) {Py_DECREF(tmp); return 1;} Py_DECREF(tmp); } { PyObject* err = PyErr_Occurred(); if (err==NULL) err = #modulename#_error; PyErr_SetString(err,errmess); } return 0; } """ needs['float_from_pyobj'] = ['double_from_pyobj'] cfuncs['float_from_pyobj'] = """\ static int float_from_pyobj(float* v, PyObject *obj, const char *errmess) { double d=0.0; if (double_from_pyobj(&d,obj,errmess)) { *v = (float)d; return 1; } return 0; } """ needs['complex_long_double_from_pyobj'] = ['complex_long_double', 'long_double', 'complex_double_from_pyobj'] cfuncs['complex_long_double_from_pyobj'] = """\ static int complex_long_double_from_pyobj(complex_long_double* v, PyObject *obj, const char *errmess) { complex_double cd = {0.0,0.0}; if (PyArray_CheckScalar(obj)){ if PyArray_IsScalar(obj, CLongDouble) { PyArray_ScalarAsCtype(obj, v); return 1; } else if (PyArray_Check(obj) && PyArray_TYPE(obj)==NPY_CLONGDOUBLE) { (*v).r = ((npy_clongdouble *)PyArray_DATA(obj))->real; (*v).i = ((npy_clongdouble *)PyArray_DATA(obj))->imag; return 1; } } if (complex_double_from_pyobj(&cd,obj,errmess)) { (*v).r = (long_double)cd.r; (*v).i = (long_double)cd.i; return 1; } return 0; } """ needs['complex_double_from_pyobj'] = ['complex_double'] cfuncs['complex_double_from_pyobj'] = """\ static int complex_double_from_pyobj(complex_double* v, PyObject *obj, const char *errmess) { Py_complex c; if (PyComplex_Check(obj)) { c = PyComplex_AsCComplex(obj); (*v).r = c.real; (*v).i = c.imag; return 1; } if (PyArray_IsScalar(obj, ComplexFloating)) { if (PyArray_IsScalar(obj, CFloat)) { npy_cfloat new; PyArray_ScalarAsCtype(obj, &new); (*v).r = (double)new.real; (*v).i = (double)new.imag; } else if (PyArray_IsScalar(obj, CLongDouble)) { npy_clongdouble new; PyArray_ScalarAsCtype(obj, &new); (*v).r = (double)new.real; (*v).i = (double)new.imag; } else { /* if (PyArray_IsScalar(obj, CDouble)) */ PyArray_ScalarAsCtype(obj, v); } return 1; } if (PyArray_CheckScalar(obj)) { /* 0-dim array or still array scalar */ PyArrayObject *arr; if (PyArray_Check(obj)) { arr = (PyArrayObject *)PyArray_Cast((PyArrayObject *)obj, NPY_CDOUBLE); } else { arr = (PyArrayObject *)PyArray_FromScalar(obj, PyArray_DescrFromType(NPY_CDOUBLE)); } if (arr == NULL) { return 0; } (*v).r = ((npy_cdouble *)PyArray_DATA(arr))->real; (*v).i = ((npy_cdouble *)PyArray_DATA(arr))->imag; Py_DECREF(arr); return 1; } /* Python does not provide PyNumber_Complex function :-( */ (*v).i = 0.0; if (PyFloat_Check(obj)) { (*v).r = PyFloat_AsDouble(obj); return !((*v).r == -1.0 && PyErr_Occurred()); } if (PyLong_Check(obj)) { (*v).r = PyLong_AsDouble(obj); return !((*v).r == -1.0 && PyErr_Occurred()); } if (PySequence_Check(obj) && !(PyBytes_Check(obj) || PyUnicode_Check(obj))) { PyObject *tmp = PySequence_GetItem(obj,0); if (tmp) { if (complex_double_from_pyobj(v,tmp,errmess)) { Py_DECREF(tmp); return 1; } Py_DECREF(tmp); } } { PyObject* err = PyErr_Occurred(); if (err==NULL) err = PyExc_TypeError; PyErr_SetString(err,errmess); } return 0; } """ needs['complex_float_from_pyobj'] = [ 'complex_float', 'complex_double_from_pyobj'] cfuncs['complex_float_from_pyobj'] = """\ static int complex_float_from_pyobj(complex_float* v,PyObject *obj,const char *errmess) { complex_double cd={0.0,0.0}; if (complex_double_from_pyobj(&cd,obj,errmess)) { (*v).r = (float)cd.r; (*v).i = (float)cd.i; return 1; } return 0; } """ needs['try_pyarr_from_char'] = ['pyobj_from_char1', 'TRYPYARRAYTEMPLATE'] cfuncs[ 'try_pyarr_from_char'] = 'static int try_pyarr_from_char(PyObject* obj,char* v) {\n TRYPYARRAYTEMPLATE(char,\'c\');\n}\n' needs['try_pyarr_from_signed_char'] = ['TRYPYARRAYTEMPLATE', 'unsigned_char'] cfuncs[ 'try_pyarr_from_unsigned_char'] = 'static int try_pyarr_from_unsigned_char(PyObject* obj,unsigned_char* v) {\n TRYPYARRAYTEMPLATE(unsigned_char,\'b\');\n}\n' needs['try_pyarr_from_signed_char'] = ['TRYPYARRAYTEMPLATE', 'signed_char'] cfuncs[ 'try_pyarr_from_signed_char'] = 'static int try_pyarr_from_signed_char(PyObject* obj,signed_char* v) {\n TRYPYARRAYTEMPLATE(signed_char,\'1\');\n}\n' needs['try_pyarr_from_short'] = ['pyobj_from_short1', 'TRYPYARRAYTEMPLATE'] cfuncs[ 'try_pyarr_from_short'] = 'static int try_pyarr_from_short(PyObject* obj,short* v) {\n TRYPYARRAYTEMPLATE(short,\'s\');\n}\n' needs['try_pyarr_from_int'] = ['pyobj_from_int1', 'TRYPYARRAYTEMPLATE'] cfuncs[ 'try_pyarr_from_int'] = 'static int try_pyarr_from_int(PyObject* obj,int* v) {\n TRYPYARRAYTEMPLATE(int,\'i\');\n}\n' needs['try_pyarr_from_long'] = ['pyobj_from_long1', 'TRYPYARRAYTEMPLATE'] cfuncs[ 'try_pyarr_from_long'] = 'static int try_pyarr_from_long(PyObject* obj,long* v) {\n TRYPYARRAYTEMPLATE(long,\'l\');\n}\n' needs['try_pyarr_from_long_long'] = [ 'pyobj_from_long_long1', 'TRYPYARRAYTEMPLATE', 'long_long'] cfuncs[ 'try_pyarr_from_long_long'] = 'static int try_pyarr_from_long_long(PyObject* obj,long_long* v) {\n TRYPYARRAYTEMPLATE(long_long,\'L\');\n}\n' needs['try_pyarr_from_float'] = ['pyobj_from_float1', 'TRYPYARRAYTEMPLATE'] cfuncs[ 'try_pyarr_from_float'] = 'static int try_pyarr_from_float(PyObject* obj,float* v) {\n TRYPYARRAYTEMPLATE(float,\'f\');\n}\n' needs['try_pyarr_from_double'] = ['pyobj_from_double1', 'TRYPYARRAYTEMPLATE'] cfuncs[ 'try_pyarr_from_double'] = 'static int try_pyarr_from_double(PyObject* obj,double* v) {\n TRYPYARRAYTEMPLATE(double,\'d\');\n}\n' needs['try_pyarr_from_complex_float'] = [ 'pyobj_from_complex_float1', 'TRYCOMPLEXPYARRAYTEMPLATE', 'complex_float'] cfuncs[ 'try_pyarr_from_complex_float'] = 'static int try_pyarr_from_complex_float(PyObject* obj,complex_float* v) {\n TRYCOMPLEXPYARRAYTEMPLATE(float,\'F\');\n}\n' needs['try_pyarr_from_complex_double'] = [ 'pyobj_from_complex_double1', 'TRYCOMPLEXPYARRAYTEMPLATE', 'complex_double'] cfuncs[ 'try_pyarr_from_complex_double'] = 'static int try_pyarr_from_complex_double(PyObject* obj,complex_double* v) {\n TRYCOMPLEXPYARRAYTEMPLATE(double,\'D\');\n}\n' needs['create_cb_arglist'] = ['CFUNCSMESS', 'PRINTPYOBJERR', 'MINMAX'] # create the list of arguments to be used when calling back to python cfuncs['create_cb_arglist'] = """\ static int create_cb_arglist(PyObject* fun, PyTupleObject* xa , const int maxnofargs, const int nofoptargs, int *nofargs, PyTupleObject **args, const char *errmess) { PyObject *tmp = NULL; PyObject *tmp_fun = NULL; Py_ssize_t tot, opt, ext, siz, i, di = 0; CFUNCSMESS(\"create_cb_arglist\\n\"); tot=opt=ext=siz=0; /* Get the total number of arguments */ if (PyFunction_Check(fun)) { tmp_fun = fun; Py_INCREF(tmp_fun); } else { di = 1; if (PyObject_HasAttrString(fun,\"im_func\")) { tmp_fun = PyObject_GetAttrString(fun,\"im_func\"); } else if (PyObject_HasAttrString(fun,\"__call__\")) { tmp = PyObject_GetAttrString(fun,\"__call__\"); if (PyObject_HasAttrString(tmp,\"im_func\")) tmp_fun = PyObject_GetAttrString(tmp,\"im_func\"); else { tmp_fun = fun; /* built-in function */ Py_INCREF(tmp_fun); tot = maxnofargs; if (PyCFunction_Check(fun)) { /* In case the function has a co_argcount (like on PyPy) */ di = 0; } if (xa != NULL) tot += PyTuple_Size((PyObject *)xa); } Py_XDECREF(tmp); } else if (PyFortran_Check(fun) || PyFortran_Check1(fun)) { tot = maxnofargs; if (xa != NULL) tot += PyTuple_Size((PyObject *)xa); tmp_fun = fun; Py_INCREF(tmp_fun); } else if (F2PyCapsule_Check(fun)) { tot = maxnofargs; if (xa != NULL) ext = PyTuple_Size((PyObject *)xa); if(ext>0) { fprintf(stderr,\"extra arguments tuple cannot be used with CObject call-back\\n\"); goto capi_fail; } tmp_fun = fun; Py_INCREF(tmp_fun); } } if (tmp_fun == NULL) { fprintf(stderr, \"Call-back argument must be function|instance|instance.__call__|f2py-function \" \"but got %s.\\n\", ((fun == NULL) ? \"NULL\" : Py_TYPE(fun)->tp_name)); goto capi_fail; } if (PyObject_HasAttrString(tmp_fun,\"__code__\")) { if (PyObject_HasAttrString(tmp = PyObject_GetAttrString(tmp_fun,\"__code__\"),\"co_argcount\")) { PyObject *tmp_argcount = PyObject_GetAttrString(tmp,\"co_argcount\"); Py_DECREF(tmp); if (tmp_argcount == NULL) { goto capi_fail; } tot = PyLong_AsSsize_t(tmp_argcount) - di; Py_DECREF(tmp_argcount); } } /* Get the number of optional arguments */ if (PyObject_HasAttrString(tmp_fun,\"__defaults__\")) { if (PyTuple_Check(tmp = PyObject_GetAttrString(tmp_fun,\"__defaults__\"))) opt = PyTuple_Size(tmp); Py_XDECREF(tmp); } /* Get the number of extra arguments */ if (xa != NULL) ext = PyTuple_Size((PyObject *)xa); /* Calculate the size of call-backs argument list */ siz = MIN(maxnofargs+ext,tot); *nofargs = MAX(0,siz-ext); #ifdef DEBUGCFUNCS fprintf(stderr, \"debug-capi:create_cb_arglist:maxnofargs(-nofoptargs),\" \"tot,opt,ext,siz,nofargs = %d(-%d), %zd, %zd, %zd, %zd, %d\\n\", maxnofargs, nofoptargs, tot, opt, ext, siz, *nofargs); #endif if (siz < tot-opt) { fprintf(stderr, \"create_cb_arglist: Failed to build argument list \" \"(siz) with enough arguments (tot-opt) required by \" \"user-supplied function (siz,tot,opt=%zd, %zd, %zd).\\n\", siz, tot, opt); goto capi_fail; } /* Initialize argument list */ *args = (PyTupleObject *)PyTuple_New(siz); for (i=0;i<*nofargs;i++) { Py_INCREF(Py_None); PyTuple_SET_ITEM((PyObject *)(*args),i,Py_None); } if (xa != NULL) for (i=(*nofargs);i<siz;i++) { tmp = PyTuple_GetItem((PyObject *)xa,i-(*nofargs)); Py_INCREF(tmp); PyTuple_SET_ITEM(*args,i,tmp); } CFUNCSMESS(\"create_cb_arglist-end\\n\"); Py_DECREF(tmp_fun); return 1; capi_fail: if (PyErr_Occurred() == NULL) PyErr_SetString(#modulename#_error, errmess); Py_XDECREF(tmp_fun); return 0; } """ def buildcfuncs(): from .capi_maps import c2capi_map for k in c2capi_map.keys(): m = 'pyarr_from_p_%s1' % k cppmacros[ m] = '#define %s(v) (PyArray_SimpleNewFromData(0,NULL,%s,(char *)v))' % (m, c2capi_map[k]) k = 'string' m = 'pyarr_from_p_%s1' % k # NPY_CHAR compatibility, NPY_STRING with itemsize 1 cppmacros[ m] = '#define %s(v,dims) (PyArray_New(&PyArray_Type, 1, dims, NPY_STRING, NULL, v, 1, NPY_ARRAY_CARRAY, NULL))' % (m) ############ Auxiliary functions for sorting needs ################### def append_needs(need, flag=1): # This function modifies the contents of the global `outneeds` dict. if isinstance(need, list): for n in need: append_needs(n, flag) elif isinstance(need, str): if not need: return if need in includes0: n = 'includes0' elif need in includes: n = 'includes' elif need in typedefs: n = 'typedefs' elif need in typedefs_generated: n = 'typedefs_generated' elif need in cppmacros: n = 'cppmacros' elif need in cfuncs: n = 'cfuncs' elif need in callbacks: n = 'callbacks' elif need in f90modhooks: n = 'f90modhooks' elif need in commonhooks: n = 'commonhooks' else: errmess('append_needs: unknown need %s\n' % (repr(need))) return if need in outneeds[n]: return if flag: tmp = {} if need in needs: for nn in needs[need]: t = append_needs(nn, 0) if isinstance(t, dict): for nnn in t.keys(): if nnn in tmp: tmp[nnn] = tmp[nnn] + t[nnn] else: tmp[nnn] = t[nnn] for nn in tmp.keys(): for nnn in tmp[nn]: if nnn not in outneeds[nn]: outneeds[nn] = [nnn] + outneeds[nn] outneeds[n].append(need) else: tmp = {} if need in needs: for nn in needs[need]: t = append_needs(nn, flag) if isinstance(t, dict): for nnn in t.keys(): if nnn in tmp: tmp[nnn] = t[nnn] + tmp[nnn] else: tmp[nnn] = t[nnn] if n not in tmp: tmp[n] = [] tmp[n].append(need) return tmp else: errmess('append_needs: expected list or string but got :%s\n' % (repr(need))) def get_needs(): # This function modifies the contents of the global `outneeds` dict. res = {} for n in outneeds.keys(): out = [] saveout = copy.copy(outneeds[n]) while len(outneeds[n]) > 0: if outneeds[n][0] not in needs: out.append(outneeds[n][0]) del outneeds[n][0] else: flag = 0 for k in outneeds[n][1:]: if k in needs[outneeds[n][0]]: flag = 1 break if flag: outneeds[n] = outneeds[n][1:] + [outneeds[n][0]] else: out.append(outneeds[n][0]) del outneeds[n][0] if saveout and (0 not in map(lambda x, y: x == y, saveout, outneeds[n])) \ and outneeds[n] != []: print(n, saveout) errmess( 'get_needs: no progress in sorting needs, probably circular dependence, skipping.\n') out = out + saveout break saveout = copy.copy(outneeds[n]) if out == []: out = [n] res[n] = out return res
49,442
Python
32.680518
167
0.548744
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/symbolic.py
"""Fortran/C symbolic expressions References: - J3/21-007: Draft Fortran 202x. https://j3-fortran.org/doc/year/21/21-007.pdf """ # To analyze Fortran expressions to solve dimensions specifications, # for instances, we implement a minimal symbolic engine for parsing # expressions into a tree of expression instances. As a first # instance, we care only about arithmetic expressions involving # integers and operations like addition (+), subtraction (-), # multiplication (*), division (Fortran / is Python //, Fortran // is # concatenate), and exponentiation (**). In addition, .pyf files may # contain C expressions that support here is implemented as well. # # TODO: support logical constants (Op.BOOLEAN) # TODO: support logical operators (.AND., ...) # TODO: support defined operators (.MYOP., ...) # __all__ = ['Expr'] import re import warnings from enum import Enum from math import gcd class Language(Enum): """ Used as Expr.tostring language argument. """ Python = 0 Fortran = 1 C = 2 class Op(Enum): """ Used as Expr op attribute. """ INTEGER = 10 REAL = 12 COMPLEX = 15 STRING = 20 ARRAY = 30 SYMBOL = 40 TERNARY = 100 APPLY = 200 INDEXING = 210 CONCAT = 220 RELATIONAL = 300 TERMS = 1000 FACTORS = 2000 REF = 3000 DEREF = 3001 class RelOp(Enum): """ Used in Op.RELATIONAL expression to specify the function part. """ EQ = 1 NE = 2 LT = 3 LE = 4 GT = 5 GE = 6 @classmethod def fromstring(cls, s, language=Language.C): if language is Language.Fortran: return {'.eq.': RelOp.EQ, '.ne.': RelOp.NE, '.lt.': RelOp.LT, '.le.': RelOp.LE, '.gt.': RelOp.GT, '.ge.': RelOp.GE}[s.lower()] return {'==': RelOp.EQ, '!=': RelOp.NE, '<': RelOp.LT, '<=': RelOp.LE, '>': RelOp.GT, '>=': RelOp.GE}[s] def tostring(self, language=Language.C): if language is Language.Fortran: return {RelOp.EQ: '.eq.', RelOp.NE: '.ne.', RelOp.LT: '.lt.', RelOp.LE: '.le.', RelOp.GT: '.gt.', RelOp.GE: '.ge.'}[self] return {RelOp.EQ: '==', RelOp.NE: '!=', RelOp.LT: '<', RelOp.LE: '<=', RelOp.GT: '>', RelOp.GE: '>='}[self] class ArithOp(Enum): """ Used in Op.APPLY expression to specify the function part. """ POS = 1 NEG = 2 ADD = 3 SUB = 4 MUL = 5 DIV = 6 POW = 7 class OpError(Exception): pass class Precedence(Enum): """ Used as Expr.tostring precedence argument. """ ATOM = 0 POWER = 1 UNARY = 2 PRODUCT = 3 SUM = 4 LT = 6 EQ = 7 LAND = 11 LOR = 12 TERNARY = 13 ASSIGN = 14 TUPLE = 15 NONE = 100 integer_types = (int,) number_types = (int, float) def _pairs_add(d, k, v): # Internal utility method for updating terms and factors data. c = d.get(k) if c is None: d[k] = v else: c = c + v if c: d[k] = c else: del d[k] class ExprWarning(UserWarning): pass def ewarn(message): warnings.warn(message, ExprWarning, stacklevel=2) class Expr: """Represents a Fortran expression as a op-data pair. Expr instances are hashable and sortable. """ @staticmethod def parse(s, language=Language.C): """Parse a Fortran expression to a Expr. """ return fromstring(s, language=language) def __init__(self, op, data): assert isinstance(op, Op) # sanity checks if op is Op.INTEGER: # data is a 2-tuple of numeric object and a kind value # (default is 4) assert isinstance(data, tuple) and len(data) == 2 assert isinstance(data[0], int) assert isinstance(data[1], (int, str)), data elif op is Op.REAL: # data is a 2-tuple of numeric object and a kind value # (default is 4) assert isinstance(data, tuple) and len(data) == 2 assert isinstance(data[0], float) assert isinstance(data[1], (int, str)), data elif op is Op.COMPLEX: # data is a 2-tuple of constant expressions assert isinstance(data, tuple) and len(data) == 2 elif op is Op.STRING: # data is a 2-tuple of quoted string and a kind value # (default is 1) assert isinstance(data, tuple) and len(data) == 2 assert (isinstance(data[0], str) and data[0][::len(data[0])-1] in ('""', "''", '@@')) assert isinstance(data[1], (int, str)), data elif op is Op.SYMBOL: # data is any hashable object assert hash(data) is not None elif op in (Op.ARRAY, Op.CONCAT): # data is a tuple of expressions assert isinstance(data, tuple) assert all(isinstance(item, Expr) for item in data), data elif op in (Op.TERMS, Op.FACTORS): # data is {<term|base>:<coeff|exponent>} where dict values # are nonzero Python integers assert isinstance(data, dict) elif op is Op.APPLY: # data is (<function>, <operands>, <kwoperands>) where # operands are Expr instances assert isinstance(data, tuple) and len(data) == 3 # function is any hashable object assert hash(data[0]) is not None assert isinstance(data[1], tuple) assert isinstance(data[2], dict) elif op is Op.INDEXING: # data is (<object>, <indices>) assert isinstance(data, tuple) and len(data) == 2 # function is any hashable object assert hash(data[0]) is not None elif op is Op.TERNARY: # data is (<cond>, <expr1>, <expr2>) assert isinstance(data, tuple) and len(data) == 3 elif op in (Op.REF, Op.DEREF): # data is Expr instance assert isinstance(data, Expr) elif op is Op.RELATIONAL: # data is (<relop>, <left>, <right>) assert isinstance(data, tuple) and len(data) == 3 else: raise NotImplementedError( f'unknown op or missing sanity check: {op}') self.op = op self.data = data def __eq__(self, other): return (isinstance(other, Expr) and self.op is other.op and self.data == other.data) def __hash__(self): if self.op in (Op.TERMS, Op.FACTORS): data = tuple(sorted(self.data.items())) elif self.op is Op.APPLY: data = self.data[:2] + tuple(sorted(self.data[2].items())) else: data = self.data return hash((self.op, data)) def __lt__(self, other): if isinstance(other, Expr): if self.op is not other.op: return self.op.value < other.op.value if self.op in (Op.TERMS, Op.FACTORS): return (tuple(sorted(self.data.items())) < tuple(sorted(other.data.items()))) if self.op is Op.APPLY: if self.data[:2] != other.data[:2]: return self.data[:2] < other.data[:2] return tuple(sorted(self.data[2].items())) < tuple( sorted(other.data[2].items())) return self.data < other.data return NotImplemented def __le__(self, other): return self == other or self < other def __gt__(self, other): return not (self <= other) def __ge__(self, other): return not (self < other) def __repr__(self): return f'{type(self).__name__}({self.op}, {self.data!r})' def __str__(self): return self.tostring() def tostring(self, parent_precedence=Precedence.NONE, language=Language.Fortran): """Return a string representation of Expr. """ if self.op in (Op.INTEGER, Op.REAL): precedence = (Precedence.SUM if self.data[0] < 0 else Precedence.ATOM) r = str(self.data[0]) + (f'_{self.data[1]}' if self.data[1] != 4 else '') elif self.op is Op.COMPLEX: r = ', '.join(item.tostring(Precedence.TUPLE, language=language) for item in self.data) r = '(' + r + ')' precedence = Precedence.ATOM elif self.op is Op.SYMBOL: precedence = Precedence.ATOM r = str(self.data) elif self.op is Op.STRING: r = self.data[0] if self.data[1] != 1: r = self.data[1] + '_' + r precedence = Precedence.ATOM elif self.op is Op.ARRAY: r = ', '.join(item.tostring(Precedence.TUPLE, language=language) for item in self.data) r = '[' + r + ']' precedence = Precedence.ATOM elif self.op is Op.TERMS: terms = [] for term, coeff in sorted(self.data.items()): if coeff < 0: op = ' - ' coeff = -coeff else: op = ' + ' if coeff == 1: term = term.tostring(Precedence.SUM, language=language) else: if term == as_number(1): term = str(coeff) else: term = f'{coeff} * ' + term.tostring( Precedence.PRODUCT, language=language) if terms: terms.append(op) elif op == ' - ': terms.append('-') terms.append(term) r = ''.join(terms) or '0' precedence = Precedence.SUM if terms else Precedence.ATOM elif self.op is Op.FACTORS: factors = [] tail = [] for base, exp in sorted(self.data.items()): op = ' * ' if exp == 1: factor = base.tostring(Precedence.PRODUCT, language=language) elif language is Language.C: if exp in range(2, 10): factor = base.tostring(Precedence.PRODUCT, language=language) factor = ' * '.join([factor] * exp) elif exp in range(-10, 0): factor = base.tostring(Precedence.PRODUCT, language=language) tail += [factor] * -exp continue else: factor = base.tostring(Precedence.TUPLE, language=language) factor = f'pow({factor}, {exp})' else: factor = base.tostring(Precedence.POWER, language=language) + f' ** {exp}' if factors: factors.append(op) factors.append(factor) if tail: if not factors: factors += ['1'] factors += ['/', '(', ' * '.join(tail), ')'] r = ''.join(factors) or '1' precedence = Precedence.PRODUCT if factors else Precedence.ATOM elif self.op is Op.APPLY: name, args, kwargs = self.data if name is ArithOp.DIV and language is Language.C: numer, denom = [arg.tostring(Precedence.PRODUCT, language=language) for arg in args] r = f'{numer} / {denom}' precedence = Precedence.PRODUCT else: args = [arg.tostring(Precedence.TUPLE, language=language) for arg in args] args += [k + '=' + v.tostring(Precedence.NONE) for k, v in kwargs.items()] r = f'{name}({", ".join(args)})' precedence = Precedence.ATOM elif self.op is Op.INDEXING: name = self.data[0] args = [arg.tostring(Precedence.TUPLE, language=language) for arg in self.data[1:]] r = f'{name}[{", ".join(args)}]' precedence = Precedence.ATOM elif self.op is Op.CONCAT: args = [arg.tostring(Precedence.PRODUCT, language=language) for arg in self.data] r = " // ".join(args) precedence = Precedence.PRODUCT elif self.op is Op.TERNARY: cond, expr1, expr2 = [a.tostring(Precedence.TUPLE, language=language) for a in self.data] if language is Language.C: r = f'({cond}?{expr1}:{expr2})' elif language is Language.Python: r = f'({expr1} if {cond} else {expr2})' elif language is Language.Fortran: r = f'merge({expr1}, {expr2}, {cond})' else: raise NotImplementedError( f'tostring for {self.op} and {language}') precedence = Precedence.ATOM elif self.op is Op.REF: r = '&' + self.data.tostring(Precedence.UNARY, language=language) precedence = Precedence.UNARY elif self.op is Op.DEREF: r = '*' + self.data.tostring(Precedence.UNARY, language=language) precedence = Precedence.UNARY elif self.op is Op.RELATIONAL: rop, left, right = self.data precedence = (Precedence.EQ if rop in (RelOp.EQ, RelOp.NE) else Precedence.LT) left = left.tostring(precedence, language=language) right = right.tostring(precedence, language=language) rop = rop.tostring(language=language) r = f'{left} {rop} {right}' else: raise NotImplementedError(f'tostring for op {self.op}') if parent_precedence.value < precedence.value: # If parent precedence is higher than operand precedence, # operand will be enclosed in parenthesis. return '(' + r + ')' return r def __pos__(self): return self def __neg__(self): return self * -1 def __add__(self, other): other = as_expr(other) if isinstance(other, Expr): if self.op is other.op: if self.op in (Op.INTEGER, Op.REAL): return as_number( self.data[0] + other.data[0], max(self.data[1], other.data[1])) if self.op is Op.COMPLEX: r1, i1 = self.data r2, i2 = other.data return as_complex(r1 + r2, i1 + i2) if self.op is Op.TERMS: r = Expr(self.op, dict(self.data)) for k, v in other.data.items(): _pairs_add(r.data, k, v) return normalize(r) if self.op is Op.COMPLEX and other.op in (Op.INTEGER, Op.REAL): return self + as_complex(other) elif self.op in (Op.INTEGER, Op.REAL) and other.op is Op.COMPLEX: return as_complex(self) + other elif self.op is Op.REAL and other.op is Op.INTEGER: return self + as_real(other, kind=self.data[1]) elif self.op is Op.INTEGER and other.op is Op.REAL: return as_real(self, kind=other.data[1]) + other return as_terms(self) + as_terms(other) return NotImplemented def __radd__(self, other): if isinstance(other, number_types): return as_number(other) + self return NotImplemented def __sub__(self, other): return self + (-other) def __rsub__(self, other): if isinstance(other, number_types): return as_number(other) - self return NotImplemented def __mul__(self, other): other = as_expr(other) if isinstance(other, Expr): if self.op is other.op: if self.op in (Op.INTEGER, Op.REAL): return as_number(self.data[0] * other.data[0], max(self.data[1], other.data[1])) elif self.op is Op.COMPLEX: r1, i1 = self.data r2, i2 = other.data return as_complex(r1 * r2 - i1 * i2, r1 * i2 + r2 * i1) if self.op is Op.FACTORS: r = Expr(self.op, dict(self.data)) for k, v in other.data.items(): _pairs_add(r.data, k, v) return normalize(r) elif self.op is Op.TERMS: r = Expr(self.op, {}) for t1, c1 in self.data.items(): for t2, c2 in other.data.items(): _pairs_add(r.data, t1 * t2, c1 * c2) return normalize(r) if self.op is Op.COMPLEX and other.op in (Op.INTEGER, Op.REAL): return self * as_complex(other) elif other.op is Op.COMPLEX and self.op in (Op.INTEGER, Op.REAL): return as_complex(self) * other elif self.op is Op.REAL and other.op is Op.INTEGER: return self * as_real(other, kind=self.data[1]) elif self.op is Op.INTEGER and other.op is Op.REAL: return as_real(self, kind=other.data[1]) * other if self.op is Op.TERMS: return self * as_terms(other) elif other.op is Op.TERMS: return as_terms(self) * other return as_factors(self) * as_factors(other) return NotImplemented def __rmul__(self, other): if isinstance(other, number_types): return as_number(other) * self return NotImplemented def __pow__(self, other): other = as_expr(other) if isinstance(other, Expr): if other.op is Op.INTEGER: exponent = other.data[0] # TODO: other kind not used if exponent == 0: return as_number(1) if exponent == 1: return self if exponent > 0: if self.op is Op.FACTORS: r = Expr(self.op, {}) for k, v in self.data.items(): r.data[k] = v * exponent return normalize(r) return self * (self ** (exponent - 1)) elif exponent != -1: return (self ** (-exponent)) ** -1 return Expr(Op.FACTORS, {self: exponent}) return as_apply(ArithOp.POW, self, other) return NotImplemented def __truediv__(self, other): other = as_expr(other) if isinstance(other, Expr): # Fortran / is different from Python /: # - `/` is a truncate operation for integer operands return normalize(as_apply(ArithOp.DIV, self, other)) return NotImplemented def __rtruediv__(self, other): other = as_expr(other) if isinstance(other, Expr): return other / self return NotImplemented def __floordiv__(self, other): other = as_expr(other) if isinstance(other, Expr): # Fortran // is different from Python //: # - `//` is a concatenate operation for string operands return normalize(Expr(Op.CONCAT, (self, other))) return NotImplemented def __rfloordiv__(self, other): other = as_expr(other) if isinstance(other, Expr): return other // self return NotImplemented def __call__(self, *args, **kwargs): # In Fortran, parenthesis () are use for both function call as # well as indexing operations. # # TODO: implement a method for deciding when __call__ should # return an INDEXING expression. return as_apply(self, *map(as_expr, args), **dict((k, as_expr(v)) for k, v in kwargs.items())) def __getitem__(self, index): # Provided to support C indexing operations that .pyf files # may contain. index = as_expr(index) if not isinstance(index, tuple): index = index, if len(index) > 1: ewarn(f'C-index should be a single expression but got `{index}`') return Expr(Op.INDEXING, (self,) + index) def substitute(self, symbols_map): """Recursively substitute symbols with values in symbols map. Symbols map is a dictionary of symbol-expression pairs. """ if self.op is Op.SYMBOL: value = symbols_map.get(self) if value is None: return self m = re.match(r'\A(@__f2py_PARENTHESIS_(\w+)_\d+@)\Z', self.data) if m: # complement to fromstring method items, paren = m.groups() if paren in ['ROUNDDIV', 'SQUARE']: return as_array(value) assert paren == 'ROUND', (paren, value) return value if self.op in (Op.INTEGER, Op.REAL, Op.STRING): return self if self.op in (Op.ARRAY, Op.COMPLEX): return Expr(self.op, tuple(item.substitute(symbols_map) for item in self.data)) if self.op is Op.CONCAT: return normalize(Expr(self.op, tuple(item.substitute(symbols_map) for item in self.data))) if self.op is Op.TERMS: r = None for term, coeff in self.data.items(): if r is None: r = term.substitute(symbols_map) * coeff else: r += term.substitute(symbols_map) * coeff if r is None: ewarn('substitute: empty TERMS expression interpreted as' ' int-literal 0') return as_number(0) return r if self.op is Op.FACTORS: r = None for base, exponent in self.data.items(): if r is None: r = base.substitute(symbols_map) ** exponent else: r *= base.substitute(symbols_map) ** exponent if r is None: ewarn('substitute: empty FACTORS expression interpreted' ' as int-literal 1') return as_number(1) return r if self.op is Op.APPLY: target, args, kwargs = self.data if isinstance(target, Expr): target = target.substitute(symbols_map) args = tuple(a.substitute(symbols_map) for a in args) kwargs = dict((k, v.substitute(symbols_map)) for k, v in kwargs.items()) return normalize(Expr(self.op, (target, args, kwargs))) if self.op is Op.INDEXING: func = self.data[0] if isinstance(func, Expr): func = func.substitute(symbols_map) args = tuple(a.substitute(symbols_map) for a in self.data[1:]) return normalize(Expr(self.op, (func,) + args)) if self.op is Op.TERNARY: operands = tuple(a.substitute(symbols_map) for a in self.data) return normalize(Expr(self.op, operands)) if self.op in (Op.REF, Op.DEREF): return normalize(Expr(self.op, self.data.substitute(symbols_map))) if self.op is Op.RELATIONAL: rop, left, right = self.data left = left.substitute(symbols_map) right = right.substitute(symbols_map) return normalize(Expr(self.op, (rop, left, right))) raise NotImplementedError(f'substitute method for {self.op}: {self!r}') def traverse(self, visit, *args, **kwargs): """Traverse expression tree with visit function. The visit function is applied to an expression with given args and kwargs. Traverse call returns an expression returned by visit when not None, otherwise return a new normalized expression with traverse-visit sub-expressions. """ result = visit(self, *args, **kwargs) if result is not None: return result if self.op in (Op.INTEGER, Op.REAL, Op.STRING, Op.SYMBOL): return self elif self.op in (Op.COMPLEX, Op.ARRAY, Op.CONCAT, Op.TERNARY): return normalize(Expr(self.op, tuple( item.traverse(visit, *args, **kwargs) for item in self.data))) elif self.op in (Op.TERMS, Op.FACTORS): data = {} for k, v in self.data.items(): k = k.traverse(visit, *args, **kwargs) v = (v.traverse(visit, *args, **kwargs) if isinstance(v, Expr) else v) if k in data: v = data[k] + v data[k] = v return normalize(Expr(self.op, data)) elif self.op is Op.APPLY: obj = self.data[0] func = (obj.traverse(visit, *args, **kwargs) if isinstance(obj, Expr) else obj) operands = tuple(operand.traverse(visit, *args, **kwargs) for operand in self.data[1]) kwoperands = dict((k, v.traverse(visit, *args, **kwargs)) for k, v in self.data[2].items()) return normalize(Expr(self.op, (func, operands, kwoperands))) elif self.op is Op.INDEXING: obj = self.data[0] obj = (obj.traverse(visit, *args, **kwargs) if isinstance(obj, Expr) else obj) indices = tuple(index.traverse(visit, *args, **kwargs) for index in self.data[1:]) return normalize(Expr(self.op, (obj,) + indices)) elif self.op in (Op.REF, Op.DEREF): return normalize(Expr(self.op, self.data.traverse(visit, *args, **kwargs))) elif self.op is Op.RELATIONAL: rop, left, right = self.data left = left.traverse(visit, *args, **kwargs) right = right.traverse(visit, *args, **kwargs) return normalize(Expr(self.op, (rop, left, right))) raise NotImplementedError(f'traverse method for {self.op}') def contains(self, other): """Check if self contains other. """ found = [] def visit(expr, found=found): if found: return expr elif expr == other: found.append(1) return expr self.traverse(visit) return len(found) != 0 def symbols(self): """Return a set of symbols contained in self. """ found = set() def visit(expr, found=found): if expr.op is Op.SYMBOL: found.add(expr) self.traverse(visit) return found def polynomial_atoms(self): """Return a set of expressions used as atoms in polynomial self. """ found = set() def visit(expr, found=found): if expr.op is Op.FACTORS: for b in expr.data: b.traverse(visit) return expr if expr.op in (Op.TERMS, Op.COMPLEX): return if expr.op is Op.APPLY and isinstance(expr.data[0], ArithOp): if expr.data[0] is ArithOp.POW: expr.data[1][0].traverse(visit) return expr return if expr.op in (Op.INTEGER, Op.REAL): return expr found.add(expr) if expr.op in (Op.INDEXING, Op.APPLY): return expr self.traverse(visit) return found def linear_solve(self, symbol): """Return a, b such that a * symbol + b == self. If self is not linear with respect to symbol, raise RuntimeError. """ b = self.substitute({symbol: as_number(0)}) ax = self - b a = ax.substitute({symbol: as_number(1)}) zero, _ = as_numer_denom(a * symbol - ax) if zero != as_number(0): raise RuntimeError(f'not a {symbol}-linear equation:' f' {a} * {symbol} + {b} == {self}') return a, b def normalize(obj): """Normalize Expr and apply basic evaluation methods. """ if not isinstance(obj, Expr): return obj if obj.op is Op.TERMS: d = {} for t, c in obj.data.items(): if c == 0: continue if t.op is Op.COMPLEX and c != 1: t = t * c c = 1 if t.op is Op.TERMS: for t1, c1 in t.data.items(): _pairs_add(d, t1, c1 * c) else: _pairs_add(d, t, c) if len(d) == 0: # TODO: deterimine correct kind return as_number(0) elif len(d) == 1: (t, c), = d.items() if c == 1: return t return Expr(Op.TERMS, d) if obj.op is Op.FACTORS: coeff = 1 d = {} for b, e in obj.data.items(): if e == 0: continue if b.op is Op.TERMS and isinstance(e, integer_types) and e > 1: # expand integer powers of sums b = b * (b ** (e - 1)) e = 1 if b.op in (Op.INTEGER, Op.REAL): if e == 1: coeff *= b.data[0] elif e > 0: coeff *= b.data[0] ** e else: _pairs_add(d, b, e) elif b.op is Op.FACTORS: if e > 0 and isinstance(e, integer_types): for b1, e1 in b.data.items(): _pairs_add(d, b1, e1 * e) else: _pairs_add(d, b, e) else: _pairs_add(d, b, e) if len(d) == 0 or coeff == 0: # TODO: deterimine correct kind assert isinstance(coeff, number_types) return as_number(coeff) elif len(d) == 1: (b, e), = d.items() if e == 1: t = b else: t = Expr(Op.FACTORS, d) if coeff == 1: return t return Expr(Op.TERMS, {t: coeff}) elif coeff == 1: return Expr(Op.FACTORS, d) else: return Expr(Op.TERMS, {Expr(Op.FACTORS, d): coeff}) if obj.op is Op.APPLY and obj.data[0] is ArithOp.DIV: dividend, divisor = obj.data[1] t1, c1 = as_term_coeff(dividend) t2, c2 = as_term_coeff(divisor) if isinstance(c1, integer_types) and isinstance(c2, integer_types): g = gcd(c1, c2) c1, c2 = c1//g, c2//g else: c1, c2 = c1/c2, 1 if t1.op is Op.APPLY and t1.data[0] is ArithOp.DIV: numer = t1.data[1][0] * c1 denom = t1.data[1][1] * t2 * c2 return as_apply(ArithOp.DIV, numer, denom) if t2.op is Op.APPLY and t2.data[0] is ArithOp.DIV: numer = t2.data[1][1] * t1 * c1 denom = t2.data[1][0] * c2 return as_apply(ArithOp.DIV, numer, denom) d = dict(as_factors(t1).data) for b, e in as_factors(t2).data.items(): _pairs_add(d, b, -e) numer, denom = {}, {} for b, e in d.items(): if e > 0: numer[b] = e else: denom[b] = -e numer = normalize(Expr(Op.FACTORS, numer)) * c1 denom = normalize(Expr(Op.FACTORS, denom)) * c2 if denom.op in (Op.INTEGER, Op.REAL) and denom.data[0] == 1: # TODO: denom kind not used return numer return as_apply(ArithOp.DIV, numer, denom) if obj.op is Op.CONCAT: lst = [obj.data[0]] for s in obj.data[1:]: last = lst[-1] if ( last.op is Op.STRING and s.op is Op.STRING and last.data[0][0] in '"\'' and s.data[0][0] == last.data[0][-1] ): new_last = as_string(last.data[0][:-1] + s.data[0][1:], max(last.data[1], s.data[1])) lst[-1] = new_last else: lst.append(s) if len(lst) == 1: return lst[0] return Expr(Op.CONCAT, tuple(lst)) if obj.op is Op.TERNARY: cond, expr1, expr2 = map(normalize, obj.data) if cond.op is Op.INTEGER: return expr1 if cond.data[0] else expr2 return Expr(Op.TERNARY, (cond, expr1, expr2)) return obj def as_expr(obj): """Convert non-Expr objects to Expr objects. """ if isinstance(obj, complex): return as_complex(obj.real, obj.imag) if isinstance(obj, number_types): return as_number(obj) if isinstance(obj, str): # STRING expression holds string with boundary quotes, hence # applying repr: return as_string(repr(obj)) if isinstance(obj, tuple): return tuple(map(as_expr, obj)) return obj def as_symbol(obj): """Return object as SYMBOL expression (variable or unparsed expression). """ return Expr(Op.SYMBOL, obj) def as_number(obj, kind=4): """Return object as INTEGER or REAL constant. """ if isinstance(obj, int): return Expr(Op.INTEGER, (obj, kind)) if isinstance(obj, float): return Expr(Op.REAL, (obj, kind)) if isinstance(obj, Expr): if obj.op in (Op.INTEGER, Op.REAL): return obj raise OpError(f'cannot convert {obj} to INTEGER or REAL constant') def as_integer(obj, kind=4): """Return object as INTEGER constant. """ if isinstance(obj, int): return Expr(Op.INTEGER, (obj, kind)) if isinstance(obj, Expr): if obj.op is Op.INTEGER: return obj raise OpError(f'cannot convert {obj} to INTEGER constant') def as_real(obj, kind=4): """Return object as REAL constant. """ if isinstance(obj, int): return Expr(Op.REAL, (float(obj), kind)) if isinstance(obj, float): return Expr(Op.REAL, (obj, kind)) if isinstance(obj, Expr): if obj.op is Op.REAL: return obj elif obj.op is Op.INTEGER: return Expr(Op.REAL, (float(obj.data[0]), kind)) raise OpError(f'cannot convert {obj} to REAL constant') def as_string(obj, kind=1): """Return object as STRING expression (string literal constant). """ return Expr(Op.STRING, (obj, kind)) def as_array(obj): """Return object as ARRAY expression (array constant). """ if isinstance(obj, Expr): obj = obj, return Expr(Op.ARRAY, obj) def as_complex(real, imag=0): """Return object as COMPLEX expression (complex literal constant). """ return Expr(Op.COMPLEX, (as_expr(real), as_expr(imag))) def as_apply(func, *args, **kwargs): """Return object as APPLY expression (function call, constructor, etc.) """ return Expr(Op.APPLY, (func, tuple(map(as_expr, args)), dict((k, as_expr(v)) for k, v in kwargs.items()))) def as_ternary(cond, expr1, expr2): """Return object as TERNARY expression (cond?expr1:expr2). """ return Expr(Op.TERNARY, (cond, expr1, expr2)) def as_ref(expr): """Return object as referencing expression. """ return Expr(Op.REF, expr) def as_deref(expr): """Return object as dereferencing expression. """ return Expr(Op.DEREF, expr) def as_eq(left, right): return Expr(Op.RELATIONAL, (RelOp.EQ, left, right)) def as_ne(left, right): return Expr(Op.RELATIONAL, (RelOp.NE, left, right)) def as_lt(left, right): return Expr(Op.RELATIONAL, (RelOp.LT, left, right)) def as_le(left, right): return Expr(Op.RELATIONAL, (RelOp.LE, left, right)) def as_gt(left, right): return Expr(Op.RELATIONAL, (RelOp.GT, left, right)) def as_ge(left, right): return Expr(Op.RELATIONAL, (RelOp.GE, left, right)) def as_terms(obj): """Return expression as TERMS expression. """ if isinstance(obj, Expr): obj = normalize(obj) if obj.op is Op.TERMS: return obj if obj.op is Op.INTEGER: return Expr(Op.TERMS, {as_integer(1, obj.data[1]): obj.data[0]}) if obj.op is Op.REAL: return Expr(Op.TERMS, {as_real(1, obj.data[1]): obj.data[0]}) return Expr(Op.TERMS, {obj: 1}) raise OpError(f'cannot convert {type(obj)} to terms Expr') def as_factors(obj): """Return expression as FACTORS expression. """ if isinstance(obj, Expr): obj = normalize(obj) if obj.op is Op.FACTORS: return obj if obj.op is Op.TERMS: if len(obj.data) == 1: (term, coeff), = obj.data.items() if coeff == 1: return Expr(Op.FACTORS, {term: 1}) return Expr(Op.FACTORS, {term: 1, Expr.number(coeff): 1}) if ((obj.op is Op.APPLY and obj.data[0] is ArithOp.DIV and not obj.data[2])): return Expr(Op.FACTORS, {obj.data[1][0]: 1, obj.data[1][1]: -1}) return Expr(Op.FACTORS, {obj: 1}) raise OpError(f'cannot convert {type(obj)} to terms Expr') def as_term_coeff(obj): """Return expression as term-coefficient pair. """ if isinstance(obj, Expr): obj = normalize(obj) if obj.op is Op.INTEGER: return as_integer(1, obj.data[1]), obj.data[0] if obj.op is Op.REAL: return as_real(1, obj.data[1]), obj.data[0] if obj.op is Op.TERMS: if len(obj.data) == 1: (term, coeff), = obj.data.items() return term, coeff # TODO: find common divisor of coefficients if obj.op is Op.APPLY and obj.data[0] is ArithOp.DIV: t, c = as_term_coeff(obj.data[1][0]) return as_apply(ArithOp.DIV, t, obj.data[1][1]), c return obj, 1 raise OpError(f'cannot convert {type(obj)} to term and coeff') def as_numer_denom(obj): """Return expression as numer-denom pair. """ if isinstance(obj, Expr): obj = normalize(obj) if obj.op in (Op.INTEGER, Op.REAL, Op.COMPLEX, Op.SYMBOL, Op.INDEXING, Op.TERNARY): return obj, as_number(1) elif obj.op is Op.APPLY: if obj.data[0] is ArithOp.DIV and not obj.data[2]: numers, denoms = map(as_numer_denom, obj.data[1]) return numers[0] * denoms[1], numers[1] * denoms[0] return obj, as_number(1) elif obj.op is Op.TERMS: numers, denoms = [], [] for term, coeff in obj.data.items(): n, d = as_numer_denom(term) n = n * coeff numers.append(n) denoms.append(d) numer, denom = as_number(0), as_number(1) for i in range(len(numers)): n = numers[i] for j in range(len(numers)): if i != j: n *= denoms[j] numer += n denom *= denoms[i] if denom.op in (Op.INTEGER, Op.REAL) and denom.data[0] < 0: numer, denom = -numer, -denom return numer, denom elif obj.op is Op.FACTORS: numer, denom = as_number(1), as_number(1) for b, e in obj.data.items(): bnumer, bdenom = as_numer_denom(b) if e > 0: numer *= bnumer ** e denom *= bdenom ** e elif e < 0: numer *= bdenom ** (-e) denom *= bnumer ** (-e) return numer, denom raise OpError(f'cannot convert {type(obj)} to numer and denom') def _counter(): # Used internally to generate unique dummy symbols counter = 0 while True: counter += 1 yield counter COUNTER = _counter() def eliminate_quotes(s): """Replace quoted substrings of input string. Return a new string and a mapping of replacements. """ d = {} def repl(m): kind, value = m.groups()[:2] if kind: # remove trailing underscore kind = kind[:-1] p = {"'": "SINGLE", '"': "DOUBLE"}[value[0]] k = f'{kind}@__f2py_QUOTES_{p}_{COUNTER.