file_path
stringlengths
21
207
content
stringlengths
5
1.02M
size
int64
5
1.02M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.27
0.93
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_humanoid_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-5, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 400), nn.ELU(), nn.Linear(400, 200), nn.ELU(), nn.Linear(200, 100), nn.ELU()) self.mean_layer = nn.Linear(100, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) self.value_layer = nn.Linear(100, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return torch.tanh(self.mean_layer(self.net(inputs["states"]))), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Humanoid-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=32, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 32 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 8 # 32 * 1024 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 4.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, *args, **kwargs: rewards * 0.01 cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 80 cfg["experiment"]["checkpoint_interval"] = 800 cfg["experiment"]["directory"] = "runs/torch/Isaac-Humanoid-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 16000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Humanoid-v0-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
5,082
Python
37.801526
102
0.668634
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_ant_sac.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.sac import SAC, SAC_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class StochasticActor(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-5, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.relu(nn.Dense(512)(inputs["states"])) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return nn.tanh(x), log_std, {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = nn.relu(nn.Dense(512)(x)) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # SAC requires 5 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/sac.html#models models = {} models["policy"] = StochasticActor(env.observation_space, env.action_space, device) models["critic_1"] = Critic(env.observation_space, env.action_space, device) models["critic_2"] = Critic(env.observation_space, env.action_space, device) models["target_critic_1"] = Critic(env.observation_space, env.action_space, device) models["target_critic_2"] = Critic(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/sac.html#configuration-and-hyperparameters cfg = SAC_DEFAULT_CONFIG.copy() cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["grad_norm_clip"] = 0 cfg["learn_entropy"] = True cfg["entropy_learning_rate"] = 5e-3 cfg["initial_entropy_value"] = 1.0 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/jax/Isaac-Ant-v0" agent = SAC(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
5,362
Python
38.725926
102
0.705334
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_ant_sac.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.sac import SAC, SAC_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class StochasticActor(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-5, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations + self.num_actions, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 1)) def compute(self, inputs, role): return self.net(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1)), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # SAC requires 5 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/sac.html#models models = {} models["policy"] = StochasticActor(env.observation_space, env.action_space, device) models["critic_1"] = Critic(env.observation_space, env.action_space, device) models["critic_2"] = Critic(env.observation_space, env.action_space, device) models["target_critic_1"] = Critic(env.observation_space, env.action_space, device) models["target_critic_2"] = Critic(env.observation_space, env.action_space, device) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/sac.html#configuration-and-hyperparameters cfg = SAC_DEFAULT_CONFIG.copy() cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["grad_norm_clip"] = 0 cfg["learn_entropy"] = True cfg["entropy_learning_rate"] = 5e-3 cfg["initial_entropy_value"] = 1.0 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/torch/Isaac-Ant-v0" agent = SAC(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
4,436
Python
39.336363
93
0.672904
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_ant_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU()) self.mean_layer = nn.Linear(64, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) self.value_layer = nn.Linear(64, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 4 # 16 * 1024 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, *args, **kwargs: rewards * 0.1 cfg["time_limit_bootstrap"] = True cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 40 cfg["experiment"]["checkpoint_interval"] = 400 cfg["experiment"]["directory"] = "runs/torch/Isaac-Ant-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 8000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Ant-v0-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
5,051
Python
37.564885
101
0.667195
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_lift_franka_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveLR from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.ones(self.num_actions)) return x, log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Lift-Franka-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=96, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 96 # memory_size cfg["learning_epochs"] = 5 cfg["mini_batches"] = 4 # 96 * 4096 / 98304 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 1e-3 cfg["learning_rate_scheduler"] = KLAdaptiveLR cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01, "min_lr": 1e-5} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.01 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = True cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 336 cfg["experiment"]["checkpoint_interval"] = 3360 cfg["experiment"]["directory"] = "runs/jax/Isaac-Lift-Franka-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 67200, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Lift-Franka-v0-PPO", filename="agent.pickle") # agent.load(path) # # start evaluation # trainer.eval()
6,089
Python
37.789809
109
0.688783
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_lift_franka_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveLR from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU()) self.mean_layer = nn.Linear(64, self.num_actions) self.log_std_parameter = nn.Parameter(torch.ones(self.num_actions)) self.value_layer = nn.Linear(64, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Lift-Franka-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=96, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 96 # memory_size cfg["learning_epochs"] = 5 cfg["mini_batches"] = 4 # 96 * 4096 / 98304 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 1e-3 cfg["learning_rate_scheduler"] = KLAdaptiveLR cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01, "min_lr": 1e-5} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.01 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = True cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 336 cfg["experiment"]["checkpoint_interval"] = 3360 cfg["experiment"]["directory"] = "runs/torch/Isaac-Lift-Franka-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 67200, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Lift-Franka-v0-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
5,052
Python
37.572519
105
0.667854
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_ant_ddpg.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ddpg import DDPG, DDPG_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, Model from skrl.resources.noises.jax import OrnsteinUhlenbeckNoise from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixins class DeterministicActor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.relu(nn.Dense(512)(inputs["states"])) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(self.num_actions)(x) return nn.tanh(x), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = nn.relu(nn.Dense(512)(x)) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # DDPG requires 4 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#models models = {} models["policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["target_policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["critic"] = Critic(env.observation_space, env.action_space, device) models["target_critic"] = Critic(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#configuration-and-hyperparameters cfg = DDPG_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.1, base_scale=0.5, device=device) cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/jax/Isaac-Ant-v0" agent = DDPG(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
5,110
Python
38.315384
106
0.71272
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_reach_franka_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: 0.5 * jnp.ones(self.num_actions)) return nn.tanh(x), log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Reach-Franka-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 8 # 16 * 2048 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 2.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 80 cfg["experiment"]["checkpoint_interval"] = 800 cfg["experiment"]["directory"] = "runs/jax/Isaac-Reach-Franka-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 16000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Reach-Franka-v0-PPO", filename="agent.pickle") # agent.load(path) # # start evaluation # trainer.eval()
6,088
Python
37.783439
110
0.688896
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_humanoid_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-5, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(400)(inputs["states"])) x = nn.elu(nn.Dense(200)(x)) x = nn.elu(nn.Dense(100)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return nn.tanh(x), log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(400)(inputs["states"])) x = nn.elu(nn.Dense(200)(x)) x = nn.elu(nn.Dense(100)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Humanoid-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=32, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 32 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 8 # 32 * 1024 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 4.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, *args, **kwargs: rewards * 0.01 cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 80 cfg["experiment"]["checkpoint_interval"] = 800 cfg["experiment"]["directory"] = "runs/jax/Isaac-Humanoid-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 16000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Humanoid-v0-PPO", filename="agent.pickle") # agent.load(path) # # start evaluation # trainer.eval()
6,115
Python
37.955414
106
0.689125
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_reach_franka_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU()) self.mean_layer = nn.Linear(64, self.num_actions) self.log_std_parameter = nn.Parameter(0.5 * torch.ones(self.num_actions)) self.value_layer = nn.Linear(64, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return torch.tanh(self.mean_layer(self.net(inputs["states"]))), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Reach-Franka-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 8 # 16 * 2048 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 2.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 80 cfg["experiment"]["checkpoint_interval"] = 800 cfg["experiment"]["directory"] = "runs/torch/Isaac-Reach-Franka-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 16000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Reach-Franka-v0-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
5,054
Python
37.587786
106
0.668184
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_ant_ddpg.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ddpg import DDPG, DDPG_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, Model from skrl.resources.noises.torch import OrnsteinUhlenbeckNoise from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixins class DeterministicActor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, self.num_actions), nn.Tanh()) def compute(self, inputs, role): return self.net(inputs["states"]), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations + self.num_actions, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 1)) def compute(self, inputs, role): return self.net(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1)), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # DDPG requires 4 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#models models = {} models["policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["target_policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["critic"] = Critic(env.observation_space, env.action_space, device) models["target_critic"] = Critic(env.observation_space, env.action_space, device) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#configuration-and-hyperparameters cfg = DDPG_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.1, base_scale=0.5, device=device) cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/torch/Isaac-Ant-v0" agent = DDPG(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
4,201
Python
39.019047
106
0.67841
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_ant_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return x, log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 4 # 16 * 1024 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, *args, **kwargs: rewards * 0.1 cfg["time_limit_bootstrap"] = True cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 40 cfg["experiment"]["checkpoint_interval"] = 400 cfg["experiment"]["directory"] = "runs/jax/Isaac-Ant-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 8000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Ant-v0-PPO", filename="agent.pickle") # agent.load(path) # # start evaluation # trainer.eval()
6,088
Python
37.783439
102
0.688239
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_ant_td3.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.td3 import TD3, TD3_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, Model from skrl.resources.noises.jax import GaussianNoise from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixins class DeterministicActor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.relu(nn.Dense(512)(inputs["states"])) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(self.num_actions)(x) return nn.tanh(x), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = nn.relu(nn.Dense(512)(x)) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # TD3 requires 6 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/td3.html#models models = {} models["policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["target_policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["critic_1"] = Critic(env.observation_space, env.action_space, device) models["critic_2"] = Critic(env.observation_space, env.action_space, device) models["target_critic_1"] = Critic(env.observation_space, env.action_space, device) models["target_critic_2"] = Critic(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/td3.html#configuration-and-hyperparameters cfg = TD3_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = GaussianNoise(0, 0.1, device=device) cfg["smooth_regularization_noise"] = GaussianNoise(0, 0.1, device=device) cfg["smooth_regularization_clip"] = 0.5 cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/jax/Isaac-Ant-v0" agent = TD3(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
5,327
Python
38.761194
102
0.713723
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_cartpole_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 32), nn.ELU(), nn.Linear(32, 32), nn.ELU()) self.mean_layer = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.ones(self.num_actions)) self.value_layer = nn.Linear(32, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Cartpole-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 1 # 16 * 512 / 8192 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 2.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = True cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 16 cfg["experiment"]["checkpoint_interval"] = 80 cfg["experiment"]["directory"] = "runs/torch/Isaac-Cartpole-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1600, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Cartpole-v0-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
4,922
Python
37.16279
102
0.677164
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_velocity_anymal_c_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(128)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(128)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return x, log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(128)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(128)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Velocity-Anymal-C-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=24, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 24 # memory_size cfg["learning_epochs"] = 5 cfg["mini_batches"] = 4 # 24 * 4096 / 24576 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 1e-3 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 60 cfg["experiment"]["checkpoint_interval"] = 600 cfg["experiment"]["directory"] = "runs/jax/Isaac-Velocity-Anymal-C-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 12000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
5,528
Python
37.664335
102
0.700253
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_omniverse_isaacgym_env.py
import torch import numpy as np from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.franka import Franka as Robot from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from skrl.utils import omniverse_isaacgym_utils # post_physics_step calls # - get_observations() # - get_states() # - calculate_metrics() # - is_done() # - get_extras() TASK_CFG = {"test": False, "device_id": 0, "headless": True, "sim_device": "gpu", "enable_livestream": False, "warp": False, "seed": 42, "task": {"name": "ReachingFranka", "physics_engine": "physx", "env": {"numEnvs": 1024, "envSpacing": 1.5, "episodeLength": 100, "enableDebugVis": False, "clipObservations": 1000.0, "clipActions": 1.0, "controlFrequencyInv": 4, "actionScale": 2.5, "dofVelocityScale": 0.1, "controlSpace": "cartesian"}, "sim": {"dt": 0.0083, # 1 / 120 "use_gpu_pipeline": True, "gravity": [0.0, 0.0, -9.81], "add_ground_plane": True, "use_flatcache": True, "enable_scene_query_support": False, "enable_cameras": False, "default_physics_material": {"static_friction": 1.0, "dynamic_friction": 1.0, "restitution": 0.0}, "physx": {"worker_thread_count": 4, "solver_type": 1, "use_gpu": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "contact_offset": 0.005, "rest_offset": 0.0, "bounce_threshold_velocity": 0.2, "friction_offset_threshold": 0.04, "friction_correlation_distance": 0.025, "enable_sleeping": True, "enable_stabilization": True, "max_depenetration_velocity": 1000.0, "gpu_max_rigid_contact_count": 524288, "gpu_max_rigid_patch_count": 33554432, "gpu_found_lost_pairs_capacity": 524288, "gpu_found_lost_aggregate_pairs_capacity": 262144, "gpu_total_aggregate_pairs_capacity": 1048576, "gpu_max_soft_body_contacts": 1048576, "gpu_max_particle_contacts": 1048576, "gpu_heap_capacity": 33554432, "gpu_temp_buffer_capacity": 16777216, "gpu_max_num_partitions": 8}, "robot": {"override_usd_defaults": False, "fixed_base": False, "enable_self_collisions": False, "enable_gyroscopic_forces": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.005, "stabilization_threshold": 0.001, "density": -1, "max_depenetration_velocity": 1000.0, "contact_offset": 0.005, "rest_offset": 0.0}, "target": {"override_usd_defaults": False, "fixed_base": True, "make_kinematic": True, "enable_self_collisions": False, "enable_gyroscopic_forces": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.005, "stabilization_threshold": 0.001, "density": -1, "max_depenetration_velocity": 1000.0, "contact_offset": 0.005, "rest_offset": 0.0}}}} class RobotView(ArticulationView): def __init__(self, prim_paths_expr: str, name: str = "robot_view") -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) class ReachingFrankaTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.dt = 1 / 120.0 self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._action_scale = self._task_cfg["env"]["actionScale"] self._dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self._control_space = self._task_cfg["env"]["controlSpace"] # observation and action space self._num_observations = 18 if self._control_space == "joint": self._num_actions = 7 elif self._control_space == "cartesian": self._num_actions = 3 else: raise ValueError("Invalid control space: {}".format(self._control_space)) self._end_effector_link = "panda_leftfinger" RLTask.__init__(self, name, env) def set_up_scene(self, scene) -> None: self.get_robot() self.get_target() super().set_up_scene(scene) # robot view self._robots = RobotView(prim_paths_expr="/World/envs/.*/robot", name="robot_view") scene.add(self._robots) # end-effectors view self._end_effectors = RigidPrimView(prim_paths_expr="/World/envs/.*/robot/{}".format(self._end_effector_link), name="end_effector_view") scene.add(self._end_effectors) # hands view (cartesian) if self._control_space == "cartesian": self._hands = RigidPrimView(prim_paths_expr="/World/envs/.*/robot/panda_hand", name="hand_view", reset_xform_properties=False) scene.add(self._hands) # target view self._targets = RigidPrimView(prim_paths_expr="/World/envs/.*/target", name="target_view", reset_xform_properties=False) scene.add(self._targets) self.init_data() def get_robot(self): robot = Robot(prim_path=self.default_zero_env_path + "/robot", translation=torch.tensor([0.0, 0.0, 0.0]), orientation=torch.tensor([1.0, 0.0, 0.0, 0.0]), name="robot") self._sim_config.apply_articulation_settings("robot", get_prim_at_path(robot.prim_path), self._sim_config.parse_actor_config("robot")) def get_target(self): target = DynamicSphere(prim_path=self.default_zero_env_path + "/target", name="target", radius=0.025, color=torch.tensor([1, 0, 0])) self._sim_config.apply_articulation_settings("target", get_prim_at_path(target.prim_path), self._sim_config.parse_actor_config("target")) target.set_collision_enabled(False) def init_data(self) -> None: self.robot_default_dof_pos = torch.tensor(np.radians([0, -45, 0, -135, 0, 90, 45, 0, 0]), device=self._device, dtype=torch.float32) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) if self._control_space == "cartesian": self.jacobians = torch.zeros((self._num_envs, 10, 6, 9), device=self._device) self.hand_pos, self.hand_rot = torch.zeros((self._num_envs, 3), device=self._device), torch.zeros((self._num_envs, 4), device=self._device) def get_observations(self) -> dict: robot_dof_pos = self._robots.get_joint_positions(clone=False) robot_dof_vel = self._robots.get_joint_velocities(clone=False) end_effector_pos, end_effector_rot = self._end_effectors.get_world_poses(clone=False) target_pos, target_rot = self._targets.get_world_poses(clone=False) dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) \ / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self._dof_vel_scale generalization_noise = torch.rand((dof_vel_scaled.shape[0], 7), device=self._device) + 0.5 self.obs_buf[:, 0] = self.progress_buf / self._max_episode_length self.obs_buf[:, 1:8] = dof_pos_scaled[:, :7] self.obs_buf[:, 8:15] = dof_vel_scaled[:, :7] * generalization_noise self.obs_buf[:, 15:18] = target_pos - self._env_pos # compute distance for calculate_metrics() and is_done() self._computed_distance = torch.norm(end_effector_pos - target_pos, dim=-1) if self._control_space == "cartesian": self.jacobians = self._robots.get_jacobians(clone=False) self.hand_pos, self.hand_rot = self._hands.get_world_poses(clone=False) self.hand_pos -= self._env_pos return {self._robots.name: {"obs_buf": self.obs_buf}} def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) env_ids_int32 = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) if self._control_space == "joint": targets = self.robot_dof_targets[:, :7] + self.robot_dof_speed_scales[:7] * self.dt * self.actions * self._action_scale elif self._control_space == "cartesian": goal_position = self.hand_pos + actions / 100.0 delta_dof_pos = omniverse_isaacgym_utils.ik(jacobian_end_effector=self.jacobians[:, 8 - 1, :, :7], # franka hand index: 8 current_position=self.hand_pos, current_orientation=self.hand_rot, goal_position=goal_position, goal_orientation=None) targets = self.robot_dof_targets[:, :7] + delta_dof_pos self.robot_dof_targets[:, :7] = torch.clamp(targets, self.robot_dof_lower_limits[:7], self.robot_dof_upper_limits[:7]) self.robot_dof_targets[:, 7:] = 0 self._robots.set_joint_position_targets(self.robot_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids) -> None: indices = env_ids.to(dtype=torch.int32) # reset robot pos = torch.clamp(self.robot_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_robot_dofs), device=self._device) - 0.5), self.robot_dof_lower_limits, self.robot_dof_upper_limits) dof_pos = torch.zeros((len(indices), self._robots.num_dof), device=self._device) dof_pos[:, :] = pos dof_pos[:, 7:] = 0 dof_vel = torch.zeros((len(indices), self._robots.num_dof), device=self._device) self.robot_dof_targets[env_ids, :] = pos self.robot_dof_pos[env_ids, :] = pos self._robots.set_joint_position_targets(self.robot_dof_targets[env_ids], indices=indices) self._robots.set_joint_positions(dof_pos, indices=indices) self._robots.set_joint_velocities(dof_vel, indices=indices) # reset target pos = (torch.rand((len(env_ids), 3), device=self._device) - 0.5) * 2 \ * torch.tensor([0.25, 0.25, 0.10], device=self._device) \ + torch.tensor([0.50, 0.00, 0.20], device=self._device) self._targets.set_world_poses(pos + self._env_pos[env_ids], indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.num_robot_dofs = self._robots.num_dof self.robot_dof_pos = torch.zeros((self.num_envs, self.num_robot_dofs), device=self._device) dof_limits = self._robots.get_dof_limits() self.robot_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.robot_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.robot_dof_speed_scales = torch.ones_like(self.robot_dof_lower_limits) self.robot_dof_targets = torch.zeros((self._num_envs, self.num_robot_dofs), dtype=torch.float, device=self._device) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = -self._computed_distance def is_done(self) -> None: self.reset_buf.fill_(0) # target reached self.reset_buf = torch.where(self._computed_distance <= 0.035, torch.ones_like(self.reset_buf), self.reset_buf) # max episode length self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
14,470
Python
50.682143
152
0.517554
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_real_skrl_eval.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.envs.torch import wrap_env # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # Load the environment from reaching_franka_real_env import ReachingFranka control_space = "joint" # joint or cartesian motion_type = "waypoint" # waypoint or impedance camera_tracking = False # True for USB-camera tracking env = ReachingFranka(robot_ip="172.16.0.2", device="cpu", control_space=control_space, motion_type=motion_type, camera_tracking=camera_tracking) # wrap the environment env = wrap_env(env) device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if control_space == "joint": agent.load("./agent_joint.pt") elif control_space == "cartesian": agent.load("./agent_cartesian.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
3,319
Python
36.30337
102
0.664357
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_real_env.py
import gym import time import threading import numpy as np from packaging import version import frankx class ReachingFranka(gym.Env): def __init__(self, robot_ip="172.16.0.2", device="cuda:0", control_space="joint", motion_type="waypoint", camera_tracking=False): # gym API self._drepecated_api = version.parse(gym.__version__) < version.parse(" 0.25.0") self.device = device self.control_space = control_space # joint or cartesian self.motion_type = motion_type # waypoint or impedance if self.control_space == "cartesian" and self.motion_type == "impedance": # The operation of this mode (Cartesian-impedance) was adjusted later without being able to test it on the real robot. # Dangerous movements may occur for the operator and the robot. # Comment the following line of code if you want to proceed with this mode. raise ValueError("See comment in the code to proceed with this mode") pass # camera tracking (disabled by default) self.camera_tracking = camera_tracking if self.camera_tracking: threading.Thread(target=self._update_target_from_camera).start() # spaces self.observation_space = gym.spaces.Box(low=-1000, high=1000, shape=(18,), dtype=np.float32) if self.control_space == "joint": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(7,), dtype=np.float32) elif self.control_space == "cartesian": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32) else: raise ValueError("Invalid control space:", self.control_space) # init real franka print("Connecting to robot at {}...".format(robot_ip)) self.robot = frankx.Robot(robot_ip) self.robot.set_default_behavior() self.robot.recover_from_errors() # the robot's response can be better managed by independently setting the following properties, for example: # - self.robot.velocity_rel = 0.2 # - self.robot.acceleration_rel = 0.1 # - self.robot.jerk_rel = 0.01 self.robot.set_dynamic_rel(0.25) self.gripper = self.robot.get_gripper() print("Robot connected") self.motion = None self.motion_thread = None self.dt = 1 / 120.0 self.action_scale = 2.5 self.dof_vel_scale = 0.1 self.max_episode_length = 100 self.robot_dof_speed_scales = 1 self.target_pos = np.array([0.65, 0.2, 0.2]) self.robot_default_dof_pos = np.radians([0, -45, 0, -135, 0, 90, 45]) self.robot_dof_lower_limits = np.array([-2.8973, -1.7628, -2.8973, -3.0718, -2.8973, -0.0175, -2.8973]) self.robot_dof_upper_limits = np.array([ 2.8973, 1.7628, 2.8973, -0.0698, 2.8973, 3.7525, 2.8973]) self.progress_buf = 1 self.obs_buf = np.zeros((18,), dtype=np.float32) def _update_target_from_camera(self): pixel_to_meter = 1.11 / 375 # m/px: adjust for custom cases import cv2 cap = cv2.VideoCapture(0) while cap.isOpened(): ret, frame = cap.read() if not ret: break # convert to HSV and remove noise hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) hsv = cv2.medianBlur(hsv, 15) # color matching in HSV mask = cv2.inRange(hsv, np.array([80, 100, 100]), np.array([100, 255, 255])) M = cv2.moments(mask) if M["m00"]: x = M["m10"] / M["m00"] y = M["m01"] / M["m00"] # real-world position (fixed z to 0.2 meters) pos = np.array([pixel_to_meter * (y - 185), pixel_to_meter * (x - 320), 0.2]) if self is not None: self.target_pos = pos # draw target frame = cv2.circle(frame, (int(x), int(y)), 30, (0,0,255), 2) frame = cv2.putText(frame, str(np.round(pos, 4).tolist()), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 1, cv2.LINE_AA) # show images cv2.imshow("frame", frame) cv2.imshow("mask", mask) k = cv2.waitKey(1) & 0xFF if k == ord('q'): cap.release() def _get_observation_reward_done(self): # get robot state try: robot_state = self.robot.get_state(read_once=True) except frankx.InvalidOperationException: robot_state = self.robot.get_state(read_once=False) # observation robot_dof_pos = np.array(robot_state.q) robot_dof_vel = np.array(robot_state.dq) end_effector_pos = np.array(robot_state.O_T_EE[-4:-1]) dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self.dof_vel_scale self.obs_buf[0] = self.progress_buf / float(self.max_episode_length) self.obs_buf[1:8] = dof_pos_scaled self.obs_buf[8:15] = dof_vel_scaled self.obs_buf[15:18] = self.target_pos # reward distance = np.linalg.norm(end_effector_pos - self.target_pos) reward = -distance # done done = self.progress_buf >= self.max_episode_length - 1 done = done or distance <= 0.075 print("Distance:", distance) if done: print("Target or Maximum episode length reached") time.sleep(1) return self.obs_buf, reward, done def reset(self): print("Reseting...") # end current motion if self.motion is not None: self.motion.finish() self.motion_thread.join() self.motion = None self.motion_thread = None # open/close gripper # self.gripper.open() # self.gripper.clamp() # go to 1) safe position, 2) random position self.robot.move(frankx.JointMotion(self.robot_default_dof_pos.tolist())) dof_pos = self.robot_default_dof_pos + 0.25 * (np.random.rand(7) - 0.5) self.robot.move(frankx.JointMotion(dof_pos.tolist())) # get target position from prompt if not self.camera_tracking: while True: try: print("Enter target position (X, Y, Z) in meters") raw = input("or press [Enter] key for a random target position: ") if raw: self.target_pos = np.array([float(p) for p in raw.replace(' ', '').split(',')]) else: noise = (2 * np.random.rand(3) - 1) * np.array([0.25, 0.25, 0.10]) self.target_pos = np.array([0.5, 0.0, 0.2]) + noise print("Target position:", self.target_pos) break except ValueError: print("Invalid input. Try something like: 0.65, 0.0, 0.2") # initial pose affine = frankx.Affine(frankx.Kinematics.forward(dof_pos.tolist())) affine = affine * frankx.Affine(x=0, y=0, z=-0.10335, a=np.pi/2) # motion type if self.motion_type == "waypoint": self.motion = frankx.WaypointMotion([frankx.Waypoint(affine)], return_when_finished=False) elif self.motion_type == "impedance": self.motion = frankx.ImpedanceMotion(500, 50) else: raise ValueError("Invalid motion type:", self.motion_type) self.motion_thread = self.robot.move_async(self.motion) if self.motion_type == "impedance": self.motion.target = affine input("Press [Enter] to continue") self.progress_buf = 0 observation, reward, done = self._get_observation_reward_done() if self._drepecated_api: return observation else: return observation, {} def step(self, action): self.progress_buf += 1 # control space # joint if self.control_space == "joint": # get robot state try: robot_state = self.robot.get_state(read_once=True) except frankx.InvalidOperationException: robot_state = self.robot.get_state(read_once=False) # forward kinematics dof_pos = np.array(robot_state.q) + (self.robot_dof_speed_scales * self.dt * action * self.action_scale) affine = frankx.Affine(self.robot.forward_kinematics(dof_pos.flatten().tolist())) affine = affine * frankx.Affine(x=0, y=0, z=-0.10335, a=np.pi/2) # cartesian elif self.control_space == "cartesian": action /= 100.0 if self.motion_type == "waypoint": affine = frankx.Affine(x=action[0], y=action[1], z=action[2]) elif self.motion_type == "impedance": # get robot pose try: robot_pose = self.robot.current_pose(read_once=True) except frankx.InvalidOperationException: robot_pose = self.robot.current_pose(read_once=False) affine = robot_pose * frankx.Affine(x=action[0], y=action[1], z=action[2]) # motion type # waypoint motion if self.motion_type == "waypoint": if self.control_space == "joint": self.motion.set_next_waypoint(frankx.Waypoint(affine)) elif self.control_space == "cartesian": self.motion.set_next_waypoint(frankx.Waypoint(affine, frankx.Waypoint.Relative)) # impedance motion elif self.motion_type == "impedance": self.motion.target = affine else: raise ValueError("Invalid motion type:", self.motion_type) # the use of time.sleep is for simplicity. This does not guarantee control at a specific frequency time.sleep(0.1) # lower frequency, at 30Hz there are discontinuities observation, reward, done = self._get_observation_reward_done() if self._drepecated_api: return observation, reward, done, {} else: return observation, reward, done, done, {} def render(self, *args, **kwargs): pass def close(self): pass
10,370
Python
38.888461
144
0.568274
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_isaacgym_skrl_eval.py
import isaacgym import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.envs.torch import wrap_env # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # instantiate and configure the task headless = True # set headless to False for rendering from reaching_franka_isaacgym_env import ReachingFrankaTask, TASK_CFG TASK_CFG["headless"] = headless TASK_CFG["env"]["numEnvs"] = 64 TASK_CFG["env"]["controlSpace"] = "joint" # "joint" or "cartesian" env = ReachingFrankaTask(cfg=TASK_CFG) # wrap the environment env = wrap_env(env, "isaacgym-preview4") device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if TASK_CFG["env"]["controlSpace"] == "joint": agent.load("./agent_joint_isaacgym.pt") elif TASK_CFG["env"]["controlSpace"] == "cartesian": agent.load("./agent_cartesian_isaacgym.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
3,288
Python
35.544444
102
0.678528
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_omniverse_isaacgym_skrl_eval.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils.omniverse_isaacgym_utils import get_env_instance from skrl.envs.torch import wrap_env from skrl.utils import set_seed # Seed for reproducibility seed = set_seed() # e.g. `set_seed(42)` for fixed seed # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # instance VecEnvBase and setup task headless = False # set headless to False for rendering env = get_env_instance(headless=headless) from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from reaching_franka_omniverse_isaacgym_env import ReachingFrankaTask, TASK_CFG TASK_CFG["seed"] = seed TASK_CFG["headless"] = headless TASK_CFG["task"]["env"]["numEnvs"] = 64 TASK_CFG["task"]["env"]["controlSpace"] = "joint" # "joint" or "cartesian" sim_config = SimConfig(TASK_CFG) task = ReachingFrankaTask(name="ReachingFranka", sim_config=sim_config, env=env) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=True) # wrap the environment env = wrap_env(env, "omniverse-isaacgym") device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if TASK_CFG["task"]["env"]["controlSpace"] == "joint": agent.load("./agent_joint.pt") elif TASK_CFG["task"]["env"]["controlSpace"] == "cartesian": agent.load("./agent_cartesian.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 5000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
3,789
Python
37.282828
102
0.68778
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_isaacgym_env.py
import os import numpy as np import torch from isaacgym import gymtorch, gymapi # isaacgymenvs (VecTask class) import sys import isaacgymenvs sys.path.append(list(isaacgymenvs.__path__)[0]) from tasks.base.vec_task import VecTask from skrl.utils import isaacgym_utils TASK_CFG = {"name": "ReachingFranka", "physics_engine": "physx", "rl_device": "cuda:0", "sim_device": "cuda:0", "graphics_device_id": 0, "headless": False, "virtual_screen_capture": False, "force_render": True, "env": {"numEnvs": 1024, "envSpacing": 1.5, "episodeLength": 100, "enableDebugVis": False, "clipObservations": 1000.0, "clipActions": 1.0, "controlFrequencyInv": 4, "actionScale": 2.5, "dofVelocityScale": 0.1, "controlSpace": "cartesian", "enableCameraSensors": False}, "sim": {"dt": 0.0083, # 1 / 120 "substeps": 1, "up_axis": "z", "use_gpu_pipeline": True, "gravity": [0.0, 0.0, -9.81], "physx": {"num_threads": 4, "solver_type": 1, "use_gpu": True, "num_position_iterations": 4, "num_velocity_iterations": 1, "contact_offset": 0.005, "rest_offset": 0.0, "bounce_threshold_velocity": 0.2, "max_depenetration_velocity": 1000.0, "default_buffer_size_multiplier": 5.0, "max_gpu_contact_pairs": 1048576, "num_subscenes": 4, "contact_collection": 0}}, "task": {"randomize": False}} class ReachingFrankaTask(VecTask): def __init__(self, cfg): self.cfg = cfg rl_device = cfg["rl_device"] sim_device = cfg["sim_device"] graphics_device_id = cfg["graphics_device_id"] headless = cfg["headless"] virtual_screen_capture = cfg["virtual_screen_capture"] force_render = cfg["force_render"] self.dt = 1 / 120.0 self._action_scale = self.cfg["env"]["actionScale"] self._dof_vel_scale = self.cfg["env"]["dofVelocityScale"] self._control_space = self.cfg["env"]["controlSpace"] self.max_episode_length = self.cfg["env"]["episodeLength"] # name required for VecTask self.debug_viz = self.cfg["env"]["enableDebugVis"] # observation and action space self.cfg["env"]["numObservations"] = 18 if self._control_space == "joint": self.cfg["env"]["numActions"] = 7 elif self._control_space == "cartesian": self.cfg["env"]["numActions"] = 3 else: raise ValueError("Invalid control space: {}".format(self._control_space)) self._end_effector_link = "panda_leftfinger" # setup VecTask super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) # tensors and views: DOFs, roots, rigid bodies dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) root_state_tensor = self.gym.acquire_actor_root_state_tensor(self.sim) rigid_body_state_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) self.root_state = gymtorch.wrap_tensor(root_state_tensor) self.rigid_body_state = gymtorch.wrap_tensor(rigid_body_state_tensor) self.dof_pos = self.dof_state.view(self.num_envs, -1, 2)[..., 0] self.dof_vel = self.dof_state.view(self.num_envs, -1, 2)[..., 1] self.root_pos = self.root_state[:, 0:3].view(self.num_envs, -1, 3) self.root_rot = self.root_state[:, 3:7].view(self.num_envs, -1, 4) self.root_vel_lin = self.root_state[:, 7:10].view(self.num_envs, -1, 3) self.root_vel_ang = self.root_state[:, 10:13].view(self.num_envs, -1, 3) self.rigid_body_pos = self.rigid_body_state[:, 0:3].view(self.num_envs, -1, 3) self.rigid_body_rot = self.rigid_body_state[:, 3:7].view(self.num_envs, -1, 4) self.rigid_body_vel_lin = self.rigid_body_state[:, 7:10].view(self.num_envs, -1, 3) self.rigid_body_vel_ang = self.rigid_body_state[:, 10:13].view(self.num_envs, -1, 3) # tensors and views: jacobian if self._control_space == "cartesian": jacobian_tensor = self.gym.acquire_jacobian_tensor(self.sim, "robot") self.jacobian = gymtorch.wrap_tensor(jacobian_tensor) self.jacobian_end_effector = self.jacobian[:, self.rigid_body_dict_robot[self._end_effector_link] - 1, :, :7] self.reset_idx(torch.arange(self.num_envs, device=self.device)) def create_sim(self): self.sim_params.up_axis = gymapi.UP_AXIS_Z self.sim_params.gravity.x = 0 self.sim_params.gravity.y = 0 self.sim_params.gravity.z = -9.81 self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]["envSpacing"], int(np.sqrt(self.num_envs))) def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): lower = gymapi.Vec3(-spacing, -spacing, 0.0) upper = gymapi.Vec3(spacing, spacing, spacing) asset_root = os.path.join(os.path.dirname(os.path.abspath(isaacgymenvs.__file__)), "../assets") robot_asset_file = "urdf/franka_description/robots/franka_panda.urdf" # robot asset asset_options = gymapi.AssetOptions() asset_options.flip_visual_attachments = True asset_options.fix_base_link = True asset_options.collapse_fixed_joints = True asset_options.disable_gravity = True asset_options.thickness = 0.001 asset_options.default_dof_drive_mode = gymapi.DOF_MODE_POS asset_options.use_mesh_materials = True robot_asset = self.gym.load_asset(self.sim, asset_root, robot_asset_file, asset_options) # target asset asset_options = gymapi.AssetOptions() asset_options.fix_base_link = True asset_options.collapse_fixed_joints = False asset_options.disable_gravity = True asset_options.thickness = 0.001 asset_options.use_mesh_materials = True target_asset = self.gym.create_sphere(self.sim, 0.025, asset_options) robot_dof_stiffness = torch.tensor([400, 400, 400, 400, 400, 400, 400, 1.0e6, 1.0e6], dtype=torch.float32, device=self.device) robot_dof_damping = torch.tensor([80, 80, 80, 80, 80, 80, 80, 1.0e2, 1.0e2], dtype=torch.float, device=self.device) # set robot dof properties robot_dof_props = self.gym.get_asset_dof_properties(robot_asset) self.robot_dof_lower_limits = [] self.robot_dof_upper_limits = [] for i in range(9): robot_dof_props["driveMode"][i] = gymapi.DOF_MODE_POS if self.physics_engine == gymapi.SIM_PHYSX: robot_dof_props["stiffness"][i] = robot_dof_stiffness[i] robot_dof_props["damping"][i] = robot_dof_damping[i] else: robot_dof_props["stiffness"][i] = 7000.0 robot_dof_props["damping"][i] = 50.0 self.robot_dof_lower_limits.append(robot_dof_props["lower"][i]) self.robot_dof_upper_limits.append(robot_dof_props["upper"][i]) self.robot_dof_lower_limits = torch.tensor(self.robot_dof_lower_limits, device=self.device) self.robot_dof_upper_limits = torch.tensor(self.robot_dof_upper_limits, device=self.device) self.robot_dof_speed_scales = torch.ones_like(self.robot_dof_lower_limits) robot_dof_props["effort"][7] = 200 robot_dof_props["effort"][8] = 200 self.handle_targets = [] self.handle_robots = [] self.handle_envs = [] indexes_sim_robot = [] indexes_sim_target = [] for i in range(self.num_envs): # create env instance env_ptr = self.gym.create_env(self.sim, lower, upper, num_per_row) # create robot instance pose = gymapi.Transform() pose.p = gymapi.Vec3(0.0, 0.0, 0.0) pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1) robot_actor = self.gym.create_actor(env=env_ptr, asset=robot_asset, pose=pose, name="robot", group=i, # collision group filter=1, # mask off collision segmentationId=0) self.gym.set_actor_dof_properties(env_ptr, robot_actor, robot_dof_props) indexes_sim_robot.append(self.gym.get_actor_index(env_ptr, robot_actor, gymapi.DOMAIN_SIM)) # create target instance pose = gymapi.Transform() pose.p = gymapi.Vec3(0.5, 0.0, 0.2) pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1) target_actor = self.gym.create_actor(env=env_ptr, asset=target_asset, pose=pose, name="target", group=i + 1, # collision group filter=1, # mask off collision segmentationId=1) indexes_sim_target.append(self.gym.get_actor_index(env_ptr, target_actor, gymapi.DOMAIN_SIM)) self.gym.set_rigid_body_color(env_ptr, target_actor, 0, gymapi.MESH_VISUAL, gymapi.Vec3(1., 0., 0.)) self.handle_envs.append(env_ptr) self.handle_robots.append(robot_actor) self.handle_targets.append(target_actor) self.indexes_sim_robot = torch.tensor(indexes_sim_robot, dtype=torch.int32, device=self.device) self.indexes_sim_target = torch.tensor(indexes_sim_target, dtype=torch.int32, device=self.device) self.num_robot_dofs = self.gym.get_asset_dof_count(robot_asset) self.rigid_body_dict_robot = self.gym.get_asset_rigid_body_dict(robot_asset) self.init_data() def init_data(self): self.robot_default_dof_pos = torch.tensor(np.radians([0, -45, 0, -135, 0, 90, 45, 0, 0]), device=self.device, dtype=torch.float32) self.robot_dof_targets = torch.zeros((self.num_envs, self.num_robot_dofs), device=self.device, dtype=torch.float32) if self._control_space == "cartesian": self.end_effector_pos = torch.zeros((self.num_envs, 3), device=self.device) self.end_effector_rot = torch.zeros((self.num_envs, 4), device=self.device) def compute_reward(self): self.rew_buf[:] = -self._computed_distance self.reset_buf.fill_(0) # target reached self.reset_buf = torch.where(self._computed_distance <= 0.035, torch.ones_like(self.reset_buf), self.reset_buf) # max episode length self.reset_buf = torch.where(self.progress_buf >= self.max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) # double restart correction (why?, is it necessary?) self.rew_buf = torch.where(self.progress_buf == 0, -0.75 * torch.ones_like(self.reset_buf), self.rew_buf) self.reset_buf = torch.where(self.progress_buf == 0, torch.zeros_like(self.reset_buf), self.reset_buf) def compute_observations(self): self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) if self._control_space == "cartesian": self.gym.refresh_jacobian_tensors(self.sim) robot_dof_pos = self.dof_pos robot_dof_vel = self.dof_vel self.end_effector_pos = self.rigid_body_pos[:, self.rigid_body_dict_robot[self._end_effector_link]] self.end_effector_rot = self.rigid_body_rot[:, self.rigid_body_dict_robot[self._end_effector_link]] target_pos = self.root_pos[:, 1] target_rot = self.root_rot[:, 1] dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) \ / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self._dof_vel_scale generalization_noise = torch.rand((dof_vel_scaled.shape[0], 7), device=self.device) + 0.5 self.obs_buf[:, 0] = self.progress_buf / self.max_episode_length self.obs_buf[:, 1:8] = dof_pos_scaled[:, :7] self.obs_buf[:, 8:15] = dof_vel_scaled[:, :7] * generalization_noise self.obs_buf[:, 15:18] = target_pos # compute distance for compute_reward() self._computed_distance = torch.norm(self.end_effector_pos - target_pos, dim=-1) def reset_idx(self, env_ids): # reset robot pos = torch.clamp(self.robot_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_robot_dofs), device=self.device) - 0.5), self.robot_dof_lower_limits, self.robot_dof_upper_limits) pos[:, 7:] = 0 self.robot_dof_targets[env_ids, :] = pos[:] self.dof_pos[env_ids, :] = pos[:] self.dof_vel[env_ids, :] = 0 indexes = self.indexes_sim_robot[env_ids] self.gym.set_dof_position_target_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.robot_dof_targets), gymtorch.unwrap_tensor(indexes), len(env_ids)) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(indexes), len(env_ids)) # reset targets pos = (torch.rand((len(env_ids), 3), device=self.device) - 0.5) * 2 pos[:, 0] = 0.50 + pos[:, 0] * 0.25 pos[:, 1] = 0.00 + pos[:, 1] * 0.25 pos[:, 2] = 0.20 + pos[:, 2] * 0.10 self.root_pos[env_ids, 1, :] = pos[:] indexes = self.indexes_sim_target[env_ids] self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_state), gymtorch.unwrap_tensor(indexes), len(env_ids)) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def pre_physics_step(self, actions): actions = actions.clone().to(self.device) if self._control_space == "joint": targets = self.robot_dof_targets[:, :7] + self.robot_dof_speed_scales[:7] * self.dt * actions * self._action_scale elif self._control_space == "cartesian": goal_position = self.end_effector_pos + actions / 100.0 delta_dof_pos = isaacgym_utils.ik(jacobian_end_effector=self.jacobian_end_effector, current_position=self.end_effector_pos, current_orientation=self.end_effector_rot, goal_position=goal_position, goal_orientation=None) targets = self.robot_dof_targets[:, :7] + delta_dof_pos self.robot_dof_targets[:, :7] = torch.clamp(targets, self.robot_dof_lower_limits[:7], self.robot_dof_upper_limits[:7]) self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(self.robot_dof_targets)) def post_physics_step(self): self.progress_buf += 1 env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids) self.compute_observations() self.compute_reward()
