file_path
stringlengths
21
202
content
stringlengths
12
1.02M
size
int64
12
1.02M
lang
stringclasses
9 values
avg_line_length
float64
3.33
100
max_line_length
int64
10
993
alphanum_fraction
float64
0.27
0.93
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnDistance3DDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.Distance3D Computes the distance between two 3D points A and B. Which is the length of the vector with start and end points A and B If one input is an array and the other is a single point, the scaler will be broadcast to the size of the array """ from typing import Any import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnDistance3DDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.Distance3D Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.a inputs.b Outputs: outputs.distance """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:a', 'pointd[3],pointd[3][],pointf[3],pointf[3][],pointh[3],pointh[3][]', 1, 'A', 'Vector A', {}, True, None, False, ''), ('inputs:b', 'pointd[3],pointd[3][],pointf[3],pointf[3][],pointh[3],pointh[3][]', 1, 'B', 'Vector B', {}, True, None, False, ''), ('outputs:distance', 'double,double[],float,float[],half,half[]', 1, None, 'The distance between the input vectors', {}, True, None, False, ''), ]) class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def a(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.a""" return og.RuntimeAttribute(self._attributes.a.get_attribute_data(), self._context, True) @a.setter def a(self, value_to_set: Any): """Assign another attribute's value to outputs.a""" if isinstance(value_to_set, og.RuntimeAttribute): self.a.value = value_to_set.value else: self.a.value = value_to_set @property def b(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.b""" return og.RuntimeAttribute(self._attributes.b.get_attribute_data(), self._context, True) @b.setter def b(self, value_to_set: Any): """Assign another attribute's value to outputs.b""" if isinstance(value_to_set, og.RuntimeAttribute): self.b.value = value_to_set.value else: self.b.value = value_to_set def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def distance(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute outputs.distance""" return og.RuntimeAttribute(self._attributes.distance.get_attribute_data(), self._context, False) @distance.setter def distance(self, value_to_set: Any): """Assign another attribute's value to outputs.distance""" if isinstance(value_to_set, og.RuntimeAttribute): self.distance.value = value_to_set.value else: self.distance.value = value_to_set def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnDistance3DDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnDistance3DDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnDistance3DDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
6,358
Python
47.915384
152
0.654294
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnCurveFrameDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.CurveToFrame Create a frame object based on a curve description """ import numpy import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnCurveFrameDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.CurveToFrame Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.curvePoints inputs.curveVertexCounts inputs.curveVertexStarts Outputs: outputs.out outputs.tangent outputs.up """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:curvePoints', 'float3[]', 0, 'Curve Points', 'Points on the curve to be framed', {}, True, [], False, ''), ('inputs:curveVertexCounts', 'int[]', 0, 'Curve Vertex Counts', 'Vertex counts for the curve points', {}, True, [], False, ''), ('inputs:curveVertexStarts', 'int[]', 0, 'Curve Vertex Starts', 'Vertex starting points', {}, True, [], False, ''), ('outputs:out', 'float3[]', 0, 'Out Vectors', 'Out vector directions on the curve frame', {}, True, None, False, ''), ('outputs:tangent', 'float3[]', 0, 'Tangents', 'Tangents on the curve frame', {}, True, None, False, ''), ('outputs:up', 'float3[]', 0, 'Up Vectors', 'Up vectors on the curve frame', {}, True, None, False, ''), ]) class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def curvePoints(self): data_view = og.AttributeValueHelper(self._attributes.curvePoints) return data_view.get() @curvePoints.setter def curvePoints(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.curvePoints) data_view = og.AttributeValueHelper(self._attributes.curvePoints) data_view.set(value) self.curvePoints_size = data_view.get_array_size() @property def curveVertexCounts(self): data_view = og.AttributeValueHelper(self._attributes.curveVertexCounts) return data_view.get() @curveVertexCounts.setter def curveVertexCounts(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.curveVertexCounts) data_view = og.AttributeValueHelper(self._attributes.curveVertexCounts) data_view.set(value) self.curveVertexCounts_size = data_view.get_array_size() @property def curveVertexStarts(self): data_view = og.AttributeValueHelper(self._attributes.curveVertexStarts) return data_view.get() @curveVertexStarts.setter def curveVertexStarts(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.curveVertexStarts) data_view = og.AttributeValueHelper(self._attributes.curveVertexStarts) data_view.set(value) self.curveVertexStarts_size = data_view.get_array_size() def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.out_size = None self.tangent_size = None self.up_size = None self._batchedWriteValues = { } @property def out(self): data_view = og.AttributeValueHelper(self._attributes.out) return data_view.get(reserved_element_count=self.out_size) @out.setter def out(self, value): data_view = og.AttributeValueHelper(self._attributes.out) data_view.set(value) self.out_size = data_view.get_array_size() @property def tangent(self): data_view = og.AttributeValueHelper(self._attributes.tangent) return data_view.get(reserved_element_count=self.tangent_size) @tangent.setter def tangent(self, value): data_view = og.AttributeValueHelper(self._attributes.tangent) data_view.set(value) self.tangent_size = data_view.get_array_size() @property def up(self): data_view = og.AttributeValueHelper(self._attributes.up) return data_view.get(reserved_element_count=self.up_size) @up.setter def up(self, value): data_view = og.AttributeValueHelper(self._attributes.up) data_view.set(value) self.up_size = data_view.get_array_size() def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnCurveFrameDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnCurveFrameDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnCurveFrameDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
7,832
Python
44.807017
135
0.648238
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnCurveTubeSTDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.CurveTubeST Compute curve tube ST values """ import numpy import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnCurveTubeSTDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.CurveTubeST Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.cols inputs.curveVertexCounts inputs.curveVertexStarts inputs.scaleTLikeS inputs.t inputs.tubeQuadStarts inputs.tubeSTStarts inputs.width Outputs: outputs.primvars_st outputs.primvars_st_indices """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:cols', 'int[]', 0, 'Columns', 'Columns of the tubes', {}, True, [], False, ''), ('inputs:curveVertexCounts', 'int[]', 0, 'Curve Vertex Counts', 'Vertex counts for the curve points', {}, True, [], False, ''), ('inputs:curveVertexStarts', 'int[]', 0, 'Curve Vertex Starts', 'Vertex starting points', {}, True, [], False, ''), ('inputs:scaleTLikeS', 'bool', 0, 'Scale T Like S', 'If true then scale T the same as S', {}, True, False, False, ''), ('inputs:t', 'float[]', 0, 'T Values', 'T values of the tubes', {}, True, [], False, ''), ('inputs:tubeQuadStarts', 'int[]', 0, 'Tube Quad Starts', 'Vertex index values for the tube quad starting points', {}, True, [], False, ''), ('inputs:tubeSTStarts', 'int[]', 0, 'Tube ST Starts', 'Vertex index values for the tube ST starting points', {}, True, [], False, ''), ('inputs:width', 'float[]', 0, 'Tube Widths', 'Width of tube positions, if scaling T like S', {}, True, [], False, ''), ('outputs:primvars:st', 'float2[]', 0, 'ST Values', 'Array of computed ST values', {}, True, None, False, ''), ('outputs:primvars:st:indices', 'int[]', 0, 'ST Indices', 'Array of computed ST indices', {}, True, None, False, ''), ]) class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def cols(self): data_view = og.AttributeValueHelper(self._attributes.cols) return data_view.get() @cols.setter def cols(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.cols) data_view = og.AttributeValueHelper(self._attributes.cols) data_view.set(value) self.cols_size = data_view.get_array_size() @property def curveVertexCounts(self): data_view = og.AttributeValueHelper(self._attributes.curveVertexCounts) return data_view.get() @curveVertexCounts.setter def curveVertexCounts(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.curveVertexCounts) data_view = og.AttributeValueHelper(self._attributes.curveVertexCounts) data_view.set(value) self.curveVertexCounts_size = data_view.get_array_size() @property def curveVertexStarts(self): data_view = og.AttributeValueHelper(self._attributes.curveVertexStarts) return data_view.get() @curveVertexStarts.setter def curveVertexStarts(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.curveVertexStarts) data_view = og.AttributeValueHelper(self._attributes.curveVertexStarts) data_view.set(value) self.curveVertexStarts_size = data_view.get_array_size() @property def scaleTLikeS(self): data_view = og.AttributeValueHelper(self._attributes.scaleTLikeS) return data_view.get() @scaleTLikeS.setter def scaleTLikeS(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.scaleTLikeS) data_view = og.AttributeValueHelper(self._attributes.scaleTLikeS) data_view.set(value) @property def t(self): data_view = og.AttributeValueHelper(self._attributes.t) return data_view.get() @t.setter def t(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.t) data_view = og.AttributeValueHelper(self._attributes.t) data_view.set(value) self.t_size = data_view.get_array_size() @property def tubeQuadStarts(self): data_view = og.AttributeValueHelper(self._attributes.tubeQuadStarts) return data_view.get() @tubeQuadStarts.setter def tubeQuadStarts(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.tubeQuadStarts) data_view = og.AttributeValueHelper(self._attributes.tubeQuadStarts) data_view.set(value) self.tubeQuadStarts_size = data_view.get_array_size() @property def tubeSTStarts(self): data_view = og.AttributeValueHelper(self._attributes.tubeSTStarts) return data_view.get() @tubeSTStarts.setter def tubeSTStarts(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.tubeSTStarts) data_view = og.AttributeValueHelper(self._attributes.tubeSTStarts) data_view.set(value) self.tubeSTStarts_size = data_view.get_array_size() @property def width(self): data_view = og.AttributeValueHelper(self._attributes.width) return data_view.get() @width.setter def width(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.width) data_view = og.AttributeValueHelper(self._attributes.width) data_view.set(value) self.width_size = data_view.get_array_size() def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.primvars_st_size = None self.primvars_st_indices_size = None self._batchedWriteValues = { } @property def primvars_st(self): data_view = og.AttributeValueHelper(self._attributes.primvars_st) return data_view.get(reserved_element_count=self.primvars_st_size) @primvars_st.setter def primvars_st(self, value): data_view = og.AttributeValueHelper(self._attributes.primvars_st) data_view.set(value) self.primvars_st_size = data_view.get_array_size() @property def primvars_st_indices(self): data_view = og.AttributeValueHelper(self._attributes.primvars_st_indices) return data_view.get(reserved_element_count=self.primvars_st_indices_size) @primvars_st_indices.setter def primvars_st_indices(self, value): data_view = og.AttributeValueHelper(self._attributes.primvars_st_indices) data_view.set(value) self.primvars_st_indices_size = data_view.get_array_size() def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnCurveTubeSTDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnCurveTubeSTDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnCurveTubeSTDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
10,552
Python
44.683982
148
0.635614
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnReadPrimMaterialDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.ReadPrimMaterial Given a path to a prim on the current USD stage, outputs the material of the prim. Gives an error if the given prim can not be found. """ import usdrt import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnReadPrimMaterialDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.ReadPrimMaterial Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.prim inputs.primPath Outputs: outputs.material outputs.materialPrim """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:prim', 'target', 0, None, 'The prim with the material to be read. If both this and primPath inputs are set, this input takes priority.', {}, True, [], False, ''), ('inputs:primPath', 'path', 0, 'Prim Path', 'Path of the prim with the material to be read.', {}, True, "", True, 'Use prim input instead'), ('outputs:material', 'path', 0, 'Material Path', 'The material of the input prim', {}, True, None, True, 'Use materialPrim output instead'), ('outputs:materialPrim', 'target', 0, 'Material', 'The prim containing the material of the input prim', {}, True, [], False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.prim = og.AttributeRole.TARGET role_data.inputs.primPath = og.AttributeRole.PATH role_data.outputs.material = og.AttributeRole.PATH role_data.outputs.materialPrim = og.AttributeRole.TARGET return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def prim(self): data_view = og.AttributeValueHelper(self._attributes.prim) return data_view.get() @prim.setter def prim(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.prim) data_view = og.AttributeValueHelper(self._attributes.prim) data_view.set(value) self.prim_size = data_view.get_array_size() @property def primPath(self): data_view = og.AttributeValueHelper(self._attributes.primPath) return data_view.get() @primPath.setter def primPath(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.primPath) data_view = og.AttributeValueHelper(self._attributes.primPath) data_view.set(value) self.primPath_size = data_view.get_array_size() def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.material_size = None self.materialPrim_size = None self._batchedWriteValues = { } @property def material(self): data_view = og.AttributeValueHelper(self._attributes.material) return data_view.get(reserved_element_count=self.material_size) @material.setter def material(self, value): data_view = og.AttributeValueHelper(self._attributes.material) data_view.set(value) self.material_size = data_view.get_array_size() @property def materialPrim(self): data_view = og.AttributeValueHelper(self._attributes.materialPrim) return data_view.get(reserved_element_count=self.materialPrim_size) @materialPrim.setter def materialPrim(self, value): data_view = og.AttributeValueHelper(self._attributes.materialPrim) data_view.set(value) self.materialPrim_size = data_view.get_array_size() def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnReadPrimMaterialDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnReadPrimMaterialDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnReadPrimMaterialDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
7,213
Python
46.150326
179
0.661722
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnGetLocationAtDistanceOnCurve2Database.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.GetLocationAtDistanceOnCurve2 Given a set of curve points and a normalized distance between 0-1.0, return the location on a closed curve. 0 is the first point on the curve, 1.0 is also the first point because the is an implicit segment connecting the first and last points. Values outside the range 0-1.0 will be wrapped to that range, for example -0.4 is equivalent to 0.6 and 1.3 is equivalent to 0.3 This is a simplistic curve-following node, intended for curves in a plane, for prototyping purposes. """ import numpy import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnGetLocationAtDistanceOnCurve2Database(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.GetLocationAtDistanceOnCurve2 Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.curve inputs.distance inputs.forwardAxis inputs.upAxis Outputs: outputs.location outputs.orientation outputs.rotateXYZ Predefined Tokens: tokens.x tokens.y tokens.z tokens.X tokens.Y tokens.Z """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:curve', 'point3d[]', 0, 'Curve', 'The curve to be examined', {}, True, [], False, ''), ('inputs:distance', 'double', 0, 'Distance', 'The distance along the curve, wrapped to the range 0-1.0', {}, True, 0.0, False, ''), ('inputs:forwardAxis', 'token', 0, 'Forward', 'The direction vector from which the returned rotation is relative, one of X, Y, Z', {ogn.MetadataKeys.DEFAULT: '"X"'}, True, "X", False, ''), ('inputs:upAxis', 'token', 0, 'Up', 'The world Up vector, the curve should be in a plane perpendicular with this - one of X, Y, Z', {ogn.MetadataKeys.DEFAULT: '"Y"'}, True, "Y", False, ''), ('outputs:location', 'point3d', 0, 'Location on curve at the given distance in world space', 'Location', {}, True, None, False, ''), ('outputs:orientation', 'quatf', 0, 'World space orientation of the curve at the given distance, may not be smooth for some curves', 'Orientation', {}, True, None, False, ''), ('outputs:rotateXYZ', 'vector3d', 0, 'World space rotation of the curve at the given distance, may not be smooth for some curves', 'Rotations', {}, True, None, False, ''), ]) class tokens: x = "x" y = "y" z = "z" X = "X" Y = "Y" Z = "Z" @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.curve = og.AttributeRole.POSITION role_data.outputs.location = og.AttributeRole.POSITION role_data.outputs.orientation = og.AttributeRole.QUATERNION role_data.outputs.rotateXYZ = og.AttributeRole.VECTOR return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def curve(self): data_view = og.AttributeValueHelper(self._attributes.curve) return data_view.get() @curve.setter def curve(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.curve) data_view = og.AttributeValueHelper(self._attributes.curve) data_view.set(value) self.curve_size = data_view.get_array_size() @property def distance(self): data_view = og.AttributeValueHelper(self._attributes.distance) return data_view.get() @distance.setter def distance(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.distance) data_view = og.AttributeValueHelper(self._attributes.distance) data_view.set(value) @property def forwardAxis(self): data_view = og.AttributeValueHelper(self._attributes.forwardAxis) return data_view.get() @forwardAxis.setter def forwardAxis(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.forwardAxis) data_view = og.AttributeValueHelper(self._attributes.forwardAxis) data_view.set(value) @property def upAxis(self): data_view = og.AttributeValueHelper(self._attributes.upAxis) return data_view.get() @upAxis.setter def upAxis(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.upAxis) data_view = og.AttributeValueHelper(self._attributes.upAxis) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def location(self): data_view = og.AttributeValueHelper(self._attributes.location) return data_view.get() @location.setter def location(self, value): data_view = og.AttributeValueHelper(self._attributes.location) data_view.set(value) @property def orientation(self): data_view = og.AttributeValueHelper(self._attributes.orientation) return data_view.get() @orientation.setter def orientation(self, value): data_view = og.AttributeValueHelper(self._attributes.orientation) data_view.set(value) @property def rotateXYZ(self): data_view = og.AttributeValueHelper(self._attributes.rotateXYZ) return data_view.get() @rotateXYZ.setter def rotateXYZ(self, value): data_view = og.AttributeValueHelper(self._attributes.rotateXYZ) data_view.set(value) def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnGetLocationAtDistanceOnCurve2Database.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnGetLocationAtDistanceOnCurve2Database.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnGetLocationAtDistanceOnCurve2Database.ValuesForState(node, self.attributes.state, dynamic_attributes)
9,345
Python
44.368932
197
0.650187
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnRenameAttrDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.RenameAttribute Changes the names of attributes from an input bundle for the corresponding output bundle. Attributes whose names are not in the 'inputAttrNames' list will be copied from the input bundle to the output bundle without changing the name. """ import carb import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnRenameAttrDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.RenameAttribute Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.data inputs.inputAttrNames inputs.outputAttrNames Outputs: outputs.data """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:data', 'bundle', 0, 'Original Attribute Bundle', 'Collection of attributes to be renamed', {}, True, None, False, ''), ('inputs:inputAttrNames', 'token', 0, 'Attributes To Rename', 'Comma or space separated text, listing the names of attributes in the input data to be renamed', {ogn.MetadataKeys.DEFAULT: '""'}, True, "", False, ''), ('inputs:outputAttrNames', 'token', 0, 'New Attribute Names', 'Comma or space separated text, listing the new names for the attributes listed in inputAttrNames', {ogn.MetadataKeys.DEFAULT: '""'}, True, "", False, ''), ('outputs:data', 'bundle', 0, 'Bundle Of Renamed Attributes', 'Final bundle of attributes, with attributes renamed based on inputAttrNames and outputAttrNames', {}, True, None, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.data = og.AttributeRole.BUNDLE role_data.outputs.data = og.AttributeRole.BUNDLE return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.__bundles = og.BundleContainer(context, node, attributes, [], read_only=True, gpu_ptr_kinds={}) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def data(self) -> og.BundleContents: """Get the bundle wrapper class for the attribute inputs.data""" return self.__bundles.data @property def inputAttrNames(self): data_view = og.AttributeValueHelper(self._attributes.inputAttrNames) return data_view.get() @inputAttrNames.setter def inputAttrNames(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.inputAttrNames) data_view = og.AttributeValueHelper(self._attributes.inputAttrNames) data_view.set(value) @property def outputAttrNames(self): data_view = og.AttributeValueHelper(self._attributes.outputAttrNames) return data_view.get() @outputAttrNames.setter def outputAttrNames(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.outputAttrNames) data_view = og.AttributeValueHelper(self._attributes.outputAttrNames) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.__bundles = og.BundleContainer(context, node, attributes, [], read_only=False, gpu_ptr_kinds={}) self._batchedWriteValues = { } @property def data(self) -> og.BundleContents: """Get the bundle wrapper class for the attribute outputs.data""" return self.__bundles.data @data.setter def data(self, bundle: og.BundleContents): """Overwrite the bundle attribute outputs.data with a new bundle""" if not isinstance(bundle, og.BundleContents): carb.log_error("Only bundle attributes can be assigned to another bundle attribute") self.__bundles.data.bundle = bundle def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnRenameAttrDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnRenameAttrDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnRenameAttrDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
7,301
Python
49.708333
225
0.672374
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnDeformedPointsToHydraDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.DeformedPointsToHydra Copy deformed points into rpresource and send to hydra """ import numpy import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnDeformedPointsToHydraDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.DeformedPointsToHydra Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.points inputs.primPath inputs.sendToHydra inputs.stream inputs.verbose Outputs: outputs.reload """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:points', 'float3[]', 0, 'Prim Points', 'Points attribute input. Points and a prim path may be supplied directly as an alternative to a bundle input.', {ogn.MetadataKeys.MEMORY_TYPE: 'cuda'}, True, [], False, ''), ('inputs:primPath', 'token', 0, 'Prim path input', 'Prim path input. Points and a prim path may be supplied directly as an alternative to a bundle input.', {}, True, "", False, ''), ('inputs:sendToHydra', 'bool', 0, 'Send to hydra', 'send to hydra', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('inputs:stream', 'uint64', 0, 'stream', 'Pointer to the CUDA Stream', {}, True, 0, False, ''), ('inputs:verbose', 'bool', 0, 'Verbose', 'verbose printing', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('outputs:reload', 'bool', 0, 'Reload', 'Force RpResource reload', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ]) class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def points(self): data_view = og.AttributeValueHelper(self._attributes.points) data_view.gpu_ptr_kind = og.PtrToPtrKind.CPU return data_view.get(on_gpu=True) @points.setter def points(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.points) data_view = og.AttributeValueHelper(self._attributes.points) data_view.gpu_ptr_kind = og.PtrToPtrKind.CPU data_view.set(value, on_gpu=True) self.points_size = data_view.get_array_size() @property def primPath(self): data_view = og.AttributeValueHelper(self._attributes.primPath) return data_view.get() @primPath.setter def primPath(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.primPath) data_view = og.AttributeValueHelper(self._attributes.primPath) data_view.set(value) @property def sendToHydra(self): data_view = og.AttributeValueHelper(self._attributes.sendToHydra) return data_view.get() @sendToHydra.setter def sendToHydra(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.sendToHydra) data_view = og.AttributeValueHelper(self._attributes.sendToHydra) data_view.set(value) @property def stream(self): data_view = og.AttributeValueHelper(self._attributes.stream) return data_view.get() @stream.setter def stream(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.stream) data_view = og.AttributeValueHelper(self._attributes.stream) data_view.set(value) @property def verbose(self): data_view = og.AttributeValueHelper(self._attributes.verbose) return data_view.get() @verbose.setter def verbose(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.verbose) data_view = og.AttributeValueHelper(self._attributes.verbose) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def reload(self): data_view = og.AttributeValueHelper(self._attributes.reload) return data_view.get() @reload.setter def reload(self, value): data_view = og.AttributeValueHelper(self._attributes.reload) data_view.set(value) def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnDeformedPointsToHydraDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnDeformedPointsToHydraDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnDeformedPointsToHydraDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
7,808
Python
45.2071
229
0.650102
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnTimerDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.Timer Timer Node is a node that lets you create animation curve(s), plays back and samples the value(s) along its time to output values. """ import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnTimerDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.Timer Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.duration inputs.endValue inputs.play inputs.startValue Outputs: outputs.finished outputs.updated outputs.value """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:duration', 'double', 0, 'Duration', 'Number of seconds to play interpolation', {ogn.MetadataKeys.DEFAULT: '1.0'}, True, 1.0, False, ''), ('inputs:endValue', 'double', 0, 'End Value', 'Value value of the end of the duration', {ogn.MetadataKeys.DEFAULT: '1.0'}, True, 1.0, False, ''), ('inputs:play', 'execution', 0, 'Play', 'Play the clip from current frame', {}, True, None, False, ''), ('inputs:startValue', 'double', 0, 'Start Value', 'Value value of the start of the duration', {ogn.MetadataKeys.DEFAULT: '0.0'}, True, 0.0, False, ''), ('outputs:finished', 'execution', 0, 'Finished', 'The Timer node has finished the playback', {}, True, None, False, ''), ('outputs:updated', 'execution', 0, 'Updated', 'The Timer node is ticked, and output value(s) resampled and updated', {}, True, None, False, ''), ('outputs:value', 'double', 0, 'Value', 'Value value of the Timer node between 0.0 and 1.0', {ogn.MetadataKeys.DEFAULT: '0.0'}, True, 0.0, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.play = og.AttributeRole.EXECUTION role_data.outputs.finished = og.AttributeRole.EXECUTION role_data.outputs.updated = og.AttributeRole.EXECUTION return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def duration(self): data_view = og.AttributeValueHelper(self._attributes.duration) return data_view.get() @duration.setter def duration(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.duration) data_view = og.AttributeValueHelper(self._attributes.duration) data_view.set(value) @property def endValue(self): data_view = og.AttributeValueHelper(self._attributes.endValue) return data_view.get() @endValue.setter def endValue(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.endValue) data_view = og.AttributeValueHelper(self._attributes.endValue) data_view.set(value) @property def play(self): data_view = og.AttributeValueHelper(self._attributes.play) return data_view.get() @play.setter def play(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.play) data_view = og.AttributeValueHelper(self._attributes.play) data_view.set(value) @property def startValue(self): data_view = og.AttributeValueHelper(self._attributes.startValue) return data_view.get() @startValue.setter def startValue(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.startValue) data_view = og.AttributeValueHelper(self._attributes.startValue) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def finished(self): data_view = og.AttributeValueHelper(self._attributes.finished) return data_view.get() @finished.setter def finished(self, value): data_view = og.AttributeValueHelper(self._attributes.finished) data_view.set(value) @property def updated(self): data_view = og.AttributeValueHelper(self._attributes.updated) return data_view.get() @updated.setter def updated(self, value): data_view = og.AttributeValueHelper(self._attributes.updated) data_view.set(value) @property def value(self): data_view = og.AttributeValueHelper(self._attributes.value) return data_view.get() @value.setter def value(self, value): data_view = og.AttributeValueHelper(self._attributes.value) data_view.set(value) def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnTimerDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnTimerDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnTimerDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
8,310
Python
43.924324
159
0.644404
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnReadPrimsDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.ReadPrims DEPRECATED - use ReadPrimsV2! """ import numpy import usdrt import carb import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnReadPrimsDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.ReadPrims Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.applySkelBinding inputs.attrNamesToImport inputs.computeBoundingBox inputs.pathPattern inputs.prims inputs.typePattern inputs.usdTimecode inputs.useFindPrims Outputs: outputs.primsBundle State: state.applySkelBinding state.attrNamesToImport state.computeBoundingBox state.pathPattern state.primPaths state.typePattern state.usdTimecode state.useFindPrims """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:applySkelBinding', 'bool', 0, 'Apply Skel Binding', 'If an input USD prim is skinnable and has the SkelBindingAPI schema applied, read skeletal data and apply SkelBinding to deform the prim.\nThe output bundle will have additional child bundles created to hold data for the skeleton and skel animation prims if present. After\nevaluation, deformed points and normals will be written to the `points` and `normals` attributes, while non-deformed points and normals\nwill be copied to the `points:default` and `normals:default` attributes.', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('inputs:attrNamesToImport', 'string', 0, 'Attribute Name Pattern', "A list of wildcard patterns used to match the attribute names that are to be imported\n\nSupported syntax of wildcard pattern:\n '*' - match an arbitrary number of any characters\n '?' - match any single character\n '^' - (caret) is used to define a pattern that is to be excluded\n\nExample of wildcard patterns, input: ['points', 'faceVertexCount', 'faceVertexIndices', 'size']\n '*' - match any\n '* ^points' - match any, but exclude 'points'\n '* ^face*' - match any, but exclude 'faceVertexCount' and 'faceVertexIndices'", {ogn.MetadataKeys.DEFAULT: '"*"'}, True, "*", False, ''), ('inputs:computeBoundingBox', 'bool', 0, 'Compute Bounding Box', "For each primitive compute local bounding box and store them as 'bboxMinCorner', 'bboxMaxCorner' and 'bboxTransform' attributes.", {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('inputs:pathPattern', 'string', 0, 'Prim Path Pattern', "A list of wildcard patterns used to match the prim paths that are to be imported\n\nSupported syntax of wildcard pattern:\n '*' - match an arbitrary number of any characters\n '?' - match any single character\n '^' - (caret) is used to define a pattern that is to be excluded\n\nExample of wildcard patterns, input: ['/Cube0', '/Cube1', '/Box']\n '*' - match any\n '* ^/Box' - match any, but exclude '/Box'\n '* ^/Cube*' - match any, but exclude '/Cube0' and '/Cube1'", {ogn.MetadataKeys.DEFAULT: '""'}, True, "", False, ''), ('inputs:prims', 'target', 0, None, "The prims to be read from when 'useFindPrims' is false", {ogn.MetadataKeys.ALLOW_MULTI_INPUTS: '1'}, False, [], False, ''), ('inputs:typePattern', 'string', 0, 'Prim Type Pattern', "A list of wildcard patterns used to match the prim types that are to be imported\n\nSupported syntax of wildcard pattern:\n '*' - match an arbitrary number of any characters\n '?' - match any single character\n '^' - (caret) is used to define a pattern that is to be excluded\n\nExample of wildcard patterns, input: ['Mesh', 'Cone', 'Cube']\n '*' - match any\n '* ^Mesh' - match any, but exclude 'Mesh'\n '* ^Cone ^Cube' - match any, but exclude 'Cone' and 'Cube'", {ogn.MetadataKeys.DEFAULT: '"*"'}, True, "*", False, ''), ('inputs:usdTimecode', 'timecode', 0, 'Time', 'The time at which to evaluate the transform of the USD prim. A value of "NaN" indicates that the default USD time stamp should be used', {ogn.MetadataKeys.DEFAULT: '"NaN"'}, True, float("NaN"), False, ''), ('inputs:useFindPrims', 'bool', 0, 'Use Find Prims', "When true, the 'pathPattern' and 'typePattern' attribute is used as the pattern to search for the prims to read\notherwise it will read the connection at the 'prim' attribute.", {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('outputs:primsBundle', 'bundle', 0, None, 'An output bundle containing multiple prims as children.\nEach child contains data attributes and two additional token attributes named sourcePrimPath and sourcePrimType\nwhich contains the path of the Prim being read', {}, True, None, False, ''), ('state:applySkelBinding', 'bool', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('state:attrNamesToImport', 'string', 0, None, 'State from previous evaluation', {}, True, None, False, ''), ('state:computeBoundingBox', 'bool', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('state:pathPattern', 'string', 0, None, 'State from previous evaluation', {}, True, None, False, ''), ('state:primPaths', 'uint64[]', 0, None, 'State from previous evaluation', {}, True, None, False, ''), ('state:typePattern', 'string', 0, None, 'State from previous evaluation', {}, True, None, False, ''), ('state:usdTimecode', 'timecode', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: '-1'}, True, -1, False, ''), ('state:useFindPrims', 'bool', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.attrNamesToImport = og.AttributeRole.TEXT role_data.inputs.pathPattern = og.AttributeRole.TEXT role_data.inputs.prims = og.AttributeRole.TARGET role_data.inputs.typePattern = og.AttributeRole.TEXT role_data.inputs.usdTimecode = og.AttributeRole.TIMECODE role_data.outputs.primsBundle = og.AttributeRole.BUNDLE role_data.state.attrNamesToImport = og.AttributeRole.TEXT role_data.state.pathPattern = og.AttributeRole.TEXT role_data.state.typePattern = og.AttributeRole.TEXT role_data.state.usdTimecode = og.AttributeRole.TIMECODE return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def applySkelBinding(self): data_view = og.AttributeValueHelper(self._attributes.applySkelBinding) return data_view.get() @applySkelBinding.setter def applySkelBinding(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.applySkelBinding) data_view = og.AttributeValueHelper(self._attributes.applySkelBinding) data_view.set(value) @property def attrNamesToImport(self): data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) return data_view.get() @attrNamesToImport.setter def attrNamesToImport(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.attrNamesToImport) data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) data_view.set(value) self.attrNamesToImport_size = data_view.get_array_size() @property def computeBoundingBox(self): data_view = og.AttributeValueHelper(self._attributes.computeBoundingBox) return data_view.get() @computeBoundingBox.setter def computeBoundingBox(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.computeBoundingBox) data_view = og.AttributeValueHelper(self._attributes.computeBoundingBox) data_view.set(value) @property def pathPattern(self): data_view = og.AttributeValueHelper(self._attributes.pathPattern) return data_view.get() @pathPattern.setter def pathPattern(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.pathPattern) data_view = og.AttributeValueHelper(self._attributes.pathPattern) data_view.set(value) self.pathPattern_size = data_view.get_array_size() @property def prims(self): data_view = og.AttributeValueHelper(self._attributes.prims) return data_view.get() @prims.setter def prims(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.prims) data_view = og.AttributeValueHelper(self._attributes.prims) data_view.set(value) self.prims_size = data_view.get_array_size() @property def typePattern(self): data_view = og.AttributeValueHelper(self._attributes.typePattern) return data_view.get() @typePattern.setter def typePattern(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.typePattern) data_view = og.AttributeValueHelper(self._attributes.typePattern) data_view.set(value) self.typePattern_size = data_view.get_array_size() @property def usdTimecode(self): data_view = og.AttributeValueHelper(self._attributes.usdTimecode) return data_view.get() @usdTimecode.setter def usdTimecode(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.usdTimecode) data_view = og.AttributeValueHelper(self._attributes.usdTimecode) data_view.set(value) @property def useFindPrims(self): data_view = og.AttributeValueHelper(self._attributes.useFindPrims) return data_view.get() @useFindPrims.setter def useFindPrims(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.useFindPrims) data_view = og.AttributeValueHelper(self._attributes.useFindPrims) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.__bundles = og.BundleContainer(context, node, attributes, [], read_only=False, gpu_ptr_kinds={}) self._batchedWriteValues = { } @property def primsBundle(self) -> og.BundleContents: """Get the bundle wrapper class for the attribute outputs.primsBundle""" return self.__bundles.primsBundle @primsBundle.setter def primsBundle(self, bundle: og.BundleContents): """Overwrite the bundle attribute outputs.primsBundle with a new bundle""" if not isinstance(bundle, og.BundleContents): carb.log_error("Only bundle attributes can be assigned to another bundle attribute") self.__bundles.primsBundle.bundle = bundle def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.attrNamesToImport_size = None self.pathPattern_size = None self.primPaths_size = None self.typePattern_size = None @property def applySkelBinding(self): data_view = og.AttributeValueHelper(self._attributes.applySkelBinding) return data_view.get() @applySkelBinding.setter def applySkelBinding(self, value): data_view = og.AttributeValueHelper(self._attributes.applySkelBinding) data_view.set(value) @property def attrNamesToImport(self): data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) self.attrNamesToImport_size = data_view.get_array_size() return data_view.get() @attrNamesToImport.setter def attrNamesToImport(self, value): data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) data_view.set(value) self.attrNamesToImport_size = data_view.get_array_size() @property def computeBoundingBox(self): data_view = og.AttributeValueHelper(self._attributes.computeBoundingBox) return data_view.get() @computeBoundingBox.setter def computeBoundingBox(self, value): data_view = og.AttributeValueHelper(self._attributes.computeBoundingBox) data_view.set(value) @property def pathPattern(self): data_view = og.AttributeValueHelper(self._attributes.pathPattern) self.pathPattern_size = data_view.get_array_size() return data_view.get() @pathPattern.setter def pathPattern(self, value): data_view = og.AttributeValueHelper(self._attributes.pathPattern) data_view.set(value) self.pathPattern_size = data_view.get_array_size() @property def primPaths(self): data_view = og.AttributeValueHelper(self._attributes.primPaths) self.primPaths_size = data_view.get_array_size() return data_view.get() @primPaths.setter def primPaths(self, value): data_view = og.AttributeValueHelper(self._attributes.primPaths) data_view.set(value) self.primPaths_size = data_view.get_array_size() @property def typePattern(self): data_view = og.AttributeValueHelper(self._attributes.typePattern) self.typePattern_size = data_view.get_array_size() return data_view.get() @typePattern.setter def typePattern(self, value): data_view = og.AttributeValueHelper(self._attributes.typePattern) data_view.set(value) self.typePattern_size = data_view.get_array_size() @property def usdTimecode(self): data_view = og.AttributeValueHelper(self._attributes.usdTimecode) return data_view.get() @usdTimecode.setter def usdTimecode(self, value): data_view = og.AttributeValueHelper(self._attributes.usdTimecode) data_view.set(value) @property def useFindPrims(self): data_view = og.AttributeValueHelper(self._attributes.useFindPrims) return data_view.get() @useFindPrims.setter def useFindPrims(self, value): data_view = og.AttributeValueHelper(self._attributes.useFindPrims) data_view.set(value) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnReadPrimsDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnReadPrimsDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnReadPrimsDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
18,349
Python
52.654971
680
0.655186
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnAppendPathDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.AppendPath Generates a path token by appending the given relative path token to the given root or prim path token """ from typing import Any import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnAppendPathDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.AppendPath Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.path inputs.suffix Outputs: outputs.path State: state.path state.suffix """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:path', 'token,token[]', 1, None, 'The path token(s) to be appended to. Must be a base or prim path (ex. /World)', {}, True, None, False, ''), ('inputs:suffix', 'token', 0, None, 'The prim or prim-property path to append (ex. Cube or Cube.attr)', {}, True, "", False, ''), ('outputs:path', 'token,token[]', 1, None, 'The new path token(s) (ex. /World/Cube or /World/Cube.attr)', {}, True, None, False, ''), ('state:path', 'token', 0, None, 'Snapshot of previously seen path', {}, True, None, False, ''), ('state:suffix', 'token', 0, None, 'Snapshot of previously seen suffix', {}, True, None, False, ''), ]) class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def path(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.path""" return og.RuntimeAttribute(self._attributes.path.get_attribute_data(), self._context, True) @path.setter def path(self, value_to_set: Any): """Assign another attribute's value to outputs.path""" if isinstance(value_to_set, og.RuntimeAttribute): self.path.value = value_to_set.value else: self.path.value = value_to_set @property def suffix(self): data_view = og.AttributeValueHelper(self._attributes.suffix) return data_view.get() @suffix.setter def suffix(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.suffix) data_view = og.AttributeValueHelper(self._attributes.suffix) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def path(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute outputs.path""" return og.RuntimeAttribute(self._attributes.path.get_attribute_data(), self._context, False) @path.setter def path(self, value_to_set: Any): """Assign another attribute's value to outputs.path""" if isinstance(value_to_set, og.RuntimeAttribute): self.path.value = value_to_set.value else: self.path.value = value_to_set def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) @property def path(self): data_view = og.AttributeValueHelper(self._attributes.path) return data_view.get() @path.setter def path(self, value): data_view = og.AttributeValueHelper(self._attributes.path) data_view.set(value) @property def suffix(self): data_view = og.AttributeValueHelper(self._attributes.suffix) return data_view.get() @suffix.setter def suffix(self, value): data_view = og.AttributeValueHelper(self._attributes.suffix) data_view.set(value) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnAppendPathDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnAppendPathDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnAppendPathDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
7,012
Python
44.836601
158
0.644324
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnMatrixMultiplyDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.MatrixMultiply Computes the matrix product of the inputs. Inputs must be compatible. Also accepts tuples (treated as vectors) as inputs. Tuples in input A will be treated as row vectors. Tuples in input B will be treated as column vectors. Arrays of inputs will be computed element-wise with broadcasting if necessary. """ from typing import Any import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnMatrixMultiplyDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.MatrixMultiply Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.a inputs.b Outputs: outputs.output """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:a', 'colord[3],colord[4],colorf[3],colorf[4],colorh[3],colorh[4],double[2],double[2][],double[3],double[3][],double[4],double[4][],float[2],float[2][],float[3],float[3][],float[4],float[4][],frame[4],half[2],half[2][],half[3],half[3][],half[4],half[4][],matrixd[3],matrixd[3][],matrixd[4],matrixd[4][],normald[3],normalf[3],normalh[3],pointd[3],pointf[3],pointh[3],quatd[4],quatf[4],quath[4],texcoordd[2],texcoordd[3],texcoordf[2],texcoordf[3],texcoordh[2],texcoordh[3],transform[4],vectord[3],vectorf[3],vectorh[3]', 1, 'A', 'First matrix or row vector to multiply', {}, True, None, False, ''), ('inputs:b', 'colord[3],colord[4],colorf[3],colorf[4],colorh[3],colorh[4],double[2],double[2][],double[3],double[3][],double[4],double[4][],float[2],float[2][],float[3],float[3][],float[4],float[4][],frame[4],half[2],half[2][],half[3],half[3][],half[4],half[4][],matrixd[3],matrixd[3][],matrixd[4],matrixd[4][],normald[3],normalf[3],normalh[3],pointd[3],pointf[3],pointh[3],quatd[4],quatf[4],quath[4],texcoordd[2],texcoordd[3],texcoordf[2],texcoordf[3],texcoordh[2],texcoordh[3],transform[4],vectord[3],vectorf[3],vectorh[3]', 1, 'B', 'Second matrix or column vector to multiply', {}, True, None, False, ''), ('outputs:output', 'colord[3],colord[4],colorf[3],colorf[4],colorh[3],colorh[4],double,double[2],double[2][],double[3],double[3][],double[4],double[4][],double[],float,float[2],float[2][],float[3],float[3][],float[4],float[4][],float[],frame[4],half,half[2],half[2][],half[3],half[3][],half[4],half[4][],half[],matrixd[3],matrixd[3][],matrixd[4],matrixd[4][],normald[3],normalf[3],normalh[3],pointd[3],pointf[3],pointh[3],quatd[4],quatf[4],quath[4],texcoordd[2],texcoordd[3],texcoordf[2],texcoordf[3],texcoordh[2],texcoordh[3],transform[4],vectord[3],vectorf[3],vectorh[3]', 1, 'Product', 'Product of the two matrices', {}, True, None, False, ''), ]) class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def a(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.a""" return og.RuntimeAttribute(self._attributes.a.get_attribute_data(), self._context, True) @a.setter def a(self, value_to_set: Any): """Assign another attribute's value to outputs.a""" if isinstance(value_to_set, og.RuntimeAttribute): self.a.value = value_to_set.value else: self.a.value = value_to_set @property def b(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.b""" return og.RuntimeAttribute(self._attributes.b.get_attribute_data(), self._context, True) @b.setter def b(self, value_to_set: Any): """Assign another attribute's value to outputs.b""" if isinstance(value_to_set, og.RuntimeAttribute): self.b.value = value_to_set.value else: self.b.value = value_to_set def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def output(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute outputs.output""" return og.RuntimeAttribute(self._attributes.output.get_attribute_data(), self._context, False) @output.setter def output(self, value_to_set: Any): """Assign another attribute's value to outputs.output""" if isinstance(value_to_set, og.RuntimeAttribute): self.output.value = value_to_set.value else: self.output.value = value_to_set def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnMatrixMultiplyDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnMatrixMultiplyDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnMatrixMultiplyDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
7,894
Python
59.267175
655
0.661895