__next__()}@' d[k] = value return k new_s = re.sub(r'({kind}_|)({single_quoted}|{double_quoted})'.format( kind=r'\w[\w\d_]*', single_quoted=r"('([^'\\]|(\\.))*')", double_quoted=r'("([^"\\]|(\\.))*")'), repl, s) assert '"' not in new_s assert "'" not in new_s return new_s, d def insert_quotes(s, d): """Inverse of eliminate_quotes. """ for k, v in d.items(): kind = k[:k.find('@')] if kind: kind += '_' s = s.replace(k, kind + v) return s def replace_parenthesis(s): """Replace substrings of input that are enclosed in parenthesis. Return a new string and a mapping of replacements. """ # Find a parenthesis pair that appears first. # Fortran deliminator are `(`, `)`, `[`, `]`, `(/', '/)`, `/`. # We don't handle `/` deliminator because it is not a part of an # expression. left, right = None, None mn_i = len(s) for left_, right_ in (('(/', '/)'), '()', '{}', # to support C literal structs '[]'): i = s.find(left_) if i == -1: continue if i < mn_i: mn_i = i left, right = left_, right_ if left is None: return s, {} i = mn_i j = s.find(right, i) while s.count(left, i + 1, j) != s.count(right, i + 1, j): j = s.find(right, j + 1) if j == -1: raise ValueError(f'Mismatch of {left+right} parenthesis in {s!r}') p = {'(': 'ROUND', '[': 'SQUARE', '{': 'CURLY', '(/': 'ROUNDDIV'}[left] k = f'@__f2py_PARENTHESIS_{p}_{COUNTER.__next__()}@' v = s[i+len(left):j] r, d = replace_parenthesis(s[j+len(right):]) d[k] = v return s[:i] + k + r, d def _get_parenthesis_kind(s): assert s.startswith('@__f2py_PARENTHESIS_'), s return s.split('_')[4] def unreplace_parenthesis(s, d): """Inverse of replace_parenthesis. """ for k, v in d.items(): p = _get_parenthesis_kind(k) left = dict(ROUND='(', SQUARE='[', CURLY='{', ROUNDDIV='(/')[p] right = dict(ROUND=')', SQUARE=']', CURLY='}', ROUNDDIV='/)')[p] s = s.replace(k, left + v + right) return s def fromstring(s, language=Language.C): """Create an expression from a string. This is a "lazy" parser, that is, only arithmetic operations are resolved, non-arithmetic operations are treated as symbols. """ r = _FromStringWorker(language=language).parse(s) if isinstance(r, Expr): return r raise ValueError(f'failed to parse `{s}` to Expr instance: got `{r}`') class _Pair: # Internal class to represent a pair of expressions def __init__(self, left, right): self.left = left self.right = right def substitute(self, symbols_map): left, right = self.left, self.right if isinstance(left, Expr): left = left.substitute(symbols_map) if isinstance(right, Expr): right = right.substitute(symbols_map) return _Pair(left, right) def __repr__(self): return f'{type(self).__name__}({self.left}, {self.right})' class _FromStringWorker: def __init__(self, language=Language.C): self.original = None self.quotes_map = None self.language = language def finalize_string(self, s): return insert_quotes(s, self.quotes_map) def parse(self, inp): self.original = inp unquoted, self.quotes_map = eliminate_quotes(inp) return self.process(unquoted) def process(self, s, context='expr'): """Parse string within the given context. The context may define the result in case of ambiguous expressions. For instance, consider expressions `f(x, y)` and `(x, y) + (a, b)` where `f` is a function and pair `(x, y)` denotes complex number. Specifying context as "args" or "expr", the subexpression `(x, y)` will be parse to an argument list or to a complex number, respectively. """ if isinstance(s, (list, tuple)): return type(s)(self.process(s_, context) for s_ in s) assert isinstance(s, str), (type(s), s) # replace subexpressions in parenthesis with f2py @-names r, raw_symbols_map = replace_parenthesis(s) r = r.strip() def restore(r): # restores subexpressions marked with f2py @-names if isinstance(r, (list, tuple)): return type(r)(map(restore, r)) return unreplace_parenthesis(r, raw_symbols_map) # comma-separated tuple if ',' in r: operands = restore(r.split(',')) if context == 'args': return tuple(self.process(operands)) if context == 'expr': if len(operands) == 2: # complex number literal return as_complex(*self.process(operands)) raise NotImplementedError( f'parsing comma-separated list (context={context}): {r}') # ternary operation m = re.match(r'\A([^?]+)[?]([^:]+)[:](.+)\Z', r) if m: assert context == 'expr', context oper, expr1, expr2 = restore(m.groups()) oper = self.process(oper) expr1 = self.process(expr1) expr2 = self.process(expr2) return as_ternary(oper, expr1, expr2) # relational expression if self.language is Language.Fortran: m = re.match( r'\A(.+)\s*[.](eq|ne|lt|le|gt|ge)[.]\s*(.+)\Z', r, re.I) else: m = re.match( r'\A(.+)\s*([=][=]|[!][=]|[<][=]|[<]|[>][=]|[>])\s*(.+)\Z', r) if m: left, rop, right = m.groups() if self.language is Language.Fortran: rop = '.' + rop + '.' left, right = self.process(restore((left, right))) rop = RelOp.fromstring(rop, language=self.language) return Expr(Op.RELATIONAL, (rop, left, right)) # keyword argument m = re.match(r'\A(\w[\w\d_]*)\s*[=](.*)\Z', r) if m: keyname, value = m.groups() value = restore(value) return _Pair(keyname, self.process(value)) # addition/subtraction operations operands = re.split(r'((?<!\d[edED])[+-])', r) if len(operands) > 1: result = self.process(restore(operands[0] or '0')) for op, operand in zip(operands[1::2], operands[2::2]): operand = self.process(restore(operand)) op = op.strip() if op == '+': result += operand else: assert op == '-' result -= operand return result # string concatenate operation if self.language is Language.Fortran and '//' in r: operands = restore(r.split('//')) return Expr(Op.CONCAT, tuple(self.process(operands))) # multiplication/division operations operands = re.split(r'(?<=[@\w\d_])\s*([*]|/)', (r if self.language is Language.C else r.replace('**', '@__f2py_DOUBLE_STAR@'))) if len(operands) > 1: operands = restore(operands) if self.language is not Language.C: operands = [operand.replace('@__f2py_DOUBLE_STAR@', '**') for operand in operands] # Expression is an arithmetic product result = self.process(operands[0]) for op, operand in zip(operands[1::2], operands[2::2]): operand = self.process(operand) op = op.strip() if op == '*': result *= operand else: assert op == '/' result /= operand return result # referencing/dereferencing if r.startswith('*') or r.startswith('&'): op = {'*': Op.DEREF, '&': Op.REF}[r[0]] operand = self.process(restore(r[1:])) return Expr(op, operand) # exponentiation operations if self.language is not Language.C and '**' in r: operands = list(reversed(restore(r.split('**')))) result = self.process(operands[0]) for operand in operands[1:]: operand = self.process(operand) result = operand ** result return result # int-literal-constant m = re.match(r'\A({digit_string})({kind}|)\Z'.format( digit_string=r'\d+', kind=r'_(\d+|\w[\w\d_]*)'), r) if m: value, _, kind = m.groups() if kind and kind.isdigit(): kind = int(kind) return as_integer(int(value), kind or 4) # real-literal-constant m = re.match(r'\A({significant}({exponent}|)|\d+{exponent})({kind}|)\Z' .format( significant=r'[.]\d+|\d+[.]\d*', exponent=r'[edED][+-]?\d+', kind=r'_(\d+|\w[\w\d_]*)'), r) if m: value, _, _, kind = m.groups() if kind and kind.isdigit(): kind = int(kind) value = value.lower() if 'd' in value: return as_real(float(value.replace('d', 'e')), kind or 8) return as_real(float(value), kind or 4) # string-literal-constant with kind parameter specification if r in self.quotes_map: kind = r[:r.find('@')] return as_string(self.quotes_map[r], kind or 1) # array constructor or literal complex constant or # parenthesized expression if r in raw_symbols_map: paren = _get_parenthesis_kind(r) items = self.process(restore(raw_symbols_map[r]), 'expr' if paren == 'ROUND' else 'args') if paren == 'ROUND': if isinstance(items, Expr): return items if paren in ['ROUNDDIV', 'SQUARE']: # Expression is a array constructor if isinstance(items, Expr): items = (items,) return as_array(items) # function call/indexing m = re.match(r'\A(.+)\s*(@__f2py_PARENTHESIS_(ROUND|SQUARE)_\d+@)\Z', r) if m: target, args, paren = m.groups() target = self.process(restore(target)) args = self.process(restore(args)[1:-1], 'args') if not isinstance(args, tuple): args = args, if paren == 'ROUND': kwargs = dict((a.left, a.right) for a in args if isinstance(a, _Pair)) args = tuple(a for a in args if not isinstance(a, _Pair)) # Warning: this could also be Fortran indexing operation.. return as_apply(target, *args, **kwargs) else: # Expression is a C/Python indexing operation # (e.g. used in .pyf files) assert paren == 'SQUARE' return target[args] # Fortran standard conforming identifier m = re.match(r'\A\w[\w\d_]*\Z', r) if m: return as_symbol(r) # fall-back to symbol r = self.finalize_string(restore(r)) ewarn( f'fromstring: treating {r!r} as symbol (original={self.original})') return as_symbol(r)
53,004
Python
34.079418
79
0.503471
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/__init__.py
#!/usr/bin/env python3 """Fortran to Python Interface Generator. """ __all__ = ['run_main', 'compile', 'get_include'] import sys import subprocess import os from . import f2py2e from . import diagnose run_main = f2py2e.run_main main = f2py2e.main def compile(source, modulename='untitled', extra_args='', verbose=True, source_fn=None, extension='.f', full_output=False ): """ Build extension module from a Fortran 77 source string with f2py. Parameters ---------- source : str or bytes Fortran source of module / subroutine to compile .. versionchanged:: 1.16.0 Accept str as well as bytes modulename : str, optional The name of the compiled python module extra_args : str or list, optional Additional parameters passed to f2py .. versionchanged:: 1.16.0 A list of args may also be provided. verbose : bool, optional Print f2py output to screen source_fn : str, optional Name of the file where the fortran source is written. The default is to use a temporary file with the extension provided by the ``extension`` parameter extension : ``{'.f', '.f90'}``, optional Filename extension if `source_fn` is not provided. The extension tells which fortran standard is used. The default is ``.f``, which implies F77 standard. .. versionadded:: 1.11.0 full_output : bool, optional If True, return a `subprocess.CompletedProcess` containing the stdout and stderr of the compile process, instead of just the status code. .. versionadded:: 1.20.0 Returns ------- result : int or `subprocess.CompletedProcess` 0 on success, or a `subprocess.CompletedProcess` if ``full_output=True`` Examples -------- .. literalinclude:: ../../source/f2py/code/results/compile_session.dat :language: python """ import tempfile import shlex if source_fn is None: f, fname = tempfile.mkstemp(suffix=extension) # f is a file descriptor so need to close it # carefully -- not with .close() directly os.close(f) else: fname = source_fn if not isinstance(source, str): source = str(source, 'utf-8') try: with open(fname, 'w') as f: f.write(source) args = ['-c', '-m', modulename, f.name] if isinstance(extra_args, str): is_posix = (os.name == 'posix') extra_args = shlex.split(extra_args, posix=is_posix) args.extend(extra_args) c = [sys.executable, '-c', 'import numpy.f2py as f2py2e;f2py2e.main()'] + args try: cp = subprocess.run(c, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except OSError: # preserve historic status code used by exec_command() cp = subprocess.CompletedProcess(c, 127, stdout=b'', stderr=b'') else: if verbose: print(cp.stdout.decode()) finally: if source_fn is None: os.remove(fname) if full_output: return cp else: return cp.returncode def get_include(): """ Return the directory that contains the ``fortranobject.c`` and ``.h`` files. .. note:: This function is not needed when building an extension with `numpy.distutils` directly from ``.f`` and/or ``.pyf`` files in one go. Python extension modules built with f2py-generated code need to use ``fortranobject.c`` as a source file, and include the ``fortranobject.h`` header. This function can be used to obtain the directory containing both of these files. Returns ------- include_path : str Absolute path to the directory containing ``fortranobject.c`` and ``fortranobject.h``. Notes ----- .. versionadded:: 1.21.1 Unless the build system you are using has specific support for f2py, building a Python extension using a ``.pyf`` signature file is a two-step process. For a module ``mymod``: * Step 1: run ``python -m numpy.f2py mymod.pyf --quiet``. This generates ``_mymodmodule.c`` and (if needed) ``_fblas-f2pywrappers.f`` files next to ``mymod.pyf``. * Step 2: build your Python extension module. This requires the following source files: * ``_mymodmodule.c`` * ``_mymod-f2pywrappers.f`` (if it was generated in Step 1) * ``fortranobject.c`` See Also -------- numpy.get_include : function that returns the numpy include directory """ return os.path.join(os.path.dirname(__file__), 'src') def __getattr__(attr): # Avoid importing things that aren't needed for building # which might import the main numpy module if attr == "test": from numpy._pytesttester import PytestTester test = PytestTester(__name__) return test else: raise AttributeError("module {!r} has no attribute " "{!r}".format(__name__, attr)) def __dir__(): return list(globals().keys() | {"test"})
5,289
Python
27.138298
80
0.593307
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/capi_maps.py
#!/usr/bin/env python3 """ Copyright 1999,2000 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/05/06 10:57:33 $ Pearu Peterson """ from . import __version__ f2py_version = __version__.version import copy import re import os from .crackfortran import markoutercomma from . import cb_rules # The environment provided by auxfuncs.py is needed for some calls to eval. # As the needed functions cannot be determined by static inspection of the # code, it is safest to use import * pending a major refactoring of f2py. from .auxfuncs import * __all__ = [ 'getctype', 'getstrlength', 'getarrdims', 'getpydocsign', 'getarrdocsign', 'getinit', 'sign2map', 'routsign2map', 'modsign2map', 'cb_sign2map', 'cb_routsign2map', 'common_sign2map' ] # Numarray and Numeric users should set this False using_newcore = True depargs = [] lcb_map = {} lcb2_map = {} # forced casting: mainly caused by the fact that Python or Numeric # C/APIs do not support the corresponding C types. c2py_map = {'double': 'float', 'float': 'float', # forced casting 'long_double': 'float', # forced casting 'char': 'int', # forced casting 'signed_char': 'int', # forced casting 'unsigned_char': 'int', # forced casting 'short': 'int', # forced casting 'unsigned_short': 'int', # forced casting 'int': 'int', # forced casting 'long': 'int', 'long_long': 'long', 'unsigned': 'int', # forced casting 'complex_float': 'complex', # forced casting 'complex_double': 'complex', 'complex_long_double': 'complex', # forced casting 'string': 'string', } c2capi_map = {'double': 'NPY_DOUBLE', 'float': 'NPY_FLOAT', 'long_double': 'NPY_DOUBLE', # forced casting 'char': 'NPY_STRING', 'unsigned_char': 'NPY_UBYTE', 'signed_char': 'NPY_BYTE', 'short': 'NPY_SHORT', 'unsigned_short': 'NPY_USHORT', 'int': 'NPY_INT', 'unsigned': 'NPY_UINT', 'long': 'NPY_LONG', 'long_long': 'NPY_LONG', # forced casting 'complex_float': 'NPY_CFLOAT', 'complex_double': 'NPY_CDOUBLE', 'complex_long_double': 'NPY_CDOUBLE', # forced casting 'string': 'NPY_STRING'} # These new maps aren't used anywhere yet, but should be by default # unless building numeric or numarray extensions. if using_newcore: c2capi_map = {'double': 'NPY_DOUBLE', 'float': 'NPY_FLOAT', 'long_double': 'NPY_LONGDOUBLE', 'char': 'NPY_BYTE', 'unsigned_char': 'NPY_UBYTE', 'signed_char': 'NPY_BYTE', 'short': 'NPY_SHORT', 'unsigned_short': 'NPY_USHORT', 'int': 'NPY_INT', 'unsigned': 'NPY_UINT', 'long': 'NPY_LONG', 'unsigned_long': 'NPY_ULONG', 'long_long': 'NPY_LONGLONG', 'unsigned_long_long': 'NPY_ULONGLONG', 'complex_float': 'NPY_CFLOAT', 'complex_double': 'NPY_CDOUBLE', 'complex_long_double': 'NPY_CDOUBLE', 'string':'NPY_STRING' } c2pycode_map = {'double': 'd', 'float': 'f', 'long_double': 'd', # forced casting 'char': '1', 'signed_char': '1', 'unsigned_char': 'b', 'short': 's', 'unsigned_short': 'w', 'int': 'i', 'unsigned': 'u', 'long': 'l', 'long_long': 'L', 'complex_float': 'F', 'complex_double': 'D', 'complex_long_double': 'D', # forced casting 'string': 'c' } if using_newcore: c2pycode_map = {'double': 'd', 'float': 'f', 'long_double': 'g', 'char': 'b', 'unsigned_char': 'B', 'signed_char': 'b', 'short': 'h', 'unsigned_short': 'H', 'int': 'i', 'unsigned': 'I', 'long': 'l', 'unsigned_long': 'L', 'long_long': 'q', 'unsigned_long_long': 'Q', 'complex_float': 'F', 'complex_double': 'D', 'complex_long_double': 'G', 'string': 'S'} c2buildvalue_map = {'double': 'd', 'float': 'f', 'char': 'b', 'signed_char': 'b', 'short': 'h', 'int': 'i', 'long': 'l', 'long_long': 'L', 'complex_float': 'N', 'complex_double': 'N', 'complex_long_double': 'N', 'string': 'y'} f2cmap_all = {'real': {'': 'float', '4': 'float', '8': 'double', '12': 'long_double', '16': 'long_double'}, 'integer': {'': 'int', '1': 'signed_char', '2': 'short', '4': 'int', '8': 'long_long', '-1': 'unsigned_char', '-2': 'unsigned_short', '-4': 'unsigned', '-8': 'unsigned_long_long'}, 'complex': {'': 'complex_float', '8': 'complex_float', '16': 'complex_double', '24': 'complex_long_double', '32': 'complex_long_double'}, 'complexkind': {'': 'complex_float', '4': 'complex_float', '8': 'complex_double', '12': 'complex_long_double', '16': 'complex_long_double'}, 'logical': {'': 'int', '1': 'char', '2': 'short', '4': 'int', '8': 'long_long'}, 'double complex': {'': 'complex_double'}, 'double precision': {'': 'double'}, 'byte': {'': 'char'}, 'character': {'': 'string'} } f2cmap_default = copy.deepcopy(f2cmap_all) f2cmap_mapped = [] def load_f2cmap_file(f2cmap_file): global f2cmap_all f2cmap_all = copy.deepcopy(f2cmap_default) if f2cmap_file is None: # Default value f2cmap_file = '.f2py_f2cmap' if not os.path.isfile(f2cmap_file): return # User defined additions to f2cmap_all. # f2cmap_file must contain a dictionary of dictionaries, only. For # example, {'real':{'low':'float'}} means that Fortran 'real(low)' is # interpreted as C 'float'. This feature is useful for F90/95 users if # they use PARAMETERS in type specifications. try: outmess('Reading f2cmap from {!r} ...\n'.format(f2cmap_file)) with open(f2cmap_file, 'r') as f: d = eval(f.read().lower(), {}, {}) for k, d1 in d.items(): for k1 in d1.keys(): d1[k1.lower()] = d1[k1] d[k.lower()] = d[k] for k in d.keys(): if k not in f2cmap_all: f2cmap_all[k] = {} for k1 in d[k].keys(): if d[k][k1] in c2py_map: if k1 in f2cmap_all[k]: outmess( "\tWarning: redefinition of {'%s':{'%s':'%s'->'%s'}}\n" % (k, k1, f2cmap_all[k][k1], d[k][k1])) f2cmap_all[k][k1] = d[k][k1] outmess('\tMapping "%s(kind=%s)" to "%s"\n' % (k, k1, d[k][k1])) f2cmap_mapped.append(d[k][k1]) else: errmess("\tIgnoring map {'%s':{'%s':'%s'}}: '%s' must be in %s\n" % ( k, k1, d[k][k1], d[k][k1], list(c2py_map.keys()))) outmess('Successfully applied user defined f2cmap changes\n') except Exception as msg: errmess( 'Failed to apply user defined f2cmap changes: %s. Skipping.\n' % (msg)) cformat_map = {'double': '%g', 'float': '%g', 'long_double': '%Lg', 'char': '%d', 'signed_char': '%d', 'unsigned_char': '%hhu', 'short': '%hd', 'unsigned_short': '%hu', 'int': '%d', 'unsigned': '%u', 'long': '%ld', 'unsigned_long': '%lu', 'long_long': '%ld', 'complex_float': '(%g,%g)', 'complex_double': '(%g,%g)', 'complex_long_double': '(%Lg,%Lg)', 'string': '%s', } # Auxiliary functions def getctype(var): """ Determines C type """ ctype = 'void' if isfunction(var): if 'result' in var: a = var['result'] else: a = var['name'] if a in var['vars']: return getctype(var['vars'][a]) else: errmess('getctype: function %s has no return value?!\n' % a) elif issubroutine(var): return ctype elif 'typespec' in var and var['typespec'].lower() in f2cmap_all: typespec = var['typespec'].lower() f2cmap = f2cmap_all[typespec] ctype = f2cmap[''] # default type if 'kindselector' in var: if '*' in var['kindselector']: try: ctype = f2cmap[var['kindselector']['*']] except KeyError: errmess('getctype: "%s %s %s" not supported.\n' % (var['typespec'], '*', var['kindselector']['*'])) elif 'kind' in var['kindselector']: if typespec + 'kind' in f2cmap_all: f2cmap = f2cmap_all[typespec + 'kind'] try: ctype = f2cmap[var['kindselector']['kind']] except KeyError: if typespec in f2cmap_all: f2cmap = f2cmap_all[typespec] try: ctype = f2cmap[str(var['kindselector']['kind'])] except KeyError: errmess('getctype: "%s(kind=%s)" is mapped to C "%s" (to override define dict(%s = dict(%s="<C typespec>")) in %s/.f2py_f2cmap file).\n' % (typespec, var['kindselector']['kind'], ctype, typespec, var['kindselector']['kind'], os.getcwd())) else: if not isexternal(var): errmess('getctype: No C-type found in "%s", assuming void.\n' % var) return ctype def getstrlength(var): if isstringfunction(var): if 'result' in var: a = var['result'] else: a = var['name'] if a in var['vars']: return getstrlength(var['vars'][a]) else: errmess('getstrlength: function %s has no return value?!\n' % a) if not isstring(var): errmess( 'getstrlength: expected a signature of a string but got: %s\n' % (repr(var))) len = '1' if 'charselector' in var: a = var['charselector'] if '*' in a: len = a['*'] elif 'len' in a: len = a['len'] if re.match(r'\(\s*(\*|:)\s*\)', len) or re.match(r'(\*|:)', len): if isintent_hide(var): errmess('getstrlength:intent(hide): expected a string with defined length but got: %s\n' % ( repr(var))) len = '-1' return len def getarrdims(a, var, verbose=0): ret = {} if isstring(var) and not isarray(var): ret['dims'] = getstrlength(var) ret['size'] = ret['dims'] ret['rank'] = '1' elif isscalar(var): ret['size'] = '1' ret['rank'] = '0' ret['dims'] = '' elif isarray(var): dim = copy.copy(var['dimension']) ret['size'] = '*'.join(dim) try: ret['size'] = repr(eval(ret['size'])) except Exception: pass ret['dims'] = ','.join(dim) ret['rank'] = repr(len(dim)) ret['rank*[-1]'] = repr(len(dim) * [-1])[1:-1] for i in range(len(dim)): # solve dim for dependencies v = [] if dim[i] in depargs: v = [dim[i]] else: for va in depargs: if re.match(r'.*?\b%s\b.*' % va, dim[i]): v.append(va) for va in v: if depargs.index(va) > depargs.index(a): dim[i] = '*' break ret['setdims'], i = '', -1 for d in dim: i = i + 1 if d not in ['*', ':', '(*)', '(:)']: ret['setdims'] = '%s#varname#_Dims[%d]=%s,' % ( ret['setdims'], i, d) if ret['setdims']: ret['setdims'] = ret['setdims'][:-1] ret['cbsetdims'], i = '', -1 for d in var['dimension']: i = i + 1 if d not in ['*', ':', '(*)', '(:)']: ret['cbsetdims'] = '%s#varname#_Dims[%d]=%s,' % ( ret['cbsetdims'], i, d) elif isintent_in(var): outmess('getarrdims:warning: assumed shape array, using 0 instead of %r\n' % (d)) ret['cbsetdims'] = '%s#varname#_Dims[%d]=%s,' % ( ret['cbsetdims'], i, 0) elif verbose: errmess( 'getarrdims: If in call-back function: array argument %s must have bounded dimensions: got %s\n' % (repr(a), repr(d))) if ret['cbsetdims']: ret['cbsetdims'] = ret['cbsetdims'][:-1] # if not isintent_c(var): # var['dimension'].reverse() return ret def getpydocsign(a, var): global lcb_map if isfunction(var): if 'result' in var: af = var['result'] else: af = var['name'] if af in var['vars']: return getpydocsign(af, var['vars'][af]) else: errmess('getctype: function %s has no return value?!\n' % af) return '', '' sig, sigout = a, a opt = '' if isintent_in(var): opt = 'input' elif isintent_inout(var): opt = 'in/output' out_a = a if isintent_out(var): for k in var['intent']: if k[:4] == 'out=': out_a = k[4:] break init = '' ctype = getctype(var) if hasinitvalue(var): init, showinit = getinit(a, var) init = ', optional\\n Default: %s' % showinit if isscalar(var): if isintent_inout(var): sig = '%s : %s rank-0 array(%s,\'%s\')%s' % (a, opt, c2py_map[ctype], c2pycode_map[ctype], init) else: sig = '%s : %s %s%s' % (a, opt, c2py_map[ctype], init) sigout = '%s : %s' % (out_a, c2py_map[ctype]) elif isstring(var): if isintent_inout(var): sig = '%s : %s rank-0 array(string(len=%s),\'c\')%s' % ( a, opt, getstrlength(var), init) else: sig = '%s : %s string(len=%s)%s' % ( a, opt, getstrlength(var), init) sigout = '%s : string(len=%s)' % (out_a, getstrlength(var)) elif isarray(var): dim = var['dimension'] rank = repr(len(dim)) sig = '%s : %s rank-%s array(\'%s\') with bounds (%s)%s' % (a, opt, rank, c2pycode_map[ ctype], ','.join(dim), init) if a == out_a: sigout = '%s : rank-%s array(\'%s\') with bounds (%s)'\ % (a, rank, c2pycode_map[ctype], ','.join(dim)) else: sigout = '%s : rank-%s array(\'%s\') with bounds (%s) and %s storage'\ % (out_a, rank, c2pycode_map[ctype], ','.join(dim), a) elif isexternal(var): ua = '' if a in lcb_map and lcb_map[a] in lcb2_map and 'argname' in lcb2_map[lcb_map[a]]: ua = lcb2_map[lcb_map[a]]['argname'] if not ua == a: ua = ' => %s' % ua else: ua = '' sig = '%s : call-back function%s' % (a, ua) sigout = sig else: errmess( 'getpydocsign: Could not resolve docsignature for "%s".\n' % a) return sig, sigout def getarrdocsign(a, var): ctype = getctype(var) if isstring(var) and (not isarray(var)): sig = '%s : rank-0 array(string(len=%s),\'c\')' % (a, getstrlength(var)) elif isscalar(var): sig = '%s : rank-0 array(%s,\'%s\')' % (a, c2py_map[ctype], c2pycode_map[ctype],) elif isarray(var): dim = var['dimension'] rank = repr(len(dim)) sig = '%s : rank-%s array(\'%s\') with bounds (%s)' % (a, rank, c2pycode_map[ ctype], ','.join(dim)) return sig def getinit(a, var): if isstring(var): init, showinit = '""', "''" else: init, showinit = '', '' if hasinitvalue(var): init = var['='] showinit = init if iscomplex(var) or iscomplexarray(var): ret = {} try: v = var["="] if ',' in v: ret['init.r'], ret['init.i'] = markoutercomma( v[1:-1]).split('@,@') else: v = eval(v, {}, {}) ret['init.r'], ret['init.i'] = str(v.real), str(v.imag) except Exception: raise ValueError( 'getinit: expected complex number `(r,i)\' but got `%s\' as initial value of %r.' % (init, a)) if isarray(var): init = '(capi_c.r=%s,capi_c.i=%s,capi_c)' % ( ret['init.r'], ret['init.i']) elif isstring(var): if not init: init, showinit = '""', "''" if init[0] == "'": init = '"%s"' % (init[1:-1].replace('"', '\\"')) if init[0] == '"': showinit = "'%s'" % (init[1:-1]) return init, showinit def sign2map(a, var): """ varname,ctype,atype init,init.r,init.i,pytype vardebuginfo,vardebugshowvalue,varshowvalue varrformat intent """ out_a = a if isintent_out(var): for k in var['intent']: if k[:4] == 'out=': out_a = k[4:] break ret = {'varname': a, 'outvarname': out_a, 'ctype': getctype(var)} intent_flags = [] for f, s in isintent_dict.items(): if f(var): intent_flags.append('F2PY_%s' % s) if intent_flags: # TODO: Evaluate intent_flags here. ret['intent'] = '|'.join(intent_flags) else: ret['intent'] = 'F2PY_INTENT_IN' if isarray(var): ret['varrformat'] = 'N' elif ret['ctype'] in c2buildvalue_map: ret['varrformat'] = c2buildvalue_map[ret['ctype']] else: ret['varrformat'] = 'O' ret['init'], ret['showinit'] = getinit(a, var) if hasinitvalue(var) and iscomplex(var) and not isarray(var): ret['init.r'], ret['init.i'] = markoutercomma( ret['init'][1:-1]).split('@,@') if isexternal(var): ret['cbnamekey'] = a if a in lcb_map: ret['cbname'] = lcb_map[a] ret['maxnofargs'] = lcb2_map[lcb_map[a]]['maxnofargs'] ret['nofoptargs'] = lcb2_map[lcb_map[a]]['nofoptargs'] ret['cbdocstr'] = lcb2_map[lcb_map[a]]['docstr'] ret['cblatexdocstr'] = lcb2_map[lcb_map[a]]['latexdocstr'] else: ret['cbname'] = a errmess('sign2map: Confused: external %s is not in lcb_map%s.\n' % ( a, list(lcb_map.keys()))) if isstring(var): ret['length'] = getstrlength(var) if isarray(var): ret = dictappend(ret, getarrdims(a, var)) dim = copy.copy(var['dimension']) if ret['ctype'] in c2capi_map: ret['atype'] = c2capi_map[ret['ctype']] # Debug info if debugcapi(var): il = [isintent_in, 'input', isintent_out, 'output', isintent_inout, 'inoutput', isrequired, 'required', isoptional, 'optional', isintent_hide, 'hidden', iscomplex, 'complex scalar', l_and(isscalar, l_not(iscomplex)), 'scalar', isstring, 'string', isarray, 'array', iscomplexarray, 'complex array', isstringarray, 'string array', iscomplexfunction, 'complex function', l_and(isfunction, l_not(iscomplexfunction)), 'function', isexternal, 'callback', isintent_callback, 'callback', isintent_aux, 'auxiliary', ] rl = [] for i in range(0, len(il), 2): if il[i](var): rl.append(il[i + 1]) if isstring(var): rl.append('slen(%s)=%s' % (a, ret['length'])) if isarray(var): ddim = ','.join( map(lambda x, y: '%s|%s' % (x, y), var['dimension'], dim)) rl.append('dims(%s)' % ddim) if isexternal(var): ret['vardebuginfo'] = 'debug-capi:%s=>%s:%s' % ( a, ret['cbname'], ','.join(rl)) else: ret['vardebuginfo'] = 'debug-capi:%s %s=%s:%s' % ( ret['ctype'], a, ret['showinit'], ','.join(rl)) if isscalar(var): if ret['ctype'] in cformat_map: ret['vardebugshowvalue'] = 'debug-capi:%s=%s' % ( a, cformat_map[ret['ctype']]) if isstring(var): ret['vardebugshowvalue'] = 'debug-capi:slen(%s)=%%d %s=\\"%%s\\"' % ( a, a) if isexternal(var): ret['vardebugshowvalue'] = 'debug-capi:%s=%%p' % (a) if ret['ctype'] in cformat_map: ret['varshowvalue'] = '#name#:%s=%s' % (a, cformat_map[ret['ctype']]) ret['showvalueformat'] = '%s' % (cformat_map[ret['ctype']]) if isstring(var): ret['varshowvalue'] = '#name#:slen(%s)=%%d %s=\\"%%s\\"' % (a, a) ret['pydocsign'], ret['pydocsignout'] = getpydocsign(a, var) if hasnote(var): ret['note'] = var['note'] return ret def routsign2map(rout): """ name,NAME,begintitle,endtitle rname,ctype,rformat routdebugshowvalue """ global lcb_map name = rout['name'] fname = getfortranname(rout) ret = {'name': name, 'texname': name.replace('_', '\\_'), 'name_lower': name.lower(), 'NAME': name.upper(), 'begintitle': gentitle(name), 'endtitle': gentitle('end of %s' % name), 'fortranname': fname, 'FORTRANNAME': fname.upper(), 'callstatement': getcallstatement(rout) or '', 'usercode': getusercode(rout) or '', 'usercode1': getusercode1(rout) or '', } if '_' in fname: ret['F_FUNC'] = 'F_FUNC_US' else: ret['F_FUNC'] = 'F_FUNC' if '_' in name: ret['F_WRAPPEDFUNC'] = 'F_WRAPPEDFUNC_US' else: ret['F_WRAPPEDFUNC'] = 'F_WRAPPEDFUNC' lcb_map = {} if 'use' in rout: for u in rout['use'].keys(): if u in cb_rules.cb_map: for un in cb_rules.cb_map[u]: ln = un[0] if 'map' in rout['use'][u]: for k in rout['use'][u]['map'].keys(): if rout['use'][u]['map'][k] == un[0]: ln = k break lcb_map[ln] = un[1] elif 'externals' in rout and rout['externals']: errmess('routsign2map: Confused: function %s has externals %s but no "use" statement.\n' % ( ret['name'], repr(rout['externals']))) ret['callprotoargument'] = getcallprotoargument(rout, lcb_map) or '' if isfunction(rout): if 'result' in rout: a = rout['result'] else: a = rout['name'] ret['rname'] = a ret['pydocsign'], ret['pydocsignout'] = getpydocsign(a, rout) ret['ctype'] = getctype(rout['vars'][a]) if hasresultnote(rout): ret['resultnote'] = rout['vars'][a]['note'] rout['vars'][a]['note'] = ['See elsewhere.'] if ret['ctype'] in c2buildvalue_map: ret['rformat'] = c2buildvalue_map[ret['ctype']] else: ret['rformat'] = 'O' errmess('routsign2map: no c2buildvalue key for type %s\n' % (repr(ret['ctype']))) if debugcapi(rout): if ret['ctype'] in cformat_map: ret['routdebugshowvalue'] = 'debug-capi:%s=%s' % ( a, cformat_map[ret['ctype']]) if isstringfunction(rout): ret['routdebugshowvalue'] = 'debug-capi:slen(%s)=%%d %s=\\"%%s\\"' % ( a, a) if isstringfunction(rout): ret['rlength'] = getstrlength(rout['vars'][a]) if ret['rlength'] == '-1': errmess('routsign2map: expected explicit specification of the length of the string returned by the fortran function %s; taking 10.\n' % ( repr(rout['name']))) ret['rlength'] = '10' if hasnote(rout): ret['note'] = rout['note'] rout['note'] = ['See elsewhere.'] return ret def modsign2map(m): """ modulename """ if ismodule(m): ret = {'f90modulename': m['name'], 'F90MODULENAME': m['name'].upper(), 'texf90modulename': m['name'].replace('_', '\\_')} else: ret = {'modulename': m['name'], 'MODULENAME': m['name'].upper(), 'texmodulename': m['name'].replace('_', '\\_')} ret['restdoc'] = getrestdoc(m) or [] if hasnote(m): ret['note'] = m['note'] ret['usercode'] = getusercode(m) or '' ret['usercode1'] = getusercode1(m) or '' if m['body']: ret['interface_usercode'] = getusercode(m['body'][0]) or '' else: ret['interface_usercode'] = '' ret['pymethoddef'] = getpymethoddef(m) or '' if 'coutput' in m: ret['coutput'] = m['coutput'] if 'f2py_wrapper_output' in m: ret['f2py_wrapper_output'] = m['f2py_wrapper_output'] return ret def cb_sign2map(a, var, index=None): ret = {'varname': a} ret['varname_i'] = ret['varname'] ret['ctype'] = getctype(var) if ret['ctype'] in c2capi_map: ret['atype'] = c2capi_map[ret['ctype']] if ret['ctype'] in cformat_map: ret['showvalueformat'] = '%s' % (cformat_map[ret['ctype']]) if isarray(var): ret = dictappend(ret, getarrdims(a, var)) ret['pydocsign'], ret['pydocsignout'] = getpydocsign(a, var) if hasnote(var): ret['note'] = var['note'] var['note'] = ['See elsewhere.'] return ret def cb_routsign2map(rout, um): """ name,begintitle,endtitle,argname ctype,rctype,maxnofargs,nofoptargs,returncptr """ ret = {'name': 'cb_%s_in_%s' % (rout['name'], um), 'returncptr': ''} if isintent_callback(rout): if '_' in rout['name']: F_FUNC = 'F_FUNC_US' else: F_FUNC = 'F_FUNC' ret['callbackname'] = '%s(%s,%s)' \ % (F_FUNC, rout['name'].lower(), rout['name'].upper(), ) ret['static'] = 'extern' else: ret['callbackname'] = ret['name'] ret['static'] = 'static' ret['argname'] = rout['name'] ret['begintitle'] = gentitle(ret['name']) ret['endtitle'] = gentitle('end of %s' % ret['name']) ret['ctype'] = getctype(rout) ret['rctype'] = 'void' if ret['ctype'] == 'string': ret['rctype'] = 'void' else: ret['rctype'] = ret['ctype'] if ret['rctype'] != 'void': if iscomplexfunction(rout): ret['returncptr'] = """ #ifdef F2PY_CB_RETURNCOMPLEX return_value= #endif """ else: ret['returncptr'] = 'return_value=' if ret['ctype'] in cformat_map: ret['showvalueformat'] = '%s' % (cformat_map[ret['ctype']]) if isstringfunction(rout): ret['strlength'] = getstrlength(rout) if isfunction(rout): if 'result' in rout: a = rout['result'] else: a = rout['name'] if hasnote(rout['vars'][a]): ret['note'] = rout['vars'][a]['note'] rout['vars'][a]['note'] = ['See elsewhere.'] ret['rname'] = a ret['pydocsign'], ret['pydocsignout'] = getpydocsign(a, rout) if iscomplexfunction(rout): ret['rctype'] = """ #ifdef F2PY_CB_RETURNCOMPLEX #ctype# #else void #endif """ else: if hasnote(rout): ret['note'] = rout['note'] rout['note'] = ['See elsewhere.'] nofargs = 0 nofoptargs = 0 if 'args' in rout and 'vars' in rout: for a in rout['args']: var = rout['vars'][a] if l_or(isintent_in, isintent_inout)(var): nofargs = nofargs + 1 if isoptional(var): nofoptargs = nofoptargs + 1 ret['maxnofargs'] = repr(nofargs) ret['nofoptargs'] = repr(nofoptargs) if hasnote(rout) and isfunction(rout) and 'result' in rout: ret['routnote'] = rout['note'] rout['note'] = ['See elsewhere.'] return ret def common_sign2map(a, var): # obsolute ret = {'varname': a, 'ctype': getctype(var)} if isstringarray(var): ret['ctype'] = 'char' if ret['ctype'] in c2capi_map: ret['atype'] = c2capi_map[ret['ctype']] if ret['ctype'] in cformat_map: ret['showvalueformat'] = '%s' % (cformat_map[ret['ctype']]) if isarray(var): ret = dictappend(ret, getarrdims(a, var)) elif isstring(var): ret['size'] = getstrlength(var) ret['rank'] = '1' ret['pydocsign'], ret['pydocsignout'] = getpydocsign(a, var) if hasnote(var): ret['note'] = var['note'] var['note'] = ['See elsewhere.'] # for strings this returns 0-rank but actually is 1-rank ret['arrdocstr'] = getarrdocsign(a, var) return ret
31,388
Python
36.457041
160
0.457022
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/setup.py
#!/usr/bin/env python3 """ setup.py for installing F2PY Usage: pip install . Copyright 2001-2005 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Revision: 1.32 $ $Date: 2005/01/30 17:22:14 $ Pearu Peterson """ from numpy.distutils.core import setup from numpy.distutils.misc_util import Configuration from __version__ import version def configuration(parent_package='', top_path=None): config = Configuration('f2py', parent_package, top_path) config.add_subpackage('tests') config.add_data_dir('tests/src') config.add_data_files( 'src/fortranobject.c', 'src/fortranobject.h') config.add_data_files('*.pyi') return config if __name__ == "__main__": config = configuration(top_path='') config = config.todict() config['classifiers'] = [ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: NumPy License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: C', 'Programming Language :: Fortran', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Software Development :: Code Generators', ] setup(version=version, description="F2PY - Fortran to Python Interface Generator", author="Pearu Peterson", author_email="[email protected]", maintainer="Pearu Peterson", maintainer_email="[email protected]", license="BSD", platforms="Unix, Windows (mingw|cygwin), Mac OSX", long_description="""\ The Fortran to Python Interface Generator, or F2PY for short, is a command line tool (f2py) for generating Python C/API modules for wrapping Fortran 77/90/95 subroutines, accessing common blocks from Python, and calling Python functions from Fortran (call-backs). Interfacing subroutines/data from Fortran 90/95 modules is supported.""", url="https://numpy.org/doc/stable/f2py/", keywords=['Fortran', 'f2py'], **config)
