file_path
stringlengths
21
207
content
stringlengths
5
1.02M
size
int64
5
1.02M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.27
0.93
NVIDIA-Omniverse/orbit/pyproject.toml
[tool.isort] py_version = 310 line_length = 120 group_by_package = true # Files to skip skip_glob = ["docs/*", "logs/*", "_isaac_sim/*", ".vscode/*"] # Order of imports sections = [ "FUTURE", "STDLIB", "THIRDPARTY", "ASSETS_FIRSTPARTY", "FIRSTPARTY", "EXTRA_FIRSTPARTY", "LOCALFOLDER", ] # Extra standard libraries considered as part of python (permissive licenses extra_standard_library = [ "numpy", "h5py", "open3d", "torch", "tensordict", "bpy", "matplotlib", "gymnasium", "gym", "scipy", "hid", "yaml", "prettytable", "toml", "trimesh", "tqdm", ] # Imports from Isaac Sim and Omniverse known_third_party = [ "omni.isaac.core", "omni.replicator.isaac", "omni.replicator.core", "pxr", "omni.kit.*", "warp", "carb", ] # Imports from this repository known_first_party = "omni.isaac.orbit" known_assets_firstparty = "omni.isaac.orbit_assets" known_extra_firstparty = [ "omni.isaac.orbit_tasks" ] # Imports from the local folder known_local_folder = "config" [tool.pyright] include = ["source/extensions", "source/standalone"] exclude = [ "**/__pycache__", "**/_isaac_sim", "**/docs", "**/logs", ".git", ".vscode", ] typeCheckingMode = "basic" pythonVersion = "3.10" pythonPlatform = "Linux" enableTypeIgnoreComments = true # This is required as the CI pre-commit does not download the module (i.e. numpy, torch, prettytable) # Therefore, we have to ignore missing imports reportMissingImports = "none" # This is required to ignore for type checks of modules with stubs missing. reportMissingModuleSource = "none" # -> most common: prettytable in mdp managers reportGeneralTypeIssues = "none" # -> raises 218 errors (usage of literal MISSING in dataclasses) reportOptionalMemberAccess = "warning" # -> raises 8 errors reportPrivateUsage = "warning" [tool.codespell] skip = '*.usd,*.svg,*.png,_isaac_sim*,*.bib,*.css,*/_build' quiet-level = 0 # the world list should always have words in lower case ignore-words-list = "haa,slq,collapsable" # todo: this is hack to deal with incorrect spelling of "Environment" in the Isaac Sim grid world asset exclude-file = "source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/from_files/from_files.py"
2,314
TOML
23.627659
106
0.665946
NVIDIA-Omniverse/orbit/CONTRIBUTING.md
# Contribution Guidelines Orbit is a community maintained project. We wholeheartedly welcome contributions to the project to make the framework more mature and useful for everyone. These may happen in forms of bug reports, feature requests, design proposals and more. For general information on how to contribute see <https://isaac-orbit.github.io/orbit/source/refs/contributing.html>.
388
Markdown
42.222218
110
0.81701
NVIDIA-Omniverse/orbit/CONTRIBUTORS.md
# Orbit Developers and Contributors This is the official list of Orbit Project developers and contributors. To see the full list of contributors, please check the revision history in the source control. Guidelines for modifications: * Please keep the lists sorted alphabetically. * Names should be added to this file as: *individual names* or *organizations*. * E-mail addresses are tracked elsewhere to avoid spam. ## Developers * Boston Dynamics AI Institute, Inc. * ETH Zurich * NVIDIA Corporation & Affiliates * University of Toronto --- * David Hoeller * Farbod Farshidian * Hunter Hansen * James Smith * **Mayank Mittal** (maintainer) * Nikita Rudin * Pascal Roth ## Contributors * Anton Bjørndahl Mortensen * Alice Zhou * Andrej Orsula * Antonio Serrano-Muñoz * Arjun Bhardwaj * Calvin Yu * Chenyu Yang * Jia Lin Yuan * Jingzhou Liu * Kourosh Darvish * Qinxi Yu * René Zurbrügg * Ritvik Singh * Rosario Scalise * Shafeef Omar * Vladimir Fokow ## Acknowledgements * Ajay Mandlekar * Animesh Garg * Buck Babich * Gavriel State * Hammad Mazhar * Marco Hutter * Yunrong Guo
1,089
Markdown
17.793103
94
0.757576
NVIDIA-Omniverse/orbit/README.md
![Example Tasks created with ORBIT](docs/source/_static/tasks.jpg) --- # Orbit [![IsaacSim](https://img.shields.io/badge/IsaacSim-2023.1.1-silver.svg)](https://docs.omniverse.nvidia.com/isaacsim/latest/overview.html) [![Python](https://img.shields.io/badge/python-3.10-blue.svg)](https://docs.python.org/3/whatsnew/3.10.html) [![Linux platform](https://img.shields.io/badge/platform-linux--64-orange.svg)](https://releases.ubuntu.com/20.04/) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://pre-commit.com/) [![Docs status](https://img.shields.io/badge/docs-passing-brightgreen.svg)](https://isaac-orbit.github.io/orbit) [![License](https://img.shields.io/badge/license-BSD--3-yellow.svg)](https://opensource.org/licenses/BSD-3-Clause) <!-- TODO: Replace docs status with workflow badge? Link: https://github.com/isaac-orbit/orbit/actions/workflows/docs.yaml/badge.svg --> **Orbit** is a unified and modular framework for robot learning that aims to simplify common workflows in robotics research (such as RL, learning from demonstrations, and motion planning). It is built upon [NVIDIA Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/overview.html) to leverage the latest simulation capabilities for photo-realistic scenes and fast and accurate simulation. Please refer to our [documentation page](https://isaac-orbit.github.io/orbit) to learn more about the installation steps, features, tutorials, and how to setup your own project with Orbit. ## 🎉 Announcement (22.12.2023) We're excited to announce merging of our latest development branch into the main branch! This update introduces several improvements and fixes to enhance the modularity and user-friendliness of the framework. We have added several new environments, especially for legged locomotion, and are in the process of adding new environments. Feel free to explore the latest changes and updates. We appreciate your ongoing support and contributions! For more details, please check the post here: [#106](https://github.com/NVIDIA-Omniverse/Orbit/discussions/106) ## Contributing to Orbit We wholeheartedly welcome contributions from the community to make this framework mature and useful for everyone. These may happen as bug reports, feature requests, or code contributions. For details, please check our [contribution guidelines](https://isaac-orbit.github.io/orbit/source/refs/contributing.html). ## Troubleshooting Please see the [troubleshooting](https://isaac-orbit.github.io/orbit/source/refs/troubleshooting.html) section for common fixes or [submit an issue](https://github.com/NVIDIA-Omniverse/orbit/issues). For issues related to Isaac Sim, we recommend checking its [documentation](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html) or opening a question on its [forums](https://forums.developer.nvidia.com/c/agx-autonomous-machines/isaac/67). ## Support * Please use GitHub [Discussions](https://github.com/NVIDIA-Omniverse/Orbit/discussions) for discussing ideas, asking questions, and requests for new features. * Github [Issues](https://github.com/NVIDIA-Omniverse/orbit/issues) should only be used to track executable pieces of work with a definite scope and a clear deliverable. These can be fixing bugs, documentation issues, new features, or general updates. ## Acknowledgement NVIDIA Isaac Sim is available freely under [individual license](https://www.nvidia.com/en-us/omniverse/download/). For more information about its license terms, please check [here](https://docs.omniverse.nvidia.com/app_isaacsim/common/NVIDIA_Omniverse_License_Agreement.html#software-support-supplement). Orbit framework is released under [BSD-3 License](LICENSE). The license files of its dependencies and assets are present in the [`docs/licenses`](docs/licenses) directory. ## Citing If you use this framework in your work, please cite [this paper](https://arxiv.org/abs/2301.04195): ```text @article{mittal2023orbit, author={Mittal, Mayank and Yu, Calvin and Yu, Qinxi and Liu, Jingzhou and Rudin, Nikita and Hoeller, David and Yuan, Jia Lin and Singh, Ritvik and Guo, Yunrong and Mazhar, Hammad and Mandlekar, Ajay and Babich, Buck and State, Gavriel and Hutter, Marco and Garg, Animesh}, journal={IEEE Robotics and Automation Letters}, title={Orbit: A Unified Simulation Framework for Interactive Robot Learning Environments}, year={2023}, volume={8}, number={6}, pages={3740-3747}, doi={10.1109/LRA.2023.3270034} } ```
4,545
Markdown
59.613333
304
0.777558
NVIDIA-Omniverse/orbit/tools/tests_to_skip.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # The following tests are skipped by run_tests.py TESTS_TO_SKIP = [ # orbit "test_argparser_launch.py", # app.close issue "test_env_var_launch.py", # app.close issue "test_kwarg_launch.py", # app.close issue "test_differential_ik.py", # Failing # orbit_tasks "test_data_collector.py", # Failing "test_record_video.py", # Failing "test_rsl_rl_wrapper.py", # Timing out (10 minutes) "test_sb3_wrapper.py", # Timing out (10 minutes) ]
603
Python
30.789472
56
0.660033
NVIDIA-Omniverse/orbit/tools/run_all_tests.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """A runner script for all the tests within source directory. .. code-block:: bash ./orbit.sh -p tools/run_all_tests.py # for dry run ./orbit.sh -p tools/run_all_tests.py --discover_only # for quiet run ./orbit.sh -p tools/run_all_tests.py --quiet # for increasing timeout (default is 600 seconds) ./orbit.sh -p tools/run_all_tests.py --timeout 1000 """ from __future__ import annotations import argparse import logging import os import subprocess import sys import time from datetime import datetime from pathlib import Path from prettytable import PrettyTable # Tests to skip from tests_to_skip import TESTS_TO_SKIP ORBIT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) """Path to the root directory of Orbit repository.""" def parse_args() -> argparse.Namespace: """Parse command line arguments.""" parser = argparse.ArgumentParser(description="Run all tests under current directory.") # add arguments parser.add_argument( "--skip_tests", default="", help="Space separated list of tests to skip in addition to those in tests_to_skip.py.", type=str, nargs="*", ) # configure default test directory (source directory) default_test_dir = os.path.join(ORBIT_PATH, "source") parser.add_argument( "--test_dir", type=str, default=default_test_dir, help="Path to the directory containing the tests." ) # configure default logging path based on time stamp log_file_name = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + ".log" default_log_path = os.path.join(ORBIT_PATH, "logs", "test_results", log_file_name) parser.add_argument( "--log_path", type=str, default=default_log_path, help="Path to the log file to store the results in." ) parser.add_argument("--discover_only", action="store_true", help="Only discover and print tests, don't run them.") parser.add_argument("--quiet", action="store_true", help="Don't print to console, only log to file.") parser.add_argument("--timeout", type=int, default=600, help="Timeout for each test in seconds.") # parse arguments args = parser.parse_args() return args def test_all( test_dir: str, tests_to_skip: list[str], log_path: str, timeout: float = 600.0, discover_only: bool = False, quiet: bool = False, ) -> bool: """Run all tests under the given directory. Args: test_dir: Path to the directory containing the tests. tests_to_skip: List of tests to skip. log_path: Path to the log file to store the results in. timeout: Timeout for each test in seconds. Defaults to 600 seconds (10 minutes). discover_only: If True, only discover and print the tests without running them. Defaults to False. quiet: If False, print the output of the tests to the terminal console (in addition to the log file). Defaults to False. Returns: True if all un-skipped tests pass or `discover_only` is True. Otherwise, False. Raises: ValueError: If any test to skip is not found under the given `test_dir`. """ # Create the log directory if it doesn't exist os.makedirs(os.path.dirname(log_path), exist_ok=True) # Add file handler to log to file logging_handlers = [logging.FileHandler(log_path)] # We also want to print to console if not quiet: logging_handlers.append(logging.StreamHandler()) # Set up logger logging.basicConfig(level=logging.INFO, format="%(message)s", handlers=logging_handlers) # Discover all tests under current directory all_test_paths = [str(path) for path in Path(test_dir).resolve().rglob("*test_*.py")] skipped_test_paths = [] test_paths = [] # Check that all tests to skip are actually in the tests for test_to_skip in tests_to_skip: for test_path in all_test_paths: if test_to_skip in test_path: break else: raise ValueError(f"Test to skip '{test_to_skip}' not found in tests.") # Remove tests to skip from the list of tests to run if len(tests_to_skip) != 0: for test_path in all_test_paths: if any([test_to_skip in test_path for test_to_skip in tests_to_skip]): skipped_test_paths.append(test_path) else: test_paths.append(test_path) else: test_paths = all_test_paths # Sort test paths so they're always in the same order all_test_paths.sort() test_paths.sort() skipped_test_paths.sort() # Print tests to be run logging.info("\n" + "=" * 60 + "\n") logging.info(f"The following {len(all_test_paths)} tests were found:") for i, test_path in enumerate(all_test_paths): logging.info(f"{i + 1:02d}: {test_path}") logging.info("\n" + "=" * 60 + "\n") logging.info(f"The following {len(skipped_test_paths)} tests are marked to be skipped:") for i, test_path in enumerate(skipped_test_paths): logging.info(f"{i + 1:02d}: {test_path}") logging.info("\n" + "=" * 60 + "\n") # Exit if only discovering tests if discover_only: return True results = {} # Run each script and store results for test_path in test_paths: results[test_path] = {} before = time.time() logging.info("\n" + "-" * 60 + "\n") logging.info(f"[INFO] Running '{test_path}'\n") try: completed_process = subprocess.run( [sys.executable, test_path], check=True, capture_output=True, timeout=timeout ) except subprocess.TimeoutExpired as e: logging.error(f"Timeout occurred: {e}") result = "TIMEDOUT" stdout = e.stdout stderr = e.stderr except subprocess.CalledProcessError as e: # When check=True is passed to subprocess.run() above, CalledProcessError is raised if the process returns a # non-zero exit code. The caveat is returncode is not correctly updated in this case, so we simply # catch the exception and set this test as FAILED result = "FAILED" stdout = e.stdout stderr = e.stderr except Exception as e: logging.error(f"Unexpected exception {e}. Please report this issue on the repository.") result = "FAILED" stdout = e.stdout stderr = e.stderr else: # Should only get here if the process ran successfully, e.g. no exceptions were raised # but we still check the returncode just in case result = "PASSED" if completed_process.returncode == 0 else "FAILED" stdout = completed_process.stdout stderr = completed_process.stderr after = time.time() time_elapsed = after - before # Decode stdout and stderr and write to file and print to console if desired stdout_str = stdout.decode("utf-8") if stdout is not None else "" stderr_str = stderr.decode("utf-8") if stderr is not None else "" # Write to log file logging.info(stdout_str) logging.info(stderr_str) logging.info(f"[INFO] Time elapsed: {time_elapsed:.2f} s") logging.info(f"[INFO] Result '{test_path}': {result}") # Collect results results[test_path]["time_elapsed"] = time_elapsed results[test_path]["result"] = result # Calculate the number and percentage of passing tests num_tests = len(all_test_paths) num_passing = len([test_path for test_path in test_paths if results[test_path]["result"] == "PASSED"]) num_failing = len([test_path for test_path in test_paths if results[test_path]["result"] == "FAILED"]) num_timing_out = len([test_path for test_path in test_paths if results[test_path]["result"] == "TIMEDOUT"]) num_skipped = len(skipped_test_paths) if num_tests == 0: passing_percentage = 100 else: passing_percentage = (num_passing + num_skipped) / num_tests * 100 # Print summaries of test results summary_str = "\n\n" summary_str += "===================\n" summary_str += "Test Result Summary\n" summary_str += "===================\n" summary_str += f"Total: {num_tests}\n" summary_str += f"Passing: {num_passing}\n" summary_str += f"Failing: {num_failing}\n" summary_str += f"Skipped: {num_skipped}\n" summary_str += f"Timing Out: {num_timing_out}\n" summary_str += f"Passing Percentage: {passing_percentage:.2f}%\n" # Print time elapsed in hours, minutes, seconds total_time = sum([results[test_path]["time_elapsed"] for test_path in test_paths]) summary_str += f"Total Time Elapsed: {total_time // 3600}h" summary_str += f"{total_time // 60 % 60}m" summary_str += f"{total_time % 60:.2f}s" summary_str += "\n\n=======================\n" summary_str += "Per Test Result Summary\n" summary_str += "=======================\n" # Construct table of results per test per_test_result_table = PrettyTable(field_names=["Test Path", "Result", "Time (s)"]) per_test_result_table.align["Test Path"] = "l" per_test_result_table.align["Time (s)"] = "r" for test_path in test_paths: per_test_result_table.add_row( [test_path, results[test_path]["result"], f"{results[test_path]['time_elapsed']:0.2f}"] ) for test_path in skipped_test_paths: per_test_result_table.add_row([test_path, "SKIPPED", "N/A"]) summary_str += per_test_result_table.get_string() # Print summary to console and log file logging.info(summary_str) # Only count failing and timing out tests towards failure return num_failing + num_timing_out == 0 if __name__ == "__main__": # parse command line arguments args = parse_args() # add tests to skip to the list of tests to skip tests_to_skip = TESTS_TO_SKIP tests_to_skip += args.skip_tests # run all tests test_success = test_all( test_dir=args.test_dir, tests_to_skip=tests_to_skip, log_path=args.log_path, timeout=args.timeout, discover_only=args.discover_only, quiet=args.quiet, ) # update exit status based on all tests passing or not if not test_success: exit(1)
