file_path
stringlengths 21
207
| content
stringlengths 5
1.02M
| size
int64 5
1.02M
| lang
stringclasses 9
values | avg_line_length
float64 1.33
100
| max_line_length
int64 4
993
| alphanum_fraction
float64 0.27
0.93
|
---|---|---|---|---|---|---|
arhix52/Strelka/cuda/random.h | //
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#pragma once
template<unsigned int N>
static __host__ __device__ __inline__ unsigned int tea( unsigned int val0, unsigned int val1 )
{
unsigned int v0 = val0;
unsigned int v1 = val1;
unsigned int s0 = 0;
for( unsigned int n = 0; n < N; n++ )
{
s0 += 0x9e3779b9;
v0 += ((v1<<4)+0xa341316c)^(v1+s0)^((v1>>5)+0xc8013ea4);
v1 += ((v0<<4)+0xad90777d)^(v0+s0)^((v0>>5)+0x7e95761e);
}
return v0;
}
// Generate random unsigned int in [0, 2^24)
static __host__ __device__ __inline__ unsigned int lcg(unsigned int &prev)
{
const unsigned int LCG_A = 1664525u;
const unsigned int LCG_C = 1013904223u;
prev = (LCG_A * prev + LCG_C);
return prev & 0x00FFFFFF;
}
static __host__ __device__ __inline__ unsigned int lcg2(unsigned int &prev)
{
prev = (prev*8121 + 28411) % 134456;
return prev;
}
// Generate random float in [0, 1)
static __host__ __device__ __inline__ float rnd(unsigned int &prev)
{
return ((float) lcg(prev) / (float) 0x01000000);
}
static __host__ __device__ __inline__ unsigned int rot_seed( unsigned int seed, unsigned int frame )
{
return seed ^ frame;
}
| 2,678 | C | 35.69863 | 100 | 0.707244 |
arhix52/Strelka/cuda/curve.h | //
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#pragma once
#include <optix.h>
#include <sutil/vec_math.h>
#include <vector_types.h>
//
// First order polynomial interpolator
//
struct LinearInterpolator
{
__device__ __forceinline__ LinearInterpolator() {}
__device__ __forceinline__ void initialize( const float4* q )
{
p[0] = q[0];
p[1] = q[1] - q[0];
}
__device__ __forceinline__ float4 position4( float u ) const
{
return p[0] + u * p[1]; // Horner scheme
}
__device__ __forceinline__ float3 position3( float u ) const
{
return make_float3( position4( u ) );
}
__device__ __forceinline__ float radius( const float& u ) const
{
return position4( u ).w;
}
__device__ __forceinline__ float4 velocity4( float u ) const
{
return p[1];
}
__device__ __forceinline__ float3 velocity3( float u ) const
{
return make_float3( velocity4( u ) );
}
__device__ __forceinline__ float derivative_of_radius( float u ) const
{
return velocity4( u ).w;
}
__device__ __forceinline__ float3 acceleration3( float u ) const { return make_float3( 0.f ); }
__device__ __forceinline__ float4 acceleration4( float u ) const { return make_float4( 0.f ); }
float4 p[2];
};
//
// Second order polynomial interpolator
//
struct QuadraticInterpolator
{
__device__ __forceinline__ QuadraticInterpolator() {}
__device__ __forceinline__ void initializeFromBSpline( const float4* q )
{
// Bspline-to-Poly = Matrix([[1/2, -1, 1/2],
// [-1, 1, 0],
// [1/2, 1/2, 0]])
p[0] = ( q[0] - 2.0f * q[1] + q[2] ) / 2.0f;
p[1] = ( -2.0f * q[0] + 2.0f * q[1] ) / 2.0f;
p[2] = ( q[0] + q[1] ) / 2.0f;
}
__device__ __forceinline__ void export2BSpline( float4 bs[3] ) const
{
// inverse of initializeFromBSpline
// Bspline-to-Poly = Matrix([[1/2, -1, 1/2],
// [-1, 1, 0],
// [1/2, 1/2, 0]])
// invert to get:
// Poly-to-Bspline = Matrix([[0, -1/2, 1],
// [0, 1/2, 1],
// [2, 3/2, 1]])
bs[0] = p[0] - p[1] / 2;
bs[1] = p[0] + p[1] / 2;
bs[2] = p[0] + 1.5f * p[1] + 2 * p[2];
}
__device__ __forceinline__ float4 position4( float u ) const
{
return ( p[0] * u + p[1] ) * u + p[2]; // Horner scheme
}
__device__ __forceinline__ float3 position3( float u ) const
{
return make_float3( position4( u ) );
}
__device__ __forceinline__ float radius( float u ) const
{
return position4( u ).w;
}
__device__ __forceinline__ float4 velocity4( float u ) const
{
return 2.0f * p[0] * u + p[1];
}
__device__ __forceinline__ float3 velocity3( float u ) const
{
return make_float3( velocity4( u ) );
}
__device__ __forceinline__ float derivative_of_radius( float u ) const
{
return velocity4( u ).w;
}
__device__ __forceinline__ float4 acceleration4( float u ) const
{
return 2.0f * p[0];
}
__device__ __forceinline__ float3 acceleration3( float u ) const
{
return make_float3( acceleration4( u ) );
}
float4 p[3];
};
//
// Third order polynomial interpolator
//
// Storing {p0, p1, p2, p3} for evaluation:
// P(u) = p0 * u^3 + p1 * u^2 + p2 * u + p3
//
struct CubicInterpolator
{
__device__ __forceinline__ CubicInterpolator() {}
// TODO: Initialize from polynomial weights. Check that sample doesn't rely on
// legacy behavior.
// __device__ __forceinline__ CubicBSplineSegment( const float4* q ) { initializeFromBSpline( q ); }
__device__ __forceinline__ void initializeFromBSpline( const float4* q )
{
// Bspline-to-Poly = Matrix([[-1/6, 1/2, -1/2, 1/6],
// [ 1/2, -1, 1/2, 0],
// [-1/2, 0, 1/2, 0],
// [ 1/6, 2/3, 1/6, 0]])
p[0] = ( q[0] * ( -1.0f ) + q[1] * ( 3.0f ) + q[2] * ( -3.0f ) + q[3] ) / 6.0f;
p[1] = ( q[0] * ( 3.0f ) + q[1] * ( -6.0f ) + q[2] * ( 3.0f ) ) / 6.0f;
p[2] = ( q[0] * ( -3.0f ) + q[2] * ( 3.0f ) ) / 6.0f;
p[3] = ( q[0] * ( 1.0f ) + q[1] * ( 4.0f ) + q[2] * ( 1.0f ) ) / 6.0f;
}
__device__ __forceinline__ void export2BSpline( float4 bs[4] ) const
{
// inverse of initializeFromBSpline
// Bspline-to-Poly = Matrix([[-1/6, 1/2, -1/2, 1/6],
// [ 1/2, -1, 1/2, 0],
// [-1/2, 0, 1/2, 0],
// [ 1/6, 2/3, 1/6, 0]])
// invert to get:
// Poly-to-Bspline = Matrix([[0, 2/3, -1, 1],
// [0, -1/3, 0, 1],
// [0, 2/3, 1, 1],
// [6, 11/3, 2, 1]])
bs[0] = ( p[1] * ( 2.0f ) + p[2] * ( -1.0f ) + p[3] ) / 3.0f;
bs[1] = ( p[1] * ( -1.0f ) + p[3] ) / 3.0f;
bs[2] = ( p[1] * ( 2.0f ) + p[2] * ( 1.0f ) + p[3] ) / 3.0f;
bs[3] = ( p[0] + p[1] * ( 11.0f ) + p[2] * ( 2.0f ) + p[3] ) / 3.0f;
}
__device__ __forceinline__ void initializeFromCatrom(const float4* q)
{
// Catrom-to-Poly = Matrix([[-1/2, 3/2, -3/2, 1/2],
// [1, -5/2, 2, -1/2],
// [-1/2, 0, 1/2, 0],
// [0, 1, 0, 0]])
p[0] = ( -1.0f * q[0] + ( 3.0f ) * q[1] + ( -3.0f ) * q[2] + ( 1.0f ) * q[3] ) / 2.0f;
p[1] = ( 2.0f * q[0] + ( -5.0f ) * q[1] + ( 4.0f ) * q[2] + ( -1.0f ) * q[3] ) / 2.0f;
p[2] = ( -1.0f * q[0] + ( 1.0f ) * q[2] ) / 2.0f;
p[3] = ( ( 2.0f ) * q[1] ) / 2.0f;
}
__device__ __forceinline__ void export2Catrom(float4 cr[4]) const
{
// Catrom-to-Poly = Matrix([[-1/2, 3/2, -3/2, 1/2],
// [1, -5/2, 2, -1/2],
// [-1/2, 0, 1/2, 0],
// [0, 1, 0, 0]])
// invert to get:
// Poly-to-Catrom = Matrix([[1, 1, -1, 1],
// [0, 0, 0, 1],
// [1, 1, 1, 1],
// [6, 4, 2, 1]])
cr[0] = ( p[0] * 6.f/6.f ) - ( p[1] * 5.f/6.f ) + ( p[2] * 2.f/6.f ) + ( p[3] * 1.f/6.f );
cr[1] = ( p[0] * 6.f/6.f ) ;
cr[2] = ( p[0] * 6.f/6.f ) + ( p[1] * 1.f/6.f ) + ( p[2] * 2.f/6.f ) + ( p[3] * 1.f/6.f );
cr[3] = ( p[0] * 6.f/6.f ) + ( p[3] * 6.f/6.f );
}
__device__ __forceinline__ float4 position4( float u ) const
{
return ( ( ( p[0] * u ) + p[1] ) * u + p[2] ) * u + p[3]; // Horner scheme
}
__device__ __forceinline__ float3 position3( float u ) const
{
// rely on compiler and inlining for dead code removal
return make_float3( position4( u ) );
}
__device__ __forceinline__ float radius( float u ) const
{
return position4( u ).w;
}
__device__ __forceinline__ float4 velocity4( float u ) const
{
// adjust u to avoid problems with tripple knots.
if( u == 0 )
u = 0.000001f;
if( u == 1 )
u = 0.999999f;
return ( ( 3.0f * p[0] * u ) + 2.0f * p[1] ) * u + p[2];
}
__device__ __forceinline__ float3 velocity3( float u ) const
{
return make_float3( velocity4( u ) );
}
__device__ __forceinline__ float derivative_of_radius( float u ) const
{
return velocity4( u ).w;
}
__device__ __forceinline__ float4 acceleration4( float u ) const
{
return 6.0f * p[0] * u + 2.0f * p[1]; // Horner scheme
}
__device__ __forceinline__ float3 acceleration3( float u ) const
{
return make_float3( acceleration4( u ) );
}
float4 p[4];
};
// Compute curve primitive surface normal in object space.
//
// Template parameters:
// CurveType - A B-Spline evaluator class.
// type - 0 ~ cylindrical approximation (correct if radius' == 0)
// 1 ~ conic approximation (correct if curve'' == 0)
// other ~ the bona fide surface normal
//
// Parameters:
// bc - A B-Spline evaluator object.
// u - segment parameter of hit-point.
// ps - hit-point on curve's surface in object space; usually
// computed like this.
// float3 ps = ray_orig + t_hit * ray_dir;
// the resulting point is slightly offset away from the
// surface. For this reason (Warning!) ps gets modified by this
// method, projecting it onto the surface
// in case it is not already on it. (See also inline
// comments.)
//
template <typename CurveType, int type = 2>
__device__ __forceinline__ float3 surfaceNormal( const CurveType& bc, float u, float3& ps )
{
float3 normal;
if( u == 0.0f )
{
normal = -bc.velocity3( 0 ); // special handling for flat endcaps
}
else if( u == 1.0f )
{
normal = bc.velocity3( 1 ); // special handling for flat endcaps
}
else
{
// ps is a point that is near the curve's offset surface,
// usually ray.origin + ray.direction * rayt.
// We will push it exactly to the surface by projecting it to the plane(p,d).
// The function derivation:
// we (implicitly) transform the curve into coordinate system
// {p, o1 = normalize(ps - p), o2 = normalize(curve'(t)), o3 = o1 x o2} in which
// curve'(t) = (0, length(d), 0); ps = (r, 0, 0);
float4 p4 = bc.position4( u );
float3 p = make_float3( p4 );
float r = p4.w; // == length(ps - p) if ps is already on the surface
float4 d4 = bc.velocity4( u );
float3 d = make_float3( d4 );
float dr = d4.w;
float dd = dot( d, d );
float3 o1 = ps - p; // dot(modified_o1, d) == 0 by design:
o1 -= ( dot( o1, d ) / dd ) * d; // first, project ps to the plane(p,d)
o1 *= r / length( o1 ); // and then drop it to the surface
ps = p + o1; // fine-tuning the hit point
if( type == 0 )
{
normal = o1; // cylindrical approximation
}
else
{
if( type != 1 )
{
dd -= dot( bc.acceleration3( u ), o1 );
}
normal = dd * o1 - ( dr * r ) * d;
}
}
return normalize( normal );
}
template <int type = 1>
__device__ __forceinline__ float3 surfaceNormal( const LinearInterpolator& bc, float u, float3& ps )
{
float3 normal;
if( u == 0.0f )
{
normal = ps - ( float3 & )( bc.p[0] ); // special handling for round endcaps
}
else if( u >= 1.0f )
{
// reconstruct second control point (Note: the interpolator pre-transforms
// the control-points to speed up repeated evaluation.
const float3 p1 = ( float3 & ) (bc.p[1] ) + ( float3 & )( bc.p[0] );
normal = ps - p1; // special handling for round endcaps
}
else
{
// ps is a point that is near the curve's offset surface,
// usually ray.origin + ray.direction * rayt.
// We will push it exactly to the surface by projecting it to the plane(p,d).
// The function derivation:
// we (implicitly) transform the curve into coordinate system
// {p, o1 = normalize(ps - p), o2 = normalize(curve'(t)), o3 = o1 x o2} in which
// curve'(t) = (0, length(d), 0); ps = (r, 0, 0);
float4 p4 = bc.position4( u );
float3 p = make_float3( p4 );
float r = p4.w; // == length(ps - p) if ps is already on the surface
float4 d4 = bc.velocity4( u );
float3 d = make_float3( d4 );
float dr = d4.w;
float dd = dot( d, d );
float3 o1 = ps - p; // dot(modified_o1, d) == 0 by design:
o1 -= ( dot( o1, d ) / dd ) * d; // first, project ps to the plane(p,d)
o1 *= r / length( o1 ); // and then drop it to the surface
ps = p + o1; // fine-tuning the hit point
if( type == 0 )
{
normal = o1; // cylindrical approximation
}
else
{
normal = dd * o1 - ( dr * r ) * d;
}
}
return normalize( normal );
}
// Compute curve primitive tangent in object space.
//
// Template parameters:
// CurveType - A B-Spline evaluator class.
//
// Parameters:
// bc - A B-Spline evaluator object.
// u - segment parameter of tangent location on curve.
//
template <typename CurveType>
__device__ __forceinline__ float3 curveTangent( const CurveType& bc, float u )
{
float3 tangent = bc.velocity3( u );
return normalize( tangent );
}
| 14,969 | C | 34.813397 | 104 | 0.48567 |
arhix52/Strelka/cuda/helpers.h | //
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#pragma once
#include <vector_types.h>
#include <sutil/vec_math.h>
__forceinline__ __device__ float3 toSRGB( const float3& c )
{
float invGamma = 1.0f / 2.4f;
float3 powed = make_float3( powf( c.x, invGamma ), powf( c.y, invGamma ), powf( c.z, invGamma ) );
return make_float3(
c.x < 0.0031308f ? 12.92f * c.x : 1.055f * powed.x - 0.055f,
c.y < 0.0031308f ? 12.92f * c.y : 1.055f * powed.y - 0.055f,
c.z < 0.0031308f ? 12.92f * c.z : 1.055f * powed.z - 0.055f );
}
//__forceinline__ __device__ float dequantizeUnsigned8Bits( const unsigned char i )
//{
// enum { N = (1 << 8) - 1 };
// return min((float)i / (float)N), 1.f)
//}
__forceinline__ __device__ unsigned char quantizeUnsigned8Bits( float x )
{
x = clamp( x, 0.0f, 1.0f );
enum { N = (1 << 8) - 1, Np1 = (1 << 8) };
return (unsigned char)min((unsigned int)(x * (float)Np1), (unsigned int)N);
}
__forceinline__ __device__ uchar4 make_color( const float3& c )
{
// first apply gamma, then convert to unsigned char
float3 srgb = toSRGB( clamp( c, 0.0f, 1.0f ) );
return make_uchar4( quantizeUnsigned8Bits( srgb.x ), quantizeUnsigned8Bits( srgb.y ), quantizeUnsigned8Bits( srgb.z ), 255u );
}
__forceinline__ __device__ uchar4 make_color( const float4& c )
{
return make_color( make_float3( c.x, c.y, c.z ) );
}
| 2,911 | C | 42.462686 | 130 | 0.687736 |
arhix52/Strelka/cuda/util.h | //
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#pragma once
#ifndef __CUDACC_RTC__
#include <stdio.h>
#endif
#define if_pixel( x_, y_ ) \
const uint3 launch_idx__ = optixGetLaunchIndex(); \
if( launch_idx__.x == (x_) && launch_idx__.y == (y_) ) \
#define print_pixel( x_, y_, str, ... ) \
do \
{ \
const uint3 launch_idx = optixGetLaunchIndex(); \
if( launch_idx.x == (x_) && launch_idx.y == (y_) ) \
{ \
printf( str, __VA_ARGS__ ); \
} \
} while(0);
| 2,534 | C | 50.734693 | 80 | 0.561957 |
arhix52/Strelka/tests/tests_main.cpp | #define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include <doctest/doctest.h>
// This is all that is needed to compile a test-runner executable.
// More tests can be added here, or in a new tests/*.cpp file.
| 203 | C++ | 32.999995 | 66 | 0.748768 |
arhix52/Strelka/tests/materialmanager/test_materialmanager.cpp | #include <materialmanager/materialmanager.h>
// #include <render/render.h>
#include <doctest/doctest.h>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <cassert>
using namespace oka;
namespace fs = std::filesystem;
TEST_CASE("mtlx to hlsl code gen test")
{
// static const char* DEFAULT_MTLX_DOC_1 =
// "<?xml version=\"1.0\"?>"
// "<materialx version=\"1.38\" colorspace=\"lin_rec709\">"
// " <UsdPreviewSurface name=\"SR_Invalid\" type=\"surfaceshader\">"
// " <input name=\"diffuseColor\" type=\"color3\" value=\"1.0, 0.0, 1.0\" />"
// " <input name=\"roughness\" type=\"float\" value=\"1.0\" />"
// " </UsdPreviewSurface>"
// " <surfacematerial name=\"invalid\" type=\"material\">"
// " <input name=\"surfaceshader\" type=\"surfaceshader\" nodename=\"SR_Invalid\" />"
// " </surfacematerial>"
// "</materialx>";
static const char* DEFAULT_MTLX_DOC_1 =
"<?xml version=\"1.0\"?>"
"<materialx version=\"1.38\" colorspace=\"lin_rec709\">"
" <UsdPreviewSurface name=\"SR_default\" type=\"surfaceshader\">"
" <input name=\"diffuseColor\" type=\"color3\" value=\"0.18, 0.18, 0.18\" />"
" <input name=\"emissiveColor\" type=\"color3\" value=\"0, 0, 0\" />"
" <input name=\"useSpecularWorkflow\" type=\"integer\" value=\"0\" />"
" <input name=\"specularColor\" type=\"color3\" value=\"0, 0, 0\" />"
" <input name=\"metallic\" type=\"float\" value=\"0\" />"
" <input name=\"roughness\" type=\"float\" value=\"0.5\" />"
" <input name=\"clearcoat\" type=\"float\" value=\"0\" />"
" <input name=\"clearcoatRoughness\" type=\"float\" value=\"0.01\" />"
" <input name=\"opacity\" type=\"float\" value=\"1\" />"
" <input name=\"opacityThreshold\" type=\"float\" value=\"0\" />"
" <input name=\"ior\" type=\"float\" value=\"1.5\" />"
" <input name=\"normal\" type=\"vector3\" value=\"0, 0, 1\" />"
" <input name=\"displacement\" type=\"float\" value=\"0\" />"
" <input name=\"occlusion\" type=\"float\" value=\"1\" />"
" </UsdPreviewSurface>"
" <surfacematerial name=\"USD_Default\" type=\"material\">"
" <input name=\"surfaceshader\" type=\"surfaceshader\" nodename=\"SR_default\" />"
" </surfacematerial>"
"</materialx>";
static const char* DEFAULT_MTLX_DOC_2 =
"<?xml version=\"1.0\"?>"
"<materialx version=\"1.38\" colorspace=\"lin_rec709\">"
" <UsdPreviewSurface name=\"SR_Invalid\" type=\"surfaceshader\">"
" <input name=\"diffuseColor\" type=\"color3\" value=\"0.0, 0.0, 1.0\" />"
" <input name=\"roughness\" type=\"float\" value=\"1.0\" />"
" </UsdPreviewSurface>"
" <surfacematerial name=\"invalid\" type=\"material\">"
" <input name=\"surfaceshader\" type=\"surfaceshader\" nodename=\"SR_Invalid\" />"
" </surfacematerial>"
"</materialx>";
using namespace std;
const fs::path cwd = fs::current_path();
cout << cwd.c_str() << endl;
std::string mdlFile = "material.mdl";
std::ofstream mdlMaterial(mdlFile.c_str());
MaterialManager* matMngr = new MaterialManager();
CHECK(matMngr);
const char* envUSDPath = std::getenv("USD_DIR");
if (!envUSDPath)
{
printf("Please, set USD_DIR variable\n");
assert(0);
}
const std::string usdMdlLibPath = std::string(envUSDPath) + "\\libraries\\mdl\\";
const char* paths[] = { usdMdlLibPath.c_str(), "./data/materials/mtlx/" };
bool res = matMngr->addMdlSearchPath(paths, 2);
CHECK(res);
MaterialManager::Module* mdlModule = matMngr->createMtlxModule(DEFAULT_MTLX_DOC_1);
assert(mdlModule);
MaterialManager::MaterialInstance* materialInst = matMngr->createMaterialInstance(mdlModule, "");
assert(materialInst);
MaterialManager::CompiledMaterial* materialComp = matMngr->compileMaterial(materialInst);
assert(materialComp);
MaterialManager::Module* mdlModule2 = matMngr->createMtlxModule(DEFAULT_MTLX_DOC_2);
assert(mdlModule2);
MaterialManager::MaterialInstance* materialInst2 = matMngr->createMaterialInstance(mdlModule2, "");
assert(materialInst2);
MaterialManager::CompiledMaterial* materialComp2 = matMngr->compileMaterial(materialInst2);
assert(materialComp2);
MaterialManager::CompiledMaterial* materials[2] = { materialComp, materialComp2 };
// std::vector<MaterialManager::CompiledMaterial*> materials;
// materials.push_back(materialComp);
// materials.push_back(materialComp2);
const MaterialManager::TargetCode* code = matMngr->generateTargetCode(materials, 2);
CHECK(code);
const char* hlsl = matMngr->getShaderCode(code, 0);
std::string shaderFile = "test_material_output.hlsl";
std::ofstream out(shaderFile.c_str());
out << hlsl << std::endl;
out.close();
delete matMngr;
}
TEST_CASE("MDL OmniPBR")
{
using namespace std;
const fs::path cwd = fs::current_path();
cout << cwd.c_str() << endl;
std::string mdlFile = "C:\\work\\StrelkaOptix\\build\\data\\materials\\mtlx\\OmniPBR.mdl";
// std::ofstream mdlMaterial(mdlFile.c_str());
MaterialManager* matMngr = new MaterialManager();
CHECK(matMngr);
const char* envUSDPath = std::getenv("USD_DIR");
if (!envUSDPath)
{
printf("Please, set USD_DIR variable\n");
assert(0);
}
const std::string usdMdlLibPath = std::string(envUSDPath) + "\\libraries\\mdl\\";
const char* paths[] = { usdMdlLibPath.c_str(), "./data/materials/mtlx/",
"C:\\work\\StrelkaOptix\\build\\data\\materials\\mtlx\\",
"C:\\work\\Strelka\\misc\\test_data\\mdl" };
bool res = matMngr->addMdlSearchPath(paths, 4);
CHECK(res);
MaterialManager::Module* currModule = matMngr->createModule(mdlFile.c_str());
CHECK(currModule);
MaterialManager::MaterialInstance* materialInst1 = matMngr->createMaterialInstance(currModule, "OmniPBR");
CHECK(materialInst1);
MaterialManager::CompiledMaterial* materialComp1 = matMngr->compileMaterial(materialInst1);
CHECK(materialComp1);
MaterialManager::CompiledMaterial* materials[1] = { materialComp1 };
const MaterialManager::TargetCode* targetCode = matMngr->generateTargetCode(materials, 1);
CHECK(targetCode);
const char* ptx = matMngr->getShaderCode(targetCode, 0);
string ptxFileName = cwd.string() + "/output.ptx";
ofstream outPtxFile(ptxFileName.c_str());
outPtxFile << ptx << endl;
outPtxFile.close();
delete matMngr;
}
// TEST_CASE("mdl to hlsl code gen test")
// {
// using namespace std;
// const fs::path cwd = fs::current_path();
// cout << cwd.c_str() << endl;
// std::string ptFile = cwd.string() + "/output.ptx";
// std::ofstream outHLSLShaderFile(ptFile.c_str());
// // Render r;
// // r.HEIGHT = 600;
// // r.WIDTH = 800;
// // r.initWindow();
// // r.initVulkan();
// MaterialManager* matMngr = new MaterialManager();
// CHECK(matMngr);
// const char* envUSDPath = std::getenv("USD_DIR");
// if (!envUSDPath)
// {
// printf("Please, set USD_DIR variable\n");
// assert(0);
// }
// const std::string usdMdlLibPath = std::string(envUSDPath) + "\\libraries\\mdl\\";
// const char* paths[] = { usdMdlLibPath.c_str(), "./data/materials/mtlx/" };
// bool res = matMngr->addMdlSearchPath(paths, 2);
// CHECK(res);
// MaterialManager::Module* defaultModule = matMngr->createModule("default.mdl");
// CHECK(defaultModule);
// MaterialManager::MaterialInstance* materialInst0 = matMngr->createMaterialInstance(defaultModule, "default_material");
// CHECK(materialInst0);
// MaterialManager::CompiledMaterial* materialComp0 = matMngr->compileMaterial(materialInst0);
// CHECK(materialComp0);
// MaterialManager::CompiledMaterial* materialComp00 = matMngr->compileMaterial(materialInst0);
// CHECK(materialComp00);
// MaterialManager::CompiledMaterial* materialComp000 = matMngr->compileMaterial(materialInst0);
// CHECK(materialComp000);
// MaterialManager::Module* currModule = matMngr->createModule("OmniGlass.mdl");
// CHECK(currModule);
// MaterialManager::MaterialInstance* materialInst1 = matMngr->createMaterialInstance(currModule, "OmniGlass");
// CHECK(materialInst1);
// MaterialManager::CompiledMaterial* materialComp1 = matMngr->compileMaterial(materialInst1);
// CHECK(materialComp1);
// MaterialManager::CompiledMaterial* materialsDefault[1] = { materialComp0 };
// // const MaterialManager::TargetCode* codeDefault = matMngr->generateTargetCode(materialsDefault, 1);
// // CHECK(codeDefault);
// MaterialManager::CompiledMaterial* materials[4] = { materialComp0, materialComp00, materialComp1, materialComp000 };
// const MaterialManager::TargetCode* code = matMngr->generateTargetCode(materials, 4);
// CHECK(code);
// const char* hlsl = matMngr->getShaderCode(code);
// // std::cout << hlsl << std::endl;
// uint32_t size = matMngr->getArgBufferSize(code);
// CHECK(size != 0);
// size = matMngr->getArgBufferSize(code);
// CHECK(size != 0);
// size = matMngr->getResourceInfoSize(code);
// CHECK(size != 0);
// matMngr->dumpParams(code, materialComp1);
// // nevk::TextureManager* mTexManager = new nevk::TextureManager(r.getDevice(), r.getPhysicalDevice(),
// // r.getResManager());
// uint32_t texSize = matMngr->getTextureCount(code);
// // CHECK(texSize == 8);
// // for (uint32_t i = 0; i < texSize; ++i)
// // {
// // const float* data = matMngr->getTextureData(code, i);
// // uint32_t width = matMngr->getTextureWidth(code, i);
// // uint32_t height = matMngr->getTextureHeight(code, i);
// // const char* type = matMngr->getTextureType(code, i);
// // std::string name = matMngr->getTextureName(code, i);
// // // mTexManager->loadTextureMdl(data, width, height, type, name);
// // }
// // CHECK(mTexManager->textures.size() == 7);
// // CHECK(mTexManager->textures[0].texWidth == 512);
// // CHECK(mTexManager->textures[0].texHeight == 512);
// delete matMngr;
// }
// TEST_CASE("mtlx to mdl code gen test")
// {
// using namespace std;
// const fs::path cwd = fs::current_path();
// cout << cwd.c_str() << endl;
// std::string mdlFile = "material.mdl";
// std::ofstream mdlMaterial(mdlFile.c_str());
// std::string ptFile = cwd.string() + "/shaders/newPT.hlsl";
// std::ofstream outHLSLShaderFile(ptFile.c_str());
// Render r;
// r.HEIGHT = 600;
// r.WIDTH = 800;
// r.initWindow();
// r.initVulkan();
// MaterialManager* matMngr = new MaterialManager();
// CHECK(matMngr);
// const char* path[2] = { "misc/test_data/mdl/", "misc/test_data/mtlx" }; // todo: configure paths
// bool res = matMngr->addMdlSearchPath(path, 2);
// CHECK(res);
// std::string file = "misc/test_data/mtlx/standard_surface_wood_tiled.mtlx";
// std::unique_ptr<MaterialManager::Module> currModule = matMngr->createMtlxModule(file.c_str());
// CHECK(currModule);
// std::unique_ptr<MaterialManager::MaterialInstance> materialInst1 =
// matMngr->createMaterialInstance(currModule.get(), ""); CHECK(materialInst1);
// std::unique_ptr<MaterialManager::CompiledMaterial> materialComp1 = matMngr->compileMaterial(materialInst1.get());
// CHECK(materialComp1);
// std::vector<std::unique_ptr<MaterialManager::CompiledMaterial>> materials;
// materials.push_back(std::move(materialComp1));
// const MaterialManager::TargetCode* code = matMngr->generateTargetCode(materials);
// CHECK(code);
// const char* hlsl = matMngr->getShaderCode(code);
// //std::cout << hlsl << std::endl;
// uint32_t size = matMngr->getArgBufferSize(code);
// CHECK(size != 0);
// size = matMngr->getArgBufferSize(code);
// CHECK(size != 0);
// size = matMngr->getResourceInfoSize(code);
// CHECK(size != 0);
// nevk::TextureManager* mTexManager = new nevk::TextureManager(r.getDevice(), r.getPhysicalDevice(),
// r.getResManager()); uint32_t texSize = matMngr->getTextureCount(code); for (uint32_t i = 1; i < texSize; ++i)
// {
// const float* data = matMngr->getTextureData(code, i);
// uint32_t width = matMngr->getTextureWidth(code, i);
// uint32_t height = matMngr->getTextureHeight(code, i);
// const char* type = matMngr->getTextureType(code, i);
// std::string name = matMngr->getTextureName(code, i);
// if (data != NULL) // todo: for bsdf_text data is NULL in COMPILATION_CLASS. in default class there is no
// bsdf_tex
// {
// mTexManager->loadTextureMdl(data, width, height, type, name);
// }
// }
// CHECK(mTexManager->textures.size() == 2);
// CHECK(mTexManager->textures[0].texWidth == 512);
// CHECK(mTexManager->textures[0].texHeight == 512);
// }
| 13,259 | C++ | 40.698113 | 125 | 0.621465 |
arhix52/Strelka/sutil/Quaternion.h | //
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#pragma once
#include <sutil/Matrix.h>
//------------------------------------------------------------------------------
//
// Quaternion class
//
//------------------------------------------------------------------------------
namespace sutil
{
class Quaternion
{
public:
Quaternion()
{ q[0] = q[1] = q[2] = q[3] = 0.0; }
Quaternion( float w, float x, float y, float z )
{ q[0] = w; q[1] = x; q[2] = y; q[3] = z; }
Quaternion( const float3& from, const float3& to );
Quaternion( const Quaternion& a )
{ q[0] = a[0]; q[1] = a[1]; q[2] = a[2]; q[3] = a[3]; }
Quaternion ( float angle, const float3& axis );
// getters and setters
void setW(float _w) { q[0] = _w; }
void setX(float _x) { q[1] = _x; }
void setY(float _y) { q[2] = _y; }
void setZ(float _z) { q[3] = _z; }
float w() const { return q[0]; }
float x() const { return q[1]; }
float y() const { return q[2]; }
float z() const { return q[3]; }
Quaternion& operator-=(const Quaternion& r)
{ q[0] -= r[0]; q[1] -= r[1]; q[2] -= r[2]; q[3] -= r[3]; return *this; }
Quaternion& operator+=(const Quaternion& r)
{ q[0] += r[0]; q[1] += r[1]; q[2] += r[2]; q[3] += r[3]; return *this; }
Quaternion& operator*=(const Quaternion& r);
Quaternion& operator/=(const float a);
Quaternion conjugate()
{ return Quaternion( q[0], -q[1], -q[2], -q[3] ); }
void rotation( float& angle, float3& axis ) const;
void rotation( float& angle, float& x, float& y, float& z ) const;
Matrix4x4 rotationMatrix() const;
float& operator[](int i) { return q[i]; }
float operator[](int i)const { return q[i]; }
// l2 norm
float norm() const
{ return sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); }
float normalize();
private:
float q[4];
};
inline Quaternion::Quaternion( const float3& from, const float3& to )
{
const float3 c = cross( from, to );
q[0] = dot(from, to);
q[1] = c.x;
q[2] = c.y;
q[3] = c.z;
}
inline Quaternion::Quaternion( float angle, const float3& axis )
{
const float n = length( axis );
const float inverse = 1.0f/n;
const float3 naxis = axis*inverse;
const float s = sinf(angle/2.0f);
q[0] = naxis.x*s*inverse;
q[1] = naxis.y*s*inverse;
q[2] = naxis.z*s*inverse;
q[3] = cosf(angle/2.0f);
}
inline Quaternion& Quaternion::operator*=(const Quaternion& r)
{
float w = q[0]*r[0] - q[1]*r[1] - q[2]*r[2] - q[3]*r[3];
float x = q[0]*r[1] + q[1]*r[0] + q[2]*r[3] - q[3]*r[2];
float y = q[0]*r[2] + q[2]*r[0] + q[3]*r[1] - q[1]*r[3];
float z = q[0]*r[3] + q[3]*r[0] + q[1]*r[2] - q[2]*r[1];
q[0] = w;
q[1] = x;
q[2] = y;
q[3] = z;
return *this;
}
inline Quaternion& Quaternion::operator/=(const float a)
{
float inverse = 1.0f/a;
q[0] *= inverse;
q[1] *= inverse;
q[2] *= inverse;
q[3] *= inverse;
return *this;
}
inline void Quaternion::rotation( float& angle, float3& axis ) const
{
Quaternion n = *this;
n.normalize();
axis.x = n[1];
axis.y = n[2];
axis.z = n[3];
angle = 2.0f * acosf(n[0]);
}
inline void Quaternion::rotation(
float& angle,
float& x,
float& y,
float& z
) const
{
Quaternion n = *this;
n.normalize();
x = n[1];
y = n[2];
z = n[3];
angle = 2.0f * acosf(n[0]);
}
inline float Quaternion::normalize()
{
float n = norm();
float inverse = 1.0f/n;
q[0] *= inverse;
q[1] *= inverse;
q[2] *= inverse;
q[3] *= inverse;
return n;
}
inline Quaternion operator*(const float a, const Quaternion &r)
{ return Quaternion(a*r[0], a*r[1], a*r[2], a*r[3]); }
inline Quaternion operator*(const Quaternion &r, const float a)
{ return Quaternion(a*r[0], a*r[1], a*r[2], a*r[3]); }
inline Quaternion operator/(const Quaternion &r, const float a)
{
float inverse = 1.0f/a;
return Quaternion( r[0]*inverse, r[1]*inverse, r[2]*inverse, r[3]*inverse);
}
inline Quaternion operator/(const float a, const Quaternion &r)
{
float inverse = 1.0f/a;
return Quaternion( r[0]*inverse, r[1]*inverse, r[2]*inverse, r[3]*inverse);
}
inline Quaternion operator-(const Quaternion& l, const Quaternion& r)
{ return Quaternion(l[0]-r[0], l[1]-r[1], l[2]-r[2], l[3]-r[3]); }
inline bool operator==(const Quaternion& l, const Quaternion& r)
{ return ( l[0] == r[0] && l[1] == r[1] && l[2] == r[2] && l[3] == r[3] ); }
inline bool operator!=(const Quaternion& l, const Quaternion& r)
{ return !(l == r); }
inline Quaternion operator+(const Quaternion& l, const Quaternion& r)
{ return Quaternion(l[0]+r[0], l[1]+r[1], l[2]+r[2], l[3]+r[3]); }
inline Quaternion operator*(const Quaternion& l, const Quaternion& r)
{
float w = l[0]*r[0] - l[1]*r[1] - l[2]*r[2] - l[3]*r[3];
float x = l[0]*r[1] + l[1]*r[0] + l[2]*r[3] - l[3]*r[2];
float y = l[0]*r[2] + l[2]*r[0] + l[3]*r[1] - l[1]*r[3];
float z = l[0]*r[3] + l[3]*r[0] + l[1]*r[2] - l[2]*r[1];
return Quaternion( w, x, y, z );
}
inline float dot( const Quaternion& l, const Quaternion& r )
{
return l.w()*r.w() + l.x()*r.x() + l.y()*r.y() + l.z()*r.z();
}
inline Matrix4x4 Quaternion::rotationMatrix() const
{
Matrix4x4 m;
const float qw = q[0];
const float qx = q[1];
const float qy = q[2];
const float qz = q[3];
m[0*4+0] = 1.0f - 2.0f*qy*qy - 2.0f*qz*qz;
m[0*4+1] = 2.0f*qx*qy - 2.0f*qz*qw;
m[0*4+2] = 2.0f*qx*qz + 2.0f*qy*qw;
m[0*4+3] = 0.0f;
m[1*4+0] = 2.0f*qx*qy + 2.0f*qz*qw;
m[1*4+1] = 1.0f - 2.0f*qx*qx - 2.0f*qz*qz;
m[1*4+2] = 2.0f*qy*qz - 2.0f*qx*qw;
m[1*4+3] = 0.0f;
m[2*4+0] = 2.0f*qx*qz - 2.0f*qy*qw;
m[2*4+1] = 2.0f*qy*qz + 2.0f*qx*qw;
m[2*4+2] = 1.0f - 2.0f*qx*qx - 2.0f*qy*qy;
m[2*4+3] = 0.0f;
m[3*4+0] = 0.0f;
m[3*4+1] = 0.0f;
m[3*4+2] = 0.0f;
m[3*4+3] = 1.0f;
return m;
}
} // end namespace sutil
| 7,605 | C | 26.963235 | 80 | 0.56121 |
arhix52/Strelka/sutil/Matrix.h | //
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#pragma once
#include <sutil/sutilapi.h>
#include <sutil/Preprocessor.h>
#include <sutil/vec_math.h>
#if !defined(__CUDACC_RTC__)
#include <cmath>
#include <initializer_list>
#endif
#define RT_MATRIX_ACCESS(m,i,j) m[i*N+j]
#define RT_MAT_DECL template <unsigned int M, unsigned int N>
namespace sutil
{
template <int DIM> struct VectorDim { };
template <> struct VectorDim<2> { typedef float2 VectorType; };
template <> struct VectorDim<3> { typedef float3 VectorType; };
template <> struct VectorDim<4> { typedef float4 VectorType; };
template <unsigned int M, unsigned int N> class Matrix;
template <unsigned int M> SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,M>& operator*=(Matrix<M,M>& m1, const Matrix<M,M>& m2);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const Matrix<M,N>& m1, const Matrix<M,N>& m2);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const Matrix<M,N>& m1, const Matrix<M,N>& m2);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N>& operator-=(Matrix<M,N>& m1, const Matrix<M,N>& m2);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N>& operator+=(Matrix<M,N>& m1, const Matrix<M,N>& m2);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N>& operator*=(Matrix<M,N>& m1, float f);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N>&operator/=(Matrix<M,N>& m1, float f);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N> operator-(const Matrix<M,N>& m1, const Matrix<M,N>& m2);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N> operator+(const Matrix<M,N>& m1, const Matrix<M,N>& m2);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N> operator/(const Matrix<M,N>& m, float f);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N> operator*(const Matrix<M,N>& m, float f);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N> operator*(float f, const Matrix<M,N>& m);
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE typename Matrix<M,N>::floatM operator*(const Matrix<M,N>& m, const typename Matrix<M,N>::floatN& v );
RT_MAT_DECL SUTIL_INLINE SUTIL_HOSTDEVICE typename Matrix<M,N>::floatN operator*(const typename Matrix<M,N>::floatM& v, const Matrix<M,N>& m);
template<unsigned int M, unsigned int N, unsigned int R> SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,R> operator*(const Matrix<M,N>& m1, const Matrix<N,R>& m2);
// Partial specializations to make matrix vector multiplication more efficient
template <unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator*(const Matrix<2,N>& m, const typename Matrix<2,N>::floatN& vec );
template <unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator*(const Matrix<3,N>& m, const typename Matrix<3,N>::floatN& vec );
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator*(const Matrix<3,4>& m, const float4& vec );
template <unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator*(const Matrix<4,N>& m, const typename Matrix<4,N>::floatN& vec );
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator*(const Matrix<4,4>& m, const float4& vec );
/**
* @brief A matrix with M rows and N columns
*
* @ingroup CUDACTypes
*
* <B>Description</B>
*
* @ref Matrix provides a utility class for small-dimension floating-point
* matrices, such as transformation matrices. @ref Matrix may also be useful
* in other computation and can be used in both host and device code.
* Typedefs are provided for 2x2 through 4x4 matrices.
*
*/
template <unsigned int M, unsigned int N>
class Matrix
{
public:
typedef typename VectorDim<N>::VectorType floatN; /// A row of the matrix
typedef typename VectorDim<M>::VectorType floatM; /// A column of the matrix
/** Create an uninitialized matrix */
SUTIL_HOSTDEVICE Matrix();
/** Create a matrix from the specified float array */
SUTIL_HOSTDEVICE explicit Matrix( const float data[M*N] ) { for(unsigned int i = 0; i < M*N; ++i) m_data[i] = data[i]; }
/** Copy the matrix */
SUTIL_HOSTDEVICE Matrix( const Matrix& m );
SUTIL_HOSTDEVICE Matrix( const std::initializer_list<float>& list );
/** Assignment operator */
SUTIL_HOSTDEVICE Matrix& operator=( const Matrix& b );
/** Access the specified element 0..N*M-1 */
SUTIL_HOSTDEVICE float operator[]( unsigned int i )const { return m_data[i]; }
/** Access the specified element 0..N*M-1 */
SUTIL_HOSTDEVICE float& operator[]( unsigned int i ) { return m_data[i]; }
/** Access the specified row 0..M. Returns float, float2, float3 or float4 depending on the matrix size */
SUTIL_HOSTDEVICE floatN getRow( unsigned int m )const;
/** Access the specified column 0..N. Returns float, float2, float3 or float4 depending on the matrix size */
SUTIL_HOSTDEVICE floatM getCol( unsigned int n )const;
/** Returns a pointer to the internal data array. The data array is stored in row-major order. */
SUTIL_HOSTDEVICE float* getData();
/** Returns a const pointer to the internal data array. The data array is stored in row-major order. */
SUTIL_HOSTDEVICE const float* getData()const;
/** Assign the specified row 0..M. Takes a float, float2, float3 or float4 depending on the matrix size */
SUTIL_HOSTDEVICE void setRow( unsigned int m, const floatN &r );
/** Assign the specified column 0..N. Takes a float, float2, float3 or float4 depending on the matrix size */
SUTIL_HOSTDEVICE void setCol( unsigned int n, const floatM &c );
/** Returns the transpose of the matrix */
SUTIL_HOSTDEVICE Matrix<N,M> transpose() const;
/** Returns the inverse of the matrix */
SUTIL_HOSTDEVICE Matrix<4,4> inverse() const;
/** Returns the determinant of the matrix */
SUTIL_HOSTDEVICE float det() const;
/** Returns a rotation matrix */
SUTIL_HOSTDEVICE static Matrix<4,4> rotate(const float radians, const float3& axis);
/** Returns a translation matrix */
SUTIL_HOSTDEVICE static Matrix<4,4> translate(const float3& vec);
/** Returns a scale matrix */
SUTIL_HOSTDEVICE static Matrix<4,4> scale(const float3& vec);
/** Creates a matrix from an ONB and center point */
SUTIL_HOSTDEVICE static Matrix<4,4> fromBasis( const float3& u, const float3& v, const float3& w, const float3& c );
/** Returns the identity matrix */
SUTIL_HOSTDEVICE static Matrix<3,4> affineIdentity();
SUTIL_HOSTDEVICE static Matrix<N,N> identity();
/** Ordered comparison operator so that the matrix can be used in an STL container */
SUTIL_HOSTDEVICE bool operator<( const Matrix<M, N>& rhs ) const;
private:
/** The data array is stored in row-major order */
float m_data[M*N];
};
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N>::Matrix()
{
}
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N>::Matrix( const Matrix<M,N>& m )
{
for(unsigned int i = 0; i < M*N; ++i)
m_data[i] = m[i];
}
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N>::Matrix( const std::initializer_list<float>& list )
{
int i = 0;
for( auto it = list.begin(); it != list.end(); ++it )
m_data[ i++ ] = *it;
}
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<M,N>& Matrix<M,N>::operator=( const Matrix& b )
{
for(unsigned int i = 0; i < M*N; ++i)
m_data[i] = b[i];
return *this;
}
/*
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE float Matrix<M,N>::operator[]( unsigned int i )const
{
return m_data[i];
}
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE float& Matrix<M,N>::operator[]( unsigned int i )
{
return m_data[i];
}
*/
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE typename Matrix<M,N>::floatN Matrix<M,N>::getRow( unsigned int m )const
{
typename Matrix<M,N>::floatN temp;
float* v = reinterpret_cast<float*>( &temp );
const float* row = &( m_data[m*N] );
for(unsigned int i = 0; i < N; ++i)
v[i] = row[i];
return temp;
}
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE typename Matrix<M,N>::floatM Matrix<M,N>::getCol( unsigned int n )const
{
typename Matrix<M,N>::floatM temp;
float* v = reinterpret_cast<float*>( &temp );
for ( unsigned int i = 0; i < M; ++i )
v[i] = RT_MATRIX_ACCESS( m_data, i, n );
return temp;
}
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE float* Matrix<M,N>::getData()
{
return m_data;
}
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE const float* Matrix<M,N>::getData() const
{
return m_data;
}
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE void Matrix<M,N>::setRow( unsigned int m, const typename Matrix<M,N>::floatN &r )
{
const float* v = reinterpret_cast<const float*>( &r );
float* row = &( m_data[m*N] );
for(unsigned int i = 0; i < N; ++i)
row[i] = v[i];
}
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE void Matrix<M,N>::setCol( unsigned int n, const typename Matrix<M,N>::floatM &c )
{
const float* v = reinterpret_cast<const float*>( &c );
for ( unsigned int i = 0; i < M; ++i )
RT_MATRIX_ACCESS( m_data, i, n ) = v[i];
}
// Compare two matrices using exact float comparison
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE bool operator==(const Matrix<M,N>& m1, const Matrix<M,N>& m2)
{
for ( unsigned int i = 0; i < M*N; ++i )
if ( m1[i] != m2[i] ) return false;
return true;
}
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE bool operator!=(const Matrix<M,N>& m1, const Matrix<M,N>& m2)
{
for ( unsigned int i = 0; i < M*N; ++i )
if ( m1[i] != m2[i] ) return true;
return false;
}
// Subtract two matrices of the same size.
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE Matrix<M,N> operator-(const Matrix<M,N>& m1, const Matrix<M,N>& m2)
{
Matrix<M,N> temp( m1 );
temp -= m2;
return temp;
}
// Subtract two matrices of the same size.
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE Matrix<M,N>& operator-=(Matrix<M,N>& m1, const Matrix<M,N>& m2)
{
for ( unsigned int i = 0; i < M*N; ++i )
m1[i] -= m2[i];
return m1;
}
// Add two matrices of the same size.
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE Matrix<M,N> operator+(const Matrix<M,N>& m1, const Matrix<M,N>& m2)
{
Matrix<M,N> temp( m1 );
temp += m2;
return temp;
}
// Add two matrices of the same size.