2,335
Python
31.444444
74
0.662099
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/f90mod_rules.py
#!/usr/bin/env python3 """ Build F90 module support for f2py2e. Copyright 2000 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/02/03 19:30:23 $ Pearu Peterson """ __version__ = "$Revision: 1.27 $"[10:-1] f2py_version = 'See `f2py -v`' import numpy as np from . import capi_maps from . import func2subr from .crackfortran import undo_rmbadname, undo_rmbadname1 # The environment provided by auxfuncs.py is needed for some calls to eval. # As the needed functions cannot be determined by static inspection of the # code, it is safest to use import * pending a major refactoring of f2py. from .auxfuncs import * options = {} def findf90modules(m): if ismodule(m): return [m] if not hasbody(m): return [] ret = [] for b in m['body']: if ismodule(b): ret.append(b) else: ret = ret + findf90modules(b) return ret fgetdims1 = """\ external f2pysetdata logical ns integer r,i integer(%d) s(*) ns = .FALSE. if (allocated(d)) then do i=1,r if ((size(d,i).ne.s(i)).and.(s(i).ge.0)) then ns = .TRUE. end if end do if (ns) then deallocate(d) end if end if if ((.not.allocated(d)).and.(s(1).ge.1)) then""" % np.intp().itemsize fgetdims2 = """\ end if if (allocated(d)) then do i=1,r s(i) = size(d,i) end do end if flag = 1 call f2pysetdata(d,allocated(d))""" fgetdims2_sa = """\ end if if (allocated(d)) then do i=1,r s(i) = size(d,i) end do !s(r) must be equal to len(d(1)) end if flag = 2 call f2pysetdata(d,allocated(d))""" def buildhooks(pymod): from . import rules ret = {'f90modhooks': [], 'initf90modhooks': [], 'body': [], 'need': ['F_FUNC', 'arrayobject.h'], 'separatorsfor': {'includes0': '\n', 'includes': '\n'}, 'docs': ['"Fortran 90/95 modules:\\n"'], 'latexdoc': []} fhooks = [''] def fadd(line, s=fhooks): s[0] = '%s\n %s' % (s[0], line) doc = [''] def dadd(line, s=doc): s[0] = '%s\n%s' % (s[0], line) for m in findf90modules(pymod): sargs, fargs, efargs, modobjs, notvars, onlyvars = [], [], [], [], [ m['name']], [] sargsp = [] ifargs = [] mfargs = [] if hasbody(m): for b in m['body']: notvars.append(b['name']) for n in m['vars'].keys(): var = m['vars'][n] if (n not in notvars) and (not l_or(isintent_hide, isprivate)(var)): onlyvars.append(n) mfargs.append(n) outmess('\t\tConstructing F90 module support for "%s"...\n' % (m['name'])) if onlyvars: outmess('\t\t Variables: %s\n' % (' '.join(onlyvars))) chooks = [''] def cadd(line, s=chooks): s[0] = '%s\n%s' % (s[0], line) ihooks = [''] def iadd(line, s=ihooks): s[0] = '%s\n%s' % (s[0], line) vrd = capi_maps.modsign2map(m) cadd('static FortranDataDef f2py_%s_def[] = {' % (m['name'])) dadd('\\subsection{Fortran 90/95 module \\texttt{%s}}\n' % (m['name'])) if hasnote(m): note = m['note'] if isinstance(note, list): note = '\n'.join(note) dadd(note) if onlyvars: dadd('\\begin{description}') for n in onlyvars: var = m['vars'][n] modobjs.append(n) ct = capi_maps.getctype(var) at = capi_maps.c2capi_map[ct] dm = capi_maps.getarrdims(n, var) dms = dm['dims'].replace('*', '-1').strip() dms = dms.replace(':', '-1').strip() if not dms: dms = '-1' use_fgetdims2 = fgetdims2 if isstringarray(var): if 'charselector' in var and 'len' in var['charselector']: cadd('\t{"%s",%s,{{%s,%s}},%s},' % (undo_rmbadname1(n), dm['rank'], dms, var['charselector']['len'], at)) use_fgetdims2 = fgetdims2_sa else: cadd('\t{"%s",%s,{{%s}},%s},' % (undo_rmbadname1(n), dm['rank'], dms, at)) else: cadd('\t{"%s",%s,{{%s}},%s},' % (undo_rmbadname1(n), dm['rank'], dms, at)) dadd('\\item[]{{}\\verb@%s@{}}' % (capi_maps.getarrdocsign(n, var))) if hasnote(var): note = var['note'] if isinstance(note, list): note = '\n'.join(note) dadd('--- %s' % (note)) if isallocatable(var): fargs.append('f2py_%s_getdims_%s' % (m['name'], n)) efargs.append(fargs[-1]) sargs.append( 'void (*%s)(int*,int*,void(*)(char*,int*),int*)' % (n)) sargsp.append('void (*)(int*,int*,void(*)(char*,int*),int*)') iadd('\tf2py_%s_def[i_f2py++].func = %s;' % (m['name'], n)) fadd('subroutine %s(r,s,f2pysetdata,flag)' % (fargs[-1])) fadd('use %s, only: d => %s\n' % (m['name'], undo_rmbadname1(n))) fadd('integer flag\n') fhooks[0] = fhooks[0] + fgetdims1 dms = range(1, int(dm['rank']) + 1) fadd(' allocate(d(%s))\n' % (','.join(['s(%s)' % i for i in dms]))) fhooks[0] = fhooks[0] + use_fgetdims2 fadd('end subroutine %s' % (fargs[-1])) else: fargs.append(n) sargs.append('char *%s' % (n)) sargsp.append('char*') iadd('\tf2py_%s_def[i_f2py++].data = %s;' % (m['name'], n)) if onlyvars: dadd('\\end{description}') if hasbody(m): for b in m['body']: if not isroutine(b): outmess("f90mod_rules.buildhooks:" f" skipping {b['block']} {b['name']}\n") continue modobjs.append('%s()' % (b['name'])) b['modulename'] = m['name'] api, wrap = rules.buildapi(b) if isfunction(b): fhooks[0] = fhooks[0] + wrap fargs.append('f2pywrap_%s_%s' % (m['name'], b['name'])) ifargs.append(func2subr.createfuncwrapper(b, signature=1)) else: if wrap: fhooks[0] = fhooks[0] + wrap fargs.append('f2pywrap_%s_%s' % (m['name'], b['name'])) ifargs.append( func2subr.createsubrwrapper(b, signature=1)) else: fargs.append(b['name']) mfargs.append(fargs[-1]) api['externroutines'] = [] ar = applyrules(api, vrd) ar['docs'] = [] ar['docshort'] = [] ret = dictappend(ret, ar) cadd('\t{"%s",-1,{{-1}},0,NULL,(void *)f2py_rout_#modulename#_%s_%s,doc_f2py_rout_#modulename#_%s_%s},' % (b['name'], m['name'], b['name'], m['name'], b['name'])) sargs.append('char *%s' % (b['name'])) sargsp.append('char *') iadd('\tf2py_%s_def[i_f2py++].data = %s;' % (m['name'], b['name'])) cadd('\t{NULL}\n};\n') iadd('}') ihooks[0] = 'static void f2py_setup_%s(%s) {\n\tint i_f2py=0;%s' % ( m['name'], ','.join(sargs), ihooks[0]) if '_' in m['name']: F_FUNC = 'F_FUNC_US' else: F_FUNC = 'F_FUNC' iadd('extern void %s(f2pyinit%s,F2PYINIT%s)(void (*)(%s));' % (F_FUNC, m['name'], m['name'].upper(), ','.join(sargsp))) iadd('static void f2py_init_%s(void) {' % (m['name'])) iadd('\t%s(f2pyinit%s,F2PYINIT%s)(f2py_setup_%s);' % (F_FUNC, m['name'], m['name'].upper(), m['name'])) iadd('}\n') ret['f90modhooks'] = ret['f90modhooks'] + chooks + ihooks ret['initf90modhooks'] = ['\tPyDict_SetItemString(d, "%s", PyFortranObject_New(f2py_%s_def,f2py_init_%s));' % ( m['name'], m['name'], m['name'])] + ret['initf90modhooks'] fadd('') fadd('subroutine f2pyinit%s(f2pysetupfunc)' % (m['name'])) if mfargs: for a in undo_rmbadname(mfargs): fadd('use %s, only : %s' % (m['name'], a)) if ifargs: fadd(' '.join(['interface'] + ifargs)) fadd('end interface') fadd('external f2pysetupfunc') if efargs: for a in undo_rmbadname(efargs): fadd('external %s' % (a)) fadd('call f2pysetupfunc(%s)' % (','.join(undo_rmbadname(fargs)))) fadd('end subroutine f2pyinit%s\n' % (m['name'])) dadd('\n'.join(ret['latexdoc']).replace( r'\subsection{', r'\subsubsection{')) ret['latexdoc'] = [] ret['docs'].append('"\t%s --- %s"' % (m['name'], ','.join(undo_rmbadname(modobjs)))) ret['routine_defs'] = '' ret['doc'] = [] ret['docshort'] = [] ret['latexdoc'] = doc[0] if len(ret['docs']) <= 1: ret['docs'] = '' return ret, fhooks[0]
9,811
Python
35.206642
121
0.451432
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/common_rules.py
#!/usr/bin/env python3 """ Build common block mechanism for f2py2e. Copyright 2000 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/05/06 10:57:33 $ Pearu Peterson """ from . import __version__ f2py_version = __version__.version from .auxfuncs import ( hasbody, hascommon, hasnote, isintent_hide, outmess ) from . import capi_maps from . import func2subr from .crackfortran import rmbadname def findcommonblocks(block, top=1): ret = [] if hascommon(block): for key, value in block['common'].items(): vars_ = {v: block['vars'][v] for v in value} ret.append((key, value, vars_)) elif hasbody(block): for b in block['body']: ret = ret + findcommonblocks(b, 0) if top: tret = [] names = [] for t in ret: if t[0] not in names: names.append(t[0]) tret.append(t) return tret return ret def buildhooks(m): ret = {'commonhooks': [], 'initcommonhooks': [], 'docs': ['"COMMON blocks:\\n"']} fwrap = [''] def fadd(line, s=fwrap): s[0] = '%s\n %s' % (s[0], line) chooks = [''] def cadd(line, s=chooks): s[0] = '%s\n%s' % (s[0], line) ihooks = [''] def iadd(line, s=ihooks): s[0] = '%s\n%s' % (s[0], line) doc = [''] def dadd(line, s=doc): s[0] = '%s\n%s' % (s[0], line) for (name, vnames, vars) in findcommonblocks(m): lower_name = name.lower() hnames, inames = [], [] for n in vnames: if isintent_hide(vars[n]): hnames.append(n) else: inames.append(n) if hnames: outmess('\t\tConstructing COMMON block support for "%s"...\n\t\t %s\n\t\t Hidden: %s\n' % ( name, ','.join(inames), ','.join(hnames))) else: outmess('\t\tConstructing COMMON block support for "%s"...\n\t\t %s\n' % ( name, ','.join(inames))) fadd('subroutine f2pyinit%s(setupfunc)' % name) fadd('external setupfunc') for n in vnames: fadd(func2subr.var2fixfortran(vars, n)) if name == '_BLNK_': fadd('common %s' % (','.join(vnames))) else: fadd('common /%s/ %s' % (name, ','.join(vnames))) fadd('call setupfunc(%s)' % (','.join(inames))) fadd('end\n') cadd('static FortranDataDef f2py_%s_def[] = {' % (name)) idims = [] for n in inames: ct = capi_maps.getctype(vars[n]) at = capi_maps.c2capi_map[ct] dm = capi_maps.getarrdims(n, vars[n]) if dm['dims']: idims.append('(%s)' % (dm['dims'])) else: idims.append('') dms = dm['dims'].strip() if not dms: dms = '-1' cadd('\t{\"%s\",%s,{{%s}},%s},' % (n, dm['rank'], dms, at)) cadd('\t{NULL}\n};') inames1 = rmbadname(inames) inames1_tps = ','.join(['char *' + s for s in inames1]) cadd('static void f2py_setup_%s(%s) {' % (name, inames1_tps)) cadd('\tint i_f2py=0;') for n in inames1: cadd('\tf2py_%s_def[i_f2py++].data = %s;' % (name, n)) cadd('}') if '_' in lower_name: F_FUNC = 'F_FUNC_US' else: F_FUNC = 'F_FUNC' cadd('extern void %s(f2pyinit%s,F2PYINIT%s)(void(*)(%s));' % (F_FUNC, lower_name, name.upper(), ','.join(['char*'] * len(inames1)))) cadd('static void f2py_init_%s(void) {' % name) cadd('\t%s(f2pyinit%s,F2PYINIT%s)(f2py_setup_%s);' % (F_FUNC, lower_name, name.upper(), name)) cadd('}\n') iadd('\ttmp = PyFortranObject_New(f2py_%s_def,f2py_init_%s);' % (name, name)) iadd('\tF2PyDict_SetItemString(d, \"%s\", tmp);' % name) iadd('\tPy_DECREF(tmp);') tname = name.replace('_', '\\_') dadd('\\subsection{Common block \\texttt{%s}}\n' % (tname)) dadd('\\begin{description}') for n in inames: dadd('\\item[]{{}\\verb@%s@{}}' % (capi_maps.getarrdocsign(n, vars[n]))) if hasnote(vars[n]): note = vars[n]['note'] if isinstance(note, list): note = '\n'.join(note) dadd('--- %s' % (note)) dadd('\\end{description}') ret['docs'].append( '"\t/%s/ %s\\n"' % (name, ','.join(map(lambda v, d: v + d, inames, idims)))) ret['commonhooks'] = chooks ret['initcommonhooks'] = ihooks ret['latexdoc'] = doc[0] if len(ret['docs']) <= 1: ret['docs'] = '' return ret, fwrap[0]
4,925
Python
32.739726
105
0.49198
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/rules.py
#!/usr/bin/env python3 """ Rules for building C/API module with f2py2e. Here is a skeleton of a new wrapper function (13Dec2001): wrapper_function(args) declarations get_python_arguments, say, `a' and `b' get_a_from_python if (successful) { get_b_from_python if (successful) { callfortran if (successful) { put_a_to_python if (successful) { put_b_to_python if (successful) { buildvalue = ... } } } } cleanup_b } cleanup_a return buildvalue Copyright 1999,2000 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/08/30 08:58:42 $ Pearu Peterson """ import os, sys import time import copy from pathlib import Path # __version__.version is now the same as the NumPy version from . import __version__ f2py_version = __version__.version numpy_version = __version__.version from .auxfuncs import ( applyrules, debugcapi, dictappend, errmess, gentitle, getargs2, hascallstatement, hasexternals, hasinitvalue, hasnote, hasresultnote, isarray, isarrayofstrings, iscomplex, iscomplexarray, iscomplexfunction, iscomplexfunction_warn, isdummyroutine, isexternal, isfunction, isfunction_wrap, isint1array, isintent_aux, isintent_c, isintent_callback, isintent_copy, isintent_hide, isintent_inout, isintent_nothide, isintent_out, isintent_overwrite, islogical, islong_complex, islong_double, islong_doublefunction, islong_long, islong_longfunction, ismoduleroutine, isoptional, isrequired, isscalar, issigned_long_longarray, isstring, isstringarray, isstringfunction, issubroutine, issubroutine_wrap, isthreadsafe, isunsigned, isunsigned_char, isunsigned_chararray, isunsigned_long_long, isunsigned_long_longarray, isunsigned_short, isunsigned_shortarray, l_and, l_not, l_or, outmess, replace, stripcomma, requiresf90wrapper ) from . import capi_maps from . import cfuncs from . import common_rules from . import use_rules from . import f90mod_rules from . import func2subr options = {} sepdict = {} #for k in ['need_cfuncs']: sepdict[k]=',' for k in ['decl', 'frompyobj', 'cleanupfrompyobj', 'topyarr', 'method', 'pyobjfrom', 'closepyobjfrom', 'freemem', 'userincludes', 'includes0', 'includes', 'typedefs', 'typedefs_generated', 'cppmacros', 'cfuncs', 'callbacks', 'latexdoc', 'restdoc', 'routine_defs', 'externroutines', 'initf2pywraphooks', 'commonhooks', 'initcommonhooks', 'f90modhooks', 'initf90modhooks']: sepdict[k] = '\n' #################### Rules for C/API module ################# generationtime = int(os.environ.get('SOURCE_DATE_EPOCH', time.time())) module_rules = { 'modulebody': """\ /* File: #modulename#module.c * This file is auto-generated with f2py (version:#f2py_version#). * f2py is a Fortran to Python Interface Generator (FPIG), Second Edition, * written by Pearu Peterson <[email protected]>. * Generation date: """ + time.asctime(time.gmtime(generationtime)) + """ * Do not edit this file directly unless you know what you are doing!!! */ #ifdef __cplusplus extern \"C\" { #endif #ifndef PY_SSIZE_T_CLEAN #define PY_SSIZE_T_CLEAN #endif /* PY_SSIZE_T_CLEAN */ /* Unconditionally included */ #include <Python.h> #include <numpy/npy_os.h> """ + gentitle("See f2py2e/cfuncs.py: includes") + """ #includes# #includes0# """ + gentitle("See f2py2e/rules.py: mod_rules['modulebody']") + """ static PyObject *#modulename#_error; static PyObject *#modulename#_module; """ + gentitle("See f2py2e/cfuncs.py: typedefs") + """ #typedefs# """ + gentitle("See f2py2e/cfuncs.py: typedefs_generated") + """ #typedefs_generated# """ + gentitle("See f2py2e/cfuncs.py: cppmacros") + """ #cppmacros# """ + gentitle("See f2py2e/cfuncs.py: cfuncs") + """ #cfuncs# """ + gentitle("See f2py2e/cfuncs.py: userincludes") + """ #userincludes# """ + gentitle("See f2py2e/capi_rules.py: usercode") + """ #usercode# /* See f2py2e/rules.py */ #externroutines# """ + gentitle("See f2py2e/capi_rules.py: usercode1") + """ #usercode1# """ + gentitle("See f2py2e/cb_rules.py: buildcallback") + """ #callbacks# """ + gentitle("See f2py2e/rules.py: buildapi") + """ #body# """ + gentitle("See f2py2e/f90mod_rules.py: buildhooks") + """ #f90modhooks# """ + gentitle("See f2py2e/rules.py: module_rules['modulebody']") + """ """ + gentitle("See f2py2e/common_rules.py: buildhooks") + """ #commonhooks# """ + gentitle("See f2py2e/rules.py") + """ static FortranDataDef f2py_routine_defs[] = { #routine_defs# {NULL} }; static PyMethodDef f2py_module_methods[] = { #pymethoddef# {NULL,NULL} }; static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "#modulename#", NULL, -1, f2py_module_methods, NULL, NULL, NULL, NULL }; PyMODINIT_FUNC PyInit_#modulename#(void) { int i; PyObject *m,*d, *s, *tmp; m = #modulename#_module = PyModule_Create(&moduledef); Py_SET_TYPE(&PyFortran_Type, &PyType_Type); import_array(); if (PyErr_Occurred()) {PyErr_SetString(PyExc_ImportError, \"can't initialize module #modulename# (failed to import numpy)\"); return m;} d = PyModule_GetDict(m); s = PyUnicode_FromString(\"#f2py_version#\"); PyDict_SetItemString(d, \"__version__\", s); Py_DECREF(s); s = PyUnicode_FromString( \"This module '#modulename#' is auto-generated with f2py (version:#f2py_version#).\\nFunctions:\\n\"\n#docs#\".\"); PyDict_SetItemString(d, \"__doc__\", s); Py_DECREF(s); s = PyUnicode_FromString(\"""" + numpy_version + """\"); PyDict_SetItemString(d, \"__f2py_numpy_version__\", s); Py_DECREF(s); #modulename#_error = PyErr_NewException (\"#modulename#.error\", NULL, NULL); /* * Store the error object inside the dict, so that it could get deallocated. * (in practice, this is a module, so it likely will not and cannot.) */ PyDict_SetItemString(d, \"_#modulename#_error\", #modulename#_error); Py_DECREF(#modulename#_error); for(i=0;f2py_routine_defs[i].name!=NULL;i++) { tmp = PyFortranObject_NewAsAttr(&f2py_routine_defs[i]); PyDict_SetItemString(d, f2py_routine_defs[i].name, tmp); Py_DECREF(tmp); } #initf2pywraphooks# #initf90modhooks# #initcommonhooks# #interface_usercode# #ifdef F2PY_REPORT_ATEXIT if (! PyErr_Occurred()) on_exit(f2py_report_on_exit,(void*)\"#modulename#\"); #endif return m; } #ifdef __cplusplus } #endif """, 'separatorsfor': {'latexdoc': '\n\n', 'restdoc': '\n\n'}, 'latexdoc': ['\\section{Module \\texttt{#texmodulename#}}\n', '#modnote#\n', '#latexdoc#'], 'restdoc': ['Module #modulename#\n' + '=' * 80, '\n#restdoc#'] } defmod_rules = [ {'body': '/*eof body*/', 'method': '/*eof method*/', 'externroutines': '/*eof externroutines*/', 'routine_defs': '/*eof routine_defs*/', 'initf90modhooks': '/*eof initf90modhooks*/', 'initf2pywraphooks': '/*eof initf2pywraphooks*/', 'initcommonhooks': '/*eof initcommonhooks*/', 'latexdoc': '', 'restdoc': '', 'modnote': {hasnote: '#note#', l_not(hasnote): ''}, } ] routine_rules = { 'separatorsfor': sepdict, 'body': """ #begintitle# static char doc_#apiname#[] = \"\\\n#docreturn##name#(#docsignatureshort#)\\n\\nWrapper for ``#name#``.\\\n\\n#docstrsigns#\"; /* #declfortranroutine# */ static PyObject *#apiname#(const PyObject *capi_self, PyObject *capi_args, PyObject *capi_keywds, #functype# (*f2py_func)(#callprotoargument#)) { PyObject * volatile capi_buildvalue = NULL; volatile int f2py_success = 1; #decl# static char *capi_kwlist[] = {#kwlist##kwlistopt##kwlistxa#NULL}; #usercode# #routdebugenter# #ifdef F2PY_REPORT_ATEXIT f2py_start_clock(); #endif if (!PyArg_ParseTupleAndKeywords(capi_args,capi_keywds,\\ \"#argformat#|#keyformat##xaformat#:#pyname#\",\\ capi_kwlist#args_capi##keys_capi##keys_xa#))\n return NULL; #frompyobj# /*end of frompyobj*/ #ifdef F2PY_REPORT_ATEXIT f2py_start_call_clock(); #endif #callfortranroutine# if (PyErr_Occurred()) f2py_success = 0; #ifdef F2PY_REPORT_ATEXIT f2py_stop_call_clock(); #endif /*end of callfortranroutine*/ if (f2py_success) { #pyobjfrom# /*end of pyobjfrom*/ CFUNCSMESS(\"Building return value.\\n\"); capi_buildvalue = Py_BuildValue(\"#returnformat#\"#return#); /*closepyobjfrom*/ #closepyobjfrom# } /*if (f2py_success) after callfortranroutine*/ /*cleanupfrompyobj*/ #cleanupfrompyobj# if (capi_buildvalue == NULL) { #routdebugfailure# } else { #routdebugleave# } CFUNCSMESS(\"Freeing memory.\\n\"); #freemem# #ifdef F2PY_REPORT_ATEXIT f2py_stop_clock(); #endif return capi_buildvalue; } #endtitle# """, 'routine_defs': '#routine_def#', 'initf2pywraphooks': '#initf2pywraphook#', 'externroutines': '#declfortranroutine#', 'doc': '#docreturn##name#(#docsignature#)', 'docshort': '#docreturn##name#(#docsignatureshort#)', 'docs': '" #docreturn##name#(#docsignature#)\\n"\n', 'need': ['arrayobject.h', 'CFUNCSMESS', 'MINMAX'], 'cppmacros': {debugcapi: '#define DEBUGCFUNCS'}, 'latexdoc': ['\\subsection{Wrapper function \\texttt{#texname#}}\n', """ \\noindent{{}\\verb@#docreturn##name#@{}}\\texttt{(#latexdocsignatureshort#)} #routnote# #latexdocstrsigns# """], 'restdoc': ['Wrapped function ``#name#``\n' + '-' * 80, ] } ################## Rules for C/API function ############## rout_rules = [ { # Init 'separatorsfor': {'callfortranroutine': '\n', 'routdebugenter': '\n', 'decl': '\n', 'routdebugleave': '\n', 'routdebugfailure': '\n', 'setjmpbuf': ' || ', 'docstrreq': '\n', 'docstropt': '\n', 'docstrout': '\n', 'docstrcbs': '\n', 'docstrsigns': '\\n"\n"', 'latexdocstrsigns': '\n', 'latexdocstrreq': '\n', 'latexdocstropt': '\n', 'latexdocstrout': '\n', 'latexdocstrcbs': '\n', }, 'kwlist': '', 'kwlistopt': '', 'callfortran': '', 'callfortranappend': '', 'docsign': '', 'docsignopt': '', 'decl': '/*decl*/', 'freemem': '/*freemem*/', 'docsignshort': '', 'docsignoptshort': '', 'docstrsigns': '', 'latexdocstrsigns': '', 'docstrreq': '\\nParameters\\n----------', 'docstropt': '\\nOther Parameters\\n----------------', 'docstrout': '\\nReturns\\n-------', 'docstrcbs': '\\nNotes\\n-----\\nCall-back functions::\\n', 'latexdocstrreq': '\\noindent Required arguments:', 'latexdocstropt': '\\noindent Optional arguments:', 'latexdocstrout': '\\noindent Return objects:', 'latexdocstrcbs': '\\noindent Call-back functions:', 'args_capi': '', 'keys_capi': '', 'functype': '', 'frompyobj': '/*frompyobj*/', # this list will be reversed 'cleanupfrompyobj': ['/*end of cleanupfrompyobj*/'], 'pyobjfrom': '/*pyobjfrom*/', # this list will be reversed 'closepyobjfrom': ['/*end of closepyobjfrom*/'], 'topyarr': '/*topyarr*/', 'routdebugleave': '/*routdebugleave*/', 'routdebugenter': '/*routdebugenter*/', 'routdebugfailure': '/*routdebugfailure*/', 'callfortranroutine': '/*callfortranroutine*/', 'argformat': '', 'keyformat': '', 'need_cfuncs': '', 'docreturn': '', 'return': '', 'returnformat': '', 'rformat': '', 'kwlistxa': '', 'keys_xa': '', 'xaformat': '', 'docsignxa': '', 'docsignxashort': '', 'initf2pywraphook': '', 'routnote': {hasnote: '--- #note#', l_not(hasnote): ''}, }, { 'apiname': 'f2py_rout_#modulename#_#name#', 'pyname': '#modulename#.#name#', 'decl': '', '_check': l_not(ismoduleroutine) }, { 'apiname': 'f2py_rout_#modulename#_#f90modulename#_#name#', 'pyname': '#modulename#.#f90modulename#.#name#', 'decl': '', '_check': ismoduleroutine }, { # Subroutine 'functype': 'void', 'declfortranroutine': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'extern void #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): 'extern void #fortranname#(#callprotoargument#);', ismoduleroutine: '', isdummyroutine: '' }, 'routine_def': {l_not(l_or(ismoduleroutine, isintent_c, isdummyroutine)): ' {\"#name#\",-1,{{-1}},0,(char *)#F_FUNC#(#fortranname#,#FORTRANNAME#),(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): ' {\"#name#\",-1,{{-1}},0,(char *)#fortranname#,(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isdummyroutine): ' {\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'need': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'F_FUNC'}, 'callfortranroutine': [ {debugcapi: [ """ fprintf(stderr,\"debug-capi:Fortran subroutine `#fortranname#(#callfortran#)\'\\n\");"""]}, {hasexternals: """\ if (#setjmpbuf#) { f2py_success = 0; } else {"""}, {isthreadsafe: ' Py_BEGIN_ALLOW_THREADS'}, {hascallstatement: ''' #callstatement#; /*(*f2py_func)(#callfortran#);*/'''}, {l_not(l_or(hascallstatement, isdummyroutine)) : ' (*f2py_func)(#callfortran#);'}, {isthreadsafe: ' Py_END_ALLOW_THREADS'}, {hasexternals: """ }"""} ], '_check': l_and(issubroutine, l_not(issubroutine_wrap)), }, { # Wrapped function 'functype': 'void', 'declfortranroutine': {l_not(l_or(ismoduleroutine, isdummyroutine)): 'extern void #F_WRAPPEDFUNC#(#name_lower#,#NAME#)(#callprotoargument#);', isdummyroutine: '', }, 'routine_def': {l_not(l_or(ismoduleroutine, isdummyroutine)): ' {\"#name#\",-1,{{-1}},0,(char *)#F_WRAPPEDFUNC#(#name_lower#,#NAME#),(f2py_init_func)#apiname#,doc_#apiname#},', isdummyroutine: ' {\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'initf2pywraphook': {l_not(l_or(ismoduleroutine, isdummyroutine)): ''' { extern #ctype# #F_FUNC#(#name_lower#,#NAME#)(void); PyObject* o = PyDict_GetItemString(d,"#name#"); tmp = F2PyCapsule_FromVoidPtr((void*)#F_FUNC#(#name_lower#,#NAME#),NULL); PyObject_SetAttrString(o,"_cpointer", tmp); Py_DECREF(tmp); s = PyUnicode_FromString("#name#"); PyObject_SetAttrString(o,"__name__", s); Py_DECREF(s); } '''}, 'need': {l_not(l_or(ismoduleroutine, isdummyroutine)): ['F_WRAPPEDFUNC', 'F_FUNC']}, 'callfortranroutine': [ {debugcapi: [ """ fprintf(stderr,\"debug-capi:Fortran subroutine `f2pywrap#name_lower#(#callfortran#)\'\\n\");"""]}, {hasexternals: """\ if (#setjmpbuf#) { f2py_success = 0; } else {"""}, {isthreadsafe: ' Py_BEGIN_ALLOW_THREADS'}, {l_not(l_or(hascallstatement, isdummyroutine)) : ' (*f2py_func)(#callfortran#);'}, {hascallstatement: ' #callstatement#;\n /*(*f2py_func)(#callfortran#);*/'}, {isthreadsafe: ' Py_END_ALLOW_THREADS'}, {hasexternals: ' }'} ], '_check': isfunction_wrap, }, { # Wrapped subroutine 'functype': 'void', 'declfortranroutine': {l_not(l_or(ismoduleroutine, isdummyroutine)): 'extern void #F_WRAPPEDFUNC#(#name_lower#,#NAME#)(#callprotoargument#);', isdummyroutine: '', }, 'routine_def': {l_not(l_or(ismoduleroutine, isdummyroutine)): ' {\"#name#\",-1,{{-1}},0,(char *)#F_WRAPPEDFUNC#(#name_lower#,#NAME#),(f2py_init_func)#apiname#,doc_#apiname#},', isdummyroutine: ' {\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'initf2pywraphook': {l_not(l_or(ismoduleroutine, isdummyroutine)): ''' { extern void #F_FUNC#(#name_lower#,#NAME#)(void); PyObject* o = PyDict_GetItemString(d,"#name#"); tmp = F2PyCapsule_FromVoidPtr((void*)#F_FUNC#(#name_lower#,#NAME#),NULL); PyObject_SetAttrString(o,"_cpointer", tmp); Py_DECREF(tmp); s = PyUnicode_FromString("#name#"); PyObject_SetAttrString(o,"__name__", s); Py_DECREF(s); } '''}, 'need': {l_not(l_or(ismoduleroutine, isdummyroutine)): ['F_WRAPPEDFUNC', 'F_FUNC']}, 'callfortranroutine': [ {debugcapi: [ """ fprintf(stderr,\"debug-capi:Fortran subroutine `f2pywrap#name_lower#(#callfortran#)\'\\n\");"""]}, {hasexternals: """\ if (#setjmpbuf#) { f2py_success = 0; } else {"""}, {isthreadsafe: ' Py_BEGIN_ALLOW_THREADS'}, {l_not(l_or(hascallstatement, isdummyroutine)) : ' (*f2py_func)(#callfortran#);'}, {hascallstatement: ' #callstatement#;\n /*(*f2py_func)(#callfortran#);*/'}, {isthreadsafe: ' Py_END_ALLOW_THREADS'}, {hasexternals: ' }'} ], '_check': issubroutine_wrap, }, { # Function 'functype': '#ctype#', 'docreturn': {l_not(isintent_hide): '#rname#,'}, 'docstrout': '#pydocsignout#', 'latexdocstrout': ['\\item[]{{}\\verb@#pydocsignout#@{}}', {hasresultnote: '--- #resultnote#'}], 'callfortranroutine': [{l_and(debugcapi, isstringfunction): """\ #ifdef USESCOMPAQFORTRAN fprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callcompaqfortran#)\\n\"); #else fprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callfortran#)\\n\"); #endif """}, {l_and(debugcapi, l_not(isstringfunction)): """\ fprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callfortran#)\\n\"); """} ], '_check': l_and(isfunction, l_not(isfunction_wrap)) }, { # Scalar function 'declfortranroutine': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'extern #ctype# #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): 'extern #ctype# #fortranname#(#callprotoargument#);', isdummyroutine: '' }, 'routine_def': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): ' {\"#name#\",-1,{{-1}},0,(char *)#F_FUNC#(#fortranname#,#FORTRANNAME#),(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): ' {\"#name#\",-1,{{-1}},0,(char *)#fortranname#,(f2py_init_func)#apiname#,doc_#apiname#},', isdummyroutine: ' {\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'decl': [{iscomplexfunction_warn: ' #ctype# #name#_return_value={0,0};', l_not(iscomplexfunction): ' #ctype# #name#_return_value=0;'}, {iscomplexfunction: ' PyObject *#name#_return_value_capi = Py_None;'} ], 'callfortranroutine': [ {hasexternals: """\ if (#setjmpbuf#) { f2py_success = 0; } else {"""}, {isthreadsafe: ' Py_BEGIN_ALLOW_THREADS'}, {hascallstatement: ''' #callstatement#; /* #name#_return_value = (*f2py_func)(#callfortran#);*/ '''}, {l_not(l_or(hascallstatement, isdummyroutine)) : ' #name#_return_value = (*f2py_func)(#callfortran#);'}, {isthreadsafe: ' Py_END_ALLOW_THREADS'}, {hasexternals: ' }'}, {l_and(debugcapi, iscomplexfunction) : ' fprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value.r,#name#_return_value.i);'}, {l_and(debugcapi, l_not(iscomplexfunction)): ' fprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value);'}], 'pyobjfrom': {iscomplexfunction: ' #name#_return_value_capi = pyobj_from_#ctype#1(#name#_return_value);'}, 'need': [{l_not(isdummyroutine): 'F_FUNC'}, {iscomplexfunction: 'pyobj_from_#ctype#1'}, {islong_longfunction: 'long_long'}, {islong_doublefunction: 'long_double'}], 'returnformat': {l_not(isintent_hide): '#rformat#'}, 'return': {iscomplexfunction: ',#name#_return_value_capi', l_not(l_or(iscomplexfunction, isintent_hide)): ',#name#_return_value'}, '_check': l_and(isfunction, l_not(isstringfunction), l_not(isfunction_wrap)) }, { # String function # in use for --no-wrap 'declfortranroutine': 'extern void #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', 'routine_def': {l_not(l_or(ismoduleroutine, isintent_c)): ' {\"#name#\",-1,{{-1}},0,(char *)#F_FUNC#(#fortranname#,#FORTRANNAME#),(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isintent_c): ' {\"#name#\",-1,{{-1}},0,(char *)#fortranname#,(f2py_init_func)#apiname#,doc_#apiname#},' }, 'decl': [' #ctype# #name#_return_value = NULL;', ' int #name#_return_value_len = 0;'], 'callfortran':'#name#_return_value,#name#_return_value_len,', 'callfortranroutine':[' #name#_return_value_len = #rlength#;', ' if ((#name#_return_value = (string)malloc(' + '#name#_return_value_len+1) == NULL) {', ' PyErr_SetString(PyExc_MemoryError, \"out of memory\");', ' f2py_success = 0;', ' } else {', " (#name#_return_value)[#name#_return_value_len] = '\\0';", ' }', ' if (f2py_success) {', {hasexternals: """\ if (#setjmpbuf#) { f2py_success = 0; } else {"""}, {isthreadsafe: ' Py_BEGIN_ALLOW_THREADS'}, """\ #ifdef USESCOMPAQFORTRAN (*f2py_func)(#callcompaqfortran#); #else (*f2py_func)(#callfortran#); #endif """, {isthreadsafe: ' Py_END_ALLOW_THREADS'}, {hasexternals: ' }'}, {debugcapi: ' fprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value_len,#name#_return_value);'}, ' } /* if (f2py_success) after (string)malloc */', ], 'returnformat': '#rformat#', 'return': ',#name#_return_value', 'freemem': ' STRINGFREE(#name#_return_value);', 'need': ['F_FUNC', '#ctype#', 'STRINGFREE'], '_check':l_and(isstringfunction, l_not(isfunction_wrap)) # ???obsolete }, { # Debugging 'routdebugenter': ' fprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#(#docsignature#)\\n");', 'routdebugleave': ' fprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#: successful.\\n");', 'routdebugfailure': ' fprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#: failure.\\n");', '_check': debugcapi } ] ################ Rules for arguments ################## typedef_need_dict = {islong_long: 'long_long', islong_double: 'long_double', islong_complex: 'complex_long_double', isunsigned_char: 'unsigned_char', isunsigned_short: 'unsigned_short', isunsigned: 'unsigned', isunsigned_long_long: 'unsigned_long_long', isunsigned_chararray: 'unsigned_char', isunsigned_shortarray: 'unsigned_short', isunsigned_long_longarray: 'unsigned_long_long', issigned_long_longarray: 'long_long', } aux_rules = [ { 'separatorsfor': sepdict }, { # Common 'frompyobj': [' /* Processing auxiliary variable #varname# */', {debugcapi: ' fprintf(stderr,"#vardebuginfo#\\n");'}, ], 'cleanupfrompyobj': ' /* End of cleaning variable #varname# */', 'need': typedef_need_dict, }, # Scalars (not complex) { # Common 'decl': ' #ctype# #varname# = 0;', 'need': {hasinitvalue: 'math.h'}, 'frompyobj': {hasinitvalue: ' #varname# = #init#;'}, '_check': l_and(isscalar, l_not(iscomplex)), }, { 'return': ',#varname#', 'docstrout': '#pydocsignout#', 'docreturn': '#outvarname#,', 'returnformat': '#varrformat#', '_check': l_and(isscalar, l_not(iscomplex), isintent_out), }, # Complex scalars { # Common 'decl': ' #ctype# #varname#;', 'frompyobj': {hasinitvalue: ' #varname#.r = #init.r#, #varname#.i = #init.i#;'}, '_check': iscomplex }, # String { # Common 'decl': [' #ctype# #varname# = NULL;', ' int slen(#varname#);', ], 'need':['len..'], '_check':isstring }, # Array { # Common 'decl': [' #ctype# *#varname# = NULL;', ' npy_intp #varname#_Dims[#rank#] = {#rank*[-1]#};', ' const int #varname#_Rank = #rank#;', ], 'need':['len..', {hasinitvalue: 'forcomb'}, {hasinitvalue: 'CFUNCSMESS'}], '_check': isarray }, # Scalararray { # Common '_check': l_and(isarray, l_not(iscomplexarray)) }, { # Not hidden '_check': l_and(isarray, l_not(iscomplexarray), isintent_nothide) }, # Integer*1 array {'need': '#ctype#', '_check': isint1array, '_depend': '' }, # Integer*-1 array {'need': '#ctype#', '_check': isunsigned_chararray, '_depend': '' }, # Integer*-2 array {'need': '#ctype#', '_check': isunsigned_shortarray, '_depend': '' }, # Integer*-8 array {'need': '#ctype#', '_check': isunsigned_long_longarray, '_depend': '' }, # Complexarray {'need': '#ctype#', '_check': iscomplexarray, '_depend': '' }, # Stringarray { 'callfortranappend': {isarrayofstrings: 'flen(#varname#),'}, 'need': 'string', '_check': isstringarray } ] arg_rules = [ { 'separatorsfor': sepdict }, { # Common 'frompyobj': [' /* Processing variable #varname# */', {debugcapi: ' fprintf(stderr,"#vardebuginfo#\\n");'}, ], 'cleanupfrompyobj': ' /* End of cleaning variable #varname# */', '_depend': '', 'need': typedef_need_dict, }, # Doc signatures { 'docstropt': {l_and(isoptional, isintent_nothide): '#pydocsign#'}, 'docstrreq': {l_and(isrequired, isintent_nothide): '#pydocsign#'}, 'docstrout': {isintent_out: '#pydocsignout#'}, 'latexdocstropt': {l_and(isoptional, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', {hasnote: '--- #note#'}]}, 'latexdocstrreq': {l_and(isrequired, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', {hasnote: '--- #note#'}]}, 'latexdocstrout': {isintent_out: ['\\item[]{{}\\verb@#pydocsignout#@{}}', {l_and(hasnote, isintent_hide): '--- #note#', l_and(hasnote, isintent_nothide): '--- See above.'}]}, 'depend': '' }, # Required/Optional arguments { 'kwlist': '"#varname#",', 'docsign': '#varname#,', '_check': l_and(isintent_nothide, l_not(isoptional)) }, { 'kwlistopt': '"#varname#",', 'docsignopt': '#varname#=#showinit#,', 'docsignoptshort': '#varname#,', '_check': l_and(isintent_nothide, isoptional) }, # Docstring/BuildValue { 'docreturn': '#outvarname#,', 'returnformat': '#varrformat#', '_check': isintent_out }, # Externals (call-back functions) { # Common 'docsignxa': {isintent_nothide: '#varname#_extra_args=(),'}, 'docsignxashort': {isintent_nothide: '#varname#_extra_args,'}, 'docstropt': {isintent_nothide: '#varname#_extra_args : input tuple, optional\\n Default: ()'}, 'docstrcbs': '#cbdocstr#', 'latexdocstrcbs': '\\item[] #cblatexdocstr#', 'latexdocstropt': {isintent_nothide: '\\item[]{{}\\verb@#varname#_extra_args := () input tuple@{}} --- Extra arguments for call-back function {{}\\verb@#varname#@{}}.'}, 'decl': [' #cbname#_t #varname#_cb = { Py_None, NULL, 0 };', ' #cbname#_t *#varname#_cb_ptr = &#varname#_cb;', ' PyTupleObject *#varname#_xa_capi = NULL;', {l_not(isintent_callback): ' #cbname#_typedef #varname#_cptr;'} ], 'kwlistxa': {isintent_nothide: '"#varname#_extra_args",'}, 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'xaformat': {isintent_nothide: 'O!'}, 'args_capi': {isrequired: ',&#varname#_cb.capi'}, 'keys_capi': {isoptional: ',&#varname#_cb.capi'}, 'keys_xa': ',&PyTuple_Type,&#varname#_xa_capi', 'setjmpbuf': '(setjmp(#varname#_cb.jmpbuf))', 'callfortran': {l_not(isintent_callback): '#varname#_cptr,'}, 'need': ['#cbname#', 'setjmp.h'], '_check':isexternal }, { 'frompyobj': [{l_not(isintent_callback): """\ if(F2PyCapsule_Check(#varname#_cb.capi)) { #varname#_cptr = F2PyCapsule_AsVoidPtr(#varname#_cb.capi); } else { #varname#_cptr = #cbname#; } """}, {isintent_callback: """\ if (#varname#_cb.capi==Py_None) { #varname#_cb.capi = PyObject_GetAttrString(#modulename#_module,\"#varname#\"); if (#varname#_cb.capi) { if (#varname#_xa_capi==NULL) { if (PyObject_HasAttrString(#modulename#_module,\"#varname#_extra_args\")) { PyObject* capi_tmp = PyObject_GetAttrString(#modulename#_module,\"#varname#_extra_args\"); if (capi_tmp) { #varname#_xa_capi = (PyTupleObject *)PySequence_Tuple(capi_tmp); Py_DECREF(capi_tmp); } else { #varname#_xa_capi = (PyTupleObject *)Py_BuildValue(\"()\"); } if (#varname#_xa_capi==NULL) { PyErr_SetString(#modulename#_error,\"Failed to convert #modulename#.#varname#_extra_args to tuple.\\n\"); return NULL; } } } } if (#varname#_cb.capi==NULL) { PyErr_SetString(#modulename#_error,\"Callback #varname# not defined (as an argument or module #modulename# attribute).\\n\"); return NULL; } } """}, """\ if (create_cb_arglist(#varname#_cb.capi,#varname#_xa_capi,#maxnofargs#,#nofoptargs#,&#varname#_cb.nofargs,&#varname#_cb.args_capi,\"failed in processing argument list for call-back #varname#.\")) { """, {debugcapi: ["""\ fprintf(stderr,\"debug-capi:Assuming %d arguments; at most #maxnofargs#(-#nofoptargs#) is expected.\\n\",#varname#_cb.nofargs); CFUNCSMESSPY(\"for #varname#=\",#varname#_cb.capi);""", {l_not(isintent_callback): """ fprintf(stderr,\"#vardebugshowvalue# (call-back in C).\\n\",#cbname#);"""}]}, """\ CFUNCSMESS(\"Saving callback variables for `#varname#`.\\n\"); #varname#_cb_ptr = swap_active_#cbname#(#varname#_cb_ptr);""", ], 'cleanupfrompyobj': """\ CFUNCSMESS(\"Restoring callback variables for `#varname#`.