file_path
stringlengths
21
224
content
stringlengths
0
80.8M
Toni-SM/skrl/docs/source/examples/omniisaacgym/torch_ball_balance_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_omniverse_isaacgym_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, 32), nn.ELU()) self.mean_layer = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) self.value_layer = nn.Linear(32, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="BallBalance") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 8 # 16 * 4096 / 8192 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 2.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.1 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 20 cfg["experiment"]["checkpoint_interval"] = 200 cfg["experiment"]["directory"] = "runs/torch/BallBalance" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 4000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/OmniIsaacGymEnvs-BallBalance-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/omniisaacgym/jax_franka_cabinet_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_omniverse_isaacgym_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return x, log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="FrankaCabinet") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 8 # 16 * 4096 / 8192 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 5e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 2.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.01 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 120 cfg["experiment"]["checkpoint_interval"] = 1200 cfg["experiment"]["directory"] = "runs/jax/FrankaCabinet" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 24000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/omniisaacgym/torch_ant_mt_ppo.py
import threading import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_omniverse_isaacgym_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU()) self.mean_layer = nn.Linear(64, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) self.value_layer = nn.Linear(64, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the multi-threaded Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="Ant", multi_threaded=True, timeout=30) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 4 cfg["mini_batches"] = 2 # 16 * 4096 / 32768 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.01 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 40 cfg["experiment"]["checkpoint_interval"] = 400 cfg["experiment"]["directory"] = "runs/torch/Ant" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 8000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training in a separate thread threading.Thread(target=trainer.train).start() # run the simulation in the main thread env.run()
Toni-SM/skrl/docs/source/examples/omniisaacgym/torch_ant_ddpg.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ddpg import DDPG, DDPG_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_omniverse_isaacgym_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, Model from skrl.resources.noises.torch import OrnsteinUhlenbeckNoise from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixins class DeterministicActor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, self.num_actions), nn.Tanh()) def compute(self, inputs, role): return self.net(inputs["states"]), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations + self.num_actions, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 1)) def compute(self, inputs, role): return self.net(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1)), {} # load and wrap the Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="Ant", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # DDPG requires 4 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#models models = {} models["policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["target_policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["critic"] = Critic(env.observation_space, env.action_space, device) models["target_critic"] = Critic(env.observation_space, env.action_space, device) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#configuration-and-hyperparameters cfg = DDPG_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.1, base_scale=0.5, device=device) cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/torch/Ant" agent = DDPG(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/omniisaacgym/jax_ant_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_omniverse_isaacgym_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return x, log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="Ant") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 4 cfg["mini_batches"] = 2 # 16 * 4096 / 32768 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.01 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 40 cfg["experiment"]["checkpoint_interval"] = 400 cfg["experiment"]["directory"] = "runs/jax/Ant" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 8000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/omniisaacgym/torch_anymal_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_omniverse_isaacgym_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU()) self.mean_layer = nn.Linear(64, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) self.value_layer = nn.Linear(64, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="Anymal") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=24, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 24 # memory_size cfg["learning_epochs"] = 5 cfg["mini_batches"] = 3 # 24 * 4096 / 32768 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 120 cfg["experiment"]["checkpoint_interval"] = 1200 cfg["experiment"]["directory"] = "runs/torch/Anymal" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 24000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/OmniIsaacGymEnvs-Anymal-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/omniisaacgym/torch_ant_ddpg_td3_sac_sequential_unshared_memory.