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE Matrix<M,N>& operator+=(Matrix<M,N>& m1, const Matrix<M,N>& m2)
{
for ( unsigned int i = 0; i < M*N; ++i )
m1[i] += m2[i];
return m1;
}
// Multiply two compatible matrices.
template<unsigned int M, unsigned int N, unsigned int R>
SUTIL_HOSTDEVICE Matrix<M,R> operator*( const Matrix<M,N>& m1, const Matrix<N,R>& m2)
{
Matrix<M,R> temp;
for ( unsigned int i = 0; i < M; ++i ) {
for ( unsigned int j = 0; j < R; ++j ) {
float sum = 0.0f;
for ( unsigned int k = 0; k < N; ++k ) {
float ik = m1[ i*N+k ];
float kj = m2[ k*R+j ];
sum += ik * kj;
}
temp[i*R+j] = sum;
}
}
return temp;
}
// Multiply two compatible matrices.
template<unsigned int M>
SUTIL_HOSTDEVICE Matrix<M,M>& operator*=(Matrix<M,M>& m1, const Matrix<M,M>& m2)
{
m1 = m1*m2;
return m1;
}
// Multiply matrix by vector
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE typename Matrix<M,N>::floatM operator*(const Matrix<M,N>& m, const typename Matrix<M,N>::floatN& vec )
{
typename Matrix<M,N>::floatM temp;
float* t = reinterpret_cast<float*>( &temp );
const float* v = reinterpret_cast<const float*>( &vec );
for (unsigned int i = 0; i < M; ++i) {
float sum = 0.0f;
for (unsigned int j = 0; j < N; ++j) {
sum += RT_MATRIX_ACCESS( m, i, j ) * v[j];
}
t[i] = sum;
}
return temp;
}
// Multiply matrix2xN by floatN
template<unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator*(const Matrix<2,N>& m, const typename Matrix<2,N>::floatN& vec )
{
float2 temp = { 0.0f, 0.0f };
const float* v = reinterpret_cast<const float*>( &vec );
int index = 0;
for (unsigned int j = 0; j < N; ++j)
temp.x += m[index++] * v[j];
for (unsigned int j = 0; j < N; ++j)
temp.y += m[index++] * v[j];
return temp;
}
// Multiply matrix3xN by floatN
template<unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator*(const Matrix<3,N>& m, const typename Matrix<3,N>::floatN& vec )
{
float3 temp = { 0.0f, 0.0f, 0.0f };
const float* v = reinterpret_cast<const float*>( &vec );
int index = 0;
for (unsigned int j = 0; j < N; ++j)
temp.x += m[index++] * v[j];
for (unsigned int j = 0; j < N; ++j)
temp.y += m[index++] * v[j];
for (unsigned int j = 0; j < N; ++j)
temp.z += m[index++] * v[j];
return temp;
}
// Multiply matrix4xN by floatN
template<unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator*(const Matrix<4,N>& m, const typename Matrix<4,N>::floatN& vec )
{
float4 temp = { 0.0f, 0.0f, 0.0f, 0.0f };
const float* v = reinterpret_cast<const float*>( &vec );
int index = 0;
for (unsigned int j = 0; j < N; ++j)
temp.x += m[index++] * v[j];
for (unsigned int j = 0; j < N; ++j)
temp.y += m[index++] * v[j];
for (unsigned int j = 0; j < N; ++j)
temp.z += m[index++] * v[j];
for (unsigned int j = 0; j < N; ++j)
temp.w += m[index++] * v[j];
return temp;
}
// Multiply matrix4x4 by float4
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator*(const Matrix<3,4>& m, const float4& vec )
{
float3 temp;
temp.x = m[ 0] * vec.x +
m[ 1] * vec.y +
m[ 2] * vec.z +
m[ 3] * vec.w;
temp.y = m[ 4] * vec.x +
m[ 5] * vec.y +
m[ 6] * vec.z +
m[ 7] * vec.w;
temp.z = m[ 8] * vec.x +
m[ 9] * vec.y +
m[10] * vec.z +
m[11] * vec.w;
return temp;
}
// Multiply matrix4x4 by float4
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator*(const Matrix<4,4>& m, const float4& vec )
{
float4 temp;
temp.x = m[ 0] * vec.x +
m[ 1] * vec.y +
m[ 2] * vec.z +
m[ 3] * vec.w;
temp.y = m[ 4] * vec.x +
m[ 5] * vec.y +
m[ 6] * vec.z +
m[ 7] * vec.w;
temp.z = m[ 8] * vec.x +
m[ 9] * vec.y +
m[10] * vec.z +
m[11] * vec.w;
temp.w = m[12] * vec.x +
m[13] * vec.y +
m[14] * vec.z +
m[15] * vec.w;
return temp;
}
// Multiply vector by matrix
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE typename Matrix<M,N>::floatN operator*(const typename Matrix<M,N>::floatM& vec, const Matrix<M,N>& m)
{
typename Matrix<M,N>::floatN temp;
float* t = reinterpret_cast<float*>( &temp );
const float* v = reinterpret_cast<const float*>( &vec);
for (unsigned int i = 0; i < N; ++i) {
float sum = 0.0f;
for (unsigned int j = 0; j < M; ++j) {
sum += v[j] * RT_MATRIX_ACCESS( m, j, i ) ;
}
t[i] = sum;
}
return temp;
}
// Multply matrix by a scalar.
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE Matrix<M,N> operator*(const Matrix<M,N>& m, float f)
{
Matrix<M,N> temp( m );
temp *= f;
return temp;
}
// Multply matrix by a scalar.
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE Matrix<M,N>& operator*=(Matrix<M,N>& m, float f)
{
for ( unsigned int i = 0; i < M*N; ++i )
m[i] *= f;
return m;
}
// Multply matrix by a scalar.
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE Matrix<M,N> operator*(float f, const Matrix<M,N>& m)
{
Matrix<M,N> temp;
for ( unsigned int i = 0; i < M*N; ++i )
temp[i] = m[i]*f;
return temp;
}
// Divide matrix by a scalar.
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE Matrix<M,N> operator/(const Matrix<M,N>& m, float f)
{
Matrix<M,N> temp( m );
temp /= f;
return temp;
}
// Divide matrix by a scalar.
template<unsigned int M, unsigned int N>
SUTIL_HOSTDEVICE Matrix<M,N>& operator/=(Matrix<M,N>& m, float f)
{
float inv_f = 1.0f / f;
for ( unsigned int i = 0; i < M*N; ++i )
m[i] *= inv_f;
return m;
}
// Returns the transpose of the matrix.
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<N,M> Matrix<M,N>::transpose() const
{
Matrix<N,M> ret;
for( unsigned int row = 0; row < M; ++row )
for( unsigned int col = 0; col < N; ++col )
ret[col*M+row] = m_data[row*N+col];
return ret;
}
// Returns the determinant of the matrix.
template<>
SUTIL_INLINE SUTIL_HOSTDEVICE float Matrix<3,3>::det() const
{
const float* m = m_data;
float d = m[0]*m[4]*m[8] + m[1]*m[5]*m[6] + m[2]*m[3]*m[7]
- m[0]*m[5]*m[7] - m[1]*m[3]*m[8] - m[2]*m[4]*m[6];
return d;
}
// Returns the determinant of the matrix.
template<>
SUTIL_INLINE SUTIL_HOSTDEVICE float Matrix<4,4>::det() const
{
const float* m = m_data;
float d =
m[0]*m[5]*m[10]*m[15]-
m[0]*m[5]*m[11]*m[14]+m[0]*m[9]*m[14]*m[7]-
m[0]*m[9]*m[6]*m[15]+m[0]*m[13]*m[6]*m[11]-
m[0]*m[13]*m[10]*m[7]-m[4]*m[1]*m[10]*m[15]+m[4]*m[1]*m[11]*m[14]-
m[4]*m[9]*m[14]*m[3]+m[4]*m[9]*m[2]*m[15]-
m[4]*m[13]*m[2]*m[11]+m[4]*m[13]*m[10]*m[3]+m[8]*m[1]*m[6]*m[15]-
m[8]*m[1]*m[14]*m[7]+m[8]*m[5]*m[14]*m[3]-
m[8]*m[5]*m[2]*m[15]+m[8]*m[13]*m[2]*m[7]-
m[8]*m[13]*m[6]*m[3]-
m[12]*m[1]*m[6]*m[11]+m[12]*m[1]*m[10]*m[7]-
m[12]*m[5]*m[10]*m[3]+m[12]*m[5]*m[2]*m[11]-
m[12]*m[9]*m[2]*m[7]+m[12]*m[9]*m[6]*m[3];
return d;
}
// Returns the inverse of the matrix.
template<>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<4,4> Matrix<4,4>::inverse() const
{
Matrix<4,4> dst;
const float* m = m_data;
const float d = 1.0f / det();
dst[0] = d * (m[5] * (m[10] * m[15] - m[14] * m[11]) + m[9] * (m[14] * m[7] - m[6] * m[15]) + m[13] * (m[6] * m[11] - m[10] * m[7]));
dst[4] = d * (m[6] * (m[8] * m[15] - m[12] * m[11]) + m[10] * (m[12] * m[7] - m[4] * m[15]) + m[14] * (m[4] * m[11] - m[8] * m[7]));
dst[8] = d * (m[7] * (m[8] * m[13] - m[12] * m[9]) + m[11] * (m[12] * m[5] - m[4] * m[13]) + m[15] * (m[4] * m[9] - m[8] * m[5]));
dst[12] = d * (m[4] * (m[13] * m[10] - m[9] * m[14]) + m[8] * (m[5] * m[14] - m[13] * m[6]) + m[12] * (m[9] * m[6] - m[5] * m[10]));
dst[1] = d * (m[9] * (m[2] * m[15] - m[14] * m[3]) + m[13] * (m[10] * m[3] - m[2] * m[11]) + m[1] * (m[14] * m[11] - m[10] * m[15]));
dst[5] = d * (m[10] * (m[0] * m[15] - m[12] * m[3]) + m[14] * (m[8] * m[3] - m[0] * m[11]) + m[2] * (m[12] * m[11] - m[8] * m[15]));
dst[9] = d * (m[11] * (m[0] * m[13] - m[12] * m[1]) + m[15] * (m[8] * m[1] - m[0] * m[9]) + m[3] * (m[12] * m[9] - m[8] * m[13]));
dst[13] = d * (m[8] * (m[13] * m[2] - m[1] * m[14]) + m[12] * (m[1] * m[10] - m[9] * m[2]) + m[0] * (m[9] * m[14] - m[13] * m[10]));
dst[2] = d * (m[13] * (m[2] * m[7] - m[6] * m[3]) + m[1] * (m[6] * m[15] - m[14] * m[7]) + m[5] * (m[14] * m[3] - m[2] * m[15]));
dst[6] = d * (m[14] * (m[0] * m[7] - m[4] * m[3]) + m[2] * (m[4] * m[15] - m[12] * m[7]) + m[6] * (m[12] * m[3] - m[0] * m[15]));
dst[10] = d * (m[15] * (m[0] * m[5] - m[4] * m[1]) + m[3] * (m[4] * m[13] - m[12] * m[5]) + m[7] * (m[12] * m[1] - m[0] * m[13]));
dst[14] = d * (m[12] * (m[5] * m[2] - m[1] * m[6]) + m[0] * (m[13] * m[6] - m[5] * m[14]) + m[4] * (m[1] * m[14] - m[13] * m[2]));
dst[3] = d * (m[1] * (m[10] * m[7] - m[6] * m[11]) + m[5] * (m[2] * m[11] - m[10] * m[3]) + m[9] * (m[6] * m[3] - m[2] * m[7]));
dst[7] = d * (m[2] * (m[8] * m[7] - m[4] * m[11]) + m[6] * (m[0] * m[11] - m[8] * m[3]) + m[10] * (m[4] * m[3] - m[0] * m[7]));
dst[11] = d * (m[3] * (m[8] * m[5] - m[4] * m[9]) + m[7] * (m[0] * m[9] - m[8] * m[1]) + m[11] * (m[4] * m[1] - m[0] * m[5]));
dst[15] = d * (m[0] * (m[5] * m[10] - m[9] * m[6]) + m[4] * (m[9] * m[2] - m[1] * m[10]) + m[8] * (m[1] * m[6] - m[5] * m[2]));
return dst;
}
// Returns a rotation matrix.
// This is a static member.
template<>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<4,4> Matrix<4,4>::rotate(const float radians, const float3& axis)
{
Matrix<4,4> Mat = Matrix<4,4>::identity();
float *m = Mat.getData();
// NOTE: Element 0,1 is wrong in Foley and Van Dam, Pg 227!
float sintheta=sinf(radians);
float costheta=cosf(radians);
float ux=axis.x;
float uy=axis.y;
float uz=axis.z;
m[0*4+0]=ux*ux+costheta*(1-ux*ux);
m[0*4+1]=ux*uy*(1-costheta)-uz*sintheta;
m[0*4+2]=uz*ux*(1-costheta)+uy*sintheta;
m[0*4+3]=0;
m[1*4+0]=ux*uy*(1-costheta)+uz*sintheta;
m[1*4+1]=uy*uy+costheta*(1-uy*uy);
m[1*4+2]=uy*uz*(1-costheta)-ux*sintheta;
m[1*4+3]=0;
m[2*4+0]=uz*ux*(1-costheta)-uy*sintheta;
m[2*4+1]=uy*uz*(1-costheta)+ux*sintheta;
m[2*4+2]=uz*uz+costheta*(1-uz*uz);
m[2*4+3]=0;
m[3*4+0]=0;
m[3*4+1]=0;
m[3*4+2]=0;
m[3*4+3]=1;
return Matrix<4,4>( m );
}
// Returns a translation matrix.
// This is a static member.
template<>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<4,4> Matrix<4,4>::translate(const float3& vec)
{
Matrix<4,4> Mat = Matrix<4,4>::identity();
float *m = Mat.getData();
m[3] = vec.x;
m[7] = vec.y;
m[11]= vec.z;
return Matrix<4,4>( m );
}
// Returns a scale matrix.
// This is a static member.
template<>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<4,4> Matrix<4,4>::scale(const float3& vec)
{
Matrix<4,4> Mat = Matrix<4,4>::identity();
float *m = Mat.getData();
m[0] = vec.x;
m[5] = vec.y;
m[10]= vec.z;
return Matrix<4,4>( m );
}
// This is a static member.
template<>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<4,4> Matrix<4,4>::fromBasis( const float3& u, const float3& v, const float3& w, const float3& c )
{
float m[16];
m[ 0] = u.x;
m[ 1] = v.x;
m[ 2] = w.x;
m[ 3] = c.x;
m[ 4] = u.y;
m[ 5] = v.y;
m[ 6] = w.y;
m[ 7] = c.y;
m[ 8] = u.z;
m[ 9] = v.z;
m[10] = w.z;
m[11] = c.z;
m[12] = 0.0f;
m[13] = 0.0f;
m[14] = 0.0f;
m[15] = 1.0f;
return Matrix<4,4>( m );
}
template<>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<3,4> Matrix<3,4>::affineIdentity()
{
Matrix<3,4> m;
m.m_data[ 0] = 1.0f;
m.m_data[ 1] = 0.0f;
m.m_data[ 2] = 0.0f;
m.m_data[ 3] = 0.0f;
m.m_data[ 4] = 0.0f;
m.m_data[ 5] = 1.0f;
m.m_data[ 6] = 0.0f;
m.m_data[ 7] = 0.0f;
m.m_data[ 8] = 0.0f;
m.m_data[ 9] = 0.0f;
m.m_data[10] = 1.0f;
m.m_data[11] = 0.0f;
return m;
}
// Returns the identity matrix.
// This is a static member.
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<N,N> Matrix<M,N>::identity()
{
float temp[N*N];
for(unsigned int i = 0; i < N*N; ++i)
temp[i] = 0;
for( unsigned int i = 0; i < N; ++i )
RT_MATRIX_ACCESS( temp,i,i ) = 1.0f;
return Matrix<N,N>( temp );
}
// Ordered comparison operator so that the matrix can be used in an STL container.
template<unsigned int M, unsigned int N>
SUTIL_INLINE SUTIL_HOSTDEVICE bool Matrix<M,N>::operator<( const Matrix<M, N>& rhs ) const
{
for( unsigned int i = 0; i < N*M; ++i ) {
if( m_data[i] < rhs[i] )
return true;
else if( m_data[i] > rhs[i] )
return false;
}
return false;
}
typedef Matrix<2, 2> Matrix2x2;
typedef Matrix<2, 3> Matrix2x3;
typedef Matrix<2, 4> Matrix2x4;
typedef Matrix<3, 2> Matrix3x2;
typedef Matrix<3, 3> Matrix3x3;
typedef Matrix<3, 4> Matrix3x4;
typedef Matrix<4, 2> Matrix4x2;
typedef Matrix<4, 3> Matrix4x3;
typedef Matrix<4, 4> Matrix4x4;
SUTIL_INLINE SUTIL_HOSTDEVICE Matrix<3,3> make_matrix3x3(const Matrix<4,4> &matrix)
{
Matrix<3,3> Mat;
float *m = Mat.getData();
const float *m4x4 = matrix.getData();
m[0*3+0]=m4x4[0*4+0];
m[0*3+1]=m4x4[0*4+1];
m[0*3+2]=m4x4[0*4+2];
m[1*3+0]=m4x4[1*4+0];
m[1*3+1]=m4x4[1*4+1];
m[1*3+2]=m4x4[1*4+2];
m[2*3+0]=m4x4[2*4+0];
m[2*3+1]=m4x4[2*4+1];
m[2*3+2]=m4x4[2*4+2];
return Mat;
}
} // end namespace sutil
#undef RT_MATRIX_ACCESS
#undef RT_MAT_DECL
| 26,645 | C | 31.855734 | 158 | 0.576994 |
arhix52/Strelka/sutil/Preprocessor.h | //
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#pragma once
#if defined(__CUDACC__) || defined(__CUDABE__)
# define SUTIL_HOSTDEVICE __host__ __device__
# define SUTIL_INLINE __forceinline__
# define CONST_STATIC_INIT( ... )
#else
# define SUTIL_HOSTDEVICE
# define SUTIL_INLINE inline
# define CONST_STATIC_INIT( ... ) = __VA_ARGS__
#endif
| 1,882 | C | 41.795454 | 74 | 0.741764 |
arhix52/Strelka/sutil/sutilapi.h | //
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#pragma once
#ifndef SUTILAPI
# if sutil_7_sdk_EXPORTS /* Set by CMAKE */
# if defined( _WIN32 ) || defined( _WIN64 )
# define SUTILAPI __declspec(dllexport)
# define SUTILCLASSAPI
# elif defined( linux ) || defined( __linux__ ) || defined ( __CYGWIN__ )
# define SUTILAPI __attribute__ ((visibility ("default")))
# define SUTILCLASSAPI SUTILAPI
# elif defined( __APPLE__ ) && defined( __MACH__ )
# define SUTILAPI __attribute__ ((visibility ("default")))
# define SUTILCLASSAPI SUTILAPI
# else
# error "CODE FOR THIS OS HAS NOT YET BEEN DEFINED"
# endif
# else /* sutil_7_sdk_EXPORTS */
# if defined( _WIN32 ) || defined( _WIN64 )
# define SUTILAPI __declspec(dllimport)
# define SUTILCLASSAPI
# elif defined( linux ) || defined( __linux__ ) || defined ( __CYGWIN__ )
# define SUTILAPI __attribute__ ((visibility ("default")))
# define SUTILCLASSAPI SUTILAPI
# elif defined( __APPLE__ ) && defined( __MACH__ )
# define SUTILAPI __attribute__ ((visibility ("default")))
# define SUTILCLASSAPI SUTILAPI
# elif defined( __CUDACC_RTC__ )
# define SUTILAPI
# define SUTILCLASSAPI
# else
# error "CODE FOR THIS OS HAS NOT YET BEEN DEFINED"
# endif
# endif /* sutil_7_sdk_EXPORTS */
#endif
| 2,869 | C | 42.484848 | 76 | 0.696758 |
arhix52/Strelka/sutil/vec_math.h | //
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#pragma once
#include <sutil/Preprocessor.h>
#include <vector_functions.h>
#include <vector_types.h>
#if !defined(__CUDACC_RTC__)
#include <cmath>
#include <cstdlib>
#endif
/* scalar functions used in vector functions */
#ifndef M_PIf
#define M_PIf 3.14159265358979323846f
#endif
#ifndef M_PI_2f
#define M_PI_2f 1.57079632679489661923f
#endif
#ifndef M_1_PIf
#define M_1_PIf 0.318309886183790671538f
#endif
#if !defined(__CUDACC__)
SUTIL_INLINE SUTIL_HOSTDEVICE int max(int a, int b)
{
return a > b ? a : b;
}
SUTIL_INLINE SUTIL_HOSTDEVICE int min(int a, int b)
{
return a < b ? a : b;
}
SUTIL_INLINE SUTIL_HOSTDEVICE long long max(long long a, long long b)
{
return a > b ? a : b;
}
SUTIL_INLINE SUTIL_HOSTDEVICE long long min(long long a, long long b)
{
return a < b ? a : b;
}
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned int max(unsigned int a, unsigned int b)
{
return a > b ? a : b;
}
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned int min(unsigned int a, unsigned int b)
{
return a < b ? a : b;
}
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned long long max(unsigned long long a, unsigned long long b)
{
return a > b ? a : b;
}
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned long long min(unsigned long long a, unsigned long long b)
{
return a < b ? a : b;
}
SUTIL_INLINE SUTIL_HOSTDEVICE float min(const float a, const float b)
{
return a < b ? a : b;
}
/** lerp */
SUTIL_INLINE SUTIL_HOSTDEVICE float lerp(const float a, const float b, const float t)
{
return a + t*(b-a);
}
/** bilerp */
SUTIL_INLINE SUTIL_HOSTDEVICE float bilerp(const float x00, const float x10, const float x01, const float x11,
const float u, const float v)
{
return lerp( lerp( x00, x10, u ), lerp( x01, x11, u ), v );
}
template <typename IntegerType>
SUTIL_INLINE SUTIL_HOSTDEVICE IntegerType roundUp(IntegerType x, IntegerType y)
{
return ( ( x + y - 1 ) / y ) * y;
}
#endif
/** clamp */
SUTIL_INLINE SUTIL_HOSTDEVICE float clamp( const float f, const float a, const float b )
{
return fmaxf( a, fminf( f, b ) );
}
/* float2 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float2 make_float2(const float s)
{
return make_float2(s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float2 make_float2(const int2& a)
{
return make_float2(float(a.x), float(a.y));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float2 make_float2(const uint2& a)
{
return make_float2(float(a.x), float(a.y));
}
/** @} */
/** negate */
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator-(const float2& a)
{
return make_float2(-a.x, -a.y);
}
/** min
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float2 fminf(const float2& a, const float2& b)
{
return make_float2(fminf(a.x,b.x), fminf(a.y,b.y));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float fminf(const float2& a)
{
return fminf(a.x, a.y);
}
/** @} */
/** max
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float2 fmaxf(const float2& a, const float2& b)
{
return make_float2(fmaxf(a.x,b.x), fmaxf(a.y,b.y));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float fmaxf(const float2& a)
{
return fmaxf(a.x, a.y);
}
/** @} */
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator+(const float2& a, const float2& b)
{
return make_float2(a.x + b.x, a.y + b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator+(const float2& a, const float b)
{
return make_float2(a.x + b, a.y + b);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator+(const float a, const float2& b)
{
return make_float2(a + b.x, a + b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(float2& a, const float2& b)
{
a.x += b.x; a.y += b.y;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator-(const float2& a, const float2& b)
{
return make_float2(a.x - b.x, a.y - b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator-(const float2& a, const float b)
{
return make_float2(a.x - b, a.y - b);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator-(const float a, const float2& b)
{
return make_float2(a - b.x, a - b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(float2& a, const float2& b)
{
a.x -= b.x; a.y -= b.y;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator*(const float2& a, const float2& b)
{
return make_float2(a.x * b.x, a.y * b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator*(const float2& a, const float s)
{
return make_float2(a.x * s, a.y * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator*(const float s, const float2& a)
{
return make_float2(a.x * s, a.y * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(float2& a, const float2& s)
{
a.x *= s.x; a.y *= s.y;
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(float2& a, const float s)
{
a.x *= s; a.y *= s;
}
/** @} */
/** divide
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator/(const float2& a, const float2& b)
{
return make_float2(a.x / b.x, a.y / b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator/(const float2& a, const float s)
{
float inv = 1.0f / s;
return a * inv;
}
SUTIL_INLINE SUTIL_HOSTDEVICE float2 operator/(const float s, const float2& a)
{
return make_float2( s/a.x, s/a.y );
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator/=(float2& a, const float s)
{
float inv = 1.0f / s;
a *= inv;
}
/** @} */
/** lerp */
SUTIL_INLINE SUTIL_HOSTDEVICE float2 lerp(const float2& a, const float2& b, const float t)
{
return a + t*(b-a);
}
/** bilerp */
SUTIL_INLINE SUTIL_HOSTDEVICE float2 bilerp(const float2& x00, const float2& x10, const float2& x01, const float2& x11,
const float u, const float v)
{
return lerp( lerp( x00, x10, u ), lerp( x01, x11, u ), v );
}
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float2 clamp(const float2& v, const float a, const float b)
{
return make_float2(clamp(v.x, a, b), clamp(v.y, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float2 clamp(const float2& v, const float2& a, const float2& b)
{
return make_float2(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y));
}
/** @} */
/** dot product */
SUTIL_INLINE SUTIL_HOSTDEVICE float dot(const float2& a, const float2& b)
{
return a.x * b.x + a.y * b.y;
}
/** length */
SUTIL_INLINE SUTIL_HOSTDEVICE float length(const float2& v)
{
return sqrtf(dot(v, v));
}
/** normalize */
SUTIL_INLINE SUTIL_HOSTDEVICE float2 normalize(const float2& v)
{
float invLen = 1.0f / sqrtf(dot(v, v));
return v * invLen;
}
/** floor */
SUTIL_INLINE SUTIL_HOSTDEVICE float2 floor(const float2& v)
{
return make_float2(::floorf(v.x), ::floorf(v.y));
}
/** reflect */
SUTIL_INLINE SUTIL_HOSTDEVICE float2 reflect(const float2& i, const float2& n)
{
return i - 2.0f * n * dot(n,i);
}
/** Faceforward
* Returns N if dot(i, nref) > 0; else -N;
* Typical usage is N = faceforward(N, -ray.dir, N);
* Note that this is opposite of what faceforward does in Cg and GLSL */
SUTIL_INLINE SUTIL_HOSTDEVICE float2 faceforward(const float2& n, const float2& i, const float2& nref)
{
return n * copysignf( 1.0f, dot(i, nref) );
}
/** exp */
SUTIL_INLINE SUTIL_HOSTDEVICE float2 expf(const float2& v)
{
return make_float2(::expf(v.x), ::expf(v.y));
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE float getByIndex(const float2& v, int i)
{
return ((float*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(float2& v, int i, float x)
{
((float*)(&v))[i] = x;
}
/* float3 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float3 make_float3(const float s)
{
return make_float3(s, s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 make_float3(const float2& a)
{
return make_float3(a.x, a.y, 0.0f);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 make_float3(const int3& a)
{
return make_float3(float(a.x), float(a.y), float(a.z));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 make_float3(const uint3& a)
{
return make_float3(float(a.x), float(a.y), float(a.z));
}
/** @} */
/** negate */
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator-(const float3& a)
{
return make_float3(-a.x, -a.y, -a.z);
}
/** min
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float3 fminf(const float3& a, const float3& b)
{
return make_float3(fminf(a.x,b.x), fminf(a.y,b.y), fminf(a.z,b.z));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float fminf(const float3& a)
{
return fminf(fminf(a.x, a.y), a.z);
}
/** @} */
/** max
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float3 fmaxf(const float3& a, const float3& b)
{
return make_float3(fmaxf(a.x,b.x), fmaxf(a.y,b.y), fmaxf(a.z,b.z));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float fmaxf(const float3& a)
{
return fmaxf(fmaxf(a.x, a.y), a.z);
}
/** @} */
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator+(const float3& a, const float3& b)
{
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator+(const float3& a, const float b)
{
return make_float3(a.x + b, a.y + b, a.z + b);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator+(const float a, const float3& b)
{
return make_float3(a + b.x, a + b.y, a + b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(float3& a, const float3& b)
{
a.x += b.x; a.y += b.y; a.z += b.z;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator-(const float3& a, const float3& b)
{
return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator-(const float3& a, const float b)
{
return make_float3(a.x - b, a.y - b, a.z - b);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator-(const float a, const float3& b)
{
return make_float3(a - b.x, a - b.y, a - b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(float3& a, const float3& b)
{
a.x -= b.x; a.y -= b.y; a.z -= b.z;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator*(const float3& a, const float3& b)
{
return make_float3(a.x * b.x, a.y * b.y, a.z * b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator*(const float3& a, const float s)
{
return make_float3(a.x * s, a.y * s, a.z * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator*(const float s, const float3& a)
{
return make_float3(a.x * s, a.y * s, a.z * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(float3& a, const float3& s)
{
a.x *= s.x; a.y *= s.y; a.z *= s.z;
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(float3& a, const float s)
{
a.x *= s; a.y *= s; a.z *= s;
}
/** @} */
/** divide
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator/(const float3& a, const float3& b)
{
return make_float3(a.x / b.x, a.y / b.y, a.z / b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator/(const float3& a, const float s)
{
float inv = 1.0f / s;
return a * inv;
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 operator/(const float s, const float3& a)
{
return make_float3( s/a.x, s/a.y, s/a.z );
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator/=(float3& a, const float s)
{
float inv = 1.0f / s;
a *= inv;
}
/** @} */
/** lerp */
SUTIL_INLINE SUTIL_HOSTDEVICE float3 lerp(const float3& a, const float3& b, const float t)
{
return a + t*(b-a);
}
/** bilerp */
SUTIL_INLINE SUTIL_HOSTDEVICE float3 bilerp(const float3& x00, const float3& x10, const float3& x01, const float3& x11,
const float u, const float v)
{
return lerp( lerp( x00, x10, u ), lerp( x01, x11, u ), v );
}
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float3 clamp(const float3& v, const float a, const float b)
{
return make_float3(clamp(v.x, a, b), clamp(v.y, a, b), clamp(v.z, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 clamp(const float3& v, const float3& a, const float3& b)
{
return make_float3(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y), clamp(v.z, a.z, b.z));
}
/** @} */
/** dot product */
SUTIL_INLINE SUTIL_HOSTDEVICE float dot(const float3& a, const float3& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
/** cross product */
SUTIL_INLINE SUTIL_HOSTDEVICE float3 cross(const float3& a, const float3& b)
{
return make_float3(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x);
}
/** length */
SUTIL_INLINE SUTIL_HOSTDEVICE float length(const float3& v)
{
return sqrtf(dot(v, v));
}
/** normalize */
SUTIL_INLINE SUTIL_HOSTDEVICE float3 normalize(const float3& v)
{
float invLen = 1.0f / sqrtf(dot(v, v));
return v * invLen;
}
/** floor */
SUTIL_INLINE SUTIL_HOSTDEVICE float3 floor(const float3& v)
{
return make_float3(::floorf(v.x), ::floorf(v.y), ::floorf(v.z));
}
/** reflect */
SUTIL_INLINE SUTIL_HOSTDEVICE float3 reflect(const float3& i, const float3& n)
{
return i - 2.0f * n * dot(n,i);
}
/** Faceforward
* Returns N if dot(i, nref) > 0; else -N;
* Typical usage is N = faceforward(N, -ray.dir, N);
* Note that this is opposite of what faceforward does in Cg and GLSL */
SUTIL_INLINE SUTIL_HOSTDEVICE float3 faceforward(const float3& n, const float3& i, const float3& nref)
{
return n * copysignf( 1.0f, dot(i, nref) );
}
/** exp */
SUTIL_INLINE SUTIL_HOSTDEVICE float3 expf(const float3& v)
{
return make_float3(::expf(v.x), ::expf(v.y), ::expf(v.z));
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE float getByIndex(const float3& v, int i)
{
return ((float*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(float3& v, int i, float x)
{
((float*)(&v))[i] = x;
}
/* float4 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float4 make_float4(const float s)
{
return make_float4(s, s, s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 make_float4(const float3& a)
{
return make_float4(a.x, a.y, a.z, 0.0f);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 make_float4(const int4& a)
{
return make_float4(float(a.x), float(a.y), float(a.z), float(a.w));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 make_float4(const uint4& a)
{
return make_float4(float(a.x), float(a.y), float(a.z), float(a.w));
}
/** @} */
/** negate */
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator-(const float4& a)
{
return make_float4(-a.x, -a.y, -a.z, -a.w);
}
/** min
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float4 fminf(const float4& a, const float4& b)
{
return make_float4(fminf(a.x,b.x), fminf(a.y,b.y), fminf(a.z,b.z), fminf(a.w,b.w));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float fminf(const float4& a)
{
return fminf(fminf(a.x, a.y), fminf(a.z, a.w));
}
/** @} */
/** max
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float4 fmaxf(const float4& a, const float4& b)
{
return make_float4(fmaxf(a.x,b.x), fmaxf(a.y,b.y), fmaxf(a.z,b.z), fmaxf(a.w,b.w));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float fmaxf(const float4& a)
{
return fmaxf(fmaxf(a.x, a.y), fmaxf(a.z, a.w));
}
/** @} */
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator+(const float4& a, const float4& b)
{
return make_float4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator+(const float4& a, const float b)
{
return make_float4(a.x + b, a.y + b, a.z + b, a.w + b);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator+(const float a, const float4& b)
{
return make_float4(a + b.x, a + b.y, a + b.z, a + b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(float4& a, const float4& b)
{
a.x += b.x; a.y += b.y; a.z += b.z; a.w += b.w;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator-(const float4& a, const float4& b)
{
return make_float4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator-(const float4& a, const float b)
{
return make_float4(a.x - b, a.y - b, a.z - b, a.w - b);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator-(const float a, const float4& b)
{
return make_float4(a - b.x, a - b.y, a - b.z, a - b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(float4& a, const float4& b)
{
a.x -= b.x; a.y -= b.y; a.z -= b.z; a.w -= b.w;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator*(const float4& a, const float4& s)
{
return make_float4(a.x * s.x, a.y * s.y, a.z * s.z, a.w * s.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator*(const float4& a, const float s)
{
return make_float4(a.x * s, a.y * s, a.z * s, a.w * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator*(const float s, const float4& a)
{
return make_float4(a.x * s, a.y * s, a.z * s, a.w * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(float4& a, const float4& s)
{
a.x *= s.x; a.y *= s.y; a.z *= s.z; a.w *= s.w;
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(float4& a, const float s)
{
a.x *= s; a.y *= s; a.z *= s; a.w *= s;
}
/** @} */
/** divide
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator/(const float4& a, const float4& b)
{
return make_float4(a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator/(const float4& a, const float s)
{
float inv = 1.0f / s;
return a * inv;
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 operator/(const float s, const float4& a)
{
return make_float4( s/a.x, s/a.y, s/a.z, s/a.w );
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator/=(float4& a, const float s)
{
float inv = 1.0f / s;
a *= inv;
}
/** @} */
/** lerp */
SUTIL_INLINE SUTIL_HOSTDEVICE float4 lerp(const float4& a, const float4& b, const float t)
{
return a + t*(b-a);
}
/** bilerp */
SUTIL_INLINE SUTIL_HOSTDEVICE float4 bilerp(const float4& x00, const float4& x10, const float4& x01, const float4& x11,
const float u, const float v)
{
return lerp( lerp( x00, x10, u ), lerp( x01, x11, u ), v );
}
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float4 clamp(const float4& v, const float a, const float b)
{
return make_float4(clamp(v.x, a, b), clamp(v.y, a, b), clamp(v.z, a, b), clamp(v.w, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE float4 clamp(const float4& v, const float4& a, const float4& b)
{
return make_float4(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y), clamp(v.z, a.z, b.z), clamp(v.w, a.w, b.w));
}
/** @} */
/** dot product */
SUTIL_INLINE SUTIL_HOSTDEVICE float dot(const float4& a, const float4& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
}
/** length */
SUTIL_INLINE SUTIL_HOSTDEVICE float length(const float4& r)
{
return sqrtf(dot(r, r));
}
/** normalize */
SUTIL_INLINE SUTIL_HOSTDEVICE float4 normalize(const float4& v)
{
float invLen = 1.0f / sqrtf(dot(v, v));
return v * invLen;
}
/** floor */
SUTIL_INLINE SUTIL_HOSTDEVICE float4 floor(const float4& v)
{
return make_float4(::floorf(v.x), ::floorf(v.y), ::floorf(v.z), ::floorf(v.w));
}
/** reflect */
SUTIL_INLINE SUTIL_HOSTDEVICE float4 reflect(const float4& i, const float4& n)
{
return i - 2.0f * n * dot(n,i);
}
/**
* Faceforward
* Returns N if dot(i, nref) > 0; else -N;
* Typical usage is N = faceforward(N, -ray.dir, N);
* Note that this is opposite of what faceforward does in Cg and GLSL
*/
SUTIL_INLINE SUTIL_HOSTDEVICE float4 faceforward(const float4& n, const float4& i, const float4& nref)
{
return n * copysignf( 1.0f, dot(i, nref) );
}
/** exp */
SUTIL_INLINE SUTIL_HOSTDEVICE float4 expf(const float4& v)
{
return make_float4(::expf(v.x), ::expf(v.y), ::expf(v.z), ::expf(v.w));
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE float getByIndex(const float4& v, int i)
{
return ((float*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(float4& v, int i, float x)
{
((float*)(&v))[i] = x;
}
/* int functions */
/******************************************************************************/
/** clamp */
SUTIL_INLINE SUTIL_HOSTDEVICE int clamp(const int f, const int a, const int b)
{
return max(a, min(f, b));
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE int getByIndex(const int1& v, int i)
{
return ((int*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(int1& v, int i, int x)
{
((int*)(&v))[i] = x;
}
/* int2 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int2 make_int2(const int s)
{
return make_int2(s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int2 make_int2(const float2& a)
{
return make_int2(int(a.x), int(a.y));
}
/** @} */
/** negate */
SUTIL_INLINE SUTIL_HOSTDEVICE int2 operator-(const int2& a)
{
return make_int2(-a.x, -a.y);
}
/** min */
SUTIL_INLINE SUTIL_HOSTDEVICE int2 min(const int2& a, const int2& b)
{
return make_int2(min(a.x,b.x), min(a.y,b.y));
}
/** max */
SUTIL_INLINE SUTIL_HOSTDEVICE int2 max(const int2& a, const int2& b)
{
return make_int2(max(a.x,b.x), max(a.y,b.y));
}
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int2 operator+(const int2& a, const int2& b)
{
return make_int2(a.x + b.x, a.y + b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(int2& a, const int2& b)
{
a.x += b.x; a.y += b.y;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int2 operator-(const int2& a, const int2& b)
{
return make_int2(a.x - b.x, a.y - b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int2 operator-(const int2& a, const int b)
{
return make_int2(a.x - b, a.y - b);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(int2& a, const int2& b)
{
a.x -= b.x; a.y -= b.y;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int2 operator*(const int2& a, const int2& b)
{
return make_int2(a.x * b.x, a.y * b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int2 operator*(const int2& a, const int s)
{
return make_int2(a.x * s, a.y * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int2 operator*(const int s, const int2& a)
{
return make_int2(a.x * s, a.y * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(int2& a, const int s)
{
a.x *= s; a.y *= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int2 clamp(const int2& v, const int a, const int b)
{
return make_int2(clamp(v.x, a, b), clamp(v.y, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE int2 clamp(const int2& v, const int2& a, const int2& b)
{
return make_int2(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const int2& a, const int2& b)
{
return a.x == b.x && a.y == b.y;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const int2& a, const int2& b)
{
return a.x != b.x || a.y != b.y;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE int getByIndex(const int2& v, int i)
{
return ((int*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(int2& v, int i, int x)
{
((int*)(&v))[i] = x;
}
/* int3 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int3 make_int3(const int s)
{
return make_int3(s, s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int3 make_int3(const float3& a)
{
return make_int3(int(a.x), int(a.y), int(a.z));
}
/** @} */
/** negate */
SUTIL_INLINE SUTIL_HOSTDEVICE int3 operator-(const int3& a)
{
return make_int3(-a.x, -a.y, -a.z);
}
/** min */
SUTIL_INLINE SUTIL_HOSTDEVICE int3 min(const int3& a, const int3& b)
{
return make_int3(min(a.x,b.x), min(a.y,b.y), min(a.z,b.z));
}
/** max */
SUTIL_INLINE SUTIL_HOSTDEVICE int3 max(const int3& a, const int3& b)
{
return make_int3(max(a.x,b.x), max(a.y,b.y), max(a.z,b.z));
}
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int3 operator+(const int3& a, const int3& b)
{
return make_int3(a.x + b.x, a.y + b.y, a.z + b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(int3& a, const int3& b)
{
a.x += b.x; a.y += b.y; a.z += b.z;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int3 operator-(const int3& a, const int3& b)
{
return make_int3(a.x - b.x, a.y - b.y, a.z - b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(int3& a, const int3& b)
{
a.x -= b.x; a.y -= b.y; a.z -= b.z;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int3 operator*(const int3& a, const int3& b)
{
return make_int3(a.x * b.x, a.y * b.y, a.z * b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int3 operator*(const int3& a, const int s)
{
return make_int3(a.x * s, a.y * s, a.z * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int3 operator*(const int s, const int3& a)
{
return make_int3(a.x * s, a.y * s, a.z * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(int3& a, const int s)
{
a.x *= s; a.y *= s; a.z *= s;
}
/** @} */
/** divide
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int3 operator/(const int3& a, const int3& b)
{
return make_int3(a.x / b.x, a.y / b.y, a.z / b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int3 operator/(const int3& a, const int s)
{
return make_int3(a.x / s, a.y / s, a.z / s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int3 operator/(const int s, const int3& a)
{
return make_int3(s /a.x, s / a.y, s / a.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator/=(int3& a, const int s)
{
a.x /= s; a.y /= s; a.z /= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int3 clamp(const int3& v, const int a, const int b)
{
return make_int3(clamp(v.x, a, b), clamp(v.y, a, b), clamp(v.z, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE int3 clamp(const int3& v, const int3& a, const int3& b)
{
return make_int3(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y), clamp(v.z, a.z, b.z));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const int3& a, const int3& b)
{
return a.x == b.x && a.y == b.y && a.z == b.z;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const int3& a, const int3& b)
{
return a.x != b.x || a.y != b.y || a.z != b.z;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE int getByIndex(const int3& v, int i)
{
return ((int*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(int3& v, int i, int x)
{
((int*)(&v))[i] = x;
}
/* int4 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int4 make_int4(const int s)
{
return make_int4(s, s, s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int4 make_int4(const float4& a)
{
return make_int4((int)a.x, (int)a.y, (int)a.z, (int)a.w);
}
/** @} */
/** negate */
SUTIL_INLINE SUTIL_HOSTDEVICE int4 operator-(const int4& a)
{
return make_int4(-a.x, -a.y, -a.z, -a.w);
}
/** min */
SUTIL_INLINE SUTIL_HOSTDEVICE int4 min(const int4& a, const int4& b)
{
return make_int4(min(a.x,b.x), min(a.y,b.y), min(a.z,b.z), min(a.w,b.w));
}
/** max */
SUTIL_INLINE SUTIL_HOSTDEVICE int4 max(const int4& a, const int4& b)
{
return make_int4(max(a.x,b.x), max(a.y,b.y), max(a.z,b.z), max(a.w,b.w));
}
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int4 operator+(const int4& a, const int4& b)
{
return make_int4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(int4& a, const int4& b)
{
a.x += b.x; a.y += b.y; a.z += b.z; a.w += b.w;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int4 operator-(const int4& a, const int4& b)
{
return make_int4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(int4& a, const int4& b)
{
a.x -= b.x; a.y -= b.y; a.z -= b.z; a.w -= b.w;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int4 operator*(const int4& a, const int4& b)
{
return make_int4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int4 operator*(const int4& a, const int s)
{
return make_int4(a.x * s, a.y * s, a.z * s, a.w * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int4 operator*(const int s, const int4& a)
{
return make_int4(a.x * s, a.y * s, a.z * s, a.w * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(int4& a, const int s)
{
a.x *= s; a.y *= s; a.z *= s; a.w *= s;
}
/** @} */
/** divide
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int4 operator/(const int4& a, const int4& b)
{
return make_int4(a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int4 operator/(const int4& a, const int s)
{
return make_int4(a.x / s, a.y / s, a.z / s, a.w / s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE int4 operator/(const int s, const int4& a)
{
return make_int4(s / a.x, s / a.y, s / a.z, s / a.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator/=(int4& a, const int s)
{
a.x /= s; a.y /= s; a.z /= s; a.w /= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int4 clamp(const int4& v, const int a, const int b)
{
return make_int4(clamp(v.x, a, b), clamp(v.y, a, b), clamp(v.z, a, b), clamp(v.w, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE int4 clamp(const int4& v, const int4& a, const int4& b)
{
return make_int4(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y), clamp(v.z, a.z, b.z), clamp(v.w, a.w, b.w));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const int4& a, const int4& b)
{
return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const int4& a, const int4& b)
{
return a.x != b.x || a.y != b.y || a.z != b.z || a.w != b.w;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE int getByIndex(const int4& v, int i)
{
return ((int*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(int4& v, int i, int x)
{
((int*)(&v))[i] = x;
}
/* uint functions */
/******************************************************************************/
/** clamp */
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned int clamp(const unsigned int f, const unsigned int a, const unsigned int b)
{
return max(a, min(f, b));
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned int getByIndex(const uint1& v, unsigned int i)
{
return ((unsigned int*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(uint1& v, int i, unsigned int x)
{
((unsigned int*)(&v))[i] = x;
}
/* uint2 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 make_uint2(const unsigned int s)
{
return make_uint2(s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 make_uint2(const float2& a)
{
return make_uint2((unsigned int)a.x, (unsigned int)a.y);
}
/** @} */
/** min */
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 min(const uint2& a, const uint2& b)
{
return make_uint2(min(a.x,b.x), min(a.y,b.y));
}
/** max */
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 max(const uint2& a, const uint2& b)
{
return make_uint2(max(a.x,b.x), max(a.y,b.y));
}
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 operator+(const uint2& a, const uint2& b)
{
return make_uint2(a.x + b.x, a.y + b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(uint2& a, const uint2& b)
{
a.x += b.x; a.y += b.y;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 operator-(const uint2& a, const uint2& b)
{
return make_uint2(a.x - b.x, a.y - b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 operator-(const uint2& a, const unsigned int b)
{
return make_uint2(a.x - b, a.y - b);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(uint2& a, const uint2& b)
{
a.x -= b.x; a.y -= b.y;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 operator*(const uint2& a, const uint2& b)
{
return make_uint2(a.x * b.x, a.y * b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 operator*(const uint2& a, const unsigned int s)
{
return make_uint2(a.x * s, a.y * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 operator*(const unsigned int s, const uint2& a)
{
return make_uint2(a.x * s, a.y * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(uint2& a, const unsigned int s)
{
a.x *= s; a.y *= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 clamp(const uint2& v, const unsigned int a, const unsigned int b)
{
return make_uint2(clamp(v.x, a, b), clamp(v.y, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 clamp(const uint2& v, const uint2& a, const uint2& b)
{
return make_uint2(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const uint2& a, const uint2& b)
{
return a.x == b.x && a.y == b.y;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const uint2& a, const uint2& b)
{
return a.x != b.x || a.y != b.y;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned int getByIndex(const uint2& v, unsigned int i)
{
return ((unsigned int*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(uint2& v, int i, unsigned int x)
{
((unsigned int*)(&v))[i] = x;
}
/* uint3 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 make_uint3(const unsigned int s)
{
return make_uint3(s, s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 make_uint3(const float3& a)
{
return make_uint3((unsigned int)a.x, (unsigned int)a.y, (unsigned int)a.z);
}
/** @} */
/** min */
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 min(const uint3& a, const uint3& b)
{
return make_uint3(min(a.x,b.x), min(a.y,b.y), min(a.z,b.z));
}
/** max */
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 max(const uint3& a, const uint3& b)
{
return make_uint3(max(a.x,b.x), max(a.y,b.y), max(a.z,b.z));
}
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 operator+(const uint3& a, const uint3& b)
{
return make_uint3(a.x + b.x, a.y + b.y, a.z + b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(uint3& a, const uint3& b)
{
a.x += b.x; a.y += b.y; a.z += b.z;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 operator-(const uint3& a, const uint3& b)
{
return make_uint3(a.x - b.x, a.y - b.y, a.z - b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(uint3& a, const uint3& b)
{
a.x -= b.x; a.y -= b.y; a.z -= b.z;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 operator*(const uint3& a, const uint3& b)
{
return make_uint3(a.x * b.x, a.y * b.y, a.z * b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 operator*(const uint3& a, const unsigned int s)
{
return make_uint3(a.x * s, a.y * s, a.z * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 operator*(const unsigned int s, const uint3& a)
{
return make_uint3(a.x * s, a.y * s, a.z * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(uint3& a, const unsigned int s)
{
a.x *= s; a.y *= s; a.z *= s;
}
/** @} */
/** divide
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 operator/(const uint3& a, const uint3& b)
{
return make_uint3(a.x / b.x, a.y / b.y, a.z / b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 operator/(const uint3& a, const unsigned int s)
{
return make_uint3(a.x / s, a.y / s, a.z / s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 operator/(const unsigned int s, const uint3& a)
{
return make_uint3(s / a.x, s / a.y, s / a.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator/=(uint3& a, const unsigned int s)
{
a.x /= s; a.y /= s; a.z /= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 clamp(const uint3& v, const unsigned int a, const unsigned int b)
{
return make_uint3(clamp(v.x, a, b), clamp(v.y, a, b), clamp(v.z, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 clamp(const uint3& v, const uint3& a, const uint3& b)
{
return make_uint3(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y), clamp(v.z, a.z, b.z));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const uint3& a, const uint3& b)
{
return a.x == b.x && a.y == b.y && a.z == b.z;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const uint3& a, const uint3& b)
{
return a.x != b.x || a.y != b.y || a.z != b.z;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory
*/
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned int getByIndex(const uint3& v, unsigned int i)
{
return ((unsigned int*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory
*/
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(uint3& v, int i, unsigned int x)
{
((unsigned int*)(&v))[i] = x;
}
/* uint4 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 make_uint4(const unsigned int s)
{
return make_uint4(s, s, s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 make_uint4(const float4& a)
{
return make_uint4((unsigned int)a.x, (unsigned int)a.y, (unsigned int)a.z, (unsigned int)a.w);
}
/** @} */
/** min
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 min(const uint4& a, const uint4& b)
{
return make_uint4(min(a.x,b.x), min(a.y,b.y), min(a.z,b.z), min(a.w,b.w));
}
/** @} */
/** max
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 max(const uint4& a, const uint4& b)
{
return make_uint4(max(a.x,b.x), max(a.y,b.y), max(a.z,b.z), max(a.w,b.w));
}
/** @} */
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 operator+(const uint4& a, const uint4& b)
{
return make_uint4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(uint4& a, const uint4& b)
{
a.x += b.x; a.y += b.y; a.z += b.z; a.w += b.w;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 operator-(const uint4& a, const uint4& b)
{
return make_uint4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(uint4& a, const uint4& b)
{
a.x -= b.x; a.y -= b.y; a.z -= b.z; a.w -= b.w;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 operator*(const uint4& a, const uint4& b)
{
return make_uint4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 operator*(const uint4& a, const unsigned int s)
{
return make_uint4(a.x * s, a.y * s, a.z * s, a.w * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 operator*(const unsigned int s, const uint4& a)
{
return make_uint4(a.x * s, a.y * s, a.z * s, a.w * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(uint4& a, const unsigned int s)
{
a.x *= s; a.y *= s; a.z *= s; a.w *= s;
}
/** @} */
/** divide
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 operator/(const uint4& a, const uint4& b)
{
return make_uint4(a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 operator/(const uint4& a, const unsigned int s)
{
return make_uint4(a.x / s, a.y / s, a.z / s, a.w / s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 operator/(const unsigned int s, const uint4& a)
{
return make_uint4(s / a.x, s / a.y, s / a.z, s / a.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator/=(uint4& a, const unsigned int s)
{
a.x /= s; a.y /= s; a.z /= s; a.w /= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 clamp(const uint4& v, const unsigned int a, const unsigned int b)
{
return make_uint4(clamp(v.x, a, b), clamp(v.y, a, b), clamp(v.z, a, b), clamp(v.w, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 clamp(const uint4& v, const uint4& a, const uint4& b)
{
return make_uint4(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y), clamp(v.z, a.z, b.z), clamp(v.w, a.w, b.w));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const uint4& a, const uint4& b)
{
return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const uint4& a, const uint4& b)
{
return a.x != b.x || a.y != b.y || a.z != b.z || a.w != b.w;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory
*/
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned int getByIndex(const uint4& v, unsigned int i)
{
return ((unsigned int*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory
*/
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(uint4& v, int i, unsigned int x)
{
((unsigned int*)(&v))[i] = x;
}
/* long long functions */
/******************************************************************************/
/** clamp */
SUTIL_INLINE SUTIL_HOSTDEVICE long long clamp(const long long f, const long long a, const long long b)
{
return max(a, min(f, b));
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE long long getByIndex(const longlong1& v, int i)
{
return ((long long*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(longlong1& v, int i, long long x)
{
((long long*)(&v))[i] = x;
}
/* longlong2 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 make_longlong2(const long long s)
{
return make_longlong2(s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 make_longlong2(const float2& a)
{
return make_longlong2(int(a.x), int(a.y));
}
/** @} */
/** negate */
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 operator-(const longlong2& a)
{
return make_longlong2(-a.x, -a.y);
}
/** min */
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 min(const longlong2& a, const longlong2& b)
{
return make_longlong2(min(a.x, b.x), min(a.y, b.y));
}
/** max */
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 max(const longlong2& a, const longlong2& b)
{
return make_longlong2(max(a.x, b.x), max(a.y, b.y));
}
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 operator+(const longlong2& a, const longlong2& b)