\\n\"); #varname#_cb_ptr = swap_active_#cbname#(#varname#_cb_ptr); Py_DECREF(#varname#_cb.args_capi); }""", 'need': ['SWAP', 'create_cb_arglist'], '_check':isexternal, '_depend':'' }, # Scalars (not complex) { # Common 'decl': ' #ctype# #varname# = 0;', 'pyobjfrom': {debugcapi: ' fprintf(stderr,"#vardebugshowvalue#\\n",#varname#);'}, 'callfortran': {isintent_c: '#varname#,', l_not(isintent_c): '&#varname#,'}, 'return': {isintent_out: ',#varname#'}, '_check': l_and(isscalar, l_not(iscomplex)) }, { 'need': {hasinitvalue: 'math.h'}, '_check': l_and(isscalar, l_not(iscomplex)), }, { # Not hidden 'decl': ' PyObject *#varname#_capi = Py_None;', 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, 'pyobjfrom': {isintent_inout: """\ f2py_success = try_pyarr_from_#ctype#(#varname#_capi,&#varname#); if (f2py_success) {"""}, 'closepyobjfrom': {isintent_inout: " } /*if (f2py_success) of #varname# pyobjfrom*/"}, 'need': {isintent_inout: 'try_pyarr_from_#ctype#'}, '_check': l_and(isscalar, l_not(iscomplex), isintent_nothide) }, { 'frompyobj': [ # hasinitvalue... # if pyobj is None: # varname = init # else # from_pyobj(varname) # # isoptional and noinitvalue... # if pyobj is not None: # from_pyobj(varname) # else: # varname is uninitialized # # ... # from_pyobj(varname) # {hasinitvalue: ' if (#varname#_capi == Py_None) #varname# = #init#; else', '_depend': ''}, {l_and(isoptional, l_not(hasinitvalue)): ' if (#varname#_capi != Py_None)', '_depend': ''}, {l_not(islogical): '''\ f2py_success = #ctype#_from_pyobj(&#varname#,#varname#_capi,"#pyname#() #nth# (#varname#) can\'t be converted to #ctype#"); if (f2py_success) {'''}, {islogical: '''\ #varname# = (#ctype#)PyObject_IsTrue(#varname#_capi); f2py_success = 1; if (f2py_success) {'''}, ], 'cleanupfrompyobj': ' } /*if (f2py_success) of #varname#*/', 'need': {l_not(islogical): '#ctype#_from_pyobj'}, '_check': l_and(isscalar, l_not(iscomplex), isintent_nothide), '_depend': '' }, { # Hidden 'frompyobj': {hasinitvalue: ' #varname# = #init#;'}, 'need': typedef_need_dict, '_check': l_and(isscalar, l_not(iscomplex), isintent_hide), '_depend': '' }, { # Common 'frompyobj': {debugcapi: ' fprintf(stderr,"#vardebugshowvalue#\\n",#varname#);'}, '_check': l_and(isscalar, l_not(iscomplex)), '_depend': '' }, # Complex scalars { # Common 'decl': ' #ctype# #varname#;', 'callfortran': {isintent_c: '#varname#,', l_not(isintent_c): '&#varname#,'}, 'pyobjfrom': {debugcapi: ' fprintf(stderr,"#vardebugshowvalue#\\n",#varname#.r,#varname#.i);'}, 'return': {isintent_out: ',#varname#_capi'}, '_check': iscomplex }, { # Not hidden 'decl': ' PyObject *#varname#_capi = Py_None;', 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, 'need': {isintent_inout: 'try_pyarr_from_#ctype#'}, 'pyobjfrom': {isintent_inout: """\ f2py_success = try_pyarr_from_#ctype#(#varname#_capi,&#varname#); if (f2py_success) {"""}, 'closepyobjfrom': {isintent_inout: " } /*if (f2py_success) of #varname# pyobjfrom*/"}, '_check': l_and(iscomplex, isintent_nothide) }, { 'frompyobj': [{hasinitvalue: ' if (#varname#_capi==Py_None) {#varname#.r = #init.r#, #varname#.i = #init.i#;} else'}, {l_and(isoptional, l_not(hasinitvalue)) : ' if (#varname#_capi != Py_None)'}, ' f2py_success = #ctype#_from_pyobj(&#varname#,#varname#_capi,"#pyname#() #nth# (#varname#) can\'t be converted to #ctype#");' '\n if (f2py_success) {'], 'cleanupfrompyobj': ' } /*if (f2py_success) of #varname# frompyobj*/', 'need': ['#ctype#_from_pyobj'], '_check': l_and(iscomplex, isintent_nothide), '_depend': '' }, { # Hidden 'decl': {isintent_out: ' PyObject *#varname#_capi = Py_None;'}, '_check': l_and(iscomplex, isintent_hide) }, { 'frompyobj': {hasinitvalue: ' #varname#.r = #init.r#, #varname#.i = #init.i#;'}, '_check': l_and(iscomplex, isintent_hide), '_depend': '' }, { # Common 'pyobjfrom': {isintent_out: ' #varname#_capi = pyobj_from_#ctype#1(#varname#);'}, 'need': ['pyobj_from_#ctype#1'], '_check': iscomplex }, { 'frompyobj': {debugcapi: ' fprintf(stderr,"#vardebugshowvalue#\\n",#varname#.r,#varname#.i);'}, '_check': iscomplex, '_depend': '' }, # String { # Common 'decl': [' #ctype# #varname# = NULL;', ' int slen(#varname#);', ' PyObject *#varname#_capi = Py_None;'], 'callfortran':'#varname#,', 'callfortranappend':'slen(#varname#),', 'pyobjfrom':[ {debugcapi: ' fprintf(stderr,' '"#vardebugshowvalue#\\n",slen(#varname#),#varname#);'}, # The trailing null value for Fortran is blank. {l_and(isintent_out, l_not(isintent_c)): " STRINGPADN(#varname#, slen(#varname#), ' ', '\\0');"}, ], 'return': {isintent_out: ',#varname#'}, 'need': ['len..', {l_and(isintent_out, l_not(isintent_c)): 'STRINGPADN'}], '_check':isstring }, { # Common 'frompyobj': [ """\ slen(#varname#) = #length#; f2py_success = #ctype#_from_pyobj(&#varname#,&slen(#varname#),#init#,""" """#varname#_capi,\"#ctype#_from_pyobj failed in converting #nth#""" """`#varname#\' of #pyname# to C #ctype#\"); if (f2py_success) {""", # The trailing null value for Fortran is blank. {l_not(isintent_c): " STRINGPADN(#varname#, slen(#varname#), '\\0', ' ');"}, ], 'cleanupfrompyobj': """\ STRINGFREE(#varname#); } /*if (f2py_success) of #varname#*/""", 'need': ['#ctype#_from_pyobj', 'len..', 'STRINGFREE', {l_not(isintent_c): 'STRINGPADN'}], '_check':isstring, '_depend':'' }, { # Not hidden 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, 'pyobjfrom': [ {l_and(isintent_inout, l_not(isintent_c)): " STRINGPADN(#varname#, slen(#varname#), ' ', '\\0');"}, {isintent_inout: '''\ f2py_success = try_pyarr_from_#ctype#(#varname#_capi, #varname#, slen(#varname#)); if (f2py_success) {'''}], 'closepyobjfrom': {isintent_inout: ' } /*if (f2py_success) of #varname# pyobjfrom*/'}, 'need': {isintent_inout: 'try_pyarr_from_#ctype#', l_and(isintent_inout, l_not(isintent_c)): 'STRINGPADN'}, '_check': l_and(isstring, isintent_nothide) }, { # Hidden '_check': l_and(isstring, isintent_hide) }, { 'frompyobj': {debugcapi: ' fprintf(stderr,"#vardebugshowvalue#\\n",slen(#varname#),#varname#);'}, '_check': isstring, '_depend': '' }, # Array { # Common 'decl': [' #ctype# *#varname# = NULL;', ' npy_intp #varname#_Dims[#rank#] = {#rank*[-1]#};', ' const int #varname#_Rank = #rank#;', ' PyArrayObject *capi_#varname#_tmp = NULL;', ' int capi_#varname#_intent = 0;', ], 'callfortran':'#varname#,', 'return':{isintent_out: ',capi_#varname#_tmp'}, 'need': 'len..', '_check': isarray }, { # intent(overwrite) array 'decl': ' int capi_overwrite_#varname# = 1;', 'kwlistxa': '"overwrite_#varname#",', 'xaformat': 'i', 'keys_xa': ',&capi_overwrite_#varname#', 'docsignxa': 'overwrite_#varname#=1,', 'docsignxashort': 'overwrite_#varname#,', 'docstropt': 'overwrite_#varname# : input int, optional\\n Default: 1', '_check': l_and(isarray, isintent_overwrite), }, { 'frompyobj': ' capi_#varname#_intent |= (capi_overwrite_#varname#?0:F2PY_INTENT_COPY);', '_check': l_and(isarray, isintent_overwrite), '_depend': '', }, { # intent(copy) array 'decl': ' int capi_overwrite_#varname# = 0;', 'kwlistxa': '"overwrite_#varname#",', 'xaformat': 'i', 'keys_xa': ',&capi_overwrite_#varname#', 'docsignxa': 'overwrite_#varname#=0,', 'docsignxashort': 'overwrite_#varname#,', 'docstropt': 'overwrite_#varname# : input int, optional\\n Default: 0', '_check': l_and(isarray, isintent_copy), }, { 'frompyobj': ' capi_#varname#_intent |= (capi_overwrite_#varname#?0:F2PY_INTENT_COPY);', '_check': l_and(isarray, isintent_copy), '_depend': '', }, { 'need': [{hasinitvalue: 'forcomb'}, {hasinitvalue: 'CFUNCSMESS'}], '_check': isarray, '_depend': '' }, { # Not hidden 'decl': ' PyObject *#varname#_capi = Py_None;', 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, '_check': l_and(isarray, isintent_nothide) }, { 'frompyobj': [' #setdims#;', ' capi_#varname#_intent |= #intent#;', {isintent_hide: ' capi_#varname#_tmp = array_from_pyobj(#atype#,#varname#_Dims,#varname#_Rank,capi_#varname#_intent,Py_None);'}, {isintent_nothide: ' capi_#varname#_tmp = array_from_pyobj(#atype#,#varname#_Dims,#varname#_Rank,capi_#varname#_intent,#varname#_capi);'}, """\ if (capi_#varname#_tmp == NULL) { PyObject *exc, *val, *tb; PyErr_Fetch(&exc, &val, &tb); PyErr_SetString(exc ? exc : #modulename#_error,\"failed in converting #nth# `#varname#\' of #pyname# to C/Fortran array\" ); npy_PyErr_ChainExceptionsCause(exc, val, tb); } else { #varname# = (#ctype# *)(PyArray_DATA(capi_#varname#_tmp)); """, {hasinitvalue: [ {isintent_nothide: ' if (#varname#_capi == Py_None) {'}, {isintent_hide: ' {'}, {iscomplexarray: ' #ctype# capi_c;'}, """\ int *_i,capi_i=0; CFUNCSMESS(\"#name#: Initializing #varname#=#init#\\n\"); if (initforcomb(PyArray_DIMS(capi_#varname#_tmp),PyArray_NDIM(capi_#varname#_tmp),1)) { while ((_i = nextforcomb())) #varname#[capi_i++] = #init#; /* fortran way */ } else { PyObject *exc, *val, *tb; PyErr_Fetch(&exc, &val, &tb); PyErr_SetString(exc ? exc : #modulename#_error,\"Initialization of #nth# #varname# failed (initforcomb).\"); npy_PyErr_ChainExceptionsCause(exc, val, tb); f2py_success = 0; } } if (f2py_success) {"""]}, ], 'cleanupfrompyobj': [ # note that this list will be reversed ' } /*if (capi_#varname#_tmp == NULL) ... else of #varname#*/', {l_not(l_or(isintent_out, isintent_hide)): """\ if((PyObject *)capi_#varname#_tmp!=#varname#_capi) { Py_XDECREF(capi_#varname#_tmp); }"""}, {l_and(isintent_hide, l_not(isintent_out)) : """ Py_XDECREF(capi_#varname#_tmp);"""}, {hasinitvalue: ' } /*if (f2py_success) of #varname# init*/'}, ], '_check': isarray, '_depend': '' }, # Scalararray { # Common '_check': l_and(isarray, l_not(iscomplexarray)) }, { # Not hidden '_check': l_and(isarray, l_not(iscomplexarray), isintent_nothide) }, # Integer*1 array {'need': '#ctype#', '_check': isint1array, '_depend': '' }, # Integer*-1 array {'need': '#ctype#', '_check': isunsigned_chararray, '_depend': '' }, # Integer*-2 array {'need': '#ctype#', '_check': isunsigned_shortarray, '_depend': '' }, # Integer*-8 array {'need': '#ctype#', '_check': isunsigned_long_longarray, '_depend': '' }, # Complexarray {'need': '#ctype#', '_check': iscomplexarray, '_depend': '' }, # Stringarray { 'callfortranappend': {isarrayofstrings: 'flen(#varname#),'}, 'need': 'string', '_check': isstringarray } ] ################# Rules for checking ############### check_rules = [ { 'frompyobj': {debugcapi: ' fprintf(stderr,\"debug-capi:Checking `#check#\'\\n\");'}, 'need': 'len..' }, { 'frompyobj': ' CHECKSCALAR(#check#,\"#check#\",\"#nth# #varname#\",\"#varshowvalue#\",#varname#) {', 'cleanupfrompyobj': ' } /*CHECKSCALAR(#check#)*/', 'need': 'CHECKSCALAR', '_check': l_and(isscalar, l_not(iscomplex)), '_break': '' }, { 'frompyobj': ' CHECKSTRING(#check#,\"#check#\",\"#nth# #varname#\",\"#varshowvalue#\",#varname#) {', 'cleanupfrompyobj': ' } /*CHECKSTRING(#check#)*/', 'need': 'CHECKSTRING', '_check': isstring, '_break': '' }, { 'need': 'CHECKARRAY', 'frompyobj': ' CHECKARRAY(#check#,\"#check#\",\"#nth# #varname#\") {', 'cleanupfrompyobj': ' } /*CHECKARRAY(#check#)*/', '_check': isarray, '_break': '' }, { 'need': 'CHECKGENERIC', 'frompyobj': ' CHECKGENERIC(#check#,\"#check#\",\"#nth# #varname#\") {', 'cleanupfrompyobj': ' } /*CHECKGENERIC(#check#)*/', } ] ########## Applying the rules. No need to modify what follows ############# #################### Build C/API module ####################### def buildmodule(m, um): """ Return """ outmess(' Building module "%s"...\n' % (m['name'])) ret = {} mod_rules = defmod_rules[:] vrd = capi_maps.modsign2map(m) rd = dictappend({'f2py_version': f2py_version}, vrd) funcwrappers = [] funcwrappers2 = [] # F90 codes for n in m['interfaced']: nb = None for bi in m['body']: if bi['block'] not in ['interface', 'abstract interface']: errmess('buildmodule: Expected interface block. Skipping.\n') continue for b in bi['body']: if b['name'] == n: nb = b break if not nb: print( 'buildmodule: Could not find the body of interfaced routine "%s". Skipping.\n' % (n), file=sys.stderr) continue nb_list = [nb] if 'entry' in nb: for k, a in nb['entry'].items(): nb1 = copy.deepcopy(nb) del nb1['entry'] nb1['name'] = k nb1['args'] = a nb_list.append(nb1) for nb in nb_list: # requiresf90wrapper must be called before buildapi as it # rewrites assumed shape arrays as automatic arrays. isf90 = requiresf90wrapper(nb) # options is in scope here if options['emptygen']: b_path = options['buildpath'] m_name = vrd['modulename'] outmess(' Generating possibly empty wrappers"\n') Path(f"{b_path}/{vrd['coutput']}").touch() if isf90: # f77 + f90 wrappers outmess(f' Maybe empty "{m_name}-f2pywrappers2.f90"\n') Path(f'{b_path}/{m_name}-f2pywrappers2.f90').touch() outmess(f' Maybe empty "{m_name}-f2pywrappers.f"\n') Path(f'{b_path}/{m_name}-f2pywrappers.f').touch() else: # only f77 wrappers outmess(f' Maybe empty "{m_name}-f2pywrappers.f"\n') Path(f'{b_path}/{m_name}-f2pywrappers.f').touch() api, wrap = buildapi(nb) if wrap: if isf90: funcwrappers2.append(wrap) else: funcwrappers.append(wrap) ar = applyrules(api, vrd) rd = dictappend(rd, ar) # Construct COMMON block support cr, wrap = common_rules.buildhooks(m) if wrap: funcwrappers.append(wrap) ar = applyrules(cr, vrd) rd = dictappend(rd, ar) # Construct F90 module support mr, wrap = f90mod_rules.buildhooks(m) if wrap: funcwrappers2.append(wrap) ar = applyrules(mr, vrd) rd = dictappend(rd, ar) for u in um: ar = use_rules.buildusevars(u, m['use'][u['name']]) rd = dictappend(rd, ar) needs = cfuncs.get_needs() # Add mapped definitions needs['typedefs'] += [cvar for cvar in capi_maps.f2cmap_mapped # if cvar in typedef_need_dict.values()] code = {} for n in needs.keys(): code[n] = [] for k in needs[n]: c = '' if k in cfuncs.includes0: c = cfuncs.includes0[k] elif k in cfuncs.includes: c = cfuncs.includes[k] elif k in cfuncs.userincludes: c = cfuncs.userincludes[k] elif k in cfuncs.typedefs: c = cfuncs.typedefs[k] elif k in cfuncs.typedefs_generated: c = cfuncs.typedefs_generated[k] elif k in cfuncs.cppmacros: c = cfuncs.cppmacros[k] elif k in cfuncs.cfuncs: c = cfuncs.cfuncs[k] elif k in cfuncs.callbacks: c = cfuncs.callbacks[k] elif k in cfuncs.f90modhooks: c = cfuncs.f90modhooks[k] elif k in cfuncs.commonhooks: c = cfuncs.commonhooks[k] else: errmess('buildmodule: unknown need %s.\n' % (repr(k))) continue code[n].append(c) mod_rules.append(code) for r in mod_rules: if ('_check' in r and r['_check'](m)) or ('_check' not in r): ar = applyrules(r, vrd, m) rd = dictappend(rd, ar) ar = applyrules(module_rules, rd) fn = os.path.join(options['buildpath'], vrd['coutput']) ret['csrc'] = fn with open(fn, 'w') as f: f.write(ar['modulebody'].replace('\t', 2 * ' ')) outmess(' Wrote C/API module "%s" to file "%s"\n' % (m['name'], fn)) if options['dorestdoc']: fn = os.path.join( options['buildpath'], vrd['modulename'] + 'module.rest') with open(fn, 'w') as f: f.write('.. -*- rest -*-\n') f.write('\n'.join(ar['restdoc'])) outmess(' ReST Documentation is saved to file "%s/%smodule.rest"\n' % (options['buildpath'], vrd['modulename'])) if options['dolatexdoc']: fn = os.path.join( options['buildpath'], vrd['modulename'] + 'module.tex') ret['ltx'] = fn with open(fn, 'w') as f: f.write( '%% This file is auto-generated with f2py (version:%s)\n' % (f2py_version)) if 'shortlatex' not in options: f.write( '\\documentclass{article}\n\\usepackage{a4wide}\n\\begin{document}\n\\tableofcontents\n\n') f.write('\n'.join(ar['latexdoc'])) if 'shortlatex' not in options: f.write('\\end{document}') outmess(' Documentation is saved to file "%s/%smodule.tex"\n' % (options['buildpath'], vrd['modulename'])) if funcwrappers: wn = os.path.join(options['buildpath'], vrd['f2py_wrapper_output']) ret['fsrc'] = wn with open(wn, 'w') as f: f.write('C -*- fortran -*-\n') f.write( 'C This file is autogenerated with f2py (version:%s)\n' % (f2py_version)) f.write( 'C It contains Fortran 77 wrappers to fortran functions.\n') lines = [] for l in ('\n\n'.join(funcwrappers) + '\n').split('\n'): if 0 <= l.find('!') < 66: # don't split comment lines lines.append(l + '\n') elif l and l[0] == ' ': while len(l) >= 66: lines.append(l[:66] + '\n &') l = l[66:] lines.append(l + '\n') else: lines.append(l + '\n') lines = ''.join(lines).replace('\n &\n', '\n') f.write(lines) outmess(' Fortran 77 wrappers are saved to "%s"\n' % (wn)) if funcwrappers2: wn = os.path.join( options['buildpath'], '%s-f2pywrappers2.f90' % (vrd['modulename'])) ret['fsrc'] = wn with open(wn, 'w') as f: f.write('! -*- f90 -*-\n') f.write( '! This file is autogenerated with f2py (version:%s)\n' % (f2py_version)) f.write( '! It contains Fortran 90 wrappers to fortran functions.\n') lines = [] for l in ('\n\n'.join(funcwrappers2) + '\n').split('\n'): if 0 <= l.find('!') < 72: # don't split comment lines lines.append(l + '\n') elif len(l) > 72 and l[0] == ' ': lines.append(l[:72] + '&\n &') l = l[72:] while len(l) > 66: lines.append(l[:66] + '&\n &') l = l[66:] lines.append(l + '\n') else: lines.append(l + '\n') lines = ''.join(lines).replace('\n &\n', '\n') f.write(lines) outmess(' Fortran 90 wrappers are saved to "%s"\n' % (wn)) return ret ################## Build C/API function ############# stnd = {1: 'st', 2: 'nd', 3: 'rd', 4: 'th', 5: 'th', 6: 'th', 7: 'th', 8: 'th', 9: 'th', 0: 'th'} def buildapi(rout): rout, wrap = func2subr.assubr(rout) args, depargs = getargs2(rout) capi_maps.depargs = depargs var = rout['vars'] if ismoduleroutine(rout): outmess(' Constructing wrapper function "%s.%s"...\n' % (rout['modulename'], rout['name'])) else: outmess(' Constructing wrapper function "%s"...\n' % (rout['name'])) # Routine vrd = capi_maps.routsign2map(rout) rd = dictappend({}, vrd) for r in rout_rules: if ('_check' in r and r['_check'](rout)) or ('_check' not in r): ar = applyrules(r, vrd, rout) rd = dictappend(rd, ar) # Args nth, nthk = 0, 0 savevrd = {} for a in args: vrd = capi_maps.sign2map(a, var[a]) if isintent_aux(var[a]): _rules = aux_rules else: _rules = arg_rules if not isintent_hide(var[a]): if not isoptional(var[a]): nth = nth + 1 vrd['nth'] = repr(nth) + stnd[nth % 10] + ' argument' else: nthk = nthk + 1 vrd['nth'] = repr(nthk) + stnd[nthk % 10] + ' keyword' else: vrd['nth'] = 'hidden' savevrd[a] = vrd for r in _rules: if '_depend' in r: continue if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): ar = applyrules(r, vrd, var[a]) rd = dictappend(rd, ar) if '_break' in r: break for a in depargs: if isintent_aux(var[a]): _rules = aux_rules else: _rules = arg_rules vrd = savevrd[a] for r in _rules: if '_depend' not in r: continue if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): ar = applyrules(r, vrd, var[a]) rd = dictappend(rd, ar) if '_break' in r: break if 'check' in var[a]: for c in var[a]['check']: vrd['check'] = c ar = applyrules(check_rules, vrd, var[a]) rd = dictappend(rd, ar) if isinstance(rd['cleanupfrompyobj'], list): rd['cleanupfrompyobj'].reverse() if isinstance(rd['closepyobjfrom'], list): rd['closepyobjfrom'].reverse() rd['docsignature'] = stripcomma(replace('#docsign##docsignopt##docsignxa#', {'docsign': rd['docsign'], 'docsignopt': rd['docsignopt'], 'docsignxa': rd['docsignxa']})) optargs = stripcomma(replace('#docsignopt##docsignxa#', {'docsignxa': rd['docsignxashort'], 'docsignopt': rd['docsignoptshort']} )) if optargs == '': rd['docsignatureshort'] = stripcomma( replace('#docsign#', {'docsign': rd['docsign']})) else: rd['docsignatureshort'] = replace('#docsign#[#docsignopt#]', {'docsign': rd['docsign'], 'docsignopt': optargs, }) rd['latexdocsignatureshort'] = rd['docsignatureshort'].replace('_', '\\_') rd['latexdocsignatureshort'] = rd[ 'latexdocsignatureshort'].replace(',', ', ') cfs = stripcomma(replace('#callfortran##callfortranappend#', { 'callfortran': rd['callfortran'], 'callfortranappend': rd['callfortranappend']})) if len(rd['callfortranappend']) > 1: rd['callcompaqfortran'] = stripcomma(replace('#callfortran# 0,#callfortranappend#', { 'callfortran': rd['callfortran'], 'callfortranappend': rd['callfortranappend']})) else: rd['callcompaqfortran'] = cfs rd['callfortran'] = cfs if isinstance(rd['docreturn'], list): rd['docreturn'] = stripcomma( replace('#docreturn#', {'docreturn': rd['docreturn']})) + ' = ' rd['docstrsigns'] = [] rd['latexdocstrsigns'] = [] for k in ['docstrreq', 'docstropt', 'docstrout', 'docstrcbs']: if k in rd and isinstance(rd[k], list): rd['docstrsigns'] = rd['docstrsigns'] + rd[k] k = 'latex' + k if k in rd and isinstance(rd[k], list): rd['latexdocstrsigns'] = rd['latexdocstrsigns'] + rd[k][0:1] +\ ['\\begin{description}'] + rd[k][1:] +\ ['\\end{description}'] ar = applyrules(routine_rules, rd) if ismoduleroutine(rout): outmess(' %s\n' % (ar['docshort'])) else: outmess(' %s\n' % (ar['docshort'])) return ar, wrap #################### EOF rules.py #######################
61,517
Python
39.713435
214
0.510591
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/f2py2e.py
#!/usr/bin/env python3 """ f2py2e - Fortran to Python C/API generator. 2nd Edition. See __usage__ below. Copyright 1999--2011 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/05/06 08:31:19 $ Pearu Peterson """ import sys import os import pprint import re from pathlib import Path from . import crackfortran from . import rules from . import cb_rules from . import auxfuncs from . import cfuncs from . import f90mod_rules from . import __version__ from . import capi_maps f2py_version = __version__.version numpy_version = __version__.version errmess = sys.stderr.write # outmess=sys.stdout.write show = pprint.pprint outmess = auxfuncs.outmess __usage__ =\ f"""Usage: 1) To construct extension module sources: f2py [<options>] <fortran files> [[[only:]||[skip:]] \\ <fortran functions> ] \\ [: <fortran files> ...] 2) To compile fortran files and build extension modules: f2py -c [<options>, <build_flib options>, <extra options>] <fortran files> 3) To generate signature files: f2py -h <filename.pyf> ...< same options as in (1) > Description: This program generates a Python C/API file (<modulename>module.c) that contains wrappers for given fortran functions so that they can be called from Python. With the -c option the corresponding extension modules are built. Options: --2d-numpy Use numpy.f2py tool with NumPy support. [DEFAULT] --2d-numeric Use f2py2e tool with Numeric support. --2d-numarray Use f2py2e tool with Numarray support. --g3-numpy Use 3rd generation f2py from the separate f2py package. [NOT AVAILABLE YET] -h <filename> Write signatures of the fortran routines to file <filename> and exit. You can then edit <filename> and use it instead of <fortran files>. If <filename>==stdout then the signatures are printed to stdout. <fortran functions> Names of fortran routines for which Python C/API functions will be generated. Default is all that are found in <fortran files>. <fortran files> Paths to fortran/signature files that will be scanned for <fortran functions> in order to determine their signatures. skip: Ignore fortran functions that follow until `:'. only: Use only fortran functions that follow until `:'. : Get back to <fortran files> mode. -m <modulename> Name of the module; f2py generates a Python/C API file <modulename>module.c or extension module <modulename>. Default is 'untitled'. '-include<header>' Writes additional headers in the C wrapper, can be passed multiple times, generates #include <header> each time. --[no-]lower Do [not] lower the cases in <fortran files>. By default, --lower is assumed with -h key, and --no-lower without -h key. --build-dir <dirname> All f2py generated files are created in <dirname>. Default is tempfile.mkdtemp(). --overwrite-signature Overwrite existing signature file. --[no-]latex-doc Create (or not) <modulename>module.tex. Default is --no-latex-doc. --short-latex Create 'incomplete' LaTeX document (without commands \\documentclass, \\tableofcontents, and \\begin{{document}}, \\end{{document}}). --[no-]rest-doc Create (or not) <modulename>module.rst. Default is --no-rest-doc. --debug-capi Create C/API code that reports the state of the wrappers during runtime. Useful for debugging. --[no-]wrap-functions Create Fortran subroutine wrappers to Fortran 77 functions. --wrap-functions is default because it ensures maximum portability/compiler independence. --include-paths <path1>:<path2>:... Search include files from the given directories. --help-link [..] List system resources found by system_info.py. See also --link-<resource> switch below. [..] is optional list of resources names. E.g. try 'f2py --help-link lapack_opt'. --f2cmap <filename> Load Fortran-to-Python KIND specification from the given file. Default: .f2py_f2cmap in current directory. --quiet Run quietly. --verbose Run with extra verbosity. --skip-empty-wrappers Only generate wrapper files when needed. -v Print f2py version ID and exit. numpy.distutils options (only effective with -c): --fcompiler= Specify Fortran compiler type by vendor --compiler= Specify C compiler type (as defined by distutils) --help-fcompiler List available Fortran compilers and exit --f77exec= Specify the path to F77 compiler --f90exec= Specify the path to F90 compiler --f77flags= Specify F77 compiler flags --f90flags= Specify F90 compiler flags --opt= Specify optimization flags --arch= Specify architecture specific optimization flags --noopt Compile without optimization --noarch Compile without arch-dependent optimization --debug Compile with debugging information Extra options (only effective with -c): --link-<resource> Link extension module with <resource> as defined by numpy.distutils/system_info.py. E.g. to link with optimized LAPACK libraries (vecLib on MacOSX, ATLAS elsewhere), use --link-lapack_opt. See also --help-link switch. -L/path/to/lib/ -l<libname> -D<define> -U<name> -I/path/to/include/ <filename>.o <filename>.so <filename>.a Using the following macros may be required with non-gcc Fortran compilers: -DPREPEND_FORTRAN -DNO_APPEND_FORTRAN -DUPPERCASE_FORTRAN -DUNDERSCORE_G77 When using -DF2PY_REPORT_ATEXIT, a performance report of F2PY interface is printed out at exit (platforms: Linux). When using -DF2PY_REPORT_ON_ARRAY_COPY=<int>, a message is sent to stderr whenever F2PY interface makes a copy of an array. Integer <int> sets the threshold for array sizes when a message should be shown. Version: {f2py_version} numpy Version: {numpy_version} Requires: Python 3.5 or higher. License: NumPy license (see LICENSE.txt in the NumPy source code) Copyright 1999 - 2011 Pearu Peterson all rights reserved. https://web.archive.org/web/20140822061353/http://cens.ioc.ee/projects/f2py2e""" def scaninputline(inputline): files, skipfuncs, onlyfuncs, debug = [], [], [], [] f, f2, f3, f5, f6, f7, f8, f9, f10 = 1, 0, 0, 0, 0, 0, 0, 0, 0 verbose = 1 emptygen = True dolc = -1 dolatexdoc = 0 dorestdoc = 0 wrapfuncs = 1 buildpath = '.' include_paths = [] signsfile, modulename = None, None options = {'buildpath': buildpath, 'coutput': None, 'f2py_wrapper_output': None} for l in inputline: if l == '': pass elif l == 'only:': f = 0 elif l == 'skip:': f = -1 elif l == ':': f = 1 elif l[:8] == '--debug-': debug.append(l[8:]) elif l == '--lower': dolc = 1 elif l == '--build-dir': f6 = 1 elif l == '--no-lower': dolc = 0 elif l == '--quiet': verbose = 0 elif l == '--verbose': verbose += 1 elif l == '--latex-doc': dolatexdoc = 1 elif l == '--no-latex-doc': dolatexdoc = 0 elif l == '--rest-doc': dorestdoc = 1 elif l == '--no-rest-doc': dorestdoc = 0 elif l == '--wrap-functions': wrapfuncs = 1 elif l == '--no-wrap-functions': wrapfuncs = 0 elif l == '--short-latex': options['shortlatex'] = 1 elif l == '--coutput': f8 = 1 elif l == '--f2py-wrapper-output': f9 = 1 elif l == '--f2cmap': f10 = 1 elif l == '--overwrite-signature': options['h-overwrite'] = 1 elif l == '-h': f2 = 1 elif l == '-m': f3 = 1 elif l[:2] == '-v': print(f2py_version) sys.exit() elif l == '--show-compilers': f5 = 1 elif l[:8] == '-include': cfuncs.outneeds['userincludes'].append(l[9:-1]) cfuncs.userincludes[l[9:-1]] = '#include ' + l[8:] elif l[:15] in '--include_paths': outmess( 'f2py option --include_paths is deprecated, use --include-paths instead.\n') f7 = 1 elif l[:15] in '--include-paths': f7 = 1 elif l == '--skip-empty-wrappers': emptygen = False elif l[0] == '-': errmess('Unknown option %s\n' % repr(l)) sys.exit() elif f2: f2 = 0 signsfile = l elif f3: f3 = 0 modulename = l elif f6: f6 = 0 buildpath = l elif f7: f7 = 0 include_paths.extend(l.split(os.pathsep)) elif f8: f8 = 0 options["coutput"] = l elif f9: f9 = 0 options["f2py_wrapper_output"] = l elif f10: f10 = 0 options["f2cmap_file"] = l elif f == 1: try: with open(l): pass files.append(l) except OSError as detail: errmess(f'OSError: {detail!s}. Skipping file "{l!s}".\n') elif f == -1: skipfuncs.append(l) elif f == 0: onlyfuncs.append(l) if not f5 and not files and not modulename: print(__usage__) sys.exit() if not os.path.isdir(buildpath): if not verbose: outmess('Creating build directory %s\n' % (buildpath)) os.mkdir(buildpath) if signsfile: signsfile = os.path.join(buildpath, signsfile) if signsfile and os.path.isfile(signsfile) and 'h-overwrite' not in options: errmess( 'Signature file "%s" exists!!! Use --overwrite-signature to overwrite.\n' % (signsfile)) sys.exit() options['emptygen'] = emptygen options['debug'] = debug options['verbose'] = verbose if dolc == -1 and not signsfile: options['do-lower'] = 0 else: options['do-lower'] = dolc if modulename: options['module'] = modulename if signsfile: options['signsfile'] = signsfile if onlyfuncs: options['onlyfuncs'] = onlyfuncs if skipfuncs: options['skipfuncs'] = skipfuncs options['dolatexdoc'] = dolatexdoc options['dorestdoc'] = dorestdoc options['wrapfuncs'] = wrapfuncs options['buildpath'] = buildpath options['include_paths'] = include_paths options.setdefault('f2cmap_file', None) return files, options def callcrackfortran(files, options): rules.options = options crackfortran.debug = options['debug'] crackfortran.verbose = options['verbose'] if 'module' in options: crackfortran.f77modulename = options['module'] if 'skipfuncs' in options: crackfortran.skipfuncs = options['skipfuncs'] if 'onlyfuncs' in options: crackfortran.onlyfuncs = options['onlyfuncs'] crackfortran.include_paths[:] = options['include_paths'] crackfortran.dolowercase = options['do-lower'] postlist = crackfortran.crackfortran(files) if 'signsfile' in options: outmess('Saving signatures to file "%s"\n' % (options['signsfile'])) pyf = crackfortran.crack2fortran(postlist) if options['signsfile'][-6:] == 'stdout': sys.stdout.write(pyf) else: with open(options['signsfile'], 'w') as f: f.write(pyf) if options["coutput"] is None: for mod in postlist: mod["coutput"] = "%smodule.c" % mod["name"] else: for mod in postlist: mod["coutput"] = options["coutput"] if options["f2py_wrapper_output"] is None: for mod in postlist: mod["f2py_wrapper_output"] = "%s-f2pywrappers.f" % mod["name"] else: for mod in postlist: mod["f2py_wrapper_output"] = options["f2py_wrapper_output"] return postlist def buildmodules(lst): cfuncs.buildcfuncs() outmess('Building modules...\n') modules, mnames, isusedby = [], [], {} for item in lst: if '__user__' in item['name']: cb_rules.buildcallbacks(item) else: if 'use' in item: for u in item['use'].keys(): if u not in isusedby: isusedby[u] = [] isusedby[u].append(item['name']) modules.append(item) mnames.append(item['name']) ret = {} for module, name in zip(modules, mnames): if name in isusedby: outmess('\tSkipping module "%s" which is used by %s.\n' % ( name, ','.join('"%s"' % s for s in isusedby[name]))) else: um = [] if 'use' in module: for u in module['use'].keys(): if u in isusedby and u in mnames: um.append(modules[mnames.index(u)]) else: outmess( f'\tModule "{name}" uses nonexisting "{u}" ' 'which will be ignored.\n') ret[name] = {} dict_append(ret[name], rules.buildmodule(module, um)) return ret def dict_append(d_out, d_in): for (k, v) in d_in.items(): if k not in d_out: d_out[k] = [] if isinstance(v, list): d_out[k] = d_out[k] + v else: d_out[k].append(v) def run_main(comline_list): """ Equivalent to running:: f2py <args> where ``<args>=string.join(<list>,' ')``, but in Python. Unless ``-h`` is used, this function returns a dictionary containing information on generated modules and their dependencies on source files. You cannot build extension modules with this function, that is, using ``-c`` is not allowed. Use the ``compile`` command instead. Examples -------- The command ``f2py -m scalar scalar.f`` can be executed from Python as follows. .. literalinclude:: ../../source/f2py/code/results/run_main_session.dat :language: python """ crackfortran.reset_global_f2py_vars() f2pydir = os.path.dirname(os.path.abspath(cfuncs.__file__)) fobjhsrc = os.path.join(f2pydir, 'src', 'fortranobject.h') fobjcsrc = os.path.join(f2pydir, 'src', 'fortranobject.c') files, options = scaninputline(comline_list) auxfuncs.options = options capi_maps.load_f2cmap_file(options['f2cmap_file']) postlist = callcrackfortran(files, options) isusedby = {} for plist in postlist: if 'use' in plist: for u in plist['use'].keys(): if u not in isusedby: isusedby[u] = [] isusedby[u].append(plist['name']) for plist in postlist: if plist['block'] == 'python module' and '__user__' in plist['name']: if plist['name'] in isusedby: # if not quiet: outmess( f'Skipping Makefile build for module "{plist["name"]}" ' 'which is used by {}\n'.format( ','.join(f'"{s}"' for s in isusedby[plist['name']]))) if 'signsfile' in options: if options['verbose'] > 1: outmess( 'Stopping. Edit the signature file and then run f2py on the signature file: ') outmess('%s %s\n' % (os.path.basename(sys.argv[0]), options['signsfile'])) return for plist in postlist: if plist['block'] != 'python module': if 'python module' not in options: errmess( 'Tip: If your original code is Fortran source then you must use -m option.\n') raise TypeError('All blocks must be python module blocks but got %s' % ( repr(plist['block']))) auxfuncs.debugoptions = options['debug'] f90mod_rules.options = options auxfuncs.wrapfuncs = options['wrapfuncs'] ret = buildmodules(postlist) for mn in ret.keys(): dict_append(ret[mn], {'csrc': fobjcsrc, 'h': fobjhsrc}) return ret def filter_files(prefix, suffix, files, remove_prefix=None): """ Filter files by prefix and suffix. """ filtered, rest = [], [] match = re.compile(prefix + r'.*' + suffix + r'\Z').match if remove_prefix: ind = len(prefix) else: ind = 0 for file in [x.strip() for x in files]: if match(file): filtered.append(file[ind:]) else: rest.append(file) return filtered, rest def get_prefix(module): p = os.path.dirname(os.path.dirname(module.__file__)) return p def run_compile(): """ Do it all in one call! """ import tempfile i = sys.argv.index('-c') del sys.argv[i] remove_build_dir = 0 try: i = sys.argv.index('--build-dir') except ValueError: i = None if i is not None: build_dir = sys.argv[i + 1] del sys.argv[i + 1] del sys.argv[i] else: remove_build_dir = 1 build_dir = tempfile.mkdtemp() _reg1 = re.compile(r'--link-') sysinfo_flags = [_m for _m in sys.argv[1:] if _reg1.match(_m)] sys.argv = [_m for _m in sys.argv if _m not in sysinfo_flags] if sysinfo_flags: sysinfo_flags = [f[7:] for f in sysinfo_flags] _reg2 = re.compile( r'--((no-|)(wrap-functions|lower)|debug-capi|quiet|skip-empty-wrappers)|-include') f2py_flags = [_m for _m in sys.argv[1:] if _reg2.match(_m)] sys.argv = [_m for _m in sys.argv if _m not in f2py_flags] f2py_flags2 = [] fl = 0 for a in sys.argv[1:]: if a in ['only:', 'skip:']: fl = 1 elif a == ':': fl = 0 if fl or a == ':': f2py_flags2.append(a) if f2py_flags2 and f2py_flags2[-1] != ':': f2py_flags2.append(':') f2py_flags.extend(f2py_flags2) sys.argv = [_m for _m in sys.argv if _m not in f2py_flags2] _reg3 = re.compile( r'--((f(90)?compiler(-exec|)|compiler)=|help-compiler)') flib_flags = [_m for _m in sys.argv[1:] if _reg3.match(_m)] sys.argv = [_m for _m in sys.argv if _m not in flib_flags] _reg4 = re.compile( r'--((f(77|90)(flags|exec)|opt|arch)=|(debug|noopt|noarch|help-fcompiler))') fc_flags = [_m for _m in sys.argv[1:] if _reg4.match(_m)] sys.argv = [_m for _m in sys.argv if _m not in fc_flags] del_list = [] for s in flib_flags: v = '--fcompiler=' if s[:len(v)] == v: from numpy.distutils import fcompiler fcompiler.load_all_fcompiler_classes() allowed_keys = list(fcompiler.fcompiler_class.keys()) nv = ov = s[len(v):].lower() if ov not in allowed_keys: vmap = {} # XXX try: nv = vmap[ov] except KeyError: if ov not in vmap.values(): print('Unknown vendor: "%s"' % (s[len(v):])) nv = ov i = flib_flags.index(s) flib_flags[i] = '--fcompiler=' + nv continue for s in del_list: i = flib_flags.index(s) del flib_flags[i] assert len(flib_flags) <= 2, repr(flib_flags) _reg5 = re.compile(r'--(verbose)') setup_flags = [_m for _m in sys.argv[1:] if _reg5.match(_m)] sys.argv = [_m for _m in sys.argv if _m not in setup_flags] if '--quiet' in f2py_flags: setup_flags.append('--quiet') modulename = 'untitled' sources = sys.argv[1:] for optname in ['--include_paths', '--include-paths', '--f2cmap']: if optname in sys.argv: i = sys.argv.index(optname) f2py_flags.extend(sys.argv[i:i + 2]) del sys.argv[i + 1], sys.argv[i] sources = sys.argv[1:] if '-m' in sys.argv: i = sys.argv.index('-m') modulename = sys.argv[i + 1] del sys.argv[i + 1], sys.argv[i] sources = sys.argv[1:] else: from numpy.distutils.command.build_src import get_f2py_modulename pyf_files, sources = filter_files('', '[.]pyf([.]src|)', sources) sources = pyf_files + sources for f in pyf_files: modulename = get_f2py_modulename(f) if modulename: break extra_objects, sources = filter_files('', '[.](o|a|so|dylib)', sources) include_dirs, sources = filter_files('-I', '', sources, remove_prefix=1) library_dirs, sources = filter_files('-L', '', sources, remove_prefix=1) libraries, sources = filter_files('-l', '', sources, remove_prefix=1) undef_macros, sources = filter_files('-U', '', sources, remove_prefix=1) define_macros, sources = filter_files('-D', '', sources, remove_prefix=1) for i in range(len(define_macros)): name_value = define_macros[i].split('=', 1) if len(name_value) == 1: name_value.append(None) if len(name_value) == 2: define_macros[i] = tuple(name_value) else: print('Invalid use of -D:', name_value) from numpy.distutils.system_info import get_info num_info = {} if num_info: include_dirs.extend(num_info.get('include_dirs', [])) from numpy.distutils.core import setup, Extension ext_args = {'name': modulename, 'sources': sources, 'include_dirs': include_dirs, 'library_dirs': library_dirs, 'libraries': libraries, 'define_macros': define_macros, 'undef_macros': undef_macros, 'extra_objects': extra_objects, 'f2py_options': f2py_flags, } if sysinfo_flags: from numpy.distutils.misc_util import dict_append for n in sysinfo_flags: i = get_info(n) if not i: outmess('No %s resources found in system' ' (try `f2py --help-link`)\n' % (repr(n))) dict_append(ext_args, **i) ext = Extension(**ext_args) sys.argv = [sys.argv[0]] + setup_flags sys.argv.extend(['build', '--build-temp', build_dir, '--build-base', build_dir, '--build-platlib', '.', # disable CCompilerOpt '--disable-optimization']) if fc_flags: sys.argv.extend(['config_fc'] + fc_flags) if flib_flags: sys.argv.extend(['build_ext'] + flib_flags) setup(ext_modules=[ext]) if remove_build_dir and os.path.exists(build_dir): import shutil outmess('Removing build directory %s\n' % (build_dir)) shutil.rmtree(build_dir) def main(): if '--help-link' in sys.argv[1:]: sys.argv.remove('--help-link') from numpy.distutils.system_info import show_all show_all() return # Probably outdated options that were not working before 1.16 if '--g3-numpy' in sys.argv[1:]: sys.stderr.write("G3 f2py support is not implemented, yet.\\n") sys.exit(1) elif '--2e-numeric' in sys.argv[1:]: sys.argv.remove('--2e-numeric') elif '--2e-numarray' in sys.argv[1:]: # Note that this errors becaust the -DNUMARRAY argument is # not recognized. Just here for back compatibility and the # error message. sys.argv.append("-DNUMARRAY") sys.argv.remove('--2e-numarray') elif '--2e-numpy' in sys.argv[1:]: sys.argv.remove('--2e-numpy') else: pass if '-c' in sys.argv[1:]: run_compile() else: run_main(sys.argv[1:])
24,626
Python
33.931915
100
0.556363
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/diagnose.py
#!/usr/bin/env python3 import os import sys import tempfile def run_command(cmd): print('Running %r:' % (cmd)) os.system(cmd) print('------') def run(): _path = os.getcwd() os.chdir(tempfile.gettempdir()) print('------') print('os.name=%r' % (os.name)) print('------') print('sys.platform=%r' % (sys.platform)) print('------') print('sys.version:') print(sys.version) print('------') print('sys.prefix:') print(sys.prefix) print('------') print('sys.path=%r' % (':'.join(sys.path))) print('------') try: import numpy has_newnumpy = 1 except ImportError: print('Failed to import new numpy:', sys.exc_info()[1]) has_newnumpy = 0 try: from numpy.f2py import f2py2e has_f2py2e = 1 except ImportError: print('Failed to import f2py2e:', sys.exc_info()[1]) has_f2py2e = 0 try: import numpy.distutils has_numpy_distutils = 2 except ImportError: try: import numpy_distutils has_numpy_distutils = 1 except ImportError: print('Failed to import numpy_distutils:', sys.exc_info()[1]) has_numpy_distutils = 0 if has_newnumpy: try: print('Found new numpy version %r in %s' % (numpy.__version__, numpy.__file__)) except Exception as msg: print('error:', msg) print('------') if has_f2py2e: try: print('Found f2py2e version %r in %s' % (f2py2e.__version__.version, f2py2e.__file__)) except Exception as msg: print('error:', msg) print('------') if has_numpy_distutils: try: if has_numpy_distutils == 2: print('Found numpy.distutils version %r in %r' % ( numpy.distutils.__version__, numpy.distutils.__file__)) else: print('Found numpy_distutils version %r in %r' % ( numpy_distutils.numpy_distutils_version.numpy_distutils_version, numpy_distutils.__file__)) print('------') except Exception as msg: print('error:', msg) print('------') try: if has_numpy_distutils == 1: print( 'Importing numpy_distutils.command.build_flib ...', end=' ') import numpy_distutils.command.build_flib as build_flib print('ok') print('------') try: print( 'Checking availability of supported Fortran compilers:') for compiler_class in build_flib.all_compilers: compiler_class(verbose=1).is_available() print('------') except Exception as msg: print('error:', msg) print('------') except Exception as msg: print( 'error:', msg, '(ignore it, build_flib is obsolute for numpy.distutils 0.2.2 and up)') print('------') try: if has_numpy_distutils == 2: print('Importing numpy.distutils.fcompiler ...', end=' ') import numpy.distutils.fcompiler as fcompiler else: print('Importing numpy_distutils.fcompiler ...', end=' ') import numpy_distutils.fcompiler as fcompiler print('ok') print('------') try: print('Checking availability of supported Fortran compilers:') fcompiler.show_fcompilers() print('------') except Exception as msg: print('error:', msg) print('------') except Exception as msg: print('error:', msg) print('------') try: if has_numpy_distutils == 2: print('Importing numpy.distutils.cpuinfo ...', end=' ') from numpy.distutils.cpuinfo import cpuinfo print('ok') print('------') else: try: print( 'Importing numpy_distutils.command.cpuinfo ...', end=' ') from numpy_distutils.command.cpuinfo import cpuinfo print('ok') print('------') except Exception as msg: print('error:', msg, '(ignore it)') print('Importing numpy_distutils.cpuinfo ...', end=' ') from numpy_distutils.cpuinfo import cpuinfo print('ok') print('------') cpu = cpuinfo() print('CPU information:', end=' ') for name in dir(cpuinfo): if name[0] == '_' and name[1] != '_' and getattr(cpu, name[1:])(): print(name[1:], end=' ') print('------') except Exception as msg: print('error:', msg) print('------') os.chdir(_path) if __name__ == "__main__": run()