10,468
Python
36.256228
120
0.62629
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/setup.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Installation script for the 'omni.isaac.orbit_tasks' python package.""" import itertools import os import toml from setuptools import setup # Obtain the extension data from the extension.toml file EXTENSION_PATH = os.path.dirname(os.path.realpath(__file__)) # Read the extension.toml file EXTENSION_TOML_DATA = toml.load(os.path.join(EXTENSION_PATH, "config", "extension.toml")) # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ # generic "numpy", "torch==2.0.1", "torchvision>=0.14.1", # ensure compatibility with torch 1.13.1 "protobuf>=3.20.2", # data collection "h5py", # basic logger "tensorboard", # video recording "moviepy", ] # Extra dependencies for RL agents EXTRAS_REQUIRE = { "sb3": ["stable-baselines3>=2.0"], "skrl": ["skrl>=1.1.0"], "rl_games": ["rl-games==1.6.1", "gym"], # rl-games still needs gym :( "rsl_rl": ["rsl_rl@git+https://github.com/leggedrobotics/rsl_rl.git"], "robomimic": ["robomimic@git+https://github.com/ARISE-Initiative/robomimic.git"], } # cumulation of all extra-requires EXTRAS_REQUIRE["all"] = list(itertools.chain.from_iterable(EXTRAS_REQUIRE.values())) # Installation operation setup( name="omni-isaac-orbit_tasks", author="ORBIT Project Developers", maintainer="Mayank Mittal", maintainer_email="[email protected]", url=EXTENSION_TOML_DATA["package"]["repository"], version=EXTENSION_TOML_DATA["package"]["version"], description=EXTENSION_TOML_DATA["package"]["description"], keywords=EXTENSION_TOML_DATA["package"]["keywords"], include_package_data=True, python_requires=">=3.10", install_requires=INSTALL_REQUIRES, extras_require=EXTRAS_REQUIRE, packages=["omni.isaac.orbit_tasks"], classifiers=[ "Natural Language :: English", "Programming Language :: Python :: 3.10", "Isaac Sim :: 2023.1.0-hotfix.1", "Isaac Sim :: 2023.1.1", ], zip_safe=False, )
2,113
Python
29.637681
89
0.67345
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/test/test_environments.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import unittest import omni.usd from omni.isaac.orbit.envs import RLTaskEnv, RLTaskEnvCfg import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils.parse_cfg import parse_env_cfg class TestEnvironments(unittest.TestCase): """Test cases for all registered environments.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # print all existing task names print(">>> All registered environments:", cls.registered_tasks) """ Test fixtures. """ def test_multiple_instances_gpu(self): """Run all environments with multiple instances and check environments return valid signals.""" # common parameters num_envs = 32 use_gpu = True # iterate over all registered environments for task_name in self.registered_tasks: print(f">>> Running test for environment: {task_name}") # check environment self._check_random_actions(task_name, use_gpu, num_envs, num_steps=100) # close the environment print(f">>> Closing environment: {task_name}") print("-" * 80) def test_single_instance_gpu(self): """Run all environments with single instance and check environments return valid signals.""" # common parameters num_envs = 1 use_gpu = True # iterate over all registered environments for task_name in self.registered_tasks: print(f">>> Running test for environment: {task_name}") # check environment self._check_random_actions(task_name, use_gpu, num_envs, num_steps=100) # close the environment print(f">>> Closing environment: {task_name}") print("-" * 80) """ Helper functions. """ def _check_random_actions(self, task_name: str, use_gpu: bool, num_envs: int, num_steps: int = 1000): """Run random actions and check environments return valid signals.""" # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=use_gpu, num_envs=num_envs) # create environment env: RLTaskEnv = gym.make(task_name, cfg=env_cfg) # reset environment obs, _ = env.reset() # check signal self.assertTrue(self._check_valid_tensor(obs)) # simulate environment for num_steps steps with torch.inference_mode(): for _ in range(num_steps): # sample actions from -1 to 1 actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_tensor(data), msg=f"Invalid data: {data}") # close the environment env.close() @staticmethod def _check_valid_tensor(data: torch.Tensor | dict) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, torch.Tensor): return not torch.any(torch.isnan(data)) elif isinstance(data, dict): valid_tensor = True for value in data.values(): if isinstance(value, dict): valid_tensor &= TestEnvironments._check_valid_tensor(value) elif isinstance(value, torch.Tensor): valid_tensor &= not torch.any(torch.isnan(value)) return valid_tensor else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
4,563
Python
32.807407
105
0.608372
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/test/test_data_collector.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import os import torch import unittest from omni.isaac.orbit_tasks.utils.data_collector import RobomimicDataCollector class TestRobomimicDataCollector(unittest.TestCase): """Test dataset flushing behavior of robomimic data collector.""" def test_basic_flushing(self): """Adds random data into the collector and checks saving of the data.""" # name of the environment (needed by robomimic) task_name = "My-Task-v0" # specify directory for logging experiments test_dir = os.path.dirname(os.path.abspath(__file__)) log_dir = os.path.join(test_dir, "output", "demos") # name of the file to save data filename = "hdf_dataset.hdf5" # number of episodes to collect num_demos = 10 # number of environments to simulate num_envs = 4 # create data-collector collector_interface = RobomimicDataCollector(task_name, log_dir, filename, num_demos) # reset the collector collector_interface.reset() while not collector_interface.is_stopped(): # generate random data to store # -- obs obs = {"joint_pos": torch.randn(num_envs, 7), "joint_vel": torch.randn(num_envs, 7)} # -- actions actions = torch.randn(num_envs, 7) # -- next obs next_obs = {"joint_pos": torch.randn(num_envs, 7), "joint_vel": torch.randn(num_envs, 7)} # -- rewards rewards = torch.randn(num_envs) # -- dones dones = torch.rand(num_envs) > 0.5 # store signals # -- obs for key, value in obs.items(): collector_interface.add(f"obs/{key}", value) # -- actions collector_interface.add("actions", actions) # -- next_obs for key, value in next_obs.items(): collector_interface.add(f"next_obs/{key}", value.cpu().numpy()) # -- rewards collector_interface.add("rewards", rewards) # -- dones collector_interface.add("dones", dones) # flush data from collector for successful environments # note: in this case we flush all the time reset_env_ids = dones.nonzero(as_tuple=False).squeeze(-1) collector_interface.flush(reset_env_ids) # close collector collector_interface.close() # TODO: Add inspection of the saved dataset as part of the test. if __name__ == "__main__": run_tests()
2,942
Python
32.443181
101
0.604351
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/test/test_record_video.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True, offscreen_render=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import os import torch import unittest import omni.usd from omni.isaac.orbit.envs import RLTaskEnv, RLTaskEnvCfg import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils import parse_env_cfg class TestRecordVideoWrapper(unittest.TestCase): """Test recording videos using the RecordVideo wrapper.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # print all existing task names print(">>> All registered environments:", cls.registered_tasks) # directory to save videos cls.videos_dir = os.path.join(os.path.dirname(__file__), "output", "videos") def setUp(self) -> None: # common parameters self.num_envs = 16 self.use_gpu = True # video parameters self.step_trigger = lambda step: step % 225 == 0 self.video_length = 200 def test_record_video(self): """Run random actions agent with recording of videos.""" for task_name in self.registered_tasks: print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env: RLTaskEnv = gym.make(task_name, cfg=env_cfg, render_mode="rgb_array") # directory to save videos videos_dir = os.path.join(self.videos_dir, task_name) # wrap environment to record videos env = gym.wrappers.RecordVideo( env, videos_dir, step_trigger=self.step_trigger, video_length=self.video_length, disable_logger=True ) # reset environment env.reset() # simulate environment with torch.inference_mode(): for _ in range(500): # compute zero actions actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions _ = env.step(actions) # close the simulator env.close() if __name__ == "__main__": run_tests()
2,956
Python
31.141304
116
0.618065
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/test/wrappers/test_rsl_rl_wrapper.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import unittest import omni.usd from omni.isaac.orbit.envs import RLTaskEnvCfg import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils.parse_cfg import parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import RslRlVecEnvWrapper class TestRslRlVecEnvWrapper(unittest.TestCase): """Test that RSL-RL VecEnv wrapper works as expected.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # only pick the first three environments to test cls.registered_tasks = cls.registered_tasks[:3] # print all existing task names print(">>> All registered environments:", cls.registered_tasks) def setUp(self) -> None: # common parameters self.num_envs = 64 self.use_gpu = True def test_random_actions(self): """Run random actions and check environments return valid signals.""" for task_name in self.registered_tasks: print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = RslRlVecEnvWrapper(env) # reset environment obs, extras = env.reset() # check signal self.assertTrue(self._check_valid_tensor(obs)) self.assertTrue(self._check_valid_tensor(extras)) # simulate environment for 1000 steps with torch.inference_mode(): for _ in range(1000): # sample actions from -1 to 1 actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_tensor(data), msg=f"Invalid data: {data}") # close the environment print(f">>> Closing environment: {task_name}") env.close() def test_no_time_outs(self): """Check that environments with finite horizon do not send time-out signals.""" for task_name in self.registered_tasks[0:5]: print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # change to finite horizon env_cfg.is_finite_horizon = True # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = RslRlVecEnvWrapper(env) # reset environment _, extras = env.reset() # check signal self.assertNotIn("time_outs", extras, msg="Time-out signal found in finite horizon environment.") # simulate environment for 10 steps with torch.inference_mode(): for _ in range(10): # sample actions from -1 to 1 actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions extras = env.step(actions)[-1] # check signals self.assertNotIn("time_outs", extras, msg="Time-out signal found in finite horizon environment.") # close the environment print(f">>> Closing environment: {task_name}") env.close() """ Helper functions. """ @staticmethod def _check_valid_tensor(data: torch.Tensor | dict) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, torch.Tensor): return not torch.any(torch.isnan(data)) elif isinstance(data, dict): valid_tensor = True for value in data.values(): if isinstance(value, dict): valid_tensor &= TestRslRlVecEnvWrapper._check_valid_tensor(value) elif isinstance(value, torch.Tensor): valid_tensor &= not torch.any(torch.isnan(value)) return valid_tensor else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
5,464
Python
34.487013
117
0.587299
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/test/wrappers/test_rl_games_wrapper.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import unittest import omni.usd from omni.isaac.orbit.envs import RLTaskEnvCfg import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils.parse_cfg import parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.rl_games import RlGamesVecEnvWrapper class TestRlGamesVecEnvWrapper(unittest.TestCase): """Test that RL-Games VecEnv wrapper works as expected.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # only pick the first three environments to test cls.registered_tasks = cls.registered_tasks[:3] # print all existing task names print(">>> All registered environments:", cls.registered_tasks) def setUp(self) -> None: # common parameters self.num_envs = 64 self.use_gpu = True def test_random_actions(self): """Run random actions and check environments return valid signals.""" for task_name in self.registered_tasks: print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = RlGamesVecEnvWrapper(env, "cuda:0", 100, 100) # reset environment obs = env.reset() # check signal self.assertTrue(self._check_valid_tensor(obs)) # simulate environment for 100 steps with torch.inference_mode(): for _ in range(100): # sample actions from -1 to 1 actions = 2 * torch.rand(env.num_envs, *env.action_space.shape, device=env.device) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_tensor(data), msg=f"Invalid data: {data}") # close the environment print(f">>> Closing environment: {task_name}") env.close() """ Helper functions. """ @staticmethod def _check_valid_tensor(data: torch.Tensor | dict) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, torch.Tensor): return not torch.any(torch.isnan(data)) elif isinstance(data, dict): valid_tensor = True for value in data.values(): if isinstance(value, dict): valid_tensor &= TestRlGamesVecEnvWrapper._check_valid_tensor(value) elif isinstance(value, torch.Tensor): valid_tensor &= not torch.any(torch.isnan(value)) return valid_tensor else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
3,878
Python
31.872881
106
0.600825
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/test/wrappers/test_sb3_wrapper.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import numpy as np import torch import unittest import omni.usd from omni.isaac.orbit.envs import RLTaskEnvCfg import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils.parse_cfg import parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.sb3 import Sb3VecEnvWrapper class TestStableBaselines3VecEnvWrapper(unittest.TestCase): """Test that RSL-RL VecEnv wrapper works as expected.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # only pick the first three environments to test cls.registered_tasks = cls.registered_tasks[:3] # print all existing task names print(">>> All registered environments:", cls.registered_tasks) def setUp(self) -> None: # common parameters self.num_envs = 64 self.use_gpu = True def test_random_actions(self): """Run random actions and check environments return valid signals.""" for task_name in self.registered_tasks: print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = Sb3VecEnvWrapper(env) # reset environment obs = env.reset() # check signal self.assertTrue(self._check_valid_array(obs)) # simulate environment for 1000 steps with torch.inference_mode(): for _ in range(1000): # sample actions from -1 to 1 actions = 2 * np.random.rand(env.num_envs, *env.action_space.shape) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_array(data), msg=f"Invalid data: {data}") # close the environment print(f">>> Closing environment: {task_name}") env.close() """ Helper functions. """ @staticmethod def _check_valid_array(data: np.ndarray | dict | list) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, np.ndarray): return not np.any(np.isnan(data)) elif isinstance(data, dict): valid_array = True for value in data.values(): if isinstance(value, dict): valid_array &= TestStableBaselines3VecEnvWrapper._check_valid_array(value) elif isinstance(value, np.ndarray): valid_array &= not np.any(np.isnan(value)) return valid_array elif isinstance(data, list): valid_array = True for value in data: valid_array &= TestStableBaselines3VecEnvWrapper._check_valid_array(value) return valid_array else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
4,070
Python
31.568
106
0.59828
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/config/extension.toml
[package] # Note: Semantic Versioning is used: https://semver.org/ version = "0.6.0" # Description title = "ORBIT Environments" description="Extension containing suite of environments for robot learning." readme = "docs/README.md" repository = "https://github.com/NVIDIA-Omniverse/Orbit" category = "robotics" keywords = ["robotics", "rl", "il", "learning"] [dependencies] "omni.isaac.orbit" = {} "omni.isaac.orbit_assets" = {} "omni.isaac.core" = {} "omni.isaac.gym" = {} "omni.replicator.isaac" = {} [[python.module]] name = "omni.isaac.orbit_tasks"
557
TOML
23.260869
76
0.696589
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Package containing task implementations for various robotic environments.""" import os import toml # Conveniences to other module directories via relative paths ORBIT_TASKS_EXT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../")) """Path to the extension source directory.""" ORBIT_TASKS_METADATA = toml.load(os.path.join(ORBIT_TASKS_EXT_DIR, "config", "extension.toml")) """Extension metadata dictionary parsed from the extension.toml file.""" # Configure the module-level variables __version__ = ORBIT_TASKS_METADATA["package"]["version"] ## # Register Gym environments. ## from .utils import import_packages # The blacklist is used to prevent importing configs from sub-packages _BLACKLIST_PKGS = ["utils"] # Import all configs in this package import_packages(__name__, _BLACKLIST_PKGS)
946
Python
29.548386
95
0.742072