{
return make_longlong2(a.x + b.x, a.y + b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(longlong2& a, const longlong2& b)
{
a.x += b.x; a.y += b.y;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 operator-(const longlong2& a, const longlong2& b)
{
return make_longlong2(a.x - b.x, a.y - b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 operator-(const longlong2& a, const long long b)
{
return make_longlong2(a.x - b, a.y - b);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(longlong2& a, const longlong2& b)
{
a.x -= b.x; a.y -= b.y;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 operator*(const longlong2& a, const longlong2& b)
{
return make_longlong2(a.x * b.x, a.y * b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 operator*(const longlong2& a, const long long s)
{
return make_longlong2(a.x * s, a.y * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 operator*(const long long s, const longlong2& a)
{
return make_longlong2(a.x * s, a.y * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(longlong2& a, const long long s)
{
a.x *= s; a.y *= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 clamp(const longlong2& v, const long long a, const long long b)
{
return make_longlong2(clamp(v.x, a, b), clamp(v.y, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 clamp(const longlong2& v, const longlong2& a, const longlong2& b)
{
return make_longlong2(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const longlong2& a, const longlong2& b)
{
return a.x == b.x && a.y == b.y;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const longlong2& a, const longlong2& b)
{
return a.x != b.x || a.y != b.y;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE long long getByIndex(const longlong2& v, int i)
{
return ((long long*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(longlong2& v, int i, long long x)
{
((long long*)(&v))[i] = x;
}
/* longlong3 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 make_longlong3(const long long s)
{
return make_longlong3(s, s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 make_longlong3(const float3& a)
{
return make_longlong3( (long long)a.x, (long long)a.y, (long long)a.z);
}
/** @} */
/** negate */
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 operator-(const longlong3& a)
{
return make_longlong3(-a.x, -a.y, -a.z);
}
/** min */
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 min(const longlong3& a, const longlong3& b)
{
return make_longlong3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
}
/** max */
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 max(const longlong3& a, const longlong3& b)
{
return make_longlong3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
}
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 operator+(const longlong3& a, const longlong3& b)
{
return make_longlong3(a.x + b.x, a.y + b.y, a.z + b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(longlong3& a, const longlong3& b)
{
a.x += b.x; a.y += b.y; a.z += b.z;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 operator-(const longlong3& a, const longlong3& b)
{
return make_longlong3(a.x - b.x, a.y - b.y, a.z - b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(longlong3& a, const longlong3& b)
{
a.x -= b.x; a.y -= b.y; a.z -= b.z;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 operator*(const longlong3& a, const longlong3& b)
{
return make_longlong3(a.x * b.x, a.y * b.y, a.z * b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 operator*(const longlong3& a, const long long s)
{
return make_longlong3(a.x * s, a.y * s, a.z * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 operator*(const long long s, const longlong3& a)
{
return make_longlong3(a.x * s, a.y * s, a.z * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(longlong3& a, const long long s)
{
a.x *= s; a.y *= s; a.z *= s;
}
/** @} */
/** divide
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 operator/(const longlong3& a, const longlong3& b)
{
return make_longlong3(a.x / b.x, a.y / b.y, a.z / b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 operator/(const longlong3& a, const long long s)
{
return make_longlong3(a.x / s, a.y / s, a.z / s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 operator/(const long long s, const longlong3& a)
{
return make_longlong3(s /a.x, s / a.y, s / a.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator/=(longlong3& a, const long long s)
{
a.x /= s; a.y /= s; a.z /= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 clamp(const longlong3& v, const long long a, const long long b)
{
return make_longlong3(clamp(v.x, a, b), clamp(v.y, a, b), clamp(v.z, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 clamp(const longlong3& v, const longlong3& a, const longlong3& b)
{
return make_longlong3(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y), clamp(v.z, a.z, b.z));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const longlong3& a, const longlong3& b)
{
return a.x == b.x && a.y == b.y && a.z == b.z;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const longlong3& a, const longlong3& b)
{
return a.x != b.x || a.y != b.y || a.z != b.z;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE long long getByIndex(const longlong3& v, int i)
{
return ((long long*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(longlong3& v, int i, int x)
{
((long long*)(&v))[i] = x;
}
/* longlong4 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 make_longlong4(const long long s)
{
return make_longlong4(s, s, s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 make_longlong4(const float4& a)
{
return make_longlong4((long long)a.x, (long long)a.y, (long long)a.z, (long long)a.w);
}
/** @} */
/** negate */
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 operator-(const longlong4& a)
{
return make_longlong4(-a.x, -a.y, -a.z, -a.w);
}
/** min */
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 min(const longlong4& a, const longlong4& b)
{
return make_longlong4(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z), min(a.w, b.w));
}
/** max */
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 max(const longlong4& a, const longlong4& b)
{
return make_longlong4(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z), max(a.w, b.w));
}
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 operator+(const longlong4& a, const longlong4& b)
{
return make_longlong4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(longlong4& a, const longlong4& b)
{
a.x += b.x; a.y += b.y; a.z += b.z; a.w += b.w;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 operator-(const longlong4& a, const longlong4& b)
{
return make_longlong4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(longlong4& a, const longlong4& b)
{
a.x -= b.x; a.y -= b.y; a.z -= b.z; a.w -= b.w;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 operator*(const longlong4& a, const longlong4& b)
{
return make_longlong4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 operator*(const longlong4& a, const long long s)
{
return make_longlong4(a.x * s, a.y * s, a.z * s, a.w * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 operator*(const long long s, const longlong4& a)
{
return make_longlong4(a.x * s, a.y * s, a.z * s, a.w * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(longlong4& a, const long long s)
{
a.x *= s; a.y *= s; a.z *= s; a.w *= s;
}
/** @} */
/** divide
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 operator/(const longlong4& a, const longlong4& b)
{
return make_longlong4(a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 operator/(const longlong4& a, const long long s)
{
return make_longlong4(a.x / s, a.y / s, a.z / s, a.w / s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 operator/(const long long s, const longlong4& a)
{
return make_longlong4(s / a.x, s / a.y, s / a.z, s / a.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator/=(longlong4& a, const long long s)
{
a.x /= s; a.y /= s; a.z /= s; a.w /= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 clamp(const longlong4& v, const long long a, const long long b)
{
return make_longlong4(clamp(v.x, a, b), clamp(v.y, a, b), clamp(v.z, a, b), clamp(v.w, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 clamp(const longlong4& v, const longlong4& a, const longlong4& b)
{
return make_longlong4(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y), clamp(v.z, a.z, b.z), clamp(v.w, a.w, b.w));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const longlong4& a, const longlong4& b)
{
return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const longlong4& a, const longlong4& b)
{
return a.x != b.x || a.y != b.y || a.z != b.z || a.w != b.w;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE long long getByIndex(const longlong4& v, int i)
{
return ((long long*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(longlong4& v, int i, long long x)
{
((long long*)(&v))[i] = x;
}
/* ulonglong functions */
/******************************************************************************/
/** clamp */
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned long long clamp(const unsigned long long f, const unsigned long long a, const unsigned long long b)
{
return max(a, min(f, b));
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned long long getByIndex(const ulonglong1& v, unsigned int i)
{
return ((unsigned long long*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(ulonglong1& v, int i, unsigned long long x)
{
((unsigned long long*)(&v))[i] = x;
}
/* ulonglong2 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 make_ulonglong2(const unsigned long long s)
{
return make_ulonglong2(s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 make_ulonglong2(const float2& a)
{
return make_ulonglong2((unsigned long long)a.x, (unsigned long long)a.y);
}
/** @} */
/** min */
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 min(const ulonglong2& a, const ulonglong2& b)
{
return make_ulonglong2(min(a.x, b.x), min(a.y, b.y));
}
/** max */
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 max(const ulonglong2& a, const ulonglong2& b)
{
return make_ulonglong2(max(a.x, b.x), max(a.y, b.y));
}
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 operator+(const ulonglong2& a, const ulonglong2& b)
{
return make_ulonglong2(a.x + b.x, a.y + b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(ulonglong2& a, const ulonglong2& b)
{
a.x += b.x; a.y += b.y;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 operator-(const ulonglong2& a, const ulonglong2& b)
{
return make_ulonglong2(a.x - b.x, a.y - b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 operator-(const ulonglong2& a, const unsigned long long b)
{
return make_ulonglong2(a.x - b, a.y - b);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(ulonglong2& a, const ulonglong2& b)
{
a.x -= b.x; a.y -= b.y;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 operator*(const ulonglong2& a, const ulonglong2& b)
{
return make_ulonglong2(a.x * b.x, a.y * b.y);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 operator*(const ulonglong2& a, const unsigned long long s)
{
return make_ulonglong2(a.x * s, a.y * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 operator*(const unsigned long long s, const ulonglong2& a)
{
return make_ulonglong2(a.x * s, a.y * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(ulonglong2& a, const unsigned long long s)
{
a.x *= s; a.y *= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 clamp(const ulonglong2& v, const unsigned long long a, const unsigned long long b)
{
return make_ulonglong2(clamp(v.x, a, b), clamp(v.y, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 clamp(const ulonglong2& v, const ulonglong2& a, const ulonglong2& b)
{
return make_ulonglong2(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const ulonglong2& a, const ulonglong2& b)
{
return a.x == b.x && a.y == b.y;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const ulonglong2& a, const ulonglong2& b)
{
return a.x != b.x || a.y != b.y;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned long long getByIndex(const ulonglong2& v, unsigned int i)
{
return ((unsigned long long*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory */
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(ulonglong2& v, int i, unsigned long long x)
{
((unsigned long long*)(&v))[i] = x;
}
/* ulonglong3 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 make_ulonglong3(const unsigned long long s)
{
return make_ulonglong3(s, s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 make_ulonglong3(const float3& a)
{
return make_ulonglong3((unsigned long long)a.x, (unsigned long long)a.y, (unsigned long long)a.z);
}
/** @} */
/** min */
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 min(const ulonglong3& a, const ulonglong3& b)
{
return make_ulonglong3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
}
/** max */
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 max(const ulonglong3& a, const ulonglong3& b)
{
return make_ulonglong3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
}
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 operator+(const ulonglong3& a, const ulonglong3& b)
{
return make_ulonglong3(a.x + b.x, a.y + b.y, a.z + b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(ulonglong3& a, const ulonglong3& b)
{
a.x += b.x; a.y += b.y; a.z += b.z;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 operator-(const ulonglong3& a, const ulonglong3& b)
{
return make_ulonglong3(a.x - b.x, a.y - b.y, a.z - b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(ulonglong3& a, const ulonglong3& b)
{
a.x -= b.x; a.y -= b.y; a.z -= b.z;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 operator*(const ulonglong3& a, const ulonglong3& b)
{
return make_ulonglong3(a.x * b.x, a.y * b.y, a.z * b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 operator*(const ulonglong3& a, const unsigned long long s)
{
return make_ulonglong3(a.x * s, a.y * s, a.z * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 operator*(const unsigned long long s, const ulonglong3& a)
{
return make_ulonglong3(a.x * s, a.y * s, a.z * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(ulonglong3& a, const unsigned long long s)
{
a.x *= s; a.y *= s; a.z *= s;
}
/** @} */
/** divide
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 operator/(const ulonglong3& a, const ulonglong3& b)
{
return make_ulonglong3(a.x / b.x, a.y / b.y, a.z / b.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 operator/(const ulonglong3& a, const unsigned long long s)
{
return make_ulonglong3(a.x / s, a.y / s, a.z / s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 operator/(const unsigned long long s, const ulonglong3& a)
{
return make_ulonglong3(s / a.x, s / a.y, s / a.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator/=(ulonglong3& a, const unsigned long long s)
{
a.x /= s; a.y /= s; a.z /= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 clamp(const ulonglong3& v, const unsigned long long a, const unsigned long long b)
{
return make_ulonglong3(clamp(v.x, a, b), clamp(v.y, a, b), clamp(v.z, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 clamp(const ulonglong3& v, const ulonglong3& a, const ulonglong3& b)
{
return make_ulonglong3(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y), clamp(v.z, a.z, b.z));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const ulonglong3& a, const ulonglong3& b)
{
return a.x == b.x && a.y == b.y && a.z == b.z;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const ulonglong3& a, const ulonglong3& b)
{
return a.x != b.x || a.y != b.y || a.z != b.z;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory
*/
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned long long getByIndex(const ulonglong3& v, unsigned int i)
{
return ((unsigned long long*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory
*/
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(ulonglong3& v, int i, unsigned long long x)
{
((unsigned long long*)(&v))[i] = x;
}
/* ulonglong4 functions */
/******************************************************************************/
/** additional constructors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 make_ulonglong4(const unsigned long long s)
{
return make_ulonglong4(s, s, s, s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 make_ulonglong4(const float4& a)
{
return make_ulonglong4((unsigned long long)a.x, (unsigned long long)a.y, (unsigned long long)a.z, (unsigned long long)a.w);
}
/** @} */
/** min
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 min(const ulonglong4& a, const ulonglong4& b)
{
return make_ulonglong4(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z), min(a.w, b.w));
}
/** @} */
/** max
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 max(const ulonglong4& a, const ulonglong4& b)
{
return make_ulonglong4(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z), max(a.w, b.w));
}
/** @} */
/** add
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 operator+(const ulonglong4& a, const ulonglong4& b)
{
return make_ulonglong4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator+=(ulonglong4& a, const ulonglong4& b)
{
a.x += b.x; a.y += b.y; a.z += b.z; a.w += b.w;
}
/** @} */
/** subtract
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 operator-(const ulonglong4& a, const ulonglong4& b)
{
return make_ulonglong4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator-=(ulonglong4& a, const ulonglong4& b)
{
a.x -= b.x; a.y -= b.y; a.z -= b.z; a.w -= b.w;
}
/** @} */
/** multiply
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 operator*(const ulonglong4& a, const ulonglong4& b)
{
return make_ulonglong4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 operator*(const ulonglong4& a, const unsigned long long s)
{
return make_ulonglong4(a.x * s, a.y * s, a.z * s, a.w * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 operator*(const unsigned long long s, const ulonglong4& a)
{
return make_ulonglong4(a.x * s, a.y * s, a.z * s, a.w * s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator*=(ulonglong4& a, const unsigned long long s)
{
a.x *= s; a.y *= s; a.z *= s; a.w *= s;
}
/** @} */
/** divide
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 operator/(const ulonglong4& a, const ulonglong4& b)
{
return make_ulonglong4(a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 operator/(const ulonglong4& a, const unsigned long long s)
{
return make_ulonglong4(a.x / s, a.y / s, a.z / s, a.w / s);
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 operator/(const unsigned long long s, const ulonglong4& a)
{
return make_ulonglong4(s / a.x, s / a.y, s / a.z, s / a.w);
}
SUTIL_INLINE SUTIL_HOSTDEVICE void operator/=(ulonglong4& a, const unsigned long long s)
{
a.x /= s; a.y /= s; a.z /= s; a.w /= s;
}
/** @} */
/** clamp
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 clamp(const ulonglong4& v, const unsigned long long a, const unsigned long long b)
{
return make_ulonglong4(clamp(v.x, a, b), clamp(v.y, a, b), clamp(v.z, a, b), clamp(v.w, a, b));
}
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 clamp(const ulonglong4& v, const ulonglong4& a, const ulonglong4& b)
{
return make_ulonglong4(clamp(v.x, a.x, b.x), clamp(v.y, a.y, b.y), clamp(v.z, a.z, b.z), clamp(v.w, a.w, b.w));
}
/** @} */
/** equality
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator==(const ulonglong4& a, const ulonglong4& b)
{
return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool operator!=(const ulonglong4& a, const ulonglong4& b)
{
return a.x != b.x || a.y != b.y || a.z != b.z || a.w != b.w;
}
/** @} */
/** If used on the device, this could place the the 'v' in local memory
*/
SUTIL_INLINE SUTIL_HOSTDEVICE unsigned long long getByIndex(const ulonglong4& v, unsigned int i)
{
return ((unsigned long long*)(&v))[i];
}
/** If used on the device, this could place the the 'v' in local memory
*/
SUTIL_INLINE SUTIL_HOSTDEVICE void setByIndex(ulonglong4& v, int i, unsigned long long x)
{
((unsigned long long*)(&v))[i] = x;
}
/******************************************************************************/
/** Narrowing functions
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int2 make_int2(const int3& v0) { return make_int2( v0.x, v0.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE int2 make_int2(const int4& v0) { return make_int2( v0.x, v0.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE int3 make_int3(const int4& v0) { return make_int3( v0.x, v0.y, v0.z ); }
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 make_uint2(const uint3& v0) { return make_uint2( v0.x, v0.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE uint2 make_uint2(const uint4& v0) { return make_uint2( v0.x, v0.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 make_uint3(const uint4& v0) { return make_uint3( v0.x, v0.y, v0.z ); }
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 make_longlong2(const longlong3& v0) { return make_longlong2( v0.x, v0.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE longlong2 make_longlong2(const longlong4& v0) { return make_longlong2( v0.x, v0.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 make_longlong3(const longlong4& v0) { return make_longlong3( v0.x, v0.y, v0.z ); }
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 make_ulonglong2(const ulonglong3& v0) { return make_ulonglong2( v0.x, v0.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong2 make_ulonglong2(const ulonglong4& v0) { return make_ulonglong2( v0.x, v0.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 make_ulonglong3(const ulonglong4& v0) { return make_ulonglong3( v0.x, v0.y, v0.z ); }
SUTIL_INLINE SUTIL_HOSTDEVICE float2 make_float2(const float3& v0) { return make_float2( v0.x, v0.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE float2 make_float2(const float4& v0) { return make_float2( v0.x, v0.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE float3 make_float3(const float4& v0) { return make_float3( v0.x, v0.y, v0.z ); }
/** @} */
/** Assemble functions from smaller vectors
* @{
*/
SUTIL_INLINE SUTIL_HOSTDEVICE int3 make_int3(const int v0, const int2& v1) { return make_int3( v0, v1.x, v1.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE int3 make_int3(const int2& v0, const int v1) { return make_int3( v0.x, v0.y, v1 ); }
SUTIL_INLINE SUTIL_HOSTDEVICE int4 make_int4(const int v0, const int v1, const int2& v2) { return make_int4( v0, v1, v2.x, v2.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE int4 make_int4(const int v0, const int2& v1, const int v2) { return make_int4( v0, v1.x, v1.y, v2 ); }
SUTIL_INLINE SUTIL_HOSTDEVICE int4 make_int4(const int2& v0, const int v1, const int v2) { return make_int4( v0.x, v0.y, v1, v2 ); }
SUTIL_INLINE SUTIL_HOSTDEVICE int4 make_int4(const int v0, const int3& v1) { return make_int4( v0, v1.x, v1.y, v1.z ); }
SUTIL_INLINE SUTIL_HOSTDEVICE int4 make_int4(const int3& v0, const int v1) { return make_int4( v0.x, v0.y, v0.z, v1 ); }
SUTIL_INLINE SUTIL_HOSTDEVICE int4 make_int4(const int2& v0, const int2& v1) { return make_int4( v0.x, v0.y, v1.x, v1.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 make_uint3(const unsigned int v0, const uint2& v1) { return make_uint3( v0, v1.x, v1.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE uint3 make_uint3(const uint2& v0, const unsigned int v1) { return make_uint3( v0.x, v0.y, v1 ); }
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 make_uint4(const unsigned int v0, const unsigned int v1, const uint2& v2) { return make_uint4( v0, v1, v2.x, v2.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 make_uint4(const unsigned int v0, const uint2& v1, const unsigned int v2) { return make_uint4( v0, v1.x, v1.y, v2 ); }
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 make_uint4(const uint2& v0, const unsigned int v1, const unsigned int v2) { return make_uint4( v0.x, v0.y, v1, v2 ); }
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 make_uint4(const unsigned int v0, const uint3& v1) { return make_uint4( v0, v1.x, v1.y, v1.z ); }
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 make_uint4(const uint3& v0, const unsigned int v1) { return make_uint4( v0.x, v0.y, v0.z, v1 ); }
SUTIL_INLINE SUTIL_HOSTDEVICE uint4 make_uint4(const uint2& v0, const uint2& v1) { return make_uint4( v0.x, v0.y, v1.x, v1.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 make_longlong3(const long long v0, const longlong2& v1) { return make_longlong3(v0, v1.x, v1.y); }
SUTIL_INLINE SUTIL_HOSTDEVICE longlong3 make_longlong3(const longlong2& v0, const long long v1) { return make_longlong3(v0.x, v0.y, v1); }
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 make_longlong4(const long long v0, const long long v1, const longlong2& v2) { return make_longlong4(v0, v1, v2.x, v2.y); }
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 make_longlong4(const long long v0, const longlong2& v1, const long long v2) { return make_longlong4(v0, v1.x, v1.y, v2); }
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 make_longlong4(const longlong2& v0, const long long v1, const long long v2) { return make_longlong4(v0.x, v0.y, v1, v2); }
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 make_longlong4(const long long v0, const longlong3& v1) { return make_longlong4(v0, v1.x, v1.y, v1.z); }
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 make_longlong4(const longlong3& v0, const long long v1) { return make_longlong4(v0.x, v0.y, v0.z, v1); }
SUTIL_INLINE SUTIL_HOSTDEVICE longlong4 make_longlong4(const longlong2& v0, const longlong2& v1) { return make_longlong4(v0.x, v0.y, v1.x, v1.y); }
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 make_ulonglong3(const unsigned long long v0, const ulonglong2& v1) { return make_ulonglong3(v0, v1.x, v1.y); }
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong3 make_ulonglong3(const ulonglong2& v0, const unsigned long long v1) { return make_ulonglong3(v0.x, v0.y, v1); }
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 make_ulonglong4(const unsigned long long v0, const unsigned long long v1, const ulonglong2& v2) { return make_ulonglong4(v0, v1, v2.x, v2.y); }
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 make_ulonglong4(const unsigned long long v0, const ulonglong2& v1, const unsigned long long v2) { return make_ulonglong4(v0, v1.x, v1.y, v2); }
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 make_ulonglong4(const ulonglong2& v0, const unsigned long long v1, const unsigned long long v2) { return make_ulonglong4(v0.x, v0.y, v1, v2); }
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 make_ulonglong4(const unsigned long long v0, const ulonglong3& v1) { return make_ulonglong4(v0, v1.x, v1.y, v1.z); }
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 make_ulonglong4(const ulonglong3& v0, const unsigned long long v1) { return make_ulonglong4(v0.x, v0.y, v0.z, v1); }
SUTIL_INLINE SUTIL_HOSTDEVICE ulonglong4 make_ulonglong4(const ulonglong2& v0, const ulonglong2& v1) { return make_ulonglong4(v0.x, v0.y, v1.x, v1.y); }
SUTIL_INLINE SUTIL_HOSTDEVICE float3 make_float3(const float2& v0, const float v1) { return make_float3(v0.x, v0.y, v1); }
SUTIL_INLINE SUTIL_HOSTDEVICE float3 make_float3(const float v0, const float2& v1) { return make_float3( v0, v1.x, v1.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE float4 make_float4(const float v0, const float v1, const float2& v2) { return make_float4( v0, v1, v2.x, v2.y ); }
SUTIL_INLINE SUTIL_HOSTDEVICE float4 make_float4(const float v0, const float2& v1, const float v2) { return make_float4( v0, v1.x, v1.y, v2 ); }
SUTIL_INLINE SUTIL_HOSTDEVICE float4 make_float4(const float2& v0, const float v1, const float v2) { return make_float4( v0.x, v0.y, v1, v2 ); }
SUTIL_INLINE SUTIL_HOSTDEVICE float4 make_float4(const float v0, const float3& v1) { return make_float4( v0, v1.x, v1.y, v1.z ); }
SUTIL_INLINE SUTIL_HOSTDEVICE float4 make_float4(const float3& v0, const float v1) { return make_float4( v0.x, v0.y, v0.z, v1 ); }
SUTIL_INLINE SUTIL_HOSTDEVICE float4 make_float4(const float2& v0, const float2& v1) { return make_float4( v0.x, v0.y, v1.x, v1.y ); }
/** @} */
| 73,688 | C | 27.104119 | 184 | 0.631785 |
arhix52/Strelka/sutil/vec_math_adv.h | #pragma once
#include "sutil/vec_math.h"
#include <sutil/Preprocessor.h>
#include <vector_functions.h>
#include <vector_types.h>
#if !defined(__CUDACC_RTC__)
#include <cmath>
#include <cstdlib>
#endif
// SUTIL_INLINE SUTIL_HOSTDEVICE float clamp( const float f, const float a, const float b )
// {
// return fmaxf( a, fminf( f, b ) );
// }
// SUTIL_INLINE SUTIL_HOSTDEVICE float4 make_float4(const float3& a, float w)
// {
// return make_float4(a.x, a.y, a.z, w);
// }
SUTIL_INLINE SUTIL_HOSTDEVICE float3 saturate(const float3 v)
{
float3 r = v;
r.x = clamp(r.x, 0.0f, 1.0f);
r.y = clamp(r.y, 0.0f, 1.0f);
r.z = clamp(r.z, 0.0f, 1.0f);
return r;
}
SUTIL_INLINE SUTIL_HOSTDEVICE float saturate(const float v)
{
return clamp(v, 0.0f, 1.0f);
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool all(const float3 v)
{
return v.x != 0.0f && v.y != 0.0f && v.z != 0.0f;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool any(const float3 v)
{
return v.x != 0.0f || v.y != 0.0f || v.z != 0.0f;
}
SUTIL_INLINE SUTIL_HOSTDEVICE bool isnan(const float3 v)
{
return isnan(v.x) || isnan(v.y) || isnan(v.z);
}
SUTIL_INLINE SUTIL_HOSTDEVICE float3 powf(const float3 v, const float p)
{
float3 r = v;
r.x = powf(r.x, p);
r.y = powf(r.y, p);
r.z = powf(r.z, p);
return r;
}
| 1,303 | C | 20.032258 | 91 | 0.617038 |
cadop/HumanGenerator/README.md | # Overview
ovmh (ov_makehuman) is a MakeHuman extension for Nvidia Omniverse. This project relies on the makehuman project from https://github.com/makehumancommunity/makehuman.
![mh_ov_thumbnail](https://user-images.githubusercontent.com/11399119/189240366-adb86b3d-50dc-49e6-8ef7-4a55df441bf9.PNG)
# Getting Started
The easiest way to get started is using Omniverse Create. Navigate to the Extensions window and click on "Community". Search for `makehuman` and you should see our extension show up.
The extension may take a few minutes to install as it will download makehuman and install it in the Omniverse's local Python instance.
For use, check out the walkthrough video
[![Walkthrough](https://img.youtube.com/vi/8GD3ld1Ep7c/0.jpg)](https://www.youtube.com/watch?v=8GD3ld1Ep7c)
## License
*Our license restrictions are due to the AGPL of MakeHuman. In line with the statements from MakeHuman, the targets and resulting characters are CC0, meaning you can use whatever you create for free, without restrictions. It is only the codebase that is AGPL.
| 1,073 | Markdown | 43.749998 | 259 | 0.788444 |
cadop/HumanGenerator/exts/siborg.create.human/API_EXAMPLE.py | # Human Generator API Example
# Author: Joshua Grebler | SiBORG Lab | 2023
# Description: This is an example of how to use the Human Generator API to create human models in NVIDIA Omniverse.
# The siborg.create.human extension must be installed and enabled for this to work.
# The script generates 10 humans, placing them throughout the stage. Random modifiers and clothing are applied to each.
import siborg.create.human as hg
from siborg.create.human.shared import data_path
import omni.usd
import random
# Get the stage
context = omni.usd.get_context()
stage = context.get_stage()
# Make a single Human to start with
human = hg.Human()
human.add_to_scene()
# Apply a modifier by name (you can find the names of all the available modifiers
# by using the `get_modifier_names()` method)
height = human.get_modifier_by_name("macrodetails-height/Height")
human.set_modifier_value(height, 1)
# Update the human in the scene
human.update_in_scene(human.prim_path)
# Gather some default clothing items (additional clothing can be downloaded from the extension UI)
clothes = ["nvidia_Casual/nvidia_casual.mhclo", "omni_casual/omni_casual.mhclo", "siborg_casual/siborg_casual.mhclo"]
# Convert the clothing names to their full paths.
clothes = [data_path(f"clothes/{c}") for c in clothes]
# Create 20 humans, placing them randomly throughout the scene, and applying random modifier values
for _ in range(10):
h = hg.Human()
h.add_to_scene()
# Apply a random translation and Y rotation to the human prim
translateOp = h.prim.AddTranslateOp()
translateOp.Set((random.uniform(-50, 50), 0, random.uniform(-50, 50)))
rotateOp = h.prim.AddRotateXYZOp()
rotateOp.Set((0, random.uniform(0, 360), 0))
# Apply a random value to the last 9 modifiers in the list.
# These modifiers are macros that affect the overall shape of the human more than any individual modifier.
# Get the last 9 modifiers
modifiers = h.get_modifiers()[-9:]
# Apply a random value to each modifier. Use the modifier's min/max values to ensure the value is within range.
for m in modifiers:
h.set_modifier_value(m, random.uniform(m.getMin(), m.getMax()))
# Update the human in the scene
h.update_in_scene(h.prim_path)
# Add a random clothing item to the human
h.add_item(random.choice(clothes))
| 2,343 | Python | 36.806451 | 119 | 0.733248 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/human.py | from typing import Tuple, List, Dict, Union
from .mhcaller import MHCaller
import numpy as np
import omni.kit
import omni.usd
from pxr import Sdf, Usd, UsdGeom, UsdSkel
from .shared import sanitize, data_path
from .skeleton import Skeleton
from module3d import Object3D
from pxr import Usd, UsdGeom, UsdPhysics, UsdShade, Sdf, Gf, Tf, UsdSkel, Vt
import carb
from .materials import get_mesh_texture, create_material, bind_material
class Human:
"""Class representing a human in the scene. This class is used to add a human to the scene,
and to update the human in the scene. The class also contains functions to add and remove
proxies (clothing, etc.) and apply modifiers, as well as a skeleton.
Attributes
----------
name : str
Name of the human
prim : UsdSkel.Root
Reference to the usd prim for the skelroot representing the human in the stage. Can be changed using set_prim()
prim_path : str
Path to the human prim
scale : float
Scale factor for the human. Defaults to 10 (Omniverse provided humans are 10 times larger than makehuman)
skeleton : Makehuman.Skeleton
Skeleton object for the human
usd_skel : UsdSkel.Skeleton
Skeleton object for the human in the USD stage. Imported from the skeleton object.
objects : List[Object3D]
List of objects attached to the human. Fetched from the makehuman app
mh_meshes : List[Object3D]
List of meshes attached to the human. Fetched from the makehuman app
"""
def __init__(self, name='human', **kwargs):
"""Constructs an instance of Human.
Parameters
----------
name : str
Name of the human. Defaults to 'human'
"""
self.name = name
# Reference to the usd prim for the skelroot representing the human in the stage
self.prim = None
# Provide a scale factor (Omniverse provided humans are 10 times larger than makehuman)
self.scale = 10
# Create a skeleton object for the human
self.skeleton = Skeleton(self.scale)
# usd_skel is none until the human is added to the stage
self.usd_skel = None
# Set the human in makehuman to default values
MHCaller.reset_human()
def reset(self):
"""Resets the human in makehuman and adds a new skeleton to the human"""
# Reset the human in makehuman
MHCaller.reset_human()
# Re-add the skeleton to the human
self.skeleton = Skeleton(self.scale)
def delete_proxies(self):
"""Deletes the prims corresponding to proxies attached to the human"""
# Delete any child prims corresponding to proxies
if self.prim:
# Get the children of the human prim and delete them all at once
proxy_prims = [child.GetPath() for child in self.prim.GetChildren() if child.GetCustomDataByKey("Proxy_path:")]
omni.kit.commands.execute("DeletePrims", paths=proxy_prims)
@property
def prim_path(self):
"""Path to the human prim"""
if self.prim:
return self.prim.GetPath().pathString
else:
return None
@property
def objects(self):
"""List of objects attached to the human. Fetched from the makehuman app"""
return MHCaller.objects
@property
def mh_meshes(self):
"""List of meshes attached to the human. Fetched from the makehuman app"""
return MHCaller.meshes
def add_to_scene(self):
"""Adds the human to the scene. Creates a prim for the human with custom attributes
to hold modifiers and proxies. Also creates a prim for each proxy and attaches it to
the human prim.
Returns
-------
str
Path to the human prim"""
# Get the current stage
stage = omni.usd.get_context().get_stage()
root_path = "/"
# Get default prim.
default_prim = stage.GetDefaultPrim()
if default_prim.IsValid():
# Set the rootpath under the stage's default prim, if the default prim is valid
root_path = default_prim.GetPath().pathString
# Create a path for the next available prim
prim_path = omni.usd.get_stage_next_free_path(stage, root_path + "/" + self.name, False)
# Create a prim for the human
# Prim should be a SkelRoot so we can rig the human with a skeleton later
self.prim = UsdSkel.Root.Define(stage, prim_path)
# Write the properties of the human to the prim
self.write_properties(prim_path, stage)
# Get the objects of the human from mhcaller
objects = MHCaller.objects
# Get the human object from the list of objects
human = objects[0]
# Determine the offset for the human from the ground
offset = -1 * human.getJointPosition("ground")
# Import makehuman objects into the scene
mesh_paths = self.import_meshes(prim_path, stage, offset = offset)
# Add the skeleton to the scene
self.usd_skel= self.skeleton.add_to_stage(stage, prim_path, offset = offset)
# Create bindings between meshes and the skeleton. Returns a list of
# bindings the length of the number of meshes
bindings = self.setup_bindings(mesh_paths, stage, self.usd_skel)
# Setup weights for corresponding mh_meshes (which hold the data) and
# bindings (which link USD_meshes to the skeleton)
self.setup_weights(self.mh_meshes, bindings, self.skeleton.joint_names, self.skeleton.joint_paths)
self.setup_materials(self.mh_meshes, mesh_paths, root_path, stage)
# Explicitly setup material for human skin
texture_path = data_path("skins/textures/skin.png")
skin = create_material(texture_path, "Skin", root_path, stage)
# Bind the skin material to the first prim in the list (the human)
bind_material(mesh_paths[0], skin, stage)
Human._set_scale(self.prim.GetPrim(), self.scale)
return self.prim
def update_in_scene(self, prim_path: str):
"""Updates the human in the scene. Writes the properties of the human to the
human prim and imports the human and proxy meshes. This is called when the
human is updated
Parameters
----------
prim_path : str
Path to the human prim (prim type is SkelRoot)
"""
usd_context = omni.usd.get_context()
stage = usd_context.get_stage()
prim = stage.GetPrimAtPath(prim_path)
prim = stage.GetPrimAtPath(prim_path)
if prim and stage:
print(prim.GetPath().pathString)
prim_kind = prim.GetTypeName()
# Check if the prim is a SkelRoot and a human
if prim_kind == "SkelRoot" and prim.GetCustomDataByKey("human"):
# Get default prim.
default_prim = stage.GetDefaultPrim()
if default_prim.IsValid():
# Set the rootpath under the stage's default prim, if the default prim is valid
root_path = default_prim.GetPath().pathString
else:
root_path = "/"
# Write the properties of the human to the prim
self.write_properties(prim_path, stage)
# Get the objects of the human from mhcaller
objects = MHCaller.objects
# Get the human object from the list of objects
human = objects[0]
# Determine the offset for the human from the ground
offset = -1 * human.getJointPosition("ground")
# Import makehuman objects into the scene
mesh_paths = self.import_meshes(prim_path, stage, offset = offset)
# Update the skeleton values and insert it into the stage
self.usd_skel = self.skeleton.update_in_scene(stage, prim_path, offset = offset)
# Create bindings between meshes and the skeleton. Returns a list of
# bindings the length of the number of meshes
bindings = self.setup_bindings(mesh_paths, stage, self.usd_skel)
# Setup weights for corresponding mh_meshes (which hold the data) and
# bindings (which link USD_meshes to the skeleton)
self.setup_weights(self.mh_meshes, bindings, self.skeleton.joint_names, self.skeleton.joint_paths)
self.setup_materials(self.mh_meshes, mesh_paths, root_path, stage)
# Explicitly setup material for human skin
texture_path = data_path("skins/textures/skin.png")
skin = create_material(texture_path, "Skin", root_path, stage)
# Bind the skin material to the first prim in the list (the human)
bind_material(mesh_paths[0], skin, stage)
else:
carb.log_warn("The selected prim must be a human!")
else:
carb.log_warn("Can't update human. No prim selected!")
def import_meshes(self, prim_path: str, stage: Usd.Stage, offset: List[float] = [0, 0, 0]):
"""Imports the meshes of the human into the scene. This is called when the human is
added to the scene, and when the human is updated. This function creates mesh prims
for both the human and its proxies, and attaches them to the human prim. If a mesh already
exists in the scene, its values are updated instead of creating a new mesh.
Parameters
----------
prim_path : str
Path to the human prim
stage : Usd.Stage
Stage to write to
offset : List[float], optional
Offset to move the mesh relative to the prim origin, by default [0, 0, 0]
Returns
-------
paths : array of: Sdf.Path
Usd Sdf paths to geometry prims in the scene
"""
# Get the objects of the human from mhcaller
objects = MHCaller.objects
# Get the meshes of the human and its proxies
meshes = [o.mesh for o in objects]
usd_mesh_paths = []
for mesh in meshes:
# Number of vertices per face
nPerFace = mesh.vertsPerFaceForExport
# Lists to hold pruned lists of vertex and UV indices
newvertindices = []
newuvindices = []
# Array of coordinates organized [[x1,y1,z1],[x2,y2,z2]...]
# Adding the given offset moves the mesh relative to the prim origin
coords = mesh.getCoords() + offset
for fn, fv in enumerate(mesh.fvert):
if not mesh.face_mask[fn]:
continue
# only include <nPerFace> verts for each face, and order them
# consecutively
newvertindices += [(fv[n]) for n in range(nPerFace)]
fuv = mesh.fuvs[fn]
# build an array of (u,v)s for each face
newuvindices += [(fuv[n]) for n in range(nPerFace)]
# Type conversion
newvertindices = np.array(newvertindices)
# Create mesh prim at appropriate path. Does not yet hold any data
name = sanitize(mesh.name)
usd_mesh_path = prim_path + "/" + name
usd_mesh_paths.append(usd_mesh_path)
# Check to see if the mesh prim already exists
prim = stage.GetPrimAtPath(usd_mesh_path)
if prim.IsValid():
# omni.kit.commands.execute("DeletePrims", paths=[usd_mesh_path])
point_attr = prim.GetAttribute('points')
point_attr.Set(coords)
face_count = prim.GetAttribute('faceVertexCounts')
nface = [nPerFace] * int(len(newvertindices) / nPerFace)
face_count.Set(nface)
face_idx = prim.GetAttribute('faceVertexIndices')
face_idx.Set(newvertindices)
normals_attr = prim.GetAttribute('normals')
normals_attr.Set(mesh.getNormals())
meshGeom = UsdGeom.Mesh(prim)
# If it doesn't exist, make it. This will run the first time a human is created and
# whenever a new proxy is added
else:
# First determine if the mesh is a proxy
p = mesh.object.proxy
if p:
# Determine if the mesh is a clothes proxy or a proxymesh. If not, then
# an existing proxy of this type already exists, and we must overwrite it
type = p.type if p.type else "proxymeshes"
if not (type == "clothes" or type == "proxymeshes"):
for child in self.prim.GetChildren():
child_type = child.GetCustomDataByKey("Proxy_type:")
if child_type == type:
# If the child prim has the same type as the proxy, delete it
omni.kit.commands.execute("DeletePrims", paths=[child.GetPath()])
break
meshGeom = UsdGeom.Mesh.Define(stage, usd_mesh_path)
prim = meshGeom.GetPrim()
# Set vertices. This is a list of tuples for ALL vertices in an unassociated
# cloud. Faces are built based on indices of this list.
# Example: 3 explicitly defined vertices:
# meshGeom.CreatePointsAttr([(-10, 0, -10), (-10, 0, 10), (10, 0, 10)]
meshGeom.CreatePointsAttr(coords)
# Set face vertex count. This is an array where each element is the number
# of consecutive vertex indices to include in each face definition, as
# indices are given as a single flat list. The length of this list is the
# same as the number of faces
# Example: 4 faces with 4 vertices each
# meshGeom.CreateFaceVertexCountsAttr([4, 4, 4, 4])
nface = [nPerFace] * int(len(newvertindices) / nPerFace)
meshGeom.CreateFaceVertexCountsAttr(nface)
# Set face vertex indices.
# Example: one face with 4 vertices defined by 4 indices.
# meshGeom.CreateFaceVertexIndicesAttr([0, 1, 2, 3])
meshGeom.CreateFaceVertexIndicesAttr(newvertindices)
# Set vertex normals. Normals are represented as a list of tuples each of
# which is a vector indicating the direction a point is facing. This is later
# Used to calculate face normals
# Example: Normals for 3 vertices
# meshGeom.CreateNormalsAttr([(0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1,
# 0)])
meshGeom.CreateNormalsAttr(mesh.getNormals())
meshGeom.SetNormalsInterpolation("vertex")
# If the mesh is a proxy, write the proxy path to the mesh prim
if mesh.object.proxy:
p = mesh.object.proxy
type = p.type if p.type else "proxymeshes"
prim.SetCustomDataByKey("Proxy_path:", p.file)
prim.SetCustomDataByKey("Proxy_type:", type)
prim.SetCustomDataByKey("Proxy_name:", p.name)
# Set vertex uvs. UVs are represented as a list of tuples, each of which is a 2D
# coordinate. UV's are used to map textures to the surface of 3D geometry
# Example: texture coordinates for 3 vertices
# texCoords.Set([(0, 1), (0, 0), (1, 0)])
texCoords = meshGeom.CreatePrimvar(
"st", Sdf.ValueTypeNames.TexCoord2fArray, UsdGeom.Tokens.faceVarying
)
texCoords.Set(mesh.getUVs(newuvindices))
# # Subdivision is set to none. The mesh is as imported and not further refined
meshGeom.CreateSubdivisionSchemeAttr().Set("none")
# ConvertPath strings to USD Sdf paths. TODO change to map() for performance
paths = [Sdf.Path(mesh_path) for mesh_path in usd_mesh_paths]
return paths
def get_written_modifiers(self) -> Union[Dict[str, float], None]:
"""List of modifier names and values written to the human prim.
MAY BE STALE IF THE HUMAN HAS BEEN UPDATED IN MAKEHUMAN AND THE CHANGES HAVE NOT BEEN WRITTEN TO THE PRIM.
Returns
-------
Dict[str, float]
Dictionary of modifier names and values. Keys are modifier names, values are modifier values"""
return self.prim.GetCustomDataByKey("Modifiers") if self.prim else None
def get_changed_modifiers(self):
"""List of modifiers which have been changed in makehuman. Fetched from the human in makehuman.
MAY NOT MATCH `get_written_modifiers()` IF CHANGES HAVE NOT BEEN WRITTEN TO THE PRIM."""
return MHCaller.modifiers
def get_modifiers(self):
"""Retrieve the list of all modifiers available to the human, whether or not their values have changed."""
return MHCaller.default_modifiers
def set_modifier_value(self, modifier, value: float):
"""Sets the value of a modifier in makehuman. Validates the value before setting it.
Returns true if the value was set, false otherwise.
Parameters
----------
modifier : makehuman.humanmodifier.Modifier
Modifier to change
value : float
Value to set the modifier to
"""
# Get the range of the modifier
val_min = modifier.getMin()
val_max = modifier.getMax()
# Check if the value is within the range of the modifier
if value >= val_min and value <= val_max:
# Set the value of the modifier
modifier.setValue(value)
return True
else:
carb.log_warn(f"Value must be between {str(val_min)} and {str(val_max)}")
return False
def get_modifier_by_name(self, name: str):
"""Gets a modifier from the list of modifiers attached to the human by name
Parameters
----------
name : str
Name of the modifier to get
Returns
-------
makehuman.modifiers.Modifier
Modifier with the given name
"""
return MHCaller.human.getModifier(name)
def get_modifier_names(self):
return MHCaller.human.getModifierNames()
def write_properties(self, prim_path: str, stage: Usd.Stage):
"""Writes the properties of the human to the human prim. This includes modifiers and
proxies. This is called when the human is added to the scene, and when the human is
updated
Parameters
----------
prim_path : str
Path to the human prim
stage : Usd.Stage
Stage to write to
"""
prim = stage.GetPrimAtPath(prim_path)
# Add custom data to the prim by key, designating the prim is a human
prim.SetCustomDataByKey("human", True)
# Get the modifiers of the human in mhcaller
modifiers = MHCaller.modifiers
for m in modifiers:
# Add the modifier to the prim as custom data by key. For modifiers,
# the format is "group/modifer:value"
prim.SetCustomDataByKey("Modifiers:" + m.fullName, m.getValue())
# NOTE We are not currently using proxies in the USD export. Proxy data is stored
# in their respective mesh prims, so that deleting proxy prims will also remove the
# proxies. The following code is left here for reference.
# Get the proxies of the human in mhcaller
# proxies = MHCaller.proxies
# for p in proxies:
# # Add the proxy to the prim as custom data by key under "Proxies".
# # Proxy type should be "proxymeshes" if type cannot be determined from the
# # proxy.type property.
# type = p.type if p.type else "proxymeshes"
# # Only "proxymeshes" and "clothes" should be subdictionaries of "Proxies"
# if type == "clothes" or type == "proxymeshes":
# prim.SetCustomDataByKey("Proxies:" + type + ":" + p.name, p.file)
# # Other proxy types should be added as a key to the prim with their
# # type as the key and the path as the value
# else:
# prim.SetCustomDataByKey("Proxies:" + type, p.file)
def set_prim(self, usd_prim : Usd.Prim):
"""Updates the human based on the given prim's attributes
Parameters
----------
usd_prim : Usd.Prim
Prim from which to update the human model."""
self.prim = usd_prim
# Get the data from the prim
humandata = self.prim.GetCustomData()
# Get the list of modifiers from the prim
modifiers = humandata.get("Modifiers")
for m, v in modifiers.items():
MHCaller.human.getModifier(m).setValue(v, skipDependencies=False)
# Gather proxies from the prim children
proxies = []
for child in self.prim.GetChildren():
if child.GetTypeName() == "Mesh" and child.GetCustomDataByKey("Proxy_path:"):
proxies.append(child)
# Clear the makehuman proxies
MHCaller.clear_proxies()
# # Make sure the proxy list is not empty
if proxies:
for p in proxies:
type = p.GetCustomDataByKey("Proxy_type:")
path = p.GetCustomDataByKey("Proxy_path:")
# name = p.GetCustomDataByKey("Proxy_name:")
MHCaller.add_proxy(path, type)
# Update the human in MHCaller
MHCaller.human.applyAllTargets()
def setup_weights(self, mh_meshes: List['Object3D'], bindings: List[UsdSkel.BindingAPI], joint_names: List[str], joint_paths: List[str]):
"""Apply weights to USD meshes using data from makehuman. USD meshes,
bindings and skeleton must already be in the active scene
Parameters
----------
mh_meshes : list of `Object3D`
Makehuman meshes which store weight data
bindings : list of `UsdSkel.BindingAPI`
USD bindings between meshes and skeleton
joint_names : list of str
Unique, plaintext names of all joints in the skeleton in USD
(breadth-first) order.
joint_paths : list of str
List of the full usd path to each joint corresponding to the skeleton to bind to
"""
# Generate bone weights for all meshes up front so they can be reused for all
rawWeights = MHCaller.human.getVertexWeights(
MHCaller.human.getSkeleton()
) # Basemesh weights
for mesh in self.mh_meshes:
if mesh.object.proxy:
# Transfer weights to proxy
parentWeights = mesh.object.proxy.getVertexWeights(
rawWeights, MHCaller.human.getSkeleton()
)
else:
parentWeights = rawWeights
# Transfer weights to face/vert masked and/or subdivided mesh
weights = mesh.getVertexWeights(parentWeights)
# Attach these vertexWeights to the mesh to pass them around the
# exporter easier, the cloned mesh is discarded afterwards, anyway
# if this is the same person, just skip updating weights
mesh.vertexWeights = weights
# Iterate through corresponding meshes and bindings
for mh_mesh, binding in zip(mh_meshes, bindings):
# Calculate vertex weights
indices, weights = self.calculate_influences(mh_mesh, joint_names)
# Type conversion to native ints and floats from numpy
indices = list(map(int, indices))
weights = list(map(float, weights))
# Type conversion to USD
indices = Vt.IntArray(indices)
weights = Vt.FloatArray(weights)
# The number of weights to apply to each vertex, taken directly from
# MakeHuman data
elementSize = int(mh_mesh.vertexWeights._nWeights)
# weight_data = list(mh_mesh.vertexWeights.data) TODO remove
# We might not need to normalize. Makehuman weights are automatically
# normalized when loaded, see:
# http://www.makehumancommunity.org/wiki/Technical_notes_on_MakeHuman
UsdSkel.NormalizeWeights(weights, elementSize)
UsdSkel.SortInfluences(indices, weights, elementSize)
# Assign indices to binding
indices_attribute = binding.CreateJointIndicesPrimvar(
constant=False, elementSize=elementSize
)
joint_attr = binding.GetPrim().GetAttribute('skel:joints')
joint_attr.Set(joint_paths)
indices_attribute.Set(indices)
# Assign weights to binding
weights_attribute = binding.CreateJointWeightsPrimvar(
constant=False, elementSize=elementSize
)
weights_attribute.Set(weights)
def calculate_influences(self, mh_mesh: Object3D, joint_names: List[str]):
"""Build arrays of joint indices and corresponding weights for each vertex.