5,230
Python
32.748387
102
0.461185
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/cb_rules.py
#!/usr/bin/env python3 """ Build call-back mechanism for f2py2e. Copyright 2000 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/07/20 11:27:58 $ Pearu Peterson """ from . import __version__ from .auxfuncs import ( applyrules, debugcapi, dictappend, errmess, getargs, hasnote, isarray, iscomplex, iscomplexarray, iscomplexfunction, isfunction, isintent_c, isintent_hide, isintent_in, isintent_inout, isintent_nothide, isintent_out, isoptional, isrequired, isscalar, isstring, isstringfunction, issubroutine, l_and, l_not, l_or, outmess, replace, stripcomma, throw_error ) from . import cfuncs f2py_version = __version__.version ################## Rules for callback function ############## cb_routine_rules = { 'cbtypedefs': 'typedef #rctype#(*#name#_typedef)(#optargs_td##args_td##strarglens_td##noargs#);', 'body': """ #begintitle# typedef struct { PyObject *capi; PyTupleObject *args_capi; int nofargs; jmp_buf jmpbuf; } #name#_t; #if defined(F2PY_THREAD_LOCAL_DECL) && !defined(F2PY_USE_PYTHON_TLS) static F2PY_THREAD_LOCAL_DECL #name#_t *_active_#name# = NULL; static #name#_t *swap_active_#name#(#name#_t *ptr) { #name#_t *prev = _active_#name#; _active_#name# = ptr; return prev; } static #name#_t *get_active_#name#(void) { return _active_#name#; } #else static #name#_t *swap_active_#name#(#name#_t *ptr) { char *key = "__f2py_cb_#name#"; return (#name#_t *)F2PySwapThreadLocalCallbackPtr(key, ptr); } static #name#_t *get_active_#name#(void) { char *key = "__f2py_cb_#name#"; return (#name#_t *)F2PyGetThreadLocalCallbackPtr(key); } #endif /*typedef #rctype#(*#name#_typedef)(#optargs_td##args_td##strarglens_td##noargs#);*/ #static# #rctype# #callbackname# (#optargs##args##strarglens##noargs#) { #name#_t cb_local = { NULL, NULL, 0 }; #name#_t *cb = NULL; PyTupleObject *capi_arglist = NULL; PyObject *capi_return = NULL; PyObject *capi_tmp = NULL; PyObject *capi_arglist_list = NULL; int capi_j,capi_i = 0; int capi_longjmp_ok = 1; #decl# #ifdef F2PY_REPORT_ATEXIT f2py_cb_start_clock(); #endif cb = get_active_#name#(); if (cb == NULL) { capi_longjmp_ok = 0; cb = &cb_local; } capi_arglist = cb->args_capi; CFUNCSMESS(\"cb:Call-back function #name# (maxnofargs=#maxnofargs#(-#nofoptargs#))\\n\"); CFUNCSMESSPY(\"cb:#name#_capi=\",cb->capi); if (cb->capi==NULL) { capi_longjmp_ok = 0; cb->capi = PyObject_GetAttrString(#modulename#_module,\"#argname#\"); CFUNCSMESSPY(\"cb:#name#_capi=\",cb->capi); } if (cb->capi==NULL) { PyErr_SetString(#modulename#_error,\"cb: Callback #argname# not defined (as an argument or module #modulename# attribute).\\n\"); goto capi_fail; } if (F2PyCapsule_Check(cb->capi)) { #name#_typedef #name#_cptr; #name#_cptr = F2PyCapsule_AsVoidPtr(cb->capi); #returncptr#(*#name#_cptr)(#optargs_nm##args_nm##strarglens_nm#); #return# } if (capi_arglist==NULL) { capi_longjmp_ok = 0; capi_tmp = PyObject_GetAttrString(#modulename#_module,\"#argname#_extra_args\"); if (capi_tmp) { capi_arglist = (PyTupleObject *)PySequence_Tuple(capi_tmp); Py_DECREF(capi_tmp); if (capi_arglist==NULL) { PyErr_SetString(#modulename#_error,\"Failed to convert #modulename#.#argname#_extra_args to tuple.\\n\"); goto capi_fail; } } else { PyErr_Clear(); capi_arglist = (PyTupleObject *)Py_BuildValue(\"()\"); } } if (capi_arglist == NULL) { PyErr_SetString(#modulename#_error,\"Callback #argname# argument list is not set.\\n\"); goto capi_fail; } #setdims# #ifdef PYPY_VERSION #define CAPI_ARGLIST_SETITEM(idx, value) PyList_SetItem((PyObject *)capi_arglist_list, idx, value) capi_arglist_list = PySequence_List(capi_arglist); if (capi_arglist_list == NULL) goto capi_fail; #else #define CAPI_ARGLIST_SETITEM(idx, value) PyTuple_SetItem((PyObject *)capi_arglist, idx, value) #endif #pyobjfrom# #undef CAPI_ARGLIST_SETITEM #ifdef PYPY_VERSION CFUNCSMESSPY(\"cb:capi_arglist=\",capi_arglist_list); #else CFUNCSMESSPY(\"cb:capi_arglist=\",capi_arglist); #endif CFUNCSMESS(\"cb:Call-back calling Python function #argname#.\\n\"); #ifdef F2PY_REPORT_ATEXIT f2py_cb_start_call_clock(); #endif #ifdef PYPY_VERSION capi_return = PyObject_CallObject(cb->capi,(PyObject *)capi_arglist_list); Py_DECREF(capi_arglist_list); capi_arglist_list = NULL; #else capi_return = PyObject_CallObject(cb->capi,(PyObject *)capi_arglist); #endif #ifdef F2PY_REPORT_ATEXIT f2py_cb_stop_call_clock(); #endif CFUNCSMESSPY(\"cb:capi_return=\",capi_return); if (capi_return == NULL) { fprintf(stderr,\"capi_return is NULL\\n\"); goto capi_fail; } if (capi_return == Py_None) { Py_DECREF(capi_return); capi_return = Py_BuildValue(\"()\"); } else if (!PyTuple_Check(capi_return)) { capi_return = Py_BuildValue(\"(N)\",capi_return); } capi_j = PyTuple_Size(capi_return); capi_i = 0; #frompyobj# CFUNCSMESS(\"cb:#name#:successful\\n\"); Py_DECREF(capi_return); #ifdef F2PY_REPORT_ATEXIT f2py_cb_stop_clock(); #endif goto capi_return_pt; capi_fail: fprintf(stderr,\"Call-back #name# failed.\\n\"); Py_XDECREF(capi_return); Py_XDECREF(capi_arglist_list); if (capi_longjmp_ok) { longjmp(cb->jmpbuf,-1); } capi_return_pt: ; #return# } #endtitle# """, 'need': ['setjmp.h', 'CFUNCSMESS', 'F2PY_THREAD_LOCAL_DECL'], 'maxnofargs': '#maxnofargs#', 'nofoptargs': '#nofoptargs#', 'docstr': """\ def #argname#(#docsignature#): return #docreturn#\\n\\ #docstrsigns#""", 'latexdocstr': """ {{}\\verb@def #argname#(#latexdocsignature#): return #docreturn#@{}} #routnote# #latexdocstrsigns#""", 'docstrshort': 'def #argname#(#docsignature#): return #docreturn#' } cb_rout_rules = [ { # Init 'separatorsfor': {'decl': '\n', 'args': ',', 'optargs': '', 'pyobjfrom': '\n', 'freemem': '\n', 'args_td': ',', 'optargs_td': '', 'args_nm': ',', 'optargs_nm': '', 'frompyobj': '\n', 'setdims': '\n', 'docstrsigns': '\\n"\n"', 'latexdocstrsigns': '\n', 'latexdocstrreq': '\n', 'latexdocstropt': '\n', 'latexdocstrout': '\n', 'latexdocstrcbs': '\n', }, 'decl': '/*decl*/', 'pyobjfrom': '/*pyobjfrom*/', 'frompyobj': '/*frompyobj*/', 'args': [], 'optargs': '', 'return': '', 'strarglens': '', 'freemem': '/*freemem*/', 'args_td': [], 'optargs_td': '', 'strarglens_td': '', 'args_nm': [], 'optargs_nm': '', 'strarglens_nm': '', 'noargs': '', 'setdims': '/*setdims*/', 'docstrsigns': '', 'latexdocstrsigns': '', 'docstrreq': ' Required arguments:', 'docstropt': ' Optional arguments:', 'docstrout': ' Return objects:', 'docstrcbs': ' Call-back functions:', 'docreturn': '', 'docsign': '', 'docsignopt': '', 'latexdocstrreq': '\\noindent Required arguments:', 'latexdocstropt': '\\noindent Optional arguments:', 'latexdocstrout': '\\noindent Return objects:', 'latexdocstrcbs': '\\noindent Call-back functions:', 'routnote': {hasnote: '--- #note#', l_not(hasnote): ''}, }, { # Function 'decl': ' #ctype# return_value = 0;', 'frompyobj': [ {debugcapi: ' CFUNCSMESS("cb:Getting return_value->");'}, '''\ if (capi_j>capi_i) { GETSCALARFROMPYTUPLE(capi_return,capi_i++,&return_value,#ctype#, "#ctype#_from_pyobj failed in converting return_value of" " call-back function #name# to C #ctype#\\n"); } else { fprintf(stderr,"Warning: call-back function #name# did not provide" " return value (index=%d, type=#ctype#)\\n",capi_i); }''', {debugcapi: ' fprintf(stderr,"#showvalueformat#.\\n",return_value);'} ], 'need': ['#ctype#_from_pyobj', {debugcapi: 'CFUNCSMESS'}, 'GETSCALARFROMPYTUPLE'], 'return': ' return return_value;', '_check': l_and(isfunction, l_not(isstringfunction), l_not(iscomplexfunction)) }, { # String function 'pyobjfrom': {debugcapi: ' fprintf(stderr,"debug-capi:cb:#name#:%d:\\n",return_value_len);'}, 'args': '#ctype# return_value,int return_value_len', 'args_nm': 'return_value,&return_value_len', 'args_td': '#ctype# ,int', 'frompyobj': [ {debugcapi: ' CFUNCSMESS("cb:Getting return_value->\\"");'}, """\ if (capi_j>capi_i) { GETSTRFROMPYTUPLE(capi_return,capi_i++,return_value,return_value_len); } else { fprintf(stderr,"Warning: call-back function #name# did not provide" " return value (index=%d, type=#ctype#)\\n",capi_i); }""", {debugcapi: ' fprintf(stderr,"#showvalueformat#\\".\\n",return_value);'} ], 'need': ['#ctype#_from_pyobj', {debugcapi: 'CFUNCSMESS'}, 'string.h', 'GETSTRFROMPYTUPLE'], 'return': 'return;', '_check': isstringfunction }, { # Complex function 'optargs': """ #ifndef F2PY_CB_RETURNCOMPLEX #ctype# *return_value #endif """, 'optargs_nm': """ #ifndef F2PY_CB_RETURNCOMPLEX return_value #endif """, 'optargs_td': """ #ifndef F2PY_CB_RETURNCOMPLEX #ctype# * #endif """, 'decl': """ #ifdef F2PY_CB_RETURNCOMPLEX #ctype# return_value = {0, 0}; #endif """, 'frompyobj': [ {debugcapi: ' CFUNCSMESS("cb:Getting return_value->");'}, """\ if (capi_j>capi_i) { #ifdef F2PY_CB_RETURNCOMPLEX GETSCALARFROMPYTUPLE(capi_return,capi_i++,&return_value,#ctype#, \"#ctype#_from_pyobj failed in converting return_value of call-back\" \" function #name# to C #ctype#\\n\"); #else GETSCALARFROMPYTUPLE(capi_return,capi_i++,return_value,#ctype#, \"#ctype#_from_pyobj failed in converting return_value of call-back\" \" function #name# to C #ctype#\\n\"); #endif } else { fprintf(stderr, \"Warning: call-back function #name# did not provide\" \" return value (index=%d, type=#ctype#)\\n\",capi_i); }""", {debugcapi: """\ #ifdef F2PY_CB_RETURNCOMPLEX fprintf(stderr,\"#showvalueformat#.\\n\",(return_value).r,(return_value).i); #else fprintf(stderr,\"#showvalueformat#.\\n\",(*return_value).r,(*return_value).i); #endif """} ], 'return': """ #ifdef F2PY_CB_RETURNCOMPLEX return return_value; #else return; #endif """, 'need': ['#ctype#_from_pyobj', {debugcapi: 'CFUNCSMESS'}, 'string.h', 'GETSCALARFROMPYTUPLE', '#ctype#'], '_check': iscomplexfunction }, {'docstrout': ' #pydocsignout#', 'latexdocstrout': ['\\item[]{{}\\verb@#pydocsignout#@{}}', {hasnote: '--- #note#'}], 'docreturn': '#rname#,', '_check': isfunction}, {'_check': issubroutine, 'return': 'return;'} ] cb_arg_rules = [ { # Doc 'docstropt': {l_and(isoptional, isintent_nothide): ' #pydocsign#'}, 'docstrreq': {l_and(isrequired, isintent_nothide): ' #pydocsign#'}, 'docstrout': {isintent_out: ' #pydocsignout#'}, 'latexdocstropt': {l_and(isoptional, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', {hasnote: '--- #note#'}]}, 'latexdocstrreq': {l_and(isrequired, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', {hasnote: '--- #note#'}]}, 'latexdocstrout': {isintent_out: ['\\item[]{{}\\verb@#pydocsignout#@{}}', {l_and(hasnote, isintent_hide): '--- #note#', l_and(hasnote, isintent_nothide): '--- See above.'}]}, 'docsign': {l_and(isrequired, isintent_nothide): '#varname#,'}, 'docsignopt': {l_and(isoptional, isintent_nothide): '#varname#,'}, 'depend': '' }, { 'args': { l_and(isscalar, isintent_c): '#ctype# #varname_i#', l_and(isscalar, l_not(isintent_c)): '#ctype# *#varname_i#_cb_capi', isarray: '#ctype# *#varname_i#', isstring: '#ctype# #varname_i#' }, 'args_nm': { l_and(isscalar, isintent_c): '#varname_i#', l_and(isscalar, l_not(isintent_c)): '#varname_i#_cb_capi', isarray: '#varname_i#', isstring: '#varname_i#' }, 'args_td': { l_and(isscalar, isintent_c): '#ctype#', l_and(isscalar, l_not(isintent_c)): '#ctype# *', isarray: '#ctype# *', isstring: '#ctype#' }, 'need': {l_or(isscalar, isarray, isstring): '#ctype#'}, # untested with multiple args 'strarglens': {isstring: ',int #varname_i#_cb_len'}, 'strarglens_td': {isstring: ',int'}, # untested with multiple args # untested with multiple args 'strarglens_nm': {isstring: ',#varname_i#_cb_len'}, }, { # Scalars 'decl': {l_not(isintent_c): ' #ctype# #varname_i#=(*#varname_i#_cb_capi);'}, 'error': {l_and(isintent_c, isintent_out, throw_error('intent(c,out) is forbidden for callback scalar arguments')): ''}, 'frompyobj': [{debugcapi: ' CFUNCSMESS("cb:Getting #varname#->");'}, {isintent_out: ' if (capi_j>capi_i)\n GETSCALARFROMPYTUPLE(capi_return,capi_i++,#varname_i#_cb_capi,#ctype#,"#ctype#_from_pyobj failed in converting argument #varname# of call-back function #name# to C #ctype#\\n");'}, {l_and(debugcapi, l_and(l_not(iscomplex), isintent_c)): ' fprintf(stderr,"#showvalueformat#.\\n",#varname_i#);'}, {l_and(debugcapi, l_and(l_not(iscomplex), l_not( isintent_c))): ' fprintf(stderr,"#showvalueformat#.\\n",*#varname_i#_cb_capi);'}, {l_and(debugcapi, l_and(iscomplex, isintent_c)): ' fprintf(stderr,"#showvalueformat#.\\n",(#varname_i#).r,(#varname_i#).i);'}, {l_and(debugcapi, l_and(iscomplex, l_not( isintent_c))): ' fprintf(stderr,"#showvalueformat#.\\n",(*#varname_i#_cb_capi).r,(*#varname_i#_cb_capi).i);'}, ], 'need': [{isintent_out: ['#ctype#_from_pyobj', 'GETSCALARFROMPYTUPLE']}, {debugcapi: 'CFUNCSMESS'}], '_check': isscalar }, { 'pyobjfrom': [{isintent_in: """\ if (cb->nofargs>capi_i) if (CAPI_ARGLIST_SETITEM(capi_i++,pyobj_from_#ctype#1(#varname_i#))) goto capi_fail;"""}, {isintent_inout: """\ if (cb->nofargs>capi_i) if (CAPI_ARGLIST_SETITEM(capi_i++,pyarr_from_p_#ctype#1(#varname_i#_cb_capi))) goto capi_fail;"""}], 'need': [{isintent_in: 'pyobj_from_#ctype#1'}, {isintent_inout: 'pyarr_from_p_#ctype#1'}, {iscomplex: '#ctype#'}], '_check': l_and(isscalar, isintent_nothide), '_optional': '' }, { # String 'frompyobj': [{debugcapi: ' CFUNCSMESS("cb:Getting #varname#->\\"");'}, """ if (capi_j>capi_i) GETSTRFROMPYTUPLE(capi_return,capi_i++,#varname_i#,#varname_i#_cb_len);""", {debugcapi: ' fprintf(stderr,"#showvalueformat#\\":%d:.\\n",#varname_i#,#varname_i#_cb_len);'}, ], 'need': ['#ctype#', 'GETSTRFROMPYTUPLE', {debugcapi: 'CFUNCSMESS'}, 'string.h'], '_check': l_and(isstring, isintent_out) }, { 'pyobjfrom': [{debugcapi: ' fprintf(stderr,"debug-capi:cb:#varname#=\\"#showvalueformat#\\":%d:\\n",#varname_i#,#varname_i#_cb_len);'}, {isintent_in: """\ if (cb->nofargs>capi_i) if (CAPI_ARGLIST_SETITEM(capi_i++,pyobj_from_#ctype#1size(#varname_i#,#varname_i#_cb_len))) goto capi_fail;"""}, {isintent_inout: """\ if (cb->nofargs>capi_i) { int #varname_i#_cb_dims[] = {#varname_i#_cb_len}; if (CAPI_ARGLIST_SETITEM(capi_i++,pyarr_from_p_#ctype#1(#varname_i#,#varname_i#_cb_dims))) goto capi_fail; }"""}], 'need': [{isintent_in: 'pyobj_from_#ctype#1size'}, {isintent_inout: 'pyarr_from_p_#ctype#1'}], '_check': l_and(isstring, isintent_nothide), '_optional': '' }, # Array ... { 'decl': ' npy_intp #varname_i#_Dims[#rank#] = {#rank*[-1]#};', 'setdims': ' #cbsetdims#;', '_check': isarray, '_depend': '' }, { 'pyobjfrom': [{debugcapi: ' fprintf(stderr,"debug-capi:cb:#varname#\\n");'}, {isintent_c: """\ if (cb->nofargs>capi_i) { int itemsize_ = #atype# == NPY_STRING ? 1 : 0; /*XXX: Hmm, what will destroy this array??? */ PyArrayObject *tmp_arr = (PyArrayObject *)PyArray_New(&PyArray_Type,#rank#,#varname_i#_Dims,#atype#,NULL,(char*)#varname_i#,itemsize_,NPY_ARRAY_CARRAY,NULL); """, l_not(isintent_c): """\ if (cb->nofargs>capi_i) { int itemsize_ = #atype# == NPY_STRING ? 1 : 0; /*XXX: Hmm, what will destroy this array??? */ PyArrayObject *tmp_arr = (PyArrayObject *)PyArray_New(&PyArray_Type,#rank#,#varname_i#_Dims,#atype#,NULL,(char*)#varname_i#,itemsize_,NPY_ARRAY_FARRAY,NULL); """, }, """ if (tmp_arr==NULL) goto capi_fail; if (CAPI_ARGLIST_SETITEM(capi_i++,(PyObject *)tmp_arr)) goto capi_fail; }"""], '_check': l_and(isarray, isintent_nothide, l_or(isintent_in, isintent_inout)), '_optional': '', }, { 'frompyobj': [{debugcapi: ' CFUNCSMESS("cb:Getting #varname#->");'}, """ if (capi_j>capi_i) { PyArrayObject *rv_cb_arr = NULL; if ((capi_tmp = PyTuple_GetItem(capi_return,capi_i++))==NULL) goto capi_fail; rv_cb_arr = array_from_pyobj(#atype#,#varname_i#_Dims,#rank#,F2PY_INTENT_IN""", {isintent_c: '|F2PY_INTENT_C'}, """,capi_tmp); if (rv_cb_arr == NULL) { fprintf(stderr,\"rv_cb_arr is NULL\\n\"); goto capi_fail; } MEMCOPY(#varname_i#,PyArray_DATA(rv_cb_arr),PyArray_NBYTES(rv_cb_arr)); if (capi_tmp != (PyObject *)rv_cb_arr) { Py_DECREF(rv_cb_arr); } }""", {debugcapi: ' fprintf(stderr,"<-.\\n");'}, ], 'need': ['MEMCOPY', {iscomplexarray: '#ctype#'}], '_check': l_and(isarray, isintent_out) }, { 'docreturn': '#varname#,', '_check': isintent_out } ] ################## Build call-back module ############# cb_map = {} def buildcallbacks(m): cb_map[m['name']] = [] for bi in m['body']: if bi['block'] == 'interface': for b in bi['body']: if b: buildcallback(b, m['name']) else: errmess('warning: empty body for %s\n' % (m['name'])) def buildcallback(rout, um): from . import capi_maps outmess(' Constructing call-back function "cb_%s_in_%s"\n' % (rout['name'], um)) args, depargs = getargs(rout) capi_maps.depargs = depargs var = rout['vars'] vrd = capi_maps.cb_routsign2map(rout, um) rd = dictappend({}, vrd) cb_map[um].append([rout['name'], rd['name']]) for r in cb_rout_rules: if ('_check' in r and r['_check'](rout)) or ('_check' not in r): ar = applyrules(r, vrd, rout) rd = dictappend(rd, ar) savevrd = {} for i, a in enumerate(args): vrd = capi_maps.cb_sign2map(a, var[a], index=i) savevrd[a] = vrd for r in cb_arg_rules: if '_depend' in r: continue if '_optional' in r and isoptional(var[a]): continue if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): ar = applyrules(r, vrd, var[a]) rd = dictappend(rd, ar) if '_break' in r: break for a in args: vrd = savevrd[a] for r in cb_arg_rules: if '_depend' in r: continue if ('_optional' not in r) or ('_optional' in r and isrequired(var[a])): continue if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): ar = applyrules(r, vrd, var[a]) rd = dictappend(rd, ar) if '_break' in r: break for a in depargs: vrd = savevrd[a] for r in cb_arg_rules: if '_depend' not in r: continue if '_optional' in r: continue if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): ar = applyrules(r, vrd, var[a]) rd = dictappend(rd, ar) if '_break' in r: break if 'args' in rd and 'optargs' in rd: if isinstance(rd['optargs'], list): rd['optargs'] = rd['optargs'] + [""" #ifndef F2PY_CB_RETURNCOMPLEX , #endif """] rd['optargs_nm'] = rd['optargs_nm'] + [""" #ifndef F2PY_CB_RETURNCOMPLEX , #endif """] rd['optargs_td'] = rd['optargs_td'] + [""" #ifndef F2PY_CB_RETURNCOMPLEX , #endif """] if isinstance(rd['docreturn'], list): rd['docreturn'] = stripcomma( replace('#docreturn#', {'docreturn': rd['docreturn']})) optargs = stripcomma(replace('#docsignopt#', {'docsignopt': rd['docsignopt']} )) if optargs == '': rd['docsignature'] = stripcomma( replace('#docsign#', {'docsign': rd['docsign']})) else: rd['docsignature'] = replace('#docsign#[#docsignopt#]', {'docsign': rd['docsign'], 'docsignopt': optargs, }) rd['latexdocsignature'] = rd['docsignature'].replace('_', '\\_') rd['latexdocsignature'] = rd['latexdocsignature'].replace(',', ', ') rd['docstrsigns'] = [] rd['latexdocstrsigns'] = [] for k in ['docstrreq', 'docstropt', 'docstrout', 'docstrcbs']: if k in rd and isinstance(rd[k], list): rd['docstrsigns'] = rd['docstrsigns'] + rd[k] k = 'latex' + k if k in rd and isinstance(rd[k], list): rd['latexdocstrsigns'] = rd['latexdocstrsigns'] + rd[k][0:1] +\ ['\\begin{description}'] + rd[k][1:] +\ ['\\end{description}'] if 'args' not in rd: rd['args'] = '' rd['args_td'] = '' rd['args_nm'] = '' if not (rd.get('args') or rd.get('optargs') or rd.get('strarglens')): rd['noargs'] = 'void' ar = applyrules(cb_routine_rules, rd) cfuncs.callbacks[rd['name']] = ar['body'] if isinstance(ar['need'], str): ar['need'] = [ar['need']] if 'need' in rd: for t in cfuncs.typedefs.keys(): if t in rd['need']: ar['need'].append(t) cfuncs.typedefs_generated[rd['name'] + '_typedef'] = ar['cbtypedefs'] ar['need'].append(rd['name'] + '_typedef') cfuncs.needs[rd['name']] = ar['need'] capi_maps.lcb2_map[rd['name']] = {'maxnofargs': ar['maxnofargs'], 'nofoptargs': ar['nofoptargs'], 'docstr': ar['docstr'], 'latexdocstr': ar['latexdocstr'], 'argname': rd['argname'] } outmess(' %s\n' % (ar['docstrshort'])) return ################## Build call-back function #############
24,854
Python
37.775351
236
0.520158
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/auxfuncs.py
#!/usr/bin/env python3 """ Auxiliary functions for f2py2e. Copyright 1999,2000 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy (BSD style) LICENSE. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/07/24 19:01:55 $ Pearu Peterson """ import pprint import sys import types from functools import reduce from . import __version__ from . import cfuncs __all__ = [ 'applyrules', 'debugcapi', 'dictappend', 'errmess', 'gentitle', 'getargs2', 'getcallprotoargument', 'getcallstatement', 'getfortranname', 'getpymethoddef', 'getrestdoc', 'getusercode', 'getusercode1', 'hasbody', 'hascallstatement', 'hascommon', 'hasexternals', 'hasinitvalue', 'hasnote', 'hasresultnote', 'isallocatable', 'isarray', 'isarrayofstrings', 'iscomplex', 'iscomplexarray', 'iscomplexfunction', 'iscomplexfunction_warn', 'isdouble', 'isdummyroutine', 'isexternal', 'isfunction', 'isfunction_wrap', 'isint1array', 'isinteger', 'isintent_aux', 'isintent_c', 'isintent_callback', 'isintent_copy', 'isintent_dict', 'isintent_hide', 'isintent_in', 'isintent_inout', 'isintent_inplace', 'isintent_nothide', 'isintent_out', 'isintent_overwrite', 'islogical', 'islogicalfunction', 'islong_complex', 'islong_double', 'islong_doublefunction', 'islong_long', 'islong_longfunction', 'ismodule', 'ismoduleroutine', 'isoptional', 'isprivate', 'isrequired', 'isroutine', 'isscalar', 'issigned_long_longarray', 'isstring', 'isstringarray', 'isstringfunction', 'issubroutine', 'issubroutine_wrap', 'isthreadsafe', 'isunsigned', 'isunsigned_char', 'isunsigned_chararray', 'isunsigned_long_long', 'isunsigned_long_longarray', 'isunsigned_short', 'isunsigned_shortarray', 'l_and', 'l_not', 'l_or', 'outmess', 'replace', 'show', 'stripcomma', 'throw_error', ] f2py_version = __version__.version errmess = sys.stderr.write show = pprint.pprint options = {} debugoptions = [] wrapfuncs = 1 def outmess(t): if options.get('verbose', 1): sys.stdout.write(t) def debugcapi(var): return 'capi' in debugoptions def _isstring(var): return 'typespec' in var and var['typespec'] == 'character' and \ not isexternal(var) def isstring(var): return _isstring(var) and not isarray(var) def ischaracter(var): return isstring(var) and 'charselector' not in var def isstringarray(var): return isarray(var) and _isstring(var) def isarrayofstrings(var): # leaving out '*' for now so that `character*(*) a(m)` and `character # a(m,*)` are treated differently. Luckily `character**` is illegal. return isstringarray(var) and var['dimension'][-1] == '(*)' def isarray(var): return 'dimension' in var and not isexternal(var) def isscalar(var): return not (isarray(var) or isstring(var) or isexternal(var)) def iscomplex(var): return isscalar(var) and \ var.get('typespec') in ['complex', 'double complex'] def islogical(var): return isscalar(var) and var.get('typespec') == 'logical' def isinteger(var): return isscalar(var) and var.get('typespec') == 'integer' def isreal(var): return isscalar(var) and var.get('typespec') == 'real' def get_kind(var): try: return var['kindselector']['*'] except KeyError: try: return var['kindselector']['kind'] except KeyError: pass def islong_long(var): if not isscalar(var): return 0 if var.get('typespec') not in ['integer', 'logical']: return 0 return get_kind(var) == '8' def isunsigned_char(var): if not isscalar(var): return 0 if var.get('typespec') != 'integer': return 0 return get_kind(var) == '-1' def isunsigned_short(var): if not isscalar(var): return 0 if var.get('typespec') != 'integer': return 0 return get_kind(var) == '-2' def isunsigned(var): if not isscalar(var): return 0 if var.get('typespec') != 'integer': return 0 return get_kind(var) == '-4' def isunsigned_long_long(var): if not isscalar(var): return 0 if var.get('typespec') != 'integer': return 0 return get_kind(var) == '-8' def isdouble(var): if not isscalar(var): return 0 if not var.get('typespec') == 'real': return 0 return get_kind(var) == '8' def islong_double(var): if not isscalar(var): return 0 if not var.get('typespec') == 'real': return 0 return get_kind(var) == '16' def islong_complex(var): if not iscomplex(var): return 0 return get_kind(var) == '32' def iscomplexarray(var): return isarray(var) and \ var.get('typespec') in ['complex', 'double complex'] def isint1array(var): return isarray(var) and var.get('typespec') == 'integer' \ and get_kind(var) == '1' def isunsigned_chararray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var) == '-1' def isunsigned_shortarray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var) == '-2' def isunsignedarray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var) == '-4' def isunsigned_long_longarray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var) == '-8' def issigned_chararray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var) == '1' def issigned_shortarray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var) == '2' def issigned_array(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var) == '4' def issigned_long_longarray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var) == '8' def isallocatable(var): return 'attrspec' in var and 'allocatable' in var['attrspec'] def ismutable(var): return not ('dimension' not in var or isstring(var)) def ismoduleroutine(rout): return 'modulename' in rout def ismodule(rout): return 'block' in rout and 'module' == rout['block'] def isfunction(rout): return 'block' in rout and 'function' == rout['block'] def isfunction_wrap(rout): if isintent_c(rout): return 0 return wrapfuncs and isfunction(rout) and (not isexternal(rout)) def issubroutine(rout): return 'block' in rout and 'subroutine' == rout['block'] def issubroutine_wrap(rout): if isintent_c(rout): return 0 return issubroutine(rout) and hasassumedshape(rout) def hasassumedshape(rout): if rout.get('hasassumedshape'): return True for a in rout['args']: for d in rout['vars'].get(a, {}).get('dimension', []): if d == ':': rout['hasassumedshape'] = True return True return False def requiresf90wrapper(rout): return ismoduleroutine(rout) or hasassumedshape(rout) def isroutine(rout): return isfunction(rout) or issubroutine(rout) def islogicalfunction(rout): if not isfunction(rout): return 0 if 'result' in rout: a = rout['result'] else: a = rout['name'] if a in rout['vars']: return islogical(rout['vars'][a]) return 0 def islong_longfunction(rout): if not isfunction(rout): return 0 if 'result' in rout: a = rout['result'] else: a = rout['name'] if a in rout['vars']: return islong_long(rout['vars'][a]) return 0 def islong_doublefunction(rout): if not isfunction(rout): return 0 if 'result' in rout: a = rout['result'] else: a = rout['name'] if a in rout['vars']: return islong_double(rout['vars'][a]) return 0 def iscomplexfunction(rout): if not isfunction(rout): return 0 if 'result' in rout: a = rout['result'] else: a = rout['name'] if a in rout['vars']: return iscomplex(rout['vars'][a]) return 0 def iscomplexfunction_warn(rout): if iscomplexfunction(rout): outmess("""\ ************************************************************** Warning: code with a function returning complex value may not work correctly with your Fortran compiler. When using GNU gcc/g77 compilers, codes should work correctly for callbacks with: f2py -c -DF2PY_CB_RETURNCOMPLEX **************************************************************\n""") return 1 return 0 def isstringfunction(rout): if not isfunction(rout): return 0 if 'result' in rout: a = rout['result'] else: a = rout['name'] if a in rout['vars']: return isstring(rout['vars'][a]) return 0 def hasexternals(rout): return 'externals' in rout and rout['externals'] def isthreadsafe(rout): return 'f2pyenhancements' in rout and \ 'threadsafe' in rout['f2pyenhancements'] def hasvariables(rout): return 'vars' in rout and rout['vars'] def isoptional(var): return ('attrspec' in var and 'optional' in var['attrspec'] and 'required' not in var['attrspec']) and isintent_nothide(var) def isexternal(var): return 'attrspec' in var and 'external' in var['attrspec'] def isrequired(var): return not isoptional(var) and isintent_nothide(var) def isintent_in(var): if 'intent' not in var: return 1 if 'hide' in var['intent']: return 0 if 'inplace' in var['intent']: return 0 if 'in' in var['intent']: return 1 if 'out' in var['intent']: return 0 if 'inout' in var['intent']: return 0 if 'outin' in var['intent']: return 0 return 1 def isintent_inout(var): return ('intent' in var and ('inout' in var['intent'] or 'outin' in var['intent']) and 'in' not in var['intent'] and 'hide' not in var['intent'] and 'inplace' not in var['intent']) def isintent_out(var): return 'out' in var.get('intent', []) def isintent_hide(var): return ('intent' in var and ('hide' in var['intent'] or ('out' in var['intent'] and 'in' not in var['intent'] and (not l_or(isintent_inout, isintent_inplace)(var))))) def isintent_nothide(var): return not isintent_hide(var) def isintent_c(var): return 'c' in var.get('intent', []) def isintent_cache(var): return 'cache' in var.get('intent', []) def isintent_copy(var): return 'copy' in var.get('intent', []) def isintent_overwrite(var): return 'overwrite' in var.get('intent', []) def isintent_callback(var): return 'callback' in var.get('intent', []) def isintent_inplace(var): return 'inplace' in var.get('intent', []) def isintent_aux(var): return 'aux' in var.get('intent', []) def isintent_aligned4(var): return 'aligned4' in var.get('intent', []) def isintent_aligned8(var): return 'aligned8' in var.get('intent', []) def isintent_aligned16(var): return 'aligned16' in var.get('intent', []) isintent_dict = {isintent_in: 'INTENT_IN', isintent_inout: 'INTENT_INOUT', isintent_out: 'INTENT_OUT', isintent_hide: 'INTENT_HIDE', isintent_cache: 'INTENT_CACHE', isintent_c: 'INTENT_C', isoptional: 'OPTIONAL', isintent_inplace: 'INTENT_INPLACE', isintent_aligned4: 'INTENT_ALIGNED4', isintent_aligned8: 'INTENT_ALIGNED8', isintent_aligned16: 'INTENT_ALIGNED16', } def isprivate(var): return 'attrspec' in var and 'private' in var['attrspec'] def hasinitvalue(var): return '=' in var def hasinitvalueasstring(var): if not hasinitvalue(var): return 0 return var['='][0] in ['"', "'"] def hasnote(var): return 'note' in var def hasresultnote(rout): if not isfunction(rout): return 0 if 'result' in rout: a = rout['result'] else: a = rout['name'] if a in rout['vars']: return hasnote(rout['vars'][a]) return 0 def hascommon(rout): return 'common' in rout def containscommon(rout): if hascommon(rout): return 1 if hasbody(rout): for b in rout['body']: if containscommon(b): return 1 return 0 def containsmodule(block): if ismodule(block): return 1 if not hasbody(block): return 0 for b in block['body']: if containsmodule(b): return 1 return 0 def hasbody(rout): return 'body' in rout def hascallstatement(rout): return getcallstatement(rout) is not None def istrue(var): return 1 def isfalse(var): return 0 class F2PYError(Exception): pass class throw_error: def __init__(self, mess): self.mess = mess def __call__(self, var): mess = '\n\n var = %s\n Message: %s\n' % (var, self.mess) raise F2PYError(mess) def l_and(*f): l, l2 = 'lambda v', [] for i in range(len(f)): l = '%s,f%d=f[%d]' % (l, i, i) l2.append('f%d(v)' % (i)) return eval('%s:%s' % (l, ' and '.join(l2))) def l_or(*f): l, l2 = 'lambda v', [] for i in range(len(f)): l = '%s,f%d=f[%d]' % (l, i, i) l2.append('f%d(v)' % (i)) return eval('%s:%s' % (l, ' or '.join(l2))) def l_not(f): return eval('lambda v,f=f:not f(v)') def isdummyroutine(rout): try: return rout['f2pyenhancements']['fortranname'] == '' except KeyError: return 0 def getfortranname(rout): try: name = rout['f2pyenhancements']['fortranname'] if name == '': raise KeyError if not name: errmess('Failed to use fortranname from %s\n' % (rout['f2pyenhancements'])) raise KeyError except KeyError: name = rout['name'] return name def getmultilineblock(rout, blockname, comment=1, counter=0): try: r = rout['f2pyenhancements'].get(blockname) except KeyError: return if not r: return if counter > 0 and isinstance(r, str): return if isinstance(r, list): if counter >= len(r): return r = r[counter] if r[:3] == "'''": if comment: r = '\t/* start ' + blockname + \ ' multiline (' + repr(counter) + ') */\n' + r[3:] else: r = r[3:] if r[-3:] == "'''": if comment: r = r[:-3] + '\n\t/* end multiline (' + repr(counter) + ')*/' else: r = r[:-3] else: errmess("%s multiline block should end with `'''`: %s\n" % (blockname, repr(r))) return r def getcallstatement(rout): return getmultilineblock(rout, 'callstatement') def getcallprotoargument(rout, cb_map={}): r = getmultilineblock(rout, 'callprotoargument', comment=0) if r: return r if hascallstatement(rout): outmess( 'warning: callstatement is defined without callprotoargument\n') return from .capi_maps import getctype arg_types, arg_types2 = [], [] if l_and(isstringfunction, l_not(isfunction_wrap))(rout): arg_types.extend(['char*', 'size_t']) for n in rout['args']: var = rout['vars'][n] if isintent_callback(var): continue if n in cb_map: ctype = cb_map[n] + '_typedef' else: ctype = getctype(var) if l_and(isintent_c, l_or(isscalar, iscomplex))(var): pass elif isstring(var): pass else: ctype = ctype + '*' if isstring(var) or isarrayofstrings(var): arg_types2.append('size_t') arg_types.append(ctype) proto_args = ','.join(arg_types + arg_types2) if not proto_args: proto_args = 'void' return proto_args def getusercode(rout): return getmultilineblock(rout, 'usercode') def getusercode1(rout): return getmultilineblock(rout, 'usercode', counter=1) def getpymethoddef(rout): return getmultilineblock(rout, 'pymethoddef') def getargs(rout): sortargs, args = [], [] if 'args' in rout: args = rout['args'] if 'sortvars' in rout: for a in rout['sortvars']: if a in args: sortargs.append(a) for a in args: if a not in sortargs: sortargs.append(a) else: sortargs = rout['args'] return args, sortargs def getargs2(rout): sortargs, args = [], rout.get('args', []) auxvars = [a for a in rout['vars'].keys() if isintent_aux(rout['vars'][a]) and a not in args] args = auxvars + args if 'sortvars' in rout: for a in rout['sortvars']: if a in args: sortargs.append(a) for a in args: if a not in sortargs: sortargs.append(a) else: sortargs = auxvars + rout['args'] return args, sortargs def getrestdoc(rout): if 'f2pymultilines' not in rout: return None k = None if rout['block'] == 'python module': k = rout['block'], rout['name'] return rout['f2pymultilines'].get(k, None) def gentitle(name): l = (80 - len(name) - 6) // 2 return '/*%s %s %s*/' % (l * '*', name, l * '*') def flatlist(l): if isinstance(l, list): return reduce(lambda x, y, f=flatlist: x + f(y), l, []) return [l] def stripcomma(s): if s and s[-1] == ',': return s[:-1] return s def replace(str, d, defaultsep=''): if isinstance(d, list): return [replace(str, _m, defaultsep) for _m in d] if isinstance(str, list): return [replace(_m, d, defaultsep) for _m in str] for k in 2 * list(d.keys()): if k == 'separatorsfor': continue if 'separatorsfor' in d and k in d['separatorsfor']: sep = d['separatorsfor'][k] else: sep = defaultsep if isinstance(d[k], list): str = str.replace('#%s#' % (k), sep.join(flatlist(d[k]))) else: str = str.replace('#%s#' % (k), d[k]) return str def dictappend(rd, ar): if isinstance(ar, list): for a in ar: rd = dictappend(rd, a) return rd for k in ar.keys(): if k[0] == '_': continue if k in rd: if isinstance(rd[k], str): rd[k] = [rd[k]] if isinstance(rd[k], list): if isinstance(ar[k], list): rd[k] = rd[k] + ar[k] else: rd[k].append(ar[k]) elif isinstance(rd[k], dict): if isinstance(ar[k], dict): if k == 'separatorsfor': for k1 in ar[k].keys(): if k1 not in rd[k]: rd[k][k1] = ar[k][k1] else: rd[k] = dictappend(rd[k], ar[k]) else: rd[k] = ar[k] return rd def applyrules(rules, d, var={}): ret = {} if isinstance(rules, list): for r in rules: rr = applyrules(r, d, var) ret = dictappend(ret, rr) if '_break' in rr: break return ret if '_check' in rules and (not rules['_check'](var)): return ret if 'need' in rules: res = applyrules({'needs': rules['need']}, d, var) if 'needs' in res: cfuncs.append_needs(res['needs']) for k in rules.keys(): if k == 'separatorsfor': ret[k] = rules[k] continue if isinstance(rules[k], str): ret[k] = replace(rules[k], d) elif isinstance(rules[k], list): ret[k] = [] for i in rules[k]: ar = applyrules({k: i}, d, var) if k in ar: ret[k].append(ar[k]) elif k[0] == '_': continue elif isinstance(rules[k], dict): ret[k] = [] for k1 in rules[k].keys(): if isinstance(k1, types.FunctionType) and k1(var): if isinstance(rules[k][k1], list): for i in rules[k][k1]: if isinstance(i, dict): res = applyrules({'supertext': i}, d, var) if 'supertext' in res: i = res['supertext'] else: i = '' ret[k].append(replace(i, d)) else: i = rules[k][k1] if isinstance(i, dict): res = applyrules({'supertext': i}, d) if 'supertext' in res: i = res['supertext'] else: i = '' ret[k].append(replace(i, d)) else: errmess('applyrules: ignoring rule %s.\n' % repr(rules[k])) if isinstance(ret[k], list): if len(ret[k]) == 1: ret[k] = ret[k][0] if ret[k] == []: del ret[k] return ret
21,779
Python
24.384615
78
0.549933
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/__init__.pyi
import os import subprocess from collections.abc import Iterable from typing import Literal as L, Any, overload, TypedDict from numpy._pytesttester import PytestTester class _F2PyDictBase(TypedDict): csrc: list[str] h: list[str] class _F2PyDict(_F2PyDictBase, total=False): fsrc: list[str] ltx: list[str] __all__: list[str] __path__: list[str] test: PytestTester def run_main(comline_list: Iterable[str]) -> dict[str, _F2PyDict]: ... @overload def compile( # type: ignore[misc] source: str | bytes, modulename: str = ..., extra_args: str | list[str] = ..., verbose: bool = ..., source_fn: None | str | bytes | os.PathLike[Any] = ..., extension: L[".f", ".f90"] = ..., full_output: L[False] = ..., ) -> int: ... @overload def compile( source: str | bytes, modulename: str = ..., extra_args: str | list[str] = ..., verbose: bool = ..., source_fn: None | str | bytes | os.PathLike[Any] = ..., extension: L[".f", ".f90"] = ..., full_output: L[True] = ..., ) -> subprocess.CompletedProcess[bytes]: ... def get_include() -> str: ...