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Classic environments for control. These environments are based on the MuJoCo environments provided by OpenAI. Reference: https://github.com/openai/gym/tree/master/gym/envs/mujoco """
315
Python
23.307691
75
0.75873
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/ant_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR import omni.isaac.orbit_tasks.classic.humanoid.mdp as mdp ## # Scene definition ## @configclass class MySceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with an ant robot.""" # terrain terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="average", restitution_combine_mode="average", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), debug_vis=False, ) # robot robot = ArticulationCfg( prim_path="{ENV_REGEX_NS}/Robot", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Ant/ant_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=10.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), copy_from_source=False, ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.5), joint_pos={".*": 0.0}, ), actuators={ "body": ImplicitActuatorCfg( joint_names_expr=[".*"], stiffness=0.0, damping=0.0, ), }, ) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" # no commands for this MDP null = mdp.NullCommandCfg() @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_effort = mdp.JointEffortActionCfg(asset_name="robot", joint_names=[".*"], scale=7.5) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for the policy.""" base_height = ObsTerm(func=mdp.base_pos_z) base_lin_vel = ObsTerm(func=mdp.base_lin_vel) base_ang_vel = ObsTerm(func=mdp.base_ang_vel) base_yaw_roll = ObsTerm(func=mdp.base_yaw_roll) base_angle_to_target = ObsTerm(func=mdp.base_angle_to_target, params={"target_pos": (1000.0, 0.0, 0.0)}) base_up_proj = ObsTerm(func=mdp.base_up_proj) base_heading_proj = ObsTerm(func=mdp.base_heading_proj, params={"target_pos": (1000.0, 0.0, 0.0)}) joint_pos_norm = ObsTerm(func=mdp.joint_pos_norm) joint_vel_rel = ObsTerm(func=mdp.joint_vel_rel, scale=0.2) feet_body_forces = ObsTerm( func=mdp.body_incoming_wrench, scale=0.1, params={ "asset_cfg": SceneEntityCfg( "robot", body_names=["front_left_foot", "front_right_foot", "left_back_foot", "right_back_foot"] ) }, ) actions = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = False self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" reset_base = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={"pose_range": {}, "velocity_range": {}}, ) reset_robot_joints = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "position_range": (-0.2, 0.2), "velocity_range": (-0.1, 0.1), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # (1) Reward for moving forward progress = RewTerm(func=mdp.progress_reward, weight=1.0, params={"target_pos": (1000.0, 0.0, 0.0)}) # (2) Stay alive bonus alive = RewTerm(func=mdp.is_alive, weight=0.5) # (3) Reward for non-upright posture upright = RewTerm(func=mdp.upright_posture_bonus, weight=0.1, params={"threshold": 0.93}) # (4) Reward for moving in the right direction move_to_target = RewTerm( func=mdp.move_to_target_bonus, weight=0.5, params={"threshold": 0.8, "target_pos": (1000.0, 0.0, 0.0)} ) # (5) Penalty for large action commands action_l2 = RewTerm(func=mdp.action_l2, weight=-0.005) # (6) Penalty for energy consumption energy = RewTerm(func=mdp.power_consumption, weight=-0.05, params={"gear_ratio": {".*": 15.0}}) # (7) Penalty for reaching close to joint limits joint_limits = RewTerm( func=mdp.joint_limits_penalty_ratio, weight=-0.1, params={"threshold": 0.99, "gear_ratio": {".*": 15.0}} ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" # (1) Terminate if the episode length is exceeded time_out = DoneTerm(func=mdp.time_out, time_out=True) # (2) Terminate if the robot falls torso_height = DoneTerm(func=mdp.base_height, params={"minimum_height": 0.31}) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" pass @configclass class AntEnvCfg(RLTaskEnvCfg): """Configuration for the MuJoCo-style Ant walking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=4096, env_spacing=5.0) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 16.0 # simulation settings self.sim.dt = 1 / 120.0 self.sim.physx.bounce_threshold_velocity = 0.2 # default friction material self.sim.physics_material.static_friction = 1.0 self.sim.physics_material.dynamic_friction = 1.0 self.sim.physics_material.restitution = 0.0
7,500
Python
31.055555
116
0.634667
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Ant locomotion environment (similar to OpenAI Gym Ant-v2). """ import gymnasium as gym from . import agents, ant_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Ant-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": ant_env_cfg.AntEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.AntPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, )
776
Python
24.899999
79
0.653351
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AntPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 32 max_iterations = 1000 save_interval = 50 experiment_name = "ant" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[400, 200, 100], critic_hidden_dims=[400, 200, 100], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.0, num_learning_epochs=5, num_mini_batches=4, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,068
Python
24.45238
58
0.641386
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/develop/modules/skrl.utils.model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent: rollouts: 16 learning_epochs: 8 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 3.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.008 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 1.0 kl_threshold: 0 rewards_shaper_scale: 0.01 # logging and checkpoint experiment: directory: "ant" experiment_name: "" write_interval: 40 checkpoint_interval: 400 # Sequential trainer # https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.sequential.html trainer: timesteps: 8000
1,888
YAML
27.194029
88
0.710805
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L161 seed: 42 n_timesteps: !!float 1e7 policy: 'MlpPolicy' batch_size: 128 n_steps: 512 gamma: 0.99 gae_lambda: 0.9 n_epochs: 20 ent_coef: 0.0 sde_sample_freq: 4 max_grad_norm: 0.5 vf_coef: 0.5 learning_rate: !!float 3e-5 use_sde: True clip_range: 0.4 policy_kwargs: "dict( log_std_init=-1, ortho_init=False, activation_fn=nn.ReLU, net_arch=dict(pi=[256, 256], vf=[256, 256]) )"
557
YAML
22.249999
93
0.597846
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg
152
Python
20.85714
56
0.736842
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: ant env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 reward_shaper: scale_value: 0.6 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.008 score_to_win: 20000 max_epochs: 500 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,502
YAML
18.51948
73
0.601198
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Cartpole balancing environment. """ import gymnasium as gym from . import agents from .cartpole_env_cfg import CartpoleEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Cartpole-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": CartpoleEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, )
784
Python
24.32258
79
0.667092
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/cartpole_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import math import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.utils import configclass import omni.isaac.orbit_tasks.classic.cartpole.mdp as mdp ## # Pre-defined configs ## from omni.isaac.orbit_assets.cartpole import CARTPOLE_CFG # isort:skip ## # Scene definition ## @configclass class CartpoleSceneCfg(InteractiveSceneCfg): """Configuration for a cart-pole scene.""" # ground plane ground = AssetBaseCfg( prim_path="/World/ground", spawn=sim_utils.GroundPlaneCfg(size=(100.0, 100.0)), ) # cartpole robot: ArticulationCfg = CARTPOLE_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # lights dome_light = AssetBaseCfg( prim_path="/World/DomeLight", spawn=sim_utils.DomeLightCfg(color=(0.9, 0.9, 0.9), intensity=500.0), ) distant_light = AssetBaseCfg( prim_path="/World/DistantLight", spawn=sim_utils.DistantLightCfg(color=(0.9, 0.9, 0.9), intensity=2500.0), init_state=AssetBaseCfg.InitialStateCfg(rot=(0.738, 0.477, 0.477, 0.0)), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" # no commands for this MDP null = mdp.NullCommandCfg() @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_effort = mdp.JointEffortActionCfg(asset_name="robot", joint_names=["slider_to_cart"], scale=100.0) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) joint_pos_rel = ObsTerm(func=mdp.joint_pos_rel) joint_vel_rel = ObsTerm(func=mdp.joint_vel_rel) def __post_init__(self) -> None: self.enable_corruption = False self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" # reset reset_cart_position = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"]), "position_range": (-1.0, 1.0), "velocity_range": (-0.5, 0.5), }, ) reset_pole_position = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"]), "position_range": (-0.25 * math.pi, 0.25 * math.pi), "velocity_range": (-0.25 * math.pi, 0.25 * math.pi), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # (1) Constant running reward alive = RewTerm(func=mdp.is_alive, weight=1.0) # (2) Failure penalty terminating = RewTerm(func=mdp.is_terminated, weight=-2.0) # (3) Primary task: keep pole upright pole_pos = RewTerm( func=mdp.joint_pos_target_l2, weight=-1.0, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"]), "target": 0.0}, ) # (4) Shaping tasks: lower cart velocity cart_vel = RewTerm( func=mdp.joint_vel_l1, weight=-0.01, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"])}, ) # (5) Shaping tasks: lower pole angular velocity pole_vel = RewTerm( func=mdp.joint_vel_l1, weight=-0.005, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"])}, ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" # (1) Time out time_out = DoneTerm(func=mdp.time_out, time_out=True) # (2) Cart out of bounds cart_out_of_bounds = DoneTerm( func=mdp.joint_pos_manual_limit, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"]), "bounds": (-3.0, 3.0)}, ) @configclass class CurriculumCfg: """Configuration for the curriculum.""" pass ## # Environment configuration ## @configclass class CartpoleEnvCfg(RLTaskEnvCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: CartpoleSceneCfg = CartpoleSceneCfg(num_envs=4096, env_spacing=4.0) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() events: EventCfg = EventCfg() # MDP settings curriculum: CurriculumCfg = CurriculumCfg() rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() # No command generator commands: CommandsCfg = CommandsCfg() # Post initialization def __post_init__(self) -> None: """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 5 # viewer settings self.viewer.eye = (8.0, 0.0, 5.0) # simulation settings self.sim.dt = 1 / 120
5,671
Python
26.803921
109
0.6535
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class CartpolePPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 16 max_iterations = 150 save_interval = 50 experiment_name = "cartpole" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[32, 32], critic_hidden_dims=[32, 32], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,065
Python
24.380952
58
0.644131
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/develop/modules/skrl.utils.model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [32, 32] hidden_activation: ["elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [32, 32] hidden_activation: ["elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent: rollouts: 16 learning_epochs: 5 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 1.e-3 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.01 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 2.0 kl_threshold: 0 rewards_shaper_scale: 1.0 # logging and checkpoint experiment: directory: "cartpole" experiment_name: "" write_interval: 12 checkpoint_interval: 120 # Sequential trainer # https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.sequential.html trainer: timesteps: 2400
1,865
YAML
26.850746
88
0.713673
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L32 seed: 42 n_timesteps: !!float 1e6 policy: 'MlpPolicy' n_steps: 16 batch_size: 4096 gae_lambda: 0.95 gamma: 0.99 n_epochs: 20 ent_coef: 0.01 learning_rate: !!float 3e-4 clip_range: !!float 0.2 policy_kwargs: "dict( activation_fn=nn.ELU, net_arch=[32, 32], squash_output=False, )" vf_coef: 1.0 max_grad_norm: 1.0
475
YAML
21.666666
92
0.610526
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg # noqa: F401, F403
172
Python
23.714282
56
0.72093
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: # added to the wrapper clip_observations: 5.0 # can make custom wrapper? clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd # doesn't have this fine grained control but made it close network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 32] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: cartpole env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: False normalize_value: False num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 1.0 normalize_advantage: False gamma: 0.99 tau : 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 150 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,648
YAML
19.873417
73
0.61165
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the cartpole environments.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403
321
Python
28.272725
92
0.735202
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.utils.math import wrap_to_pi if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def joint_pos_target_l2(env: RLTaskEnv, target: float, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize joint position deviation from a target value.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # wrap the joint positions to (-pi, pi) joint_pos = wrap_to_pi(asset.data.joint_pos[:, asset_cfg.joint_ids]) # compute the reward return torch.sum(torch.square(joint_pos - target), dim=1)
907
Python
32.629628
98
0.742007
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Humanoid locomotion environment (similar to OpenAI Gym Humanoid-v2). """ import gymnasium as gym from . import agents, humanoid_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Humanoid-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": humanoid_env_cfg.HumanoidEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.HumanoidPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, )
811
Python
26.066666
79
0.668311
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/humanoid_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR import omni.isaac.orbit_tasks.classic.humanoid.mdp as mdp ## # Scene definition ## @configclass class MySceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with a humanoid robot.""" # terrain terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg(static_friction=1.0, dynamic_friction=1.0, restitution=0.0), debug_vis=False, ) # robot robot = ArticulationCfg( prim_path="{ENV_REGEX_NS}/Robot", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Humanoid/humanoid_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=None, max_depenetration_velocity=10.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), copy_from_source=False, ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 1.34), joint_pos={".*": 0.0}, ), actuators={ "body": ImplicitActuatorCfg( joint_names_expr=[".*"], stiffness={ ".*_waist.*": 20.0, ".*_upper_arm.*": 10.0, "pelvis": 10.0, ".*_lower_arm": 2.0, ".*_thigh:0": 10.0, ".*_thigh:1": 20.0, ".*_thigh:2": 10.0, ".*_shin": 5.0, ".*_foot.*": 2.0, }, damping={ ".*_waist.*": 5.0, ".*_upper_arm.*": 5.0, "pelvis": 5.0, ".*_lower_arm": 1.0, ".*_thigh:0": 5.0, ".*_thigh:1": 5.0, ".*_thigh:2": 5.0, ".*_shin": 0.1, ".*_foot.*": 1.0, }, ), }, ) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" # no commands for this MDP null = mdp.NullCommandCfg() @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_effort = mdp.JointEffortActionCfg( asset_name="robot", joint_names=[".*"], scale={ ".*_waist.*": 67.5, ".*_upper_arm.*": 67.5, "pelvis": 67.5, ".*_lower_arm": 45.0, ".*_thigh:0": 45.0, ".*_thigh:1": 135.0, ".*_thigh:2": 45.0, ".*_shin": 90.0, ".*_foot.*": 22.5, }, ) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for the policy.""" base_height = ObsTerm(func=mdp.base_pos_z) base_lin_vel = ObsTerm(func=mdp.base_lin_vel) base_ang_vel = ObsTerm(func=mdp.base_ang_vel, scale=0.25) base_yaw_roll = ObsTerm(func=mdp.base_yaw_roll) base_angle_to_target = ObsTerm(func=mdp.base_angle_to_target, params={"target_pos": (1000.0, 0.0, 0.0)}) base_up_proj = ObsTerm(func=mdp.base_up_proj) base_heading_proj = ObsTerm(func=mdp.base_heading_proj, params={"target_pos": (1000.0, 0.0, 0.0)}) joint_pos_norm = ObsTerm(func=mdp.joint_pos_norm) joint_vel_rel = ObsTerm(func=mdp.joint_vel_rel, scale=0.1) feet_body_forces = ObsTerm( func=mdp.body_incoming_wrench, scale=0.01, params={"asset_cfg": SceneEntityCfg("robot", body_names=["left_foot", "right_foot"])}, ) actions = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = False self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" reset_base = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={"pose_range": {}, "velocity_range": {}}, ) reset_robot_joints = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "position_range": (-0.2, 0.2), "velocity_range": (-0.1, 0.1), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # (1) Reward for moving forward progress = RewTerm(func=mdp.progress_reward, weight=1.0, params={"target_pos": (1000.0, 0.0, 0.0)}) # (2) Stay alive bonus alive = RewTerm(func=mdp.is_alive, weight=2.0) # (3) Reward for non-upright posture upright = RewTerm(func=mdp.upright_posture_bonus, weight=0.1, params={"threshold": 0.93}) # (4) Reward for moving in the right direction move_to_target = RewTerm( func=mdp.move_to_target_bonus, weight=0.5, params={"threshold": 0.8, "target_pos": (1000.0, 0.0, 0.0)} ) # (5) Penalty for large action commands action_l2 = RewTerm(func=mdp.action_l2, weight=-0.01) # (6) Penalty for energy consumption energy = RewTerm( func=mdp.power_consumption, weight=-0.005, params={ "gear_ratio": { ".*_waist.*": 67.5, ".*_upper_arm.*": 67.5, "pelvis": 67.5, ".*_lower_arm": 45.0, ".*_thigh:0": 45.0, ".*_thigh:1": 135.0, ".*_thigh:2": 45.0, ".*_shin": 90.0, ".*_foot.*": 22.5, } }, ) # (7) Penalty for reaching close to joint limits joint_limits = RewTerm( func=mdp.joint_limits_penalty_ratio, weight=-0.25, params={ "threshold": 0.98, "gear_ratio": { ".*_waist.*": 67.5, ".*_upper_arm.*": 67.5, "pelvis": 67.5, ".*_lower_arm": 45.0, ".*_thigh:0": 45.0, ".*_thigh:1": 135.0, ".*_thigh:2": 45.0, ".*_shin": 90.0, ".*_foot.*": 22.5, }, }, ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" # (1) Terminate if the episode length is exceeded time_out = DoneTerm(func=mdp.time_out, time_out=True) # (2) Terminate if the robot falls torso_height = DoneTerm(func=mdp.base_height, params={"minimum_height": 0.8}) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" pass @configclass class HumanoidEnvCfg(RLTaskEnvCfg): """Configuration for the MuJoCo-style Humanoid walking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=4096, env_spacing=5.0) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 16.0 # simulation settings self.sim.dt = 1 / 120.0 self.sim.physx.bounce_threshold_velocity = 0.2 # default friction material self.sim.physics_material.static_friction = 1.0 self.sim.physics_material.dynamic_friction = 1.0 self.sim.physics_material.restitution = 0.0