Joints are in USD (breadth-first) order.
Parameters
----------
mh_mesh : Object3D
Makehuman-format mesh. Contains weight and vertex data.
joint_names : list of str
Unique, plaintext names of all joints in the skeleton in USD
(breadth-first) order.
Returns
-------
indices : list of int
Flat list of joint indices for each vertex
weights : list of float
Flat list of weights corresponding to joint indices
"""
# The maximum number of weights a vertex might have
max_influences = mh_mesh.vertexWeights._nWeights
# Named joints corresponding to vertices and weights ie.
# {"joint",([indices],[weights])}
influence_joints = mh_mesh.vertexWeights.data
num_verts = mh_mesh.getVertexCount(excludeMaskedVerts=False)
# all skeleton joints in USD order
binding_joints = joint_names
# Corresponding arrays of joint indices and weights of length num_verts.
# Allots the maximum number of weights for every vertex, and pads any
# remaining weights with 0's, per USD spec, see:
# https://graphics.pixar.com/usd/dev/api/_usd_skel__schemas.html#UsdSkel_BindingAPI
# "If a point has fewer influences than are needed for other points, the
# unused array elements of that point should be filled with 0, both for
# joint indices and for weights."
indices = np.zeros((num_verts, max_influences))
weights = np.zeros((num_verts, max_influences))
# Keep track of the number of joint influences on each vertex
influence_counts = np.zeros(num_verts, dtype=int)
for joint, joint_data in influence_joints.items():
# get the index of the joint in our USD-ordered list of all joints
joint_index = binding_joints.index(joint)
for vert_index, weight in zip(*joint_data):
# Use influence_count to keep from overwriting existing influences
influence_count = influence_counts[vert_index]
# Add the joint index to our vertex array
indices[vert_index][influence_count] = joint_index
# Add the weight to the same vertex
weights[vert_index][influence_count] = weight
# Add to the influence count for this vertex
influence_counts[vert_index] += 1
# Check for any unweighted verts (this is a test routine)
# for i, d in enumerate(indices): if np.all((d == 0)): print(i)
# Flatten arrays to one dimensional lists
indices = indices.flatten()
weights = weights.flatten()
return indices, weights
def setup_bindings(self, paths: List[Sdf.Path], stage: Usd.Stage, skeleton: UsdSkel.Skeleton):
"""Setup bindings between meshes in the USD scene and the skeleton
Parameters
----------
paths : List of Sdf.Path
USD Sdf paths to each mesh prim
stage : Usd.Stage
The USD stage where the prims can be found
skeleton : UsdSkel.Skeleton
The USD skeleton to apply bindings to
Returns
-------
array of: UsdSkel.BindingAPI
Array of bindings between each mesh and the skeleton, in "path" order
"""
bindings = []
# TODO rename "mesh" to "path"
for mesh in paths:
# Get the prim in the stage
prim = stage.GetPrimAtPath(mesh)
attrs = prim.GetAttribute('primvars:skel:jointWeights')
# Check if joint weights have already been applied
if attrs.IsValid():
prim_path = prim.GetPath()
sdf_path = Sdf.Path(prim_path)
binding = UsdSkel.BindingAPI.Get(stage, sdf_path)
# relationships = prim.GetRelationships()
# 'material:binding' , 'proxyPrim', 'skel:animationSource','skel:blendShapeTargets','skel:skeleton'
# get_binding.GetSkeletonRel()
else:
# Create a binding applied to the prim
binding = UsdSkel.BindingAPI.Apply(prim)
# Create a relationship between the binding and the skeleton
binding.CreateSkeletonRel().SetTargets([skeleton.GetPath()])
# Add the binding to the list to return
bindings.append(binding)
return bindings
def setup_materials(self, mh_meshes: List['Object3D'], meshes: List[Sdf.Path], root: str, stage: Usd.Stage):
"""Fetches materials from Makehuman meshes and applies them to their corresponding
Usd mesh prims in the stage.
Parameters
----------
mh_meshes : List['Object3D']
List of makehuman meshes
meshes : List[Sdf.Path]
Paths to Usd meshes in the stage
root : str
The root path under which to create new prims
stage : Usd.Stage
Usd stage in which to create materials, and which contains the meshes
to which to apply materials
"""
for mh_mesh, mesh in zip(self.mh_meshes, meshes):
# Get a texture path and name from the makehuman mesh
texture, name = get_mesh_texture(mh_mesh)
if texture:
# If we can get a texture from the makehuman mesh, create a material
# from it and bind it to the corresponding USD mesh in the stage
material = create_material(texture, name, root, stage)
bind_material(mesh, material, stage)
def add_item(self, path: str):
"""Add a new asset to the human. Propagates changes to the Makehuman app
and then upates the stage with the new asset. If the asset is a proxy,
targets will not be applied. If the asset is a skeleton, targets must
be applied.
Parameters
----------
path : str
Path to an asset on disk
"""
# Check if human has a prim
if self.prim:
# Add an item through the MakeHuman instance and update the widget view
MHCaller.add_item(path)
self.update_in_scene(self.prim.GetPath().pathString)
else:
carb.log_warn("Can't add asset. No human prim selected!")
@staticmethod
def _set_scale(prim : Usd.Prim, scale : float):
"""Set scale of a prim.
Parameters
----------
prim : Usd.Prim
The prim to scale.
scale : float
The scale to apply."""
if prim == None:
return
# Uniform scale.
sV = Gf.Vec3f(scale, scale, scale)
scale = prim.GetAttribute("xformOp:scale").Get()
if scale != None:
prim.GetAttribute("xformOp:scale").Set(Gf.Vec3f(sV))
else:
# xformOpOrder is also updated.
xformAPI = UsdGeom.XformCommonAPI(prim)
xformAPI.SetScale(Gf.Vec3f(sV)) | 32,659 | Python | 40.030151 | 141 | 0.598212 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/styles.py | # Stylesheet for parameter panels
panel_style = {
"Rectangle::group_rect": {
"background_color": 0xFF313333,
"border_radius": 5,
"margin": 5,
},
"VStack::contents": {
"margin": 10,
},
}
# Stylesheet for sliderentry widgets
sliderentry_style = {
"Label::label_param": {
"margin_width": 10,
},
}
# stylesheet for collapseable frame widgets, used for each modifier category
frame_style = {
"CollapsableFrame": {
"background_color": 0xFF1F2123,
},
}
# stylesheet for main UI window
window_style = {
"Rectangle::splitter": {"background_color": 0xFF454545},
"Rectangle::splitter:hovered": {"background_color": 0xFFFFCA83},
}
# Stylesheet for buttons
button_style = {
"Button:disabled": {
"background_color": 0xFF424242,
},
"Button:disabled.Label": {
"color": 0xFF848484,
},
}
| 894 | Python | 20.309523 | 76 | 0.608501 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/mhcaller.py | from typing import TypeVar, Union
import warnings
import io
import makehuman
from pathlib import Path
# Makehuman loads most modules by manipulating the system path, so we have to
# run this before we can run the rest of our makehuman imports
makehuman.set_sys_path()
import human
import animation
import bvh
import files3d
import mh
from core import G
from mhmain import MHApplication
from shared import wavefront
import humanmodifier, skeleton
import proxy, gui3d, events3d, targets
from getpath import findFile
import numpy as np
import carb
from .shared import data_path
class classproperty:
"""Class property decorator. Allows us to define a property on a class
method rather than an instance method."""
def __init__(cls, fget):
cls.fget = fget
def __get__(cls, obj, owner):
return cls.fget(owner)
class MHCaller:
"""A singleton wrapper around the Makehuman app. Lets us use Makehuman functions without
launching the whole application. Also holds all data about the state of our Human
and available modifiers/assets, and allows us to create new humans without creating a new
instance of MHApp.
Attributes
----------
G : Globals
Makehuman global object. Stores globals needed by Makehuman internally
human : Human
Makehuman Human object. Encapsulates all human data (parameters, available)
modifiers, skeletons, meshes, assets, etc) and functions.
"""
G = G
human = None
def __init__(cls):
"""Constructs an instance of MHCaller. This involves setting up the
needed components to use makehuman modules independent of the GUI.
This includes app globals (G) and the human object."""
cls._config_mhapp()
cls.init_human()
def __new__(cls):
"""Singleton pattern. Only one instance of MHCaller can exist at a time."""
if not hasattr(cls, 'instance'):
cls.instance = super(MHCaller, cls).__new__(cls)
return cls.instance
@classmethod
def _config_mhapp(cls):
"""Declare and initialize the makehuman app, and move along if we
encounter any errors (omniverse sometimes fails to purge the app
singleton on extension reload, which can throw an error. This just means
the app already exists)
"""
try:
cls.G.app = MHApplication()
except:
return
cls.human_mapper = {}
@classmethod
def reset_human(cls):
"""Resets the human object to its initial state. This involves setting the
human's name to its default, resetting all modifications, and resetting all
proxies. Does not reset the skeleton. Also flags the human as having been
reset so that the new name can be created when adding to the Usd stage.
"""
cls.human.resetMeshValues()
# Subdivide the human mesh. This also means that any proxies added to the human are subdivided
cls.human.setSubdivided(True)
# Restore eyes
# cls.add_proxy(data_path("eyes/high-poly/high-poly.mhpxy"), "eyes")
# Reset skeleton to the game skeleton
cls.human.setSkeleton(cls.game_skel)
# Reset the human to tpose
cls.set_tpose()
# HACK Set the age to itcls to force an update of targets, otherwise humans
# are created with the MH base mesh, see:
# http://static.makehumancommunity.org/makehuman/docs/professional_mesh_topology.html
cls.human.setAge(cls.human.getAge())
@classmethod
def init_human(cls):
"""Initialize the human and set some required files from disk. This
includes the skeleton and any proxies (hair, clothes, accessories etc.)
The weights from the base skeleton must be transfered to the chosen
skeleton or else there will be unweighted verts on the meshes.
"""
cls.human = human.Human(files3d.loadMesh(mh.getSysDataPath("3dobjs/base.obj"), maxFaces=5))
# set the makehuman instance human so that features (eg skeletons) can
# access it globally
cls.G.app.selectedHuman = cls.human
humanmodifier.loadModifiers(mh.getSysDataPath("modifiers/modeling_modifiers.json"), cls.human)
# Add eyes
# cls.add_proxy(data_path("eyes/high-poly/high-poly.mhpxy"), "eyes")
cls.base_skel = skeleton.load(
mh.getSysDataPath("rigs/default.mhskel"),
cls.human.meshData,
)
# Load the game developer skeleton
# The root of this skeleton is at the origin which is better for animation
# retargeting
cls.game_skel = skeleton.load(data_path("rigs/game_engine.mhskel"), cls.human.meshData)
# Build joint weights on our chosen skeleton, derived from the base
# skeleton
cls.game_skel.autoBuildWeightReferences(cls.base_skel)
# Set the base skeleton
cls.human.setBaseSkeleton(cls.base_skel)
# Set the game skeleton
cls.human.setSkeleton(cls.game_skel)
@classproperty
def objects(cls):
"""List of objects attached to the human.
Returns
-------
list of: guiCommon.Object
All 3D objects included in the human. This includes the human
itcls, as well as any proxies
"""
# Make sure proxies are up-to-date
cls.update()
return cls.human.getObjects()
@classproperty
def meshes(cls):
"""All of the meshes of all of the objects attached to a human. This
includes the mesh of the human itcls as well as the meshes of all proxies
(clothing, hair, musculature, eyes, etc.)"""
return [o.mesh for o in cls.objects]
@classproperty
def modifiers(cls):
"""List of modifers attached to the human. These are all macros as well as any
individual modifiers which have changed.
Returns
-------
list of: humanmodifier.Modifier
The macros and changed modifiers included in the human
"""
return [m for m in cls.human.modifiers if m.getValue() or m.isMacro()]
@classproperty
def default_modifiers(cls):
"""List of all the loaded modifiers, whether or not their default values have been changed.
-------
list of: humanmodifier.Modifier
The macros and changed modifiers included in the human
"""
return cls.human.modifiers
@classproperty
def proxies(cls):
"""List of proxies attached to the human.
Returns
-------
list of: proxy.Proxy
All proxies included in the human
"""
return cls.human.getProxies()
@classmethod
def update(cls):
"""Propagate changes to meshes and proxies"""
# For every mesh object except for the human (first object), update the
# mesh and corresponding proxy
# See https://github.com/makehumancommunity/makehuman/search?q=adaptproxytohuman
for obj in cls.human.getObjects()[1:]:
mesh = obj.getSeedMesh()
pxy = obj.getProxy()
# Update the proxy and fit to posed human
# args are (mesh, fit_to_posed = false) by default
pxy.update(mesh, True)
# Update the mesh
mesh.update()
@classmethod
def add_proxy(cls, proxypath : str, proxy_type : str = None):
"""Load a proxy (hair, nails, clothes, etc.) and apply it to the human
Parameters
----------
proxypath : str
Path to the proxy file on disk
proxy_type: str, optional
Proxy type, None by default
Can be automatically determined using path names, but otherwise
must be defined (this is a limitation of how makehuman handles
proxies)
"""
# Derived from work by @tomtom92 at the MH-Community forums
# See: http://www.makehumancommunity.org/forum/viewtopic.php?f=9&t=17182&sid=7c2e6843275d8c6c6e70288bc0a27ae9
# Get proxy type if none is given
if proxy_type is None:
proxy_type = cls.guess_proxy_type(proxypath)
# Load the proxy
pxy = proxy.loadProxy(cls.human, proxypath, type=proxy_type)
# Get the mesh and Object3D object from the proxy applied to the human
mesh, obj = pxy.loadMeshAndObject(cls.human)
# TODO is this next line needed?
mesh.setPickable(True)
# TODO Can this next line be deleted? The app isn't running
gui3d.app.addObject(obj)
# Fit the proxy mesh to the human
mesh2 = obj.getSeedMesh()
fit_to_posed = True
pxy.update(mesh2, fit_to_posed)
mesh2.update()
# Set the object to be subdivided if the human is subdivided
obj.setSubdivided(cls.human.isSubdivided())
# Set/add proxy based on type
if proxy_type == "eyes":
cls.human.setEyesProxy(pxy)
elif proxy_type == "clothes":
cls.human.addClothesProxy(pxy)
elif proxy_type == "eyebrows":
cls.human.setEyebrowsProxy(pxy)
elif proxy_type == "eyelashes":
cls.human.setEyelashesProxy(pxy)
elif proxy_type == "hair":
cls.human.setHairProxy(pxy)
else:
# Body proxies (musculature, etc)
cls.human.setProxy(pxy)
vertsMask = np.ones(cls.human.meshData.getVertexCount(), dtype=bool)
proxyVertMask = proxy.transferVertexMaskToProxy(vertsMask, pxy)
# Apply accumulated mask from previous layers on this proxy
obj.changeVertexMask(proxyVertMask)
# Delete masked vertices
# TODO add toggle for this feature in UI
# verts = np.argwhere(pxy.deleteVerts)[..., 0]
# vertsMask[verts] = False
# cls.human.changeVertexMask(vertsMask)
Proxy = TypeVar("Proxy")
@classmethod
def remove_proxy(cls, proxy: Proxy):
"""Removes a proxy from the human. Executes a particular method for removal
based on proxy type.
Parameters
----------
proxy : proxy.Proxy
The Makehuman proxy to remove from the human
"""
proxy_type = proxy.type.lower()
# Use MakeHuman internal methods to remove proxy based on type
if proxy_type == "eyes":
cls.human.setEyesProxy(None)
elif proxy_type == "clothes":
cls.human.removeClothesProxy(proxy.uuid)
elif proxy_type == "eyebrows":
cls.human.setEyebrowsProxy(None)
elif proxy_type == "eyelashes":
cls.human.setEyelashesProxy(None)
elif proxy_type == "hair":
cls.human.setHairProxy(None)
else:
# Body proxies (musculature, etc)
cls.human.setProxy(None)
@classmethod
def clear_proxies(cls):
"""Removes all proxies from the human"""
for pxy in cls.proxies:
cls.remove_proxy(pxy)
Skeleton = TypeVar("Skeleton")
@classmethod
def remove_item(cls, item : Union[Skeleton, Proxy]):
"""Removes a Makehuman asset from the human. Assets include Skeletons
as well as proxies. Determines removal method based on asset object type.
Parameters
----------
item : Union[Skeleton,Proxy]
Makehuman skeleton or proxy to remove from the human
"""
if isinstance(item, proxy.Proxy):
cls.remove_proxy(item)
else:
return
@classmethod
def add_item(cls, path : str):
"""Add a Makehuman asset (skeleton or proxy) to the human.
Parameters
----------
path : str
Path to the asset on disk
"""
if "mhpxy" in path or "mhclo" in path:
cls.add_proxy(path)
elif "mhskel" in path:
cls.set_skel(path)
@classmethod
def set_skel(cls, path : str):
"""Change the skeleton applied to the human. Loads a skeleton from disk.
The skeleton position can be used to drive the human position in the scene.
Parameters
----------
path : str
The path to the skeleton to load from disk
"""
# Load skeleton from path
skel = skeleton.load(path, cls.human.meshData)
# Build skeleton weights based on base skeleton
skel.autoBuildWeightReferences(cls.base_skel)
# Set the skeleton and update the human
cls.human.setSkeleton(skel)
cls.human.applyAllTargets()
# Return the skeleton object
return skel
@classmethod
def guess_proxy_type(cls, path : str):
"""Guesses a proxy's type based on the path from which it is loaded.
Parameters
----------
path : str
The path to the proxy on disk
Returns
-------
Union[str,None]
The proxy type, or none if the type could not be determined
"""
proxy_types = ("eyes", "clothes", "eyebrows", "eyelashes", "hair")
for type in proxy_types:
if type in path:
return type
return None
@classmethod
def set_tpose(cls):
"""Sets the human to the T-Pose"""
# Load the T-Pose BVH file
filepath = data_path('poses\\tpose.bvh')
bvh_file = bvh.load(filepath, convertFromZUp="auto")
# Create an animation track from the BVH file
anim = bvh_file.createAnimationTrack(cls.human.getBaseSkeleton())
# Add the animation to the human
cls.human.addAnimation(anim)
# Set the active animation to the T-Pose
cls.human.setActiveAnimation(anim.name)
# Refresh the human pose
cls.human.refreshPose()
return
# Create an instance of MHCaller when imported
MHCaller()
| 13,875 | Python | 34.218274 | 118 | 0.622198 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/extension.py | import omni.ext
import omni.ui as ui
import carb
import carb.events
import omni
from functools import partial
import asyncio
import omni.usd
from pxr import Usd
from typing import Union
from .window import MHWindow, WINDOW_TITLE, MENU_PATH
class MakeHumanExtension(omni.ext.IExt):
# ext_id is current extension id. It can be used with extension manager to query additional information, like where
# this extension is located on filesystem.
def on_startup(self, ext_id):
# subscribe to stage events
# see https://github.com/mtw75/kit_customdata_view
_usd_context = omni.usd.get_context()
self._selection = _usd_context.get_selection()
self._human_selection_event = carb.events.type_from_string("siborg.create.human.human_selected")
# subscribe to stage events
self._events = _usd_context.get_stage_event_stream()
self._stage_event_sub = self._events.create_subscription_to_push(
self._on_stage_event,
name='human seletion changed',
)
# get message bus event stream so we can push events to the message bus
self._bus = omni.kit.app.get_app().get_message_bus_event_stream()
ui.Workspace.set_show_window_fn(WINDOW_TITLE, partial(self.show_window, None))
# create a menu item to open the window
editor_menu = omni.kit.ui.get_editor_menu()
if editor_menu:
self._menu = editor_menu.add_item(
MENU_PATH, self.show_window, toggle=True, value=True
)
# show the window
ui.Workspace.show_window(WINDOW_TITLE)
print("[siborg.create.human] HumanGeneratorExtension startup")
def on_shutdown(self):
self._menu = None
if self._window:
self._window.destroy()
self._window = None
# Deregister the function that shows the window from omni.ui
ui.Workspace.set_show_window_fn(WINDOW_TITLE, None)
async def _destroy_window_async(self):
# wait one frame, this is due to the one frame defer
# in Window::_moveToMainOSWindow()
await omni.kit.app.get_app().next_update_async()
if self._window:
self._window.destroy()
self._window = None
def visibility_changed(self, visible):
# Called when window closed by user
editor_menu = omni.kit.ui.get_editor_menu()
# Update the menu item to reflect the window state
if editor_menu:
editor_menu.set_value(MENU_PATH, visible)
if not visible:
# Destroy the window, since we are creating new window
# in show_window
asyncio.ensure_future(self._destroy_window_async())
def show_window(self, menu, value):
"""Handles showing and hiding the window"""
if value:
self._window = MHWindow(WINDOW_TITLE)
# # Dock window wherever the "Content" tab is found (bottom panel by default)
self._window.deferred_dock_in("Content", ui.DockPolicy.CURRENT_WINDOW_IS_ACTIVE)
self._window.set_visibility_changed_fn(self.visibility_changed)
elif self._window:
self._window.visible = False
def _on_stage_event(self, event):
"""Handles stage events. This is where we get notified when the user selects/deselects a prim in the viewport."""
if event.type == int(omni.usd.StageEventType.SELECTION_CHANGED):
# Get the current selection
selection = self._selection.get_selected_prim_paths()
# Check if the selection is empty
if not selection:
# Push an event to the message bus with "None" as a payload
# This event will be picked up by the window and used to update the UI
carb.log_warn("Human deselected")
self._bus.push(self._human_selection_event, payload={"prim_path": None})
else:
# Get the stage
_usd_context = omni.usd.get_context()
stage = _usd_context.get_stage()
if selection and stage:
if len(selection) > 0:
path = selection[-1]
print(path)
prim = stage.GetPrimAtPath(path)
prim = self._get_typed_parent(prim, "SkelRoot")
# If the selection is a human, push an event to the event stream with the prim as a payload
# This event will be picked up by the window and used to update the UI
if prim and prim.GetCustomDataByKey("human"):
# carb.log_warn("Human selected")
path = prim.GetPath().pathString
self._bus.push(self._human_selection_event, payload={"prim_path": path})
else:
# carb.log_warn("Human deselected")
self._bus.push(self._human_selection_event, payload={"prim_path": None})
def _get_typed_parent(self, prim: Union[Usd.Prim, None], type_name: str, level: int = 5):
"""Returns the first parent of the given prim with the given type name. If no parent is found, returns None.
Parameters:
-----------
prim : Usd.Prim or None
The prim to search from. If None, returns None.
type_name : str
The parent type name to search for
level : int
The maximum number of levels to traverse. Defaults to 5.
Returns:
--------
Usd.Prim
The first parent of the given prim with the given type name. If no match is found, returns None.
"""
if (not prim) or level == 0:
return None
elif prim and prim.GetTypeName() == type_name:
return prim
else:
return self._get_typed_parent(prim.GetParent(), type_name, level - 1)
| 6,003 | Python | 40.986014 | 121 | 0.590038 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/skeleton.py | from pxr import Usd, Gf, UsdSkel
from typing import List
import numpy as np
from .shared import sanitize
from .mhcaller import skeleton as mhskel
from .mhcaller import MHCaller
class Bone:
"""Bone which constitutes skeletons to be imported using the HumanGenerator
extension. Has a parent and children, transforms in space, and named joints
at the head and tail.
Attributes
----------
name : str
Human-readable bone name.
"""
def __init__(self, skel: 'Skeleton', name: str, parent: str, head: str, tail: str) -> None:
"""Create a Bone instance
Parameters
----------
skel : Skeleton
Skeleton to which the bone belongs
name : str
Name of the bone
parent : str
Name of the parent bone. This is the bone "above" and is one level closer to
the root of the skeleton
head : str
Name of the head joint
tail : str
Name of the tail joint
"""
self._mh_bone = mhskel.Bone(skel, name, parent, head, tail)
self.name = name
self.skeleton = skel
self.headJoint = head
self.tailJoint = tail
def getRelativeMatrix(self, offset: List[float] = [0, 0, 0]) -> np.ndarray:
"""_summary_
Parameters
----------
offset : List[float], optional
Geometric translation to apply, by default [0, 0, 0]
Returns
-------
np.ndarray
_description_
"""
return self._mh_bone.getRelativeMatrix(offset)
def getRestMatrix(self, offset: List[float] = [0, 0, 0]) -> np.ndarray:
"""_summary_
Parameters
----------
offset : List[float], optional
Geometric translation to apply, by default [0, 0, 0]
Returns
-------
np.ndarray
_description_
"""
return self._mh_bone.getRestMatrix(offset)
def getBindMatrix(self, offset: List[float] = [0, 0, 0]) -> np.ndarray:
"""_summary_
Parameters
----------
offset : List[float], optional
Geometric translation to apply, by default [0, 0, 0]
Returns
-------
np.ndarray
_description_
"""
return self._mh_bone.getBindMatrix(offset)[1]
class Skeleton:
"""Skeleton which can be imported using the HumanGenerator extension. Provides
root bone(s), which have a tree of children that can be traversed to get the data
for the entire rig.
Attributes
----------
name : str
Name of the skeleton rig, by default "Skeleton"
roots : list of Bone
Root bones. Bones which have children that can be traversed to constitute the
entire skeleton.
joint_paths : list of: str
Paths to joints in the stage hierarchy that are used as joint indices
joint_names : list of: str
List of joint names in USD (breadth-first traversal) order. It is
important that joints be ordered this way so that their indices can be
used for skinning / weighting.
"""
def __init__(self, name="Skeleton") -> None:
"""Create a skeleton instance
Parameters
----------
name : str, optional
Name of the skeleton, by default "Skeleton"
"""
# Set the skeleton to the makehuman default
_mh_skeleton = MHCaller.human.getSkeleton()
self._rel_transforms = []
self._bind_transforms = []
self.roots = _mh_skeleton.roots
self.joint_paths = []
self.joint_names = []
self.name = name
def addBone(self, name: str, parent: str, head: str, tail: str) -> Bone:
"""Add a new bone to the Skeleton
Parameters
----------
name : str
Name of the new bone
parent : str
Name of the parent bone under which to put the new bone
head : str
Name of the joint at the head of the new bone
tail : str
Name of the joint at the tail of the new bone
Returns
-------
Bone
The bone which has been added to the skeleton
"""
_bone = Bone(self, name, parent, head, tail)
# HACK Bone() creates a new Bone for _mh_bone by default. How can we
# avoid doing this twice without revealing it to the user?
_bone._mh_bone = self._mh_skeleton.addBone(name, parent, head, tail)
return _bone
def add_to_stage(self, stage: Usd.Stage, skel_root_path: str, offset: List[float] = [0, 0, 0], new_root_bone: bool = False):
"""Adds the skeleton to the USD stage
Parameters
----------
stage : Usd.Stage
Stage in which to create skeleton prims
skelroot_path : str
Path to the human root prim in the stage
offset : List[float], optional
Geometric translation to apply, by default [0, 0, 0]
new_root_bone : bool, optional
Whether or not to prepend a new root at the origin, by default False
"""
root_bone = self.roots[0]
if new_root_bone:
root_bone = self.prepend_root(root_bone)
self.setup_skeleton(root_bone, offset=offset)
skeleton_path = skel_root_path + "/Skeleton"
usdSkel = UsdSkel.Skeleton.Define(stage, skeleton_path)
# add joints to skeleton by path
attribute = usdSkel.GetJointsAttr()
# exclude root
attribute.Set(self.joint_paths)
# Add bind transforms to skeleton
usdSkel.CreateBindTransformsAttr(self._bind_transforms)
# setup rest transforms in joint-local space
usdSkel.CreateRestTransformsAttr(self._rel_transforms)
return usdSkel
def prepend_root(self, oldRoot: Bone, newroot_name: str = "RootJoint", offset: List[float] = [0, 0, 0]) -> Bone:
"""Adds a new root bone to the head of a skeleton, ahead of the existing root bone.
Parameters
----------
oldRoot : Bone
The original MakeHuman root bone
newroot_name : str, optional
The name for the new root bone, by default "RootJoint"
offset : List[float], optional
Geometric translation to apply, by default [0, 0, 0]
Returns
-------
newRoot : Bone
The new root bone of the Skeleton
"""
# make a "super-root" bone, parent to the root, with identity transforms so
# we can abide by Lina Halper's animation retargeting guidelines:
# https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_animation-retargeting.html
newRoot = self.addBone(
newroot_name, None, "newRoot_head", oldRoot.tailJoint)
oldRoot.parent = newRoot
newRoot.headPos -= offset
newRoot.build()
newRoot.children.append(oldRoot)
return newRoot
def _process_bone(self, bone: Bone, path: str, offset: List[float] = [0, 0, 0]) -> None:
"""Get the name, path, relative transform, and bind transform of a joint
and add its values to the lists of stored values
Parameters
----------
bone : Bone
The bone to process for Usd
path : str
Path to the parent of this bone
offset : List[float], optional
Geometric translation to apply, by default [0, 0, 0]
"""
# sanitize the name for USD paths
name = sanitize(bone.name)
path += name
self.joint_paths.append(path)
# store original name for later joint weighting
self.joint_names.append(bone.name)
# Get matrix for joint transform relative to its parent. Move to offset
# to match mesh transform in scene
relxform = bone.getRelativeMatrix(offsetVect=offset)
# Transpose the matrix as USD stores transforms in row-major format
relxform = relxform.transpose()
# Convert type for USD and store
relative_transform = Gf.Matrix4d(relxform.tolist())
self._rel_transforms.append(relative_transform)
# Get matrix which represents a joints transform in its binding position
# for binding to a mesh. Move to offset to match mesh transform.
# getBindMatrix() returns a tuple of the bind matrix and the bindinv
# matrix. Since omniverse uses row-major format, we can just use the
# already transposed bind matrix.
bxform = bone.getBindMatrix(offsetVect=offset)
# Convert type for USD and store
bind_transform = Gf.Matrix4d(bxform[1].tolist())
# bind_transform = Gf.Matrix4d().SetIdentity() TODO remove
self._bind_transforms.append(bind_transform)
def setup_skeleton(self, bone: Bone, offset: List[float] = [0, 0, 0]) -> None:
"""Traverse the imported skeleton and get the data for each bone for
adding to the stage
Parameters
----------
bone : Bone
The root bone at which to start traversing the imported skeleton.
offset : List[float], optional
Geometric translation to apply, by default [0, 0, 0]
"""
# Setup a breadth-first search of our skeleton as a tree
# Use the new root of the imported skeleton as the root bone of our tree
visited = [] # List to keep track of visited bones.
queue = [] # Initialize a queue
path_queue = [] # Keep track of paths in a parallel queue
visited.append(bone)
queue.append(bone)
name = sanitize(bone.name)
path_queue.append(name + "/")
# joints are relative to the root, so we don't prepend a path for the root
self._process_bone(bone, "", offset=offset)
# Traverse skeleton (breadth-first) and store joint data
while queue:
v = queue.pop(0)
path = path_queue.pop(0)
for neighbor in v.children:
if neighbor not in visited:
visited.append(neighbor)
queue.append(neighbor)
name = sanitize(neighbor.name)
path_queue.append(path + name + "/")
self._process_bone(neighbor, path, offset)
def update_in_scene(self, stage: Usd.Stage, skel_root_path: str, offset: List[float] = [0, 0, 0]):
"""Resets the skeleton values in the stage, updates the skeleton from makehuman.
Parameters
----------
stage : Usd.Stage
The stage in which to update the skeleton
skel_root_path : str
The path to the skeleton root in the stage
offset : List[float], optional
Geometric translation to apply, by default [0, 0, 0]
Returns
-------
UsdSkel.Skeleton
The updated skeleton in USD
"""
# Get the skeleton from makehuman
_mh_skeleton = MHCaller.human.getSkeleton()
# Clear out any existing data
self._rel_transforms = []
self._bind_transforms = []
self.joint_paths = []
self.joint_names = []
# Get the root bone(s) of the skeleton
self.roots = _mh_skeleton.roots
# Overwrite the skeleton in the stage with the new skeleton
return self.add_to_stage(stage, skel_root_path, offset)
| 11,468 | Python | 33.032641 | 128 | 0.586327 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/__init__.py | from .extension import *
from .human import Human | 49 | Python | 23.999988 | 24 | 0.795918 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/materials.py | from typing import List
from module3d import Object3D
from pxr import Usd, UsdGeom, UsdShade, Sdf
def get_mesh_texture(mh_mesh: Object3D):
"""Gets mesh diffuse texture from a Makehuman mesh object
Parameters
----------
mh_mesh : Object3D
A Makehuman mesh object. Contains path to bound material/textures
Returns
-------
Tuple (str,str)
Returns the path to a texture on disk, and a name for the texture
Returns (None, None) if no texture exists
"""
# TODO return additional maps (AO, roughness, normals, etc)
material = mh_mesh.material
texture = material.diffuseTexture
name = material.name
if texture:
return texture, name
else:
return (None, None)
def create_material(diffuse_image_path: str, name: str, root_path: str, stage: Usd.Stage):
"""Create OmniPBR Material with specified diffuse texture
Parameters
----------
diffuse_image_path : str
Path to diffuse texture on disk
name : str
Material name
root_path : str
Root path under which to place material scope
stage : Usd.Stage
USD stage into which to add the material
Returns
-------
UsdShade.Material
Material with diffuse texture applied
"""
materialScopePath = root_path + "/Materials"
# Check for a scope in which to keep materials. If it doesn't exist, make
# one
scopePrim = stage.GetPrimAtPath(materialScopePath)
if scopePrim.IsValid() is False:
UsdGeom.Scope.Define(stage, materialScopePath)
# Create material (omniPBR).
materialPath = materialScopePath + "/" + name
material = UsdShade.Material.Define(stage, materialPath)
# Store shaders inside their respective material path
shaderPath = materialPath + "/Shader"
# Create shader
shader = UsdShade.Shader.Define(stage, shaderPath)
# Use OmniPBR as a source to define our shader
shader.SetSourceAsset("OmniPBR.mdl", "mdl")
shader.GetPrim().CreateAttribute(
"info:mdl:sourceAsset:subIdentifier",
Sdf.ValueTypeNames.Token,
False,
Sdf.VariabilityUniform,
).Set("OmniPBR")
# Set Diffuse texture.
diffTexIn = shader.CreateInput("diffuse_texture", Sdf.ValueTypeNames.Asset)
diffTexIn.Set(diffuse_image_path)
diffTexIn.GetAttr().SetColorSpace("sRGB")
# Set Diffuse value. TODO make default color NVIDIA Green
# diffTintIn = shader.CreateInput("diffuse_tint", Sdf.ValueTypeNames.Color3f)
# diffTintIn.Set((0.9, 0.9, 0.9))
# Connect Material to Shader.
mdlOutput = material.CreateSurfaceOutput("mdl")
mdlOutput.ConnectToSource(shader, "out")
return material
def bind_material(mesh_path: Sdf.Path, material: UsdShade.Material, stage: Usd.Stage):
"""Bind a material to a mesh
Parameters
----------
mesh_path : Sdf.Path
The USD formatted path to a mesh prim
material : UsdShade.Material
USD material object
stage : Usd.Stage
Stage in which to find mesh prim
"""
# Get the mesh prim
meshPrim = stage.GetPrimAtPath(mesh_path)
# Bind the mesh
UsdShade.MaterialBindingAPI(meshPrim).Bind(material) | 3,210 | Python | 29.292453 | 90 | 0.669782 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/ext_ui.py | import omni.ui as ui
from typing import List, TypeVar, Union, Callable
from dataclasses import dataclass, field
from . import styles
from .mhcaller import MHCaller
from pxr import Usd
import os
import inspect
import makehuman
import targets
from siborg.create.human.shared import data_path
class SliderEntry:
"""Custom UI element that encapsulates a labeled slider and field
Attributes
----------
label : str
Label to display for slider/field
model : ui.SimpleFloatModel
Model to publish changes to
fn : object
Function to run when updating the human after changes are made
image: str
Path on disk to an image to display
step : float
Division between values for the slider
min : float
Minimum value
max : float
Maximum value
default : float
Default parameter value
"""
def __init__(
self,
label: str,
model: ui.SimpleFloatModel,
fn: object,
image: str = None,
step: float = 0.01,
min: float = None,
max: float = None,
default: float = 0,
):
"""Constructs an instance of SliderEntry
Parameters
----------
label : str
Label to display for slider/field
model : ui.SimpleFloatModel
Model to publish changes to
fn : object
Function to run when changes are made
image: str, optional
Path on disk to an image to display. By default None
step : float, optional
Division between values for the slider, by default 0.01
min : float, optional
Minimum value, by default None
max : float, optional
Maximum value, by default None
default : float, optional
Default parameter value, by default 0
"""
self.label = label
self.model = model
self.fn = fn
self.step = step
self.min = min
self.max = max
self.default = default
self.image = image
self._build_widget()
def _build_widget(self):
"""Construct the UI elements"""
with ui.HStack(height=0, style=styles.sliderentry_style):
# If an image is available, display it
if self.image:
ui.Image(self.image, height=75, style={"border_radius": 5})
# Stack the label and slider on top of each other
with ui.VStack(spacing = 5):
ui.Label(
self.label,
height=15,
alignment=ui.Alignment.CENTER,
name="label_param",
)
# create a floatdrag (can be used as a slider or an entry field) to
# input parameter values
self.drag = ui.FloatDrag(model=self.model, step=self.step)
# Limit drag values to within min and max if provided
if self.min is not None:
self.drag.min = self.min
if self.max is not None:
self.drag.max = self.max
@dataclass
class Param:
"""Dataclass to store SliderEntry parameter data
Attributes
----------
name: str
The name of the parameter. Used for labeling.
full_name: str
The full name of the parameter. Used for referencing
fn: object
The method to execute when making changes to the parameter
image: str, optional
The path to the image to use for labeling. By default None
min: float, optional
The minimum allowed value of the parameter. By default 0
max: float
The maximum allowed value of the parameter. By default 1
default: float
The default value of the parameter. By default 0.5
value : ui.SimpleFloatModel
The model to track the current value of the parameter. By default None
"""
name: str
full_name: str
fn: object
image: str = None
min: float = 0
max: float = 1
default: float = 0.5
value: ui.SimpleFloatModel = None
class SliderEntryPanelModel:
"""Provides a model for referencing SliderEntryPanel data. References models
for each individual SliderEntry widget in the SliderEntryPanel widget.
Attributes
----------
params : list of `Param`
List of parameter objects. Each contains a float model to track the current value
toggle : ui.SimpleBoolModel
Tracks whether or not the human should update immediately when changes are made
instant_update : Callable
A function to call when instant update is toggled
subscriptions : list of `Subscription`
List of event subscriptions triggered by editing a SliderEntry
"""
def __init__(self, params: List[Param], toggle: ui.SimpleBoolModel = None, instant_update: Callable = None):
"""Constructs an instance of SliderEntryPanelModel and instantiates models
to hold parameter data for individual SliderEntries
Parameters
----------
params : list of `Param`
A list of parameter objects, each of which contains the data to create
a SliderEntry widget and a model to track the current value
toggle : ui.SimpleBoolModel, optional
Tracks whether or not the human should update immediately when changes are made, by default None
instant_update : Callable
A function to call when instant update is toggled
"""
self.params = []
"""Param objects corresponding to each SliderEntry widget"""
self.changed_params = []
"""Params o SliderEntry widgets that have been changed"""
self.toggle = toggle
self.instant_update = instant_update
self.subscriptions = []
"""List of event subscriptions triggered by editing a SliderEntry"""
for p in params:
self.add_param(p)
def add_param(self, param: Param):
"""Adds a parameter to the SliderEntryPanelModel. Subscribes to the parameter's model
to check for editing changes
Parameters
----------
param : Param
The Parameter object from which to create the subscription
"""
# Create a model to track the current value of the parameter. Set the value to the default
param.value = ui.SimpleFloatModel(param.default)
# Add the parameter to the list of parameters
self.params.append(param)
# Subscribe to changes in parameter editing
self.subscriptions.append(
param.value.subscribe_end_edit_fn(
lambda m: self._sanitize_and_run(param))
)
def reset(self):
"""Resets the values of each floatmodel to parameter default for UI reset
"""
for param in self.params:
param.value.set_value(param.default)
def _sanitize_and_run(self, param: Param):
"""Make sure that values are within an acceptable range and then add the parameter to the
list of changed parameters
Parameters
----------
param : Param
Parameter object which contains acceptable value bounds and
references the function to run
"""
m = param.value
# Get the value from the slider model
getval = m.get_value_as_float
# Set the value to the min or max if it goes under or over respectively
if getval() < param.min:
m.set_value(param.min)
if getval() > param.max:
m.set_value(param.max)
# Check if the parameter is already in the list of changed parameters. If so, remove it.
# Then, add the parameter to the list of changed parameters
if param in self.changed_params:
self.changed_params.remove(param)
self.changed_params.append(param)
# If instant update is toggled on, add the changes to the stage instantly
if self.toggle.get_value_as_bool():
# Apply the changes
self.apply_changes()
# Run the instant update function
self.instant_update()
def apply_changes(self):
"""Apply the changes made to the parameters. Runs the function associated with each
parameter using the value from the widget
"""
for param in self.changed_params:
param.fn(param.value.get_value_as_float())
# Clear the list of changed parameters
self.changed_params = []
def destroy(self):
"""Destroys the instance of SliderEntryPanelModel. Deletes event
subscriptions. Important for preventing zombie-UI and unintended behavior
when the extension is reloaded.
"""
self.subscriptions = None
class SliderEntryPanel:
"""A UI widget providing a labeled group of slider entries
Attributes
----------
model : SliderEntryPanelModel
Model to hold parameters for each slider
label : str
Display title for the group. Can be none if no title is desired.
"""
def __init__(self, model: SliderEntryPanelModel, label: str = None):
"""
Parameters
----------
model : SliderEntryPanelModel
Model to hold parameters
label : str, Optional
Display title for the group, by default None
"""
self.label = label
self.model = model
self._build_widget()
def _build_widget(self):
"""Construct the UI elements"""
# Layer widgets on top of a rectangle to create a group frame
with ui.ZStack(style=styles.panel_style, height=0):
ui.Rectangle(name="group_rect")
with ui.VStack(name="contents", spacing = 8):
# If the panel has a label, show it
if self.label:
ui.Label(self.label, height=0)
# Create a slider entry for each parameter
for param in self.model.params:
SliderEntry(
param.name,
param.value,
param.fn,
image=param.image,
min=param.min,
max=param.max,
default=param.default,
)
def destroy(self):
"""Destroys the instance of SliderEntryPanel. Executes the destructor of
the SliderEntryPanel's SliderEntryPanelModel instance.
"""
self.model.destroy()
class ParamPanelModel(ui.AbstractItemModel):
def __init__(self, toggle: ui.SimpleBoolModel, **kwargs):
"""Constructs an instance of ParamPanelModel, which stores data for a ParamPanel.
Parameters
----------
toggle : ui.SimpleBoolModel
Model to track whether changes should be instant
"""
super().__init__(**kwargs)
# model to track whether changes should be instant
self.toggle = toggle
# Reference to models for each modifier/parameter. The models store modifier
# data for reference in the UI, and track the values of the sliders
self.models = []
class ParamPanel(ui.Frame):
"""UI Widget for displaying and modifying human parameters
Attributes
----------
model : ParamPanelModel
Stores data for the panel
toggle : ui.SimpleBoolModel
Model to track whether changes should be instant
models : list of SliderEntryPanelModel
Models for each group of parameter sliders
"""
def __init__(self, model: ParamPanelModel, instant_update : Callable = None, **kwargs):
"""Constructs an instance of ParamPanel. Panel contains a scrollable list of collapseable groups. These include
a group of macros (which affect multiple modifiers simultaneously), as well as groups of modifiers for
different body parts. Each modifier can be adjusted using a slider or doubleclicking to enter values directly.
Values are restricted based on the limits of a particular modifier.
Parameters
----------
model: ParamPanelModel
Stores data for the panel. Contains a toggle model to track whether changes should be instant
instant_update : Callable
Function to call when a parameter is changed (if instant update is toggle on)
"""
# Subclassing ui.Frame allows us to use styling on the whole widget
super().__init__(**kwargs)
self.model = model
self.toggle = model.toggle
# If no instant update function is passed, use a dummy function and do nothing
self.instant_update = instant_update if instant_update else lambda *args: None
self.models = model.models
self.set_build_fn(self._build_widget)
def _build_widget(self):
"""Build widget UI
"""
Modifier = TypeVar('Modifier')
def modifier_param(m: Modifier):
"""Generate a parameter data object from a human modifier,
Parameters
----------
m : Modifier
Makehuman Human modifier object. Represents a set of targets to apply to the human when modifying
Returns
-------
Param
Parameter data object holding all the modifier data needed to build UI elements
"""
# print(m.name)
# Guess a suitable title from the modifier name
tlabel = m.name.split("-")
if "|" in tlabel[len(tlabel) - 1]:
tlabel = tlabel[:-1]
if len(tlabel) > 1 and tlabel[0] == m.groupName:
label = tlabel[1:]
else:
label = tlabel
label = " ".join([word.capitalize() for word in label])
# Guess a suitable image path from modifier name
tlabel = m.name.replace("|", "-").split("-")
image = modifier_image(("%s.png" % "-".join(tlabel)).lower())
# Store modifier info in dataclass for building UI elements
return Param(
label,
m.fullName,
m.updateValue,
image=image,
min=m.getMin(),
max=m.getMax(),
default=m.getDefaultValue(),
)
def group_params(group: str):
"""Creates a list of parameters for all the modifiers in the given group
Parameters
----------
group : str
The name name of a modifier group
Returns
-------
List of Param
A list of all the parameters built from modifiers in the group
"""
params = [modifier_param(m)
for m in MHCaller.human.getModifiersByGroup(group)]
return params
def build_macro_frame():
"""Builds UI widget for the group of macro modifiers (which affect multiple individual modifiers
simultaneously). This includes:
+ Gender
+ Age
+ Muscle
+ Weight
+ Height
+ Proportions
Parameters that affect how much the human resembles a particular racial group:
+ African
+ Asian
+ Caucasian
"""
# Shorten human reference for convenience
human = MHCaller.human
# Explicitly create parameters for panel of macros (general modifiers that
# affect a group of targets). Otherwise these look bad. Creates a nice
# panel to have open by default
macro_params = (
Param("Gender", "macrodetails/Gender", human.setGender),
Param("Age", "macrodetails/Age", human.setAge),
Param("Muscle", "macrodetails-universal/Muscle", human.setMuscle),
Param("Weight", "macrodetails-universal/Weight", human.setWeight),
Param("Height", "macrodetails-height/Height", human.setHeight),
Param("Proportions", "macrodetails-proportions/BodyProportions", human.setBodyProportions),
)
# Create a model for storing macro parameter data
macro_model = SliderEntryPanelModel(macro_params, self.toggle, self.instant_update)
# Separate set of race parameters to also be included in the Macros group
# TODO make race parameters automatically normalize in UI
race_params = (
Param("African", "macrodetails/African", human.setAfrican),
Param("Asian", "macrodetails/Asian", human.setAsian),
Param("Caucasian", "macrodetails/Caucasian", human.setCaucasian),
)
# Create a model for storing race parameter data
race_model = SliderEntryPanelModel(race_params, self.toggle, self.instant_update)
self.models.append(macro_model)
self.models.append(race_model)
# Create category widget for macros
with ui.CollapsableFrame("Macros", style=styles.frame_style, height=0, collapsed=True):
with ui.VStack():
# Create panels for macros and race
self.panels = (
SliderEntryPanel(macro_model, label="General"),
SliderEntryPanel(race_model, label="Race"),
)
# The scrollable list of modifiers
with ui.ScrollingFrame():
with ui.VStack():
# Add the macros frame first
build_macro_frame()
# Create a set of all modifier groups that include macros
macrogroups = [
g for g in MHCaller.human.modifierGroups if "macrodetails" in g]
macrogroups = set(macrogroups)
# Remove macro groups from list of modifier groups as we have already
# included them explicitly
allgroups = set(
MHCaller.human.modifierGroups).difference(macrogroups)
for group in allgroups:
# Create a collapseable frame for each modifier group
with ui.CollapsableFrame(group.capitalize(), style=styles.frame_style, collapsed=True):
# Model to hold panel parameters
model = SliderEntryPanelModel(
group_params(group), self.toggle,self.instant_update)
self.models.append(model)
# Create panel of slider entries for modifier group
SliderEntryPanel(model)
def reset(self):
"""Reset every SliderEntryPanel to set UI values to defaults
"""
for model in self.models:
model.reset()
def load_values(self, human_prim: Usd.Prim):
"""Load values from the human prim into the UI. Specifically, this function
loads the values of the modifiers from the prim and updates any which
have changed.