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnFindPrimsDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.FindPrims Finds Prims on the stage which match the given criteria """ import numpy import usdrt import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnFindPrimsDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.FindPrims Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.ignoreSystemPrims inputs.namePrefix inputs.pathPattern inputs.recursive inputs.requiredAttributes inputs.requiredRelationship inputs.requiredRelationshipTarget inputs.requiredTarget inputs.rootPrim inputs.rootPrimPath inputs.type Outputs: outputs.primPaths outputs.prims State: state.ignoreSystemPrims state.inputType state.namePrefix state.pathPattern state.recursive state.requiredAttributes state.requiredRelationship state.requiredRelationshipTarget state.requiredTarget state.rootPrim state.rootPrimPath """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:ignoreSystemPrims', 'bool', 0, None, "Ignore system prims such as omni graph nodes that shouldn't be considered during the import.", {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('inputs:namePrefix', 'token', 0, 'Prim Name Prefix', 'Only prims with a name starting with the given prefix will be returned.', {}, True, "", False, ''), ('inputs:pathPattern', 'token', 0, 'Prim Path Pattern', "A list of wildcard patterns used to match the prim paths\n\nSupported syntax of wildcard pattern:\n '*' - match an arbitrary number of any characters\n '?' - match any single character\n '^' - (caret) is used to define a pattern that is to be excluded\n\nExample of wildcard patterns, input: ['/Cube0', '/Cube1', '/Box']\n '*' - match any\n '* ^/Box' - match any, but exclude '/Box'\n '* ^/Cube*' - match any, but exclude '/Cube0' and '/Cube1'", {}, True, "", False, ''), ('inputs:recursive', 'bool', 0, None, 'False means only consider children of the root prim, True means all prims in the hierarchy', {}, True, False, False, ''), ('inputs:requiredAttributes', 'string', 0, 'Attribute Names', 'A space-separated list of attribute names that are required to be present on matched prims', {}, True, "", False, ''), ('inputs:requiredRelationship', 'token', 0, 'Relationship Name', 'The name of a relationship which must have a target specified by requiredRelationshipTarget or requiredTarget', {}, True, "", False, ''), ('inputs:requiredRelationshipTarget', 'path', 0, 'Relationship Prim Path', 'The path that must be a target of the requiredRelationship', {}, True, "", True, 'Use requiredTarget instead'), ('inputs:requiredTarget', 'target', 0, 'Relationship Prim', 'The target of the requiredRelationship', {}, True, [], False, ''), ('inputs:rootPrim', 'target', 0, 'Root Prim', 'Only children of the given prim will be considered. If rootPrim is specified, rootPrimPath will be ignored.', {}, True, [], False, ''), ('inputs:rootPrimPath', 'token', 0, 'Root Prim Path', 'Only children of the given prim will be considered. Empty will search the whole stage.', {}, True, "", True, 'Use rootPrim input attribute instead'), ('inputs:type', 'token', 0, 'Prim Type Pattern', "A list of wildcard patterns used to match the prim types that are to be imported\n\nSupported syntax of wildcard pattern:\n '*' - match an arbitrary number of any characters\n '?' - match any single character\n '^' - (caret) is used to define a pattern that is to be excluded\n\nExample of wildcard patterns, input: ['Mesh', 'Cone', 'Cube']\n '*' - match any\n '* ^Mesh' - match any, but exclude 'Mesh'\n '* ^Cone ^Cube' - match any, but exclude 'Cone' and 'Cube'", {ogn.MetadataKeys.DEFAULT: '"*"'}, True, "*", False, ''), ('outputs:primPaths', 'token[]', 0, None, 'A list of Prim paths as tokens which match the given type', {}, True, None, False, ''), ('outputs:prims', 'target', 0, None, 'A list of Prim paths which match the given type', {}, True, [], False, ''), ('state:ignoreSystemPrims', 'bool', 0, None, 'last corresponding input seen', {}, True, None, False, ''), ('state:inputType', 'token', 0, None, 'last corresponding input seen', {}, True, None, False, ''), ('state:namePrefix', 'token', 0, None, 'last corresponding input seen', {}, True, None, False, ''), ('state:pathPattern', 'token', 0, None, 'last corresponding input seen', {}, True, None, False, ''), ('state:recursive', 'bool', 0, None, 'last corresponding input seen', {}, True, None, False, ''), ('state:requiredAttributes', 'string', 0, None, 'last corresponding input seen', {}, True, None, False, ''), ('state:requiredRelationship', 'token', 0, None, 'last corresponding input seen', {}, True, None, False, ''), ('state:requiredRelationshipTarget', 'string', 0, None, 'last corresponding input seen', {}, True, None, False, ''), ('state:requiredTarget', 'target', 0, None, 'last corresponding input seen', {}, True, [], False, ''), ('state:rootPrim', 'target', 0, None, 'last corresponding input seen', {}, True, [], False, ''), ('state:rootPrimPath', 'token', 0, None, 'last corresponding input seen', {}, True, None, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.requiredAttributes = og.AttributeRole.TEXT role_data.inputs.requiredRelationshipTarget = og.AttributeRole.PATH role_data.inputs.requiredTarget = og.AttributeRole.TARGET role_data.inputs.rootPrim = og.AttributeRole.TARGET role_data.outputs.prims = og.AttributeRole.TARGET role_data.state.requiredAttributes = og.AttributeRole.TEXT role_data.state.requiredRelationshipTarget = og.AttributeRole.TEXT role_data.state.requiredTarget = og.AttributeRole.TARGET role_data.state.rootPrim = og.AttributeRole.TARGET return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def ignoreSystemPrims(self): data_view = og.AttributeValueHelper(self._attributes.ignoreSystemPrims) return data_view.get() @ignoreSystemPrims.setter def ignoreSystemPrims(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.ignoreSystemPrims) data_view = og.AttributeValueHelper(self._attributes.ignoreSystemPrims) data_view.set(value) @property def namePrefix(self): data_view = og.AttributeValueHelper(self._attributes.namePrefix) return data_view.get() @namePrefix.setter def namePrefix(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.namePrefix) data_view = og.AttributeValueHelper(self._attributes.namePrefix) data_view.set(value) @property def pathPattern(self): data_view = og.AttributeValueHelper(self._attributes.pathPattern) return data_view.get() @pathPattern.setter def pathPattern(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.pathPattern) data_view = og.AttributeValueHelper(self._attributes.pathPattern) data_view.set(value) @property def recursive(self): data_view = og.AttributeValueHelper(self._attributes.recursive) return data_view.get() @recursive.setter def recursive(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.recursive) data_view = og.AttributeValueHelper(self._attributes.recursive) data_view.set(value) @property def requiredAttributes(self): data_view = og.AttributeValueHelper(self._attributes.requiredAttributes) return data_view.get() @requiredAttributes.setter def requiredAttributes(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.requiredAttributes) data_view = og.AttributeValueHelper(self._attributes.requiredAttributes) data_view.set(value) self.requiredAttributes_size = data_view.get_array_size() @property def requiredRelationship(self): data_view = og.AttributeValueHelper(self._attributes.requiredRelationship) return data_view.get() @requiredRelationship.setter def requiredRelationship(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.requiredRelationship) data_view = og.AttributeValueHelper(self._attributes.requiredRelationship) data_view.set(value) @property def requiredRelationshipTarget(self): data_view = og.AttributeValueHelper(self._attributes.requiredRelationshipTarget) return data_view.get() @requiredRelationshipTarget.setter def requiredRelationshipTarget(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.requiredRelationshipTarget) data_view = og.AttributeValueHelper(self._attributes.requiredRelationshipTarget) data_view.set(value) self.requiredRelationshipTarget_size = data_view.get_array_size() @property def requiredTarget(self): data_view = og.AttributeValueHelper(self._attributes.requiredTarget) return data_view.get() @requiredTarget.setter def requiredTarget(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.requiredTarget) data_view = og.AttributeValueHelper(self._attributes.requiredTarget) data_view.set(value) self.requiredTarget_size = data_view.get_array_size() @property def rootPrim(self): data_view = og.AttributeValueHelper(self._attributes.rootPrim) return data_view.get() @rootPrim.setter def rootPrim(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.rootPrim) data_view = og.AttributeValueHelper(self._attributes.rootPrim) data_view.set(value) self.rootPrim_size = data_view.get_array_size() @property def rootPrimPath(self): data_view = og.AttributeValueHelper(self._attributes.rootPrimPath) return data_view.get() @rootPrimPath.setter def rootPrimPath(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.rootPrimPath) data_view = og.AttributeValueHelper(self._attributes.rootPrimPath) data_view.set(value) @property def type(self): data_view = og.AttributeValueHelper(self._attributes.type) return data_view.get() @type.setter def type(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.type) data_view = og.AttributeValueHelper(self._attributes.type) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.primPaths_size = None self.prims_size = None self._batchedWriteValues = { } @property def primPaths(self): data_view = og.AttributeValueHelper(self._attributes.primPaths) return data_view.get(reserved_element_count=self.primPaths_size) @primPaths.setter def primPaths(self, value): data_view = og.AttributeValueHelper(self._attributes.primPaths) data_view.set(value) self.primPaths_size = data_view.get_array_size() @property def prims(self): data_view = og.AttributeValueHelper(self._attributes.prims) return data_view.get(reserved_element_count=self.prims_size) @prims.setter def prims(self, value): data_view = og.AttributeValueHelper(self._attributes.prims) data_view.set(value) self.prims_size = data_view.get_array_size() def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.requiredAttributes_size = None self.requiredRelationshipTarget_size = None self.requiredTarget_size = None self.rootPrim_size = None @property def ignoreSystemPrims(self): data_view = og.AttributeValueHelper(self._attributes.ignoreSystemPrims) return data_view.get() @ignoreSystemPrims.setter def ignoreSystemPrims(self, value): data_view = og.AttributeValueHelper(self._attributes.ignoreSystemPrims) data_view.set(value) @property def inputType(self): data_view = og.AttributeValueHelper(self._attributes.inputType) return data_view.get() @inputType.setter def inputType(self, value): data_view = og.AttributeValueHelper(self._attributes.inputType) data_view.set(value) @property def namePrefix(self): data_view = og.AttributeValueHelper(self._attributes.namePrefix) return data_view.get() @namePrefix.setter def namePrefix(self, value): data_view = og.AttributeValueHelper(self._attributes.namePrefix) data_view.set(value) @property def pathPattern(self): data_view = og.AttributeValueHelper(self._attributes.pathPattern) return data_view.get() @pathPattern.setter def pathPattern(self, value): data_view = og.AttributeValueHelper(self._attributes.pathPattern) data_view.set(value) @property def recursive(self): data_view = og.AttributeValueHelper(self._attributes.recursive) return data_view.get() @recursive.setter def recursive(self, value): data_view = og.AttributeValueHelper(self._attributes.recursive) data_view.set(value) @property def requiredAttributes(self): data_view = og.AttributeValueHelper(self._attributes.requiredAttributes) self.requiredAttributes_size = data_view.get_array_size() return data_view.get() @requiredAttributes.setter def requiredAttributes(self, value): data_view = og.AttributeValueHelper(self._attributes.requiredAttributes) data_view.set(value) self.requiredAttributes_size = data_view.get_array_size() @property def requiredRelationship(self): data_view = og.AttributeValueHelper(self._attributes.requiredRelationship) return data_view.get() @requiredRelationship.setter def requiredRelationship(self, value): data_view = og.AttributeValueHelper(self._attributes.requiredRelationship) data_view.set(value) @property def requiredRelationshipTarget(self): data_view = og.AttributeValueHelper(self._attributes.requiredRelationshipTarget) self.requiredRelationshipTarget_size = data_view.get_array_size() return data_view.get() @requiredRelationshipTarget.setter def requiredRelationshipTarget(self, value): data_view = og.AttributeValueHelper(self._attributes.requiredRelationshipTarget) data_view.set(value) self.requiredRelationshipTarget_size = data_view.get_array_size() @property def requiredTarget(self): data_view = og.AttributeValueHelper(self._attributes.requiredTarget) self.requiredTarget_size = data_view.get_array_size() return data_view.get() @requiredTarget.setter def requiredTarget(self, value): data_view = og.AttributeValueHelper(self._attributes.requiredTarget) data_view.set(value) self.requiredTarget_size = data_view.get_array_size() @property def rootPrim(self): data_view = og.AttributeValueHelper(self._attributes.rootPrim) self.rootPrim_size = data_view.get_array_size() return data_view.get() @rootPrim.setter def rootPrim(self, value): data_view = og.AttributeValueHelper(self._attributes.rootPrim) data_view.set(value) self.rootPrim_size = data_view.get_array_size() @property def rootPrimPath(self): data_view = og.AttributeValueHelper(self._attributes.rootPrimPath) return data_view.get() @rootPrimPath.setter def rootPrimPath(self, value): data_view = og.AttributeValueHelper(self._attributes.rootPrimPath) data_view.set(value) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnFindPrimsDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnFindPrimsDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnFindPrimsDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
20,870
Python
47.424594
599
0.64322
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnWritePrimsV2Database.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.WritePrimsV2 Write back bundle(s) containing multiple prims to the stage. """ import usdrt import carb import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnWritePrimsV2Database(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.WritePrimsV2 Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.attrNamesToExport inputs.execIn inputs.layerIdentifier inputs.pathPattern inputs.prims inputs.primsBundle inputs.scatterUnderTargets inputs.typePattern inputs.usdWriteBack Outputs: outputs.execOut State: state.attrNamesToExport state.layerIdentifier state.pathPattern state.primBundleDirtyId state.scatterUnderTargets state.typePattern state.usdWriteBack """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:attrNamesToExport', 'string', 0, 'Attribute Name Pattern', "A list of wildcard patterns used to match primitive attributes by name.\n\nSupported syntax of wildcard pattern:\n `*` - match an arbitrary number of any characters\n `?` - match any single character\n `^` - (caret) is used to define a pattern that is to be excluded\n\nExample of wildcard patterns, input: ['xFormOp:translate', 'xformOp:scale','radius']\n '*' - match any\n 'xformOp:*' - matches 'xFormOp:translate' and 'xformOp:scale'\n '* ^radius' - match any, but exclude 'radius'\n '* ^xformOp*' - match any, but exclude 'xFormOp:translate', 'xformOp:scale'", {ogn.MetadataKeys.DEFAULT: '"*"'}, True, "*", False, ''), ('inputs:execIn', 'execution', 0, None, 'The input execution (for action graphs only)', {}, True, None, False, ''), ('inputs:layerIdentifier', 'token', 0, 'Layer Identifier', 'Identifier of the layer to export to. If empty, it\'ll be exported to the current edit target at the time of usd wirte back.\'\nThis is only used when "Persist To USD" is enabled.', {ogn.MetadataKeys.DEFAULT: '""'}, True, "", False, ''), ('inputs:pathPattern', 'string', 0, 'Prim Path Pattern', "A list of wildcard patterns used to match primitives by path.\n\nSupported syntax of wildcard pattern:\n `*` - match an arbitrary number of any characters\n `?` - match any single character\n `^` - (caret) is used to define a pattern that is to be excluded\n\nExample of wildcard patterns, input: ['/Cube0', '/Cube1', '/Box']\n '*' - match any\n '* ^/Box' - match any, but exclude '/Box'\n '* ^/Cube*' - match any, but exclude '/Cube0' and '/Cube1'", {ogn.MetadataKeys.DEFAULT: '"*"'}, True, "*", False, ''), ('inputs:prims', 'target', 0, 'Prims', "Target(s) to which the prims in 'primsBundle' will be written to.\nThere is a 1:1 mapping between root prims paths in 'primsBundle' and the Target Prims targets\n*For advanced usage, if 'primsBundle' contains hierarchy, the unique common ancesor paths will have \n the 1:1 mapping to Target Prims targets, with the descendant paths remapped.\n*NOTE* See 'scatterUnderTargets' input for modified exporting behavior\n*WARNING* this can create new prims on the stage.\nIf attributes or prims are removed from 'primsBundle' in subsequent evaluation, they will be removed from targets as well.", {ogn.MetadataKeys.ALLOW_MULTI_INPUTS: '1'}, True, [], False, ''), ('inputs:primsBundle', 'bundle', 0, 'Prims Bundle', 'The bundle(s) of multiple prims to be written back.\nThe sourcePrimPath attribute is used to find the destination prim.', {ogn.MetadataKeys.ALLOW_MULTI_INPUTS: '1'}, True, None, False, ''), ('inputs:scatterUnderTargets', 'bool', 0, 'Scatter Under Targets', 'If true, the target prims become the parent prims that the bundled prims will be exported *UNDER*. \nIf multiple prims targets are provided, the primsBundle will be duplicated *UNDER* each \ntarget prims.', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('inputs:typePattern', 'string', 0, 'Prim Type Pattern', "A list of wildcard patterns used to match primitives by type.\n\nSupported syntax of wildcard pattern:\n `*` - match an arbitrary number of any characters\n `?` - match any single character\n `^` - (caret) is used to define a pattern that is to be excluded\n\nExample of wildcard patterns, input: ['Mesh', 'Cone', 'Cube']\n '*' - match any\n '* ^Mesh' - match any, but exclude 'Mesh'\n '* ^Cone ^Cube' - match any, but exclude 'Cone' and 'Cube'", {ogn.MetadataKeys.DEFAULT: '"*"'}, True, "*", False, ''), ('inputs:usdWriteBack', 'bool', 0, 'Persist To USD', 'Whether or not the value should be written back to USD, or kept a Fabric only value', {ogn.MetadataKeys.DEFAULT: 'true'}, True, True, False, ''), ('outputs:execOut', 'execution', 0, None, 'The output execution port (for action graphs only)', {}, True, None, False, ''), ('state:attrNamesToExport', 'string', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: '"*"'}, True, "*", False, ''), ('state:layerIdentifier', 'token', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: '""'}, True, "", False, ''), ('state:pathPattern', 'string', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: '"*"'}, True, "*", False, ''), ('state:primBundleDirtyId', 'uint64', 0, None, 'State from previous evaluation', {}, True, None, False, ''), ('state:scatterUnderTargets', 'bool', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('state:typePattern', 'string', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: '"*"'}, True, "*", False, ''), ('state:usdWriteBack', 'bool', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: 'true'}, True, True, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.attrNamesToExport = og.AttributeRole.TEXT role_data.inputs.execIn = og.AttributeRole.EXECUTION role_data.inputs.pathPattern = og.AttributeRole.TEXT role_data.inputs.prims = og.AttributeRole.TARGET role_data.inputs.primsBundle = og.AttributeRole.BUNDLE role_data.inputs.typePattern = og.AttributeRole.TEXT role_data.outputs.execOut = og.AttributeRole.EXECUTION role_data.state.attrNamesToExport = og.AttributeRole.TEXT role_data.state.pathPattern = og.AttributeRole.TEXT role_data.state.typePattern = og.AttributeRole.TEXT return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.__bundles = og.BundleContainer(context, node, attributes, [], read_only=True, gpu_ptr_kinds={}) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def attrNamesToExport(self): data_view = og.AttributeValueHelper(self._attributes.attrNamesToExport) return data_view.get() @attrNamesToExport.setter def attrNamesToExport(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.attrNamesToExport) data_view = og.AttributeValueHelper(self._attributes.attrNamesToExport) data_view.set(value) self.attrNamesToExport_size = data_view.get_array_size() @property def execIn(self): data_view = og.AttributeValueHelper(self._attributes.execIn) return data_view.get() @execIn.setter def execIn(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.execIn) data_view = og.AttributeValueHelper(self._attributes.execIn) data_view.set(value) @property def layerIdentifier(self): data_view = og.AttributeValueHelper(self._attributes.layerIdentifier) return data_view.get() @layerIdentifier.setter def layerIdentifier(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.layerIdentifier) data_view = og.AttributeValueHelper(self._attributes.layerIdentifier) data_view.set(value) @property def pathPattern(self): data_view = og.AttributeValueHelper(self._attributes.pathPattern) return data_view.get() @pathPattern.setter def pathPattern(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.pathPattern) data_view = og.AttributeValueHelper(self._attributes.pathPattern) data_view.set(value) self.pathPattern_size = data_view.get_array_size() @property def prims(self): data_view = og.AttributeValueHelper(self._attributes.prims) return data_view.get() @prims.setter def prims(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.prims) data_view = og.AttributeValueHelper(self._attributes.prims) data_view.set(value) self.prims_size = data_view.get_array_size() @property def primsBundle(self) -> og.BundleContents: """Get the bundle wrapper class for the attribute inputs.primsBundle""" return self.__bundles.primsBundle @property def scatterUnderTargets(self): data_view = og.AttributeValueHelper(self._attributes.scatterUnderTargets) return data_view.get() @scatterUnderTargets.setter def scatterUnderTargets(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.scatterUnderTargets) data_view = og.AttributeValueHelper(self._attributes.scatterUnderTargets) data_view.set(value) @property def typePattern(self): data_view = og.AttributeValueHelper(self._attributes.typePattern) return data_view.get() @typePattern.setter def typePattern(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.typePattern) data_view = og.AttributeValueHelper(self._attributes.typePattern) data_view.set(value) self.typePattern_size = data_view.get_array_size() @property def usdWriteBack(self): data_view = og.AttributeValueHelper(self._attributes.usdWriteBack) return data_view.get() @usdWriteBack.setter def usdWriteBack(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.usdWriteBack) data_view = og.AttributeValueHelper(self._attributes.usdWriteBack) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def execOut(self): data_view = og.AttributeValueHelper(self._attributes.execOut) return data_view.get() @execOut.setter def execOut(self, value): data_view = og.AttributeValueHelper(self._attributes.execOut) data_view.set(value) def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.attrNamesToExport_size = 1 self.pathPattern_size = 1 self.typePattern_size = 1 @property def attrNamesToExport(self): data_view = og.AttributeValueHelper(self._attributes.attrNamesToExport) self.attrNamesToExport_size = data_view.get_array_size() return data_view.get() @attrNamesToExport.setter def attrNamesToExport(self, value): data_view = og.AttributeValueHelper(self._attributes.attrNamesToExport) data_view.set(value) self.attrNamesToExport_size = data_view.get_array_size() @property def layerIdentifier(self): data_view = og.AttributeValueHelper(self._attributes.layerIdentifier) return data_view.get() @layerIdentifier.setter def layerIdentifier(self, value): data_view = og.AttributeValueHelper(self._attributes.layerIdentifier) data_view.set(value) @property def pathPattern(self): data_view = og.AttributeValueHelper(self._attributes.pathPattern) self.pathPattern_size = data_view.get_array_size() return data_view.get() @pathPattern.setter def pathPattern(self, value): data_view = og.AttributeValueHelper(self._attributes.pathPattern) data_view.set(value) self.pathPattern_size = data_view.get_array_size() @property def primBundleDirtyId(self): data_view = og.AttributeValueHelper(self._attributes.primBundleDirtyId) return data_view.get() @primBundleDirtyId.setter def primBundleDirtyId(self, value): data_view = og.AttributeValueHelper(self._attributes.primBundleDirtyId) data_view.set(value) @property def scatterUnderTargets(self): data_view = og.AttributeValueHelper(self._attributes.scatterUnderTargets) return data_view.get() @scatterUnderTargets.setter def scatterUnderTargets(self, value): data_view = og.AttributeValueHelper(self._attributes.scatterUnderTargets) data_view.set(value) @property def typePattern(self): data_view = og.AttributeValueHelper(self._attributes.typePattern) self.typePattern_size = data_view.get_array_size() return data_view.get() @typePattern.setter def typePattern(self, value): data_view = og.AttributeValueHelper(self._attributes.typePattern) data_view.set(value) self.typePattern_size = data_view.get_array_size() @property def usdWriteBack(self): data_view = og.AttributeValueHelper(self._attributes.usdWriteBack) return data_view.get() @usdWriteBack.setter def usdWriteBack(self, value): data_view = og.AttributeValueHelper(self._attributes.usdWriteBack) data_view.set(value) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnWritePrimsV2Database.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnWritePrimsV2Database.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnWritePrimsV2Database.ValuesForState(node, self.attributes.state, dynamic_attributes)
17,916
Python
53.129909
720
0.653271
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnMakeArrayDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.MakeArray Makes an output array attribute from input values, in the order of the inputs. If 'arraySize' is less than 5, the top 'arraySize' elements will be taken. If 'arraySize' is greater than 5 element e will be repeated to fill the remaining space """ from typing import Any import sys import traceback import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnMakeArrayDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.MakeArray Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.a inputs.arraySize inputs.b inputs.c inputs.d inputs.e Outputs: outputs.array """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:a', 'colord[3],colord[4],colorf[3],colorf[4],colorh[3],colorh[4],double,double[2],double[3],double[4],float,float[2],float[3],float[4],frame[4],half,half[2],half[3],half[4],int,int64,int[2],int[3],int[4],matrixd[3],matrixd[4],normald[3],normalf[3],normalh[3],pointd[3],pointf[3],pointh[3],quatd[4],quatf[4],quath[4],texcoordd[2],texcoordd[3],texcoordf[2],texcoordf[3],texcoordh[2],texcoordh[3],timecode,token,transform[4],uchar,uint,uint64,vectord[3],vectorf[3],vectorh[3]', 1, None, 'Element 1', {}, True, None, False, ''), ('inputs:arraySize', 'int', 0, None, 'The size of the array to create', {}, True, 0, False, ''), ('inputs:b', 'colord[3],colord[4],colorf[3],colorf[4],colorh[3],colorh[4],double,double[2],double[3],double[4],float,float[2],float[3],float[4],frame[4],half,half[2],half[3],half[4],int,int64,int[2],int[3],int[4],matrixd[3],matrixd[4],normald[3],normalf[3],normalh[3],pointd[3],pointf[3],pointh[3],quatd[4],quatf[4],quath[4],texcoordd[2],texcoordd[3],texcoordf[2],texcoordf[3],texcoordh[2],texcoordh[3],timecode,token,transform[4],uchar,uint,uint64,vectord[3],vectorf[3],vectorh[3]', 1, None, 'Element 2', {}, True, None, False, ''), ('inputs:c', 'colord[3],colord[4],colorf[3],colorf[4],colorh[3],colorh[4],double,double[2],double[3],double[4],float,float[2],float[3],float[4],frame[4],half,half[2],half[3],half[4],int,int64,int[2],int[3],int[4],matrixd[3],matrixd[4],normald[3],normalf[3],normalh[3],pointd[3],pointf[3],pointh[3],quatd[4],quatf[4],quath[4],texcoordd[2],texcoordd[3],texcoordf[2],texcoordf[3],texcoordh[2],texcoordh[3],timecode,token,transform[4],uchar,uint,uint64,vectord[3],vectorf[3],vectorh[3]', 1, None, 'Element 3', {}, True, None, False, ''), ('inputs:d', 'colord[3],colord[4],colorf[3],colorf[4],colorh[3],colorh[4],double,double[2],double[3],double[4],float,float[2],float[3],float[4],frame[4],half,half[2],half[3],half[4],int,int64,int[2],int[3],int[4],matrixd[3],matrixd[4],normald[3],normalf[3],normalh[3],pointd[3],pointf[3],pointh[3],quatd[4],quatf[4],quath[4],texcoordd[2],texcoordd[3],texcoordf[2],texcoordf[3],texcoordh[2],texcoordh[3],timecode,token,transform[4],uchar,uint,uint64,vectord[3],vectorf[3],vectorh[3]', 1, None, 'Element 4', {}, True, None, False, ''), ('inputs:e', 'colord[3],colord[4],colorf[3],colorf[4],colorh[3],colorh[4],double,double[2],double[3],double[4],float,float[2],float[3],float[4],frame[4],half,half[2],half[3],half[4],int,int64,int[2],int[3],int[4],matrixd[3],matrixd[4],normald[3],normalf[3],normalh[3],pointd[3],pointf[3],pointh[3],quatd[4],quatf[4],quath[4],texcoordd[2],texcoordd[3],texcoordf[2],texcoordf[3],texcoordh[2],texcoordh[3],timecode,token,transform[4],uchar,uint,uint64,vectord[3],vectorf[3],vectorh[3]', 1, None, 'Element 5', {}, True, None, False, ''), ('outputs:array', 'colord[3][],colord[4][],colorf[3][],colorf[4][],colorh[3][],colorh[4][],double[2][],double[3][],double[4][],double[],float[2][],float[3][],float[4][],float[],frame[4][],half[2][],half[3][],half[4][],half[],int64[],int[2][],int[3][],int[4][],int[],matrixd[3][],matrixd[4][],normald[3][],normalf[3][],normalh[3][],pointd[3][],pointf[3][],pointh[3][],quatd[4][],quatf[4][],quath[4][],texcoordd[2][],texcoordd[3][],texcoordf[2][],texcoordf[3][],texcoordh[2][],texcoordh[3][],timecode[],token[],transform[4][],uchar[],uint64[],uint[],vectord[3][],vectorf[3][],vectorh[3][]', 1, None, 'The array of copied values of inputs in the given order', {}, True, None, False, ''), ]) class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = {"arraySize", "_setting_locked", "_batchedReadAttributes", "_batchedReadValues"} """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [self._attributes.arraySize] self._batchedReadValues = [0] @property def a(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.a""" return og.RuntimeAttribute(self._attributes.a.get_attribute_data(), self._context, True) @a.setter def a(self, value_to_set: Any): """Assign another attribute's value to outputs.a""" if isinstance(value_to_set, og.RuntimeAttribute): self.a.value = value_to_set.value else: self.a.value = value_to_set @property def b(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.b""" return og.RuntimeAttribute(self._attributes.b.get_attribute_data(), self._context, True) @b.setter def b(self, value_to_set: Any): """Assign another attribute's value to outputs.b""" if isinstance(value_to_set, og.RuntimeAttribute): self.b.value = value_to_set.value else: self.b.value = value_to_set @property def c(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.c""" return og.RuntimeAttribute(self._attributes.c.get_attribute_data(), self._context, True) @c.setter def c(self, value_to_set: Any): """Assign another attribute's value to outputs.c""" if isinstance(value_to_set, og.RuntimeAttribute): self.c.value = value_to_set.value else: self.c.value = value_to_set @property def d(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.d""" return og.RuntimeAttribute(self._attributes.d.get_attribute_data(), self._context, True) @d.setter def d(self, value_to_set: Any): """Assign another attribute's value to outputs.d""" if isinstance(value_to_set, og.RuntimeAttribute): self.d.value = value_to_set.value else: self.d.value = value_to_set @property def e(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.e""" return og.RuntimeAttribute(self._attributes.e.get_attribute_data(), self._context, True) @e.setter def e(self, value_to_set: Any): """Assign another attribute's value to outputs.e""" if isinstance(value_to_set, og.RuntimeAttribute): self.e.value = value_to_set.value else: self.e.value = value_to_set @property def arraySize(self): return self._batchedReadValues[0] @arraySize.setter def arraySize(self, value): self._batchedReadValues[0] = value def __getattr__(self, item: str): if item in self.LOCAL_PROPERTY_NAMES: return object.__getattribute__(self, item) else: return super().__getattr__(item) def __setattr__(self, item: str, new_value): if item in self.LOCAL_PROPERTY_NAMES: object.__setattr__(self, item, new_value) else: super().__setattr__(item, new_value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def array(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute outputs.array""" return og.RuntimeAttribute(self._attributes.array.get_attribute_data(), self._context, False) @array.setter def array(self, value_to_set: Any): """Assign another attribute's value to outputs.array""" if isinstance(value_to_set, og.RuntimeAttribute): self.array.value = value_to_set.value else: self.array.value = value_to_set def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnMakeArrayDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnMakeArrayDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnMakeArrayDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes) class abi: """Class defining the ABI interface for the node type""" @staticmethod def get_node_type(): get_node_type_function = getattr(OgnMakeArrayDatabase.NODE_TYPE_CLASS, 'get_node_type', None) if callable(get_node_type_function): return get_node_type_function() return 'omni.graph.nodes.MakeArray' @staticmethod def compute(context, node): def database_valid(): if db.inputs.a.type.base_type == og.BaseDataType.UNKNOWN: db.log_warning('Required extended attribute inputs:a is not resolved, compute skipped') return False if db.inputs.b.type.base_type == og.BaseDataType.UNKNOWN: db.log_warning('Required extended attribute inputs:b is not resolved, compute skipped') return False if db.inputs.c.type.base_type == og.BaseDataType.UNKNOWN: db.log_warning('Required extended attribute inputs:c is not resolved, compute skipped') return False if db.inputs.d.type.base_type == og.BaseDataType.UNKNOWN: db.log_warning('Required extended attribute inputs:d is not resolved, compute skipped') return False if db.inputs.e.type.base_type == og.BaseDataType.UNKNOWN: db.log_warning('Required extended attribute inputs:e is not resolved, compute skipped') return False if db.outputs.array.type.base_type == og.BaseDataType.UNKNOWN: db.log_warning('Required extended attribute outputs:array is not resolved, compute skipped') return False return True try: per_node_data = OgnMakeArrayDatabase.PER_NODE_DATA[node.node_id()] db = per_node_data.get('_db') if db is None: db = OgnMakeArrayDatabase(node) per_node_data['_db'] = db if not database_valid(): per_node_data['_db'] = None return False except: db = OgnMakeArrayDatabase(node) try: compute_function = getattr(OgnMakeArrayDatabase.NODE_TYPE_CLASS, 'compute', None) if callable(compute_function) and compute_function.__code__.co_argcount > 1: return compute_function(context, node) db.inputs._prefetch() db.inputs._setting_locked = True with og.in_compute(): return OgnMakeArrayDatabase.NODE_TYPE_CLASS.compute(db) except Exception as error: stack_trace = "".join(traceback.format_tb(sys.exc_info()[2].tb_next)) db.log_error(f'Assertion raised in compute - {error}\n{stack_trace}', add_context=False) finally: db.inputs._setting_locked = False db.outputs._commit() return False @staticmethod def initialize(context, node): OgnMakeArrayDatabase._initialize_per_node_data(node) initialize_function = getattr(OgnMakeArrayDatabase.NODE_TYPE_CLASS, 'initialize', None) if callable(initialize_function): initialize_function(context, node) per_node_data = OgnMakeArrayDatabase.PER_NODE_DATA[node.node_id()] def on_connection_or_disconnection(*args): per_node_data['_db'] = None node.register_on_connected_callback(on_connection_or_disconnection) node.register_on_disconnected_callback(on_connection_or_disconnection) @staticmethod def release(node): release_function = getattr(OgnMakeArrayDatabase.NODE_TYPE_CLASS, 'release', None) if callable(release_function): release_function(node) OgnMakeArrayDatabase._release_per_node_data(node) @staticmethod def release_instance(node, target): OgnMakeArrayDatabase._release_per_node_instance_data(node, target) @staticmethod def update_node_version(context, node, old_version, new_version): update_node_version_function = getattr(OgnMakeArrayDatabase.NODE_TYPE_CLASS, 'update_node_version', None) if callable(update_node_version_function): return update_node_version_function(context, node, old_version, new_version) return False @staticmethod def initialize_type(node_type): initialize_type_function = getattr(OgnMakeArrayDatabase.NODE_TYPE_CLASS, 'initialize_type', None) needs_initializing = True if callable(initialize_type_function): needs_initializing = initialize_type_function(node_type) if needs_initializing: node_type.set_metadata(ogn.MetadataKeys.EXTENSION, "omni.graph.nodes") node_type.set_metadata(ogn.MetadataKeys.HIDDEN, "true") node_type.set_metadata(ogn.MetadataKeys.UI_NAME, "Make Array") node_type.set_metadata(ogn.MetadataKeys.CATEGORIES, "math:array") node_type.set_metadata(ogn.MetadataKeys.DESCRIPTION, "Makes an output array attribute from input values, in the order of the inputs. If 'arraySize' is less than 5, the top 'arraySize' elements will be taken. If 'arraySize' is greater than 5 element e will be repeated to fill the remaining space") node_type.set_metadata(ogn.MetadataKeys.LANGUAGE, "Python") OgnMakeArrayDatabase.INTERFACE.add_to_node_type(node_type) @staticmethod def on_connection_type_resolve(node): on_connection_type_resolve_function = getattr(OgnMakeArrayDatabase.NODE_TYPE_CLASS, 'on_connection_type_resolve', None) if callable(on_connection_type_resolve_function): on_connection_type_resolve_function(node) NODE_TYPE_CLASS = None @staticmethod def register(node_type_class): OgnMakeArrayDatabase.NODE_TYPE_CLASS = node_type_class og.register_node_type(OgnMakeArrayDatabase.abi, 1) @staticmethod def deregister(): og.deregister_node_type("omni.graph.nodes.MakeArray")
18,278
Python
55.416666
692
0.629226
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnMakeTransformDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.MakeTransform Make a transformation matrix that performs a translation, rotation (in euler angles), and scale in that order """ import numpy import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnMakeTransformDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.MakeTransform Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.rotationXYZ inputs.scale inputs.translation Outputs: outputs.transform """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:rotationXYZ', 'vector3d', 0, None, 'The desired orientation in euler angles (XYZ)', {ogn.MetadataKeys.DEFAULT: '[0, 0, 0]'}, True, [0, 0, 0], False, ''), ('inputs:scale', 'vector3d', 0, None, 'The desired scaling factor about the X, Y, and Z axis respectively', {ogn.MetadataKeys.DEFAULT: '[1, 1, 1]'}, True, [1, 1, 1], False, ''), ('inputs:translation', 'vector3d', 0, None, 'the desired translation as a vector', {ogn.MetadataKeys.DEFAULT: '[0, 0, 0]'}, True, [0, 0, 0], False, ''), ('outputs:transform', 'matrix4d', 0, None, 'the resulting transformation matrix', {}, True, None, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.rotationXYZ = og.AttributeRole.VECTOR role_data.inputs.scale = og.AttributeRole.VECTOR role_data.inputs.translation = og.AttributeRole.VECTOR role_data.outputs.transform = og.AttributeRole.MATRIX return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def rotationXYZ(self): data_view = og.AttributeValueHelper(self._attributes.rotationXYZ) return data_view.get() @rotationXYZ.setter def rotationXYZ(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.rotationXYZ) data_view = og.AttributeValueHelper(self._attributes.rotationXYZ) data_view.set(value) @property def scale(self): data_view = og.AttributeValueHelper(self._attributes.scale) return data_view.get() @scale.setter def scale(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.scale) data_view = og.AttributeValueHelper(self._attributes.scale) data_view.set(value) @property def translation(self): data_view = og.AttributeValueHelper(self._attributes.translation) return data_view.get() @translation.setter def translation(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.translation) data_view = og.AttributeValueHelper(self._attributes.translation) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def transform(self): data_view = og.AttributeValueHelper(self._attributes.transform) return data_view.get() @transform.setter def transform(self, value): data_view = og.AttributeValueHelper(self._attributes.transform) data_view.set(value) def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnMakeTransformDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnMakeTransformDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnMakeTransformDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
6,921
Python
45.77027
185
0.661321
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnReadPrimBundleDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.ReadPrimBundle DEPRECATED - use ReadPrims! """ import carb import usdrt import carb import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnReadPrimBundleDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.ReadPrimBundle Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.attrNamesToImport inputs.computeBoundingBox inputs.prim inputs.primPath inputs.usdTimecode inputs.usePath Outputs: outputs.primBundle State: state.attrNamesToImport state.computeBoundingBox state.primPath state.usdTimecode state.usePath """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:attrNamesToImport', 'token', 0, 'Attributes To Import', "A list of wildcard patterns used to match the attribute names that are to be imported\n\nSupported syntax of wildcard pattern:\n '*' - match an arbitrary number of any characters\n '?' - match any single character\n '^' - (caret) is used to define a pattern that is to be excluded\n\nExample of wildcard patterns, input: ['points', 'faceVertexCount', 'faceVertexIndices', 'size']\n '*' - match any\n '* ^points' - match any, but exclude 'points'\n '* ^face*' - match any, but exclude 'faceVertexCount' and 'faceVertexIndices'", {ogn.MetadataKeys.DEFAULT: '"*"'}, True, "*", False, ''), ('inputs:computeBoundingBox', 'bool', 0, 'Compute Bounding Box', "For each primitive compute local bounding box and store them as 'bboxMinCorner', 'bboxMaxCorner' and 'bboxTransform' attributes.", {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('inputs:prim', 'target', 0, None, "The prims to be read from when 'usePath' is false", {}, False, [], False, ''), ('inputs:primPath', 'token', 0, 'Prim Path', "The paths of the prims to be read from when 'usePath' is true", {ogn.MetadataKeys.DEFAULT: '""'}, False, "", True, 'Use prim input with a GetPrimsAtPath node instead'), ('inputs:usdTimecode', 'timecode', 0, 'Time', 'The time at which to evaluate the transform of the USD prim. A value of "NaN" indicates that the default USD time stamp should be used', {ogn.MetadataKeys.DEFAULT: '"NaN"'}, True, float("NaN"), False, ''), ('inputs:usePath', 'bool', 0, 'Use Path', "When true, the 'primPath' attribute is used as the path to the prim being read, otherwise it will read the connection at the 'prim' attribute", {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, True, 'Use prim input with a GetPrimsAtPath node instead'), ('outputs:primBundle', 'bundle', 0, None, 'A bundle containing multiple prims as children.\nEach child contains data attributes and two additional token attributes named sourcePrimPath and sourcePrimType\nwhich contain the path and the type of the Prim being read', {}, True, None, False, ''), ('state:attrNamesToImport', 'uint64', 0, None, 'State from previous evaluation', {}, True, None, False, ''), ('state:computeBoundingBox', 'bool', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('state:primPath', 'uint64', 0, None, 'State from previous evaluation', {}, True, None, False, ''), ('state:usdTimecode', 'timecode', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: '"NaN"'}, True, float("NaN"), False, ''), ('state:usePath', 'bool', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.prim = og.AttributeRole.TARGET role_data.inputs.usdTimecode = og.AttributeRole.TIMECODE role_data.outputs.primBundle = og.AttributeRole.BUNDLE role_data.state.usdTimecode = og.AttributeRole.TIMECODE return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def attrNamesToImport(self): data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) return data_view.get() @attrNamesToImport.setter def attrNamesToImport(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.attrNamesToImport) data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) data_view.set(value) @property def computeBoundingBox(self): data_view = og.AttributeValueHelper(self._attributes.computeBoundingBox) return data_view.get() @computeBoundingBox.setter def computeBoundingBox(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.computeBoundingBox) data_view = og.AttributeValueHelper(self._attributes.computeBoundingBox) data_view.set(value) @property def prim(self): data_view = og.AttributeValueHelper(self._attributes.prim) return data_view.get() @prim.setter def prim(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.prim) data_view = og.AttributeValueHelper(self._attributes.prim) data_view.set(value) self.prim_size = data_view.get_array_size() @property def primPath(self): data_view = og.AttributeValueHelper(self._attributes.primPath) return data_view.get() @primPath.setter def primPath(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.primPath) data_view = og.AttributeValueHelper(self._attributes.primPath) data_view.set(value) @property def usdTimecode(self): data_view = og.AttributeValueHelper(self._attributes.usdTimecode) return data_view.get() @usdTimecode.setter def usdTimecode(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.usdTimecode) data_view = og.AttributeValueHelper(self._attributes.usdTimecode) data_view.set(value) @property def usePath(self): data_view = og.AttributeValueHelper(self._attributes.usePath) return data_view.get() @usePath.setter def usePath(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.usePath) data_view = og.AttributeValueHelper(self._attributes.usePath) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.__bundles = og.BundleContainer(context, node, attributes, [], read_only=False, gpu_ptr_kinds={}) self._batchedWriteValues = { } @property def primBundle(self) -> og.BundleContents: """Get the bundle wrapper class for the attribute outputs.primBundle""" return self.__bundles.primBundle @primBundle.setter def primBundle(self, bundle: og.BundleContents): """Overwrite the bundle attribute outputs.primBundle with a new bundle""" if not isinstance(bundle, og.BundleContents): carb.log_error("Only bundle attributes can be assigned to another bundle attribute") self.__bundles.primBundle.bundle = bundle def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) @property def attrNamesToImport(self): data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) return data_view.get() @attrNamesToImport.setter def attrNamesToImport(self, value): data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) data_view.set(value) @property def computeBoundingBox(self): data_view = og.AttributeValueHelper(self._attributes.computeBoundingBox) return data_view.get() @computeBoundingBox.setter def computeBoundingBox(self, value): data_view = og.AttributeValueHelper(self._attributes.computeBoundingBox) data_view.set(value) @property def primPath(self): data_view = og.AttributeValueHelper(self._attributes.primPath) return data_view.get() @primPath.setter def primPath(self, value): data_view = og.AttributeValueHelper(self._attributes.primPath) data_view.set(value) @property def usdTimecode(self): data_view = og.AttributeValueHelper(self._attributes.usdTimecode) return data_view.get() @usdTimecode.setter def usdTimecode(self, value): data_view = og.AttributeValueHelper(self._attributes.usdTimecode) data_view.set(value) @property def usePath(self): data_view = og.AttributeValueHelper(self._attributes.usePath) return data_view.get() @usePath.setter def usePath(self, value): data_view = og.AttributeValueHelper(self._attributes.usePath) data_view.set(value) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnReadPrimBundleDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnReadPrimBundleDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnReadPrimBundleDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
12,861
Python
49.046692
677
0.655003
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnGatherByPathDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.GatherByPath Node to vectorize data by paths passed in via input. PROTOTYPE DO NOT USE. Requires GatherPrototype """ import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn import numpy class OgnGatherByPathDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.GatherByPath Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.allAttributes inputs.attributes inputs.checkResyncAttributes inputs.forceExportToHistory inputs.hydraFastPath inputs.primPaths inputs.shouldWriteBack Outputs: outputs.gatherId outputs.gatheredPaths Predefined Tokens: tokens.Disabled tokens.World tokens.Local """ # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:allAttributes', 'bool', 0, None, "When true, all USD attributes will be gathered. Otherwise those specified by 'attributes' will be gathered.", {ogn.MetadataKeys.DEFAULT: 'true'}, True, True, False, ''), ('inputs:attributes', 'string', 0, None, 'A space-separated list of attribute names to be gathered when allAttributes is false', {}, True, '', False, ''), ('inputs:checkResyncAttributes', 'bool', 0, None, 'When true, the data vectorization will be updated when new attributes to the Prims are added.', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('inputs:forceExportToHistory', 'bool', 0, None, 'When true, all USD gathered paths will be tagged for being exported to the history.', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('inputs:hydraFastPath', 'token', 0, None, "When not 'Disabled', will extract USD Geometry transforms into Hydra fast-path attributes.\n'World' will add _worldPosition, _worldOrientation. 'Local' will add _localMatrix.", {ogn.MetadataKeys.ALLOWED_TOKENS: 'Disabled,World,Local', ogn.MetadataKeys.ALLOWED_TOKENS_RAW: '["Disabled", "World", "Local"]', ogn.MetadataKeys.DEFAULT: '"Disabled"'}, True, 'Disabled', False, ''), ('inputs:primPaths', 'token[]', 0, None, 'A list of Prim paths whose data should be vectorized', {}, True, [], False, ''), ('inputs:shouldWriteBack', 'bool', 0, 'Should Write Back To USD', 'Write the data back into USD if true.', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('outputs:gatherId', 'uint64', 0, None, 'The GatherId corresponding to this Gather, kInvalidGatherId if the Gather failed', {}, True, None, False, ''), ('outputs:gatheredPaths', 'token[]', 0, None, 'The list of gathered prim paths in gathered-order', {}, True, None, False, ''), ]) class tokens: Disabled = "Disabled" World = "World" Local = "Local" class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = {"allAttributes", "attributes", "checkResyncAttributes", "forceExportToHistory", "hydraFastPath", "shouldWriteBack", "_setting_locked", "_batchedReadAttributes", "_batchedReadValues"} """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [self._attributes.allAttributes, self._attributes.attributes, self._attributes.checkResyncAttributes, self._attributes.forceExportToHistory, self._attributes.hydraFastPath, self._attributes.shouldWriteBack] self._batchedReadValues = [True, "", False, False, "Disabled", False] @property def primPaths(self): data_view = og.AttributeValueHelper(self._attributes.primPaths) return data_view.get() @primPaths.setter def primPaths(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.primPaths) data_view = og.AttributeValueHelper(self._attributes.primPaths) data_view.set(value) self.primPaths_size = data_view.get_array_size() @property def allAttributes(self): return self._batchedReadValues[0] @allAttributes.setter def allAttributes(self, value): self._batchedReadValues[0] = value @property def attributes(self): return self._batchedReadValues[1] @attributes.setter def attributes(self, value): self._batchedReadValues[1] = value @property def checkResyncAttributes(self): return self._batchedReadValues[2] @checkResyncAttributes.setter def checkResyncAttributes(self, value): self._batchedReadValues[2] = value @property def forceExportToHistory(self): return self._batchedReadValues[3] @forceExportToHistory.setter def forceExportToHistory(self, value): self._batchedReadValues[3] = value @property def hydraFastPath(self): return self._batchedReadValues[4] @hydraFastPath.setter def hydraFastPath(self, value): self._batchedReadValues[4] = value @property def shouldWriteBack(self): return self._batchedReadValues[5] @shouldWriteBack.setter def shouldWriteBack(self, value): self._batchedReadValues[5] = value def __getattr__(self, item: str): if item in self.LOCAL_PROPERTY_NAMES: return object.__getattribute__(self, item) else: return super().__getattr__(item) def __setattr__(self, item: str, new_value): if item in self.LOCAL_PROPERTY_NAMES: object.__setattr__(self, item, new_value) else: super().__setattr__(item, new_value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = {"gatherId", "_batchedWriteValues"} """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.gatheredPaths_size = None self._batchedWriteValues = { } @property def gatheredPaths(self): data_view = og.AttributeValueHelper(self._attributes.gatheredPaths) return data_view.get(reserved_element_count=self.gatheredPaths_size) @gatheredPaths.setter def gatheredPaths(self, value): data_view = og.AttributeValueHelper(self._attributes.gatheredPaths) data_view.set(value) self.gatheredPaths_size = data_view.get_array_size() @property def gatherId(self): value = self._batchedWriteValues.get(self._attributes.gatherId) if value: return value else: data_view = og.AttributeValueHelper(self._attributes.gatherId) return data_view.get() @gatherId.setter def gatherId(self, value): self._batchedWriteValues[self._attributes.gatherId] = value def __getattr__(self, item: str): if item in self.LOCAL_PROPERTY_NAMES: return object.__getattribute__(self, item) else: return super().__getattr__(item) def __setattr__(self, item: str, new_value): if item in self.LOCAL_PROPERTY_NAMES: object.__setattr__(self, item, new_value) else: super().__setattr__(item, new_value) def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnGatherByPathDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnGatherByPathDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnGatherByPathDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
10,368
Python
49.091787
428
0.650656