1,107
unknown
24.181818
70
0.600723
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/__main__.py
# See: # https://web.archive.org/web/20140822061353/http://cens.ioc.ee/projects/f2py2e from numpy.f2py.f2py2e import main main()
130
Python
20.83333
79
0.753846
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/crackfortran.py
#!/usr/bin/env python3 """ crackfortran --- read fortran (77,90) code and extract declaration information. Copyright 1999-2004 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/09/27 07:13:49 $ Pearu Peterson Usage of crackfortran: ====================== Command line keys: -quiet,-verbose,-fix,-f77,-f90,-show,-h <pyffilename> -m <module name for f77 routines>,--ignore-contains Functions: crackfortran, crack2fortran The following Fortran statements/constructions are supported (or will be if needed): block data,byte,call,character,common,complex,contains,data, dimension,double complex,double precision,end,external,function, implicit,integer,intent,interface,intrinsic, logical,module,optional,parameter,private,public, program,real,(sequence?),subroutine,type,use,virtual, include,pythonmodule Note: 'virtual' is mapped to 'dimension'. Note: 'implicit integer (z) static (z)' is 'implicit static (z)' (this is minor bug). Note: code after 'contains' will be ignored until its scope ends. Note: 'common' statement is extended: dimensions are moved to variable definitions Note: f2py directive: <commentchar>f2py<line> is read as <line> Note: pythonmodule is introduced to represent Python module Usage: `postlist=crackfortran(files)` `postlist` contains declaration information read from the list of files `files`. `crack2fortran(postlist)` returns a fortran code to be saved to pyf-file `postlist` has the following structure: *** it is a list of dictionaries containing `blocks': B = {'block','body','vars','parent_block'[,'name','prefix','args','result', 'implicit','externals','interfaced','common','sortvars', 'commonvars','note']} B['block'] = 'interface' | 'function' | 'subroutine' | 'module' | 'program' | 'block data' | 'type' | 'pythonmodule' | 'abstract interface' B['body'] --- list containing `subblocks' with the same structure as `blocks' B['parent_block'] --- dictionary of a parent block: C['body'][<index>]['parent_block'] is C B['vars'] --- dictionary of variable definitions B['sortvars'] --- dictionary of variable definitions sorted by dependence (independent first) B['name'] --- name of the block (not if B['block']=='interface') B['prefix'] --- prefix string (only if B['block']=='function') B['args'] --- list of argument names if B['block']== 'function' | 'subroutine' B['result'] --- name of the return value (only if B['block']=='function') B['implicit'] --- dictionary {'a':<variable definition>,'b':...} | None B['externals'] --- list of variables being external B['interfaced'] --- list of variables being external and defined B['common'] --- dictionary of common blocks (list of objects) B['commonvars'] --- list of variables used in common blocks (dimensions are moved to variable definitions) B['from'] --- string showing the 'parents' of the current block B['use'] --- dictionary of modules used in current block: {<modulename>:{['only':<0|1>],['map':{<local_name1>:<use_name1>,...}]}} B['note'] --- list of LaTeX comments on the block B['f2pyenhancements'] --- optional dictionary {'threadsafe':'','fortranname':<name>, 'callstatement':<C-expr>|<multi-line block>, 'callprotoargument':<C-expr-list>, 'usercode':<multi-line block>|<list of multi-line blocks>, 'pymethoddef:<multi-line block>' } B['entry'] --- dictionary {entryname:argslist,..} B['varnames'] --- list of variable names given in the order of reading the Fortran code, useful for derived types. B['saved_interface'] --- a string of scanned routine signature, defines explicit interface *** Variable definition is a dictionary D = B['vars'][<variable name>] = {'typespec'[,'attrspec','kindselector','charselector','=','typename']} D['typespec'] = 'byte' | 'character' | 'complex' | 'double complex' | 'double precision' | 'integer' | 'logical' | 'real' | 'type' D['attrspec'] --- list of attributes (e.g. 'dimension(<arrayspec>)', 'external','intent(in|out|inout|hide|c|callback|cache|aligned4|aligned8|aligned16)', 'optional','required', etc) K = D['kindselector'] = {['*','kind']} (only if D['typespec'] = 'complex' | 'integer' | 'logical' | 'real' ) C = D['charselector'] = {['*','len','kind']} (only if D['typespec']=='character') D['='] --- initialization expression string D['typename'] --- name of the type if D['typespec']=='type' D['dimension'] --- list of dimension bounds D['intent'] --- list of intent specifications D['depend'] --- list of variable names on which current variable depends on D['check'] --- list of C-expressions; if C-expr returns zero, exception is raised D['note'] --- list of LaTeX comments on the variable *** Meaning of kind/char selectors (few examples): D['typespec>']*K['*'] D['typespec'](kind=K['kind']) character*C['*'] character(len=C['len'],kind=C['kind']) (see also fortran type declaration statement formats below) Fortran 90 type declaration statement format (F77 is subset of F90) ==================================================================== (Main source: IBM XL Fortran 5.1 Language Reference Manual) type declaration = <typespec> [[<attrspec>]::] <entitydecl> <typespec> = byte | character[<charselector>] | complex[<kindselector>] | double complex | double precision | integer[<kindselector>] | logical[<kindselector>] | real[<kindselector>] | type(<typename>) <charselector> = * <charlen> | ([len=]<len>[,[kind=]<kind>]) | (kind=<kind>[,len=<len>]) <kindselector> = * <intlen> | ([kind=]<kind>) <attrspec> = comma separated list of attributes. Only the following attributes are used in building up the interface: external (parameter --- affects '=' key) optional intent Other attributes are ignored. <intentspec> = in | out | inout <arrayspec> = comma separated list of dimension bounds. <entitydecl> = <name> [[*<charlen>][(<arrayspec>)] | [(<arrayspec>)]*<charlen>] [/<init_expr>/ | =<init_expr>] [,<entitydecl>] In addition, the following attributes are used: check,depend,note TODO: * Apply 'parameter' attribute (e.g. 'integer parameter :: i=2' 'real x(i)' -> 'real x(2)') The above may be solved by creating appropriate preprocessor program, for example. """ import sys import string import fileinput import re import os import copy import platform from . import __version__ # The environment provided by auxfuncs.py is needed for some calls to eval. # As the needed functions cannot be determined by static inspection of the # code, it is safest to use import * pending a major refactoring of f2py. from .auxfuncs import * from . import symbolic f2py_version = __version__.version # Global flags: strictf77 = 1 # Ignore `!' comments unless line[0]=='!' sourcecodeform = 'fix' # 'fix','free' quiet = 0 # Be verbose if 0 (Obsolete: not used any more) verbose = 1 # Be quiet if 0, extra verbose if > 1. tabchar = 4 * ' ' pyffilename = '' f77modulename = '' skipemptyends = 0 # for old F77 programs without 'program' statement ignorecontains = 1 dolowercase = 1 debug = [] # Global variables beginpattern = '' currentfilename = '' expectbegin = 1 f90modulevars = {} filepositiontext = '' gotnextfile = 1 groupcache = None groupcounter = 0 grouplist = {groupcounter: []} groupname = '' include_paths = [] neededmodule = -1 onlyfuncs = [] previous_context = None skipblocksuntil = -1 skipfuncs = [] skipfunctions = [] usermodules = [] def reset_global_f2py_vars(): global groupcounter, grouplist, neededmodule, expectbegin global skipblocksuntil, usermodules, f90modulevars, gotnextfile global filepositiontext, currentfilename, skipfunctions, skipfuncs global onlyfuncs, include_paths, previous_context global strictf77, sourcecodeform, quiet, verbose, tabchar, pyffilename global f77modulename, skipemptyends, ignorecontains, dolowercase, debug # flags strictf77 = 1 sourcecodeform = 'fix' quiet = 0 verbose = 1 tabchar = 4 * ' ' pyffilename = '' f77modulename = '' skipemptyends = 0 ignorecontains = 1 dolowercase = 1 debug = [] # variables groupcounter = 0 grouplist = {groupcounter: []} neededmodule = -1 expectbegin = 1 skipblocksuntil = -1 usermodules = [] f90modulevars = {} gotnextfile = 1 filepositiontext = '' currentfilename = '' skipfunctions = [] skipfuncs = [] onlyfuncs = [] include_paths = [] previous_context = None def outmess(line, flag=1): global filepositiontext if not verbose: return if not quiet: if flag: sys.stdout.write(filepositiontext) sys.stdout.write(line) re._MAXCACHE = 50 defaultimplicitrules = {} for c in "abcdefghopqrstuvwxyz$_": defaultimplicitrules[c] = {'typespec': 'real'} for c in "ijklmn": defaultimplicitrules[c] = {'typespec': 'integer'} badnames = {} invbadnames = {} for n in ['int', 'double', 'float', 'char', 'short', 'long', 'void', 'case', 'while', 'return', 'signed', 'unsigned', 'if', 'for', 'typedef', 'sizeof', 'union', 'struct', 'static', 'register', 'new', 'break', 'do', 'goto', 'switch', 'continue', 'else', 'inline', 'extern', 'delete', 'const', 'auto', 'len', 'rank', 'shape', 'index', 'slen', 'size', '_i', 'max', 'min', 'flen', 'fshape', 'string', 'complex_double', 'float_double', 'stdin', 'stderr', 'stdout', 'type', 'default']: badnames[n] = n + '_bn' invbadnames[n + '_bn'] = n def rmbadname1(name): if name in badnames: errmess('rmbadname1: Replacing "%s" with "%s".\n' % (name, badnames[name])) return badnames[name] return name def rmbadname(names): return [rmbadname1(_m) for _m in names] def undo_rmbadname1(name): if name in invbadnames: errmess('undo_rmbadname1: Replacing "%s" with "%s".\n' % (name, invbadnames[name])) return invbadnames[name] return name def undo_rmbadname(names): return [undo_rmbadname1(_m) for _m in names] def getextension(name): i = name.rfind('.') if i == -1: return '' if '\\' in name[i:]: return '' if '/' in name[i:]: return '' return name[i + 1:] is_f_file = re.compile(r'.*\.(for|ftn|f77|f)\Z', re.I).match _has_f_header = re.compile(r'-\*-\s*fortran\s*-\*-', re.I).search _has_f90_header = re.compile(r'-\*-\s*f90\s*-\*-', re.I).search _has_fix_header = re.compile(r'-\*-\s*fix\s*-\*-', re.I).search _free_f90_start = re.compile(r'[^c*]\s*[^\s\d\t]', re.I).match def is_free_format(file): """Check if file is in free format Fortran.""" # f90 allows both fixed and free format, assuming fixed unless # signs of free format are detected. result = 0 with open(file, 'r') as f: line = f.readline() n = 15 # the number of non-comment lines to scan for hints if _has_f_header(line): n = 0 elif _has_f90_header(line): n = 0 result = 1 while n > 0 and line: if line[0] != '!' and line.strip(): n -= 1 if (line[0] != '\t' and _free_f90_start(line[:5])) or line[-2:-1] == '&': result = 1 break line = f.readline() return result # Read fortran (77,90) code def readfortrancode(ffile, dowithline=show, istop=1): """ Read fortran codes from files and 1) Get rid of comments, line continuations, and empty lines; lower cases. 2) Call dowithline(line) on every line. 3) Recursively call itself when statement \"include '<filename>'\" is met. """ global gotnextfile, filepositiontext, currentfilename, sourcecodeform, strictf77 global beginpattern, quiet, verbose, dolowercase, include_paths if not istop: saveglobals = gotnextfile, filepositiontext, currentfilename, sourcecodeform, strictf77,\ beginpattern, quiet, verbose, dolowercase if ffile == []: return localdolowercase = dolowercase # cont: set to True when the content of the last line read # indicates statement continuation cont = False finalline = '' ll = '' includeline = re.compile( r'\s*include\s*(\'|")(?P<name>[^\'"]*)(\'|")', re.I) cont1 = re.compile(r'(?P<line>.*)&\s*\Z') cont2 = re.compile(r'(\s*&|)(?P<line>.*)') mline_mark = re.compile(r".*?'''") if istop: dowithline('', -1) ll, l1 = '', '' spacedigits = [' '] + [str(_m) for _m in range(10)] filepositiontext = '' fin = fileinput.FileInput(ffile) while True: l = fin.readline() if not l: break if fin.isfirstline(): filepositiontext = '' currentfilename = fin.filename() gotnextfile = 1 l1 = l strictf77 = 0 sourcecodeform = 'fix' ext = os.path.splitext(currentfilename)[1] if is_f_file(currentfilename) and \ not (_has_f90_header(l) or _has_fix_header(l)): strictf77 = 1 elif is_free_format(currentfilename) and not _has_fix_header(l): sourcecodeform = 'free' if strictf77: beginpattern = beginpattern77 else: beginpattern = beginpattern90 outmess('\tReading file %s (format:%s%s)\n' % (repr(currentfilename), sourcecodeform, strictf77 and ',strict' or '')) l = l.expandtabs().replace('\xa0', ' ') # Get rid of newline characters while not l == '': if l[-1] not in "\n\r\f": break l = l[:-1] if not strictf77: (l, rl) = split_by_unquoted(l, '!') l += ' ' if rl[:5].lower() == '!f2py': # f2py directive l, _ = split_by_unquoted(l + 4 * ' ' + rl[5:], '!') if l.strip() == '': # Skip empty line if sourcecodeform == 'free': # In free form, a statement continues in the next line # that is not a comment line [3.3.2.4^1], lines with # blanks are comment lines [3.3.2.3^1]. Hence, the # line continuation flag must retain its state. pass else: # In fixed form, statement continuation is determined # by a non-blank character at the 6-th position. Empty # line indicates a start of a new statement # [3.3.3.3^1]. Hence, the line continuation flag must # be reset. cont = False continue if sourcecodeform == 'fix': if l[0] in ['*', 'c', '!', 'C', '#']: if l[1:5].lower() == 'f2py': # f2py directive l = ' ' + l[5:] else: # Skip comment line cont = False continue elif strictf77: if len(l) > 72: l = l[:72] if not (l[0] in spacedigits): raise Exception('readfortrancode: Found non-(space,digit) char ' 'in the first column.\n\tAre you sure that ' 'this code is in fix form?\n\tline=%s' % repr(l)) if (not cont or strictf77) and (len(l) > 5 and not l[5] == ' '): # Continuation of a previous line ll = ll + l[6:] finalline = '' origfinalline = '' else: if not strictf77: # F90 continuation r = cont1.match(l) if r: l = r.group('line') # Continuation follows .. if cont: ll = ll + cont2.match(l).group('line') finalline = '' origfinalline = '' else: # clean up line beginning from possible digits. l = ' ' + l[5:] if localdolowercase: finalline = ll.lower() else: finalline = ll origfinalline = ll ll = l cont = (r is not None) else: # clean up line beginning from possible digits. l = ' ' + l[5:] if localdolowercase: finalline = ll.lower() else: finalline = ll origfinalline = ll ll = l elif sourcecodeform == 'free': if not cont and ext == '.pyf' and mline_mark.match(l): l = l + '\n' while True: lc = fin.readline() if not lc: errmess( 'Unexpected end of file when reading multiline\n') break l = l + lc if mline_mark.match(lc): break l = l.rstrip() r = cont1.match(l) if r: l = r.group('line') # Continuation follows .. if cont: ll = ll + cont2.match(l).group('line') finalline = '' origfinalline = '' else: if localdolowercase: finalline = ll.lower() else: finalline = ll origfinalline = ll ll = l cont = (r is not None) else: raise ValueError( "Flag sourcecodeform must be either 'fix' or 'free': %s" % repr(sourcecodeform)) filepositiontext = 'Line #%d in %s:"%s"\n\t' % ( fin.filelineno() - 1, currentfilename, l1) m = includeline.match(origfinalline) if m: fn = m.group('name') if os.path.isfile(fn): readfortrancode(fn, dowithline=dowithline, istop=0) else: include_dirs = [ os.path.dirname(currentfilename)] + include_paths foundfile = 0 for inc_dir in include_dirs: fn1 = os.path.join(inc_dir, fn) if os.path.isfile(fn1): foundfile = 1 readfortrancode(fn1, dowithline=dowithline, istop=0) break if not foundfile: outmess('readfortrancode: could not find include file %s in %s. Ignoring.\n' % ( repr(fn), os.pathsep.join(include_dirs))) else: dowithline(finalline) l1 = ll if localdolowercase: finalline = ll.lower() else: finalline = ll origfinalline = ll filepositiontext = 'Line #%d in %s:"%s"\n\t' % ( fin.filelineno() - 1, currentfilename, l1) m = includeline.match(origfinalline) if m: fn = m.group('name') if os.path.isfile(fn): readfortrancode(fn, dowithline=dowithline, istop=0) else: include_dirs = [os.path.dirname(currentfilename)] + include_paths foundfile = 0 for inc_dir in include_dirs: fn1 = os.path.join(inc_dir, fn) if os.path.isfile(fn1): foundfile = 1 readfortrancode(fn1, dowithline=dowithline, istop=0) break if not foundfile: outmess('readfortrancode: could not find include file %s in %s. Ignoring.\n' % ( repr(fn), os.pathsep.join(include_dirs))) else: dowithline(finalline) filepositiontext = '' fin.close() if istop: dowithline('', 1) else: gotnextfile, filepositiontext, currentfilename, sourcecodeform, strictf77,\ beginpattern, quiet, verbose, dolowercase = saveglobals # Crack line beforethisafter = r'\s*(?P<before>%s(?=\s*(\b(%s)\b)))' + \ r'\s*(?P<this>(\b(%s)\b))' + \ r'\s*(?P<after>%s)\s*\Z' ## fortrantypes = r'character|logical|integer|real|complex|double\s*(precision\s*(complex|)|complex)|type(?=\s*\([\w\s,=(*)]*\))|byte' typespattern = re.compile( beforethisafter % ('', fortrantypes, fortrantypes, '.*'), re.I), 'type' typespattern4implicit = re.compile(beforethisafter % ( '', fortrantypes + '|static|automatic|undefined', fortrantypes + '|static|automatic|undefined', '.*'), re.I) # functionpattern = re.compile(beforethisafter % ( r'([a-z]+[\w\s(=*+-/)]*?|)', 'function', 'function', '.*'), re.I), 'begin' subroutinepattern = re.compile(beforethisafter % ( r'[a-z\s]*?', 'subroutine', 'subroutine', '.*'), re.I), 'begin' # modulepattern=re.compile(beforethisafter%('[a-z\s]*?','module','module','.*'),re.I),'begin' # groupbegins77 = r'program|block\s*data' beginpattern77 = re.compile( beforethisafter % ('', groupbegins77, groupbegins77, '.*'), re.I), 'begin' groupbegins90 = groupbegins77 + \ r'|module(?!\s*procedure)|python\s*module|(abstract|)\s*interface|' + \ r'type(?!\s*\()' beginpattern90 = re.compile( beforethisafter % ('', groupbegins90, groupbegins90, '.*'), re.I), 'begin' groupends = (r'end|endprogram|endblockdata|endmodule|endpythonmodule|' r'endinterface|endsubroutine|endfunction') endpattern = re.compile( beforethisafter % ('', groupends, groupends, r'.*'), re.I), 'end' endifs = r'end\s*(if|do|where|select|while|forall|associate|block|' + \ r'critical|enum|team)' endifpattern = re.compile( beforethisafter % (r'[\w]*?', endifs, endifs, r'[\w\s]*'), re.I), 'endif' # moduleprocedures = r'module\s*procedure' moduleprocedurepattern = re.compile( beforethisafter % ('', moduleprocedures, moduleprocedures, r'.*'), re.I), \ 'moduleprocedure' implicitpattern = re.compile( beforethisafter % ('', 'implicit', 'implicit', '.*'), re.I), 'implicit' dimensionpattern = re.compile(beforethisafter % ( '', 'dimension|virtual', 'dimension|virtual', '.*'), re.I), 'dimension' externalpattern = re.compile( beforethisafter % ('', 'external', 'external', '.*'), re.I), 'external' optionalpattern = re.compile( beforethisafter % ('', 'optional', 'optional', '.*'), re.I), 'optional' requiredpattern = re.compile( beforethisafter % ('', 'required', 'required', '.*'), re.I), 'required' publicpattern = re.compile( beforethisafter % ('', 'public', 'public', '.*'), re.I), 'public' privatepattern = re.compile( beforethisafter % ('', 'private', 'private', '.*'), re.I), 'private' intrinsicpattern = re.compile( beforethisafter % ('', 'intrinsic', 'intrinsic', '.*'), re.I), 'intrinsic' intentpattern = re.compile(beforethisafter % ( '', 'intent|depend|note|check', 'intent|depend|note|check', r'\s*\(.*?\).*'), re.I), 'intent' parameterpattern = re.compile( beforethisafter % ('', 'parameter', 'parameter', r'\s*\(.*'), re.I), 'parameter' datapattern = re.compile( beforethisafter % ('', 'data', 'data', '.*'), re.I), 'data' callpattern = re.compile( beforethisafter % ('', 'call', 'call', '.*'), re.I), 'call' entrypattern = re.compile( beforethisafter % ('', 'entry', 'entry', '.*'), re.I), 'entry' callfunpattern = re.compile( beforethisafter % ('', 'callfun', 'callfun', '.*'), re.I), 'callfun' commonpattern = re.compile( beforethisafter % ('', 'common', 'common', '.*'), re.I), 'common' usepattern = re.compile( beforethisafter % ('', 'use', 'use', '.*'), re.I), 'use' containspattern = re.compile( beforethisafter % ('', 'contains', 'contains', ''), re.I), 'contains' formatpattern = re.compile( beforethisafter % ('', 'format', 'format', '.*'), re.I), 'format' # Non-fortran and f2py-specific statements f2pyenhancementspattern = re.compile(beforethisafter % ('', 'threadsafe|fortranname|callstatement|callprotoargument|usercode|pymethoddef', 'threadsafe|fortranname|callstatement|callprotoargument|usercode|pymethoddef', '.*'), re.I | re.S), 'f2pyenhancements' multilinepattern = re.compile( r"\s*(?P<before>''')(?P<this>.*?)(?P<after>''')\s*\Z", re.S), 'multiline' ## def split_by_unquoted(line, characters): """ Splits the line into (line[:i], line[i:]), where i is the index of first occurrence of one of the characters not within quotes, or len(line) if no such index exists """ assert not (set('"\'') & set(characters)), "cannot split by unquoted quotes" r = re.compile( r"\A(?P<before>({single_quoted}|{double_quoted}|{not_quoted})*)" r"(?P<after>{char}.*)\Z".format( not_quoted="[^\"'{}]".format(re.escape(characters)), char="[{}]".format(re.escape(characters)), single_quoted=r"('([^'\\]|(\\.))*')", double_quoted=r'("([^"\\]|(\\.))*")')) m = r.match(line) if m: d = m.groupdict() return (d["before"], d["after"]) return (line, "") def _simplifyargs(argsline): a = [] for n in markoutercomma(argsline).split('@,@'): for r in '(),': n = n.replace(r, '_') a.append(n) return ','.join(a) crackline_re_1 = re.compile(r'\s*(?P<result>\b[a-z]+\w*\b)\s*=.*', re.I) def crackline(line, reset=0): """ reset=-1 --- initialize reset=0 --- crack the line reset=1 --- final check if mismatch of blocks occurred Cracked data is saved in grouplist[0]. """ global beginpattern, groupcounter, groupname, groupcache, grouplist global filepositiontext, currentfilename, neededmodule, expectbegin global skipblocksuntil, skipemptyends, previous_context, gotnextfile _, has_semicolon = split_by_unquoted(line, ";") if has_semicolon and not (f2pyenhancementspattern[0].match(line) or multilinepattern[0].match(line)): # XXX: non-zero reset values need testing assert reset == 0, repr(reset) # split line on unquoted semicolons line, semicolon_line = split_by_unquoted(line, ";") while semicolon_line: crackline(line, reset) line, semicolon_line = split_by_unquoted(semicolon_line[1:], ";") crackline(line, reset) return if reset < 0: groupcounter = 0 groupname = {groupcounter: ''} groupcache = {groupcounter: {}} grouplist = {groupcounter: []} groupcache[groupcounter]['body'] = [] groupcache[groupcounter]['vars'] = {} groupcache[groupcounter]['block'] = '' groupcache[groupcounter]['name'] = '' neededmodule = -1 skipblocksuntil = -1 return if reset > 0: fl = 0 if f77modulename and neededmodule == groupcounter: fl = 2 while groupcounter > fl: outmess('crackline: groupcounter=%s groupname=%s\n' % (repr(groupcounter), repr(groupname))) outmess( 'crackline: Mismatch of blocks encountered. Trying to fix it by assuming "end" statement.\n') grouplist[groupcounter - 1].append(groupcache[groupcounter]) grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] del grouplist[groupcounter] groupcounter = groupcounter - 1 if f77modulename and neededmodule == groupcounter: grouplist[groupcounter - 1].append(groupcache[groupcounter]) grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] del grouplist[groupcounter] groupcounter = groupcounter - 1 # end interface grouplist[groupcounter - 1].append(groupcache[groupcounter]) grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] del grouplist[groupcounter] groupcounter = groupcounter - 1 # end module neededmodule = -1 return if line == '': return flag = 0 for pat in [dimensionpattern, externalpattern, intentpattern, optionalpattern, requiredpattern, parameterpattern, datapattern, publicpattern, privatepattern, intrinsicpattern, endifpattern, endpattern, formatpattern, beginpattern, functionpattern, subroutinepattern, implicitpattern, typespattern, commonpattern, callpattern, usepattern, containspattern, entrypattern, f2pyenhancementspattern, multilinepattern, moduleprocedurepattern ]: m = pat[0].match(line) if m: break flag = flag + 1 if not m: re_1 = crackline_re_1 if 0 <= skipblocksuntil <= groupcounter: return if 'externals' in groupcache[groupcounter]: for name in groupcache[groupcounter]['externals']: if name in invbadnames: name = invbadnames[name] if 'interfaced' in groupcache[groupcounter] and name in groupcache[groupcounter]['interfaced']: continue m1 = re.match( r'(?P<before>[^"]*)\b%s\b\s*@\(@(?P<args>[^@]*)@\)@.*\Z' % name, markouterparen(line), re.I) if m1: m2 = re_1.match(m1.group('before')) a = _simplifyargs(m1.group('args')) if m2: line = 'callfun %s(%s) result (%s)' % ( name, a, m2.group('result')) else: line = 'callfun %s(%s)' % (name, a) m = callfunpattern[0].match(line) if not m: outmess( 'crackline: could not resolve function call for line=%s.\n' % repr(line)) return analyzeline(m, 'callfun', line) return if verbose > 1 or (verbose == 1 and currentfilename.lower().endswith('.pyf')): previous_context = None outmess('crackline:%d: No pattern for line\n' % (groupcounter)) return elif pat[1] == 'end': if 0 <= skipblocksuntil < groupcounter: groupcounter = groupcounter - 1 if skipblocksuntil <= groupcounter: return if groupcounter <= 0: raise Exception('crackline: groupcounter(=%s) is nonpositive. ' 'Check the blocks.' % (groupcounter)) m1 = beginpattern[0].match((line)) if (m1) and (not m1.group('this') == groupname[groupcounter]): raise Exception('crackline: End group %s does not match with ' 'previous Begin group %s\n\t%s' % (repr(m1.group('this')), repr(groupname[groupcounter]), filepositiontext) ) if skipblocksuntil == groupcounter: skipblocksuntil = -1 grouplist[groupcounter - 1].append(groupcache[groupcounter]) grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] del grouplist[groupcounter] groupcounter = groupcounter - 1 if not skipemptyends: expectbegin = 1 elif pat[1] == 'begin': if 0 <= skipblocksuntil <= groupcounter: groupcounter = groupcounter + 1 return gotnextfile = 0 analyzeline(m, pat[1], line) expectbegin = 0 elif pat[1] == 'endif': pass elif pat[1] == 'moduleprocedure': analyzeline(m, pat[1], line) elif pat[1] == 'contains': if ignorecontains: return if 0 <= skipblocksuntil <= groupcounter: return skipblocksuntil = groupcounter else: if 0 <= skipblocksuntil <= groupcounter: return analyzeline(m, pat[1], line) def markouterparen(line): l = '' f = 0 for c in line: if c == '(': f = f + 1 if f == 1: l = l + '@(@' continue elif c == ')': f = f - 1 if f == 0: l = l + '@)@' continue l = l + c return l def markoutercomma(line, comma=','): l = '' f = 0 before, after = split_by_unquoted(line, comma + '()') l += before while after: if (after[0] == comma) and (f == 0): l += '@' + comma + '@' else: l += after[0] if after[0] == '(': f += 1 elif after[0] == ')': f -= 1 before, after = split_by_unquoted(after[1:], comma + '()') l += before assert not f, repr((f, line, l)) return l def unmarkouterparen(line): r = line.replace('@(@', '(').replace('@)@', ')') return r def appenddecl(decl, decl2, force=1): if not decl: decl = {} if not decl2: return decl if decl is decl2: return decl for k in list(decl2.keys()): if k == 'typespec': if force or k not in decl: decl[k] = decl2[k] elif k == 'attrspec': for l in decl2[k]: decl = setattrspec(decl, l, force) elif k == 'kindselector': decl = setkindselector(decl, decl2[k], force) elif k == 'charselector': decl = setcharselector(decl, decl2[k], force) elif k in ['=', 'typename']: if force or k not in decl: decl[k] = decl2[k] elif k == 'note': pass elif k in ['intent', 'check', 'dimension', 'optional', 'required', 'depend']: errmess('appenddecl: "%s" not implemented.\n' % k) else: raise Exception('appenddecl: Unknown variable definition key: ' + str(k)) return decl selectpattern = re.compile( r'\s*(?P<this>(@\(@.*?@\)@|\*[\d*]+|\*\s*@\(@.*?@\)@|))(?P<after>.*)\Z', re.I) typedefpattern = re.compile( r'(?:,(?P<attributes>[\w(),]+))?(::)?(?P<name>\b[a-z$_][\w$]*\b)' r'(?:\((?P<params>[\w,]*)\))?\Z', re.I) nameargspattern = re.compile( r'\s*(?P<name>\b[\w$]+\b)\s*(@\(@\s*(?P<args>[\w\s,]*)\s*@\)@|)\s*((result(\s*@\(@\s*(?P<result>\b[\w$]+\b)\s*@\)@|))|(bind\s*@\(@\s*(?P<bind>.*)\s*@\)@))*\s*\Z', re.I) operatorpattern = re.compile( r'\s*(?P<scheme>(operator|assignment))' r'@\(@\s*(?P<name>[^)]+)\s*@\)@\s*\Z', re.I) callnameargspattern = re.compile( r'\s*(?P<name>\b[\w$]+\b)\s*@\(@\s*(?P<args>.*)\s*@\)@\s*\Z', re.I) real16pattern = re.compile( r'([-+]?(?:\d+(?:\.\d*)?|\d*\.\d+))[dD]((?:[-+]?\d+)?)') real8pattern = re.compile( r'([-+]?((?:\d+(?:\.\d*)?|\d*\.\d+))[eE]((?:[-+]?\d+)?)|(\d+\.\d*))') _intentcallbackpattern = re.compile(r'intent\s*\(.*?\bcallback\b', re.I) def _is_intent_callback(vdecl): for a in vdecl.get('attrspec', []): if _intentcallbackpattern.match(a): return 1 return 0 def _resolvetypedefpattern(line): line = ''.join(line.split()) # removes whitespace m1 = typedefpattern.match(line) print(line, m1) if m1: attrs = m1.group('attributes') attrs = [a.lower() for a in attrs.split(',')] if attrs else [] return m1.group('name'), attrs, m1.group('params') return None, [], None def _resolvenameargspattern(line): line = markouterparen(line) m1 = nameargspattern.match(line) if m1: return m1.group('name'), m1.group('args'), m1.group('result'), m1.group('bind') m1 = operatorpattern.match(line) if m1: name = m1.group('scheme') + '(' + m1.group('name') + ')' return name, [], None, None m1 = callnameargspattern.match(line) if m1: return m1.group('name'), m1.group('args'), None, None return None, [], None, None def analyzeline(m, case, line): global groupcounter, groupname, groupcache, grouplist, filepositiontext global currentfilename, f77modulename, neededinterface, neededmodule global expectbegin, gotnextfile, previous_context block = m.group('this') if case != 'multiline': previous_context = None if expectbegin and case not in ['begin', 'call', 'callfun', 'type'] \ and not skipemptyends and groupcounter < 1: newname = os.path.basename(currentfilename).split('.')[0] outmess( 'analyzeline: no group yet. Creating program group with name "%s".\n' % newname) gotnextfile = 0 groupcounter = groupcounter + 1 groupname[groupcounter] = 'program' groupcache[groupcounter] = {} grouplist[groupcounter] = [] groupcache[groupcounter]['body'] = [] groupcache[groupcounter]['vars'] = {} groupcache[groupcounter]['block'] = 'program' groupcache[groupcounter]['name'] = newname groupcache[groupcounter]['from'] = 'fromsky' expectbegin = 0 if case in ['begin', 'call', 'callfun']: # Crack line => block,name,args,result block = block.lower() if re.match(r'block\s*data', block, re.I): block = 'block data' elif re.match(r'python\s*module', block, re.I): block = 'python module' elif re.match(r'abstract\s*interface', block, re.I): block = 'abstract interface' if block == 'type': name, attrs, _ = _resolvetypedefpattern(m.group('after')) groupcache[groupcounter]['vars'][name] = dict(attrspec = attrs) args = [] result = None else: name, args, result, _ = _resolvenameargspattern(m.group('after')) if name is None: if block == 'block data': name = '_BLOCK_DATA_' else: name = '' if block not in ['interface', 'block data', 'abstract interface']: outmess('analyzeline: No name/args pattern found for line.\n') previous_context = (block, name, groupcounter) if args: args = rmbadname([x.strip() for x in markoutercomma(args).split('@,@')]) else: args = [] if '' in args: while '' in args: args.remove('') outmess( 'analyzeline: argument list is malformed (missing argument).\n') # end of crack line => block,name,args,result needmodule = 0 needinterface = 0 if case in ['call', 'callfun']: needinterface = 1 if 'args' not in groupcache[groupcounter]: return if name not in groupcache[groupcounter]['args']: return for it in grouplist[groupcounter]: if it['name'] == name: return if name in groupcache[groupcounter]['interfaced']: return block = {'call': 'subroutine', 'callfun': 'function'}[case] if f77modulename and neededmodule == -1 and groupcounter <= 1: neededmodule = groupcounter + 2 needmodule = 1 if block not in ['interface', 'abstract interface']: needinterface = 1 # Create new block(s) groupcounter = groupcounter + 1 groupcache[groupcounter] = {} grouplist[groupcounter] = [] if needmodule: if verbose > 1: outmess('analyzeline: Creating module block %s\n' % repr(f77modulename), 0) groupname[groupcounter] = 'module' groupcache[groupcounter]['block'] = 'python module' groupcache[groupcounter]['name'] = f77modulename groupcache[groupcounter]['from'] = '' groupcache[groupcounter]['body'] = [] groupcache[groupcounter]['externals'] = [] groupcache[groupcounter]['interfaced'] = [] groupcache[groupcounter]['vars'] = {} groupcounter = groupcounter + 1 groupcache[groupcounter] = {} grouplist[groupcounter] = [] if needinterface: if verbose > 1: outmess('analyzeline: Creating additional interface block (groupcounter=%s).\n' % ( groupcounter), 0) groupname[groupcounter] = 'interface' groupcache[groupcounter]['block'] = 'interface' groupcache[groupcounter]['name'] = 'unknown_interface' groupcache[groupcounter]['from'] = '%s:%s' % ( groupcache[groupcounter - 1]['from'], groupcache[groupcounter - 1]['name']) groupcache[groupcounter]['body'] = [] groupcache[groupcounter]['externals'] = [] groupcache[groupcounter]['interfaced'] = [] groupcache[groupcounter]['vars'] = {} groupcounter = groupcounter + 1 groupcache[groupcounter] = {} grouplist[groupcounter] = [] groupname[groupcounter] = block groupcache[groupcounter]['block'] = block if not name: name = 'unknown_' + block.replace(' ', '_') groupcache[groupcounter]['prefix'] = m.group('before') groupcache[groupcounter]['name'] = rmbadname1(name) groupcache[groupcounter]['result'] = result if groupcounter == 1: groupcache[groupcounter]['from'] = currentfilename else: if f77modulename and groupcounter == 3: groupcache[groupcounter]['from'] = '%s:%s' % ( groupcache[groupcounter - 1]['from'], currentfilename) else: groupcache[groupcounter]['from'] = '%s:%s' % ( groupcache[groupcounter - 1]['from'], groupcache[groupcounter - 1]['name']) for k in list(groupcache[groupcounter].keys()): if not groupcache[groupcounter][k]: del groupcache[groupcounter][k] groupcache[groupcounter]['args'] = args groupcache[groupcounter]['body'] = [] groupcache[groupcounter]['externals'] = [] groupcache[groupcounter]['interfaced'] = [] groupcache[groupcounter]['vars'] = {} groupcache[groupcounter]['entry'] = {} # end of creation if block == 'type': groupcache[groupcounter]['varnames'] = [] if case in ['call', 'callfun']: # set parents variables if name not in groupcache[groupcounter - 2]['externals']: groupcache[groupcounter - 2]['externals'].append(name) groupcache[groupcounter]['vars'] = copy.deepcopy( groupcache[groupcounter - 2]['vars']) try: del groupcache[groupcounter]['vars'][name][ groupcache[groupcounter]['vars'][name]['attrspec'].index('external')] except Exception: pass if block in ['function', 'subroutine']: # set global attributes try: groupcache[groupcounter]['vars'][name] = appenddecl( groupcache[groupcounter]['vars'][name], groupcache[groupcounter - 2]['vars']['']) except Exception: pass if case == 'callfun': # return type if result and result in groupcache[groupcounter]['vars']: if not name == result: groupcache[groupcounter]['vars'][name] = appenddecl( groupcache[groupcounter]['vars'][name], groupcache[groupcounter]['vars'][result]) # if groupcounter>1: # name is interfaced try: groupcache[groupcounter - 2]['interfaced'].append(name) except Exception: pass if block == 'function': t = typespattern[0].match(m.group('before') + ' ' + name) if t: typespec, selector, attr, edecl = cracktypespec0( t.group('this'), t.group('after')) updatevars(typespec, selector, attr, edecl) if case in ['call', 'callfun']: grouplist[groupcounter - 1].append(groupcache[groupcounter]) grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] del grouplist[groupcounter] groupcounter = groupcounter - 1 # end routine grouplist[groupcounter - 1].append(groupcache[groupcounter]) grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] del grouplist[groupcounter] groupcounter = groupcounter - 1 # end interface elif case == 'entry': name, args, result, bind = _resolvenameargspattern(m.group('after')) if name is not None: if args: args = rmbadname([x.strip() for x in markoutercomma(args).split('@,@')]) else: args = [] assert result is None, repr(result) groupcache[groupcounter]['entry'][name] = args previous_context = ('entry', name, groupcounter) elif case == 'type': typespec, selector, attr, edecl = cracktypespec0( block, m.group('after')) last_name = updatevars(typespec, selector, attr, edecl) if last_name is not None: previous_context = ('variable', last_name, groupcounter) elif case in ['dimension', 'intent', 'optional', 'required', 'external', 'public', 'private', 'intrinsic']: edecl = groupcache[groupcounter]['vars'] ll = m.group('after').strip() i = ll.find('::') if i < 0 and case == 'intent': i = markouterparen(ll).find('@)@') - 2 ll = ll[:i + 1] + '::' + ll[i + 1:] i = ll.find('::') if ll[i:] == '::' and 'args' in groupcache[groupcounter]: outmess('All arguments will have attribute %s%s\n' % (m.group('this'), ll[:i])) ll = ll + ','.join(groupcache[groupcounter]['args']) if i < 0: i = 0 pl = '' else: pl = ll[:i].strip() ll = ll[i + 2:] ch = markoutercomma(pl).split('@,@') if len(ch) > 1: pl = ch[0] outmess('analyzeline: cannot handle multiple attributes without type specification. Ignoring %r.\n' % ( ','.join(ch[1:]))) last_name = None for e in [x.strip() for x in markoutercomma(ll).split('@,@')]: m1 = namepattern.match(e) if not m1: if case in ['public', 'private']: k = '' else: print(m.groupdict()) outmess('analyzeline: no name pattern found in %s statement for %s. Skipping.\n' % ( case, repr(e))) continue else: k = rmbadname1(m1.group('name')) if case in ['public', 'private'] and \ (k == 'operator' or k == 'assignment'): k += m1.group('after') if k not in edecl: edecl[k] = {} if case == 'dimension': ap = case + m1.group('after') if case == 'intent': ap = m.group('this') + pl if _intentcallbackpattern.match(ap): if k not in groupcache[groupcounter]['args']: if groupcounter > 1: if '__user__' not in groupcache[groupcounter - 2]['name']: outmess( 'analyzeline: missing __user__ module (could be nothing)\n') # fixes ticket 1693 if k != groupcache[groupcounter]['name']: outmess('analyzeline: appending intent(callback) %s' ' to %s arguments\n' % (k, groupcache[groupcounter]['name'])) groupcache[groupcounter]['args'].append(k) else: errmess( 'analyzeline: intent(callback) %s is ignored\n' % (k)) else: errmess('analyzeline: intent(callback) %s is already' ' in argument list\n' % (k)) if case in ['optional', 'required', 'public', 'external', 'private', 'intrinsic']: ap = case if 'attrspec' in edecl[k]: edecl[k]['attrspec'].append(ap) else: edecl[k]['attrspec'] = [ap] if case == 'external': if groupcache[groupcounter]['block'] == 'program': outmess('analyzeline: ignoring program arguments\n') continue if k not in groupcache[groupcounter]['args']: continue if 'externals' not in groupcache[groupcounter]: groupcache[groupcounter]['externals'] = [] groupcache[groupcounter]['externals'].append(k) last_name = k groupcache[groupcounter]['vars'] = edecl if last_name is not None: previous_context = ('variable', last_name, groupcounter) elif case == 'moduleprocedure': groupcache[groupcounter]['implementedby'] = \ [x.strip() for x in m.group('after').split(',')] elif case == 'parameter': edecl = groupcache[groupcounter]['vars'] ll = m.group('after').strip()[1:-1] last_name = None for e in markoutercomma(ll).split('@,@'): try: k, initexpr = [x.strip() for x in e.split('=')] except Exception: outmess( 'analyzeline: could not extract name,expr in parameter statement "%s" of "%s"\n' % (e, ll)) continue params = get_parameters(edecl) k = rmbadname1(k) if k not in edecl: edecl[k] = {} if '=' in edecl[k] and (not edecl[k]['='] == initexpr): outmess('analyzeline: Overwriting the value of parameter "%s" ("%s") with "%s".\n' % ( k, edecl[k]['='], initexpr)) t = determineexprtype(initexpr, params) if t: if t.get('typespec') == 'real': tt = list(initexpr) for m in real16pattern.finditer(initexpr): tt[m.start():m.end()] = list( initexpr[m.start():m.end()].lower().replace('d', 'e')) initexpr = ''.join(tt) elif t.get('typespec') == 'complex': initexpr = initexpr[1:].lower().replace('d', 'e').\ replace(',', '+1j*(') try: v = eval(initexpr, {}, params) except (SyntaxError, NameError, TypeError) as msg: errmess('analyzeline: Failed to evaluate %r. Ignoring: %s\n' % (initexpr, msg)) continue edecl[k]['='] = repr(v) if 'attrspec' in edecl[k]: edecl[k]['attrspec'].append('parameter') else: edecl[k]['attrspec'] = ['parameter'] last_name = k groupcache[groupcounter]['vars'] = edecl if last_name is not None: previous_context = ('variable', last_name, groupcounter) elif case == 'implicit': if m.group('after').strip().lower() == 'none': groupcache[groupcounter]['implicit'] = None elif m.group('after'): if 'implicit' in groupcache[groupcounter]: impl = groupcache[groupcounter]['implicit'] else: impl = {} if impl is None: outmess( 'analyzeline: Overwriting earlier "implicit none" statement.\n') impl = {} for e in markoutercomma(m.group('after')).split('@,@'): decl = {} m1 = re.match( r'\s*(?P<this>.*?)\s*(\(\s*(?P<after>[a-z-, ]+)\s*\)\s*|)\Z', e, re.I) if not m1: outmess( 'analyzeline: could not extract info of implicit statement part "%s"\n' % (e)) continue m2 = typespattern4implicit.match(m1.group('this')) if not m2: outmess( 'analyzeline: could not extract types pattern of implicit statement part "%s"\n' % (e)) continue typespec, selector, attr, edecl = cracktypespec0( m2.group('this'), m2.group('after')) kindselect, charselect, typename = cracktypespec( typespec, selector) decl['typespec'] = typespec decl['kindselector'] = kindselect decl['charselector'] = charselect decl['typename'] = typename for k in list(decl.keys()): if not decl[k]: del decl[k] for r in markoutercomma(m1.group('after')).split('@,@'): if '-' in r: try: begc, endc = [x.strip() for x in r.split('-')] except Exception: outmess( 'analyzeline: expected "<char>-<char>" instead of "%s" in range list of implicit statement\n' % r) continue else: begc = endc = r.strip() if not len(begc) == len(endc) == 1: outmess( 'analyzeline: expected "<char>-<char>" instead of "%s" in range list of implicit statement (2)\n' % r) continue for o in range(ord(begc), ord(endc) + 1): impl[chr(o)] = decl groupcache[groupcounter]['implicit'] = impl elif case == 'data': ll = [] dl = '' il = '' f = 0 fc = 1 inp = 0 for c in m.group('after'): if not inp: if c == "'": fc = not fc if c == '/' and fc: f = f + 1 continue if c == '(': inp = inp + 1 elif c == ')': inp = inp - 1 if f == 0: dl = dl + c elif f == 1: il = il + c elif f == 2: dl = dl.strip() if dl.startswith(','): dl = dl[1:].strip() ll.append([dl, il]) dl = c il = '' f = 0 if f == 2: dl = dl.strip() if dl.startswith(','): dl = dl[1:].strip() ll.append([dl, il]) vars = {} if 'vars' in groupcache[groupcounter]: vars = groupcache[groupcounter]['vars'] last_name = None for l in ll: l = [x.strip() for x in l] if l[0][0] == ',': l[0] = l[0][1:] if l[0][0] == '(': outmess( 'analyzeline: implied-DO list "%s" is not supported. Skipping.