Parameters
----------
HumanPrim : Usd.Prim
The USD prim representing the human
"""
# Make the prim exists
if not human_prim.IsValid():
return
# Reset the UI to defaults
self.reset()
# Get the data from the prim
humandata = human_prim.GetCustomData()
modifiers = humandata.get("Modifiers")
# Set any changed values in the models
for SliderEntryPanelModel in self.models:
for param in SliderEntryPanelModel.params:
if param.full_name in modifiers:
param.value.set_value(modifiers[param.full_name])
def update_models(self):
"""Update all models"""
for model in self.models:
model.apply_changes()
def destroy(self):
"""Destroys the ParamPanel instance as well as the models attached to each group of parameters
"""
super().destroy()
for model in self.models:
model.destroy()
class NoSelectionNotification:
"""
When no human selected, show notification.
"""
def __init__(self):
self._container = ui.ZStack()
with self._container:
ui.Rectangle()
with ui.VStack(spacing=10):
ui.Spacer(height=10)
with ui.HStack(height=0):
ui.Spacer()
ui.ImageWithProvider(
data_path('human_icon.png'),
width=192,
height=192,
fill_policy=ui.IwpFillPolicy.IWP_PRESERVE_ASPECT_FIT
)
ui.Spacer()
self._message_label = ui.Label(
"No human is current selected.",
height=0,
alignment=ui.Alignment.CENTER
)
self._suggestion_label = ui.Label(
"Select a human prim to see its properties here.",
height=0,
alignment=ui.Alignment.CENTER
)
@property
def visible(self) -> bool:
return self._container.visible
@visible.setter
def visible(self, value) -> None:
self._container.visible = value
def set_message(self, message: str) -> None:
messages = message.split("\n")
self._message_label.text = messages[0]
self._suggestion_label.text = messages[1]
def modifier_image(name : str):
"""Guess the path to a modifier's corresponding image on disk based on the name
of the modifier. Useful for building UI for list of modifiers.
Parameters
----------
name : str
Name of the modifier
Returns
-------
str
The path to the image on disk
"""
if name is None:
# If no modifier name is provided, we can't guess the file name
return None
name = name.lower()
# Return the modifier path based on the modifier name
# TODO determine if images can be loaded from the Makehuman module stored in
# site-packages so we don't have to include the data twice
return os.path.join(os.path.dirname(inspect.getfile(makehuman)),targets.getTargets().images.get(name, name))
| 22,469 | Python | 35.359223 | 119 | 0.582936 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/shared.py | from pathlib import Path
import os
# Shared methods that are useful to several modules
def data_path(path):
"""Returns the absolute path of a path given relative to "exts/<omni.ext>/data"
Parameters
----------
path : str
Relative path
Returns
-------
str
Absolute path
"""
# Uses an absolute path, and then works its way up the folder directory to find the data folder
data = os.path.join(str(Path(__file__).parents[3]), "data", path)
return data
def sanitize(s: str):
"""Sanitize strings for use a prim names. Strips and replaces illegal
characters.
Parameters
----------
s : str
Input string
Returns
-------
s : str
Primpath-safe output string
"""
# List of illegal characters
# TODO create more comprehensive list
# TODO switch from blacklisting illegal characters to whitelisting valid ones
illegal = (".", "-")
for c in illegal:
# Replace illegal characters with underscores
s = s.replace(c, "_")
return s
| 1,072 | Python | 21.829787 | 99 | 0.613806 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/window.py | from .ext_ui import ParamPanelModel, ParamPanel, NoSelectionNotification
from .browser import MHAssetBrowserModel, AssetBrowserFrame
from .human import Human
from .mhcaller import MHCaller
from .styles import window_style, button_style
import omni.ui as ui
import omni.kit.ui
import omni
import carb
WINDOW_TITLE = "Human Generator"
MENU_PATH = f"Window/{WINDOW_TITLE}"
class MHWindow(ui.Window):
"""
Main UI window. Contains all UI widgets. Extends omni.ui.Window.
Attributes
-----------
panel : HumanPanel
A widget that includes panels for modifiers, listing/removing applied
proxies, and executing human creation and updates
browser: AssetBrowserFrame
A browser for MakeHuman assets, including clothing, hair, and skeleton rigs.
"""
def __init__(self, title):
"""Constructs an instance of MHWindow
Parameters
----------
menu_path : str
The path to the menu item that opens the window
"""
super().__init__(title)
# Holds the state of the realtime toggle
self.toggle_model = ui.SimpleBoolModel()
# Holds the state of the parameter list
self.param_model = ParamPanelModel(self.toggle_model)
# Keep track of the human
self._human = Human()
# A model to hold browser data
self.browser_model = MHAssetBrowserModel(
self._human,
filter_file_suffixes=["mhpxy", "mhskel", "mhclo"],
timeout=carb.settings.get_settings().get(
"/exts/siborg.create.human.browser.asset/data/timeout"
),
)
# Subscribe to selection events on the message bus
bus = omni.kit.app.get_app().get_message_bus_event_stream()
selection_event = carb.events.type_from_string("siborg.create.human.human_selected")
self._selection_sub = bus.create_subscription_to_push_by_type(selection_event, self._on_selection_changed)
self.frame.set_build_fn(self._build_ui)
def _build_ui(self):
spacer_width = 3
with self.frame:
# Widgets are built starting on the left
with ui.HStack(style=window_style):
# Widget to show if no human is selected
self.no_selection_notification = NoSelectionNotification()
self.property_panel = ui.HStack(visible=False)
with self.property_panel:
with ui.ZStack(width=0):
# Draggable splitter
with ui.Placer(offset_x=self.frame.computed_content_width/1.8, draggable=True, drag_axis=ui.Axis.X):
ui.Rectangle(width=spacer_width, name="splitter")
with ui.HStack():
# Left-most panel is a browser for MakeHuman assets. It includes
# a reference to the list of applied proxies so that an update
# can be triggered when new assets are added
self.browser = AssetBrowserFrame(self.browser_model)
ui.Spacer(width=spacer_width)
with ui.HStack():
with ui.VStack():
self.param_panel = ParamPanel(self.param_model,self.update_human)
with ui.HStack(height=0):
# Toggle whether changes should propagate instantly
ui.ToolButton(text = "Update Instantly", model = self.toggle_model)
with ui.VStack(width = 100, style=button_style):
# Creates a new human in scene and resets modifiers and assets
ui.Button(
"New Human",
clicked_fn=self.new_human,
)
# Updates current human in omniverse scene
self.update_button = ui.Button(
"Update Human",
clicked_fn=self.update_human,
enabled=False,
)
# Resets modifiers and assets on selected human
self.reset_button = ui.Button(
"Reset Human",
clicked_fn=self.reset_human,
enabled=False,
)
def _on_selection_changed(self, event):
"""Callback for human selection events
Parameters
----------
event : carb.events.Event
The event that was pushed to the event stream. Contains payload data with
the selected prim path, or "None" if no human is selected
"""
# Get the stage
stage = omni.usd.get_context().get_stage()
prim_path = event.payload["prim_path"]
# If a valid human prim is selected,
if not prim_path or not stage.GetPrimAtPath(prim_path):
# Hide the property panel
self.property_panel.visible = False
# Show the no selection notification
self.no_selection_notification.visible = True
# Deactivate the update and reset buttons
self.update_button.enabled = False
self.reset_button.enabled = False
else:
# Show the property panel
self.property_panel.visible = True
# Hide the no selection notification
self.no_selection_notification.visible = False
# Activate the update and reset buttons
self.update_button.enabled = True
self.reset_button.enabled = True
# Get the prim from the path in the event payload
prim = stage.GetPrimAtPath(prim_path)
# Update the human in MHCaller
self._human.set_prim(prim)
# Update the list of applied modifiers
self.param_panel.load_values(prim)
def new_human(self):
"""Creates a new human in the scene and selects it"""
# Reset the human class
self._human.reset()
# Create a new human
self._human.prim = self._human.add_to_scene()
# Get selection.
selection = omni.usd.get_context().get_selection()
# Select the new human.
selection.set_selected_prim_paths([self._human.prim_path], True)
def update_human(self):
"""Updates the current human in the scene"""
# Collect changed values from the parameter panel
self.param_panel.update_models()
# Update the human in the scene
self._human.update_in_scene(self._human.prim_path)
def reset_human(self):
"""Resets the current human in the scene"""
# Reset the human
self._human.reset()
# Delete the proxy prims
self._human.delete_proxies()
# Update the human in the scene and reset parameter widgets
self.update_human()
def destroy(self):
"""Called when the window is destroyed. Unsuscribes from human selection events"""
self._selection_sub.unsubscribe()
self._selection_sub = None
super().destroy()
| 7,214 | Python | 36 | 124 | 0.570834 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/browser/delegate.py | import carb
from omni.kit.browser.folder.core.models.folder_browser_item import FileDetailItem
import omni.ui as ui
import omni.kit.app
from omni.kit.browser.core import get_legacy_viewport_interface
from omni.kit.browser.folder.core import FolderDetailDelegate
from .model import MHAssetBrowserModel, AssetDetailItem
from ..mhcaller import MHCaller
import asyncio
from pathlib import Path
from typing import Optional
# TODO remove unused imports
# TODO remove
CURRENT_PATH = Path(__file__).parent
ICON_PATH = CURRENT_PATH.parent.parent.parent.parent.joinpath("icons")
class AssetDetailDelegate(FolderDetailDelegate):
"""Delegate to show Makehuman asset item in detail view and execute drag-and-
drop and doubleclick behavior.
Attributes
----------
model : MHAssetBrowserModel
Model that stores AssetBrowser data
"""
def __init__(self, model: MHAssetBrowserModel):
"""Constructs an instance of AssetDetailDelegate, which handles
execution of functions
Parameters
----------
model : MHAssetBrowserModel
Makehuman asset browser model
"""
super().__init__(model=model)
# Reference to the browser asset model
self.model = model
# Reference to the human
self._human = model.human
self._settings = carb.settings.get_settings()
# The context menu that opens on right_click
self._context_menu: Optional[ui.Menu] = None
self._action_item: Optional[AssetDetailItem] = None
self._viewport = None
self._drop_helper = None
def destroy(self):
"""Destructor for AssetDetailDelegate. Removes references and destroys superclass."""
self._viewport = None
self._drop_helper = None
super().destroy()
def get_thumbnail(self, item : AssetDetailItem) -> str:
"""Get the thumbnail for an asset
Parameters
----------
item : AssetDetailItem
The item in the browser for which we are getting a thumbnail
Returns
-------
str
Path to the thumbnail image
"""
return item.thumbnail
def on_drag(self, item: AssetDetailItem) -> str:
"""Displays a translucent UI widget when an asset is dragged
Parameters
----------
item : AssetDetailItem
The item being dragged
Returns
-------
str
The path on disk of the item being dragged (passed to whatever widget
accepts the drop)
"""
thumbnail = self.get_thumbnail(item)
icon_size = 128
with ui.VStack(width=icon_size):
if thumbnail:
ui.Spacer(height=2)
with ui.HStack():
ui.Spacer()
ui.ImageWithProvider(
thumbnail, width=icon_size, height=icon_size
)
ui.Spacer()
ui.Label(
item.name,
word_wrap=False,
elided_text=True,
skip_draw_when_clipped=True,
alignment=ui.Alignment.TOP,
style_type_name_override="GridView.Item",
)
# Return the path of the item being dragged so it can be accessed by
# the widget on which it is dropped
return item.url
def on_double_click(self, item: FileDetailItem):
"""Method to execute when an asset is doubleclicked. Adds the asset to the
human.
Parameters
----------
item : FileDetailItem
The item that has been doubleclicked
"""
self._human.add_item(item.url)
| 3,725 | Python | 30.05 | 93 | 0.595973 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/browser/downloader.py | from typing import Callable
import carb
import aiohttp
import omni.client
import os, zipfile
class Downloader:
"""Downloads and unzips remote files and tracks download status/progress"""
def __init__(self, log_fn : Callable[[float], None]) -> None:
"""Construct an instance of Downloader. Assigns the logging function and sets initial is_downloading status
Parameters
----------
log_fn : Callable[[float], None]
Function to which to pass progress. Recieves a proportion that represents the amount downloaded
"""
self._is_downloading = False
self._log_fn = log_fn
async def download(self, url : str, dest_url : str) -> None:
"""Download a given url to disk and unzip it
Parameters
----------
url : str
Remote URL to fetch
dest_url : str
Local path at which to write and then unzip the downloaded files
Returns
-------
dict of str, Union[omni.client.Result, str]
Error message and location on disk
"""
ret_value = {"url": None}
async with aiohttp.ClientSession() as session:
self._is_downloading = True
content = bytearray()
# Download content from the given url
downloaded = 0
async with session.get(url) as response:
size = int(response.headers.get("content-length", 0))
if size > 0:
async for chunk in response.content.iter_chunked(1024 * 512):
content.extend(chunk)
downloaded += len(chunk)
if self._log_fn:
self._log_fn(float(downloaded) / size)
else:
if self._log_fn:
self._log_fn(0)
content = await response.read()
if self._log_fn:
self._log_fn(1)
if response.ok:
# Write to destination
filename = os.path.basename(url.split("?")[0])
dest_url = f"{dest_url}/{filename}"
(result, list_entry) = await omni.client.stat_async(dest_url)
ret_value["status"] = await omni.client.write_file_async(dest_url, content)
ret_value["url"] = dest_url
if ret_value["status"] == omni.client.Result.OK:
# TODO handle file already exists
pass
z = zipfile.ZipFile(dest_url, 'r')
z.extractall(os.path.dirname(dest_url))
else:
carb.log_error(f"[access denied: {url}")
ret_value["status"] = omni.client.Result.ERROR_ACCESS_DENIED
self._is_downloading = False
return ret_value
def not_downloading(self):
return not self._is_downloading | 2,935 | Python | 37.12987 | 115 | 0.529131 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/browser/__init__.py | from omni.kit.browser.folder.core import FolderBrowserWidget
from .delegate import AssetDetailDelegate
from .model import MHAssetBrowserModel
from .options_menu import FolderOptionsMenu
import omni.ui as ui
class AssetBrowserFrame:
"""A widget to browse and select Makehuman assets
Attributes
----------
mhcaller : MHCaller
Wrapper object for Makehuman functions
"""
def __init__(self, model: MHAssetBrowserModel, **kwargs):
"""Constructs an instance of AssetBrowserFrame. This is a browser that
displays available Makehuman assets (skeletons/rigs, proxies) and allows
a user to apply them to the human.
Parameters
----------
model : MHAssetBrowserModel
A model to hold browser data
"""
self.model = model
self.build_widget()
def build_widget(self):
"""Build UI widget"""
# The delegate to execute browser actions
self._delegate = AssetDetailDelegate(self.model)
# Drop down menu to hold options
self._options_menu = FolderOptionsMenu()
with ui.VStack():
self._widget = FolderBrowserWidget(
self.model, detail_delegate=self._delegate, options_menu=self._options_menu)
ui.Separator(height=2)
# Progress bar to show download progress (initially hidden)
self._progress_bar = ui.ProgressBar(height=20, visible=False)
self._options_menu.bind_progress_bar(self._progress_bar)
| 1,520 | Python | 34.372092 | 92 | 0.653289 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/browser/model.py | import os
from typing import List, Union
import carb.settings
import omni.kit.commands
from siborg.create.human.mhcaller import MHCaller
import omni.usd
from omni.kit.browser.core import DetailItem
from omni.kit.browser.folder.core import (
FolderBrowserModel,
FileDetailItem,
BrowserFile,
)
from siborg.create.human.shared import data_path
from ..human import Human
class AssetDetailItem(FileDetailItem):
"""Represents Makehuman asset detail item
"""
def __init__(self, file: BrowserFile):
"""Constructs an instance of AssetDetailItem
Parameters
----------
file : BrowserFile
BrowserFile object from which to create detail item
"""
dirs = file.url.split("/")
name = dirs[-1]
super().__init__(name, file.url, file, file.thumbnail)
class MHAssetBrowserModel(FolderBrowserModel):
"""Represents Makehuman asset browser model
"""
def __init__(self, human: Human, *args, **kwargs):
"""Constructs an instance of MHAssetBrowserModel
Parameters
----------
human : Human
The human to which to add assets
"""
self.human = human
super().__init__(
*args,
show_category_subfolders=True,
hide_file_without_thumbnails=False,
**kwargs,
)
# Add the data path as the root folder from which to build a collection
super().append_root_folder(data_path(""), name="MakeHuman")
def create_detail_item(
self, file: BrowserFile
) -> Union[FileDetailItem, List[FileDetailItem]]:
"""Create detail item(s) from a file.
A file may include multiple detail items.
Overwrite parent function to add thumbnails.
Parameters
----------
file : BrowserFile
File object to create detail item(s)
Returns
-------
Union[FileDetailItem, List[FileDetailItem]]
FileDetailItem or list of items created from file
"""
dirs = file.url.split("/")
name = dirs[-1]
# Get the file name without the extension
filename_noext = os.path.splitext(file.url)[0]
thumb = filename_noext + ".thumb"
thumb_png = filename_noext + ".png"
# If there is already a PNG, get it. If not, rename the thumb file to a PNG
# (They are the same format just with different extensions). This lets us
# use Makehuman's asset thumbnails
if os.path.exists(thumb_png):
thumb = thumb_png
elif os.path.exists(thumb):
os.rename(thumb, thumb_png)
thumb = thumb_png
else:
thumb = None
return FileDetailItem(name, file.url, file, thumb)
| 2,789 | Python | 28.0625 | 83 | 0.603801 |
cadop/HumanGenerator/exts/siborg.create.human/siborg/create/human/browser/options_menu.py | from omni.kit.browser.core import OptionMenuDescription, OptionsMenu
from omni.kit.browser.folder.core.models.folder_browser_item import FolderCollectionItem
import carb
import asyncio
from ..shared import data_path
from .downloader import Downloader
import omni.ui as ui
class FolderOptionsMenu(OptionsMenu):
"""
Represent options menu used in material browser.
"""
def __init__(self):
super().__init__()
# Progress bar widget to show download progress
self._progress_bar : ui.ProgressBar = None
self.downloader = Downloader(self.progress_fn,)
self._download_menu_desc = OptionMenuDescription(
"Download Assets",
clicked_fn=self._on_download_assets,
get_text_fn=self._get_menu_item_text,
enabled_fn=self.downloader.not_downloading
)
self.append_menu_item(self._download_menu_desc)
def destroy(self) -> None:
super().destroy()
def progress_fn(self, proportion: float):
carb.log_info(f"Download is {int(proportion * 100)}% done")
if self._progress_bar:
self._progress_bar.model.set_value(proportion)
def _get_menu_item_text(self) -> str:
# Show download state if download starts
if self.downloader._is_downloading:
return "Download In Progress"
return "Download Assets"
def bind_progress_bar(self, progress_bar):
self._progress_bar = progress_bar
def _on_download_assets(self):
# Show progress bar
if self._progress_bar:
self._progress_bar.visible = True
loop = asyncio.get_event_loop()
asyncio.run_coroutine_threadsafe(self._download(), loop)
def _is_remove_collection_enabled(self) -> None:
'''Don't allow removing the default collection'''
if self._browser_widget is not None:
return self._browser_widget.collection_index >= 1
else:
return False
def _on_remove_collection(self) -> None:
if self._browser_widget is None or self._browser_widget.collection_index < 0:
return
else:
browser_model = self._browser_widget.model
collection_items = browser_model.get_collection_items()
if browser_model.remove_collection(collection_items[self._browser_widget.collection_index]):
# Update collection combobox and default none selected
browser_model._item_changed(None)
self._browser_widget.collection_index -= 1
def _hide_progress_bar(self):
if self._progress_bar:
self._progress_bar.visible = False
async def _download(self):
# Makehuman system assets
url = "http://files.makehumancommunity.org/asset_packs/makehuman_system_assets/makehuman_system_assets_cc0.zip"
# Smaller zip for testing
# url = "https://download.tuxfamily.org/makehuman/asset_packs/shirts03/shirts03_ccby.zip"
dest_url = data_path("")
await self.downloader.download(url, dest_url)
self._hide_progress_bar()
self.refresh_collection()
def refresh_collection(self):
collection_item: FolderCollectionItem = self._browser_widget.collection_selection
if collection_item:
folder = collection_item.folder
folder._timeout = 10
asyncio.ensure_future(folder.start_traverse())
| 3,422 | Python | 37.033333 | 119 | 0.643776 |
cadop/HumanGenerator/exts/siborg.create.human/config/extension.toml | [package]
# Semantic Versionning is used: https://semver.org/
version = "0.0.2"
preview_image = "data/preview.png"
# Icon is shown in Extensions window, it is recommended to be square, of size 256x256.
icon = "data/icon.png"
# The title and description fields are primarily for displaying extension info in UI
title = "HumanGenerator"
description="Human Generator for Omniverse. Create and customize humans in your Omniverse scenes."
# Path (relative to the root) or content of readme markdown file for UI.
readme = "docs/README.md"
# URL of the extension source repository.
repository = ""
# One of categories for UI.
category = "Services"
feature = true
# Keywords for the extension
keywords = ["kit", "makehuman","human","character","generator","person"]
# Use omni.ui to build simple UI
[dependencies]
"omni.kit.uiapp" = {}
"omni.usd" = {}
"omni.anim.skelJoint" = {}
"omni.kit.browser.core" = {}
"omni.kit.browser.folder.core" = {}
# Main python module this extension provides, it will be publicly available as "import omni.hello.world".
[[python.module]]
name = "siborg.create.human"
[settings]
exts."siborg.create.human.browser.asset".instanceable = []
exts."siborg.create.human.browser.asset".timeout = 10
[python.pipapi]
use_online_index = true
# Use this to specify a list of additional repositories if your pip package is hosted somewhere other
# than the default repo(s) configured in pip. Will pass these to pip with "--extra-index-url" argument
repositories = ["https://test.pypi.org/simple/"]
requirements = ["makehuman==1.2.2"] | 1,558 | TOML | 28.980769 | 105 | 0.734275 |
cadop/HumanGenerator/exts/siborg.create.human/docs/README.md | # Overview
HumanGenerator generates parametric, rigged, outfitted humans in NVIDIA Omniverse.
This project relies on the Makehuman project from https://github.com/makehumancommunity/makehuman.
# Getting Started
The easiest way to get started is using Omniverse Create. Navigate to the Extensions window and click on "Community". Search for `HumanGenerator` and you should see our extension show up.
The extension may take a few minutes to install as it will download makehuman and install it in the Omniverse's local Python instance.
For use, check out the walkthrough video on Github.
## License
*Our license restrictions are due to the AGPL of MakeHuman. In line with the statements from MakeHuman, the targets and resulting characters are CC0, meaning you can use whatever you create for free, without restrictions. It is only the codebase that is AGPL.
| 871 | Markdown | 44.894734 | 259 | 0.797933 |
cadop/crowds/README.md |
![preview](https://user-images.githubusercontent.com/11399119/226725400-fa9054e3-a13f-4a9f-8294-d08cbee51519.PNG)
This repository is for the omniverse extension for crowd simulation. If you are looking for a project that can be run without omniverse, checkout [Python-only crowd simulation](https://github.com/cadop/warpcrowd)
A crowd simulator API with a default demo scene. The main python API can be used in a few ways. There is an examples folder showing a few use-cases. Users can also switch between social forces and PAM as the crowds algorithm.
The extension will load an populate some demo configuration. It will create an Xform called CrowdGoals. To add a goal for the crowd. Create an xform under the "CrowdGoals". We automatically check for those prims as the method of determing crowd goals. For every additional xform under CrowdGoals, we evenly split the crowd to assign those goals.
There are two options for the crowd objects. The default uses geompoints, which is faster and runs its own integration of the forces for position and velocity. It does not interact with any physics in the scene. Alternatively the "Rigid Body" can be used, which creates physical spheres that interact with the scene.
Press Play to see the crowd.
The default number of demo agents is a 3x3 grid (9 agents). The current simulator in python may struggle above 25 agents, depending on CPU configuration.
We plan to support more methods in the future, as well as more crowd simulators. Contributions are welcome.
| 1,525 | Markdown | 88.764701 | 348 | 0.796066 |
cadop/crowds/tools/scripts/link_app.py | import os
import argparse
import sys
import json
import packmanapi
import urllib3
def find_omniverse_apps():
http = urllib3.PoolManager()
try:
r = http.request("GET", "http://127.0.0.1:33480/components")
except Exception as e:
print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}")
sys.exit(1)
apps = {}
for x in json.loads(r.data.decode("utf-8")):
latest = x.get("installedVersions", {}).get("latest", "")
if latest:
for s in x.get("settings", []):
if s.get("version", "") == latest:
root = s.get("launch", {}).get("root", "")
apps[x["slug"]] = (x["name"], root)
break
return apps
def create_link(src, dst):
print(f"Creating a link '{src}' -> '{dst}'")
packmanapi.link(src, dst)
APP_PRIORITIES = ["code", "create", "view"]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher")
parser.add_argument(
"--path",
help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'",
required=False,
)
parser.add_argument(
"--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False
)
args = parser.parse_args()
path = args.path
if not path:
print("Path is not specified, looking for Omniverse Apps...")
apps = find_omniverse_apps()
if len(apps) == 0:
print(
"Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers."
)
sys.exit(0)
print("\nFound following Omniverse Apps:")
for i, slug in enumerate(apps):
name, root = apps[slug]
print(f"{i}: {name} ({slug}) at: '{root}'")
if args.app:
selected_app = args.app.lower()
if selected_app not in apps:
choices = ", ".join(apps.keys())
print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}")
sys.exit(0)
else:
selected_app = next((x for x in APP_PRIORITIES if x in apps), None)
if not selected_app:
selected_app = next(iter(apps))
print(f"\nSelected app: {selected_app}")
_, path = apps[selected_app]
if not os.path.exists(path):
print(f"Provided path doesn't exist: {path}")
else:
SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__))
create_link(f"{SCRIPT_ROOT}/../../app", path)
print("Success!")
| 2,813 | Python | 32.5 | 133 | 0.562389 |
cadop/crowds/tools/packman/config.packman.xml | <config remotes="cloudfront">
<remote2 name="cloudfront">
<transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" />
</remote2>
</config>
| 211 | XML | 34.333328 | 123 | 0.691943 |
cadop/crowds/tools/packman/bootstrap/install_package.py | # Copyright 2019 NVIDIA CORPORATION
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import zipfile
import tempfile
import sys
import shutil
__author__ = "hfannar"
logging.basicConfig(level=logging.WARNING, format="%(message)s")
logger = logging.getLogger("install_package")
class TemporaryDirectory:
def __init__(self):
self.path = None
def __enter__(self):
self.path = tempfile.mkdtemp()
return self.path
def __exit__(self, type, value, traceback):
# Remove temporary data created
shutil.rmtree(self.path)
def install_package(package_src_path, package_dst_path):
with zipfile.ZipFile(
package_src_path, allowZip64=True
) as zip_file, TemporaryDirectory() as temp_dir:
zip_file.extractall(temp_dir)
# Recursively copy (temp_dir will be automatically cleaned up on exit)
try:
# Recursive copy is needed because both package name and version folder could be missing in
# target directory:
shutil.copytree(temp_dir, package_dst_path)
except OSError as exc:
logger.warning(
"Directory %s already present, packaged installation aborted" % package_dst_path
)
else:
logger.info("Package successfully installed to %s" % package_dst_path)
install_package(sys.argv[1], sys.argv[2])
| 1,888 | Python | 31.568965 | 103 | 0.68697 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/simulator.py | import numpy as np
from numpy import random
from omni.physx import get_physx_interface
import omni
import carb
from pxr import UsdGeom, Gf, Sdf, UsdShade
import warp as wp
import copy
import usdrt
from siborg.simulate.crowd.crowds import CrowdConfig
from siborg.simulate.crowd.models import socialforces
from siborg.simulate.crowd.models import pam
wp.init()
from siborg.simulate.crowd.models import socialforces_warp as crowd_force
class Simulator(CrowdConfig):
def __init__(self, world=None):
super().__init__()
self.world = world
# a default dt that is surely overwritten later
self._dt = 1/60.0
# set radius
self.radius = 0.7
self.radius_min = 0.5
self.radius_max = 1.0
# A subscription to the physics simulation, used when this class
# is asked to manage the updates
self._simulation_event = None
# Will use a physics scene
self.rigidbody = False
self.use_pam = False
self.on_gpu = False
self.use_instancer = False
self.add_jane = False
self.use_heading = False
# Tracks if user wants to update agent position on each sim step
self.update_agents_sim = False
self.update_viz = False
self.instancer_paths = ["/World/PointInstancer_Bob", "/World/PointInstancer_Jane"]
self.point_instancer_sets = []
self.agent_instance_path_bob = '/World/Scope/CrowdBob'
self.agent_instance_path_jane = '/World/Scope/CrowdJane'
self.instance_forward_vec = (1.0,0.0,0.0) # TODO get from instance object
self.instance_up_vec = (0.0,1.0,0.0) # TODO Fix to be flexible later
self.vel_epsilon = 0.05
self._get_world_up()
def _get_world_up(self):
stage = omni.usd.get_context().get_stage()
up = UsdGeom.GetStageUpAxis(stage)
if up =='X': self.world_up = 0
if up =='Y': self.world_up = 1
if up =='Z': self.world_up = 2
return
def register_simulation(self):
self._callbacks()
# we need to update the agents, otherwise won't see these results
self.update_agents_sim = True
self.update_viz = True
def _callbacks(self):
self._simulation_event = get_physx_interface(
).subscribe_physics_step_events(
self._on_simulation_update)
def _unregister(self):
try:
self._simulation_event.unsubscribe()
except:
self._simulation_event = None
def _on_simulation_update(self, dt):
if self.agent_bodies is None:
return
self._dt = dt
self.run()
def set_xform_goal(self, p):
'''set the goal based on a subscribed xform
Example of usage
watcher = omni.usd.get_watcher()
self._goal_subscriber = watcher.subscribe_to_change_info_path(
Sdf.Path('/World/Goal.xformOp:translate'),
self.Sim.set_xform_goal)
Parameters
----------
p : str(prim path)
a subscribed path
'''
stage = omni.usd.get_context().get_stage()
prim = stage.GetPrimAtPath(str(p).split('.')[0])
goal_point = omni.usd.utils.get_world_transform_matrix(prim).ExtractTranslation()
# Set agent destination
self.goals = np.asarray([goal_point for x in range(self.nagents)])
def integrate(self, x, v, f, dt):
''' take position, velocity, force, and dt to compute updated position and velocity '''
v1 = v + ( (f * 1.0) * dt ) # new velocity
x1 = x + (v1 * dt) # new position
return x1, v1
def update_goals(self, new_goal):
'''update the goals of agents
Parameters
----------
new_goal : ndarray([x,y,z])
can either be one goal that is applied to all agents, or a list of
the same size as number of agents
'''
if len(new_goal) == 1:
self.goals = np.asarray([new_goal for x in range(self.nagents)])
else:
self.goals = new_goal
def compute_step(self, agent):
# Set the model to PAM if asked
if self.use_pam: model = pam
else: model = socialforces
# Get the neighbors of this agent to use in computing forces
pn = model.get_neighbors(self.agents_pos[agent],
self.agents_pos,
self.agents_percept[agent])[1]
_force = model.compute_force(self.agents_pos[agent],
self.agents_radi[agent],
self.agents_vel[agent],
self.agents_mass[agent],
self.goals[agent],
self.agents_pos[pn],
self.agents_vel[pn],
self.agents_radi[pn],
self._dt)
return _force
def run(self):
'''Runs the simulation for one step
Updates agent positions and velocities if instance flag is true
Returns
-------
ndarray[x,y,z] forces
'''
self.force_list = []
for agent in range(self.nagents):
_force = self.compute_step(agent)
# remove world (up) forces
_force[self.world_up] = 0
# Store all forces to be applied to agents
self.force_list.append(_force)
self.step_processing()
def step_processing(self):
'''Process the computed step for simulation
Returns
-------
_type_
_description_
'''
# only update agent positions if user requests, otherwise they might want to
# update using forces themselves
if self.update_agents_sim:
# If using rigid body, apply forces to agents
if self.rigidbody:
self.apply_force(self.force_list)
else:
self.internal_integration()
if self.use_instancer:
self.set_instance_agents()
else:
self.set_geompoints()
def internal_integration(self):
# Integrate for new position
for i in range(self.nagents):
self.agents_pos[i], self.agents_vel[i] = self.integrate(self.agents_pos[i],
self.agents_vel[i],
self.force_list[i],
self._dt)
def apply_force(self, force_list):
'''Used for when rigidbody agents are used
Parameters
----------
force_list : List[x,y,z]
list of forces in order of the agents
'''
# Apply forces to simulation
# with Sdf.ChangeBlock():
# for idx, force in enumerate(force_list):
# self._add_force(force, self.agent_bodies[idx], self.agent_bodies[idx].position)
self._add_force3(force_list, self.agent_bodies)
# Update positions and velocities
for i in range(self.nagents):
self.agents_pos[i] = self.agent_bodies[i].position
self.agents_vel[i] = self.agent_bodies[i].velocity
def _add_force(self, force, rigid_body, position):
force = carb.Float3(force)
position = carb.Float3(position)
get_physx_interface().apply_force_at_pos(rigid_body.skinMeshPath, force, position)
def _add_force2(self, force, rigid_body, position):
# force = Gf.Vec3d(force)
_ = force[0]
force = Gf.Vec3d(float(force[0]), float(force[1]),float(force[2]))
rigid_body.forceAttr.Set(force) #position
def _add_force3(self, force_list, rigid_body):
# force = Gf.Vec3d(force)
# stage = usdrt.Usd.Stage.Attach(omni.usd.get_context().get_stage_id())
# # prim = stage.GetPrimAtPath("/World/boxActor")
# attr = prim.CreateAttribute("_worldForce", usdrt.Sdf.ValueTypeNames.Float3, True)
# if attr:
# attr.Set(usdrt.Gf.Vec3f(50000.0, 0.0, 0.0))
# prefixes = set(prefix for path in paths for prefix in path.GetPrefixes())
# with Sdf.ChangeBlock():
# for path in prefixes:
# prim_spec = Sdf.CreatePrimInLayer(layer, path)
# prim_spec.specifier = Sdf.SpecifierDef
# prim_spec.typeName = UsdGeom.Xform.__name__
for idx, body in enumerate(rigid_body):
force = force_list[idx]
force = usdrt.Gf.Vec3d(float(force[0]), float(force[1]),float(force[2]))
# body.forceAttr.Set(force) #position
if body.world_force_attr:
body.world_force_attr.Set(force)
def create_geompoints(self, stage_path=None, color=None):
'''create and manage geompoints representing agents
Parameters
----------
stage_path : str, optional
if not set, will use /World/Points, by default None
color : (r,g,b), optional
if not set, will make color red, by default None
'''
if stage_path: stage_loc = stage_path
else: stage_loc = "/World/Points"
self.stage = omni.usd.get_context().get_stage()
self.agent_point_prim = UsdGeom.Points.Define(self.stage, stage_loc)
self.agent_point_prim.CreatePointsAttr()
width_attr = self.agent_point_prim.CreateWidthsAttr()
width_attr.Set(self.agents_radi)
# width_attr.Set([1 for x in range(self.nagents)])
self.agent_point_prim.CreateDisplayColorAttr()
# For RTX renderers, this only works for UsdGeom.Tokens.constant
color_primvar = self.agent_point_prim.CreateDisplayColorPrimvar(UsdGeom.Tokens.constant)
if color: point_color = color
else: point_color = (1,0,0)
color_primvar.Set([point_color])
def set_geompoints(self):
# Set the position with an offset based on the radius
# Since it is a sphere, we
render_pos = np.copy(self.agents_pos)
render_pos[:,1] += (self.agents_radi/2)
self.agent_point_prim.GetPointsAttr().Set(render_pos)
def create_instance_agents(self):
if self.add_jane:
bob_size = int(self.nagents/2)
bob_pos = self.agents_pos[:bob_size]
point_instancer = self._single_agent_instance(bob_pos, bob_size, self.agent_instance_path_bob, self.instancer_paths[0])
self.point_instancer_sets.append(point_instancer)
# TODO find way to split colors of instances
jane_size = int(self.nagents/2)
jane_pos = self.agents_pos[bob_size:]
point_instancer = self._single_agent_instance(jane_pos, jane_size , self.agent_instance_path_jane, self.instancer_paths[1])
self.point_instancer_sets.append(point_instancer)
else:
point_instancer = self._single_agent_instance(self.agents_pos, self.nagents, self.agent_instance_path_bob, self.instancer_paths[0])
self.point_instancer_sets.append(point_instancer)
def _single_agent_instance(self, agent_pos, nagents, agent_instance_path, instance_path):
stage = omni.usd.get_context().get_stage()
point_instancer = UsdGeom.PointInstancer.Get(stage, instance_path)
if not point_instancer:
point_instancer = UsdGeom.PointInstancer(stage.DefinePrim(instance_path, "PointInstancer"))
point_instancer.CreatePrototypesRel().SetTargets([agent_instance_path])
self.proto_indices_attr = point_instancer.CreateProtoIndicesAttr()
self.proto_indices_attr.Set([0] * nagents)
## max radius is scale of 1
agent_scales = self.agents_radi/self.radius_max
self.agent_instancer_scales = [(x,x,x) for x in agent_scales] # change to numpy
# Set scale
point_instancer.GetScalesAttr().Set(self.agent_instancer_scales)
point_instancer.GetPositionsAttr().Set(agent_pos)
# Set orientation
rot = Gf.Rotation()
rot.SetRotateInto(self.instance_forward_vec, self.instance_forward_vec)
self.agent_headings = [Gf.Quath(rot.GetQuat()) for x in range(nagents)]
point_instancer.GetOrientationsAttr().Set(self.agent_headings)
return point_instancer
def set_instance_agents(self):
# update the points
# self.point_instancer.CreatePrototypesRel().SetTargets([self.agent_instance_path])
# self.proto_indices_attr = self.point_instancer.CreateProtoIndicesAttr()
# self.proto_indices_attr.Set([0] * self.nagents)
for idx, point_instancer in enumerate(self.point_instancer_sets):
if len(self.point_instancer_sets) == 1:
agents_pos = self.agents_pos
else:
_slice = int(self.nagents/2)
if idx == 0:
# Positions for this instance
agents_pos = self.agents_pos[:_slice]
else:
# Positions for this instance
agents_pos = self.agents_pos[_slice:]
# Set position
point_instancer.GetPositionsAttr().Set(agents_pos)
if not self.use_heading: continue
self.set_heading()
def set_heading(self):
for idx, point_instancer in enumerate(self.point_instancer_sets):
if len(self.point_instancer_sets) == 1:
agents_vel = self.agents_vel
nagents = self.nagents
else:
_slice = int(self.nagents/2)
nagents = _slice
if idx == 0:
# Velocities for this instance
agents_vel = self.agents_vel[:_slice]
else:
# Velocities for this instance
agents_vel = self.agents_vel[_slice:]
# Create array of agent headings based on velocity
normalize_vel = agents_vel
rot = Gf.Rotation()
self.agent_headings = []
cur_orient = point_instancer.GetOrientationsAttr().Get()
for i in range(0, nagents):
if np.sqrt(normalize_vel[i].dot(normalize_vel[i])) < self.vel_epsilon:
tovec = cur_orient[i]
self.agent_headings.append(cur_orient[i])
else:
tovec = Gf.Vec3d(tuple(normalize_vel[i]))
rot.SetRotateInto(self.instance_forward_vec, tovec)
self.agent_headings.append(Gf.Quath(rot.GetQuat()))
# Set orientation
point_instancer.GetOrientationsAttr().Set(self.agent_headings)
return
#### Change colors
stage = omni.usd.get_context().get_stage()
# get path of material
mat_path = '/CrowdBob/Looks/Linen_Blue'
linen_mat = Sdf.Path(f'/World/Scope{mat_path}')
mat_prim = stage.GetPrimAtPath(linen_mat)
# print(mat_prim)
# shader_path = '/Shader.inputs:diffuse_tint'
# tint_shader = f'/World{mat_path}{shader_path}'
shader = omni.usd.get_shader_from_material(mat_prim)
# print(shader)
#inp = shader.GetInput('diffuse_tint').Get()
inp = shader.GetInput('diffuse_tint').Set((0.5,0.5,1.0))
class WarpCrowd(Simulator):
'''A class to manage the warp-based version of crowd simulation
'''
def __init__(self, world=None):
super().__init__(world)
self.device = 'cuda:0'
# generate n number of agents
self.nagents = 9
# set radius
self.radius = 0.7
self.radius_min = 0.5
self.radius_max = 1.0
self.hash_radius = 0.7 # Radius to use for hashgrid
# set mass
self.mass = 20
# set pereption radius
self.perception_radius = 6
# self.dt = 1.0/30.0
self.goal = [0.0,0.0,0.0]
self.generation_origin = [10,10.0,0.0]
self.inv_up = wp.vec3(1.0,1.0,1.0) # z-up
self.inv_up[self.world_up] = 0.0
self.on_gpu = True
def demo_agents(self, s=1.6, m=50, n=50):
o = self.generation_origin
# Initialize agents in a grid for testing
self.agents_pos = np.asarray([
np.array([(s/2) + (x * s) +(o[0]/2) ,
(s/2) + (y * s) +(o[1]/2),
0
], dtype=np.double)
for x in range(m)
for y in range(n)
])
self.nagents = len(self.agents_pos)
self.configure_params()
def configure_params(self):
'''Convert all parameters to warp
'''
self.agents_pos = np.asarray(self.agents_pos)
# self.agents_pos = np.asarray([np.array([0,0,0], dtype=float) for x in range(self.nagents)])
self.agents_vel = np.asarray([np.array([0,0,0], dtype=float) for x in range(self.nagents)])
# # Set a quath for heading
# rot = Gf.Rotation()
# rot.SetRotateInto(self.instance_forward_vec, self.instance_forward_vec) # from, to
# _hquat = Gf.Quath(rot.GetQuat())
# # Get rotation between agent forward direction
self.agents_hdir = np.asarray([np.array([0,0,0,1], dtype=float) for x in range(self.nagents)])
self.force_list = np.asarray([np.array([0,0,0], dtype=float) for x in range(self.nagents)])
self.agents_radi = np.random.uniform(self.radius_min, self.radius_max, self.nagents)
self.agents_mass = [self.mass for x in range(self.nagents)]
self.agents_percept = np.asarray([self.perception_radius for x in range(self.nagents)])
self.agents_goal = np.asarray([np.array(self.goal, dtype=float) for x in range(self.nagents)])
self.agent_force_wp = wp.zeros(shape=self.nagents,device=self.device, dtype=wp.vec3)
self.agents_pos_wp = wp.array(self.agents_pos, device=self.device, dtype=wp.vec3)
self.agents_vel_wp = wp.array(self.agents_vel, device=self.device, dtype=wp.vec3)
self.agents_hdir_wp = wp.array(self.agents_hdir, device=self.device, dtype=wp.vec4)
self.agents_goal_wp = wp.array(self.agents_goal, device=self.device, dtype=wp.vec3)
self.agents_radi_wp = wp.array(self.agents_radi, device=self.device, dtype=float)
self.agents_mass_wp = wp.array(self.agents_mass, device=self.device, dtype=float)
self.agents_percept_wp = wp.array(self.agents_percept, device=self.device, dtype=float)
self.xnew_wp = wp.zeros_like(wp.array(self.agents_pos, device=self.device, dtype=wp.vec3))
self.vnew_wp = wp.zeros_like(wp.array(self.agents_pos, device=self.device, dtype=wp.vec3))
self.hdir_wp = wp.zeros_like(wp.array(self.agents_hdir, device=self.device, dtype=wp.vec4))
def config_hasgrid(self, nagents=None):
'''Create a hash grid based on the number of agents
Currently assumes z up
Parameters
----------
nagents : int, optional
_description_, by default None
'''
if nagents is None: nagents = self.nagents
self.grid = wp.HashGrid(dim_x=200, dim_y=200, dim_z=1, device=self.device)
# self.grid = wp.HashGrid(dim_x=nagents, dim_y=nagents, dim_z=1, device=self.device)
def config_mesh(self, points, faces):
'''Create a warp mesh object from points and faces
Parameters
----------
points : List[[x,y,z]]
A list of floating point xyz vertices of a mesh
faces : List[int]
A list of integers corresponding to vertices. Must be triangle-based
'''
# fake some points and faces if empty list was passed
if len(points) == 0:
points = [(0,0,0), (0,0,0), (0,0,0)]
faces = [[1, 2, 3]]
# print(points)
# print(faces)
# Init mesh for environment collision
self.mesh = wp.Mesh( points=wp.array(points, dtype=wp.vec3, device=self.device),
indices=wp.array(faces, dtype=int ,device=self.device)
)
def update_goals(self, new_goal):
if len(new_goal) == 1:
self.goals = np.asarray([new_goal for x in range(self.nagents)])
else:
self.goals = new_goal
self.agents_goal_wp = wp.array(self.goals, device=self.device, dtype=wp.vec3)
def run(self):
# Rebuild hashgrid given new positions
self.grid.build(points=self.agents_pos_wp, radius=self.hash_radius)
# launch kernel
wp.launch(kernel=crowd_force.get_forces,
dim=self.nagents,
inputs=[self.agents_pos_wp, self.agents_vel_wp, self.agents_goal_wp, self.agents_radi_wp,
self.agents_mass_wp, self._dt, self.agents_percept_wp, self.grid.id, self.mesh.id,
self.inv_up],
outputs=[self.agent_force_wp],
device=self.device
)
self.force_list = self.agent_force_wp.numpy()
self.step_processing()
self.agents_pos_wp = wp.array(self.agents_pos, device=self.device, dtype=wp.vec3)
self.agents_vel_wp = wp.array(self.agents_vel, device=self.device, dtype=wp.vec3)
return self.agent_force_wp
def internal_integration(self):
# Given the forces, integrate for pos and vel
wp.launch(kernel=crowd_force.integrate,
dim=self.nagents,
inputs=[self.agents_pos_wp, self.agents_vel_wp, self.agent_force_wp, self._dt],
outputs=[self.xnew_wp, self.vnew_wp],
device=self.device
)
self.agents_pos_wp = self.xnew_wp
self.agents_vel_wp = self.vnew_wp
self.agents_pos = self.agents_pos_wp.numpy()
self.agents_vel = self.agents_vel_wp.numpy()
def set_heading(self):
up = wp.vec3(0.0,1.0,0.0)
forward = wp.vec3(1.0,0.0,0.0)
wp.launch(kernel=crowd_force.heading,
dim=self.nagents,
inputs=[self.agents_vel_wp, up, forward],
outputs=[self.hdir_wp],
device=self.device
)
self.agents_hdir_wp = self.hdir_wp
self.agents_hdir = self.agents_hdir_wp.numpy()
for idx, point_instancer in enumerate(self.point_instancer_sets):
if len(self.point_instancer_sets) == 1:
agent_headings = self.agents_hdir
else:
_slice = int(self.nagents/2)
if idx == 0:
agent_headings = self.agents_hdir[:_slice]
else:
agent_headings = self.agents_hdir[_slice:]
# Set orientation
point_instancer.GetOrientationsAttr().Set(agent_headings)
| 23,588 | Python | 37.231767 | 143 | 0.558632 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/usd_utils.py | import numpy as np
from pxr import UsdGeom, Gf, Usd
import omni
def get_mesh(usd_stage, objs):
points, faces = [],[]
for obj in objs:
f_offset = len(points)
# f, p = convert_to_mesh(obj)#usd_stage.GetPrimAtPath(obj))
f, p = meshconvert(obj)#usd_stage.GetPrimAtPath(obj))
points.extend(p)
faces.extend(f+f_offset)
return points, faces
def get_all_stage_mesh(stage, start_prim):
found_meshes = []
# Traverse the scene graph and print the paths of prims, including instance proxies
for x in Usd.PrimRange(start_prim, Usd.TraverseInstanceProxies()):
if x.IsA(UsdGeom.Mesh):
found_meshes.append(x)
points, faces = get_mesh(stage, found_meshes)
return points, faces
def convert_to_mesh(prim):
''' convert a prim to BVH '''
# Get mesh name (prim name)
m = UsdGeom.Mesh(prim)
# Get verts and triangles
tris = m.GetFaceVertexIndicesAttr().Get()
tris_cnt = m.GetFaceVertexCountsAttr().Get()
verts = m.GetPointsAttr().Get()
tri_list = np.array(tris)
vert_list = np.array(verts)
xform = UsdGeom.Xformable(prim)
time = Usd.TimeCode.Default() # The time at which we compute the bounding box
world_transform: Gf.Matrix4d = xform.ComputeLocalToWorldTransform(time)
translation: Gf.Vec3d = world_transform.ExtractTranslation()
rotation: Gf.Rotation = world_transform.ExtractRotationMatrix()
# rotation: Gf.Rotation = world_transform.ExtractRotation()
scale: Gf.Vec3d = Gf.Vec3d(*(v.GetLength() for v in world_transform.ExtractRotationMatrix()))
rotation = rotation.GetOrthonormalized()
# New vertices
vert_list = np.dot((vert_list * scale ), rotation) + translation
# vert_scaled = vert_list
# vert_list[:,0] *= scale[0]
# vert_list[:,1] *= scale[1]
# vert_list[:,2] *= scale[2]
# vert_rotated = np.dot(vert_scaled, rotation) # Rotate points
# vert_translated = vert_rotated + translation
# vert_list = vert_translated
# Check if the face counts are 4, if so, reshape and turn to triangles
if tris_cnt[0] == 4:
quad_list = tri_list.reshape(-1,4)
tri_list = quad_to_tri(quad_list)
tri_list = tri_list.flatten()
return tri_list, vert_list
def quad_to_tri(a):
idx = np.flatnonzero(a[:,-1] == 0)
out0 = np.empty((a.shape[0],2,3),dtype=a.dtype)
out0[:,0,1:] = a[:,1:-1]
out0[:,1,1:] = a[:,2:]
out0[...,0] = a[:,0,None]
out0.shape = (-1,3)
mask = np.ones(out0.shape[0],dtype=bool)
mask[idx*2+1] = 0
return out0[mask]
def selected_as_mesh():
# Get the current active selection of the stage
stage = omni.usd.get_context().get_stage()
# Get the selections from the stage
_usd_context = omni.usd.get_context()
_selection = _usd_context.get_selection()
selected_paths = _selection.get_selected_prim_paths()
# Expects a list, so take first selection
prims = [stage.GetPrimAtPath(x) for x in selected_paths]
points, faces = get_mesh(stage, selected_paths)
return points, faces
def children_as_mesh(stage, parent_prim):
children = parent_prim.GetAllChildren()
children = [child.GetPrimPath() for child in children]
points, faces = get_mesh(stage, children)
return points, faces
def meshconvert(prim):
# Create an XformCache object to efficiently compute world transforms
xform_cache = UsdGeom.XformCache()
# Get the mesh schema
mesh = UsdGeom.Mesh(prim)
# Get verts and triangles
tris = mesh.GetFaceVertexIndicesAttr().Get()
if not tris:
return [], []
tris_cnt = mesh.GetFaceVertexCountsAttr().Get()
# Get the vertices in local space
points_attr = mesh.GetPointsAttr()
local_points = points_attr.Get()
# Convert the VtVec3fArray to a NumPy array
points_np = np.array(local_points, dtype=np.float64)
# Add a fourth component (with value 1.0) to make the points homogeneous
num_points = len(local_points)
ones = np.ones((num_points, 1), dtype=np.float64)
points_np = np.hstack((points_np, ones))
# Compute the world transform for this prim
world_transform = xform_cache.GetLocalToWorldTransform(prim)
# Convert the GfMatrix to a NumPy array
matrix_np = np.array(world_transform, dtype=np.float64).reshape((4, 4))
# Transform all vertices to world space using matrix multiplication
world_points = np.dot(points_np, matrix_np)
tri_list = convert_to_triangle_mesh(tris, tris_cnt)
tri_list = tri_list.flatten()
world_points = world_points[:,:3]
return tri_list, world_points
def convert_to_triangle_mesh(FaceVertexIndices, FaceVertexCounts):
"""
Convert a list of vertices and a list of faces into a triangle mesh.