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnReadPrimAttributeDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.ReadPrimAttribute Given a path to a prim on the current USD stage and the name of an attribute on that prim, gets the value of that attribute, at the global timeline value. """ from typing import Any import carb import usdrt import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnReadPrimAttributeDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.ReadPrimAttribute Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.name inputs.prim inputs.primPath inputs.usdTimecode inputs.usePath Outputs: outputs.value State: state.correctlySetup state.importPath state.srcAttrib state.srcPath state.srcPathAsToken state.time """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:name', 'token', 0, 'Attribute Name', 'The name of the attribute to get on the specified prim', {}, True, "", False, ''), ('inputs:prim', 'target', 0, None, "The prim to be read from when 'usePath' is false", {}, False, [], False, ''), ('inputs:primPath', 'token', 0, None, "The path of the prim to be modified when 'usePath' is true", {}, False, None, True, 'Use prim input with a GetPrimsAtPath node instead'), ('inputs:usdTimecode', 'timecode', 0, 'Time', 'The time at which to evaluate the transform of the USD prim attribute. A value of "NaN" indicates that the default USD time stamp should be used', {ogn.MetadataKeys.DEFAULT: '"NaN"'}, True, float("NaN"), False, ''), ('inputs:usePath', 'bool', 0, None, "When true, the 'primPath' attribute is used as the path to the prim being read, otherwise it will read the connection at the 'prim' attribute", {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, True, 'Use prim input with a GetPrimsAtPath node instead'), ('outputs:value', 'any', 2, None, 'The attribute value', {}, True, None, False, ''), ('state:correctlySetup', 'bool', 0, None, 'Wheter or not the instance is properly setup', {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, False, ''), ('state:importPath', 'uint64', 0, None, 'Path at which data has been imported', {}, True, None, False, ''), ('state:srcAttrib', 'uint64', 0, None, 'A TokenC to the source attribute', {}, True, None, False, ''), ('state:srcPath', 'uint64', 0, None, 'A PathC to the source prim', {}, True, None, False, ''), ('state:srcPathAsToken', 'uint64', 0, None, 'A TokenC to the source prim', {}, True, None, False, ''), ('state:time', 'double', 0, None, 'The timecode at which we have imported the value', {}, True, None, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.prim = og.AttributeRole.TARGET role_data.inputs.usdTimecode = og.AttributeRole.TIMECODE return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def name(self): data_view = og.AttributeValueHelper(self._attributes.name) return data_view.get() @name.setter def name(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.name) data_view = og.AttributeValueHelper(self._attributes.name) data_view.set(value) @property def prim(self): data_view = og.AttributeValueHelper(self._attributes.prim) return data_view.get() @prim.setter def prim(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.prim) data_view = og.AttributeValueHelper(self._attributes.prim) data_view.set(value) self.prim_size = data_view.get_array_size() @property def primPath(self): data_view = og.AttributeValueHelper(self._attributes.primPath) return data_view.get() @primPath.setter def primPath(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.primPath) data_view = og.AttributeValueHelper(self._attributes.primPath) data_view.set(value) @property def usdTimecode(self): data_view = og.AttributeValueHelper(self._attributes.usdTimecode) return data_view.get() @usdTimecode.setter def usdTimecode(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.usdTimecode) data_view = og.AttributeValueHelper(self._attributes.usdTimecode) data_view.set(value) @property def usePath(self): data_view = og.AttributeValueHelper(self._attributes.usePath) return data_view.get() @usePath.setter def usePath(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.usePath) data_view = og.AttributeValueHelper(self._attributes.usePath) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def value(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute outputs.value""" return og.RuntimeAttribute(self._attributes.value.get_attribute_data(), self._context, False) @value.setter def value(self, value_to_set: Any): """Assign another attribute's value to outputs.value""" if isinstance(value_to_set, og.RuntimeAttribute): self.value.value = value_to_set.value else: self.value.value = value_to_set def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) @property def correctlySetup(self): data_view = og.AttributeValueHelper(self._attributes.correctlySetup) return data_view.get() @correctlySetup.setter def correctlySetup(self, value): data_view = og.AttributeValueHelper(self._attributes.correctlySetup) data_view.set(value) @property def importPath(self): data_view = og.AttributeValueHelper(self._attributes.importPath) return data_view.get() @importPath.setter def importPath(self, value): data_view = og.AttributeValueHelper(self._attributes.importPath) data_view.set(value) @property def srcAttrib(self): data_view = og.AttributeValueHelper(self._attributes.srcAttrib) return data_view.get() @srcAttrib.setter def srcAttrib(self, value): data_view = og.AttributeValueHelper(self._attributes.srcAttrib) data_view.set(value) @property def srcPath(self): data_view = og.AttributeValueHelper(self._attributes.srcPath) return data_view.get() @srcPath.setter def srcPath(self, value): data_view = og.AttributeValueHelper(self._attributes.srcPath) data_view.set(value) @property def srcPathAsToken(self): data_view = og.AttributeValueHelper(self._attributes.srcPathAsToken) return data_view.get() @srcPathAsToken.setter def srcPathAsToken(self, value): data_view = og.AttributeValueHelper(self._attributes.srcPathAsToken) data_view.set(value) @property def time(self): data_view = og.AttributeValueHelper(self._attributes.time) return data_view.get() @time.setter def time(self, value): data_view = og.AttributeValueHelper(self._attributes.time) data_view.set(value) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnReadPrimAttributeDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnReadPrimAttributeDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnReadPrimAttributeDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
11,432
Python
44.011811
298
0.638121
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnGetPrimDirectionVectorDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.GetPrimDirectionVector Given a prim, find its direction vectors (up vector, forward vector, right vector, etc.) """ import numpy import usdrt import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnGetPrimDirectionVectorDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.GetPrimDirectionVector Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.prim inputs.primPath inputs.usePath Outputs: outputs.backwardVector outputs.downVector outputs.forwardVector outputs.leftVector outputs.rightVector outputs.upVector """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:prim', 'target', 0, None, "The connection to the input prim - this attribute is used when 'usePath' is false", {}, False, [], False, ''), ('inputs:primPath', 'token', 0, None, "The path of the input prim - this attribute is used when 'usePath' is true", {}, True, "", True, 'Use prim input with a GetPrimsAtPath node instead'), ('inputs:usePath', 'bool', 0, None, "When true, it will use the 'primPath' attribute as the path to the prim, otherwise it will read the connection at the 'prim' attribute", {ogn.MetadataKeys.DEFAULT: 'true'}, True, True, True, 'Use prim input with a GetPrimsAtPath node instead'), ('outputs:backwardVector', 'double3', 0, 'Backward Vector', 'The backward vector of the prim', {}, True, None, False, ''), ('outputs:downVector', 'double3', 0, 'Down Vector', 'The down vector of the prim', {}, True, None, False, ''), ('outputs:forwardVector', 'double3', 0, 'Forward Vector', 'The forward vector of the prim', {}, True, None, False, ''), ('outputs:leftVector', 'double3', 0, 'Left Vector', 'The left vector of the prim', {}, True, None, False, ''), ('outputs:rightVector', 'double3', 0, 'Right Vector', 'The right vector of the prim', {}, True, None, False, ''), ('outputs:upVector', 'double3', 0, 'Up Vector', 'The up vector of the prim', {}, True, None, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.prim = og.AttributeRole.TARGET return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def prim(self): data_view = og.AttributeValueHelper(self._attributes.prim) return data_view.get() @prim.setter def prim(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.prim) data_view = og.AttributeValueHelper(self._attributes.prim) data_view.set(value) self.prim_size = data_view.get_array_size() @property def primPath(self): data_view = og.AttributeValueHelper(self._attributes.primPath) return data_view.get() @primPath.setter def primPath(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.primPath) data_view = og.AttributeValueHelper(self._attributes.primPath) data_view.set(value) @property def usePath(self): data_view = og.AttributeValueHelper(self._attributes.usePath) return data_view.get() @usePath.setter def usePath(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.usePath) data_view = og.AttributeValueHelper(self._attributes.usePath) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def backwardVector(self): data_view = og.AttributeValueHelper(self._attributes.backwardVector) return data_view.get() @backwardVector.setter def backwardVector(self, value): data_view = og.AttributeValueHelper(self._attributes.backwardVector) data_view.set(value) @property def downVector(self): data_view = og.AttributeValueHelper(self._attributes.downVector) return data_view.get() @downVector.setter def downVector(self, value): data_view = og.AttributeValueHelper(self._attributes.downVector) data_view.set(value) @property def forwardVector(self): data_view = og.AttributeValueHelper(self._attributes.forwardVector) return data_view.get() @forwardVector.setter def forwardVector(self, value): data_view = og.AttributeValueHelper(self._attributes.forwardVector) data_view.set(value) @property def leftVector(self): data_view = og.AttributeValueHelper(self._attributes.leftVector) return data_view.get() @leftVector.setter def leftVector(self, value): data_view = og.AttributeValueHelper(self._attributes.leftVector) data_view.set(value) @property def rightVector(self): data_view = og.AttributeValueHelper(self._attributes.rightVector) return data_view.get() @rightVector.setter def rightVector(self, value): data_view = og.AttributeValueHelper(self._attributes.rightVector) data_view.set(value) @property def upVector(self): data_view = og.AttributeValueHelper(self._attributes.upVector) return data_view.get() @upVector.setter def upVector(self, value): data_view = og.AttributeValueHelper(self._attributes.upVector) data_view.set(value) def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnGetPrimDirectionVectorDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnGetPrimDirectionVectorDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnGetPrimDirectionVectorDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
9,394
Python
44.386473
289
0.648073
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnNoiseDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.Noise Sample values from a Perlin noise field. The noise field for any given seed is static: the same input position will always give the same result. This is useful in many areas, such as texturing and animation, where repeatability is essential. If you want a result that varies then you will need to vary either the position or the seed. For example, connecting the 'frame' output of an OnTick node to position will provide a noise result which varies from frame to frame. Perlin noise is locally smooth, meaning that small changes in the sample position will produce small changes in the resulting noise. Varying the seed value will produce a more chaotic result. Another characteristic of Perlin noise is that it is zero at the corners of each cell in the field. In practical terms this means that integral positions, such as 5.0 in a one-dimensional field or (3.0, -1.0) in a two-dimensional field, will return a result of 0.0. Thus, if the source of your sample positions provides only integral values then all of your results will be zero. To avoid this try offsetting your position values by a fractional amount, such as 0.5. """ from typing import Any import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnNoiseDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.Noise Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.position inputs.seed Outputs: outputs.result """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:position', 'float,float[2],float[2][],float[3],float[3][],float[4],float[4][],float[]', 1, None, 'Position(s) within the noise field to be sampled. For a given seed, the same position \nwill always return the same noise value.', {}, True, None, False, ''), ('inputs:seed', 'uint', 0, None, 'Seed for generating the noise field.', {ogn.MetadataKeys.DEFAULT: '0'}, True, 0, False, ''), ('outputs:result', 'float,float[]', 1, None, 'Value at the selected position(s) in the noise field.', {}, True, None, False, ''), ]) class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def position(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.position""" return og.RuntimeAttribute(self._attributes.position.get_attribute_data(), self._context, True) @position.setter def position(self, value_to_set: Any): """Assign another attribute's value to outputs.position""" if isinstance(value_to_set, og.RuntimeAttribute): self.position.value = value_to_set.value else: self.position.value = value_to_set @property def seed(self): data_view = og.AttributeValueHelper(self._attributes.seed) return data_view.get() @seed.setter def seed(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.seed) data_view = og.AttributeValueHelper(self._attributes.seed) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def result(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute outputs.result""" return og.RuntimeAttribute(self._attributes.result.get_attribute_data(), self._context, False) @result.setter def result(self, value_to_set: Any): """Assign another attribute's value to outputs.result""" if isinstance(value_to_set, og.RuntimeAttribute): self.result.value = value_to_set.value else: self.result.value = value_to_set def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnNoiseDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnNoiseDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnNoiseDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
7,259
Python
51.230215
273
0.678744
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnReadPrimAttributesDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.ReadPrimAttributes Read Prim attributes and exposes them as dynamic attributes Does not produce output bundle. """ import usdrt import carb import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnReadPrimAttributesDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.ReadPrimAttributes Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.attrNamesToImport inputs.prim inputs.primPath inputs.usdTimecode inputs.usePath Outputs: outputs.primBundle State: state.attrNamesToImport state.primPath state.usdTimecode """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:attrNamesToImport', 'string', 0, 'Attribute Name Pattern', "A list of wildcard patterns used to match the attribute names that are to be imported\n\nSupported syntax of wildcard pattern:\n '*' - match an arbitrary number of any characters\n '?' - match any single character\n '^' - (caret) is used to define a pattern that is to be excluded\n\nExample of wildcard patterns, input: ['points', 'faceVertexCount', 'faceVertexIndices', 'size']\n '*' - match any\n '* ^points' - match any, but exclude 'points'\n '* ^face*' - match any, but exclude 'faceVertexCount' and 'faceVertexIndices'", {ogn.MetadataKeys.DEFAULT: '"*"'}, True, "*", False, ''), ('inputs:prim', 'target', 0, None, "The prim to be read from when 'usePath' is false", {}, True, [], False, ''), ('inputs:primPath', 'path', 0, 'Prim Path', "The path of the prim to be read from when 'usePath' is true", {ogn.MetadataKeys.DEFAULT: '""'}, False, "", True, 'Use prim input with a GetPrimsAtPath node instead'), ('inputs:usdTimecode', 'timecode', 0, 'Time', 'The time at which to evaluate the transform of the USD prim. A value of "NaN" indicates that the default USD time stamp should be used', {ogn.MetadataKeys.DEFAULT: '"NaN"'}, True, float("NaN"), False, ''), ('inputs:usePath', 'bool', 0, 'Use Path', "When true, the 'primPath' attribute is used as the path to the prim being read, otherwise it will read the connection at the 'prim' attribute", {ogn.MetadataKeys.DEFAULT: 'false'}, True, False, True, 'Use prim input with a GetPrimsAtPath node instead'), ('outputs:primBundle', 'bundle', 0, None, 'A bundle of the target Prim attributes.\nIn addition to the data attributes, there are token attributes named sourcePrimPath and sourcePrimType\nwhich contains the path of the Prim being read', {ogn.MetadataKeys.HIDDEN: 'true', ogn.MetadataKeys.LITERAL_ONLY: '1'}, True, None, False, ''), ('state:attrNamesToImport', 'string', 0, None, 'State from previous evaluation', {}, True, None, False, ''), ('state:primPath', 'uint64', 0, None, 'State from previous evaluation', {}, True, None, False, ''), ('state:usdTimecode', 'timecode', 0, None, 'State from previous evaluation', {ogn.MetadataKeys.DEFAULT: '"NaN"'}, True, float("NaN"), False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.attrNamesToImport = og.AttributeRole.TEXT role_data.inputs.prim = og.AttributeRole.TARGET role_data.inputs.primPath = og.AttributeRole.PATH role_data.inputs.usdTimecode = og.AttributeRole.TIMECODE role_data.outputs.primBundle = og.AttributeRole.BUNDLE role_data.state.attrNamesToImport = og.AttributeRole.TEXT role_data.state.usdTimecode = og.AttributeRole.TIMECODE return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def attrNamesToImport(self): data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) return data_view.get() @attrNamesToImport.setter def attrNamesToImport(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.attrNamesToImport) data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) data_view.set(value) self.attrNamesToImport_size = data_view.get_array_size() @property def prim(self): data_view = og.AttributeValueHelper(self._attributes.prim) return data_view.get() @prim.setter def prim(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.prim) data_view = og.AttributeValueHelper(self._attributes.prim) data_view.set(value) self.prim_size = data_view.get_array_size() @property def primPath(self): data_view = og.AttributeValueHelper(self._attributes.primPath) return data_view.get() @primPath.setter def primPath(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.primPath) data_view = og.AttributeValueHelper(self._attributes.primPath) data_view.set(value) self.primPath_size = data_view.get_array_size() @property def usdTimecode(self): data_view = og.AttributeValueHelper(self._attributes.usdTimecode) return data_view.get() @usdTimecode.setter def usdTimecode(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.usdTimecode) data_view = og.AttributeValueHelper(self._attributes.usdTimecode) data_view.set(value) @property def usePath(self): data_view = og.AttributeValueHelper(self._attributes.usePath) return data_view.get() @usePath.setter def usePath(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.usePath) data_view = og.AttributeValueHelper(self._attributes.usePath) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.__bundles = og.BundleContainer(context, node, attributes, [], read_only=False, gpu_ptr_kinds={}) self._batchedWriteValues = { } @property def primBundle(self) -> og.BundleContents: """Get the bundle wrapper class for the attribute outputs.primBundle""" return self.__bundles.primBundle @primBundle.setter def primBundle(self, bundle: og.BundleContents): """Overwrite the bundle attribute outputs.primBundle with a new bundle""" if not isinstance(bundle, og.BundleContents): carb.log_error("Only bundle attributes can be assigned to another bundle attribute") self.__bundles.primBundle.bundle = bundle def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.attrNamesToImport_size = None @property def attrNamesToImport(self): data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) self.attrNamesToImport_size = data_view.get_array_size() return data_view.get() @attrNamesToImport.setter def attrNamesToImport(self, value): data_view = og.AttributeValueHelper(self._attributes.attrNamesToImport) data_view.set(value) self.attrNamesToImport_size = data_view.get_array_size() @property def primPath(self): data_view = og.AttributeValueHelper(self._attributes.primPath) return data_view.get() @primPath.setter def primPath(self, value): data_view = og.AttributeValueHelper(self._attributes.primPath) data_view.set(value) @property def usdTimecode(self): data_view = og.AttributeValueHelper(self._attributes.usdTimecode) return data_view.get() @usdTimecode.setter def usdTimecode(self, value): data_view = og.AttributeValueHelper(self._attributes.usdTimecode) data_view.set(value) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnReadPrimAttributesDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnReadPrimAttributesDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnReadPrimAttributesDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
11,635
Python
50.486725
680
0.65896
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnAttrTypeDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.AttributeType Queries information about the type of a specified attribute in an input bundle """ import carb import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnAttrTypeDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.AttributeType Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.attrName inputs.data Outputs: outputs.arrayDepth outputs.baseType outputs.componentCount outputs.fullType outputs.role """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:attrName', 'token', 0, 'Attribute To Query', 'The name of the attribute to be queried', {ogn.MetadataKeys.DEFAULT: '"input"'}, True, "input", False, ''), ('inputs:data', 'bundle', 0, 'Bundle To Examine', 'Bundle of attributes to examine', {}, True, None, False, ''), ('outputs:arrayDepth', 'int', 0, 'Attribute Array Depth', 'Zero for a single value, one for an array, two for an array of arrays.\nSet to -1 if the named attribute was not in the bundle.', {}, True, None, False, ''), ('outputs:baseType', 'int', 0, 'Attribute Base Type', 'An integer representing the type of the individual components.\nSet to -1 if the named attribute was not in the bundle.', {}, True, None, False, ''), ('outputs:componentCount', 'int', 0, 'Attribute Component Count', 'Number of components in each tuple, e.g. one for float, three for point3f, 16 for\nmatrix4d. Set to -1 if the named attribute was not in the bundle.', {}, True, None, False, ''), ('outputs:fullType', 'int', 0, 'Full Attribute Type', 'A single int representing the full type information.\nSet to -1 if the named attribute was not in the bundle.', {}, True, None, False, ''), ('outputs:role', 'int', 0, 'Attribute Role', 'An integer representing semantic meaning of the type, e.g. point3f vs. normal3f vs. vector3f vs. float3.\nSet to -1 if the named attribute was not in the bundle.', {}, True, None, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.data = og.AttributeRole.BUNDLE return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.__bundles = og.BundleContainer(context, node, attributes, [], read_only=True, gpu_ptr_kinds={}) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def attrName(self): data_view = og.AttributeValueHelper(self._attributes.attrName) return data_view.get() @attrName.setter def attrName(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.attrName) data_view = og.AttributeValueHelper(self._attributes.attrName) data_view.set(value) @property def data(self) -> og.BundleContents: """Get the bundle wrapper class for the attribute inputs.data""" return self.__bundles.data def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def arrayDepth(self): data_view = og.AttributeValueHelper(self._attributes.arrayDepth) return data_view.get() @arrayDepth.setter def arrayDepth(self, value): data_view = og.AttributeValueHelper(self._attributes.arrayDepth) data_view.set(value) @property def baseType(self): data_view = og.AttributeValueHelper(self._attributes.baseType) return data_view.get() @baseType.setter def baseType(self, value): data_view = og.AttributeValueHelper(self._attributes.baseType) data_view.set(value) @property def componentCount(self): data_view = og.AttributeValueHelper(self._attributes.componentCount) return data_view.get() @componentCount.setter def componentCount(self, value): data_view = og.AttributeValueHelper(self._attributes.componentCount) data_view.set(value) @property def fullType(self): data_view = og.AttributeValueHelper(self._attributes.fullType) return data_view.get() @fullType.setter def fullType(self, value): data_view = og.AttributeValueHelper(self._attributes.fullType) data_view.set(value) @property def role(self): data_view = og.AttributeValueHelper(self._attributes.role) return data_view.get() @role.setter def role(self, value): data_view = og.AttributeValueHelper(self._attributes.role) data_view.set(value) def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnAttrTypeDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnAttrTypeDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnAttrTypeDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
8,297
Python
46.965318
253
0.655538
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnBundleInspectorDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.BundleInspector This node creates independent outputs containing information about the contents of a bundle attribute. It can be used for testing or debugging what is inside a bundle as it flows through the graph. The bundle is inspected recursively, so any bundles inside of the main bundle have their contents added to the output as well. The bundle contents can be printed when the node evaluates, and it passes the input straight through unchanged so you can insert this node between two nodes to inspect the data flowing through the graph. """ import carb import numpy import carb import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnBundleInspectorDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.BundleInspector Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.bundle inputs.inspectDepth inputs.print Outputs: outputs.arrayDepths outputs.attributeCount outputs.bundle outputs.childCount outputs.count outputs.names outputs.roles outputs.tupleCounts outputs.types outputs.values """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:bundle', 'bundle', 0, 'Bundle To Analyze', 'The attribute bundle to be inspected', {}, True, None, False, ''), ('inputs:inspectDepth', 'int', 0, 'Inspect Depth', 'The depth that the inspector is going to traverse and print.\n0 means just attributes on the input bundles. 1 means its immediate children. -1 means infinity.', {ogn.MetadataKeys.DEFAULT: '1'}, True, 1, False, ''), ('inputs:print', 'bool', 0, 'Print Contents', 'Setting to true prints the contents of the bundle when the node evaluates', {}, True, False, False, ''), ('outputs:arrayDepths', 'int[]', 0, 'Array Depths', 'List of the array depths of attributes present in the bundle', {}, True, None, False, ''), ('outputs:attributeCount', 'uint64', 0, 'Attribute Count', 'Number of attributes present in the bundle. Every other output is an array that\nshould have this number of elements in it.', {}, True, None, False, ''), ('outputs:bundle', 'bundle', 0, 'Bundle Passthrough', 'The attribute bundle passed through as-is from the input bundle', {}, True, None, False, ''), ('outputs:childCount', 'uint64', 0, 'Child Count', 'Number of child bundles present in the bundle.', {}, True, None, False, ''), ('outputs:count', 'uint64', 0, 'Attribute Count', 'Number of attributes present in the bundle. Every other output is an array that\nshould have this number of elements in it.', {ogn.MetadataKeys.HIDDEN: 'true'}, True, None, False, ''), ('outputs:names', 'token[]', 0, 'Attribute Names', 'List of the names of attributes present in the bundle', {}, True, None, False, ''), ('outputs:roles', 'token[]', 0, 'Attribute Roles', 'List of the names of the roles of attributes present in the bundle', {}, True, None, False, ''), ('outputs:tupleCounts', 'int[]', 0, 'Tuple Counts', 'List of the tuple counts of attributes present in the bundle', {}, True, None, False, ''), ('outputs:types', 'token[]', 0, 'Attribute Base Types', 'List of the types of attributes present in the bundle', {}, True, None, False, ''), ('outputs:values', 'token[]', 0, 'Attribute Values', 'List of the bundled attribute values, converted to token format', {}, True, None, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.bundle = og.AttributeRole.BUNDLE role_data.outputs.bundle = og.AttributeRole.BUNDLE return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.__bundles = og.BundleContainer(context, node, attributes, [], read_only=True, gpu_ptr_kinds={}) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def bundle(self) -> og.BundleContents: """Get the bundle wrapper class for the attribute inputs.bundle""" return self.__bundles.bundle @property def inspectDepth(self): data_view = og.AttributeValueHelper(self._attributes.inspectDepth) return data_view.get() @inspectDepth.setter def inspectDepth(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.inspectDepth) data_view = og.AttributeValueHelper(self._attributes.inspectDepth) data_view.set(value) @property def print(self): data_view = og.AttributeValueHelper(self._attributes.print) return data_view.get() @print.setter def print(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.print) data_view = og.AttributeValueHelper(self._attributes.print) data_view.set(value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.__bundles = og.BundleContainer(context, node, attributes, [], read_only=False, gpu_ptr_kinds={}) self.arrayDepths_size = None self.names_size = None self.roles_size = None self.tupleCounts_size = None self.types_size = None self.values_size = None self._batchedWriteValues = { } @property def arrayDepths(self): data_view = og.AttributeValueHelper(self._attributes.arrayDepths) return data_view.get(reserved_element_count=self.arrayDepths_size) @arrayDepths.setter def arrayDepths(self, value): data_view = og.AttributeValueHelper(self._attributes.arrayDepths) data_view.set(value) self.arrayDepths_size = data_view.get_array_size() @property def attributeCount(self): data_view = og.AttributeValueHelper(self._attributes.attributeCount) return data_view.get() @attributeCount.setter def attributeCount(self, value): data_view = og.AttributeValueHelper(self._attributes.attributeCount) data_view.set(value) @property def bundle(self) -> og.BundleContents: """Get the bundle wrapper class for the attribute outputs.bundle""" return self.__bundles.bundle @bundle.setter def bundle(self, bundle: og.BundleContents): """Overwrite the bundle attribute outputs.bundle with a new bundle""" if not isinstance(bundle, og.BundleContents): carb.log_error("Only bundle attributes can be assigned to another bundle attribute") self.__bundles.bundle.bundle = bundle @property def childCount(self): data_view = og.AttributeValueHelper(self._attributes.childCount) return data_view.get() @childCount.setter def childCount(self, value): data_view = og.AttributeValueHelper(self._attributes.childCount) data_view.set(value) @property def count(self): data_view = og.AttributeValueHelper(self._attributes.count) return data_view.get() @count.setter def count(self, value): data_view = og.AttributeValueHelper(self._attributes.count) data_view.set(value) @property def names(self): data_view = og.AttributeValueHelper(self._attributes.names) return data_view.get(reserved_element_count=self.names_size) @names.setter def names(self, value): data_view = og.AttributeValueHelper(self._attributes.names) data_view.set(value) self.names_size = data_view.get_array_size() @property def roles(self): data_view = og.AttributeValueHelper(self._attributes.roles) return data_view.get(reserved_element_count=self.roles_size) @roles.setter def roles(self, value): data_view = og.AttributeValueHelper(self._attributes.roles) data_view.set(value) self.roles_size = data_view.get_array_size() @property def tupleCounts(self): data_view = og.AttributeValueHelper(self._attributes.tupleCounts) return data_view.get(reserved_element_count=self.tupleCounts_size) @tupleCounts.setter def tupleCounts(self, value): data_view = og.AttributeValueHelper(self._attributes.tupleCounts) data_view.set(value) self.tupleCounts_size = data_view.get_array_size() @property def types(self): data_view = og.AttributeValueHelper(self._attributes.types) return data_view.get(reserved_element_count=self.types_size) @types.setter def types(self, value): data_view = og.AttributeValueHelper(self._attributes.types) data_view.set(value) self.types_size = data_view.get_array_size() @property def values(self): data_view = og.AttributeValueHelper(self._attributes.values) return data_view.get(reserved_element_count=self.values_size) @values.setter def values(self, value): data_view = og.AttributeValueHelper(self._attributes.values) data_view.set(value) self.values_size = data_view.get_array_size() def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnBundleInspectorDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnBundleInspectorDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnBundleInspectorDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
13,048
Python
47.509294
274
0.650061
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnGetGatheredAttributeDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.GetGatheredAttribute Copies gathered scaler/vector attribute values from the Gather buckets into an array attribute PROTOTYPE DO NOT USE, Requires GatherPrototype """ import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn from typing import Any class OgnGetGatheredAttributeDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.GetGatheredAttribute Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.gatherId inputs.name Outputs: outputs.value """ # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:gatherId', 'uint64', 0, None, 'The GatherId of the Gather containing the attribute values', {}, True, 0, False, ''), ('inputs:name', 'token', 0, None, 'The name of the gathered attribute to join', {}, True, '', False, ''), ('outputs:value', 'any', 2, None, 'The gathered attribute values as an array', {}, True, None, False, ''), ]) class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = {"gatherId", "name", "_setting_locked", "_batchedReadAttributes", "_batchedReadValues"} """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [self._attributes.gatherId, self._attributes.name] self._batchedReadValues = [0, ""] @property def gatherId(self): return self._batchedReadValues[0] @gatherId.setter def gatherId(self, value): self._batchedReadValues[0] = value @property def name(self): return self._batchedReadValues[1] @name.setter def name(self, value): self._batchedReadValues[1] = value def __getattr__(self, item: str): if item in self.LOCAL_PROPERTY_NAMES: return object.__getattribute__(self, item) else: return super().__getattr__(item) def __setattr__(self, item: str, new_value): if item in self.LOCAL_PROPERTY_NAMES: object.__setattr__(self, item, new_value) else: super().__setattr__(item, new_value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def value(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute outputs.value""" return og.RuntimeAttribute(self._attributes.value.get_attribute_data(), self._context, False) @value.setter def value(self, value_to_set: Any): """Assign another attribute's value to outputs.value""" if isinstance(value_to_set, og.RuntimeAttribute): self.value.value = value_to_set.value else: self.value.value = value_to_set def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnGetGatheredAttributeDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnGetGatheredAttributeDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnGetGatheredAttributeDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
5,986
Python
49.737288
133
0.659372
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnGetPrimPathsDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.GetPrimPaths Generates a path array from the specified relationship. This is useful when absolute prim paths may change. """ import numpy import usdrt import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnGetPrimPathsDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.GetPrimPaths Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.prims Outputs: outputs.primPaths """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:prims', 'target', 0, None, 'Relationship to prims on the stage', {ogn.MetadataKeys.ALLOW_MULTI_INPUTS: '1'}, True, [], False, ''), ('outputs:primPaths', 'token[]', 0, None, 'The absolute paths of the given prims as a token array', {}, True, None, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.prims = og.AttributeRole.TARGET return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def prims(self): data_view = og.AttributeValueHelper(self._attributes.prims) return data_view.get() @prims.setter def prims(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.prims) data_view = og.AttributeValueHelper(self._attributes.prims) data_view.set(value) self.prims_size = data_view.get_array_size() def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.primPaths_size = None self._batchedWriteValues = { } @property def primPaths(self): data_view = og.AttributeValueHelper(self._attributes.primPaths) return data_view.get(reserved_element_count=self.primPaths_size) @primPaths.setter def primPaths(self, value): data_view = og.AttributeValueHelper(self._attributes.primPaths) data_view.set(value) self.primPaths_size = data_view.get_array_size() def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnGetPrimPathsDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnGetPrimPathsDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnGetPrimPathsDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
5,629
Python
45.528925
147
0.671345
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/OgnModuloDatabase.py
"""Support for simplified access to data on nodes of type omni.graph.nodes.Modulo Computes the modulo of integer inputs (A % B), which is the remainder of A / B If B is zero, the result is zero. If A and B are both non-negative the result is non-negative, otherwise the sign of the result is undefined. """ from typing import Any import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn class OgnModuloDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.graph.nodes.Modulo Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.a inputs.b Outputs: outputs.result """ # Imprint the generator and target ABI versions in the file for JIT generation GENERATOR_VERSION = (1, 41, 3) TARGET_VERSION = (2, 139, 12) # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:a', 'int,int64,uchar,uint,uint64', 1, 'A', 'The dividend of (A % B)', {}, True, None, False, ''), ('inputs:b', 'int,int64,uchar,uint,uint64', 1, 'B', 'The divisor of (A % B)', {}, True, None, False, ''), ('outputs:result', 'int,int64,uchar,uint,uint64', 1, 'Result', 'Modulo (A % B), the remainder of A / B', {}, True, None, False, ''), ]) class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [] self._batchedReadValues = [] @property def a(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.a""" return og.RuntimeAttribute(self._attributes.a.get_attribute_data(), self._context, True) @a.setter def a(self, value_to_set: Any): """Assign another attribute's value to outputs.a""" if isinstance(value_to_set, og.RuntimeAttribute): self.a.value = value_to_set.value else: self.a.value = value_to_set @property def b(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute inputs.b""" return og.RuntimeAttribute(self._attributes.b.get_attribute_data(), self._context, True) @b.setter def b(self, value_to_set: Any): """Assign another attribute's value to outputs.b""" if isinstance(value_to_set, og.RuntimeAttribute): self.b.value = value_to_set.value else: self.b.value = value_to_set def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } @property def result(self) -> og.RuntimeAttribute: """Get the runtime wrapper class for the attribute outputs.result""" return og.RuntimeAttribute(self._attributes.result.get_attribute_data(), self._context, False) @result.setter def result(self, value_to_set: Any): """Assign another attribute's value to outputs.result""" if isinstance(value_to_set, og.RuntimeAttribute): self.result.value = value_to_set.value else: self.result.value = value_to_set def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnModuloDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnModuloDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnModuloDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
6,245
Python
47.046153
140
0.6506
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnGetLookAtRotation.cpp
// Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // // clang-format off #include "UsdPCH.h" // clang-format on #include <omni/graph/core/PreUsdInclude.h> #include <pxr/base/gf/rotation.h> #include <omni/graph/core/PostUsdInclude.h> #include <omni/math/linalg/SafeCast.h> #include <omni/math/linalg/vec.h> #include <OgnGetLookAtRotationDatabase.h> namespace omni { namespace graph { namespace action { class OgnGetLookAtRotation { pxr::TfToken m_upAxisToken; static omni::math::linalg::vec3d getSceneUp(OgnGetLookAtRotationDatabase& db) { // Default to the Y-axis if anything goes wrong. omni::math::linalg::vec3d up = omni::math::linalg::vec3d::YAxis(); long stageId = db.abi_context().iContext->getStageId(db.abi_context()); auto stage = pxr::UsdUtilsStageCache::Get().Find(pxr::UsdStageCache::Id::FromLongInt(stageId)); if (stage) { auto& state = db.internalState<OgnGetLookAtRotation>(); pxr::VtValue value; if (stage->GetMetadata(state.m_upAxisToken, &value)) { std::string upAxisStr = value.Cast<std::string>().Get<std::string>(); if ((upAxisStr == "X") || (upAxisStr == "x")) { up = omni::math::linalg::vec3d::XAxis(); } else if ((upAxisStr == "Z") || (upAxisStr == "z")) { up = omni::math::linalg::vec3d::ZAxis(); } } } return up; } public: OgnGetLookAtRotation() { // Cache the token. m_upAxisToken = pxr::TfToken("upAxis"); } static bool compute(OgnGetLookAtRotationDatabase& db) { auto const start = db.inputs.start(); auto const target = db.inputs.target(); auto const forward = db.inputs.forward(); auto up = db.inputs.up(); // If 'up' is zero, use the scene's up. if (up.GetLengthSq() == 0.0) { up = getSceneUp(db); } omni::math::linalg::vec3d const aimVec = target - start; omni::math::linalg::vec3d const eyeU = aimVec.GetNormalized(); omni::math::linalg::vec3d eyeV = up.GetNormalized(); omni::math::linalg::vec3d const eyeW = (eyeU ^ eyeV).GetNormalized(); // eyeW and eyeU are orthogonal unit vectors so eyeV will be one as well. eyeV = eyeW ^ eyeU; auto localMtx = omni::math::linalg::matrix4d().SetIdentity(); omni::math::linalg::vec3d const eyeUL = forward.GetNormalized(); omni::math::linalg::vec3d eyeVL = up.GetNormalized(); omni::math::linalg::vec3d const eyeWL = (eyeUL ^ eyeVL).GetNormalized(); // eyeWL and eyeUL are orthogonal unit vectors so eyeVL will be one as well. eyeVL = eyeWL ^ eyeUL; localMtx.SetRow3(0, eyeUL); localMtx.SetRow3(1, eyeVL); localMtx.SetRow3(2, eyeWL); // The actual aiming vectors auto newEyeMtx = omni::math::linalg::matrix4d().SetIdentity(); newEyeMtx.SetRow3(0, eyeU); newEyeMtx.SetRow3(1, eyeV); newEyeMtx.SetRow3(2, eyeW); // Output omni::math::linalg::matrix4d aimMtx = localMtx.GetInverse() * newEyeMtx; aimMtx.SetRow3(3, start); omni::math::linalg::quatd orientation = aimMtx.ExtractRotation(); pxr::GfRotation rotation(omni::math::linalg::safeCastToUSD(orientation)); // extract the world space euler angles pxr::GfVec3d decomposed = rotation.Decompose(pxr::GfVec3d::ZAxis(), pxr::GfVec3d::YAxis(), pxr::GfVec3d::XAxis()); pxr::GfVec3d rotateXYZ(decomposed[2], decomposed[1], decomposed[0]); db.outputs.rotateXYZ() = omni::math::linalg::safeCastToOmni(rotateXYZ); db.outputs.orientation() = orientation; return true; } }; REGISTER_OGN_NODE() } // action } // graph } // omni
4,307
C++
32.138461
122
0.614813
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnDivide_Tuple3.cpp
#include "OgnDivideHelper.h" namespace omni { namespace graph { namespace nodes { namespace OGNDivideHelper { bool tryComputeTuple3(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count) { return _tryComputeTuple<3>(db, a, b, result, count); } } // namespace OGNDivideHelper } // namespace nodes } // namespace graph } // namespace omni
397
C++
18.899999
118
0.702771
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnNthRoot.cpp
// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnNthRootDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <math.h> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { /** * Helper functions to try doing an addition operation on two input attributes. * We assume the runtime attributes have type T and the other one is double. * The first input is either an array or a singular value, and the second input is a single double value * * @param db: database object * @return True if we can get a result properly, false if not */ /** * Used when input type is resolved as Half */ bool tryComputeAssumingType(OgnNthRootDatabase& db, size_t count) { auto functor = [](auto const& a, auto const& b, auto& result) { double res; switch (b) { case 3: res = std::cbrt(a); break; case 2: res = std::sqrt(a); break; default: res = std::pow(static_cast<double>(static_cast<float>(a)), static_cast<double>(1.0 / static_cast<double>(b))); break; } result = static_cast<pxr::GfHalf>(static_cast<float>(res)); }; return ogn::compute::tryComputeWithArrayBroadcasting<pxr::GfHalf, int, pxr::GfHalf>(db.inputs.value(), db.inputs.nthRoot(), db.outputs.result(), functor, count); } /** * Used when input type is resolved as non-int numeric type other than Half */ template <typename T> bool tryComputeAssumingType(OgnNthRootDatabase& db, size_t count) { auto functor = [](auto const& a, auto const& b, auto& result) { switch (b) { case 3: result = static_cast<T>(std::cbrt(a)); break; case 2: result = static_cast<T>(std::sqrt(a)); break; default: result = static_cast<T>(std::pow(a, 1.0 / static_cast<double>(b))); break; } }; return ogn::compute::tryComputeWithArrayBroadcasting<T, int, T>(db.inputs.value(), db.inputs.nthRoot(), db.outputs.result(), functor, count); } /** * Used when input type is resolved as int type */ template <typename T, typename M> bool tryComputeAssumingType(OgnNthRootDatabase& db, size_t count) { auto functor = [](auto const& a, auto const& b, auto& result) { switch (b) { case 3: result = static_cast<M>(std::cbrt(a)); break; case 2: result = static_cast<M>(std::sqrt(a)); break; default: result = static_cast<M>(std::pow(a, 1.0 / static_cast<double>(b))); break; } }; return ogn::compute::tryComputeWithArrayBroadcasting<T, int, M>( db.inputs.value(), db.inputs.nthRoot(), db.outputs.result(), functor, count); } /** * Used when input type is resolved as Half */ template <size_t N> bool tryComputeAssumingType(OgnNthRootDatabase& db, size_t count) { auto functor = [](auto const& a, auto const& b, auto& result) { double res; switch (b) { case 3: res = std::cbrt(a); break; case 2: res = std::sqrt(a); break; default: res = std::pow(static_cast<double>(static_cast<float>(a)), static_cast<double>(1.0 / static_cast<double>(b))); break; } result = static_cast<pxr::GfHalf>(static_cast<float>(res)); }; return ogn::compute::tryComputeWithTupleBroadcasting<N, pxr::GfHalf, int, pxr::GfHalf>( db.inputs.value(), db.inputs.nthRoot(), db.outputs.result(), functor, count); } /** * Used when input type is resolved as any non-int numeric type other than Half */ template <typename T, size_t N> bool tryComputeAssumingType(OgnNthRootDatabase& db, size_t count) { auto functor = [](auto const& a, auto const& b, auto& result) { switch (b) { case 3: result = static_cast<T>(std::cbrt(a)); break; case 2: result = static_cast<T>(std::sqrt(a)); break; default: result = static_cast<T>(std::pow(a, 1.0 / static_cast<double>(b))); break; } }; return ogn::compute::tryComputeWithTupleBroadcasting<N, T, int, T>( db.inputs.value(), db.inputs.nthRoot(), db.outputs.result(), functor, count); } /** * Used when input type is resolved as int type */ template <typename T, size_t N, typename M> bool tryComputeAssumingType(OgnNthRootDatabase& db, size_t count) { auto functor = [](auto const& a, auto const& b, auto& result) { switch (b) { case 3: result = static_cast<M>(std::cbrt(a)); break; case 2: result = static_cast<M>(std::sqrt(a)); break; default: result = static_cast<M>(std::pow(a, 1.0 / static_cast<double>(b))); break; } }; return ogn::compute::tryComputeWithTupleBroadcasting<N, T, int, M>( db.inputs.value(), db.inputs.nthRoot(), db.outputs.result(), functor, count); } } // namespace class OgnNthRoot { public: static bool computeVectorized(OgnNthRootDatabase& db, size_t count) { try { const auto& vType = db.inputs.value().type(); switch (vType.componentCount) { case 1: // All possible types excluding ogn::string and bool // scalars switch (vType.baseType) { case BaseDataType::eDouble: return tryComputeAssumingType<double>(db, count); case BaseDataType::eHalf: // Specifically for pxr::GfHalf return tryComputeAssumingType(db, count); case BaseDataType::eFloat: return tryComputeAssumingType<float>(db, count); case BaseDataType::eInt: return tryComputeAssumingType<int32_t, double>(db, count); case BaseDataType::eInt64: return tryComputeAssumingType<int64_t, double>(db, count); case BaseDataType::eUChar: return tryComputeAssumingType<unsigned char, double>(db, count); case BaseDataType::eUInt: return tryComputeAssumingType<uint32_t, double>(db, count); case BaseDataType::eUInt64: return tryComputeAssumingType<uint64_t, double>(db, count); default: break; } case 2: switch (vType.baseType) { case BaseDataType::eInt: return tryComputeAssumingType<int32_t, 2, double>(db, count); case BaseDataType::eDouble: return tryComputeAssumingType<double, 2>(db, count); case BaseDataType::eFloat: return tryComputeAssumingType<float, 2>(db, count); case BaseDataType::eHalf: return tryComputeAssumingType<2>(db, count); default: break; } case 3: switch (vType.baseType) { case BaseDataType::eInt: return tryComputeAssumingType<int32_t, 3, double>(db, count); case BaseDataType::eDouble: return tryComputeAssumingType<double, 3>(db, count); case BaseDataType::eFloat: return tryComputeAssumingType<float, 3>(db, count); case BaseDataType::eHalf: return tryComputeAssumingType<3>(db, count); default: break; } case 4: // quaternion (IJKR), RGBA, etc switch (vType.baseType) { case BaseDataType::eInt: return tryComputeAssumingType<int32_t, 4, double>(db, count); case BaseDataType::eDouble: return tryComputeAssumingType<double, 4>(db, count); case BaseDataType::eFloat: return tryComputeAssumingType<float, 4>(db, count); case BaseDataType::eHalf: return tryComputeAssumingType<4>(db, count); default: break; } case 9: // Matrix3f type if (vType.baseType == BaseDataType::eDouble) { return tryComputeAssumingType<double, 9>(db, count); } case 16: // Matrix4f type if (vType.baseType == BaseDataType::eDouble) { return tryComputeAssumingType<double, 16>(db, count); } } throw ogn::compute::InputError("Failed to resolve input types"); } catch (ogn::compute::InputError &error) { db.logError(error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node){ auto value = node.iNode->getAttributeByToken(node, inputs::value.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto valueType = value.iAttribute->getResolvedType(value); Type newType(BaseDataType::eDouble, valueType.componentCount, valueType.arrayDepth, valueType.role); // Require inputs to be resolved before determining sum's type switch (valueType.baseType) { case BaseDataType::eUChar: case BaseDataType::eInt: case BaseDataType::eUInt: case BaseDataType::eInt64: case BaseDataType::eUInt64: result.iAttribute->setResolvedType(result, newType); break; case BaseDataType::eUnknown: break; default: std::array<AttributeObj, 2> attrs { value, result }; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); break; } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
10,753
C++
33.467949
165
0.562448
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnAcos.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnAcosDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <omni/math/linalg/math.h> #include <math.h> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { /** * Used when input type is resolved as non-int numeric type other than Half */ template <typename T> bool tryComputeAssumingType(OgnAcosDatabase& db) { auto functor = [](auto const& in, auto& out) { out = static_cast<T>(pxr::GfRadiansToDegrees(std::acos(in))); }; return ogn::compute::tryComputeWithArrayBroadcasting<T>(db.inputs.value(), db.outputs.value(), functor); } template <> bool tryComputeAssumingType<pxr::GfHalf>(OgnAcosDatabase& db) { auto functor = [](auto const& in, auto& out) { out = static_cast<pxr::GfHalf>(static_cast<float>(pxr::GfRadiansToDegrees(std::acos(in)))); }; return ogn::compute::tryComputeWithArrayBroadcasting<pxr::GfHalf>(db.inputs.value(), db.outputs.value(), functor); } } // namespace class OgnAcos { public: static bool compute(OgnAcosDatabase& db) { try { // All possible types excluding ogn::string and bool // scalers if (tryComputeAssumingType<double>(db)) return true; else if (tryComputeAssumingType<pxr::GfHalf>(db)) return true; // Specifically for pxr::GfHalf else if (tryComputeAssumingType<float>(db)) return true; else { db.logWarning("Failed to resolve input types"); } } catch (std::exception &error) { db.logError("Could not perform Arccosine funtion : %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node){ auto input = node.iNode->getAttributeByToken(node, inputs::value.token()); auto result = node.iNode->getAttributeByToken(node, outputs::value.token()); auto inputType = input.iAttribute->getResolvedType(input); // Require inputs to be resolved before determining output's type if (inputType.baseType != BaseDataType::eUnknown) { std::array<AttributeObj, 2> attrs { input, result }; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
2,916
C++
31.054945
118
0.665295