17,190
Python
46.09863
151
0.553054
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_omniverse_isaacgym_skrl_train.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin, DeterministicMixin from skrl.memories.torch import RandomMemory from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils.omniverse_isaacgym_utils import get_env_instance from skrl.envs.torch import wrap_env from skrl.utils import set_seed # Seed for reproducibility seed = set_seed() # e.g. `set_seed(42)` for fixed seed # Define the models (stochastic and deterministic models) for the agent using helper mixin. # - Policy: takes as input the environment's observation/state and returns an action # - Value: takes the state as input and provides a value to guide the policy class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, 1)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # instance VecEnvBase and setup task headless = True # set headless to False for rendering env = get_env_instance(headless=headless) from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from reaching_franka_omniverse_isaacgym_env import ReachingFrankaTask, TASK_CFG TASK_CFG["seed"] = seed TASK_CFG["headless"] = headless TASK_CFG["task"]["env"]["numEnvs"] = 1024 TASK_CFG["task"]["env"]["controlSpace"] = "joint" # "joint" or "cartesian" sim_config = SimConfig(TASK_CFG) task = ReachingFrankaTask(name="ReachingFranka", sim_config=sim_config, env=env) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=True) # wrap the environment env = wrap_env(env, "omniverse-isaacgym") device = env.device # Instantiate a RandomMemory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # Instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) models_ppo["value"] = Value(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["rollouts"] = 16 cfg_ppo["learning_epochs"] = 8 cfg_ppo["mini_batches"] = 8 cfg_ppo["discount_factor"] = 0.99 cfg_ppo["lambda"] = 0.95 cfg_ppo["learning_rate"] = 5e-4 cfg_ppo["learning_rate_scheduler"] = KLAdaptiveRL cfg_ppo["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["grad_norm_clip"] = 1.0 cfg_ppo["ratio_clip"] = 0.2 cfg_ppo["value_clip"] = 0.2 cfg_ppo["clip_predicted_values"] = True cfg_ppo["entropy_loss_scale"] = 0.0 cfg_ppo["value_loss_scale"] = 2.0 cfg_ppo["kl_threshold"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg_ppo["value_preprocessor"] = RunningStandardScaler cfg_ppo["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints each 32 and 250 timesteps respectively cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 250 agent = PPO(models=models_ppo, memory=memory, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 5000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
5,539
Python
40.037037
102
0.67449
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_isaacgym_skrl_train.py
import isaacgym import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin, DeterministicMixin from skrl.memories.torch import RandomMemory from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.envs.torch import wrap_env from skrl.utils import set_seed # set the seed for reproducibility set_seed(42) # Define the models (stochastic and deterministic models) for the agent using helper mixin. # - Policy: takes as input the environment's observation/state and returns an action # - Value: takes the state as input and provides a value to guide the policy class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, 1)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # instantiate and configure the task headless = True # set headless to False for rendering from reaching_franka_isaacgym_env import ReachingFrankaTask, TASK_CFG TASK_CFG["headless"] = headless TASK_CFG["env"]["numEnvs"] = 1024 TASK_CFG["env"]["controlSpace"] = "joint" # "joint" or "cartesian" env = ReachingFrankaTask(cfg=TASK_CFG) # wrap the environment env = wrap_env(env, "isaacgym-preview4") device = env.device # Instantiate a RandomMemory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # Instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) models_ppo["value"] = Value(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["rollouts"] = 16 cfg_ppo["learning_epochs"] = 8 cfg_ppo["mini_batches"] = 8 cfg_ppo["discount_factor"] = 0.99 cfg_ppo["lambda"] = 0.95 cfg_ppo["learning_rate"] = 5e-4 cfg_ppo["learning_rate_scheduler"] = KLAdaptiveRL cfg_ppo["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["grad_norm_clip"] = 1.0 cfg_ppo["ratio_clip"] = 0.2 cfg_ppo["value_clip"] = 0.2 cfg_ppo["clip_predicted_values"] = True cfg_ppo["entropy_loss_scale"] = 0.0 cfg_ppo["value_loss_scale"] = 2.0 cfg_ppo["kl_threshold"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg_ppo["value_preprocessor"] = RunningStandardScaler cfg_ppo["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints each 32 and 250 timesteps respectively cfg_ppo["experiment"]["write_interval"] = 5 cfg_ppo["experiment"]["checkpoint_interval"] = 250 agent = PPO(models=models_ppo, memory=memory, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 5000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
5,118
Python
38.076336
102
0.667448
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_real_env.py
import time import numpy as np import gymnasium as gym import libiiwa class ReachingIiwa(gym.Env): def __init__(self, control_space="joint"): self.control_space = control_space # joint or cartesian # spaces self.observation_space = gym.spaces.Box(low=-1000, high=1000, shape=(18,), dtype=np.float32) if self.control_space == "joint": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(7,), dtype=np.float32) elif self.control_space == "cartesian": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32) else: raise ValueError("Invalid control space:", self.control_space) # init iiwa print("Connecting to robot...") self.robot = libiiwa.LibIiwa() self.robot.set_control_interface(libiiwa.ControlInterface.CONTROL_INTERFACE_SERVO) self.robot.set_desired_joint_velocity_rel(0.5) self.robot.set_desired_joint_acceleration_rel(0.5) self.robot.set_desired_joint_jerk_rel(0.5) self.robot.set_desired_cartesian_velocity(10) self.robot.set_desired_cartesian_acceleration(10) self.robot.set_desired_cartesian_jerk(10) print("Robot connected") self.motion = None self.motion_thread = None self.dt = 1 / 120.0 self.action_scale = 2.5 self.dof_vel_scale = 0.1 self.max_episode_length = 100 self.robot_dof_speed_scales = 1 self.target_pos = np.array([0.65, 0.2, 0.2]) self.robot_default_dof_pos = np.radians([0, 0, 0, -90, 0, 90, 0]) self.robot_dof_lower_limits = np.array([-2.9671, -2.0944, -2.9671, -2.0944, -2.9671, -2.0944, -3.0543]) self.robot_dof_upper_limits = np.array([ 2.9671, 2.0944, 2.9671, 2.0944, 2.9671, 2.0944, 3.0543]) self.progress_buf = 1 self.obs_buf = np.zeros((18,), dtype=np.float32) def _get_observation_reward_done(self): # get robot state robot_state = self.robot.get_state(refresh=True) # observation robot_dof_pos = robot_state["joint_position"] robot_dof_vel = robot_state["joint_velocity"] end_effector_pos = robot_state["cartesian_position"] dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self.dof_vel_scale self.obs_buf[0] = self.progress_buf / float(self.max_episode_length) self.obs_buf[1:8] = dof_pos_scaled self.obs_buf[8:15] = dof_vel_scaled self.obs_buf[15:18] = self.target_pos # reward distance = np.linalg.norm(end_effector_pos - self.target_pos) reward = -distance # done done = self.progress_buf >= self.max_episode_length - 1 done = done or distance <= 0.075 print("Distance:", distance) if done: print("Target or Maximum episode length reached") time.sleep(1) return self.obs_buf, reward, done def reset(self): print("Reseting...") # go to 1) safe position, 2) random position self.robot.command_joint_position(self.robot_default_dof_pos) time.sleep(3) dof_pos = self.robot_default_dof_pos + 0.25 * (np.random.rand(7) - 0.5) self.robot.command_joint_position(dof_pos) time.sleep(1) # get target position from prompt while True: try: print("Enter target position (X, Y, Z) in meters") raw = input("or press [Enter] key for a random target position: ") if raw: self.target_pos = np.array([float(p) for p in raw.replace(' ', '').split(',')]) else: noise = (2 * np.random.rand(3) - 1) * np.array([0.1, 0.2, 0.2]) self.target_pos = np.array([0.6, 0.0, 0.4]) + noise print("Target position:", self.target_pos) break except ValueError: print("Invalid input. Try something like: 0.65, 0.0, 0.4") input("Press [Enter] to continue") self.progress_buf = 0 observation, reward, done = self._get_observation_reward_done() return observation, {} def step(self, action): self.progress_buf += 1 # get robot state robot_state = self.robot.get_state(refresh=True) # control space # joint if self.control_space == "joint": dof_pos = robot_state["joint_position"] + (self.robot_dof_speed_scales * self.dt * action * self.action_scale) self.robot.command_joint_position(dof_pos) # cartesian elif self.control_space == "cartesian": end_effector_pos = robot_state["cartesian_position"] + action / 100.0 self.robot.command_cartesian_pose(end_effector_pos) # the use of time.sleep is for simplicity. It does not guarantee control at a specific frequency time.sleep(1 / 30.0) observation, reward, terminated = self._get_observation_reward_done() return observation, reward, terminated, False, {} def render(self, *args, **kwargs): pass def close(self): pass
5,314
Python
35.404109
144
0.589198
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_omniverse_isaacgym_skrl_eval.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils.omniverse_isaacgym_utils import get_env_instance from skrl.envs.torch import wrap_env from skrl.utils import set_seed # Seed for reproducibility seed = set_seed() # e.g. `set_seed(42)` for fixed seed # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # instance VecEnvBase and setup task headless = False # set headless to False for rendering env = get_env_instance(headless=headless) from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from reaching_iiwa_omniverse_isaacgym_env import ReachingIiwaTask, TASK_CFG TASK_CFG["seed"] = seed TASK_CFG["headless"] = headless TASK_CFG["task"]["env"]["numEnvs"] = 64 TASK_CFG["task"]["env"]["controlSpace"] = "joint" # "joint" or "cartesian" sim_config = SimConfig(TASK_CFG) task = ReachingIiwaTask(name="ReachingIiwa", sim_config=sim_config, env=env) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=True) # wrap the environment env = wrap_env(env, "omniverse-isaacgym") device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if TASK_CFG["task"]["env"]["controlSpace"] == "joint": agent.load("./agent_joint.pt") elif TASK_CFG["task"]["env"]["controlSpace"] == "cartesian": agent.load("./agent_cartesian.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 5000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
3,781
Python
37.20202
102
0.68712
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_real_ros2_env.py
import time import numpy as np import gymnasium as gym import rclpy from rclpy.node import Node from rclpy.qos import QoSPresetProfiles import sensor_msgs.msg import geometry_msgs.msg import libiiwa_msgs.srv class ReachingIiwa(gym.Env): def __init__(self, control_space="joint"): self.control_space = control_space # joint or cartesian # spaces self.observation_space = gym.spaces.Box(low=-1000, high=1000, shape=(18,), dtype=np.float32) if self.control_space == "joint": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(7,), dtype=np.float32) elif self.control_space == "cartesian": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32) else: raise ValueError("Invalid control space:", self.control_space) # initialize the ROS node rclpy.init() self.node = Node(self.__class__.__name__) import threading threading.Thread(target=self._spin).start() # create publishers self.pub_command_joint = self.node.create_publisher(sensor_msgs.msg.JointState, '/iiwa/command/joint', QoSPresetProfiles.SYSTEM_DEFAULT.value) self.pub_command_cartesian = self.node.create_publisher(geometry_msgs.msg.Pose, '/iiwa/command/cartesian', QoSPresetProfiles.SYSTEM_DEFAULT.value) # keep compatibility with libiiwa Python API self.robot_state = {"joint_position": np.zeros((7,)), "joint_velocity": np.zeros((7,)), "cartesian_position": np.zeros((3,))} # create subscribers self.node.create_subscription(msg_type=sensor_msgs.msg.JointState, topic='/iiwa/state/joint_states', callback=self._callback_joint_states, qos_profile=QoSPresetProfiles.SYSTEM_DEFAULT.value) self.node.create_subscription(msg_type=geometry_msgs.msg.Pose, topic='/iiwa/state/end_effector_pose', callback=self._callback_end_effector_pose, qos_profile=QoSPresetProfiles.SYSTEM_DEFAULT.value) # service clients client_control_interface = self.node.create_client(libiiwa_msgs.srv.SetString, '/iiwa/set_control_interface') client_control_interface.wait_for_service() request = libiiwa_msgs.srv.SetString.Request() request.data = "SERVO" # or "servo" client_control_interface.call(request) client_joint_velocity_rel = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_joint_velocity_rel') client_joint_acceleration_rel = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_joint_acceleration_rel') client_joint_jerk_rel = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_joint_jerk_rel') client_cartesian_velocity = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_cartesian_velocity') client_cartesian_acceleration = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_cartesian_acceleration') client_cartesian_jerk = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_cartesian_jerk') client_joint_velocity_rel.wait_for_service() client_joint_acceleration_rel.wait_for_service() client_joint_jerk_rel.wait_for_service() client_cartesian_velocity.wait_for_service() client_cartesian_acceleration.wait_for_service() client_cartesian_jerk.wait_for_service() request = libiiwa_msgs.srv.SetNumber.Request() request.data = 0.5 client_joint_velocity_rel.call(request) client_joint_acceleration_rel.call(request) client_joint_jerk_rel.call(request) request.data = 10.0 client_cartesian_velocity.call(request) client_cartesian_acceleration.call(request) client_cartesian_jerk.call(request) print("Robot connected") self.motion = None self.motion_thread = None self.dt = 1 / 120.0 self.action_scale = 2.5 self.dof_vel_scale = 0.1 self.max_episode_length = 100 self.robot_dof_speed_scales = 1 self.target_pos = np.array([0.65, 0.2, 0.2]) self.robot_default_dof_pos = np.radians([0, 0, 0, -90, 0, 90, 0]) self.robot_dof_lower_limits = np.array([-2.9671, -2.0944, -2.9671, -2.0944, -2.9671, -2.0944, -3.0543]) self.robot_dof_upper_limits = np.array([ 2.9671, 2.0944, 2.9671, 2.0944, 2.9671, 2.0944, 3.0543]) self.progress_buf = 1 self.obs_buf = np.zeros((18,), dtype=np.float32) def _spin(self): rclpy.spin(self.node) def _callback_joint_states(self, msg): self.robot_state["joint_position"] = np.array(msg.position) self.robot_state["joint_velocity"] = np.array(msg.velocity) def _callback_end_effector_pose(self, msg): positon = msg.position self.robot_state["cartesian_position"] = np.array([positon.x, positon.y, positon.z]) def _get_observation_reward_done(self): # observation robot_dof_pos = self.robot_state["joint_position"] robot_dof_vel = self.robot_state["joint_velocity"] end_effector_pos = self.robot_state["cartesian_position"] dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self.dof_vel_scale self.obs_buf[0] = self.progress_buf / float(self.max_episode_length) self.obs_buf[1:8] = dof_pos_scaled self.obs_buf[8:15] = dof_vel_scaled self.obs_buf[15:18] = self.target_pos # reward distance = np.linalg.norm(end_effector_pos - self.target_pos) reward = -distance # done done = self.progress_buf >= self.max_episode_length - 1 done = done or distance <= 0.075 print("Distance:", distance) if done: print("Target or Maximum episode length reached") time.sleep(1) return self.obs_buf, reward, done def reset(self): print("Reseting...") # go to 1) safe position, 2) random position msg = sensor_msgs.msg.JointState() msg.position = self.robot_default_dof_pos.tolist() self.pub_command_joint.publish(msg) time.sleep(3) msg.position = (self.robot_default_dof_pos + 0.25 * (np.random.rand(7) - 0.5)).tolist() self.pub_command_joint.publish(msg) time.sleep(1) # get target position from prompt while True: try: print("Enter target position (X, Y, Z) in meters") raw = input("or press [Enter] key for a random target position: ") if raw: self.target_pos = np.array([float(p) for p in raw.replace(' ', '').split(',')]) else: noise = (2 * np.random.rand(3) - 1) * np.array([0.1, 0.2, 0.2]) self.target_pos = np.array([0.6, 0.0, 0.4]) + noise print("Target position:", self.target_pos) break except ValueError: print("Invalid input. Try something like: 0.65, 0.0, 0.4") input("Press [Enter] to continue") self.progress_buf = 0 observation, reward, done = self._get_observation_reward_done() return observation, {} def step(self, action): self.progress_buf += 1 # control space # joint if self.control_space == "joint": joint_positions = self.robot_state["joint_position"] + (self.robot_dof_speed_scales * self.dt * action * self.action_scale) msg = sensor_msgs.msg.JointState() msg.position = joint_positions.tolist() self.pub_command_joint.publish(msg) # cartesian elif self.control_space == "cartesian": end_effector_pos = self.robot_state["cartesian_position"] + action / 100.0 msg = geometry_msgs.msg.Pose() msg.position.x = end_effector_pos[0] msg.position.y = end_effector_pos[1] msg.position.z = end_effector_pos[2] msg.orientation.x = np.nan msg.orientation.y = np.nan msg.orientation.z = np.nan msg.orientation.w = np.nan self.pub_command_cartesian.publish(msg) # the use of time.sleep is for simplicity. It does not guarantee control at a specific frequency time.sleep(1 / 30.0) observation, reward, terminated = self._get_observation_reward_done() return observation, reward, terminated, False, {} def render(self, *args, **kwargs): pass def close(self): # shutdown the node self.node.destroy_node() rclpy.shutdown()
9,047
Python
40.315068
154
0.607605
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_real_skrl_eval.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.envs.torch import wrap_env # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # Load the environment from reaching_iiwa_real_env import ReachingIiwa control_space = "joint" # joint or cartesian env = ReachingIiwa(control_space=control_space) # wrap the environment env = wrap_env(env) device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if control_space == "joint": agent.load("./agent_joint.pt") elif control_space == "cartesian": agent.load("./agent_cartesian.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
3,027
Python
35.481927
102
0.676577
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_omniverse_isaacgym_skrl_train.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin, DeterministicMixin from skrl.memories.torch import RandomMemory from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils.omniverse_isaacgym_utils import get_env_instance from skrl.envs.torch import wrap_env from skrl.utils import set_seed # Seed for reproducibility seed = set_seed() # e.g. `set_seed(42)` for fixed seed # Define the models (stochastic and deterministic models) for the agent using helper mixin. # - Policy: takes as input the environment's observation/state and returns an action # - Value: takes the state as input and provides a value to guide the policy class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, 1)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # instance VecEnvBase and setup task headless = True # set headless to False for rendering env = get_env_instance(headless=headless) from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from reaching_iiwa_omniverse_isaacgym_env import ReachingIiwaTask, TASK_CFG TASK_CFG["seed"] = seed TASK_CFG["headless"] = headless TASK_CFG["task"]["env"]["numEnvs"] = 1024 TASK_CFG["task"]["env"]["controlSpace"] = "joint" # "joint" or "cartesian" sim_config = SimConfig(TASK_CFG) task = ReachingIiwaTask(name="ReachingIiwa", sim_config=sim_config, env=env) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=True) # wrap the environment env = wrap_env(env, "omniverse-isaacgym") device = env.device # Instantiate a RandomMemory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # Instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) models_ppo["value"] = Value(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["rollouts"] = 16 cfg_ppo["learning_epochs"] = 8 cfg_ppo["mini_batches"] = 8 cfg_ppo["discount_factor"] = 0.99 cfg_ppo["lambda"] = 0.95 cfg_ppo["learning_rate"] = 5e-4 cfg_ppo["learning_rate_scheduler"] = KLAdaptiveRL cfg_ppo["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["grad_norm_clip"] = 1.0 cfg_ppo["ratio_clip"] = 0.2 cfg_ppo["value_clip"] = 0.2 cfg_ppo["clip_predicted_values"] = True cfg_ppo["entropy_loss_scale"] = 0.0 cfg_ppo["value_loss_scale"] = 2.0 cfg_ppo["kl_threshold"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg_ppo["value_preprocessor"] = RunningStandardScaler cfg_ppo["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints each 32 and 250 timesteps respectively cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 250 agent = PPO(models=models_ppo, memory=memory, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 5000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
5,531
Python
39.977777
102
0.674019
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_real_ros_ros2_skrl_eval.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.envs.torch import wrap_env # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # Load the environment according to the ROS version def get_active_ros_version(): import os if os.environ.get("ROS_DISTRO"): return "ROS2" if os.environ.get("AMENT_PREFIX_PATH") else "ROS" return "" active_ros_version = get_active_ros_version() if active_ros_version == "ROS": from reaching_iiwa_real_ros_env import ReachingIiwa elif active_ros_version == "ROS2": from reaching_iiwa_real_ros2_env import ReachingIiwa else: print("No active ROS version found") exit() control_space = "joint" # joint or cartesian env = ReachingIiwa(control_space=control_space) # wrap the environment env = wrap_env(env) device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if control_space == "joint": agent.load("./agent_joint.pt") elif control_space == "cartesian": agent.load("./agent_cartesian.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
3,461
Python
34.690721
102
0.676394
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_omniverse_isaacgym_env.py
import torch import numpy as np from omniisaacgymenvs.tasks.base.rl_task import RLTask from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from robots.iiwa14 import Iiwa14 as Robot from skrl.utils import omniverse_isaacgym_utils # post_physics_step calls # - get_observations() # - get_states() # - calculate_metrics() # - is_done() # - get_extras() TASK_CFG = {"test": False, "device_id": 0, "headless": True, "sim_device": "gpu", "enable_livestream": False, "warp": False, "seed": 42, "task": {"name": "ReachingIiwa", "physics_engine": "physx", "env": {"numEnvs": 1024, "envSpacing": 1.5, "episodeLength": 100, "enableDebugVis": False, "clipObservations": 1000.0, "clipActions": 1.0, "controlFrequencyInv": 4, "actionScale": 2.5, "dofVelocityScale": 0.1, "controlSpace": "cartesian"}, "sim": {"dt": 0.0083, # 1 / 120 "use_gpu_pipeline": True, "gravity": [0.0, 0.0, -9.81], "add_ground_plane": True, "use_flatcache": True, "enable_scene_query_support": False, "enable_cameras": False, "default_physics_material": {"static_friction": 1.0, "dynamic_friction": 1.0, "restitution": 0.0}, "physx": {"worker_thread_count": 4, "solver_type": 1, "use_gpu": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "contact_offset": 0.005, "rest_offset": 0.0, "bounce_threshold_velocity": 0.2, "friction_offset_threshold": 0.04, "friction_correlation_distance": 0.025, "enable_sleeping": True, "enable_stabilization": True, "max_depenetration_velocity": 1000.0, "gpu_max_rigid_contact_count": 524288, "gpu_max_rigid_patch_count": 33554432, "gpu_found_lost_pairs_capacity": 524288, "gpu_found_lost_aggregate_pairs_capacity": 262144, "gpu_total_aggregate_pairs_capacity": 1048576, "gpu_max_soft_body_contacts": 1048576, "gpu_max_particle_contacts": 1048576, "gpu_heap_capacity": 33554432, "gpu_temp_buffer_capacity": 16777216, "gpu_max_num_partitions": 8}, "robot": {"override_usd_defaults": False, "fixed_base": False, "enable_self_collisions": False, "enable_gyroscopic_forces": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.005, "stabilization_threshold": 0.001, "density": -1, "max_depenetration_velocity": 1000.0, "contact_offset": 0.005, "rest_offset": 0.0}, "target": {"override_usd_defaults": False, "fixed_base": True, "make_kinematic": True, "enable_self_collisions": False, "enable_gyroscopic_forces": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.005, "stabilization_threshold": 0.001, "density": -1, "max_depenetration_velocity": 1000.0, "contact_offset": 0.005, "rest_offset": 0.0}}}} class RobotView(ArticulationView): def __init__(self, prim_paths_expr: str, name: str = "robot_view") -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) class ReachingIiwaTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.dt = 1 / 120.0 self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._action_scale = self._task_cfg["env"]["actionScale"] self._dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self._control_space = self._task_cfg["env"]["controlSpace"] # observation and action space self._num_observations = 18 if self._control_space == "joint": self._num_actions = 7 elif self._control_space == "cartesian": self._num_actions = 3 else: raise ValueError("Invalid control space: {}".format(self._control_space)) self._end_effector_link = "iiwa_link_7" RLTask.__init__(self, name, env) def set_up_scene(self, scene) -> None: self.get_robot() self.get_target() super().set_up_scene(scene) # robot view self._robots = RobotView(prim_paths_expr="/World/envs/.*/robot", name="robot_view") scene.add(self._robots) # end-effectors view self._end_effectors = RigidPrimView(prim_paths_expr="/World/envs/.*/robot/{}".format(self._end_effector_link), name="end_effector_view") scene.add(self._end_effectors) # target view self._targets = RigidPrimView(prim_paths_expr="/World/envs/.*/target", name="target_view", reset_xform_properties=False) scene.add(self._targets) self.init_data() def get_robot(self): robot = Robot(prim_path=self.default_zero_env_path + "/robot", translation=torch.tensor([0.0, 0.0, 0.0]), orientation=torch.tensor([1.0, 0.0, 0.0, 0.0]), name="robot") self._sim_config.apply_articulation_settings("robot", get_prim_at_path(robot.prim_path), self._sim_config.parse_actor_config("robot")) def get_target(self): target = DynamicSphere(prim_path=self.default_zero_env_path + "/target", name="target", radius=0.025, color=torch.tensor([1, 0, 0])) self._sim_config.apply_articulation_settings("target", get_prim_at_path(target.prim_path), self._sim_config.parse_actor_config("target")) target.set_collision_enabled(False) def init_data(self) -> None: self.robot_default_dof_pos = torch.tensor(np.radians([0, 0, 0, -90, 0, 90, 0]), device=self._device, dtype=torch.float32) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) if self._control_space == "cartesian": self.jacobians = torch.zeros((self._num_envs, 7, 6, 7), device=self._device) self.end_effector_pos, self.end_effector_rot = torch.zeros((self._num_envs, 3), device=self._device), torch.zeros((self._num_envs, 4), device=self._device) def get_observations(self) -> dict: robot_dof_pos = self._robots.get_joint_positions(clone=False) robot_dof_vel = self._robots.get_joint_velocities(clone=False) end_effector_pos, end_effector_rot = self._end_effectors.get_world_poses(clone=False) target_pos, target_rot = self._targets.get_world_poses(clone=False) dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) \ / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self._dof_vel_scale generalization_noise = torch.rand((dof_vel_scaled.shape[0], 7), device=self._device) + 0.5 self.obs_buf[:, 0] = self.progress_buf / self._max_episode_length self.obs_buf[:, 1:8] = dof_pos_scaled self.obs_buf[:, 8:15] = dof_vel_scaled * generalization_noise self.obs_buf[:, 15:18] = target_pos - self._env_pos # compute distance for calculate_metrics() and is_done() self._computed_distance = torch.norm(end_effector_pos - target_pos, dim=-1) if self._control_space == "cartesian": self.jacobians = self._robots.get_jacobians(clone=False) self.end_effector_pos, self.end_effector_rot = end_effector_pos, end_effector_rot self.end_effector_pos -= self._env_pos return {self._robots.name: {"obs_buf": self.obs_buf}} def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) env_ids_int32 = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) if self._control_space == "joint": targets = self.robot_dof_targets + self.robot_dof_speed_scales * self.dt * self.actions * self._action_scale elif self._control_space == "cartesian": goal_position = self.end_effector_pos + actions / 100.0 delta_dof_pos = omniverse_isaacgym_utils.ik(jacobian_end_effector=self.jacobians[:, 7 - 1, :, :7], # iiwa_link_7 index: 7 current_position=self.end_effector_pos, current_orientation=self.end_effector_rot, goal_position=goal_position, goal_orientation=None) targets = self.robot_dof_targets[:, :7] + delta_dof_pos self.robot_dof_targets = torch.clamp(targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits) self._robots.set_joint_position_targets(self.robot_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids) -> None: indices = env_ids.to(dtype=torch.int32) # reset robot pos = torch.clamp(self.robot_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_robot_dofs), device=self._device) - 0.5), self.robot_dof_lower_limits, self.robot_dof_upper_limits) dof_pos = torch.zeros((len(indices), self._robots.num_dof), device=self._device) dof_pos[:] = pos dof_vel = torch.zeros((len(indices), self._robots.num_dof), device=self._device) self.robot_dof_targets[env_ids, :] = pos self.robot_dof_pos[env_ids, :] = pos self._robots.set_joint_position_targets(self.robot_dof_targets[env_ids], indices=indices) self._robots.set_joint_positions(dof_pos, indices=indices) self._robots.set_joint_velocities(dof_vel, indices=indices) # reset target pos = (torch.rand((len(env_ids), 3), device=self._device) - 0.5) * 2 \ * torch.tensor([0.10, 0.20, 0.20], device=self._device) \ + torch.tensor([0.60, 0.00, 0.40], device=self._device) self._targets.set_world_poses(pos + self._env_pos[env_ids], indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.num_robot_dofs = self._robots.num_dof self.robot_dof_pos = torch.zeros((self.num_envs, self.num_robot_dofs), device=self._device) dof_limits = self._robots.get_dof_limits() self.robot_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.robot_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.robot_dof_speed_scales = torch.ones_like(self.robot_dof_lower_limits) self.robot_dof_targets = torch.zeros((self._num_envs, self.num_robot_dofs), dtype=torch.float, device=self._device) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = -self._computed_distance def is_done(self) -> None: self.reset_buf.fill_(0) # target reached self.reset_buf = torch.where(self._computed_distance <= 0.035, torch.ones_like(self.reset_buf), self.reset_buf) # max episode length self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
14,113
Python
50.137681
167
0.517395
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_real_ros_env.py
import time import numpy as np import gymnasium as gym import rospy import sensor_msgs.msg import geometry_msgs.msg import libiiwa_msgs.srv class ReachingIiwa(gym.Env): def __init__(self, control_space="joint"): self.control_space = control_space # joint or cartesian # spaces self.observation_space = gym.spaces.Box(low=-1000, high=1000, shape=(18,), dtype=np.float32) if self.control_space == "joint": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(7,), dtype=np.float32) elif self.control_space == "cartesian": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32) else: raise ValueError("Invalid control space:", self.control_space) # create publishers self.pub_command_joint = rospy.Publisher('/iiwa/command/joint', sensor_msgs.msg.JointState, queue_size=1) self.pub_command_cartesian = rospy.Publisher('/iiwa/command/cartesian', geometry_msgs.msg.Pose, queue_size=1) # keep compatibility with libiiwa Python API self.robot_state = {"joint_position": np.zeros((7,)), "joint_velocity": np.zeros((7,)), "cartesian_position": np.zeros((3,))} # create subscribers rospy.Subscriber('/iiwa/state/joint_states', sensor_msgs.msg.JointState, self._callback_joint_states) rospy.Subscriber('/iiwa/state/end_effector_pose', geometry_msgs.msg.Pose, self._callback_end_effector_pose) # create service clients rospy.wait_for_service('/iiwa/set_control_interface') proxy = rospy.ServiceProxy('/iiwa/set_control_interface', libiiwa_msgs.srv.SetString) proxy("SERVO") # or "servo" rospy.wait_for_service('/iiwa/set_desired_joint_velocity_rel') rospy.wait_for_service('/iiwa/set_desired_joint_acceleration_rel') rospy.wait_for_service('/iiwa/set_desired_joint_jerk_rel') proxy = rospy.ServiceProxy('/iiwa/set_desired_joint_velocity_rel', libiiwa_msgs.srv.SetNumber) proxy(0.5) proxy = rospy.ServiceProxy('/iiwa/set_desired_joint_acceleration_rel', libiiwa_msgs.srv.SetNumber) proxy(0.5) proxy = rospy.ServiceProxy('/iiwa/set_desired_joint_jerk_rel', libiiwa_msgs.srv.SetNumber) proxy(0.5) rospy.wait_for_service('/iiwa/set_desired_cartesian_velocity') rospy.wait_for_service('/iiwa/set_desired_cartesian_acceleration') rospy.wait_for_service('/iiwa/set_desired_cartesian_jerk') proxy = rospy.ServiceProxy('/iiwa/set_desired_cartesian_velocity', libiiwa_msgs.srv.SetNumber) proxy(10.0) proxy = rospy.ServiceProxy('/iiwa/set_desired_cartesian_acceleration', libiiwa_msgs.srv.SetNumber) proxy(10.0) proxy = rospy.ServiceProxy('/iiwa/set_desired_cartesian_jerk', libiiwa_msgs.srv.SetNumber) proxy(10.0) # initialize the ROS node rospy.init_node(self.__class__.__name__) print("Robot connected") self.motion = None self.motion_thread = None self.dt = 1 / 120.0 self.action_scale = 2.5 self.dof_vel_scale = 0.1 self.max_episode_length = 100 self.robot_dof_speed_scales = 1 self.target_pos = np.array([0.65, 0.2, 0.2]) self.robot_default_dof_pos = np.radians([0, 0, 0, -90, 0, 90, 0]) self.robot_dof_lower_limits = np.array([-2.9671, -2.0944, -2.9671, -2.0944, -2.9671, -2.0944, -3.0543]) self.robot_dof_upper_limits = np.array([ 2.9671, 2.0944, 2.9671, 2.0944, 2.9671, 2.0944, 3.0543]) self.progress_buf = 1 self.obs_buf = np.zeros((18,), dtype=np.float32) def _callback_joint_states(self, msg): self.robot_state["joint_position"] = np.array(msg.position) self.robot_state["joint_velocity"] = np.array(msg.velocity) def _callback_end_effector_pose(self, msg): positon = msg.position self.robot_state["cartesian_position"] = np.array([positon.x, positon.y, positon.z]) def _get_observation_reward_done(self): # observation robot_dof_pos = self.robot_state["joint_position"] robot_dof_vel = self.robot_state["joint_velocity"] end_effector_pos = self.robot_state["cartesian_position"] dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self.dof_vel_scale self.obs_buf[0] = self.progress_buf / float(self.max_episode_length) self.obs_buf[1:8] = dof_pos_scaled self.obs_buf[8:15] = dof_vel_scaled self.obs_buf[15:18] = self.target_pos # reward distance = np.linalg.norm(end_effector_pos - self.target_pos) reward = -distance # done done = self.progress_buf >= self.max_episode_length - 1 done = done or distance <= 0.075 print("Distance:", distance) if done: print("Target or Maximum episode length reached") time.sleep(1) return self.obs_buf, reward, done def reset(self): print("Reseting...") # go to 1) safe position, 2) random position msg = sensor_msgs.msg.JointState() msg.position = self.robot_default_dof_pos.tolist() self.pub_command_joint.publish(msg) time.sleep(3) msg.position = (self.robot_default_dof_pos + 0.25 * (np.random.rand(7) - 0.5)).tolist() self.pub_command_joint.publish(msg) time.sleep(1) # get target position from prompt while True: try: print("Enter target position (X, Y, Z) in meters") raw = input("or press [Enter] key for a random target position: ") if raw: self.target_pos = np.array([float(p) for p in raw.replace(' ', '').split(',')]) else: noise = (2 * np.random.rand(3) - 1) * np.array([0.1, 0.2, 0.2]) self.target_pos = np.array([0.6, 0.0, 0.4]) + noise print("Target position:", self.target_pos) break except ValueError: print("Invalid input. Try something like: 0.65, 0.0, 0.4") input("Press [Enter] to continue") self.progress_buf = 0 observation, reward, done = self._get_observation_reward_done() return observation, {} def step(self, action): self.progress_buf += 1 # control space # joint if self.control_space == "joint": joint_positions = self.robot_state["joint_position"] + (self.robot_dof_speed_scales * self.dt * action * self.action_scale) msg = sensor_msgs.msg.JointState() msg.position = joint_positions.tolist() self.pub_command_joint.publish(msg) # cartesian elif self.control_space == "cartesian": end_effector_pos = self.robot_state["cartesian_position"] + action / 100.0 msg = geometry_msgs.msg.Pose() msg.position.x = end_effector_pos[0] msg.position.y = end_effector_pos[1] msg.position.z = end_effector_pos[2] msg.orientation.x = np.nan msg.orientation.y = np.nan msg.orientation.z = np.nan msg.orientation.w = np.nan self.pub_command_cartesian.publish(msg) # the use of time.sleep is for simplicity. It does not guarantee control at a specific frequency time.sleep(1 / 30.0) observation, reward, terminated = self._get_observation_reward_done() return observation, reward, terminated, False, {} def render(self, *args, **kwargs): pass def close(self): pass
7,831
Python
39.371134
144
0.605542
Toni-SM/skrl/docs/source/snippets/utils_postprocessing.py
# [start-memory_file_iterator-torch] from skrl.utils import postprocessing # assuming there is a directory called "memories" with Torch files in it memory_iterator = postprocessing.MemoryFileIterator("memories/*.pt") for filename, data in memory_iterator: filename # str: basename of the current file data # dict: keys are the names of the memory tensors in the file. # Tensor shapes are (memory size, number of envs, specific content size) # example of simple usage: # print the filenames of all memories and their tensor shapes print("\nfilename:", filename) print(" |-- states:", data['states'].shape) print(" |-- actions:", data['actions'].shape) print(" |-- rewards:", data['rewards'].shape) print(" |-- next_states:", data['next_states'].shape) print(" |-- dones:", data['dones'].shape) # [end-memory_file_iterator-torch] # [start-memory_file_iterator-numpy] from skrl.utils import postprocessing # assuming there is a directory called "memories" with NumPy files in it memory_iterator = postprocessing.MemoryFileIterator("memories/*.npz") for filename, data in memory_iterator: filename # str: basename of the current file data # dict: keys are the names of the memory arrays in the file. # Array shapes are (memory size, number of envs, specific content size) # example of simple usage: # print the filenames of all memories and their array shapes print("\nfilename:", filename) print(" |-- states:", data['states'].shape) print(" |-- actions:", data['actions'].shape) print(" |-- rewards:", data['rewards'].shape) print(" |-- next_states:", data['next_states'].shape) print(" |-- dones:", data['dones'].shape) # [end-memory_file_iterator-numpy] # [start-memory_file_iterator-csv] from skrl.utils import postprocessing # assuming there is a directory called "memories" with CSV files in it memory_iterator = postprocessing.MemoryFileIterator("memories/*.csv") for filename, data in memory_iterator: filename # str: basename of the current file data # dict: keys are the names of the memory list of lists extracted from the file. # List lengths are (memory size * number of envs) and # sublist lengths are (specific content size) # example of simple usage: # print the filenames of all memories and their list lengths print("\nfilename:", filename) print(" |-- states:", len(data['states'])) print(" |-- actions:", len(data['actions'])) print(" |-- rewards:", len(data['rewards'])) print(" |-- next_states:", len(data['next_states'])) print(" |-- dones:", len(data['dones'])) # [end-memory_file_iterator-csv] # [start-tensorboard_file_iterator-list] from skrl.utils import postprocessing # assuming there is a directory called "runs" with experiments and Tensorboard files in it tensorboard_iterator = postprocessing.TensorboardFileIterator("runs/*/events.out.tfevents.*", \ tags=["Reward / Total reward (mean)"]) for dirname, data in tensorboard_iterator: dirname # str: path of the directory (experiment name) containing the Tensorboard file data # dict: keys are the tags, values are lists of [step, value] pairs # example of simple usage: # print the directory name and the value length for the "Reward / Total reward (mean)" tag print("\ndirname:", dirname) for tag, values in data.items(): print(" |-- tag:", tag) print(" | |-- value length:", len(values)) # [end-tensorboard_file_iterator-list]
3,582
Python
40.66279
95
0.676159
Toni-SM/skrl/docs/source/snippets/shared_model.py