A list of triangle faces, where each face is a list of indices of the vertices that form the face.
"""
# Parse the face vertex indices into individual face lists based on the face vertex counts.
faces = []
start = 0
for count in FaceVertexCounts:
end = start + count
face = FaceVertexIndices[start:end]
faces.append(face)
start = end
# Convert all faces to triangles
triangle_faces = []
for face in faces:
if len(face) < 3:
newface = [] # Invalid face
elif len(face) == 3:
newface = [face] # Already a triangle
else:
# Fan triangulation: pick the first vertex and connect it to all other vertices
v0 = face[0]
newface = [[v0, face[i], face[i + 1]] for i in range(1, len(face) - 1)]
triangle_faces.extend(newface)
return np.array(triangle_faces)
# from pxr import UsdGeom, Sdf, Usd
# import os
# def add_ext_reference(prim: Usd.Prim, ref_asset_path: str, ref_target_path: Sdf.Path) -> None:
# references: Usd.References = prim.GetReferences()
# references.AddReference(
# assetPath=ref_asset_path,
# primPath=ref_target_path # OPTIONAL: Reference a specific target prim. Otherwise, uses the referenced layer's defaultPrim.
# )
# class makescope:
# def __init__(self):
# self.stage = omni.usd.get_context().get_stage()
# scope = UsdGeom.Scope.Define(self.stage, Sdf.Path('/World/Scope'))
# ref_prim = UsdGeom.Xform.Define(self.stage, Sdf.Path('/World/Scope/CrowdJane')).GetPrim()
# dir_path = os.path.join('G:/ProjectRepos/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/data/', 'CrowdBob.usda')
# add_ext_reference(ref_prim, dir_path, Sdf.Path("<Default Prim>"))
# ms = makescope()
| 6,666 | Python | 30.154205 | 132 | 0.645665 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/extension.py | import numpy as np
import omni.ext
import omni.ui as ui
import omni.usd
from omni.physx import get_physx_interface
try:
from omni.usd import get_world_transform_matrix
except:
from omni.usd.utils import get_world_transform_matrix
from . import window
from . import simulator
from .env import Environment
from . import usd_utils
class SFsim(omni.ext.IExt):
# ext_id is current extension id. It can be used with extension manager to query
# additional information, like where this extension is located on filesystem.
def on_startup(self, ext_id):
print("[siborg.simulate.crowd] Social Forces Sim startup")
self.goal_prim_path = '/World/CrowdGoals'
self.obstacle_prim_path = '/World/Obstacles'
self.grid_size = 3
self.rigid_flag = False
self.pam_flag = False
self.gpu_flag = False
self.instancer_flag = False
self.jane_flag = False
self.heading_flag = False
self.init_scene()
self.show()
self.goal_prim_dict = {} # {Prim path, subscriber}
self._on_update_sub = None
def show(self):
self._window = ui.Window("Social Forces Demo Settings", width=500, height=250)
gui_window = window.make_window_elements(self, self._window, self.Sim)
def init_goal_prim(self, prim_path):
omni.kit.commands.execute('CreatePrimWithDefaultXform',
prim_type='Xform',
prim_path=prim_path,
attributes={},
select_new_prim=True)
def modify_goals(self, _new_goals):
if len(_new_goals) == 0: return
if self.Sim.nagents == 0: return
# Assign goals based on number of goals available
if len(_new_goals)>self.Sim.nagents:
_new_goals = _new_goals[self.Sim.nagents:]
# Get strides
self.Sim.goals = np.asarray(self.Sim.goals, dtype=object)
goal_cast = np.array_split(self.Sim.goals, len(_new_goals))
# Reassign the split arrays their new goals
for idx in range(len(goal_cast)):
goal_cast[idx][:] = _new_goals[idx]
# Reshape into xyz vector
goal_cast = np.vstack(goal_cast)
goal_cast = np.asarray(goal_cast, dtype=np.float)
# Update the simulations goals
self.Sim.update_goals(goal_cast)
def init_scene(self):
self.World = Environment()
if self.gpu_flag: self.Sim = simulator.WarpCrowd()
else: self.Sim = simulator.Simulator()
# Create the goal hierarchy
self.init_goal_prim(self.goal_prim_path)
self.init_goal_prim(self.obstacle_prim_path)
def _on_update_event(self, dt):
# Check the Goals xform path and see if there are any changes needed to the goal watchers
self.stage = omni.usd.get_context().get_stage()
parent_prim = self.stage.GetPrimAtPath(self.goal_prim_path)
children = parent_prim.GetAllChildren()
# Check if any children are gone from our dict, if so, unsubscribe their watcher
dead_kids = [kid for kid in self.goal_prim_dict.keys() if kid not in children]
for kid in dead_kids:
try: self.goal_prim_dict[kid].unsubscribe()
except: self.goal_prim_dict[kid] = None
self.goal_prim_dict.pop(kid)
# Check if there are any new children not in our dict, if so, add them as a goal and update watcher
babies = [child for child in children if child not in self.goal_prim_dict.keys()]
for baby in babies:
self.goal_prim_dict[baby] = None
# Update the goals
new_goals = []
for x in self.goal_prim_dict.keys():
_prim = x
try:
t = omni.usd.get_world_transform_matrix(_prim).ExtractTranslation()
except:
t = omni.usd.utils.get_world_transform_matrix(_prim).ExtractTranslation()
new_goals.append(t)
if len(new_goals) == 0:
return
self.modify_goals(new_goals)
def assign_meshes(self):
self.stage = omni.usd.get_context().get_stage()
# Use the meshes that are
parent_prim = self.stage.GetPrimAtPath(self.obstacle_prim_path)
# points, faces = usd_utils.children_as_mesh(self.stage, parent_prim)
points, faces = usd_utils.get_all_stage_mesh(self.stage,parent_prim)
self.Sim.config_mesh(points, faces)
def api_example(self):
self.Sim._unregister()
if self.gpu_flag:
self.Sim = simulator.WarpCrowd(self.World)
self.Sim.config_hasgrid()
self.assign_meshes()
else:
self.Sim = simulator.Simulator(self.World)
self.demo_api_call(self.Sim)
def demo_api_call(self, Sim):
# Use the builtin function for demo agents
Sim.rigidbody = self.rigid_flag
# Set origin for spawning agents
self.stage = omni.usd.get_context().get_stage()
parent_prim = self.stage.GetPrimAtPath('/World/GenerationOrigin')
Sim.generation_origin = [0,0,0]
if parent_prim:
Sim.generation_origin = get_world_transform_matrix(parent_prim).ExtractTranslation()
Sim.generation_origin[2] = Sim.generation_origin[1]
Sim.init_demo_agents(m=self.grid_size,n=self.grid_size,s=1.6)
if self.pam_flag:
Sim.use_pam = True
if self.gpu_flag:
Sim.configure_params()
if not Sim.rigidbody:
if self.jane_flag: # TODO make this work for all sim types
Sim.add_jane = True
else:
Sim.add_jane = False
if self.instancer_flag:
Sim.point_instancer_sets = []
Sim.use_instancer = True
if self.heading_flag:
Sim.use_heading = True
Sim.create_instance_agents() # Create a usdgeom point instance for easy visualization
Sim.set_instance_agents() # update the usdgeom points for visualization
else:
Sim.use_instancer = False
Sim.create_geompoints() # Create a usdgeom point instance for easy visualization
Sim.set_geompoints() # update the usdgeom points for visualization
# tell simulator to update positions after each run
Sim.update_agents_sim = True
# tell simulator to handle the update visualization
Sim.update_viz = True
# Register the simulation to updates, and the Sim will handle it from here
Sim.register_simulation()
if not self._on_update_sub:
self._on_update_sub = get_physx_interface().subscribe_physics_step_events(self._on_update_event)
def on_shutdown(self):
print("[siborg.simulate.crowd] Crowd Sim shutdown")
try: self.Sim._unregister()
except: pass
try: self._goal_subscriber.unsubscribe()
except: self._goal_subscriber = None
try: self._on_update_sub.unsubscribe()
except: self._on_update_sub = None
self.Sim._simulation_event = None
self._window = None
self.Sim = None | 7,277 | Python | 35.39 | 108 | 0.601896 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/crowds.py | import numpy as np
from siborg.simulate.crowd.agent import Agent
class CrowdConfig:
def __init__(self):
self._goal = [0,0,0]
self.goals = None
self.agent_bodies = None
self.nagents = 1
# set pereption radius
self.perception_radius = 1.5
# set radius
self.radius = .5
# set mass
self.mass = 2
# Will use a physics scene
self.rigidbody = False
# Assume z-up world
self.world_up = 2
def create_agents(self, num=None, goals=None, pos=None):
'''Creates a set of agents and goals
Uses the class instance defaults for radius, mass, perception, etc.
Parameters
----------
num : int, optional
number of agents to create (if not defined in init), by default None
goals : ndarray([x,y,z]), optional
either 1 or size equal to number of agents, by default None
pos : ndarray([x,y,z]), optional
must be same size as number of agents (otherwise will set all to origin, which is bad),
because they will explode, by default None
'''
# generate n number of agents
if num:
self.nagents = num
# Check we can assign goals to agents
if not goals:
goals = [self._goal]
if len(goals) != 1:
if len(goals) != self.nagents:
raise ValueError('If goals is not 1, must be same size as number of agents')
elif len(goals) == 1:
self.goals = np.asarray([goals[0] for x in range(self.nagents)], dtype=np.double)
else:
self.goals = goals
# Set the agent positions
if pos is not None:
self.agents_pos = np.asarray(pos, dtype=np.double)
else:
self.agents_pos = np.asarray([np.array(0,0,0, dtype=np.double) for x in range(self.nagents)])
# only create an agent instance if user wants physics-based spheres
if self.rigidbody:
self.agent_bodies = [Agent() for x in range(self.nagents)]
# move agents to their positions
for i in range(len(self.agent_bodies)):
x,y,z = self.agents_pos[i]
self.agent_bodies[i].translate(x,y,z)
else:
self.agent_bodies = [None for x in range(self.nagents)]
# set initial velocities to 0
self.agents_vel = np.asarray([np.array([0,0,0], dtype=np.double) for x in range(self.nagents)])
self.set_radius()
self.set_mass()
self.set_perception_radius()
def set_radius(self,v=None):
'''sets agents radius
Parameters
----------
v : List[float], float, optional
set the radius of the agents, if None, all agents get same radius, by default None
'''
if v:
if type(v) is float:
self.agents_radi = np.asarray([v for x in range(self.nagents)])
elif len(v) != self.nagents:
raise ValueError('Radius array must be same size as number of agents')
else:
self.agents_radi = v
else:
self.agents_radi = np.asarray([self.radius for x in range(self.nagents)])
def set_mass(self,v=None):
'''sets agents mass
Parameters
----------
v : List[float], optional
set the mass of the agents, if None, all agents get same mass, by default None
Raises
------
ValueError
if size of mass array does not match number of agents
'''
if v:
if type(v) is float:
self.agents_mass = np.asarray([v for x in range(self.nagents)])
elif len(v) != self.nagents:
raise ValueError('mass array must be same size as number of agents')
else:
self.agents_mass = v
else:
self.agents_mass = np.asarray([self.mass for x in range(self.nagents)])
def set_perception_radius(self, v=None):
'''sets agents perception radius
Parameters
----------
v : List[float], optional
set the percept radius of the agents, if None, all agents get same raidus, by default None
Raises
------
ValueError
if size of perception array does not match number of agents
'''
if v:
if type(v) is float:
self.agents_percept = np.asarray([v for x in range(self.nagents)])
elif len(v) != self.nagents:
raise ValueError('perception radius array must be same size as number of agents')
else:
self.agents_percept = v
else:
self.agents_percept = np.asarray([self.perception_radius for x in range(self.nagents)])
def init_demo_agents(self, m=5, n=5, s=1, o=[0,0,0]):
'''Create a set of demo agents
Parameters
----------
m : int, optional
number of agents in row, by default 5
n : int, optional
number of agents in col, by default 5
s : int, optional
spacing between agents, by default 1
'''
o = self.generation_origin
# Initialize agents in a grid for testing
self.agents_pos = np.asarray([
np.array([(s/2) + (x * s) +(o[0]/2) ,
(s/2) + (y * s) +(o[1]/2),
0],
dtype=np.double)
for x in range(m)
for y in range(n)
])
# # Initialize agents in a grid for testing
# self.agents_pos = np.asarray([
# np.array([(s/2) + (x * s), (s/2) + (y * s), 0], dtype=np.double)
# for x in range(m)
# for y in range(n)
# ])
self.agents_pos[:, [2, self.world_up]] = self.agents_pos[:, [self.world_up, 2]]
self.nagents = len(self.agents_pos)
####
if self.rigidbody:
self.agent_bodies = [Agent() for x in range(self.nagents)]
for i in range(len(self.agent_bodies)):
x,y,z = self.agents_pos[i]
self.agent_bodies[i].translate(x,y,z)
else:
self.agent_bodies = [None for x in range(self.nagents)]
self.goals = np.asarray([self._goal for x in range(self.nagents)], dtype=np.double)
self.agents_vel = np.asarray([np.array([0,0,0],dtype=np.double) for x in range(self.nagents)])
self.set_radius()
self.set_mass()
self.set_perception_radius()
| 6,938 | Python | 34.584615 | 105 | 0.511098 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/__init__.py | from .extension import *
| 25 | Python | 11.999994 | 24 | 0.76 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/env.py | import omni
import omni.kit.commands
from pxr import Usd, Gf
from pxr import UsdGeom
from pxr import UsdPhysics, PhysxSchema
class Environment:
def __init__(self):
print('Initializing Environment')
self._stage = omni.usd.get_context().get_stage()
self.set_scene(self._stage)
def set_scene(self, stage):
print(f'Setting up {stage}')
self._stage = stage
self.defaultPrimPath = str(self._stage.GetDefaultPrim().GetPath())
# Physics scene
# UsdGeom.SetStageUpAxis(stage, UsdGeom.Tokens.z)
UsdGeom.SetStageMetersPerUnit(stage, 1.0)
self.scene = UsdPhysics.Scene.Define(stage, self.defaultPrimPath + "/physicsScene")
stage_axis = UsdGeom.GetStageUpAxis(stage)
gravity_dir = Gf.Vec3f(0.0, 0.0, 0)
if stage_axis is 'X': gravity_dir[0] = -1.0
if stage_axis is 'Y': gravity_dir[1] = -1.0
if stage_axis is 'Z': gravity_dir[2] = -1.0
self.scene.CreateGravityDirectionAttr().Set(gravity_dir)
self.scene.CreateGravityMagnitudeAttr().Set(9.81)
physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(self.scene.GetPrim())
physxSceneAPI.CreateEnableCCDAttr().Set(True)
# Check if there is a physics groundplane in the scene
plane_path = self.defaultPrimPath+"/GroundPlane"
if self._stage.GetPrimAtPath(plane_path).IsValid():
pass
else:
# If not, make one
omni.kit.commands.execute('AddGroundPlaneCommand',
stage=self._stage,
planePath='/GroundPlane',
axis=UsdGeom.GetStageUpAxis(stage),
size=1.0,
position=Gf.Vec3f(0.0, 0.0, 0.0),
color=Gf.Vec3f(0.5, 0.5, 0.5))
| 1,923 | Python | 34.629629 | 91 | 0.566823 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/agent.py |
import omni
from omni.physx.scripts import physicsUtils
from pxr import Gf, UsdPhysics, PhysxSchema, UsdGeom, UsdShade
import usdrt
class Agent:
def __init__(self):
stage = omni.usd.get_context().get_stage()
# Create a sphere representing the agent
self.skin_mesh , self.skinMeshPath = self.sphere(stage)
# Set a rigid body material and collider
self.set_material(stage, self.skinMeshPath)
# Add a translation operator and set it to zero position
# Since we changed to create this object with an xform, don't need to add, just get it.
# self.translateOp = self.skin_mesh.AddTranslateOp()
self.translateOp = UsdGeom.XformOp(self.skin_mesh.GetPrim().GetAttribute("xformOp:translate"))
self.translateOp.Set(Gf.Vec3f(0.0, 0.0, 0.0))
def sphere(self, stage):
# Create sphere representing agent
_, skinMeshPath = omni.kit.commands.execute("CreateMeshPrimWithDefaultXform",
prim_type="Sphere",
prim_path='/World/Agents/Sphere',
prepend_default_prim=True)
skin_mesh = UsdGeom.Mesh.Get(stage, skinMeshPath)
prim = skin_mesh.GetPrim()
# setup physics - rigid body
self.rigidBodyAPI = UsdPhysics.RigidBodyAPI.Apply(prim)
linVelocity = Gf.Vec3f(0.0, 0.0, 0.0)
angularVelocity = Gf.Vec3f(0.0, 0.0, 0.0)
# apply initial velocities
self.rigidBodyAPI.CreateVelocityAttr().Set(linVelocity)
self.rigidBodyAPI.CreateAngularVelocityAttr().Set(angularVelocity)
self.massAPI = UsdPhysics.MassAPI.Apply(prim)
self.massAPI.CreateMassAttr(2)
self.massAPI.CreateCenterOfMassAttr().Set(Gf.Vec3f(0.0, 0.0, 0.0))
# Add a force attribute
# shuttleForcePath = skinMeshPath + "/shuttleForce"
# xform = UsdGeom.Xform.Define(stage, shuttleForcePath)
# self.forceApi = PhysxSchema.PhysxForceAPI.Apply(xform.GetPrim())
#
# self.forceApi = PhysxSchema.PhysxForceAPI.Apply(prim)
# self.forceAttr = self.forceApi.GetForceAttr()
self.usdrt_stage = usdrt.Usd.Stage.Attach(omni.usd.get_context().get_stage_id())
prim = self.usdrt_stage.GetPrimAtPath(skinMeshPath)
self.world_force_attr = prim.CreateAttribute("_worldForce", usdrt.Sdf.ValueTypeNames.Float3, True)
return skin_mesh, skinMeshPath
def translate(self, x=0, y=0, z=0):
self.translateOp.Set(self.translateOp.Get() + Gf.Vec3d( x, y, z))
@property
def position(self):
return self.translateOp.Get()
@property
def velocity(self):
return self.rigidBodyAPI.GetVelocityAttr().Get()
def set_material(self, stage, skinMeshPath):
defaultPrimPath = str(stage.GetDefaultPrim().GetPath())
# Floor Material
path = defaultPrimPath + "/rigidMaterial"
prim_path = stage.GetPrimAtPath(skinMeshPath)
# Set it as a rigid body
rigidBodyAPI = UsdPhysics.RigidBodyAPI.Apply(prim_path)
# Add a collider (defaults to mesh triangulation)
UsdPhysics.CollisionAPI.Apply(prim_path)
# Apply a specific mass parameter
UsdPhysics.MassAPI.Apply(prim_path)
#Get the rigidbody parameter to set values on
physxRbAPI = PhysxSchema.PhysxRigidBodyAPI.Apply(prim_path)
#Enable CCD for this object
physxRbAPI.CreateEnableCCDAttr().Set(True)
# Create a (separate) physics material that gets added to the object
path = defaultPrimPath + "/highdensitymaterial"
UsdShade.Material.Define(stage, path)
material = UsdPhysics.MaterialAPI.Apply(stage.GetPrimAtPath(path))
material.CreateStaticFrictionAttr().Set(0)
material.CreateDynamicFrictionAttr().Set(0)
material.CreateRestitutionAttr().Set(.2)
material.CreateDensityAttr().Set(0.01)
# Add material
physicsUtils.add_physics_material_to_prim(stage, prim_path, path)
| 4,141 | Python | 38.075471 | 107 | 0.642357 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/window.py | from .models.socialforces import Parameters
import omni.ui as ui
combo_sub = None
def make_window_elements(self, _window, Sim):
with _window.frame:
with ui.VStack():
with ui.HStack():
ui.Label('Max Speed')
max_speed = ui.FloatField(height=20)
max_speed.model.add_value_changed_fn(lambda m : setattr(Parameters, 'max_speed', m.get_value_as_float()))
max_speed.model.set_value(Parameters.max_speed)
with ui.HStack():
ui.Label('Desired Speed')
v_desired = ui.FloatField(height=20)
v_desired.model.add_value_changed_fn(lambda m : setattr(Parameters, 'v_desired', m.get_value_as_float()))
v_desired.model.set_value(Parameters.v_desired)
with ui.HStack():
ui.Label('A')
A = ui.FloatField(height=20)
A.model.add_value_changed_fn(lambda m : setattr(Parameters, 'A', m.get_value_as_float()))
A.model.set_value(Parameters.A)
with ui.HStack():
ui.Label('B')
B = ui.FloatField(height=20)
B.model.add_value_changed_fn(lambda m : setattr(Parameters, 'B', m.get_value_as_float()))
B.model.set_value(Parameters.B)
with ui.HStack():
ui.Label('kn')
kn = ui.FloatField(height=20)
kn.model.add_value_changed_fn(lambda m : setattr(Parameters, 'kn', m.get_value_as_float()))
kn.model.set_value(Parameters.kn)
with ui.HStack():
ui.Label('kt')
kt = ui.FloatField(height=20)
kt.model.add_value_changed_fn(lambda m : setattr(Parameters, 'kt', m.get_value_as_float()))
kt.model.set_value(Parameters.kt)
with ui.HStack():
ui.Label('Agent grid (nxn)')
agent_grid = ui.IntField(height=20)
agent_grid.model.add_value_changed_fn(lambda m : setattr(self, 'grid_size', m.get_value_as_int()))
agent_grid.model.set_value(3)
# with ui.HStack():
# ui.Label('Agent Mass')
# kt = ui.FloatField(height=20)
# kt.model.add_value_changed_fn(lambda m : setattr(Sim, 'mass', m.get_value_as_float()))
# kt.model.set_value(Sim.mass)
# with ui.HStack():
# ui.Label('Agent Radius')
# kt = ui.FloatField(height=20)
# kt.model.add_value_changed_fn(lambda m : Sim.set_radius(m.get_value_as_float()))
# kt.model.set_value(Sim.radius)
# with ui.HStack():
# ui.Label('Agent Perception Radius')
# kt = ui.FloatField(height=20)
# kt.model.add_value_changed_fn(lambda m : setattr(Sim, 'perception_radius', m.get_value_as_float()))
# kt.model.set_value(Sim.perception_radius)
# with ui.HStack(height=20):
# ui.Button("Gen Agents", clicked_fn=Sim.create_agents)
# nagents = ui.IntField(height=5)
# nagents.model.set_value(Sim.nagents)
# nagents.model.add_value_changed_fn(lambda m : setattr(Sim, 'nagents', m.get_value_as_int()))
with ui.HStack(height=20):
ui.Label('GPU', width=20)
WarpModel = ui.CheckBox(width=30)
WarpModel.model.add_value_changed_fn(lambda m : setattr(self, 'gpu_flag', m.get_value_as_bool()))
WarpModel.model.set_value(True)
ui.Label('Use Instances', width=20)
SFModel = ui.CheckBox(width=30)
SFModel.model.add_value_changed_fn(lambda m : setattr(self, 'instancer_flag', m.get_value_as_bool()))
SFModel.model.set_value(True)
ui.Label('Add Jane', width=5)
RigidBody = ui.CheckBox(width=30)
RigidBody.model.add_value_changed_fn(lambda m : setattr(self, 'jane_flag', m.get_value_as_bool()))
RigidBody.model.set_value(False)
ui.Label('Use Direction', width=5)
RigidBody = ui.CheckBox(width=30)
RigidBody.model.add_value_changed_fn(lambda m : setattr(self, 'heading_flag', m.get_value_as_bool()))
RigidBody.model.set_value(True)
ui.Label('Rigid Body', width=5)
RigidBody = ui.CheckBox(width=30)
RigidBody.model.add_value_changed_fn(lambda m : setattr(self, 'rigid_flag', m.get_value_as_bool()))
RigidBody.model.set_value(False)
ui.Label('PAM', width=20)
SFModel = ui.CheckBox(width=30)
SFModel.model.add_value_changed_fn(lambda m : setattr(self, 'pam_flag', m.get_value_as_bool()))
SFModel.model.set_value(False)
# options = ["GeomPoints", "RigidBody"]
# combo_model: ui.AbstractItemModel = ui.ComboBox(0, *options).model
# def combo_changed(item_model: ui.AbstractItemModel, item: ui.AbstractItem):
# value_model = item_model.get_item_value_model(item)
# current_index = value_model.as_int
# option = options[current_index]
# print(f"Selected '{option}' at index {current_index}.")
# combo_sub = combo_model.subscribe_item_changed_fn(combo_changed)
# def clicked():
# value_model = combo_model.get_item_value_model()
# current_index = value_model.as_int
# option = options[current_index]
# print(f"Button Clicked! Selected '{option}' at index {current_index}.")
# self.api_example(current_index)
# ui.Button("Set Selected Meshes", width=5, clicked_fn=self.assign_meshes)
ui.Button("Start Demo", width=5, clicked_fn=self.api_example)
with ui.HStack(height=10):
pass | 6,133 | Python | 45.1203 | 121 | 0.536768 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/examples/ex4.py | '''_summary_
'''
from siborg.simulate.crowd.simulator import Simulator
def example_4():
# Example of using API
Sim = Simulator()
Sim.rigidbody = True # use rigid bodies
Sim.init_demo_agents(m=3, n=5, s=1.1)
# Register the simulation to updates, and the Sim will handle it from here
Sim.register_simulation()
# tell simulator to update positions after each run, if not need to call Sim.integrate()
Sim.update_agents_sim = True
# tell simulator to handle the update visualization
Sim.update_viz = True
example_4() | 558 | Python | 26.949999 | 92 | 0.691756 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/examples/ex3.py | '''_summary_
'''
import time
from omni.physx import get_physx_interface
from siborg.simulate.crowd.simulator import Simulator
Sim = Simulator()
start_time = time.time()
_simulation_event = None
def example_3():
# Example of using API
# Use a builtin helper function to generate a grid of agents
Sim.init_demo_agents(m=3, n=5, s=1.1)
Sim.create_geompoints() # Create a usdgeom point instance for easy visualization
Sim.set_geompoints() # update the usdgeom points for visualization
# tell simulator to update positions after each run, if not need to call Sim.integrate()
Sim.update_agents_sim = True
# don't have the simulator update the geompoints, we do it ourselves
Sim.update_viz = False
# Register to our own physx update
sim_subscriber()
def sim_subscriber():
# This would need to get cleaned up
_simulation_event = get_physx_interface().subscribe_physics_step_events(_on_update)
def _on_update(dt):
# Run one step of simulation
# don't need to use forces since we told simulator to update
forces = Sim.run()
Sim.set_geompoints() # update the usdgeom points for visualization
# For this demo we will unsubscribe after a few seconds
if time.time() - start_time > 100 :
print('ending')
_simulation_event.unsubscribe()
example_3()
| 1,338 | Python | 28.755555 | 92 | 0.701046 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/examples/ex2.py | '''Example for Simulator handling update and using GeomPoints.
Uses a helper function for initializing agents
'''
from siborg.simulate.crowd.simulator import Simulator
def example_2():
Sim = Simulator()
# Use a builtin helper function to generate a grid of agents
Sim.init_demo_agents(m=3,n=5,s=1.1)
Sim.create_geompoints() # Create a usdgeom point instance for easy visualization
# tell simulator to update positions after each run, if not need to call Sim.integrate()
Sim.update_agents_sim = True
# don't have the simulator update the geompoints, we do it ourselves
Sim.update_viz = True
Sim.register_simulation()
example_2() | 669 | Python | 32.499998 | 92 | 0.730942 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/examples/ex1.py | '''Example for Simulator handling update and using GeomPoints
'''
from siborg.simulate.crowd.simulator import Simulator
import numpy as np
from math import sqrt
def example_1():
# Example of using API
Sim = Simulator()
nagents = 10
# Some trickery to make a grid of agents and get the cloest number of agents to an even grid
pos = np.asarray([
np.array([(1/2) + (x), (1/2) + (y), 0], dtype=np.double)
for x in range(int(sqrt(nagents)))
for y in range(int(sqrt(nagents)))
])
pos[:, [2, Sim.world_up]] = pos[:, [Sim.world_up, 2]]
nagents = len(pos)
Sim.create_agents(num=nagents, goals=[[10,10,0]], pos=pos) # initialize a set of agents
Sim.create_geompoints() # Create a usdgeom point instance for easy visualization
# tell simulator to update positions after each run, if not need to call Sim.integrate()
Sim.update_agents_sim = True
# don't have the simulator update the geompoints, we do it ourselves
Sim.update_viz = True
Sim.register_simulation()
example_1() | 1,119 | Python | 35.129031 | 96 | 0.626452 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/models/pam.py | ''' Python implementation of the Predictive Avoidance Model (PAM)
from
A Predictive Collision Avoidance Model for Pedestrian Simulation,
I. Karamouzas, P. Heil, P. van Beek, M. H. Overmars
Motion in Games (MIG 2009), Lecture Notes in Computer Science (LNCS), Vol. 5884, 2009
'''
from dataclasses import dataclass
import numpy as np
from scipy.spatial import distance
@dataclass
class Parameters:
# The agents field of view
field_of_view = 200.0
# The agents radius ? Used here in this implementation or in sim?
agent_radius = 0.5
# Minimum agent distance
min_agent_dist = 0.1
# the mid distance parameters in peicewise personal space function predictive force dist
dmid = 4.0
# KSI
ksi = 0.5
# Nearest Neighbour distance ? Used here in this implementation or in sim?
neighbor_dist = 10.0
# Maximum neighbours to consider ? Used here in this implementation or in sim?
max_neighbors = 3
# Maximum acceleration ? Used here in this implementation or in sim/physics?
max_accel = 20.0
# Maximum speed
max_speed = 7
# Preferred Speed
preferred_vel = 2.5
# Goal acquired radius
goal_radius = 1.0
# Time Horizon
time_horizon = 4.0
# Agent Distance
agent_dist = 0.1
# Wall Distance
wall_dist = 0.1
# Wall Steepnes
wall_steepness = 2.0
# Agent Strength
agent_strength = 1.0
# wFactor, factor to progressively scale down forces in when in a non-collision state
w_factor = 0.8
# Noise flag (should noise be added to the movement action)
noise = False
force_clamp = 40.0
# *private* Ideal wall distance
_ideal_wall_dist = agent_radius + wall_dist
# *private* Squared ideal wall distance
_SAFE = _ideal_wall_dist * _ideal_wall_dist
# *private* Agent Personal space
_agent_personal_space = agent_radius + min_agent_dist
# *private* the min distance parameters in peicewise personal space function
_dmin = agent_radius + _agent_personal_space
# *private* the max distance parameters in peicewise personal space function
_dmax = time_horizon * max_speed
# *private* FOV cosine
_cosFOV = np.cos((0.5 * np.pi * field_of_view) / 180.0)
def ray_intersects_disc(pi, pj, v, r):
# calc ray disc est. time to collision
t = 0.0
w = pj - pi
a = np.dot(v, v)
b = np.dot(w, v)
c = np.dot(w, w) - (r * r)
discr = (b * b) - (a * c)
if discr > 0.0:
t = (b - np.sqrt(discr)) / a
if t < 0.0:
t = 999999.0
else:
t = 999999.0
return t
def mag(v):
# calc magnitude of vector
v_mag = np.sqrt(v.dot(v))
return v_mag
def norm(v):
# normalize a vector
v_norm = np.array([0, 0, 0], dtype='float64')
magnitude = mag(v)
if magnitude > 0.0:
v_norm = v / magnitude
return v_norm
def get_neighbors(cur, agents, pn_r):
dist = distance.cdist([cur], agents)
pn = dist < pn_r
# Index to remove is when its zero
pn_self = dist == 0
pn_self = np.nonzero(pn_self)
pn[pn_self] = False
pn = np.nonzero(pn)
return pn
def wall_force(obstacles, rr_i, closest_point, SAFE, add_force):
for i in range(len(obstacles)):
# Step 1: get closest point on obstacle to agent
# [[ Need python code for this in simulation ]]
n_w = rr_i - closest_point
d_w = mag(n_w) * mag(n_w)
if (d_w < SAFE):
d_w = np.sqrt(d_w)
if (d_w > 0):
n_w /= d_w
if ((d_w - Parameters.agent_radius) < 0.001):
dist_min_radius = 0.001
else:
d_w - Parameters.agent_radius
obstacle_force = (Parameters._ideal_wall_dist - d_w) / np.pow(dist_min_radius, Parameters.wall_steepness) * n_w
add_force(obstacle_force)
def calc_goal_force(goal, rr_i, vv_i):
# Preferred velocity is preferred speed in direction of goal
preferred_vel = Parameters.preferred_vel * norm(goal - rr_i)
# Goal force, is always added
goal_force = (preferred_vel - vv_i) / Parameters.ksi
return goal_force
def collision_param(rr_i, vv_i, desired_vel, pn_rr, pn_vv, pn_r):
# Keep track of if we ever enter a collision state
agent_collision = False
t_pairs = []
# Handle agents tc values for predictive forces among neighbours
for j, rr_j in enumerate(pn_rr):
# Get position and velocity of neighbor agent
vv_j = pn_vv[j]
# Get radii of neighbor agent
rj = pn_r[j]
combined_radius = Parameters._agent_personal_space + rj
w = rr_j - rr_i
if (mag(w) < combined_radius):
agent_collision = True
t_pairs.append((0.0, j))
else:
rel_dir = norm(w)
if np.dot(rel_dir, norm(vv_i)) < Parameters._cosFOV:
continue
tc = ray_intersects_disc(rr_i, rr_j, desired_vel - vv_j, combined_radius)
if tc < Parameters.time_horizon:
if len(t_pairs) < Parameters.max_neighbors:
t_pairs.append((tc, j))
elif tc < t_pairs[0][0]:
t_pairs.pop()
t_pairs.append((tc, j))
return t_pairs, agent_collision
def predictive_force(rr_i, desired_vel, desired_speed, pn_rr, pn_vv, pn_r, vv_i):
# Handle predictive forces// Predictive forces
# Setup collision parameters
t_pairs, agent_collision = collision_param(rr_i, vv_i, desired_vel, pn_rr, pn_vv, pn_r)
# This will be all the other forces, added in a particular way
steering_force = np.array([0, 0, 0], dtype='float64')
# will store a list of tuples, each tuple is (tc, agent)
force_count = 0
for t_pair in t_pairs:
# Nice variables from the t_pair tuples
t = t_pair[0]
agent_idx = t_pair[1]
force_dir = rr_i + (desired_vel * t) - pn_rr[agent_idx] - (pn_vv[agent_idx] * t)
force_dist = mag(force_dir)
if force_dist > 0:
force_dir /= force_dist
collision_dist = np.maximum(force_dist - Parameters.agent_radius - pn_r[agent_idx], 0.0)
#D = input to evasive force magnitude piecewise function
D = np.maximum( (desired_speed * t) + collision_dist, 0.001)
force_mag = 0.0
if D < Parameters._dmin:
force_mag = Parameters.agent_strength * Parameters._dmin / D
elif D < Parameters.dmid:
force_mag = Parameters.agent_strength
elif D < Parameters._dmax:
force_mag = Parameters.agent_strength * (Parameters._dmax - D) / (Parameters._dmax - Parameters.dmid)
else:
continue
force_mag *= np.power( (1.0 if agent_collision else Parameters.w_factor), force_count)
force_count += 1
steering_force = force_mag * force_dir
return steering_force
def add_noise(steering_force):
angle = np.random.uniform(0.0, 1.0) * 2.0 * np.pi
dist = np.random.uniform(0.0, 1.0) * 0.001
steering_force += dist * np.array([np.cos(angle),np.sin(angle),0], dtype='float64')
return steering_force
def compute_force(rr_i, ri, vv_i, mass, goal, pn_rr, pn_vv, pn_r, dt):
# Get the goal force
goal_force = calc_goal_force(goal, rr_i, vv_i)
# Desired values if all was going well in an empty world
desired_vel = vv_i + goal_force * dt
desired_speed = mag(desired_vel)
# Get obstacle (wall) forces
obstacle_force = np.array([0, 0, 0], dtype='float64')
#@TODO
# obstacle_force = wall_force()
# Get predictive steering forces
steering_force = predictive_force(rr_i, desired_vel, desired_speed, pn_rr, pn_vv, pn_r, vv_i)
# Add noise for reducing deadlocks adding naturalness
if Parameters.noise:
steering_force = add_noise(steering_force)
# Clamp driving force
if mag(steering_force) > Parameters.force_clamp:
steering_force = norm(steering_force) * Parameters.force_clamp
return goal_force + obstacle_force + steering_force | 8,170 | Python | 32.080972 | 123 | 0.599143 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/models/socialforces.py | from dataclasses import dataclass
import numpy as np
from scipy.spatial import distance
# zero_vec = np.array([0,0,0], dtype='float64')
@dataclass
class Parameters:
# names from https://www.sciencedirect.com/science/article/pii/S0378437120306853
Tau = 0.5 #(s)
A = 2000.0
B = 0.08
kn = 1.2 * 100_000 # Kgs^-2
kt = 2.4 * 100_000 # Kg m^-1 s^-1
max_speed = 10
v_desired = 3.5
def calc_wall_force():
# TODO add wall and geometry recognition
force = np.array([0,0,0], dtype='float64')
return force
def calc_agent_force(rr_i, ri, vv_i, pn_rr, pn_vv, pn_r):
# Sum the forces of neighboring agents
force = np.array([0,0,0], dtype='float64')
# Set the total force of the other agents to zero
ff_ij = np.array([0,0,0], dtype='float64')
rr_j =np.array([0,0,0], dtype='float64')
# Iterate through the neighbors and sum (f_ij)
for j, rr_j in enumerate(pn_rr):
# Get position and velocity of neighbor agent
vv_j = pn_vv[j]
# Get radii of neighbor agent
rj = pn_r[j]
# Pass agent position to AgentForce calculation
ff_ij = neighbor_force(rr_i, ri, vv_i, rr_j, rj, vv_j)
# Sum Forces
force += ff_ij
return force
def neighbor_force(rr_i, ri, vv_i, rr_j, rj, vv_j):
# Calculate the force exerted by another agent
# Take in this agent (i) and a neighbors (j) position and radius
# Sum of radii
rij = ri + rj
# distance between center of mass
d_ij = mag(rr_i - rr_j)
# "n_ij is the normalized vector points from pedestrian j to i"
n_ij = norm(rr_i - rr_j) # Normalized vector pointing from j to i
# t_ij "Vector of tangential relative velocity pointing from i to j."
# A sliding force is applied on agent i in this direction to reduce the relative velocity.
t_ij = np.cross(vv_j - vv_i, [0,0,1] )
dv_ji = np.dot(vv_j - vv_i, t_ij)
# Calculate f_ij
force = repulsion(rij, d_ij, n_ij) + proximity(rij, d_ij, n_ij) + sliding(rij, d_ij, dv_ji, t_ij)
return force
def calc_goal_force(goal, pos, vel, mass, v_desired, dt):
ee_i = norm(goal - pos)
force = mass * ( ( (v_desired * ee_i) - vel ) / Parameters.Tau )
return force
def G(r_ij, d_ij):
# g(x) is a function that returns zero if pedestrians touch
# otherwise is equal to the argument x
if (d_ij > r_ij): return 0.0
return r_ij - d_ij;
def repulsion(r_ij, d_ij, n_ij):
force = Parameters.A * np.exp( (r_ij - d_ij) / Parameters.B) * n_ij
return force
def proximity(r_ij, d_ij, n_ij):
force = Parameters.kn * G(r_ij, d_ij) * n_ij
return force
def sliding(r_ij, d_ij, dv_ji, t_ij):
force = Parameters.kt * G(r_ij, d_ij) * (dv_ji * t_ij)
return force
def mag(v):
# calc magnitude of vector
v_mag = np.sqrt(v.dot(v))
return v_mag
def norm(v):
# normalize a vector
v_norm = v / mag(v)
return v_norm
def get_neighbors(cur, agents, pn_r):
dist = distance.cdist([cur], agents)
pn = dist < pn_r
# Index to remove is when its zero
pn_self = dist == 0
pn_self = np.nonzero(pn_self)
pn[pn_self] = False
pn = np.nonzero(pn)
return pn
def compute_force(rr_i, ri, vv_i, mass, goal, pn_rr, pn_vv, pn_r, dt):
# Get the force for this agent to the goal
goal = calc_goal_force(goal, rr_i, vv_i, mass, Parameters.v_desired, dt)
agent = calc_agent_force(rr_i, ri, vv_i, pn_rr, pn_vv, pn_r)
wall = calc_wall_force()
force = goal + agent + wall
force = norm(force) * min(mag(force), Parameters.max_speed)
return force
| 3,633 | Python | 26.323308 | 102 | 0.603909 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/models/socialforces_warp.py | import warp as wp
Tau = wp.constant(0.5) # s (acceleration)
A = wp.constant(2000.0) # N
B = wp.constant(0.08) # m
kn = wp.constant(1.2 * 100000) # kg/s^-2
kt = wp.constant(2.4 * 100000) # kg/m^-1 s^-2
max_speed = wp.constant(10.0) # m/s
v_desired = wp.constant(2.5) # m/s
@wp.kernel
def get_forces(positions: wp.array(dtype=wp.vec3),
velocities: wp.array(dtype=wp.vec3),
goals: wp.array(dtype=wp.vec3),
radius: wp.array(dtype=float),
mass: wp.array(dtype=float),
dt: float,
percept : wp.array(dtype=float),
grid : wp.uint64,
mesh: wp.uint64,
inv_up: wp.vec3,
forces: wp.array(dtype=wp.vec3),
):
# thread index
tid = wp.tid()
cur_pos = positions[tid]
cur_rad = radius[tid]
cur_vel = velocities[tid]
cur_mass = mass[tid]
goal = goals[tid]
pn = percept[tid]
_force = compute_force(cur_pos,
cur_rad,
cur_vel,
cur_mass,
goal,
positions,
velocities,
radius,
dt,
pn,
grid,
mesh)
# Clear any vertical forces with Element-wise mul
_force = wp.cw_mul(_force, inv_up)
# compute distance of each point from origin
forces[tid] = _force
@wp.kernel
def integrate(x : wp.array(dtype=wp.vec3),
v : wp.array(dtype=wp.vec3),
f : wp.array(dtype=wp.vec3),
dt: float,
xnew: wp.array(dtype=wp.vec3),
vnew: wp.array(dtype=wp.vec3),
):
tid = wp.tid()
x0 = x[tid]
v0 = v[tid]
f0 = f[tid]
v1 = v0 + (f0*1.0) * dt
x1 = x0 + v1 * dt
xnew[tid] = x1
vnew[tid] = v1
@wp.kernel
def heading(v : wp.array(dtype=wp.vec3),
up : wp.vec3,
forward : wp.vec3,
hdir: wp.array(dtype=wp.vec4),
):
tid = wp.tid()
v0 = v[tid]
vnorm = wp.normalize(v0)
hdir[tid] = velocity_to_quaternion(up, forward, vnorm)
@wp.func
def velocity_to_quaternion(up : wp.vec3,
forward : wp.vec3,
velocity: wp.vec3):
# Construct a quaternion that rotates the agent's forward direction to align with the velocity vector
if wp.length(forward) > 0: forward = wp.normalize(forward)
if wp.length(velocity) > 0: velocity = wp.normalize(velocity)
else:
velocity = forward
dot = wp.dot(forward, velocity) # Clip the dot product to avoid numerical instability
if dot == 1.0:
# If the forward and velocity vectors are already aligned, return the identity quaternion
return wp.vec4(0.0, 0.0, 0.0, 1.0)
else:
axis = wp.cross(forward, velocity)
axis = up * wp.sign(wp.dot(axis, up)) # Project the axis onto the up plane
if wp.length(axis) > 0.0: axis = wp.normalize(axis) # Normalize the axis of rotation
else:axis = up # Use a default axis of rotation if the iwput is a zero vector
angle = wp.acos(dot) # Calculate the angle of rotation with clipping
qw = wp.cos(angle/2.0) # Calculate the scalar component of the quaternion
qx = wp.sin(angle/2.0) * axis[0] # Calculate the vector component of the quaternion
qy = wp.sin(angle/2.0) * axis[1] # Calculate the vector component of the quaternion
qz = wp.sin(angle/2.0) * axis[2] # Calculate the vector component of the quaternion
return wp.vec4(qx, qy, qz, qw)
@wp.func
def calc_goal_force(goal: wp.vec3,
pos: wp.vec3,
vel: wp.vec3,
mass: float,
v_desired: float,
dt: float):
ee_i = wp.normalize(goal - pos)
force = mass * ( ( (v_desired * ee_i) - vel ) / (Tau) )
return force
@wp.func
def calc_wall_force(rr_i: wp.vec3,
ri: float,
vv_i: wp.vec3,
mesh: wp.uint64):
'''
rr_i : position
ri : radius
vv_i : velocity
Computes: (A * exp[(ri-diw)/B] + kn*g(ri-diw))*niw - kt * g(ri-diw)(vi * tiw)tiw
'''
face_index = int(0)
face_u = float(0.0)
face_v = float(0.0)
sign = float(0.0)
force = wp.vec3(0.0,0.0,0.0)
# Define the up direction
up_dir = wp.vec3(0.0, 0.0, 1.0)
max_dist = float(ri * 5.0)
has_point = wp.mesh_query_point(mesh, rr_i, max_dist, sign, face_index, face_u, face_v)
if (not has_point):
return wp.vec3(0.0, 0.0, 0.0)
p = wp.mesh_eval_position(mesh, face_index, face_u, face_v)
# d_iw = distance to wall W
d_iw = wp.length(p - rr_i)
# vector of the wall to the agent
nn_iw = wp.normalize(rr_i - p)
# perpendicular vector of the agent-wall (tangent force)
tt_iw = wp.cross(up_dir, nn_iw)
if wp.dot(vv_i, tt_iw) < 0.0:
tt_iw = -1.0 * tt_iw
# Compute force
# f_iW = { A * exp[(ri-diw)/B] + kn*g(ri-diw) } * niw
# - kt * g(ri-diw)(vi * tiw)tiw
f_rep = ( A * wp.exp((ri-d_iw)/B) + kn * G(ri, d_iw) ) * nn_iw
f_tan = kt * G(ri,d_iw) * wp.dot(vv_i, tt_iw) * tt_iw
force = f_rep - f_tan
return force
@wp.func
def calc_agent_force(rr_i: wp.vec3,
ri: float,
vv_i: wp.vec3,
pn_rr: wp.array(dtype=wp.vec3),
pn_vv: wp.array(dtype=wp.vec3),
pn_r: wp.array(dtype=float),
pn: float,
grid : wp.uint64,
):
'''Sum the forces of neighboring agents'''
# Set the total force of the other agents to zero
force = wp.vec3(0.0, 0.0, 0.0)
ff_ij = wp.vec3(0.0, 0.0, 0.0)
rr_j = wp.vec3(0.0, 0.0, 0.0)
# create grid query around point
query = wp.hash_grid_query(grid, rr_i, pn)
index = int(0)
# Iterate through the neighbors and sum (f_ij)
while(wp.hash_grid_query_next(query, index)):
j = index
neighbor = pn_rr[j]
# compute distance to neighbor point
dist = wp.length(rr_i-neighbor)
if (dist <= pn):
# Get position and velocity of neighbor agent
rr_j = pn_rr[j]
vv_j = pn_vv[j]
# Get radii of neighbor agent
rj = pn_r[j]
# Pass agent position to AgentForce calculation
ff_ij = neighbor_force(rr_i, ri, vv_i, rr_j, rj, vv_j)
# Sum Forces
force += ff_ij
return force
@wp.func
def neighbor_force(rr_i: wp.vec3,
ri: float,
vv_i: wp.vec3,
rr_j: wp.vec3,
rj: float,
vv_j: wp.vec3):
'''Calculate the force exerted by another agent.