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnAtan.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnAtanDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <omni/math/linalg/math.h> #include <math.h> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { /** * Used when input type is resolved as non-int numeric type other than Half */ template <typename T> bool tryComputeAssumingType(OgnAtanDatabase& db) { auto functor = [](auto const& a, auto& result) { result = static_cast<T>(pxr::GfRadiansToDegrees(std::atan(a))); }; return ogn::compute::tryComputeWithArrayBroadcasting<T>(db.inputs.value(), db.outputs.value(), functor); } template <> bool tryComputeAssumingType<pxr::GfHalf>(OgnAtanDatabase& db) { auto functor = [](auto const& a, auto& result) { result = static_cast<pxr::GfHalf>(static_cast<float>(pxr::GfRadiansToDegrees(std::atan(a)))); }; return ogn::compute::tryComputeWithArrayBroadcasting<pxr::GfHalf>(db.inputs.value(), db.outputs.value(), functor); } } // namespace class OgnAtan { public: static bool compute(OgnAtanDatabase& db) { try { // All possible types excluding ogn::string and bool // scalers if (tryComputeAssumingType<double>(db)) return true; else if (tryComputeAssumingType<pxr::GfHalf>(db)) return true; // Specifically for pxr::GfHalf else if (tryComputeAssumingType<float>(db)) return true; else { db.logWarning("Failed to resolve input types"); } } catch (std::exception &error) { db.logError("Could not perform Arctangent funtion : %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node){ auto value = node.iNode->getAttributeByToken(node, inputs::value.token()); auto result = node.iNode->getAttributeByToken(node, outputs::value.token()); auto valueType = value.iAttribute->getResolvedType(value); // Require inputs to be resolved before determining output's type if (valueType.baseType != BaseDataType::eUnknown) { std::array<AttributeObj, 2> attrs { value, result }; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
2,926
C++
30.815217
118
0.666097
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnDistance3D.cpp
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnDistance3DDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <cmath> namespace omni { namespace graph { namespace nodes { namespace { template<typename T> bool tryComputeAssumingType(OgnDistance3DDatabase& db, size_t count) { auto functor = [](auto const& a, auto const& b, auto& result) { result = sqrt((b[0] - a[0]) * (b[0] - a[0]) + (b[1] - a[1]) * (b[1] - a[1]) + (b[2] - a[2]) * (b[2] - a[2])); }; return ogn::compute::tryComputeWithArrayBroadcasting<T[3], T[3], T>(db.inputs.a(), db.inputs.b(), db.outputs.distance(), functor, count); } } // namespace class OgnDistance3D { public: static bool computeVectorized(OgnDistance3DDatabase& db, size_t count) { try { if (tryComputeAssumingType<double>(db, count)) return true; else if (tryComputeAssumingType<float>(db, count)) return true; else if (tryComputeAssumingType<pxr::GfHalf>(db, count)) return true; else { db.logWarning("OgnDistance3D: Failed to resolve input types"); } } catch (ogn::compute::InputError &error) { db.logWarning("OgnDistance3D: %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node) { auto a = node.iNode->getAttributeByToken(node, inputs::a.token()); auto b = node.iNode->getAttributeByToken(node, inputs::b.token()); auto distance = node.iNode->getAttributeByToken(node, outputs::distance.token()); auto typeA = a.iAttribute->getResolvedType(a); auto typeB = a.iAttribute->getResolvedType(b); const Type invalid; // Require a and b to be resolved before determining result's type if (typeA != invalid && typeB != invalid) { uint8_t ad = std::max(typeA.arrayDepth, typeB.arrayDepth); AttributeObj attrs[] = { a, b, distance }; uint8_t tupleCounts[] = { 3, 3, 1 }; uint8_t arrayDepths[] = { typeA.arrayDepth, typeB.arrayDepth, ad }; AttributeRole roles[] = { AttributeRole::eNone, AttributeRole::eNone, AttributeRole::eNone }; node.iNode->resolvePartiallyCoupledAttributes(node, attrs, tupleCounts, arrayDepths, roles, 3); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
2,894
C++
32.66279
141
0.638563
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnSubtract.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnSubtractDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { template<typename T> bool tryComputeAssumingType(OgnSubtractDatabase& db, size_t count) { auto const& dynamicInputs = db.getDynamicInputs(); if (dynamicInputs.empty()) { auto functor = [](auto const& a, auto const& b, auto& result) { result = a - b; }; return ogn::compute::tryComputeWithArrayBroadcasting<T>(db.inputs.a(), db.inputs.b(), db.outputs.difference(), functor, count); } else { std::vector<ogn::InputAttribute> inputArray{ db.inputs.a(), db.inputs.b() }; inputArray.reserve(dynamicInputs.size() + 2); for (auto const& input : dynamicInputs) { inputArray.emplace_back(input()); } auto functor = [](const auto& input, auto& result) { result = result - input; }; return ogn::compute::tryComputeInputsWithArrayBroadcasting<T>(inputArray, db.outputs.difference(), functor, count); } } template<typename T, size_t N> bool tryComputeAssumingType(OgnSubtractDatabase& db, size_t count) { auto const& dynamicInputs = db.getDynamicInputs(); if (dynamicInputs.empty()) { auto functor = [](auto const& a, auto const& b, auto& result) { result = a - b; }; return ogn::compute::tryComputeWithTupleBroadcasting<N, T>(db.inputs.a(), db.inputs.b(), db.outputs.difference(), functor, count); } else { std::vector<ogn::InputAttribute> inputArray{ db.inputs.a(), db.inputs.b() }; inputArray.reserve(dynamicInputs.size() + 2); for (auto const& input : dynamicInputs) { inputArray.emplace_back(input()); } auto functor = [](const auto& input, auto& result) { result = result - input; }; return ogn::compute::tryComputeInputsWithTupleBroadcasting<N, T>(inputArray, db.outputs.difference(), functor, count); } } } // namespace class OgnSubtract { public: static bool computeVectorized(OgnSubtractDatabase& db, size_t count) { auto& differenceType = db.outputs.difference().type(); // Compute the components, if the types are all resolved. try { switch (differenceType.baseType) { case BaseDataType::eDouble: switch (differenceType.componentCount) { case 1: return tryComputeAssumingType<double>(db, count); case 2: return tryComputeAssumingType<double, 2>(db, count); case 3: return tryComputeAssumingType<double, 3>(db, count); case 4: return tryComputeAssumingType<double, 4>(db, count); case 9: return tryComputeAssumingType<double, 9>(db, count); case 16: return tryComputeAssumingType<double, 16>(db, count); default: break; } case BaseDataType::eFloat: switch (differenceType.componentCount) { case 1: return tryComputeAssumingType<float>(db, count); case 2: return tryComputeAssumingType<float, 2>(db, count); case 3: return tryComputeAssumingType<float, 3>(db, count); case 4: return tryComputeAssumingType<float, 4>(db, count); default: break; } case BaseDataType::eHalf: switch (differenceType.componentCount) { case 1: return tryComputeAssumingType<pxr::GfHalf>(db, count); case 2: return tryComputeAssumingType<pxr::GfHalf, 2>(db, count); case 3: return tryComputeAssumingType<pxr::GfHalf, 3>(db, count); case 4: return tryComputeAssumingType<pxr::GfHalf, 4>(db, count); default: break; } case BaseDataType::eInt: switch (differenceType.componentCount) { case 1: return tryComputeAssumingType<int32_t>(db, count); case 2: return tryComputeAssumingType<int32_t, 2>(db, count); case 3: return tryComputeAssumingType<int32_t, 3>(db, count); case 4: return tryComputeAssumingType<int32_t, 4>(db, count); default: break; } ; case BaseDataType::eInt64: return tryComputeAssumingType<int64_t>(db, count); case BaseDataType::eUChar: return tryComputeAssumingType<unsigned char>(db, count); case BaseDataType::eUInt: return tryComputeAssumingType<uint32_t>(db, count); case BaseDataType::eUInt64: return tryComputeAssumingType<uint64_t>(db, count); default: break; } throw ogn::compute::InputError("Failed to resolve input types"); } catch (ogn::compute::InputError &error) { db.logWarning("%s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node) { auto totalCount = node.iNode->getAttributeCount(node); std::vector<AttributeObj> allAttributes(totalCount); node.iNode->getAttributes(node, allAttributes.data(), totalCount); std::vector<AttributeObj> attributes; std::vector<uint8_t> componentCounts; std::vector<uint8_t> arrayDepths; std::vector<AttributeRole> roles; attributes.reserve(totalCount - 2); componentCounts.reserve(totalCount - 2); arrayDepths.reserve(totalCount - 2); roles.reserve(totalCount - 2); uint8_t maxArrayDepth = 0; uint8_t maxComponentCount = 0; for (auto const& attr : allAttributes) { if (attr.iAttribute->getPortType(attr) == AttributePortType::kAttributePortType_Input) { auto resolvedType = attr.iAttribute->getResolvedType(attr); // if some inputs are not connected stop - the output port resolution is only completed when all inputs // are connected if (resolvedType.baseType == BaseDataType::eUnknown) return; componentCounts.push_back(resolvedType.componentCount); arrayDepths.push_back(resolvedType.arrayDepth); roles.push_back(resolvedType.role); maxComponentCount = std::max(maxComponentCount, resolvedType.componentCount); maxArrayDepth = std::max(maxArrayDepth, resolvedType.arrayDepth); attributes.push_back(attr); } } auto result = node.iNode->getAttributeByToken(node, outputs::difference.token()); attributes.push_back(result); // All inputs and the output should have the same tuple count componentCounts.push_back(maxComponentCount); // Allow for a mix of singular and array inputs. If any input is an array, the output must be an array arrayDepths.push_back(maxArrayDepth); // Copy the attribute role from the resolved type to the output type roles.push_back(AttributeRole::eUnknown); node.iNode->resolvePartiallyCoupledAttributes( node, attributes.data(), componentCounts.data(), arrayDepths.data(), roles.data(), attributes.size()); } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni // end-compute-helpers
8,257
C++
39.282927
138
0.603609
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnInvertMatrix.cpp
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnInvertMatrixDatabase.h> #include <omni/math/linalg/matrix.h> #include <exception> using omni::math::linalg::matrix3d; using omni::math::linalg::matrix4d; namespace omni { namespace graph { namespace nodes { void computeMatrix4Inverse(const double input[16], double result[16]) { auto& output = *reinterpret_cast<matrix4d*>(result); output = reinterpret_cast<const matrix4d*>(input)->GetInverse(); } void computeMatrix3Inverse(const double input[9], double result[9]) { auto& output = *reinterpret_cast<matrix3d*>(result); output = reinterpret_cast<const matrix3d*>(input)->GetInverse(); } class OgnInvertMatrix { public: static bool compute(OgnInvertMatrixDatabase& db) { auto& matrixInput = db.inputs.matrix(); auto& matrixOutput = db.outputs.invertedMatrix(); if (auto matrix = matrixInput.get<double[9]>()) { if (auto output = matrixOutput.get<double[9]>()) { computeMatrix3Inverse(*matrix, *output); } } else if (auto matrix = matrixInput.get<double[16]>()) { if (auto output = matrixOutput.get<double[16]>()) { computeMatrix4Inverse(*matrix, *output); } } else if (auto matrices = matrixInput.get<double[][9]>()) { if (auto output = matrixOutput.get<double[][9]>()) { output->resize(matrices->size()); for (size_t i = 0; i < matrices.size(); i++) { computeMatrix3Inverse((*matrices)[i], (*output)[i]); } } } else if (auto matrices = matrixInput.get<double[][16]>()) { if (auto output = matrixOutput.get<double[][16]>()) { output->resize(matrices->size()); for (size_t i = 0; i < matrices.size(); i++) { computeMatrix4Inverse((*matrices)[i], (*output)[i]); } } } else { db.logWarning("OgnInvertMatrix: Failed to resolve input types"); } return true; } static void onConnectionTypeResolve(const NodeObj& node) { std::array<AttributeObj, 2> attrs { node.iNode->getAttributeByToken(node, inputs::matrix.token()), node.iNode->getAttributeByToken(node, outputs::invertedMatrix.token()) }; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
3,090
C++
29.303921
82
0.589968
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnCeil.cpp
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnCeilDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <cmath> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { template<typename T> bool tryComputeAssumingType(OgnCeilDatabase& db) { auto functor = [](auto const& a, auto& result) { result = static_cast<int>(std::ceil(a)); }; return ogn::compute::tryComputeWithArrayBroadcasting<T, int>(db.inputs.a(), db.outputs.result(), functor); } template<typename T, size_t N> bool tryComputeAssumingType(OgnCeilDatabase& db) { auto functor = [](auto const& a, auto& result) { result = static_cast<int>(std::ceil(a)); }; return ogn::compute::tryComputeWithTupleBroadcasting<N, T, int>(db.inputs.a(), db.outputs.result(), functor); } } // namespace class OgnCeil { public: static bool compute(OgnCeilDatabase& db) { try { auto& aType = db.inputs.a().type(); switch (aType.baseType) { case BaseDataType::eDouble: switch (aType.componentCount) { case 1: return tryComputeAssumingType<double>(db); case 2: return tryComputeAssumingType<double, 2>(db); case 3: return tryComputeAssumingType<double, 3>(db); case 4: return tryComputeAssumingType<double, 4>(db); } break; case BaseDataType::eFloat: switch (aType.componentCount) { case 1: return tryComputeAssumingType<float>(db); case 2: return tryComputeAssumingType<float, 2>(db); case 3: return tryComputeAssumingType<float, 3>(db); case 4: return tryComputeAssumingType<float, 4>(db); } break; case BaseDataType::eHalf: switch (aType.componentCount) { case 1: return tryComputeAssumingType<pxr::GfHalf>(db); case 2: return tryComputeAssumingType<pxr::GfHalf, 2>(db); case 3: return tryComputeAssumingType<pxr::GfHalf, 3>(db); case 4: return tryComputeAssumingType<pxr::GfHalf, 4>(db); } break; default: break; } throw ogn::compute::InputError("Failed to resolve input types"); } catch (ogn::compute::InputError &error) { db.logError("%s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node){ auto a = node.iNode->getAttributeByToken(node, inputs::a.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto valueType = a.iAttribute->getResolvedType(a); if (valueType.baseType != BaseDataType::eUnknown) { Type resultType(BaseDataType::eInt, valueType.componentCount, valueType.arrayDepth); result.iAttribute->setResolvedType(result, resultType); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
4,166
C++
34.922413
113
0.541527
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnFMod.py
""" Module contains the OmniGraph node implementation of omni.graph.fmod """ import carb import numpy as np import omni.graph.core as og class OgnFMod: """Node to find floating point remainder""" @staticmethod def compute(db) -> bool: try: db.outputs.result.value = np.fmod(db.inputs.a.value, db.inputs.b.value) except TypeError as error: db.log_error(f"Remainder could not be performed: {error}") return False return True @staticmethod def on_connection_type_resolve(node) -> None: atype = node.get_attribute("inputs:a").get_resolved_type() btype = node.get_attribute("inputs:b").get_resolved_type() resultattr = node.get_attribute("outputs:result") resulttype = resultattr.get_resolved_type() # we can only infer the output given both inputs are resolved and they are the same. if ( atype.base_type != og.BaseDataType.UNKNOWN and btype.base_type != og.BaseDataType.UNKNOWN and resulttype.base_type == og.BaseDataType.UNKNOWN ): if atype.base_type == btype.base_type: sum_type = og.Type( atype.base_type, max(atype.tuple_count, btype.tuple_count), max(atype.array_depth, btype.array_depth), ) resultattr.set_resolved_type(sum_type) else: carb.log_warn(f"Can not compute remainder of types {atype} and {btype}")
1,538
Python
33.977272
92
0.598179
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnDivide_Scalars.cpp
#include "OgnDivideHelper.h" namespace omni { namespace graph { namespace nodes { namespace OGNDivideHelper { // AType is a scalar float or double template <typename AType, typename BType> bool tryComputeAssumingType(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count, typename std::enable_if_t<!std::is_integral<AType>::value && !std::is_same<AType, pxr::GfHalf>::value, AType>* = 0) { auto functor = [&](auto const& a, auto const& b, auto& result) { if (static_cast<double>(b) == 0.0) { db.logWarning("OgnDivide: Divide by zero encountered"); } result = static_cast<AType>(static_cast<double>(a) / static_cast<double>(b)); }; return ogn::compute::tryComputeWithArrayBroadcasting<AType, BType, AType>( a, b, result, functor, count); } // AType is a scalar half template <typename AType, typename BType> bool tryComputeAssumingType(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count, typename std::enable_if_t<std::is_same<AType, pxr::GfHalf>::value, AType>* = 0) { auto functor = [&](auto const& a, auto const& b, auto& result) { if (static_cast<double>(b) == 0.0) { db.logWarning("OgnDivide: Divide by zero encountered"); } result = static_cast<AType>(static_cast<float>(static_cast<double>(a) / static_cast<double>(b))); }; return ogn::compute::tryComputeWithArrayBroadcasting<AType, BType, AType>( a, b, result, functor, count); } // AType is a scalar integral => Force result to be a scalar double template <typename AType, typename BType> bool tryComputeAssumingType(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count, typename std::enable_if_t<std::is_integral<AType>::value, AType>* = 0) { auto functor = [&](auto const& a, auto const& b, auto& result) { if (static_cast<double>(b) == 0.0) { db.logWarning("OgnDivide: Divide by zero encountered"); } result = static_cast<double>(a) / static_cast<double>(b); }; return ogn::compute::tryComputeWithArrayBroadcasting<AType, BType, double>( a, b, result, functor, count); } bool tryComputeScalars(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count) { if (tryComputeAssumingType<double, double>(db, a, b, result, count)) return true; if (tryComputeAssumingType<float, double>(db, a, b, result, count)) return true; if (tryComputeAssumingType<pxr::GfHalf, double>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int32_t, double>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int64_t, double>(db, a, b, result, count)) return true; if (tryComputeAssumingType<unsigned char, double>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint32_t, double>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint64_t, double>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, float>(db, a, b, result, count)) return true; if (tryComputeAssumingType<float, float>(db, a, b, result, count)) return true; if (tryComputeAssumingType<pxr::GfHalf, float>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int32_t, float>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int64_t, float>(db, a, b, result, count)) return true; if (tryComputeAssumingType<unsigned char, float>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint32_t, float>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint64_t, float>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, pxr::GfHalf>(db, a, b, result, count)) return true; if (tryComputeAssumingType<float, pxr::GfHalf>(db, a, b, result, count)) return true; if (tryComputeAssumingType<pxr::GfHalf, pxr::GfHalf>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int32_t, pxr::GfHalf>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int64_t, pxr::GfHalf>(db, a, b, result, count)) return true; if (tryComputeAssumingType<unsigned char, pxr::GfHalf>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint32_t, pxr::GfHalf>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint64_t, pxr::GfHalf>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, int32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<float, int32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<pxr::GfHalf, int32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int32_t, int32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int64_t, int32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<unsigned char, int32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint32_t, int32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint64_t, int32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, int64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<float, int64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<pxr::GfHalf, int64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int32_t, int64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int64_t, int64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<unsigned char, int64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint32_t, int64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint64_t, int64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, unsigned char>(db, a, b, result, count)) return true; if (tryComputeAssumingType<float, unsigned char>(db, a, b, result, count)) return true; if (tryComputeAssumingType<pxr::GfHalf, unsigned char>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int32_t, unsigned char>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int64_t, unsigned char>(db, a, b, result, count)) return true; if (tryComputeAssumingType<unsigned char, unsigned char>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint32_t, unsigned char>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint64_t, unsigned char>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, uint32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<float, uint32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<pxr::GfHalf, uint32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int32_t, uint32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int64_t, uint32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<unsigned char, uint32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint32_t, uint32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint64_t, uint32_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, uint64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<float, uint64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<pxr::GfHalf, uint64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int32_t, uint64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int64_t, uint64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<unsigned char, uint64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint32_t, uint64_t>(db, a, b, result, count)) return true; if (tryComputeAssumingType<uint64_t, uint64_t>(db, a, b, result, count)) return true; return false; } } // namespace OGNDivideHelper } // namespace nodes } // namespace graph } // namespace omni
9,201
C++
58.367742
147
0.620585
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnDivide.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnDivideDatabase.h> #include "OgnDivideHelper.h" #include <carb/logging/Log.h> #include <type_traits> namespace omni { namespace graph { namespace nodes { class OgnDivide { public: static bool computeVectorized(OgnDivideDatabase& db, size_t count) { auto const& a = db.inputs.a(); auto const& b = db.inputs.b(); auto& result = db.outputs.result(); try { if (OGNDivideHelper::tryComputeScalars(db, a, b, result, count)) return true; if (OGNDivideHelper::tryComputeTuple2(db, a, b, result, count)) return true; if (OGNDivideHelper::tryComputeTuple3(db, a, b, result, count)) return true; if (OGNDivideHelper::tryComputeTuple4(db, a, b, result, count)) return true; if (OGNDivideHelper::tryComputeMatrices(db, a, b, result, count)) return true; db.logWarning("OgnDivide: Failed to resolve input types"); } catch (ogn::compute::InputError &error) { db.logWarning("OgnDivide: %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node) { auto a = node.iNode->getAttributeByToken(node, inputs::a.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto aType = a.iAttribute->getResolvedType(a); // Require inputs to be resolved before determining result's type if (aType.baseType != BaseDataType::eUnknown) { // In the case of A being an integral - then we force a double auto newType = aType; if (aType.baseType == BaseDataType::eUChar || aType.baseType == BaseDataType::eInt || aType.baseType == BaseDataType::eUInt || aType.baseType == BaseDataType::eInt64 || aType.baseType == BaseDataType::eUInt64) { newType.baseType = BaseDataType::eDouble; } result.iAttribute->setResolvedType(result, newType); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
2,679
C++
30.529411
85
0.619261
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnCrossProduct.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnCrossProductDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <omni/math/linalg/vec.h> #include <carb/logging/Log.h> #include <cmath> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { template<typename T, size_t N> bool tryComputeAssumingType(OgnCrossProductDatabase& db) { auto functor = [](auto const& a, auto const& b, auto& product) { const auto& vecA = *reinterpret_cast<const omni::math::linalg::base_vec<T, N>*>(a); const auto& vecB = *reinterpret_cast<const omni::math::linalg::base_vec<T, N>*>(b); auto& prod = *reinterpret_cast<omni::math::linalg::base_vec<T, N>*>(product); prod = GfCross(vecA, vecB); }; return ogn::compute::tryComputeWithArrayBroadcasting<T[N], T[N], T[N]>(db.inputs.a(), db.inputs.b(), db.outputs.product(), functor); } } // namespace class OgnCrossProduct { public: static bool compute(OgnCrossProductDatabase& db) { try { auto& aType = db.inputs.a().type(); switch(aType.baseType) { case BaseDataType::eDouble: switch(aType.componentCount) { case 3: return tryComputeAssumingType<double, 3>(db); } case BaseDataType::eFloat: switch(aType.componentCount) { case 3: return tryComputeAssumingType<float, 3>(db); } case BaseDataType::eHalf: switch(aType.componentCount) { case 3: return tryComputeAssumingType<pxr::GfHalf, 3>(db); } default: db.logError("Failed to resolve input types"); } } catch (ogn::compute::InputError &error) { db.logError("%s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node) { auto a = node.iNode->getAttributeByToken(node, inputs::a.token()); auto b = node.iNode->getAttributeByToken(node, inputs::b.token()); auto product = node.iNode->getAttributeByToken(node, outputs::product.token()); // Require inputs to be resolved before determining product's type auto aType = a.iAttribute->getResolvedType(a); auto bType = b.iAttribute->getResolvedType(b); if (aType.baseType != BaseDataType::eUnknown && bType.baseType != BaseDataType::eUnknown) { if ((aType.role != AttributeRole::eVector && bType.role == AttributeRole::eNone) || (bType.role != AttributeRole::eVector && aType.role == AttributeRole::eNone)) { node.iNode->logComputeMessageOnInstance(node, kAuthoringGraphIndex, ogn::Severity::eWarning, formatString("Cross product with non-vector input of types: %s, %s", getAttributeRoleName(aType.role).c_str(), getAttributeRoleName(bType.role).c_str()).c_str() ); } std::array<AttributeObj, 3> attrs { a, b, product }; // a, b, product should all have the same tuple count std::array<uint8_t, 3> tupleCounts { aType.componentCount, bType.componentCount, std::max(aType.componentCount, bType.componentCount) }; std::array<uint8_t, 3> arrayDepths { aType.arrayDepth, bType.arrayDepth, // Allow for a mix of singular and array inputs. If any input is an array, the output must be an array std::max(aType.arrayDepth, bType.arrayDepth) }; std::array<AttributeRole, 3> rolesBuf { aType.role, bType.role, // Copy the attribute role from the resolved type to the output type AttributeRole::eUnknown }; node.iNode->resolvePartiallyCoupledAttributes(node, attrs.data(), tupleCounts.data(), arrayDepths.data(), rolesBuf.data(), attrs.size()); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni // end-compute-helpers
4,816
C++
37.846774
149
0.58887
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnRandomUnitVector.cpp
// Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include "random/RandomNodeBase.h" #include <OgnRandomUnitVectorDatabase.h> namespace omni { namespace graph { namespace nodes { using namespace random; class OgnRandomUnitVector : public NodeBase<OgnRandomUnitVector, OgnRandomUnitVectorDatabase> { public: static void initialize(GraphContextObj const& contextObj, NodeObj const& nodeObj) { generateRandomSeed(contextObj, nodeObj, inputs::seed, inputs::useSeed); } static bool onCompute(OgnRandomUnitVectorDatabase& db, size_t count) { // TODO: Specify output type, we should be able to generate double precision output too... return computeRandoms(db, count, [](GeneratorState& gen) { return gen.nextUnitVec3f(); }); } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
1,245
C++
28.666666
98
0.751807
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnNormalize.cpp
// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnNormalizeDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <omni/math/linalg/vec.h> #include <carb/logging/Log.h> #include <cmath> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { template<typename T, size_t N> bool tryComputeAssumingType(OgnNormalizeDatabase& db, size_t count) { auto functor = [](auto const& vector, auto& result) { const auto& vec = *reinterpret_cast<const omni::math::linalg::base_vec<T, N>*>(vector); auto& res = *reinterpret_cast<omni::math::linalg::base_vec<T, N>*>(result); res = vec.GetNormalized(); }; return ogn::compute::tryComputeWithArrayBroadcasting<T[N], T[N]>(db.inputs.vector(), db.outputs.result(), functor, count); } } // namespace class OgnNormalize { public: static bool computeVectorized(OgnNormalizeDatabase& db, size_t count) { try { auto& type = db.inputs.vector().type(); switch (type.baseType) { case BaseDataType::eDouble: switch (type.componentCount) { case 2: return tryComputeAssumingType<double, 2>(db, count); case 3: return tryComputeAssumingType<double, 3>(db, count); case 4: return tryComputeAssumingType<double, 4>(db, count); } break; case BaseDataType::eFloat: switch (type.componentCount) { case 2: return tryComputeAssumingType<float, 2>(db, count); case 3: return tryComputeAssumingType<float, 3>(db, count); case 4: return tryComputeAssumingType<float, 4>(db, count); } break; case BaseDataType::eHalf: switch (type.componentCount) { case 2: return tryComputeAssumingType<pxr::GfHalf, 2>(db, count); case 3: return tryComputeAssumingType<pxr::GfHalf, 3>(db, count); case 4: return tryComputeAssumingType<pxr::GfHalf, 4>(db, count); } break; default: break; } throw ogn::compute::InputError("Failed to resolve input type"); } catch (ogn::compute::InputError &error) { db.logError("%s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node) { auto vector = node.iNode->getAttributeByToken(node, inputs::vector.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); // Require input to be resolved before determining result's type auto vectorType = vector.iAttribute->getResolvedType(vector); if (vectorType.baseType != BaseDataType::eUnknown) { Type resultType(vectorType.baseType, vectorType.componentCount, vectorType.arrayDepth); result.iAttribute->setResolvedType(result, resultType); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni // end-compute-helpers
4,056
C++
34.902655
126
0.558925
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnAbsolute.cpp
// Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <carb/logging/Log.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <OgnAbsoluteDatabase.h> #include <NumericUtils.h> #include <cmath> #include <type_traits> namespace omni { namespace graph { namespace nodes { namespace { template <typename T> T ogAbs(T const& input) noexcept { if constexpr (std::is_unsigned_v<T>) { return input; } else { return std::abs(input); } } template <typename T, size_t N> struct ComputeAbsoluteValueAssumingType { bool operator()(OgnAbsoluteDatabase& db) const { if constexpr (N == 1) { auto functor = [](T const& input, T& absolute) { absolute = ogAbs(input); }; return ogn::compute::tryComputeWithArrayBroadcasting<T, T>(db.inputs.input(), db.outputs.absolute(), functor); } else { auto functor = [](auto const& input, auto& absolute) { for (size_t i = 0; i < N; ++i) { absolute[i] = ogAbs(input[i]); } }; return ogn::compute::tryComputeWithArrayBroadcasting<T[N], T[N]>( db.inputs.input(), db.outputs.absolute(), functor); } } }; } class OgnAbsolute { public: static bool compute(OgnAbsoluteDatabase& db) { try { auto const& type = db.inputs.input().type(); if (!callForNumericAttribute<ComputeAbsoluteValueAssumingType>(db, type)) { throw ogn::compute::InputError("Failed to resolve input type"); } } catch (ogn::compute::InputError& error) { db.logError("OgnAbsolute: %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node) { auto input = node.iNode->getAttributeByToken(node, inputs::input.token()); auto absolute = node.iNode->getAttributeByToken(node, outputs::absolute.token()); auto inputType = input.iAttribute->getResolvedType(input); if (inputType.baseType != BaseDataType::eUnknown) { absolute.iAttribute->setResolvedType(absolute, inputType); } } }; REGISTER_OGN_NODE() } } }
2,698
C++
24.462264
122
0.607858
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/warp_noise.h
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #pragma once // This file contains code taken from Warp for implementing noise functions. // Once Warp is released this file will be deleted and the nodes which use // it rewritten to use Warp. #include <cmath> #include <sys/types.h> #include <omni/graph/core/ogn/UsdTypes.h> #ifndef _EPSILON #define _EPSILON 1e-6 #endif #define M_PIf 3.14159265358979323846f namespace omni { namespace graph { namespace nodes { typedef pxr::GfVec2f vec2; typedef pxr::GfVec3f vec3; typedef pxr::GfVec4f vec4; // Adapted from warp/warp/native/rand.h // inline uint32_t rand_pcg(uint32_t state) { uint32_t b = state * 747796405u + 2891336453u; uint32_t c = ((b >> ((b >> 28u) + 4u)) ^ b) * 277803737u; return (c >> 22u) ^ c; } inline uint32_t rand_init(int seed) { return rand_pcg(uint32_t(seed)); } inline uint32_t rand_init(int seed, int offset) { return rand_pcg(uint32_t(seed) + rand_pcg(uint32_t(offset))); } inline int randi(uint32_t& state) { state = rand_pcg(state); return int(state); } inline int randi(uint32_t& state, int min, int max) { state = rand_pcg(state); return state % (max - min) + min; } inline float randf(uint32_t& state) { state = rand_pcg(state); return float(state) / 0xffffffff; } inline float randf(uint32_t& state, float min, float max) { return (max - min) * randf(state) + min; } // Box-Muller method inline float randn(uint32_t& state) { return std::sqrt(-2.f * std::log(randf(state))) * std::cos(2.f * M_PIf * randf(state)); } // Adapted from warp/warp/native/noise.h // inline float smootherstep(float t) { return t * t * t * (t * (t * 6.f - 15.f) + 10.f); } inline float smootherstep_gradient(float t) { return 30.f * t * t * (t * (t - 2.f) + 1.f); } inline float interpolate(float a0, float a1, float t) { return (a1 - a0) * smootherstep(t) + a0; } inline float interpolate_gradient(float a0, float a1, float t, float d_a0, float d_a1, float d_t) { return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0; } inline float random_gradient_1d(uint32_t seed, int ix) { const uint32_t p1 = 73856093; uint32_t idx = ix*p1; uint32_t state = seed + idx; return randf(state, -1.f, 1.f); } inline vec2 random_gradient_2d(uint32_t seed, int ix, int iy) { const uint32_t p1 = 73856093; const uint32_t p2 = 19349663; uint32_t idx = ix*p1 ^ iy*p2; uint32_t state = seed + idx; float phi = randf(state, 0.f, 2.f*M_PIf); float x = std::cos(phi); float y = std::sin(phi); return vec2(x, y); } inline vec3 random_gradient_3d(uint32_t seed, int ix, int iy, int iz) { const uint32_t p1 = 73856093; const uint32_t p2 = 19349663; const uint32_t p3 = 53471161; uint32_t idx = ix*p1 ^ iy*p2 ^ iz*p3; uint32_t state = seed + idx; float x = randn(state); float y = randn(state); float z = randn(state); return vec3(x, y, z).GetNormalized(); } inline vec4 random_gradient_4d(uint32_t seed, int ix, int iy, int iz, int it) { const uint32_t p1 = 73856093; const uint32_t p2 = 19349663; const uint32_t p3 = 53471161; const uint32_t p4 = 10000019; uint32_t idx = ix*p1 ^ iy*p2 ^ iz*p3 ^ it*p4; uint32_t state = seed + idx; float x = randn(state); float y = randn(state); float z = randn(state); float t = randn(state); return vec4(x, y, z, t).GetNormalized(); } inline float dot_grid_gradient_1d(uint32_t seed, int ix, float dx) { float gradient = random_gradient_1d(seed, ix); return dx*gradient; } inline float dot_grid_gradient_1d_gradient(uint32_t seed, int ix, float d_dx) { float gradient = random_gradient_1d(seed, ix); return d_dx*gradient; } inline float dot_grid_gradient_2d(uint32_t seed, int ix, int iy, float dx, float dy) { vec2 gradient = random_gradient_2d(seed, ix, iy); return (dx*gradient[0] + dy*gradient[1]); } inline float dot_grid_gradient_2d_gradient(uint32_t seed, int ix, int iy, float d_dx, float d_dy) { vec2 gradient = random_gradient_2d(seed, ix, iy); return (d_dx*gradient[0] + d_dy*gradient[1]); } inline float dot_grid_gradient_3d(uint32_t seed, int ix, int iy, int iz, float dx, float dy, float dz) { vec3 gradient = random_gradient_3d(seed, ix, iy, iz); return (dx*gradient[0] + dy*gradient[1] + dz*gradient[2]); } inline float dot_grid_gradient_3d_gradient(uint32_t seed, int ix, int iy, int iz, float d_dx, float d_dy, float d_dz) { vec3 gradient = random_gradient_3d(seed, ix, iy, iz); return (d_dx*gradient[0] + d_dy*gradient[1] + d_dz*gradient[2]); } inline float dot_grid_gradient_4d(uint32_t seed, int ix, int iy, int iz, int it, float dx, float dy, float dz, float dt) { vec4 gradient = random_gradient_4d(seed, ix, iy, iz, it); return (dx*gradient[0] + dy*gradient[1] + dz*gradient[2] + dt*gradient[3]); } inline float dot_grid_gradient_4d_gradient(uint32_t seed, int ix, int iy, int iz, int it, float d_dx, float d_dy, float d_dz, float d_dt) { vec4 gradient = random_gradient_4d(seed, ix, iy, iz, it); return (d_dx*gradient[0] + d_dy*gradient[1] + d_dz*gradient[2] + d_dt*gradient[3]); } inline float noise_1d(uint32_t seed, int x0, int x1, float dx) { //vX float v0 = dot_grid_gradient_1d(seed, x0, dx); float v1 = dot_grid_gradient_1d(seed, x1, dx-1.f); return interpolate(v0, v1, dx); } inline float noise_1d_gradient(uint32_t seed, int x0, int x1, float dx, float heaviside_x) { float v0 = dot_grid_gradient_1d(seed, x0, dx); float d_v0_dx = dot_grid_gradient_1d_gradient(seed, x0, heaviside_x); float v1 = dot_grid_gradient_1d(seed, x1, dx-1.f); float d_v1_dx = dot_grid_gradient_1d_gradient(seed, x1, heaviside_x); return interpolate_gradient(v0, v1, dx, d_v0_dx, d_v1_dx, heaviside_x); } inline float noise_2d(uint32_t seed, int x0, int y0, int x1, int y1, float dx, float dy) { //vXY float v00 = dot_grid_gradient_2d(seed, x0, y0, dx, dy); float v10 = dot_grid_gradient_2d(seed, x1, y0, dx-1.f, dy); float xi0 = interpolate(v00, v10, dx); float v01 = dot_grid_gradient_2d(seed, x0, y1, dx, dy-1.f); float v11 = dot_grid_gradient_2d(seed, x1, y1, dx-1.f, dy-1.f); float xi1 = interpolate(v01, v11, dx); return interpolate(xi0, xi1, dy); } inline vec2 noise_2d_gradient(uint32_t seed, int x0, int y0, int x1, int y1, float dx, float dy, float heaviside_x, float heaviside_y) { float v00 = dot_grid_gradient_2d(seed, x0, y0, dx, dy); float d_v00_dx = dot_grid_gradient_2d_gradient(seed, x0, y0, heaviside_x, 0.f); float d_v00_dy = dot_grid_gradient_2d_gradient(seed, x0, y0, 0.0, heaviside_y); float v10 = dot_grid_gradient_2d(seed, x1, y0, dx-1.f, dy); float d_v10_dx = dot_grid_gradient_2d_gradient(seed, x1, y0, heaviside_x, 0.f); float d_v10_dy = dot_grid_gradient_2d_gradient(seed, x1, y0, 0.0, heaviside_y); float v01 = dot_grid_gradient_2d(seed, x0, y1, dx, dy-1.f); float d_v01_dx = dot_grid_gradient_2d_gradient(seed, x0, y1, heaviside_x, 0.f); float d_v01_dy = dot_grid_gradient_2d_gradient(seed, x0, y1, 0.0, heaviside_y); float v11 = dot_grid_gradient_2d(seed, x1, y1, dx-1.f, dy-1.f); float d_v11_dx = dot_grid_gradient_2d_gradient(seed, x1, y1, heaviside_x, 0.f); float d_v11_dy = dot_grid_gradient_2d_gradient(seed, x1, y1, 0.0, heaviside_y); float xi0 = interpolate(v00, v10, dx); float d_xi0_dx = interpolate_gradient(v00, v10, dx, d_v00_dx, d_v10_dx, heaviside_x); float d_xi0_dy = interpolate_gradient(v00, v10, dx, d_v00_dy, d_v10_dy, 0.0); float xi1 = interpolate(v01, v11, dx); float d_xi1_dx = interpolate_gradient(v01, v11, dx, d_v01_dx, d_v11_dx, heaviside_x); float d_xi1_dy = interpolate_gradient(v01, v11, dx, d_v01_dy, d_v11_dy, 0.0); float gradient_x = interpolate_gradient(xi0, xi1, dy, d_xi0_dx, d_xi1_dx, 0.0); float gradient_y = interpolate_gradient(xi0, xi1, dy, d_xi0_dy, d_xi1_dy, heaviside_y); return vec2(gradient_x, gradient_y); } inline float noise_3d(uint32_t seed, int x0, int y0, int z0, int x1, int y1, int z1, float dx, float dy, float dz) { //vXYZ float v000 = dot_grid_gradient_3d(seed, x0, y0, z0, dx, dy, dz); float v100 = dot_grid_gradient_3d(seed, x1, y0, z0, dx-1.f, dy, dz); float xi00 = interpolate(v000, v100, dx); float v010 = dot_grid_gradient_3d(seed, x0, y1, z0, dx, dy-1.f, dz); float v110 = dot_grid_gradient_3d(seed, x1, y1, z0, dx-1.f, dy-1.f, dz); float xi10 = interpolate(v010, v110, dx); float yi0 = interpolate(xi00, xi10, dy); float v001 = dot_grid_gradient_3d(seed, x0, y0, z1, dx, dy, dz-1.f); float v101 = dot_grid_gradient_3d(seed, x1, y0, z1, dx-1.f, dy, dz-1.f); float xi01 = interpolate(v001, v101, dx); float v011 = dot_grid_gradient_3d(seed, x0, y1, z1, dx, dy-1.f, dz-1.f); float v111 = dot_grid_gradient_3d(seed, x1, y1, z1, dx-1.f, dy-1.f, dz-1.f); float xi11 = interpolate(v011, v111, dx); float yi1 = interpolate(xi01, xi11, dy); return interpolate(yi0, yi1, dz); } inline vec3 noise_3d_gradient(uint32_t seed, int x0, int y0, int z0, int x1, int y1, int z1, float dx, float dy, float dz, float heaviside_x, float heaviside_y, float heaviside_z) { float v000 = dot_grid_gradient_3d(seed, x0, y0, z0, dx, dy, dz); float d_v000_dx = dot_grid_gradient_3d_gradient(seed, x0, y0, z0, heaviside_x, 0.f, 0.f); float d_v000_dy = dot_grid_gradient_3d_gradient(seed, x0, y0, z0, 0.f, heaviside_y, 0.f); float d_v000_dz = dot_grid_gradient_3d_gradient(seed, x0, y0, z0, 0.f, 0.f, heaviside_z); float v100 = dot_grid_gradient_3d(seed, x1, y0, z0, dx-1.f, dy, dz); float d_v100_dx = dot_grid_gradient_3d_gradient(seed, x1, y0, z0, heaviside_x, 0.f, 0.f); float d_v100_dy = dot_grid_gradient_3d_gradient(seed, x1, y0, z0, 0.f, heaviside_y, 0.f); float d_v100_dz = dot_grid_gradient_3d_gradient(seed, x1, y0, z0, 0.f, 0.f, heaviside_z); float v010 = dot_grid_gradient_3d(seed, x0, y1, z0, dx, dy-1.f, dz); float d_v010_dx = dot_grid_gradient_3d_gradient(seed, x0, y1, z0, heaviside_x, 0.f, 0.f); float d_v010_dy = dot_grid_gradient_3d_gradient(seed, x0, y1, z0, 0.f, heaviside_y, 0.f); float d_v010_dz = dot_grid_gradient_3d_gradient(seed, x0, y1, z0, 0.f, 0.f, heaviside_z); float v110 = dot_grid_gradient_3d(seed, x1, y1, z0, dx-1.f, dy-1.f, dz); float d_v110_dx = dot_grid_gradient_3d_gradient(seed, x1, y1, z0, heaviside_x, 0.f, 0.f); float d_v110_dy = dot_grid_gradient_3d_gradient(seed, x1, y1, z0, 0.f, heaviside_y, 0.f); float d_v110_dz = dot_grid_gradient_3d_gradient(seed, x1, y1, z0, 0.f, 0.f, heaviside_z); float v001 = dot_grid_gradient_3d(seed, x0, y0, z1, dx, dy, dz-1.f); float d_v001_dx = dot_grid_gradient_3d_gradient(seed, x0, y0, z1, heaviside_x, 0.f, 0.f); float d_v001_dy = dot_grid_gradient_3d_gradient(seed, x0, y0, z1, 0.f, heaviside_y, 0.f); float d_v001_dz = dot_grid_gradient_3d_gradient(seed, x0, y0, z1, 0.f, 0.f, heaviside_z); float v101 = dot_grid_gradient_3d(seed, x1, y0, z1, dx-1.f, dy, dz-1.f); float d_v101_dx = dot_grid_gradient_3d_gradient(seed, x1, y0, z1, heaviside_x, 0.f, 0.f); float d_v101_dy = dot_grid_gradient_3d_gradient(seed, x1, y0, z1, 0.f, heaviside_y, 0.f); float d_v101_dz = dot_grid_gradient_3d_gradient(seed, x1, y0, z1, 0.f, 0.f, heaviside_z); float v011 = dot_grid_gradient_3d(seed, x0, y1, z1, dx, dy-1.f, dz-1.f); float d_v011_dx = dot_grid_gradient_3d_gradient(seed, x0, y1, z1, heaviside_x, 0.f, 0.f); float d_v011_dy = dot_grid_gradient_3d_gradient(seed, x0, y1, z1, 0.f, heaviside_y, 0.f); float d_v011_dz = dot_grid_gradient_3d_gradient(seed, x0, y1, z1, 0.f, 0.f, heaviside_z); float v111 = dot_grid_gradient_3d(seed, x1, y1, z1, dx-1.f, dy-1.f, dz-1.f); float d_v111_dx = dot_grid_gradient_3d_gradient(seed, x1, y1, z1, heaviside_x, 0.f, 0.f); float d_v111_dy = dot_grid_gradient_3d_gradient(seed, x1, y1, z1, 0.f, heaviside_y, 0.f); float d_v111_dz = dot_grid_gradient_3d_gradient(seed, x1, y1, z1, 0.f, 0.f, heaviside_z); float xi00 = interpolate(v000, v100, dx); float d_xi00_dx = interpolate_gradient(v000, v100, dx, d_v000_dx, d_v100_dx, heaviside_x); float d_xi00_dy = interpolate_gradient(v000, v100, dx, d_v000_dy, d_v100_dy, 0.f); float d_xi00_dz = interpolate_gradient(v000, v100, dx, d_v000_dz, d_v100_dz, 0.f); float xi10 = interpolate(v010, v110, dx); float d_xi10_dx = interpolate_gradient(v010, v110, dx, d_v010_dx, d_v110_dx, heaviside_x); float d_xi10_dy = interpolate_gradient(v010, v110, dx, d_v010_dy, d_v110_dy, 0.f); float d_xi10_dz = interpolate_gradient(v010, v110, dx, d_v010_dz, d_v110_dz, 0.f); float xi01 = interpolate(v001, v101, dx); float d_xi01_dx = interpolate_gradient(v001, v101, dx, d_v001_dx, d_v101_dx, heaviside_x); float d_xi01_dy = interpolate_gradient(v001, v101, dx, d_v001_dy, d_v101_dy, 0.f); float d_xi01_dz = interpolate_gradient(v001, v101, dx, d_v001_dz, d_v101_dz, 0.f); float xi11 = interpolate(v011, v111, dx); float d_xi11_dx = interpolate_gradient(v011, v111, dx, d_v011_dx, d_v111_dx, heaviside_x); float d_xi11_dy = interpolate_gradient(v011, v111, dx, d_v011_dy, d_v111_dy, 0.f); float d_xi11_dz = interpolate_gradient(v011, v111, dx, d_v011_dz, d_v111_dz, 0.f); float yi0 = interpolate(xi00, xi10, dy); float d_yi0_dx = interpolate_gradient(xi00, xi10, dy, d_xi00_dx, d_xi10_dx, 0.f); float d_yi0_dy = interpolate_gradient(xi00, xi10, dy, d_xi00_dy, d_xi10_dy, heaviside_y); float d_yi0_dz = interpolate_gradient(xi00, xi10, dy, d_xi00_dz, d_xi10_dz, 0.f); float yi1 = interpolate(xi01, xi11, dy); float d_yi1_dx = interpolate_gradient(xi01, xi11, dy, d_xi01_dx, d_xi11_dx, 0.f); float d_yi1_dy = interpolate_gradient(xi01, xi11, dy, d_xi01_dy, d_xi11_dy, heaviside_y); float d_yi1_dz = interpolate_gradient(xi01, xi11, dy, d_xi01_dz, d_xi11_dz, 0.f); float gradient_x = interpolate_gradient(yi0, yi1, dz, d_yi0_dy, d_yi1_dy, 0.f); float gradient_y = interpolate_gradient(yi0, yi1, dz, d_yi0_dx, d_yi1_dx, 0.f); float gradient_z = interpolate_gradient(yi0, yi1, dz, d_yi0_dz, d_yi1_dz, heaviside_z); return vec3(gradient_x, gradient_y, gradient_z); } inline float noise_4d(uint32_t seed, int x0, int y0, int z0, int t0, int x1, int y1, int z1, int t1, float dx, float dy, float dz, float dt) { //vXYZT float v0000 = dot_grid_gradient_4d(seed, x0, y0, z0, t0, dx, dy, dz, dt); float v1000 = dot_grid_gradient_4d(seed, x1, y0, z0, t0, dx-1.f, dy, dz, dt); float xi000 = interpolate(v0000, v1000, dx); float v0100 = dot_grid_gradient_4d(seed, x0, y1, z0, t0, dx, dy-1.f, dz, dt); float v1100 = dot_grid_gradient_4d(seed, x1, y1, z0, t0, dx-1.f, dy-1.f, dz, dt); float xi100 = interpolate(v0100, v1100, dx); float yi00 = interpolate(xi000, xi100, dy); float v0010 = dot_grid_gradient_4d(seed, x0, y0, z1, t0, dx, dy, dz-1.f, dt); float v1010 = dot_grid_gradient_4d(seed, x1, y0, z1, t0, dx-1.f, dy, dz-1.f, dt); float xi010 = interpolate(v0010, v1010, dx); float v0110 = dot_grid_gradient_4d(seed, x0, y1, z1, t0, dx, dy-1.f, dz-1.f, dt); float v1110 = dot_grid_gradient_4d(seed, x1, y1, z1, t0, dx-1.f, dy-1.f, dz-1.f, dt); float xi110 = interpolate(v0110, v1110, dx); float yi10 = interpolate(xi010, xi110, dy); float zi0 = interpolate(yi00, yi10, dz); float v0001 = dot_grid_gradient_4d(seed, x0, y0, z0, t1, dx, dy, dz, dt-1.f); float v1001 = dot_grid_gradient_4d(seed, x1, y0, z0, t1, dx-1.f, dy, dz, dt-1.f); float xi001 = interpolate(v0001, v1001, dx); float v0101 = dot_grid_gradient_4d(seed, x0, y1, z0, t1, dx, dy-1.f, dz, dt-1.f); float v1101 = dot_grid_gradient_4d(seed, x1, y1, z0, t1, dx-1.f, dy-1.f, dz, dt-1.f); float xi101 = interpolate(v0101, v1101, dx); float yi01 = interpolate(xi001, xi101, dy); float v0011 = dot_grid_gradient_4d(seed, x0, y0, z1, t1, dx, dy, dz-1.f, dt-1.f); float v1011 = dot_grid_gradient_4d(seed, x1, y0, z1, t1, dx-1.f, dy, dz-1.f, dt-1.f); float xi011 = interpolate(v0011, v1011, dx); float v0111 = dot_grid_gradient_4d(seed, x0, y1, z1, t1, dx, dy-1.f, dz-1.f, dt-1.f); float v1111 = dot_grid_gradient_4d(seed, x1, y1, z1, t1, dx-1.f, dy-1.f, dz-1.f, dt-1.f); float xi111 = interpolate(v0111, v1111, dx); float yi11 = interpolate(xi011, xi111, dy); float zi1 = interpolate(yi01, yi11, dz); return interpolate(zi0, zi1, dt); } inline vec4 noise_4d_gradient(uint32_t seed, int x0, int y0, int z0, int t0, int x1, int y1, int z1, int t1, float dx, float dy, float dz, float dt, float heaviside_x, float heaviside_y, float heaviside_z, float heaviside_t) { float v0000 = dot_grid_gradient_4d(seed, x0, y0, z0, t0, dx, dy, dz, dt); float d_v0000_dx = dot_grid_gradient_4d_gradient(seed, x0, y0, z0, t0, heaviside_x, 0.f, 0.f, 0.f); float d_v0000_dy = dot_grid_gradient_4d_gradient(seed, x0, y0, z0, t0, 0.f, heaviside_y, 0.f, 0.f); float d_v0000_dz = dot_grid_gradient_4d_gradient(seed, x0, y0, z0, t0, 0.f, 0.f, heaviside_z, 0.f); float d_v0000_dt = dot_grid_gradient_4d_gradient(seed, x0, y0, z0, t0, 0.f, 0.f, 0.f, heaviside_t); float v1000 = dot_grid_gradient_4d(seed, x1, y0, z0, t0, dx-1.f, dy, dz, dt); float d_v1000_dx = dot_grid_gradient_4d_gradient(seed, x1, y0, z0, t0, heaviside_x, 0.f, 0.f, 0.f); float d_v1000_dy = dot_grid_gradient_4d_gradient(seed, x1, y0, z0, t0, 0.f, heaviside_y, 0.f, 0.f); float d_v1000_dz = dot_grid_gradient_4d_gradient(seed, x1, y0, z0, t0, 0.f, 0.f, heaviside_z, 0.f); float d_v1000_dt = dot_grid_gradient_4d_gradient(seed, x1, y0, z0, t0, 0.f, 0.f, 0.f, heaviside_t); float v0100 = dot_grid_gradient_4d(seed, x0, y1, z0, t0, dx, dy-1.f, dz, dt); float d_v0100_dx = dot_grid_gradient_4d_gradient(seed, x0, y1, z0, t0, heaviside_x, 0.f, 0.f, 0.f); float d_v0100_dy = dot_grid_gradient_4d_gradient(seed, x0, y1, z0, t0, 0.f, heaviside_y, 0.f, 0.f); float d_v0100_dz = dot_grid_gradient_4d_gradient(seed, x0, y1, z0, t0, 0.f, 0.f, heaviside_z, 0.f); float d_v0100_dt = dot_grid_gradient_4d_gradient(seed, x0, y1, z0, t0, 0.f, 0.f, 0.f, heaviside_t); float v1100 = dot_grid_gradient_4d(seed, x1, y1, z0, t0, dx-1.f, dy-1.f, dz, dt); float d_v1100_dx = dot_grid_gradient_4d_gradient(seed, x1, y1, z0, t0, heaviside_x, 0.f, 0.f, 0.f); float d_v1100_dy = dot_grid_gradient_4d_gradient(seed, x1, y1, z0, t0, 0.f, heaviside_y, 0.f, 0.f); float d_v1100_dz = dot_grid_gradient_4d_gradient(seed, x1, y1, z0, t0, 0.f, 0.f, heaviside_z, 0.f); float d_v1100_dt = dot_grid_gradient_4d_gradient(seed, x1, y1, z0, t0, 0.f, 0.f, 0.f, heaviside_t); float v0010 = dot_grid_gradient_4d(seed, x0, y0, z1, t0, dx, dy, dz-1.f, dt); float d_v0010_dx = dot_grid_gradient_4d_gradient(seed, x0, y0, z1, t0, heaviside_x, 0.f, 0.f, 0.f); float d_v0010_dy = dot_grid_gradient_4d_gradient(seed, x0, y0, z1, t0, 0.f, heaviside_y, 0.f, 0.f); float d_v0010_dz = dot_grid_gradient_4d_gradient(seed, x0, y0, z1, t0, 0.f, 0.f, heaviside_z, 0.f); float d_v0010_dt = dot_grid_gradient_4d_gradient(seed, x0, y0, z1, t0, 0.f, 0.f, 0.f, heaviside_t); float v1010 = dot_grid_gradient_4d(seed, x1, y0, z1, t0, dx-1.f, dy, dz-1.f, dt); float d_v1010_dx = dot_grid_gradient_4d_gradient(seed, x1, y0, z1, t0, heaviside_x, 0.f, 0.f, 0.f); float d_v1010_dy = dot_grid_gradient_4d_gradient(seed, x1, y0, z1, t0, 0.f, heaviside_y, 0.f, 0.f); float d_v1010_dz = dot_grid_gradient_4d_gradient(seed, x1, y0, z1, t0, 0.f, 0.f, heaviside_z, 0.f); float d_v1010_dt = dot_grid_gradient_4d_gradient(seed, x1, y0, z1, t0, 0.f, 0.f, 0.f, heaviside_t); float v0110 = dot_grid_gradient_4d(seed, x0, y1, z1, t0, dx, dy-1.f, dz-1.f, dt); float d_v0110_dx = dot_grid_gradient_4d_gradient(seed, x0, y1, z1, t0, heaviside_x, 0.f, 0.f, 0.f); float d_v0110_dy = dot_grid_gradient_4d_gradient(seed, x0, y1, z1, t0, 0.f, heaviside_y, 0.f, 0.f); float d_v0110_dz = dot_grid_gradient_4d_gradient(seed, x0, y1, z1, t0, 0.f, 0.f, heaviside_z, 0.f); float d_v0110_dt = dot_grid_gradient_4d_gradient(seed, x0, y1, z1, t0, 0.f, 0.f, 0.f, heaviside_t); float v1110 = dot_grid_gradient_4d(seed, x1, y1, z1, t0, dx-1.f, dy-1.f, dz-1.f, dt); float d_v1110_dx = dot_grid_gradient_4d_gradient(seed, x1, y1, z1, t0, heaviside_x, 0.f, 0.f, 0.f); float d_v1110_dy = dot_grid_gradient_4d_gradient(seed, x1, y1, z1, t0, 0.f, heaviside_y, 0.f, 0.f); float d_v1110_dz = dot_grid_gradient_4d_gradient(seed, x1, y1, z1, t0, 0.f, 0.f, heaviside_z, 0.f); float d_v1110_dt = dot_grid_gradient_4d_gradient(seed, x1, y1, z1, t0, 0.f, 0.f, 0.f, heaviside_t); float v0001 = dot_grid_gradient_4d(seed, x0, y0, z0, t1, dx, dy, dz, dt-1.f); float d_v0001_dx = dot_grid_gradient_4d_gradient(seed, x0, y0, z0, t1, heaviside_x, 0.f, 0.f, 0.f); float d_v0001_dy = dot_grid_gradient_4d_gradient(seed, x0, y0, z0, t1, 0.f, heaviside_y, 0.f, 0.f); float d_v0001_dz = dot_grid_gradient_4d_gradient(seed, x0, y0, z0, t1, 0.f, 0.f, heaviside_z, 0.f); float d_v0001_dt = dot_grid_gradient_4d_gradient(seed, x0, y0, z0, t1, 0.f, 0.f, 0.f, heaviside_t); float v1001 = dot_grid_gradient_4d(seed, x1, y0, z0, t1, dx-1.f, dy, dz, dt-1.f); float d_v1001_dx = dot_grid_gradient_4d_gradient(seed, x1, y0, z0, t1, heaviside_x, 0.f, 0.f, 0.f); float d_v1001_dy = dot_grid_gradient_4d_gradient(seed, x1, y0, z0, t1, 0.f, heaviside_y, 0.f, 0.f); float d_v1001_dz = dot_grid_gradient_4d_gradient(seed, x1, y0, z0, t1, 0.f, 0.f, heaviside_z, 0.f); float d_v1001_dt = dot_grid_gradient_4d_gradient(seed, x1, y0, z0, t1, 0.f, 0.f, 0.f, heaviside_t); float v0101 = dot_grid_gradient_4d(seed, x0, y1, z0, t1, dx, dy-1.f, dz, dt-1.f); float d_v0101_dx = dot_grid_gradient_4d_gradient(seed, x0, y1, z0, t1, heaviside_x, 0.f, 0.f, 0.f); float d_v0101_dy = dot_grid_gradient_4d_gradient(seed, x0, y1, z0, t1, 0.f, heaviside_y, 0.f, 0.f); float d_v0101_dz = dot_grid_gradient_4d_gradient(seed, x0, y1, z0, t1, 