9,098
Python
30.484429
116
0.558474
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class HumanoidPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 32 max_iterations = 1000 save_interval = 50 experiment_name = "humanoid" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[400, 200, 100], critic_hidden_dims=[400, 200, 100], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.0, num_learning_epochs=5, num_mini_batches=4, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,078
Python
24.690476
58
0.644712
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/develop/modules/skrl.utils.model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [400, 200, 100] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [400, 200, 100] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent: rollouts: 32 learning_epochs: 8 mini_batches: 8 discount_factor: 0.99 lambda: 0.95 learning_rate: 3.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.008 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 1.0 kl_threshold: 0 rewards_shaper_scale: 0.01 # logging and checkpoint experiment: directory: "humanoid" experiment_name: "" write_interval: 80 checkpoint_interval: 800 # Sequential trainer # https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.sequential.html trainer: timesteps: 16000
1,896
YAML
27.313432
88
0.712025
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L245 seed: 42 policy: 'MlpPolicy' n_timesteps: !!float 5e7 batch_size: 256 n_steps: 512 gamma: 0.99 learning_rate: !!float 2.5e-4 ent_coef: 0.0 clip_range: 0.2 n_epochs: 10 gae_lambda: 0.95 max_grad_norm: 1.0 vf_coef: 0.5 policy_kwargs: "dict( log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, net_arch=dict(pi=[256, 256], vf=[256, 256]) )"
527
YAML
22.999999
93
0.590133
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg # noqa: F401, F403
172
Python
23.714282
56
0.72093
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: humanoid env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 reward_shaper: scale_value: 0.6 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.01 score_to_win: 20000 max_epochs: 1000 save_best_after: 100 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,483
YAML
18.526316
73
0.601483
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the humanoid environment.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .observations import * from .rewards import *
328
Python
26.416664
91
0.746951
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING import omni.isaac.orbit.utils.math as math_utils import omni.isaac.orbit.utils.string as string_utils from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import ManagerTermBase, RewardTermCfg, SceneEntityCfg from . import observations as obs if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def upright_posture_bonus( env: RLTaskEnv, threshold: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Reward for maintaining an upright posture.""" up_proj = obs.base_up_proj(env, asset_cfg).squeeze(-1) return (up_proj > threshold).float() def move_to_target_bonus( env: RLTaskEnv, threshold: float, target_pos: tuple[float, float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ) -> torch.Tensor: """Reward for moving to the target heading.""" heading_proj = obs.base_heading_proj(env, target_pos, asset_cfg).squeeze(-1) return torch.where(heading_proj > threshold, 1.0, heading_proj / threshold) class progress_reward(ManagerTermBase): """Reward for making progress towards the target.""" def __init__(self, env: RLTaskEnv, cfg: RewardTermCfg): # initialize the base class super().__init__(cfg, env) # create history buffer self.potentials = torch.zeros(env.num_envs, device=env.device) self.prev_potentials = torch.zeros_like(self.potentials) def reset(self, env_ids: torch.Tensor): # extract the used quantities (to enable type-hinting) asset: Articulation = self._env.scene["robot"] # compute projection of current heading to desired heading vector target_pos = torch.tensor(self.cfg.params["target_pos"], device=self.device) to_target_pos = target_pos - asset.data.root_pos_w[env_ids, :3] # reward terms self.potentials[env_ids] = -torch.norm(to_target_pos, p=2, dim=-1) / self._env.step_dt self.prev_potentials[env_ids] = self.potentials[env_ids] def __call__( self, env: RLTaskEnv, target_pos: tuple[float, float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ) -> torch.Tensor: # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute vector to target target_pos = torch.tensor(target_pos, device=env.device) to_target_pos = target_pos - asset.data.root_pos_w[:, :3] to_target_pos[:, 2] = 0.0 # update history buffer and compute new potential self.prev_potentials[:] = self.potentials[:] self.potentials[:] = -torch.norm(to_target_pos, p=2, dim=-1) / env.step_dt return self.potentials - self.prev_potentials class joint_limits_penalty_ratio(ManagerTermBase): """Penalty for violating joint limits weighted by the gear ratio.""" def __init__(self, env: RLTaskEnv, cfg: RewardTermCfg): # add default argument if "asset_cfg" not in cfg.params: cfg.params["asset_cfg"] = SceneEntityCfg("robot") # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[cfg.params["asset_cfg"].name] # resolve the gear ratio for each joint self.gear_ratio = torch.ones(env.num_envs, asset.num_joints, device=env.device) index_list, _, value_list = string_utils.resolve_matching_names_values( cfg.params["gear_ratio"], asset.joint_names ) self.gear_ratio[:, index_list] = torch.tensor(value_list, device=env.device) self.gear_ratio_scaled = self.gear_ratio / torch.max(self.gear_ratio) def __call__( self, env: RLTaskEnv, threshold: float, gear_ratio: dict[str, float], asset_cfg: SceneEntityCfg ) -> torch.Tensor: # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute the penalty over normalized joints joint_pos_scaled = math_utils.scale_transform( asset.data.joint_pos, asset.data.soft_joint_pos_limits[..., 0], asset.data.soft_joint_pos_limits[..., 1] ) # scale the violation amount by the gear ratio violation_amount = (torch.abs(joint_pos_scaled) - threshold) / (1 - threshold) violation_amount = violation_amount * self.gear_ratio_scaled return torch.sum((torch.abs(joint_pos_scaled) > threshold) * violation_amount, dim=-1) class power_consumption(ManagerTermBase): """Penalty for the power consumed by the actions to the environment. This is computed as commanded torque times the joint velocity. """ def __init__(self, env: RLTaskEnv, cfg: RewardTermCfg): # add default argument if "asset_cfg" not in cfg.params: cfg.params["asset_cfg"] = SceneEntityCfg("robot") # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[cfg.params["asset_cfg"].name] # resolve the gear ratio for each joint self.gear_ratio = torch.ones(env.num_envs, asset.num_joints, device=env.device) index_list, _, value_list = string_utils.resolve_matching_names_values( cfg.params["gear_ratio"], asset.joint_names ) self.gear_ratio[:, index_list] = torch.tensor(value_list, device=env.device) self.gear_ratio_scaled = self.gear_ratio / torch.max(self.gear_ratio) def __call__(self, env: RLTaskEnv, gear_ratio: dict[str, float], asset_cfg: SceneEntityCfg) -> torch.Tensor: # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # return power = torque * velocity (here actions: joint torques) return torch.sum(torch.abs(env.action_manager.action * asset.data.joint_vel * self.gear_ratio_scaled), dim=-1)
6,069
Python
42.985507
118
0.66782
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/mdp/observations.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import SceneEntityCfg if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv def base_yaw_roll(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Yaw and roll of the base in the simulation world frame.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # extract euler angles (in world frame) roll, _, yaw = math_utils.euler_xyz_from_quat(asset.data.root_quat_w) # normalize angle to [-pi, pi] roll = torch.atan2(torch.sin(roll), torch.cos(roll)) yaw = torch.atan2(torch.sin(yaw), torch.cos(yaw)) return torch.cat((yaw.unsqueeze(-1), roll.unsqueeze(-1)), dim=-1) def base_up_proj(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Projection of the base up vector onto the world up vector.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute base up vector base_up_vec = math_utils.quat_rotate(asset.data.root_quat_w, -asset.GRAVITY_VEC_W) return base_up_vec[:, 2].unsqueeze(-1) def base_heading_proj( env: BaseEnv, target_pos: tuple[float, float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Projection of the base forward vector onto the world forward vector.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute desired heading direction to_target_pos = torch.tensor(target_pos, device=env.device) - asset.data.root_pos_w[:, :3] to_target_pos[:, 2] = 0.0 to_target_dir = math_utils.normalize(to_target_pos) # compute base forward vector heading_vec = math_utils.quat_rotate(asset.data.root_quat_w, asset.FORWARD_VEC_B) # compute dot product between heading and target direction heading_proj = torch.bmm(heading_vec.view(env.num_envs, 1, 3), to_target_dir.view(env.num_envs, 3, 1)) return heading_proj.view(env.num_envs, 1) def base_angle_to_target( env: BaseEnv, target_pos: tuple[float, float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Angle between the base forward vector and the vector to the target.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute desired heading direction to_target_pos = torch.tensor(target_pos, device=env.device) - asset.data.root_pos_w[:, :3] walk_target_angle = torch.atan2(to_target_pos[:, 1], to_target_pos[:, 0]) # compute base forward vector _, _, yaw = math_utils.euler_xyz_from_quat(asset.data.root_quat_w) # normalize angle to target to [-pi, pi] angle_to_target = walk_target_angle - yaw angle_to_target = torch.atan2(torch.sin(angle_to_target), torch.cos(angle_to_target)) return angle_to_target.unsqueeze(-1)
3,270
Python
42.039473
109
0.705505
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Manipulation environments for fixed-arm robots.""" from .reach import * # noqa
207
Python
22.111109
56
0.729469
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/reach_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import ActionTermCfg as ActionTerm from omni.isaac.orbit.managers import CurriculumTermCfg as CurrTerm from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.orbit.utils.noise import AdditiveUniformNoiseCfg as Unoise import omni.isaac.orbit_tasks.manipulation.reach.mdp as mdp ## # Scene definition ## @configclass class ReachSceneCfg(InteractiveSceneCfg): """Configuration for the scene with a robotic arm.""" # world ground = AssetBaseCfg( prim_path="/World/ground", spawn=sim_utils.GroundPlaneCfg(), init_state=AssetBaseCfg.InitialStateCfg(pos=(0.0, 0.0, -1.05)), ) table = AssetBaseCfg( prim_path="{ENV_REGEX_NS}/Table", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/SeattleLabTable/table_instanceable.usd", ), init_state=AssetBaseCfg.InitialStateCfg(pos=(0.55, 0.0, 0.0), rot=(0.70711, 0.0, 0.0, 0.70711)), ) # robots robot: ArticulationCfg = MISSING # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DomeLightCfg(color=(0.75, 0.75, 0.75), intensity=2500.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" ee_pose = mdp.UniformPoseCommandCfg( asset_name="robot", body_name=MISSING, resampling_time_range=(4.0, 4.0), debug_vis=True, ranges=mdp.UniformPoseCommandCfg.Ranges( pos_x=(0.35, 0.65), pos_y=(-0.2, 0.2), pos_z=(0.15, 0.5), roll=(0.0, 0.0), pitch=MISSING, # depends on end-effector axis yaw=(-3.14, 3.14), ), ) @configclass class ActionsCfg: """Action specifications for the MDP.""" arm_action: ActionTerm = MISSING gripper_action: ActionTerm | None = None @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) joint_pos = ObsTerm(func=mdp.joint_pos_rel, noise=Unoise(n_min=-0.01, n_max=0.01)) joint_vel = ObsTerm(func=mdp.joint_vel_rel, noise=Unoise(n_min=-0.01, n_max=0.01)) pose_command = ObsTerm(func=mdp.generated_commands, params={"command_name": "ee_pose"}) actions = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" reset_robot_joints = EventTerm( func=mdp.reset_joints_by_scale, mode="reset", params={ "position_range": (0.5, 1.5), "velocity_range": (0.0, 0.0), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # task terms end_effector_position_tracking = RewTerm( func=mdp.position_command_error, weight=-0.2, params={"asset_cfg": SceneEntityCfg("robot", body_names=MISSING), "command_name": "ee_pose"}, ) end_effector_orientation_tracking = RewTerm( func=mdp.orientation_command_error, weight=-0.05, params={"asset_cfg": SceneEntityCfg("robot", body_names=MISSING), "command_name": "ee_pose"}, ) # action penalty action_rate = RewTerm(func=mdp.action_rate_l2, weight=-0.0001) joint_vel = RewTerm( func=mdp.joint_vel_l2, weight=-0.0001, params={"asset_cfg": SceneEntityCfg("robot")}, ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" action_rate = CurrTerm( func=mdp.modify_reward_weight, params={"term_name": "action_rate", "weight": -0.005, "num_steps": 4500} ) ## # Environment configuration ## @configclass class ReachEnvCfg(RLTaskEnvCfg): """Configuration for the reach end-effector pose tracking environment.""" # Scene settings scene: ReachSceneCfg = ReachSceneCfg(num_envs=4096, env_spacing=2.5) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 12.0 self.viewer.eye = (3.5, 3.5, 3.5) # simulation settings self.sim.dt = 1.0 / 60.0
5,740
Python
27.562189
111
0.661324
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Fixed-arm environments with end-effector pose tracking commands."""
194
Python
26.857139
70
0.752577
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the locomotion environments.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403
323
Python
28.454543
94
0.736842
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.assets import RigidObject from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.utils.math import combine_frame_transforms, quat_error_magnitude, quat_mul if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def position_command_error(env: RLTaskEnv, command_name: str, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize tracking of the position error using L2-norm. The function computes the position error between the desired position (from the command) and the current position of the asset's body (in world frame). The position error is computed as the L2-norm of the difference between the desired and current positions. """ # extract the asset (to enable type hinting) asset: RigidObject = env.scene[asset_cfg.name] command = env.command_manager.get_command(command_name) # obtain the desired and current positions des_pos_b = command[:, :3] des_pos_w, _ = combine_frame_transforms(asset.data.root_state_w[:, :3], asset.data.root_state_w[:, 3:7], des_pos_b) curr_pos_w = asset.data.body_state_w[:, asset_cfg.body_ids[0], :3] # type: ignore return torch.norm(curr_pos_w - des_pos_w, dim=1) def orientation_command_error(env: RLTaskEnv, command_name: str, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize tracking orientation error using shortest path. The function computes the orientation error between the desired orientation (from the command) and the current orientation of the asset's body (in world frame). The orientation error is computed as the shortest path between the desired and current orientations. """ # extract the asset (to enable type hinting) asset: RigidObject = env.scene[asset_cfg.name] command = env.command_manager.get_command(command_name) # obtain the desired and current orientations des_quat_b = command[:, 3:7] des_quat_w = quat_mul(asset.data.root_state_w[:, 3:7], des_quat_b) curr_quat_w = asset.data.body_state_w[:, asset_cfg.body_ids[0], 3:7] # type: ignore return quat_error_magnitude(curr_quat_w, des_quat_w)
2,337
Python
44.843136
119
0.728712
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configurations for arm-based reach-tracking environments.""" # We leave this file empty since we don't want to expose any configs in this package directly. # We still need this file to import the "config" module in the parent package.