Take in this agent (i) and a neighbors (j) position and radius'''
# Sum of radii
rij = ri + rj
# distance between center of mass
d_ij = wp.length(rr_i - rr_j)
# "n_ij is the normalized vector points from pedestrian j to i"
n_ij = wp.normalize(rr_i - rr_j) # Normalized vector pointing from j to i
# t_ij "Vector of tangential relative velocity pointing from i to j."
# A sliding force is applied on agent i in this direction to reduce the relative velocity.
t_ij = vv_j - vv_i
dv_ji = wp.dot(vv_j - vv_i, t_ij)
# Calculate f_ij
force = repulsion(rij, d_ij, n_ij) + proximity(rij, d_ij, n_ij) + sliding(rij, d_ij, dv_ji, t_ij)
return force
@wp.func
def G(r_ij: float,
d_ij: float
):
# g(x) is a function that returns zero if pedestrians touch
# otherwise is equal to the argument x
if (d_ij > r_ij): return 0.0
return r_ij - d_ij
@wp.func
def repulsion(r_ij: float,
d_ij: float,
n_ij: wp.vec3):
force = A * wp.exp( (r_ij - d_ij) / B) * n_ij
return force
@wp.func
def proximity(r_ij: float,
d_ij: float,
n_ij: wp.vec3):
force = (kn * G(r_ij, d_ij)) * n_ij # body force
return force
@wp.func
def sliding(r_ij: float,
d_ij: float,
dv_ji: float,
t_ij: wp.vec3):
force = kt * G(r_ij, d_ij) * (dv_ji * t_ij)
return force
@wp.func
def compute_force(rr_i: wp.vec3,
ri: float,
vv_i: wp.vec3,
mass:float,
goal:wp.vec3,
pn_rr: wp.array(dtype=wp.vec3),
pn_vv: wp.array(dtype=wp.vec3),
pn_r: wp.array(dtype=float),
dt: float,
pn: float,
grid : wp.uint64,
mesh: wp.uint64
):
'''
rr_i : position
ri : radius
vv_i : velocity
pn_rr : List[perceived neighbor positions]
pn_vv : List[perceived neighbor velocities]
pn_r : List[perceived neighbor radius]
'''
# Get the force for this agent to the goal
goal = calc_goal_force(goal, rr_i, vv_i, mass, v_desired, dt)
agent = calc_agent_force(rr_i, ri, vv_i, pn_rr, pn_vv, pn_r, pn, grid)
wall = calc_wall_force(rr_i, ri, vv_i, mesh)
# Sum of forces
force = goal + agent + wall
force = wp.normalize(force) * wp.min(wp.length(force), max_speed)
return force
| 9,633 | Python | 29.200627 | 105 | 0.508876 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/tests/__init__.py | from .test_hello_world import * | 31 | Python | 30.999969 | 31 | 0.774194 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/tests/test_hello_world.py | # NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
import omni.kit.test
# Extnsion for writing UI tests (simulate UI interaction)
import omni.kit.ui_test as ui_test
# Import extension python module we are testing with absolute import path, as if we are external user (other extension)
import siborg.simulate.crowd
# Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test
class Test(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
pass
# After running each test
async def tearDown(self):
pass
# Actual test, notice it is "async" function, so "await" can be used if needed
async def test_hello_public_function(self):
result = siborg.simulate.crowd.some_public_function(4)
self.assertEqual(result, 256)
async def test_window_button(self):
# Find a label in our window
label = ui_test.find("My Window//Frame/**/Label[*]")
# Find buttons in our window
add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'")
reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'")
# Click reset button
await reset_button.click()
self.assertEqual(label.widget.text, "empty")
await add_button.click()
self.assertEqual(label.widget.text, "count: 1")
await add_button.click()
self.assertEqual(label.widget.text, "count: 2")
| 1,678 | Python | 34.723404 | 142 | 0.682956 |
cadop/crowds/exts/siborg.simulate.crowd/config/extension.toml | [package]
# Semantic Versioning is used: https://semver.org/
version = "0.0.3-alpha"
# The title and description fields are primarily for displaying extension info in UI
title = "Crowd Simulation"
description="An implementation of the Social Forces crowd simulation (it may or may not be correct). There is currently no environment detection. The current implementation is in PhysX. We plan to support more methods in the future, as well as more crowd simulators. Contributions are welcome."
# Path (relative to the root) or content of readme markdown file for UI.
readme = "docs/README.md"
# URL of the extension source repository.
repository = ""
# One of categories for UI.
category = "Create"
# Keywords for the extension
keywords = ["kit", "example", "crowds", "simulation"]
# Icon to show in the extension manager
icon = "data/icon.png"
# Preview to show in the extension manager
preview_image = "data/preview.png"
# Use omni.ui to build simple UI
[dependencies]
"omni.kit.uiapp" = {}
# Main python module this extension provides, it will be publicly available as "import siborg.simulate.crowd".
[[python.module]]
name = "siborg.simulate.crowd"
[[test]]
# Extra dependencies only to be used during test run
dependencies = [
"omni.kit.ui_test" # UI testing extension
]
[python.pipapi]
use_online_index = true
requirements = ["scipy"] | 1,357 | TOML | 29.177777 | 295 | 0.744289 |
cadop/crowds/exts/siborg.simulate.crowd/docs/CHANGELOG.md | # Changelog
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
## [1.0.0] - 2021-04-26
- Initial version of extension UI template with a window
| 178 | Markdown | 18.888887 | 80 | 0.702247 |
cadop/crowds/exts/siborg.simulate.crowd/docs/README.md | # Crowd Simulator
A crowd simulator API with a default demo scene. The main python API can be used in a few ways. There is an examples folder showing a few use-cases. Users can also switch between social forces and PAM as the crowds algorithm.
The extension will load an populate some demo configuration. It will create an Xform called CrowdGoals. To add a goal for the crowd. Create an xform under the "CrowdGoals". We automatically check for those prims as the method of determing crowd goals. For every additional xform under CrowdGoals, we evenly split the crowd to assign those goals.
There are two options for the crowd objects. The default uses geompoints, which is faster and runs its own integration of the forces for position and velocity. It does not interact with any physics in the scene. Alternatively the "Rigid Body" can be used, which creates physical spheres that interact with the scene.
Press Play to see the crowd.
The default number of demo agents is a 3x3 grid (9 agents). The current simulator in python may struggle above 25 agents, depending on CPU configuration.
We plan to support more methods in the future, as well as more crowd simulators. Contributions are welcome.
| 1,214 | Markdown | 85.785708 | 348 | 0.791598 |
cadop/arduverse/puppet_handle_1.py | from omni.kit.scripting import BehaviorScript
import socket
import numpy as np
import math
from pxr import Gf
import numpy as np
import math
class Puppet2(BehaviorScript):
def on_init(self):
print(f"{__class__.__name__}.on_init()->{self.prim_path}")
# Set up the server address and port
UDP_IP = "0.0.0.0"
UDP_PORT = 8881
# Create a UDP socket
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind((UDP_IP, UDP_PORT))
self.sock.setblocking(0)
print("Waiting for data...")
def on_destroy(self):
print(f"{__class__.__name__}.on_destroy()->{self.prim_path}")
self.sock = None
rot = [0, 0, 0]
self.prim.GetAttribute('xformOp:rotateXYZ').Set(Gf.Vec3d(rot))
def on_play(self):
print(f"{__class__.__name__}.on_play()->{self.prim_path}")
# Set up the server address and port
UDP_IP = "0.0.0.0"
UDP_PORT = 8881
# Create a UDP socket
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind((UDP_IP, UDP_PORT))
self.sock.setblocking(0)
# Time interval between sensor readings in seconds
self.dt = 0.02
def on_pause(self):
print(f"{__class__.__name__}.on_pause()->{self.prim_path}")
def on_stop(self):
print(f"{__class__.__name__}.on_stop()->{self.prim_path}")
self.on_destroy()
def on_update(self, current_time: float, delta_time: float):
self.get_data()
def get_data(self):
# # Receive data from the Arduino
data = self.clear_socket_buffer()
if data is None: return
# Decode the data and split it into Pitch and Roll
data = data.decode()
device, pitch, roll, yaw = data.split(",")
x,y,z = float(roll), float(yaw), 180-float(pitch)
rot = [x, y, z]
self.prim.GetAttribute('xformOp:rotateXYZ').Set(Gf.Vec3d(rot))
def clear_socket_buffer(self):
# Function to clear the socket's buffer
latest_data = None
while True:
try:
# Try to read data from the socket in a non-blocking way
latest_data, addr = self.sock.recvfrom(1024)
except BlockingIOError:
# No more data to read (buffer is empty)
return latest_data | 2,384 | Python | 30.8 | 72 | 0.575084 |
cadop/arduverse/puppet_handle_2.py | from omni.kit.scripting import BehaviorScript
import socket
import numpy as np
import math
from pxr import Gf
import numpy as np
import math
class Puppet2(BehaviorScript):
def on_init(self):
print(f"{__class__.__name__}.on_init()->{self.prim_path}")
# Set up the server address and port
UDP_IP = "0.0.0.0"
UDP_PORT = 8882
# Create a UDP socket
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind((UDP_IP, UDP_PORT))
self.sock.setblocking(0)
print("Waiting for data...")
def on_destroy(self):
print(f"{__class__.__name__}.on_destroy()->{self.prim_path}")
self.sock = None
rot = [0, 0, 0]
self.prim.GetAttribute('xformOp:rotateXYZ').Set(Gf.Vec3d(rot))
def on_play(self):
print(f"{__class__.__name__}.on_play()->{self.prim_path}")
# Set up the server address and port
UDP_IP = "0.0.0.0"
UDP_PORT = 8882
# Create a UDP socket
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind((UDP_IP, UDP_PORT))
self.sock.setblocking(0)
# Time interval between sensor readings in seconds
self.dt = 0.02
def on_pause(self):
print(f"{__class__.__name__}.on_pause()->{self.prim_path}")
def on_stop(self):
print(f"{__class__.__name__}.on_stop()->{self.prim_path}")
self.on_destroy()
def on_update(self, current_time: float, delta_time: float):
self.get_data()
def get_data(self):
# # Receive data from the Arduino
data = self.clear_socket_buffer()
if data is None: return
# Decode the data and split it into Pitch and Roll
data = data.decode()
device, pitch, roll, yaw = data.split(",")
x,y,z = float(roll), float(yaw), 180-float(pitch)
rot = [x, y, z]
self.prim.GetAttribute('xformOp:rotateXYZ').Set(Gf.Vec3d(rot))
def clear_socket_buffer(self):
# Function to clear the socket's buffer
latest_data = None
while True:
try:
# Try to read data from the socket in a non-blocking way
latest_data, addr = self.sock.recvfrom(1024)
except BlockingIOError:
# No more data to read (buffer is empty)
return latest_data | 2,384 | Python | 30.8 | 72 | 0.575084 |
cadop/arduverse/README.md | # arduverse
Project files and source code for making a real-time streaming from arduino to omniverse
Clone/download the repo. You should be able to just open the usda file in *PuppetScene* folder.
To use:
- Upload the *UDP_FilteredAngle.ino* file to an arduino (RP2040 is what I used).
- Make sure to change the wifi network credentials to your own
- Try to run the *udp.py* file to make sure the arduino is connecting and sending data
- If the udp to python connection is working, you should be able to get the scene running.
- To use the base file, in omniverse create a python behavior script on any xform, and attach the script (e.g. *puppet_handle_1.py*)
Open an issue if you have problems. Also if you want to contribute go for it.
![Featured Puppet Image](https://github.com/cadop/arduverse/blob/main/FeaturedImg.png?raw=true)
| 842 | Markdown | 51.687497 | 132 | 0.764846 |
cadop/arduverse/udp.py | import socket
# Set up the server address and port
UDP_IP = "0.0.0.0"
UDP_PORT1 = 8881
UDP_PORT2 = 8882
# Create a UDP socket
sock1 = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock2 = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock1.bind((UDP_IP, UDP_PORT1))
sock2.bind((UDP_IP, UDP_PORT2))
sock1.setblocking(0)
sock2.setblocking(0)
print("Waiting for data...")
while True:
# Receive data from the Arduino
try:
data, addr = sock1.recvfrom(1024)
print("Received message 1:", data.decode())
except: pass
try:
data, addr = sock2.recvfrom(1024)
print("Received message 2:", data.decode())
except: pass | 667 | Python | 22.857142 | 56 | 0.668666 |
cadop/arduverse/PuppetScene/puppet_handle_2.py | from omni.kit.scripting import BehaviorScript
import socket
import numpy as np
import math
from pxr import Gf
import numpy as np
import math
class Puppet2(BehaviorScript):
def on_init(self):
print(f"{__class__.__name__}.on_init()->{self.prim_path}")
# Set up the server address and port
UDP_IP = "0.0.0.0"
UDP_PORT = 8882
# Create a UDP socket
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind((UDP_IP, UDP_PORT))
self.sock.setblocking(0)
print("Waiting for data...")
def on_destroy(self):
print(f"{__class__.__name__}.on_destroy()->{self.prim_path}")
self.sock.close()
self.sock = None
rot = [0, 0, 0]
self.prim.GetAttribute('xformOp:rotateXYZ').Set(Gf.Vec3d(rot))
def on_play(self):
print(f"{__class__.__name__}.on_play()->{self.prim_path}")
# Set up the server address and port
UDP_IP = "0.0.0.0"
UDP_PORT = 8882
# Create a UDP socket
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind((UDP_IP, UDP_PORT))
self.sock.setblocking(0)
# Time interval between sensor readings in seconds
self.dt = 0.02
def on_pause(self):
print(f"{__class__.__name__}.on_pause()->{self.prim_path}")
def on_stop(self):
print(f"{__class__.__name__}.on_stop()->{self.prim_path}")
self.on_destroy()
def on_update(self, current_time: float, delta_time: float):
self.get_data()
def get_data(self):
# # Receive data from the Arduino
data = self.clear_socket_buffer()
if data is None: return
# Decode the data and split it into Pitch and Roll
data = data.decode()
device, pitch, roll, yaw = data.split(",")
x,y,z = float(roll), float(yaw), 180-float(pitch)
rot = [x, y, z]
self.prim.GetAttribute('xformOp:rotateXYZ').Set(Gf.Vec3d(rot))
def clear_socket_buffer(self):
# Function to clear the socket's buffer
latest_data = None
while True:
try:
# Try to read data from the socket in a non-blocking way
latest_data, addr = self.sock.recvfrom(1024)
except BlockingIOError:
# No more data to read (buffer is empty)
return latest_data
| 2,424 | Python | 30.089743 | 72 | 0.570957 |
jshrake-nvidia/kit-cv-video-example/README.md | # kit-cv-video-example
Example Omniverse Kit extension that demonstrates how to stream video (webcam, RTSP, mp4, mov, ) to a dynamic texture using [OpenCV VideoCapture](https://docs.opencv.org/3.4/dd/d43/tutorial_py_video_display.html) and [omni.ui.DynamicTextureProvider](https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html#byteimageprovider).
![demo](./images/demo.gif)
For a basic example of how to use `omni.ui.DynamicTextureProvider`, please see <https://github.com/jshrake-nvidia/kit-dynamic-texture-example>.
**WARNING**: This is a prototype and is not necessarily ready for production use. The performance of this example may not meet your performance requirements and is not optimized. This example is a temporary solution until a more mature and optimized streaming solution becomes available in the platform. This example currently only scales to a very limited number of low resolution streams.
## Getting Started
- Requires Kit 104.1 >=
- Tested in Create 2022.3.1, 2022.3.3
```
./link_app.bat --app create
./app/omni.create.bat --/rtx/ecoMode/enabled=false --ext-folder exts --enable omni.cv-video.example
```
Make sure that eco mode is disabled under Render Settings > Raytracing.
From the extension UI window, update the URI and click the Create button. A plane prim will be created at (0, 0, 0) with an OmniPBR material containing a dynamic video stream for the albedo texture. The extension should support whatever the OpenCV VideoCapture API supports.
Here are a few URIs you can use to test:
- Your own web camera: `0`
- HLS: `https://test-streams.mux.dev/x36xhzz/x36xhzz.m3u8`
- RTSP: `rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mp4`
| 1,730 | Markdown | 54.838708 | 390 | 0.773988 |
jshrake-nvidia/kit-cv-video-example/tools/scripts/link_app.py | import os
import argparse
import sys
import json
import packmanapi
import urllib3
def find_omniverse_apps():
http = urllib3.PoolManager()
try:
r = http.request("GET", "http://127.0.0.1:33480/components")
except Exception as e:
print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}")
sys.exit(1)
apps = {}
for x in json.loads(r.data.decode("utf-8")):
latest = x.get("installedVersions", {}).get("latest", "")
if latest:
for s in x.get("settings", []):
if s.get("version", "") == latest:
root = s.get("launch", {}).get("root", "")
apps[x["slug"]] = (x["name"], root)
break
return apps
def create_link(src, dst):
print(f"Creating a link '{src}' -> '{dst}'")
packmanapi.link(src, dst)
APP_PRIORITIES = ["code", "create", "view"]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher")
parser.add_argument(
"--path",
help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'",
required=False,
)
parser.add_argument(
"--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False
)
args = parser.parse_args()
path = args.path
if not path:
print("Path is not specified, looking for Omniverse Apps...")
apps = find_omniverse_apps()
if len(apps) == 0:
print(
"Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers."
)
sys.exit(0)
print("\nFound following Omniverse Apps:")
for i, slug in enumerate(apps):
name, root = apps[slug]
print(f"{i}: {name} ({slug}) at: '{root}'")
if args.app:
selected_app = args.app.lower()
if selected_app not in apps:
choices = ", ".join(apps.keys())
print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}")
sys.exit(0)
else:
selected_app = next((x for x in APP_PRIORITIES if x in apps), None)
if not selected_app:
selected_app = next(iter(apps))
print(f"\nSelected app: {selected_app}")
_, path = apps[selected_app]
if not os.path.exists(path):
print(f"Provided path doesn't exist: {path}")
else:
SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__))
create_link(f"{SCRIPT_ROOT}/../../app", path)
print("Success!")
| 2,813 | Python | 32.5 | 133 | 0.562389 |
jshrake-nvidia/kit-cv-video-example/tools/packman/config.packman.xml | <config remotes="cloudfront">
<remote2 name="cloudfront">
<transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" />
</remote2>
</config>
| 211 | XML | 34.333328 | 123 | 0.691943 |
jshrake-nvidia/kit-cv-video-example/tools/packman/bootstrap/install_package.py | # Copyright 2019 NVIDIA CORPORATION
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import zipfile
import tempfile
import sys
import shutil
__author__ = "hfannar"
logging.basicConfig(level=logging.WARNING, format="%(message)s")
logger = logging.getLogger("install_package")
class TemporaryDirectory:
def __init__(self):
self.path = None
def __enter__(self):
self.path = tempfile.mkdtemp()
return self.path
def __exit__(self, type, value, traceback):
# Remove temporary data created
shutil.rmtree(self.path)
def install_package(package_src_path, package_dst_path):
with zipfile.ZipFile(
package_src_path, allowZip64=True
) as zip_file, TemporaryDirectory() as temp_dir:
zip_file.extractall(temp_dir)
# Recursively copy (temp_dir will be automatically cleaned up on exit)
try:
# Recursive copy is needed because both package name and version folder could be missing in
# target directory:
shutil.copytree(temp_dir, package_dst_path)
except OSError as exc:
logger.warning(
"Directory %s already present, packaged installation aborted" % package_dst_path
)
else:
logger.info("Package successfully installed to %s" % package_dst_path)
install_package(sys.argv[1], sys.argv[2])
| 1,888 | Python | 31.568965 | 103 | 0.68697 |
jshrake-nvidia/kit-cv-video-example/exts/omni.cv-video.example/config/extension.toml | [package]
# Semantic Versionning is used: https://semver.org/
version = "1.0.0"
# The title and description fields are primarily for displaying extension info in UI
title = "Omni RTSP Dyanmic Texture Example"
description = "An example that demonstrates how to stream RTSP feeds using OpenCV and omni.ui.DynamicTextureProvider"
# Path (relative to the root) or content of readme markdown file for UI.
readme = "docs/README.md"
# Path (relative to the root) of changelog
changelog = "docs/CHANGELOG.md"
# URL of the extension source repository.
repository = "https://github.com/NVIDIA-Omniverse/kit-extension-template"
# One of categories for UI.
category = "Example"
# Keywords for the extension
keywords = ["kit", "example"]
# Icon to show in the extension manager
icon = "data/icon.png"
# Preview to show in the extension manager
preview_image = "data/preview.png"
# Use omni.ui to build simple UI
[dependencies]
"omni.kit.uiapp" = {}
"omni.kit.pipapi" = {}
"omni.warp" = {}
[python.pipapi]
requirements = [
"opencv-python"
]
use_online_index = true
[[python.module]]
name = "omni.cv-video.example"
[[test]]
# Extra dependencies only to be used during test run
dependencies = [
"omni.kit.ui_test" # UI testing extension
]
| 1,245 | TOML | 23.431372 | 117 | 0.728514 |
jshrake-nvidia/kit-cv-video-example/exts/omni.cv-video.example/omni/cv-video/example/extension.py | """
Omniverse Kit example extension that demonstrates how to stream video (such as RTSP) to a dynamic texture using [OpenCV VideoCapture](https://docs.opencv.org/3.4/dd/d43/tutorial_py_video_display.html)
and [omni.ui.DynamicTextureProvider](https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html#byteimageprovider).
TODO:
- [x] Investigate how to perform the color space conversion and texture updates in a separate thread
- [ ] Investigate how to avoid the color space conversion and instead use the native format of the frame provided by OpenCV
"""
import asyncio
import threading
import time
from typing import List
import carb
import carb.profiler
import cv2 as cv
import numpy as np
import omni.ext
import omni.kit.app
import omni.ui
from pxr import Kind, Sdf, Usd, UsdGeom, UsdShade
DEFAULT_STREAM_URI = "rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mp4"
#DEFAULT_STREAM_URI = "C:/Users/jshrake/Downloads/1080p.mp4"
def create_textured_plane_prim(
stage: Usd.Stage, prim_path: str, texture_name: str, width: float, height: float
) -> Usd.Prim:
"""
Creates a plane prim and an OmniPBR material with a dynamic texture for the albedo map
"""
hw = width / 2
hh = height / 2
# This code is mostly copy pasted from https://graphics.pixar.com/usd/release/tut_simple_shading.html
billboard: UsdGeom.Mesh = UsdGeom.Mesh.Define(stage, f"{prim_path}/Mesh")
billboard.CreatePointsAttr([(-hw, -hh, 0), (hw, -hh, 0), (hw, hh, 0), (-hw, hh, 0)])
billboard.CreateFaceVertexCountsAttr([4])
billboard.CreateFaceVertexIndicesAttr([0, 1, 2, 3])
billboard.CreateExtentAttr([(-430, -145, 0), (430, 145, 0)])
texCoords = UsdGeom.PrimvarsAPI(billboard).CreatePrimvar(
"st", Sdf.ValueTypeNames.TexCoord2fArray, UsdGeom.Tokens.varying
)
texCoords.Set([(0, 0), (1, 0), (1, 1), (0, 1)])
material_path = f"{prim_path}/Material"
material: UsdShade.Material = UsdShade.Material.Define(stage, material_path)
shader: UsdShade.Shader = UsdShade.Shader.Define(stage, f"{material_path}/Shader")
shader.SetSourceAsset("OmniPBR.mdl", "mdl")
shader.SetSourceAssetSubIdentifier("OmniPBR", "mdl")
shader.CreateIdAttr("OmniPBR")
shader.CreateInput("diffuse_texture", Sdf.ValueTypeNames.Asset).Set(f"dynamic://{texture_name}")
material.CreateSurfaceOutput().ConnectToSource(shader.ConnectableAPI(), "surface")
billboard.GetPrim().ApplyAPI(UsdShade.MaterialBindingAPI)
UsdShade.MaterialBindingAPI(billboard).Bind(material)
return billboard
class OpenCvVideoStream:
"""
A small abstraction around OpenCV VideoCapture and omni.ui.DynamicTextureProvider,
making a one-to-one mapping between the two
Resources:
- https://docs.opencv.org/3.4/d8/dfe/classcv_1_1VideoCapture.html
- https://docs.opencv.org/3.4/dd/d43/tutorial_py_video_display.html
- https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html#omni.ui.ByteImageProvider.set_bytes_data_from_gpu
"""
def __init__(self, name: str, stream_uri: str):
self.name = name
self.uri = stream_uri
self.texture_array = None
try:
# Attempt to treat the uri as an int
# https://docs.opencv.org/3.4/d8/dfe/classcv_1_1VideoCapture.html#a5d5f5dacb77bbebdcbfb341e3d4355c1
stream_uri_as_int = int(stream_uri)
self._video_capture = cv.VideoCapture(stream_uri_as_int)
except:
# Otherwise treat the uri as a str
self._video_capture = cv.VideoCapture(stream_uri)
self.fps: float = self._video_capture.get(cv.CAP_PROP_FPS)
self.width: int = self._video_capture.get(cv.CAP_PROP_FRAME_WIDTH)
self.height: int = self._video_capture.get(cv.CAP_PROP_FRAME_HEIGHT)
self._dynamic_texture = omni.ui.DynamicTextureProvider(name)
self._last_read = time.time()
self.is_ok = self._video_capture.isOpened()
# If this FPS is 0, set it to something sensible
if self.fps == 0:
self.fps = 24
@carb.profiler.profile
def update_texture(self):
# Rate limit frame reads to the underlying FPS of the capture stream
now = time.time()
time_delta = now - self._last_read
if time_delta < 1.0 / self.fps:
return
self._last_read = now
# Read the frame
carb.profiler.begin(0, "read")
ret, frame = self._video_capture.read()
carb.profiler.end(0)
# The video may be at the end, loop by setting the frame position back to 0
if not ret:
self._video_capture.set(cv.CAP_PROP_POS_FRAMES, 0)
self._last_read = time.time()
return
# By default, OpenCV converts the frame to BGR
# We need to convert the frame to a texture format suitable for RTX
# In this case, we convert to BGRA, but the full list of texture formats can be found at
# # kit\source\extensions\omni.gpu_foundation\bindings\python\omni.gpu_foundation_factory\GpuFoundationFactoryBindingsPython.cpp
frame: np.ndarray
carb.profiler.begin(0, "color space conversion")
frame = cv.cvtColor(frame, cv.COLOR_BGR2RGBA)
carb.profiler.end(0)
height, width, channels = frame.shape
carb.profiler.begin(0, "set_bytes_data")
self._dynamic_texture.set_data_array(frame, [width, height, channels])
carb.profiler.end(0)
class OmniRtspExample(omni.ext.IExt):
def on_startup(self, ext_id):
# stream = omni.kit.app.get_app().get_update_event_stream()
# self._sub = stream.create_subscription_to_pop(self._update_streams, name="update")
self._streams: List[OpenCvVideoStream] = []
self._stream_threads: List[threading.Thread] = []
self._stream_uri_model = omni.ui.SimpleStringModel(DEFAULT_STREAM_URI)
self._window = omni.ui.Window("OpenCV Video Streaming Example", width=800, height=200)
with self._window.frame:
with omni.ui.VStack():
omni.ui.StringField(model=self._stream_uri_model)
omni.ui.Button("Create", clicked_fn=self._on_click_create)
@carb.profiler.profile
def _update_stream(self, i):
async def loop():
while self._running:
await asyncio.sleep(0.001)
self._streams[i].update_texture()
asyncio.run(loop())
def _on_click_create(self):
name = f"Video{len(self._streams)}"
image_name = name
usd_context = omni.usd.get_context()
stage: Usd.Stage = usd_context.get_stage()
prim_path = f"/World/{name}"
# If the prim already exists, remove it so we can create it again
try:
stage.RemovePrim(prim_path)
self._streams = [stream for stream in self._streams if stream.name != image_name]
except:
pass
# Create the stream
stream_uri = self._stream_uri_model.get_value_as_string()
video_stream = OpenCvVideoStream(image_name, stream_uri)
if not video_stream.is_ok:
carb.log_error(f"Error opening stream: {stream_uri}")
return
self._streams.append(video_stream)
carb.log_info(f"Creating video steam {stream_uri} {video_stream.width}x{video_stream.height}")
# Create the mesh + material + shader
model_root = UsdGeom.Xform.Define(stage, prim_path)
Usd.ModelAPI(model_root).SetKind(Kind.Tokens.component)
create_textured_plane_prim(stage, prim_path, image_name, video_stream.width, video_stream.height)
# Clear the string model
# self._stream_uri_model.set_value("")
# Create the thread to pump the video stream
self._running = True
i = len(self._streams) - 1
thread = threading.Thread(target=self._update_stream, args=(i, ))
thread.daemon = True
thread.start()
self._stream_threads.append(thread)
def on_shutdown(self):
# self._sub.unsubscribe()
self._running = False
for thread in self._stream_threads:
thread.join()
self._stream_threads = []
self._streams = []
| 8,262 | Python | 43.187166 | 201 | 0.657105 |
jshrake-nvidia/kit-cv-video-example/exts/omni.cv-video.example/omni/cv-video/example/__init__.py | # TODO: Work around OM-108110
# by explicitly adding the python3.dll directory to the DLL search path list.
# cv2.dll fails to load because it can't load the python3.dll dependency
try:
import os
import pathlib
import sys
# The python3.dll lives in the python directory adjacent to the kit executable
# Get the path to the current kit process
exe_path = sys.executable
exe_dir = pathlib.Path(exe_path).parent
python_dir = exe_dir / "python"
print(f"Adding {python_dir} to DLL search path list")
os.add_dll_directory(python_dir)
except Exception as e:
print(f"Error adding python directory to DLL search path list {e}")
from .extension import *
| 690 | Python | 33.549998 | 82 | 0.718841 |
jshrake-nvidia/kit-cv-video-example/exts/omni.cv-video.example/omni/cv-video/example/tests/__init__.py | from .test_hello_world import * | 31 | Python | 30.999969 | 31 | 0.774194 |
jshrake-nvidia/kit-cv-video-example/exts/omni.cv-video.example/omni/cv-video/example/tests/test_hello_world.py | # NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
import omni.kit.test
# Extnsion for writing UI tests (simulate UI interaction)
import omni.kit.ui_test as ui_test
# Import extension python module we are testing with absolute import path, as if we are external user (other extension)
import omni.hello.world
# Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test
class Test(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
pass
# After running each test
async def tearDown(self):
pass
# Actual test, notice it is "async" function, so "await" can be used if needed
async def test_hello_public_function(self):
result = omni.hello.world.some_public_function(4)
self.assertEqual(result, 256)
async def test_window_button(self):
# Find a label in our window
label = ui_test.find("My Window//Frame/**/Label[*]")
# Find buttons in our window
add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'")
reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'")
# Click reset button
await reset_button.click()
self.assertEqual(label.widget.text, "empty")
await add_button.click()
self.assertEqual(label.widget.text, "count: 1")
await add_button.click()
self.assertEqual(label.widget.text, "count: 2")
| 1,668 | Python | 34.510638 | 142 | 0.681055 |
jshrake-nvidia/kit-cv-video-example/exts/omni.cv-video.example/docs/CHANGELOG.md | # Changelog
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
## [1.0.0] - 2021-04-26
- Initial version of extension UI template with a window
| 178 | Markdown | 18.888887 | 80 | 0.702247 |
jshrake-nvidia/kit-cv-video-example/exts/omni.cv-video.example/docs/README.md | # Simple UI Extension Template
The simplest python extension example. Use it as a starting point for your extensions.
| 119 | Markdown | 28.999993 | 86 | 0.806723 |
jshrake-nvidia/kit-dynamic-texture-example/README.md | # Dynamic Texture Provider Example
Demonstrates how to programmatically generate a textured quad using the [omni.ui.DynamicTextureProvider](https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html) API.
Tested against Create 2022.3.1.
```console
.\link_app.bat --path C:\Users\jshrake\AppData\Local\ov\pkg\prod-create-2022.3.1
.\app\omni.create.bat --ext-folder exts --enable omni.dynamic_texture_example
```
![demo](./demo.gif)
## *Omniverse Kit* Extensions Project Template
This project is a template for developing extensions for *Omniverse Kit*.
# Getting Started
## Install Omniverse and some Apps
1. Install *Omniverse Launcher*: [download](https://www.nvidia.com/en-us/omniverse/download)
2. Install and launch one of *Omniverse* apps in the Launcher. For instance: *Code*.
## Add a new extension to your *Omniverse App*
1. Fork and clone this repo, for example in `C:\projects\kit-extension-template`
2. In the *Omniverse App* open extension manager: *Window* → *Extensions*.
3. In the *Extension Manager Window* open a settings page, with a small gear button in the top left bar.
4. In the settings page there is a list of *Extension Search Paths*. Add cloned repo `exts` subfolder there as another search path: `C:\projects\kit-extension-template\exts`
![Extension Manager Window](/images/add-ext-search-path.png)
5. Now you can find `omni.hello.world` extension in the top left search bar. Select and enable it.
6. "My Window" window will pop up. *Extension Manager* watches for any file changes. You can try changing some code in this extension and see them applied immediately with a hotreload.
### Few tips
* Now that `exts` folder was added to the search you can add new extensions to this folder and they will be automatically found by the *App*.
* Look at the *Console* window for warnings and errors. It also has a small button to open current log file.
* All the same commands work on linux. Replace `.bat` with `.sh` and `\` with `/`.
* Extension name is a folder name in `exts` folder, in this example: `omni.hello.world`.
* Most important thing extension has is a config file: `extension.toml`, take a peek.
## Next Steps: Alternative way to add a new extension
To get a better understanding and learn a few other things, we recommend following next steps:
1. Remove search path added in the previous section.
1. Open this cloned repo using Visual Studio Code: `code C:\projects\kit-extension-template`. It will suggest installing a few extensions to improve python experience.
2. In the terminal (CTRL + \`) run `link_app.bat` (more in [Linking with an *Omniverse* app](#linking-with-an-omniverse-app) section).
3. Run this app with `exts` folder added as an extensions search path and new extension enabled:
```bash
> app\omni.code.bat --ext-folder exts --enable omni.hello.world
```
- `--ext-folder [path]` - adds new folder to the search path
- `--enable [extension]` - enables an extension on startup.
Use `-h` for help:
```bash
> app\omni.code.bat -h
```
4. After the *App* started you should see:
* new "My Window" window popup.
* extension search paths in *Extensions* window as in the previous section.
* extension enabled in the list of extensions.
5. If you look inside `omni.code.bat` or any other *Omniverse App*, they all run *Omniverse Kit* (`kit.exe`). *Omniverse Kit* is the Omniverse Application runtime that powers *Apps* build out of extensions.
Think of it as `python.exe`. It is a small runtime, that enables all the basics, like settings, python, logging and searches for extensions. **Everything else is an extension.** You can run only this new extension without running any big *App* like *Code*:
```bash
> app\kit\kit.exe --ext-folder exts --enable omni.hello.world
```
It starts much faster and will only have extensions enabled that are required for this new extension (look at `[dependencies]` section of `extension.toml`). You can enable more extensions: try adding `--enable omni.kit.window.extensions` to have extensions window enabled (yes, extension window is an extension too!):
```bash
> app\kit\kit.exe --ext-folder exts --enable omni.hello.world --enable omni.kit.window.extensions
```
You should see a menu in the top left. From here you can enable more extensions from the UI.
### Few tips
* In the *Extensions* window, press *Bread* button near the search bar and select *Show Extension Graph*. It will show how the current *App* comes to be: all extensions and dependencies.
* Extensions system documentation: http://omniverse-docs.s3-website-us-east-1.amazonaws.com/kit-sdk/104.0/docs/guide/extensions.html
# Running Tests
To run tests we run a new process where only the tested extension (and it's dependencies) is enabled. Like in example above + testing system (`omni.kit.test` extension). There are 2 ways to run extension tests:
1. Run: `app\kit\test_ext.bat omni.hello.world --ext-folder exts`
That will run a test process with all tests and exit. For development mode pass `--dev`: that will open test selection window. As everywhere, hotreload also works in this mode, give it a try by changing some code!
2. Alternatively, in *Extension Manager* (*Window → Extensions*) find your extension, click on *TESTS* tab, click *Run Test*
For more information about testing refer to: [testing doc](http://omniverse-docs.s3-website-us-east-1.amazonaws.com/kit-sdk/104.0/docs/guide/ext_testing.html).
# Linking with an *Omniverse* app
For a better developer experience, it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. A convenience script to use is included.
Run:
```bash
> link_app.bat
```
If successful you should see `app` folder link in the root of this repo.
If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app:
```bash
> link_app.bat --app create
```
You can also just pass a path to create link to:
```bash
> link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4"
```
# Adding a new extension
Adding a new extension is as simple as copying and renaming existing one:
1. copy `exts/omni.hello.world` to `exts/[new extension name]`
2. rename python module (namespace) in `exts/[new extension name]/omni/hello/world` to `exts/[new extension name]/[new python module]`
3. update `exts/[new extension name]/config/extension.toml`, most importantly specify new python module to load:
```toml
[[python.module]]
name = "[new python module]"
```
No restart is needed, you should be able to find and enable `[new extension name]` in extension manager.
# Sharing extensions
To make extension available to other users use [Github Releases](https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository).
1. Make sure the repo has [omniverse-kit-extension](https://github.com/topics/omniverse-kit-extension) topic set for auto discovery.
2. For each new release increment extension version (in `extension.toml`) and update the changelog (in `docs/CHANGELOG.md`). [Semantic versionning](https://semver.org/) must be used to express severity of API changes.
# Contributing
The source code for this repository is provided as-is and we are not accepting outside contributions. | 7,339 | Markdown | 46.662337 | 318 | 0.751329 |
jshrake-nvidia/kit-dynamic-texture-example/tools/scripts/link_app.py | import os
import argparse
import sys
import json
import packmanapi
import urllib3
def find_omniverse_apps():
http = urllib3.PoolManager()
try:
r = http.request("GET", "http://127.0.0.1:33480/components")
except Exception as e:
print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}")
sys.exit(1)
apps = {}
for x in json.loads(r.data.decode("utf-8")):
latest = x.get("installedVersions", {}).get("latest", "")
if latest:
for s in x.get("settings", []):
if s.get("version", "") == latest:
root = s.get("launch", {}).get("root", "")
apps[x["slug"]] = (x["name"], root)
break
return apps
def create_link(src, dst):
print(f"Creating a link '{src}' -> '{dst}'")
packmanapi.link(src, dst)
APP_PRIORITIES = ["code", "create", "view"]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher")
parser.add_argument(
"--path",
help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'",
required=False,
)
parser.add_argument(
"--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False
)
args = parser.parse_args()
path = args.path
if not path:
print("Path is not specified, looking for Omniverse Apps...")
apps = find_omniverse_apps()
if len(apps) == 0:
print(
"Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers."
)
sys.exit(0)
print("\nFound following Omniverse Apps:")
for i, slug in enumerate(apps):
name, root = apps[slug]
print(f"{i}: {name} ({slug}) at: '{root}'")
if args.app:
selected_app = args.app.lower()
if selected_app not in apps:
choices = ", ".join(apps.keys())
print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}")
sys.exit(0)
else:
selected_app = next((x for x in APP_PRIORITIES if x in apps), None)
if not selected_app:
selected_app = next(iter(apps))
print(f"\nSelected app: {selected_app}")
_, path = apps[selected_app]
if not os.path.exists(path):
print(f"Provided path doesn't exist: {path}")
else:
SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__))
create_link(f"{SCRIPT_ROOT}/../../app", path)
print("Success!")
| 2,813 | Python | 32.5 | 133 | 0.562389 |
jshrake-nvidia/kit-dynamic-texture-example/tools/packman/config.packman.xml | <config remotes="cloudfront">
<remote2 name="cloudfront">
<transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" />
</remote2>
</config>
| 211 | XML | 34.333328 | 123 | 0.691943 |
jshrake-nvidia/kit-dynamic-texture-example/tools/packman/bootstrap/install_package.py | # Copyright 2019 NVIDIA CORPORATION
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import zipfile
import tempfile
import sys
import shutil
__author__ = "hfannar"
logging.basicConfig(level=logging.WARNING, format="%(message)s")
logger = logging.getLogger("install_package")
class TemporaryDirectory:
def __init__(self):
self.path = None
def __enter__(self):
self.path = tempfile.mkdtemp()
return self.path
def __exit__(self, type, value, traceback):
# Remove temporary data created
shutil.rmtree(self.path)
def install_package(package_src_path, package_dst_path):
with zipfile.ZipFile(
package_src_path, allowZip64=True
) as zip_file, TemporaryDirectory() as temp_dir:
zip_file.extractall(temp_dir)
# Recursively copy (temp_dir will be automatically cleaned up on exit)
try:
# Recursive copy is needed because both package name and version folder could be missing in
# target directory:
shutil.copytree(temp_dir, package_dst_path)
except OSError as exc:
logger.warning(
"Directory %s already present, packaged installation aborted" % package_dst_path
)
else:
logger.info("Package successfully installed to %s" % package_dst_path)
install_package(sys.argv[1], sys.argv[2])
| 1,888 | Python | 31.568965 | 103 | 0.68697 |
jshrake-nvidia/kit-dynamic-texture-example/exts/omni.dynamic_texture_example/config/extension.toml | [package]
# Semantic Versionning is used: https://semver.org/
version = "1.0.0"
# The title and description fields are primarily for displaying extension info in UI
title = "Dynamic Texture Example"
description = "Demonstrates how to programmatically generate a textured quad using the omni.ui.DynamicTextureProvider API"
# Path (relative to the root) or content of readme markdown file for UI.
readme = "docs/README.md"
# Path (relative to the root) of changelog
changelog = "docs/CHANGELOG.md"
# URL of the extension source repository.
repository = "https://github.com/NVIDIA-Omniverse/kit-extension-template"
# One of categories for UI.
category = "Example"
# Keywords for the extension
keywords = ["kit", "example"]
# Icon to show in the extension manager
icon = "data/icon.png"
# Preview to show in the extension manager
preview_image = "data/preview.png"
# Use omni.ui to build simple UI
[dependencies]
"omni.kit.uiapp" = {}
"omni.kit.pipapi" = {}
[python.pipapi]
requirements = [
"pillow"
]
use_online_index = true
# Main python module this extension provides, it will be publicly available as "import omni.hello.world".
[[python.module]]
name = "omni.dynamic_texture_example"
[[test]]
# Extra dependencies only to be used during test run
dependencies = [
"omni.kit.ui_test" # UI testing extension
]
| 1,329 | TOML | 25.078431 | 122 | 0.738901 |
jshrake-nvidia/kit-dynamic-texture-example/exts/omni.dynamic_texture_example/omni/dynamic_texture_example/extension.py | '''
Demonstrates how to programmatically generate a textured quad using the omni.ui.DynamicTextureProvider API.
This is contrived example that reads the image from the local filesystem (cat.jpg). You can imagine
sourcing the image bytes from a network request instead.
Resources:
- https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html
- See the full list of omni.ui.TextureFormat variants at .\app\kit\extscore\omni.gpu_foundation\omni\gpu_foundation_factory\_gpu_foundation_factory.pyi
TODO(jshrake):
- [ ] Currently the dynamic texture name only works with the OmniPBR.mdl material. Need to understand why it doesn't work
with other materials, such as UsdPreviewSurface.
- [ ] Test instantiating and using the DynamicTextureProvider in a separate thread
'''
from typing import Tuple, Union
import pathlib
import omni
import omni.ui as ui
from PIL import Image
from pxr import Kind, Sdf, Usd, UsdGeom, UsdShade
def create_textured_plane_prim(stage: Usd.Stage, prim_path: str, texture_name: str) -> Usd.Prim:
# This code is mostly copy pasted from https://graphics.pixar.com/usd/release/tut_simple_shading.html
billboard: UsdGeom.Mesh = UsdGeom.Mesh.Define(stage, f"{prim_path}/Mesh")
billboard.CreatePointsAttr([(-430, -145, 0), (430, -145, 0), (430, 145, 0), (-430, 145, 0)])
billboard.CreateFaceVertexCountsAttr([4])
billboard.CreateFaceVertexIndicesAttr([0,1,2,3])
billboard.CreateExtentAttr([(-430, -145, 0), (430, 145, 0)])
texCoords = UsdGeom.PrimvarsAPI(billboard).CreatePrimvar("st",
Sdf.ValueTypeNames.TexCoord2fArray,
UsdGeom.Tokens.varying)
texCoords.Set([(0, 0), (1, 0), (1,1), (0, 1)])
material_path = f"{prim_path}/Material"
material = UsdShade.Material.Define(stage, material_path)
shader: UsdShade.Shader = UsdShade.Shader.Define(stage, f"{material_path}/Shader")
shader.SetSourceAsset("OmniPBR.mdl", "mdl")
shader.SetSourceAssetSubIdentifier("OmniPBR", "mdl")
shader.CreateIdAttr("OmniPBR")
shader.CreateInput("diffuse_texture", Sdf.ValueTypeNames.Asset).Set(f"dynamic://{texture_name}")
material.CreateSurfaceOutput().ConnectToSource(shader.ConnectableAPI(), "surface")
billboard.GetPrim().ApplyAPI(UsdShade.MaterialBindingAPI)
UsdShade.MaterialBindingAPI(billboard).Bind(material)
return billboard
def create_dynamic_texture(texture_name: str, bytes: bytes, resolution: Tuple[int, int], format: ui.TextureFormat) -> ui.DynamicTextureProvider:
# See https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html#omni.ui.ByteImageProvider.set_bytes_data_from_gpu
bytes_list = list(bytes)
dtp = ui.DynamicTextureProvider(texture_name)
dtp.set_bytes_data(bytes_list, list(resolution), format)
return dtp
class DynamicTextureProviderExample(omni.ext.IExt):
def on_startup(self, ext_id):
self._texture: Union[None, ui.DynamicTextureProvider] = None
self._window = ui.Window("Create Dynamic Texture Provider Example", width=300, height=300)
with self._window.frame:
ui.Button("Create", clicked_fn=self._on_click_create)
def _on_click_create(self):
usd_context = omni.usd.get_context()
stage: Usd.Stage = usd_context.get_stage()
name = f"TexturePlane"
image_name = name
prim_path = f"/World/{name}"
# If the prim already exists, remove it so we can create it again
try:
stage.RemovePrim(prim_path)
self._texture = None
except:
pass
# Create the prim root
model_root = UsdGeom.Xform.Define(stage, prim_path)
Usd.ModelAPI(model_root).SetKind(Kind.Tokens.component)
# Create the mesh + material + shader
create_textured_plane_prim(stage, prim_path, image_name)
# Open the adjacent cat.jpg file and create the texture
dir = pathlib.Path(__file__).parent.resolve()
image_path = dir.joinpath("cat.jpg")
image: Image.Image = Image.open(image_path, mode='r')
# Ensure the image format is RGBA
image = image.convert('RGBA')
image_bytes = image.tobytes()
image_resolution = (image.width, image.height)
image_format = ui.TextureFormat.RGBA8_UNORM
self._texture = create_dynamic_texture(image_name, image_bytes, image_resolution, image_format)
def on_shutdown(self):
self._texture = None
| 4,533 | Python | 48.282608 | 156 | 0.692698 |
jshrake-nvidia/kit-dynamic-texture-example/exts/omni.dynamic_texture_example/omni/dynamic_texture_example/__init__.py | from .extension import *
| 25 | Python | 11.999994 | 24 | 0.76 |
jshrake-nvidia/kit-dynamic-texture-example/exts/omni.dynamic_texture_example/omni/dynamic_texture_example/tests/__init__.py | from .test_hello_world import * | 31 | Python | 30.999969 | 31 | 0.774194 |
jshrake-nvidia/kit-dynamic-texture-example/exts/omni.dynamic_texture_example/omni/dynamic_texture_example/tests/test_hello_world.py | # NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
import omni.kit.test
# Extnsion for writing UI tests (simulate UI interaction)
import omni.kit.ui_test as ui_test
# Import extension python module we are testing with absolute import path, as if we are external user (other extension)
import omni.hello.world
# Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test
class Test(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
pass
# After running each test
async def tearDown(self):
pass
# Actual test, notice it is "async" function, so "await" can be used if needed
async def test_hello_public_function(self):
result = omni.hello.world.some_public_function(4)
self.assertEqual(result, 256)
async def test_window_button(self):
# Find a label in our window
label = ui_test.find("My Window//Frame/**/Label[*]")
# Find buttons in our window
add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'")
reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'")
# Click reset button
await reset_button.click()
self.assertEqual(label.widget.text, "empty")
await add_button.click()
self.assertEqual(label.widget.text, "count: 1")
await add_button.click()
self.assertEqual(label.widget.text, "count: 2")
| 1,668 | Python | 34.510638 | 142 | 0.681055 |
jshrake-nvidia/kit-dynamic-texture-example/exts/omni.dynamic_texture_example/docs/CHANGELOG.md | # Changelog
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
## [1.0.0] - 2021-04-26
- Initial version of extension UI template with a window
| 178 | Markdown | 18.888887 | 80 | 0.702247 |
jshrake-nvidia/kit-dynamic-texture-example/exts/omni.dynamic_texture_example/docs/README.md | # Simple UI Extension Template
The simplest python extension example. Use it as a starting point for your extensions.
| 119 | Markdown | 28.999993 | 86 | 0.806723 |
renanmb/Omniverse_legged_robotics/README.md | The idea of this repo is to start converting open source models of robots into Omniverse Isaac-Sim friendly format.