\n' % l[0]) continue i = 0 j = 0 llen = len(l[1]) for v in rmbadname([x.strip() for x in markoutercomma(l[0]).split('@,@')]): if v[0] == '(': outmess( 'analyzeline: implied-DO list "%s" is not supported. Skipping.\n' % v) # XXX: subsequent init expressions may get wrong values. # Ignoring since data statements are irrelevant for # wrapping. continue fc = 0 while (i < llen) and (fc or not l[1][i] == ','): if l[1][i] == "'": fc = not fc i = i + 1 i = i + 1 if v not in vars: vars[v] = {} if '=' in vars[v] and not vars[v]['='] == l[1][j:i - 1]: outmess('analyzeline: changing init expression of "%s" ("%s") to "%s"\n' % ( v, vars[v]['='], l[1][j:i - 1])) vars[v]['='] = l[1][j:i - 1] j = i last_name = v groupcache[groupcounter]['vars'] = vars if last_name is not None: previous_context = ('variable', last_name, groupcounter) elif case == 'common': line = m.group('after').strip() if not line[0] == '/': line = '//' + line cl = [] f = 0 bn = '' ol = '' for c in line: if c == '/': f = f + 1 continue if f >= 3: bn = bn.strip() if not bn: bn = '_BLNK_' cl.append([bn, ol]) f = f - 2 bn = '' ol = '' if f % 2: bn = bn + c else: ol = ol + c bn = bn.strip() if not bn: bn = '_BLNK_' cl.append([bn, ol]) commonkey = {} if 'common' in groupcache[groupcounter]: commonkey = groupcache[groupcounter]['common'] for c in cl: if c[0] not in commonkey: commonkey[c[0]] = [] for i in [x.strip() for x in markoutercomma(c[1]).split('@,@')]: if i: commonkey[c[0]].append(i) groupcache[groupcounter]['common'] = commonkey previous_context = ('common', bn, groupcounter) elif case == 'use': m1 = re.match( r'\A\s*(?P<name>\b\w+\b)\s*((,(\s*\bonly\b\s*:|(?P<notonly>))\s*(?P<list>.*))|)\s*\Z', m.group('after'), re.I) if m1: mm = m1.groupdict() if 'use' not in groupcache[groupcounter]: groupcache[groupcounter]['use'] = {} name = m1.group('name') groupcache[groupcounter]['use'][name] = {} isonly = 0 if 'list' in mm and mm['list'] is not None: if 'notonly' in mm and mm['notonly'] is None: isonly = 1 groupcache[groupcounter]['use'][name]['only'] = isonly ll = [x.strip() for x in mm['list'].split(',')] rl = {} for l in ll: if '=' in l: m2 = re.match( r'\A\s*(?P<local>\b\w+\b)\s*=\s*>\s*(?P<use>\b\w+\b)\s*\Z', l, re.I) if m2: rl[m2.group('local').strip()] = m2.group( 'use').strip() else: outmess( 'analyzeline: Not local=>use pattern found in %s\n' % repr(l)) else: rl[l] = l groupcache[groupcounter]['use'][name]['map'] = rl else: pass else: print(m.groupdict()) outmess('analyzeline: Could not crack the use statement.\n') elif case in ['f2pyenhancements']: if 'f2pyenhancements' not in groupcache[groupcounter]: groupcache[groupcounter]['f2pyenhancements'] = {} d = groupcache[groupcounter]['f2pyenhancements'] if m.group('this') == 'usercode' and 'usercode' in d: if isinstance(d['usercode'], str): d['usercode'] = [d['usercode']] d['usercode'].append(m.group('after')) else: d[m.group('this')] = m.group('after') elif case == 'multiline': if previous_context is None: if verbose: outmess('analyzeline: No context for multiline block.\n') return gc = groupcounter appendmultiline(groupcache[gc], previous_context[:2], m.group('this')) else: if verbose > 1: print(m.groupdict()) outmess('analyzeline: No code implemented for line.\n') def appendmultiline(group, context_name, ml): if 'f2pymultilines' not in group: group['f2pymultilines'] = {} d = group['f2pymultilines'] if context_name not in d: d[context_name] = [] d[context_name].append(ml) return def cracktypespec0(typespec, ll): selector = None attr = None if re.match(r'double\s*complex', typespec, re.I): typespec = 'double complex' elif re.match(r'double\s*precision', typespec, re.I): typespec = 'double precision' else: typespec = typespec.strip().lower() m1 = selectpattern.match(markouterparen(ll)) if not m1: outmess( 'cracktypespec0: no kind/char_selector pattern found for line.\n') return d = m1.groupdict() for k in list(d.keys()): d[k] = unmarkouterparen(d[k]) if typespec in ['complex', 'integer', 'logical', 'real', 'character', 'type']: selector = d['this'] ll = d['after'] i = ll.find('::') if i >= 0: attr = ll[:i].strip() ll = ll[i + 2:] return typespec, selector, attr, ll ##### namepattern = re.compile(r'\s*(?P<name>\b\w+\b)\s*(?P<after>.*)\s*\Z', re.I) kindselector = re.compile( r'\s*(\(\s*(kind\s*=)?\s*(?P<kind>.*)\s*\)|\*\s*(?P<kind2>.*?))\s*\Z', re.I) charselector = re.compile( r'\s*(\((?P<lenkind>.*)\)|\*\s*(?P<charlen>.*))\s*\Z', re.I) lenkindpattern = re.compile( r'\s*(kind\s*=\s*(?P<kind>.*?)\s*(@,@\s*len\s*=\s*(?P<len>.*)|)|(len\s*=\s*|)(?P<len2>.*?)\s*(@,@\s*(kind\s*=\s*|)(?P<kind2>.*)|))\s*\Z', re.I) lenarraypattern = re.compile( r'\s*(@\(@\s*(?!/)\s*(?P<array>.*?)\s*@\)@\s*\*\s*(?P<len>.*?)|(\*\s*(?P<len2>.*?)|)\s*(@\(@\s*(?!/)\s*(?P<array2>.*?)\s*@\)@|))\s*(=\s*(?P<init>.*?)|(@\(@|)/\s*(?P<init2>.*?)\s*/(@\)@|)|)\s*\Z', re.I) def removespaces(expr): expr = expr.strip() if len(expr) <= 1: return expr expr2 = expr[0] for i in range(1, len(expr) - 1): if (expr[i] == ' ' and ((expr[i + 1] in "()[]{}=+-/* ") or (expr[i - 1] in "()[]{}=+-/* "))): continue expr2 = expr2 + expr[i] expr2 = expr2 + expr[-1] return expr2 def markinnerspaces(line): """ The function replace all spaces in the input variable line which are surrounded with quotation marks, with the triplet "@_@". For instance, for the input "a 'b c'" the function returns "a 'b@_@c'" Parameters ---------- line : str Returns ------- str """ fragment = '' inside = False current_quote = None escaped = '' for c in line: if escaped == '\\' and c in ['\\', '\'', '"']: fragment += c escaped = c continue if not inside and c in ['\'', '"']: current_quote = c if c == current_quote: inside = not inside elif c == ' ' and inside: fragment += '@_@' continue fragment += c escaped = c # reset to non-backslash return fragment def updatevars(typespec, selector, attrspec, entitydecl): global groupcache, groupcounter last_name = None kindselect, charselect, typename = cracktypespec(typespec, selector) if attrspec: attrspec = [x.strip() for x in markoutercomma(attrspec).split('@,@')] l = [] c = re.compile(r'(?P<start>[a-zA-Z]+)') for a in attrspec: if not a: continue m = c.match(a) if m: s = m.group('start').lower() a = s + a[len(s):] l.append(a) attrspec = l el = [x.strip() for x in markoutercomma(entitydecl).split('@,@')] el1 = [] for e in el: for e1 in [x.strip() for x in markoutercomma(removespaces(markinnerspaces(e)), comma=' ').split('@ @')]: if e1: el1.append(e1.replace('@_@', ' ')) for e in el1: m = namepattern.match(e) if not m: outmess( 'updatevars: no name pattern found for entity=%s. Skipping.\n' % (repr(e))) continue ename = rmbadname1(m.group('name')) edecl = {} if ename in groupcache[groupcounter]['vars']: edecl = groupcache[groupcounter]['vars'][ename].copy() not_has_typespec = 'typespec' not in edecl if not_has_typespec: edecl['typespec'] = typespec elif typespec and (not typespec == edecl['typespec']): outmess('updatevars: attempt to change the type of "%s" ("%s") to "%s". Ignoring.\n' % ( ename, edecl['typespec'], typespec)) if 'kindselector' not in edecl: edecl['kindselector'] = copy.copy(kindselect) elif kindselect: for k in list(kindselect.keys()): if k in edecl['kindselector'] and (not kindselect[k] == edecl['kindselector'][k]): outmess('updatevars: attempt to change the kindselector "%s" of "%s" ("%s") to "%s". Ignoring.\n' % ( k, ename, edecl['kindselector'][k], kindselect[k])) else: edecl['kindselector'][k] = copy.copy(kindselect[k]) if 'charselector' not in edecl and charselect: if not_has_typespec: edecl['charselector'] = charselect else: errmess('updatevars:%s: attempt to change empty charselector to %r. Ignoring.\n' % (ename, charselect)) elif charselect: for k in list(charselect.keys()): if k in edecl['charselector'] and (not charselect[k] == edecl['charselector'][k]): outmess('updatevars: attempt to change the charselector "%s" of "%s" ("%s") to "%s". Ignoring.\n' % ( k, ename, edecl['charselector'][k], charselect[k])) else: edecl['charselector'][k] = copy.copy(charselect[k]) if 'typename' not in edecl: edecl['typename'] = typename elif typename and (not edecl['typename'] == typename): outmess('updatevars: attempt to change the typename of "%s" ("%s") to "%s". Ignoring.\n' % ( ename, edecl['typename'], typename)) if 'attrspec' not in edecl: edecl['attrspec'] = copy.copy(attrspec) elif attrspec: for a in attrspec: if a not in edecl['attrspec']: edecl['attrspec'].append(a) else: edecl['typespec'] = copy.copy(typespec) edecl['kindselector'] = copy.copy(kindselect) edecl['charselector'] = copy.copy(charselect) edecl['typename'] = typename edecl['attrspec'] = copy.copy(attrspec) if 'external' in (edecl.get('attrspec') or []) and e in groupcache[groupcounter]['args']: if 'externals' not in groupcache[groupcounter]: groupcache[groupcounter]['externals'] = [] groupcache[groupcounter]['externals'].append(e) if m.group('after'): m1 = lenarraypattern.match(markouterparen(m.group('after'))) if m1: d1 = m1.groupdict() for lk in ['len', 'array', 'init']: if d1[lk + '2'] is not None: d1[lk] = d1[lk + '2'] del d1[lk + '2'] for k in list(d1.keys()): if d1[k] is not None: d1[k] = unmarkouterparen(d1[k]) else: del d1[k] if 'len' in d1 and 'array' in d1: if d1['len'] == '': d1['len'] = d1['array'] del d1['array'] else: d1['array'] = d1['array'] + ',' + d1['len'] del d1['len'] errmess('updatevars: "%s %s" is mapped to "%s %s(%s)"\n' % ( typespec, e, typespec, ename, d1['array'])) if 'array' in d1: dm = 'dimension(%s)' % d1['array'] if 'attrspec' not in edecl or (not edecl['attrspec']): edecl['attrspec'] = [dm] else: edecl['attrspec'].append(dm) for dm1 in edecl['attrspec']: if dm1[:9] == 'dimension' and dm1 != dm: del edecl['attrspec'][-1] errmess('updatevars:%s: attempt to change %r to %r. Ignoring.\n' % (ename, dm1, dm)) break if 'len' in d1: if typespec in ['complex', 'integer', 'logical', 'real']: if ('kindselector' not in edecl) or (not edecl['kindselector']): edecl['kindselector'] = {} edecl['kindselector']['*'] = d1['len'] elif typespec == 'character': if ('charselector' not in edecl) or (not edecl['charselector']): edecl['charselector'] = {} if 'len' in edecl['charselector']: del edecl['charselector']['len'] edecl['charselector']['*'] = d1['len'] if 'init' in d1: if '=' in edecl and (not edecl['='] == d1['init']): outmess('updatevars: attempt to change the init expression of "%s" ("%s") to "%s". Ignoring.\n' % ( ename, edecl['='], d1['init'])) else: edecl['='] = d1['init'] else: outmess('updatevars: could not crack entity declaration "%s". Ignoring.\n' % ( ename + m.group('after'))) for k in list(edecl.keys()): if not edecl[k]: del edecl[k] groupcache[groupcounter]['vars'][ename] = edecl if 'varnames' in groupcache[groupcounter]: groupcache[groupcounter]['varnames'].append(ename) last_name = ename return last_name def cracktypespec(typespec, selector): kindselect = None charselect = None typename = None if selector: if typespec in ['complex', 'integer', 'logical', 'real']: kindselect = kindselector.match(selector) if not kindselect: outmess( 'cracktypespec: no kindselector pattern found for %s\n' % (repr(selector))) return kindselect = kindselect.groupdict() kindselect['*'] = kindselect['kind2'] del kindselect['kind2'] for k in list(kindselect.keys()): if not kindselect[k]: del kindselect[k] for k, i in list(kindselect.items()): kindselect[k] = rmbadname1(i) elif typespec == 'character': charselect = charselector.match(selector) if not charselect: outmess( 'cracktypespec: no charselector pattern found for %s\n' % (repr(selector))) return charselect = charselect.groupdict() charselect['*'] = charselect['charlen'] del charselect['charlen'] if charselect['lenkind']: lenkind = lenkindpattern.match( markoutercomma(charselect['lenkind'])) lenkind = lenkind.groupdict() for lk in ['len', 'kind']: if lenkind[lk + '2']: lenkind[lk] = lenkind[lk + '2'] charselect[lk] = lenkind[lk] del lenkind[lk + '2'] del charselect['lenkind'] for k in list(charselect.keys()): if not charselect[k]: del charselect[k] for k, i in list(charselect.items()): charselect[k] = rmbadname1(i) elif typespec == 'type': typename = re.match(r'\s*\(\s*(?P<name>\w+)\s*\)', selector, re.I) if typename: typename = typename.group('name') else: outmess('cracktypespec: no typename found in %s\n' % (repr(typespec + selector))) else: outmess('cracktypespec: no selector used for %s\n' % (repr(selector))) return kindselect, charselect, typename ###### def setattrspec(decl, attr, force=0): if not decl: decl = {} if not attr: return decl if 'attrspec' not in decl: decl['attrspec'] = [attr] return decl if force: decl['attrspec'].append(attr) if attr in decl['attrspec']: return decl if attr == 'static' and 'automatic' not in decl['attrspec']: decl['attrspec'].append(attr) elif attr == 'automatic' and 'static' not in decl['attrspec']: decl['attrspec'].append(attr) elif attr == 'public': if 'private' not in decl['attrspec']: decl['attrspec'].append(attr) elif attr == 'private': if 'public' not in decl['attrspec']: decl['attrspec'].append(attr) else: decl['attrspec'].append(attr) return decl def setkindselector(decl, sel, force=0): if not decl: decl = {} if not sel: return decl if 'kindselector' not in decl: decl['kindselector'] = sel return decl for k in list(sel.keys()): if force or k not in decl['kindselector']: decl['kindselector'][k] = sel[k] return decl def setcharselector(decl, sel, force=0): if not decl: decl = {} if not sel: return decl if 'charselector' not in decl: decl['charselector'] = sel return decl for k in list(sel.keys()): if force or k not in decl['charselector']: decl['charselector'][k] = sel[k] return decl def getblockname(block, unknown='unknown'): if 'name' in block: return block['name'] return unknown # post processing def setmesstext(block): global filepositiontext try: filepositiontext = 'In: %s:%s\n' % (block['from'], block['name']) except Exception: pass def get_usedict(block): usedict = {} if 'parent_block' in block: usedict = get_usedict(block['parent_block']) if 'use' in block: usedict.update(block['use']) return usedict def get_useparameters(block, param_map=None): global f90modulevars if param_map is None: param_map = {} usedict = get_usedict(block) if not usedict: return param_map for usename, mapping in list(usedict.items()): usename = usename.lower() if usename not in f90modulevars: outmess('get_useparameters: no module %s info used by %s\n' % (usename, block.get('name'))) continue mvars = f90modulevars[usename] params = get_parameters(mvars) if not params: continue # XXX: apply mapping if mapping: errmess('get_useparameters: mapping for %s not impl.\n' % (mapping)) for k, v in list(params.items()): if k in param_map: outmess('get_useparameters: overriding parameter %s with' ' value from module %s\n' % (repr(k), repr(usename))) param_map[k] = v return param_map def postcrack2(block, tab='', param_map=None): global f90modulevars if not f90modulevars: return block if isinstance(block, list): ret = [postcrack2(g, tab=tab + '\t', param_map=param_map) for g in block] return ret setmesstext(block) outmess('%sBlock: %s\n' % (tab, block['name']), 0) if param_map is None: param_map = get_useparameters(block) if param_map is not None and 'vars' in block: vars = block['vars'] for n in list(vars.keys()): var = vars[n] if 'kindselector' in var: kind = var['kindselector'] if 'kind' in kind: val = kind['kind'] if val in param_map: kind['kind'] = param_map[val] new_body = [postcrack2(b, tab=tab + '\t', param_map=param_map) for b in block['body']] block['body'] = new_body return block def postcrack(block, args=None, tab=''): """ TODO: function return values determine expression types if in argument list """ global usermodules, onlyfunctions if isinstance(block, list): gret = [] uret = [] for g in block: setmesstext(g) g = postcrack(g, tab=tab + '\t') # sort user routines to appear first if 'name' in g and '__user__' in g['name']: uret.append(g) else: gret.append(g) return uret + gret setmesstext(block) if not isinstance(block, dict) and 'block' not in block: raise Exception('postcrack: Expected block dictionary instead of ' + str(block)) if 'name' in block and not block['name'] == 'unknown_interface': outmess('%sBlock: %s\n' % (tab, block['name']), 0) block = analyzeargs(block) block = analyzecommon(block) block['vars'] = analyzevars(block) block['sortvars'] = sortvarnames(block['vars']) if 'args' in block and block['args']: args = block['args'] block['body'] = analyzebody(block, args, tab=tab) userisdefined = [] if 'use' in block: useblock = block['use'] for k in list(useblock.keys()): if '__user__' in k: userisdefined.append(k) else: useblock = {} name = '' if 'name' in block: name = block['name'] # and not userisdefined: # Build a __user__ module if 'externals' in block and block['externals']: interfaced = [] if 'interfaced' in block: interfaced = block['interfaced'] mvars = copy.copy(block['vars']) if name: mname = name + '__user__routines' else: mname = 'unknown__user__routines' if mname in userisdefined: i = 1 while '%s_%i' % (mname, i) in userisdefined: i = i + 1 mname = '%s_%i' % (mname, i) interface = {'block': 'interface', 'body': [], 'vars': {}, 'name': name + '_user_interface'} for e in block['externals']: if e in interfaced: edef = [] j = -1 for b in block['body']: j = j + 1 if b['block'] == 'interface': i = -1 for bb in b['body']: i = i + 1 if 'name' in bb and bb['name'] == e: edef = copy.copy(bb) del b['body'][i] break if edef: if not b['body']: del block['body'][j] del interfaced[interfaced.index(e)] break interface['body'].append(edef) else: if e in mvars and not isexternal(mvars[e]): interface['vars'][e] = mvars[e] if interface['vars'] or interface['body']: block['interfaced'] = interfaced mblock = {'block': 'python module', 'body': [ interface], 'vars': {}, 'name': mname, 'interfaced': block['externals']} useblock[mname] = {} usermodules.append(mblock) if useblock: block['use'] = useblock return block def sortvarnames(vars): indep = [] dep = [] for v in list(vars.keys()): if 'depend' in vars[v] and vars[v]['depend']: dep.append(v) else: indep.append(v) n = len(dep) i = 0 while dep: # XXX: How to catch dependence cycles correctly? v = dep[0] fl = 0 for w in dep[1:]: if w in vars[v]['depend']: fl = 1 break if fl: dep = dep[1:] + [v] i = i + 1 if i > n: errmess('sortvarnames: failed to compute dependencies because' ' of cyclic dependencies between ' + ', '.join(dep) + '\n') indep = indep + dep break else: indep.append(v) dep = dep[1:] n = len(dep) i = 0 return indep def analyzecommon(block): if not hascommon(block): return block commonvars = [] for k in list(block['common'].keys()): comvars = [] for e in block['common'][k]: m = re.match( r'\A\s*\b(?P<name>.*?)\b\s*(\((?P<dims>.*?)\)|)\s*\Z', e, re.I) if m: dims = [] if m.group('dims'): dims = [x.strip() for x in markoutercomma(m.group('dims')).split('@,@')] n = rmbadname1(m.group('name').strip()) if n in block['vars']: if 'attrspec' in block['vars'][n]: block['vars'][n]['attrspec'].append( 'dimension(%s)' % (','.join(dims))) else: block['vars'][n]['attrspec'] = [ 'dimension(%s)' % (','.join(dims))] else: if dims: block['vars'][n] = { 'attrspec': ['dimension(%s)' % (','.join(dims))]} else: block['vars'][n] = {} if n not in commonvars: commonvars.append(n) else: n = e errmess( 'analyzecommon: failed to extract "<name>[(<dims>)]" from "%s" in common /%s/.\n' % (e, k)) comvars.append(n) block['common'][k] = comvars if 'commonvars' not in block: block['commonvars'] = commonvars else: block['commonvars'] = block['commonvars'] + commonvars return block def analyzebody(block, args, tab=''): global usermodules, skipfuncs, onlyfuncs, f90modulevars setmesstext(block) body = [] for b in block['body']: b['parent_block'] = block if b['block'] in ['function', 'subroutine']: if args is not None and b['name'] not in args: continue else: as_ = b['args'] if b['name'] in skipfuncs: continue if onlyfuncs and b['name'] not in onlyfuncs: continue b['saved_interface'] = crack2fortrangen( b, '\n' + ' ' * 6, as_interface=True) else: as_ = args b = postcrack(b, as_, tab=tab + '\t') if b['block'] in ['interface', 'abstract interface'] and \ not b['body'] and not b.get('implementedby'): if 'f2pyenhancements' not in b: continue if b['block'].replace(' ', '') == 'pythonmodule': usermodules.append(b) else: if b['block'] == 'module': f90modulevars[b['name']] = b['vars'] body.append(b) return body def buildimplicitrules(block): setmesstext(block) implicitrules = defaultimplicitrules attrrules = {} if 'implicit' in block: if block['implicit'] is None: implicitrules = None if verbose > 1: outmess( 'buildimplicitrules: no implicit rules for routine %s.\n' % repr(block['name'])) else: for k in list(block['implicit'].keys()): if block['implicit'][k].get('typespec') not in ['static', 'automatic']: implicitrules[k] = block['implicit'][k] else: attrrules[k] = block['implicit'][k]['typespec'] return implicitrules, attrrules def myeval(e, g=None, l=None): """ Like `eval` but returns only integers and floats """ r = eval(e, g, l) if type(r) in [int, float]: return r raise ValueError('r=%r' % (r)) getlincoef_re_1 = re.compile(r'\A\b\w+\b\Z', re.I) def getlincoef(e, xset): # e = a*x+b ; x in xset """ Obtain ``a`` and ``b`` when ``e == "a*x+b"``, where ``x`` is a symbol in xset. >>> getlincoef('2*x + 1', {'x'}) (2, 1, 'x') >>> getlincoef('3*x + x*2 + 2 + 1', {'x'}) (5, 3, 'x') >>> getlincoef('0', {'x'}) (0, 0, None) >>> getlincoef('0*x', {'x'}) (0, 0, 'x') >>> getlincoef('x*x', {'x'}) (None, None, None) This can be tricked by sufficiently complex expressions >>> getlincoef('(x - 0.5)*(x - 1.5)*(x - 1)*x + 2*x + 3', {'x'}) (2.0, 3.0, 'x') """ try: c = int(myeval(e, {}, {})) return 0, c, None except Exception: pass if getlincoef_re_1.match(e): return 1, 0, e len_e = len(e) for x in xset: if len(x) > len_e: continue if re.search(r'\w\s*\([^)]*\b' + x + r'\b', e): # skip function calls having x as an argument, e.g max(1, x) continue re_1 = re.compile(r'(?P<before>.*?)\b' + x + r'\b(?P<after>.*)', re.I) m = re_1.match(e) if m: try: m1 = re_1.match(e) while m1: ee = '%s(%s)%s' % ( m1.group('before'), 0, m1.group('after')) m1 = re_1.match(ee) b = myeval(ee, {}, {}) m1 = re_1.match(e) while m1: ee = '%s(%s)%s' % ( m1.group('before'), 1, m1.group('after')) m1 = re_1.match(ee) a = myeval(ee, {}, {}) - b m1 = re_1.match(e) while m1: ee = '%s(%s)%s' % ( m1.group('before'), 0.5, m1.group('after')) m1 = re_1.match(ee) c = myeval(ee, {}, {}) # computing another point to be sure that expression is linear m1 = re_1.match(e) while m1: ee = '%s(%s)%s' % ( m1.group('before'), 1.5, m1.group('after')) m1 = re_1.match(ee) c2 = myeval(ee, {}, {}) if (a * 0.5 + b == c and a * 1.5 + b == c2): return a, b, x except Exception: pass break return None, None, None word_pattern = re.compile(r'\b[a-z][\w$]*\b', re.I) def _get_depend_dict(name, vars, deps): if name in vars: words = vars[name].get('depend', []) if '=' in vars[name] and not isstring(vars[name]): for word in word_pattern.findall(vars[name]['=']): # The word_pattern may return values that are not # only variables, they can be string content for instance if word not in words and word in vars and word != name: words.append(word) for word in words[:]: for w in deps.get(word, []) \ or _get_depend_dict(word, vars, deps): if w not in words: words.append(w) else: outmess('_get_depend_dict: no dependence info for %s\n' % (repr(name))) words = [] deps[name] = words return words def _calc_depend_dict(vars): names = list(vars.keys()) depend_dict = {} for n in names: _get_depend_dict(n, vars, depend_dict) return depend_dict def get_sorted_names(vars): """ """ depend_dict = _calc_depend_dict(vars) names = [] for name in list(depend_dict.keys()): if not depend_dict[name]: names.append(name) del depend_dict[name] while depend_dict: for name, lst in list(depend_dict.items()): new_lst = [n for n in lst if n in depend_dict] if not new_lst: names.append(name) del depend_dict[name] else: depend_dict[name] = new_lst return [name for name in names if name in vars] def _kind_func(string): # XXX: return something sensible. if string[0] in "'\"": string = string[1:-1] if real16pattern.match(string): return 8 elif real8pattern.match(string): return 4 return 'kind(' + string + ')' def _selected_int_kind_func(r): # XXX: This should be processor dependent m = 10 ** r if m <= 2 ** 8: return 1 if m <= 2 ** 16: return 2 if m <= 2 ** 32: return 4 if m <= 2 ** 63: return 8 if m <= 2 ** 128: return 16 return -1 def _selected_real_kind_func(p, r=0, radix=0): # XXX: This should be processor dependent # This is only good for 0 <= p <= 20 if p < 7: return 4 if p < 16: return 8 machine = platform.machine().lower() if machine.startswith(('aarch64', 'power', 'ppc', 'riscv', 's390x', 'sparc')): if p <= 20: return 16 else: if p < 19: return 10 elif p <= 20: return 16 return -1 def get_parameters(vars, global_params={}): params = copy.copy(global_params) g_params = copy.copy(global_params) for name, func in [('kind', _kind_func), ('selected_int_kind', _selected_int_kind_func), ('selected_real_kind', _selected_real_kind_func), ]: if name not in g_params: g_params[name] = func param_names = [] for n in get_sorted_names(vars): if 'attrspec' in vars[n] and 'parameter' in vars[n]['attrspec']: param_names.append(n) kind_re = re.compile(r'\bkind\s*\(\s*(?P<value>.*)\s*\)', re.I) selected_int_kind_re = re.compile( r'\bselected_int_kind\s*\(\s*(?P<value>.*)\s*\)', re.I) selected_kind_re = re.compile( r'\bselected_(int|real)_kind\s*\(\s*(?P<value>.*)\s*\)', re.I) for n in param_names: if '=' in vars[n]: v = vars[n]['='] if islogical(vars[n]): v = v.lower() for repl in [ ('.false.', 'False'), ('.true.', 'True'), # TODO: test .eq., .neq., etc replacements. ]: v = v.replace(*repl) v = kind_re.sub(r'kind("\1")', v) v = selected_int_kind_re.sub(r'selected_int_kind(\1)', v) # We need to act according to the data. # The easy case is if the data has a kind-specifier, # then we may easily remove those specifiers. # However, it may be that the user uses other specifiers...(!) is_replaced = False if 'kindselector' in vars[n]: if 'kind' in vars[n]['kindselector']: orig_v_len = len(v) v = v.replace('_' + vars[n]['kindselector']['kind'], '') # Again, this will be true if even a single specifier # has been replaced, see comment above. is_replaced = len(v) < orig_v_len if not is_replaced: if not selected_kind_re.match(v): v_ = v.split('_') # In case there are additive parameters if len(v_) > 1: v = ''.join(v_[:-1]).lower().replace(v_[-1].lower(), '') # Currently this will not work for complex numbers. # There is missing code for extracting a complex number, # which may be defined in either of these: # a) (Re, Im) # b) cmplx(Re, Im) # c) dcmplx(Re, Im) # d) cmplx(Re, Im, <prec>) if isdouble(vars[n]): tt = list(v) for m in real16pattern.finditer(v): tt[m.start():m.end()] = list( v[m.start():m.end()].lower().replace('d', 'e')) v = ''.join(tt) elif iscomplex(vars[n]): outmess(f'get_parameters[TODO]: ' f'implement evaluation of complex expression {v}\n') # Handle _dp for gh-6624 # Also fixes gh-20460 if real16pattern.search(v): v = 8 elif real8pattern.search(v): v = 4 try: params[n] = eval(v, g_params, params) except Exception as msg: params[n] = v outmess('get_parameters: got "%s" on %s\n' % (msg, repr(v))) if isstring(vars[n]) and isinstance(params[n], int): params[n] = chr(params[n]) nl = n.lower() if nl != n: params[nl] = params[n] else: print(vars[n]) outmess( 'get_parameters:parameter %s does not have value?!\n' % (repr(n))) return params def _eval_length(length, params): if length in ['(:)', '(*)', '*']: return '(*)' return _eval_scalar(length, params) _is_kind_number = re.compile(r'\d+_').match def _eval_scalar(value, params): if _is_kind_number(value): value = value.split('_')[0] try: value = eval(value, {}, params) value = (repr if isinstance(value, str) else str)(value) except (NameError, SyntaxError, TypeError): return value except Exception as msg: errmess('"%s" in evaluating %r ' '(available names: %s)\n' % (msg, value, list(params.keys()))) return value def analyzevars(block): global f90modulevars setmesstext(block) implicitrules, attrrules = buildimplicitrules(block) vars = copy.copy(block['vars']) if block['block'] == 'function' and block['name'] not in vars: vars[block['name']] = {} if '' in block['vars']: del vars[''] if 'attrspec' in block['vars']['']: gen = block['vars']['']['attrspec'] for n in list(vars.keys()): for k in ['public', 'private']: if k in gen: vars[n] = setattrspec(vars[n], k) svars = [] args = block['args'] for a in args: try: vars[a] svars.append(a) except KeyError: pass for n in list(vars.keys()): if n not in args: svars.append(n) params = get_parameters(vars, get_useparameters(block)) dep_matches = {} name_match = re.compile(r'[A-Za-z][\w$]*').match for v in list(vars.keys()): m = name_match(v) if m: n = v[m.start():m.end()] try: dep_matches[n] except KeyError: dep_matches[n] = re.compile(r'.*\b%s\b' % (v), re.I).match for n in svars: if n[0] in list(attrrules.keys()): vars[n] = setattrspec(vars[n], attrrules[n[0]]) if 'typespec' not in vars[n]: if not('attrspec' in vars[n] and 'external' in vars[n]['attrspec']): if implicitrules: ln0 = n[0].lower() for k in list(implicitrules[ln0].keys()): if k == 'typespec' and implicitrules[ln0][k] == 'undefined': continue if k not in vars[n]: vars[n][k] = implicitrules[ln0][k] elif k == 'attrspec': for l in implicitrules[ln0][k]: vars[n] = setattrspec(vars[n], l) elif n in block['args']: outmess('analyzevars: typespec of variable %s is not defined in routine %s.\n' % ( repr(n), block['name'])) if 'charselector' in vars[n]: if 'len' in vars[n]['charselector']: l = vars[n]['charselector']['len'] try: l = str(eval(l, {}, params)) except Exception: pass vars[n]['charselector']['len'] = l if 'kindselector' in vars[n]: if 'kind' in vars[n]['kindselector']: l = vars[n]['kindselector']['kind'] try: l = str(eval(l, {}, params)) except Exception: pass vars[n]['kindselector']['kind'] = l dimension_exprs = {} if 'attrspec' in vars[n]: attr = vars[n]['attrspec'] attr.reverse() vars[n]['attrspec'] = [] dim, intent, depend, check, note = None, None, None, None, None for a in attr: if a[:9] == 'dimension': dim = (a[9:].strip())[1:-1] elif a[:6] == 'intent': intent = (a[6:].strip())[1:-1] elif a[:6] == 'depend': depend = (a[6:].strip())[1:-1] elif a[:5] == 'check': check = (a[5:].strip())[1:-1] elif a[:4] == 'note': note = (a[4:].strip())[1:-1] else: vars[n] = setattrspec(vars[n], a) if intent: if 'intent' not in vars[n]: vars[n]['intent'] = [] for c in [x.strip() for x in markoutercomma(intent).split('@,@')]: # Remove spaces so that 'in out' becomes 'inout' tmp = c.replace(' ', '') if tmp not in vars[n]['intent']: vars[n]['intent'].append(tmp) intent = None if note: note = note.replace('\\n\\n', '\n\n') note = note.replace('\\n ', '\n') if 'note' not in vars[n]: vars[n]['note'] = [note] else: vars[n]['note'].append(note) note = None if depend is not None: if 'depend' not in vars[n]: vars[n]['depend'] = [] for c in rmbadname([x.strip() for x in markoutercomma(depend).split('@,@')]): if c not in vars[n]['depend']: vars[n]['depend'].append(c) depend = None if check is not None: if 'check' not in vars[n]: vars[n]['check'] = [] for c in [x.strip() for x in markoutercomma(check).split('@,@')]: if c not in vars[n]['check']: vars[n]['check'].append(c) check = None if dim and 'dimension' not in vars[n]: vars[n]['dimension'] = [] for d in rmbadname([x.strip() for x in markoutercomma(dim).split('@,@')]): star = ':' if d == ':' else '*' # Evaluate `d` with respect to params if d in params: d = str(params[d]) for p in params: re_1 = re.compile(r'(?P<before>.*?)\b' + p + r'\b(?P<after>.*)', re.I) m = re_1.match(d) while m: d = m.group('before') + \ str(params[p]) + m.group('after') m = re_1.match(d) if d == star: dl = [star] else: dl = markoutercomma(d, ':').split('@:@') if len(dl) == 2 and '*' in dl: # e.g. dimension(5:*) dl = ['*'] d = '*' if len(dl) == 1 and dl[0] != star: dl = ['1', dl[0]] if len(dl) == 2: d1, d2 = map(symbolic.Expr.parse, dl) dsize = d2 - d1 + 1 d = dsize.tostring(language=symbolic.Language.C) # find variables v that define d as a linear # function, `d == a * v + b`, and store # coefficients a and b for further analysis. solver_and_deps = {} for v in block['vars']: s = symbolic.as_symbol(v) if dsize.contains(s): try: a, b = dsize.linear_solve(s) def solve_v(s, a=a, b=b): return (s - b) / a all_symbols = set(a.symbols()) all_symbols.update(b.symbols()) except RuntimeError as msg: # d is not a linear function of v, # however, if v can be determined # from d using other means, # implement the corresponding # solve_v function here. solve_v = None all_symbols = set(dsize.symbols()) v_deps = set( s.data for s in all_symbols if s.data in vars) solver_and_deps[v] = solve_v, list(v_deps) # Note that dsize may contain symbols that are # not defined in block['vars']. Here we assume # these correspond to Fortran/C intrinsic # functions or that are defined by other # means. We'll let the compiler validate the # definiteness of such symbols. dimension_exprs[d] = solver_and_deps vars[n]['dimension'].append(d) if 'dimension' in vars[n]: if isstringarray(vars[n]): if 'charselector' in vars[n]: d = vars[n]['charselector'] if '*' in d: d = d['*'] errmess('analyzevars: character array "character*%s %s(%s)" is considered as "character %s(%s)"; "intent(c)" is forced.\n' % (d, n, ','.join(vars[n]['dimension']), n, ','.join(vars[n]['dimension'] + [d]))) vars[n]['dimension'].append(d) del vars[n]['charselector'] if 'intent' not in vars[n]: vars[n]['intent'] = [] if 'c' not in vars[n]['intent']: vars[n]['intent'].append('c') else: errmess( "analyzevars: charselector=%r unhandled.\n" % (d)) if 'check' not in vars[n] and 'args' in block and n in block['args']: # n is an argument that has no checks defined. Here we # generate some consistency checks for n, and when n is an # array, generate checks for its dimensions and construct # initialization expressions. n_deps = vars[n].get('depend', []) n_checks = [] n_is_input = l_or(isintent_in, isintent_inout, isintent_inplace)(vars[n]) if isarray(vars[n]): # n is array for i, d in enumerate(vars[n]['dimension']): coeffs_and_deps = dimension_exprs.get(d) if coeffs_and_deps is None: # d is `:` or `*` or a constant expression pass elif n_is_input: # n is an input array argument and its shape # may define variables used in dimension # specifications. for v, (solver, deps) in coeffs_and_deps.items(): def compute_deps(v, deps): for v1 in coeffs_and_deps.get(v, [None, []])[1]: if v1 not in deps: deps.add(v1) compute_deps(v1, deps) all_deps = set() compute_deps(v, all_deps) if ((v in n_deps or '=' in vars[v] or 'depend' in vars[v])): # Skip a variable that # - n depends on # - has user-defined initialization expression # - has user-defined dependencies continue if solver is not None and v not in all_deps: # v can be solved from d, hence, we # make it an optional argument with # initialization expression: is_required = False init = solver(symbolic.as_symbol( f'shape({n}, {i})')) init = init.tostring( language=symbolic.Language.C) vars[v]['='] = init # n needs to be initialized before v. So, # making v dependent on n and on any # variables in solver or d. vars[v]['depend'] = [n] + deps if 'check' not in vars[v]: # add check only when no # user-specified checks exist vars[v]['check'] = [ f'shape({n}, {i}) == {d}'] else: # d is a non-linear function on v, # hence, v must be a required input # argument that n will depend on is_required = True if 'intent' not in vars[v]: vars[v]['intent'] = [] if 'in' not in vars[v]['intent']: vars[v]['intent'].append('in') # v needs to be initialized before n n_deps.append(v) n_checks.append( f'shape({n}, {i}) == {d}') v_attr = vars[v].get('attrspec', []) if not ('optional' in v_attr or 'required' in v_attr): v_attr.append( 'required' if is_required else 'optional') if v_attr: vars[v]['attrspec'] = v_attr if coeffs_and_deps is not None: # extend v dependencies with ones specified in attrspec for v, (solver, deps) in coeffs_and_deps.items(): v_deps = vars[v].get('depend', []) for aa in vars[v].get('attrspec', []): if aa.startswith('depend'): aa = ''.join(aa.split()) v_deps.extend(aa[7:-1].split(',')) if v_deps: vars[v]['depend'] = list(set(v_deps)) if n not in v_deps: n_deps.append(v) elif isstring(vars[n]): if 'charselector' in vars[n]: if '*' in vars[n]['charselector']: length = _eval_length(vars[n]['charselector']['*'], params) vars[n]['charselector']['*'] = length elif 'len' in vars[n]['charselector']: length = _eval_length(vars[n]['charselector']['len'], params) del vars[n]['charselector']['len'] vars[n]['charselector']['*'] = length if n_checks: vars[n]['check'] = n_checks if n_deps: vars[n]['depend'] = list(set(n_deps)) if '=' in vars[n]: if 'attrspec' not in vars[n]: vars[n]['attrspec'] = [] if ('optional' not in vars[n]['attrspec']) and \ ('required' not in vars[n]['attrspec']): vars[n]['attrspec'].append('optional') if 'depend' not in vars[n]: vars[n]['depend'] = [] for v, m in list(dep_matches.items()): if m(vars[n]['=']): vars[n]['depend'].append(v) if not vars[n]['depend']: del vars[n]['depend'] if isscalar(vars[n]): vars[n]['='] = _eval_scalar(vars[n]['='], params) for n in list(vars.keys()): if n == block['name']: # n is block name if 'note' in vars[n]: block['note'] = vars[n]['note'] if block['block'] == 'function': if 'result' in block and block['result'] in vars: vars[n] = appenddecl(vars[n], vars[block['result']]) if 'prefix' in block: pr = block['prefix'] pr1 = pr.replace('pure', '') ispure = (not pr == pr1) pr = pr1.replace('recursive', '') isrec = (not pr == pr1) m = typespattern[0].match(pr) if m: typespec, selector, attr, edecl = cracktypespec0( m.group('this'), m.group('after')) kindselect, charselect, typename = cracktypespec( typespec, selector) vars[n]['typespec'] = typespec if kindselect: if 'kind' in kindselect: try: kindselect['kind'] = eval( kindselect['kind'], {}, params) except Exception: pass vars[n]['kindselector'] = kindselect if charselect: vars[n]['charselector'] = charselect if typename: vars[n]['typename'] = typename if ispure: vars[n] = setattrspec(vars[n], 'pure') if isrec: vars[n] = setattrspec(vars[n], 'recursive') else: outmess( 'analyzevars: prefix (%s) were not used\n' % repr(block['prefix'])) if not block['block'] in ['module', 'pythonmodule', 'python module', 'block data']: if 'commonvars' in block: neededvars = copy.copy(block['args'] + block['commonvars']) else: neededvars = copy.copy(block['args']) for n in list(vars.keys()): if l_or(isintent_callback, isintent_aux)(vars[n]): neededvars.append(n) if 'entry' in block: neededvars.extend(list(block['entry'].keys())) for k in list(block['entry'].keys()): for n in block['entry'][k]: if n not in neededvars: neededvars.append(n) if block['block'] == 'function': if 'result' in block: neededvars.append(block['result']) else: neededvars.append(block['name']) if block['block'] in ['subroutine', 'function']: name = block['name'] if name in vars and 'intent' in vars[name]: block['intent'] = vars[name]['intent'] if block['block'] == 'type': neededvars.extend(list(vars.keys())) for n in list(vars.keys()): if n not in neededvars: del vars[n] return vars analyzeargs_re_1 = re.compile(r'\A[a-z]+[\w$]*\Z', re.I) def expr2name(a, block, args=[]): orig_a = a a_is_expr = not analyzeargs_re_1.match(a) if a_is_expr: # `a` is an expression implicitrules, attrrules = buildimplicitrules(block) at = determineexprtype(a, block['vars'], implicitrules) na = 'e_' for c in a: c = c.lower() if c not in string.ascii_lowercase + string.digits: c = '_' na = na + c if na[-1] == '_': na = na + 'e' else: na = na + '_e' a = na while a in block['vars'] or a in block['args']: a = a + 'r' if a in args: k = 1 while a + str(k) in args: k = k + 1 a = a + str(k) if a_is_expr: block['vars'][a] = at else: if a not in block['vars']: if orig_a in block['vars']: block['vars'][a] = block['vars'][orig_a] else: block['vars'][a] = {} if 'externals' in block and orig_a in block['externals'] + block['interfaced']: block['vars'][a] = setattrspec(block['vars'][a], 'external') return a def analyzeargs(block): setmesstext(block) implicitrules, _ = buildimplicitrules(block) if 'args' not in block: block['args'] = [] args = [] for a in block['args']: a = expr2name(a, block, args) args.append(a) block['args'] = args if 'entry' in block: for k, args1 in list(block['entry'].items()): for a in args1: if a not in block['vars']: block['vars'][a] = {} for b in block['body']: if b['name'] in args: if 'externals' not in block: block['externals'] = [] if b['name'] not in block['externals']: block['externals'].append(b['name']) if 'result' in block and block['result'] not in block['vars']: block['vars'][block['result']] = {} return block determineexprtype_re_1 = re.compile(r'\A\(.+?,.+?\)\Z', re.I) determineexprtype_re_2 = re.compile(r'\A[+-]?\d+(_(?P<name>\w+)|)\Z', re.I) determineexprtype_re_3 = re.compile( r'\A[+-]?[\d.]+[-\d+de.]*(_(?P<name>\w+)|)\Z', re.I) determineexprtype_re_4 = re.compile(r'\A\(.*\)\Z', re.I) determineexprtype_re_5 = re.compile(r'\A(?P<name>\w+)\s*\(.*?\)\s*\Z', re.I) def _ensure_exprdict(r): if isinstance(r, int): return {'typespec': 'integer'} if isinstance(r, float): return {'typespec': 'real'} if isinstance(r, complex): return {'typespec': 'complex'} if isinstance(r, dict): return r raise AssertionError(repr(r)) def determineexprtype(expr, vars, rules={}): if expr in vars: return _ensure_exprdict(vars[expr]) expr = expr.strip() if determineexprtype_re_1.match(expr): return {'typespec': 'complex'} m = determineexprtype_re_2.match(expr) if m: if 'name' in m.groupdict() and m.group('name'): outmess( 'determineexprtype: selected kind types not supported (%s)\n' % repr(expr)) return {'typespec': 'integer'} m = determineexprtype_re_3.match(expr) if m: if 'name' in m.groupdict() and m.group('name'): outmess( 'determineexprtype: selected kind types not supported (%s)\n' % repr(expr)) return {'typespec': 'real'} for op in ['+', '-', '*', '/']: for e in [x.strip() for x in markoutercomma(expr, comma=op).split('@' + op + '@')]: if e in vars: return _ensure_exprdict(vars[e]) t = {} if determineexprtype_re_4.match(expr): # in parenthesis t = determineexprtype(expr[1:-1], vars, rules) else: m = determineexprtype_re_5.match(expr) if m: rn = m.group('name') t = determineexprtype(m.group('name'), vars, rules) if t and 'attrspec' in t: del t['attrspec'] if not t: if rn[0] in rules: return _ensure_exprdict(rules[rn[0]]) if expr[0] in '\'"': return {'typespec': 'character', 'charselector': {'*': '*'}} if not t: outmess( 'determineexprtype: could not determine expressions (%s) type.