362
Python
35.299996
94
0.759669
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/franka/ik_rel_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.controllers.differential_ik_cfg import DifferentialIKControllerCfg from omni.isaac.orbit.envs.mdp.actions.actions_cfg import DifferentialInverseKinematicsActionCfg from omni.isaac.orbit.utils import configclass from . import joint_pos_env_cfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.franka import FRANKA_PANDA_HIGH_PD_CFG # isort: skip @configclass class FrankaReachEnvCfg(joint_pos_env_cfg.FrankaReachEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # Set Franka as robot # We switch here to a stiffer PD controller for IK tracking to be better. self.scene.robot = FRANKA_PANDA_HIGH_PD_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # Set actions for the specific robot type (franka) self.actions.body_joint_pos = DifferentialInverseKinematicsActionCfg( asset_name="robot", joint_names=["panda_joint.*"], body_name="panda_hand", controller=DifferentialIKControllerCfg(command_type="pose", use_relative_mode=True, ik_method="dls"), scale=0.5, body_offset=DifferentialInverseKinematicsActionCfg.OffsetCfg(pos=[0.0, 0.0, 0.107]), ) @configclass class FrankaReachEnvCfg_PLAY(FrankaReachEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
1,734
Python
34.408163
113
0.683968
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/franka/ik_abs_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.controllers.differential_ik_cfg import DifferentialIKControllerCfg from omni.isaac.orbit.envs.mdp.actions.actions_cfg import DifferentialInverseKinematicsActionCfg from omni.isaac.orbit.utils import configclass from . import joint_pos_env_cfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.franka import FRANKA_PANDA_HIGH_PD_CFG # isort: skip @configclass class FrankaReachEnvCfg(joint_pos_env_cfg.FrankaReachEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # Set Franka as robot # We switch here to a stiffer PD controller for IK tracking to be better. self.scene.robot = FRANKA_PANDA_HIGH_PD_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # Set actions for the specific robot type (franka) self.actions.body_joint_pos = DifferentialInverseKinematicsActionCfg( asset_name="robot", joint_names=["panda_joint.*"], body_name="panda_hand", controller=DifferentialIKControllerCfg(command_type="pose", use_relative_mode=False, ik_method="dls"), body_offset=DifferentialInverseKinematicsActionCfg.OffsetCfg(pos=[0.0, 0.0, 0.107]), ) @configclass class FrankaReachEnvCfg_PLAY(FrankaReachEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
1,712
Python
34.687499
114
0.689252
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/franka/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, ik_abs_env_cfg, ik_rel_env_cfg, joint_pos_env_cfg ## # Register Gym environments. ## ## # Joint Position Control ## gym.register( id="Isaac-Reach-Franka-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": joint_pos_env_cfg.FrankaReachEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_cfg:FrankaReachPPORunnerCfg", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Reach-Franka-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": joint_pos_env_cfg.FrankaReachEnvCfg_PLAY, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_cfg:FrankaReachPPORunnerCfg", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, ) ## # Inverse Kinematics - Absolute Pose Control ## gym.register( id="Isaac-Reach-Franka-IK-Abs-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_abs_env_cfg.FrankaReachEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_cfg:FrankaReachPPORunnerCfg", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, disable_env_checker=True, ) gym.register( id="Isaac-Reach-Franka-IK-Abs-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_abs_env_cfg.FrankaReachEnvCfg_PLAY, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_cfg:FrankaReachPPORunnerCfg", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, disable_env_checker=True, ) ## # Inverse Kinematics - Relative Pose Control ## gym.register( id="Isaac-Reach-Franka-IK-Rel-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_rel_env_cfg.FrankaReachEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_cfg:FrankaReachPPORunnerCfg", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, disable_env_checker=True, ) gym.register( id="Isaac-Reach-Franka-IK-Rel-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_rel_env_cfg.FrankaReachEnvCfg_PLAY, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_cfg:FrankaReachPPORunnerCfg", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, disable_env_checker=True, )
3,205
Python
31.714285
90
0.64337
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/franka/joint_pos_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import math from omni.isaac.orbit.utils import configclass import omni.isaac.orbit_tasks.manipulation.reach.mdp as mdp from omni.isaac.orbit_tasks.manipulation.reach.reach_env_cfg import ReachEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets import FRANKA_PANDA_CFG # isort: skip ## # Environment configuration ## @configclass class FrankaReachEnvCfg(ReachEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # switch robot to franka self.scene.robot = FRANKA_PANDA_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # override rewards self.rewards.end_effector_position_tracking.params["asset_cfg"].body_names = ["panda_hand"] self.rewards.end_effector_orientation_tracking.params["asset_cfg"].body_names = ["panda_hand"] # override actions self.actions.arm_action = mdp.JointPositionActionCfg( asset_name="robot", joint_names=["panda_joint.*"], scale=0.5, use_default_offset=True ) # override command generator body # end-effector is along z-direction self.commands.ee_pose.body_name = "panda_hand" self.commands.ee_pose.ranges.pitch = (math.pi, math.pi) @configclass class FrankaReachEnvCfg_PLAY(FrankaReachEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
1,754
Python
29.789473
102
0.676739
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/franka/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class FrankaReachPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1000 save_interval = 50 experiment_name = "franka_reach" run_name = "" resume = False empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[64, 64], critic_hidden_dims=[64, 64], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.01, num_learning_epochs=8, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,109
Python
24.227272
58
0.640216
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/franka/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/develop/modules/skrl.utils.model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.gaussian_model for parameter details clip_actions: False clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [64, 64] hidden_activation: ["elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "" output_scale: 1.0 value: # see skrl.utils.model_instantiators.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [64, 64] hidden_activation: ["elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent: rollouts: 24 learning_epochs: 8 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 1.e-3 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.01 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 2.0 kl_threshold: 0 rewards_shaper_scale: 0.01 # logging and checkpoint experiment: directory: "franka_reach" experiment_name: "" write_interval: 120 checkpoint_interval: 1200 # Sequential trainer # https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.sequential.html trainer: timesteps: 24000
1,870
YAML
26.925373
88
0.713904
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/franka/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause
122
Python
23.599995
56
0.745902
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/franka/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_observations: 100.0 clip_actions: 100.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [64, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: reach_franka env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.01 score_to_win: 10000 max_epochs: 1000 save_best_after: 200 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.01 truncate_grads: True e_clip: 0.2 horizon_length: 24 minibatch_size: 24576 mini_epochs: 5 critic_coef: 2 clip_value: True clip_actions: False bounds_loss_coef: 0.0001
1,567
YAML
18.848101
73
0.60753
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/ur_10/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, joint_pos_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Reach-UR10-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": joint_pos_env_cfg.UR10ReachEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:UR10ReachPPORunnerCfg", }, ) gym.register( id="Isaac-Reach-UR10-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": joint_pos_env_cfg.UR10ReachEnvCfg_PLAY, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:UR10ReachPPORunnerCfg", }, )
1,008
Python
27.828571
92
0.660714
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/ur_10/joint_pos_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import math from omni.isaac.orbit.utils import configclass import omni.isaac.orbit_tasks.manipulation.reach.mdp as mdp from omni.isaac.orbit_tasks.manipulation.reach.reach_env_cfg import ReachEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets import UR10_CFG # isort: skip ## # Environment configuration ## @configclass class UR10ReachEnvCfg(ReachEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # switch robot to ur10 self.scene.robot = UR10_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # override events self.events.reset_robot_joints.params["position_range"] = (0.75, 1.25) # override rewards self.rewards.end_effector_position_tracking.params["asset_cfg"].body_names = ["ee_link"] self.rewards.end_effector_orientation_tracking.params["asset_cfg"].body_names = ["ee_link"] # override actions self.actions.arm_action = mdp.JointPositionActionCfg( asset_name="robot", joint_names=[".*"], scale=0.5, use_default_offset=True ) # override command generator body # end-effector is along x-direction self.commands.ee_pose.body_name = "ee_link" self.commands.ee_pose.ranges.pitch = (math.pi / 2, math.pi / 2) @configclass class UR10ReachEnvCfg_PLAY(UR10ReachEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
1,823
Python
29.915254
99
0.665387
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/ur_10/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class UR10ReachPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1000 save_interval = 50 experiment_name = "reach_ur10" run_name = "" resume = False empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[64, 64], critic_hidden_dims=[64, 64], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.01, num_learning_epochs=8, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,105
Python
24.136363
58
0.638914
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/config/ur_10/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_observations: 100.0 clip_actions: 100.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [64, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: reach_ur10 env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.01 score_to_win: 10000 max_epochs: 1000 save_best_after: 200 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.01 truncate_grads: True e_clip: 0.2 horizon_length: 24 minibatch_size: 24576 mini_epochs: 5 critic_coef: 2 clip_value: True clip_actions: False bounds_loss_coef: 0.0001
1,565
YAML
18.822785
73
0.607029
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/cabinet_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2022-2023, The ORBIT Project Developers. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators.actuator_cfg import ImplicitActuatorCfg from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors import FrameTransformerCfg from omni.isaac.orbit.sensors.frame_transformer import OffsetCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from . import mdp ## # Pre-defined configs ## from omni.isaac.orbit.markers.config import FRAME_MARKER_CFG # isort: skip FRAME_MARKER_SMALL_CFG = FRAME_MARKER_CFG.copy() FRAME_MARKER_SMALL_CFG.markers["frame"].scale = (0.10, 0.10, 0.10) ## # Scene definition ## @configclass class CabinetSceneCfg(InteractiveSceneCfg): """Configuration for the cabinet scene with a robot and a cabinet. This is the abstract base implementation, the exact scene is defined in the derived classes which need to set the robot and end-effector frames """ # robots, Will be populated by agent env cfg robot: ArticulationCfg = MISSING # End-effector, Will be populated by agent env cfg ee_frame: FrameTransformerCfg = MISSING cabinet = ArticulationCfg( prim_path="{ENV_REGEX_NS}/Cabinet", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Sektion_Cabinet/sektion_cabinet_instanceable.usd", activate_contact_sensors=False, ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.8, 0, 0.4), rot=(0.0, 0.0, 0.0, 1.0), joint_pos={ "door_left_joint": 0.0, "door_right_joint": 0.0, "drawer_bottom_joint": 0.0, "drawer_top_joint": 0.0, }, ), actuators={ "drawers": ImplicitActuatorCfg( joint_names_expr=["drawer_top_joint", "drawer_bottom_joint"], effort_limit=87.0, velocity_limit=100.0, stiffness=10.0, damping=1.0, ), "doors": ImplicitActuatorCfg( joint_names_expr=["door_left_joint", "door_right_joint"], effort_limit=87.0, velocity_limit=100.0, stiffness=10.0, damping=2.5, ), }, ) # Frame definitions for the cabinet. cabinet_frame = FrameTransformerCfg( prim_path="{ENV_REGEX_NS}/Cabinet/sektion", debug_vis=True, visualizer_cfg=FRAME_MARKER_SMALL_CFG.replace(prim_path="/Visuals/CabinetFrameTransformer"), target_frames=[ FrameTransformerCfg.FrameCfg( prim_path="{ENV_REGEX_NS}/Cabinet/drawer_handle_top", name="drawer_handle_top", offset=OffsetCfg( pos=(0.305, 0.0, 0.01), rot=(0.5, 0.5, -0.5, -0.5), # align with end-effector frame ), ), ], ) # plane plane = AssetBaseCfg( prim_path="/World/GroundPlane", init_state=AssetBaseCfg.InitialStateCfg(), spawn=sim_utils.GroundPlaneCfg(), collision_group=-1, ) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DomeLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" null_command = mdp.NullCommandCfg() @configclass class ActionsCfg: """Action specifications for the MDP.""" body_joint_pos: mdp.JointPositionActionCfg = MISSING finger_joint_pos: mdp.BinaryJointPositionActionCfg = MISSING @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" joint_pos = ObsTerm(func=mdp.joint_pos_rel) joint_vel = ObsTerm(func=mdp.joint_vel_rel) cabinet_joint_pos = ObsTerm( func=mdp.joint_pos_rel, params={"asset_cfg": SceneEntityCfg("cabinet", joint_names=["drawer_top_joint"])}, ) cabinet_joint_vel = ObsTerm( func=mdp.joint_vel_rel, params={"asset_cfg": SceneEntityCfg("cabinet", joint_names=["drawer_top_joint"])}, ) rel_ee_drawer_distance = ObsTerm(func=mdp.rel_ee_drawer_distance) actions = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" robot_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "static_friction_range": (0.8, 1.25), "dynamic_friction_range": (0.8, 1.25), "restitution_range": (0.0, 0.0), "num_buckets": 16, }, ) cabinet_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="startup", params={ "asset_cfg": SceneEntityCfg("cabinet", body_names="drawer_handle_top"), "static_friction_range": (1.0, 1.25), "dynamic_friction_range": (1.25, 1.5), "restitution_range": (0.0, 0.0), "num_buckets": 16, }, ) reset_all = EventTerm(func=mdp.reset_scene_to_default, mode="reset") reset_robot_joints = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "position_range": (-0.1, 0.1), "velocity_range": (0.0, 0.0), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # 1. Approach the handle approach_ee_handle = RewTerm(func=mdp.approach_ee_handle, weight=2.0, params={"threshold": 0.2}) align_ee_handle = RewTerm(func=mdp.align_ee_handle, weight=0.5) # 2. Grasp the handle approach_gripper_handle = RewTerm(func=mdp.approach_gripper_handle, weight=5.0, params={"offset": MISSING}) align_grasp_around_handle = RewTerm(func=mdp.align_grasp_around_handle, weight=0.125) grasp_handle = RewTerm( func=mdp.grasp_handle, weight=0.5, params={ "threshold": 0.03, "open_joint_pos": MISSING, "asset_cfg": SceneEntityCfg("robot", joint_names=MISSING), }, ) # 3. Open the drawer open_drawer_bonus = RewTerm( func=mdp.open_drawer_bonus, weight=7.5, params={"asset_cfg": SceneEntityCfg("cabinet", joint_names=["drawer_top_joint"])}, ) multi_stage_open_drawer = RewTerm( func=mdp.multi_stage_open_drawer, weight=1.0, params={"asset_cfg": SceneEntityCfg("cabinet", joint_names=["drawer_top_joint"])}, ) # 4. Penalize actions for cosmetic reasons action_rate_l2 = RewTerm(func=mdp.action_rate_l2, weight=-1e-2) joint_vel = RewTerm(func=mdp.joint_vel_l2, weight=-0.0001) @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) ## # Environment configuration ## @configclass class CabinetEnvCfg(RLTaskEnvCfg): """Configuration for the cabinet environment.""" # Scene settings scene: CabinetSceneCfg = CabinetSceneCfg(num_envs=4096, env_spacing=2.0) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 1 self.episode_length_s = 8.0 self.viewer.eye = (-2.0, 2.0, 2.0) self.viewer.lookat = (0.8, 0.0, 0.5) # simulation settings self.sim.dt = 1 / 60 # 60Hz self.sim.physx.bounce_threshold_velocity = 0.2 self.sim.physx.bounce_threshold_velocity = 0.01 self.sim.physx.friction_correlation_distance = 0.00625
9,095
Python
30.044368
111
0.625069
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Manipulation environments to open drawers in a cabinet."""