0.f, 0.f, heaviside_z, 0.f); float d_v0101_dt = dot_grid_gradient_4d_gradient(seed, x0, y1, z0, t1, 0.f, 0.f, 0.f, heaviside_t); float v1101 = dot_grid_gradient_4d(seed, x1, y1, z0, t1, dx-1.f, dy-1.f, dz, dt-1.f); float d_v1101_dx = dot_grid_gradient_4d_gradient(seed, x1, y1, z0, t1, heaviside_x, 0.f, 0.f, 0.f); float d_v1101_dy = dot_grid_gradient_4d_gradient(seed, x1, y1, z0, t1, 0.f, heaviside_y, 0.f, 0.f); float d_v1101_dz = dot_grid_gradient_4d_gradient(seed, x1, y1, z0, t1, 0.f, 0.f, heaviside_z, 0.f); float d_v1101_dt = dot_grid_gradient_4d_gradient(seed, x1, y1, z0, t1, 0.f, 0.f, 0.f, heaviside_t); float v0011 = dot_grid_gradient_4d(seed, x0, y0, z1, t1, dx, dy, dz-1.f, dt-1.f); float d_v0011_dx = dot_grid_gradient_4d_gradient(seed, x0, y0, z1, t1, heaviside_x, 0.f, 0.f, 0.f); float d_v0011_dy = dot_grid_gradient_4d_gradient(seed, x0, y0, z1, t1, 0.f, heaviside_y, 0.f, 0.f); float d_v0011_dz = dot_grid_gradient_4d_gradient(seed, x0, y0, z1, t1, 0.f, 0.f, heaviside_z, 0.f); float d_v0011_dt = dot_grid_gradient_4d_gradient(seed, x0, y0, z1, t1, 0.f, 0.f, 0.f, heaviside_t); float v1011 = dot_grid_gradient_4d(seed, x1, y0, z1, t1, dx-1.f, dy, dz-1.f, dt-1.f); float d_v1011_dx = dot_grid_gradient_4d_gradient(seed, x1, y0, z1, t1, heaviside_x, 0.f, 0.f, 0.f); float d_v1011_dy = dot_grid_gradient_4d_gradient(seed, x1, y0, z1, t1, 0.f, heaviside_y, 0.f, 0.f); float d_v1011_dz = dot_grid_gradient_4d_gradient(seed, x1, y0, z1, t1, 0.f, 0.f, heaviside_z, 0.f); float d_v1011_dt = dot_grid_gradient_4d_gradient(seed, x1, y0, z1, t1, 0.f, 0.f, 0.f, heaviside_t); float v0111 = dot_grid_gradient_4d(seed, x0, y1, z1, t1, dx, dy-1.f, dz-1.f, dt-1.f); float d_v0111_dx = dot_grid_gradient_4d_gradient(seed, x0, y1, z1, t1, heaviside_x, 0.f, 0.f, 0.f); float d_v0111_dy = dot_grid_gradient_4d_gradient(seed, x0, y1, z1, t1, 0.f, heaviside_y, 0.f, 0.f); float d_v0111_dz = dot_grid_gradient_4d_gradient(seed, x0, y1, z1, t1, 0.f, 0.f, heaviside_z, 0.f); float d_v0111_dt = dot_grid_gradient_4d_gradient(seed, x0, y1, z1, t1, 0.f, 0.f, 0.f, heaviside_t); float v1111 = dot_grid_gradient_4d(seed, x1, y1, z1, t1, dx-1.f, dy-1.f, dz-1.f, dt-1.f); float d_v1111_dx = dot_grid_gradient_4d_gradient(seed, x1, y1, z1, t1, heaviside_x, 0.f, 0.f, 0.f); float d_v1111_dy = dot_grid_gradient_4d_gradient(seed, x1, y1, z1, t1, 0.f, heaviside_y, 0.f, 0.f); float d_v1111_dz = dot_grid_gradient_4d_gradient(seed, x1, y1, z1, t1, 0.f, 0.f, heaviside_z, 0.f); float d_v1111_dt = dot_grid_gradient_4d_gradient(seed, x1, y1, z1, t1, 0.f, 0.f, 0.f, heaviside_t); float xi000 = interpolate(v0000, v1000, dx); float d_xi000_dx = interpolate_gradient(v0000, v1000, dx, d_v0000_dx, d_v1000_dx, heaviside_x); float d_xi000_dy = interpolate_gradient(v0000, v1000, dx, d_v0000_dy, d_v1000_dy, 0.f); float d_xi000_dz = interpolate_gradient(v0000, v1000, dx, d_v0000_dz, d_v1000_dz, 0.f); float d_xi000_dt = interpolate_gradient(v0000, v1000, dx, d_v0000_dt, d_v1000_dt, 0.f); float xi100 = interpolate(v0100, v1100, dx); float d_xi100_dx = interpolate_gradient(v0100, v1100, dx, d_v0100_dx, d_v1100_dx, heaviside_x); float d_xi100_dy = interpolate_gradient(v0100, v1100, dx, d_v0100_dy, d_v1100_dy, 0.f); float d_xi100_dz = interpolate_gradient(v0100, v1100, dx, d_v0100_dz, d_v1100_dz, 0.f); float d_xi100_dt = interpolate_gradient(v0100, v1100, dx, d_v0100_dt, d_v1100_dt, 0.f); float xi010 = interpolate(v0010, v1010, dx); float d_xi010_dx = interpolate_gradient(v0010, v1010, dx, d_v0010_dx, d_v1010_dx, heaviside_x); float d_xi010_dy = interpolate_gradient(v0010, v1010, dx, d_v0010_dy, d_v1010_dy, 0.f); float d_xi010_dz = interpolate_gradient(v0010, v1010, dx, d_v0010_dz, d_v1010_dz, 0.f); float d_xi010_dt = interpolate_gradient(v0010, v1010, dx, d_v0010_dt, d_v1010_dt, 0.f); float xi110 = interpolate(v0110, v1110, dx); float d_xi110_dx = interpolate_gradient(v0110, v1110, dx, d_v0110_dx, d_v1110_dx, heaviside_x); float d_xi110_dy = interpolate_gradient(v0110, v1110, dx, d_v0110_dy, d_v1110_dy, 0.f); float d_xi110_dz = interpolate_gradient(v0110, v1110, dx, d_v0110_dz, d_v1110_dz, 0.f); float d_xi110_dt = interpolate_gradient(v0110, v1110, dx, d_v0110_dt, d_v1110_dt, 0.f); float xi001 = interpolate(v0001, v1001, dx); float d_xi001_dx = interpolate_gradient(v0001, v1001, dx, d_v0001_dx, d_v1001_dx, heaviside_x); float d_xi001_dy = interpolate_gradient(v0001, v1001, dx, d_v0001_dy, d_v1001_dy, 0.f); float d_xi001_dz = interpolate_gradient(v0001, v1001, dx, d_v0001_dz, d_v1001_dz, 0.f); float d_xi001_dt = interpolate_gradient(v0001, v1001, dx, d_v0001_dt, d_v1001_dt, 0.f); float xi101 = interpolate(v0101, v1101, dx); float d_xi101_dx = interpolate_gradient(v0101, v1101, dx, d_v0101_dx, d_v1101_dx, heaviside_x); float d_xi101_dy = interpolate_gradient(v0101, v1101, dx, d_v0101_dy, d_v1101_dy, 0.f); float d_xi101_dz = interpolate_gradient(v0101, v1101, dx, d_v0101_dz, d_v1101_dz, 0.f); float d_xi101_dt = interpolate_gradient(v0101, v1101, dx, d_v0101_dt, d_v1101_dt, 0.f); float xi011 = interpolate(v0011, v1011, dx); float d_xi011_dx = interpolate_gradient(v0011, v1011, dx, d_v0011_dx, d_v1011_dx, heaviside_x); float d_xi011_dy = interpolate_gradient(v0011, v1011, dx, d_v0011_dy, d_v1011_dy, 0.f); float d_xi011_dz = interpolate_gradient(v0011, v1011, dx, d_v0011_dz, d_v1011_dz, 0.f); float d_xi011_dt = interpolate_gradient(v0011, v1011, dx, d_v0011_dt, d_v1011_dt, 0.f); float xi111 = interpolate(v0111, v1111, dx); float d_xi111_dx = interpolate_gradient(v0111, v1111, dx, d_v0111_dx, d_v1111_dx, heaviside_x); float d_xi111_dy = interpolate_gradient(v0111, v1111, dx, d_v0111_dy, d_v1111_dy, 0.f); float d_xi111_dz = interpolate_gradient(v0111, v1111, dx, d_v0111_dz, d_v1111_dz, 0.f); float d_xi111_dt = interpolate_gradient(v0111, v1111, dx, d_v0111_dt, d_v1111_dt, 0.f); float yi00 = interpolate(xi000, xi100, dy); float d_yi00_dx = interpolate_gradient(xi000, xi100, dy, d_xi000_dx, d_xi100_dx, 0.f); float d_yi00_dy = interpolate_gradient(xi000, xi100, dy, d_xi000_dy, d_xi100_dy, heaviside_y); float d_yi00_dz = interpolate_gradient(xi000, xi100, dy, d_xi000_dz, d_xi100_dz, 0.f); float d_yi00_dt = interpolate_gradient(xi000, xi100, dy, d_xi000_dt, d_xi100_dt, 0.f); float yi10 = interpolate(xi010, xi110, dy); float d_yi10_dx = interpolate_gradient(xi010, xi110, dy, d_xi010_dx, d_xi110_dx, 0.f); float d_yi10_dy = interpolate_gradient(xi010, xi110, dy, d_xi010_dy, d_xi110_dy, heaviside_y); float d_yi10_dz = interpolate_gradient(xi010, xi110, dy, d_xi010_dz, d_xi110_dz, 0.f); float d_yi10_dt = interpolate_gradient(xi010, xi110, dy, d_xi010_dt, d_xi110_dt, 0.f); float yi01 = interpolate(xi001, xi101, dy); float d_yi01_dx = interpolate_gradient(xi001, xi101, dy, d_xi001_dx, d_xi101_dx, 0.f); float d_yi01_dy = interpolate_gradient(xi001, xi101, dy, d_xi001_dy, d_xi101_dy, heaviside_y); float d_yi01_dz = interpolate_gradient(xi001, xi101, dy, d_xi001_dz, d_xi101_dz, 0.f); float d_yi01_dt = interpolate_gradient(xi001, xi101, dy, d_xi001_dt, d_xi101_dt, 0.f); float yi11 = interpolate(xi011, xi111, dy); float d_yi11_dx = interpolate_gradient(xi011, xi111, dy, d_xi011_dx, d_xi111_dx, 0.f); float d_yi11_dy = interpolate_gradient(xi011, xi111, dy, d_xi011_dy, d_xi111_dy, heaviside_y); float d_yi11_dz = interpolate_gradient(xi011, xi111, dy, d_xi011_dz, d_xi111_dz, 0.f); float d_yi11_dt = interpolate_gradient(xi011, xi111, dy, d_xi011_dt, d_xi111_dt, 0.f); float zi0 = interpolate(yi00, yi10, dz); float d_zi0_dx = interpolate_gradient(yi00, yi10, dz, d_yi00_dx, d_yi10_dx, 0.f); float d_zi0_dy = interpolate_gradient(yi00, yi10, dz, d_yi00_dy, d_yi10_dy, 0.f); float d_zi0_dz = interpolate_gradient(yi00, yi10, dz, d_yi00_dz, d_yi10_dz, heaviside_z); float d_zi0_dt = interpolate_gradient(yi00, yi10, dz, d_yi00_dt, d_yi10_dt, 0.f); float zi1 = interpolate(yi01, yi11, dz); float d_zi1_dx = interpolate_gradient(yi01, yi11, dz, d_yi01_dx, d_yi11_dx, 0.f); float d_zi1_dy = interpolate_gradient(yi01, yi11, dz, d_yi01_dy, d_yi11_dy, 0.f); float d_zi1_dz = interpolate_gradient(yi01, yi11, dz, d_yi01_dz, d_yi11_dz, heaviside_z); float d_zi1_dt = interpolate_gradient(yi01, yi11, dz, d_yi01_dt, d_yi11_dt, 0.f); float gradient_x = interpolate_gradient(zi0, zi1, dt, d_zi0_dx, d_zi1_dx, 0.f); float gradient_y = interpolate_gradient(zi0, zi1, dt, d_zi0_dy, d_zi1_dy, 0.f); float gradient_z = interpolate_gradient(zi0, zi1, dt, d_zi0_dz, d_zi1_dz, 0.f); float gradient_t = interpolate_gradient(zi0, zi1, dt, d_zi0_dt, d_zi1_dt, heaviside_t); return vec4(gradient_x, gradient_y, gradient_z, gradient_t); } // non-periodic Perlin noise inline float noise(uint32_t seed, float x) { float dx = x - floor(x); int x0 = (int)floor(x); int x1 = x0 + 1; return noise_1d(seed, x0, x1, dx); } inline float noise(uint32_t seed, const vec2& xy) { float dx = xy[0] - floor(xy[0]); float dy = xy[1] - floor(xy[1]); int x0 = (int)floor(xy[0]); int y0 = (int)floor(xy[1]); int x1 = x0 + 1; int y1 = y0 + 1; return noise_2d(seed, x0, y0, x1, y1, dx, dy); } inline float noise(uint32_t seed, const vec3& xyz) { float dx = xyz[0] - floor(xyz[0]); float dy = xyz[1] - floor(xyz[1]); float dz = xyz[2] - floor(xyz[2]); int x0 = (int)floor(xyz[0]); int y0 = (int)floor(xyz[1]); int z0 = (int)floor(xyz[2]); int x1 = x0 + 1; int y1 = y0 + 1; int z1 = z0 + 1; return noise_3d(seed, x0, y0, z0, x1, y1, z1, dx, dy, dz); } inline float noise(uint32_t seed, const vec4& xyzt) { float dx = xyzt[0] - floor(xyzt[0]); float dy = xyzt[1] - floor(xyzt[1]); float dz = xyzt[2] - floor(xyzt[2]); float dt = xyzt[3] - floor(xyzt[3]); int x0 = (int)floor(xyzt[0]); int y0 = (int)floor(xyzt[1]); int z0 = (int)floor(xyzt[2]); int t0 = (int)floor(xyzt[3]); int x1 = x0 + 1; int y1 = y0 + 1; int z1 = z0 + 1; int t1 = t0 + 1; return noise_4d(seed, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt); } // periodic Perlin noise inline float pnoise(uint32_t seed, float x, int px) { float dx = x - floor(x); int x0 = ((int)floor(x)) % px; int x1 = (x0 + 1) % px; return noise_1d(seed, x0, x1, dx); } inline float pnoise(uint32_t seed, const vec2& xy, int px, int py) { float dx = xy[0] - floor(xy[0]); float dy = xy[1] - floor(xy[1]); int x0 = ((int)floor(xy[0])) % px; int y0 = ((int)floor(xy[1])) % py; int x1 = (x0 + 1) % px; int y1 = (y0 + 1) % py; return noise_2d(seed, x0, y0, x1, y1, dx, dy); } inline float pnoise(uint32_t seed, const vec3& xyz, int px, int py, int pz) { float dx = xyz[0] - floor(xyz[0]); float dy = xyz[1] - floor(xyz[1]); float dz = xyz[2] - floor(xyz[2]); int x0 = ((int)floor(xyz[0])) % px; int y0 = ((int)floor(xyz[1])) % py; int z0 = ((int)floor(xyz[2])) % pz; int x1 = (x0 + 1) % px; int y1 = (y0 + 1) % py; int z1 = (z0 + 1) % pz; return noise_3d(seed, x0, y0, z0, x1, y1, z1, dx, dy, dz); } inline float pnoise(uint32_t seed, const vec4& xyzt, int px, int py, int pz, int pt) { float dx = xyzt[0] - floor(xyzt[0]); float dy = xyzt[1] - floor(xyzt[1]); float dz = xyzt[2] - floor(xyzt[2]); float dt = xyzt[3] - floor(xyzt[3]); int x0 = ((int)floor(xyzt[0])) % px; int y0 = ((int)floor(xyzt[1])) % py; int z0 = ((int)floor(xyzt[2])) % pz; int t0 = ((int)floor(xyzt[3])) % pt; int x1 = (x0 + 1) % px; int y1 = (y0 + 1) % py; int z1 = (z0 + 1) % pz; int t1 = (t0 + 1) % pt; return noise_4d(seed, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt); } // curl noise inline vec2 curlnoise(uint32_t seed, const vec2& xy) { float dx = xy[0] - floor(xy[0]); float dy = xy[1] - floor(xy[1]); float heaviside_x = 1.f; float heaviside_y = 1.f; if (dx < _EPSILON) heaviside_x = 0.f; if (dy < _EPSILON) heaviside_y = 0.f; int x0 = (int)floor(xy[0]); int y0 = (int)floor(xy[1]); int x1 = x0 + 1; int y1 = y0 + 1; vec2 grad_field = noise_2d_gradient(seed, x0, y0, x1, y1, dx, dy, heaviside_x, heaviside_y); return vec2(-grad_field[1], grad_field[0]); } inline vec3 curlnoise(uint32_t seed, const vec3& xyz) { float dx = xyz[0] - floor(xyz[0]); float dy = xyz[1] - floor(xyz[1]); float dz = xyz[2] - floor(xyz[2]); float heaviside_x = 1.f; float heaviside_y = 1.f; float heaviside_z = 1.f; if (dx < _EPSILON) heaviside_x = 0.f; if (dy < _EPSILON) heaviside_y = 0.f; if (dz < _EPSILON) heaviside_z = 0.f; int x0 = (int)floor(xyz[0]); int y0 = (int)floor(xyz[1]); int z0 = (int)floor(xyz[2]); int x1 = x0 + 1; int y1 = y0 + 1; int z1 = z0 + 1; vec3 grad_field_1 = noise_3d_gradient(seed, x0, y0, z0, x1, y1, z1, dx, dy, dz, heaviside_x, heaviside_y, heaviside_z); seed = rand_init(seed, 10019689); vec3 grad_field_2 = noise_3d_gradient(seed, x0, y0, z0, x1, y1, z1, dx, dy, dz, heaviside_x, heaviside_y, heaviside_z); seed = rand_init(seed, 13112221); vec3 grad_field_3 = noise_3d_gradient(seed, x0, y0, z0, x1, y1, z1, dx, dy, dz, heaviside_x, heaviside_y, heaviside_z); return vec3( grad_field_3[1] - grad_field_2[2], grad_field_1[2] - grad_field_3[0], grad_field_2[0] - grad_field_1[1]); } inline vec3 curlnoise(uint32_t seed, const vec4& xyzt) { float dx = xyzt[0] - floor(xyzt[0]); float dy = xyzt[1] - floor(xyzt[1]); float dz = xyzt[2] - floor(xyzt[2]); float dt = xyzt[3] - floor(xyzt[3]); float heaviside_x = 1.f; float heaviside_y = 1.f; float heaviside_z = 1.f; float heaviside_t = 1.f; if (dx < _EPSILON) heaviside_x = 0.f; if (dy < _EPSILON) heaviside_y = 0.f; if (dz < _EPSILON) heaviside_z = 0.f; if (dt < _EPSILON) heaviside_t = 0.f; int x0 = (int)floor(xyzt[0]); int y0 = (int)floor(xyzt[1]); int z0 = (int)floor(xyzt[2]); int t0 = (int)floor(xyzt[3]); int x1 = x0 + 1; int y1 = y0 + 1; int z1 = z0 + 1; int t1 = t0 + 1; vec4 grad_field_1 = noise_4d_gradient(seed, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt, heaviside_x, heaviside_y, heaviside_z, heaviside_t); seed = rand_init(seed, 10019689); vec4 grad_field_2 = noise_4d_gradient(seed, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt, heaviside_x, heaviside_y, heaviside_z, heaviside_t); seed = rand_init(seed, 13112221); vec4 grad_field_3 = noise_4d_gradient(seed, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt, heaviside_x, heaviside_y, heaviside_z, heaviside_t); return vec3( grad_field_3[1] - grad_field_2[2], grad_field_1[2] - grad_field_3[0], grad_field_2[0] - grad_field_1[1]); } } // namespace nodes } // namespace graph } // namespace omni
37,782
C
45.530788
224
0.631147
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnEase.cpp
// Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #define _USE_MATH_DEFINES #include <OgnEaseDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <cmath> #include <functional> #include "XformUtils.h" namespace omni { namespace graph { namespace nodes { namespace { template<typename T> std::function<T(const T&, const T&, const float&)> getOperation(OgnEaseDatabase& db) { const auto& easeFunc = db.inputs.easeFunc(); auto exponent = std::max(std::min(db.inputs.blendExponent(), 10), 0); // Find the desired comparison std::function<T(const T&, const T&, const float&)> fn; if (easeFunc == db.tokens.EaseIn) fn = [=](const T& start, const T& end, const float& alpha) { return easeIn(start, end, alpha, exponent); }; else if (easeFunc == db.tokens.EaseOut) fn = [=](const T& start, const T& end, const float& alpha) { return easeOut(start, end, alpha, exponent); }; else if (easeFunc == db.tokens.EaseInOut) fn = [=](const T& start, const T& end, const float& alpha) { return easeInOut(start, end, alpha, exponent); }; else if (easeFunc == db.tokens.Linear) fn = [=](const T& start, const T& end, const float& alpha) { return lerp(start, end, alpha); }; else if (easeFunc == db.tokens.SinIn) fn = [=](const T& start, const T& end, const float& alpha) { return easeSinIn(start, end, alpha, exponent); }; else if (easeFunc == db.tokens.SinOut) fn = [=](const T& start, const T& end, const float& alpha) { return easeSinOut(start, end, alpha, exponent); }; else if (easeFunc == db.tokens.SinInOut) fn = [=](const T& start, const T& end, const float& alpha) { return easeSinInOut(start, end, alpha, exponent); }; else { throw ogn::compute::InputError("Failed to resolve token " + std::string(db.tokenToString(easeFunc)) + ", expected one of EaseIn, EaseOut, EaseInOut, Linear, SinIn, SinOut, SinInOut"); } return fn; } template<typename T> bool tryComputeAssumingType(OgnEaseDatabase& db, size_t count) { auto op = getOperation<T>(db); auto functor = [&](auto& start, auto& end, auto& alpha, auto& result) { auto a = std::min(std::max(alpha, (float) 0.0), (float) 1.0); result = op(start, end, a); }; return ogn::compute::tryComputeWithArrayBroadcasting<T, T, float, T>( db.inputs.start(), db.inputs.end(), db.inputs.alpha(), db.outputs.result(), functor, count); } template<typename T, size_t N> bool tryComputeAssumingType(OgnEaseDatabase& db, size_t count) { auto op = getOperation<T>(db); auto functor = [&](auto& start, auto& end, auto& alpha, auto& result) { auto a = std::min(std::max(alpha, (float) 0.0), (float) 1.0); for (size_t i = 0; i < N; i++) { result[i] = op(start[i], end[i], a); } }; return ogn::compute::tryComputeWithArrayBroadcasting<T[N], T[N], float, T[N]>( db.inputs.start(), db.inputs.end(), db.inputs.alpha(), db.outputs.result(), functor, count); } } // namespace class OgnEase { public: static bool computeVectorized(OgnEaseDatabase& db, size_t count) { auto& inputType = db.inputs.start().type(); // Compute the components, if the types are all resolved. try { switch (inputType.baseType) { case BaseDataType::eDouble: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<double>(db, count); case 2: return tryComputeAssumingType<double, 2>(db, count); case 3: return tryComputeAssumingType<double, 3>(db, count); case 4: return tryComputeAssumingType<double, 4>(db, count); case 9: return tryComputeAssumingType<double, 9>(db, count); case 16: return tryComputeAssumingType<double, 16>(db, count); default: break; } case BaseDataType::eFloat: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<float>(db, count); case 2: return tryComputeAssumingType<float, 2>(db, count); case 3: return tryComputeAssumingType<float, 3>(db, count); case 4: return tryComputeAssumingType<float, 4>(db, count); default: break; } case BaseDataType::eHalf: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<pxr::GfHalf>(db, count); case 2: return tryComputeAssumingType<pxr::GfHalf, 2>(db, count); case 3: return tryComputeAssumingType<pxr::GfHalf, 3>(db, count); case 4: return tryComputeAssumingType<pxr::GfHalf, 4>(db, count); default: break; } default: break; } db.logWarning("Failed to resolve input types"); } catch (ogn::compute::InputError &error) { db.logWarning("OgnEase: %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node){ auto start = node.iNode->getAttributeByToken(node, inputs::start.token()); auto end = node.iNode->getAttributeByToken(node, inputs::end.token()); auto alpha = node.iNode->getAttributeByToken(node, inputs::alpha.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto startType = start.iAttribute->getResolvedType(start); auto endType = end.iAttribute->getResolvedType(end); auto alphaType = alpha.iAttribute->getResolvedType(alpha); // Require start, end, and alpha to be resolved before determining result's type if (startType.baseType != BaseDataType::eUnknown && endType.baseType != BaseDataType::eUnknown && alphaType.baseType != BaseDataType::eUnknown) { std::array<AttributeObj, 3> attrs { start, end, result }; std::array<uint8_t, 3> tupleCounts { startType.componentCount, endType.componentCount, std::max(startType.componentCount, endType.componentCount) }; std::array<uint8_t, 3> arrayDepths { startType.arrayDepth, endType.arrayDepth, std::max(alphaType.arrayDepth, std::max(startType.arrayDepth, endType.arrayDepth)) }; std::array<AttributeRole, 3> rolesBuf { startType.role, endType.role, AttributeRole::eUnknown }; node.iNode->resolvePartiallyCoupledAttributes(node, attrs.data(), tupleCounts.data(), arrayDepths.data(), rolesBuf.data(), attrs.size()); } } static bool updateNodeVersion(const GraphContextObj& context, const NodeObj& nodeObj, int oldVersion, int newVersion) { if (oldVersion < newVersion) { const INode* const iNode = nodeObj.iNode; if (oldVersion < 2) { auto const instanceIdx = kAccordingToContextIndex; auto oldAttrObj = iNode->getAttribute(nodeObj, "inputs:exponent"); auto oldAttrDataHandle = oldAttrObj.iAttribute->getAttributeDataHandle(oldAttrObj, instanceIdx); ConstRawPtr srcDataPtr{ nullptr }; size_t srcDataSize{ 0 }; context.iAttributeData->getDataReferenceR(oldAttrDataHandle, context, srcDataPtr, srcDataSize); if (srcDataPtr) { float exponentFloat = *(const float*)srcDataPtr; auto newAttrObj = iNode->getAttribute(nodeObj, "inputs:blendExponent"); auto newAttrDataHandle = newAttrObj.iAttribute->getAttributeDataHandle(newAttrObj, instanceIdx); RawPtr dstDataPtr{ nullptr }; size_t srcDataSize{ 0 }; context.iAttributeData->getDataReferenceW(newAttrDataHandle, context, dstDataPtr, srcDataSize); if (dstDataPtr) { *dstDataPtr = (int)exponentFloat; } } iNode->removeAttribute(nodeObj, "inputs:exponent"); } return true; } return false; } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
9,125
C++
41.84507
121
0.593205
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnRound.cpp
// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnRoundDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <cmath> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { template<typename T> bool tryComputeAssumingType(OgnRoundDatabase& db, size_t count) { int decimals = db.inputs.decimals(); float k = powf(10.0f, static_cast<float>(decimals)); auto functor = [&](auto const& input, auto& output) { output = static_cast<T>(round(input * k) / k); }; return ogn::compute::tryComputeWithArrayBroadcasting<T>(db.inputs.input(), db.outputs.output(), functor, count); } template<typename T, size_t N> bool tryComputeAssumingType(OgnRoundDatabase& db, size_t count) { int decimals = db.inputs.decimals(); float k = powf(10.0f, static_cast<float>(decimals)); auto functor = [&](auto const& input, auto& output) { for (size_t i = 0; i < N; ++i) { output[i] = static_cast<T>(round(input[i] * k) / k); } }; return ogn::compute::tryComputeWithArrayBroadcasting<T[N]>(db.inputs.input(), db.outputs.output(), functor, count); } } // namespace class OgnRound { public: static bool computeVectorized(OgnRoundDatabase& db, size_t count) { auto& inputType = db.inputs.input().type(); try { switch (inputType.baseType) { case BaseDataType::eDouble: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<double>(db, count); case 2: return tryComputeAssumingType<double, 2>(db, count); case 3: return tryComputeAssumingType<double, 3>(db, count); case 4: return tryComputeAssumingType<double, 4>(db, count); case 9: return tryComputeAssumingType<double, 9>(db, count); case 16: return tryComputeAssumingType<double, 16>(db, count); default: break; } case BaseDataType::eFloat: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<float>(db, count); case 2: return tryComputeAssumingType<float, 2>(db, count); case 3: return tryComputeAssumingType<float, 3>(db, count); case 4: return tryComputeAssumingType<float, 4>(db, count); default: break; } case BaseDataType::eHalf: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<pxr::GfHalf>(db, count); case 2: return tryComputeAssumingType<pxr::GfHalf, 2>(db, count); case 3: return tryComputeAssumingType<pxr::GfHalf, 3>(db, count); case 4: return tryComputeAssumingType<pxr::GfHalf, 4>(db, count); default: break; } default: break; } db.logWarning("Failed to resolve input types"); } catch (ogn::compute::InputError &error) { db.logWarning("OgnRound: %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node) { auto input = node.iNode->getAttributeByToken(node, inputs::input.token()); auto output = node.iNode->getAttributeByToken(node, outputs::output.token()); auto inputType = input.iAttribute->getResolvedType(input); // Require input to be resolved before determining output's type if (inputType.baseType != BaseDataType::eUnknown) { std::array<AttributeObj, 2> attrs { input, output }; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni // end-compute-helpers
4,496
C++
37.110169
119
0.606762
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnConcatenateFloat3Arrays.cpp
// Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnConcatenateFloat3ArraysDatabase.h> #include <carb/Framework.h> #include <carb/Types.h> #include <omni/graph/core/Accessors.h> #include <omni/graph/core/IGatherPrototype.h> #include <omni/math/linalg/vec.h> using omni::math::linalg::vec3f; namespace omni { namespace graph { namespace nodes { class OgnConcatenateFloat3Arrays { public: static bool compute(OgnConcatenateFloat3ArraysDatabase& db) { auto iGatherPrototype = carb::getCachedInterface<IGatherPrototype>(); if (!iGatherPrototype) { db.logError("Could not acquire IGatherPrototype and therefore could not compute"); return false; } auto& outputArray = db.outputs.outputArray(); auto& outputSizesArray = db.outputs.arraySizes(); // TODO: This uses the legacy approach instead of the database until gather arrays are supported AttributeObj inputArrayObj = db.abi_node().iNode->getAttribute(db.abi_node(), "inputs:inputArrays"); AttributeObj inputArraySrcObj = getNthUpstreamAttributeOrSelf<0>(inputArrayObj); auto inputArrayValues = reinterpret_cast<const vec3f* const* const>( iGatherPrototype->getGatherArray(db.abi_context(), inputArraySrcObj, kReadOnly) ); if (!inputArrayValues) { return false; } auto inputArraySizes = iGatherPrototype->getGatherArrayAttributeSizes(db.abi_context(), inputArraySrcObj, kReadOnly); const size_t inputArrayCount = iGatherPrototype->getElementCount(db.abi_context(), inputArraySrcObj); // Find the total output size. size_t outputCount = 0; for (size_t arrayi = 0; arrayi < inputArrayCount; ++arrayi) { outputCount += inputArraySizes[arrayi]; } outputArray.resize(outputCount); outputSizesArray.resize(inputArrayCount); for (size_t arrayi = 0, outputi = 0; arrayi < inputArrayCount; ++arrayi) { const vec3f* const currentInputArray = inputArrayValues[arrayi]; size_t currentSize = inputArraySizes[arrayi]; outputSizesArray[arrayi] = int(currentSize); for (size_t inputi = 0; inputi < currentSize; ++inputi, ++outputi) { outputArray[outputi] = currentInputArray[inputi]; } } return true; } }; REGISTER_OGN_NODE() } } }
2,853
C++
32.57647
125
0.677532
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnRandomGaussian.cpp
// Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include "OgnRandomGaussianDatabase.h" #include "random/RandomNodeBase.h" #include <omni/graph/core/ogn/ComputeHelpers.h> namespace omni { namespace graph { namespace nodes { using namespace random; class OgnRandomGaussian : public NodeBase<OgnRandomGaussian, OgnRandomGaussianDatabase> { template <typename T> static bool tryComputeAssumingType(OgnRandomGaussianDatabase& db, size_t count) { if (db.inputs.useLog()) { return ogn::compute::tryComputeWithArrayBroadcasting<T>( db.state.gen(), db.inputs.mean(), db.inputs.stdev(), db.outputs.random(), [](GenBuffer_t const& genBuffer, T const& mean, T const& stdev, T& result) { // Generate next random result = asGenerator(genBuffer).nextLogNormal(mean, stdev); }, count); } return ogn::compute::tryComputeWithArrayBroadcasting<T>( db.state.gen(), db.inputs.mean(), db.inputs.stdev(), db.outputs.random(), [](GenBuffer_t const& genBuffer, T const& mean, T const& stdev, T& result) { // Generate next random result = asGenerator(genBuffer).nextNormal(mean, stdev); }, count); } template <typename T, size_t N> static bool tryComputeAssumingType(OgnRandomGaussianDatabase& db, size_t count) { if (db.inputs.useLog()) { return ogn::compute::tryComputeWithTupleBroadcasting<N, T>( db.state.gen(), db.inputs.mean(), db.inputs.stdev(), db.outputs.random(), [](GenBuffer_t const& genBuffer, T const& mean, T const& stdev, T& result) { // Generate next random result = asGenerator(genBuffer).nextLogNormal(mean, stdev); }, count); } return ogn::compute::tryComputeWithTupleBroadcasting<N, T>( db.state.gen(), db.inputs.mean(), db.inputs.stdev(), db.outputs.random(), [](GenBuffer_t const& genBuffer, T const& mean, T const& stdev, T& result) { // Generate next random result = asGenerator(genBuffer).nextNormal(mean, stdev); }, count); } static bool defaultCompute(OgnRandomGaussianDatabase& db, size_t count) { auto const genBuffers = db.state.gen.vectorized(count); if (genBuffers.size() != count) { db.logWarning("Failed to write to output standard normal distribution (wrong genBuffers size)"); return false; } for (size_t i = 0; i < count; ++i) { auto outPtr = db.outputs.random(i).get<double>(); if (!outPtr) { db.logWarning("Failed to write to output standard normal distribution (null output pointer)"); return false; } *outPtr = asGenerator(genBuffers[i]).nextNormal<double>(0.0, 1.0); } return true; } public: static void initialize(GraphContextObj const& contextObj, NodeObj const& nodeObj) { generateRandomSeed(contextObj, nodeObj, inputs::seed, inputs::useSeed); // HACK: onConnectionTypeResolve is not called the first time, // but by setting the output type, we force it to be called. // // TODO: OGN should really support default inputs for union types! // See https://nvidia-omniverse.atlassian.net/browse/OM-67739 setDefaultOutputType(nodeObj, outputs::random.token()); } static bool onCompute(OgnRandomGaussianDatabase& db, size_t count) { auto const& meanAttr{ db.inputs.mean() }; auto const& stdevAttr{ db.inputs.stdev() }; auto const& outAttr{ db.outputs.random() }; if (!outAttr.resolved()) { // Output type not yet resolved, can't compute db.logWarning("Unsupported input types"); return false; } if (!meanAttr.resolved() && !stdevAttr.resolved()) { // Output using default mean and stdev return defaultCompute(db, count); } // Inputs and outputs are resolved, try all real types auto const outType = outAttr.type(); switch (outType.baseType) // NOLINT(clang-diagnostic-switch-enum) { case BaseDataType::eDouble: switch (outType.componentCount) { case 1: return tryComputeAssumingType<double>(db, count); case 2: return tryComputeAssumingType<double, 2>(db, count); case 3: return tryComputeAssumingType<double, 3>(db, count); case 4: return tryComputeAssumingType<double, 4>(db, count); case 9: return tryComputeAssumingType<double, 9>(db, count); case 16: return tryComputeAssumingType<double, 16>(db, count); default: break; } case BaseDataType::eFloat: switch (outType.componentCount) { case 1: return tryComputeAssumingType<float>(db, count); case 2: return tryComputeAssumingType<float, 2>(db, count); case 3: return tryComputeAssumingType<float, 3>(db, count); case 4: return tryComputeAssumingType<float, 4>(db, count); default: break; } case BaseDataType::eHalf: switch (outType.componentCount) { case 1: return tryComputeAssumingType<pxr::GfHalf>(db, count); case 2: return tryComputeAssumingType<pxr::GfHalf, 2>(db, count); case 3: return tryComputeAssumingType<pxr::GfHalf, 3>(db, count); case 4: return tryComputeAssumingType<pxr::GfHalf, 4>(db, count); default: break; } default: break; } db.logWarning("Unsupported input types"); return false; } static void onConnectionTypeResolve(NodeObj const& node) { resolveOutputType(node, inputs::mean.token(), inputs::stdev.token(), outputs::random.token()); } }; #undef TRY_CASE REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
6,994
C++
33.289216
110
0.573778
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnPartialSum.cpp
// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnPartialSumDatabase.h> #include <numeric> class OgnPartialSum { public: static bool compute(OgnPartialSumDatabase& db) { auto inputs = db.inputs.array(); auto outputs = db.outputs.partialSum(); outputs.resize(inputs.size() + 1); outputs[0] = 0; std::partial_sum(inputs.begin(), inputs.end(), outputs.begin() + 1); return true; } }; REGISTER_OGN_NODE()
861
C++
30.925925
77
0.708479
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnSourceIndices.cpp
// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnSourceIndicesDatabase.h> class OgnSourceIndices { public: static bool compute(OgnSourceIndicesDatabase& db) { auto inputValues = db.inputs.sourceStartsInTarget(); auto sourceCount = inputValues.size(); auto sourceIndices = db.outputs.sourceIndices(); if (sourceCount <= 1) { sourceIndices.resize(0); return true; } --sourceCount; int32_t targetCount = inputValues[sourceCount]; if (targetCount < 0) { sourceIndices.resize(0); return true; } sourceIndices.resize(targetCount); int32_t i = 0; for (size_t sourcei = 0; sourcei < sourceCount; ++sourcei) { const int32_t sourceEnd = inputValues[sourcei + 1]; while (i < sourceEnd) { sourceIndices[i] = (int32_t)sourcei; ++i; } } return true; } }; REGISTER_OGN_NODE()
1,443
C++
26.76923
77
0.612613
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnMagnitude.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnMagnitudeDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <cmath> #include <type_traits> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { template<typename T> bool tryComputeAssumingType(OgnMagnitudeDatabase& db) { auto functor = [](auto const& input, auto& magnitude) { magnitude = static_cast<T>(std::abs(static_cast<double>(input))); }; return ogn::compute::tryComputeWithArrayBroadcasting<T, T>(db.inputs.input(), db.outputs.magnitude(), functor); } template<> bool tryComputeAssumingType<pxr::GfHalf>(OgnMagnitudeDatabase& db) { auto functor = [](auto const& input, auto& magnitude) { magnitude = static_cast<pxr::GfHalf>(std::abs(static_cast<float>(input))); }; return ogn::compute::tryComputeWithArrayBroadcasting<pxr::GfHalf, pxr::GfHalf>(db.inputs.input(), db.outputs.magnitude(), functor); } template<typename T, size_t N, std::enable_if_t<!std::is_same<T, int>::value && !std::is_same<T, pxr::GfHalf>::value, bool> = true> bool tryComputeAssumingType(OgnMagnitudeDatabase& db) { auto functor = [](auto const& input, auto& magnitude) { double acc = 0.0; for (size_t i = 0; i < N; ++i) { acc += static_cast<double>(input[i]) * static_cast<double>(input[i]); } acc = std::sqrt(acc); magnitude = static_cast<T>(acc); }; return ogn::compute::tryComputeWithArrayBroadcasting<T[N], T>(db.inputs.input(), db.outputs.magnitude(), functor); } template<typename T, size_t N, std::enable_if_t<std::is_same<T, int>::value, bool> = true> bool tryComputeAssumingType(OgnMagnitudeDatabase& db) { auto functor = [](auto const& input, auto& magnitude) { double acc = 0.0; for (size_t i = 0; i < N; ++i) { acc += static_cast<double>(input[i]) * static_cast<double>(input[i]); } acc = std::sqrt(acc); magnitude = acc; }; return ogn::compute::tryComputeWithArrayBroadcasting<int[N], double>(db.inputs.input(), db.outputs.magnitude(), functor); } template<typename T, size_t N, std::enable_if_t<std::is_same<T, pxr::GfHalf>::value, bool> = true> bool tryComputeAssumingType(OgnMagnitudeDatabase& db) { auto functor = [](auto const& input, auto& magnitude) { float acc = 0.0f; for (size_t i = 0; i < N; ++i) { acc += static_cast<float>(input[i]) * static_cast<float>(input[i]); } acc = std::sqrt(acc); magnitude = static_cast<pxr::GfHalf>(acc); }; return ogn::compute::tryComputeWithArrayBroadcasting<pxr::GfHalf[N], pxr::GfHalf>(db.inputs.input(), db.outputs.magnitude(), functor); } } // namespace class OgnMagnitude { public: static bool compute(OgnMagnitudeDatabase& db) { try { auto& type = db.inputs.input().type(); // All possible types excluding ogn::string and bool switch (type.baseType) { case BaseDataType::eDouble: switch (type.componentCount) { case 1: return tryComputeAssumingType<double>(db); case 2: return tryComputeAssumingType<double, 2>(db); case 3: return tryComputeAssumingType<double, 3>(db); case 4: return tryComputeAssumingType<double, 4>(db); // quaternion (XYZW), RGBA, etc case 9: return tryComputeAssumingType<double, 9>(db); // Matrix3f type case 16: return tryComputeAssumingType<double, 16>(db); // Matrix4f type } break; case BaseDataType::eFloat: switch (type.componentCount) { case 1: return tryComputeAssumingType<float>(db); case 2: return tryComputeAssumingType<float, 2>(db); case 3: return tryComputeAssumingType<float, 3>(db); case 4: return tryComputeAssumingType<float, 4>(db); // quaternion (XYZW), RGBA, etc } break; case BaseDataType::eHalf: switch (type.componentCount) { case 1: return tryComputeAssumingType<pxr::GfHalf>(db); case 2: return tryComputeAssumingType<pxr::GfHalf, 2>(db); case 3: return tryComputeAssumingType<pxr::GfHalf, 3>(db); case 4: return tryComputeAssumingType<pxr::GfHalf, 4>(db); // quaternion (XYZW), RGBA, etc } break; case BaseDataType::eInt: switch (type.componentCount) { case 1: return tryComputeAssumingType<int32_t>(db); case 2: return tryComputeAssumingType<int32_t, 2>(db); case 3: return tryComputeAssumingType<int32_t, 3>(db); case 4: return tryComputeAssumingType<int32_t, 4>(db); } break; case BaseDataType::eUInt: switch (type.componentCount) { case 1: return tryComputeAssumingType<uint32_t>(db); } break; case BaseDataType::eInt64: switch (type.componentCount) { case 1: return tryComputeAssumingType<int64_t>(db); } break; case BaseDataType::eUInt64: switch (type.componentCount) { case 1: return tryComputeAssumingType<uint64_t>(db); } break; case BaseDataType::eUChar: switch (type.componentCount) { case 1: return tryComputeAssumingType<unsigned char>(db); } break; default: break; } throw ogn::compute::InputError("Failed to resolve input type"); } catch (ogn::compute::InputError &error) { db.logError("OgnMagnitude: %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node) { auto input = node.iNode->getAttributeByToken(node, inputs::input.token()); auto magnitude = node.iNode->getAttributeByToken(node, outputs::magnitude.token()); auto inputType = input.iAttribute->getResolvedType(input); // Require input to be resolved before determining magnitude's type if (inputType.baseType != BaseDataType::eUnknown) { if (inputType.baseType == BaseDataType::eInt && inputType.componentCount > 1) { // int[N] => double auto newType = inputType; newType.baseType = BaseDataType::eDouble; newType.componentCount = 1; magnitude.iAttribute->setResolvedType(magnitude, newType); } else { // T => T // T[N] => T std::array<AttributeObj, 2> attrs { input, magnitude }; std::array<uint8_t, 2> tupleCounts { inputType.componentCount, 1 }; std::array<uint8_t, 2> arrayDepths { inputType.arrayDepth, inputType.arrayDepth }; std::array<AttributeRole, 2> rolesBuf { inputType.role, AttributeRole::eUnknown }; node.iNode->resolvePartiallyCoupledAttributes(node, attrs.data(), tupleCounts.data(), arrayDepths.data(), rolesBuf.data(), attrs.size()); } } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni // end-compute-helpers
9,416
C++
37.125506
138
0.506691
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnMatrixMultiply.cpp
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnMatrixMultiplyDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/vec.h> #include <type_traits> using omni::math::linalg::base_matrix; using omni::math::linalg::base_vec; using ogn::compute::tryComputeWithArrayBroadcasting; namespace omni { namespace graph { namespace nodes { namespace { // Base type T, dimension N (eg: 2,3,4) template<typename T, size_t N> bool tryComputeAssumingType(OgnMatrixMultiplyDatabase& db) { auto matrixMatrixFn = [](auto const& a, auto const& b, auto& result) { const auto& aMatrix = *reinterpret_cast<const base_matrix<T, N>*>(a); const auto& bMatrix = *reinterpret_cast<const base_matrix<T, N>*>(b); auto& resultMatrix = *reinterpret_cast<base_matrix<T, N>*>(result); resultMatrix = aMatrix * bMatrix; }; auto matrixVectorFn = [](auto const& a, auto const& b, auto& result) { const auto& aMatrix = *reinterpret_cast<const base_matrix<T, N>*>(a); const auto& bVec = *reinterpret_cast<const base_vec<T, N>*>(b); auto& resultVec = *reinterpret_cast<base_vec<T, N>*>(result); resultVec = aMatrix * bVec; }; auto vectorMatrixFn = [](auto const& a, auto const& b, auto& result) { const auto& aVec = *reinterpret_cast<const base_vec<T, N>*>(a); const auto& bMatrix = *reinterpret_cast<const base_matrix<T, N>*>(b); auto& resultVec = *reinterpret_cast<base_vec<T, N>*>(result); resultVec = aVec * bMatrix; }; auto vectorVectorFn = [](auto const& a, auto const& b, auto& result) { const auto& aVec = *reinterpret_cast<const base_vec<T, N>*>(a); const auto& bVec = *reinterpret_cast<const base_vec<T, N>*>(b); result = aVec * bVec; }; if (N >= 3 && tryComputeWithArrayBroadcasting<T[N*N]>(db.inputs.a(), db.inputs.b(), db.outputs.output(), matrixMatrixFn)) return true; else if (N >= 3 && tryComputeWithArrayBroadcasting<T[N*N], T[N], T[N]>(db.inputs.a(), db.inputs.b(), db.outputs.output(), matrixVectorFn)) return true; else if (N >= 3 && tryComputeWithArrayBroadcasting<T[N], T[N*N], T[N]>(db.inputs.a(), db.inputs.b(), db.outputs.output(), vectorMatrixFn)) return true; else if (tryComputeWithArrayBroadcasting<T[N], T[N], T>(db.inputs.a(), db.inputs.b(), db.outputs.output(), vectorVectorFn)) return true; return false; } } // namespace class OgnMatrixMultiply { public: static bool compute(OgnMatrixMultiplyDatabase& db) { try { if (tryComputeAssumingType<double, 2>(db)) return true; else if (tryComputeAssumingType<double, 3>(db)) return true; else if (tryComputeAssumingType<double, 4>(db)) return true; else if (tryComputeAssumingType<float, 2>(db)) return true; else if (tryComputeAssumingType<float, 3>(db)) return true; else if (tryComputeAssumingType<float, 4>(db)) return true; else if (tryComputeAssumingType<pxr::GfHalf, 2>(db)) return true; else if (tryComputeAssumingType<pxr::GfHalf, 3>(db)) return true; else if (tryComputeAssumingType<pxr::GfHalf, 4>(db)) return true; else { db.logWarning("OgnMatrixMultiply: Failed to resolve input types"); } } catch (ogn::compute::InputError &error) { db.logWarning("OgnMatrixMultiply: %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node){ auto a = node.iNode->getAttributeByToken(node, inputs::a.token()); auto b = node.iNode->getAttributeByToken(node, inputs::b.token()); auto output = node.iNode->getAttributeByToken(node, outputs::output.token()); auto aType = a.iAttribute->getResolvedType(a); auto bType = b.iAttribute->getResolvedType(b); // Require inputs to be resolved before determining output's type if (aType.baseType != BaseDataType::eUnknown && bType.baseType != BaseDataType::eUnknown) { auto biggerDim = std::max(aType.componentCount, bType.componentCount); auto smallerDim = std::min(aType.componentCount, bType.componentCount); if (biggerDim != smallerDim && biggerDim != smallerDim * smallerDim) { CARB_LOG_WARN_ONCE("OgnMatrixMultiply: Inputs are not compatible with tuple counts %d and %d", aType.componentCount, bType.componentCount); return; } // Vector4 * Matrix4 = Vector4, Matrix4 * Vector4 = Vector4 and etc. auto tupleCount = smallerDim; auto role = aType.componentCount < bType.componentCount ? aType.role : bType.role; if (smallerDim == biggerDim && smallerDim <= 4) { // equivalent to dot product of two vectors tupleCount = 1; role = AttributeRole::eNone; } std::array<AttributeObj, 3> attrs { a, b, output }; std::array<uint8_t, 3> tupleCounts { aType.componentCount, bType.componentCount, tupleCount }; std::array<uint8_t, 3> arrayDepths { aType.arrayDepth, bType.arrayDepth, std::max(aType.arrayDepth, bType.arrayDepth) }; std::array<AttributeRole, 3> rolesBuf { aType.role, bType.role, role }; node.iNode->resolvePartiallyCoupledAttributes(node, attrs.data(), tupleCounts.data(), arrayDepths.data(), rolesBuf.data(), attrs.size()); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
6,428
C++
39.949044
155
0.61061
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnRandomBoolean.cpp
// Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include "random/RandomNodeBase.h" #include <OgnRandomBooleanDatabase.h> namespace omni { namespace graph { namespace nodes { using namespace random; class OgnRandomBoolean : public NodeBase<OgnRandomBoolean, OgnRandomBooleanDatabase> { public: static void initialize(GraphContextObj const& contextObj, NodeObj const& nodeObj) { generateRandomSeed(contextObj, nodeObj, inputs::seed, inputs::useSeed); } static bool onCompute(OgnRandomBooleanDatabase& db, size_t count) { return computeRandoms(db, count, [](GeneratorState& gen) { return gen.nextUniformBool(); }); } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
1,133
C++
26.658536
100
0.753751
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnGetLocationAtDistanceOnCurve.cpp
// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnGetLocationAtDistanceOnCurveDatabase.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/quat.h> #include <omni/math/linalg/vec.h> #include <omni/graph/core/PreUsdInclude.h> #include <pxr/base/gf/rotation.h> #include <omni/graph/core/PostUsdInclude.h> #include <omni/math/linalg/SafeCast.h> #include <cmath> #include "XformUtils.h" using omni::math::linalg::quatf; using omni::math::linalg::quatd; using omni::math::linalg::vec3d; using omni::math::linalg::matrix4d; // return the named unit vector X,Y or Z static vec3d axisToVec(NameToken axisToken, OgnGetLocationAtDistanceOnCurveDatabase::TokenManager& tokens) { if (axisToken == tokens.y || axisToken == tokens.Y) return vec3d::YAxis(); if (axisToken == tokens.z || axisToken == tokens.Z) return vec3d::ZAxis(); return vec3d::XAxis(); } class OgnGetLocationAtDistanceOnCurve { public: static bool compute(OgnGetLocationAtDistanceOnCurveDatabase& db) { /* This is a simple closed poly-line interpolation to find p, the point on the curve 1. find the total length of the curve 2. find the start and end cvs of the line segment which contains p 3. calculate the position on that line segment, and the rotation */ bool ok = false; const auto& curve_cvs_in = db.inputs.curve(); auto& locations = db.outputs.location(); auto& rotations = db.outputs.rotateXYZ(); auto& orientations = db.outputs.orientation(); const auto& distances = db.inputs.distance(); double curve_length = 0; // The total curve length std::vector<double> accumulated_lengths; // the length of the curve at each the end of each segment std::vector<double> segment_lengths; // the length of each segment size_t num_cvs = curve_cvs_in.size(); if (num_cvs == 0) return false; { CARB_PROFILE_ZONE(carb::profiler::kCaptureMaskDefault, "resize"); locations.resize(distances.size()); rotations.resize(distances.size()); orientations.resize(distances.size()); } if (num_cvs == 1) { std::fill(locations.begin(), locations.end(), curve_cvs_in[0]); std::fill(rotations.begin(), rotations.end(), vec3d(0, 0, 0)); return true; } std::vector<vec3d> curve_cvs; { CARB_PROFILE_ZONE(carb::profiler::kCaptureMaskDefault, "PreprocessCurve"); curve_cvs.resize(curve_cvs_in.size() + 1); std::copy(curve_cvs_in.begin(), curve_cvs_in.end(), curve_cvs.begin()); // add a cv to make a closed curve curve_cvs[curve_cvs_in.size()] = curve_cvs_in[0]; // calculate the total curve length and the length at the end of each segment const vec3d* p_a = curve_cvs.data(); for (size_t i = 1; i < curve_cvs.size(); ++i) { const vec3d& p_b = curve_cvs[i]; double segment_length = (p_b - *p_a).GetLength(); segment_lengths.push_back(segment_length); curve_length += segment_length; accumulated_lengths.push_back(curve_length); p_a = &p_b; } } const vec3d forwardAxis = axisToVec(db.inputs.forwardAxis(), db.tokens); const vec3d upAxis = axisToVec(db.inputs.upAxis(), db.tokens); // Calculate eye frame auto eyeUL = forwardAxis; auto eyeVL = upAxis; auto eyeWL = (eyeUL ^ eyeVL).GetNormalized(); eyeVL = eyeWL ^ eyeUL; // local transform from forward axis matrix4d localMat, localMatInv; localMat.SetIdentity(); localMat.SetRow3(0, eyeUL); localMat.SetRow3(1, eyeVL); localMat.SetRow3(2, eyeWL); localMatInv = localMat.GetInverse(); auto distanceIter = distances.begin(); auto locationIter = locations.begin(); auto rotationIter = rotations.begin(); auto orientationIter = orientations.begin(); { CARB_PROFILE_ZONE(carb::profiler::kCaptureMaskDefault, "ScanCurve"); for (; distanceIter != distances.end(); ++distanceIter, ++locationIter, ++rotationIter, ++orientationIter) { // wrap distance to range [0, 1.0] double normalized_distance = std::fmod(*distanceIter, 1.0); // the distance along the curve in world space double distance = curve_length * normalized_distance; // Find the location and direction double remaining_dist = 0; for (size_t i = 0; i < accumulated_lengths.size(); ++i) { double segment_length = accumulated_lengths[i]; if (segment_length >= distance) { if (i > 0) remaining_dist = distance - accumulated_lengths[i - 1]; else remaining_dist = distance; const auto& start_cv = curve_cvs[i]; const auto& end_cv = curve_cvs[i + 1]; const auto aimVec = end_cv - start_cv; const auto segment_unit_vec = aimVec / segment_lengths[i]; const auto point_on_segment = start_cv + segment_unit_vec * remaining_dist; *locationIter = point_on_segment; // calculate the rotation vec3d eyeU = segment_unit_vec; vec3d eyeV = upAxis; auto eyeW = (eyeU ^ eyeV).GetNormalized(); eyeV = eyeW ^ eyeU; matrix4d eyeMtx; eyeMtx.SetIdentity(); eyeMtx.SetTranslateOnly(point_on_segment); // eye aiming eyeMtx.SetRow3(0, eyeU); eyeMtx.SetRow3(1, eyeV); eyeMtx.SetRow3(2, eyeW); matrix4d orientMtx = localMatInv * eyeMtx; const quatd q = omni::graph::nodes::extractRotationQuatd(orientMtx); const pxr::GfRotation rotation(omni::math::linalg::safeCastToUSD(q)); const auto eulerRotations = rotation.Decompose(pxr::GfVec3d::ZAxis(), pxr::GfVec3d::YAxis(), pxr::GfVec3d::XAxis()); pxr::GfVec3d eulerRotationsXYZ(eulerRotations[2], eulerRotations[1], eulerRotations[0]); *rotationIter = omni::math::linalg::safeCastToOmni(eulerRotationsXYZ); *orientationIter = quatf(q); ok = true; break; } } } } return ok; } }; REGISTER_OGN_NODE()
7,280
C++
37.523809
114
0.576786
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnATan2.py
""" This is the implementation of the OGN node defined in OgnATan2.ogn """ import math import omni.graph.core as og class OgnATan2: """ Calculates the arc tangent of A,B. This is the angle in radians between the ray ending at the origin and passing through the point (B, A). """ @staticmethod def compute(db) -> bool: """Compute the outputs from the current input""" try: db.outputs.result.value = math.degrees(math.atan2(db.inputs.a.value, db.inputs.b.value)) except TypeError as error: db.log_error(f"atan2 could not be performed: {error}") return False return True @staticmethod def on_connection_type_resolve(node) -> None: aattr = node.get_attribute("inputs:a") battr = node.get_attribute("inputs:b") resultattr = node.get_attribute("outputs:result") og.resolve_fully_coupled([aattr, battr, resultattr])
949
Python
27.787878
109
0.640674
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnModulo.cpp
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnModuloDatabase.h> #include <cmath> #include <algorithm> #include <array> template <typename T, typename AttrInType, typename AttrOutType> void modulo(AttrInType& a, AttrInType& b, AttrOutType& result) { T bval = *b.template get<T>(); if (bval == 0) { *result.template get<T>() = 0; return; } *result.template get<T>() = *a.template get<T>() % bval; } class OgnModulo { public: static bool compute(OgnModuloDatabase& db) { const auto& a = db.inputs.a(); const auto& b = db.inputs.b(); auto& result = db.outputs.result(); if (!a.resolved()) return true; switch(a.type().baseType) { case BaseDataType::eInt: modulo<int>(a, b, result); break; case BaseDataType::eUInt: modulo<uint32_t>(a, b, result); break; case BaseDataType::eInt64: modulo<int64_t>(a, b, result); break; case BaseDataType::eUInt64: modulo<uint64_t>(a, b, result); break; default: break; } return true; } static void onConnectionTypeResolve(const NodeObj& node){ // Resolve fully-coupled types for the 3 attributes std::array<AttributeObj, 3> attrs { node.iNode->getAttribute(node, OgnModuloAttributes::inputs::a.m_name), node.iNode->getAttribute(node, OgnModuloAttributes::inputs::b.m_name), node.iNode->getAttribute(node, OgnModuloAttributes::outputs::result.m_name) }; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); } }; REGISTER_OGN_NODE()
2,148
C++
29.267605
87
0.616853
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnDivide_Matrices.cpp
#include "OgnDivideHelper.h" namespace omni { namespace graph { namespace nodes { namespace OGNDivideHelper { template<size_t N> bool _tryCompute(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count) { if (tryComputeAssumingType<double, double, N>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, float, N>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, pxr::GfHalf, N>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, int32_t, N>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, int64_t, N>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, unsigned char, N>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, uint32_t, N>(db, a, b, result, count)) return true; if (tryComputeAssumingType<double, uint64_t, N>(db, a, b, result, count)) return true; return false; } bool tryComputeMatrices(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count) { // Matrix3f type if (_tryCompute<9>(db, a, b, result, count)) return true; // Matrix4f type if (_tryCompute<16>(db, a, b, result, count)) return true; return false; } } // namespace OGNDivideHelper } // namespace nodes } // namespace graph } // namespace omni
1,470
C++
35.774999
117
0.659864