# [start-mlp-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin, DeterministicMixin # define the shared model class SharedModel(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction, role="policy") DeterministicMixin.__init__(self, clip_actions, role="value") # shared layers/network self.net = nn.Sequential(nn.Linear(self.num_observations, 32), nn.ELU(), nn.Linear(32, 32), nn.ELU()) # separated layers ("policy") self.mean_layer = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) # separated layer ("value") self.value_layer = nn.Linear(32, 1) # override the .act(...) method to disambiguate its call def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) # forward the input to compute model output according to the specified role def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # instantiate the shared model and pass the same instance to the other key models = {} models["policy"] = SharedModel(env.observation_space, env.action_space, env.device) models["value"] = models["policy"] # [end-mlp-torch]
1,974
Python
39.306122
116
0.624113
Toni-SM/skrl/docs/source/snippets/noises.py
# [start-base-class-torch] from typing import Union, Tuple import torch from skrl.resources.noises.torch import Noise class CustomNoise(Noise): def __init__(self, device: Union[str, torch.device] = "cuda:0") -> None: """ :param device: Device on which a torch tensor is or will be allocated (default: "cuda:0") :type device: str or torch.device, optional """ super().__init__(device) def sample(self, size: Union[Tuple[int], torch.Size]) -> torch.Tensor: """Sample noise :param size: Shape of the sampled tensor :type size: tuple or list of integers, or torch.Size :return: Sampled noise :rtype: torch.Tensor """ # ================================ # - sample noise # ================================ # [end-base-class-torch] # [start-base-class-jax] from typing import Optional, Union, Tuple import numpy as np import jaxlib import jax.numpy as jnp from skrl.resources.noises.torch import Noise class CustomNoise(Noise): def __init__(self, device: Optional[Union[str, jaxlib.xla_extension.Device]] = None) -> None: """Custom noise :param device: Device on which a jax array is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or jaxlib.xla_extension.Device, optional """ super().__init__(device) def sample(self, size: Tuple[int]) -> Union[np.ndarray, jnp.ndarray]: """Sample noise :param size: Shape of the sampled tensor :type size: tuple or list of integers :return: Sampled noise :rtype: np.ndarray or jnp.ndarray """ # ================================ # - sample noise # ================================ # [end-base-class-jax] # ============================================================================= # [torch-start-gaussian] from skrl.resources.noises.torch import GaussianNoise cfg = DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = GaussianNoise(mean=0, std=0.2, device="cuda:0") # [torch-end-gaussian] # [jax-start-gaussian] from skrl.resources.noises.jax import GaussianNoise cfg = DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = GaussianNoise(mean=0, std=0.2) # [jax-end-gaussian] # ============================================================================= # [torch-start-ornstein-uhlenbeck] from skrl.resources.noises.torch import OrnsteinUhlenbeckNoise cfg = DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.2, base_scale=1.0, device="cuda:0") # [torch-end-ornstein-uhlenbeck] # [jax-start-ornstein-uhlenbeck] from skrl.resources.noises.jax import OrnsteinUhlenbeckNoise cfg = DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.2, base_scale=1.0) # [jax-end-ornstein-uhlenbeck]
2,976
Python
28.77
108
0.589718
Toni-SM/skrl/docs/source/snippets/gaussian_model.py
# [start-definition-torch] class GaussianModel(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) # [end-definition-torch] # [start-definition-jax] class GaussianModel(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) # [end-definition-jax] # ============================================================================= # [start-mlp-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin # define the model class MLP(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.net = nn.Sequential(nn.Linear(self.num_observations, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # [end-mlp-sequential-torch] # [start-mlp-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, GaussianMixin # define the model class MLP(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.fc1 = nn.Linear(self.num_observations, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): x = self.fc1(inputs["states"]) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # [end-mlp-functional-torch] # [start-mlp-setup-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, GaussianMixin # define the model class MLP(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def setup(self): self.fc1 = nn.Dense(64) self.fc2 = nn.Dense(32) self.fc3 = nn.Dense(self.num_actions) self.log_std_parameter = self.param("log_std_parameter", lambda _: jnp.zeros(self.num_actions)) def __call__(self, inputs, role): x = self.fc1(inputs["states"]) x = nn.relu(x) x = self.fc2(x) x = nn.relu(x) x = self.fc3(x) return nn.tanh(x), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-setup-jax] # [start-mlp-compact-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, GaussianMixin # define the model class MLP(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.Dense(64)(inputs["states"]) x = nn.relu(x) x = nn.Dense(32)(x) x = nn.relu(x) x = nn.Dense(self.num_actions)(x) log_std_parameter = self.param("log_std_parameter", lambda _: jnp.zeros(self.num_actions)) return nn.tanh(x), log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-compact-jax] # ============================================================================= # [start-cnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin # define the model class CNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.net = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 16), nn.Tanh(), nn.Linear(16, 64), nn.Tanh(), nn.Linear(64, 32), nn.Tanh(), nn.Linear(32, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) return self.net(inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2)), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # [end-cnn-sequential-torch] # [start-cnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, GaussianMixin # define the model class CNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.conv1 = nn.Conv2d(3, 32, kernel_size=8, stride=4) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 16) self.fc3 = nn.Linear(16, 64) self.fc4 = nn.Linear(64, 32) self.fc5 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2) x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = torch.flatten(x, start_dim=1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.tanh(x) x = self.fc3(x) x = torch.tanh(x) x = self.fc4(x) x = torch.tanh(x) x = self.fc5(x) return x, self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # [end-cnn-functional-torch] # [start-cnn-setup-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, GaussianMixin # define the model class CNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def setup(self): self.conv1 = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID") self.conv2 = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID") self.conv3 = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID") self.fc1 = nn.Dense(512) self.fc2 = nn.Dense(16) self.fc3 = nn.Dense(64) self.fc4 = nn.Dense(32) self.fc5 = nn.Dense(self.num_actions) self.log_std_parameter = self.param("log_std_parameter", lambda _: jnp.zeros(self.num_actions)) def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = self.conv1(x) x = nn.relu(x) x = self.conv2(x) x = nn.relu(x) x = self.conv3(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = self.fc1(x) x = nn.relu(x) x = self.fc2(x) x = nn.tanh(x) x = self.fc3(x) x = nn.tanh(x) x = self.fc4(x) x = nn.tanh(x) x = self.fc5(x) return nn.tanh(x), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-setup-jax] # [start-cnn-compact-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, GaussianMixin # define the model class CNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID")(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = nn.Dense(512)(x) x = nn.relu(x) x = nn.Dense(16)(x) x = nn.tanh(x) x = nn.Dense(64)(x) x = nn.tanh(x) x = nn.Dense(32)(x) x = nn.tanh(x) x = nn.Dense(self.num_actions)(x) log_std_parameter = self.param("log_std_parameter", lambda _: jnp.zeros(self.num_actions)) return nn.tanh(x), log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-compact-jax] # ============================================================================= # [start-rnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin # define the model class RNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-sequential-torch] # [start-rnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, GaussianMixin # define the model class RNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-functional-torch] # ============================================================================= # [start-gru-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin # define the model class GRU(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-sequential-torch] # [start-gru-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, GaussianMixin # define the model class GRU(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-functional-torch] # ============================================================================= # [start-lstm-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin # define the model class LSTM(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-sequential-torch] # [start-lstm-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, GaussianMixin # define the model class LSTM(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-functional-torch]
41,575
Python
41.038423
146
0.566133
Toni-SM/skrl/docs/source/snippets/model_mixin.py
# [start-model-torch] from typing import Optional, Union, Mapping, Sequence, Tuple, Any import gym, gymnasium import torch from skrl.models.torch import Model class CustomModel(Model): def __init__(self, observation_space: Union[int, Sequence[int], gym.Space, gymnasium.Space], action_space: Union[int, Sequence[int], gym.Space, gymnasium.Space], device: Optional[Union[str, torch.device]] = None) -> None: """Custom model :param observation_space: Observation/state space or shape. The ``num_observations`` property will contain the size of that space :type observation_space: int, sequence of int, gym.Space, gymnasium.Space :param action_space: Action space or shape. The ``num_actions`` property will contain the size of that space :type action_space: int, sequence of int, gym.Space, gymnasium.Space :param device: Device on which a torch tensor is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or torch.device, optional """ super().__init__(observation_space, action_space, device) # ===================================== # - define custom attributes and others # ===================================== flax.linen.Module.__post_init__(self) def act(self, inputs: Mapping[str, Union[torch.Tensor, Any]], role: str = "") -> Tuple[torch.Tensor, Union[torch.Tensor, None], Mapping[str, Union[torch.Tensor, Any]]]: """Act according to the specified behavior :param inputs: Model inputs. The most common keys are: - ``"states"``: state of the environment used to make the decision - ``"taken_actions"``: actions taken by the policy for the given states :type inputs: dict where the values are typically torch.Tensor :param role: Role play by the model (default: ``""``) :type role: str, optional :return: Model output. The first component is the action to be taken by the agent. The second component is the log of the probability density function for stochastic models or None for deterministic models. The third component is a dictionary containing extra output values :rtype: tuple of torch.Tensor, torch.Tensor or None, and dictionary """ # ============================== # - act in response to the state # ============================== # [end-model-torch] # [start-model-jax] from typing import Optional, Union, Mapping, Tuple, Any import gym, gymnasium import flax import jaxlib import jax.numpy as jnp from skrl.models.jax import Model class CustomModel(Model): def __init__(self, observation_space: Union[int, Sequence[int], gym.Space, gymnasium.Space], action_space: Union[int, Sequence[int], gym.Space, gymnasium.Space], device: Optional[Union[str, jaxlib.xla_extension.Device]] = None, parent: Optional[Any] = None, name: Optional[str] = None) -> None: """Custom model :param observation_space: Observation/state space or shape. The ``num_observations`` property will contain the size of that space :type observation_space: int, sequence of int, gym.Space, gymnasium.Space :param action_space: Action space or shape. The ``num_actions`` property will contain the size of that space :type action_space: int, sequence of int, gym.Space, gymnasium.Space :param device: Device on which a jax array is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or jaxlib.xla_extension.Device, optional :param parent: The parent Module of this Module (default: ``None``). It is a Flax reserved attribute :type parent: str, optional :param name: The name of this Module (default: ``None``). It is a Flax reserved attribute :type name: str, optional """ Model.__init__(self, observation_space, action_space, device, parent, name) # ===================================== # - define custom attributes and others # ===================================== flax.linen.Module.__post_init__(self) def act(self, inputs: Mapping[str, Union[jnp.ndarray, Any]], role: str = "", params: Optional[jnp.ndarray] = None) -> Tuple[jnp.ndarray, Union[jnp.ndarray, None], Mapping[str, Union[jnp.ndarray, Any]]]: """Act according to the specified behavior :param inputs: Model inputs. The most common keys are: - ``"states"``: state of the environment used to make the decision - ``"taken_actions"``: actions taken by the policy for the given states :type inputs: dict where the values are typically jnp.ndarray :param role: Role play by the model (default: ``""``) :type role: str, optional :param params: Parameters used to compute the output (default: ``None``). If ``None``, internal parameters will be used :type params: jnp.array :return: Model output. The first component is the action to be taken by the agent. The second component is the log of the probability density function. The third component is a dictionary containing the mean actions ``"mean_actions"`` and extra output values :rtype: tuple of jnp.ndarray, jnp.ndarray or None, and dictionary """ # ============================== # - act in response to the state # ============================== # [end-model-jax] # ============================================================================= # [start-mixin-torch] from typing import Union, Mapping, Tuple, Any import torch class CustomMixin: def __init__(self, role: str = "") -> None: """Custom mixin :param role: Role play by the model (default: ``""``) :type role: str, optional """ # ===================================== # - define custom attributes and others # ===================================== def act(self, inputs: Mapping[str, Union[torch.Tensor, Any]], role: str = "") -> Tuple[torch.Tensor, Union[torch.Tensor, None], Mapping[str, Union[torch.Tensor, Any]]]: """Act according to the specified behavior :param inputs: Model inputs. The most common keys are: - ``"states"``: state of the environment used to make the decision - ``"taken_actions"``: actions taken by the policy for the given states :type inputs: dict where the values are typically torch.Tensor :param role: Role play by the model (default: ``""``) :type role: str, optional :return: Model output. The first component is the action to be taken by the agent. The second component is the log of the probability density function for stochastic models or None for deterministic models. The third component is a dictionary containing extra output values :rtype: tuple of torch.Tensor, torch.Tensor or None, and dictionary """ # ============================== # - act in response to the state # ============================== # [end-mixin-torch] # [start-mixin-jax] from typing import Optional, Union, Mapping, Tuple, Any import flax import jax.numpy as jnp class CustomMixin: def __init__(self, role: str = "") -> None: """Custom mixin :param role: Role play by the model (default: ``""``) :type role: str, optional """ # ===================================== # - define custom attributes and others # ===================================== flax.linen.Module.__post_init__(self) def act(self, inputs: Mapping[str, Union[jnp.ndarray, Any]], role: str = "", params: Optional[jnp.ndarray] = None) -> Tuple[jnp.ndarray, Union[jnp.ndarray, None], Mapping[str, Union[jnp.ndarray, Any]]]: """Act according to the specified behavior :param inputs: Model inputs. The most common keys are: - ``"states"``: state of the environment used to make the decision - ``"taken_actions"``: actions taken by the policy for the given states :type inputs: dict where the values are typically jnp.ndarray :param role: Role play by the model (default: ``""``) :type role: str, optional :param params: Parameters used to compute the output (default: ``None``). If ``None``, internal parameters will be used :type params: jnp.array :return: Model output. The first component is the action to be taken by the agent. The second component is the log of the probability density function. The third component is a dictionary containing the mean actions ``"mean_actions"`` and extra output values :rtype: tuple of jnp.ndarray, jnp.ndarray or None, and dictionary """ # ============================== # - act in response to the state # ============================== # [end-mixin-jax]
9,778
Python
43.857798
137
0.562896
Toni-SM/skrl/docs/source/snippets/multivariate_gaussian_model.py
# [start-definition-torch] class MultivariateGaussianModel(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) # [end-definition-torch] # ============================================================================= # [start-mlp-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class MLP(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2) # [end-mlp-sequential-torch] # [start-mlp-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class MLP(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.fc1 = nn.Linear(self.num_observations, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): x = self.fc1(inputs["states"]) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2) # [end-mlp-functional-torch] # ============================================================================= # [start-cnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class CNN(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 16), nn.Tanh(), nn.Linear(16, 64), nn.Tanh(), nn.Linear(64, 32), nn.Tanh(), nn.Linear(32, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) return self.net(inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2)), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2) # [end-cnn-sequential-torch] # [start-cnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class CNN(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.conv1 = nn.Conv2d(3, 32, kernel_size=8, stride=4) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 16) self.fc3 = nn.Linear(16, 64) self.fc4 = nn.Linear(64, 32) self.fc5 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2) x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = torch.flatten(x, start_dim=1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.tanh(x) x = self.fc3(x) x = torch.tanh(x) x = self.fc4(x) x = torch.tanh(x) x = self.fc5(x) return x, self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2) # [end-cnn-functional-torch] # ============================================================================= # [start-rnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class RNN(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-sequential-torch] # [start-rnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class RNN(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-functional-torch] # ============================================================================= # [start-gru-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class GRU(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-sequential-torch] # [start-gru-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class GRU(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-functional-torch] # ============================================================================= # [start-lstm-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class LSTM(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-sequential-torch] # [start-lstm-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class LSTM(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-functional-torch]
34,003
Python
42.876129
146
0.563186
Toni-SM/skrl/docs/source/snippets/multi_agents_basic_usage.py
# [start-ippo-torch] # import the agent and its default configuration from skrl.multi_agents.torch.ippo import IPPO, IPPO_DEFAULT_CONFIG # instantiate the agent's models models = {} for agent_name in env.possible_agents: models[agent_name] = {} models[agent_name]["policy"] = ... models[agent_name]["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = IPPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memories <memories>) agent = IPPO(possible_agents=env.possible_agents, models=models, memory=memories, # only required during training cfg=cfg_agent, observation_spaces=env.observation_spaces, action_spaces=env.action_spaces, device=env.device) # [end-ippo-torch] # [start-ippo-jax] # import the agent and its default configuration from skrl.multi_agents.jax.ippo import IPPO, IPPO_DEFAULT_CONFIG # instantiate the agent's models models = {} for agent_name in env.possible_agents: models[agent_name] = {} models[agent_name]["policy"] = ... models[agent_name]["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = IPPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memories <memories>) agent = IPPO(possible_agents=env.possible_agents, models=models, memory=memories, # only required during training cfg=cfg_agent, observation_spaces=env.observation_spaces, action_spaces=env.action_spaces, device=env.device) # [end-ippo-jax] # [start-mappo-torch] # import the agent and its default configuration from skrl.multi_agents.torch.mappo import MAPPO, MAPPO_DEFAULT_CONFIG # instantiate the agent's models models = {} for agent_name in env.possible_agents: models[agent_name] = {} models[agent_name]["policy"] = ... models[agent_name]["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = MAPPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memories <memories>) agent = MAPPO(possible_agents=env.possible_agents, models=models, memory=memories, # only required during training cfg=cfg_agent, observation_spaces=env.observation_spaces, action_spaces=env.action_spaces, device=env.device, shared_observation_spaces=env.shared_observation_spaces) # [end-mappo-torch] # [start-mappo-jax] # import the agent and its default configuration from skrl.multi_agents.jax.mappo import MAPPO, MAPPO_DEFAULT_CONFIG # instantiate the agent's models models = {} for agent_name in env.possible_agents: models[agent_name] = {} models[agent_name]["policy"] = ... models[agent_name]["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = MAPPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memories <memories>) agent = MAPPO(possible_agents=env.possible_agents, models=models, memory=memories, # only required during training cfg=cfg_agent, observation_spaces=env.observation_spaces, action_spaces=env.action_spaces, device=env.device, shared_observation_spaces=env.shared_observation_spaces) # [end-mappo-jax]
3,674
Python
32.715596
70
0.66957
Toni-SM/skrl/docs/source/snippets/categorical_model.py
# [start-definition-torch] class CategoricalModel(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) # [end-definition-torch] # [start-definition-jax] class CategoricalModel(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) CategoricalMixin.__init__(self, unnormalized_log_prob) # [end-definition-jax] # ============================================================================= # [start-mlp-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, CategoricalMixin # define the model class MLP(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.net = nn.Sequential(nn.Linear(self.num_observations, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # [end-mlp-sequential-torch] # [start-mlp-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, CategoricalMixin # define the model class MLP(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.fc1 = nn.Linear(self.num_observations, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def compute(self, inputs, role): x = self.fc1(inputs["states"]) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # [end-mlp-functional-torch] # [start-mlp-setup-jax] import flax.linen as nn from skrl.models.jax import Model, CategoricalMixin # define the model class MLP(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) CategoricalMixin.__init__(self, unnormalized_log_prob) def setup(self): self.fc1 = nn.Dense(64) self.fc2 = nn.Dense(32) self.fc3 = nn.Dense(self.num_actions) def __call__(self, inputs, role): x = self.fc1(inputs["states"]) x = nn.relu(x) x = self.fc2(x) x = nn.relu(x) x = self.fc3(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-setup-jax] # [start-mlp-compact-jax] import flax.linen as nn from skrl.models.jax import Model, CategoricalMixin # define the model class MLP(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) CategoricalMixin.__init__(self, unnormalized_log_prob) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.Dense(64)(inputs["states"]) x = nn.relu(x) x = nn.Dense(32)(x) x = nn.relu(x) x = nn.Dense(self.num_actions)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-compact-jax] # ============================================================================= # [start-cnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, CategoricalMixin # define the model class CNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.net = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 16), nn.Tanh(), nn.Linear(16, 64), nn.Tanh(), nn.Linear(64, 32), nn.Tanh(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) return self.net(inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2)), {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # [end-cnn-sequential-torch] # [start-cnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, CategoricalMixin # define the model class CNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.conv1 = nn.Conv2d(3, 32, kernel_size=8, stride=4) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 16) self.fc3 = nn.Linear(16, 64) self.fc4 = nn.Linear(64, 32) self.fc5 = nn.Linear(32, self.num_actions) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2) x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = torch.flatten(x, start_dim=1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.tanh(x) x = self.fc3(x) x = torch.tanh(x) x = self.fc4(x) x = torch.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # [end-cnn-functional-torch] # [start-cnn-setup-jax] import flax.linen as nn from skrl.models.jax import Model, CategoricalMixin # define the model class CNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) CategoricalMixin.__init__(self, unnormalized_log_prob) def setup(self): self.conv1 = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID") self.conv2 = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID") self.conv3 = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID") self.fc1 = nn.Dense(512) self.fc2 = nn.Dense(16) self.fc3 = nn.Dense(64) self.fc4 = nn.Dense(32) self.fc5 = nn.Dense(self.num_actions) def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = self.conv1(x) x = nn.relu(x) x = self.conv2(x) x = nn.relu(x) x = self.conv3(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = self.fc1(x) x = nn.relu(x) x = self.fc2(x) x = nn.tanh(x) x = self.fc3(x) x = nn.tanh(x) x = self.fc4(x) x = nn.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-setup-jax] # [start-cnn-compact-jax] import flax.linen as nn from skrl.models.jax import Model, CategoricalMixin # define the model class CNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) CategoricalMixin.__init__(self, unnormalized_log_prob) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID")(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = nn.Dense(512)(x) x = nn.relu(x) x = nn.Dense(16)(x) x = nn.tanh(x) x = nn.Dense(64)(x) x = nn.tanh(x) x = nn.Dense(32)(x) x = nn.tanh(x) x = nn.Dense(self.num_actions)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-compact-jax] # ============================================================================= # [start-rnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, CategoricalMixin # define the model class RNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-sequential-torch] # [start-rnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, CategoricalMixin # define the model class RNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-functional-torch] # ============================================================================= # [start-gru-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, CategoricalMixin # define the model class GRU(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-sequential-torch] # [start-gru-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, CategoricalMixin # define the model class GRU(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-functional-torch] # ============================================================================= # [start-lstm-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, CategoricalMixin # define the model class LSTM(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-sequential-torch] # [start-lstm-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, CategoricalMixin # define the model class LSTM(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-functional-torch]
36,351
Python
40.356086
146
0.572556
Toni-SM/skrl/docs/source/snippets/agents_basic_usage.py
# [torch-start-a2c] # import the agent and its default configuration from skrl.agents.torch.a2c import A2C, A2C_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = A2C_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = A2C(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-a2c] # [jax-start-a2c] # import the agent and its default configuration from skrl.agents.jax.a2c import A2C, A2C_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = A2C_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = A2C(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-a2c] # [torch-start-a2c-rnn] # import the agent and its default configuration from skrl.agents.torch.a2c import A2C_RNN as A2C, A2C_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = A2C_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = A2C(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-a2c-rnn] # ============================================================================= # [torch-start-amp] # import the agent and its default configuration from skrl.agents.torch.amp import AMP, AMP_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training models["discriminator"] = ... # only required during training # adjust some configuration if necessary cfg_agent = AMP_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) # (assuming defined memories for motion <motion_dataset> and <reply_buffer>) # (assuming defined methods to collect motion <collect_reference_motions> and <collect_observation>) agent = AMP(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device, amp_observation_space=env.amp_observation_space, motion_dataset=motion_dataset, reply_buffer=reply_buffer, collect_reference_motions=collect_reference_motions, collect_observation=collect_observation) # [torch-end-amp] # ============================================================================= # [torch-start-cem] # import the agent and its default configuration from skrl.agents.torch.cem import CEM, CEM_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... # adjust some configuration if necessary cfg_agent = CEM_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = CEM(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-cem] # [jax-start-cem] # import the agent and its default configuration from skrl.agents.jax.cem import CEM, CEM_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... # adjust some configuration if necessary cfg_agent = CEM_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = CEM(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-cem] # ============================================================================= # [torch-start-ddpg] # import the agent and its default configuration from skrl.agents.torch.ddpg import DDPG, DDPG_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic"] = ... # only required during training models["target_critic"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DDPG_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DDPG(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-ddpg] # [jax-start-ddpg] # import the agent and its default configuration from skrl.agents.jax.ddpg import DDPG, DDPG_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic"] = ... # only required during training models["target_critic"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DDPG_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DDPG(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-ddpg] # [torch-start-ddpg-rnn] # import the agent and its default configuration from skrl.agents.torch.ddpg import DDPG_RNN as DDPG, DDPG_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic"] = ... # only required during training models["target_critic"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DDPG_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DDPG(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-ddpg-rnn] # ============================================================================= # [torch-start-ddqn] # import the agent and its default configuration from skrl.agents.torch.dqn import DDQN, DDQN_DEFAULT_CONFIG # instantiate the agent's models models = {} models["q_network"] = ... models["target_q_network"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DDQN_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DDQN(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-ddqn] # [jax-start-ddqn] # import the agent and its default configuration from skrl.agents.jax.dqn import DDQN, DDQN_DEFAULT_CONFIG # instantiate the agent's models models = {} models["q_network"] = ... models["target_q_network"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DDQN_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DDQN(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-ddqn] # ============================================================================= # [torch-start-dqn] # import the agent and its default configuration from skrl.agents.torch.dqn import DQN, DQN_DEFAULT_CONFIG # instantiate the agent's models models = {} models["q_network"] = ... models["target_q_network"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DQN_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DQN(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-dqn] # [jax-start-dqn] # import the agent and its default configuration from skrl.agents.jax.dqn import DQN, DQN_DEFAULT_CONFIG # instantiate the agent's models models = {} models["q_network"] = ... models["target_q_network"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DQN_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DQN(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-dqn] # ============================================================================= # [torch-start-ppo] # import the agent and its default configuration from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = PPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = PPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-ppo] # [jax-start-ppo] # import the agent and its default configuration from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = PPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = PPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-ppo] # [torch-start-ppo-rnn] # import the agent and its default configuration from skrl.agents.torch.ppo import PPO_RNN as PPO, PPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = PPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = PPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-ppo-rnn] # ============================================================================= # [torch-start-q-learning] # import the agent and its default configuration from skrl.agents.torch.q_learning import Q_LEARNING, Q_LEARNING_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... # adjust some configuration if necessary cfg_agent = Q_LEARNING_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env>) agent = Q_LEARNING(models=models, memory=None, cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-q-learning] # ============================================================================= # [torch-start-rpo-with-rpo] class Policy(GaussianMixin, Model): ... def compute(self, inputs, role): # compute the mean actions using the neural network mean_actions = self.net(inputs["states"]) # perturb the mean actions by adding a randomized uniform sample rpo_alpha = inputs["alpha"] perturbation = torch.zeros_like(mean_actions).uniform_(-rpo_alpha, rpo_alpha) mean_actions += perturbation return mean_actions, self.log_std_parameter, {} # [torch-end-rpo-with-rpo] # [jax-start-rpo-with-rpo] class Policy(GaussianMixin, Model): ... def __call__(self, inputs, role): # compute the mean actions using the neural network mean_actions = ... log_std = ... # perturb the mean actions by adding a randomized uniform sample rpo_alpha = inputs["alpha"] perturbation = jax.random.uniform(inputs["key"], mean_actions.shape, minval=-rpo_alpha, maxval=rpo_alpha) mean_actions += perturbation return mean_actions, log_std, {} # [jax-end-rpo-with-rpo] # [torch-start-rpo-without-rpo] class Policy(GaussianMixin, Model): ... def compute(self, inputs, role): # compute the mean actions using the neural network mean_actions = self.net(inputs["states"]) # perturb the mean actions by adding a randomized uniform sample rpo_alpha = 0.5 perturbation = torch.zeros_like(mean_actions).uniform_(-rpo_alpha, rpo_alpha) mean_actions += perturbation return mean_actions, self.log_std_parameter, {} # [torch-end-rpo-without-rpo] # [jax-start-rpo-without-rpo] class Policy(GaussianMixin, Model): ... def __call__(self, inputs, role): # compute the mean actions using the neural network mean_actions = ... log_std = ... # perturb the mean actions by adding a randomized uniform sample rpo_alpha = 0.5 perturbation = jax.random.uniform(inputs["key"], mean_actions.shape, minval=-rpo_alpha, maxval=rpo_alpha) mean_actions += perturbation return mean_actions, log_std, {} # [jax-end-rpo-without-rpo] # [torch-start-rpo] # import the agent and its default configuration from skrl.agents.torch.rpo import RPO, RPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = RPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = RPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-rpo] # [jax-start-rpo] # import the agent and its default configuration from skrl.agents.jax.rpo import RPO, RPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = RPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = RPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-rpo] # [torch-start-rpo-rnn] # import the agent and its default configuration from skrl.agents.torch.rpo import RPO_RNN as RPO, RPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = RPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = RPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-rpo-rnn] # ============================================================================= # [torch-start-sac] # import the agent and its default configuration from skrl.agents.torch.sac import SAC, SAC_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = SAC_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = SAC(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-sac] # [jax-start-sac] # import the agent and its default configuration from skrl.agents.jax.sac import SAC, SAC_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = SAC_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = SAC(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-sac] # [torch-start-sac-rnn] # import the agent and its default configuration from skrl.agents.torch.sac import SAC_RNN as SAC, SAC_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = SAC_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = SAC(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-sac-rnn] # ============================================================================= # [torch-start-sarsa] # import the agent and its default configuration from skrl.agents.torch.sarsa import SARSA, SARSA_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... # adjust some configuration if necessary cfg_agent = SARSA_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env>) agent = SARSA(models=models, memory=None, cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-sarsa] # ============================================================================= # [torch-start-td3] # import the agent and its default configuration from skrl.agents.torch.td3 import TD3, TD3_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = TD3_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = TD3(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-td3] # [jax-start-td3] # import the agent and its default configuration from skrl.agents.jax.td3 import TD3, TD3_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = TD3_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = TD3(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-td3] # [torch-start-td3-rnn] # import the agent and its default configuration from skrl.agents.torch.td3 import TD3_RNN as TD3, TD3_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = TD3_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = TD3(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-td3-rnn] # ============================================================================= # [torch-start-trpo] # import the agent and its default configuration from skrl.agents.torch.trpo import TRPO, TRPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = TRPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = TRPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-trpo] # [torch-start-trpo-rnn] # import the agent and its default configuration from skrl.agents.torch.trpo import TRPO_RNN as TRPO, TRPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = TRPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = TRPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-trpo-rnn]
25,726
Python
30.840346
113
0.645378
Toni-SM/skrl/docs/source/snippets/memories.py
# [start-base-class-torch] from typing import Union, Tuple, List import torch from skrl.memories.torch import Memory class CustomMemory(Memory): def __init__(self, memory_size: int, num_envs: int = 1, device: Union[str, torch.device] = "cuda:0") -> None: """Custom memory :param memory_size: Maximum number of elements in the first dimension of each internal storage :type memory_size: int :param num_envs: Number of parallel environments (default: 1) :type num_envs: int, optional :param device: Device on which a torch tensor is or will be allocated (default: "cuda:0") :type device: str or torch.device, optional """ super().__init__(memory_size, num_envs, device) def sample(self, names: Tuple[str], batch_size: int, mini_batches: int = 1) -> List[List[torch.Tensor]]: """Sample a batch from memory :param names: Tensors names from which to obtain the samples :type names: tuple or list of strings :param batch_size: Number of element to sample :type batch_size: int :param mini_batches: Number of mini-batches to sample (default: 1) :type mini_batches: int, optional :return: Sampled data from tensors sorted according to their position in the list of names. The sampled tensors will have the following shape: (batch size, data size) :rtype: list of torch.Tensor list """ # ================================ # - sample a batch from memory. # It is possible to generate only the sampling indexes and call self.sample_by_index(...) # ================================ # [end-base-class-torch] # [start-base-class-jax] from typing import Optional, Union, Tuple, List import jaxlib import jax.numpy as jnp from skrl.memories.jax import Memory class CustomMemory(Memory): def __init__(self, memory_size: int, num_envs: int = 1, device: Optional[jaxlib.xla_extension.Device] = None) -> None: """Custom memory :param memory_size: Maximum number of elements in the first dimension of each internal storage :type memory_size: int :param num_envs: Number of parallel environments (default: 1) :type num_envs: int, optional :param device: Device on which an array is or will be allocated (default: None) :type device: jaxlib.xla_extension.Device, optional """ super().__init__(memory_size, num_envs, device) def sample(self, names: Tuple[str], batch_size: int, mini_batches: int = 1) -> List[List[jnp.ndarray]]: """Sample a batch from memory :param names: Tensors names from which to obtain the samples :type names: tuple or list of strings :param batch_size: Number of element to sample :type batch_size: int :param mini_batches: Number of mini-batches to sample (default: 1) :type mini_batches: int, optional :return: Sampled data from tensors sorted according to their position in the list of names. The sampled tensors will have the following shape: (batch size, data size) :rtype: list of jnp.ndarray list """ # ================================ # - sample a batch from memory. # It is possible to generate only the sampling indexes and call self.sample_by_index(...) # ================================ # [end-base-class-jax] # ============================================================================= # [start-random-torch] # import the memory class from skrl.memories.torch import RandomMemory # instantiate the memory (assumes there is a wrapped environment: env) memory = RandomMemory(memory_size=1000, num_envs=env.num_envs, device=env.device) # [end-random-torch] # [start-random-jax] # import the memory class from skrl.memories.jax import RandomMemory # instantiate the memory (assumes there is a wrapped environment: env) memory = RandomMemory(memory_size=1000, num_envs=env.num_envs, device=env.device) # [end-random-jax]
4,112