185
Python
25.571425
61
0.745946
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the cabinet environments.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .observations import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403
368
Python
29.749998
91
0.730978
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.utils.math import matrix_from_quat if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def approach_ee_handle(env: RLTaskEnv, threshold: float) -> torch.Tensor: r"""Reward the robot for reaching the drawer handle using inverse-square law. It uses a piecewise function to reward the robot for reaching the handle. .. math:: reward = \begin{cases} 2 * (1 / (1 + distance^2))^2 & \text{if } distance \leq threshold \\ (1 / (1 + distance^2))^2 & \text{otherwise} \end{cases} """ ee_tcp_pos = env.scene["ee_frame"].data.target_pos_w[..., 0, :] handle_pos = env.scene["cabinet_frame"].data.target_pos_w[..., 0, :] # Compute the distance of the end-effector to the handle distance = torch.norm(handle_pos - ee_tcp_pos, dim=-1, p=2) # Reward the robot for reaching the handle reward = 1.0 / (1.0 + distance**2) reward = torch.pow(reward, 2) return torch.where(distance <= threshold, 2 * reward, reward) def align_ee_handle(env: RLTaskEnv) -> torch.Tensor: """Reward for aligning the end-effector with the handle. The reward is based on the alignment of the gripper with the handle. It is computed as follows: .. math:: reward = 0.5 * (align_z^2 + align_x^2) where :math:`align_z` is the dot product of the z direction of the gripper and the -x direction of the handle and :math:`align_x` is the dot product of the x direction of the gripper and the -y direction of the handle. """ ee_tcp_quat = env.scene["ee_frame"].data.target_quat_w[..., 0, :] handle_quat = env.scene["cabinet_frame"].data.target_quat_w[..., 0, :] ee_tcp_rot_mat = matrix_from_quat(ee_tcp_quat) handle_mat = matrix_from_quat(handle_quat) # get current x and y direction of the handle handle_x, handle_y = handle_mat[..., 0], handle_mat[..., 1] # get current x and z direction of the gripper ee_tcp_x, ee_tcp_z = ee_tcp_rot_mat[..., 0], ee_tcp_rot_mat[..., 2] # make sure gripper aligns with the handle # in this case, the z direction of the gripper should be close to the -x direction of the handle # and the x direction of the gripper should be close to the -y direction of the handle # dot product of z and x should be large align_z = torch.bmm(ee_tcp_z.unsqueeze(1), -handle_x.unsqueeze(-1)).squeeze(-1).squeeze(-1) align_x = torch.bmm(ee_tcp_x.unsqueeze(1), -handle_y.unsqueeze(-1)).squeeze(-1).squeeze(-1) return 0.5 * (torch.sign(align_z) * align_z**2 + torch.sign(align_x) * align_x**2) def align_grasp_around_handle(env: RLTaskEnv) -> torch.Tensor: """Bonus for correct hand orientation around the handle. The correct hand orientation is when the left finger is above the handle and the right finger is below the handle. """ # Target object position: (num_envs, 3) handle_pos = env.scene["cabinet_frame"].data.target_pos_w[..., 0, :] # Fingertips position: (num_envs, n_fingertips, 3) ee_fingertips_w = env.scene["ee_frame"].data.target_pos_w[..., 1:, :] lfinger_pos = ee_fingertips_w[..., 0, :] rfinger_pos = ee_fingertips_w[..., 1, :] # Check if hand is in a graspable pose is_graspable = (rfinger_pos[:, 2] < handle_pos[:, 2]) & (lfinger_pos[:, 2] > handle_pos[:, 2]) # bonus if left finger is above the drawer handle and right below return is_graspable def approach_gripper_handle(env: RLTaskEnv, offset: float = 0.04) -> torch.Tensor: """Reward the robot's gripper reaching the drawer handle with the right pose. This function returns the distance of fingertips to the handle when the fingers are in a grasping orientation (i.e., the left finger is above the handle and the right finger is below the handle). Otherwise, it returns zero. """ # Target object position: (num_envs, 3) handle_pos = env.scene["cabinet_frame"].data.target_pos_w[..., 0, :] # Fingertips position: (num_envs, n_fingertips, 3) ee_fingertips_w = env.scene["ee_frame"].data.target_pos_w[..., 1:, :] lfinger_pos = ee_fingertips_w[..., 0, :] rfinger_pos = ee_fingertips_w[..., 1, :] # Compute the distance of each finger from the handle lfinger_dist = torch.abs(lfinger_pos[:, 2] - handle_pos[:, 2]) rfinger_dist = torch.abs(rfinger_pos[:, 2] - handle_pos[:, 2]) # Check if hand is in a graspable pose is_graspable = (rfinger_pos[:, 2] < handle_pos[:, 2]) & (lfinger_pos[:, 2] > handle_pos[:, 2]) return is_graspable * ((offset - lfinger_dist) + (offset - rfinger_dist)) def grasp_handle(env: RLTaskEnv, threshold: float, open_joint_pos: float, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Reward for closing the fingers when being close to the handle. The :attr:`threshold` is the distance from the handle at which the fingers should be closed. The :attr:`open_joint_pos` is the joint position when the fingers are open. Note: It is assumed that zero joint position corresponds to the fingers being closed. """ ee_tcp_pos = env.scene["ee_frame"].data.target_pos_w[..., 0, :] handle_pos = env.scene["cabinet_frame"].data.target_pos_w[..., 0, :] gripper_joint_pos = env.scene[asset_cfg.name].data.joint_pos[:, asset_cfg.joint_ids] distance = torch.norm(handle_pos - ee_tcp_pos, dim=-1, p=2) is_close = distance <= threshold return is_close * torch.sum(open_joint_pos - gripper_joint_pos, dim=-1) def open_drawer_bonus(env: RLTaskEnv, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Bonus for opening the drawer given by the joint position of the drawer. The bonus is given when the drawer is open. If the grasp is around the handle, the bonus is doubled. """ drawer_pos = env.scene[asset_cfg.name].data.joint_pos[:, asset_cfg.joint_ids[0]] is_graspable = align_grasp_around_handle(env).float() return (is_graspable + 1.0) * drawer_pos def multi_stage_open_drawer(env: RLTaskEnv, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Multi-stage bonus for opening the drawer. Depending on the drawer's position, the reward is given in three stages: easy, medium, and hard. This helps the agent to learn to open the drawer in a controlled manner. """ drawer_pos = env.scene[asset_cfg.name].data.joint_pos[:, asset_cfg.joint_ids[0]] is_graspable = align_grasp_around_handle(env).float() open_easy = (drawer_pos > 0.01) * 0.5 open_medium = (drawer_pos > 0.2) * is_graspable open_hard = (drawer_pos > 0.3) * is_graspable return open_easy + open_medium + open_hard
6,848
Python
41.540372
118
0.665596
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/mdp/observations.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.assets import ArticulationData from omni.isaac.orbit.sensors import FrameTransformerData if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def rel_ee_object_distance(env: RLTaskEnv) -> torch.Tensor: """The distance between the end-effector and the object.""" ee_tf_data: FrameTransformerData = env.scene["ee_frame"].data object_data: ArticulationData = env.scene["object"].data return object_data.root_pos_w - ee_tf_data.target_pos_w[..., 0, :] def rel_ee_drawer_distance(env: RLTaskEnv) -> torch.Tensor: """The distance between the end-effector and the object.""" ee_tf_data: FrameTransformerData = env.scene["ee_frame"].data cabinet_tf_data: FrameTransformerData = env.scene["cabinet_frame"].data return cabinet_tf_data.target_pos_w[..., 0, :] - ee_tf_data.target_pos_w[..., 0, :] def fingertips_pos(env: RLTaskEnv) -> torch.Tensor: """The position of the fingertips relative to the environment origins.""" ee_tf_data: FrameTransformerData = env.scene["ee_frame"].data fingertips_pos = ee_tf_data.target_pos_w[..., 1:, :] - env.scene.env_origins.unsqueeze(1) return fingertips_pos.view(env.num_envs, -1) def ee_pos(env: RLTaskEnv) -> torch.Tensor: """The position of the end-effector relative to the environment origins.""" ee_tf_data: FrameTransformerData = env.scene["ee_frame"].data ee_pos = ee_tf_data.target_pos_w[..., 0, :] - env.scene.env_origins return ee_pos def ee_quat(env: RLTaskEnv) -> torch.Tensor: """The orientation of the end-effector in the environment frame.""" ee_tf_data: FrameTransformerData = env.scene["ee_frame"].data ee_quat = ee_tf_data.target_quat_w[..., 0, :] # make first element of quaternion positive ee_quat[ee_quat[:, 0] < 0] *= -1 return ee_quat
2,031
Python
34.034482
93
0.696701
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/config/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configurations for the cabinet environments.""" # We leave this file empty since we don't want to expose any configs in this package directly. # We still need this file to import the "config" module in the parent package.
349
Python
33.999997
94
0.756447
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/config/franka/ik_rel_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.controllers.differential_ik_cfg import DifferentialIKControllerCfg from omni.isaac.orbit.envs.mdp.actions.actions_cfg import DifferentialInverseKinematicsActionCfg from omni.isaac.orbit.utils import configclass from . import joint_pos_env_cfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.franka import FRANKA_PANDA_HIGH_PD_CFG # isort: skip @configclass class FrankaCabinetEnvCfg(joint_pos_env_cfg.FrankaCabinetEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # Set Franka as robot # We switch here to a stiffer PD controller for IK tracking to be better. self.scene.robot = FRANKA_PANDA_HIGH_PD_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # Set actions for the specific robot type (franka) self.actions.body_joint_pos = DifferentialInverseKinematicsActionCfg( asset_name="robot", joint_names=["panda_joint.*"], body_name="panda_hand", controller=DifferentialIKControllerCfg(command_type="pose", use_relative_mode=True, ik_method="dls"), scale=0.5, body_offset=DifferentialInverseKinematicsActionCfg.OffsetCfg(pos=[0.0, 0.0, 0.107]), ) @configclass class FrankaCabinetEnvCfg_PLAY(FrankaCabinetEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
1,742
Python
34.571428
113
0.685419
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/config/franka/ik_abs_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.controllers.differential_ik_cfg import DifferentialIKControllerCfg from omni.isaac.orbit.envs.mdp.actions.actions_cfg import DifferentialInverseKinematicsActionCfg from omni.isaac.orbit.utils import configclass from . import joint_pos_env_cfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.franka import FRANKA_PANDA_HIGH_PD_CFG # isort: skip @configclass class FrankaCabinetEnvCfg(joint_pos_env_cfg.FrankaCabinetEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # Set Franka as robot # We switch here to a stiffer PD controller for IK tracking to be better. self.scene.robot = FRANKA_PANDA_HIGH_PD_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # Set actions for the specific robot type (franka) self.actions.body_joint_pos = DifferentialInverseKinematicsActionCfg( asset_name="robot", joint_names=["panda_joint.*"], body_name="panda_hand", controller=DifferentialIKControllerCfg(command_type="pose", use_relative_mode=False, ik_method="dls"), body_offset=DifferentialInverseKinematicsActionCfg.OffsetCfg(pos=[0.0, 0.0, 0.107]), ) @configclass class FrankaCabinetEnvCfg_PLAY(FrankaCabinetEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
1,720
Python
34.854166
114
0.690698
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/config/franka/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, ik_abs_env_cfg, ik_rel_env_cfg, joint_pos_env_cfg ## # Register Gym environments. ## ## # Joint Position Control ## gym.register( id="Isaac-Open-Drawer-Franka-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": joint_pos_env_cfg.FrankaCabinetEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CabinetPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", }, disable_env_checker=True, ) gym.register( id="Isaac-Open-Drawer-Franka-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": joint_pos_env_cfg.FrankaCabinetEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CabinetPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", }, disable_env_checker=True, ) ## # Inverse Kinematics - Absolute Pose Control ## gym.register( id="Isaac-Open-Drawer-Franka-IK-Abs-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_abs_env_cfg.FrankaCabinetEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CabinetPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", }, disable_env_checker=True, ) gym.register( id="Isaac-Open-Drawer-Franka-IK-Abs-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_abs_env_cfg.FrankaCabinetEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CabinetPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", }, disable_env_checker=True, ) ## # Inverse Kinematics - Relative Pose Control ## gym.register( id="Isaac-Open-Drawer-Franka-IK-Rel-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_rel_env_cfg.FrankaCabinetEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CabinetPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", }, disable_env_checker=True, ) gym.register( id="Isaac-Open-Drawer-Franka-IK-Rel-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_rel_env_cfg.FrankaCabinetEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CabinetPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", }, disable_env_checker=True, )
2,714
Python
28.193548
79
0.662491
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/config/franka/joint_pos_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.sensors import FrameTransformerCfg from omni.isaac.orbit.sensors.frame_transformer.frame_transformer_cfg import OffsetCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.manipulation.cabinet import mdp from omni.isaac.orbit_tasks.manipulation.cabinet.cabinet_env_cfg import CabinetEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.franka import FRANKA_PANDA_CFG # isort: skip from omni.isaac.orbit_tasks.manipulation.cabinet.cabinet_env_cfg import FRAME_MARKER_SMALL_CFG # isort: skip @configclass class FrankaCabinetEnvCfg(CabinetEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # Set franka as robot self.scene.robot = FRANKA_PANDA_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # Set Actions for the specific robot type (franka) self.actions.body_joint_pos = mdp.JointPositionActionCfg( asset_name="robot", joint_names=["panda_joint.*"], scale=1.0, use_default_offset=True, ) self.actions.finger_joint_pos = mdp.BinaryJointPositionActionCfg( asset_name="robot", joint_names=["panda_finger.*"], open_command_expr={"panda_finger_.*": 0.04}, close_command_expr={"panda_finger_.*": 0.0}, ) # Listens to the required transforms # IMPORTANT: The order of the frames in the list is important. The first frame is the tool center point (TCP) # the other frames are the fingers self.scene.ee_frame = FrameTransformerCfg( prim_path="{ENV_REGEX_NS}/Robot/panda_link0", debug_vis=False, visualizer_cfg=FRAME_MARKER_SMALL_CFG.replace(prim_path="/Visuals/EndEffectorFrameTransformer"), target_frames=[ FrameTransformerCfg.FrameCfg( prim_path="{ENV_REGEX_NS}/Robot/panda_hand", name="ee_tcp", offset=OffsetCfg( pos=(0.0, 0.0, 0.1034), ), ), FrameTransformerCfg.FrameCfg( prim_path="{ENV_REGEX_NS}/Robot/panda_leftfinger", name="tool_leftfinger", offset=OffsetCfg( pos=(0.0, 0.0, 0.046), ), ), FrameTransformerCfg.FrameCfg( prim_path="{ENV_REGEX_NS}/Robot/panda_rightfinger", name="tool_rightfinger", offset=OffsetCfg( pos=(0.0, 0.0, 0.046), ), ), ], ) # override rewards self.rewards.approach_gripper_handle.params["offset"] = 0.04 self.rewards.grasp_handle.params["open_joint_pos"] = 0.04 self.rewards.grasp_handle.params["asset_cfg"].joint_names = ["panda_finger_.*"] @configclass class FrankaCabinetEnvCfg_PLAY(FrankaCabinetEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
3,464
Python
37.076923
117
0.58776
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/config/franka/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class CabinetPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 96 max_iterations = 400 save_interval = 50 experiment_name = "franka_open_drawer" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[256, 128, 64], critic_hidden_dims=[256, 128, 64], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=1e-3, num_learning_epochs=5, num_mini_batches=4, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.02, max_grad_norm=1.0, )
1,085
Python
24.857142
58
0.645161
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/config/franka/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/cabinet/config/franka/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_observations: 5.0 clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: '' config: name: franka_open_drawer env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: False normalize_value: False num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 1 normalize_advantage: False gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 200 max_epochs: 400 save_best_after: 50 save_frequency: 50 print_stats: True grad_norm: 1.0 entropy_coef: 0.001 truncate_grads: True e_clip: 0.2 horizon_length: 96 minibatch_size: 4096 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,482
YAML
18.25974
68
0.597841
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configurations for the object lift environments.""" # We leave this file empty since we don't want to expose any configs in this package directly. # We still need this file to import the "config" module in the parent package.