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnExponent.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnExponentDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <math.h> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { // bool tryComputeAssumingScalarHalf(OgnExponentDatabase& db) { auto functor = [](auto const& base, auto const& exp, auto& result) { result = static_cast<pxr::GfHalf>(static_cast<float>(std::pow(static_cast<double>(static_cast<float>(base)), exp))); }; return ogn::compute::tryComputeWithArrayBroadcasting<pxr::GfHalf, int, pxr::GfHalf>(db.inputs.base(), db.inputs.exponent(), db.outputs.result(), functor); } template <typename T, typename M> bool tryComputeAssumingScalarType(OgnExponentDatabase& db) { auto functor = [](auto const& base, auto const& exp, auto& result) { result = static_cast<M>(std::pow(base, exp)); }; return ogn::compute::tryComputeWithArrayBroadcasting<T, int, M>(db.inputs.base(), db.inputs.exponent(), db.outputs.result(), functor); } template <size_t N> bool tryComputeAssumingTupleHalf(OgnExponentDatabase& db) { auto functor = [](auto const& base, auto const& exp, auto& result) { result = static_cast<pxr::GfHalf>(static_cast<float>(std::pow(static_cast<double>(static_cast<float>(base)), exp))); }; return ogn::compute::tryComputeWithTupleBroadcasting<N, pxr::GfHalf, int, pxr::GfHalf>(db.inputs.base(), db.inputs.exponent(), db.outputs.result(), functor); } template <typename T, size_t N, typename M> bool tryComputeAssumingTupleType(OgnExponentDatabase& db) { auto functor = [](auto const& base, auto const& exp, auto& result) { result = static_cast<M>(std::pow(base, exp)); }; return ogn::compute::tryComputeWithTupleBroadcasting<N, T, int, M>(db.inputs.base(), db.inputs.exponent(), db.outputs.result(), functor); } } // unnamed namespace class OgnExponent { public: static bool compute(OgnExponentDatabase& db) { try { const auto& bType = db.inputs.base().type(); switch (bType.componentCount) { case 1: switch (bType.baseType) { case BaseDataType::eInt: return tryComputeAssumingScalarType<int32_t, double>(db); case BaseDataType::eInt64: return tryComputeAssumingScalarType<int64_t, double>(db); case BaseDataType::eUInt: return tryComputeAssumingScalarType<uint32_t, double>(db); case BaseDataType::eUInt64: return tryComputeAssumingScalarType<uint64_t, double>(db); case BaseDataType::eUChar: return tryComputeAssumingScalarType<unsigned char, double>(db); case BaseDataType::eHalf: return tryComputeAssumingScalarHalf(db); case BaseDataType::eDouble: return tryComputeAssumingScalarType<double, double>(db); case BaseDataType::eFloat: return tryComputeAssumingScalarType<float, float>(db); default: break; } case 2: switch (bType.baseType) { case BaseDataType::eInt: return tryComputeAssumingTupleType<int32_t, 2, double>(db); case BaseDataType::eDouble: return tryComputeAssumingTupleType<double, 2, double>(db); case BaseDataType::eFloat: return tryComputeAssumingTupleType<float, 2, float>(db); case BaseDataType::eHalf: return tryComputeAssumingTupleHalf<2>(db); default: break; } case 3: switch (bType.baseType) { case BaseDataType::eInt: return tryComputeAssumingTupleType<int32_t, 3, double>(db); case BaseDataType::eDouble: return tryComputeAssumingTupleType<double, 3, double>(db); case BaseDataType::eFloat: return tryComputeAssumingTupleType<float, 3, float>(db); case BaseDataType::eHalf: return tryComputeAssumingTupleHalf<3>(db); default: break; } case 4: switch (bType.baseType) { case BaseDataType::eInt: return tryComputeAssumingTupleType<int32_t, 4, double>(db); case BaseDataType::eDouble: return tryComputeAssumingTupleType<double, 4, double>(db); case BaseDataType::eFloat: return tryComputeAssumingTupleType<float, 4, float>(db); case BaseDataType::eHalf: return tryComputeAssumingTupleHalf<4>(db); default: break; } case 9: if (bType.baseType == BaseDataType::eDouble ) { return tryComputeAssumingTupleType<double, 9, double>(db); } case 16: if (bType.baseType == BaseDataType::eDouble ) { return tryComputeAssumingTupleType<double, 16, double>(db); } } throw ogn::compute::InputError("Failed to resolve input types"); } catch (ogn::compute::InputError &error) { db.logError(error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node) { auto base = node.iNode->getAttributeByToken(node, inputs::base.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto bType = base.iAttribute->getResolvedType(base); Type newType(BaseDataType::eDouble, bType.componentCount, bType.arrayDepth, bType.role); if (bType.baseType != BaseDataType::eUnknown) { switch (bType.baseType) { case BaseDataType::eUChar: case BaseDataType::eInt: case BaseDataType::eUInt: case BaseDataType::eInt64: case BaseDataType::eUInt64: result.iAttribute->setResolvedType(result, newType); break; default: std::array<AttributeObj, 2> attrs { base, result}; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); break; } } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
8,078
C++
40.010152
124
0.525006
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnInterpolateTo.cpp
// Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <algorithm> #include <OgnInterpolateToDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <omni/math/linalg/quat.h> #include "XformUtils.h" using omni::math::linalg::quatd; using omni::math::linalg::GfSlerp; namespace omni { namespace graph { namespace nodes { namespace { template<typename T> bool tryComputeAssumingType(OgnInterpolateToDatabase& db, double alpha, size_t count) { auto functor = [&](auto const& a, auto const& b, auto& result) { // Linear interpolation between a and b, alpha in [0, 1] result = a + (b - a) * (float) alpha; }; return ogn::compute::tryComputeWithArrayBroadcasting<T>(db.inputs.current(), db.inputs.target(), db.outputs.result(), functor, count); } template<typename T, size_t N> bool tryComputeAssumingType(OgnInterpolateToDatabase& db, double alpha, size_t count) { auto functor = [&](auto const& a, auto const& b, auto& result) { // Linear interpolation between a and b, alpha in [0, 1] for (size_t i = 0; i < N; i++) { result[i] = a[i] + (b[i] - a[i]) * (float) alpha; } }; return ogn::compute::tryComputeWithArrayBroadcasting<T[N]>(db.inputs.current(), db.inputs.target(), db.outputs.result(), functor, count); } template<> bool tryComputeAssumingType<double, 4>(OgnInterpolateToDatabase& db, double alpha, size_t count) { auto currentAttribute = db.abi_node().iNode->getAttribute(db.abi_node(), OgnInterpolateToAttributes::inputs::current.m_name); auto currentRole = currentAttribute.iAttribute->getResolvedType(currentAttribute).role; if (currentRole == AttributeRole::eQuaternion) { auto functor = [&](auto const& a, auto const& b, auto& result) { // Note that in Fabric, quaternions are stored as XYZW, but quatd constructor requires WXYZ auto q = GfSlerp(quatd(a[3], a[0], a[1], a[2]), quatd(b[3], b[0], b[1], b[2]), alpha); result[0] = q.GetImaginary()[0]; result[1] = q.GetImaginary()[1]; result[2] = q.GetImaginary()[2]; result[3] = q.GetReal(); }; return ogn::compute::tryComputeWithArrayBroadcasting<double[4]>( db.inputs.current(), db.inputs.target(), db.outputs.result(), functor, count); } else { auto functor = [&](auto const& a, auto const& b, auto& result) { // Linear interpolation between a and b, alpha in [0, 1] for (size_t i = 0; i < 4; i++) { result[i] = a[i] + (b[i] - a[i]) * (float)alpha; } }; return ogn::compute::tryComputeWithArrayBroadcasting<double[4]>( db.inputs.current(), db.inputs.target(), db.outputs.result(), functor, count); } } template<> bool tryComputeAssumingType<float, 4>(OgnInterpolateToDatabase& db, double alpha, size_t count) { auto currentAttribute = db.abi_node().iNode->getAttribute(db.abi_node(), OgnInterpolateToAttributes::inputs::current.m_name); auto currentRole = currentAttribute.iAttribute->getResolvedType(currentAttribute).role; if (currentRole == AttributeRole::eQuaternion) { auto functor = [&](auto const& a, auto const& b, auto& result) { // Note that in Fabric, quaternions are stored as XYZW, but quatd constructor requires WXYZ auto q = GfSlerp(quatd(a[3], a[0], a[1], a[2]), quatd(b[3], b[0], b[1], b[2]), alpha); result[0] = (float)q.GetImaginary()[0]; result[1] = (float)q.GetImaginary()[1]; result[2] = (float)q.GetImaginary()[2]; result[3] = (float)q.GetReal(); }; return ogn::compute::tryComputeWithArrayBroadcasting<float[4]>( db.inputs.current(), db.inputs.target(), db.outputs.result(), functor, count); } else { auto functor = [&](auto const& a, auto const& b, auto& result) { // Linear interpolation between a and b, alpha in [0, 1] for (size_t i = 0; i < 4; i++) { result[i] = a[i] + (b[i] - a[i]) * (float)alpha; } }; return ogn::compute::tryComputeWithArrayBroadcasting<float[4]>( db.inputs.current(), db.inputs.target(), db.outputs.result(), functor, count); }; } template<> bool tryComputeAssumingType<pxr::GfHalf, 4>(OgnInterpolateToDatabase& db, double alpha, size_t count) { auto currentAttribute = db.abi_node().iNode->getAttribute(db.abi_node(), OgnInterpolateToAttributes::inputs::current.m_name); auto currentRole = currentAttribute.iAttribute->getResolvedType(currentAttribute).role; if (currentRole == AttributeRole::eQuaternion) { auto functor = [&](auto const& a, auto const& b, auto& result) { // Note that in Fabric, quaternions are stored as XYZW, but quatd constructor requires WXYZ auto q = GfSlerp(quatd(a[3], a[0], a[1], a[2]), quatd(b[3], b[0], b[1], b[2]), alpha); result[0] = (float)q.GetImaginary()[0]; result[1] = (float)q.GetImaginary()[1]; result[2] = (float)q.GetImaginary()[2]; result[3] = (float)q.GetReal(); }; return ogn::compute::tryComputeWithArrayBroadcasting<pxr::GfHalf[4]>( db.inputs.current(), db.inputs.target(), db.outputs.result(), functor, count); } else { auto functor = [&](auto const& a, auto const& b, auto& result) { // Linear interpolation between a and b, alpha in [0, 1] for (size_t i = 0; i < 4; i++) { result[i] = a[i] + (b[i] - a[i]) * (float)alpha; } }; return ogn::compute::tryComputeWithArrayBroadcasting<pxr::GfHalf[4]>( db.inputs.current(), db.inputs.target(), db.outputs.result(), functor, count); }; } } // namespace class OgnInterpolateTo { public: static bool computeVectorized(OgnInterpolateToDatabase& db, size_t count) { int exp = std::min(std::max(int(db.inputs.exponent()), 0), 10); float speed = std::max(0.f, float(db.inputs.speed())); float deltaSeconds = std::max(0.f, float(db.inputs.deltaSeconds())); // delta step float alpha = std::min(std::max(speed * deltaSeconds, 0.f), 1.f); // Ease out by applying a shifted exponential to the alpha double alpha2 = 1.f - exponent(1.f - alpha, exp); auto& inputType = db.inputs.current().type(); // Compute the components, if the types are all resolved. try { switch (inputType.baseType) { case BaseDataType::eDouble: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<double>(db, alpha2, count); case 2: return tryComputeAssumingType<double, 2>(db, alpha2, count); case 3: return tryComputeAssumingType<double, 3>(db, alpha2, count); case 4: return tryComputeAssumingType<double, 4>(db, alpha2, count); case 9: return tryComputeAssumingType<double, 9>(db, alpha2, count); case 16: return tryComputeAssumingType<double, 16>(db, alpha2, count); default: break; } case BaseDataType::eFloat: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<float>(db, alpha2, count); case 2: return tryComputeAssumingType<float, 2>(db, alpha2, count); case 3: return tryComputeAssumingType<float, 3>(db, alpha2, count); case 4: return tryComputeAssumingType<float, 4>(db, alpha2, count); default: break; } case BaseDataType::eHalf: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<pxr::GfHalf>(db, alpha2, count); case 2: return tryComputeAssumingType<pxr::GfHalf, 2>(db, alpha2, count); case 3: return tryComputeAssumingType<pxr::GfHalf, 3>(db, alpha2, count); case 4: return tryComputeAssumingType<pxr::GfHalf, 4>(db, alpha2, count); default: break; } default: break; } db.logWarning("Failed to resolve input types"); } catch (ogn::compute::InputError &error) { db.logWarning("OgnInterpolateTo: %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node){ auto current = node.iNode->getAttributeByToken(node, inputs::current.token()); auto target = node.iNode->getAttributeByToken(node, inputs::target.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto currentType = current.iAttribute->getResolvedType(current); auto targetType = target.iAttribute->getResolvedType(target); // Require current, target, and alpha to be resolved before determining result's type if (currentType.baseType != BaseDataType::eUnknown && targetType.baseType != BaseDataType::eUnknown) { std::array<AttributeObj, 3> attrs { current, target, result }; std::array<uint8_t, 3> tupleCounts { currentType.componentCount, targetType.componentCount, std::max(currentType.componentCount, targetType.componentCount) }; std::array<uint8_t, 3> arrayDepths { currentType.arrayDepth, targetType.arrayDepth, std::max(currentType.arrayDepth, targetType.arrayDepth) }; std::array<AttributeRole, 3> rolesBuf { currentType.role, targetType.role, AttributeRole::eUnknown }; node.iNode->resolvePartiallyCoupledAttributes(node, attrs.data(), tupleCounts.data(), arrayDepths.data(), rolesBuf.data(), attrs.size()); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
10,834
C++
41.159533
141
0.592856
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnEachZero.cpp
// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnEachZeroDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> namespace omni { namespace graph { namespace nodes { namespace { static constexpr char kValueTypeUnresolved[] = "Failed to resolve type of 'value' input"; // Check whether a scalar attribute contains a value which lies within 'tolerance' of 0. // // 'tolerance' must be non-negative. It is ignored for bool values. // 'isZero' will be set true if 'value' contains a zero value, false otherwise. // // The return value is true if 'value' is a supported scalar type, false otherwise. // bool checkScalarForZero(OgnEachZeroAttributes::inputs::value_t& value, const double& tolerance, bool& isZero) { CARB_ASSERT(tolerance >= 0.0); switch (value.type().baseType) { case BaseDataType::eBool: isZero = ! *(value.get<bool>()); break; case BaseDataType::eDouble: isZero = std::abs(*(value.get<double>())) <= tolerance; break; case BaseDataType::eFloat: isZero = std::abs(*(value.get<float>())) <= tolerance; break; case BaseDataType::eHalf: isZero = std::abs(*(value.get<pxr::GfHalf>())) <= tolerance; break; case BaseDataType::eInt: isZero = std::abs(*(value.get<int32_t>())) <= (int32_t)tolerance; break; case BaseDataType::eInt64: isZero = std::abs(*(value.get<int64_t>())) <= (int64_t)tolerance; break; case BaseDataType::eUChar: isZero = *(value.get<unsigned char>()) <= (unsigned char)tolerance; break; case BaseDataType::eUInt: isZero = *(value.get<uint32_t>()) <= (uint32_t)tolerance; break; case BaseDataType::eUInt64: isZero = *(value.get<uint64_t>()) <= (uint64_t)tolerance; break; default: return false; } return true; } // Determine which components of a decimal tuple attribute are within a given tolerance of zero. // (i.e. they lie within 'tolerance' of 0). // // T - type of the components of the tuple. // N - number of components in the tuple // // 'tolerance' must be non-negative // 'isZero' is an array of bool with one element for each component of the tuple. On return the elements // will be set true where the corresponding components lie within 'tolerance' of zero, false otherwise. // // The return value is true if 'value' is a supported tuple type, false otherwise. // template <typename T, uint8_t N> bool getTupleZeroes(const OgnEachZeroAttributes::inputs::value_t& value, const double& tolerance, ogn::array<bool>& isZero) { CARB_ASSERT(tolerance >= 0.0); if (auto const tuple = value.get<T[N]>()) { for (uint8_t i = 0; i < N; ++i) { isZero[i] = (std::abs(tuple[i]) <= tolerance); } return true; } return false; } // Determine which components of a tuple attribute are zero // (i.e. they lie within 'tolerance' of 0). // // 'tolerance' must be non-negative // 'isZero' is an array of bool with one element for each component of the tuple. On return the elements // will be set true where the corresponding components are zero, false otherwise. // // The return value is true if 'value' is a supported tuple type, false otherwise. // bool getTupleZeroes(const OgnEachZeroAttributes::inputs::value_t& value, const double& tolerance, ogn::array<bool>& isZero) { CARB_ASSERT(tolerance >= 0.0); switch (value.type().baseType) { case BaseDataType::eDouble: switch (value.type().componentCount) { case 2: return getTupleZeroes<double, 2>(value, tolerance, isZero); case 3: return getTupleZeroes<double, 3>(value, tolerance, isZero); case 4: return getTupleZeroes<double, 4>(value, tolerance, isZero); case 9: return getTupleZeroes<double, 9>(value, tolerance, isZero); case 16: return getTupleZeroes<double, 16>(value, tolerance, isZero); default: break; } break; case BaseDataType::eFloat: switch (value.type().componentCount) { case 2: return getTupleZeroes<float, 2>(value, tolerance, isZero); case 3: return getTupleZeroes<float, 3>(value, tolerance, isZero); case 4: return getTupleZeroes<float, 4>(value, tolerance, isZero); default: break; } break; case BaseDataType::eHalf: switch (value.type().componentCount) { case 2: return getTupleZeroes<pxr::GfHalf, 2>(value, tolerance, isZero); case 3: return getTupleZeroes<pxr::GfHalf, 3>(value, tolerance, isZero); case 4: return getTupleZeroes<pxr::GfHalf, 4>(value, tolerance, isZero); default: break; } break; case BaseDataType::eInt: switch (value.type().componentCount) { case 2: return getTupleZeroes<int32_t, 2>(value, tolerance, isZero); case 3: return getTupleZeroes<int32_t, 3>(value, tolerance, isZero); case 4: return getTupleZeroes<int32_t, 4>(value, tolerance, isZero); default: break; } break; default: break; } return false; } // Determine which elements of an unsigned array attribute are zero (i.e. they lie // within 'tolerance' of 0). // // T - type of the elements of the array. Must be an unsigned type, other than bool. // // 'tolerance' must be non-negative // 'isZero' is an array of bool with one element for each element of the unsigned array. On return the elements // of 'isZero' will be set true where the corresponding elements in the unsigned array are zero, false otherwise. // // The return value is true if 'value' is a supported tuple type, false otherwise. // template <typename T> bool getUnsignedArrayZeroes(const OgnEachZeroAttributes::inputs::value_t& value, const double& tolerance, ogn::array<bool>& isZero) { static_assert(std::is_unsigned<T>::value && !std::is_same<T, bool>::value, "Unsigned integer type required."); CARB_ASSERT(tolerance >= 0.0); if (auto const array = value.get<T[]>()) { for (size_t i = 0; i < array.size(); ++i) isZero[i] = (array->at(i) <= (T)tolerance); return true; } return false; } // Determine which elements of a bool array attribute are zero/false. No tolerance // value is applied since tolerance is meaningless for bool. // // 'isZero' is an array of bool with one element for each element of the 'value' array. On return the elements // of 'isZero' will be set true where the corresponding elements in the 'value' array are zero, false otherwise. // // The return value is true if 'value' is a bool array type, false otherwise. // bool getBoolArrayZeroes(const OgnEachZeroAttributes::inputs::value_t& value, ogn::array<bool>& isZero) { if (auto const array = value.get<bool[]>()) { for (size_t i = 0; i < array.size(); ++i) isZero[i] = !array->at(i); return true; } return false; } // Determine which elements of a signed array attribute are within a given tolerance of zero. // (i.e. they lie within 'tolerance' of 0). // // T - type of the elements of the array. Must be a signed type. // // 'tolerance' must be non-negative // 'isZero' is an array of bool with one element for each element of the signed array. On return the elements // of 'isZero' will be set true where the corresponding elements in the unsigned array are within 'tolerance' // of 0.0, false otherwise. // // The return value is true if 'value' is a supported tuple type, false otherwise. // template <typename T> bool getSignedArrayZeroes(const OgnEachZeroAttributes::inputs::value_t& value, const double& tolerance, ogn::array<bool>& isZero) { static_assert(std::is_signed<T>::value || pxr::GfIsFloatingPoint<T>::value, "Signed integer or decimal type required."); CARB_ASSERT(tolerance >= 0.0); if (auto const array = value.get<T[]>()) { for (size_t i = 0; i < array.size(); ++i) isZero[i] = (std::abs(array->at(i)) <= tolerance); return true; } return false; } // Determine which elements of a scalar array attribute are zero (i.e. they lie within 'tolerance' of 0). // // 'tolerance' must be non-negative // 'isZero' is an array of bool with one element for each element of the scalar array. On return the elements // of 'isZero' will be set true where the corresponding elements in the scalar array are zero, false otherwise. // // The return value is true if 'value' is a supported tuple type, false otherwise. // bool getScalarArrayZeroes(const OgnEachZeroAttributes::inputs::value_t& value, const double& tolerance, ogn::array<bool>& isZero) { CARB_ASSERT(tolerance >= 0.0); switch (value.type().baseType) { case BaseDataType::eBool: return getBoolArrayZeroes(value, isZero); case BaseDataType::eDouble: return getSignedArrayZeroes<double>(value, tolerance, isZero); case BaseDataType::eFloat: return getSignedArrayZeroes<float>(value, tolerance, isZero); case BaseDataType::eHalf: return getSignedArrayZeroes<pxr::GfHalf>(value, tolerance, isZero); case BaseDataType::eInt: return getSignedArrayZeroes<int32_t>(value, tolerance, isZero); case BaseDataType::eInt64: return getSignedArrayZeroes<int64_t>(value, tolerance, isZero); case BaseDataType::eUChar: return getUnsignedArrayZeroes<unsigned char>(value, tolerance, isZero); case BaseDataType::eUInt: return getUnsignedArrayZeroes<uint32_t>(value, tolerance, isZero); case BaseDataType::eUInt64: return getUnsignedArrayZeroes<uint64_t>(value, tolerance, isZero); default: break; } return false; } // Returns true if all components of the tuple are zero. // (i.e. they lie within 'tolerance' of 0). // // T - base type of the tuple (e.g. float if tuple is float[2]). // N - number of components in the tuple (e.g. '2' in the example above). // // 'tolerance' must be non-negative // template <typename T, uint8_t N> bool isTupleZero(const T tuple[N], double tolerance) { CARB_ASSERT(tolerance >= 0.0); for (uint8_t i = 0; i < N; ++i) { if (std::abs(tuple[i]) > tolerance) return false; } return true; } // Determine which elements of a tuple array attribute are zero (i.e. all of the tuple's // components lie within a 'tolerance' of 0). // // T - type of the components of the tuple. // N - number of components in the tuple // // 'tolerance' must be non-negative // 'isZero' is an array of bool with one element for each tuple in the tuple array. On return the elements // of 'isZero' will be set true where the corresponding tuples are zero, false otherwise. // // The return value is true if 'value' is a supported tuple type, false otherwise. // template <typename T, uint8_t N> bool getTupleArrayZeroes(const OgnEachZeroAttributes::inputs::value_t& value, double tolerance, ogn::array<bool>& isZero) { CARB_ASSERT(tolerance >= 0.0); if (auto const array = value.get<T[][N]>()) { for (size_t i = 0; i < array.size(); ++i) isZero[i] = isTupleZero<T, N>(array->at(i), tolerance); return true; } return false; } // Determine which elements of a tuple array attribute are zero (i.e. all of the tuple's components // lie within 'tolerance' of 0). // // 'tolerance' must be non-negative // 'isZero' is an array of bool with one element for each tuple in the tuple array. On return the elements // of 'isZero' will be set true where the corresponding tuples are zero, false otherwise. // // The return value is true if 'value' is a supported tuple type, false otherwise. // bool getTupleArrayZeroes(const OgnEachZeroAttributes::inputs::value_t& value, const double& tolerance, ogn::array<bool>& isZero) { CARB_ASSERT(tolerance >= 0.0); switch (value.type().baseType) { case BaseDataType::eDouble: switch (value.type().componentCount) { case 2: return getTupleArrayZeroes<double, 2>(value, tolerance, isZero); case 3: return getTupleArrayZeroes<double, 3>(value, tolerance, isZero); case 4: return getTupleArrayZeroes<double, 4>(value, tolerance, isZero); case 9: return getTupleArrayZeroes<double, 9>(value, tolerance, isZero); case 16: return getTupleArrayZeroes<double, 16>(value, tolerance, isZero); default: break; } break; case BaseDataType::eFloat: switch (value.type().componentCount) { case 2: return getTupleArrayZeroes<float, 2>(value, tolerance, isZero); case 3: return getTupleArrayZeroes<float, 3>(value, tolerance, isZero); case 4: return getTupleArrayZeroes<float, 4>(value, tolerance, isZero); default: break; } break; case BaseDataType::eHalf: switch (value.type().componentCount) { case 2: return getTupleArrayZeroes<pxr::GfHalf, 2>(value, tolerance, isZero); case 3: return getTupleArrayZeroes<pxr::GfHalf, 3>(value, tolerance, isZero); case 4: return getTupleArrayZeroes<pxr::GfHalf, 4>(value, tolerance, isZero); default: break; } break; case BaseDataType::eInt: switch (value.type().componentCount) { case 2: return getTupleArrayZeroes<int32_t, 2>(value, tolerance, isZero); case 3: return getTupleArrayZeroes<int32_t, 3>(value, tolerance, isZero); case 4: return getTupleArrayZeroes<int32_t, 4>(value, tolerance, isZero); default: break; } break; default: break; } return false; } } // namespace class OgnEachZero { public: static bool compute(OgnEachZeroDatabase& db) { const auto& value = db.inputs.value(); if (!value.resolved()) return true; const auto& tolerance = db.inputs.tolerance(); auto& result = db.outputs.result(); try { bool foundType{ false }; // Arrays if (value.type().arrayDepth > 0) { if (auto resultArray = result.get<bool[]>()) { resultArray.resize(value.size()); // Arrays of tuples. if (value.type().componentCount > 1) { foundType = getTupleArrayZeroes(value, tolerance, *resultArray); } // Arrays of scalars. else { foundType = getScalarArrayZeroes(value, tolerance, *resultArray); } } else { throw ogn::compute::InputError("input value is an array but result is not bool[]"); } } // Tuples else if (value.type().componentCount > 1) { if (auto resultArray = result.get<bool[]>()) { resultArray.resize(value.type().componentCount); foundType = getTupleZeroes(value, tolerance, *resultArray); } else { throw ogn::compute::InputError("input value is a tuple but result is not bool[]"); } } // Scalars else { if (auto resultScalar = result.get<bool>()) { *resultScalar = false; foundType = checkScalarForZero(value, tolerance, *resultScalar); } else { throw ogn::compute::InputError("input value is a scalar but result is not bool"); } } if (! foundType) { throw ogn::compute::InputError(kValueTypeUnresolved); } } catch (ogn::compute::InputError &error) { db.logError("%s", error.what()); return false; } return true; } static void onConnectionTypeResolve(const NodeObj& node){ auto value = node.iNode->getAttributeByToken(node, inputs::value.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto valueType = value.iAttribute->getResolvedType(value); // Require value to be resolved before determining result's type if (valueType.baseType != BaseDataType::eUnknown) { // The result is bool for scalar values, and bool array for arrays and tuples. bool resultIsArray = ((valueType.arrayDepth > 0) || (valueType.componentCount > 1)); Type resultType(BaseDataType::eBool, 1, (resultIsArray ? 1 : 0)); result.iAttribute->setResolvedType(result, resultType); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
17,818
C++
37.238197
131
0.616399
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnClamp.cpp
// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnClampDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <omni/graph/core/ogn/UsdTypes.h> namespace omni { namespace graph { namespace nodes { namespace { template <typename T> void clamp(T const& input, T const& lower, T const& upper, T& result) { if (lower > upper) { throw ogn::compute::InputError("Lower is greater than upper!"); } if (input <= lower) { result = lower; } else if (input < upper) { result = input; } else { result = upper; } } template <typename T> bool tryComputeAssumingType(OgnClampDatabase& db, size_t count) { return ogn::compute::tryComputeWithArrayBroadcasting<T>(db.inputs.input(), db.inputs.lower(), db.inputs.upper(), db.outputs.result(), &clamp<T>, count); } template<typename T, size_t tupleSize> bool tryComputeAssumingType(OgnClampDatabase& db, size_t count) { return ogn::compute::tryComputeWithTupleBroadcasting<tupleSize, T>( db.inputs.input(), db.inputs.lower(), db.inputs.upper(), db.outputs.result(), &clamp<T>, count); } } // namespace // Node to clamp an input value or array of values to some range [lower, upper], class OgnClamp { public: // Clamp a number or array of numbers to a specified range // If an array of numbers is provided as the input and lower/upper are scalers // Then each input numeric will be clamped to the range [lower, upper] // If all inputs are arrays, clamping will be done element-wise. lower & upper are broadcast against input static bool computeVectorized(OgnClampDatabase& db, size_t count) { auto& inputType = db.inputs.input().type(); // Compute the components, if the types are all resolved. try { switch (inputType.baseType) { case BaseDataType::eDouble: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<double>(db, count); case 2: return tryComputeAssumingType<double, 2>(db, count); case 3: return tryComputeAssumingType<double, 3>(db, count); case 4: return tryComputeAssumingType<double, 4>(db, count); case 9: return tryComputeAssumingType<double, 9>(db, count); case 16: return tryComputeAssumingType<double, 16>(db, count); default: break; } case BaseDataType::eFloat: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<float>(db, count); case 2: return tryComputeAssumingType<float, 2>(db, count); case 3: return tryComputeAssumingType<float, 3>(db, count); case 4: return tryComputeAssumingType<float, 4>(db, count); default: break; } case BaseDataType::eHalf: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<pxr::GfHalf>(db, count); case 2: return tryComputeAssumingType<pxr::GfHalf, 2>(db, count); case 3: return tryComputeAssumingType<pxr::GfHalf, 3>(db, count); case 4: return tryComputeAssumingType<pxr::GfHalf, 4>(db, count); default: break; } case BaseDataType::eInt: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<int32_t>(db, count); case 2: return tryComputeAssumingType<int32_t, 2>(db, count); case 3: return tryComputeAssumingType<int32_t, 3>(db, count); case 4: return tryComputeAssumingType<int32_t, 4>(db, count); default: break; } ; case BaseDataType::eInt64: return tryComputeAssumingType<int64_t>(db, count); case BaseDataType::eUChar: return tryComputeAssumingType<unsigned char>(db, count); case BaseDataType::eUInt: return tryComputeAssumingType<uint32_t>(db, count); case BaseDataType::eUInt64: return tryComputeAssumingType<uint64_t>(db, count); default: break; } db.logWarning("Failed to resolve input types"); } catch (const std::exception& e) { db.logError("Clamping could not be performed: %s", e.what()); return false; } return true; } static void onConnectionTypeResolve(const NodeObj& nodeObj) { auto inputAttr = nodeObj.iNode->getAttributeByToken(nodeObj, inputs::input.token()); auto lowerAttr = nodeObj.iNode->getAttributeByToken(nodeObj, inputs::lower.token()); auto upperAttr = nodeObj.iNode->getAttributeByToken(nodeObj, inputs::upper.token()); auto resultAttr = nodeObj.iNode->getAttributeByToken(nodeObj, outputs::result.token()); auto inputType = inputAttr.iAttribute->getResolvedType(inputAttr); auto lowerType = lowerAttr.iAttribute->getResolvedType(lowerAttr); auto upperType = upperAttr.iAttribute->getResolvedType(upperAttr); // If one of the upper or lower is resolved we can resolve the other because they should match if ((lowerType == BaseDataType::eUnknown) != (upperType == BaseDataType::eUnknown)) { std::array<AttributeObj, 2> attrs { lowerAttr, upperAttr }; nodeObj.iNode->resolveCoupledAttributes(nodeObj, attrs.data(), attrs.size()); lowerType = lowerAttr.iAttribute->getResolvedType(lowerAttr); upperType = upperAttr.iAttribute->getResolvedType(upperAttr); } // The output shape must match the input shape and visa-versa, however we can't say anything // about the input base type until it's connected if (inputType.baseType != BaseDataType::eUnknown && lowerType != BaseDataType::eUnknown && upperType != BaseDataType::eUnknown) { if (inputType.baseType != lowerType.baseType || inputType.baseType != upperType.baseType) { nodeObj.iNode->logComputeMessageOnInstance( nodeObj, kAuthoringGraphIndex, ogn::Severity::eError, "Unable to connect inputs to clamp with different base types"); return; } std::array<AttributeObj, 2> attrs { inputAttr, resultAttr }; nodeObj.iNode->resolveCoupledAttributes(nodeObj, attrs.data(), attrs.size()); } } }; REGISTER_OGN_NODE(); } } }
7,192
C++
39.410112
156
0.615823
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnDivideHelper.h
#include <omni/graph/core/iComputeGraph.h> #include <omni/graph/core/ogn/UsdTypes.h> #include <omni/graph/core/ogn/Database.h> #include <omni/graph/core/ogn/ComputeHelpers.h> namespace omni { namespace graph { namespace nodes { namespace OGNDivideHelper { using InType = ogn::RuntimeAttribute<ogn::kOgnInput, ogn::kCpu>; using ResType = ogn::RuntimeAttribute<ogn::kOgnOutput, ogn::kCpu>; // Allow (AType[N] / BType) and (AType[N] / BType[N]) but not (AType / BType[N]) template<typename AType, typename BType, typename CType, size_t N, typename Functor> bool tryComputeWithLimitedTupleBroadcasting( InType const& a, InType const& b, ResType& result, Functor functor, size_t count) { if (ogn::compute::tryComputeWithArrayBroadcasting<AType[N], BType[N], CType[N]>(a, b, result, [&](auto const& a, auto const& b, auto& result) { for (size_t i = 0; i < N; i++) functor(a[i], b[i], result[i]); }, count)) return true; else if (ogn::compute::tryComputeWithArrayBroadcasting<AType[N], BType, CType[N]>(a, b, result, [&](auto const& a, auto const& b, auto& result) { for (size_t i = 0; i < N; i++) functor(a[i], b, result[i]); }, count)) return true; return false; } // AType is a vector of float's or double's template<typename AType, typename BType, size_t N> bool tryComputeAssumingType(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count, typename std::enable_if_t<!std::is_integral<AType>::value && !std::is_same<AType, pxr::GfHalf>::value, AType>* = 0) { auto functor = [&](auto const& a, auto const& b, auto& result) { if (static_cast<double>(b) == 0.0) { db.logWarning("OgnDivide: Divide by zero encountered"); } result = static_cast<AType>(static_cast<double>(a) / static_cast<double>(b)); }; return tryComputeWithLimitedTupleBroadcasting<AType, BType, AType, N>(a, b, result, functor, count); } // AType is a vector of half's template<typename AType, typename BType, size_t N> bool tryComputeAssumingType(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count, typename std::enable_if_t<std::is_same<AType, pxr::GfHalf>::value, AType>* = 0) { auto functor = [&](auto const& a, auto const& b, auto& result) { if (static_cast<double>(b) == 0.0) { db.logWarning("OgnDivide: Divide by zero encountered"); } result = static_cast<AType>(static_cast<float>(static_cast<double>(a) / static_cast<double>(b))); }; return tryComputeWithLimitedTupleBroadcasting<AType, BType, AType, N>(a, b, result, functor, count); } // AType is a vector of integrals => Force result to be a vector of doubles template<typename AType, typename BType, size_t N> bool tryComputeAssumingType(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count, typename std::enable_if_t<std::is_integral<AType>::value, AType>* = 0) { auto functor = [&](auto const& a, auto const& b, auto& result) { if (static_cast<double>(b) == 0.0) { db.logWarning("OgnDivide: Divide by zero encountered"); } result = static_cast<double>(a) / static_cast<double>(b); }; return tryComputeWithLimitedTupleBroadcasting<AType, BType, double, N>(a, b, result, functor, count); } template<typename T, size_t N> bool _tryComputeAssuming(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count) { if (tryComputeAssumingType<double, T, N>(db, a, b, result, count)) return true; if (tryComputeAssumingType<float, T, N>(db, a, b, result, count)) return true; if (tryComputeAssumingType<pxr::GfHalf, T, N>(db, a, b, result, count)) return true; if (tryComputeAssumingType<int32_t, T, N>(db, a, b, result, count)) return true; return false; } template<size_t N> bool _tryComputeTuple(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count) { if (_tryComputeAssuming<double, N>(db, a, b, result, count)) return true; if (_tryComputeAssuming<float, N>(db, a, b, result, count)) return true; if (_tryComputeAssuming<pxr::GfHalf, N>(db, a, b, result, count)) return true; if (_tryComputeAssuming<int32_t, N>(db, a, b, result, count)) return true; if (_tryComputeAssuming<int64_t, N>(db, a, b, result, count)) return true; if (_tryComputeAssuming<unsigned char, N>(db, a, b, result, count)) return true; if (_tryComputeAssuming<uint32_t, N>(db, a, b, result, count)) return true; if (_tryComputeAssuming<uint64_t, N>(db, a, b, result, count)) return true; return false; } bool tryComputeScalars(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count); bool tryComputeTuple2(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count); bool tryComputeTuple3(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count); bool tryComputeTuple4(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count); bool tryComputeMatrices(ogn::OmniGraphDatabase& db, InType const& a, InType const& b, ResType& result, size_t count); } // namespace OGNDivideHelper } // namespace nodes } // namespace graph } // namespace omni
5,806
C
44.724409
143
0.628143
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnRandomNumeric.cpp
// Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include "OgnRandomNumericDatabase.h" #include "random/RandomNodeBase.h" #include <omni/graph/core/ogn/ComputeHelpers.h> namespace omni { namespace graph { namespace nodes { using namespace random; class OgnRandomNumeric : public NodeBase<OgnRandomNumeric, OgnRandomNumericDatabase> { template <typename T> static bool tryComputeAssumingType(OgnRandomNumericDatabase& db, size_t count) { return ogn::compute::tryComputeWithArrayBroadcasting<T>( db.state.gen(), db.inputs.min(), db.inputs.max(), db.outputs.random(), [](GenBuffer_t const& genBuffer, T const& min, T const& max, T& result) { // Generate next random result = asGenerator(genBuffer).nextUniform(min, max); }, count); } template <typename T, size_t N> static bool tryComputeAssumingType(OgnRandomNumericDatabase& db, size_t count) { return ogn::compute::tryComputeWithTupleBroadcasting<N, T>( db.state.gen(), db.inputs.min(), db.inputs.max(), db.outputs.random(), [](GenBuffer_t const& genBuffer, T const& min, T const& max, T& result) { // Generate next random result = asGenerator(genBuffer).nextUniform(min, max); }, count); } static bool defaultCompute(OgnRandomNumericDatabase& db, size_t count) { auto const genBuffers = db.state.gen.vectorized(count); if (genBuffers.size() != count) { db.logWarning("Failed to write to output using default range [0..1) (wrong genBuffers size)"); return false; } for (size_t i = 0; i < count; ++i) { auto outPtr = db.outputs.random(i).get<double>(); if (!outPtr) { db.logWarning("Failed to write to output using default range [0..1) (null output pointer)"); return false; } *outPtr = asGenerator(genBuffers[i]).nextUniform<double>(0.0, 1.0); } return true; } public: static void initialize(GraphContextObj const& contextObj, NodeObj const& nodeObj) { generateRandomSeed(contextObj, nodeObj, inputs::seed, inputs::useSeed); // HACK: onConnectionTypeResolve is not called the first time, // but by setting the output type, we force it to be called. // // TODO: OGN should really support default inputs for union types! // See https://nvidia-omniverse.atlassian.net/browse/OM-67739 setDefaultOutputType(nodeObj, outputs::random.token()); } static bool onCompute(OgnRandomNumericDatabase& db, size_t count) { auto const& minAttr{ db.inputs.min() }; auto const& maxAttr{ db.inputs.max() }; auto const& outAttr{ db.outputs.random() }; if (!outAttr.resolved()) { // Output type not yet resolved, can't compute db.logWarning("Unsupported input types"); return false; } if (!minAttr.resolved() && !maxAttr.resolved()) { // Output using default min and max return defaultCompute(db, count); } // Inputs and outputs are resolved, try all possible types, excluding bool and ogn::string auto const outType = outAttr.type(); switch (outType.baseType) // NOLINT(clang-diagnostic-switch-enum) { case BaseDataType::eDouble: switch (outType.componentCount) { case 1: return tryComputeAssumingType<double>(db, count); case 2: return tryComputeAssumingType<double, 2>(db, count); case 3: return tryComputeAssumingType<double, 3>(db, count); case 4: return tryComputeAssumingType<double, 4>(db, count); case 9: return tryComputeAssumingType<double, 9>(db, count); case 16: return tryComputeAssumingType<double, 16>(db, count); default: break; } case BaseDataType::eFloat: switch (outType.componentCount) { case 1: return tryComputeAssumingType<float>(db, count); case 2: return tryComputeAssumingType<float, 2>(db, count); case 3: return tryComputeAssumingType<float, 3>(db, count); case 4: return tryComputeAssumingType<float, 4>(db, count); default: break; } case BaseDataType::eHalf: switch (outType.componentCount) { case 1: return tryComputeAssumingType<pxr::GfHalf>(db, count); case 2: return tryComputeAssumingType<pxr::GfHalf, 2>(db, count); case 3: return tryComputeAssumingType<pxr::GfHalf, 3>(db, count); case 4: return tryComputeAssumingType<pxr::GfHalf, 4>(db, count); default: break; } case BaseDataType::eInt: switch (outType.componentCount) { case 1: return tryComputeAssumingType<int32_t>(db, count); case 2: return tryComputeAssumingType<int32_t, 2>(db, count); case 3: return tryComputeAssumingType<int32_t, 3>(db, count); case 4: return tryComputeAssumingType<int32_t, 4>(db, count); default: break; } case BaseDataType::eInt64: return tryComputeAssumingType<int64_t>(db, count); case BaseDataType::eUChar: return tryComputeAssumingType<unsigned char>(db, count); case BaseDataType::eUInt: return tryComputeAssumingType<uint32_t>(db, count); case BaseDataType::eUInt64: return tryComputeAssumingType<uint64_t>(db, count); default: break; } db.logWarning("Unsupported input types"); return false; } static void onConnectionTypeResolve(NodeObj const& node) { resolveOutputType(node, inputs::min.token(), inputs::max.token(), outputs::random.token()); } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
6,903
C++
32.678049
108
0.580762
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnIncrement.cpp
// Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnIncrementDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { /** * Helper functions to try doing an addition operation on two input attributes. * We assume the runtime attributes have type T and the other one is double. * The first input is either an array or a singular value, and the second input is a single double value * * @param db: database object * @return True if we can get a result properly, false if not */ /** * Used when input type is resolved as Half */ bool tryComputeAssumingType(OgnIncrementDatabase& db, size_t count) { auto functor = [](auto const& a, auto const& b, auto& result) { result = a + static_cast<float>(b); }; return ogn::compute::tryComputeWithArrayBroadcasting<pxr::GfHalf, double, pxr::GfHalf>(db.inputs.value(), db.inputs.increment(), db.outputs.result(), functor, count); } /** * Used when input type is resolved as any numeric type other than Half */ template<typename T> bool tryComputeAssumingType(OgnIncrementDatabase& db, size_t count) { auto functor = [](auto const& a, auto const& b, auto& result) { result = a + static_cast<T>(b); }; return ogn::compute::tryComputeWithArrayBroadcasting<T, double, T>(db.inputs.value(), db.inputs.increment(), db.outputs.result(), functor, count); } /** * Used when input type is resolved as Half */ template <size_t N> bool tryComputeAssumingType(OgnIncrementDatabase& db, size_t count) { auto functor = [](auto const& a, auto const& b, auto& result) { result = a + static_cast<float>(b); }; return ogn::compute::tryComputeWithTupleBroadcasting<N, pxr::GfHalf, double, pxr::GfHalf>( db.inputs.value(), db.inputs.increment(), db.outputs.result(), functor, count); } /** * Used when input type is resolved as any numeric type other than Half */ template<typename T, size_t N> bool tryComputeAssumingType(OgnIncrementDatabase& db, size_t count) { auto functor = [](auto const& a, auto const& b, auto& result) { result = a + static_cast<T>(b); }; return ogn::compute::tryComputeWithTupleBroadcasting<N, T, double, T>(db.inputs.value(), db.inputs.increment(), db.outputs.result(), functor, count); } } // namespace class OgnIncrement { public: static size_t computeVectorized(OgnIncrementDatabase& db, size_t count) { auto& inputType = db.inputs.value().type(); // Compute the components, if the types are all resolved. try { switch (inputType.baseType) { case BaseDataType::eDouble: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<double>(db, count); case 2: return tryComputeAssumingType<double, 2>(db, count); case 3: return tryComputeAssumingType<double, 3>(db, count); case 4: return tryComputeAssumingType<double, 4>(db, count); case 9: return tryComputeAssumingType<double, 9>(db, count); case 16: return tryComputeAssumingType<double, 16>(db, count); default: break; } case BaseDataType::eFloat: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<float>(db, count); case 2: return tryComputeAssumingType<float, 2>(db, count); case 3: return tryComputeAssumingType<float, 3>(db, count); case 4: return tryComputeAssumingType<float, 4>(db, count); default: break; } case BaseDataType::eHalf: switch (inputType.componentCount) { case 1: return tryComputeAssumingType(db, count); case 2: return tryComputeAssumingType<2>(db, count); case 3: return tryComputeAssumingType<3>(db, count); case 4: return tryComputeAssumingType<4>(db, count); default: break; } case BaseDataType::eInt: switch (inputType.componentCount) { case 1: return tryComputeAssumingType<int32_t>(db, count); case 2: return tryComputeAssumingType<int32_t, 2>(db, count); case 3: return tryComputeAssumingType<int32_t, 3>(db, count); case 4: return tryComputeAssumingType<int32_t, 4>(db, count); default: break; } ; case BaseDataType::eInt64: return tryComputeAssumingType<int64_t>(db, count); case BaseDataType::eUChar: return tryComputeAssumingType<unsigned char>(db, count); case BaseDataType::eUInt: return tryComputeAssumingType<uint32_t>(db, count); case BaseDataType::eUInt64: return tryComputeAssumingType<uint64_t>(db, count); default: break; } db.logWarning("Failed to resolve input types"); } catch (ogn::compute::InputError &error) { db.logError(error.what()); } return 0; } static void onConnectionTypeResolve(const NodeObj& node){ auto value = node.iNode->getAttributeByToken(node, inputs::value.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto valueType = value.iAttribute->getResolvedType(value); // Require inputs to be resolved before determining sum's type if (valueType.baseType != BaseDataType::eUnknown) { std::array<AttributeObj, 2> attrs { value, result }; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
6,591
C++
38.005917
170
0.618874
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnTrig.cpp
// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnTrigDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include <omni/math/linalg/math.h> #include <math.h> namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { /** _____ ____ _ _ ____ _______ _____ ____ _______ __ | __ \ / __ \ | \ | |/ __ \__ __| / ____/ __ \| __ \ \ / / | | | | | | | | \| | | | | | | | | | | | | |__) \ \_/ / | | | | | | | | . ` | | | | | | | | | | | | ___/ \ / | |__| | |__| | | |\ | |__| | | | | |___| |__| | | | | |_____/ \____/ |_| \_|\____/ |_| \_____\____/|_| |_| This node uses a large cascading "if" to select operation type, which is not efficient. It will be eventually be refactored but until then do not propagate this anti-pattern. Thanks for keeping things fast! */ /** * Used when input type is resolved as non-int numeric type other than Half */ template <typename T> bool tryComputeAssumingType(OgnTrigDatabase& db, NameToken operation, size_t count) { if (operation == db.tokens.SIN) // Sine { auto functor = [](auto const& a, auto& result) { result = static_cast<T>(std::sin(pxr::GfDegreesToRadians(a))); }; return ogn::compute::tryCompute(db.inputs.a().template get<T>(), db.outputs.result().template get<T>(), functor, count); } else if (operation == db.tokens.COS) // Cosine { auto functor = [](auto const& a, auto& result) { result = static_cast<T>(std::cos(pxr::GfDegreesToRadians(a))); }; return ogn::compute::tryCompute(db.inputs.a().template get<T>(), db.outputs.result().template get<T>(), functor, count); } else if (operation == db.tokens.TAN) // Tangent { auto functor = [](auto const& a, auto& result) { result = static_cast<T>(std::tan(pxr::GfDegreesToRadians(a))); }; return ogn::compute::tryCompute(db.inputs.a().template get<T>(), db.outputs.result().template get<T>(), functor, count); } else if (operation == db.tokens.ARCSIN) // Arcsine { auto functor = [](auto const& a, auto& result) { result = static_cast<T>(pxr::GfRadiansToDegrees(std::asin(a))); }; return ogn::compute::tryCompute(db.inputs.a().template get<T>(), db.outputs.result().template get<T>(), functor, count); } else if (operation == db.tokens.ARCCOS) // Arccosine { auto functor = [](auto const& a, auto& result) { result = static_cast<T>(pxr::GfRadiansToDegrees(std::acos(a))); }; return ogn::compute::tryCompute(db.inputs.a().template get<T>(), db.outputs.result().template get<T>(), functor, count); } else if (operation == db.tokens.ARCTAN) // Arctangent { auto functor = [](auto const& a, auto& result) { result = static_cast<T>(pxr::GfRadiansToDegrees(std::atan(a))); }; return ogn::compute::tryCompute(db.inputs.a().template get<T>(), db.outputs.result().template get<T>(), functor, count); } else if (operation == db.tokens.DEGREES) // Degrees { auto functor = [](auto const& a, auto& result) { result = static_cast<T>(pxr::GfRadiansToDegrees(a)); }; return ogn::compute::tryCompute(db.inputs.a().template get<T>(), db.outputs.result().template get<T>(), functor, count); } else if (operation == db.tokens.RADIANS) // Radians { auto functor = [](auto const& a, auto& result) { result = static_cast<T>(pxr::GfDegreesToRadians(a)); }; return ogn::compute::tryCompute(db.inputs.a().template get<T>(), db.outputs.result().template get<T>(), functor, count); } throw ogn::compute::InputError("Operation not one of sin, cos, tan, asin, acos, degrees, radians"); } template <> bool tryComputeAssumingType<pxr::GfHalf>(OgnTrigDatabase& db, NameToken operation, size_t count) { if (operation == db.tokens.SIN) // Sine { auto functor = [](auto const& a, auto& result) { result = static_cast<pxr::GfHalf>(static_cast<float>(std::sin(pxr::GfDegreesToRadians(a)))); }; return ogn::compute::tryCompute( db.inputs.a().template get<pxr::GfHalf>(), db.outputs.result().template get<pxr::GfHalf>(), functor, count); } else if (operation == db.tokens.COS) // Cosine { auto functor = [](auto const& a, auto& result) { result = static_cast<pxr::GfHalf>(static_cast<float>(std::cos(pxr::GfDegreesToRadians(a)))); }; return ogn::compute::tryCompute( db.inputs.a().template get<pxr::GfHalf>(), db.outputs.result().template get<pxr::GfHalf>(), functor, count); } else if (operation == db.tokens.TAN) // Tangent { auto functor = [](auto const& a, auto& result) { result = static_cast<pxr::GfHalf>(static_cast<float>(std::tan(pxr::GfDegreesToRadians(a)))); }; return ogn::compute::tryCompute( db.inputs.a().template get<pxr::GfHalf>(), db.outputs.result().template get<pxr::GfHalf>(), functor, count); } else if (operation == db.tokens.ARCSIN) // Arcsine { auto functor = [](auto const& a, auto& result) { result = static_cast<pxr::GfHalf>(static_cast<float>(std::asin(pxr::GfDegreesToRadians(a)))); }; return ogn::compute::tryCompute( db.inputs.a().template get<pxr::GfHalf>(), db.outputs.result().template get<pxr::GfHalf>(), functor, count); } else if (operation == db.tokens.ARCCOS) // Arccosine { auto functor = [](auto const& a, auto& result) { result = static_cast<pxr::GfHalf>(static_cast<float>(std::acos(pxr::GfDegreesToRadians(a)))); }; return ogn::compute::tryCompute( db.inputs.a().template get<pxr::GfHalf>(), db.outputs.result().template get<pxr::GfHalf>(), functor, count); } else if (operation == db.tokens.ARCTAN) // Arctangent { auto functor = [](auto const& a, auto& result) { result = static_cast<pxr::GfHalf>(static_cast<float>(std::atan(pxr::GfDegreesToRadians(a)))); }; return ogn::compute::tryCompute( db.inputs.a().template get<pxr::GfHalf>(), db.outputs.result().template get<pxr::GfHalf>(), functor, count); } else if (operation == db.tokens.DEGREES) // Degrees { auto functor = [](auto const& a, auto& result) { result = static_cast<pxr::GfHalf>(static_cast<float>(pxr::GfRadiansToDegrees(a))); }; return ogn::compute::tryCompute( db.inputs.a().template get<pxr::GfHalf>(), db.outputs.result().template get<pxr::GfHalf>(), functor, count); } else if (operation == db.tokens.RADIANS) // Radians { auto functor = [](auto const& a, auto& result) { result = static_cast<pxr::GfHalf>(static_cast<float>(pxr::GfDegreesToRadians(a))); }; return ogn::compute::tryCompute( db.inputs.a().template get<pxr::GfHalf>(), db.outputs.result().template get<pxr::GfHalf>(), functor, count); } throw ogn::compute::InputError("Operation not one of sin, cos, tan, asin, acos, degrees, radians"); } } // namespace class OgnTrig { public: static size_t computeVectorized(OgnTrigDatabase& db, size_t count) { NameToken const& operation = db.inputs.operation(); try { if (tryComputeAssumingType<double>(db, operation, count)) return count; else if (tryComputeAssumingType<pxr::GfHalf>(db, operation, count)) return count; else if (tryComputeAssumingType<float>(db, operation, count)) return count; else { db.logWarning("Failed to resolve input types"); } } catch (std::exception &error) { db.logError("Operation %s could not be performed : %s", db.tokenToString(operation), error.what()); } return 0; } static void onConnectionTypeResolve(const NodeObj& node){ auto a = node.iNode->getAttributeByToken(node, inputs::a.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto aType = a.iAttribute->getResolvedType(a); // Require inputs to be resolved before determining output's type if (aType.baseType != BaseDataType::eUnknown) { std::array<AttributeObj, 2> attrs { a, result }; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