Python
38.171428
113
0.625486
Toni-SM/skrl/docs/source/snippets/data.py
# [start-tensorboard-configuration] DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } # [end-tensorboard-configuration] # [start-wandb-configuration] DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } # [end-wandb-configuration] # [start-checkpoint-configuration] DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } # [end-checkpoint-configuration] # [start-checkpoint-load-agent-torch] from skrl.agents.torch.ppo import PPO # Instantiate the agent agent = PPO(models=models, # models dict memory=memory, # memory instance, or None if not required cfg=agent_cfg, # configuration dict (preprocessors, learning rate schedulers, etc.) observation_space=env.observation_space, action_space=env.action_space, device=env.device) # Load the checkpoint agent.load("./runs/22-09-29_22-48-49-816281_DDPG/checkpoints/agent_1200.pt") # [end-checkpoint-load-agent-torch] # [start-checkpoint-load-agent-jax] from skrl.agents.jax.ppo import PPO # Instantiate the agent agent = PPO(models=models, # models dict memory=memory, # memory instance, or None if not required cfg=agent_cfg, # configuration dict (preprocessors, learning rate schedulers, etc.) observation_space=env.observation_space, action_space=env.action_space, device=env.device) # Load the checkpoint agent.load("./runs/22-09-29_22-48-49-816281_DDPG/checkpoints/agent_1200.pickle") # [end-checkpoint-load-agent-jax] # [start-checkpoint-load-model-torch] from skrl.models.torch import Model, DeterministicMixin # Define the model class Policy(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # Instantiate the model policy = Policy(env.observation_space, env.action_space, env.device, clip_actions=True) # Load the checkpoint policy.load("./runs/22-09-29_22-48-49-816281_DDPG/checkpoints/2500_policy.pt") # [end-checkpoint-load-model-torch] # [start-checkpoint-load-model-jax] from skrl.models.jax import Model, DeterministicMixin # Define the model class Policy(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.Dense(32)(inputs["states"]) x = nn.relu(x) x = nn.Dense(32)(x) x = nn.relu(x) x = nn.Dense(self.num_actions)(x) return x, {} # Instantiate the model policy = Policy(env.observation_space, env.action_space, env.device, clip_actions=True) # Load the checkpoint policy.load("./runs/22-09-29_22-48-49-816281_DDPG/checkpoints/2500_policy.pickle") # [end-checkpoint-load-model-jax] # [start-checkpoint-load-huggingface-torch] from skrl.agents.torch.ppo import PPO from skrl.utils.huggingface import download_model_from_huggingface # Instantiate the agent agent = PPO(models=models, # models dict memory=memory, # memory instance, or None if not required cfg=agent_cfg, # configuration dict (preprocessors, learning rate schedulers, etc.) observation_space=env.observation_space, action_space=env.action_space, device=env.device) # Load the checkpoint from Hugging Face Hub path = download_model_from_huggingface("skrl/OmniIsaacGymEnvs-Cartpole-PPO", filename="agent.pt") agent.load(path) # [end-checkpoint-load-huggingface-torch] # [start-checkpoint-load-huggingface-jax] from skrl.agents.jax.ppo import PPO from skrl.utils.huggingface import download_model_from_huggingface # Instantiate the agent agent = PPO(models=models, # models dict memory=memory, # memory instance, or None if not required cfg=agent_cfg, # configuration dict (preprocessors, learning rate schedulers, etc.) observation_space=env.observation_space, action_space=env.action_space, device=env.device) # Load the checkpoint from Hugging Face Hub path = download_model_from_huggingface("skrl/OmniIsaacGymEnvs-Cartpole-PPO", filename="agent.pickle") agent.load(path) # [end-checkpoint-load-huggingface-jax] # [start-checkpoint-migrate-agent-torch] from skrl.agents.torch.ppo import PPO # Instantiate the agent agent = PPO(models=models, # models dict memory=memory, # memory instance, or None if not required cfg=agent_cfg, # configuration dict (preprocessors, learning rate schedulers, etc.) observation_space=env.observation_space, action_space=env.action_space, device=env.device) # Migrate a rl_games checkpoint agent.migrate(path="./runs/Cartpole/nn/Cartpole.pth") # [end-checkpoint-migrate-agent-torch] # [start-checkpoint-migrate-model-torch] from skrl.models.torch import Model, DeterministicMixin # Define the model class Policy(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # Instantiate the model policy = Policy(env.observation_space, env.action_space, env.device, clip_actions=True) # Migrate a rl_games checkpoint (only the model) policy.migrate(path="./runs/Cartpole/nn/Cartpole.pth") # or migrate a stable-baselines3 checkpoint policy.migrate(path="./ddpg_pendulum.zip") # or migrate a checkpoint of any other library state_dict = torch.load("./external_model.pt") policy.migrate(state_dict=state_dict) # [end-checkpoint-migrate-model-torch] # [start-export-memory-torch] from skrl.memories.torch import RandomMemory # Instantiate a memory and enable its export memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device, export=True, export_format="pt", export_directory="./memories") # [end-export-memory-torch] # [start-export-memory-jax] from skrl.memories.jax import RandomMemory # Instantiate a memory and enable its export memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device, export=True, export_format="np", export_directory="./memories") # [end-export-memory-jax]
9,058
Python
35.091633
101
0.643851
Toni-SM/skrl/docs/source/snippets/isaacgym_utils.py
import math from isaacgym import gymapi from skrl.utils import isaacgym_utils # create a web viewer instance web_viewer = isaacgym_utils.WebViewer() # configure and create simulation sim_params = gymapi.SimParams() sim_params.up_axis = gymapi.UP_AXIS_Z sim_params.gravity = gymapi.Vec3(0.0, 0.0, -9.8) sim_params.physx.solver_type = 1 sim_params.physx.num_position_iterations = 4 sim_params.physx.num_velocity_iterations = 1 sim_params.physx.use_gpu = True sim_params.use_gpu_pipeline = True gym = gymapi.acquire_gym() sim = gym.create_sim(compute_device=0, graphics_device=0, type=gymapi.SIM_PHYSX, params=sim_params) # setup num_envs and env's grid num_envs = 1 spacing = 2.0 env_lower = gymapi.Vec3(-spacing, -spacing, 0.0) env_upper = gymapi.Vec3(spacing, 0.0, spacing) # add ground plane plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) gym.add_ground(sim, plane_params) envs = [] cameras = [] for i in range(num_envs): # create env env = gym.create_env(sim, env_lower, env_upper, int(math.sqrt(num_envs))) # add sphere pose = gymapi.Transform() pose.p, pose.r = gymapi.Vec3(0.0, 0.0, 1.0), gymapi.Quat(0.0, 0.0, 0.0, 1.0) gym.create_actor(env, gym.create_sphere(sim, 0.2, None), pose, "sphere", i, 0) # add camera cam_props = gymapi.CameraProperties() cam_props.width, cam_props.height = 300, 300 cam_handle = gym.create_camera_sensor(env, cam_props) gym.set_camera_location(cam_handle, env, gymapi.Vec3(1, 1, 1), gymapi.Vec3(0, 0, 0)) envs.append(env) cameras.append(cam_handle) # setup web viewer web_viewer.setup(gym, sim, envs, cameras) gym.prepare_sim(sim) for i in range(100000): gym.simulate(sim) # render the scene web_viewer.render(fetch_results=True, step_graphics=True, render_all_camera_sensors=True, wait_for_page_load=True)
1,927
Python
26.942029
99
0.677218
Toni-SM/skrl/docs/source/snippets/deterministic_model.py
# [start-definition-torch] class DeterministicModel(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) # [end-definition-torch] # [start-definition-jax] class DeterministicModel(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) # [end-definition-jax] # ============================================================================= # [start-mlp-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, DeterministicMixin # define the model class MLP(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations + self.num_actions, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 1)) def compute(self, inputs, role): return self.net(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1)), {} # instantiate the model (assumes there is a wrapped environment: env) critic = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # [end-mlp-sequential-torch] # [start-mlp-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, DeterministicMixin # define the model class MLP(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.fc1 = nn.Linear(self.num_observations + self.num_actions, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) def compute(self, inputs, role): x = self.fc1(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1)) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.fc3(x), {} # instantiate the model (assumes there is a wrapped environment: env) critic = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # [end-mlp-functional-torch] # [start-mlp-setup-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, DeterministicMixin # define the model class MLP(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def setup(self): self.fc1 = nn.Dense(64) self.fc2 = nn.Dense(32) self.fc3 = nn.Dense(1) def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = self.fc1(x) x = nn.relu(x) x = self.fc2(x) x = nn.relu(x) x = self.fc3(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) critic = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # initialize model's state dict critic.init_state_dict("critic") # [end-mlp-setup-jax] # [start-mlp-compact-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, DeterministicMixin # define the model class MLP(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = nn.relu(nn.Dense(64)(x)) x = nn.relu(nn.Dense(32)(x)) x = nn.Dense(1)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) critic = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # initialize model's state dict critic.init_state_dict("critic") # [end-mlp-compact-jax] # ============================================================================= # [start-cnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, DeterministicMixin # define the model class CNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.features_extractor = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 16), nn.Tanh()) self.net = nn.Sequential(nn.Linear(16 + self.num_actions, 64), nn.Tanh(), nn.Linear(64, 32), nn.Tanh(), nn.Linear(32, 1)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = self.features_extractor(inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2)) return self.net(torch.cat([x, inputs["taken_actions"]], dim=1)), {} # instantiate the model (assumes there is a wrapped environment: env) critic = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # [end-cnn-sequential-torch] # [start-cnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, DeterministicMixin # define the model class CNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.conv1 = nn.Conv2d(3, 32, kernel_size=8, stride=4) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 16) self.fc3 = nn.Linear(16 + self.num_actions, 64) self.fc4 = nn.Linear(64, 32) self.fc5 = nn.Linear(32, 1) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2) x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = torch.flatten(x, start_dim=1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.tanh(x) x = self.fc3(torch.cat([x, inputs["taken_actions"]], dim=1)) x = torch.tanh(x) x = self.fc4(x) x = torch.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) critic = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # [end-cnn-functional-torch] # [start-cnn-setup-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, DeterministicMixin # define the model class CNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def setup(self): self.conv1 = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID") self.conv2 = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID") self.conv3 = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID") self.fc1 = nn.Dense(512) self.fc2 = nn.Dense(16) self.fc3 = nn.Dense(64) self.fc4 = nn.Dense(32) self.fc5 = nn.Dense(1) def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = self.conv1(x) x = nn.relu(x) x = self.conv2(x) x = nn.relu(x) x = self.conv3(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = self.fc1(x) x = nn.relu(x) x = self.fc2(x) x = nn.tanh(x) x = jnp.concatenate([x, inputs["taken_actions"]], axis=-1) x = self.fc3(x) x = nn.tanh(x) x = self.fc4(x) x = nn.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) critic = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # initialize model's state dict critic.init_state_dict("critic") # [end-cnn-setup-jax] # [start-cnn-compact-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, DeterministicMixin # define the model class CNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID")(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = nn.Dense(512)(x) x = nn.relu(x) x = nn.Dense(16)(x) x = nn.tanh(x) x = jnp.concatenate([x, inputs["taken_actions"]], axis=-1) x = nn.Dense(64)(x) x = nn.tanh(x) x = nn.Dense(32)(x) x = nn.tanh(x) x = nn.Dense(1)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) critic = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # initialize model's state dict critic.init_state_dict("critic") # [end-cnn-compact-jax] # ============================================================================= # [start-rnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, DeterministicMixin # define the model class RNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size + self.num_actions, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 1)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) critic = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-sequential-torch] # [start-rnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, DeterministicMixin # define the model class RNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size + self.num_actions, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.fc3(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) critic = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-functional-torch] # ============================================================================= # [start-gru-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, DeterministicMixin # define the model class GRU(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size + self.num_actions, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 1)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) critic = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-sequential-torch] # [start-gru-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, DeterministicMixin # define the model class GRU(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size + self.num_actions, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.fc3(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) critic = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-functional-torch] # ============================================================================= # [start-lstm-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, DeterministicMixin # define the model class LSTM(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size + self.num_actions, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 1)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) critic = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-sequential-torch] # [start-lstm-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, DeterministicMixin # define the model class LSTM(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size + self.num_actions, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.fc3(x), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) critic = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-functional-torch]
36,210
Python
40.669735
142
0.583458
Toni-SM/skrl/docs/source/snippets/loaders.py
# [start-omniverse-isaac-gym-envs-parameters-torch] # import the environment loader from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(task_name="Cartpole") # [end-omniverse-isaac-gym-envs-parameters-torch] # [start-omniverse-isaac-gym-envs-parameters-jax] # import the environment loader from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(task_name="Cartpole") # [end-omniverse-isaac-gym-envs-parameters-jax] # [start-omniverse-isaac-gym-envs-cli-torch] # import the environment loader from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env() # [end-omniverse-isaac-gym-envs-cli-torch] # [start-omniverse-isaac-gym-envs-cli-jax] # import the environment loader from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env() # [end-omniverse-isaac-gym-envs-cli-jax] # [start-omniverse-isaac-gym-envs-multi-threaded-parameters-torch] import threading # import the environment loader from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(task_name="Cartpole", multi_threaded=True, timeout=30) # ... # start training in a separate thread threading.Thread(target=trainer.train).start() # run the simulation in the main thread env.run() # [end-omniverse-isaac-gym-envs-multi-threaded-parameters-torch] # [start-omniverse-isaac-gym-envs-multi-threaded-parameters-jax] import threading # import the environment loader from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(task_name="Cartpole", multi_threaded=True, timeout=30) # ... # start training in a separate thread threading.Thread(target=trainer.train).start() # run the simulation in the main thread env.run() # [end-omniverse-isaac-gym-envs-multi-threaded-parameters-jax] # [start-omniverse-isaac-gym-envs-multi-threaded-cli-torch] import threading # import the environment loader from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(multi_threaded=True, timeout=30) # ... # start training in a separate thread threading.Thread(target=trainer.train).start() # run the simulation in the main thread env.run() # [end-omniverse-isaac-gym-envs-multi-threaded-cli-torch] # [start-omniverse-isaac-gym-envs-multi-threaded-cli-jax] import threading # import the environment loader from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(multi_threaded=True, timeout=30) # ... # start training in a separate thread threading.Thread(target=trainer.train).start() # run the simulation in the main thread env.run() # [end-omniverse-isaac-gym-envs-multi-threaded-cli-jax] # ============================================================================= # [start-isaac-orbit-envs-parameters-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaac_orbit_env # load environment env = load_isaac_orbit_env(task_name="Isaac-Cartpole-v0") # [end-isaac-orbit-envs-parameters-torch] # [start-isaac-orbit-envs-parameters-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaac_orbit_env # load environment env = load_isaac_orbit_env(task_name="Isaac-Cartpole-v0") # [end-isaac-orbit-envs-parameters-jax] # [start-isaac-orbit-envs-cli-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaac_orbit_env # load environment env = load_isaac_orbit_env() # [end-isaac-orbit-envs-cli-torch] # [start-isaac-orbit-envs-cli-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaac_orbit_env # load environment env = load_isaac_orbit_env() # [end-isaac-orbit-envs-cli-jax] # ============================================================================= # [start-isaac-gym-envs-preview-4-api] import isaacgymenvs env = isaacgymenvs.make(seed=0, task="Cartpole", num_envs=2000, sim_device="cuda:0", rl_device="cuda:0", graphics_device_id=0, headless=False) # [end-isaac-gym-envs-preview-4-api] # [start-isaac-gym-envs-preview-4-parameters-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview4 # load environment env = load_isaacgym_env_preview4(task_name="Cartpole") # [end-isaac-gym-envs-preview-4-parameters-torch] # [start-isaac-gym-envs-preview-4-parameters-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview4 # load environment env = load_isaacgym_env_preview4(task_name="Cartpole") # [end-isaac-gym-envs-preview-4-parameters-jax] # [start-isaac-gym-envs-preview-4-cli-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview4 # load environment env = load_isaacgym_env_preview4() # [end-isaac-gym-envs-preview-4-cli-torch] # [start-isaac-gym-envs-preview-4-cli-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview4 # load environment env = load_isaacgym_env_preview4() # [end-isaac-gym-envs-preview-4-cli-jax] # [start-isaac-gym-envs-preview-3-parameters-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview3 # load environment env = load_isaacgym_env_preview3(task_name="Cartpole") # [end-isaac-gym-envs-preview-3-parameters-torch] # [start-isaac-gym-envs-preview-3-parameters-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview3 # load environment env = load_isaacgym_env_preview3(task_name="Cartpole") # [end-isaac-gym-envs-preview-3-parameters-jax] # [start-isaac-gym-envs-preview-3-cli-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview3 # load environment env = load_isaacgym_env_preview3() # [end-isaac-gym-envs-preview-3-cli-torch] # [start-isaac-gym-envs-preview-3-cli-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview3 # load environment env = load_isaacgym_env_preview3() # [end-isaac-gym-envs-preview-3-cli-jax] # [start-isaac-gym-envs-preview-2-parameters-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview2 # load environment env = load_isaacgym_env_preview2(task_name="Cartpole") # [end-isaac-gym-envs-preview-2-parameters-torch] # [start-isaac-gym-envs-preview-2-parameters-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview2 # load environment env = load_isaacgym_env_preview2(task_name="Cartpole") # [end-isaac-gym-envs-preview-2-parameters-jax] # [start-isaac-gym-envs-preview-2-cli-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview2 # load environment env = load_isaacgym_env_preview2() # [end-isaac-gym-envs-preview-2-cli-torch] # [start-isaac-gym-envs-preview-2-cli-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview2 # load environment env = load_isaacgym_env_preview2() # [end-isaac-gym-envs-preview-2-cli-jax]
7,458
Python
26.625926
88
0.739877
Toni-SM/skrl/docs/source/snippets/multicategorical_model.py
# [start-definition-torch] class MultiCategoricalModel(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum"): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) # [end-definition-torch] # [start-definition-jax] class MultiCategoricalModel(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) # [end-definition-jax] # ============================================================================= # [start-mlp-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultiCategoricalMixin # define the model class MLP(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum"): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.net = nn.Sequential(nn.Linear(self.num_observations, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # [end-mlp-sequential-torch] # [start-mlp-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultiCategoricalMixin # define the model class MLP(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum"): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.fc1 = nn.Linear(self.num_observations, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def compute(self, inputs, role): x = self.fc1(inputs["states"]) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # [end-mlp-functional-torch] # [start-mlp-setup-jax] import flax.linen as nn from skrl.models.jax import Model, MultiCategoricalMixin # define the model class MLP(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) def setup(self): self.fc1 = nn.Dense(64) self.fc2 = nn.Dense(32) self.fc3 = nn.Dense(self.num_actions) def __call__(self, inputs, role): x = self.fc1(inputs["states"]) x = nn.relu(x) x = self.fc2(x) x = nn.relu(x) x = self.fc3(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-setup-jax] # [start-mlp-compact-jax] import flax.linen as nn from skrl.models.jax import Model, MultiCategoricalMixin # define the model class MLP(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.Dense(64)(inputs["states"]) x = nn.relu(x) x = nn.Dense(32)(x) x = nn.relu(x) x = nn.Dense(self.num_actions)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-compact-jax] # ============================================================================= # [start-cnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultiCategoricalMixin # define the model class CNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum"): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.net = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 16), nn.Tanh(), nn.Linear(16, 64), nn.Tanh(), nn.Linear(64, 32), nn.Tanh(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) return self.net(inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2)), {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # [end-cnn-sequential-torch] # [start-cnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultiCategoricalMixin # define the model class CNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum"): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.conv1 = nn.Conv2d(3, 32, kernel_size=8, stride=4) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 16) self.fc3 = nn.Linear(16, 64) self.fc4 = nn.Linear(64, 32) self.fc5 = nn.Linear(32, self.num_actions) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2) x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = torch.flatten(x, start_dim=1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.tanh(x) x = self.fc3(x) x = torch.tanh(x) x = self.fc4(x) x = torch.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # [end-cnn-functional-torch] # [start-cnn-setup-jax] import flax.linen as nn from skrl.models.jax import Model, MultiCategoricalMixin # define the model class CNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) def setup(self): self.conv1 = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID") self.conv2 = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID") self.conv3 = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID") self.fc1 = nn.Dense(512) self.fc2 = nn.Dense(16) self.fc3 = nn.Dense(64) self.fc4 = nn.Dense(32) self.fc5 = nn.Dense(self.num_actions) def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = self.conv1(x) x = nn.relu(x) x = self.conv2(x) x = nn.relu(x) x = self.conv3(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = self.fc1(x) x = nn.relu(x) x = self.fc2(x) x = nn.tanh(x) x = self.fc3(x) x = nn.tanh(x) x = self.fc4(x) x = nn.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-setup-jax] # [start-cnn-compact-jax] import flax.linen as nn from skrl.models.jax import Model, MultiCategoricalMixin # define the model class CNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID")(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = nn.Dense(512)(x) x = nn.relu(x) x = nn.Dense(16)(x) x = nn.tanh(x) x = nn.Dense(64)(x) x = nn.tanh(x) x = nn.Dense(32)(x) x = nn.tanh(x) x = nn.Dense(self.num_actions)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-compact-jax] # ============================================================================= # [start-rnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultiCategoricalMixin # define the model class RNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-sequential-torch] # [start-rnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultiCategoricalMixin # define the model class RNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-functional-torch] # ============================================================================= # [start-gru-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultiCategoricalMixin # define the model class GRU(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-sequential-torch] # [start-gru-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultiCategoricalMixin # define the model class GRU(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-functional-torch] # ============================================================================= # [start-lstm-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultiCategoricalMixin # define the model class LSTM(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-sequential-torch] # [start-lstm-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultiCategoricalMixin # define the model class LSTM(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-functional-torch]
37,461
Python
40.950728
146
0.575452
Toni-SM/skrl/docs/source/snippets/agent.py
# [start-agent-base-class-torch] from typing import Union, Tuple, Dict, Any, Optional import gym, gymnasium import copy import torch from skrl.memories.torch import Memory from skrl.models.torch import Model from skrl.agents.torch import Agent CUSTOM_DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } class CUSTOM(Agent): def __init__(self, models: Dict[str, Model], memory: Optional[Union[Memory, Tuple[Memory]]] = None, observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None, action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None, device: Optional[Union[str, torch.device]] = None, cfg: Optional[dict] = None) -> None: """Custom agent :param models: Models used by the agent :type models: dictionary of skrl.models.torch.Model :param memory: Memory to storage the transitions. If it is a tuple, the first element will be used for training and for the rest only the environment transitions will be added :type memory: skrl.memory.torch.Memory, list of skrl.memory.torch.Memory or None :param observation_space: Observation/state space or shape (default: None) :type observation_space: int, tuple or list of integers, gym.Space, gymnasium.Space or None, optional :param action_space: Action space or shape (default: None) :type action_space: int, tuple or list of integers, gym.Space, gymnasium.Space or None, optional :param device: Device on which a torch tensor is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or torch.device, optional :param cfg: Configuration dictionary :type cfg: dict """ _cfg = copy.deepcopy(CUSTOM_DEFAULT_CONFIG) _cfg.update(cfg if cfg is not None else {}) super().__init__(models=models, memory=memory, observation_space=observation_space, action_space=action_space, device=device, cfg=_cfg) # ======================================================================= # - get and process models from `self.models` # - populate `self.checkpoint_modules` dictionary for storing checkpoints # - parse configurations from `self.cfg` # - setup optimizers and learning rate scheduler # - set up preprocessors # ======================================================================= def init(self, trainer_cfg: Optional[Dict[str, Any]] = None) -> None: """Initialize the agent """ super().init(trainer_cfg=trainer_cfg) self.set_mode("eval") # ================================================================= # - create tensors in memory if required # - # create temporary variables needed for storage and computation # ================================================================= def act(self, states: torch.Tensor, timestep: int, timesteps: int) -> torch.Tensor: """Process the environment's states to make a decision (actions) using the main policy :param states: Environment's states :type states: torch.Tensor :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int :return: Actions :rtype: torch.Tensor """ # ====================================== # - sample random actions if required or # sample and return agent's actions # ====================================== def record_transition(self, states: torch.Tensor, actions: torch.Tensor, rewards: torch.Tensor, next_states: torch.Tensor, terminated: torch.Tensor, truncated: torch.Tensor, infos: Any, timestep: int, timesteps: int) -> None: """Record an environment transition in memory :param states: Observations/states of the environment used to make the decision :type states: torch.Tensor :param actions: Actions taken by the agent :type actions: torch.Tensor :param rewards: Instant rewards achieved by the current actions :type rewards: torch.Tensor :param next_states: Next observations/states of the environment :type next_states: torch.Tensor :param terminated: Signals to indicate that episodes have terminated :type terminated: torch.Tensor :param truncated: Signals to indicate that episodes have been truncated :type truncated: torch.Tensor :param infos: Additional information about the environment :type infos: Any type supported by the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps) # ======================================== # - record agent's specific data in memory # ======================================== def pre_interaction(self, timestep: int, timesteps: int) -> None: """Callback called before the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== def post_interaction(self, timestep: int, timesteps: int) -> None: """Callback called after the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== # call parent's method for checkpointing and TensorBoard writing super().post_interaction(timestep, timesteps) def _update(self, timestep: int, timesteps: int) -> None: """Algorithm's main update step :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # =================================================== # - implement algorithm's update step # - record tracking data using `self.track_data(...)` # =================================================== # [end-agent-base-class-torch] # [start-agent-base-class-jax] from typing import Union, Tuple, Dict, Any, Optional import gym, gymnasium import copy import jaxlib import jax.numpy as jnp from skrl.memories.jax import Memory from skrl.models.jax import Model from skrl.resources.optimizers.jax import Adam from skrl.agents.jax import Agent CUSTOM_DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } class CUSTOM(Agent): def __init__(self, models: Dict[str, Model], memory: Optional[Union[Memory, Tuple[Memory]]] = None, observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None, action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None, device: Optional[Union[str, jaxlib.xla_extension.Device]] = None, cfg: Optional[dict] = None) -> None: """Custom agent :param models: Models used by the agent :type models: dictionary of skrl.models.jax.Model :param memory: Memory to storage the transitions. If it is a tuple, the first element will be used for training and for the rest only the environment transitions will be added :type memory: skrl.memory.jax.Memory, list of skrl.memory.jax.Memory or None :param observation_space: Observation/state space or shape (default: None) :type observation_space: int, tuple or list of integers, gym.Space, gymnasium.Space or None, optional :param action_space: Action space or shape (default: None) :type action_space: int, tuple or list of integers, gym.Space, gymnasium.Space or None, optional :param device: Device on which a jax array is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or jaxlib.xla_extension.Device, optional :param cfg: Configuration dictionary :type cfg: dict """ _cfg = CUSTOM_DEFAULT_CONFIG _cfg.update(cfg if cfg is not None else {}) super().__init__(models=models, memory=memory, observation_space=observation_space, action_space=action_space, device=device, cfg=_cfg) # ======================================================================= # - get and process models from `self.models` # - populate `self.checkpoint_modules` dictionary for storing checkpoints # - parse configurations from `self.cfg` # - setup optimizers and learning rate scheduler # - set up preprocessors # ======================================================================= def init(self, trainer_cfg: Optional[Dict[str, Any]] = None) -> None: """Initialize the agent """ super().init(trainer_cfg=trainer_cfg) self.set_mode("eval") # ================================================================= # - create tensors in memory if required # - # create temporary variables needed for storage and computation # - set up models for just-in-time compilation with XLA # ================================================================= def act(self, states: jnp.ndarray, timestep: int, timesteps: int) -> jnp.ndarray: """Process the environment's states to make a decision (actions) using the main policy :param states: Environment's states :type states: jnp.ndarray :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int :return: Actions :rtype: jnp.ndarray """ # ====================================== # - sample random actions if required or # sample and return agent's actions # ====================================== def record_transition(self, states: jnp.ndarray, actions: jnp.ndarray, rewards: jnp.ndarray, next_states: jnp.ndarray, terminated: jnp.ndarray, truncated: jnp.ndarray, infos: Any, timestep: int, timesteps: int) -> None: """Record an environment transition in memory :param states: Observations/states of the environment used to make the decision :type states: jnp.ndarray :param actions: Actions taken by the agent :type actions: jnp.ndarray :param rewards: Instant rewards achieved by the current actions :type rewards: jnp.ndarray :param next_states: Next observations/states of the environment :type next_states: jnp.ndarray :param terminated: Signals to indicate that episodes have terminated :type terminated: jnp.ndarray :param truncated: Signals to indicate that episodes have been truncated :type truncated: jnp.ndarray :param infos: Additional information about the environment :type infos: Any type supported by the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps) # ======================================== # - record agent's specific data in memory # ======================================== def pre_interaction(self, timestep: int, timesteps: int) -> None: """Callback called before the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== def post_interaction(self, timestep: int, timesteps: int) -> None: """Callback called after the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== # call parent's method for checkpointing and TensorBoard writing super().post_interaction(timestep, timesteps) def _update(self, timestep: int, timesteps: int) -> None: """Algorithm's main update step :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # =================================================== # - implement algorithm's update step # - record tracking data using `self.track_data(...)` # =================================================== # [end-agent-base-class-jax]
15,562
Python
42.472067
123
0.543182
Toni-SM/skrl/docs/source/snippets/tabular_model.py
# [start-definition-torch] class TabularModel(TabularMixin, Model): def __init__(self, observation_space, action_space, device=None, num_envs=1): Model.__init__(self, observation_space, action_space, device) TabularMixin.__init__(self, num_envs) # [end-definition-torch] # ============================================================================= # [start-epsilon-greedy-torch] import torch from skrl.models.torch import Model, TabularMixin # define the model class EpilonGreedyPolicy(TabularMixin, Model): def __init__(self, observation_space, action_space, device, num_envs=1, epsilon=0.1): Model.__init__(self, observation_space, action_space, device) TabularMixin.__init__(self, num_envs) self.epsilon = epsilon self.q_table = torch.ones((num_envs, self.num_observations, self.num_actions), dtype=torch.float32) def compute(self, inputs, role): states = inputs["states"] actions = torch.argmax(self.q_table[torch.arange(self.num_envs).view(-1, 1), states], dim=-1, keepdim=True).view(-1,1) indexes = (torch.rand(states.shape[0], device=self.device) < self.epsilon).nonzero().view(-1) if indexes.numel(): actions[indexes] = torch.randint(self.num_actions, (indexes.numel(), 1), device=self.device) return actions, {} # instantiate the model (assumes there is a wrapped environment: env) policy = EpilonGreedyPolicy(observation_space=env.observation_space, action_space=env.action_space, device=env.device, num_envs=env.num_envs, epsilon=0.15) # [end-epsilon-greedy-torch]
1,744
Python
39.581394
107
0.601491
Toni-SM/skrl/docs/source/snippets/multi_agent.py
# [start-multi-agent-base-class-torch] from typing import Union, Dict, Any, Optional, Sequence, Mapping import gym, gymnasium import copy import torch from skrl.memories.torch import Memory from skrl.models.torch import Model from skrl.multi_agents.torch import MultiAgent CUSTOM_DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } class CUSTOM(MultiAgent): def __init__(self, possible_agents: Sequence[str], models: Dict[str, Model], memories: Optional[Mapping[str, Memory]] = None, observation_spaces: Optional[Union[Mapping[str, int], Mapping[str, gym.Space], Mapping[str, gymnasium.Space]]] = None, action_spaces: Optional[Union[Mapping[str, int], Mapping[str, gym.Space], Mapping[str, gymnasium.Space]]] = None, device: Optional[Union[str, torch.device]] = None, cfg: Optional[dict] = None) -> None: """Custom multi-agent :param possible_agents: Name of all possible agents the environment could generate :type possible_agents: list of str :param models: Models used by the agents. External keys are environment agents' names. Internal keys are the models required by the algorithm :type models: nested dictionary of skrl.models.torch.Model :param memories: Memories to storage the transitions. :type memories: dictionary of skrl.memory.torch.Memory, optional :param observation_spaces: Observation/state spaces or shapes (default: ``None``) :type observation_spaces: dictionary of int, sequence of int, gym.Space or gymnasium.Space, optional :param action_spaces: Action spaces or shapes (default: ``None``) :type action_spaces: dictionary of int, sequence of int, gym.Space or gymnasium.Space, optional :param device: Device on which a torch tensor is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or torch.device, optional :param cfg: Configuration dictionary :type cfg: dict """ _cfg = copy.deepcopy(CUSTOM_DEFAULT_CONFIG) _cfg.update(cfg if cfg is not None else {}) super().__init__(possible_agents=possible_agents, models=models, memories=memories, observation_spaces=observation_spaces, action_spaces=action_spaces, device=device, cfg=_cfg) # ======================================================================= # - get and process models from `self.models` # - populate `self.checkpoint_modules` dictionary for storing checkpoints # - parse configurations from `self.cfg` # - setup optimizers and learning rate scheduler # - set up preprocessors # ======================================================================= def init(self, trainer_cfg: Optional[Dict[str, Any]] = None) -> None: """Initialize the agent """ super().init(trainer_cfg=trainer_cfg) self.set_mode("eval") # ================================================================= # - create tensors in memory if required # - # create temporary variables needed for storage and computation # ================================================================= def act(self, states: Mapping[str, torch.Tensor], timestep: int, timesteps: int) -> torch.Tensor: """Process the environment's states to make a decision (actions) using the main policies :param states: Environment's states :type states: dictionary of torch.Tensor :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int :return: Actions :rtype: torch.Tensor """ # ====================================== # - sample random actions if required or # sample and return agent's actions # ====================================== def record_transition(self, states: Mapping[str, torch.Tensor], actions: Mapping[str, torch.Tensor], rewards: Mapping[str, torch.Tensor], next_states: Mapping[str, torch.Tensor], terminated: Mapping[str, torch.Tensor], truncated: Mapping[str, torch.Tensor], infos: Mapping[str, Any], timestep: int, timesteps: int) -> None: """Record an environment transition in memory :param states: Observations/states of the environment used to make the decision :type states: dictionary of torch.Tensor :param actions: Actions taken by the agent :type actions: dictionary of torch.Tensor :param rewards: Instant rewards achieved by the current actions :type rewards: dictionary of torch.Tensor :param next_states: Next observations/states of the environment :type next_states: dictionary of torch.Tensor :param terminated: Signals to indicate that episodes have terminated :type terminated: dictionary of torch.Tensor :param truncated: Signals to indicate that episodes have been truncated :type truncated: dictionary of torch.Tensor :param infos: Additional information about the environment :type infos: dictionary of any supported type :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps) # ======================================== # - record agent's specific data in memory # ======================================== def pre_interaction(self, timestep: int, timesteps: int) -> None: """Callback called before the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== def post_interaction(self, timestep: int, timesteps: int) -> None: """Callback called after the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== # call parent's method for checkpointing and TensorBoard writing super().post_interaction(timestep, timesteps) def _update(self, timestep: int, timesteps: int) -> None: """Algorithm's main update step :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # =================================================== # - implement algorithm's update step # - record tracking data using `self.track_data(...)` # =================================================== # [end-multi-agent-base-class-torch] # [start-multi-agent-base-class-jax] from typing import Union, Dict, Any, Optional, Sequence, Mapping import gym, gymnasium import copy import jaxlib import jax.numpy as jnp from skrl.memories.jax import Memory from skrl.models.jax import Model from skrl.resources.optimizers.jax import Adam from skrl.multi_agents.jax import MultiAgent CUSTOM_DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } class CUSTOM(MultiAgent): def __init__(self, possible_agents: Sequence[str], models: Dict[str, Model], memories: Optional[Mapping[str, Memory]] = None, observation_spaces: Optional[Union[Mapping[str, int], Mapping[str, gym.Space], Mapping[str, gymnasium.Space]]] = None, action_spaces: Optional[Union[Mapping[str, int], Mapping[str, gym.Space], Mapping[str, gymnasium.Space]]] = None, device: Optional[Union[str, jaxlib.xla_extension.Device]] = None, cfg: Optional[dict] = None) -> None: """Custom multi-agent :param possible_agents: Name of all possible agents the environment could generate :type possible_agents: list of str :param models: Models used by the agents. External keys are environment agents' names. Internal keys are the models required by the algorithm :type models: nested dictionary of skrl.models.torch.Model :param memories: Memories to storage the transitions. :type memories: dictionary of skrl.memory.torch.Memory, optional :param observation_spaces: Observation/state spaces or shapes (default: ``None``) :type observation_spaces: dictionary of int, sequence of int, gym.Space or gymnasium.Space, optional :param action_spaces: Action spaces or shapes (default: ``None``) :type action_spaces: dictionary of int, sequence of int, gym.Space or gymnasium.Space, optional :param device: Device on which a jax array is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or jaxlib.xla_extension.Device, optional :param cfg: Configuration dictionary :type cfg: dict """ _cfg = copy.deepcopy(CUSTOM_DEFAULT_CONFIG) _cfg.update(cfg if cfg is not None else {}) super().__init__(possible_agents=possible_agents, models=models, memories=memories, observation_spaces=observation_spaces, action_spaces=action_spaces, device=device, cfg=_cfg) # ======================================================================= # - get and process models from `self.models` # - populate `self.checkpoint_modules` dictionary for storing checkpoints # - parse configurations from `self.cfg` # - setup optimizers and learning rate scheduler # - set up preprocessors # ======================================================================= def init(self, trainer_cfg: Optional[Dict[str, Any]] = None) -> None: """Initialize the agent """ super().init(trainer_cfg=trainer_cfg) self.set_mode("eval") # ================================================================= # - create tensors in memory if required # - # create temporary variables needed for storage and computation # ================================================================= def act(self, states: Mapping[str, jnp.ndarray], timestep: int, timesteps: int) -> jnp.ndarray: """Process the environment's states to make a decision (actions) using the main policies :param states: Environment's states :type states: dictionary of jnp.ndarray :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int :return: Actions :rtype: jnp.ndarray """ # ====================================== # - sample random actions if required or # sample and return agent's actions # ====================================== def record_transition(self, states: Mapping[str, jnp.ndarray], actions: Mapping[str, jnp.ndarray], rewards: Mapping[str, jnp.ndarray], next_states: Mapping[str, jnp.ndarray], terminated: Mapping[str, jnp.ndarray], truncated: Mapping[str, jnp.ndarray], infos: Mapping[str, Any], timestep: int, timesteps: int) -> None: """Record an environment transition in memory :param states: Observations/states of the environment used to make the decision :type states: dictionary of jnp.ndarray :param actions: Actions taken by the agent :type actions: dictionary of jnp.ndarray :param rewards: Instant rewards achieved by the current actions :type rewards: dictionary of jnp.ndarray :param next_states: Next observations/states of the environment :type next_states: dictionary of jnp.ndarray :param terminated: Signals to indicate that episodes have terminated :type terminated: dictionary of jnp.ndarray :param truncated: Signals to indicate that episodes have been truncated :type truncated: dictionary of jnp.ndarray :param infos: Additional information about the environment :type infos: dictionary of any type supported by the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps) # ======================================== # - record agent's specific data in memory # ======================================== def pre_interaction(self, timestep: int, timesteps: int) -> None: """Callback called before the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== def post_interaction(self, timestep: int, timesteps: int) -> None: """Callback called after the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== # call parent's method for checkpointing and TensorBoard writing super().post_interaction(timestep, timesteps) def _update(self, timestep: int, timesteps: int) -> None: """Algorithm's main update step :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # =================================================== # - implement algorithm's update step # - record tracking data using `self.track_data(...)` # =================================================== # [end-multi-agent-base-class-jax]
16,574