\n' % (repr(expr))) return t ###### def crack2fortrangen(block, tab='\n', as_interface=False): global skipfuncs, onlyfuncs setmesstext(block) ret = '' if isinstance(block, list): for g in block: if g and g['block'] in ['function', 'subroutine']: if g['name'] in skipfuncs: continue if onlyfuncs and g['name'] not in onlyfuncs: continue ret = ret + crack2fortrangen(g, tab, as_interface=as_interface) return ret prefix = '' name = '' args = '' blocktype = block['block'] if blocktype == 'program': return '' argsl = [] if 'name' in block: name = block['name'] if 'args' in block: vars = block['vars'] for a in block['args']: a = expr2name(a, block, argsl) if not isintent_callback(vars[a]): argsl.append(a) if block['block'] == 'function' or argsl: args = '(%s)' % ','.join(argsl) f2pyenhancements = '' if 'f2pyenhancements' in block: for k in list(block['f2pyenhancements'].keys()): f2pyenhancements = '%s%s%s %s' % ( f2pyenhancements, tab + tabchar, k, block['f2pyenhancements'][k]) intent_lst = block.get('intent', [])[:] if blocktype == 'function' and 'callback' in intent_lst: intent_lst.remove('callback') if intent_lst: f2pyenhancements = '%s%sintent(%s) %s' %\ (f2pyenhancements, tab + tabchar, ','.join(intent_lst), name) use = '' if 'use' in block: use = use2fortran(block['use'], tab + tabchar) common = '' if 'common' in block: common = common2fortran(block['common'], tab + tabchar) if name == 'unknown_interface': name = '' result = '' if 'result' in block: result = ' result (%s)' % block['result'] if block['result'] not in argsl: argsl.append(block['result']) body = crack2fortrangen(block['body'], tab + tabchar, as_interface=as_interface) vars = vars2fortran( block, block['vars'], argsl, tab + tabchar, as_interface=as_interface) mess = '' if 'from' in block and not as_interface: mess = '! in %s' % block['from'] if 'entry' in block: entry_stmts = '' for k, i in list(block['entry'].items()): entry_stmts = '%s%sentry %s(%s)' \ % (entry_stmts, tab + tabchar, k, ','.join(i)) body = body + entry_stmts if blocktype == 'block data' and name == '_BLOCK_DATA_': name = '' ret = '%s%s%s %s%s%s %s%s%s%s%s%s%send %s %s' % ( tab, prefix, blocktype, name, args, result, mess, f2pyenhancements, use, vars, common, body, tab, blocktype, name) return ret def common2fortran(common, tab=''): ret = '' for k in list(common.keys()): if k == '_BLNK_': ret = '%s%scommon %s' % (ret, tab, ','.join(common[k])) else: ret = '%s%scommon /%s/ %s' % (ret, tab, k, ','.join(common[k])) return ret def use2fortran(use, tab=''): ret = '' for m in list(use.keys()): ret = '%s%suse %s,' % (ret, tab, m) if use[m] == {}: if ret and ret[-1] == ',': ret = ret[:-1] continue if 'only' in use[m] and use[m]['only']: ret = '%s only:' % (ret) if 'map' in use[m] and use[m]['map']: c = ' ' for k in list(use[m]['map'].keys()): if k == use[m]['map'][k]: ret = '%s%s%s' % (ret, c, k) c = ',' else: ret = '%s%s%s=>%s' % (ret, c, k, use[m]['map'][k]) c = ',' if ret and ret[-1] == ',': ret = ret[:-1] return ret def true_intent_list(var): lst = var['intent'] ret = [] for intent in lst: try: f = globals()['isintent_%s' % intent] except KeyError: pass else: if f(var): ret.append(intent) return ret def vars2fortran(block, vars, args, tab='', as_interface=False): """ TODO: public sub ... """ setmesstext(block) ret = '' nout = [] for a in args: if a in block['vars']: nout.append(a) if 'commonvars' in block: for a in block['commonvars']: if a in vars: if a not in nout: nout.append(a) else: errmess( 'vars2fortran: Confused?!: "%s" is not defined in vars.\n' % a) if 'varnames' in block: nout.extend(block['varnames']) if not as_interface: for a in list(vars.keys()): if a not in nout: nout.append(a) for a in nout: if 'depend' in vars[a]: for d in vars[a]['depend']: if d in vars and 'depend' in vars[d] and a in vars[d]['depend']: errmess( 'vars2fortran: Warning: cross-dependence between variables "%s" and "%s"\n' % (a, d)) if 'externals' in block and a in block['externals']: if isintent_callback(vars[a]): ret = '%s%sintent(callback) %s' % (ret, tab, a) ret = '%s%sexternal %s' % (ret, tab, a) if isoptional(vars[a]): ret = '%s%soptional %s' % (ret, tab, a) if a in vars and 'typespec' not in vars[a]: continue cont = 1 for b in block['body']: if a == b['name'] and b['block'] == 'function': cont = 0 break if cont: continue if a not in vars: show(vars) outmess('vars2fortran: No definition for argument "%s".\n' % a) continue if a == block['name']: if block['block'] != 'function' or block.get('result'): # 1) skip declaring a variable that name matches with # subroutine name # 2) skip declaring function when its type is # declared via `result` construction continue if 'typespec' not in vars[a]: if 'attrspec' in vars[a] and 'external' in vars[a]['attrspec']: if a in args: ret = '%s%sexternal %s' % (ret, tab, a) continue show(vars[a]) outmess('vars2fortran: No typespec for argument "%s".\n' % a) continue vardef = vars[a]['typespec'] if vardef == 'type' and 'typename' in vars[a]: vardef = '%s(%s)' % (vardef, vars[a]['typename']) selector = {} if 'kindselector' in vars[a]: selector = vars[a]['kindselector'] elif 'charselector' in vars[a]: selector = vars[a]['charselector'] if '*' in selector: if selector['*'] in ['*', ':']: vardef = '%s*(%s)' % (vardef, selector['*']) else: vardef = '%s*%s' % (vardef, selector['*']) else: if 'len' in selector: vardef = '%s(len=%s' % (vardef, selector['len']) if 'kind' in selector: vardef = '%s,kind=%s)' % (vardef, selector['kind']) else: vardef = '%s)' % (vardef) elif 'kind' in selector: vardef = '%s(kind=%s)' % (vardef, selector['kind']) c = ' ' if 'attrspec' in vars[a]: attr = [l for l in vars[a]['attrspec'] if l not in ['external']] if attr: vardef = '%s, %s' % (vardef, ','.join(attr)) c = ',' if 'dimension' in vars[a]: vardef = '%s%sdimension(%s)' % ( vardef, c, ','.join(vars[a]['dimension'])) c = ',' if 'intent' in vars[a]: lst = true_intent_list(vars[a]) if lst: vardef = '%s%sintent(%s)' % (vardef, c, ','.join(lst)) c = ',' if 'check' in vars[a]: vardef = '%s%scheck(%s)' % (vardef, c, ','.join(vars[a]['check'])) c = ',' if 'depend' in vars[a]: vardef = '%s%sdepend(%s)' % ( vardef, c, ','.join(vars[a]['depend'])) c = ',' if '=' in vars[a]: v = vars[a]['='] if vars[a]['typespec'] in ['complex', 'double complex']: try: v = eval(v) v = '(%s,%s)' % (v.real, v.imag) except Exception: pass vardef = '%s :: %s=%s' % (vardef, a, v) else: vardef = '%s :: %s' % (vardef, a) ret = '%s%s%s' % (ret, tab, vardef) return ret ###### def crackfortran(files): global usermodules outmess('Reading fortran codes...\n', 0) readfortrancode(files, crackline) outmess('Post-processing...\n', 0) usermodules = [] postlist = postcrack(grouplist[0]) outmess('Post-processing (stage 2)...\n', 0) postlist = postcrack2(postlist) return usermodules + postlist def crack2fortran(block): global f2py_version pyf = crack2fortrangen(block) + '\n' header = """! -*- f90 -*- ! Note: the context of this file is case sensitive. """ footer = """ ! This file was auto-generated with f2py (version:%s). ! See: ! https://web.archive.org/web/20140822061353/http://cens.ioc.ee/projects/f2py2e """ % (f2py_version) return header + pyf + footer if __name__ == "__main__": files = [] funcs = [] f = 1 f2 = 0 f3 = 0 showblocklist = 0 for l in sys.argv[1:]: if l == '': pass elif l[0] == ':': f = 0 elif l == '-quiet': quiet = 1 verbose = 0 elif l == '-verbose': verbose = 2 quiet = 0 elif l == '-fix': if strictf77: outmess( 'Use option -f90 before -fix if Fortran 90 code is in fix form.\n', 0) skipemptyends = 1 sourcecodeform = 'fix' elif l == '-skipemptyends': skipemptyends = 1 elif l == '--ignore-contains': ignorecontains = 1 elif l == '-f77': strictf77 = 1 sourcecodeform = 'fix' elif l == '-f90': strictf77 = 0 sourcecodeform = 'free' skipemptyends = 1 elif l == '-h': f2 = 1 elif l == '-show': showblocklist = 1 elif l == '-m': f3 = 1 elif l[0] == '-': errmess('Unknown option %s\n' % repr(l)) elif f2: f2 = 0 pyffilename = l elif f3: f3 = 0 f77modulename = l elif f: try: open(l).close() files.append(l) except OSError as detail: errmess(f'OSError: {detail!s}\n') else: funcs.append(l) if not strictf77 and f77modulename and not skipemptyends: outmess("""\ Warning: You have specified module name for non Fortran 77 code that should not need one (expect if you are scanning F90 code for non module blocks but then you should use flag -skipemptyends and also be sure that the files do not contain programs without program statement). """, 0) postlist = crackfortran(files) if pyffilename: outmess('Writing fortran code to file %s\n' % repr(pyffilename), 0) pyf = crack2fortran(postlist) with open(pyffilename, 'w') as f: f.write(pyf) if showblocklist: show(postlist)
132,025
Python
38.316855
205
0.47872
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/use_rules.py
#!/usr/bin/env python3 """ Build 'use others module data' mechanism for f2py2e. Unfinished. Copyright 2000 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2000/09/10 12:35:43 $ Pearu Peterson """ __version__ = "$Revision: 1.3 $"[10:-1] f2py_version = 'See `f2py -v`' from .auxfuncs import ( applyrules, dictappend, gentitle, hasnote, outmess ) usemodule_rules = { 'body': """ #begintitle# static char doc_#apiname#[] = \"\\\nVariable wrapper signature:\\n\\ \t #name# = get_#name#()\\n\\ Arguments:\\n\\ #docstr#\"; extern F_MODFUNC(#usemodulename#,#USEMODULENAME#,#realname#,#REALNAME#); static PyObject *#apiname#(PyObject *capi_self, PyObject *capi_args) { /*#decl#*/ \tif (!PyArg_ParseTuple(capi_args, \"\")) goto capi_fail; printf(\"c: %d\\n\",F_MODFUNC(#usemodulename#,#USEMODULENAME#,#realname#,#REALNAME#)); \treturn Py_BuildValue(\"\"); capi_fail: \treturn NULL; } """, 'method': '\t{\"get_#name#\",#apiname#,METH_VARARGS|METH_KEYWORDS,doc_#apiname#},', 'need': ['F_MODFUNC'] } ################ def buildusevars(m, r): ret = {} outmess( '\t\tBuilding use variable hooks for module "%s" (feature only for F90/F95)...\n' % (m['name'])) varsmap = {} revmap = {} if 'map' in r: for k in r['map'].keys(): if r['map'][k] in revmap: outmess('\t\t\tVariable "%s<=%s" is already mapped by "%s". Skipping.\n' % ( r['map'][k], k, revmap[r['map'][k]])) else: revmap[r['map'][k]] = k if 'only' in r and r['only']: for v in r['map'].keys(): if r['map'][v] in m['vars']: if revmap[r['map'][v]] == v: varsmap[v] = r['map'][v] else: outmess('\t\t\tIgnoring map "%s=>%s". See above.\n' % (v, r['map'][v])) else: outmess( '\t\t\tNo definition for variable "%s=>%s". Skipping.\n' % (v, r['map'][v])) else: for v in m['vars'].keys(): if v in revmap: varsmap[v] = revmap[v] else: varsmap[v] = v for v in varsmap.keys(): ret = dictappend(ret, buildusevar(v, varsmap[v], m['vars'], m['name'])) return ret def buildusevar(name, realname, vars, usemodulename): outmess('\t\t\tConstructing wrapper function for variable "%s=>%s"...\n' % ( name, realname)) ret = {} vrd = {'name': name, 'realname': realname, 'REALNAME': realname.upper(), 'usemodulename': usemodulename, 'USEMODULENAME': usemodulename.upper(), 'texname': name.replace('_', '\\_'), 'begintitle': gentitle('%s=>%s' % (name, realname)), 'endtitle': gentitle('end of %s=>%s' % (name, realname)), 'apiname': '#modulename#_use_%s_from_%s' % (realname, usemodulename) } nummap = {0: 'Ro', 1: 'Ri', 2: 'Rii', 3: 'Riii', 4: 'Riv', 5: 'Rv', 6: 'Rvi', 7: 'Rvii', 8: 'Rviii', 9: 'Rix'} vrd['texnamename'] = name for i in nummap.keys(): vrd['texnamename'] = vrd['texnamename'].replace(repr(i), nummap[i]) if hasnote(vars[realname]): vrd['note'] = vars[realname]['note'] rd = dictappend({}, vrd) print(name, realname, vars[realname]) ret = applyrules(usemodule_rules, rd) return ret
3,587
Python
30.473684
104
0.537218
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/src/fortranobject.h
#ifndef Py_FORTRANOBJECT_H #define Py_FORTRANOBJECT_H #ifdef __cplusplus extern "C" { #endif #include <Python.h> #ifdef FORTRANOBJECT_C #define NO_IMPORT_ARRAY #endif #define PY_ARRAY_UNIQUE_SYMBOL _npy_f2py_ARRAY_API #include "numpy/arrayobject.h" #include "numpy/npy_3kcompat.h" #ifdef F2PY_REPORT_ATEXIT #include <sys/timeb.h> // clang-format off extern void f2py_start_clock(void); extern void f2py_stop_clock(void); extern void f2py_start_call_clock(void); extern void f2py_stop_call_clock(void); extern void f2py_cb_start_clock(void); extern void f2py_cb_stop_clock(void); extern void f2py_cb_start_call_clock(void); extern void f2py_cb_stop_call_clock(void); extern void f2py_report_on_exit(int, void *); // clang-format on #endif #ifdef DMALLOC #include "dmalloc.h" #endif /* Fortran object interface */ /* 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12 PyFortranObject represents various Fortran objects: Fortran (module) routines, COMMON blocks, module data. Author: Pearu Peterson <[email protected]> */ #define F2PY_MAX_DIMS 40 typedef void (*f2py_set_data_func)(char *, npy_intp *); typedef void (*f2py_void_func)(void); typedef void (*f2py_init_func)(int *, npy_intp *, f2py_set_data_func, int *); /*typedef void* (*f2py_c_func)(void*,...);*/ typedef void *(*f2pycfunc)(void); typedef struct { char *name; /* attribute (array||routine) name */ int rank; /* array rank, 0 for scalar, max is F2PY_MAX_DIMS, || rank=-1 for Fortran routine */ struct { npy_intp d[F2PY_MAX_DIMS]; } dims; /* dimensions of the array, || not used */ int type; /* PyArray_<type> || not used */ char *data; /* pointer to array || Fortran routine */ f2py_init_func func; /* initialization function for allocatable arrays: func(&rank,dims,set_ptr_func,name,len(name)) || C/API wrapper for Fortran routine */ char *doc; /* documentation string; only recommended for routines. */ } FortranDataDef; typedef struct { PyObject_HEAD int len; /* Number of attributes */ FortranDataDef *defs; /* An array of FortranDataDef's */ PyObject *dict; /* Fortran object attribute dictionary */ } PyFortranObject; #define PyFortran_Check(op) (Py_TYPE(op) == &PyFortran_Type) #define PyFortran_Check1(op) (0 == strcmp(Py_TYPE(op)->tp_name, "fortran")) extern PyTypeObject PyFortran_Type; extern int F2PyDict_SetItemString(PyObject *dict, char *name, PyObject *obj); extern PyObject * PyFortranObject_New(FortranDataDef *defs, f2py_void_func init); extern PyObject * PyFortranObject_NewAsAttr(FortranDataDef *defs); PyObject * F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *)); void * F2PyCapsule_AsVoidPtr(PyObject *obj); int F2PyCapsule_Check(PyObject *ptr); extern void * F2PySwapThreadLocalCallbackPtr(char *key, void *ptr); extern void * F2PyGetThreadLocalCallbackPtr(char *key); #define ISCONTIGUOUS(m) (PyArray_FLAGS(m) & NPY_ARRAY_C_CONTIGUOUS) #define F2PY_INTENT_IN 1 #define F2PY_INTENT_INOUT 2 #define F2PY_INTENT_OUT 4 #define F2PY_INTENT_HIDE 8 #define F2PY_INTENT_CACHE 16 #define F2PY_INTENT_COPY 32 #define F2PY_INTENT_C 64 #define F2PY_OPTIONAL 128 #define F2PY_INTENT_INPLACE 256 #define F2PY_INTENT_ALIGNED4 512 #define F2PY_INTENT_ALIGNED8 1024 #define F2PY_INTENT_ALIGNED16 2048 #define ARRAY_ISALIGNED(ARR, SIZE) ((size_t)(PyArray_DATA(ARR)) % (SIZE) == 0) #define F2PY_ALIGN4(intent) (intent & F2PY_INTENT_ALIGNED4) #define F2PY_ALIGN8(intent) (intent & F2PY_INTENT_ALIGNED8) #define F2PY_ALIGN16(intent) (intent & F2PY_INTENT_ALIGNED16) #define F2PY_GET_ALIGNMENT(intent) \ (F2PY_ALIGN4(intent) \ ? 4 \ : (F2PY_ALIGN8(intent) ? 8 : (F2PY_ALIGN16(intent) ? 16 : 1))) #define F2PY_CHECK_ALIGNMENT(arr, intent) \ ARRAY_ISALIGNED(arr, F2PY_GET_ALIGNMENT(intent)) extern PyArrayObject * array_from_pyobj(const int type_num, npy_intp *dims, const int rank, const int intent, PyObject *obj); extern int copy_ND_array(const PyArrayObject *in, PyArrayObject *out); #ifdef DEBUG_COPY_ND_ARRAY extern void dump_attrs(const PyArrayObject *arr); #endif #ifdef __cplusplus } #endif #endif /* !Py_FORTRANOBJECT_H */
4,384
C
29.451389
78
0.684991
omniverse-code/kit/exts/omni.kit.pip_archive/pip_prebundle/numpy/f2py/src/fortranobject.c
#define FORTRANOBJECT_C #include "fortranobject.h" #ifdef __cplusplus extern "C" { #endif #include <stdlib.h> #include <string.h> /* This file implements: FortranObject, array_from_pyobj, copy_ND_array Author: Pearu Peterson <[email protected]> $Revision: 1.52 $ $Date: 2005/07/11 07:44:20 $ */ int F2PyDict_SetItemString(PyObject *dict, char *name, PyObject *obj) { if (obj == NULL) { fprintf(stderr, "Error loading %s\n", name); if (PyErr_Occurred()) { PyErr_Print(); PyErr_Clear(); } return -1; } return PyDict_SetItemString(dict, name, obj); } /* * Python-only fallback for thread-local callback pointers */ void * F2PySwapThreadLocalCallbackPtr(char *key, void *ptr) { PyObject *local_dict, *value; void *prev; local_dict = PyThreadState_GetDict(); if (local_dict == NULL) { Py_FatalError( "F2PySwapThreadLocalCallbackPtr: PyThreadState_GetDict " "failed"); } value = PyDict_GetItemString(local_dict, key); if (value != NULL) { prev = PyLong_AsVoidPtr(value); if (PyErr_Occurred()) { Py_FatalError( "F2PySwapThreadLocalCallbackPtr: PyLong_AsVoidPtr failed"); } } else { prev = NULL; } value = PyLong_FromVoidPtr((void *)ptr); if (value == NULL) { Py_FatalError( "F2PySwapThreadLocalCallbackPtr: PyLong_FromVoidPtr failed"); } if (PyDict_SetItemString(local_dict, key, value) != 0) { Py_FatalError( "F2PySwapThreadLocalCallbackPtr: PyDict_SetItemString failed"); } Py_DECREF(value); return prev; } void * F2PyGetThreadLocalCallbackPtr(char *key) { PyObject *local_dict, *value; void *prev; local_dict = PyThreadState_GetDict(); if (local_dict == NULL) { Py_FatalError( "F2PyGetThreadLocalCallbackPtr: PyThreadState_GetDict failed"); } value = PyDict_GetItemString(local_dict, key); if (value != NULL) { prev = PyLong_AsVoidPtr(value); if (PyErr_Occurred()) { Py_FatalError( "F2PyGetThreadLocalCallbackPtr: PyLong_AsVoidPtr failed"); } } else { prev = NULL; } return prev; } /************************* FortranObject *******************************/ typedef PyObject *(*fortranfunc)(PyObject *, PyObject *, PyObject *, void *); PyObject * PyFortranObject_New(FortranDataDef *defs, f2py_void_func init) { int i; PyFortranObject *fp = NULL; PyObject *v = NULL; if (init != NULL) { /* Initialize F90 module objects */ (*(init))(); } fp = PyObject_New(PyFortranObject, &PyFortran_Type); if (fp == NULL) { return NULL; } if ((fp->dict = PyDict_New()) == NULL) { Py_DECREF(fp); return NULL; } fp->len = 0; while (defs[fp->len].name != NULL) { fp->len++; } if (fp->len == 0) { goto fail; } fp->defs = defs; for (i = 0; i < fp->len; i++) { if (fp->defs[i].rank == -1) { /* Is Fortran routine */ v = PyFortranObject_NewAsAttr(&(fp->defs[i])); if (v == NULL) { goto fail; } PyDict_SetItemString(fp->dict, fp->defs[i].name, v); Py_XDECREF(v); } else if ((fp->defs[i].data) != NULL) { /* Is Fortran variable or array (not allocatable) */ if (fp->defs[i].type == NPY_STRING) { npy_intp n = fp->defs[i].rank - 1; v = PyArray_New(&PyArray_Type, n, fp->defs[i].dims.d, NPY_STRING, NULL, fp->defs[i].data, fp->defs[i].dims.d[n], NPY_ARRAY_FARRAY, NULL); } else { v = PyArray_New(&PyArray_Type, fp->defs[i].rank, fp->defs[i].dims.d, fp->defs[i].type, NULL, fp->defs[i].data, 0, NPY_ARRAY_FARRAY, NULL); } if (v == NULL) { goto fail; } PyDict_SetItemString(fp->dict, fp->defs[i].name, v); Py_XDECREF(v); } } return (PyObject *)fp; fail: Py_XDECREF(fp); return NULL; } PyObject * PyFortranObject_NewAsAttr(FortranDataDef *defs) { /* used for calling F90 module routines */ PyFortranObject *fp = NULL; fp = PyObject_New(PyFortranObject, &PyFortran_Type); if (fp == NULL) return NULL; if ((fp->dict = PyDict_New()) == NULL) { PyObject_Del(fp); return NULL; } fp->len = 1; fp->defs = defs; return (PyObject *)fp; } /* Fortran methods */ static void fortran_dealloc(PyFortranObject *fp) { Py_XDECREF(fp->dict); PyObject_Del(fp); } /* Returns number of bytes consumed from buf, or -1 on error. */ static Py_ssize_t format_def(char *buf, Py_ssize_t size, FortranDataDef def) { char *p = buf; int i; npy_intp n; n = PyOS_snprintf(p, size, "array(%" NPY_INTP_FMT, def.dims.d[0]); if (n < 0 || n >= size) { return -1; } p += n; size -= n; for (i = 1; i < def.rank; i++) { n = PyOS_snprintf(p, size, ",%" NPY_INTP_FMT, def.dims.d[i]); if (n < 0 || n >= size) { return -1; } p += n; size -= n; } if (size <= 0) { return -1; } *p++ = ')'; size--; if (def.data == NULL) { static const char notalloc[] = ", not allocated"; if ((size_t)size < sizeof(notalloc)) { return -1; } memcpy(p, notalloc, sizeof(notalloc)); p += sizeof(notalloc); size -= sizeof(notalloc); } return p - buf; } static PyObject * fortran_doc(FortranDataDef def) { char *buf, *p; PyObject *s = NULL; Py_ssize_t n, origsize, size = 100; if (def.doc != NULL) { size += strlen(def.doc); } origsize = size; buf = p = (char *)PyMem_Malloc(size); if (buf == NULL) { return PyErr_NoMemory(); } if (def.rank == -1) { if (def.doc) { n = strlen(def.doc); if (n > size) { goto fail; } memcpy(p, def.doc, n); p += n; size -= n; } else { n = PyOS_snprintf(p, size, "%s - no docs available", def.name); if (n < 0 || n >= size) { goto fail; } p += n; size -= n; } } else { PyArray_Descr *d = PyArray_DescrFromType(def.type); n = PyOS_snprintf(p, size, "%s : '%c'-", def.name, d->type); Py_DECREF(d); if (n < 0 || n >= size) { goto fail; } p += n; size -= n; if (def.data == NULL) { n = format_def(p, size, def); if (n < 0) { goto fail; } p += n; size -= n; } else if (def.rank > 0) { n = format_def(p, size, def); if (n < 0) { goto fail; } p += n; size -= n; } else { n = strlen("scalar"); if (size < n) { goto fail; } memcpy(p, "scalar", n); p += n; size -= n; } } if (size <= 1) { goto fail; } *p++ = '\n'; size--; /* p now points one beyond the last character of the string in buf */ s = PyUnicode_FromStringAndSize(buf, p - buf); PyMem_Free(buf); return s; fail: fprintf(stderr, "fortranobject.c: fortran_doc: len(p)=%zd>%zd=size:" " too long docstring required, increase size\n", p - buf, origsize); PyMem_Free(buf); return NULL; } static FortranDataDef *save_def; /* save pointer of an allocatable array */ static void set_data(char *d, npy_intp *f) { /* callback from Fortran */ if (*f) /* In fortran f=allocated(d) */ save_def->data = d; else save_def->data = NULL; /* printf("set_data: d=%p,f=%d\n",d,*f); */ } static PyObject * fortran_getattr(PyFortranObject *fp, char *name) { int i, j, k, flag; if (fp->dict != NULL) { PyObject *v = _PyDict_GetItemStringWithError(fp->dict, name); if (v == NULL && PyErr_Occurred()) { return NULL; } else if (v != NULL) { Py_INCREF(v); return v; } } for (i = 0, j = 1; i < fp->len && (j = strcmp(name, fp->defs[i].name)); i++) ; if (j == 0) if (fp->defs[i].rank != -1) { /* F90 allocatable array */ if (fp->defs[i].func == NULL) return NULL; for (k = 0; k < fp->defs[i].rank; ++k) fp->defs[i].dims.d[k] = -1; save_def = &fp->defs[i]; (*(fp->defs[i].func))(&fp->defs[i].rank, fp->defs[i].dims.d, set_data, &flag); if (flag == 2) k = fp->defs[i].rank + 1; else k = fp->defs[i].rank; if (fp->defs[i].data != NULL) { /* array is allocated */ PyObject *v = PyArray_New( &PyArray_Type, k, fp->defs[i].dims.d, fp->defs[i].type, NULL, fp->defs[i].data, 0, NPY_ARRAY_FARRAY, NULL); if (v == NULL) return NULL; /* Py_INCREF(v); */ return v; } else { /* array is not allocated */ Py_RETURN_NONE; } } if (strcmp(name, "__dict__") == 0) { Py_INCREF(fp->dict); return fp->dict; } if (strcmp(name, "__doc__") == 0) { PyObject *s = PyUnicode_FromString(""), *s2, *s3; for (i = 0; i < fp->len; i++) { s2 = fortran_doc(fp->defs[i]); s3 = PyUnicode_Concat(s, s2); Py_DECREF(s2); Py_DECREF(s); s = s3; } if (PyDict_SetItemString(fp->dict, name, s)) return NULL; return s; } if ((strcmp(name, "_cpointer") == 0) && (fp->len == 1)) { PyObject *cobj = F2PyCapsule_FromVoidPtr((void *)(fp->defs[0].data), NULL); if (PyDict_SetItemString(fp->dict, name, cobj)) return NULL; return cobj; } PyObject *str, *ret; str = PyUnicode_FromString(name); ret = PyObject_GenericGetAttr((PyObject *)fp, str); Py_DECREF(str); return ret; } static int fortran_setattr(PyFortranObject *fp, char *name, PyObject *v) { int i, j, flag; PyArrayObject *arr = NULL; for (i = 0, j = 1; i < fp->len && (j = strcmp(name, fp->defs[i].name)); i++) ; if (j == 0) { if (fp->defs[i].rank == -1) { PyErr_SetString(PyExc_AttributeError, "over-writing fortran routine"); return -1; } if (fp->defs[i].func != NULL) { /* is allocatable array */ npy_intp dims[F2PY_MAX_DIMS]; int k; save_def = &fp->defs[i]; if (v != Py_None) { /* set new value (reallocate if needed -- see f2py generated code for more details ) */ for (k = 0; k < fp->defs[i].rank; k++) dims[k] = -1; if ((arr = array_from_pyobj(fp->defs[i].type, dims, fp->defs[i].rank, F2PY_INTENT_IN, v)) == NULL) return -1; (*(fp->defs[i].func))(&fp->defs[i].rank, PyArray_DIMS(arr), set_data, &flag); } else { /* deallocate */ for (k = 0; k < fp->defs[i].rank; k++) dims[k] = 0; (*(fp->defs[i].func))(&fp->defs[i].rank, dims, set_data, &flag); for (k = 0; k < fp->defs[i].rank; k++) dims[k] = -1; } memcpy(fp->defs[i].dims.d, dims, fp->defs[i].rank * sizeof(npy_intp)); } else { /* not allocatable array */ if ((arr = array_from_pyobj(fp->defs[i].type, fp->defs[i].dims.d, fp->defs[i].rank, F2PY_INTENT_IN, v)) == NULL) return -1; } if (fp->defs[i].data != NULL) { /* copy Python object to Fortran array */ npy_intp s = PyArray_MultiplyList(fp->defs[i].dims.d, PyArray_NDIM(arr)); if (s == -1) s = PyArray_MultiplyList(PyArray_DIMS(arr), PyArray_NDIM(arr)); if (s < 0 || (memcpy(fp->defs[i].data, PyArray_DATA(arr), s * PyArray_ITEMSIZE(arr))) == NULL) { if ((PyObject *)arr != v) { Py_DECREF(arr); } return -1; } if ((PyObject *)arr != v) { Py_DECREF(arr); } } else return (fp->defs[i].func == NULL ? -1 : 0); return 0; /* successful */ } if (fp->dict == NULL) { fp->dict = PyDict_New(); if (fp->dict == NULL) return -1; } if (v == NULL) { int rv = PyDict_DelItemString(fp->dict, name); if (rv < 0) PyErr_SetString(PyExc_AttributeError, "delete non-existing fortran attribute"); return rv; } else return PyDict_SetItemString(fp->dict, name, v); } static PyObject * fortran_call(PyFortranObject *fp, PyObject *arg, PyObject *kw) { int i = 0; /* printf("fortran call name=%s,func=%p,data=%p,%p\n",fp->defs[i].name, fp->defs[i].func,fp->defs[i].data,&fp->defs[i].data); */ if (fp->defs[i].rank == -1) { /* is Fortran routine */ if (fp->defs[i].func == NULL) { PyErr_Format(PyExc_RuntimeError, "no function to call"); return NULL; } else if (fp->defs[i].data == NULL) /* dummy routine */ return (*((fortranfunc)(fp->defs[i].func)))((PyObject *)fp, arg, kw, NULL); else return (*((fortranfunc)(fp->defs[i].func)))( (PyObject *)fp, arg, kw, (void *)fp->defs[i].data); } PyErr_Format(PyExc_TypeError, "this fortran object is not callable"); return NULL; } static PyObject * fortran_repr(PyFortranObject *fp) { PyObject *name = NULL, *repr = NULL; name = PyObject_GetAttrString((PyObject *)fp, "__name__"); PyErr_Clear(); if (name != NULL && PyUnicode_Check(name)) { repr = PyUnicode_FromFormat("<fortran %U>", name); } else { repr = PyUnicode_FromString("<fortran object>"); } Py_XDECREF(name); return repr; } PyTypeObject PyFortran_Type = { PyVarObject_HEAD_INIT(NULL, 0).tp_name = "fortran", .tp_basicsize = sizeof(PyFortranObject), .tp_dealloc = (destructor)fortran_dealloc, .tp_getattr = (getattrfunc)fortran_getattr, .tp_setattr = (setattrfunc)fortran_setattr, .tp_repr = (reprfunc)fortran_repr, .tp_call = (ternaryfunc)fortran_call, }; /************************* f2py_report_atexit *******************************/ #ifdef F2PY_REPORT_ATEXIT static int passed_time = 0; static int passed_counter = 0; static int passed_call_time = 0; static struct timeb start_time; static struct timeb stop_time; static struct timeb start_call_time; static struct timeb stop_call_time; static int cb_passed_time = 0; static int cb_passed_counter = 0; static int cb_passed_call_time = 0; static struct timeb cb_start_time; static struct timeb cb_stop_time; static struct timeb cb_start_call_time; static struct timeb cb_stop_call_time; extern void f2py_start_clock(void) { ftime(&start_time); } extern void f2py_start_call_clock(void) { f2py_stop_clock(); ftime(&start_call_time); } extern void f2py_stop_clock(void) { ftime(&stop_time); passed_time += 1000 * (stop_time.time - start_time.time); passed_time += stop_time.millitm - start_time.millitm; } extern void f2py_stop_call_clock(void) { ftime(&stop_call_time); passed_call_time += 1000 * (stop_call_time.time - start_call_time.time); passed_call_time += stop_call_time.millitm - start_call_time.millitm; passed_counter += 1; f2py_start_clock(); } extern void f2py_cb_start_clock(void) { ftime(&cb_start_time); } extern void f2py_cb_start_call_clock(void) { f2py_cb_stop_clock(); ftime(&cb_start_call_time); } extern void f2py_cb_stop_clock(void) { ftime(&cb_stop_time); cb_passed_time += 1000 * (cb_stop_time.time - cb_start_time.time); cb_passed_time += cb_stop_time.millitm - cb_start_time.millitm; } extern void f2py_cb_stop_call_clock(void) { ftime(&cb_stop_call_time); cb_passed_call_time += 1000 * (cb_stop_call_time.time - cb_start_call_time.time); cb_passed_call_time += cb_stop_call_time.millitm - cb_start_call_time.millitm; cb_passed_counter += 1; f2py_cb_start_clock(); } static int f2py_report_on_exit_been_here = 0; extern void f2py_report_on_exit(int exit_flag, void *name) { if (f2py_report_on_exit_been_here) { fprintf(stderr, " %s\n", (char *)name); return; } f2py_report_on_exit_been_here = 1; fprintf(stderr, " /-----------------------\\\n"); fprintf(stderr, " < F2PY performance report >\n"); fprintf(stderr, " \\-----------------------/\n"); fprintf(stderr, "Overall time spent in ...\n"); fprintf(stderr, "(a) wrapped (Fortran/C) functions : %8d msec\n", passed_call_time); fprintf(stderr, "(b) f2py interface, %6d calls : %8d msec\n", passed_counter, passed_time); fprintf(stderr, "(c) call-back (Python) functions : %8d msec\n", cb_passed_call_time); fprintf(stderr, "(d) f2py call-back interface, %6d calls : %8d msec\n", cb_passed_counter, cb_passed_time); fprintf(stderr, "(e) wrapped (Fortran/C) functions (actual) : %8d msec\n\n", passed_call_time - cb_passed_call_time - cb_passed_time); fprintf(stderr, "Use -DF2PY_REPORT_ATEXIT_DISABLE to disable this message.\n"); fprintf(stderr, "Exit status: %d\n", exit_flag); fprintf(stderr, "Modules : %s\n", (char *)name); } #endif /********************** report on array copy ****************************/ #ifdef F2PY_REPORT_ON_ARRAY_COPY static void f2py_report_on_array_copy(PyArrayObject *arr) { const npy_intp arr_size = PyArray_Size((PyObject *)arr); if (arr_size > F2PY_REPORT_ON_ARRAY_COPY) { fprintf(stderr, "copied an array: size=%ld, elsize=%" NPY_INTP_FMT "\n", arr_size, (npy_intp)PyArray_ITEMSIZE(arr)); } } static void f2py_report_on_array_copy_fromany(void) { fprintf(stderr, "created an array from object\n"); } #define F2PY_REPORT_ON_ARRAY_COPY_FROMARR \ f2py_report_on_array_copy((PyArrayObject *)arr) #define F2PY_REPORT_ON_ARRAY_COPY_FROMANY f2py_report_on_array_copy_fromany() #else #define F2PY_REPORT_ON_ARRAY_COPY_FROMARR #define F2PY_REPORT_ON_ARRAY_COPY_FROMANY #endif /************************* array_from_obj *******************************/ /* * File: array_from_pyobj.c * * Description: * ------------ * Provides array_from_pyobj function that returns a contiguous array * object with the given dimensions and required storage order, either * in row-major (C) or column-major (Fortran) order. The function * array_from_pyobj is very flexible about its Python object argument * that can be any number, list, tuple, or array. * * array_from_pyobj is used in f2py generated Python extension * modules. * * Author: Pearu Peterson <[email protected]> * Created: 13-16 January 2002 * $Id: fortranobject.c,v 1.52 2005/07/11 07:44:20 pearu Exp $ */ static int check_and_fix_dimensions(const PyArrayObject *arr, const int rank, npy_intp *dims); static int find_first_negative_dimension(const int rank, const npy_intp *dims) { for (int i = 0; i < rank; ++i) { if (dims[i] < 0) { return i; } } return -1; } #ifdef DEBUG_COPY_ND_ARRAY void dump_dims(int rank, npy_intp const *dims) { int i; printf("["); for (i = 0; i < rank; ++i) { printf("%3" NPY_INTP_FMT, dims[i]); } printf("]\n"); } void dump_attrs(const PyArrayObject *obj) { const PyArrayObject_fields *arr = (const PyArrayObject_fields *)obj; int rank = PyArray_NDIM(arr); npy_intp size = PyArray_Size((PyObject *)arr); printf("\trank = %d, flags = %d, size = %" NPY_INTP_FMT "\n", rank, arr->flags, size); printf("\tstrides = "); dump_dims(rank, arr->strides); printf("\tdimensions = "); dump_dims(rank, arr->dimensions); } #endif #define SWAPTYPE(a, b, t) \ { \ t c; \ c = (a); \ (a) = (b); \ (b) = c; \ } static int swap_arrays(PyArrayObject *obj1, PyArrayObject *obj2) { PyArrayObject_fields *arr1 = (PyArrayObject_fields *)obj1, *arr2 = (PyArrayObject_fields *)obj2; SWAPTYPE(arr1->data, arr2->data, char *); SWAPTYPE(arr1->nd, arr2->nd, int); SWAPTYPE(arr1->dimensions, arr2->dimensions, npy_intp *); SWAPTYPE(arr1->strides, arr2->strides, npy_intp *); SWAPTYPE(arr1->base, arr2->base, PyObject *); SWAPTYPE(arr1->descr, arr2->descr, PyArray_Descr *); SWAPTYPE(arr1->flags, arr2->flags, int); /* SWAPTYPE(arr1->weakreflist,arr2->weakreflist,PyObject*); */ return 0; } #define ARRAY_ISCOMPATIBLE(arr, type_num) \ ((PyArray_ISINTEGER(arr) && PyTypeNum_ISINTEGER(type_num)) || \ (PyArray_ISFLOAT(arr) && PyTypeNum_ISFLOAT(type_num)) || \ (PyArray_ISCOMPLEX(arr) && PyTypeNum_ISCOMPLEX(type_num)) || \ (PyArray_ISBOOL(arr) && PyTypeNum_ISBOOL(type_num))) extern PyArrayObject * array_from_pyobj(const int type_num, npy_intp *dims, const int rank, const int intent, PyObject *obj) { /* * Note about reference counting * ----------------------------- * If the caller returns the array to Python, it must be done with * Py_BuildValue("N",arr). * Otherwise, if obj!=arr then the caller must call Py_DECREF(arr). * * Note on intent(cache,out,..) * --------------------- * Don't expect correct data when returning intent(cache) array. * */ char mess[200]; PyArrayObject *arr = NULL; PyArray_Descr *descr; char typechar; int elsize; if ((intent & F2PY_INTENT_HIDE) || ((intent & F2PY_INTENT_CACHE) && (obj == Py_None)) || ((intent & F2PY_OPTIONAL) && (obj == Py_None))) { /* intent(cache), optional, intent(hide) */ int i = find_first_negative_dimension(rank, dims); if (i >= 0) { PyErr_Format(PyExc_ValueError, "failed to create intent(cache|hide)|optional array" " -- must have defined dimensions, but dims[%d] = %" NPY_INTP_FMT, i, dims[i]); return NULL; } arr = (PyArrayObject *)PyArray_New(&PyArray_Type, rank, dims, type_num, NULL, NULL, 1, !(intent & F2PY_INTENT_C), NULL); if (arr == NULL) return NULL; if (!(intent & F2PY_INTENT_CACHE)) PyArray_FILLWBYTE(arr, 0); return arr; } descr = PyArray_DescrFromType(type_num); /* compatibility with NPY_CHAR */ if (type_num == NPY_STRING) { PyArray_DESCR_REPLACE(descr); if (descr == NULL) { return NULL; } descr->elsize = 1; descr->type = NPY_CHARLTR; } elsize = descr->elsize; typechar = descr->type; Py_DECREF(descr); if (PyArray_Check(obj)) { arr = (PyArrayObject *)obj; if (intent & F2PY_INTENT_CACHE) { /* intent(cache) */ if (PyArray_ISONESEGMENT(arr) && PyArray_ITEMSIZE(arr) >= elsize) { if (check_and_fix_dimensions(arr, rank, dims)) { return NULL; } if (intent & F2PY_INTENT_OUT) Py_INCREF(arr); return arr; } strcpy(mess, "failed to initialize intent(cache) array"); if (!PyArray_ISONESEGMENT(arr)) strcat(mess, " -- input must be in one segment"); if (PyArray_ITEMSIZE(arr) < elsize) sprintf(mess + strlen(mess), " -- expected at least elsize=%d but got " "%" NPY_INTP_FMT, elsize, (npy_intp)PyArray_ITEMSIZE(arr)); PyErr_SetString(PyExc_ValueError, mess); return NULL; } /* here we have always intent(in) or intent(inout) or intent(inplace) */ if (check_and_fix_dimensions(arr, rank, dims)) { return NULL; } /* printf("intent alignment=%d\n", F2PY_GET_ALIGNMENT(intent)); printf("alignment check=%d\n", F2PY_CHECK_ALIGNMENT(arr, intent)); int i; for (i=1;i<=16;i++) printf("i=%d isaligned=%d\n", i, ARRAY_ISALIGNED(arr, i)); */ if ((!(intent & F2PY_INTENT_COPY)) && PyArray_ITEMSIZE(arr) == elsize && ARRAY_ISCOMPATIBLE(arr, type_num) && F2PY_CHECK_ALIGNMENT(arr, intent)) { if ((intent & F2PY_INTENT_C) ? PyArray_ISCARRAY_RO(arr) : PyArray_ISFARRAY_RO(arr)) { if ((intent & F2PY_INTENT_OUT)) { Py_INCREF(arr); } /* Returning input array */ return arr; } } if (intent & F2PY_INTENT_INOUT) { strcpy(mess, "failed to initialize intent(inout) array"); /* Must use PyArray_IS*ARRAY because intent(inout) requires * writable input */ if ((intent & F2PY_INTENT_C) && !PyArray_ISCARRAY(arr)) strcat(mess, " -- input not contiguous"); if (!(intent & F2PY_INTENT_C) && !PyArray_ISFARRAY(arr)) strcat(mess, " -- input not fortran contiguous"); if (PyArray_ITEMSIZE(arr) != elsize) sprintf(mess + strlen(mess), " -- expected elsize=%d but got %" NPY_INTP_FMT, elsize, (npy_intp)PyArray_ITEMSIZE(arr)); if (!(ARRAY_ISCOMPATIBLE(arr, type_num))) sprintf(mess + strlen(mess), " -- input '%c' not compatible to '%c'", PyArray_DESCR(arr)->type, typechar); if (!(F2PY_CHECK_ALIGNMENT(arr, intent))) sprintf(mess + strlen(mess), " -- input not %d-aligned", F2PY_GET_ALIGNMENT(intent)); PyErr_SetString(PyExc_ValueError, mess); return NULL; } /* here we have always intent(in) or intent(inplace) */ { PyArrayObject *retarr; retarr = (PyArrayObject *)PyArray_New( &PyArray_Type, PyArray_NDIM(arr), PyArray_DIMS(arr), type_num, NULL, NULL, 1, !(intent & F2PY_INTENT_C), NULL); if (retarr == NULL) return NULL; F2PY_REPORT_ON_ARRAY_COPY_FROMARR; if (PyArray_CopyInto(retarr, arr)) { Py_DECREF(retarr); return NULL; } if (intent & F2PY_INTENT_INPLACE) { if (swap_arrays(arr, retarr)) return NULL; /* XXX: set exception */ Py_XDECREF(retarr); if (intent & F2PY_INTENT_OUT) Py_INCREF(arr); } else { arr = retarr; } } return arr; } if ((intent & F2PY_INTENT_INOUT) || (intent & F2PY_INTENT_INPLACE) || (intent & F2PY_INTENT_CACHE)) { PyErr_Format(PyExc_TypeError, "failed to initialize intent(inout|inplace|cache) " "array, input '%s' object is not an array", Py_TYPE(obj)->tp_name); return NULL; } { PyArray_Descr *descr = PyArray_DescrFromType(type_num); /* compatibility with NPY_CHAR */ if (type_num == NPY_STRING) { PyArray_DESCR_REPLACE(descr); if (descr == NULL) { return NULL; } descr->elsize = 1; descr->type = NPY_CHARLTR; } F2PY_REPORT_ON_ARRAY_COPY_FROMANY; arr = (PyArrayObject *)PyArray_FromAny( obj, descr, 0, 0, ((intent & F2PY_INTENT_C) ? NPY_ARRAY_CARRAY : NPY_ARRAY_FARRAY) | NPY_ARRAY_FORCECAST, NULL); if (arr == NULL) return NULL; if (check_and_fix_dimensions(arr, rank, dims)) { return NULL; } return arr; } } /*****************************************/ /* Helper functions for array_from_pyobj */ /*****************************************/ static int check_and_fix_dimensions(const PyArrayObject *arr, const int rank, npy_intp *dims) { /* * This function fills in blanks (that are -1's) in dims list using * the dimensions from arr. It also checks that non-blank dims will * match with the corresponding values in arr dimensions. * * Returns 0 if the function is successful. * * If an error condition is detected, an exception is set and 1 is * returned. */ const npy_intp arr_size = (PyArray_NDIM(arr)) ? PyArray_Size((PyObject *)arr) : 1; #ifdef DEBUG_COPY_ND_ARRAY dump_attrs(arr); printf("check_and_fix_dimensions:init: dims="); dump_dims(rank, dims); #endif if (rank > PyArray_NDIM(arr)) { /* [1,2] -> [[1],[2]]; 1 -> [[1]] */ npy_intp new_size = 1; int free_axe = -1; int i; npy_intp d; /* Fill dims where -1 or 0; check dimensions; calc new_size; */ for (i = 0; i < PyArray_NDIM(arr); ++i) { d = PyArray_DIM(arr, i); if (dims[i] >= 0) { if (d > 1 && dims[i] != d) { PyErr_Format( PyExc_ValueError, "%d-th dimension must be fixed to %" NPY_INTP_FMT " but got %" NPY_INTP_FMT "\n", i, dims[i], d); return 1; } if (!dims[i]) dims[i] = 1; } else { dims[i] = d ? d : 1; } new_size *= dims[i]; } for (i = PyArray_NDIM(arr); i < rank; ++i) if (dims[i] > 1) { PyErr_Format(PyExc_ValueError, "%d-th dimension must be %" NPY_INTP_FMT " but got 0 (not defined).\n", i, dims[i]); return 1; } else if (free_axe < 0) free_axe = i; else dims[i] = 1; if (free_axe >= 0) { dims[free_axe] = arr_size / new_size; new_size *= dims[free_axe]; } if (new_size != arr_size) { PyErr_Format(PyExc_ValueError, "unexpected array size: new_size=%" NPY_INTP_FMT ", got array with arr_size=%" NPY_INTP_FMT " (maybe too many free indices)\n", new_size, arr_size); return 1; } } else if (rank == PyArray_NDIM(arr)) { npy_intp new_size = 1; int i; npy_intp d; for (i = 0; i < rank; ++i) { d = PyArray_DIM(arr, i); if (dims[i] >= 0) { if (d > 1 && d != dims[i]) { PyErr_Format( PyExc_ValueError, "%d-th dimension must be fixed to %" NPY_INTP_FMT " but got %" NPY_INTP_FMT "\n", i, dims[i], d); return 1; } if (!dims[i]) dims[i] = 1; } else dims[i] = d; new_size *= dims[i]; } if (new_size != arr_size) { PyErr_Format(PyExc_ValueError, "unexpected array size: new_size=%" NPY_INTP_FMT ", got array with arr_size=%" NPY_INTP_FMT "\n", new_size, arr_size); return 1; } } else { /* [[1,2]] -> [[1],[2]] */ int i, j; npy_intp d; int effrank; npy_intp size; for (i = 0, effrank = 0; i < PyArray_NDIM(arr); ++i) if (PyArray_DIM(arr, i) > 1) ++effrank; if (dims[rank - 1] >= 0) if (effrank > rank) { PyErr_Format(PyExc_ValueError, "too many axes: %d (effrank=%d), " "expected rank=%d\n", PyArray_NDIM(arr), effrank, rank); return 1; } for (i = 0, j = 0; i < rank; ++i) { while (j < PyArray_NDIM(arr) && PyArray_DIM(arr, j) < 2) ++j; if (j >= PyArray_NDIM(arr)) d = 1; else d = PyArray_DIM(arr, j++); if (dims[i] >= 0) { if (d > 1 && d != dims[i]) { PyErr_Format( PyExc_ValueError, "%d-th dimension must be fixed to %" NPY_INTP_FMT " but got %" NPY_INTP_FMT " (real index=%d)\n", i, dims[i], d, j - 1); return 1; } if (!dims[i]) dims[i] = 1; } else dims[i] = d; } for (i = rank; i < PyArray_NDIM(arr); ++i) { /* [[1,2],[3,4]] -> [1,2,3,4] */ while (j < PyArray_NDIM(arr) && PyArray_DIM(arr, j) < 2) ++j; if (j >= PyArray_NDIM(arr)) d = 1; else d = PyArray_DIM(arr, j++); dims[rank - 1] *= d; } for (i = 0, size = 1; i < rank; ++i) size *= dims[i]; if (size != arr_size) { char msg[200]; int len; snprintf(msg, sizeof(msg), "unexpected array size: size=%" NPY_INTP_FMT ", arr_size=%" NPY_INTP_FMT ", rank=%d, effrank=%d, arr.nd=%d, dims=[", size, arr_size, rank, effrank, PyArray_NDIM(arr)); for (i = 0; i < rank; ++i) { len = strlen(msg); snprintf(msg + len, sizeof(msg) - len, " %" NPY_INTP_FMT, dims[i]); } len = strlen(msg); snprintf(msg + len, sizeof(msg) - len, " ], arr.dims=["); for (i = 0; i < PyArray_NDIM(arr); ++i) { len = strlen(msg); snprintf(msg + len, sizeof(msg) - len, " %" NPY_INTP_FMT, PyArray_DIM(arr, i)); } len = strlen(msg); snprintf(msg + len, sizeof(msg) - len, " ]\n"); PyErr_SetString(PyExc_ValueError, msg); return 1; } } #ifdef DEBUG_COPY_ND_ARRAY printf("check_and_fix_dimensions:end: dims="); dump_dims(rank, dims); #endif return 0; } /* End of file: array_from_pyobj.c */ /************************* copy_ND_array *******************************/ extern int copy_ND_array(const PyArrayObject *arr, PyArrayObject *out) { F2PY_REPORT_ON_ARRAY_COPY_FROMARR; return PyArray_CopyInto(out, (PyArrayObject *)arr); } /*********************************************/ /* Compatibility functions for Python >= 3.0 */ /*********************************************/ PyObject * F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *)) { PyObject *ret = PyCapsule_New(ptr, NULL, dtor); if (ret == NULL) { PyErr_Clear(); } return ret; } void * F2PyCapsule_AsVoidPtr(PyObject *obj) { void *ret = PyCapsule_GetPointer(obj, NULL); if (ret == NULL) { PyErr_Clear(); } return ret; } int F2PyCapsule_Check(PyObject *ptr) { return PyCapsule_CheckExact(ptr); } #ifdef __cplusplus } #endif /************************* EOF fortranobject.c *******************************/
37,535
C
30.33222
79
0.4791