8,956
C++
43.785
128
0.607191
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnIsZero.cpp
// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnIsZeroDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> namespace omni { namespace graph { namespace nodes { namespace { static constexpr char kValueTypeUnresolved[] = "Failed to resolve type of 'value' input"; // Check whether a scalar attribute contains a value which lies within 'tolerance' of 0. // // 'tolerance' must be non-negative. It is ignored for bool values. // 'isZero' will be set true if 'value' contains a zero value, false otherwise. // // The return value is true if 'value' is a supported scalar type, false otherwise. // bool checkScalarForZero(OgnIsZeroAttributes::inputs::value_t& value, const double& tolerance, bool& isZero) { CARB_ASSERT(tolerance >= 0.0); switch (value.type().baseType) { case BaseDataType::eBool: isZero = ! *(value.get<bool>()); break; case BaseDataType::eDouble: isZero = std::abs(*(value.get<double>())) <= tolerance; break; case BaseDataType::eFloat: isZero = std::abs(*(value.get<float>())) <= tolerance; break; case BaseDataType::eHalf: isZero = std::abs(*(value.get<pxr::GfHalf>())) <= tolerance; break; case BaseDataType::eInt: isZero = std::abs(*(value.get<int32_t>())) <= (int32_t)tolerance; break; case BaseDataType::eInt64: isZero = std::abs(*(value.get<int64_t>())) <= (int64_t)tolerance; break; case BaseDataType::eUChar: isZero = *(value.get<unsigned char>()) <= (unsigned char)tolerance; break; case BaseDataType::eUInt: isZero = *(value.get<uint32_t>()) <= (uint32_t)tolerance; break; case BaseDataType::eUInt64: isZero = *(value.get<uint64_t>()) <= (uint64_t)tolerance; break; default: return false; } return true; } // Check whether a tuple attribute contains a tuple whose components are all zero. // (i.e. they lie within 'tolerance' of 0). // // T - type of the components of the tuple. // N - number of components in the tuple // // 'tolerance' must be non-negative // 'isZero' is assumed to be true on entry and will be set false if any component of the tuple is not zero. // // The return value is true if 'value' is a supported tuple type, false otherwise. // template <typename T, int N> bool checkTupleForZeroes(const OgnIsZeroAttributes::inputs::value_t& value, const double& tolerance, bool& isZero) { CARB_ASSERT(tolerance >= 0.0); CARB_ASSERT(isZero); if (auto const tuple = value.get<T[N]>()) { for (int i = 0; isZero && (i < N); ++i) { isZero = (std::abs(tuple[i]) <= tolerance); } return true; } return false; } // Check whether a tuple attribute contains a tuple whose components are all zero // (i.e. they lie within 'tolerance' of 0). // // 'tolerance' must be non-negative // 'isZero' is assumed to be true on entry and will be set false if any component of the tuple is not zero. // // The return value is true if 'value' is a supported tuple type, false otherwise. // bool checkTupleForZeroes(const OgnIsZeroAttributes::inputs::value_t& value, const double& tolerance, bool& isZero) { CARB_ASSERT(tolerance >= 0.0); CARB_ASSERT(isZero); switch (value.type().baseType) { case BaseDataType::eDouble: switch (value.type().componentCount) { case 2: return checkTupleForZeroes<double, 2>(value, tolerance, isZero); case 3: return checkTupleForZeroes<double, 3>(value, tolerance, isZero); case 4: return checkTupleForZeroes<double, 4>(value, tolerance, isZero); case 9: return checkTupleForZeroes<double, 9>(value, tolerance, isZero); case 16: return checkTupleForZeroes<double, 16>(value, tolerance, isZero); default: break; } break; case BaseDataType::eFloat: switch (value.type().componentCount) { case 2: return checkTupleForZeroes<float, 2>(value, tolerance, isZero); case 3: return checkTupleForZeroes<float, 3>(value, tolerance, isZero); case 4: return checkTupleForZeroes<float, 4>(value, tolerance, isZero); default: break; } break; case BaseDataType::eHalf: switch (value.type().componentCount) { case 2: return checkTupleForZeroes<pxr::GfHalf, 2>(value, tolerance, isZero); case 3: return checkTupleForZeroes<pxr::GfHalf, 3>(value, tolerance, isZero); case 4: return checkTupleForZeroes<pxr::GfHalf, 4>(value, tolerance, isZero); default: break; } break; case BaseDataType::eInt: switch (value.type().componentCount) { case 2: return checkTupleForZeroes<int32_t, 2>(value, tolerance, isZero); case 3: return checkTupleForZeroes<int32_t, 3>(value, tolerance, isZero); case 4: return checkTupleForZeroes<int32_t, 4>(value, tolerance, isZero); default: break; } break; default: break; } return false; } // Check whether an unsigned array attribute's elements are all zero (i.e. they lie // within 'tolerance' of 0). // // T - type of the elements of the array. Must be an unsigned type, other than bool. // // 'tolerance' must be non-negative // 'isZero' will be set true if all elements of the array are zero, false otherwise. // // The return value is true if 'value' is a supported unsigned integer array type, false otherwise. // template <typename T> bool checkUnsignedArrayForZeroes(const OgnIsZeroAttributes::inputs::value_t& value, const int& tolerance, bool& isZero) { static_assert(std::is_unsigned<T>::value && !std::is_same<T, bool>::value, "Unsigned integer type required."); CARB_ASSERT(tolerance >= 0.0); if (auto const array = value.get<T[]>()) { isZero = std::all_of(array->begin(), array->end(), [tolerance](auto element){ return element <= (T)tolerance; }); return true; } return false; } // Check whether a bool array attribute's elements are all zero/false. No tolerance // value is applied since tolerance is meaningless for bool. // // 'isZero' will be set true if all elements of the array are zero, false otherwise. // // The return value is true if 'value' is a bool array type, false otherwise. // bool checkBoolArrayForZeroes(const OgnIsZeroAttributes::inputs::value_t& value, bool& isZero) { if (auto const array = value.get<bool[]>()) { isZero = std::all_of(array->begin(), array->end(), [](auto element){ return !element; }); return true; } return false; } // Check whether a signed array attribute's elements are all zero (i.e. they lie // within 'tolerance' of 0). // // T - type of the elements of the array. Must be a signed type. // // 'tolerance' must be non-negative // 'isZero' will be set true if all elements of the array are zero, false otherwise. // // The return value is true if 'value' is a supported signed array type, false otherwise. // template <typename T> bool checkSignedArrayForZeroes(const OgnIsZeroAttributes::inputs::value_t& value, const double& tolerance, bool& isZero) { static_assert(std::is_signed<T>::value || pxr::GfIsFloatingPoint<T>::value, "Signed integer or decimal type required."); CARB_ASSERT(tolerance >= 0.0); if (auto const array = value.get<T[]>()) { isZero = std::all_of(array->begin(), array->end(), [tolerance](auto element){ return (std::abs(element) <= tolerance); }); return true; } return false; } // Check whether a scalar array attribute's elements are all zero (i.e. they lie within 'tolerance' of 0). // // 'tolerance' must be non-negative // 'isZero' will be set true if all elements of the array are zero, false otherwise. // // The return value is true if 'value' is a supported scalar array type, false otherwise. // bool checkScalarArrayForZeroes(const OgnIsZeroAttributes::inputs::value_t& value, const double& tolerance, bool& isZero) { CARB_ASSERT(tolerance >= 0.0); switch (value.type().baseType) { case BaseDataType::eBool: return checkBoolArrayForZeroes(value, isZero); case BaseDataType::eDouble: return checkSignedArrayForZeroes<double>(value, tolerance, isZero); case BaseDataType::eFloat: return checkSignedArrayForZeroes<float>(value, tolerance, isZero); case BaseDataType::eHalf: return checkSignedArrayForZeroes<pxr::GfHalf>(value, tolerance, isZero); case BaseDataType::eInt: return checkSignedArrayForZeroes<int32_t>(value, tolerance, isZero); case BaseDataType::eInt64: return checkSignedArrayForZeroes<int64_t>(value, tolerance, isZero); case BaseDataType::eUChar: return checkUnsignedArrayForZeroes<unsigned char>(value, (int)tolerance, isZero); case BaseDataType::eUInt: return checkUnsignedArrayForZeroes<uint32_t>(value, (int)tolerance, isZero); case BaseDataType::eUInt64: return checkUnsignedArrayForZeroes<uint64_t>(value, (int)tolerance, isZero); default: break; } return false; } // Returns true if all components of the tuple are zero. // (i.e. they lie within 'tolerance' of 0). // // T - base type of the tuple (e.g. float if tuple is float[2]). // N - number of components in the tuple (e.g. '2' in the example above). // // 'tolerance' must be non-negative // template <typename T, int N> bool isTupleZero(const T tuple[N], double tolerance) { CARB_ASSERT(tolerance >= 0.0); for (int i = 0; i < N; ++i) { if (std::abs(tuple[i]) > tolerance) return false; } return true; } // Check whether a tuple array attribute's elements are all zero tuples // (i.e. all of their components are within 'tolerance' of 0). // // T - type of the components of the tuple. // N - number of components in the tuple // // 'tolerance' must be non-negative // 'isZero' will be set true if all tuples in the array is are zero, false otherwise. // // The return value is true if 'value' is a supported decimal tuple array type, false otherwise. // template <typename T, int N> bool checkTupleArrayForZeroes(const OgnIsZeroAttributes::inputs::value_t& value, double tolerance, bool& isZero) { CARB_ASSERT(tolerance >= 0.0); if (auto const array = value.get<T[][N]>()) { isZero = std::all_of(array->begin(), array->end(), [tolerance](auto element){ return isTupleZero<T, N>(element, tolerance); }); return true; } return false; } // Check whether a tuple array attribute's elements are all zero tuples (i.e. all of their components // lie within 'tolerance' of 0). // // 'tolerance' must be non-negative // 'isZero' will be set true if all tuples in the array is are zero, false otherwise. // // The return value is true if 'value' is a supported decimal tuple array type, false otherwise. // bool checkTupleArrayForZeroes(const OgnIsZeroAttributes::inputs::value_t& value, const double& tolerance, bool& isZero) { CARB_ASSERT(tolerance >= 0.0); switch (value.type().baseType) { case BaseDataType::eDouble: switch (value.type().componentCount) { case 2: return checkTupleArrayForZeroes<double, 2>(value, tolerance, isZero); case 3: return checkTupleArrayForZeroes<double, 3>(value, tolerance, isZero); case 4: return checkTupleArrayForZeroes<double, 4>(value, tolerance, isZero); case 9: return checkTupleArrayForZeroes<double, 9>(value, tolerance, isZero); case 16: return checkTupleArrayForZeroes<double, 16>(value, tolerance, isZero); default: break; } break; case BaseDataType::eFloat: switch (value.type().componentCount) { case 2: return checkTupleArrayForZeroes<float, 2>(value, tolerance, isZero); case 3: return checkTupleArrayForZeroes<float, 3>(value, tolerance, isZero); case 4: return checkTupleArrayForZeroes<float, 4>(value, tolerance, isZero); default: break; } break; case BaseDataType::eHalf: switch (value.type().componentCount) { case 2: return checkTupleArrayForZeroes<pxr::GfHalf, 2>(value, tolerance, isZero); case 3: return checkTupleArrayForZeroes<pxr::GfHalf, 3>(value, tolerance, isZero); case 4: return checkTupleArrayForZeroes<pxr::GfHalf, 4>(value, tolerance, isZero); default: break; } break; case BaseDataType::eInt: switch (value.type().componentCount) { case 2: return checkTupleArrayForZeroes<int32_t, 2>(value, tolerance, isZero); case 3: return checkTupleArrayForZeroes<int32_t, 3>(value, tolerance, isZero); case 4: return checkTupleArrayForZeroes<int32_t, 4>(value, tolerance, isZero); default: break; } break; default: break; } return false; } } // namespace class OgnIsZero { public: static bool compute(OgnIsZeroDatabase& db) { const auto& value = db.inputs.value(); if (!value.resolved()) return true; const auto& tolerance = std::abs(db.inputs.tolerance()); auto& result = db.outputs.result(); try { // Some of the functions below return as soon as they find a non-zero value, so // we start out assuming all values are zero and let them change that to false. // result = true; bool foundType{ false }; // Arrays if (value.type().arrayDepth > 0) { // Arrays of tuples. if (value.type().componentCount > 1) { foundType = checkTupleArrayForZeroes(value, tolerance, result); } // Arrays of scalars. else { foundType = checkScalarArrayForZeroes(value, tolerance, result); } } // Tuples else if (value.type().componentCount > 1) { foundType = checkTupleForZeroes(value, tolerance, result); } // Scalars else { foundType = checkScalarForZero(value, tolerance, result); } if (! foundType) { throw ogn::compute::InputError(kValueTypeUnresolved); } } catch (ogn::compute::InputError &error) { db.logError("OgnIsZero: %s", error.what()); return false; } return true; } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
15,541
C++
37
135
0.628595
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/math/OgnNoise.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // // This node implements the noise() function from Warp. Once Warp has been released // it will be reimplemented using Warp. // // If you're interested in how to use the output from this node to drive a procedural // noise texture, take a look at the core_definitions::perlin_noise_texture from the material library, // documented here: // // https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_material-graph/nodes/Texturing_High_Level/perlin-noise.html // // Its MDL implementation can be found in the omni-core-materials repo, in mdl/nvidia/core_definitions.mdl // That in turn calls base::perlin_noise_texture() which is implemented in the MDL-SDK repo, in src/shaders/mdl/base/base.mdl // #include <OgnNoiseDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include "warp_noise.h" namespace omni { namespace graph { namespace nodes { namespace { template <typename T, typename PXRTYPE> bool getNoiseValues(uint32_t &rng_state, const OgnNoiseAttributes::inputs::position_t& position, ogn::array<float> &resultArray) { if (auto positionArray = position.get<T>()) { resultArray.resize(positionArray.size()); size_t i = 0; for (auto pos : *positionArray) { resultArray[i++] = noise(rng_state, *(const PXRTYPE*)pos); } return true; } return false; } // Specialization for non-tuple type. template <> bool getNoiseValues<float[],float>(uint32_t &rng_state, const OgnNoiseAttributes::inputs::position_t& position, ogn::array<float> &resultArray) { if (auto positionArray = position.get<float[]>()) { resultArray.resize(positionArray.size()); size_t i = 0; for (auto pos : *positionArray) { resultArray[i++] = noise(rng_state, pos); } return true; } return false; } } class OgnNoise { public: static bool compute(OgnNoiseDatabase& db) { const auto& position = db.inputs.position(); // If we don't have any positions to sample then there's nothing to do. if (!position.resolved()) return true; auto& result = db.outputs.result(); const auto& seed = db.inputs.seed(); uint32_t rng_state = rand_init(seed); try { if (position.type().arrayDepth == 0) { if (auto resultScalar = result.get<float>()) { switch (position.type().componentCount) { case 1: { *resultScalar = noise(rng_state, *position.get<float>()); return true; } case 2: { *resultScalar = noise(rng_state, *(GfVec2f*)(*position.get<float[2]>())); return true; } case 3: { *resultScalar = noise(rng_state, *(GfVec3f*)(*position.get<float[3]>())); return true; } case 4: { *resultScalar = noise(rng_state, *(GfVec4f*)(*position.get<float[4]>())); return true; } default: db.logError("'position' has invalid tuple size of %i.", position.type().componentCount); } } else { throw ogn::compute::InputError("'result' is an array but 'position' is not"); } } else if (auto resultArray = result.get<float[]>()) { switch (position.type().componentCount) { case 1: { if (getNoiseValues<float[], float>(rng_state, position, *resultArray)) return true; throw ogn::compute::InputError("could not resolve 'position' to float[]"); } case 2: { if (getNoiseValues<float[][2], GfVec2f>(rng_state, position, *resultArray)) return true; throw ogn::compute::InputError("could not resolve 'position' to float[2][]"); } case 3: { if (getNoiseValues<float[][3], GfVec3f>(rng_state, position, *resultArray)) return true; throw ogn::compute::InputError("could not resolve 'position' to float[3][]"); } case 4: { if (getNoiseValues<float[][4], GfVec4f>(rng_state, position, *resultArray)) return true; throw ogn::compute::InputError("could not resolve 'position' to float[4][]"); } default: db.logError("'position' has invalid tuple size of %i.", position.type().componentCount); } } else { throw ogn::compute::InputError("'position' is an array but 'result' is not"); } } catch (ogn::compute::InputError &error) { db.logError(error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node) { auto position = node.iNode->getAttributeByToken(node, inputs::position.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto positionType = position.iAttribute->getResolvedType(position); if (positionType.baseType != BaseDataType::eUnknown) { // 'result' is always float but has the same array depth as 'position'. Type type(BaseDataType::eFloat, 1, positionType.arrayDepth, AttributeRole::eNone); result.iAttribute->setResolvedType(result, type); } } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni // end-compute-helpers
6,563
C++
33.010363
143
0.551272
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/io/OgnReadKeyboardState.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnReadKeyboardStateDatabase.h> #include <carb/input/IInput.h> #include <carb/input/InputTypes.h> #include <omni/kit/IAppWindow.h> using namespace carb::input; namespace omni { namespace graph { namespace action { // This list matches carb::input::KeyboardInput constexpr size_t s_numNames = size_t(carb::input::KeyboardInput::eCount); static constexpr std::array<const char*, s_numNames> s_keyNames = { "Unknown", "Space", "Apostrophe", "Comma", "Minus", "Period", "Slash", "Key0", "Key1", "Key2", "Key3", "Key4", "Key5", "Key6", "Key7", "Key8", "Key9", "Semicolon", "Equal", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "LeftBracket", "Backslash", "RightBracket", "GraveAccent", "Escape", "Tab", "Enter", "Backspace", "Insert", "Del", "Right", "Left", "Down", "Up", "PageUp", "PageDown", "Home", "End", "CapsLock", "ScrollLock", "NumLock", "PrintScreen", "Pause", "F1", "F2", "F3", "F4", "F5", "F6", "F7", "F8", "F9", "F10", "F11", "F12", "Numpad0", "Numpad1", "Numpad2", "Numpad3", "Numpad4", "Numpad5", "Numpad6", "Numpad7", "Numpad8", "Numpad9", "NumpadDel", "NumpadDivide", "NumpadMultiply", "NumpadSubtract", "NumpadAdd", "NumpadEnter", "NumpadEqual", "LeftShift", "LeftControl", "LeftAlt", "LeftSuper", "RightShift", "RightControl", "RightAlt", "RightSuper", "Menu" }; static_assert(s_keyNames.size() == size_t(carb::input::KeyboardInput::eCount), "enum must match this table"); static std::array<NameToken, s_numNames> s_keyTokens; class OgnReadKeyboardState { public: static bool compute(OgnReadKeyboardStateDatabase& db) { static NameToken const emptyToken = db.stringToToken(""); NameToken const& keyIn = db.inputs.key(); auto contextObj = db.abi_context(); // First time look up all the token string values static bool callOnce = ([&contextObj] { std::transform(s_keyNames.begin(), s_keyNames.end(), s_keyTokens.begin(), [&contextObj](auto const& s) { return contextObj.iToken->getHandle(s); }); } (), true); omni::kit::IAppWindow* appWindow = omni::kit::getDefaultAppWindow(); if (!appWindow) { return false; } Keyboard* keyboard = appWindow->getKeyboard(); if (!keyboard) { CARB_LOG_ERROR_ONCE("No Keyboard!"); return false; } IInput* input = carb::getCachedInterface<IInput>(); if (!input) { CARB_LOG_ERROR_ONCE("No Input!"); return false; } bool isPressed = false; // Get the index of the token of the key of interest auto iter = std::find(s_keyTokens.begin(), s_keyTokens.end(), keyIn); if (iter != s_keyTokens.end()) { size_t index = iter - s_keyTokens.begin(); KeyboardInput key = KeyboardInput(index); isPressed = (carb::input::kButtonFlagStateDown & input->getKeyboardButtonFlags(keyboard, key)); } db.outputs.shiftOut() = (carb::input::kButtonFlagStateDown & input->getKeyboardButtonFlags(keyboard, KeyboardInput::eLeftShift)) || (carb::input::kButtonFlagStateDown & input->getKeyboardButtonFlags(keyboard, KeyboardInput::eRightShift)); db.outputs.ctrlOut() = (carb::input::kButtonFlagStateDown & input->getKeyboardButtonFlags(keyboard, KeyboardInput::eLeftControl)) || (carb::input::kButtonFlagStateDown & input->getKeyboardButtonFlags(keyboard, KeyboardInput::eRightControl)); db.outputs.altOut() = (carb::input::kButtonFlagStateDown & input->getKeyboardButtonFlags(keyboard, KeyboardInput::eLeftAlt)) || (carb::input::kButtonFlagStateDown & input->getKeyboardButtonFlags(keyboard, KeyboardInput::eRightAlt)); db.outputs.isPressed() = isPressed; return true; } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
4,887
C++
23.19802
121
0.581747
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/io/OgnReadGamepadState.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnReadGamepadStateDatabase.h> #include <carb/input/IInput.h> #include <carb/input/InputTypes.h> #include <omni/kit/IAppWindow.h> using namespace carb::input; namespace omni { namespace graph { namespace nodes { // This is different from carb::input::GamepadInput::eCount by 4 because we combine the joystick inputs by axis (x/y) constexpr size_t s_numNames = size_t(carb::input::GamepadInput::eCount) - 4; static std::array<NameToken, s_numNames> s_elementTokens; class OgnReadGamepadState { public: static bool compute(OgnReadGamepadStateDatabase& db) { NameToken const& elementIn = db.inputs.gamepadElement(); const unsigned int gamepadId = db.inputs.gamepadId(); const float deadzone = db.inputs.deadzone(); // First time initialization of all the token values static bool callOnce = ([&db] { s_elementTokens = { db.tokens.LeftStickXAxis, db.tokens.LeftStickYAxis, db.tokens.RightStickXAxis, db.tokens.RightStickYAxis, db.tokens.LeftTrigger, db.tokens.RightTrigger, db.tokens.FaceButtonBottom, db.tokens.FaceButtonRight, db.tokens.FaceButtonLeft, db.tokens.FaceButtonTop, db.tokens.LeftShoulder, db.tokens.RightShoulder, db.tokens.SpecialLeft, db.tokens.SpecialRight, db.tokens.LeftStickButton, db.tokens.RightStickButton, db.tokens.DpadUp, db.tokens.DpadRight, db.tokens.DpadDown, db.tokens.DpadLeft }; } (), true); omni::kit::IAppWindow* appWindow = omni::kit::getDefaultAppWindow(); if (!appWindow) { return false; } Gamepad* gamepad = appWindow->getGamepad(gamepadId); if (!gamepad) { db.logWarning("No Gamepad!"); return false; } IInput* input = carb::getCachedInterface<IInput>(); if (!input) { db.logWarning("No Input!"); return false; } bool isPressed = false; float value = 0.0; // Get the index of the token of the element of interest auto iter = std::find(s_elementTokens.begin(), s_elementTokens.end(), elementIn); if (iter != s_elementTokens.end()) { size_t index = iter - s_elementTokens.begin(); if (index < 4) { // We want to combine the joystick inputs by its axis (x/y instead of right/left/up/down) GamepadInput positiveElement = GamepadInput(2*index); GamepadInput negativeElement = GamepadInput(2*index+1); value = input->getGamepadValue(gamepad, positiveElement) - input->getGamepadValue(gamepad, negativeElement); } else { // index is offset by 4 because we combine the joystick x/y axis GamepadInput element = GamepadInput(index + 4); value = input->getGamepadValue(gamepad, element); } // Check for deadzone threshold if (std::abs(value) < deadzone) { value = 0.0; isPressed = false; } else { isPressed = true; } } db.outputs.isPressed() = isPressed; db.outputs.value() = value; return true; } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
4,137
C++
31.84127
124
0.580131
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnSetMatrix4Quaternion.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnSetMatrix4QuaternionDatabase.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/quat.h> using omni::math::linalg::matrix4d; using omni::math::linalg::quatd; namespace omni { namespace graph { namespace nodes { namespace { void updateMatrix(const double input[16], double result[16], const double quaternion[4]) { matrix4d& resultMat = *reinterpret_cast<matrix4d*>(result); memcpy(resultMat.data(), input, sizeof(double) * 16); resultMat.SetRotateOnly(quatd(quaternion[3], quaternion[0], quaternion[1], quaternion[2])); } } class OgnSetMatrix4Quaternion { public: static bool compute(OgnSetMatrix4QuaternionDatabase& db) { const auto& matrixInput = db.inputs.matrix(); const auto& quaternionInput = db.inputs.quaternion(); auto matrixOutput = db.outputs.matrix(); bool failed = true; // Singular case if (auto matrix = matrixInput.get<double[16]>()) { if (auto quaternion = quaternionInput.get<double[4]>()) { if (auto output = matrixOutput.get<double[16]>()) { updateMatrix(*matrix, *output, *quaternion); failed = false; } } } // Array case else if (auto matrices = matrixInput.get<double[][16]>()) { if (auto quaternions = quaternionInput.get<double[][4]>()) { if (auto output = matrixOutput.get<double[][16]>()) { output->resize(matrices->size()); for (size_t i = 0; i < matrices.size(); i++) { updateMatrix((*matrices)[i], (*output)[i], (*quaternions)[i]); } failed = false; } } } else { db.logError("Input type for matrix input not supported"); return false; } if (failed) { db.logError("Input and output depths need to align: Matrix input with depth %s, quaternion input with depth %s, and output with depth %s", matrixInput.type().arrayDepth, quaternionInput.type().arrayDepth, matrixOutput.type().arrayDepth); return false; } return true; } static void onConnectionTypeResolve(const NodeObj& node){ // Resolve fully-coupled types for the 2 attributes std::array<AttributeObj, 2> attrs { node.iNode->getAttribute(node, OgnSetMatrix4QuaternionAttributes::inputs::matrix.m_name), node.iNode->getAttribute(node, OgnSetMatrix4QuaternionAttributes::outputs::matrix.m_name) }; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); } }; REGISTER_OGN_NODE() } } }
3,340
C++
31.754902
151
0.592216
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnRotateToTarget.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnRotateToTargetDatabase.h> #include <omni/math/linalg/quat.h> #include <omni/math/linalg/vec.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/math.h> #include <omni/math/linalg/SafeCast.h> #include <omni/graph/core/PreUsdInclude.h> #include <pxr/usd/usdGeom/xformCache.h> #include <omni/graph/core/PostUsdInclude.h> #include "PrimCommon.h" #include "XformUtils.h" using namespace omni::math::linalg; using namespace omni::fabric; namespace omni { namespace graph { namespace nodes { namespace { constexpr double kUninitializedStartTime = -1.; } class OgnRotateToTarget { XformUtils::MoveState m_moveState; public: static bool compute(OgnRotateToTargetDatabase& db) { auto& nodeObj = db.abi_node(); const auto& contextObj = db.abi_context(); auto iContext = contextObj.iContext; double now = iContext->getTimeSinceStart(contextObj); auto& state = db.internalState<OgnRotateToTarget>(); double& startTime = state.m_moveState.startTime; pxr::TfToken& targetAttribName = state.m_moveState.targetAttribName; quatd& startOrientation = state.m_moveState.startOrientation; vec3d& startEuler = state.m_moveState.startEuler; XformUtils::RotationMode& rotationMode = state.m_moveState.rotationMode; if (db.inputs.stop() != kExecutionAttributeStateDisabled) { startTime = kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } try { auto sourcePrimPath = getPrimOrPath(contextObj, nodeObj, inputs::sourcePrim.token(), inputs::sourcePrimPath.token(), inputs::useSourcePath.token(), db.getInstanceIndex()); auto destPrimPath = getPrimOrPath(contextObj, nodeObj, inputs::targetPrim.token(), inputs::targetPrimPath.token(), inputs::useTargetPath.token(), db.getInstanceIndex()); if (sourcePrimPath.IsEmpty() || destPrimPath.IsEmpty()) return true; pxr::UsdPrim sourcePrim = getPrim(contextObj, sourcePrimPath); pxr::UsdPrim targetPrim = getPrim(contextObj, destPrimPath); pxr::UsdGeomXformCache xformCache; matrix4d destWorldTransform = safeCastToOmni(xformCache.GetLocalToWorldTransform(targetPrim)); matrix4d sourceParentTransform = safeCastToOmni(xformCache.GetParentToWorldTransform(sourcePrim)); quatd destWorldOrient = extractRotationQuatd(destWorldTransform).GetNormalized(); quatd sourceParentWorldOrient = extractRotationQuatd(sourceParentTransform).GetNormalized(); bool hasRotations = (destWorldOrient != quatd::GetIdentity()) or (sourceParentWorldOrient != quatd::GetIdentity()); if (startTime <= kUninitializedStartTime || now < startTime) { std::tie(startOrientation, targetAttribName) = XformUtils::extractPrimOrientOp(contextObj, sourcePrimPath); if (targetAttribName.IsEmpty()) { if (hasRotations) throw std::runtime_error( "RotateToTarget requires the source Prim to have xformOp:orient" " when the destination Prim or source Prim parent has rotation, please Add"); std::tie(startEuler, targetAttribName) = XformUtils::extractPrimEulerOp(contextObj, sourcePrimPath); if (not targetAttribName.IsEmpty()) rotationMode = XformUtils::RotationMode::eEuler; } else rotationMode = XformUtils::RotationMode::eQuat; if (targetAttribName.IsEmpty()) throw std::runtime_error( formatString("Could not find suitable XformOp on %s, please add", sourcePrimPath.GetText())); startTime = now; // Start sleeping db.outputs.finished() = kExecutionAttributeStateLatentPush; return true; } int exp = std::min(std::max(int(db.inputs.exponent()), 0), 10); float speed = std::max(0.f, float(db.inputs.speed())); // delta step float alpha = std::min(std::max(speed * float(now - startTime), 0.f), 1.f); // Ease out by applying a shifted exponential to the alpha float alpha2 = easeInOut<float>(0.f, 1.f, alpha, exp); // Convert dest prim transform to the source's parent frame matrix4d destLocalTransform = destWorldTransform / sourceParentTransform; if (rotationMode == XformUtils::RotationMode::eQuat) { const quatd& targetOrientation = extractRotationQuatd(destLocalTransform).GetNormalized(); quatd quat = GfSlerp(startOrientation, targetOrientation, alpha2).GetNormalized(); trySetPrimAttribute(contextObj, nodeObj, sourcePrimPath, targetAttribName.GetText(), quat); } else if (rotationMode == XformUtils::RotationMode::eEuler) { // FIXME: We previously checked that there is no rotation on the target, so we just have to interpolate // to identity. vec3d const targetRot{}; auto rot = GfLerp(alpha2, startEuler, targetRot); // Write back to the prim trySetPrimAttribute(contextObj, nodeObj, sourcePrimPath, targetAttribName.GetText(), rot); } if (alpha2 < 1) { // still waiting, output is disabled db.outputs.finished() = kExecutionAttributeStateDisabled; return true; } else { // Completed the maneuver startTime = kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } } catch(const std::exception& e) { db.logError(e.what()); return false; } } }; REGISTER_OGN_NODE() } // action } // graph } // omni
6,759
C++
37.850574
183
0.62169
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnTransformVector.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnTransformVectorDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/vec.h> using omni::math::linalg::matrix4d; using omni::math::linalg::matrix3d; using omni::math::linalg::vec3; using ogn::compute::tryComputeWithArrayBroadcasting; namespace omni { namespace graph { namespace nodes { namespace { template<typename T> bool tryComputeWithMatrix3(OgnTransformVectorDatabase& db) { auto functor = [&](auto& matrix, auto& vector, auto& result) { auto& transformMat = *reinterpret_cast<const matrix3d*>(matrix); auto sourceVec = vec3<double>(*reinterpret_cast<const vec3<T>*>(vector)); auto& resultVec = *reinterpret_cast<vec3<T>*>(result); // left multiplication by row vector resultVec = vec3<T>(sourceVec * transformMat); }; return tryComputeWithArrayBroadcasting<double[9], T[3], T[3]>(db.inputs.matrix(), db.inputs.vector(), db.outputs.result(), functor); } template<typename T> bool tryComputeWithMatrix4(OgnTransformVectorDatabase& db) { auto functor = [&](auto& matrix, auto& vector, auto& result) { auto& transformMat = *reinterpret_cast<const matrix4d*>(matrix); auto sourceVec = vec3<double>(*reinterpret_cast<const vec3<T>*>(vector)); auto& resultVec = *reinterpret_cast<vec3<T>*>(result); resultVec = vec3<T>(transformMat.Transform(sourceVec)); }; return tryComputeWithArrayBroadcasting<double[16], T[3], T[3]>(db.inputs.matrix(), db.inputs.vector(), db.outputs.result(), functor); } /* FIXME: GfHalf has no explicit conversion from double to half, so we need to convert to a float first */ template<> bool tryComputeWithMatrix3<pxr::GfHalf>(OgnTransformVectorDatabase& db) { auto functor = [&](auto& matrix, auto& vector, auto& result) { auto& transformMat = *reinterpret_cast<const matrix3d*>(matrix); auto sourceVec = vec3<double>(*reinterpret_cast<const vec3<pxr::GfHalf>*>(vector)); auto& resultVec = *reinterpret_cast<vec3<pxr::GfHalf>*>(result); // left multiplication by row vector resultVec = vec3<pxr::GfHalf>(vec3<float>(sourceVec * transformMat)); }; return tryComputeWithArrayBroadcasting<double[9], pxr::GfHalf[3], pxr::GfHalf[3]>(db.inputs.matrix(), db.inputs.vector(), db.outputs.result(), functor); } template<> bool tryComputeWithMatrix4<pxr::GfHalf>(OgnTransformVectorDatabase& db) { auto functor = [&](auto& matrix, auto& vector, auto& result) { auto& transformMat = *reinterpret_cast<const matrix4d*>(matrix); auto sourceVec = vec3<double>(*reinterpret_cast<const vec3<pxr::GfHalf>*>(vector)); auto& resultVec = *reinterpret_cast<vec3<pxr::GfHalf>*>(result); resultVec = vec3<pxr::GfHalf>(vec3<float>(transformMat.Transform(sourceVec))); }; return tryComputeWithArrayBroadcasting<double[16], pxr::GfHalf[3], pxr::GfHalf[3]>(db.inputs.matrix(), db.inputs.vector(), db.outputs.result(), functor); } } // namespace class OgnTransformVector { public: static bool compute(OgnTransformVectorDatabase& db) { try { // matrix3 if (tryComputeWithMatrix3<double>(db)) return true; else if (tryComputeWithMatrix3<float>(db)) return true; else if (tryComputeWithMatrix3<pxr::GfHalf>(db)) return true; // matrix4 else if (tryComputeWithMatrix4<double>(db)) return true; else if (tryComputeWithMatrix4<float>(db)) return true; else if (tryComputeWithMatrix4<pxr::GfHalf>(db)) return true; else { db.logWarning("OgnTransformVector: Failed to resolve input types"); } } catch (ogn::compute::InputError &error) { db.logWarning("OgnTransformVector: %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node){ auto vector = node.iNode->getAttributeByToken(node, inputs::vector.token()); auto matrix = node.iNode->getAttributeByToken(node, inputs::matrix.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto vectorType = vector.iAttribute->getResolvedType(vector); auto matrixType = matrix.iAttribute->getResolvedType(matrix); // Require vector, matrix to be resolved before determining result's type if (vectorType.baseType != BaseDataType::eUnknown && matrixType.baseType != BaseDataType::eUnknown) { Type resultType(vectorType.baseType, vectorType.componentCount, std::max(vectorType.arrayDepth, matrixType.arrayDepth), vectorType.role); result.iAttribute->setResolvedType(result, resultType); } } }; REGISTER_OGN_NODE() } } }
5,308
C++
38.325926
157
0.679352
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnTranslateToLocation.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnTranslateToLocationDatabase.h> #include <omni/math/linalg/vec.h> #include <omni/math/linalg/math.h> #include "PrimCommon.h" #include "XformUtils.h" using omni::math::linalg::vec3d; using omni::math::linalg::GfLerp; namespace omni { namespace graph { namespace nodes { namespace { constexpr double kUninitializedStartTime = -1.; } struct TranslateMoveState : public XformUtils::MoveState { vec3d targetTranslate; }; class OgnTranslateToLocation { TranslateMoveState m_moveState; public: static bool compute(OgnTranslateToLocationDatabase& db) { auto& nodeObj = db.abi_node(); const auto& contextObj = db.abi_context(); auto iContext = contextObj.iContext; double now = iContext->getTimeSinceStart(contextObj); auto& state = db.internalState<OgnTranslateToLocation>(); double& startTime = state.m_moveState.startTime; vec3d& startTranslation = state.m_moveState.startTranslation; vec3d& targetTranslation = state.m_moveState.targetTranslate; if (db.inputs.stop() != kExecutionAttributeStateDisabled) { startTime = kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } try { auto primPath = getPrimOrPath(contextObj, nodeObj, inputs::prim.token(), inputs::primPath.token(), inputs::usePath.token(), db.getInstanceIndex()); if (primPath.IsEmpty()) return true; if (startTime <= kUninitializedStartTime || now < startTime) { // Set state variables try { startTranslation = tryGetPrimVec3dAttribute(contextObj, nodeObj, primPath, XformUtils::TranslationAttrStr); } catch (std::runtime_error const& error) { db.logError(error.what()); return false; } startTime = now; targetTranslation = db.inputs.target(); // This is the first entry, start sleeping db.outputs.finished() = kExecutionAttributeStateLatentPush; return true; } int exp = std::min(std::max(int(db.inputs.exponent()), 0), 10); float speed = std::max(0.f, float(db.inputs.speed())); // delta step float alpha = std::min(std::max(speed * float(now - startTime), 0.f), 1.f); // Ease out by applying a shifted exponential to the alpha float alpha2 = easeInOut<float>(0.f, 1.f, alpha, exp); vec3d translation = GfLerp(alpha2, startTranslation, targetTranslation); // Write back to the prim try { trySetPrimAttribute(contextObj, nodeObj, primPath, XformUtils::TranslationAttrStr, translation); } catch (std::runtime_error const& error) { db.logError(error.what()); return false; } if (alpha2 < 1) { // still waiting db.outputs.finished() = kExecutionAttributeStateDisabled; return true; } else { // Completed the maneuver startTime = kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } } catch(const std::exception& e) { db.logError(e.what()); return true; } } }; REGISTER_OGN_NODE() } // action } // graph } // omni
4,230
C++
29.65942
127
0.582033
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnTranslateToTarget.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnTranslateToTargetDatabase.h> #include <omni/math/linalg/quat.h> #include <omni/math/linalg/vec.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/math.h> #include <omni/math/linalg/SafeCast.h> #include <omni/graph/core/PreUsdInclude.h> #include <pxr/usd/usdGeom/xformCache.h> #include <omni/graph/core/PostUsdInclude.h> #include "PrimCommon.h" #include "XformUtils.h" using namespace omni::math::linalg; namespace omni { namespace graph { namespace nodes { namespace { constexpr double kUninitializedStartTime = -1.; } class OgnTranslateToTarget { XformUtils::MoveState m_moveState; public: static bool compute(OgnTranslateToTargetDatabase& db) { auto& nodeObj = db.abi_node(); const auto& contextObj = db.abi_context(); auto iContext = contextObj.iContext; double now = iContext->getTimeSinceStart(contextObj); auto& state = db.internalState<OgnTranslateToTarget>(); double& startTime = state.m_moveState.startTime; vec3d& startTranslation = state.m_moveState.startTranslation; if (db.inputs.stop() != kExecutionAttributeStateDisabled) { startTime = kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } try { auto sourcePrimPath = getPrimOrPath(contextObj, nodeObj, inputs::sourcePrim.token(), inputs::sourcePrimPath.token(), inputs::useSourcePath.token(), db.getInstanceIndex()); auto destPrimPath = getPrimOrPath(contextObj, nodeObj, inputs::targetPrim.token(), inputs::targetPrimPath.token(), inputs::useTargetPath.token(), db.getInstanceIndex()); if (sourcePrimPath.IsEmpty() || destPrimPath.IsEmpty()) return true; // First frame of the maneuver. if (startTime <= kUninitializedStartTime || now < startTime) { try { startTranslation = tryGetPrimVec3dAttribute(contextObj, nodeObj, sourcePrimPath, XformUtils::TranslationAttrStr); } catch (std::runtime_error const& error) { db.logError(error.what()); return false; } startTime = now; // Start sleeping db.outputs.finished() = kExecutionAttributeStateLatentPush; return true; } int exp = std::min(std::max(int(db.inputs.exponent()), 0), 10); float speed = std::max(0.f, float(db.inputs.speed())); pxr::UsdPrim sourcePrim = getPrim(contextObj, sourcePrimPath); pxr::UsdPrim targetPrim = getPrim(contextObj, destPrimPath); pxr::UsdGeomXformCache xformCache; // Convert dest prim transform to the source's parent frame matrix4d destWorldTransform = safeCastToOmni(xformCache.GetLocalToWorldTransform(targetPrim)); matrix4d sourceParentTransform = safeCastToOmni(xformCache.GetParentToWorldTransform(sourcePrim)); matrix4d destLocalTransform = destWorldTransform / sourceParentTransform; const vec3d& targetTranslation = destLocalTransform.ExtractTranslation(); // delta step float alpha = std::min(std::max(speed * float(now - startTime), 0.f), 1.f); // Ease out by applying a shifted exponential to the alpha float alpha2 = easeInOut<float>(0.f, 1.f, alpha, exp); vec3d translation = GfLerp(alpha2, startTranslation, targetTranslation); // Write back to the prim try { trySetPrimAttribute(contextObj, nodeObj, sourcePrimPath, XformUtils::TranslationAttrStr, translation); } catch (std::runtime_error const& error) { db.logError(error.what()); return false; } if (alpha2 < 1) { // still waiting, output is disabled db.outputs.finished() = kExecutionAttributeStateDisabled; return true; } else { // Completed the maneuver startTime = kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } } catch(const std::exception& e) { db.logError(e.what()); return true; } } }; REGISTER_OGN_NODE() } // action } // graph } // omni
5,199
C++
33.437086
118
0.604155
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnRotateToOrientation.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnRotateToOrientationDatabase.h> #include <omni/math/linalg/quat.h> #include <omni/math/linalg/vec.h> #include <omni/math/linalg/matrix.h> #include "PrimCommon.h" #include "XformUtils.h" using namespace omni::math::linalg; namespace omni { namespace graph { namespace nodes { struct RotateMoveState: public XformUtils::MoveState { vec3d targetEuler; }; class OgnRotateToOrientation { public: RotateMoveState m_moveState; static bool compute(OgnRotateToOrientationDatabase& db) { auto& nodeObj = db.abi_node(); const auto& contextObj = db.abi_context(); auto iContext = contextObj.iContext; double now = iContext->getTimeSinceStart(contextObj); auto& state = db.internalState<OgnRotateToOrientation>(); double& startTime = state.m_moveState.startTime; pxr::TfToken& targetAttribName = state.m_moveState.targetAttribName; quatd& startOrientation = state.m_moveState.startOrientation; vec3d& startEuler = state.m_moveState.startEuler; vec3d& targetEuler = state.m_moveState.targetEuler; XformUtils::RotationMode& rotationMode = state.m_moveState.rotationMode; if (db.inputs.stop() != kExecutionAttributeStateDisabled) { startTime = XformUtils::kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } try { auto primPath = getPrimOrPath(contextObj, nodeObj, inputs::prim.token(), inputs::primPath.token(), inputs::usePath.token(), db.getInstanceIndex()); if (primPath.IsEmpty()) return true; // First frame of the maneuver. if (startTime <= XformUtils::kUninitializedStartTime || now < startTime) { try { std::tie(startOrientation, targetAttribName) = XformUtils::extractPrimOrientOp(contextObj, primPath); if (not targetAttribName.IsEmpty()) rotationMode = XformUtils::RotationMode::eQuat; else { std::tie(startEuler, targetAttribName) = XformUtils::extractPrimEulerOp(contextObj, primPath); if (not targetAttribName.IsEmpty()) rotationMode = XformUtils::RotationMode::eEuler; } if (targetAttribName.IsEmpty()) throw std::runtime_error( formatString("Could not find suitable XformOp on %s, please add", primPath.GetText())); } catch (std::runtime_error const& error) { db.logError(error.what()); return false; } // Copy the target in case it changes during the movement targetEuler = db.inputs.target(); startTime = now; // Start sleeping db.outputs.finished() = kExecutionAttributeStateLatentPush; return true; } int exp = std::min(std::max(int(db.inputs.exponent()), 0), 10); float speed = std::max(0.f, float(db.inputs.speed())); // delta step float alpha = std::min(std::max(speed * float(now - startTime), 0.f), 1.f); // Ease out by applying a shifted exponential to the alpha float alpha2 = easeInOut<float>(0.f, 1.f, alpha, exp); try { if (rotationMode == XformUtils::RotationMode::eQuat) { quatd const& targetOrientation = eulerAnglesToQuaternion(GfDegreesToRadians(targetEuler), EulerRotationOrder::XYZ); auto const quat = GfSlerp(startOrientation, targetOrientation, alpha2).GetNormalized(); // Write back to the prim trySetPrimAttribute( contextObj, nodeObj, primPath, targetAttribName.GetText(), quat); } else if (rotationMode == XformUtils::RotationMode::eEuler) { vec3d rot = lerp(startEuler, targetEuler, alpha2); // Write back to the prim trySetPrimAttribute( contextObj, nodeObj, primPath, targetAttribName.GetText(), rot); } } catch (std::runtime_error const& error) { db.logError(error.what()); return false; } if (alpha2 < 1) { // still waiting, output is disabled db.outputs.finished() = kExecutionAttributeStateDisabled; return true; } else { // Completed the maneuver startTime = XformUtils::kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } } catch(const std::exception& e) { db.logError(e.what()); return true; } } }; REGISTER_OGN_NODE() } // action } // graph } // omni
5,830
C++
34.773006
118
0.559863
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnMoveToTransform.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnMoveToTransformDatabase.h> #include <omni/math/linalg/quat.h> #include <omni/math/linalg/vec.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/math.h> #include <omni/math/linalg/SafeCast.h> #include <cmath> #include "PrimCommon.h" #include "XformUtils.h" using namespace omni::math::linalg; namespace omni { namespace graph { namespace nodes { namespace { constexpr double kUninitializedStartTime = -1.; } struct MoveMoveState : public XformUtils::MoveState { matrix4d targetTransform; }; class OgnMoveToTransform { public: MoveMoveState m_moveState; static bool compute(OgnMoveToTransformDatabase& db) { auto& nodeObj = db.abi_node(); const auto& contextObj = db.abi_context(); auto iContext = contextObj.iContext; double now = iContext->getTimeSinceStart(contextObj); auto& state = db.internalState<OgnMoveToTransform>(); double& startTime = state.m_moveState.startTime; pxr::TfToken& targetAttribName = state.m_moveState.targetAttribName; quatd& startOrientation = state.m_moveState.startOrientation; vec3d& startTranslation = state.m_moveState.startTranslation; matrix4d& targetTransform = state.m_moveState.targetTransform; vec3d& startScale = state.m_moveState.startScale; XformUtils::RotationMode& rotationMode = state.m_moveState.rotationMode; if (db.inputs.stop() != kExecutionAttributeStateDisabled) { startTime = kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } try { auto primPath = getPrimOrPath(contextObj, nodeObj, inputs::prim.token(), inputs::primPath.token(), inputs::usePath.token(), db.getInstanceIndex()); if (primPath.IsEmpty()) return true; // First frame of the maneuver. if (startTime <= kUninitializedStartTime || now < startTime) { try { std::tie(startOrientation, targetAttribName) = XformUtils::extractPrimOrientOp(contextObj, primPath); if (targetAttribName.IsEmpty()) throw std::runtime_error("MoveToTransform requires the source Prim to have xformOp:orient, please add"); rotationMode = XformUtils::RotationMode::eQuat; startTranslation = tryGetPrimVec3dAttribute(contextObj, nodeObj, primPath, XformUtils::TranslationAttrStr); startScale = tryGetPrimVec3dAttribute(contextObj, nodeObj, primPath, XformUtils::ScaleAttrStr); } catch (std::runtime_error const& error) { db.logError(error.what()); return false; } startTime = now; targetTransform = db.inputs.target(); // Start sleeping db.outputs.finished() = kExecutionAttributeStateLatentPush; return true; } int exp = std::min(std::max(int(db.inputs.exponent()), 0), 10); float speed = std::max(0.f, float(db.inputs.speed())); // delta step float alpha = std::min(std::max(speed * float(now - startTime), 0.f), 1.f); // Ease out by applying a shifted exponential to the alpha float alpha2 = easeInOut<float>(0.f, 1.f, alpha, exp); try { if (rotationMode == XformUtils::RotationMode::eQuat) { quatd targetOrientation = extractRotationQuatd(targetTransform).GetNormalized(); quatd quat = GfSlerp(startOrientation, targetOrientation, alpha2).GetNormalized(); // Write back to the prim trySetPrimAttribute(contextObj, nodeObj, primPath, targetAttribName.GetText(), quat); } vec3d targetTranslation = targetTransform.ExtractTranslation(); vec3d targetScale{ targetTransform.GetRow(0).GetLength(), targetTransform.GetRow(1).GetLength(), targetTransform.GetRow(2).GetLength() }; vec3d translation = GfLerp(alpha2, startTranslation, targetTranslation); vec3d scale = GfLerp(alpha2, startScale, targetScale); // Write back to the prim trySetPrimAttribute(contextObj, nodeObj, primPath, XformUtils::TranslationAttrStr, translation); trySetPrimAttribute(contextObj, nodeObj, primPath, XformUtils::ScaleAttrStr, scale); } catch (std::runtime_error const& error) { db.logError(error.what()); return false; } if (alpha2 < 1) { // still waiting, output is disabled db.outputs.finished() = kExecutionAttributeStateDisabled; return true; } else { // Completed the maneuver startTime = kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } } catch(const std::exception& e) { db.logError(e.what()); return false; } } }; REGISTER_OGN_NODE() } // action } // graph } // omni
6,047
C++
35
128
0.593187
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnSetMatrix4Rotation.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnSetMatrix4RotationDatabase.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/quat.h> #include <omni/math/linalg/vec.h> #include <cmath> using omni::math::linalg::matrix4d; using omni::math::linalg::quatd; using omni::math::linalg::vec3d; namespace omni { namespace graph { namespace nodes { namespace { void updateMatrix(const double input[16], double result[16], vec3d axis, double angle) { matrix4d& resultMat = *reinterpret_cast<matrix4d*>(result); memcpy(resultMat.data(), input, sizeof(double) * 16); axis.Normalize(); // 0.5 is because quaternions cover the space of rotations twice angle = 0.5f * omni::math::linalg::GfDegreesToRadians(angle); double c = std::cos(angle); double s = std::sin(angle); resultMat.SetRotateOnly(quatd(c, s * axis)); } } class OgnSetMatrix4Rotation { public: static bool compute(OgnSetMatrix4RotationDatabase& db) { vec3d axis(0); const auto& fixedRotationAxis = db.inputs.fixedRotationAxis(); if (fixedRotationAxis == db.tokens.X) { axis[0] = 1; } else if (fixedRotationAxis == db.tokens.Z) { axis[2] = 1; } else if (fixedRotationAxis == db.tokens.Y || fixedRotationAxis == omni::fabric::kUninitializedToken) { axis[1] = 1; } else { db.logError("fixedRotationAxis must be one of X,Y,Z"); return false; } const auto& matrixInput = db.inputs.matrix(); const auto& rotationAngleInput = db.inputs.rotationAngle(); auto matrixOutput = db.outputs.matrix(); bool failed = true; // Singular case if (auto matrix = matrixInput.get<double[16]>()) { if (auto rotationAngle = rotationAngleInput.get<double>()) { if (auto output = matrixOutput.get<double[16]>()) { updateMatrix(*matrix, *output, axis, *rotationAngle); failed = false; } } } // Array case else if (auto matrices = matrixInput.get<double[][16]>()) { if (auto rotationAngles = rotationAngleInput.get<double[]>()) { if (auto output = matrixOutput.get<double[][16]>()) { output->resize(matrices->size()); for (size_t i = 0; i < matrices.size(); i++) { updateMatrix((*matrices)[i], (*output)[i], axis, (*rotationAngles)[i]); } failed = false; } } } else { db.logError("Input type for matrix input not supported"); return false; } if (failed) { db.logError("Input and output depths need to align: Matrix input with depth %s, rotation angles input with depth %s, and output with depth %s", matrixInput.type().arrayDepth, rotationAngleInput.type().arrayDepth, matrixOutput.type().arrayDepth); return false; } return true; } static void onConnectionTypeResolve(const NodeObj& node){ // Resolve fully-coupled types for the 2 attributes std::array<AttributeObj, 2> attrs { node.iNode->getAttribute(node, OgnSetMatrix4RotationAttributes::inputs::matrix.m_name), node.iNode->getAttribute(node, OgnSetMatrix4RotationAttributes::outputs::matrix.m_name) }; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); } }; REGISTER_OGN_NODE() } } }
4,103
C++
32.639344
156
0.595662