Python
44.661157
135
0.556715
Toni-SM/skrl/docs/source/snippets/wrapping.py
# [pytorch-start-omniverse-isaacgym] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load the environment env = load_omniverse_isaacgym_env(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="omniverse-isaacgym")' # [pytorch-end-omniverse-isaacgym] # [jax-start-omniverse-isaacgym] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load the environment env = load_omniverse_isaacgym_env(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="omniverse-isaacgym")' # [jax-end-omniverse-isaacgym] # [pytorch-start-omniverse-isaacgym-mt] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load the multi-threaded environment env = load_omniverse_isaacgym_env(task_name="Cartpole", multi_threaded=True, timeout=30) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="omniverse-isaacgym")' # [pytorch-end-omniverse-isaacgym-mt] # [jax-start-omniverse-isaacgym-mt] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load the multi-threaded environment env = load_omniverse_isaacgym_env(task_name="Cartpole", multi_threaded=True, timeout=30) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="omniverse-isaacgym")' # [jax-end-omniverse-isaacgym-mt] # [pytorch-start-isaac-orbit] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_isaac_orbit_env # load the environment env = load_isaac_orbit_env(task_name="Isaac-Cartpole-v0") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaac-orbit")' # [pytorch-end-isaac-orbit] # [jax-start-isaac-orbit] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_isaac_orbit_env # load the environment env = load_isaac_orbit_env(task_name="Isaac-Cartpole-v0") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaac-orbit")' # [jax-end-isaac-orbit] # [pytorch-start-isaacgym-preview4-make] import isaacgymenvs # import the environment wrapper from skrl.envs.wrappers.torch import wrap_env # create/load the environment using the easy-to-use API from NVIDIA env = isaacgymenvs.make(seed=0, task="Cartpole", num_envs=512, sim_device="cuda:0", rl_device="cuda:0", graphics_device_id=0, headless=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview4")' # [pytorch-end-isaacgym-preview4-make] # [jax-start-isaacgym-preview4-make] import isaacgymenvs # import the environment wrapper from skrl.envs.wrappers.jax import wrap_env # create/load the environment using the easy-to-use API from NVIDIA env = isaacgymenvs.make(seed=0, task="Cartpole", num_envs=512, sim_device="cuda:0", rl_device="cuda:0", graphics_device_id=0, headless=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview4")' # [jax-end-isaacgym-preview4-make] # [pytorch-start-isaacgym-preview4] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_isaacgym_env_preview4 # load the environment env = load_isaacgym_env_preview4(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview4")' # [pytorch-end-isaacgym-preview4] # [jax-start-isaacgym-preview4] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_isaacgym_env_preview4 # load the environment env = load_isaacgym_env_preview4(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview4")' # [jax-end-isaacgym-preview4] # [pytorch-start-isaacgym-preview3] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_isaacgym_env_preview3 # load the environment env = load_isaacgym_env_preview3(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview3")' # [pytorch-end-isaacgym-preview3] # [jax-start-isaacgym-preview3] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_isaacgym_env_preview3 # load the environment env = load_isaacgym_env_preview3(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview3")' # [jax-end-isaacgym-preview3] # [pytorch-start-isaacgym-preview2] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_isaacgym_env_preview2 # load the environment env = load_isaacgym_env_preview2(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview2")' # [pytorch-end-isaacgym-preview2] # [jax-start-isaacgym-preview2] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_isaacgym_env_preview2 # load the environment env = load_isaacgym_env_preview2(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview2")' # [jax-end-isaacgym-preview2] # [pytorch-start-gym] # import the environment wrapper and gym from skrl.envs.wrappers.torch import wrap_env import gym # load the environment env = gym.make('Pendulum-v1') # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gym")' # [pytorch-end-gym] # [jax-start-gym] # import the environment wrapper and gym from skrl.envs.wrappers.jax import wrap_env import gym # load the environment env = gym.make('Pendulum-v1') # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gym")' # [jax-end-gym] # [pytorch-start-gym-vectorized] # import the environment wrapper and gym from skrl.envs.wrappers.torch import wrap_env import gym # load a vectorized environment env = gym.vector.make("Pendulum-v1", num_envs=10, asynchronous=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gym")' # [pytorch-end-gym-vectorized] # [jax-start-gym-vectorized] # import the environment wrapper and gym from skrl.envs.wrappers.jax import wrap_env import gym # load a vectorized environment env = gym.vector.make("Pendulum-v1", num_envs=10, asynchronous=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gym")' # [jax-end-gym-vectorized] # [pytorch-start-gymnasium] # import the environment wrapper and gymnasium from skrl.envs.wrappers.torch import wrap_env import gymnasium as gym # load the environment env = gym.make('Pendulum-v1') # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [pytorch-end-gymnasium] # [jax-start-gymnasium] # import the environment wrapper and gymnasium from skrl.envs.wrappers.jax import wrap_env import gymnasium as gym # load the environment env = gym.make('Pendulum-v1') # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [jax-end-gymnasium] # [pytorch-start-gymnasium-vectorized] # import the environment wrapper and gymnasium from skrl.envs.wrappers.torch import wrap_env import gymnasium as gym # load a vectorized environment env = gym.vector.make("Pendulum-v1", num_envs=10, asynchronous=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [pytorch-end-gymnasium-vectorized] # [jax-start-gymnasium-vectorized] # import the environment wrapper and gymnasium from skrl.envs.wrappers.jax import wrap_env import gymnasium as gym # load a vectorized environment env = gym.vector.make("Pendulum-v1", num_envs=10, asynchronous=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [jax-end-gymnasium-vectorized] # [pytorch-start-shimmy] # import the environment wrapper and gymnasium from skrl.envs.wrappers.torch import wrap_env import gymnasium as gym # load the environment (API conversion) env = gym.make("ALE/Pong-v5") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [pytorch-end-shimmy] # [jax-start-shimmy] # import the environment wrapper and gymnasium from skrl.envs.wrappers.jax import wrap_env import gymnasium as gym # load the environment (API conversion) env = gym.make("ALE/Pong-v5") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [jax-end-shimmy] # [pytorch-start-deepmind] # import the environment wrapper and the deepmind suite from skrl.envs.wrappers.torch import wrap_env from dm_control import suite # load the environment env = suite.load(domain_name="cartpole", task_name="swingup") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="dm")' # [pytorch-end-deepmind] # [pytorch-start-robosuite] # import the environment wrapper from skrl.envs.wrappers.torch import wrap_env # import the robosuite wrapper import robosuite from robosuite.controllers import load_controller_config # load the environment controller_config = load_controller_config(default_controller="OSC_POSE") env = robosuite.make("TwoArmLift", robots=["Sawyer", "Panda"], # load a Sawyer robot and a Panda robot gripper_types="default", # use default grippers per robot arm controller_configs=controller_config, # each arm is controlled using OSC env_configuration="single-arm-opposed", # (two-arm envs only) arms face each other has_renderer=True, # on-screen rendering render_camera="frontview", # visualize the "frontview" camera has_offscreen_renderer=False, # no off-screen rendering control_freq=20, # 20 hz control for applied actions horizon=200, # each episode terminates after 200 steps use_object_obs=True, # provide object observations to agent use_camera_obs=False, # don't provide image observations to agent reward_shaping=True) # use a dense reward signal for learning # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="robosuite")' # [pytorch-end-robosuite] # [start-bidexhands-torch] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_bidexhands_env # load the environment env = load_bidexhands_env(task_name="ShadowHandOver") # wrap the environment env = wrap_env(env, wrapper="bidexhands") # [end-bidexhands-torch] # [start-bidexhands-jax] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_bidexhands_env # load the environment env = load_bidexhands_env(task_name="ShadowHandOver") # wrap the environment env = wrap_env(env, wrapper="bidexhands") # [end-bidexhands-jax] # [start-pettingzoo-torch] # import the environment wrapper from skrl.envs.wrappers.torch import wrap_env # import a PettingZoo environment from pettingzoo.sisl import multiwalker_v9 # load the environment env = multiwalker_v9.parallel_env() # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="pettingzoo")' # [end-pettingzoo-torch] # [start-pettingzoo-jax] # import the environment wrapper from skrl.envs.wrappers.jax import wrap_env # import a PettingZoo environment from pettingzoo.sisl import multiwalker_v9 # load the environment env = multiwalker_v9.parallel_env() # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="pettingzoo")' # [end-pettingzoo-jax]
12,845
Python
29.440758
104
0.712028
Toni-SM/skrl/docs/source/snippets/trainer.py
# [pytorch-start-base] from typing import Union, List, Optional import copy from skrl.envs.wrappers.torch import Wrapper from skrl.agents.torch import Agent from skrl.trainers.torch import Trainer CUSTOM_DEFAULT_CONFIG = { "timesteps": 100000, # number of timesteps to train for "headless": False, # whether to use headless mode (no rendering) "disable_progressbar": False, # whether to disable the progressbar. If None, disable on non-TTY "close_environment_at_exit": True, # whether to close the environment on normal program termination } class CustomTrainer(Trainer): def __init__(self, env: Wrapper, agents: Union[Agent, List[Agent], List[List[Agent]]], agents_scope: Optional[List[int]] = None, cfg: Optional[dict] = None) -> None: """ :param env: Environment to train on :type env: skrl.envs.wrappers.torch.Wrapper :param agents: Agents to train :type agents: Union[Agent, List[Agent]] :param agents_scope: Number of environments for each agent to train on (default: []) :type agents_scope: tuple or list of integers :param cfg: Configuration dictionary :type cfg: dict, optional """ _cfg = copy.deepcopy(CUSTOM_DEFAULT_CONFIG) _cfg.update(cfg if cfg is not None else {}) agents_scope = agents_scope if agents_scope is not None else [] super().__init__(env=env, agents=agents, agents_scope=agents_scope, cfg=_cfg) # ================================ # - init agents # ================================ def train(self) -> None: """Train the agents """ # ================================ # - run training loop # + call agents.pre_interaction(...) # + compute actions using agents.act(...) # + step environment using env.step(...) # + render scene using env.render(...) # + record environment transition in memory using agents.record_transition(...) # + call agents.post_interaction(...) # + reset environment using env.reset(...) # ================================ def eval(self) -> None: """Evaluate the agents """ # ================================ # - run evaluation loop # + compute actions using agents.act(...) # + step environment using env.step(...) # + render scene using env.render(...) # + call agents.post_interaction(...) parent method to write data to TensorBoard # + reset environment using env.reset(...) # ================================ # [pytorch-end-base] # [jax-start-base] from typing import Union, List, Optional import copy from skrl.envs.wrappers.jax import Wrapper from skrl.agents.jax import Agent from skrl.trainers.jax import Trainer CUSTOM_DEFAULT_CONFIG = { "timesteps": 100000, # number of timesteps to train for "headless": False, # whether to use headless mode (no rendering) "disable_progressbar": False, # whether to disable the progressbar. If None, disable on non-TTY "close_environment_at_exit": True, # whether to close the environment on normal program termination } class CustomTrainer(Trainer): def __init__(self, env: Wrapper, agents: Union[Agent, List[Agent], List[List[Agent]]], agents_scope: Optional[List[int]] = None, cfg: Optional[dict] = None) -> None: """ :param env: Environment to train on :type env: skrl.envs.wrappers.jax.Wrapper :param agents: Agents to train :type agents: Union[Agent, List[Agent]] :param agents_scope: Number of environments for each agent to train on (default: []) :type agents_scope: tuple or list of integers :param cfg: Configuration dictionary :type cfg: dict, optional """ _cfg = copy.deepcopy(CUSTOM_DEFAULT_CONFIG) _cfg.update(cfg if cfg is not None else {}) agents_scope = agents_scope if agents_scope is not None else [] super().__init__(env=env, agents=agents, agents_scope=agents_scope, cfg=_cfg) # ================================ # - init agents # ================================ def train(self) -> None: """Train the agents """ # ================================ # - run training loop # + call agents.pre_interaction(...) # + compute actions using agents.act(...) # + step environment using env.step(...) # + render scene using env.render(...) # + record environment transition in memory using agents.record_transition(...) # + call agents.post_interaction(...) # + reset environment using env.reset(...) # ================================ def eval(self) -> None: """Evaluate the agents """ # ================================ # - run evaluation loop # + compute actions using agents.act(...) # + step environment using env.step(...) # + render scene using env.render(...) # + call agents.post_interaction(...) parent method to write data to TensorBoard # + reset environment using env.reset(...) # ================================ # [jax-end-base] # ============================================================================= # [pytorch-start-sequential] from skrl.trainers.torch import SequentialTrainer # assuming there is an environment called 'env' # and an agent or a list of agents called 'agents' # create a sequential trainer cfg = {"timesteps": 50000, "headless": False} trainer = SequentialTrainer(env=env, agents=agents, cfg=cfg) # train the agent(s) trainer.train() # evaluate the agent(s) trainer.eval() # [pytorch-end-sequential] # [jax-start-sequential] from skrl.trainers.jax import SequentialTrainer # assuming there is an environment called 'env' # and an agent or a list of agents called 'agents' # create a sequential trainer cfg = {"timesteps": 50000, "headless": False} trainer = SequentialTrainer(env=env, agents=agents, cfg=cfg) # train the agent(s) trainer.train() # evaluate the agent(s) trainer.eval() # [jax-end-sequential] # ============================================================================= # [pytorch-start-parallel] from skrl.trainers.torch import ParallelTrainer # assuming there is an environment called 'env' # and an agent or a list of agents called 'agents' # create a sequential trainer cfg = {"timesteps": 50000, "headless": False} trainer = ParallelTrainer(env=env, agents=agents, cfg=cfg) # train the agent(s) trainer.train() # evaluate the agent(s) trainer.eval() # [pytorch-end-parallel] # ============================================================================= # [pytorch-start-step] from skrl.trainers.torch import StepTrainer # assuming there is an environment called 'env' # and an agent or a list of agents called 'agents' # create a sequential trainer cfg = {"timesteps": 50000, "headless": False} trainer = StepTrainer(env=env, agents=agents, cfg=cfg) # train the agent(s) for timestep in range(cfg["timesteps"]): trainer.train(timestep=timestep) # evaluate the agent(s) for timestep in range(cfg["timesteps"]): trainer.eval(timestep=timestep) # [pytorch-end-step] # [jax-start-step] from skrl.trainers.jax import StepTrainer # assuming there is an environment called 'env' # and an agent or a list of agents called 'agents' # create a sequential trainer cfg = {"timesteps": 50000, "headless": False} trainer = StepTrainer(env=env, agents=agents, cfg=cfg) # train the agent(s) for timestep in range(cfg["timesteps"]): trainer.train(timestep=timestep) # evaluate the agent(s) for timestep in range(cfg["timesteps"]): trainer.eval(timestep=timestep) # [jax-end-step] # ============================================================================= # [pytorch-start-manual-training] # [pytorch-end-manual-training] # [pytorch-start-manual-evaluation] # assuming there is an environment named 'env' # and an agent named 'agents' (or a state-preprocessor and a policy) states, infos = env.reset() for i in range(1000): # state-preprocessor + policy with torch.no_grad(): states = state_preprocessor(states) actions = policy.act({"states": states})[0] # step the environment next_states, rewards, terminated, truncated, infos = env.step(actions) # render the environment env.render() # check for termination/truncation if terminated.any() or truncated.any(): states, infos = env.reset() else: states = next_states # [pytorch-end-manual-evaluation] # [jax-start-manual-training] # [jax-end-manual-training] # [jax-start-manual-evaluation] # [jax-end-manual-evaluation]
8,996
Python
31.132143
105
0.587372
Toni-SM/skrl/docs/source/api/resources.rst
Resources ========= .. toctree:: :hidden: Noises <resources/noises> Preprocessors <resources/preprocessors> Learning rate schedulers <resources/schedulers> Optimizers <resources/optimizers> Resources groups a variety of components that may be used to improve the agents' performance. .. raw:: html <br><hr> Available resources are :doc:`noises <resources/noises>`, input :doc:`preprocessors <resources/preprocessors>`, learning rate :doc:`schedulers <resources/schedulers>` and :doc:`optimizers <resources/optimizers>` (this last one only for JAX). .. list-table:: :header-rows: 1 * - Noises - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Gaussian <resources/noises/gaussian>` noise - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Ornstein-Uhlenbeck <resources/noises/ornstein_uhlenbeck>` noise |_2| - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` .. list-table:: :header-rows: 1 * - Preprocessors - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Running standard scaler <resources/preprocessors/running_standard_scaler>` |_4| - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` .. list-table:: :header-rows: 1 * - Learning rate schedulers - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`KL Adaptive <resources/schedulers/kl_adaptive>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` .. list-table:: :header-rows: 1 * - Optimizers - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Adam <resources/optimizers/adam>`\ |_5| |_5| |_5| |_5| |_5| |_5| |_3| - .. centered:: :math:`\scriptscriptstyle \texttt{PyTorch}` - .. centered:: :math:`\blacksquare`
1,974
reStructuredText
30.854838
241
0.591692
Toni-SM/skrl/docs/source/api/multi_agents.rst
Multi-agents ============ .. toctree:: :hidden: IPPO <multi_agents/ippo> MAPPO <multi_agents/mappo> Multi-agents are autonomous entities that interact with the environment to learn and improve their behavior. Multi-agents' goal is to learn optimal policies, which are correspondence between states and actions that maximize the cumulative reward received from the environment over time. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Multi-agents - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Independent Proximal Policy Optimization <multi_agents/ippo>` (**IPPO**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Multi-Agent Proximal Policy Optimization <multi_agents/mappo>` (**MAPPO**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` Base class ---------- .. note:: This is the base class for all multi-agents and provides only basic functionality that is not tied to any implementation of the optimization algorithms. **It is not intended to be used directly**. .. raw:: html <br> Basic inheritance usage ^^^^^^^^^^^^^^^^^^^^^^^ .. tabs:: .. tab:: Inheritance .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/multi_agent.py :language: python :start-after: [start-multi-agent-base-class-torch] :end-before: [end-multi-agent-base-class-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/multi_agent.py :language: python :start-after: [start-multi-agent-base-class-jax] :end-before: [end-multi-agent-base-class-jax] .. raw:: html <br> API (PyTorch) ^^^^^^^^^^^^^ .. autoclass:: skrl.multi_agents.torch.base.MultiAgent :undoc-members: :show-inheritance: :inherited-members: :private-members: _update, _empty_preprocessor, _get_internal_value, _as_dict :members: .. automethod:: __init__ .. automethod:: __str__ .. raw:: html <br> API (JAX) ^^^^^^^^^ .. autoclass:: skrl.multi_agents.jax.base.MultiAgent :undoc-members: :show-inheritance: :inherited-members: :private-members: _update, _empty_preprocessor, _get_internal_value, _as_dict :members: .. automethod:: __init__ .. automethod:: __str__
2,510
reStructuredText
24.886598
286
0.586853
Toni-SM/skrl/docs/source/api/models.rst
Models ====== .. toctree:: :hidden: Tabular <models/tabular> Categorical <models/categorical> Multi-Categorical <models/multicategorical> Gaussian <models/gaussian> Multivariate Gaussian <models/multivariate_gaussian> Deterministic <models/deterministic> Shared model <models/shared_model> Models (or agent models) refer to a representation of the agent's policy, value function, etc. that the agent uses to make decisions. Agents can have one or more models, and their parameters are adjusted by the optimization algorithms. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Models - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Tabular model <models/tabular>` (discrete domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Categorical model <models/categorical>` (discrete domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Multi-Categorical model <models/multicategorical>` (discrete domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Gaussian model <models/gaussian>` (continuous domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Multivariate Gaussian model <models/multivariate_gaussian>` (continuous domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Deterministic model <models/deterministic>` (continuous domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Shared model <models/shared_model>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` Base class ---------- .. note:: This is the base class for all models in this module and provides only basic functionality that is not tied to any specific implementation. **It is not intended to be used directly**. .. raw:: html <br> Mixin and inheritance ^^^^^^^^^^^^^^^^^^^^^ .. tabs:: .. tab:: Mixin .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/model_mixin.py :language: python :start-after: [start-mixin-torch] :end-before: [end-mixin-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/model_mixin.py :language: python :start-after: [start-mixin-jax] :end-before: [end-mixin-jax] .. tab:: Model inheritance .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/model_mixin.py :language: python :start-after: [start-model-torch] :end-before: [end-model-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/model_mixin.py :language: python :start-after: [start-model-jax] :end-before: [end-model-jax] .. raw:: html <br> .. _models_base_class: API (PyTorch) ^^^^^^^^^^^^^ .. autoclass:: skrl.models.torch.base.Model :undoc-members: :show-inheritance: :private-members: _get_space_size :members: .. automethod:: __init__ .. py:property:: device Device to be used for the computations .. py:property:: observation_space Observation/state space. It is a replica of the class constructor parameter of the same name .. py:property:: action_space Action space. It is a replica of the class constructor parameter of the same name .. py:property:: num_observations Number of elements in the observation/state space .. py:property:: num_actions Number of elements in the action space .. raw:: html <br> API (JAX) ^^^^^^^^^ .. autoclass:: skrl.models.jax.base.Model :undoc-members: :show-inheritance: :private-members: _get_space_size :members: .. automethod:: __init__ .. py:property:: device Device to be used for the computations .. py:property:: observation_space Observation/state space. It is a replica of the class constructor parameter of the same name .. py:property:: action_space Action space. It is a replica of the class constructor parameter of the same name .. py:property:: num_observations Number of elements in the observation/state space .. py:property:: num_actions Number of elements in the action space
4,733
reStructuredText
26.364162
235
0.587788
Toni-SM/skrl/docs/source/api/memories.rst
Memories ======== .. toctree:: :hidden: Random <memories/random> Memories are storage components that allow agents to collect and use/reuse current or past experiences of their interaction with the environment or other types of information. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Memories - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Random memory <memories/random>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` Base class ---------- .. note:: This is the base class for all the other classes in this module. It provides the basic functionality for the other classes. **It is not intended to be used directly**. .. raw:: html <br> Basic inheritance usage ^^^^^^^^^^^^^^^^^^^^^^^ .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/memories.py :language: python :start-after: [start-base-class-torch] :end-before: [end-base-class-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/memories.py :language: python :start-after: [start-base-class-jax] :end-before: [end-base-class-jax] .. raw:: html <br> API (PyTorch) ^^^^^^^^^^^^^ .. autoclass:: skrl.memories.torch.base.Memory :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. automethod:: __len__ .. raw:: html <br> API (JAX) ^^^^^^^^^ .. autoclass:: skrl.memories.jax.base.Memory :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. automethod:: __len__
1,709
reStructuredText
18.883721
175
0.564658
Toni-SM/skrl/docs/source/api/trainers.rst
Trainers ======== .. toctree:: :hidden: Sequential <trainers/sequential> Parallel <trainers/parallel> Step <trainers/step> Manual training <trainers/manual> Trainers are responsible for orchestrating and managing the training/evaluation of agents and their interactions with the environment. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Trainers - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Sequential trainer <trainers/sequential>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Parallel trainer <trainers/parallel>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Step trainer <trainers/step>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Manual training <trainers/manual>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` Base class ---------- .. note:: This is the base class for all the other classes in this module. It provides the basic functionality for the other classes. **It is not intended to be used directly**. .. raw:: html <br> Basic inheritance usage ^^^^^^^^^^^^^^^^^^^^^^^ .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/trainer.py :language: python :start-after: [pytorch-start-base] :end-before: [pytorch-end-base] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/trainer.py :language: python :start-after: [jax-start-base] :end-before: [jax-end-base] .. raw:: html <br> API (PyTorch) ^^^^^^^^^^^^^ .. autoclass:: skrl.trainers.torch.base.Trainer :undoc-members: :show-inheritance: :inherited-members: :private-members: _setup_agents :members: .. automethod:: __init__ .. automethod:: __str__ .. raw:: html <br> API (JAX) ^^^^^^^^^ .. autoclass:: skrl.trainers.jax.base.Trainer :undoc-members: :show-inheritance: :inherited-members: :private-members: _setup_agents :members: .. automethod:: __init__ .. automethod:: __str__
2,279
reStructuredText
21.352941
134
0.573936
Toni-SM/skrl/docs/source/api/envs.rst
Environments ============ .. toctree:: :hidden: Wrapping (single-agent) <envs/wrapping> Wrapping (multi-agents) <envs/multi_agents_wrapping> Isaac Gym environments <envs/isaac_gym> Isaac Orbit environments <envs/isaac_orbit> Omniverse Isaac Gym environments <envs/omniverse_isaac_gym> The environment plays a fundamental and crucial role in defining the RL setup. It is the place where the agent interacts, and it is responsible for providing the agent with information about its current state, as well as the rewards/penalties associated with each action. .. raw:: html <br><hr> Grouped in this section you will find how to load environments from NVIDIA Isaac Gym, Isaac Orbit and Omniverse Isaac Gym with a simple function. In addition, you will be able to :doc:`wrap single-agent <envs/wrapping>` and :doc:`multi-agent <envs/multi_agents_wrapping>` RL environment interfaces. .. list-table:: :header-rows: 1 * - Loaders - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Isaac Gym environments <envs/isaac_gym>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Isaac Orbit environments <envs/isaac_orbit>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Omniverse Isaac Gym environments <envs/omniverse_isaac_gym>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` .. list-table:: :header-rows: 1 * - Wrappers - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Bi-DexHands - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - DeepMind - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - Gym - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Gymnasium - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Isaac Gym (previews) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Isaac Orbit - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Omniverse Isaac Gym |_5| |_5| |_5| |_5| |_2| - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - PettingZoo - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - robosuite - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - Shimmy - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare`
2,701
reStructuredText
35.026666
271
0.599408
Toni-SM/skrl/docs/source/api/utils.rst
Utils and configurations ======================== .. toctree:: :hidden: ML frameworks configuration <config/frameworks> Random seed <utils/seed> Memory and Tensorboard file post-processing <utils/postprocessing> Model instantiators <utils/model_instantiators> Hugging Face integration <utils/huggingface> Isaac Gym utils <utils/isaacgym_utils> Omniverse Isaac Gym utils <utils/omniverse_isaacgym_utils> A set of utilities and configurations for managing an RL setup is provided as part of the library. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Configurations - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`ML frameworks <config/frameworks>` configuration |_5| |_5| |_5| |_5| |_5| |_2| - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` .. list-table:: :header-rows: 1 * - Utils - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Random seed <utils/seed>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Memory and Tensorboard :doc:`file post-processing <utils/postprocessing>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Model instantiators <utils/model_instantiators>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Hugging Face integration <utils/huggingface>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Isaac Gym utils <utils/isaacgym_utils>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Omniverse Isaac Gym utils <utils/omniverse_isaacgym_utils>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare`
1,902
reStructuredText
33.599999
98
0.599895
Toni-SM/skrl/docs/source/api/agents.rst
Agents ====== .. toctree:: :hidden: A2C <agents/a2c> AMP <agents/amp> CEM <agents/cem> DDPG <agents/ddpg> DDQN <agents/ddqn> DQN <agents/dqn> PPO <agents/ppo> Q-learning <agents/q_learning> RPO <agents/rpo> SAC <agents/sac> SARSA <agents/sarsa> TD3 <agents/td3> TRPO <agents/trpo> Agents are autonomous entities that interact with the environment to learn and improve their behavior. Agents' goal is to learn an optimal policy, which is a correspondence between states and actions that maximizes the cumulative reward received from the environment over time. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Agents - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Advantage Actor Critic <agents/a2c>` (**A2C**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Adversarial Motion Priors <agents/amp>` (**AMP**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Cross-Entropy Method <agents/cem>` (**CEM**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Deep Deterministic Policy Gradient <agents/ddpg>` (**DDPG**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Double Deep Q-Network <agents/ddqn>` (**DDQN**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Deep Q-Network <agents/dqn>` (**DQN**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Proximal Policy Optimization <agents/ppo>` (**PPO**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Q-learning <agents/q_learning>` (**Q-learning**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Robust Policy Optimization <agents/rpo>` (**RPO**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Soft Actor-Critic <agents/sac>` (**SAC**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`State Action Reward State Action <agents/sarsa>` (**SARSA**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Twin-Delayed DDPG <agents/td3>` (**TD3**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Trust Region Policy Optimization <agents/trpo>` (**TRPO**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` Base class ---------- .. note:: This is the base class for all agents in this module and provides only basic functionality that is not tied to any implementation of the optimization algorithms. **It is not intended to be used directly**. .. raw:: html <br> Basic inheritance usage ^^^^^^^^^^^^^^^^^^^^^^^ .. tabs:: .. tab:: Inheritance .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/agent.py :language: python :start-after: [start-agent-base-class-torch] :end-before: [end-agent-base-class-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/agent.py :language: python :start-after: [start-agent-base-class-jax] :end-before: [end-agent-base-class-jax] .. raw:: html <br> API (PyTorch) ^^^^^^^^^^^^^ .. autoclass:: skrl.agents.torch.base.Agent :undoc-members: :show-inheritance: :inherited-members: :private-members: _update, _empty_preprocessor, _get_internal_value :members: .. automethod:: __init__ .. automethod:: __str__ .. raw:: html <br> API (JAX) ^^^^^^^^^ .. autoclass:: skrl.agents.jax.base.Agent :undoc-members: :show-inheritance: :inherited-members: :private-members: _update, _empty_preprocessor, _get_internal_value :members: .. automethod:: __init__ .. automethod:: __str__
4,230
reStructuredText
29.007092
277
0.564775
Toni-SM/skrl/docs/source/api/envs/omniverse_isaac_gym.rst
Omniverse Isaac Gym environments ================================ .. image:: ../../_static/imgs/example_omniverse_isaacgym.png :width: 100% :align: center :alt: Omniverse Isaac Gym environments .. raw:: html <br><br><hr> Environments ------------ The repository https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs provides the example reinforcement learning environments for Omniverse Isaac Gym. These environments can be easily loaded and configured by calling a single function provided with this library. This function also makes it possible to configure the environment from the command line arguments (see OmniIsaacGymEnvs's `configuration-and-command-line-arguments <https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs#configuration-and-command-line-arguments>`_) or from its parameters (:literal:`task_name`, :literal:`num_envs`, :literal:`headless`, and :literal:`cli_args`). Additionally, multi-threaded environments can be loaded. These are designed to isolate the RL policy in a new thread, separate from the main simulation and rendering thread. Read more about it in the OmniIsaacGymEnvs framework documentation: `Multi-Threaded Environment Wrapper <https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/blob/220d34c6b68d3f7518c4aa008ae009d13cc60c03/docs/framework.md#multi-threaded-environment-wrapper>`_. .. note:: The command line arguments has priority over the function parameters. .. note:: Only the configuration related to the environment will be used. The configuration related to RL algorithms are discarded since they do not belong to this library. .. note:: Omniverse Isaac Gym environments implement a functionality to get their configuration from the command line. Setting the :literal:`headless` option from the trainer configuration will not work. In this case, it is necessary to set the load function's :literal:`headless` argument to True or to invoke the scripts as follows: :literal:`python script.py headless=True`. .. raw:: html <br> Usage ^^^^^ .. raw:: html <br> Common environments """"""""""""""""""" In this approach, the RL algorithm maintains the main execution loop. .. tabs:: .. group-tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-omniverse-isaac-gym-envs-parameters-torch] :end-before: [end-omniverse-isaac-gym-envs-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-omniverse-isaac-gym-envs-parameters-jax] :end-before: [end-omniverse-isaac-gym-envs-parameters-jax] .. group-tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-omniverse-isaac-gym-envs-cli-torch] :end-before: [end-omniverse-isaac-gym-envs-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-omniverse-isaac-gym-envs-cli-jax] :end-before: [end-omniverse-isaac-gym-envs-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: python main.py task=Cartpole .. raw:: html <br> Multi-threaded environments """"""""""""""""""""""""""" In this approach, the RL algorithm is executed on a secondary thread while the simulation and rendering is executed on the main thread. .. tabs:: .. group-tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 1, 4, 7, 12, 15 :start-after: [start-omniverse-isaac-gym-envs-multi-threaded-parameters-torch] :end-before: [end-omniverse-isaac-gym-envs-multi-threaded-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 1, 4, 7, 12, 15 :start-after: [start-omniverse-isaac-gym-envs-multi-threaded-parameters-jax] :end-before: [end-omniverse-isaac-gym-envs-multi-threaded-parameters-jax] .. group-tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 1, 4, 7, 12, 15 :start-after: [start-omniverse-isaac-gym-envs-multi-threaded-cli-torch] :end-before: [end-omniverse-isaac-gym-envs-multi-threaded-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 1, 4, 7, 12, 15 :start-after: [start-omniverse-isaac-gym-envs-multi-threaded-cli-jax] :end-before: [end-omniverse-isaac-gym-envs-multi-threaded-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: python main.py task=Cartpole .. raw:: html <br> API ^^^ .. autofunction:: skrl.envs.loaders.torch.load_omniverse_isaacgym_env
6,034
reStructuredText
36.02454
488
0.606397
Toni-SM/skrl/docs/source/api/envs/isaac_orbit.rst
Isaac Orbit environments ======================== .. image:: ../../_static/imgs/example_isaac_orbit.png :width: 100% :align: center :alt: Isaac Orbit environments .. raw:: html <br><br><hr> Environments ------------ The repository https://github.com/NVIDIA-Omniverse/Orbit provides the example reinforcement learning environments for Isaac orbit. These environments can be easily loaded and configured by calling a single function provided with this library. This function also makes it possible to configure the environment from the command line arguments (see Isaac Orbit's `Running an RL environment <https://isaac-orbit.github.io/orbit/source/tutorials_envs/00_gym_env.html>`_) or from its parameters (:literal:`task_name`, :literal:`num_envs`, :literal:`headless`, and :literal:`cli_args`). .. note:: The command line arguments has priority over the function parameters. .. note:: Isaac Orbit environments implement a functionality to get their configuration from the command line. Setting the :literal:`headless` option from the trainer configuration will not work. In this case, it is necessary to set the load function's :literal:`headless` argument to True or to invoke the scripts as follows: :literal:`orbit -p script.py --headless`. .. raw:: html <br> Usage ^^^^^ .. tabs:: .. tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-orbit-envs-parameters-torch] :end-before: [end-isaac-orbit-envs-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-orbit-envs-parameters-jax] :end-before: [end-isaac-orbit-envs-parameters-jax] .. tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-orbit-envs-cli-torch] :end-before: [end-isaac-orbit-envs-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-orbit-envs-cli-jax] :end-before: [end-isaac-orbit-envs-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: orbit -p main.py --task Isaac-Cartpole-v0 .. raw:: html <br> API ^^^ .. autofunction:: skrl.envs.loaders.torch.load_isaac_orbit_env