# URDF Descriptions
The URDFs found in this repository have been forked/modified/linked from the following projects:
## Quadrupeds
- [kodlab_gazebo - Ghost Robotics](https://github.com/KodlabPenn/kodlab_gazebo)
- [ANYbotics](https://github.com/ANYbotics)
- [ANYbotics' ANYmal B](https://github.com/ANYbotics/anymal_b_simple_description)
- [ANYbotics' ANYmal B - Modified for CHAMP](https://github.com/chvmp/anymal_b_simple_description)
- [ANYbotics' ANYmal C](https://github.com/ANYbotics/anymal_c_simple_description)
- [ANYbotics' ANYmal B - Modified for CHAMP](https://github.com/chvmp/anymal_c_simple_description)
- Boston Dynamic's Little Dog
- [Boston Dynamic's Little Dog - by RobotLocomotion](https://github.com/RobotLocomotion/LittleDog)
- [Boston Dynamic's Little Dog - Modified for CHAMP](https://github.com/chvmp/littledog_description)
- Boston Dynamic's Spot
- [Boston Dynamic's Spot - by heuristicus](https://github.com/heuristicus/spot_ros)
- [Boston Dynamic's Spot - Modified for CHAMP](https://github.com/chvmp/spot_ros)
- [Dream Walker](https://github.com/Ohaginia/dream_walker)
- [MIT Mini Cheetah - Original](https://github.com/HitSZwang/mini-cheetah-gazebo-urdf)
- [MIT Mini Cheetah - Modified for CHAMP](https://github.com/chvmp/mini-cheetah-gazebo-urdf)
- [OpenDog V2 - Original](https://github.com/XRobots/openDogV2)
- [OpenDog V2 - Modified for CHAMP](https://github.com/chvmp/opendog_description)
- Open Quadruped
- [Open Quadruped](https://github.com/moribots/spot_mini_mini)
- [SpotMicroAI - Gitlab](https://gitlab.com/custom_robots/spotmicroai)
- [Spot Micro](https://github.com/chvmp/spotmicro_description)
- [Unitree Robotics All](https://github.com/unitreerobotics/unitree_ros)
- [Unitree Robotics All - Modified for CHAMP](https://github.com/chvmp/unitree_ros)
- [Unitree Robotics' A1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/a1_description)
- [Unitree Robotics' AliengoZ1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/aliengoZ1_description)
- [Unitree Robotics'Aliengo](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/aliengo_description)
- [Unitree Robotics' B1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/b1_description)
- [Unitree Robotics' Go1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/go1_description)
- [Unitree Robotics' Laikago](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/laikago_description)
- [Unitree Robotics' Z1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/z1_description)
- [Stochlab's Stochlite](https://stochlab.github.io/)
- [Stochlab's Stochlite - Modified by aditya-shirwatkar](https://github.com/aditya-shirwatkar/stochlite_description)
- Mini Pupper
- [MangDang's Mini Pupper](https://github.com/mangdangroboticsclub/QuadrupedRobot)
- [simplified robot description of the MangDang's Mini Pupper](https://github.com/nisshan-x/mini_pupper_description)
- [Stanford pupper - Original](https://stanfordstudentrobotics.org/pupper)
- [Stanford pupper - Modified by Chandykunju Alex](https://github.com/chandyalex/stanford_pupper_description.git)
## Bipedal
- [Agility Robotics' Cassie - UMich-BipedLab](https://github.com/UMich-BipedLab/cassie_description)
- [Agility Robotics' Digit - DigitRobot.jl](https://github.com/adubredu/DigitRobot.jl)
- [NJIT - TOCABI](https://github.com/cadop/tocabi)
## Manipulation
- [GoogleAI ROBEL D'Kitty](https://github.com/google-research/robel-scenes)
- [GoogleAI ROBEL D'Kitty - Modified for CHAMP](https://github.com/chvmp/dkitty_description)
- [The Shadow Robot Company](https://github.com/shadow-robot)
- [Shadow Hand - archived](https://github.com/AndrejOrsula/shadow_hand_ign)
#
## Cassie_description
This repository contains the .urdf model of the CASSIE robot from Agility Robotics. It also includes a way to visualize the robot using ROS and rviz.
https://github.com/UMich-BipedLab/cassie_description
## a1 robot simulation - Python version
This repository contains all the files and code needed to simulate the a1 quadrupedal robot using Gazebo and ROS. The software runs on ROS noetic and Ubuntu 20.04.
https://github.com/lnotspotl/a1_sim_py
## Here are the ROS simulation packages for Unitree robots
https://github.com/unitreerobotics/unitree_ros
## Zoo from CHAMP
This repository contains configuration packages of various quadrupedal robots generated by CHAMP's setup assistant.
The URDFs found in this repository have been forked/modified/linked from the following projects:
https://github.com/chvmp/robots
| 4,799 | Markdown | 66.605633 | 163 | 0.761617 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/z1_description/config/robot_control.yaml | z1_gazebo:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 1000
Joint01_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint1
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint02_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint2
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint03_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint3
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint04_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint4
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint05_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint5
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint06_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint6
pid: {p: 300.0, i: 0.0, d: 5.0}
gripper_controller:
type: unitree_legged_control/UnitreeJointController
joint: jointGripper
pid: {p: 300.0, i: 0.0, d: 5.0} | 1,227 | YAML | 29.699999 | 66 | 0.594947 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/laikago_description/config/robot_control.yaml | laikago_gazebo:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 1000
# FL Controllers ---------------------------------------
FL_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
FL_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
FL_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# FR Controllers ---------------------------------------
FR_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
FR_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
FR_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# RL Controllers ---------------------------------------
RL_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
RL_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
RL_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# RR Controllers ---------------------------------------
RR_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
RR_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
RR_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
| 2,291 | YAML | 31.28169 | 66 | 0.553907 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/a1_description/config/robot_control.yaml | a1_gazebo:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 1000
# FL Controllers ---------------------------------------
FL_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
FL_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
FL_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# FR Controllers ---------------------------------------
FR_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
FR_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
FR_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# RL Controllers ---------------------------------------
RL_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
RL_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
RL_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# RR Controllers ---------------------------------------
RR_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
RR_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
RR_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
| 2,286 | YAML | 31.211267 | 66 | 0.552931 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/aliengoZ1_description/config/robot_control.yaml | aliengoZ1_gazebo:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 1000
# FL Controllers ---------------------------------------
FL_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
FL_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
FL_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# FR Controllers ---------------------------------------
FR_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
FR_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
FR_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# RL Controllers ---------------------------------------
RL_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
RL_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
RL_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# RR Controllers ---------------------------------------
RR_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
RR_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
RR_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
Joint01_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint1
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint02_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint2
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint03_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint3
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint04_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint4
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint05_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint5
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint06_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint6
pid: {p: 300.0, i: 0.0, d: 5.0}
gripper_controller:
type: unitree_legged_control/UnitreeJointController
joint: jointGripper
pid: {p: 300.0, i: 0.0, d: 5.0}
| 3,328 | YAML | 30.40566 | 66 | 0.56881 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/README.md | # Introduction
Here are the ROS simulation packages for Unitree robots, You can load robots and joint controllers in Gazebo, so you can perform low-level control (control the torque, position and angular velocity) of the robot joints. Please be aware that the Gazebo simulation cannot do high-level control, namely walking. Aside from these simulation functions, you can also control your real robots in ROS with the [unitree_ros_to_real](https://github.com/unitreerobotics/unitree_ros_to_real) packages. For real robots, you can do high-level and low-level control using our ROS packages.
## Packages:
Robot description: `go1_description`, `a1_description`, `aliengo_description`, `laikago_description`
Robot and joints controller: `unitree_controller`
Simulation related: `unitree_gazebo`, `unitree_legged_control`
# Dependencies
* [ROS](https://www.ros.org/) Melodic or ROS Kinetic (has not been tested)
* [Gazebo8](http://gazebosim.org/)
* [unitree_legged_msgs](https://github.com/unitreerobotics/unitree_ros_to_real): `unitree_legged_msgs` is a package under [unitree_ros_to_real](https://github.com/unitreerobotics/unitree_ros_to_real).
# Build
<!-- If you would like to fully compile the `unitree_ros`, please run the following command to install relative packages. -->
For ROS Melodic:
```
sudo apt-get install ros-melodic-controller-interface ros-melodic-gazebo-ros-control ros-melodic-joint-state-controller ros-melodic-effort-controllers ros-melodic-joint-trajectory-controller
```
For ROS Kinetic:
```
sudo apt-get install ros-kinetic-controller-manager ros-kinetic-ros-control ros-kinetic-ros-controllers ros-kinetic-joint-state-controller ros-kinetic-effort-controllers ros-kinetic-velocity-controllers ros-kinetic-position-controllers ros-kinetic-robot-controllers ros-kinetic-robot-state-publisher ros-kinetic-gazebo8-ros ros-kinetic-gazebo8-ros-control ros-kinetic-gazebo8-ros-pkgs ros-kinetic-gazebo8-ros-dev
```
And open the file `unitree_gazebo/worlds/stairs.world`. At the end of the file:
```
<include>
<uri>model:///home/unitree/catkin_ws/src/unitree_ros/unitree_gazebo/worlds/building_editor_models/stairs</uri>
</include>
```
Please change the path of `building_editor_models/stairs` to the real path on your PC.
Then you can use catkin_make to build:
```
cd ~/catkin_ws
catkin_make
```
If you face a dependency problem, you can just run `catkin_make` again.
# Detail of Packages
## unitree_legged_control:
It contains the joints controllers for Gazebo simulation, which allows users to control joints with position, velocity and torque. Refer to "[unitree_ros/unitree_controller/src/servo.cpp](https://github.com/unitreerobotics/unitree_ros/blob/master/unitree_controller/src/servo.cpp)" for joint control examples in different modes.
## The description of robots:
Namely the description of Go1, A1, Aliengo and Laikago. Each package includes mesh, urdf and xacro files of robot. Take Laikago for example, you can check the model in Rviz by:
```
roslaunch laikago_description laikago_rviz.launch
```
## unitree_gazebo & unitree_controller:
You can launch the Gazebo simulation with the following command:
```
roslaunch unitree_gazebo normal.launch rname:=a1 wname:=stairs
```
Where the `rname` means robot name, which can be `laikago`, `aliengo`, `a1` or `go1`. The `wname` means world name, which can be `earth`, `space` or `stairs`. And the default value of `rname` is `laikago`, while the default value of `wname` is `earth`. In Gazebo, the robot should be lying on the ground with joints not activated.
### Stand controller
After launching the gazebo simulation, you can start to control the robot:
```
rosrun unitree_controller unitree_servo
```
And you can add external disturbances, like a push or a kick:
```
rosrun unitree_controller unitree_external_force
```
### Position and pose publisher
Here we demonstrated how to control the position and pose of robot without a controller, which should be useful in SLAM or visual development.
Then run the position and pose publisher in another terminal:
```
rosrun unitree_controller unitree_move_kinetic
```
The robot will turn around the origin, which is the movement under the world coordinate frame. And inside of the source file [move_publisher.cpp](https://github.com/unitreerobotics/unitree_ros/blob/master/unitree_controller/src/move_publisher.cpp), we also provide the method to move using the robot coordinate frame. You can change the value of `def_frame` to `coord::ROBOT` and run the catkin_make again, then the `unitree_move_publisher` will move robot under its own coordinate frame.
| 4,596 | Markdown | 57.935897 | 574 | 0.779373 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_gazebo/plugin/foot_contact_plugin.cc | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#include <string>
#include <gazebo/common/Events.hh>
#include <ros/ros.h>
#include <ros/advertise_options.h>
#include <gazebo/gazebo.hh>
#include <gazebo/sensors/sensors.hh>
#include <geometry_msgs/WrenchStamped.h>
namespace gazebo
{
class UnitreeFootContactPlugin : public SensorPlugin
{
public:
UnitreeFootContactPlugin() : SensorPlugin(){}
~UnitreeFootContactPlugin(){}
void Load(sensors::SensorPtr _sensor, sdf::ElementPtr _sdf)
{
this->parentSensor = std::dynamic_pointer_cast<sensors::ContactSensor>(_sensor); // Make sure the parent sensor is valid.
if (!this->parentSensor){
gzerr << "UnitreeFootContactPlugin requires a ContactSensor.\n";
return;
}
this->contact_namespace = "contact/";
this->rosnode = new ros::NodeHandle(this->contact_namespace);
// add "visual" is for the same name of draw node
this->force_pub = this->rosnode->advertise<geometry_msgs::WrenchStamped>("/visual/"+_sensor->Name()+"/the_force", 100);
// Connect to the sensor update event.
this->update_connection = this->parentSensor->ConnectUpdated(std::bind(&UnitreeFootContactPlugin::OnUpdate, this));
this->parentSensor->SetActive(true); // Make sure the parent sensor is active.
count = 0;
Fx = 0;
Fy = 0;
Fz = 0;
ROS_INFO("Load %s plugin.", _sensor->Name().c_str());
}
private:
void OnUpdate()
{
msgs::Contacts contacts;
contacts = this->parentSensor->Contacts();
count = contacts.contact_size();
// std::cout << count <<"\n";
for (unsigned int i = 0; i < count; ++i){
if(contacts.contact(i).position_size() != 1){
ROS_ERROR("Contact count isn't correct!!!!");
}
for (unsigned int j = 0; j < contacts.contact(i).position_size(); ++j){
// std::cout << i <<" "<< contacts.contact(i).position_size() <<" Force:"
// << contacts.contact(i).wrench(j).body_1_wrench().force().x() << " "
// << contacts.contact(i).wrench(j).body_1_wrench().force().y() << " "
// << contacts.contact(i).wrench(j).body_1_wrench().force().z() << "\n";
Fx += contacts.contact(i).wrench(0).body_1_wrench().force().x(); // Notice: the force is in local coordinate, not in world or base coordnate.
Fy += contacts.contact(i).wrench(0).body_1_wrench().force().y();
Fz += contacts.contact(i).wrench(0).body_1_wrench().force().z();
}
}
if(count != 0){
force.wrench.force.x = Fx/double(count);
force.wrench.force.y = Fy/double(count);
force.wrench.force.z = Fz/double(count);
count = 0;
Fx = 0;
Fy = 0;
Fz = 0;
}
else{
force.wrench.force.x = 0;
force.wrench.force.y = 0;
force.wrench.force.z = 0;
}
this->force_pub.publish(force);
}
private:
ros::NodeHandle* rosnode;
ros::Publisher force_pub;
event::ConnectionPtr update_connection;
std::string contact_namespace;
sensors::ContactSensorPtr parentSensor;
geometry_msgs::WrenchStamped force;
int count = 0;
double Fx=0, Fy=0, Fz=0;
};
GZ_REGISTER_SENSOR_PLUGIN(UnitreeFootContactPlugin)
}
| 4,092 | C++ | 42.542553 | 161 | 0.503666 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_gazebo/plugin/draw_force_plugin.cc | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#include <ignition/math/Color.hh>
#include <gazebo/common/Events.hh>
#include <gazebo/msgs/msgs.hh>
#include <gazebo/transport/Node.hh>
#include <gazebo/common/Plugin.hh>
#include <ros/ros.h>
#include "gazebo/rendering/DynamicLines.hh"
#include "gazebo/rendering/RenderTypes.hh"
#include "gazebo/rendering/Visual.hh"
#include "gazebo/rendering/Scene.hh"
#include <ros/ros.h>
#include <boost/bind.hpp>
#include <geometry_msgs/WrenchStamped.h>
namespace gazebo
{
class UnitreeDrawForcePlugin : public VisualPlugin
{
public:
UnitreeDrawForcePlugin():line(NULL){}
~UnitreeDrawForcePlugin(){
this->visual->DeleteDynamicLine(this->line);
}
void Load(rendering::VisualPtr _parent, sdf::ElementPtr _sdf )
{
this->visual = _parent;
this->visual_namespace = "visual/";
if (!_sdf->HasElement("topicName")){
ROS_INFO("Force draw plugin missing <topicName>, defaults to /default_force_draw");
this->topic_name = "/default_force_draw";
} else{
this->topic_name = _sdf->Get<std::string>("topicName");
}
if (!ros::isInitialized()){
int argc = 0;
char** argv = NULL;
ros::init(argc,argv,"gazebo_visual",ros::init_options::NoSigintHandler|ros::init_options::AnonymousName);
}
this->line = this->visual->CreateDynamicLine(rendering::RENDERING_LINE_STRIP);
this->line->AddPoint(ignition::math::Vector3d(0, 0, 0), common::Color(0, 1, 0, 1.0));
this->line->AddPoint(ignition::math::Vector3d(1, 1, 1), common::Color(0, 1, 0, 1.0));
this->line->setMaterial("Gazebo/Purple");
this->line->setVisibilityFlags(GZ_VISIBILITY_GUI);
this->visual->SetVisible(true);
this->rosnode = new ros::NodeHandle(this->visual_namespace);
this->force_sub = this->rosnode->subscribe(this->topic_name+"/"+"the_force", 30, &UnitreeDrawForcePlugin::GetForceCallback, this);
this->update_connection = event::Events::ConnectPreRender(boost::bind(&UnitreeDrawForcePlugin::OnUpdate, this));
ROS_INFO("Load %s Draw Force plugin.", this->topic_name.c_str());
}
void OnUpdate()
{
this->line->SetPoint(1, ignition::math::Vector3d(Fx, Fy, Fz));
}
void GetForceCallback(const geometry_msgs::WrenchStamped & msg)
{
Fx = msg.wrench.force.x/20.0;
Fy = msg.wrench.force.y/20.0;
Fz = msg.wrench.force.z/20.0;
// Fx = msg.wrench.force.x;
// Fy = msg.wrench.force.y;
// Fz = msg.wrench.force.z;
}
private:
ros::NodeHandle* rosnode;
std::string topic_name;
rendering::VisualPtr visual;
rendering::DynamicLines *line;
std::string visual_namespace;
ros::Subscriber force_sub;
double Fx=0, Fy=0, Fz=0;
event::ConnectionPtr update_connection;
};
GZ_REGISTER_VISUAL_PLUGIN(UnitreeDrawForcePlugin)
}
| 3,448 | C++ | 39.104651 | 142 | 0.571056 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_controller/src/move_publisher.cpp | #include <ros/ros.h>
#include <gazebo_msgs/ModelState.h>
#include <gazebo_msgs/SetModelState.h>
#include <string>
#include <stdio.h>
#include <tf/transform_datatypes.h>
// #include <std_msgs/Float64.h>
#include <math.h>
#include <iostream>
int main(int argc, char **argv)
{
enum coord
{
WORLD,
ROBOT
};
coord def_frame = coord::WORLD;
ros::init(argc, argv, "move_publisher");
ros::NodeHandle nh;
ros::Publisher move_publisher = nh.advertise<gazebo_msgs::ModelState>("/gazebo/set_model_state", 1000);
gazebo_msgs::ModelState model_state_pub;
std::string robot_name;
ros::param::get("/robot_name", robot_name);
std::cout << "robot_name: " << robot_name << std::endl;
model_state_pub.model_name = robot_name + "_gazebo";
ros::Rate loop_rate(1000);
if(def_frame == coord::WORLD)
{
model_state_pub.pose.position.x = 0.0;
model_state_pub.pose.position.y = 0.0;
model_state_pub.pose.position.z = 0.5;
model_state_pub.pose.orientation.x = 0.0;
model_state_pub.pose.orientation.y = 0.0;
model_state_pub.pose.orientation.z = 0.0;
model_state_pub.pose.orientation.w = 1.0;
model_state_pub.reference_frame = "world";
long long time_ms = 0; //time, ms
const double period = 5000; //ms
const double radius = 1.5; //m
tf::Quaternion q;
while(ros::ok())
{
model_state_pub.pose.position.x = radius * sin(2*M_PI*(double)time_ms/period);
model_state_pub.pose.position.y = radius * cos(2*M_PI*(double)time_ms/period);
model_state_pub.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(0, 0, - 2*M_PI*(double)time_ms/period);
move_publisher.publish(model_state_pub);
loop_rate.sleep();
time_ms += 1;
}
}
else if(def_frame == coord::ROBOT)
{
model_state_pub.twist.linear.x= 0.02; //0.02: 2cm/sec
model_state_pub.twist.linear.y= 0.0;
model_state_pub.twist.linear.z= 0.08;
model_state_pub.twist.angular.x= 0.0;
model_state_pub.twist.angular.y= 0.0;
model_state_pub.twist.angular.z= 0.0;
model_state_pub.reference_frame = "base";
while(ros::ok())
{
move_publisher.publish(model_state_pub);
loop_rate.sleep();
}
}
} | 2,425 | C++ | 29.325 | 126 | 0.585567 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_controller/src/external_force.cpp | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#include <ros/ros.h>
#include <geometry_msgs/Wrench.h>
#include <signal.h>
#include <termios.h>
#include <stdio.h>
#define KEYCODE_UP 0x41
#define KEYCODE_DOWN 0x42
#define KEYCODE_LEFT 0x44
#define KEYCODE_RIGHT 0x43
#define KEYCODE_SPACE 0x20
int mode = 1; // pulsed mode or continuous mode
class teleForceCmd
{
public:
teleForceCmd();
void keyLoop();
void pubForce(double x, double y, double z);
private:
double Fx, Fy, Fz;
ros::NodeHandle n;
ros::Publisher force_pub;
geometry_msgs::Wrench Force;
};
teleForceCmd::teleForceCmd()
{
Fx = 0;
Fy = 0;
Fz = 0;
force_pub = n.advertise<geometry_msgs::Wrench>("/apply_force/trunk", 20);
sleep(1);
pubForce(Fx, Fy, Fz);
}
int kfd = 0;
struct termios cooked, raw;
void quit(int sig)
{
tcsetattr(kfd, TCSANOW, &cooked);
ros::shutdown();
exit(0);
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "external_force");
teleForceCmd remote;
signal(SIGINT,quit);
remote.keyLoop();
return(0);
}
void teleForceCmd::pubForce(double x, double y, double z)
{
Force.force.x = Fx;
Force.force.y = Fy;
Force.force.z = Fz;
force_pub.publish(Force);
ros::spinOnce();
}
void teleForceCmd::keyLoop()
{
char c;
bool dirty=false;
// get the console in raw mode
tcgetattr(kfd, &cooked);
memcpy(&raw, &cooked, sizeof(struct termios));
raw.c_lflag &=~ (ICANON | ECHO);
// Setting a new line, then end of file
raw.c_cc[VEOL] = 1;
raw.c_cc[VEOF] = 2;
tcsetattr(kfd, TCSANOW, &raw);
puts("Reading from keyboard");
puts("---------------------------");
puts("Use 'Space' to change mode, default is Pulsed mode:");
puts("Use 'Up/Down/Left/Right' to change direction");
for(;;){
// get the next event from the keyboard
if(read(kfd, &c, 1) < 0){
perror("read():");
exit(-1);
}
ROS_DEBUG("value: 0x%02X\n", c);
switch(c){
case KEYCODE_UP:
if(mode > 0) {
Fx = 60;
} else {
Fx += 16;
if(Fx > 220) Fx = 220;
if(Fx < -220) Fx = -220;
}
ROS_INFO("Fx:%3d Fy:%3d Fz:%3d", (int)Fx, (int)Fy, (int)Fz);
dirty = true;
break;
case KEYCODE_DOWN:
if(mode > 0) {
Fx = -60;
} else {
Fx -= 16;
if(Fx > 220) Fx = 220;
if(Fx < -220) Fx = -220;
}
ROS_INFO("Fx:%3d Fy:%3d Fz:%3d", (int)Fx, (int)Fy, (int)Fz);
dirty = true;
break;
case KEYCODE_LEFT:
if(mode > 0) {
Fy = 30;
} else {
Fy += 8;
if(Fy > 220) Fy = 220;
if(Fy < -220) Fy = -220;
}
ROS_INFO("Fx:%3d Fy:%3d Fz:%3d", (int)Fx, (int)Fy, (int)Fz);
dirty = true;
break;
case KEYCODE_RIGHT:
if(mode > 0) {
Fy = -30;
} else {
Fy -= 8;
if(Fy > 220) Fy = 220;
if(Fy < -220) Fy = -220;
}
ROS_INFO("Fx:%3d Fy:%3d Fz:%3d", (int)Fx, (int)Fy, (int)Fz);
dirty = true;
break;
case KEYCODE_SPACE:
mode = mode*(-1);
if(mode > 0){
ROS_INFO("Change to Pulsed mode.");
} else {
ROS_INFO("Change to Continuous mode.");
}
Fx = 0;
Fy = 0;
Fz = 0;
ROS_INFO("Fx:%3d Fy:%3d Fz:%3d", (int)Fx, (int)Fy, (int)Fz);
dirty = true;
break;
}
if(dirty == true){
pubForce(Fx, Fy, Fz);
if(mode > 0){
usleep(100000); // 100 ms
Fx = 0;
Fy = 0;
Fz = 0;
pubForce(Fx, Fy, Fz);
}
dirty=false;
}
}
return;
}
| 4,382 | C++ | 25.245509 | 77 | 0.446143 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_controller/src/body.cpp | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#include "body.h"
namespace unitree_model {
ros::Publisher servo_pub[12];
unitree_legged_msgs::LowCmd lowCmd;
unitree_legged_msgs::LowState lowState;
// These parameters are only for reference.
// Actual patameters need to be debugged if you want to run on real robot.
void paramInit()
{
for(int i=0; i<4; i++){
lowCmd.motorCmd[i*3+0].mode = 0x0A;
lowCmd.motorCmd[i*3+0].Kp = 70;
lowCmd.motorCmd[i*3+0].dq = 0;
lowCmd.motorCmd[i*3+0].Kd = 3;
lowCmd.motorCmd[i*3+0].tau = 0;
lowCmd.motorCmd[i*3+1].mode = 0x0A;
lowCmd.motorCmd[i*3+1].Kp = 180;
lowCmd.motorCmd[i*3+1].dq = 0;
lowCmd.motorCmd[i*3+1].Kd = 8;
lowCmd.motorCmd[i*3+1].tau = 0;
lowCmd.motorCmd[i*3+2].mode = 0x0A;
lowCmd.motorCmd[i*3+2].Kp = 300;
lowCmd.motorCmd[i*3+2].dq = 0;
lowCmd.motorCmd[i*3+2].Kd = 15;
lowCmd.motorCmd[i*3+2].tau = 0;
}
for(int i=0; i<12; i++){
lowCmd.motorCmd[i].q = lowState.motorState[i].q;
}
}
void stand()
{
double pos[12] = {0.0, 0.67, -1.3, -0.0, 0.67, -1.3,
0.0, 0.67, -1.3, -0.0, 0.67, -1.3};
moveAllPosition(pos, 2*1000);
}
void motion_init()
{
paramInit();
stand();
}
void sendServoCmd()
{
for(int m=0; m<12; m++){
servo_pub[m].publish(lowCmd.motorCmd[m]);
}
ros::spinOnce();
usleep(1000);
}
void moveAllPosition(double* targetPos, double duration)
{
double pos[12] ,lastPos[12], percent;
for(int j=0; j<12; j++) lastPos[j] = lowState.motorState[j].q;
for(int i=1; i<=duration; i++){
if(!ros::ok()) break;
percent = (double)i/duration;
for(int j=0; j<12; j++){
lowCmd.motorCmd[j].q = lastPos[j]*(1-percent) + targetPos[j]*percent;
}
sendServoCmd();
}
}
}
| 2,130 | C++ | 26.320512 | 82 | 0.532394 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_controller/src/servo.cpp | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#include "ros/ros.h"
#include <stdio.h>
#include <stdlib.h>
#include "unitree_legged_msgs/LowCmd.h"
#include "unitree_legged_msgs/LowState.h"
#include "unitree_legged_msgs/MotorCmd.h"
#include "unitree_legged_msgs/MotorState.h"
#include <geometry_msgs/WrenchStamped.h>
#include <sensor_msgs/Imu.h>
#include <std_msgs/Bool.h>
#include <vector>
#include <string>
#include <math.h>
#include <nav_msgs/Odometry.h>
#include "body.h"
using namespace std;
using namespace unitree_model;
bool start_up = true;
class multiThread
{
public:
multiThread(string rname){
robot_name = rname;
imu_sub = nm.subscribe("/trunk_imu", 1, &multiThread::imuCallback, this);
footForce_sub[0] = nm.subscribe("/visual/FR_foot_contact/the_force", 1, &multiThread::FRfootCallback, this);
footForce_sub[1] = nm.subscribe("/visual/FL_foot_contact/the_force", 1, &multiThread::FLfootCallback, this);
footForce_sub[2] = nm.subscribe("/visual/RR_foot_contact/the_force", 1, &multiThread::RRfootCallback, this);
footForce_sub[3] = nm.subscribe("/visual/RL_foot_contact/the_force", 1, &multiThread::RLfootCallback, this);
servo_sub[0] = nm.subscribe("/" + robot_name + "_gazebo/FR_hip_controller/state", 1, &multiThread::FRhipCallback, this);
servo_sub[1] = nm.subscribe("/" + robot_name + "_gazebo/FR_thigh_controller/state", 1, &multiThread::FRthighCallback, this);
servo_sub[2] = nm.subscribe("/" + robot_name + "_gazebo/FR_calf_controller/state", 1, &multiThread::FRcalfCallback, this);
servo_sub[3] = nm.subscribe("/" + robot_name + "_gazebo/FL_hip_controller/state", 1, &multiThread::FLhipCallback, this);
servo_sub[4] = nm.subscribe("/" + robot_name + "_gazebo/FL_thigh_controller/state", 1, &multiThread::FLthighCallback, this);
servo_sub[5] = nm.subscribe("/" + robot_name + "_gazebo/FL_calf_controller/state", 1, &multiThread::FLcalfCallback, this);
servo_sub[6] = nm.subscribe("/" + robot_name + "_gazebo/RR_hip_controller/state", 1, &multiThread::RRhipCallback, this);
servo_sub[7] = nm.subscribe("/" + robot_name + "_gazebo/RR_thigh_controller/state", 1, &multiThread::RRthighCallback, this);
servo_sub[8] = nm.subscribe("/" + robot_name + "_gazebo/RR_calf_controller/state", 1, &multiThread::RRcalfCallback, this);
servo_sub[9] = nm.subscribe("/" + robot_name + "_gazebo/RL_hip_controller/state", 1, &multiThread::RLhipCallback, this);
servo_sub[10] = nm.subscribe("/" + robot_name + "_gazebo/RL_thigh_controller/state", 1, &multiThread::RLthighCallback, this);
servo_sub[11] = nm.subscribe("/" + robot_name + "_gazebo/RL_calf_controller/state", 1, &multiThread::RLcalfCallback, this);
}
void imuCallback(const sensor_msgs::Imu & msg)
{
lowState.imu.quaternion[0] = msg.orientation.w;
lowState.imu.quaternion[1] = msg.orientation.x;
lowState.imu.quaternion[2] = msg.orientation.y;
lowState.imu.quaternion[3] = msg.orientation.z;
lowState.imu.gyroscope[0] = msg.angular_velocity.x;
lowState.imu.gyroscope[1] = msg.angular_velocity.y;
lowState.imu.gyroscope[2] = msg.angular_velocity.z;
lowState.imu.accelerometer[0] = msg.linear_acceleration.x;
lowState.imu.accelerometer[1] = msg.linear_acceleration.y;
lowState.imu.accelerometer[2] = msg.linear_acceleration.z;
}
void FRhipCallback(const unitree_legged_msgs::MotorState& msg)
{
start_up = false;
lowState.motorState[0].mode = msg.mode;
lowState.motorState[0].q = msg.q;
lowState.motorState[0].dq = msg.dq;
lowState.motorState[0].tauEst = msg.tauEst;
}
void FRthighCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[1].mode = msg.mode;
lowState.motorState[1].q = msg.q;
lowState.motorState[1].dq = msg.dq;
lowState.motorState[1].tauEst = msg.tauEst;
}
void FRcalfCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[2].mode = msg.mode;
lowState.motorState[2].q = msg.q;
lowState.motorState[2].dq = msg.dq;
lowState.motorState[2].tauEst = msg.tauEst;
}
void FLhipCallback(const unitree_legged_msgs::MotorState& msg)
{
start_up = false;
lowState.motorState[3].mode = msg.mode;
lowState.motorState[3].q = msg.q;
lowState.motorState[3].dq = msg.dq;
lowState.motorState[3].tauEst = msg.tauEst;
}
void FLthighCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[4].mode = msg.mode;
lowState.motorState[4].q = msg.q;
lowState.motorState[4].dq = msg.dq;
lowState.motorState[4].tauEst = msg.tauEst;
}
void FLcalfCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[5].mode = msg.mode;
lowState.motorState[5].q = msg.q;
lowState.motorState[5].dq = msg.dq;
lowState.motorState[5].tauEst = msg.tauEst;
}
void RRhipCallback(const unitree_legged_msgs::MotorState& msg)
{
start_up = false;
lowState.motorState[6].mode = msg.mode;
lowState.motorState[6].q = msg.q;
lowState.motorState[6].dq = msg.dq;
lowState.motorState[6].tauEst = msg.tauEst;
}
void RRthighCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[7].mode = msg.mode;
lowState.motorState[7].q = msg.q;
lowState.motorState[7].dq = msg.dq;
lowState.motorState[7].tauEst = msg.tauEst;
}
void RRcalfCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[8].mode = msg.mode;
lowState.motorState[8].q = msg.q;
lowState.motorState[8].dq = msg.dq;
lowState.motorState[8].tauEst = msg.tauEst;
}
void RLhipCallback(const unitree_legged_msgs::MotorState& msg)
{
start_up = false;
lowState.motorState[9].mode = msg.mode;
lowState.motorState[9].q = msg.q;
lowState.motorState[9].dq = msg.dq;
lowState.motorState[9].tauEst = msg.tauEst;
}
void RLthighCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[10].mode = msg.mode;
lowState.motorState[10].q = msg.q;
lowState.motorState[10].dq = msg.dq;
lowState.motorState[10].tauEst = msg.tauEst;
}
void RLcalfCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[11].mode = msg.mode;
lowState.motorState[11].q = msg.q;
lowState.motorState[11].dq = msg.dq;
lowState.motorState[11].tauEst = msg.tauEst;
}
void FRfootCallback(const geometry_msgs::WrenchStamped& msg)
{
lowState.eeForce[0].x = msg.wrench.force.x;
lowState.eeForce[0].y = msg.wrench.force.y;
lowState.eeForce[0].z = msg.wrench.force.z;
lowState.footForce[0] = msg.wrench.force.z;
}
void FLfootCallback(const geometry_msgs::WrenchStamped& msg)
{
lowState.eeForce[1].x = msg.wrench.force.x;
lowState.eeForce[1].y = msg.wrench.force.y;
lowState.eeForce[1].z = msg.wrench.force.z;
lowState.footForce[1] = msg.wrench.force.z;
}
void RRfootCallback(const geometry_msgs::WrenchStamped& msg)
{
lowState.eeForce[2].x = msg.wrench.force.x;
lowState.eeForce[2].y = msg.wrench.force.y;
lowState.eeForce[2].z = msg.wrench.force.z;
lowState.footForce[2] = msg.wrench.force.z;
}
void RLfootCallback(const geometry_msgs::WrenchStamped& msg)
{
lowState.eeForce[3].x = msg.wrench.force.x;
lowState.eeForce[3].y = msg.wrench.force.y;
lowState.eeForce[3].z = msg.wrench.force.z;
lowState.footForce[3] = msg.wrench.force.z;
}
private:
ros::NodeHandle nm;
ros::Subscriber servo_sub[12], footForce_sub[4], imu_sub;
string robot_name;
};
int main(int argc, char **argv)
{
ros::init(argc, argv, "unitree_gazebo_servo");
string robot_name;
ros::param::get("/robot_name", robot_name);
cout << "robot_name: " << robot_name << endl;
multiThread listen_publish_obj(robot_name);
ros::AsyncSpinner spinner(1); // one threads
spinner.start();
usleep(300000); // must wait 300ms, to get first state
ros::NodeHandle n;
ros::Publisher lowState_pub; //for rviz visualization
// ros::Rate loop_rate(1000);
// the following nodes have been initialized by "gazebo.launch"
lowState_pub = n.advertise<unitree_legged_msgs::LowState>("/" + robot_name + "_gazebo/lowState/state", 1);
servo_pub[0] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FR_hip_controller/command", 1);
servo_pub[1] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FR_thigh_controller/command", 1);
servo_pub[2] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FR_calf_controller/command", 1);
servo_pub[3] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FL_hip_controller/command", 1);
servo_pub[4] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FL_thigh_controller/command", 1);
servo_pub[5] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FL_calf_controller/command", 1);
servo_pub[6] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RR_hip_controller/command", 1);
servo_pub[7] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RR_thigh_controller/command", 1);
servo_pub[8] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RR_calf_controller/command", 1);
servo_pub[9] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RL_hip_controller/command", 1);
servo_pub[10] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RL_thigh_controller/command", 1);
servo_pub[11] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RL_calf_controller/command", 1);
motion_init();
while (ros::ok()){
/*
control logic
*/
lowState_pub.publish(lowState);
sendServoCmd();
}
return 0;
}
| 10,620 | C++ | 41.654618 | 133 | 0.638606 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_controller/include/body.h | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#ifndef __BODY_H__
#define __BODY_H__
#include "ros/ros.h"
#include "unitree_legged_msgs/LowCmd.h"
#include "unitree_legged_msgs/LowState.h"
#include "unitree_legged_msgs/HighState.h"
#define PosStopF (2.146E+9f)
#define VelStopF (16000.f)
namespace unitree_model {
extern ros::Publisher servo_pub[12];
extern ros::Publisher highState_pub;
extern unitree_legged_msgs::LowCmd lowCmd;
extern unitree_legged_msgs::LowState lowState;
void stand();
void motion_init();
void sendServoCmd();
void moveAllPosition(double* jointPositions, double duration);
}
#endif
| 855 | C | 27.533332 | 73 | 0.626901 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_legged_control/unitree_controller_plugins.xml | <library path="lib/libunitree_legged_control">
<class name="unitree_legged_control/UnitreeJointController"
type="unitree_legged_control::UnitreeJointController"
base_class_type="controller_interface::ControllerBase"/>
<description>
The unitree joint controller.
</description>
</library>
| 354 | XML | 38.44444 | 75 | 0.661017 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_legged_control/src/joint_controller.cpp | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
// #include "unitree_legged_control/joint_controller.h"
#include "joint_controller.h"
#include <pluginlib/class_list_macros.h>
// #define rqtTune // use rqt or not
namespace unitree_legged_control
{
UnitreeJointController::UnitreeJointController(){
memset(&lastCmd, 0, sizeof(unitree_legged_msgs::MotorCmd));
memset(&lastState, 0, sizeof(unitree_legged_msgs::MotorState));
memset(&servoCmd, 0, sizeof(ServoCmd));
}
UnitreeJointController::~UnitreeJointController(){
sub_ft.shutdown();
sub_cmd.shutdown();
}
void UnitreeJointController::setTorqueCB(const geometry_msgs::WrenchStampedConstPtr& msg)
{
if(isHip) sensor_torque = msg->wrench.torque.x;
else sensor_torque = msg->wrench.torque.y;
// printf("sensor torque%f\n", sensor_torque);
}
void UnitreeJointController::setCommandCB(const unitree_legged_msgs::MotorCmdConstPtr& msg)
{
lastCmd.mode = msg->mode;
lastCmd.q = msg->q;
lastCmd.Kp = msg->Kp;
lastCmd.dq = msg->dq;
lastCmd.Kd = msg->Kd;
lastCmd.tau = msg->tau;
// the writeFromNonRT can be used in RT, if you have the guarantee that
// * no non-rt thread is calling the same function (we're not subscribing to ros callbacks)
// * there is only one single rt thread
command.writeFromNonRT(lastCmd);
}
// Controller initialization in non-realtime
bool UnitreeJointController::init(hardware_interface::EffortJointInterface *robot, ros::NodeHandle &n)
{
isHip = false;
isThigh = false;
isCalf = false;
// rqtTune = false;
sensor_torque = 0;
name_space = n.getNamespace();
if (!n.getParam("joint", joint_name)){
ROS_ERROR("No joint given in namespace: '%s')", n.getNamespace().c_str());
return false;
}
// load pid param from ymal only if rqt need
// if(rqtTune) {
#ifdef rqtTune
// Load PID Controller using gains set on parameter server
if (!pid_controller_.init(ros::NodeHandle(n, "pid")))
return false;
#endif
// }
urdf::Model urdf; // Get URDF info about joint
if (!urdf.initParamWithNodeHandle("robot_description", n)){
ROS_ERROR("Failed to parse urdf file");
return false;
}
joint_urdf = urdf.getJoint(joint_name);
if (!joint_urdf){
ROS_ERROR("Could not find joint '%s' in urdf", joint_name.c_str());
return false;
}
if(joint_name == "FR_hip_joint" || joint_name == "FL_hip_joint" || joint_name == "RR_hip_joint" || joint_name == "RL_hip_joint"){
isHip = true;
}
if(joint_name == "FR_calf_joint" || joint_name == "FL_calf_joint" || joint_name == "RR_calf_joint" || joint_name == "RL_calf_joint"){
isCalf = true;
}
joint = robot->getHandle(joint_name);
// Start command subscriber
sub_ft = n.subscribe(name_space + "/" +"joint_wrench", 1, &UnitreeJointController::setTorqueCB, this);
sub_cmd = n.subscribe("command", 20, &UnitreeJointController::setCommandCB, this);
// pub_state = n.advertise<unitree_legged_msgs::MotorState>(name_space + "/state", 20);
// Start realtime state publisher
controller_state_publisher_.reset(
new realtime_tools::RealtimePublisher<unitree_legged_msgs::MotorState>(n, name_space + "/state", 1));
return true;
}
void UnitreeJointController::setGains(const double &p, const double &i, const double &d, const double &i_max, const double &i_min, const bool &antiwindup)
{
pid_controller_.setGains(p,i,d,i_max,i_min,antiwindup);
}
void UnitreeJointController::getGains(double &p, double &i, double &d, double &i_max, double &i_min, bool &antiwindup)
{
pid_controller_.getGains(p,i,d,i_max,i_min,antiwindup);
}
void UnitreeJointController::getGains(double &p, double &i, double &d, double &i_max, double &i_min)
{
bool dummy;
pid_controller_.getGains(p,i,d,i_max,i_min,dummy);
}
// Controller startup in realtime
void UnitreeJointController::starting(const ros::Time& time)
{
// lastCmd.Kp = 0;
// lastCmd.Kd = 0;
double init_pos = joint.getPosition();
lastCmd.q = init_pos;
lastState.q = init_pos;
lastCmd.dq = 0;
lastState.dq = 0;
lastCmd.tau = 0;
lastState.tauEst = 0;
command.initRT(lastCmd);
pid_controller_.reset();
}
// Controller update loop in realtime
void UnitreeJointController::update(const ros::Time& time, const ros::Duration& period)
{
double currentPos, currentVel, calcTorque;
lastCmd = *(command.readFromRT());
// set command data
if(lastCmd.mode == PMSM) {
servoCmd.pos = lastCmd.q;
positionLimits(servoCmd.pos);
servoCmd.posStiffness = lastCmd.Kp;
if(fabs(lastCmd.q - PosStopF) < 0.00001){
servoCmd.posStiffness = 0;
}
servoCmd.vel = lastCmd.dq;
velocityLimits(servoCmd.vel);
servoCmd.velStiffness = lastCmd.Kd;
if(fabs(lastCmd.dq - VelStopF) < 0.00001){
servoCmd.velStiffness = 0;
}
servoCmd.torque = lastCmd.tau;
effortLimits(servoCmd.torque);
}
if(lastCmd.mode == BRAKE) {
servoCmd.posStiffness = 0;
servoCmd.vel = 0;
servoCmd.velStiffness = 20;
servoCmd.torque = 0;
effortLimits(servoCmd.torque);
}
// } else {
// servoCmd.posStiffness = 0;
// servoCmd.velStiffness = 5;
// servoCmd.torque = 0;
// }
// rqt set P D gains
// if(rqtTune) {
#ifdef rqtTune
double i, i_max, i_min;
getGains(servoCmd.posStiffness,i,servoCmd.velStiffness,i_max,i_min);
#endif
// }
currentPos = joint.getPosition();
currentVel = computeVel(currentPos, (double)lastState.q, (double)lastState.dq, period.toSec());
calcTorque = computeTorque(currentPos, currentVel, servoCmd);
effortLimits(calcTorque);
joint.setCommand(calcTorque);
lastState.q = currentPos;
lastState.dq = currentVel;
// lastState.tauEst = calcTorque;
// lastState.tauEst = sensor_torque;
lastState.tauEst = joint.getEffort();
// pub_state.publish(lastState);
// publish state
if (controller_state_publisher_ && controller_state_publisher_->trylock()) {
controller_state_publisher_->msg_.q = lastState.q;
controller_state_publisher_->msg_.dq = lastState.dq;
controller_state_publisher_->msg_.tauEst = lastState.tauEst;
controller_state_publisher_->unlockAndPublish();
}
// printf("sensor torque%f\n", sensor_torque);
// if(joint_name == "wrist1_joint") printf("wrist1 setp:%f getp:%f t:%f\n", servoCmd.pos, currentPos, calcTorque);
}
// Controller stopping in realtime
void UnitreeJointController::stopping(){}
void UnitreeJointController::positionLimits(double &position)
{
if (joint_urdf->type == urdf::Joint::REVOLUTE || joint_urdf->type == urdf::Joint::PRISMATIC)
clamp(position, joint_urdf->limits->lower, joint_urdf->limits->upper);
}
void UnitreeJointController::velocityLimits(double &velocity)
{
if (joint_urdf->type == urdf::Joint::REVOLUTE || joint_urdf->type == urdf::Joint::PRISMATIC)
clamp(velocity, -joint_urdf->limits->velocity, joint_urdf->limits->velocity);
}
void UnitreeJointController::effortLimits(double &effort)
{
if (joint_urdf->type == urdf::Joint::REVOLUTE || joint_urdf->type == urdf::Joint::PRISMATIC)
clamp(effort, -joint_urdf->limits->effort, joint_urdf->limits->effort);
}
} // namespace
// Register controller to pluginlib
PLUGINLIB_EXPORT_CLASS(unitree_legged_control::UnitreeJointController, controller_interface::ControllerBase);
| 8,576 | C++ | 36.291304 | 158 | 0.592001 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_legged_control/include/unitree_joint_control_tool.h | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
// #ifndef _UNITREE_JOINT_CONTROL_TOOL_H_
// #define _UNITREE_JOINT_CONTROL_TOOL_H_
#ifndef _LAIKAGO_CONTROL_TOOL_H_
#define _LAIKAGO_CONTROL_TOOL_H_
#include <stdio.h>
#include <stdint.h>
#include <algorithm>
#include <math.h>
#define posStopF (2.146E+9f) // stop position control mode
#define velStopF (16000.0f) // stop velocity control mode
typedef struct
{
uint8_t mode;
double pos;
double posStiffness;
double vel;
double velStiffness;
double torque;
} ServoCmd;
double clamp(double&, double, double); // eg. clamp(1.5, -1, 1) = 1
double computeVel(double current_position, double last_position, double last_velocity, double duration); // get current velocity
double computeTorque(double current_position, double current_velocity, ServoCmd&); // get torque
#endif
| 1,099 | C | 31.35294 | 129 | 0.627843 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_legged_control/include/joint_controller.h | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#ifndef _UNITREE_ROS_JOINT_CONTROLLER_H_
#define _UNITREE_ROS_JOINT_CONTROLLER_H_
#include <ros/node_handle.h>
#include <urdf/model.h>
#include <control_toolbox/pid.h>
#include <boost/scoped_ptr.hpp>
#include <boost/thread/condition.hpp>
#include <realtime_tools/realtime_publisher.h>
#include <hardware_interface/joint_command_interface.h>
#include <controller_interface/controller.h>
#include <std_msgs/Float64.h>
#include <realtime_tools/realtime_buffer.h>
#include <controller_interface/controller.h>
#include <hardware_interface/joint_command_interface.h>
#include "unitree_legged_msgs/MotorCmd.h"
#include "unitree_legged_msgs/MotorState.h"
#include <geometry_msgs/WrenchStamped.h>
#include "unitree_joint_control_tool.h"
#define PMSM (0x0A)
#define BRAKE (0x00)
#define PosStopF (2.146E+9f)
#define VelStopF (16000.0f)
namespace unitree_legged_control
{
class UnitreeJointController: public controller_interface::Controller<hardware_interface::EffortJointInterface>
{
private:
hardware_interface::JointHandle joint;
ros::Subscriber sub_cmd, sub_ft;
// ros::Publisher pub_state;
control_toolbox::Pid pid_controller_;
boost::scoped_ptr<realtime_tools::RealtimePublisher<unitree_legged_msgs::MotorState> > controller_state_publisher_ ;
public:
// bool start_up;
std::string name_space;
std::string joint_name;
float sensor_torque;
bool isHip, isThigh, isCalf, rqtTune;
urdf::JointConstSharedPtr joint_urdf;
realtime_tools::RealtimeBuffer<unitree_legged_msgs::MotorCmd> command;
unitree_legged_msgs::MotorCmd lastCmd;
unitree_legged_msgs::MotorState lastState;
ServoCmd servoCmd;
UnitreeJointController();
~UnitreeJointController();
virtual bool init(hardware_interface::EffortJointInterface *robot, ros::NodeHandle &n);
virtual void starting(const ros::Time& time);
virtual void update(const ros::Time& time, const ros::Duration& period);
virtual void stopping();
void setTorqueCB(const geometry_msgs::WrenchStampedConstPtr& msg);
void setCommandCB(const unitree_legged_msgs::MotorCmdConstPtr& msg);
void positionLimits(double &position);
void velocityLimits(double &velocity);
void effortLimits(double &effort);
void setGains(const double &p, const double &i, const double &d, const double &i_max, const double &i_min, const bool &antiwindup = false);
void getGains(double &p, double &i, double &d, double &i_max, double &i_min, bool &antiwindup);
void getGains(double &p, double &i, double &d, double &i_max, double &i_min);
};
}
#endif
| 2,999 | C | 39.54054 | 147 | 0.674558 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/robots/laikago_description/config/robot_control.yaml | laikago_gazebo:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 1000
# FL Controllers ---------------------------------------
FL_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
FL_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
FL_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# FR Controllers ---------------------------------------
FR_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
FR_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
FR_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# RL Controllers ---------------------------------------
RL_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
RL_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
RL_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# RR Controllers ---------------------------------------
RR_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
RR_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
RR_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
| 2,291 | YAML | 31.28169 | 66 | 0.553907 |