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnGetPrimDirectionVector.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnGetPrimDirectionVectorDatabase.h> #include <omni/math/linalg/quat.h> #include <omni/math/linalg/vec.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/SafeCast.h> #include <omni/graph/core/PreUsdInclude.h> #include <pxr/usd/usdGeom/xformCache.h> #include <omni/graph/core/PostUsdInclude.h> #include "PrimCommon.h" #include "XformUtils.h" using namespace omni::math::linalg; namespace omni { namespace graph { namespace nodes { class OgnGetPrimDirectionVector { public: static bool compute(OgnGetPrimDirectionVectorDatabase& db) { auto& nodeObj = db.abi_node(); const auto& contextObj = db.abi_context(); auto iContext = contextObj.iContext; try { // Retrieve the prim path string in one of two ways bool usePath = db.inputs.usePath(); std::string primPathStr; if (usePath) { // Use the absolute path NameToken primPath = db.inputs.primPath(); primPathStr = db.tokenToString(primPath); if (primPathStr.empty()) { db.logWarning("No prim path specified"); return false; } } else { // Read the path from the relationship input on this compute node auto primPath = getRelationshipPrimPath( contextObj, nodeObj, OgnGetPrimDirectionVectorAttributes::inputs::prim.m_token, db.getInstanceIndex()); primPathStr = primPath.GetText(); } // Retrieve a reference to the prim pxr::UsdPrim prim = getPrim(contextObj, pxr::SdfPath(primPathStr)); // Extract the rotation from the local to world transformation matrix pxr::UsdGeomXformCache xformCache; matrix4d localWorldTransform = safeCastToOmni(xformCache.GetLocalToWorldTransform(prim)); quatd rotation = extractRotationQuatd(localWorldTransform).GetNormalized(); // Apply the rotation to (0,1,0) to get the up vector vec3<double> upVector = rotation.Transform(vec3<double>::YAxis()); db.outputs.upVector() = upVector; db.outputs.downVector() = -upVector; // Apply the rotation to (0,0,-1) to get the forward vector vec3<double> forwardVector = rotation.Transform(-vec3<double>::ZAxis()); db.outputs.forwardVector() = forwardVector; db.outputs.backwardVector() = -forwardVector; // Apply the rotation to (1,0,0) to get the right vector vec3<double> rightVector = rotation.Transform(vec3<double>::XAxis()); db.outputs.rightVector() = rightVector; db.outputs.leftVector() = -rightVector; return true; } catch(const std::exception& e) { db.logError(e.what()); return false; } } }; REGISTER_OGN_NODE() } // nodes } // graph } // omni
3,520
C++
32.216981
123
0.617614
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnGetMatrix4Translation.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnGetMatrix4TranslationDatabase.h> #include <omni/math/linalg/vec.h> #include <omni/math/linalg/matrix.h> using omni::math::linalg::matrix4d; using omni::math::linalg::vec3d; namespace omni { namespace graph { namespace nodes { namespace { void getTranslation(const double input[16], double result[4]) { vec3d translation = reinterpret_cast<const matrix4d*>(input)->ExtractTranslation(); memcpy(result, translation.data(), sizeof(double) * 3); } } class OgnGetMatrix4Translation { public: static bool computeVectorized(OgnGetMatrix4TranslationDatabase& db, size_t count) { const auto& matrixInput = db.inputs.matrix(); bool inOk = false; bool failed = true; // Singular case if (matrixInput.type().arrayDepth == 0) { if (auto matrix = matrixInput.get<double[16]>()) { inOk = true; auto translationOutput = db.outputs.translation(); if (auto output = translationOutput.get<double[3]>()) { auto matrices = matrix.vectorized(count); auto outputs = output.vectorized(count); for (size_t i = 0; i < count; ++i) getTranslation(matrices[i], outputs[i]); failed = false; } } } // Array case else { for (size_t inst = 0; inst < count; ++inst) { if (auto matrices = db.inputs.matrix(inst).get<double[][16]>()) { inOk = true; if (auto output = db.outputs.translation(inst).get<double[][3]>()) { output->resize(matrices->size()); for (size_t i = 0; i < matrices.size(); i++) { getTranslation((*matrices)[i], (*output)[i]); } failed = false; } } } } if (!inOk) { db.logError("Input type for matrix input not supported"); return false; } if (failed) { db.logError("Input and output depths need to align: Matrix input with depth %s, output with depth %s", matrixInput.type().arrayDepth, db.outputs.translation().type().arrayDepth); return false; } return true; } static void onConnectionTypeResolve(const NodeObj& node) { auto start = node.iNode->getAttribute(node, OgnGetMatrix4TranslationAttributes::inputs::matrix.m_name); auto result = node.iNode->getAttribute(node, OgnGetMatrix4TranslationAttributes::outputs::translation.m_name); auto startType = start.iAttribute->getResolvedType(start); std::array<AttributeObj, 2> attrs { start, result }; std::array<uint8_t, 2> tupleCounts { 16, 3 }; std::array<uint8_t, 2> arrayDepths { startType.arrayDepth, startType.arrayDepth }; std::array<AttributeRole, 2> rolesBuf { AttributeRole::eNone, AttributeRole::eVector }; node.iNode->resolvePartiallyCoupledAttributes(node, attrs.data(), tupleCounts.data(), arrayDepths.data(), rolesBuf.data(), attrs.size()); } }; REGISTER_OGN_NODE() } } }
3,907
C++
32.689655
118
0.562836
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnGetMatrix4Rotation.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnGetMatrix4RotationDatabase.h> #include <omni/graph/core/PreUsdInclude.h> #include <pxr/base/gf/rotation.h> #include <omni/graph/core/PostUsdInclude.h> namespace omni { namespace graph { namespace nodes { namespace { void getRotation(const double input[16], double result[3]) { pxr::GfVec3d rotation = reinterpret_cast<const pxr::GfMatrix4d*>(input)->DecomposeRotation(pxr::GfVec3d::XAxis(), pxr::GfVec3d::YAxis(), pxr::GfVec3d::ZAxis()); memcpy(result, rotation.data(), sizeof(double) * 3); } } class OgnGetMatrix4Rotation { public: static bool compute(OgnGetMatrix4RotationDatabase& db) { const auto& matrixInput = db.inputs.matrix(); auto rotationOutput = db.outputs.rotation(); bool failed = true; // Singular case if (auto matrix = matrixInput.get<double[16]>()) { if (auto output = rotationOutput.get<double[3]>()) { getRotation(*matrix, *output); failed = false; } } // Array case else if (auto matrices = matrixInput.get<double[][16]>()) { if (auto output = rotationOutput.get<double[][3]>()) { output->resize(matrices->size()); for (size_t i = 0; i < matrices.size(); i++) { getRotation((*matrices)[i], (*output)[i]); } failed = false; } } else { db.logError("Input type for matrix input not supported"); return false; } if (failed) { db.logError("Input and output depths need to align: Matrix input with depth %s, output with depth %s", matrixInput.type().arrayDepth, rotationOutput.type().arrayDepth); return false; } return true; } static void onConnectionTypeResolve(const NodeObj& node) { auto start = node.iNode->getAttribute(node, OgnGetMatrix4RotationAttributes::inputs::matrix.m_name); auto result = node.iNode->getAttribute(node, OgnGetMatrix4RotationAttributes::outputs::rotation.m_name); auto startType = start.iAttribute->getResolvedType(start); std::array<AttributeObj, 2> attrs { start, result }; std::array<uint8_t, 2> tupleCounts { 16, 3 }; std::array<uint8_t, 2> arrayDepths { startType.arrayDepth, startType.arrayDepth }; std::array<AttributeRole, 2> rolesBuf { AttributeRole::eNone, AttributeRole::eVector }; node.iNode->resolvePartiallyCoupledAttributes(node, attrs.data(), tupleCounts.data(), arrayDepths.data(), rolesBuf.data(), attrs.size()); } }; REGISTER_OGN_NODE() } } }
3,276
C++
32.438775
168
0.606227
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnMakeTransform.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnMakeTransformDatabase.h> #include <omni/math/linalg/quat.h> #include <omni/math/linalg/matrix.h> using omni::math::linalg::quatd; using omni::math::linalg::matrix4d; namespace omni { namespace graph { namespace nodes { class OgnMakeTransform { public: static bool compute(OgnMakeTransformDatabase& db) { auto& translation = db.inputs.translation(); auto& orientation = db.inputs.rotationXYZ(); auto& scale = db.inputs.scale(); const quatd q = omni::math::linalg::eulerAnglesToQuaternion(GfDegreesToRadians(orientation), omni::math::linalg::EulerRotationOrder::XYZ).GetNormalized(); db.outputs.transform() = matrix4d().SetScale(scale) * matrix4d().SetRotate(q) * matrix4d().SetTranslate(translation); return true; } }; REGISTER_OGN_NODE() } } }
1,264
C++
27.749999
162
0.732595
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnGetMatrix4Quaternion.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnGetMatrix4QuaternionDatabase.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/quat.h> #include "XformUtils.h" using omni::math::linalg::matrix4d; using omni::math::linalg::quatd; namespace omni { namespace graph { namespace nodes { namespace { void getQuaternion(const double input[16], double result[4]) { quatd quat = extractRotationQuatd(*reinterpret_cast<const matrix4d*>(input)); // In fabric, quaternions are stored as (XYZW). Note the quatd constructor uses (WXYZ)s memcpy(&result[0], quat.GetImaginary().data(), sizeof(double) * 3); result[3] = quat.GetReal(); } } class OgnGetMatrix4Quaternion { public: static bool compute(OgnGetMatrix4QuaternionDatabase& db) { const auto& matrixInput = db.inputs.matrix(); auto quaternionOutput = db.outputs.quaternion(); bool failed = true; // Singular case if (auto matrix = matrixInput.get<double[16]>()) { if (auto output = quaternionOutput.get<double[4]>()) { getQuaternion(*matrix, *output); failed = false; } } // Array case else if (auto matrices = matrixInput.get<double[][16]>()) { if (auto output = quaternionOutput.get<double[][4]>()) { output->resize(matrices->size()); for (size_t i = 0; i < matrices.size(); i++) { getQuaternion((*matrices)[i], (*output)[i]); } failed = false; } } else { db.logError("Input type for matrix input not supported"); return false; } if (failed) { db.logError("Input and output depths need to align: Matrix input with depth %s, output with depth %s", matrixInput.type().arrayDepth, quaternionOutput.type().arrayDepth); return false; } return true; } static void onConnectionTypeResolve(const NodeObj& node) { auto start = node.iNode->getAttribute(node, OgnGetMatrix4QuaternionAttributes::inputs::matrix.m_name); auto result = node.iNode->getAttribute(node, OgnGetMatrix4QuaternionAttributes::outputs::quaternion.m_name); auto startType = start.iAttribute->getResolvedType(start); std::array<AttributeObj, 2> attrs { start, result }; std::array<uint8_t, 2> tupleCounts { 16, 4 }; std::array<uint8_t, 2> arrayDepths { startType.arrayDepth, startType.arrayDepth }; std::array<AttributeRole, 2> rolesBuf { AttributeRole::eNone, AttributeRole::eQuaternion }; node.iNode->resolvePartiallyCoupledAttributes(node, attrs.data(), tupleCounts.data(), arrayDepths.data(), rolesBuf.data(), attrs.size()); } }; REGISTER_OGN_NODE() } } }
3,416
C++
32.5
116
0.61007
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnRotateVector.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnRotateVectorDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/vec.h> #include <omni/math/linalg/quat.h> using omni::math::linalg::matrix4d; using omni::math::linalg::matrix3d; using omni::math::linalg::vec3; using omni::math::linalg::quat; using ogn::compute::tryComputeWithArrayBroadcasting; namespace omni { namespace graph { namespace nodes { namespace { template<typename T> bool tryComputeWithMatrix3(OgnRotateVectorDatabase& db) { auto functor = [&](auto& rotation, auto& vector, auto& result) { auto& matrix = *reinterpret_cast<const matrix3d*>(rotation); auto sourceVec = vec3<double>(*reinterpret_cast<const vec3<T>*>(vector)); auto& resultVec = *reinterpret_cast<vec3<T>*>(result); // left multiplication by row vector resultVec = vec3<T>(sourceVec * matrix); }; return tryComputeWithArrayBroadcasting<double[9], T[3], T[3]>(db.inputs.rotation(), db.inputs.vector(), db.outputs.result(), functor); } template<typename T> bool tryComputeWithMatrix4(OgnRotateVectorDatabase& db) { auto functor = [&](auto& rotation, auto& vector, auto& result) { auto& matrix = *reinterpret_cast<const matrix4d*>(rotation); auto sourceVec = vec3<double>(*reinterpret_cast<const vec3<T>*>(vector)); auto& resultVec = *reinterpret_cast<vec3<T>*>(result); resultVec = vec3<T>(matrix.TransformDir(sourceVec)); }; return tryComputeWithArrayBroadcasting<double[16], T[3], T[3]>(db.inputs.rotation(), db.inputs.vector(), db.outputs.result(), functor); } template<typename T> bool tryComputeWithQuat(OgnRotateVectorDatabase& db) { auto functor = [&](auto& rotation, auto& vector, auto& result) { auto& quaternion = *reinterpret_cast<const quat<T>*>(rotation); auto& sourceVec = *reinterpret_cast<const vec3<T>*>(vector); auto& resultVec = *reinterpret_cast<vec3<T>*>(result); resultVec = quaternion.Transform(sourceVec); }; return tryComputeWithArrayBroadcasting<T[4], T[3], T[3]>(db.inputs.rotation(), db.inputs.vector(), db.outputs.result(), functor); } template<typename T> bool tryComputeWithEulerAngles(OgnRotateVectorDatabase& db) { auto functor = [&](auto& rotation, auto& vector, auto& result) { auto eulerAngles = vec3<double>(*reinterpret_cast<const vec3<T>*>(rotation)); auto sourceVec = vec3<double>(*reinterpret_cast<const vec3<T>*>(vector)); auto& resultVec = *reinterpret_cast<vec3<T>*>(result); auto quaternion = omni::math::linalg::eulerAnglesToQuaternion(GfDegreesToRadians(eulerAngles), omni::math::linalg::EulerRotationOrder::XYZ); resultVec = vec3<T>(quaternion.Transform(sourceVec)); }; return tryComputeWithArrayBroadcasting<T[3], T[3], T[3]>(db.inputs.rotation(), db.inputs.vector(), db.outputs.result(), functor); } /* FIXME: GfHalf has no explicit conversion from double to half, so we need to convert to a float first */ template<> bool tryComputeWithMatrix3<pxr::GfHalf>(OgnRotateVectorDatabase& db) { auto functor = [&](auto& rotation, auto& vector, auto& result) { auto& matrix = *reinterpret_cast<const matrix3d*>(rotation); auto sourceVec = vec3<double>(*reinterpret_cast<const vec3<pxr::GfHalf>*>(vector)); auto& resultVec = *reinterpret_cast<vec3<pxr::GfHalf>*>(result); // left multiplication by row vector resultVec = vec3<pxr::GfHalf>(vec3<float>(sourceVec * matrix)); }; return tryComputeWithArrayBroadcasting<double[9], pxr::GfHalf[3], pxr::GfHalf[3]>(db.inputs.rotation(), db.inputs.vector(), db.outputs.result(), functor); } template<> bool tryComputeWithMatrix4<pxr::GfHalf>(OgnRotateVectorDatabase& db) { auto functor = [&](auto& rotation, auto& vector, auto& result) { auto& matrix = *reinterpret_cast<const matrix4d*>(rotation); auto sourceVec = vec3<double>(*reinterpret_cast<const vec3<pxr::GfHalf>*>(vector)); auto& resultVec = *reinterpret_cast<vec3<pxr::GfHalf>*>(result); resultVec = vec3<pxr::GfHalf>(vec3<float>(matrix.TransformDir(sourceVec))); }; return tryComputeWithArrayBroadcasting<double[16], pxr::GfHalf[3], pxr::GfHalf[3]>(db.inputs.rotation(), db.inputs.vector(), db.outputs.result(), functor); } template<> bool tryComputeWithEulerAngles<pxr::GfHalf>(OgnRotateVectorDatabase& db) { auto functor = [&](auto& rotation, auto& vector, auto& result) { auto eulerAngles = vec3<double>(*reinterpret_cast<const vec3<pxr::GfHalf>*>(rotation)); auto sourceVec = vec3<double>(*reinterpret_cast<const vec3<pxr::GfHalf>*>(vector)); auto& resultVec = *reinterpret_cast<vec3<pxr::GfHalf>*>(result); auto quaternion = omni::math::linalg::eulerAnglesToQuaternion(GfDegreesToRadians(eulerAngles), omni::math::linalg::EulerRotationOrder::XYZ); resultVec = vec3<pxr::GfHalf>(vec3<float>(quaternion.Transform(sourceVec))); }; return tryComputeWithArrayBroadcasting<pxr::GfHalf[3], pxr::GfHalf[3], pxr::GfHalf[3]>(db.inputs.rotation(), db.inputs.vector(), db.outputs.result(), functor); } } // namespace class OgnRotateVector { public: static bool compute(OgnRotateVectorDatabase& db) { try { // matrix3 if (tryComputeWithMatrix3<double>(db)) return true; else if (tryComputeWithMatrix3<float>(db)) return true; else if (tryComputeWithMatrix3<pxr::GfHalf>(db)) return true; // matrix4 else if (tryComputeWithMatrix4<double>(db)) return true; else if (tryComputeWithMatrix4<float>(db)) return true; else if (tryComputeWithMatrix4<pxr::GfHalf>(db)) return true; // quat else if (tryComputeWithQuat<double>(db)) return true; else if (tryComputeWithQuat<float>(db)) return true; else if (tryComputeWithQuat<pxr::GfHalf>(db)) return true; // euler angles else if (tryComputeWithEulerAngles<double>(db)) return true; else if (tryComputeWithEulerAngles<float>(db)) return true; else if (tryComputeWithEulerAngles<pxr::GfHalf>(db)) return true; else { db.logWarning("OgnRotateVector: Failed to resolve input types"); } } catch (ogn::compute::InputError &error) { db.logWarning("OgnRotateVector: %s", error.what()); } return false; } static void onConnectionTypeResolve(const NodeObj& node) { auto vector = node.iNode->getAttributeByToken(node, inputs::vector.token()); auto rotation = node.iNode->getAttributeByToken(node, inputs::rotation.token()); auto result = node.iNode->getAttributeByToken(node, outputs::result.token()); auto vectorType = vector.iAttribute->getResolvedType(vector); auto rotationType = rotation.iAttribute->getResolvedType(rotation); // Require vector, rotation to be resolved before determining result's type if (vectorType.baseType != BaseDataType::eUnknown && rotationType.baseType != BaseDataType::eUnknown) { Type resultType(vectorType.baseType, vectorType.componentCount, std::max(vectorType.arrayDepth, rotationType.arrayDepth), vectorType.role); result.iAttribute->setResolvedType(result, resultType); } } }; REGISTER_OGN_NODE() } } }
7,929
C++
43.301676
163
0.679279
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnMoveToTarget.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnMoveToTargetDatabase.h> #include <omni/math/linalg/quat.h> #include <omni/math/linalg/vec.h> #include <omni/math/linalg/matrix.h> #include <omni/math/linalg/math.h> #include <omni/math/linalg/SafeCast.h> #include <cmath> #include <omni/graph/core/PreUsdInclude.h> #include <pxr/usd/usdGeom/xformCache.h> #include <omni/graph/core/PostUsdInclude.h> #include "PrimCommon.h" #include "XformUtils.h" using namespace omni::math::linalg; namespace omni { namespace graph { namespace nodes { class OgnMoveToTarget { XformUtils::MoveState m_moveState; public: static bool compute(OgnMoveToTargetDatabase& db) { auto& nodeObj = db.abi_node(); const auto& contextObj = db.abi_context(); auto iContext = contextObj.iContext; double now = iContext->getTimeSinceStart(contextObj); auto& state = db.internalState<OgnMoveToTarget>(); double& startTime = state.m_moveState.startTime; pxr::TfToken& targetAttribName = state.m_moveState.targetAttribName; vec3d& startTranslation = state.m_moveState.startTranslation; quatd& startOrientation = state.m_moveState.startOrientation; vec3d& startEuler = state.m_moveState.startEuler; vec3d& startScale = state.m_moveState.startScale; XformUtils::RotationMode& rotationMode = state.m_moveState.rotationMode; if (db.inputs.stop() != kExecutionAttributeStateDisabled) { startTime = XformUtils::kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } try { auto sourcePrimPath = getPrimOrPath(contextObj, nodeObj, inputs::sourcePrim.token(), inputs::sourcePrimPath.token(), inputs::useSourcePath.token(), db.getInstanceIndex()); auto destPrimPath = getPrimOrPath(contextObj, nodeObj, inputs::targetPrim.token(), inputs::targetPrimPath.token(), inputs::useTargetPath.token(), db.getInstanceIndex()); if (sourcePrimPath.IsEmpty() || destPrimPath.IsEmpty()) return true; pxr::UsdPrim sourcePrim = getPrim(contextObj, sourcePrimPath); pxr::UsdPrim targetPrim = getPrim(contextObj, destPrimPath); pxr::UsdGeomXformCache xformCache; if (not sourcePrim or not targetPrim) { throw std::runtime_error("Could not find source or target prim"); } matrix4d destWorldTransform = safeCastToOmni(xformCache.GetLocalToWorldTransform(targetPrim)); matrix4d sourceParentTransform = safeCastToOmni(xformCache.GetParentToWorldTransform(sourcePrim)); quatd destWorldOrient = extractRotationQuatd(destWorldTransform).GetNormalized(); quatd sourceParentWorldOrient = extractRotationQuatd(sourceParentTransform).GetNormalized(); bool hasRotations = (destWorldOrient != quatd::GetIdentity()) or (sourceParentWorldOrient != quatd::GetIdentity()); // First frame of the maneuver. if (startTime <= XformUtils::kUninitializedStartTime || now < startTime) { std::tie(startOrientation, targetAttribName) = XformUtils::extractPrimOrientOp(contextObj, sourcePrimPath); if (targetAttribName.IsEmpty()) { if (hasRotations) throw std::runtime_error("MoveToTarget requires the source Prim to have xformOp:orient" " when the destination Prim or source Prim parent has rotation, please Add"); std::tie(startEuler, targetAttribName) = XformUtils::extractPrimEulerOp(contextObj, sourcePrimPath); if (not targetAttribName.IsEmpty()) rotationMode = XformUtils::RotationMode::eEuler; } else rotationMode = XformUtils::RotationMode::eQuat; if (targetAttribName.IsEmpty()) throw std::runtime_error( formatString("Could not find suitable XformOp on %s, please add", sourcePrimPath.GetText())); startTranslation = tryGetPrimVec3dAttribute(contextObj, nodeObj, sourcePrimPath, XformUtils::TranslationAttrStr); startScale = tryGetPrimVec3dAttribute(contextObj, nodeObj, sourcePrimPath, XformUtils::ScaleAttrStr); startTime = now; // Start sleeping db.outputs.finished() = kExecutionAttributeStateLatentPush; return true; } int exp = std::min(std::max(int(db.inputs.exponent()), 0), 10); float speed = std::max(0.f, float(db.inputs.speed())); // delta step float alpha = std::min(std::max(speed * float(now - startTime), 0.f), 1.f); // Ease out by applying a shifted exponential to the alpha float alpha2 = easeInOut<float>(0.f, 1.f, alpha, exp); // Convert dest prim transform to the source's parent frame matrix4d destLocalTransform = destWorldTransform / sourceParentTransform; if (rotationMode == XformUtils::RotationMode::eQuat) { quatd targetOrientation = extractRotationQuatd(destLocalTransform).GetNormalized(); auto quat = GfSlerp(startOrientation, targetOrientation, alpha2).GetNormalized(); // Write back to the prim trySetPrimAttribute(contextObj, nodeObj, sourcePrimPath, targetAttribName.GetText(), quat); } else if (rotationMode == XformUtils::RotationMode::eEuler) { // FIXME: We previously checked that there is no rotation on the target, so we just have to interpolate // to identity. vec3d const targetRot{}; auto rot = GfLerp(alpha2, startEuler, targetRot); // Write back to the prim trySetPrimAttribute(contextObj, nodeObj, sourcePrimPath, targetAttribName.GetText(), rot); } vec3d targetTranslation = destLocalTransform.ExtractTranslation(); vec3d targetScale{destLocalTransform.GetRow(0).GetLength(), destLocalTransform.GetRow(1).GetLength(), destLocalTransform.GetRow(2).GetLength()}; vec3d translation = GfLerp(alpha2, startTranslation, targetTranslation); vec3d scale = GfLerp(alpha2, startScale, targetScale); // Write back to the prim trySetPrimAttribute(contextObj, nodeObj, sourcePrimPath, XformUtils::TranslationAttrStr, translation); trySetPrimAttribute(contextObj, nodeObj, sourcePrimPath, XformUtils::ScaleAttrStr, scale); if (alpha2 < 1) { // still waiting, output is disabled db.outputs.finished() = kExecutionAttributeStateDisabled; return true; } else { // Completed the maneuver startTime = XformUtils::kUninitializedStartTime; db.outputs.finished() = kExecutionAttributeStateLatentFinish; return true; } } catch(const std::exception& e) { db.logError(e.what()); return false; } } }; REGISTER_OGN_NODE() } // action } // graph } // omni
8,051
C++
40.081632
129
0.623401
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnGetPrimLocalToWorldTransform.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <omni/graph/core/PreUsdInclude.h> #include <pxr/usd/sdf/path.h> #include <pxr/usd/usd/common.h> #include <pxr/usd/usd/prim.h> #include <pxr/usd/usd/relationship.h> #include <pxr/usd/usdGeom/xformCache.h> #include <pxr/usd/usdUtils/stageCache.h> #include <omni/graph/core/PostUsdInclude.h> #include <omni/fabric/FabricUSD.h> #include <OgnGetPrimLocalToWorldTransformDatabase.h> #include <omni/math/linalg/SafeCast.h> #include "PrimCommon.h" using namespace omni::fabric; namespace omni { namespace graph { namespace nodes { class OgnGetPrimLocalToWorldTransform { public: static bool compute(OgnGetPrimLocalToWorldTransformDatabase& db) { // Get interfaces auto& nodeObj = db.abi_node(); const IPath& iPath = *db.abi_context().iPath; const IToken& iToken = *db.abi_context().iToken; const INode& iNode = *nodeObj.iNode; bool usePath = db.inputs.usePath(); long stageId = db.abi_context().iContext->getStageId(db.abi_context()); auto stage = pxr::UsdUtilsStageCache::Get().Find(pxr::UsdStageCache::Id::FromLongInt(stageId)); if (!stage) { db.logWarning("Could not find USD stage %ld", stageId); return true; } // Find the target prim path one of 2 ways std::string destPrimPathStr; if (usePath) { // Use the absolute path NameToken primPath = db.inputs.primPath(); destPrimPathStr = db.tokenToString(primPath); if (destPrimPathStr.empty()) { db.logWarning("No target prim path specified"); return true; } } else { // Read the path from the relationship input on this compute node const char* thisPrimPathStr = iNode.getPrimPath(nodeObj); // Find our stage long stageId = db.abi_context().iContext->getStageId(db.abi_context()); auto stage = pxr::UsdUtilsStageCache::Get().Find(pxr::UsdStageCache::Id::FromLongInt(stageId)); if (!stage) { db.logWarning("Could not find USD stage %ld", stageId); return true; } // Find this prim const pxr::UsdPrim thisPrim = stage->GetPrimAtPath(pxr::SdfPath(thisPrimPathStr)); if (!thisPrim.IsValid()) { db.logError("GetPrimAttribute requires USD backing when 'usePath' is false."); return false; } try { // Find the relationship const pxr::SdfPath primPath = getRelationshipPrimPath( db.abi_context(), nodeObj, OgnGetPrimLocalToWorldTransformAttributes::inputs::prim.m_token, db.getInstanceIndex()); destPrimPathStr = primPath.GetString(); } catch (const std::exception& e) { db.logError(e.what()); return false; } } // Retrieve a reference to the prim PathC destPath = iPath.getHandle(destPrimPathStr.c_str()); pxr::UsdPrim prim = stage->GetPrimAtPath(pxr::SdfPath(toSdfPath(destPath))); if (!prim.IsValid()) { return true; } pxr::UsdGeomXformCache xformCache; pxr::GfMatrix4d usdTransform = xformCache.GetLocalToWorldTransform(prim); db.outputs.localToWorldTransform() = omni::math::linalg::safeCastToOmni(usdTransform); return true; } }; REGISTER_OGN_NODE() } } }
4,069
C++
31.301587
111
0.608258
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/transformation/OgnMakeTransformLookAt.cpp
// Copyright (c) 2022-2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnMakeTransformLookAtDatabase.h> #include <omni/math/linalg/matrix.h> using omni::math::linalg::matrix4d; namespace omni { namespace graph { namespace nodes { class OgnMakeTransformLookAt { public: static bool compute(OgnMakeTransformLookAtDatabase& db) { const auto& eyeInput = db.inputs.eye(); const auto& centerInput = db.inputs.center(); const auto& upInput = db.inputs.up(); matrix4d matrix; matrix.SetLookAt(centerInput,eyeInput,upInput); db.outputs.transform() = matrix; return true; } }; REGISTER_OGN_NODE() } } }
1,050
C++
22.886363
77
0.721905
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/logic/OgnAnd.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnAndDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include "OperatorComputeWrapper.h" #include "ResolveBooleanOpAttributes.h" namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { /** * Boolean AND on two inputs. * If a and b are arrays, AND operations will be performed pair-wise. Sizes of a and b must match. * If only one input is an array, the other input will be broadcast to the size of the array. * Returns an array of booleans if either input is an array, otherwise returning a boolean. * * @param db: database object * @return True if we can get a result properly, false if not */ bool tryCompute(OgnAndDatabase& db) { auto const& dynamicInputs = db.getDynamicInputs(); if (dynamicInputs.empty()) { auto functor = [](bool const& a, bool const& b, bool& result) { result = static_cast<bool>(a && b); }; return ogn::compute::tryComputeWithArrayBroadcasting<bool,bool,bool>(db.inputs.a(), db.inputs.b(), db.outputs.result(), functor); } else { std::vector<ogn::InputAttribute> inputs{ db.inputs.a(), db.inputs.b() }; inputs.reserve(dynamicInputs.size() + 2); for (auto const& input : dynamicInputs) inputs.emplace_back(input()); auto functor = [](bool const& a, bool& result) { result = static_cast<bool>(result && a); }; return ogn::compute::tryComputeInputsWithArrayBroadcasting<bool>(inputs, db.outputs.result(), functor); } } } // namespace class OgnAnd { public: static bool compute(OgnAndDatabase& db) { return tryComputeOperator<OgnAndDatabase>(tryCompute, db); } static void onConnectionTypeResolve(const NodeObj& node) { resolveBooleanOpDynamicAttributes(node, outputs::result.token()); } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
2,438
C++
30.675324
137
0.687449
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/logic/OgnNot.cpp
// Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnNotDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> namespace omni { namespace graph { namespace nodes { class OgnNot { public: static bool compute(OgnNotDatabase& db) { auto functor = [](bool const& valueIn, bool& valueOut) { valueOut = static_cast<bool>(!valueIn); }; return ogn::compute::tryComputeWithArrayBroadcasting<bool,bool>(db.inputs.valueIn(), db.outputs.valueOut(), functor); } static void onConnectionTypeResolve(const NodeObj& node) { auto valueIn = node.iNode->getAttributeByToken(node, inputs::valueIn.token()); auto valueOut = node.iNode->getAttributeByToken(node, outputs::valueOut.token()); auto valueInType = valueIn.iAttribute->getResolvedType(valueIn); // Require inputs to be resolved before determining result type if (valueInType.baseType != BaseDataType::eUnknown) { std::array<AttributeObj, 2> attrs { valueIn, valueOut }; node.iNode->resolveCoupledAttributes(node, attrs.data(), attrs.size()); } } }; REGISTER_OGN_NODE() } } }
1,580
C++
28.277777
125
0.693038
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/logic/OgnXor.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnXorDatabase.h> #include <omni/graph/core/ogn/ComputeHelpers.h> #include <carb/logging/Log.h> #include "ResolveBooleanOpAttributes.h" #include "OperatorComputeWrapper.h" namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { /** * Boolean XOR on two inputs. * If a and b are arrays, XOR operations will be performed pair-wise. Sizes of a and b must match. * If only one input is an array, the other input will be broadcast to the size of the array. * Returns an array of booleans if either input is an array, otherwise returning a boolean. * * @param db: database object * @return True if we can get a result properly, false if not */ bool tryCompute(OgnXorDatabase& db) { auto functor = [](bool const& a, bool const& b, bool& result) { result = static_cast<bool>(a != b); }; return ogn::compute::tryComputeWithArrayBroadcasting<bool,bool,bool>(db.inputs.a(), db.inputs.b(), db.outputs.result(), functor); } } // namespace class OgnXor { public: static bool compute(OgnXorDatabase& db) { return tryComputeOperator<OgnXorDatabase>(tryCompute, db); } static void onConnectionTypeResolve(const NodeObj& node) { resolveBooleanOpAttributes(node, inputs::a.token(), inputs::b.token(), outputs::result.token()); } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
2,002
C++
30.296875
133
0.686813
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/logic/ResolveBooleanOpAttributes.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include "ResolveBooleanOpAttributes.h" #include <omni/graph/core/iComputeGraph.h> #include <algorithm> #include <array> namespace omni { namespace graph { namespace nodes { void resolveBooleanOpAttributes(const core::NodeObj& node, const core::NameToken aToken, const core::NameToken bToken, const core::NameToken resultToken) { auto a = node.iNode->getAttributeByToken(node, aToken); auto b = node.iNode->getAttributeByToken(node, bToken); auto result = node.iNode->getAttributeByToken(node, resultToken); auto aType = a.iAttribute->getResolvedType(a); auto bType = b.iAttribute->getResolvedType(b); // Require inputs to be resolved before determining result type if (aType.baseType != BaseDataType::eUnknown && bType.baseType != BaseDataType::eUnknown) { std::array<AttributeObj, 3> attrs { a, b, result }; std::array<uint8_t, 3> arrayDepths { aType.arrayDepth, bType.arrayDepth, // Allow for a mix of singular and array inputs. If any input is an array, the output must be an array std::max(aType.arrayDepth, bType.arrayDepth) }; std::array<AttributeRole, 3> rolesBuf { aType.role, bType.role, // Copy the attribute role from the resolved type to the output type AttributeRole::eUnknown }; node.iNode->resolvePartiallyCoupledAttributes(node, attrs.data(), nullptr, // tupleCounts default to scalar arrayDepths.data(), rolesBuf.data(), attrs.size()); } } void resolveBooleanOpDynamicAttributes(const core::NodeObj& node, const core::NameToken resultToken) { auto totalCount = node.iNode->getAttributeCount(node); std::vector<AttributeObj> allAttributes(totalCount); node.iNode->getAttributes(node, allAttributes.data(), totalCount); std::vector<AttributeObj> attributes; std::vector<uint8_t> arrayDepths; std::vector<AttributeRole> roles; attributes.reserve(totalCount - 2); arrayDepths.reserve(totalCount - 2); roles.reserve(totalCount - 2); uint8_t maxArrayDepth = 0; uint8_t maxComponentCount = 0; for (auto const& attr : allAttributes) { if (attr.iAttribute->getPortType(attr) == AttributePortType::kAttributePortType_Input) { auto resolvedType = attr.iAttribute->getResolvedType(attr); // all inputs must be connected and resolved to complete the output port type resolution if (resolvedType.baseType == BaseDataType::eUnknown) return; arrayDepths.push_back(resolvedType.arrayDepth); roles.push_back(resolvedType.role); maxComponentCount = std::max(maxComponentCount, resolvedType.componentCount); maxArrayDepth = std::max(maxArrayDepth, resolvedType.arrayDepth); attributes.push_back(attr); } } attributes.push_back(node.iNode->getAttributeByToken(node, resultToken)); // Allow for a mix of singular and array inputs. If any input is an array, the output must be an array arrayDepths.push_back(maxArrayDepth); // Copy the attribute role from the resolved type to the output type roles.push_back(AttributeRole::eUnknown); node.iNode->resolvePartiallyCoupledAttributes( node, attributes.data(), nullptr, // tupleCounts default to scalar arrayDepths.data(), roles.data(), attributes.size()); } } } }
4,020
C++
37.295238
115
0.670647
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/logic/OperatorComputeWrapper.h
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #pragma once #include <carb/logging/Log.h> namespace omni { namespace graph { namespace nodes { template <typename T, typename F> static bool tryComputeOperator(F&& f, T t) { try { return f(t); } catch (std::exception &error) { t.logError("Could not perform function: %s", error.what()); } return false; } } } }
794
C
21.083333
77
0.709068
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/logic/ResolveBooleanOpAttributes.h
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #pragma once #include "omni/graph/core/Handle.h" namespace omni { namespace graph { namespace core { struct NodeObj; } namespace nodes { extern void resolveBooleanOpAttributes(const core::NodeObj&, const core::NameToken aToken, const core::NameToken bToken, const core::NameToken resultToken); extern void resolveBooleanOpDynamicAttributes(const core::NodeObj& node, const core::NameToken resultToken); } // namespace nodes } // namespace graph } // namespace omni
1,024
C
31.031249
108
0.695312
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/logic/OgnBooleanExpr.py
""" NOTE: DEPRECATED AS OF 1.26.0 IN FAVOUR OF INDIVIDAL BOOLEAN OP NODES This is the implementation of the OGN node defined in OgnBooleanExpr.ogn """ class OgnBooleanExpr: """ Boolean AND of two inputs """ @staticmethod def compute(db) -> bool: """Compute the outputs from the current input""" # convert to numpy bool arrays a = db.inputs.a b = db.inputs.b op = db.inputs.operator.lower() if not op: return False if op == "and": result = a and b elif op == "or": result = a or b elif op == "nand": result = not (a and b) elif op == "nor": result = not (a or b) elif op in ["xor", "!="]: result = a != b elif op in ["xnor", "=="]: result = a == b else: return False db.outputs.result = result return True
947
Python
22.699999
72
0.498416
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/core/OgnAttrType.cpp
// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include "OgnAttrTypeDatabase.h" namespace omni { namespace graph { namespace core { class OgnAttrType { public: // Queries information about the type of a specified attribute in an input prim static bool compute(OgnAttrTypeDatabase& db) { auto bundledAttribute = db.inputs.data().attributeByName(db.inputs.attrName()); if (!bundledAttribute.isValid()) { db.outputs.baseType() = -1; db.outputs.componentCount() = -1; db.outputs.arrayDepth() = -1; db.outputs.role() = -1; db.outputs.fullType() = -1; } else { auto& attributeType = bundledAttribute.type(); db.outputs.baseType() = int(attributeType.baseType); db.outputs.componentCount() = attributeType.componentCount; db.outputs.arrayDepth() = attributeType.arrayDepth; db.outputs.role() = int(attributeType.role); db.outputs.fullType() = int(omni::fabric::TypeC(attributeType).type); } return true; } }; REGISTER_OGN_NODE() } } }
1,532
C++
29.058823
87
0.6547
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/core/OgnExtractAttr.cpp
// Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include "OgnExtractAttrDatabase.h" namespace omni { namespace graph { namespace core { class OgnExtractAttr { public: // Copies a single attribute from an input prim to an output attribute directly on the node, // if it exists in the input prim and matches the type of the output attribute. static bool compute(OgnExtractAttrDatabase& db) { const auto& inputToken = db.inputs.attrName(); auto extractedBundledAttribute = db.inputs.data().attributeByName(inputToken); if (!extractedBundledAttribute.isValid()) { db.logWarning("No attribute matching '%s' was found in the input bundle", db.tokenToString(inputToken)); return false; } const Type& inputType = extractedBundledAttribute.type(); auto& outputAttribute = db.outputs.output(); // This compute is not creating the attribute data, that should have been done externally. // The attribute type should match the one extracted though, otherwise connections can go astray. if (!outputAttribute.resolved()) { // Not resolved, so we have to resolve it now. This node is unusual in that the resolved output type // depends on run-time state of the bundle. AttributeObj out = db.abi_node().iNode->getAttributeByToken(db.abi_node(), outputs::output.m_token); out.iAttribute->setResolvedType(out, inputType); outputAttribute.reset( db.abi_context(), out.iAttribute->getAttributeDataHandle(out, db.getInstanceIndex()), out); } else { Type outType = outputAttribute.type(); if (!inputType.compatibleRawData(outType)) { db.logWarning("Attribute '%s' of type %s in the input bundle is not compatible with type %s", db.tokenToString(inputToken), getOgnTypeName(inputType).c_str(), getOgnTypeName(outType).c_str()); return false; } } outputAttribute.copyData( extractedBundledAttribute ); return true; } }; REGISTER_OGN_NODE() } } }
2,613
C++
38.60606
116
0.657865
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/core/OgnIsPrimActive.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. #include "OgnIsPrimActiveDatabase.h" #include <omni/graph/core/PreUsdInclude.h> #include <pxr/usd/sdf/path.h> #include <pxr/usd/usd/stage.h> #include <pxr/usd/usd/prim.h> #include <pxr/usd/usdUtils/stageCache.h> #include <omni/graph/core/PostUsdInclude.h> #include <omni/fabric/FabricUSD.h> namespace omni { namespace graph { namespace nodes { class OgnIsPrimActive { public: // ---------------------------------------------------------------------------- static bool compute(OgnIsPrimActiveDatabase& db) { // At some point, only target input types will be supported, so at the time that the path input is deprecated, // also rename "primTarget" to "prim" auto const& primPath = db.inputs.prim(); auto const& prim = db.inputs.primTarget(); if(prim.size() > 0 || pxr::SdfPath::IsValidPathString(primPath)) { // Find our stage const GraphContextObj& context = db.abi_context(); long stageId = context.iContext->getStageId(context); auto stage = pxr::UsdUtilsStageCache::Get().Find(pxr::UsdStageCache::Id::FromLongInt(stageId)); if (!stage) { db.logError("Could not find USD stage %ld", stageId); return false; } pxr::UsdPrim targetPrim = stage->GetPrimAtPath(prim.size() == 0 ? pxr::SdfPath(primPath) : omni::fabric::toSdfPath(prim[0])); if (!targetPrim) { // Should this really be an error?? When prim path input is removed, might be worth changing this to // just a warning instead db.logError("Could not find prim \"%s\" in USD stage", prim.size() == 0 ? primPath.data() : db.pathToString(prim[0])); db.outputs.active() = false; return false; } db.outputs.active() = targetPrim.IsActive(); } return true; } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
2,546
C++
34.873239
134
0.598193
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/core/OgnWriteSetting.cpp
// Copyright (c) 2022-2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // // clang-format off #include "UsdPCH.h" // clang-format on #include "PrimCommon.h" #include <OgnWriteSettingDatabase.h> #include <carb/settings/ISettings.h> #include <carb/settings/SettingsUtils.h> #include <carb/dictionary/IDictionary.h> using carb::dictionary::ItemType; namespace omni { namespace graph { namespace nodes { // unnamed namespace to avoid multiple declaration when linking namespace { bool isValidInput(OgnWriteSettingDatabase& db) { carb::settings::ISettings* settings = carb::getCachedInterface<carb::settings::ISettings>(); std::string strSettingPath = db.inputs.settingPath(); char const* settingPath = strSettingPath.c_str(); Type valueType = db.inputs.value().type(); ItemType pathType; if (settings->isAccessibleAsArray(settingPath)) pathType = settings->getPreferredArrayType(settingPath); else pathType = settings->getItemType(settingPath); if (pathType == ItemType::eCount) return true; if (pathType == ItemType::eDictionary) return false; if (pathType == ItemType::eBool && valueType.baseType != BaseDataType::eBool) return false; if (pathType == ItemType::eInt && valueType.baseType != BaseDataType::eInt && valueType.baseType != BaseDataType::eInt64) return false; if (pathType == ItemType::eFloat && valueType.baseType != BaseDataType::eFloat && valueType.baseType != BaseDataType::eDouble) return false; if (pathType == ItemType::eString && valueType.baseType != BaseDataType::eToken) return false; size_t arrayLen = settings->getArrayLength(settingPath); if (valueType.componentCount > 1 && valueType.arrayDepth == 0) return arrayLen == valueType.componentCount; else if (valueType.componentCount == 1 && valueType.arrayDepth == 0) return arrayLen == 0; else if (valueType.componentCount == 1 && valueType.arrayDepth == 1) return true; else return false; } template<typename T> void setSetting(OgnWriteSettingDatabase& db) { carb::settings::ISettings* settings = carb::getCachedInterface<carb::settings::ISettings>(); std::string strSettingPath = db.inputs.settingPath(); char const* settingPath = strSettingPath.c_str(); auto const inputValue = db.inputs.value().template get<T>(); settings->set(settingPath, *inputValue); } template<typename T> void setSettingArray(OgnWriteSettingDatabase& db) { carb::settings::ISettings* settings = carb::getCachedInterface<carb::settings::ISettings>(); std::string strSettingPath = db.inputs.settingPath(); char const* settingPath = strSettingPath.c_str(); auto const inputValue = db.inputs.value().template get<T[]>(); size_t arrayLen = (size_t)settings->getArrayLength(settingPath); settings->setArray(settingPath, inputValue->data(), arrayLen); } template<typename T, size_t N> void setSettingArray(OgnWriteSettingDatabase& db) { carb::settings::ISettings* settings = carb::getCachedInterface<carb::settings::ISettings>(); std::string strSettingPath = db.inputs.settingPath(); char const* settingPath = strSettingPath.c_str(); auto const inputValue = db.inputs.value().template get<T[N]>(); settings->setArray(settingPath, *inputValue, N); } } // namespace class OgnWriteSetting { public: static bool compute(OgnWriteSettingDatabase& db) { auto const valueType = db.inputs.value().type(); carb::settings::ISettings* settings = carb::getCachedInterface<carb::settings::ISettings>(); std::string strSettingPath = db.inputs.settingPath(); char const* settingPath = strSettingPath.c_str(); if (!isValidInput(db)) { std::stringstream ss; ss << valueType; db.logError("Setting Path '%s' is not compatible with type '%s'", settingPath, ss.str()); return false; } switch (valueType.baseType) { case BaseDataType::eBool: switch (valueType.arrayDepth) { case 0: setSetting<bool>(db); break; case 1: setSettingArray<bool>(db); break; } break; case BaseDataType::eInt: switch (valueType.componentCount) { case 1: switch (valueType.arrayDepth) { case 0: setSetting<int32_t>(db); break; case 1: setSettingArray<int32_t>(db); break; } break; case 2: setSettingArray<int32_t, 2>(db); break; case 3: setSettingArray<int32_t, 3>(db); break; case 4: setSettingArray<int32_t, 4>(db); break; } break; case BaseDataType::eInt64: switch (valueType.arrayDepth) { case 0: setSetting<int64_t>(db); break; case 1: setSettingArray<int64_t>(db); break; } break; case BaseDataType::eFloat: switch (valueType.componentCount) { case 1: switch (valueType.arrayDepth) { case 0: setSetting<float>(db); break; case 1: setSettingArray<float>(db); break; } break; case 2: setSettingArray<float, 2>(db); break; case 3: setSettingArray<float, 3>(db); break; case 4: setSettingArray<float, 4>(db); break; } break; case BaseDataType::eDouble: switch (valueType.componentCount) { case 1: switch (valueType.arrayDepth) { case 0: setSetting<double>(db); break; case 1: setSettingArray<double>(db); break; } break; case 2: setSettingArray<double, 2>(db); break; case 3: setSettingArray<double, 3>(db); break; case 4: setSettingArray<double, 4>(db); break; } break; case BaseDataType::eToken: switch (valueType.arrayDepth) { case 0: { auto const inputValue = db.inputs.value().template get<OgnToken>(); char const* inputString = db.tokenToString(*inputValue); settings->set(settingPath, inputString); break; } case 1: { auto const inputValue = db.inputs.value().template get<OgnToken[]>(); std::vector<char const*> inputString(inputValue.size()); for (size_t i = 0; i < inputValue.size(); i++) inputString[i] = db.tokenToString((*inputValue)[i]); size_t arrayLen = settings->getArrayLength(settingPath); settings->setArray(settingPath, inputString.data(), arrayLen); break; } } break; default: { db.logError("Type %s not supported", getOgnTypeName(valueType).c_str()); return false; } } db.outputs.execOut() = kExecutionAttributeStateEnabled; return true; } }; REGISTER_OGN_NODE() } // namespace nodes } // namespace graph } // namespace omni
8,397
C++
30.931559
130
0.558176
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/core/OgnReadTime.cpp
// Copyright (c) 2021-2021, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include <OgnReadTimeDatabase.h> namespace omni { namespace graph { namespace nodes { class OgnReadTime { public: static bool compute(OgnReadTimeDatabase& db) { const auto& contextObj = db.abi_context(); const IGraphContext* const iContext = contextObj.iContext; db.outputs.deltaSeconds() = iContext->getElapsedTime(contextObj); db.outputs.isPlaying() = iContext->getIsPlaying(contextObj); db.outputs.time() = iContext->getTime(contextObj); db.outputs.frame() = iContext->getFrame(contextObj); db.outputs.timeSinceStart() = iContext->getTimeSinceStart(contextObj); db.outputs.absoluteSimTime() = iContext->getAbsoluteSimTime(contextObj); return true; } }; REGISTER_OGN_NODE() } // nodes } // graph } // omni
1,239
C++
27.837209
80
0.72155
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/core/OgnHasAttr.cpp
// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include "OgnHasAttrDatabase.h" namespace omni { namespace graph { namespace core { class OgnHasAttr { public: // Checks whether an input prim contains the specified attribute static bool compute(OgnHasAttrDatabase& db) { db.outputs.output() = db.inputs.data().attributeByName(db.inputs.attrName()).isValid(); return true; } }; REGISTER_OGN_NODE() } } }
825
C++
23.294117
95
0.74303
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/core/OgnExtractBundle.cpp
// Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // // clang-format off #include "UsdPCH.h" // clang-format on #include "OgnExtractBundleDatabase.h" #include "ReadPrimCommon.h" #include <omni/fabric/FabricUSD.h> #include <omni/kit/commands/ICommandBridge.h> namespace omni { namespace graph { namespace nodes { class OgnExtractBundle { private: std::unordered_set<NameToken> m_added; public: static void initialize(GraphContextObj const& context, NodeObj const& nodeObj) { // When inputs:bundle is not an optional input, the outputs need to be cleared when they are disconnected. AttributeObj inputBundleAttribObj = nodeObj.iNode->getAttributeByToken(nodeObj, OgnExtractBundleAttributes::inputs::bundle.m_token); inputBundleAttribObj.iAttribute->registerValueChangedCallback( inputBundleAttribObj, onInputBundleValueChanged, true); } static void onInputBundleValueChanged(AttributeObj const& inputBundleAttribObj, void const* userData) { NodeObj nodeObj = inputBundleAttribObj.iAttribute->getNode(inputBundleAttribObj); GraphObj graphObj = nodeObj.iNode->getGraph(nodeObj); // If the graph is currently disabled then delay the update until the next compute. // Arguably this should be done at the message propagation layer, then this wouldn't be necessary. if (graphObj.iGraph->isDisabled(graphObj)) { return; } GraphContextObj context = graphObj.iGraph->getDefaultGraphContext(graphObj); cleanOutput(context, nodeObj, kAccordingToContextIndex); } static void cleanOutput(GraphContextObj const& contextObj, NodeObj const& nodeObj, InstanceIndex instanceIdx) { // clear the output bundles auto outputTokens = { OgnExtractBundleAttributes::outputs::passThrough.m_token }; for (auto& outputToken : outputTokens) { BundleHandle outBundle = contextObj.iContext->getOutputBundle(contextObj, nodeObj.nodeContextHandle, outputToken, instanceIdx); contextObj.iContext->clearBundleContents(contextObj, outBundle); } // remove dynamic attributes BundleType empty; updateAttributes(contextObj, nodeObj, empty, instanceIdx); } static void updateAttributes(GraphContextObj const& contextObj, NodeObj const& nodeObj, BundleType const& bundle, InstanceIndex instIdx) { OgnExtractBundle& state = OgnExtractBundleDatabase::sInternalState<OgnExtractBundle>(nodeObj); omni::kit::commands::ICommandBridge::ScopedUndoGroup scopedUndoGroup; extractBundle_reflectBundleDynamicAttributes(nodeObj, contextObj, bundle, state.m_added, instIdx); } // Copies attributes from an input bundle to attributes directly on the node static bool compute(OgnExtractBundleDatabase& db) { auto& contextObj = db.abi_context(); auto& nodeObj = db.abi_node(); auto const& inputBundle = db.inputs.bundle(); if (!inputBundle.isValid()) { cleanOutput(contextObj, nodeObj, db.getInstanceIndex()); return false; } // extract attributes directly from input bundle updateAttributes(contextObj, nodeObj, inputBundle, db.getInstanceIndex()); db.outputs.passThrough() = inputBundle; return true; } }; REGISTER_OGN_NODE() } // nodes } // graph } // omni
3,936
C++
34.790909
118
0.692581
omniverse-code/kit/exts/omni.graph.nodes/omni/graph/nodes/ogn/nodes/core/OgnGetPrims.cpp
// Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. // #include "OgnGetPrimsDatabase.h" #include "PrimCommon.h" namespace omni { namespace graph { namespace nodes { class OgnGetPrims { public: static bool compute(OgnGetPrimsDatabase& db) { IBundle2* outputBundle = db.outputs.bundle().abi_bundleInterface(); outputBundle->clearContents(true); IConstBundle2* inputBundle = db.inputs.bundle().abi_bundleInterface(); size_t const childBundleCount = inputBundle->getChildBundleCount(); // nothing to do if (childBundleCount == 0) { return true; } std::vector<ConstBundleHandle> childBundleHandles(childBundleCount); inputBundle->getConstChildBundles(childBundleHandles.data(), childBundleHandles.size()); std::vector<ConstBundleHandle> bundles; bundles.reserve(childBundleCount); GraphContextObj const& context = db.abi_context(); if (db.inputs.prims().size() != 0) { // We want to have same order of `prims` input in the output. // Unfortunately, the order of child bundles is not preserved, OM- // Construct children lookup map std::unordered_map<fabric::TokenC, ConstBundleHandle> pathToChildMap; for (ConstBundleHandle const& childBundleHandle : childBundleHandles) { ConstAttributeDataHandle const attr = getAttributeR(context, childBundleHandle, PrimAdditionalAttrs::kSourcePrimPathToken); if (fabric::Token const* data = getDataR<fabric::Token>(context, attr)) { pathToChildMap.emplace(data->asTokenC(), childBundleHandle); } } // Search for inputTargets auto const& inputPrims = db.inputs.prims(); for (auto const& inputTarget : inputPrims) { auto const asToken = fabric::asInt(fabric::toSdfPath(inputTarget).GetToken()); if(auto it = pathToChildMap.find(asToken); it != pathToChildMap.end()) { bundles.push_back(it->second); } } } else { // By default all primitives matching the path/type patterns are added to the output bundle; // when the "inverse" option is on, all mismatching primitives will be added instead. bool const inverse = db.inputs.inverse(); // Use wildcard pattern matching for prim type. std::string const typePattern(db.inputs.typePattern()); PatternMatcher const typeMatcher(typePattern); // Use wildcard pattern matching for prim path. std::string const pathPattern(db.inputs.pathPattern()); PatternMatcher const pathMatcher(pathPattern); auto matchesPattern = [&context](ConstBundleHandle& bundle, NameToken attrName, PatternMatcher const& patternMatcher) { ConstAttributeDataHandle attr = getAttributeR(context, bundle, attrName); return attr.isValid() && patternMatcher.matches(*getDataR<NameToken>(context, attr)); }; for (ConstBundleHandle& childBundleHandle : childBundleHandles) { bool const matched = matchesPattern(childBundleHandle, PrimAdditionalAttrs::kSourcePrimTypeToken, typeMatcher) && matchesPattern(childBundleHandle, PrimAdditionalAttrs::kSourcePrimPathToken, pathMatcher); if (matched != inverse) { bundles.push_back(childBundleHandle); } } } if (!bundles.empty()) { outputBundle->copyChildBundles(bundles.data(), bundles.size()); } return true; } }; REGISTER_OGN_NODE() } // nodes } // graph } // omni
4,352
C++
35.579832
112
0.616728