3,041
reStructuredText
32.428571
448
0.591911
Toni-SM/skrl/docs/source/api/envs/multi_agents_wrapping.rst
:tocdepth: 3 Wrapping (multi-agents) ======================= .. raw:: html <br><hr> This library works with a common API to interact with the following RL multi-agent environments: * Farama `PettingZoo <https://pettingzoo.farama.org>`_ (parallel API) * `Bi-DexHands <https://github.com/PKU-MARL/DexterousHands>`_ To operate with them and to support interoperability between these non-compatible interfaces, a **wrapping mechanism is provided** as shown in the diagram below .. raw:: html <br> .. image:: ../../_static/imgs/multi_agent_wrapping-light.svg :width: 100% :align: center :class: only-light :alt: Environment wrapping .. image:: ../../_static/imgs/multi_agent_wrapping-dark.svg :width: 100% :align: center :class: only-dark :alt: Environment wrapping .. raw:: html <br> Usage ----- .. tabs:: .. tab:: PettingZoo .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [start-pettingzoo-torch] :end-before: [end-pettingzoo-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [start-pettingzoo-jax] :end-before: [end-pettingzoo-jax] .. tab:: Bi-DexHands .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [start-bidexhands-torch] :end-before: [end-bidexhands-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [start-bidexhands-jax] :end-before: [end-bidexhands-jax] .. raw:: html <br> API (PyTorch) ------------- .. autofunction:: skrl.envs.wrappers.torch.wrap_env .. raw:: html <br> API (JAX) --------- .. autofunction:: skrl.envs.wrappers.jax.wrap_env .. raw:: html <br> Internal API (PyTorch) ---------------------- .. autoclass:: skrl.envs.wrappers.torch.MultiAgentEnvWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. py:property:: device The device used by the environment If the wrapped environment does not have the ``device`` property, the value of this property will be ``"cuda:0"`` or ``"cpu"`` depending on the device availability .. py:property:: possible_agents A list of all possible_agents the environment could generate .. autoclass:: skrl.envs.wrappers.torch.BiDexHandsWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.PettingZooWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. raw:: html <br> Internal API (JAX) ------------------ .. autoclass:: skrl.envs.wrappers.jax.MultiAgentEnvWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. py:property:: device The device used by the environment If the wrapped environment does not have the ``device`` property, the value of this property will be ``"cuda:0"`` or ``"cpu"`` depending on the device availability .. py:property:: possible_agents A list of all possible_agents the environment could generate .. autoclass:: skrl.envs.wrappers.jax.BiDexHandsWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.jax.PettingZooWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__
3,917
reStructuredText
21.912281
171
0.581057
Toni-SM/skrl/docs/source/api/envs/isaac_gym.rst
Isaac Gym environments ====================== .. image:: ../../_static/imgs/example_isaacgym.png :width: 100% :align: center :alt: Omniverse Isaac Gym environments .. raw:: html <br><br><hr> Environments (preview 4) ------------------------ The repository https://github.com/NVIDIA-Omniverse/IsaacGymEnvs provides the example reinforcement learning environments for Isaac Gym (preview 4). With the release of Isaac Gym (preview 4), NVIDIA developers provide an easy-to-use API for creating/loading preset vectorized environments (see IsaacGymEnvs's `creating-an-environment <https://github.com/NVIDIA-Omniverse/IsaacGymEnvs#creating-an-environment>`_). .. tabs:: .. tab:: Easy-to-use API from NVIDIA .. literalinclude:: ../../snippets/loaders.py :language: python :start-after: [start-isaac-gym-envs-preview-4-api] :end-before: [end-isaac-gym-envs-preview-4-api] Nevertheless, in order to maintain the loading style of previous versions, **skrl** provides its own implementation for loading such environments. The environments can be easily loaded and configured by calling a single function provided with this library. This function also makes it possible to configure the environment from the command line arguments (see IsaacGymEnvs's `configuration-and-command-line-arguments <https://github.com/NVIDIA-Omniverse/IsaacGymEnvs#configuration-and-command-line-arguments>`_) or from its parameters (:literal:`task_name`, :literal:`num_envs`, :literal:`headless`, and :literal:`cli_args`). .. note:: Only the configuration related to the environment will be used. The configuration related to RL algorithms are discarded since they do not belong to this library. .. note:: Isaac Gym environments implement a functionality to get their configuration from the command line. Setting the :literal:`headless` option from the trainer configuration will not work. In this case, it is necessary to set the load function's :literal:`headless` argument to True or to invoke the scripts as follows: :literal:`python script.py headless=True`. .. raw:: html <br> Usage ^^^^^ .. tabs:: .. group-tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-4-parameters-torch] :end-before: [end-isaac-gym-envs-preview-4-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-4-parameters-jax] :end-before: [end-isaac-gym-envs-preview-4-parameters-jax] .. group-tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-4-cli-torch] :end-before: [end-isaac-gym-envs-preview-4-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-4-cli-jax] :end-before: [end-isaac-gym-envs-preview-4-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: python main.py task=Cartpole .. raw:: html <br> API ^^^ .. autofunction:: skrl.envs.loaders.torch.load_isaacgym_env_preview4 .. raw:: html <br><hr> Environments (preview 3) ------------------------ The repository https://github.com/NVIDIA-Omniverse/IsaacGymEnvs provides the example reinforcement learning environments for Isaac Gym (preview 3). These environments can be easily loaded and configured by calling a single function provided with this library. This function also makes it possible to configure the environment from the command line arguments (see IsaacGymEnvs's `configuration-and-command-line-arguments <https://github.com/NVIDIA-Omniverse/IsaacGymEnvs#configuration-and-command-line-arguments>`_) or from its parameters (:literal:`task_name`, :literal:`num_envs`, :literal:`headless`, and :literal:`cli_args`). .. note:: Only the configuration related to the environment will be used. The configuration related to RL algorithms are discarded since they do not belong to this library. .. note:: Isaac Gym environments implement a functionality to get their configuration from the command line. Setting the :literal:`headless` option from the trainer configuration will not work. In this case, it is necessary to set the load function's :literal:`headless` argument to True or to invoke the scripts as follows: :literal:`python script.py headless=True`. .. raw:: html <br> Usage ^^^^^ .. tabs:: .. group-tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-3-parameters-torch] :end-before: [end-isaac-gym-envs-preview-3-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-3-parameters-jax] :end-before: [end-isaac-gym-envs-preview-3-parameters-jax] .. group-tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-3-cli-torch] :end-before: [end-isaac-gym-envs-preview-3-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-3-cli-jax] :end-before: [end-isaac-gym-envs-preview-3-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: python main.py task=Cartpole .. raw:: html <br> API ^^^ .. autofunction:: skrl.envs.loaders.torch.load_isaacgym_env_preview3 .. raw:: html <br><hr> Environments (preview 2) ------------------------ The example reinforcement learning environments for Isaac Gym (preview 2) are located within the same package (in the :code:`python/rlgpu` directory). These environments can be easily loaded and configured by calling a single function provided with this library. This function also makes it possible to configure the environment from the command line arguments or from its parameters (:literal:`task_name`, :literal:`num_envs`, :literal:`headless`, and :literal:`cli_args`). .. note:: Isaac Gym environments implement a functionality to get their configuration from the command line. Setting the :literal:`headless` option from the trainer configuration will not work. In this case, it is necessary to set the load function's :literal:`headless` argument to True or to invoke the scripts as follows: :literal:`python script.py --headless`. .. raw:: html <br> Usage ^^^^^ .. tabs:: .. group-tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-2-parameters-torch] :end-before: [end-isaac-gym-envs-preview-2-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-2-parameters-jax] :end-before: [end-isaac-gym-envs-preview-2-parameters-jax] .. group-tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-2-cli-torch] :end-before: [end-isaac-gym-envs-preview-2-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-2-cli-jax] :end-before: [end-isaac-gym-envs-preview-2-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: python main.py --task Cartpole .. raw:: html <br> API ^^^ .. autofunction:: skrl.envs.loaders.torch.load_isaacgym_env_preview2
9,804
reStructuredText
36.140151
625
0.609037
Toni-SM/skrl/docs/source/api/envs/wrapping.rst
:tocdepth: 3 Wrapping (single-agent) ======================= .. raw:: html <br><hr> This library works with a common API to interact with the following RL environments: * OpenAI `Gym <https://www.gymlibrary.dev>`_ / Farama `Gymnasium <https://gymnasium.farama.org/>`_ (single and vectorized environments) * `Farama Shimmy <https://shimmy.farama.org/>`_ * `DeepMind <https://github.com/deepmind/dm_env>`_ * `robosuite <https://robosuite.ai/>`_ * `NVIDIA Isaac Gym <https://developer.nvidia.com/isaac-gym>`_ (preview 2, 3 and 4) * `NVIDIA Isaac Orbit <https://isaac-orbit.github.io/orbit/index.html>`_ * `NVIDIA Omniverse Isaac Gym <https://docs.omniverse.nvidia.com/isaacsim/latest/tutorial_gym_isaac_gym.html>`_ To operate with them and to support interoperability between these non-compatible interfaces, a **wrapping mechanism is provided** as shown in the diagram below .. raw:: html <br> .. image:: ../../_static/imgs/wrapping-light.svg :width: 100% :align: center :class: only-light :alt: Environment wrapping .. image:: ../../_static/imgs/wrapping-dark.svg :width: 100% :align: center :class: only-dark :alt: Environment wrapping .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Omniverse Isaac Gym .. tabs:: .. tab:: Common environment .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-omniverse-isaacgym] :end-before: [pytorch-end-omniverse-isaacgym] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-omniverse-isaacgym] :end-before: [jax-end-omniverse-isaacgym] .. tab:: Multi-threaded environment .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-omniverse-isaacgym-mt] :end-before: [pytorch-end-omniverse-isaacgym-mt] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-omniverse-isaacgym-mt] :end-before: [jax-end-omniverse-isaacgym-mt] .. tab:: Isaac Orbit .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-isaac-orbit] :end-before: [pytorch-end-isaac-orbit] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-isaac-orbit] :end-before: [jax-end-isaac-orbit] .. tab:: Isaac Gym .. tabs:: .. tab:: Preview 4 (isaacgymenvs.make) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-isaacgym-preview4-make] :end-before: [pytorch-end-isaacgym-preview4-make] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-isaacgym-preview4-make] :end-before: [jax-end-isaacgym-preview4-make] .. tab:: Preview 4 .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-isaacgym-preview4] :end-before: [pytorch-end-isaacgym-preview4] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-isaacgym-preview4] :end-before: [jax-end-isaacgym-preview4] .. tab:: Preview 3 .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-isaacgym-preview3] :end-before: [pytorch-end-isaacgym-preview3] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-isaacgym-preview3] :end-before: [jax-end-isaacgym-preview3] .. tab:: Preview 2 .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-isaacgym-preview2] :end-before: [pytorch-end-isaacgym-preview2] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-isaacgym-preview2] :end-before: [jax-end-isaacgym-preview2] .. tab:: Gym / Gymnasium .. tabs:: .. tab:: Gym .. tabs:: .. tab:: Single environment .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-gym] :end-before: [pytorch-end-gym] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-gym] :end-before: [jax-end-gym] .. tab:: Vectorized environment Visit the Gym documentation (`Vector <https://www.gymlibrary.dev/api/vector>`__) for more information about the creation and usage of vectorized environments .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-gym-vectorized] :end-before: [pytorch-end-gym-vectorized] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-gym-vectorized] :end-before: [jax-end-gym-vectorized] .. tab:: Gymnasium .. tabs:: .. tab:: Single environment .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-gymnasium] :end-before: [pytorch-end-gymnasium] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-gymnasium] :end-before: [jax-end-gymnasium] .. tab:: Vectorized environment Visit the Gymnasium documentation (`Vector <https://gymnasium.farama.org/api/vector>`__) for more information about the creation and usage of vectorized environments .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-gymnasium-vectorized] :end-before: [pytorch-end-gymnasium-vectorized] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-gymnasium-vectorized] :end-before: [jax-end-gymnasium-vectorized] .. tab:: Shimmy .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-shimmy] :end-before: [pytorch-end-shimmy] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-shimmy] :end-before: [jax-end-shimmy] .. tab:: DeepMind .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-deepmind] :end-before: [pytorch-end-deepmind] .. .. group-tab:: |_4| |jax| |_4| .. .. literalinclude:: ../../snippets/wrapping.py .. :language: python .. :start-after: [jax-start-deepmind] .. :end-before: [jax-end-deepmind] .. tab:: robosuite .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-robosuite] :end-before: [pytorch-end-robosuite] .. .. group-tab:: |_4| |jax| |_4| .. .. literalinclude:: ../../snippets/wrapping.py .. :language: python .. :start-after: [jax-start-robosuite] .. :end-before: [jax-end-robosuite] .. raw:: html <br> API (PyTorch) ------------- .. autofunction:: skrl.envs.wrappers.torch.wrap_env .. raw:: html <br> API (JAX) --------- .. autofunction:: skrl.envs.wrappers.jax.wrap_env .. raw:: html <br> Internal API (PyTorch) ---------------------- .. autoclass:: skrl.envs.wrappers.torch.Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. py:property:: device The device used by the environment If the wrapped environment does not have the ``device`` property, the value of this property will be ``"cuda:0"`` or ``"cpu"`` depending on the device availability .. autoclass:: skrl.envs.wrappers.torch.OmniverseIsaacGymWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.IsaacOrbitWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.IsaacGymPreview3Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.IsaacGymPreview2Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.GymWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.GymnasiumWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.DeepMindWrapper :undoc-members: :show-inheritance: :private-members: _spec_to_space, _observation_to_tensor, _tensor_to_action :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.RobosuiteWrapper :undoc-members: :show-inheritance: :private-members: _spec_to_space, _observation_to_tensor, _tensor_to_action :members: .. automethod:: __init__ .. raw:: html <br> Internal API (JAX) ------------------ .. autoclass:: skrl.envs.wrappers.jax.Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. py:property:: device The device used by the environment If the wrapped environment does not have the ``device`` property, the value of this property will be ``"cuda"`` or ``"cpu"`` depending on the device availability .. autoclass:: skrl.envs.wrappers.jax.OmniverseIsaacGymWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.jax.IsaacOrbitWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.jax.IsaacGymPreview3Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.jax.IsaacGymPreview2Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.jax.GymnasiumWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__
14,676
reStructuredText
30.029598
189
0.474448
Toni-SM/skrl/docs/source/api/agents/sarsa.rst
State Action Reward State Action (SARSA) ======================================== SARSA is a **model-free** **on-policy** algorithm that uses a **tabular** Q-function to handle **discrete** observations and action spaces Paper: `On-Line Q-Learning Using Connectionist Systems <https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.2539>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - action-value function (:math:`Q`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`a \leftarrow \pi_{Q[s,a]}(s) \qquad` where :math:`\; a \leftarrow \begin{cases} a \in_R A & x < \epsilon \\ \underset{a}{\arg\max} \; Q[s] & x \geq \epsilon \end{cases} \qquad` for :math:`\; x \leftarrow U(0,1)` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# compute next actions` | :math:`a' \leftarrow \pi_{Q[s,a]}(s') \qquad` :gray:`# the only difference with Q-learning` | :green:`# update Q-table` | :math:`Q[s,a] \leftarrow Q[s,a] \;+` :guilabel:`learning_rate` :math:`(r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q[s',a'] - Q[s,a])` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-sarsa] :end-before: [torch-end-sarsa] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/sarsa/sarsa.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Dict - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 table. This table (model) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_{Q[s,a]}(s)` - Policy (:math:`\epsilon`-greedy) - :literal:`"policy"` - observation - action - :ref:`Tabular <models_tabular>` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.sarsa.SARSA_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.sarsa.SARSA :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
3,534
reStructuredText
22.104575
220
0.552349
Toni-SM/skrl/docs/source/api/agents/cem.rst
Cross-Entropy Method (CEM) ========================== .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - loss (:math:`L`) .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`a \leftarrow \pi_\theta(s)` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# sample all memory` | :math:`s, a, r, s', d \leftarrow` states, actions, rewards, next_states, dones | :green:`# compute discounted return threshold` | :math:`[G] \leftarrow \sum_{t=0}^{E-1}` :guilabel:`discount_factor`:math:`^{t} \, r_t` for each episode | :math:`G_{_{bound}} \leftarrow q_{th_{quantile}}([G])` at the given :guilabel:`percentile` | :green:`# get elite states and actions` | :math:`s_{_{elite}} \leftarrow s[G \geq G_{_{bound}}]` | :math:`a_{_{elite}} \leftarrow a[G \geq G_{_{bound}}]` | :green:`# compute scores for the elite states` | :math:`scores \leftarrow \theta(s_{_{elite}})` | :green:`# compute policy loss` | :math:`L_{\pi_\theta} \leftarrow -\sum_{i=1}^{N} a_{_{elite}} \log(scores)` | :green:`# optimization step` | reset :math:`\text{optimizer}_\theta` | :math:`\nabla_{\theta} L_{\pi_\theta}` | step :math:`\text{optimizer}_\theta` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\theta (\text{optimizer}_\theta)` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-cem] :end-before: [torch-end-cem] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-cem] :end-before: [jax-end-cem] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/cem/cem.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 discrete function approximator. This function approximator (model) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Categorical <models_categorical>` / |br| :ref:`Multi-Categorical <models_multicategorical>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - RNN support - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.cem.CEM_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.cem.CEM :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.cem.CEM_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.cem.CEM :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
4,839
reStructuredText
21.830189
206
0.549907
Toni-SM/skrl/docs/source/api/agents/ddqn.rst
Double Deep Q-Network (DDQN) ============================ DDQN is a **model-free**, **off-policy** algorithm that relies on double Q-learning to avoid the overestimation of action-values introduced by DQN Paper: `Deep Reinforcement Learning with Double Q-Learning <https://ojs.aaai.org/index.php/AAAI/article/view/10295>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`\epsilon \leftarrow \epsilon_{_{final}} + (\epsilon_{_{initial}} - \epsilon_{_{final}}) \; e^{-1 \; \frac{\text{timestep}}{\epsilon_{_{timesteps}}}}` | :math:`a \leftarrow \begin{cases} a \in_R A & x < \epsilon \\ \underset{a}{\arg\max} \; Q_\phi(s) & x \geq \epsilon \end{cases} \qquad` for :math:`\; x \leftarrow U(0,1)` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# sample a batch from memory` | [:math:`s, a, r, s', d`] :math:`\leftarrow` states, actions, rewards, next_states, dones of size :guilabel:`batch_size` | :green:`# gradient steps` | **FOR** each gradient step up to :guilabel:`gradient_steps` **DO** | :green:`# compute target values` | :math:`Q' \leftarrow Q_{\phi_{target}}(s')` | :math:`Q_{_{target}} \leftarrow Q'[\underset{a}{\arg\max} \; Q_\phi(s')] \qquad` :gray:`# the only difference with DQN` | :math:`y \leftarrow r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q_{_{target}}` | :green:`# compute Q-network loss` | :math:`Q \leftarrow Q_\phi(s)[a]` | :math:`{Loss}_{Q_\phi} \leftarrow \frac{1}{N} \sum_{i=1}^N (Q - y)^2` | :green:`# optimize Q-network` | :math:`\nabla_{\phi} {Loss}_{Q_\phi}` | :green:`# update target network` | **IF** it's time to update target network **THEN** | :math:`\phi_{target} \leftarrow` :guilabel:`polyak` :math:`\phi + (1 \;-` :guilabel:`polyak` :math:`) \phi_{target}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\phi (\text{optimizer}_\phi)` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-ddqn] :end-before: [torch-end-ddqn] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-ddqn] :end-before: [jax-end-ddqn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/dqn/ddqn.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 2 deterministic function approximators. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`Q_\phi(s, a)` - Q-network - :literal:`"q_network"` - observation - action - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{\phi_{target}}(s, a)` - Target Q-network - :literal:`"target_q_network"` - observation - action - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.dqn.DDQN_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.dqn.DDQN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.dqn.DDQN_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.dqn.DDQN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
5,607
reStructuredText
24.375566
215
0.551097
Toni-SM/skrl/docs/source/api/agents/a2c.rst
Advantage Actor Critic (A2C) ============================ A2C (synchronous version of A3C) is a **model-free**, **stochastic** **on-policy** **policy gradient** algorithm Paper: `Asynchronous Methods for Deep Reinforcement Learning <https://arxiv.org/abs/1602.01783>`_ .. raw:: html <br><hr> Algorithm --------- .. note:: This algorithm implementation relies on the existence of parallel environments instead of parallel actor-learners .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`), value function approximator (:math:`V_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - values (:math:`V`), advantages (:math:`A`), returns (:math:`R`) | - log probabilities (:math:`logp`) | - loss (:math:`L`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V_{_{last}}') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | **IF** :math:`i` is not the last row of :math:`r` **THEN** | :math:`V_i' = V_{i+1}` | **ELSE** | :math:`V_i' \leftarrow V_{_{last}}'` | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`\neg d_i \; (V_i' \, -` :guilabel:`lambda` :math:`adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`_update(...)` | :green:`# compute returns and advantages` | :math:`V_{_{last}}' \leftarrow V_\phi(s')` | :math:`R, A \leftarrow f_{GAE}(r, d, V, V_{_{last}}')` | :green:`# sample mini-batches from memory` | [[:math:`s, a, logp, V, R, A`]] :math:`\leftarrow` states, actions, log_prob, values, returns, advantages | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, a, logp, V, R, A`] up to :guilabel:`mini_batches` **DO** | :math:`logp' \leftarrow \pi_\theta(s, a)` | :green:`# compute entropy loss` | **IF** entropy computation is enabled **THEN** | :math:`{L}_{entropy} \leftarrow \, -` :guilabel:`entropy_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N \pi_{\theta_{entropy}}` | **ELSE** | :math:`{L}_{entropy} \leftarrow 0` | :green:`# compute policy loss` | :math:`L_{\pi_\theta} \leftarrow -\frac{1}{N} \sum_{i=1}^N A \; ratio` | :green:`# compute value loss` | :math:`V_{_{predicted}} \leftarrow V_\phi(s)` | :math:`L_{V_\phi} \leftarrow \frac{1}{N} \sum_{i=1}^N (R - V_{_{predicted}})^2` | :green:`# optimization step` | reset :math:`\text{optimizer}_{\theta, \phi}` | :math:`\nabla_{\theta, \, \phi} (L_{\pi_\theta} + {L}_{entropy} + L_{V_\phi})` | :math:`\text{clip}(\lVert \nabla_{\theta, \, \phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_{\theta, \phi}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_{\theta} (\text{optimizer}_{\theta})` | step :math:`\text{scheduler}_{\phi} (\text{optimizer}_{\phi})` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`a2c_rnn.py`) to maintain the readability of the standard implementation (:literal:`a2c.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-a2c] :end-before: [torch-end-a2c] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-a2c] :end-before: [jax-end-a2c] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-a2c-rnn] :end-before: [torch-end-a2c-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/a2c/a2c.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic (discrete or continuous) and 1 deterministic function approximator. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Categorical <models_categorical>` / |br| :ref:`Multi-Categorical <models_multicategorical>` / |br| :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - for Policy and Value - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.a2c.A2C_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.a2c.A2C :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.a2c.A2C_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.a2c.A2C_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.a2c.A2C :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
8,087
reStructuredText
28.198556
256
0.558427
Toni-SM/skrl/docs/source/api/agents/q_learning.rst
Q-learning ========== Q-learning is a **model-free** **off-policy** algorithm that uses a **tabular** Q-function to handle **discrete** observations and action spaces Paper: `Learning from delayed rewards <https://www.academia.edu/3294050/Learning_from_delayed_rewards>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - action-value function (:math:`Q`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`a \leftarrow \pi_{Q[s,a]}(s) \qquad` where :math:`\; a \leftarrow \begin{cases} a \in_R A & x < \epsilon \\ \underset{a}{\arg\max} \; Q[s] & x \geq \epsilon \end{cases} \qquad` for :math:`\; x \leftarrow U(0,1)` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# compute next actions` | :math:`a' \leftarrow \underset{a}{\arg\max} \; Q[s'] \qquad` :gray:`# the only difference with SARSA` | :green:`# update Q-table` | :math:`Q[s,a] \leftarrow Q[s,a] \;+` :guilabel:`learning_rate` :math:`(r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q[s',a'] - Q[s,a])` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-q-learning] :end-before: [torch-end-q-learning] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/q_learning/q_learning.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Dict - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 table. This table (model) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_{Q[s,a]}(s)` - Policy (:math:`\epsilon`-greedy) - :literal:`"policy"` - observation - action - :ref:`Tabular <models_tabular>` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.q_learning.Q_LEARNING_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.q_learning.Q_LEARNING :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
3,511
reStructuredText
21.954248
220
0.558246
Toni-SM/skrl/docs/source/api/agents/sac.rst
Soft Actor-Critic (SAC) ======================= SAC is a **model-free**, **stochastic** **off-policy** **actor-critic** algorithm that uses double Q-learning (like TD3) and **entropy** regularization to maximize a trade-off between exploration and exploitation Paper: `Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor <https://arxiv.org/abs/1801.01290>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`), critic function approximator (:math:`Q_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - log probabilities (:math:`logp`), entropy coefficient (:math:`\alpha`) | - loss (:math:`L`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# sample a batch from memory` | [:math:`s, a, r, s', d`] :math:`\leftarrow` states, actions, rewards, next_states, dones of size :guilabel:`batch_size` | :green:`# gradient steps` | **FOR** each gradient step up to :guilabel:`gradient_steps` **DO** | :green:`# compute target values` | :math:`a',\; logp' \leftarrow \pi_\theta(s')` | :math:`Q_{1_{target}} \leftarrow Q_{{\phi 1}_{target}}(s', a')` | :math:`Q_{2_{target}} \leftarrow Q_{{\phi 2}_{target}}(s', a')` | :math:`Q_{_{target}} \leftarrow \text{min}(Q_{1_{target}}, Q_{2_{target}}) - \alpha \; logp'` | :math:`y \leftarrow r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q_{_{target}}` | :green:`# compute critic loss` | :math:`Q_1 \leftarrow Q_{\phi 1}(s, a)` | :math:`Q_2 \leftarrow Q_{\phi 2}(s, a)` | :math:`L_{Q_\phi} \leftarrow 0.5 \; (\frac{1}{N} \sum_{i=1}^N (Q_1 - y)^2 + \frac{1}{N} \sum_{i=1}^N (Q_2 - y)^2)` | :green:`# optimization step (critic)` | reset :math:`\text{optimizer}_\phi` | :math:`\nabla_{\phi} L_{Q_\phi}` | :math:`\text{clip}(\lVert \nabla_{\phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\phi` | :green:`# compute policy (actor) loss` | :math:`a,\; logp \leftarrow \pi_\theta(s)` | :math:`Q_1 \leftarrow Q_{\phi 1}(s, a)` | :math:`Q_2 \leftarrow Q_{\phi 2}(s, a)` | :math:`L_{\pi_\theta} \leftarrow \frac{1}{N} \sum_{i=1}^N (\alpha \; logp - \text{min}(Q_1, Q_2))` | :green:`# optimization step (policy)` | reset :math:`\text{optimizer}_\theta` | :math:`\nabla_{\theta} L_{\pi_\theta}` | :math:`\text{clip}(\lVert \nabla_{\theta} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\theta` | :green:`# entropy learning` | **IF** :guilabel:`learn_entropy` is enabled **THEN** | :green:`# compute entropy loss` | :math:`{L}_{entropy} \leftarrow - \frac{1}{N} \sum_{i=1}^N (log(\alpha) \; (logp + \alpha_{Target}))` | :green:`# optimization step (entropy)` | reset :math:`\text{optimizer}_\alpha` | :math:`\nabla_{\alpha} {L}_{entropy}` | step :math:`\text{optimizer}_\alpha` | :green:`# compute entropy coefficient` | :math:`\alpha \leftarrow e^{log(\alpha)}` | :green:`# update target networks` | :math:`{\phi 1}_{target} \leftarrow` :guilabel:`polyak` :math:`{\phi 1} + (1 \;-` :guilabel:`polyak` :math:`) {\phi 1}_{target}` | :math:`{\phi 2}_{target} \leftarrow` :guilabel:`polyak` :math:`{\phi 2} + (1 \;-` :guilabel:`polyak` :math:`) {\phi 2}_{target}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\theta (\text{optimizer}_\theta)` | step :math:`\text{scheduler}_\phi (\text{optimizer}_\phi)` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`sac_rnn.py`) to maintain the readability of the standard implementation (:literal:`sac.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-sac] :end-before: [torch-end-sac] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-sac] :end-before: [jax-end-sac] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-sac-rnn] :end-before: [torch-end-sac-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/sac/sac.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic and 4 deterministic function approximators. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy (actor) - :literal:`"policy"` - observation - action - :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`Q_{\phi 1}(s, a)` - Q1-network (critic 1) - :literal:`"critic_1"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{\phi 2}(s, a)` - Q2-network (critic 2) - :literal:`"critic_2"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{{\phi 1}_{target}}(s, a)` - Target Q1-network - :literal:`"target_critic_1"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{{\phi 2}_{target}}(s, a)` - Target Q2-network - :literal:`"target_critic_2"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.sac.SAC_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.sac.SAC :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.sac.SAC_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.sac.SAC_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.sac.SAC :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
8,896
reStructuredText
29.67931
232
0.556767
Toni-SM/skrl/docs/source/api/agents/trpo.rst
Trust Region Policy Optimization (TRPO) ======================================= TRPO is a **model-free**, **stochastic** **on-policy** **policy gradient** algorithm that deploys an iterative procedure to optimize the policy, with guaranteed monotonic improvement Paper: `Trust Region Policy Optimization <https://arxiv.org/abs/1502.05477>`_ .. raw:: html <br><hr> Algorithm --------- | For each iteration do | :math:`\bullet \;` Collect, in a rollout memory, a set of states :math:`s`, actions :math:`a`, rewards :math:`r`, dones :math:`d`, log probabilities :math:`logp` and values :math:`V` on policy using :math:`\pi_\theta` and :math:`V_\phi` | :math:`\bullet \;` Estimate returns :math:`R` and advantages :math:`A` using Generalized Advantage Estimation (GAE(:math:`\lambda`)) from the collected data [:math:`r, d, V`] | :math:`\bullet \;` Compute the surrogate objective (policy loss) gradient :math:`g` and the Hessian :math:`H` of :math:`KL` divergence with respect to the policy parameters :math:`\theta` | :math:`\bullet \;` Compute the search direction :math:`\; x \approx H^{-1}g \;` using the conjugate gradient method | :math:`\bullet \;` Compute the maximal (full) step length :math:`\; \beta = \sqrt{\dfrac{2 \delta}{x^T H x}} x \;` where :math:`\delta` is the desired (maximum) :math:`KL` divergence and :math:`\; \sqrt{\frac{2 \delta}{x^T H x}} \;` is the step size | :math:`\bullet \;` Perform a backtracking line search with exponential decay to find the final policy update :math:`\; \theta_{new} = \theta + \alpha \; \beta \;` ensuring improvement of the surrogate objective and satisfaction of the :math:`KL` divergence constraint | :math:`\bullet \;` Update the value function :math:`V_\phi` using the computed returns :math:`R` .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V_{_{last}}') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | **IF** :math:`i` is not the last row of :math:`r` **THEN** | :math:`V_i' = V_{i+1}` | **ELSE** | :math:`V_i' \leftarrow V_{_{last}}'` | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`\neg d_i \; (V_i' \, -` :guilabel:`lambda` :math:`adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`surrogate_loss(...)` | :blue:`def` :math:`\;f_{Loss} (\pi_\theta, s, a, logp, A) \;\rightarrow\; L_{\pi_\theta}:` | :math:`logp' \leftarrow \pi_\theta(s, a)` | :math:`L_{\pi_\theta} \leftarrow \frac{1}{N} \sum_{i=1}^N A \; e^{(logp' - logp)}` | | :literal:`conjugate_gradient(...)` (See `conjugate gradient method <https://en.wikipedia.org/wiki/Conjugate_gradient_method#As_an_iterative_method>`_) | :blue:`def` :math:`\;f_{CG} (\pi_\theta, s, b) \;\rightarrow\; x:` | :math:`x \leftarrow \text{zeros}(b)` | :math:`r \leftarrow b` | :math:`p \leftarrow b` | :math:`rr_{old} \leftarrow r \cdot r` | **FOR** each iteration up to :guilabel:`conjugate_gradient_steps` **DO** | :math:`\alpha \leftarrow \dfrac{rr_{old}}{p \cdot f_{Ax}(\pi_\theta, s, b)}` | :math:`x \leftarrow x + \alpha \; p` | :math:`r \leftarrow r - \alpha \; f_{Ax}(\pi_\theta, s)` | :math:`rr_{new} \leftarrow r \cdot r` | **IF** :math:`rr_{new} <` residual tolerance **THEN** | **BREAK LOOP** | :math:`p \leftarrow r + \dfrac{rr_{new}}{rr_{old}} \; p` | :math:`rr_{old} \leftarrow rr_{new}` | | :literal:`fisher_vector_product(...)` (See `fisher vector product in TRPO <https://www.telesens.co/2018/06/09/efficiently-computing-the-fisher-vector-product-in-trpo/>`_) | :blue:`def` :math:`\;f_{Ax} (\pi_\theta, s, v) \;\rightarrow\; hv:` | :math:`kl \leftarrow f_{KL}(\pi_\theta, \pi_\theta, s)` | :math:`g_{kl} \leftarrow \nabla_\theta kl` | :math:`g_{kl_{flat}} \leftarrow \text{flatten}(g_{kl})` | :math:`g_{hv} \leftarrow \nabla_\theta (g_{kl_{flat}} \; v)` | :math:`g_{hv_{flat}} \leftarrow \text{flatten}(g_{hv})` | :math:`hv \leftarrow g_{hv_{flat}} +` :guilabel:`damping` :math:`v` | | :literal:`kl_divergence(...)` (See `Kullback–Leibler divergence for normal distribution <https://en.wikipedia.org/wiki/Normal_distribution#Other_properties>`_) | :blue:`def` :math:`\;f_{KL} (\pi_{\theta 1}, \pi_{\theta 2}, s) \;\rightarrow\; kl:` | :math:`\mu_1, \log\sigma_1 \leftarrow \pi_{\theta 1}(s)` | :math:`\mu_2, \log\sigma_2 \leftarrow \pi_{\theta 2}(s)` | :math:`kl \leftarrow \log\sigma_1 - \log\sigma_2 + \frac{1}{2} \dfrac{(e^{\log\sigma_1})^2 + (\mu_1 - \mu_2)^2}{(e^{\log\sigma_2})^2} - \frac{1}{2}` | :math:`kl \leftarrow \frac{1}{N} \sum_{i=1}^N \, (\sum_{dim} kl)` | | :literal:`_update(...)` | :green:`# compute returns and advantages` | :math:`V_{_{last}}' \leftarrow V_\phi(s')` | :math:`R, A \leftarrow f_{GAE}(r, d, V, V_{_{last}}')` | :green:`# sample all from memory` | [[:math:`s, a, logp, A`]] :math:`\leftarrow` states, actions, log_prob, advantages | :green:`# compute policy loss gradient` | :math:`L_{\pi_\theta} \leftarrow f_{Loss}(\pi_\theta, s, a, logp, A)` | :math:`g \leftarrow \nabla_{\theta} L_{\pi_\theta}` | :math:`g_{_{flat}} \leftarrow \text{flatten}(g)` | :green:`# compute the search direction using the conjugate gradient algorithm` | :math:`search_{direction} \leftarrow f_{CG}(\pi_\theta, s, g_{_{flat}})` | :green:`# compute step size and full step` | :math:`xHx \leftarrow search_{direction} \; f_{Ax}(\pi_\theta, s, search_{direction})` | :math:`step_{size} \leftarrow \sqrt{\dfrac{2 \, \delta}{xHx}} \qquad` with :math:`\; \delta` as :guilabel:`max_kl_divergence` | :math:`\beta \leftarrow step_{size} \; search_{direction}` | :green:`# backtracking line search` | :math:`flag_{restore} \leftarrow \text{True}` | :math:`\pi_{\theta_{backup}} \leftarrow \pi_\theta` | :math:`\theta \leftarrow \text{get_parameters}(\pi_\theta)` | :math:`I_{expected} \leftarrow g_{_{flat}} \; \beta` | **FOR** :math:`\alpha \leftarrow (0.5` :guilabel:`step_fraction` :math:`)^i \;` with :math:`i = 0, 1, 2, ...` up to :guilabel:`max_backtrack_steps` **DO** | :math:`\theta_{new} \leftarrow \theta + \alpha \; \beta` | :math:`\pi_\theta \leftarrow \text{set_parameters}(\theta_{new})` | :math:`I_{expected} \leftarrow \alpha \; I_{expected}` | :math:`kl \leftarrow f_{KL}(\pi_{\theta_{backup}}, \pi_\theta, s)` | :math:`L \leftarrow f_{Loss}(\pi_\theta, s, a, logp, A)` | **IF** :math:`kl < \delta` **AND** :math:`\dfrac{L - L_{\pi_\theta}}{I_{expected}} >` :guilabel:`accept_ratio` **THEN** | :math:`flag_{restore} \leftarrow \text{False}` | **BREAK LOOP** | **IF** :math:`flag_{restore}` **THEN** | :math:`\pi_\theta \leftarrow \pi_{\theta_{backup}}` | :green:`# sample mini-batches from memory` | [[:math:`s, R`]] :math:`\leftarrow` states, returns | :green:`# learning epochs` | **FOR** each learning epoch up to :guilabel:`learning_epochs` **DO** | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, R`] up to :guilabel:`mini_batches` **DO** | :green:`# compute value loss` | :math:`V' \leftarrow V_\phi(s)` | :math:`L_{V_\phi} \leftarrow` :guilabel:`value_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N (R - V')^2` | :green:`# optimization step (value)` | reset :math:`\text{optimizer}_\phi` | :math:`\nabla_{\phi} L_{V_\phi}` | :math:`\text{clip}(\lVert \nabla_{\phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\phi` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\phi(\text{optimizer}_\phi)` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`trpo_rnn.py`) to maintain the readability of the standard implementation (:literal:`trpo.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-trpo] :end-before: [torch-end-trpo] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-trpo-rnn] :end-before: [torch-end-trpo-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/trpo/trpo.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic and 1 deterministic function approximator. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.trpo.TRPO_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.trpo.TRPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.trpo.TRPO_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
12,114
reStructuredText
38.080645
273
0.577431
Toni-SM/skrl/docs/source/api/agents/rpo.rst
Robust Policy Optimization (RPO) ================================ RPO is a **model-free**, **stochastic** **on-policy** **policy gradient** algorithm that adds a uniform random perturbation to a base parameterized distribution to help the agent maintain a certain level of stochasticity throughout the training process Paper: `Robust Policy Optimization in Deep Reinforcement Learning <https://arxiv.org/abs/2212.07536>`_ .. raw:: html <br><hr> Algorithm --------- .. note:: This algorithm is built on top of the PPO algorithm and simply adds the :literal:`alpha` hyperparameter to the policy input dictionary. It is the responsibility of the user to make use of this hyper-parameter to modify the parameterized distribution. .. tabs:: .. tab:: Within the RPO agent .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 9-11 :start-after: [torch-start-rpo-with-rpo] :end-before: [torch-end-rpo-with-rpo] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 10-12 :start-after: [jax-start-rpo-with-rpo] :end-before: [jax-end-rpo-with-rpo] .. tab:: With other agents (e.g. PPO, A2C, TRPO) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 9-11 :start-after: [torch-start-rpo-without-rpo] :end-before: [torch-end-rpo-without-rpo] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 10-12 :start-after: [jax-start-rpo-without-rpo] :end-before: [jax-end-rpo-without-rpo] .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`), value function approximator (:math:`V_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - values (:math:`V`), advantages (:math:`A`), returns (:math:`R`) | - log probabilities (:math:`logp`) | - loss (:math:`L`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V_{_{last}}') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | **IF** :math:`i` is not the last row of :math:`r` **THEN** | :math:`V_i' = V_{i+1}` | **ELSE** | :math:`V_i' \leftarrow V_{_{last}}'` | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`\neg d_i \; (V_i' \, -` :guilabel:`lambda` :math:`adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`_update(...)` | :green:`# compute returns and advantages` | :math:`V_{_{last}}' \leftarrow V_\phi(s')` | :math:`R, A \leftarrow f_{GAE}(r, d, V, V_{_{last}}')` | :green:`# sample mini-batches from memory` | [[:math:`s, a, logp, V, R, A`]] :math:`\leftarrow` states, actions, log_prob, values, returns, advantages | :green:`# learning epochs` | **FOR** each learning epoch up to :guilabel:`learning_epochs` **DO** | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, a, logp, V, R, A`] up to :guilabel:`mini_batches` **DO** | :math:`logp' \leftarrow \pi_\theta(s, a)` | :green:`# compute approximate KL divergence` | :math:`ratio \leftarrow logp' - logp` | :math:`KL_{_{divergence}} \leftarrow \frac{1}{N} \sum_{i=1}^N ((e^{ratio} - 1) - ratio)` | :green:`# early stopping with KL divergence` | **IF** :math:`KL_{_{divergence}} >` :guilabel:`kl_threshold` **THEN** | **BREAK LOOP** | :green:`# compute entropy loss` | **IF** entropy computation is enabled **THEN** | :math:`{L}_{entropy} \leftarrow \, -` :guilabel:`entropy_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N \pi_{\theta_{entropy}}` | **ELSE** | :math:`{L}_{entropy} \leftarrow 0` | :green:`# compute policy loss` | :math:`ratio \leftarrow e^{logp' - logp}` | :math:`L_{_{surrogate}} \leftarrow A \; ratio` | :math:`L_{_{clipped\,surrogate}} \leftarrow A \; \text{clip}(ratio, 1 - c, 1 + c) \qquad` with :math:`c` as :guilabel:`ratio_clip` | :math:`L^{clip}_{\pi_\theta} \leftarrow - \frac{1}{N} \sum_{i=1}^N \min(L_{_{surrogate}}, L_{_{clipped\,surrogate}})` | :green:`# compute value loss` | :math:`V_{_{predicted}} \leftarrow V_\phi(s)` | **IF** :guilabel:`clip_predicted_values` is enabled **THEN** | :math:`V_{_{predicted}} \leftarrow V + \text{clip}(V_{_{predicted}} - V, -c, c) \qquad` with :math:`c` as :guilabel:`value_clip` | :math:`L_{V_\phi} \leftarrow` :guilabel:`value_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N (R - V_{_{predicted}})^2` | :green:`# optimization step` | reset :math:`\text{optimizer}_{\theta, \phi}` | :math:`\nabla_{\theta, \, \phi} (L^{clip}_{\pi_\theta} + {L}_{entropy} + L_{V_\phi})` | :math:`\text{clip}(\lVert \nabla_{\theta, \, \phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_{\theta, \phi}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_{\theta, \phi} (\text{optimizer}_{\theta, \phi})` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`rpo_rnn.py`) to maintain the readability of the standard implementation (:literal:`rpo.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-rpo] :end-before: [torch-end-rpo] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-rpo] :end-before: [jax-end-rpo] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-rpo-rnn] :end-before: [torch-end-rpo-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/rpo/rpo.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 continuous stochastic and 1 deterministic function approximator. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - for Policy and Value - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.rpo.RPO_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.rpo.RPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.rpo.RPO_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.rpo.RPO_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.rpo.RPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