353
Python
34.399997
94
0.756374
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/lift_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg, RigidObjectCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import CurriculumTermCfg as CurrTerm from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors.frame_transformer.frame_transformer_cfg import FrameTransformerCfg from omni.isaac.orbit.sim.spawners.from_files.from_files_cfg import GroundPlaneCfg, UsdFileCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from . import mdp ## # Scene definition ## @configclass class ObjectTableSceneCfg(InteractiveSceneCfg): """Configuration for the lift scene with a robot and a object. This is the abstract base implementation, the exact scene is defined in the derived classes which need to set the target object, robot and end-effector frames """ # robots: will be populated by agent env cfg robot: ArticulationCfg = MISSING # end-effector sensor: will be populated by agent env cfg ee_frame: FrameTransformerCfg = MISSING # target object: will be populated by agent env cfg object: RigidObjectCfg = MISSING # Table table = AssetBaseCfg( prim_path="{ENV_REGEX_NS}/Table", init_state=AssetBaseCfg.InitialStateCfg(pos=[0.5, 0, 0], rot=[0.707, 0, 0, 0.707]), spawn=UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/SeattleLabTable/table_instanceable.usd"), ) # plane plane = AssetBaseCfg( prim_path="/World/GroundPlane", init_state=AssetBaseCfg.InitialStateCfg(pos=[0, 0, -1.05]), spawn=GroundPlaneCfg(), ) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DomeLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" object_pose = mdp.UniformPoseCommandCfg( asset_name="robot", body_name=MISSING, # will be set by agent env cfg resampling_time_range=(5.0, 5.0), debug_vis=True, ranges=mdp.UniformPoseCommandCfg.Ranges( pos_x=(0.4, 0.6), pos_y=(-0.25, 0.25), pos_z=(0.25, 0.5), roll=(0.0, 0.0), pitch=(0.0, 0.0), yaw=(0.0, 0.0) ), ) @configclass class ActionsCfg: """Action specifications for the MDP.""" # will be set by agent env cfg body_joint_pos: mdp.JointPositionActionCfg = MISSING finger_joint_pos: mdp.BinaryJointPositionActionCfg = MISSING @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" joint_pos = ObsTerm(func=mdp.joint_pos_rel) joint_vel = ObsTerm(func=mdp.joint_vel_rel) object_position = ObsTerm(func=mdp.object_position_in_robot_root_frame) target_object_position = ObsTerm(func=mdp.generated_commands, params={"command_name": "object_pose"}) actions = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" reset_all = EventTerm(func=mdp.reset_scene_to_default, mode="reset") reset_object_position = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "pose_range": {"x": (-0.1, 0.1), "y": (-0.25, 0.25), "z": (0.0, 0.0)}, "velocity_range": {}, "asset_cfg": SceneEntityCfg("object", body_names="Object"), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" reaching_object = RewTerm(func=mdp.object_ee_distance, params={"std": 0.1}, weight=1.0) lifting_object = RewTerm(func=mdp.object_is_lifted, params={"minimal_height": 0.06}, weight=15.0) object_goal_tracking = RewTerm( func=mdp.object_goal_distance, params={"std": 0.3, "minimal_height": 0.06, "command_name": "object_pose"}, weight=16.0, ) object_goal_tracking_fine_grained = RewTerm( func=mdp.object_goal_distance, params={"std": 0.05, "minimal_height": 0.06, "command_name": "object_pose"}, weight=5.0, ) # action penalty action_rate = RewTerm(func=mdp.action_rate_l2, weight=-1e-3) joint_vel = RewTerm( func=mdp.joint_vel_l2, weight=-1e-4, params={"asset_cfg": SceneEntityCfg("robot")}, ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) object_dropping = DoneTerm( func=mdp.base_height, params={"minimum_height": -0.05, "asset_cfg": SceneEntityCfg("object")} ) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" action_rate = CurrTerm( func=mdp.modify_reward_weight, params={"term_name": "action_rate", "weight": -1e-1, "num_steps": 10000} ) joint_vel = CurrTerm( func=mdp.modify_reward_weight, params={"term_name": "joint_vel", "weight": -1e-1, "num_steps": 10000} ) ## # Environment configuration ## @configclass class LiftEnvCfg(RLTaskEnvCfg): """Configuration for the lifting environment.""" # Scene settings scene: ObjectTableSceneCfg = ObjectTableSceneCfg(num_envs=4096, env_spacing=2.5) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 5.0 # simulation settings self.sim.dt = 0.01 # 100Hz self.sim.physx.bounce_threshold_velocity = 0.2 self.sim.physx.bounce_threshold_velocity = 0.01 self.sim.physx.gpu_found_lost_aggregate_pairs_capacity = 1024 * 1024 * 4 self.sim.physx.gpu_total_aggregate_pairs_capacity = 16 * 1024 self.sim.physx.friction_correlation_distance = 0.00625
6,999
Python
30.111111
119
0.673096
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the lift environments.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .observations import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403 from .terminations import * # noqa: F401, F403
413
Python
30.846151
88
0.726392
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.assets import RigidObject from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.sensors import FrameTransformer from omni.isaac.orbit.utils.math import combine_frame_transforms if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def object_is_lifted( env: RLTaskEnv, minimal_height: float, object_cfg: SceneEntityCfg = SceneEntityCfg("object") ) -> torch.Tensor: """Reward the agent for lifting the object above the minimal height.""" object: RigidObject = env.scene[object_cfg.name] return torch.where(object.data.root_pos_w[:, 2] > minimal_height, 1.0, 0.0) def object_ee_distance( env: RLTaskEnv, std: float, object_cfg: SceneEntityCfg = SceneEntityCfg("object"), ee_frame_cfg: SceneEntityCfg = SceneEntityCfg("ee_frame"), ) -> torch.Tensor: """Reward the agent for reaching the object using tanh-kernel.""" # extract the used quantities (to enable type-hinting) object: RigidObject = env.scene[object_cfg.name] ee_frame: FrameTransformer = env.scene[ee_frame_cfg.name] # Target object position: (num_envs, 3) cube_pos_w = object.data.root_pos_w # End-effector position: (num_envs, 3) ee_w = ee_frame.data.target_pos_w[..., 0, :] # Distance of the end-effector to the object: (num_envs,) object_ee_distance = torch.norm(cube_pos_w - ee_w, dim=1) return 1 - torch.tanh(object_ee_distance / std) def object_goal_distance( env: RLTaskEnv, std: float, minimal_height: float, command_name: str, robot_cfg: SceneEntityCfg = SceneEntityCfg("robot"), object_cfg: SceneEntityCfg = SceneEntityCfg("object"), ) -> torch.Tensor: """Reward the agent for tracking the goal pose using tanh-kernel.""" # extract the used quantities (to enable type-hinting) robot: RigidObject = env.scene[robot_cfg.name] object: RigidObject = env.scene[object_cfg.name] command = env.command_manager.get_command(command_name) # compute the desired position in the world frame des_pos_b = command[:, :3] des_pos_w, _ = combine_frame_transforms(robot.data.root_state_w[:, :3], robot.data.root_state_w[:, 3:7], des_pos_b) # distance of the end-effector to the object: (num_envs,) distance = torch.norm(des_pos_w - object.data.root_pos_w[:, :3], dim=1) # rewarded if the object is lifted above the threshold return (object.data.root_pos_w[:, 2] > minimal_height) * (1 - torch.tanh(distance / std))
2,683
Python
38.470588
119
0.701826
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/mdp/terminations.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Common functions that can be used to activate certain terminations for the lift task. The functions can be passed to the :class:`omni.isaac.orbit.managers.TerminationTermCfg` object to enable the termination introduced by the function. """ from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.assets import RigidObject from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.utils.math import combine_frame_transforms if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def object_reached_goal( env: RLTaskEnv, command_name: str = "object_pose", threshold: float = 0.02, robot_cfg: SceneEntityCfg = SceneEntityCfg("robot"), object_cfg: SceneEntityCfg = SceneEntityCfg("object"), ) -> torch.Tensor: """Termination condition for the object reaching the goal position. Args: env: The environment. command_name: The name of the command that is used to control the object. threshold: The threshold for the object to reach the goal position. Defaults to 0.02. robot_cfg: The robot configuration. Defaults to SceneEntityCfg("robot"). object_cfg: The object configuration. Defaults to SceneEntityCfg("object"). """ # extract the used quantities (to enable type-hinting) robot: RigidObject = env.scene[robot_cfg.name] object: RigidObject = env.scene[object_cfg.name] command = env.command_manager.get_command(command_name) # compute the desired position in the world frame des_pos_b = command[:, :3] des_pos_w, _ = combine_frame_transforms(robot.data.root_state_w[:, :3], robot.data.root_state_w[:, 3:7], des_pos_b) # distance of the end-effector to the object: (num_envs,) distance = torch.norm(des_pos_w - object.data.root_pos_w[:, :3], dim=1) # rewarded if the object is lifted above the threshold return distance < threshold
2,055
Python
37.074073
119
0.722141
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/mdp/observations.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.assets import RigidObject from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.utils.math import subtract_frame_transforms if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def object_position_in_robot_root_frame( env: RLTaskEnv, robot_cfg: SceneEntityCfg = SceneEntityCfg("robot"), object_cfg: SceneEntityCfg = SceneEntityCfg("object"), ) -> torch.Tensor: """The position of the object in the robot's root frame.""" robot: RigidObject = env.scene[robot_cfg.name] object: RigidObject = env.scene[object_cfg.name] object_pos_w = object.data.root_pos_w[:, :3] object_pos_b, _ = subtract_frame_transforms( robot.data.root_state_w[:, :3], robot.data.root_state_w[:, 3:7], object_pos_w ) return object_pos_b
1,020
Python
30.906249
85
0.721569
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configurations for the object lift environments.""" # We leave this file empty since we don't want to expose any configs in this package directly. # We still need this file to import the "config" module in the parent package.
353
Python
34.399997
94
0.756374
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/franka/ik_rel_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.controllers.differential_ik_cfg import DifferentialIKControllerCfg from omni.isaac.orbit.envs.mdp.actions.actions_cfg import DifferentialInverseKinematicsActionCfg from omni.isaac.orbit.utils import configclass from . import joint_pos_env_cfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.franka import FRANKA_PANDA_HIGH_PD_CFG # isort: skip @configclass class FrankaCubeLiftEnvCfg(joint_pos_env_cfg.FrankaCubeLiftEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # Set Franka as robot # We switch here to a stiffer PD controller for IK tracking to be better. self.scene.robot = FRANKA_PANDA_HIGH_PD_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # Set actions for the specific robot type (franka) self.actions.body_joint_pos = DifferentialInverseKinematicsActionCfg( asset_name="robot", joint_names=["panda_joint.*"], body_name="panda_hand", controller=DifferentialIKControllerCfg(command_type="pose", use_relative_mode=True, ik_method="dls"), scale=0.5, body_offset=DifferentialInverseKinematicsActionCfg.OffsetCfg(pos=[0.0, 0.0, 0.107]), ) @configclass class FrankaCubeLiftEnvCfg_PLAY(FrankaCubeLiftEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
1,746
Python
34.653061
113
0.68614
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/franka/ik_abs_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.controllers.differential_ik_cfg import DifferentialIKControllerCfg from omni.isaac.orbit.envs.mdp.actions.actions_cfg import DifferentialInverseKinematicsActionCfg from omni.isaac.orbit.utils import configclass from . import joint_pos_env_cfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.franka import FRANKA_PANDA_HIGH_PD_CFG # isort: skip @configclass class FrankaCubeLiftEnvCfg(joint_pos_env_cfg.FrankaCubeLiftEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # Set Franka as robot # We switch here to a stiffer PD controller for IK tracking to be better. self.scene.robot = FRANKA_PANDA_HIGH_PD_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # Set actions for the specific robot type (franka) self.actions.body_joint_pos = DifferentialInverseKinematicsActionCfg( asset_name="robot", joint_names=["panda_joint.*"], body_name="panda_hand", controller=DifferentialIKControllerCfg(command_type="pose", use_relative_mode=False, ik_method="dls"), body_offset=DifferentialInverseKinematicsActionCfg.OffsetCfg(pos=[0.0, 0.0, 0.107]), ) @configclass class FrankaCubeLiftEnvCfg_PLAY(FrankaCubeLiftEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
1,724
Python
34.937499
114
0.691415
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/franka/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym import os from . import agents, ik_abs_env_cfg, ik_rel_env_cfg, joint_pos_env_cfg ## # Register Gym environments. ## ## # Joint Position Control ## gym.register( id="Isaac-Lift-Cube-Franka-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": joint_pos_env_cfg.FrankaCubeLiftEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.LiftCubePPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, disable_env_checker=True, ) gym.register( id="Isaac-Lift-Cube-Franka-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": joint_pos_env_cfg.FrankaCubeLiftEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.LiftCubePPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, disable_env_checker=True, ) ## # Inverse Kinematics - Absolute Pose Control ## gym.register( id="Isaac-Lift-Cube-Franka-IK-Abs-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_abs_env_cfg.FrankaCubeLiftEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.LiftCubePPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, disable_env_checker=True, ) gym.register( id="Isaac-Lift-Cube-Franka-IK-Abs-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_abs_env_cfg.FrankaCubeLiftEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.LiftCubePPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, disable_env_checker=True, ) ## # Inverse Kinematics - Relative Pose Control ## gym.register( id="Isaac-Lift-Cube-Franka-IK-Rel-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_rel_env_cfg.FrankaCubeLiftEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.LiftCubePPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "robomimic_bc_cfg_entry_point": os.path.join(agents.__path__[0], "robomimic/bc.json"), }, disable_env_checker=True, ) gym.register( id="Isaac-Lift-Cube-Franka-IK-Rel-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", kwargs={ "env_cfg_entry_point": ik_rel_env_cfg.FrankaCubeLiftEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.LiftCubePPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, disable_env_checker=True, )
2,769
Python
28.784946
94
0.660888
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/franka/joint_pos_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.assets import RigidObjectCfg from omni.isaac.orbit.sensors import FrameTransformerCfg from omni.isaac.orbit.sensors.frame_transformer.frame_transformer_cfg import OffsetCfg from omni.isaac.orbit.sim.schemas.schemas_cfg import RigidBodyPropertiesCfg from omni.isaac.orbit.sim.spawners.from_files.from_files_cfg import UsdFileCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.orbit_tasks.manipulation.lift import mdp from omni.isaac.orbit_tasks.manipulation.lift.lift_env_cfg import LiftEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit.markers.config import FRAME_MARKER_CFG # isort: skip from omni.isaac.orbit_assets.franka import FRANKA_PANDA_CFG # isort: skip @configclass class FrankaCubeLiftEnvCfg(LiftEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # Set Franka as robot self.scene.robot = FRANKA_PANDA_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # Set actions for the specific robot type (franka) self.actions.body_joint_pos = mdp.JointPositionActionCfg( asset_name="robot", joint_names=["panda_joint.*"], scale=0.5, use_default_offset=True ) self.actions.finger_joint_pos = mdp.BinaryJointPositionActionCfg( asset_name="robot", joint_names=["panda_finger.*"], open_command_expr={"panda_finger_.*": 0.04}, close_command_expr={"panda_finger_.*": 0.0}, ) # Set the body name for the end effector self.commands.object_pose.body_name = "panda_hand" # Set Cube as object self.scene.object = RigidObjectCfg( prim_path="{ENV_REGEX_NS}/Object", init_state=RigidObjectCfg.InitialStateCfg(pos=[0.5, 0, 0.055], rot=[1, 0, 0, 0]), spawn=UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd", scale=(0.8, 0.8, 0.8), rigid_props=RigidBodyPropertiesCfg( solver_position_iteration_count=16, solver_velocity_iteration_count=1, max_angular_velocity=1000.0, max_linear_velocity=1000.0, max_depenetration_velocity=5.0, disable_gravity=False, ), ), ) # Listens to the required transforms marker_cfg = FRAME_MARKER_CFG.copy() marker_cfg.markers["frame"].scale = (0.1, 0.1, 0.1) marker_cfg.prim_path = "/Visuals/FrameTransformer" self.scene.ee_frame = FrameTransformerCfg( prim_path="{ENV_REGEX_NS}/Robot/panda_link0", debug_vis=False, visualizer_cfg=marker_cfg, target_frames=[ FrameTransformerCfg.FrameCfg( prim_path="{ENV_REGEX_NS}/Robot/panda_hand", name="end_effector", offset=OffsetCfg( pos=[0.0, 0.0, 0.1034], ), ), ], ) @configclass class FrankaCubeLiftEnvCfg_PLAY(FrankaCubeLiftEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
3,644
Python
37.776595
97
0.613886
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/franka/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class LiftCubePPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "franka_lift" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[256, 128, 64], critic_hidden_dims=[256, 128, 64], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.006, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-4, schedule="adaptive", gamma=0.98, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,081
Python
24.761904
58
0.644773