10,821
reStructuredText
31.793939
254
0.539414
Toni-SM/skrl/docs/source/api/agents/dqn.rst
Deep Q-Network (DQN) ==================== DQN is a **model-free**, **off-policy** algorithm that trains a control policies directly from high-dimensional sensory using a deep function approximator to represent the Q-value function Paper: `Playing Atari with Deep Reinforcement Learning <https://arxiv.org/abs/1312.5602>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`\epsilon \leftarrow \epsilon_{_{final}} + (\epsilon_{_{initial}} - \epsilon_{_{final}}) \; e^{-1 \; \frac{\text{timestep}}{\epsilon_{_{timesteps}}}}` | :math:`a \leftarrow \begin{cases} a \in_R A & x < \epsilon \\ \underset{a}{\arg\max} \; Q_\phi(s) & x \geq \epsilon \end{cases} \qquad` for :math:`\; x \leftarrow U(0,1)` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# sample a batch from memory` | [:math:`s, a, r, s', d`] :math:`\leftarrow` states, actions, rewards, next_states, dones of size :guilabel:`batch_size` | :green:`# gradient steps` | **FOR** each gradient step up to :guilabel:`gradient_steps` **DO** | :green:`# compute target values` | :math:`Q' \leftarrow Q_{\phi_{target}}(s')` | :math:`Q_{_{target}} \leftarrow \underset{a}{\max} \; Q' \qquad` :gray:`# the only difference with DDQN` | :math:`y \leftarrow r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q_{_{target}}` | :green:`# compute Q-network loss` | :math:`Q \leftarrow Q_\phi(s)[a]` | :math:`{Loss}_{Q_\phi} \leftarrow \frac{1}{N} \sum_{i=1}^N (Q - y)^2` | :green:`# optimize Q-network` | :math:`\nabla_{\phi} {Loss}_{Q_\phi}` | :green:`# update target network` | **IF** it's time to update target network **THEN** | :math:`\phi_{target} \leftarrow` :guilabel:`polyak` :math:`\phi + (1 \;-` :guilabel:`polyak` :math:`) \phi_{target}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\phi (\text{optimizer}_\phi)` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-dqn] :end-before: [torch-end-dqn] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-dqn] :end-before: [jax-end-dqn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/dqn/dqn.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 2 deterministic function approximators. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`Q_\phi(s, a)` - Q-network - :literal:`"q_network"` - observation - action - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{\phi_{target}}(s, a)` - Target Q-network - :literal:`"target_q_network"` - observation - action - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.dqn.DQN_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.dqn.DQN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.dqn.DQN_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.dqn.DQN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
5,582
reStructuredText
24.262443
215
0.552132
Toni-SM/skrl/docs/source/api/agents/amp.rst
Adversarial Motion Priors (AMP) =============================== AMP is a **model-free**, **stochastic** **on-policy** **policy gradient** algorithm (trained using a combination of GAIL and PPO) for adversarial learning of physics-based character animation. It enables characters to imitate diverse behaviors from large unstructured datasets, without the need for motion planners or other mechanisms for clip selection Paper: `AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control <https://arxiv.org/abs/2104.02180>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy (:math:`\pi_\theta`), value (:math:`V_\phi`) and discriminator (:math:`D_\psi`) function approximators | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - values (:math:`V`), next values (:math:`V'`), advantages (:math:`A`), returns (:math:`R`) | - log probabilities (:math:`logp`) | - loss (:math:`L`) | - reference motion dataset (:math:`M`), AMP replay buffer (:math:`B`) | - AMP states (:math:`s_{_{AMP}}`), reference motion states (:math:`s_{_{AMP}}^{^M}`), AMP states from replay buffer (:math:`s_{_{AMP}}^{^B}`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`(V' \, +` :guilabel:`lambda` :math:`\neg d_i \; adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`_update(...)` | :green:`# update dataset of reference motions` | collect reference motions of size :guilabel:`amp_batch_size` :math:`\rightarrow\;` :math:`\text{append}(M)` | :green:`# compute combined rewards` | :math:`r_D \leftarrow -log(\text{max}( 1 - \hat{y}(D_\psi(s_{_{AMP}})), \, 10^{-4})) \qquad` with :math:`\; \hat{y}(x) = \dfrac{1}{1 + e^{-x}}` | :math:`r' \leftarrow` :guilabel:`task_reward_weight` :math:`r \, +` :guilabel:`style_reward_weight` :guilabel:`discriminator_reward_scale` :math:`r_D` | :green:`# compute returns and advantages` | :math:`R, A \leftarrow f_{GAE}(r', d, V, V')` | :green:`# sample mini-batches from memory` | [[:math:`s, a, logp, V, R, A, s_{_{AMP}}`]] :math:`\leftarrow` states, actions, log_prob, values, returns, advantages, AMP states | [[:math:`s_{_{AMP}}^{^M}`]] :math:`\leftarrow` AMP states from :math:`M` | **IF** :math:`B` is not empty **THEN** | [[:math:`s_{_{AMP}}^{^B}`]] :math:`\leftarrow` AMP states from :math:`B` | **ELSE** | [[:math:`s_{_{AMP}}^{^B}`]] :math:`\leftarrow` [[:math:`s_{_{AMP}}`]] | :green:`# learning epochs` | **FOR** each learning epoch up to :guilabel:`learning_epochs` **DO** | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, a, logp, V, R, A, s_{_{AMP}}, s_{_{AMP}}^{^B}, s_{_{AMP}}^{^M}`] up to :guilabel:`mini_batches` **DO** | :math:`logp' \leftarrow \pi_\theta(s, a)` | :green:`# compute entropy loss` | **IF** entropy computation is enabled **THEN** | :math:`{L}_{entropy} \leftarrow \, -` :guilabel:`entropy_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N \pi_{\theta_{entropy}}` | **ELSE** | :math:`{L}_{entropy} \leftarrow 0` | :green:`# compute policy loss` | :math:`ratio \leftarrow e^{logp' - logp}` | :math:`L_{_{surrogate}} \leftarrow A \; ratio` | :math:`L_{_{clipped\,surrogate}} \leftarrow A \; \text{clip}(ratio, 1 - c, 1 + c) \qquad` with :math:`c` as :guilabel:`ratio_clip` | :math:`L^{clip}_{\pi_\theta} \leftarrow - \frac{1}{N} \sum_{i=1}^N \min(L_{_{surrogate}}, L_{_{clipped\,surrogate}})` | :green:`# compute value loss` | :math:`V_{_{predicted}} \leftarrow V_\phi(s)` | **IF** :guilabel:`clip_predicted_values` is enabled **THEN** | :math:`V_{_{predicted}} \leftarrow V + \text{clip}(V_{_{predicted}} - V, -c, c) \qquad` with :math:`c` as :guilabel:`value_clip` | :math:`L_{V_\phi} \leftarrow` :guilabel:`value_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N (R - V_{_{predicted}})^2` | :green:`# compute discriminator loss` | :math:`{logit}_{_{AMP}} \leftarrow D_\psi(s_{_{AMP}}) \qquad` with :math:`s_{_{AMP}}` of size :guilabel:`discriminator_batch_size` | :math:`{logit}_{_{AMP}}^{^B} \leftarrow D_\psi(s_{_{AMP}}^{^B}) \qquad` with :math:`s_{_{AMP}}^{^B}` of size :guilabel:`discriminator_batch_size` | :math:`{logit}_{_{AMP}}^{^M} \leftarrow D_\psi(s_{_{AMP}}^{^M}) \qquad` with :math:`s_{_{AMP}}^{^M}` of size :guilabel:`discriminator_batch_size` | :green:`# discriminator prediction loss` | :math:`L_{D_\psi} \leftarrow \dfrac{1}{2}(BCE({logit}_{_{AMP}}` ++ :math:`{logit}_{_{AMP}}^{^B}, \, 0) + BCE({logit}_{_{AMP}}^{^M}, \, 1))` | with :math:`\; BCE(x,y)=-\frac{1}{N} \sum_{i=1}^N [y \; log(\hat{y}) + (1-y) \, log(1-\hat{y})] \;` and :math:`\; \hat{y} = \dfrac{1}{1 + e^{-x}}` | :green:`# discriminator logit regularization` | :math:`L_{D_\psi} \leftarrow L_{D_\psi} +` :guilabel:`discriminator_logit_regularization_scale` :math:`\sum_{i=1}^N \text{flatten}(\psi_w[-1])^2` | :green:`# discriminator gradient penalty` | :math:`L_{D_\psi} \leftarrow L_{D_\psi} +` :guilabel:`discriminator_gradient_penalty_scale` :math:`\frac{1}{N} \sum_{i=1}^N \sum (\nabla_\psi {logit}_{_{AMP}}^{^M})^2` | :green:`# discriminator weight decay` | :math:`L_{D_\psi} \leftarrow L_{D_\psi} +` :guilabel:`discriminator_weight_decay_scale` :math:`\sum_{i=1}^N \text{flatten}(\psi_w)^2` | :green:`# optimization step` | reset :math:`\text{optimizer}_{\theta, \phi, \psi}` | :math:`\nabla_{\theta, \, \phi, \, \psi} (L^{clip}_{\pi_\theta} + {L}_{entropy} + L_{V_\phi} + L_{D_\psi})` | :math:`\text{clip}(\lVert \nabla_{\theta, \, \phi, \, \psi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_{\theta, \phi, \psi}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_{\theta, \phi, \psi} (\text{optimizer}_{\theta, \phi, \psi})` | :green:`# update AMP repaly buffer` | :math:`s_{_{AMP}} \rightarrow\;` :math:`\text{append}(B)` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-amp] :end-before: [torch-end-amp] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/amp/amp.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: AMP observation - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\square` - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic (continuous) and 2 deterministic function approximators. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`D_\psi(s_{_{AMP}})` - Discriminator - :literal:`"discriminator"` - AMP observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.amp.AMP_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.amp.AMP :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
10,085
reStructuredText
38.245136
353
0.557561
Toni-SM/skrl/docs/source/api/agents/ppo.rst
Proximal Policy Optimization (PPO) ================================== PPO is a **model-free**, **stochastic** **on-policy** **policy gradient** algorithm that alternates between sampling data through interaction with the environment, and optimizing a *surrogate* objective function while avoiding that the new policy does not move too far away from the old one Paper: `Proximal Policy Optimization Algorithms <https://arxiv.org/abs/1707.06347>`_ .. raw:: html <br><hr> Algorithm --------- | For each iteration do: | :math:`\bullet \;` Collect, in a rollout memory, a set of states :math:`s`, actions :math:`a`, rewards :math:`r`, dones :math:`d`, log probabilities :math:`logp` and values :math:`V` on policy using :math:`\pi_\theta` and :math:`V_\phi` | :math:`\bullet \;` Estimate returns :math:`R` and advantages :math:`A` using Generalized Advantage Estimation (GAE(:math:`\lambda`)) from the collected data [:math:`r, d, V`] | :math:`\bullet \;` Compute the entropy loss :math:`{L}_{entropy}` | :math:`\bullet \;` Compute the clipped surrogate objective (policy loss) with :math:`ratio` as the probability ratio between the action under the current policy and the action under the previous policy: :math:`L^{clip}_{\pi_\theta} = \mathbb{E}[\min(A \; ratio, A \; \text{clip}(ratio, 1-c, 1+c))]` | :math:`\bullet \;` Compute the value loss :math:`L_{V_\phi}` as the mean squared error (MSE) between the predicted values :math:`V_{_{predicted}}` and the estimated returns :math:`R` | :math:`\bullet \;` Optimize the total loss :math:`L = L^{clip}_{\pi_\theta} - c_1 \, L_{V_\phi} + c_2 \, {L}_{entropy}` .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`), value function approximator (:math:`V_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - values (:math:`V`), advantages (:math:`A`), returns (:math:`R`) | - log probabilities (:math:`logp`) | - loss (:math:`L`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V_{_{last}}') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | **IF** :math:`i` is not the last row of :math:`r` **THEN** | :math:`V_i' = V_{i+1}` | **ELSE** | :math:`V_i' \leftarrow V_{_{last}}'` | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`\neg d_i \; (V_i' \, -` :guilabel:`lambda` :math:`adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`_update(...)` | :green:`# compute returns and advantages` | :math:`V_{_{last}}' \leftarrow V_\phi(s')` | :math:`R, A \leftarrow f_{GAE}(r, d, V, V_{_{last}}')` | :green:`# sample mini-batches from memory` | [[:math:`s, a, logp, V, R, A`]] :math:`\leftarrow` states, actions, log_prob, values, returns, advantages | :green:`# learning epochs` | **FOR** each learning epoch up to :guilabel:`learning_epochs` **DO** | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, a, logp, V, R, A`] up to :guilabel:`mini_batches` **DO** | :math:`logp' \leftarrow \pi_\theta(s, a)` | :green:`# compute approximate KL divergence` | :math:`ratio \leftarrow logp' - logp` | :math:`KL_{_{divergence}} \leftarrow \frac{1}{N} \sum_{i=1}^N ((e^{ratio} - 1) - ratio)` | :green:`# early stopping with KL divergence` | **IF** :math:`KL_{_{divergence}} >` :guilabel:`kl_threshold` **THEN** | **BREAK LOOP** | :green:`# compute entropy loss` | **IF** entropy computation is enabled **THEN** | :math:`{L}_{entropy} \leftarrow \, -` :guilabel:`entropy_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N \pi_{\theta_{entropy}}` | **ELSE** | :math:`{L}_{entropy} \leftarrow 0` | :green:`# compute policy loss` | :math:`ratio \leftarrow e^{logp' - logp}` | :math:`L_{_{surrogate}} \leftarrow A \; ratio` | :math:`L_{_{clipped\,surrogate}} \leftarrow A \; \text{clip}(ratio, 1 - c, 1 + c) \qquad` with :math:`c` as :guilabel:`ratio_clip` | :math:`L^{clip}_{\pi_\theta} \leftarrow - \frac{1}{N} \sum_{i=1}^N \min(L_{_{surrogate}}, L_{_{clipped\,surrogate}})` | :green:`# compute value loss` | :math:`V_{_{predicted}} \leftarrow V_\phi(s)` | **IF** :guilabel:`clip_predicted_values` is enabled **THEN** | :math:`V_{_{predicted}} \leftarrow V + \text{clip}(V_{_{predicted}} - V, -c, c) \qquad` with :math:`c` as :guilabel:`value_clip` | :math:`L_{V_\phi} \leftarrow` :guilabel:`value_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N (R - V_{_{predicted}})^2` | :green:`# optimization step` | reset :math:`\text{optimizer}_{\theta, \phi}` | :math:`\nabla_{\theta, \, \phi} (L^{clip}_{\pi_\theta} + {L}_{entropy} + L_{V_\phi})` | :math:`\text{clip}(\lVert \nabla_{\theta, \, \phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_{\theta, \phi}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_{\theta, \phi} (\text{optimizer}_{\theta, \phi})` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`ppo_rnn.py`) to maintain the readability of the standard implementation (:literal:`ppo.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-ppo] :end-before: [torch-end-ppo] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-ppo] :end-before: [jax-end-ppo] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-ppo-rnn] :end-before: [torch-end-ppo-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/ppo/ppo.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic (discrete or continuous) and 1 deterministic function approximator. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Categorical <models_categorical>` / |br| :ref:`Multi-Categorical <models_multicategorical>` / |br| :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - for Policy and Value - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.ppo.PPO_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.ppo.PPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.ppo.PPO_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.ppo.PPO_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.ppo.PPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
10,324
reStructuredText
34.238908
304
0.565866
Toni-SM/skrl/docs/source/api/agents/td3.rst
Twin-Delayed DDPG (TD3) ======================= TD3 is a **model-free**, **deterministic** **off-policy** **actor-critic** algorithm (based on DDPG) that relies on double Q-learning, target policy smoothing and delayed policy updates to address the problems introduced by overestimation bias in actor-critic algorithms Paper: `Addressing Function Approximation Error in Actor-Critic Methods <https://arxiv.org/abs/1802.09477>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\mu_\theta`), critic function approximator (:math:`Q_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - loss (:math:`L`) .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`a \leftarrow \mu_\theta(s)` | :math:`noise \leftarrow` sample :guilabel:`noise` | :math:`scale \leftarrow (1 - \text{timestep} \;/` :guilabel:`timesteps` :math:`) \; (` :guilabel:`initial_scale` :math:`-` :guilabel:`final_scale` :math:`) \;+` :guilabel:`final_scale` | :math:`a \leftarrow \text{clip}(a + noise * scale, {a}_{Low}, {a}_{High})` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# sample a batch from memory` | [:math:`s, a, r, s', d`] :math:`\leftarrow` states, actions, rewards, next_states, dones of size :guilabel:`batch_size` | :green:`# gradient steps` | **FOR** each gradient step up to :guilabel:`gradient_steps` **DO** | :green:`# target policy smoothing` | :math:`a' \leftarrow \mu_{\theta_{target}}(s')` | :math:`noise \leftarrow \text{clip}(` :guilabel:`smooth_regularization_noise` :math:`, -c, c) \qquad` with :math:`c` as :guilabel:`smooth_regularization_clip` | :math:`a' \leftarrow a' + noise` | :math:`a' \leftarrow \text{clip}(a', {a'}_{Low}, {a'}_{High})` | :green:`# compute target values` | :math:`Q_{1_{target}} \leftarrow Q_{{\phi 1}_{target}}(s', a')` | :math:`Q_{2_{target}} \leftarrow Q_{{\phi 2}_{target}}(s', a')` | :math:`Q_{_{target}} \leftarrow \text{min}(Q_{1_{target}}, Q_{2_{target}})` | :math:`y \leftarrow r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q_{_{target}}` | :green:`# compute critic loss` | :math:`Q_1 \leftarrow Q_{\phi 1}(s, a)` | :math:`Q_2 \leftarrow Q_{\phi 2}(s, a)` | :math:`L_{Q_\phi} \leftarrow \frac{1}{N} \sum_{i=1}^N (Q_1 - y)^2 + \frac{1}{N} \sum_{i=1}^N (Q_2 - y)^2` | :green:`# optimization step (critic)` | reset :math:`\text{optimizer}_\phi` | :math:`\nabla_{\phi} L_{Q_\phi}` | :math:`\text{clip}(\lVert \nabla_{\phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\phi` | :green:`# delayed update` | **IF** it's time for the :guilabel:`policy_delay` update **THEN** | :green:`# compute policy (actor) loss` | :math:`a \leftarrow \mu_\theta(s)` | :math:`Q_1 \leftarrow Q_{\phi 1}(s, a)` | :math:`L_{\mu_\theta} \leftarrow - \frac{1}{N} \sum_{i=1}^N Q_1` | :green:`# optimization step (policy)` | reset :math:`\text{optimizer}_\theta` | :math:`\nabla_{\theta} L_{\mu_\theta}` | :math:`\text{clip}(\lVert \nabla_{\theta} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\theta` | :green:`# update target networks` | :math:`\theta_{target} \leftarrow` :guilabel:`polyak` :math:`\theta + (1 \;-` :guilabel:`polyak` :math:`) \theta_{target}` | :math:`{\phi 1}_{target} \leftarrow` :guilabel:`polyak` :math:`{\phi 1} + (1 \;-` :guilabel:`polyak` :math:`) {\phi 1}_{target}` | :math:`{\phi 2}_{target} \leftarrow` :guilabel:`polyak` :math:`{\phi 2} + (1 \;-` :guilabel:`polyak` :math:`) {\phi 2}_{target}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\theta (\text{optimizer}_\theta)` | step :math:`\text{scheduler}_\phi (\text{optimizer}_\phi)` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`td3_rnn.py`) to maintain the readability of the standard implementation (:literal:`td3.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-td3] :end-before: [torch-end-td3] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-td3] :end-before: [jax-end-td3] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-td3-rnn] :end-before: [torch-end-td3-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/td3/td3.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 6 deterministic function approximators. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\mu_\theta(s)` - Policy (actor) - :literal:`"policy"` - observation - action - :ref:`Deterministic <models_deterministic>` * - :math:`\mu_{\theta_{target}}(s)` - Target policy - :literal:`"target_policy"` - observation - action - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{\phi 1}(s, a)` - Q1-network (critic 1) - :literal:`"critic_1"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{\phi 2}(s, a)` - Q2-network (critic 2) - :literal:`"critic_2"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{{\phi 1}_{target}}(s, a)` - Target Q1-network - :literal:`"target_critic_1"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{{\phi 2}_{target}}(s, a)` - Target Q2-network - :literal:`"target_critic_2"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.td3.TD3_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.td3.TD3 :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.td3.TD3_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.td3.TD3_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.td3.TD3 :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
9,328
reStructuredText
29.788779
270
0.558105
Toni-SM/skrl/docs/source/api/agents/ddpg.rst
Deep Deterministic Policy Gradient (DDPG) ========================================= DDPG is a **model-free**, **deterministic** **off-policy** **actor-critic** algorithm that uses deep function approximators to learn a policy (and to estimate the action-value function) in high-dimensional, **continuous** action spaces Paper: `Continuous control with deep reinforcement learning <https://arxiv.org/abs/1509.02971>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\mu_\theta`), critic function approximator (:math:`Q_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - loss (:math:`L`) .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`a \leftarrow \mu_\theta(s)` | :math:`noise \leftarrow` sample :guilabel:`noise` | :math:`scale \leftarrow (1 - \text{timestep} \;/` :guilabel:`timesteps` :math:`) \; (` :guilabel:`initial_scale` :math:`-` :guilabel:`final_scale` :math:`) \;+` :guilabel:`final_scale` | :math:`a \leftarrow \text{clip}(a + noise * scale, {a}_{Low}, {a}_{High})` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# sample a batch from memory` | [:math:`s, a, r, s', d`] :math:`\leftarrow` states, actions, rewards, next_states, dones of size :guilabel:`batch_size` | :green:`# gradient steps` | **FOR** each gradient step up to :guilabel:`gradient_steps` **DO** | :green:`# compute target values` | :math:`a' \leftarrow \mu_{\theta_{target}}(s')` | :math:`Q_{_{target}} \leftarrow Q_{\phi_{target}}(s', a')` | :math:`y \leftarrow r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q_{_{target}}` | :green:`# compute critic loss` | :math:`Q \leftarrow Q_\phi(s, a)` | :math:`L_{Q_\phi} \leftarrow \frac{1}{N} \sum_{i=1}^N (Q - y)^2` | :green:`# optimization step (critic)` | reset :math:`\text{optimizer}_\phi` | :math:`\nabla_{\phi} L_{Q_\phi}` | :math:`\text{clip}(\lVert \nabla_{\phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\phi` | :green:`# compute policy (actor) loss` | :math:`a \leftarrow \mu_\theta(s)` | :math:`Q \leftarrow Q_\phi(s, a)` | :math:`L_{\mu_\theta} \leftarrow - \frac{1}{N} \sum_{i=1}^N Q` | :green:`# optimization step (policy)` | reset :math:`\text{optimizer}_\theta` | :math:`\nabla_{\theta} L_{\mu_\theta}` | :math:`\text{clip}(\lVert \nabla_{\theta} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\theta` | :green:`# update target networks` | :math:`\theta_{target} \leftarrow` :guilabel:`polyak` :math:`\theta + (1 \;-` :guilabel:`polyak` :math:`) \theta_{target}` | :math:`\phi_{target} \leftarrow` :guilabel:`polyak` :math:`\phi + (1 \;-` :guilabel:`polyak` :math:`) \phi_{target}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\theta (\text{optimizer}_\theta)` | step :math:`\text{scheduler}_\phi (\text{optimizer}_\phi)` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`ddpg_rnn.py`) to maintain the readability of the standard implementation (:literal:`ddpg.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-ddpg] :end-before: [torch-end-ddpg] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-ddpg] :end-before: [jax-end-ddpg] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-ddpg-rnn] :end-before: [torch-end-ddpg-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/ddpg/ddpg.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 4 deterministic function approximators. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\mu_\theta(s)` - Policy (actor) - :literal:`"policy"` - observation - action - :ref:`Deterministic <models_deterministic>` * - :math:`\mu_{\theta_{target}}(s)` - Target policy - :literal:`"target_policy"` - observation - action - :ref:`Deterministic <models_deterministic>` * - :math:`Q_\phi(s, a)` - Q-network (critic) - :literal:`"critic"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{\phi_{target}}(s, a)` - Target Q-network - :literal:`"target_critic"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.ddpg.DDPG_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.ddpg.DDPG :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.ddpg.DDPG_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.ddpg.DDPG_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.ddpg.DDPG :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
8,064
reStructuredText
27.701068
235
0.56312
Toni-SM/skrl/docs/source/api/resources/noises.rst
Noises ====== .. toctree:: :hidden: Gaussian noise <noises/gaussian> Ornstein-Uhlenbeck <noises/ornstein_uhlenbeck> Definition of the noises used by the agents during the exploration stage. All noises inherit from a base class that defines a uniform interface. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Noises - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Gaussian <noises/gaussian>` noise - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Ornstein-Uhlenbeck <noises/ornstein_uhlenbeck>` noise |_2| - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` Base class ---------- .. note:: This is the base class for all the other classes in this module. It provides the basic functionality for the other classes. **It is not intended to be used directly**. .. raw:: html <br> Basic inheritance usage ^^^^^^^^^^^^^^^^^^^^^^^ .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/noises.py :language: python :start-after: [start-base-class-torch] :end-before: [end-base-class-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/noises.py :language: python :start-after: [start-base-class-jax] :end-before: [end-base-class-jax] .. raw:: html <br> API (PyTorch) ^^^^^^^^^^^^^ .. autoclass:: skrl.resources.noises.torch.base.Noise :undoc-members: :show-inheritance: :inherited-members: :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) ^^^^^^^^^ .. autoclass:: skrl.resources.noises.jax.base.Noise :undoc-members: :show-inheritance: :inherited-members: :members: .. automethod:: __init__
1,899
reStructuredText
20.111111
144
0.57346
Toni-SM/skrl/docs/source/api/resources/schedulers.rst
Learning rate schedulers ======================== .. toctree:: :hidden: KL Adaptive <schedulers/kl_adaptive> Learning rate schedulers are techniques that adjust the learning rate over time to improve the performance of the agent. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Learning rate schedulers - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`KL Adaptive <schedulers/kl_adaptive>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` | **Implementation according to the ML framework:** - **PyTorch**: The implemented schedulers inherit from the PyTorch :literal:`_LRScheduler` class. Visit `How to adjust learning rate <https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate>`_ in the PyTorch documentation for more details. - **JAX**: The implemented schedulers must parameterize and return a function that maps step counts to values. Visit `Schedules <https://optax.readthedocs.io/en/latest/api.html#schedules>`_ in the Optax documentation for more details. .. raw:: html <br> Usage ----- The learning rate scheduler usage is defined in each agent's configuration dictionary. The scheduler class is set under the :literal:`"learning_rate_scheduler"` key and its arguments are set under the :literal:`"learning_rate_scheduler_kwargs"` key as a keyword argument dictionary, without specifying the optimizer (first argument). The following examples show how to set the scheduler for an agent: .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. tab:: PyTorch scheduler .. code-block:: python :emphasize-lines: 2, 5-6 # import the scheduler class from torch.optim.lr_scheduler import StepLR cfg = DEFAULT_CONFIG.copy() cfg["learning_rate_scheduler"] = StepLR cfg["learning_rate_scheduler_kwargs"] = {"step_size": 1, "gamma": 0.9} .. tab:: skrl scheduler .. code-block:: python :emphasize-lines: 2, 5-6 # import the scheduler class from skrl.resources.schedulers.torch import KLAdaptiveLR cfg = DEFAULT_CONFIG.copy() cfg["learning_rate_scheduler"] = KLAdaptiveLR cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} .. group-tab:: |_4| |jax| |_4| .. tabs:: .. tab:: JAX (Optax) scheduler .. code-block:: python :emphasize-lines: 2, 5-6 # import the scheduler function from optax import constant_schedule cfg = DEFAULT_CONFIG.copy() cfg["learning_rate_scheduler"] = constant_schedule cfg["learning_rate_scheduler_kwargs"] = {"value": 1e-4} .. tab:: skrl scheduler .. code-block:: python :emphasize-lines: 2, 5-6 # import the scheduler class from skrl.resources.schedulers.jax import KLAdaptiveLR # or kl_adaptive (Optax style) cfg = DEFAULT_CONFIG.copy() cfg["learning_rate_scheduler"] = KLAdaptiveLR cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01}
3,468
reStructuredText
33.346534
333
0.57872
Toni-SM/skrl/docs/source/api/resources/preprocessors.rst
Preprocessors ============= .. toctree:: :hidden: Running standard scaler <preprocessors/running_standard_scaler> Preprocessors are functions used to transform or encode raw input data into a form more suitable for the learning algorithm. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Preprocessors - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Running standard scaler <preprocessors/running_standard_scaler>` |_4| - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare`
589
reStructuredText
23.583332
124
0.617997
Toni-SM/skrl/docs/source/api/resources/optimizers.rst
Optimizers ========== .. toctree:: :hidden: Adam <optimizers/adam> Optimizers are algorithms that adjust the parameters of artificial neural networks to minimize the error or loss function during the training process. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Optimizers - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Adam <optimizers/adam>`\ |_5| |_5| |_5| |_5| |_5| |_5| |_3| - .. centered:: :math:`\scriptscriptstyle \texttt{PyTorch}` - .. centered:: :math:`\blacksquare`
578
reStructuredText
23.124999
150
0.576125
Toni-SM/skrl/docs/source/api/resources/schedulers/kl_adaptive.rst
KL Adaptive =========== Adjust the learning rate according to the value of the Kullback-Leibler (KL) divergence. .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ The learning rate (:math:`\eta`) at each step is modified as follows: | **IF** :math:`\; KL >` :guilabel:`kl_factor` :guilabel:`kl_threshold` **THEN** | :math:`\eta_{t + 1} = \max(\eta_t \,/` :guilabel:`lr_factor` :math:`,` :guilabel:`min_lr` :math:`)` | **IF** :math:`\; KL <` :guilabel:`kl_threshold` :math:`/` :guilabel:`kl_factor` **THEN** | :math:`\eta_{t + 1} = \min(` :guilabel:`lr_factor` :math:`\eta_t,` :guilabel:`max_lr` :math:`)` .. raw:: html <br> Usage ----- The learning rate scheduler usage is defined in each agent's configuration dictionary. The scheduler class is set under the :literal:`"learning_rate_scheduler"` key and its arguments are set under the :literal:`"learning_rate_scheduler_kwargs"` key as a keyword argument dictionary, without specifying the optimizer (first argument). The following examples show how to set the scheduler for an agent: .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. code-block:: python :emphasize-lines: 2, 5-6 # import the scheduler class from skrl.resources.schedulers.torch import KLAdaptiveLR cfg = DEFAULT_CONFIG.copy() cfg["learning_rate_scheduler"] = KLAdaptiveLR cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} .. group-tab:: |_4| |jax| |_4| .. code-block:: python :emphasize-lines: 2, 5-6 # import the scheduler class from skrl.resources.schedulers.jax import KLAdaptiveLR # or kl_adaptive (Optax style) cfg = DEFAULT_CONFIG.copy() cfg["learning_rate_scheduler"] = KLAdaptiveLR cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.resources.schedulers.torch.kl_adaptive.KLAdaptiveLR :show-inheritance: :inherited-members: :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.resources.schedulers.jax.kl_adaptive.KLAdaptiveLR :show-inheritance: :inherited-members: :members: .. automethod:: __init__
2,383
reStructuredText
25.786517
400
0.606379
Toni-SM/skrl/docs/source/api/resources/preprocessors/running_standard_scaler.rst
Running standard scaler ======================= Standardize input features by removing the mean and scaling to unit variance. .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - mean (:math:`\bar{x}`), standard deviation (:math:`\sigma`), variance (:math:`\sigma^2`) | - running mean (:math:`\bar{x}_t`), running variance (:math:`\sigma^2_t`) | **Standardization by centering and scaling** | :math:`\text{clip}((x - \bar{x}_t) / (\sqrt{\sigma^2} \;+` :guilabel:`epsilon` :math:`), -c, c) \qquad` with :math:`c` as :guilabel:`clip_threshold` | **Scale back the data to the original representation (inverse transform)** | :math:`\sqrt{\sigma^2_t} \; \text{clip}(x, -c, c) + \bar{x}_t \qquad` with :math:`c` as :guilabel:`clip_threshold` | **Update the running mean and variance** (See `parallel algorithm <https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm>`_) | :math:`\delta \leftarrow x - \bar{x}_t` | :math:`n_T \leftarrow n_t + n` | :math:`M2 \leftarrow (\sigma^2_t n_t) + (\sigma^2 n) + \delta^2 \dfrac{n_t n}{n_T}` | :green:`# update internal variables` | :math:`\bar{x}_t \leftarrow \bar{x}_t + \delta \dfrac{n}{n_T}` | :math:`\sigma^2_t \leftarrow \dfrac{M2}{n_T}` | :math:`n_t \leftarrow n_T` .. raw:: html <br> Usage ----- The preprocessors usage is defined in each agent's configuration dictionary. The preprocessor class is set under the :literal:`"<variable>_preprocessor"` key and its arguments are set under the :literal:`"<variable>_preprocessor_kwargs"` key as a keyword argument dictionary. The following examples show how to set the preprocessors for an agent: .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. code-block:: python :emphasize-lines: 2, 5-8 # import the preprocessor class from skrl.resources.preprocessors.torch import RunningStandardScaler cfg = DEFAULT_CONFIG.copy() cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} .. group-tab:: |_4| |jax| |_4| .. code-block:: python :emphasize-lines: 2, 5-8 # import the preprocessor class from skrl.resources.preprocessors.jax import RunningStandardScaler cfg = DEFAULT_CONFIG.copy() cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1} .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.resources.preprocessors.torch.running_standard_scaler.RunningStandardScaler :private-members: _parallel_variance, _get_space_size :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.resources.preprocessors.jax.running_standard_scaler.RunningStandardScaler :undoc-members: :private-members: _parallel_variance, _get_space_size :members: .. automethod:: __init__ .. automethod:: __call__
3,399
reStructuredText
29.088495
269
0.626949
Toni-SM/skrl/docs/source/api/resources/noises/ornstein_uhlenbeck.rst
.. _ornstein-uhlenbeck-noise: Ornstein-Uhlenbeck noise ======================== Noise generated by a stochastic process that is characterized by its mean-reverting behavior. .. raw:: html <br><hr> Usage ----- The noise usage is defined in each agent's configuration dictionary. A noise instance is set under the :literal:`"noise"` sub-key. The following examples show how to set the noise for an agent: | .. image:: ../../../_static/imgs/noise_ornstein_uhlenbeck.png :width: 75% :align: center :alt: Ornstein-Uhlenbeck noise .. raw:: html <br><br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../../snippets/noises.py :language: python :emphasize-lines: 1, 4 :start-after: [torch-start-ornstein-uhlenbeck] :end-before: [torch-end-ornstein-uhlenbeck] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../../snippets/noises.py :language: python :emphasize-lines: 1, 4 :start-after: [jax-start-ornstein-uhlenbeck] :end-before: [jax-end-ornstein-uhlenbeck] .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.resources.noises.torch.ornstein_uhlenbeck.OrnsteinUhlenbeckNoise :undoc-members: :show-inheritance: :inherited-members: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.resources.noises.jax.ornstein_uhlenbeck.OrnsteinUhlenbeckNoise :undoc-members: :show-inheritance: :inherited-members: :private-members: _update :members: .. automethod:: __init__
1,687
reStructuredText
20.922078
193
0.605216
Toni-SM/skrl/docs/source/api/resources/noises/gaussian.rst
.. _gaussian-noise: Gaussian noise ============== Noise generated by normal distribution. .. raw:: html <br><hr> Usage ----- The noise usage is defined in each agent's configuration dictionary. A noise instance is set under the :literal:`"noise"` sub-key. The following examples show how to set the noise for an agent: | .. image:: ../../../_static/imgs/noise_gaussian.png :width: 75% :align: center :alt: Gaussian noise .. raw:: html <br><br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../../snippets/noises.py :language: python :emphasize-lines: 1, 4 :start-after: [torch-start-gaussian] :end-before: [torch-end-gaussian] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../../snippets/noises.py :language: python :emphasize-lines: 1, 4 :start-after: [jax-start-gaussian] :end-before: [jax-end-gaussian] .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.resources.noises.torch.gaussian.GaussianNoise :undoc-members: :show-inheritance: :inherited-members: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.resources.noises.jax.gaussian.GaussianNoise :undoc-members: :show-inheritance: :inherited-members: :private-members: _update :members: .. automethod:: __init__
1,505
reStructuredText
18.558441
193
0.576744
Toni-SM/skrl/docs/source/api/resources/optimizers/adam.rst
Adam ==== An extension of the stochastic gradient descent algorithm that adaptively changes the learning rate for each neural network parameter. .. raw:: html <br><hr> Usage ----- .. note:: This class is the result of isolating the Optax optimizer that is mixed with the model parameters, as defined in the `Flax's TrainState <https://flax.readthedocs.io/en/latest/api_reference/flax.training.html#train-state>`_ class. It is not intended to be used directly by the user, but by agent implementations. .. tabs:: .. group-tab:: |_4| |jax| |_4| .. code-block:: python :emphasize-lines: 2, 5, 8 # import the optimizer class from skrl.resources.optimizers.jax import Adam # instantiate the optimizer optimizer = Adam(model=model, lr=1e-3) # step the optimizer optimizer = optimizer.step(grad, model) .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.resources.optimizers.jax.adam.Adam :show-inheritance: :inherited-members: :members: .. automethod:: __new__
1,104
reStructuredText
23.021739
315
0.639493
Toni-SM/skrl/docs/source/api/trainers/step.rst
Step trainer ============ Train agents controlling the training/evaluation loop step-by-step. .. raw:: html <br><hr> Concept ------- .. image:: ../../_static/imgs/manual_trainer-light.svg :width: 100% :align: center :class: only-light :alt: Step-by-step trainer .. image:: ../../_static/imgs/manual_trainer-dark.svg :width: 100% :align: center :class: only-dark :alt: Step-by-step trainer .. raw:: html <br> Usage ----- .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/trainer.py :language: python :start-after: [pytorch-start-step] :end-before: [pytorch-end-step] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/trainer.py :language: python :start-after: [jax-start-step] :end-before: [jax-end-step] .. raw:: html <br> Configuration ------------- .. literalinclude:: ../../../../skrl/trainers/torch/step.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.trainers.torch.step.STEP_TRAINER_DEFAULT_CONFIG .. autoclass:: skrl.trainers.torch.step.StepTrainer :undoc-members: :show-inheritance: :inherited-members: :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.trainers.jax.step.STEP_TRAINER_DEFAULT_CONFIG .. autoclass:: skrl.trainers.jax.step.StepTrainer :undoc-members: :show-inheritance: :inherited-members: :members: .. automethod:: __init__
1,684
reStructuredText
17.118279
67
0.574822
Toni-SM/skrl/docs/source/api/trainers/sequential.rst
Sequential trainer ================== Train agents sequentially (i.e., one after the other in each interaction with the environment). .. raw:: html <br><hr> Concept ------- .. image:: ../../_static/imgs/sequential_trainer-light.svg :width: 100% :align: center :class: only-light :alt: Sequential trainer .. image:: ../../_static/imgs/sequential_trainer-dark.svg :width: 100% :align: center :class: only-dark :alt: Sequential trainer .. raw:: html <br> Usage ----- .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/trainer.py :language: python :start-after: [pytorch-start-sequential] :end-before: [pytorch-end-sequential] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/trainer.py :language: python :start-after: [jax-start-sequential] :end-before: [jax-end-sequential] .. raw:: html <br> Configuration ------------- .. literalinclude:: ../../../../skrl/trainers/torch/sequential.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.trainers.torch.sequential.SEQUENTIAL_TRAINER_DEFAULT_CONFIG .. autoclass:: skrl.trainers.torch.sequential.SequentialTrainer :undoc-members: :show-inheritance: :inherited-members: :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.trainers.jax.sequential.SEQUENTIAL_TRAINER_DEFAULT_CONFIG .. autoclass:: skrl.trainers.jax.sequential.SequentialTrainer :undoc-members: :show-inheritance: :inherited-members: :members: .. automethod:: __init__
1,806
reStructuredText
18.430107
95
0.597453
Toni-SM/skrl/docs/source/api/trainers/manual.rst
Manual training =============== Train agents by manually controlling the training/evaluation loop. .. raw:: html <br><hr> Concept ------- .. image:: ../../_static/imgs/manual_trainer-light.svg :width: 100% :align: center :class: only-light :alt: Manual trainer .. image:: ../../_static/imgs/manual_trainer-dark.svg :width: 100% :align: center :class: only-dark :alt: Manual trainer .. raw:: html <br> Usage ----- .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: Training .. literalinclude:: ../../snippets/trainer.py :language: python :start-after: [pytorch-start-manual-training] :end-before: [pytorch-end-manual-training] .. group-tab:: Evaluation .. literalinclude:: ../../snippets/trainer.py :language: python :start-after: [pytorch-start-manual-evaluation] :end-before: [pytorch-end-manual-evaluation] .. group-tab:: |_4| |jax| |_4| .. tabs:: .. group-tab:: Training .. literalinclude:: ../../snippets/trainer.py :language: python :start-after: [jax-start-manual-training] :end-before: [jax-end-manual-training] .. group-tab:: Evaluation .. literalinclude:: ../../snippets/trainer.py :language: python :start-after: [jax-start-manual-evaluation] :end-before: [jax-end-manual-evaluation] .. raw:: html <br>
1,676
reStructuredText
21.972602
67
0.5
Toni-SM/skrl/docs/source/api/trainers/parallel.rst
Parallel trainer ================ Train agents in parallel using multiple processes. .. raw:: html <br><hr> Concept ------- .. image:: ../../_static/imgs/parallel_trainer-light.svg :width: 100% :align: center :class: only-light :alt: Parallel trainer .. image:: ../../_static/imgs/parallel_trainer-dark.svg :width: 100% :align: center :class: only-dark :alt: Parallel trainer .. raw:: html <br> Usage ----- .. note:: Each process adds a GPU memory overhead (~1GB, although it can be much higher) due to PyTorch's CUDA kernels. See PyTorch `Issue #12873 <https://github.com/pytorch/pytorch/issues/12873>`_ for more details .. note:: At the moment, only simultaneous training and evaluation of agents with local memory (no memory sharing) is implemented .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/trainer.py :language: python :start-after: [pytorch-start-parallel] :end-before: [pytorch-end-parallel] .. raw:: html <br> Configuration ------------- .. literalinclude:: ../../../../skrl/trainers/torch/parallel.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.trainers.torch.parallel.PARALLEL_TRAINER_DEFAULT_CONFIG .. autoclass:: skrl.trainers.torch.parallel.ParallelTrainer :undoc-members: :show-inheritance: :inherited-members: :members: .. automethod:: __init__
1,577
reStructuredText
19.493506
208
0.622701
Toni-SM/skrl/docs/source/api/models/categorical.rst
.. _models_categorical: Categorical model ================= Categorical models run **discrete-domain stochastic** policies. .. raw:: html <br><hr> skrl provides a Python mixin (:literal:`CategoricalMixin`) to assist in the creation of these types of models, allowing users to have full control over the function approximator definitions and architectures. Note that the use of this mixin must comply with the following rules: * The definition of multiple inheritance must always include the :ref:`Model <models_base_class>` base class at the end. * The :ref:`Model <models_base_class>` base class constructor must be invoked before the mixins constructor. .. warning:: For models in JAX/Flax it is imperative to define all parameters (except ``observation_space``, ``action_space`` and ``device``) with default values to avoid errors (``TypeError: __init__() missing N required positional argument``) during initialization. In addition, it is necessary to initialize the model's ``state_dict`` (via the ``init_state_dict`` method) after its instantiation to avoid errors (``AttributeError: object has no attribute "state_dict". If "state_dict" is defined in '.setup()', remember these fields are only accessible from inside 'init' or 'apply'``) during its use. .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/categorical_model.py :language: python :emphasize-lines: 1, 3-4 :start-after: [start-definition-torch] :end-before: [end-definition-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/categorical_model.py :language: python :emphasize-lines: 1, 3-4 :start-after: [start-definition-jax] :end-before: [end-definition-jax] .. raw:: html <br> Concept ------- .. image:: ../../_static/imgs/model_categorical-light.svg :width: 100% :align: center :class: only-light :alt: Categorical model .. image:: ../../_static/imgs/model_categorical-dark.svg :width: 100% :align: center :class: only-dark :alt: Categorical model .. raw:: html <br> Usage ----- * Multi-Layer Perceptron (**MLP**) * Convolutional Neural Network (**CNN**) * Recurrent Neural Network (**RNN**) * Gated Recurrent Unit RNN (**GRU**) * Long Short-Term Memory RNN (**LSTM**) .. tabs:: .. tab:: MLP .. image:: ../../_static/imgs/model_categorical_mlp-light.svg :width: 40% :align: center :class: only-light .. image:: ../../_static/imgs/model_categorical_mlp-dark.svg :width: 40% :align: center :class: only-dark .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-mlp-sequential-torch] :end-before: [end-mlp-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-mlp-functional-torch] :end-before: [end-mlp-functional-torch] .. group-tab:: |_4| |jax| |_4| .. tabs:: .. group-tab:: setup-style .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-mlp-setup-jax] :end-before: [end-mlp-setup-jax] .. group-tab:: compact-style .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-mlp-compact-jax] :end-before: [end-mlp-compact-jax] .. tab:: CNN .. image:: ../../_static/imgs/model_categorical_cnn-light.svg :width: 100% :align: center :class: only-light .. image:: ../../_static/imgs/model_categorical_cnn-dark.svg :width: 100% :align: center :class: only-dark .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-cnn-sequential-torch] :end-before: [end-cnn-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-cnn-functional-torch] :end-before: [end-cnn-functional-torch] .. group-tab:: |_4| |jax| |_4| .. tabs:: .. group-tab:: setup-style .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-cnn-setup-jax] :end-before: [end-cnn-setup-jax] .. group-tab:: compact-style .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-cnn-compact-jax] :end-before: [end-cnn-compact-jax] .. tab:: RNN .. image:: ../../_static/imgs/model_categorical_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_categorical_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{out} ={} & \text{hidden_size} \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden state * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden state .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-rnn-sequential-torch] :end-before: [end-rnn-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-rnn-functional-torch] :end-before: [end-rnn-functional-torch] .. tab:: GRU .. image:: ../../_static/imgs/model_categorical_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_categorical_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{out} ={} & \text{hidden_size} \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden state * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden state .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-gru-sequential-torch] :end-before: [end-gru-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-gru-functional-torch] :end-before: [end-gru-functional-torch] .. tab:: LSTM .. image:: ../../_static/imgs/model_categorical_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_categorical_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{cell} ={} & \text{hidden_size} \\ H_{out} ={} & \text{proj_size if } \text{proj_size}>0 \text{ otherwise hidden_size} \\ \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden/cell states * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden/cell states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden/cell states .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-lstm-sequential-torch] :end-before: [end-lstm-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/categorical_model.py :language: python :start-after: [start-lstm-functional-torch] :end-before: [end-lstm-functional-torch] .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.models.torch.categorical.CategoricalMixin :show-inheritance: :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.models.jax.categorical.CategoricalMixin :show-inheritance: :members: .. automethod:: __init__
14,050
reStructuredText
33.952736
340
0.519288
Toni-SM/skrl/docs/source/api/models/multivariate_gaussian.rst
.. _models_multivariate_gaussian: Multivariate Gaussian model =========================== Multivariate Gaussian models run **continuous-domain stochastic** policies. .. raw:: html <br><hr> skrl provides a Python mixin (:literal:`MultivariateGaussianMixin`) to assist in the creation of these types of models, allowing users to have full control over the function approximator definitions and architectures. Note that the use of this mixin must comply with the following rules: * The definition of multiple inheritance must always include the :ref:`Model <models_base_class>` base class at the end. * The :ref:`Model <models_base_class>` base class constructor must be invoked before the mixins constructor. .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/multivariate_gaussian_model.py :language: python :emphasize-lines: 1, 4-5 :start-after: [start-definition-torch] :end-before: [end-definition-torch] .. raw:: html <br> Concept ------- .. image:: ../../_static/imgs/model_multivariate_gaussian-light.svg :width: 100% :align: center :class: only-light :alt: Multivariate Gaussian model .. image:: ../../_static/imgs/model_multivariate_gaussian-dark.svg :width: 100% :align: center :class: only-dark :alt: Multivariate Gaussian model .. raw:: html <br> Usage ----- * Multi-Layer Perceptron (**MLP**) * Convolutional Neural Network (**CNN**) * Recurrent Neural Network (**RNN**) * Gated Recurrent Unit RNN (**GRU**) * Long Short-Term Memory RNN (**LSTM**) .. tabs:: .. tab:: MLP .. image:: ../../_static/imgs/model_gaussian_mlp-light.svg :width: 42% :align: center :class: only-light .. image:: ../../_static/imgs/model_gaussian_mlp-dark.svg :width: 42% :align: center :class: only-dark .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/multivariate_gaussian_model.py :language: python :start-after: [start-mlp-sequential-torch] :end-before: [end-mlp-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/multivariate_gaussian_model.py :language: python :start-after: [start-mlp-functional-torch] :end-before: [end-mlp-functional-torch] .. tab:: CNN .. image:: ../../_static/imgs/model_gaussian_cnn-light.svg :width: 100% :align: center :class: only-light .. image:: ../../_static/imgs/model_gaussian_cnn-dark.svg :width: 100% :align: center :class: only-dark .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/multivariate_gaussian_model.py :language: python :start-after: [start-cnn-sequential-torch] :end-before: [end-cnn-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/multivariate_gaussian_model.py :language: python :start-after: [start-cnn-functional-torch] :end-before: [end-cnn-functional-torch] .. tab:: RNN .. image:: ../../_static/imgs/model_gaussian_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_gaussian_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{out} ={} & \text{hidden_size} \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden state * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden state .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/multivariate_gaussian_model.py :language: python :start-after: [start-rnn-sequential-torch] :end-before: [end-rnn-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/multivariate_gaussian_model.py :language: python :start-after: [start-rnn-functional-torch] :end-before: [end-rnn-functional-torch] .. tab:: GRU .. image:: ../../_static/imgs/model_gaussian_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_gaussian_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{out} ={} & \text{hidden_size} \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden state * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden state .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/multivariate_gaussian_model.py :language: python :start-after: [start-gru-sequential-torch] :end-before: [end-gru-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/multivariate_gaussian_model.py :language: python :start-after: [start-gru-functional-torch] :end-before: [end-gru-functional-torch] .. tab:: LSTM .. image:: ../../_static/imgs/model_gaussian_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_gaussian_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{cell} ={} & \text{hidden_size} \\ H_{out} ={} & \text{proj_size if } \text{proj_size}>0 \text{ otherwise hidden_size} \\ \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden/cell states * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden/cell states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden/cell states .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/multivariate_gaussian_model.py :language: python :start-after: [start-lstm-sequential-torch] :end-before: [end-lstm-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/multivariate_gaussian_model.py :language: python :start-after: [start-lstm-functional-torch] :end-before: [end-lstm-functional-torch] .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.models.torch.multivariate_gaussian.MultivariateGaussianMixin :show-inheritance: :members: .. automethod:: __init__
11,833
reStructuredText
33.908554
295
0.527339
Toni-SM/skrl/docs/source/api/models/multicategorical.rst
.. _models_multicategorical: Multi-Categorical model ======================= Multi-Categorical models run **discrete-domain stochastic** policies. .. raw:: html <br><hr> skrl provides a Python mixin (:literal:`MultiCategoricalMixin`) to assist in the creation of these types of models, allowing users to have full control over the function approximator definitions and architectures. Note that the use of this mixin must comply with the following rules: * The definition of multiple inheritance must always include the :ref:`Model <models_base_class>` base class at the end. * The :ref:`Model <models_base_class>` base class constructor must be invoked before the mixins constructor. .. warning:: For models in JAX/Flax it is imperative to define all parameters (except ``observation_space``, ``action_space`` and ``device``) with default values to avoid errors (``TypeError: __init__() missing N required positional argument``) during initialization. In addition, it is necessary to initialize the model's ``state_dict`` (via the ``init_state_dict`` method) after its instantiation to avoid errors (``AttributeError: object has no attribute "state_dict". If "state_dict" is defined in '.setup()', remember these fields are only accessible from inside 'init' or 'apply'``) during its use. .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :emphasize-lines: 1, 3-4 :start-after: [start-definition-torch] :end-before: [end-definition-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :emphasize-lines: 1, 3-4 :start-after: [start-definition-jax] :end-before: [end-definition-jax] .. raw:: html <br> Concept ------- .. image:: ../../_static/imgs/model_multicategorical-light.svg :width: 100% :align: center :class: only-light :alt: Multi-Categorical model .. image:: ../../_static/imgs/model_multicategorical-dark.svg :width: 100% :align: center :class: only-dark :alt: Multi-Categorical model .. raw:: html <br> Usage ----- * Multi-Layer Perceptron (**MLP**) * Convolutional Neural Network (**CNN**) * Recurrent Neural Network (**RNN**) * Gated Recurrent Unit RNN (**GRU**) * Long Short-Term Memory RNN (**LSTM**) .. tabs:: .. tab:: MLP .. image:: ../../_static/imgs/model_categorical_mlp-light.svg :width: 40% :align: center :class: only-light .. image:: ../../_static/imgs/model_categorical_mlp-dark.svg :width: 40% :align: center :class: only-dark .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-mlp-sequential-torch] :end-before: [end-mlp-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-mlp-functional-torch] :end-before: [end-mlp-functional-torch] .. group-tab:: |_4| |jax| |_4| .. tabs:: .. group-tab:: setup-style .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-mlp-setup-jax] :end-before: [end-mlp-setup-jax] .. group-tab:: compact-style .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-mlp-compact-jax] :end-before: [end-mlp-compact-jax] .. tab:: CNN .. image:: ../../_static/imgs/model_categorical_cnn-light.svg :width: 100% :align: center :class: only-light .. image:: ../../_static/imgs/model_categorical_cnn-dark.svg :width: 100% :align: center :class: only-dark .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-cnn-sequential-torch] :end-before: [end-cnn-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-cnn-functional-torch] :end-before: [end-cnn-functional-torch] .. group-tab:: |_4| |jax| |_4| .. tabs:: .. group-tab:: setup-style .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-cnn-setup-jax] :end-before: [end-cnn-setup-jax] .. group-tab:: compact-style .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-cnn-compact-jax] :end-before: [end-cnn-compact-jax] .. tab:: RNN .. image:: ../../_static/imgs/model_categorical_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_categorical_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{out} ={} & \text{hidden_size} \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden state * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden state .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-rnn-sequential-torch] :end-before: [end-rnn-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-rnn-functional-torch] :end-before: [end-rnn-functional-torch] .. tab:: GRU .. image:: ../../_static/imgs/model_categorical_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_categorical_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{out} ={} & \text{hidden_size} \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden state * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden state .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-gru-sequential-torch] :end-before: [end-gru-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-gru-functional-torch] :end-before: [end-gru-functional-torch] .. tab:: LSTM .. image:: ../../_static/imgs/model_categorical_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_categorical_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{cell} ={} & \text{hidden_size} \\ H_{out} ={} & \text{proj_size if } \text{proj_size}>0 \text{ otherwise hidden_size} \\ \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden/cell states * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden/cell states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden/cell states .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-lstm-sequential-torch] :end-before: [end-lstm-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/multicategorical_model.py :language: python :start-after: [start-lstm-functional-torch] :end-before: [end-lstm-functional-torch] .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.models.torch.multicategorical.MultiCategoricalMixin :show-inheritance: :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.models.jax.multicategorical.MultiCategoricalMixin :show-inheritance: :members: .. automethod:: __init__
14,200
reStructuredText
34.325871
340
0.523662
Toni-SM/skrl/docs/source/api/models/tabular.rst
.. _models_tabular: Tabular model ============= Tabular models run **discrete-domain deterministic/stochastic** policies. .. raw:: html <br><hr> skrl provides a Python mixin (:literal:`TabularMixin`) to assist in the creation of these types of models, allowing users to have full control over the table definitions. Note that the use of this mixin must comply with the following rules: * The definition of multiple inheritance must always include the :ref:`Model <models_base_class>` base class at the end. * The :ref:`Model <models_base_class>` base class constructor must be invoked before the mixins constructor. .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/tabular_model.py :language: python :emphasize-lines: 1, 3-4 :start-after: [start-definition-torch] :end-before: [end-definition-torch] .. raw:: html <br> Usage ----- .. tabs:: .. tab:: :math:`\epsilon`-greedy policy .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/tabular_model.py :language: python :start-after: [start-epsilon-greedy-torch] :end-before: [end-epsilon-greedy-torch] .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.models.torch.tabular.TabularMixin :show-inheritance: :exclude-members: to, state_dict, load_state_dict, load, save :members: .. automethod:: __init__
1,538
reStructuredText
24.229508
240
0.608583
Toni-SM/skrl/docs/source/api/models/deterministic.rst
.. _models_deterministic: Deterministic model =================== Deterministic models run **continuous-domain deterministic** policies. .. raw:: html <br><hr> skrl provides a Python mixin (:literal:`DeterministicMixin`) to assist in the creation of these types of models, allowing users to have full control over the function approximator definitions and architectures. Note that the use of this mixin must comply with the following rules: * The definition of multiple inheritance must always include the :ref:`Model <models_base_class>` base class at the end. * The :ref:`Model <models_base_class>` base class constructor must be invoked before the mixins constructor. .. warning:: For models in JAX/Flax it is imperative to define all parameters (except ``observation_space``, ``action_space`` and ``device``) with default values to avoid errors (``TypeError: __init__() missing N required positional argument``) during initialization. In addition, it is necessary to initialize the model's ``state_dict`` (via the ``init_state_dict`` method) after its instantiation to avoid errors (``AttributeError: object has no attribute "state_dict". If "state_dict" is defined in '.setup()', remember these fields are only accessible from inside 'init' or 'apply'``) during its use. .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/deterministic_model.py :language: python :emphasize-lines: 1, 3-4 :start-after: [start-definition-torch] :end-before: [end-definition-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/deterministic_model.py :language: python :emphasize-lines: 1, 3-4 :start-after: [start-definition-jax] :end-before: [end-definition-jax] .. raw:: html <br> Concept ------- .. image:: ../../_static/imgs/model_deterministic-light.svg :width: 65% :align: center :class: only-light :alt: Deterministic model .. image:: ../../_static/imgs/model_deterministic-dark.svg :width: 65% :align: center :class: only-dark :alt: Deterministic model .. raw:: html <br> Usage ----- * Multi-Layer Perceptron (**MLP**) * Convolutional Neural Network (**CNN**) * Recurrent Neural Network (**RNN**) * Gated Recurrent Unit RNN (**GRU**) * Long Short-Term Memory RNN (**LSTM**) .. tabs:: .. tab:: MLP .. image:: ../../_static/imgs/model_deterministic_mlp-light.svg :width: 35% :align: center :class: only-light .. image:: ../../_static/imgs/model_deterministic_mlp-dark.svg :width: 35% :align: center :class: only-dark .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-mlp-sequential-torch] :end-before: [end-mlp-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-mlp-functional-torch] :end-before: [end-mlp-functional-torch] .. group-tab:: |_4| |jax| |_4| .. tabs:: .. group-tab:: setup-style .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-mlp-setup-jax] :end-before: [end-mlp-setup-jax] .. group-tab:: compact-style .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-mlp-compact-jax] :end-before: [end-mlp-compact-jax] .. tab:: CNN .. image:: ../../_static/imgs/model_deterministic_cnn-light.svg :width: 100% :align: center :class: only-light .. image:: ../../_static/imgs/model_deterministic_cnn-dark.svg :width: 100% :align: center :class: only-dark .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-cnn-sequential-torch] :end-before: [end-cnn-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-cnn-functional-torch] :end-before: [end-cnn-functional-torch] .. group-tab:: |_4| |jax| |_4| .. tabs:: .. group-tab:: setup-style .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-cnn-setup-jax] :end-before: [end-cnn-setup-jax] .. group-tab:: compact-style .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-cnn-compact-jax] :end-before: [end-cnn-compact-jax] .. tab:: RNN .. image:: ../../_static/imgs/model_deterministic_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_deterministic_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{out} ={} & \text{hidden_size} \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden state * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden state .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-rnn-sequential-torch] :end-before: [end-rnn-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-rnn-functional-torch] :end-before: [end-rnn-functional-torch] .. tab:: GRU .. image:: ../../_static/imgs/model_deterministic_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_deterministic_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{out} ={} & \text{hidden_size} \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden state * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden state .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-gru-sequential-torch] :end-before: [end-gru-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-gru-functional-torch] :end-before: [end-gru-functional-torch] .. tab:: LSTM .. image:: ../../_static/imgs/model_deterministic_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_deterministic_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{cell} ={} & \text{hidden_size} \\ H_{out} ={} & \text{proj_size if } \text{proj_size}>0 \text{ otherwise hidden_size} \\ \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden/cell states * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden/cell states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden/cell states .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-lstm-sequential-torch] :end-before: [end-lstm-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/deterministic_model.py :language: python :start-after: [start-lstm-functional-torch] :end-before: [end-lstm-functional-torch] .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.models.torch.deterministic.DeterministicMixin :show-inheritance: :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.models.jax.deterministic.DeterministicMixin :show-inheritance: :members: .. automethod:: __init__
14,131
reStructuredText
34.154229
340
0.521902
Toni-SM/skrl/docs/source/api/models/shared_model.rst
Shared model ============ Sometimes it is desirable to define models that use shared layers or network to represent multiple function approximators. This practice, known as *shared parameters* (or *parameter sharing*), *shared layers*, *shared model*, *shared networks* or *joint architecture* among others, is typically justified by the following criteria: * Learning the same characteristics, especially when processing large inputs (such as images, e.g.). * Reduce the number of parameters in the whole system. * Make the computation more efficient. .. raw:: html <br><hr> Implementation -------------- By combining the implemented mixins, it is possible to define shared models with skrl. In these cases, the use of the :literal:`role` argument (a Python string) is relevant. The agents will call the models by setting the :literal:`role` argument according to their requirements. Visit each agent's documentation (*Key* column of the table under *Spaces and models* section) to know the possible values that this parameter can take. The code snippet below shows how to define a shared model. The following practices for building shared models can be identified: * The definition of multiple inheritance must always include the :ref:`Model <models_base_class>` base class at the end. * The :ref:`Model <models_base_class>` base class constructor must be invoked before the mixins constructor. * All mixin constructors must be invoked. * Specify :literal:`role` argument is optional if all constructors belong to different mixins. * If multiple models of the same mixin type are required, the same constructor must be invoked as many times as needed. To do so, it is mandatory to specify the :literal:`role` argument. * The :literal:`.act(...)` method needs to be overridden to disambiguate its call. * The same instance of the shared model must be passed to all keys involved. .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/shared_model.py :language: python :start-after: [start-mlp-torch] :end-before: [end-mlp-torch]
2,156
reStructuredText
43.020407
431
0.731447
Toni-SM/skrl/docs/source/api/models/gaussian.rst
.. _models_gaussian: Gaussian model ============== Gaussian models run **continuous-domain stochastic** policies. .. raw:: html <br><hr> skrl provides a Python mixin (:literal:`GaussianMixin`) to assist in the creation of these types of models, allowing users to have full control over the function approximator definitions and architectures. Note that the use of this mixin must comply with the following rules: * The definition of multiple inheritance must always include the :ref:`Model <models_base_class>` base class at the end. * The :ref:`Model <models_base_class>` base class constructor must be invoked before the mixins constructor. .. warning:: For models in JAX/Flax it is imperative to define all parameters (except ``observation_space``, ``action_space`` and ``device``) with default values to avoid errors (``TypeError: __init__() missing N required positional argument``) during initialization. In addition, it is necessary to initialize the model's ``state_dict`` (via the ``init_state_dict`` method) after its instantiation to avoid errors (``AttributeError: object has no attribute "state_dict". If "state_dict" is defined in '.setup()', remember these fields are only accessible from inside 'init' or 'apply'``) during its use. .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/gaussian_model.py :language: python :emphasize-lines: 1, 4-5 :start-after: [start-definition-torch] :end-before: [end-definition-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/gaussian_model.py :language: python :emphasize-lines: 1, 4-5 :start-after: [start-definition-jax] :end-before: [end-definition-jax] .. raw:: html <br> Concept ------- .. image:: ../../_static/imgs/model_gaussian-light.svg :width: 100% :align: center :class: only-light :alt: Gaussian model .. image:: ../../_static/imgs/model_gaussian-dark.svg :width: 100% :align: center :class: only-dark :alt: Gaussian model .. raw:: html <br> Usage ----- * Multi-Layer Perceptron (**MLP**) * Convolutional Neural Network (**CNN**) * Recurrent Neural Network (**RNN**) * Gated Recurrent Unit RNN (**GRU**) * Long Short-Term Memory RNN (**LSTM**) .. tabs:: .. tab:: MLP .. image:: ../../_static/imgs/model_gaussian_mlp-light.svg :width: 42% :align: center :class: only-light .. image:: ../../_static/imgs/model_gaussian_mlp-dark.svg :width: 42% :align: center :class: only-dark .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-mlp-sequential-torch] :end-before: [end-mlp-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-mlp-functional-torch] :end-before: [end-mlp-functional-torch] .. group-tab:: |_4| |jax| |_4| .. tabs:: .. group-tab:: setup-style .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-mlp-setup-jax] :end-before: [end-mlp-setup-jax] .. group-tab:: compact-style .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-mlp-compact-jax] :end-before: [end-mlp-compact-jax] .. tab:: CNN .. image:: ../../_static/imgs/model_gaussian_cnn-light.svg :width: 100% :align: center :class: only-light .. image:: ../../_static/imgs/model_gaussian_cnn-dark.svg :width: 100% :align: center :class: only-dark .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-cnn-sequential-torch] :end-before: [end-cnn-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-cnn-functional-torch] :end-before: [end-cnn-functional-torch] .. group-tab:: |_4| |jax| |_4| .. tabs:: .. group-tab:: setup-style .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-cnn-setup-jax] :end-before: [end-cnn-setup-jax] .. group-tab:: compact-style .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-cnn-compact-jax] :end-before: [end-cnn-compact-jax] .. tab:: RNN .. image:: ../../_static/imgs/model_gaussian_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_gaussian_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{out} ={} & \text{hidden_size} \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden state * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden state .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-rnn-sequential-torch] :end-before: [end-rnn-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-rnn-functional-torch] :end-before: [end-rnn-functional-torch] .. tab:: GRU .. image:: ../../_static/imgs/model_gaussian_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_gaussian_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{out} ={} & \text{hidden_size} \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden state * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden state .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-gru-sequential-torch] :end-before: [end-gru-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-gru-functional-torch] :end-before: [end-gru-functional-torch] .. tab:: LSTM .. image:: ../../_static/imgs/model_gaussian_rnn-light.svg :width: 90% :align: center :class: only-light .. image:: ../../_static/imgs/model_gaussian_rnn-dark.svg :width: 90% :align: center :class: only-dark where: .. math:: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{cell} ={} & \text{hidden_size} \\ H_{out} ={} & \text{proj_size if } \text{proj_size}>0 \text{ otherwise hidden_size} \\ \end{aligned} .. raw:: html <hr> The following points are relevant in the definition of recurrent models: * The ``.get_specification()`` method must be overwritten to return, under a dictionary key ``"rnn"``, a sub-dictionary that includes the sequence length (under key ``"sequence_length"``) as a number and a list of the dimensions (under key ``"sizes"``) of each initial hidden/cell states * The ``.compute()`` method's ``inputs`` parameter will have, at least, the following items in the dictionary: * ``"states"``: state of the environment used to make the decision * ``"taken_actions"``: actions taken by the policy for the given states, if applicable * ``"terminated"``: episode termination status for sampled environment transitions. This key is only defined during the training process * ``"rnn"``: list of initial hidden/cell states ordered according to the model specification * The ``.compute()`` method must include, under the ``"rnn"`` key of the returned dictionary, a list of each final hidden/cell states .. raw:: html <br> .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. tabs:: .. group-tab:: nn.Sequential .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-lstm-sequential-torch] :end-before: [end-lstm-sequential-torch] .. group-tab:: nn.functional .. literalinclude:: ../../snippets/gaussian_model.py :language: python :start-after: [start-lstm-functional-torch] :end-before: [end-lstm-functional-torch] .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.models.torch.gaussian.GaussianMixin :show-inheritance: :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.models.jax.gaussian.GaussianMixin :show-inheritance: :members: .. automethod:: __init__
13,935
reStructuredText
33.666667
340
0.515536
Toni-SM/skrl/docs/source/api/multi_agents/mappo.rst
Multi-Agent Proximal Policy Optimization (MAPPO) ================================================ MAPPO is a **model-free**, **stochastic** **on-policy** **policy gradient** CTDE (centralized training, decentralized execution) **multi-agent** algorithm that uses a centralized value function to estimate a single value that is used to guide the policy updates of all agents, improving coordination and cooperation between them Paper: `The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games <https://arxiv.org/abs/2103.01955>`_ .. raw:: html <br><hr> Algorithm --------- | For each iteration do: | For each agent do: | :math:`\bullet \;` Collect, in a rollout memory, a set of states :math:`s`, actions :math:`a`, rewards :math:`r`, dones :math:`d`, log probabilities :math:`logp` and values :math:`V` on policy using :math:`\pi_\theta` and :math:`V_\phi` | :math:`\bullet \;` Estimate returns :math:`R` and advantages :math:`A` using Generalized Advantage Estimation (GAE(:math:`\lambda`)) from the collected data [:math:`r, d, V`] | :math:`\bullet \;` Compute the entropy loss :math:`{L}_{entropy}` | :math:`\bullet \;` Compute the clipped surrogate objective (policy loss) with :math:`ratio` as the probability ratio between the action under the current policy and the action under the previous policy: :math:`L^{clip}_{\pi_\theta} = \mathbb{E}[\min(A \; ratio, A \; \text{clip}(ratio, 1-c, 1+c))]` | :math:`\bullet \;` Compute the value loss :math:`L_{V_\phi}` as the mean squared error (MSE) between the predicted values :math:`V_{_{predicted}}` and the estimated returns :math:`R` | :math:`\bullet \;` Optimize the total loss :math:`L = L^{clip}_{\pi_\theta} - c_1 \, L_{V_\phi} + c_2 \, {L}_{entropy}` .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`), value function approximator (:math:`V_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - shared states (:math:`s_{_{shared}}`), shared next states (:math:`s'_{_{shared}}`) | - values (:math:`V`), advantages (:math:`A`), returns (:math:`R`) | - log probabilities (:math:`logp`) | - loss (:math:`L`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V_{_{last}}') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | **IF** :math:`i` is not the last row of :math:`r` **THEN** | :math:`V_i' = V_{i+1}` | **ELSE** | :math:`V_i' \leftarrow V_{_{last}}'` | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`\neg d_i \; (V_i' \, -` :guilabel:`lambda` :math:`adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`_update(...)` | **FOR** each agent **DO** | :green:`# compute returns and advantages` | :math:`V_{_{last}}' \leftarrow V_\phi(s'_{_{shared}})` | :math:`R, A \leftarrow f_{GAE}(r, d, V, V_{_{last}}')` | :green:`# sample mini-batches from memory` | [[:math:`s, a, logp, V, R, A`]] :math:`\leftarrow` states, actions, log_prob, values, returns, advantages | :green:`# learning epochs` | **FOR** each learning epoch up to :guilabel:`learning_epochs` **DO** | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, a, logp, V, R, A`] up to :guilabel:`mini_batches` **DO** | :math:`logp' \leftarrow \pi_\theta(s, a)` | :green:`# compute approximate KL divergence` | :math:`ratio \leftarrow logp' - logp` | :math:`KL_{_{divergence}} \leftarrow \frac{1}{N} \sum_{i=1}^N ((e^{ratio} - 1) - ratio)` | :green:`# early stopping with KL divergence` | **IF** :math:`KL_{_{divergence}} >` :guilabel:`kl_threshold` **THEN** | **BREAK LOOP** | :green:`# compute entropy loss` | **IF** entropy computation is enabled **THEN** | :math:`{L}_{entropy} \leftarrow \, -` :guilabel:`entropy_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N \pi_{\theta_{entropy}}` | **ELSE** | :math:`{L}_{entropy} \leftarrow 0` | :green:`# compute policy loss` | :math:`ratio \leftarrow e^{logp' - logp}` | :math:`L_{_{surrogate}} \leftarrow A \; ratio` | :math:`L_{_{clipped\,surrogate}} \leftarrow A \; \text{clip}(ratio, 1 - c, 1 + c) \qquad` with :math:`c` as :guilabel:`ratio_clip` | :math:`L^{clip}_{\pi_\theta} \leftarrow - \frac{1}{N} \sum_{i=1}^N \min(L_{_{surrogate}}, L_{_{clipped\,surrogate}})` | :green:`# compute value loss` | :math:`V_{_{predicted}} \leftarrow V_\phi(s_{_{shared}})` | **IF** :guilabel:`clip_predicted_values` is enabled **THEN** | :math:`V_{_{predicted}} \leftarrow V + \text{clip}(V_{_{predicted}} - V, -c, c) \qquad` with :math:`c` as :guilabel:`value_clip` | :math:`L_{V_\phi} \leftarrow` :guilabel:`value_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N (R - V_{_{predicted}})^2` | :green:`# optimization step` | reset :math:`\text{optimizer}_{\theta, \phi}` | :math:`\nabla_{\theta, \, \phi} (L^{clip}_{\pi_\theta} + {L}_{entropy} + L_{V_\phi})` | :math:`\text{clip}(\lVert \nabla_{\theta, \, \phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_{\theta, \phi}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_{\theta, \phi} (\text{optimizer}_{\theta, \phi})` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/multi_agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [start-mappo-torch] :end-before: [end-mappo-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/multi_agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [start-mappo-jax] :end-before: [end-mappo-jax] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. note:: The specification of a single value is automatically extended to all involved agents, unless the configuration of each individual agent is specified using a dictionary. For example: .. code-block:: python # specify a configuration value for each agent (agent names depend on environment) cfg["discount_factor"] = {"agent_0": 0.99, "agent_1": 0.995, "agent_2": 0.985} .. literalinclude:: ../../../../skrl/multi_agents/torch/mappo/mappo.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic (discrete or continuous) and 1 deterministic function approximator. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Categorical <models_categorical>` / |br| :ref:`Multi-Categorical <models_multicategorical>` / |br| :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - for Policy and Value - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - RNN support - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.multi_agents.torch.mappo.MAPPO_DEFAULT_CONFIG .. autoclass:: skrl.multi_agents.torch.mappo.MAPPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.multi_agents.jax.mappo.MAPPO_DEFAULT_CONFIG .. autoclass:: skrl.multi_agents.jax.mappo.MAPPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
10,248
reStructuredText
36
328
0.561378
Toni-SM/skrl/docs/source/api/multi_agents/ippo.rst
Independent Proximal Policy Optimization (IPPO) =============================================== IPPO is a **model-free**, **stochastic** **on-policy** **policy gradient** DTDE (decentralized training, decentralized execution) **multi-agent** algorithm in which each agent learns independently using its own local observations of the environment and has its own independent critic network to estimate the value function Paper: `Is Independent Learning All You Need in the StarCraft Multi-Agent Challenge? <https://arxiv.org/abs/2011.09533>`_ .. raw:: html <br><hr> Algorithm --------- | For each iteration do: | For each agent do: | :math:`\bullet \;` Collect, in a rollout memory, a set of states :math:`s`, actions :math:`a`, rewards :math:`r`, dones :math:`d`, log probabilities :math:`logp` and values :math:`V` on policy using :math:`\pi_\theta` and :math:`V_\phi` | :math:`\bullet \;` Estimate returns :math:`R` and advantages :math:`A` using Generalized Advantage Estimation (GAE(:math:`\lambda`)) from the collected data [:math:`r, d, V`] | :math:`\bullet \;` Compute the entropy loss :math:`{L}_{entropy}` | :math:`\bullet \;` Compute the clipped surrogate objective (policy loss) with :math:`ratio` as the probability ratio between the action under the current policy and the action under the previous policy: :math:`L^{clip}_{\pi_\theta} = \mathbb{E}[\min(A \; ratio, A \; \text{clip}(ratio, 1-c, 1+c))]` | :math:`\bullet \;` Compute the value loss :math:`L_{V_\phi}` as the mean squared error (MSE) between the predicted values :math:`V_{_{predicted}}` and the estimated returns :math:`R` | :math:`\bullet \;` Optimize the total loss :math:`L = L^{clip}_{\pi_\theta} - c_1 \, L_{V_\phi} + c_2 \, {L}_{entropy}` .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`), value function approximator (:math:`V_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - values (:math:`V`), advantages (:math:`A`), returns (:math:`R`) | - log probabilities (:math:`logp`) | - loss (:math:`L`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V_{_{last}}') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | **IF** :math:`i` is not the last row of :math:`r` **THEN** | :math:`V_i' = V_{i+1}` | **ELSE** | :math:`V_i' \leftarrow V_{_{last}}'` | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`\neg d_i \; (V_i' \, -` :guilabel:`lambda` :math:`adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`_update(...)` | **FOR** each agent **DO** | :green:`# compute returns and advantages` | :math:`V_{_{last}}' \leftarrow V_\phi(s')` | :math:`R, A \leftarrow f_{GAE}(r, d, V, V_{_{last}}')` | :green:`# sample mini-batches from memory` | [[:math:`s, a, logp, V, R, A`]] :math:`\leftarrow` states, actions, log_prob, values, returns, advantages | :green:`# learning epochs` | **FOR** each learning epoch up to :guilabel:`learning_epochs` **DO** | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, a, logp, V, R, A`] up to :guilabel:`mini_batches` **DO** | :math:`logp' \leftarrow \pi_\theta(s, a)` | :green:`# compute approximate KL divergence` | :math:`ratio \leftarrow logp' - logp` | :math:`KL_{_{divergence}} \leftarrow \frac{1}{N} \sum_{i=1}^N ((e^{ratio} - 1) - ratio)` | :green:`# early stopping with KL divergence` | **IF** :math:`KL_{_{divergence}} >` :guilabel:`kl_threshold` **THEN** | **BREAK LOOP** | :green:`# compute entropy loss` | **IF** entropy computation is enabled **THEN** | :math:`{L}_{entropy} \leftarrow \, -` :guilabel:`entropy_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N \pi_{\theta_{entropy}}` | **ELSE** | :math:`{L}_{entropy} \leftarrow 0` | :green:`# compute policy loss` | :math:`ratio \leftarrow e^{logp' - logp}` | :math:`L_{_{surrogate}} \leftarrow A \; ratio` | :math:`L_{_{clipped\,surrogate}} \leftarrow A \; \text{clip}(ratio, 1 - c, 1 + c) \qquad` with :math:`c` as :guilabel:`ratio_clip` | :math:`L^{clip}_{\pi_\theta} \leftarrow - \frac{1}{N} \sum_{i=1}^N \min(L_{_{surrogate}}, L_{_{clipped\,surrogate}})` | :green:`# compute value loss` | :math:`V_{_{predicted}} \leftarrow V_\phi(s)` | **IF** :guilabel:`clip_predicted_values` is enabled **THEN** | :math:`V_{_{predicted}} \leftarrow V + \text{clip}(V_{_{predicted}} - V, -c, c) \qquad` with :math:`c` as :guilabel:`value_clip` | :math:`L_{V_\phi} \leftarrow` :guilabel:`value_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N (R - V_{_{predicted}})^2` | :green:`# optimization step` | reset :math:`\text{optimizer}_{\theta, \phi}` | :math:`\nabla_{\theta, \, \phi} (L^{clip}_{\pi_\theta} + {L}_{entropy} + L_{V_\phi})` | :math:`\text{clip}(\lVert \nabla_{\theta, \, \phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_{\theta, \phi}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_{\theta, \phi} (\text{optimizer}_{\theta, \phi})` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/multi_agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [start-ippo-torch] :end-before: [end-ippo-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/multi_agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [start-ippo-jax] :end-before: [end-ippo-jax] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. note:: The specification of a single value is automatically extended to all involved agents, unless the configuration of each individual agent is specified using a dictionary. For example: .. code-block:: python # specify a configuration value for each agent (agent names depend on environment) cfg["discount_factor"] = {"agent_0": 0.99, "agent_1": 0.995, "agent_2": 0.985} .. literalinclude:: ../../../../skrl/multi_agents/torch/ippo/ippo.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic (discrete or continuous) and 1 deterministic function approximator. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Categorical <models_categorical>` / |br| :ref:`Multi-Categorical <models_multicategorical>` / |br| :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - for Policy and Value - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - RNN support - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.multi_agents.torch.ippo.IPPO_DEFAULT_CONFIG .. autoclass:: skrl.multi_agents.torch.ippo.IPPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.multi_agents.jax.ippo.IPPO_DEFAULT_CONFIG .. autoclass:: skrl.multi_agents.jax.ippo.IPPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
10,120
reStructuredText
35.67029
322
0.561166
Toni-SM/skrl/docs/source/api/config/frameworks.rst
ML frameworks configuration =========================== Configurations for behavior modification of Machine Learning (ML) frameworks. .. raw:: html <br><hr> JAX --- JAX specific configuration .. raw:: html <br> API ^^^ .. py:data:: skrl.config.jax.backend :type: str :value: "numpy" Backend used by the different components to operate and generate arrays This configuration excludes models and optimizers. Supported backend are: ``"numpy"`` and ``"jax"`` .. py:data:: skrl.config.jax.key :type: jnp.ndarray :value: [0, 0] Pseudo-random number generator (PRNG) key
617
reStructuredText
16.166666
77
0.641815