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/franka/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/develop/modules/skrl.utils.model_instantiators.html models: separate: True policy: # see skrl.utils.model_instantiators.gaussian_model for parameter details clip_actions: False clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "" output_scale: 1.0 value: # see skrl.utils.model_instantiators.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent: rollouts: 16 learning_epochs: 8 mini_batches: 8 discount_factor: 0.99 lambda: 0.95 learning_rate: 3.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.008 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 2.0 kl_threshold: 0 rewards_shaper_scale: 0.01 # logging and checkpoint experiment: directory: "franka_lift" experiment_name: "" write_interval: 120 checkpoint_interval: 1200 # Sequential trainer # https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.sequential.html trainer: timesteps: 24000
1,895
YAML
27.298507
88
0.711346
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/franka/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L32 seed: 42 # epoch * n_steps * nenvs: 500×512*8*8 n_timesteps: 16384000 policy: 'MlpPolicy' n_steps: 64 # mini batch size: num_envs * nsteps / nminibatches 2048×512÷2048 batch_size: 192 gae_lambda: 0.95 gamma: 0.99 n_epochs: 8 ent_coef: 0.00 vf_coef: 0.0001 learning_rate: !!float 3e-4 clip_range: 0.2 policy_kwargs: "dict( activation_fn=nn.ELU, net_arch=[32, 32, dict(pi=[256, 128, 64], vf=[256, 128, 64])] )" target_kl: 0.01 max_grad_norm: 1.0 # # Uses VecNormalize class to normalize obs # normalize_input: True # # Uses VecNormalize class to normalize rew # normalize_value: True # clip_obs: 5
743
YAML
24.655172
92
0.660834
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/franka/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/lift/config/franka/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_observations: 100.0 clip_actions: 100.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: reach env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: False num_actors: -1 reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.008 score_to_win: 100000000 max_epochs: 500 save_best_after: 100 save_frequency: 50 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 4096 #2048 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,566
YAML
18.835443
73
0.605364
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Locomotion environments for legged robots.""" from .velocity import * # noqa
205
Python
21.888886
56
0.731707
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/velocity_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import math from dataclasses import MISSING import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import CurriculumTermCfg as CurrTerm from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors import ContactSensorCfg, RayCasterCfg, patterns from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.noise import AdditiveUniformNoiseCfg as Unoise import omni.isaac.orbit_tasks.locomotion.velocity.mdp as mdp ## # Pre-defined configs ## from omni.isaac.orbit.terrains.config.rough import ROUGH_TERRAINS_CFG # isort: skip ## # Scene definition ## @configclass class MySceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with a legged robot.""" # ground terrain terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="generator", terrain_generator=ROUGH_TERRAINS_CFG, max_init_terrain_level=5, collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, ), visual_material=sim_utils.MdlFileCfg( mdl_path="{NVIDIA_NUCLEUS_DIR}/Materials/Base/Architecture/Shingles_01.mdl", project_uvw=True, ), debug_vis=False, ) # robots robot: ArticulationCfg = MISSING # sensors height_scanner = RayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 20.0)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=False, mesh_prim_paths=["/World/ground"], ) contact_forces = ContactSensorCfg(prim_path="{ENV_REGEX_NS}/Robot/.*", history_length=3, track_air_time=True) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) sky_light = AssetBaseCfg( prim_path="/World/skyLight", spawn=sim_utils.DomeLightCfg(color=(0.13, 0.13, 0.13), intensity=1000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command specifications for the MDP.""" base_velocity = mdp.UniformVelocityCommandCfg( asset_name="robot", resampling_time_range=(10.0, 10.0), rel_standing_envs=0.02, rel_heading_envs=1.0, heading_command=True, heading_control_stiffness=0.5, debug_vis=True, ranges=mdp.UniformVelocityCommandCfg.Ranges( lin_vel_x=(-1.0, 1.0), lin_vel_y=(-1.0, 1.0), ang_vel_z=(-1.0, 1.0), heading=(-math.pi, math.pi) ), ) @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_pos = mdp.JointPositionActionCfg(asset_name="robot", joint_names=[".*"], scale=0.5, use_default_offset=True) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) base_lin_vel = ObsTerm(func=mdp.base_lin_vel, noise=Unoise(n_min=-0.1, n_max=0.1)) base_ang_vel = ObsTerm(func=mdp.base_ang_vel, noise=Unoise(n_min=-0.2, n_max=0.2)) projected_gravity = ObsTerm( func=mdp.projected_gravity, noise=Unoise(n_min=-0.05, n_max=0.05), ) velocity_commands = ObsTerm(func=mdp.generated_commands, params={"command_name": "base_velocity"}) joint_pos = ObsTerm(func=mdp.joint_pos_rel, noise=Unoise(n_min=-0.01, n_max=0.01)) joint_vel = ObsTerm(func=mdp.joint_vel_rel, noise=Unoise(n_min=-1.5, n_max=1.5)) actions = ObsTerm(func=mdp.last_action) height_scan = ObsTerm( func=mdp.height_scan, params={"sensor_cfg": SceneEntityCfg("height_scanner")}, noise=Unoise(n_min=-0.1, n_max=0.1), clip=(-1.0, 1.0), ) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" # startup physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "static_friction_range": (0.8, 0.8), "dynamic_friction_range": (0.6, 0.6), "restitution_range": (0.0, 0.0), "num_buckets": 64, }, ) add_base_mass = EventTerm( func=mdp.add_body_mass, mode="startup", params={"asset_cfg": SceneEntityCfg("robot", body_names="base"), "mass_range": (-5.0, 5.0)}, ) # reset base_external_force_torque = EventTerm( func=mdp.apply_external_force_torque, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", body_names="base"), "force_range": (0.0, 0.0), "torque_range": (-0.0, 0.0), }, ) reset_base = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (-0.5, 0.5), "y": (-0.5, 0.5), "z": (-0.5, 0.5), "roll": (-0.5, 0.5), "pitch": (-0.5, 0.5), "yaw": (-0.5, 0.5), }, }, ) reset_robot_joints = EventTerm( func=mdp.reset_joints_by_scale, mode="reset", params={ "position_range": (0.5, 1.5), "velocity_range": (0.0, 0.0), }, ) # interval push_robot = EventTerm( func=mdp.push_by_setting_velocity, mode="interval", interval_range_s=(10.0, 15.0), params={"velocity_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5)}}, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # -- task track_lin_vel_xy_exp = RewTerm( func=mdp.track_lin_vel_xy_exp, weight=1.0, params={"command_name": "base_velocity", "std": math.sqrt(0.25)} ) track_ang_vel_z_exp = RewTerm( func=mdp.track_ang_vel_z_exp, weight=0.5, params={"command_name": "base_velocity", "std": math.sqrt(0.25)} ) # -- penalties lin_vel_z_l2 = RewTerm(func=mdp.lin_vel_z_l2, weight=-2.0) ang_vel_xy_l2 = RewTerm(func=mdp.ang_vel_xy_l2, weight=-0.05) dof_torques_l2 = RewTerm(func=mdp.joint_torques_l2, weight=-1.0e-5) dof_acc_l2 = RewTerm(func=mdp.joint_acc_l2, weight=-2.5e-7) action_rate_l2 = RewTerm(func=mdp.action_rate_l2, weight=-0.01) feet_air_time = RewTerm( func=mdp.feet_air_time, weight=0.125, params={ "sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*FOOT"), "command_name": "base_velocity", "threshold": 0.5, }, ) undesired_contacts = RewTerm( func=mdp.undesired_contacts, weight=-1.0, params={"sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*THIGH"), "threshold": 1.0}, ) # -- optional penalties flat_orientation_l2 = RewTerm(func=mdp.flat_orientation_l2, weight=0.0) dof_pos_limits = RewTerm(func=mdp.joint_pos_limits, weight=0.0) @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) base_contact = DoneTerm( func=mdp.illegal_contact, params={"sensor_cfg": SceneEntityCfg("contact_forces", body_names="base"), "threshold": 1.0}, ) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" terrain_levels = CurrTerm(func=mdp.terrain_levels_vel) ## # Environment configuration ## @configclass class LocomotionVelocityRoughEnvCfg(RLTaskEnvCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=4096, env_spacing=2.5) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 4 self.episode_length_s = 20.0 # simulation settings self.sim.dt = 0.005 self.sim.disable_contact_processing = True self.sim.physics_material = self.scene.terrain.physics_material # update sensor update periods # we tick all the sensors based on the smallest update period (physics update period) if self.scene.height_scanner is not None: self.scene.height_scanner.update_period = self.decimation * self.sim.dt if self.scene.contact_forces is not None: self.scene.contact_forces.update_period = self.sim.dt # check if terrain levels curriculum is enabled - if so, enable curriculum for terrain generator # this generates terrains with increasing difficulty and is useful for training if getattr(self.curriculum, "terrain_levels", None) is not None: if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.curriculum = True else: if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.curriculum = False
10,608
Python
32.466877
118
0.625094
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Locomotion environments with velocity-tracking commands. These environments are based on the `legged_gym` environments provided by Rudin et al. Reference: https://github.com/leggedrobotics/legged_gym """
336
Python
24.923075
86
0.764881
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the locomotion environments.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .curriculums import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403
370
Python
29.916664
94
0.732432
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/mdp/curriculums.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Common functions that can be used to create curriculum for the learning environment. The functions can be passed to the :class:`omni.isaac.orbit.managers.CurriculumTermCfg` object to enable the curriculum introduced by the function. """ from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.terrains import TerrainImporter if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def terrain_levels_vel( env: RLTaskEnv, env_ids: Sequence[int], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Curriculum based on the distance the robot walked when commanded to move at a desired velocity. This term is used to increase the difficulty of the terrain when the robot walks far enough and decrease the difficulty when the robot walks less than half of the distance required by the commanded velocity. .. note:: It is only possible to use this term with the terrain type ``generator``. For further information on different terrain types, check the :class:`omni.isaac.orbit.terrains.TerrainImporter` class. Returns: The mean terrain level for the given environment ids. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] terrain: TerrainImporter = env.scene.terrain command = env.command_manager.get_command("base_velocity") # compute the distance the robot walked distance = torch.norm(asset.data.root_pos_w[env_ids, :2] - env.scene.env_origins[env_ids, :2], dim=1) # robots that walked far enough progress to harder terrains move_up = distance > terrain.cfg.terrain_generator.size[0] / 2 # robots that walked less than half of their required distance go to simpler terrains move_down = distance < torch.norm(command[env_ids, :2], dim=1) * env.max_episode_length_s * 0.5 move_down *= ~move_up # update terrain levels terrain.update_env_origins(env_ids, move_up, move_down) # return the mean terrain level return torch.mean(terrain.terrain_levels.float())
2,376
Python
41.446428
112
0.742424
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.sensors import ContactSensor if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def feet_air_time(env: RLTaskEnv, command_name: str, sensor_cfg: SceneEntityCfg, threshold: float) -> torch.Tensor: """Reward long steps taken by the feet using L2-kernel. This function rewards the agent for taking steps that are longer than a threshold. This helps ensure that the robot lifts its feet off the ground and takes steps. The reward is computed as the sum of the time for which the feet are in the air. If the commands are small (i.e. the agent is not supposed to take a step), then the reward is zero. """ # extract the used quantities (to enable type-hinting) contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] # compute the reward first_contact = contact_sensor.compute_first_contact(env.step_dt)[:, sensor_cfg.body_ids] last_air_time = contact_sensor.data.last_air_time[:, sensor_cfg.body_ids] reward = torch.sum((last_air_time - threshold) * first_contact, dim=1) # no reward for zero command reward *= torch.norm(env.command_manager.get_command(command_name)[:, :2], dim=1) > 0.1 return reward def feet_air_time_positive_biped(env, command_name: str, threshold: float, sensor_cfg: SceneEntityCfg) -> torch.Tensor: """Reward long steps taken by the feet for bipeds. This function rewards the agent for taking steps up to a specified threshold and also keep one foot at a time in the air. If the commands are small (i.e. the agent is not supposed to take a step), then the reward is zero. """ contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] # compute the reward air_time = contact_sensor.data.current_air_time[:, sensor_cfg.body_ids] contact_time = contact_sensor.data.current_contact_time[:, sensor_cfg.body_ids] in_contact = contact_time > 0.0 in_mode_time = torch.where(in_contact, contact_time, air_time) single_stance = torch.sum(in_contact.int(), dim=1) == 1 reward = torch.min(torch.where(single_stance.unsqueeze(-1), in_mode_time, 0.0), dim=1)[0] reward = torch.clamp(reward, max=threshold) # no reward for zero command reward *= torch.norm(env.command_manager.get_command(command_name)[:, :2], dim=1) > 0.1 return reward
2,595
Python
43.75862
119
0.717148
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configurations for velocity-based locomotion environments.""" # We leave this file empty since we don't want to expose any configs in this package directly. # We still need this file to import the "config" module in the parent package.
363
Python
35.399996
94
0.763085
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go1/rough_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.locomotion.velocity.velocity_env_cfg import LocomotionVelocityRoughEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.unitree import UNITREE_GO1_CFG # isort: skip @configclass class UnitreeGo1RoughEnvCfg(LocomotionVelocityRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() self.scene.robot = UNITREE_GO1_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") self.scene.height_scanner.prim_path = "{ENV_REGEX_NS}/Robot/trunk" # scale down the terrains because the robot is small self.scene.terrain.terrain_generator.sub_terrains["boxes"].grid_height_range = (0.025, 0.1) self.scene.terrain.terrain_generator.sub_terrains["random_rough"].noise_range = (0.01, 0.06) self.scene.terrain.terrain_generator.sub_terrains["random_rough"].noise_step = 0.01 # reduce action scale self.actions.joint_pos.scale = 0.25 # event self.events.push_robot = None self.events.add_base_mass.params["mass_range"] = (-1.0, 3.0) self.events.add_base_mass.params["asset_cfg"].body_names = "trunk" self.events.base_external_force_torque.params["asset_cfg"].body_names = "trunk" self.events.reset_robot_joints.params["position_range"] = (1.0, 1.0) self.events.reset_base.params = { "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (0.0, 0.0), "y": (0.0, 0.0), "z": (0.0, 0.0), "roll": (0.0, 0.0), "pitch": (0.0, 0.0), "yaw": (0.0, 0.0), }, } # rewards self.rewards.feet_air_time.params["sensor_cfg"].body_names = ".*_foot" self.rewards.feet_air_time.weight = 0.01 self.rewards.undesired_contacts = None self.rewards.dof_torques_l2.weight = -0.0002 self.rewards.track_lin_vel_xy_exp.weight = 1.5 self.rewards.track_ang_vel_z_exp.weight = 0.75 self.rewards.dof_acc_l2.weight = -2.5e-7 # terminations self.terminations.base_contact.params["sensor_cfg"].body_names = "trunk" @configclass class UnitreeGo1RoughEnvCfg_PLAY(UnitreeGo1RoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # spawn the robot randomly in the grid (instead of their terrain levels) self.scene.terrain.max_init_terrain_level = None # reduce the number of terrains to save memory if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.num_rows = 5 self.scene.terrain.terrain_generator.num_cols = 5 self.scene.terrain.terrain_generator.curriculum = False # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
3,351
Python
38.435294
101
0.621904
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go1/flat_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from .rough_env_cfg import UnitreeGo1RoughEnvCfg @configclass class UnitreeGo1FlatEnvCfg(UnitreeGo1RoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # override rewards self.rewards.flat_orientation_l2.weight = -2.5 self.rewards.feet_air_time.weight = 0.25 # change terrain to flat self.scene.terrain.terrain_type = "plane" self.scene.terrain.terrain_generator = None # no height scan self.scene.height_scanner = None self.observations.policy.height_scan = None # no terrain curriculum self.curriculum.terrain_levels = None class UnitreeGo1FlatEnvCfg_PLAY(UnitreeGo1FlatEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing event self.events.base_external_force_torque = None self.events.push_robot = None
1,338
Python
29.431818
58
0.658445
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go1/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Unitree-Go1-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeGo1FlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1FlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Flat-Unitree-Go1-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeGo1FlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1FlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-Go1-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeGo1RoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1RoughPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-Go1-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeGo1RoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1RoughPPORunnerCfg, }, )
1,498
Python
27.283018
80
0.690921
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/locomotion/velocity/config/unitree_go1/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class UnitreeGo1RoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "unitree_go1_rough" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.01, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class UnitreeGo1FlatPPORunnerCfg(UnitreeGo1RoughPPORunnerCfg): def __post_init__(self): super().__post_init__() self.max_iterations = 300 self.experiment_name = "unitree_go1_flat" self.policy.actor_hidden_dims = [128, 128, 128] self.policy.critic_hidden_dims = [128, 128, 128]
1,432
Python
26.037735
62
0.648045