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ddpg import DDPG, DDPG_DEFAULT_CONFIG from skrl.agents.torch.sac import SAC, SAC_DEFAULT_CONFIG from skrl.agents.torch.td3 import TD3, TD3_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_omniverse_isaacgym_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.noises.torch import GaussianNoise, OrnsteinUhlenbeckNoise from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class StochasticActor(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-5, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} class DeterministicActor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, self.num_actions), nn.Tanh()) def compute(self, inputs, role): return self.net(inputs["states"]), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations + self.num_actions, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 1)) def compute(self, inputs, role): return self.net(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1)), {} # load and wrap the Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="Ant", num_envs=192) env = wrap_env(env) device = env.device # instantiate memories as experience replay (unique for each agents). # scopes (192 envs): DDPG 64, TD3 64 and SAC 64 memory_ddpg = RandomMemory(memory_size=15625, num_envs=64, device=device) memory_td3 = RandomMemory(memory_size=15625, num_envs=64, device=device) memory_sac = RandomMemory(memory_size=15625, num_envs=64, device=device) # instantiate the agents' models (function approximators). # DDPG requires 4 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#models models_ddpg = {} models_ddpg["policy"] = DeterministicActor(env.observation_space, env.action_space, device) models_ddpg["target_policy"] = DeterministicActor(env.observation_space, env.action_space, device) models_ddpg["critic"] = Critic(env.observation_space, env.action_space, device) models_ddpg["target_critic"] = Critic(env.observation_space, env.action_space, device) # TD3 requires 6 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/td3.html#models models_td3 = {} models_td3["policy"] = DeterministicActor(env.observation_space, env.action_space, device) models_td3["target_policy"] = DeterministicActor(env.observation_space, env.action_space, device) models_td3["critic_1"] = Critic(env.observation_space, env.action_space, device) models_td3["critic_2"] = Critic(env.observation_space, env.action_space, device) models_td3["target_critic_1"] = Critic(env.observation_space, env.action_space, device) models_td3["target_critic_2"] = Critic(env.observation_space, env.action_space, device) # SAC requires 5 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/sac.html#models models_sac = {} models_sac["policy"] = StochasticActor(env.observation_space, env.action_space, device, clip_actions=True) models_sac["critic_1"] = Critic(env.observation_space, env.action_space, device) models_sac["critic_2"] = Critic(env.observation_space, env.action_space, device) models_sac["target_critic_1"] = Critic(env.observation_space, env.action_space, device) models_sac["target_critic_2"] = Critic(env.observation_space, env.action_space, device) # configure and instantiate the agents (visit their documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#configuration-and-hyperparameters cfg_ddpg = DDPG_DEFAULT_CONFIG.copy() cfg_ddpg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.1, base_scale=0.5, device=device) cfg_ddpg["gradient_steps"] = 1 cfg_ddpg["batch_size"] = 4096 cfg_ddpg["discount_factor"] = 0.99 cfg_ddpg["polyak"] = 0.005 cfg_ddpg["actor_learning_rate"] = 5e-4 cfg_ddpg["critic_learning_rate"] = 5e-4 cfg_ddpg["random_timesteps"] = 80 cfg_ddpg["learning_starts"] = 80 cfg_ddpg["state_preprocessor"] = RunningStandardScaler cfg_ddpg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg_ddpg["experiment"]["write_interval"] = 800 cfg_ddpg["experiment"]["checkpoint_interval"] = 8000 cfg_ddpg["experiment"]["directory"] = "runs/torch/Ant" # https://skrl.readthedocs.io/en/latest/api/agents/td3.html#configuration-and-hyperparameters cfg_td3 = TD3_DEFAULT_CONFIG.copy() cfg_td3["exploration"]["noise"] = GaussianNoise(0, 0.1, device=device) cfg_td3["smooth_regularization_noise"] = GaussianNoise(0, 0.2, device=device) cfg_td3["smooth_regularization_clip"] = 0.5 cfg_td3["gradient_steps"] = 1 cfg_td3["batch_size"] = 4096 cfg_td3["discount_factor"] = 0.99 cfg_td3["polyak"] = 0.005 cfg_td3["actor_learning_rate"] = 5e-4 cfg_td3["critic_learning_rate"] = 5e-4 cfg_td3["random_timesteps"] = 80 cfg_td3["learning_starts"] = 80 cfg_td3["state_preprocessor"] = RunningStandardScaler cfg_td3["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg_td3["experiment"]["write_interval"] = 800 cfg_td3["experiment"]["checkpoint_interval"] = 8000 cfg_td3["experiment"]["directory"] = "runs/torch/Ant" # https://skrl.readthedocs.io/en/latest/api/agents/sac.html#configuration-and-hyperparameters cfg_sac = SAC_DEFAULT_CONFIG.copy() cfg_sac["gradient_steps"] = 1 cfg_sac["batch_size"] = 4096 cfg_sac["discount_factor"] = 0.99 cfg_sac["polyak"] = 0.005 cfg_sac["actor_learning_rate"] = 5e-4 cfg_sac["critic_learning_rate"] = 5e-4 cfg_sac["random_timesteps"] = 80 cfg_sac["learning_starts"] = 80 cfg_sac["grad_norm_clip"] = 0 cfg_sac["learn_entropy"] = True cfg_sac["entropy_learning_rate"] = 5e-3 cfg_sac["initial_entropy_value"] = 1.0 cfg_sac["state_preprocessor"] = RunningStandardScaler cfg_sac["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg_sac["experiment"]["write_interval"] = 800 cfg_sac["experiment"]["checkpoint_interval"] = 8000 cfg_sac["experiment"]["directory"] = "runs/torch/Ant" agent_ddpg = DDPG(models=models_ddpg, memory=memory_ddpg, cfg=cfg_ddpg, observation_space=env.observation_space, action_space=env.action_space, device=device) agent_td3 = TD3(models=models_td3, memory=memory_td3, cfg=cfg_td3, observation_space=env.observation_space, action_space=env.action_space, device=device) agent_sac = SAC(models=models_sac, memory=memory_sac, cfg=cfg_sac, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer and define the agent scopes cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=[agent_ddpg, agent_td3, agent_sac], agents_scope=[64, 64, 64]) # scopes (192 envs): DDPG 64, TD3 64 and SAC 64 # start training trainer.train()
Toni-SM/skrl/docs/source/examples/omniisaacgym/jax_ant_td3.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.td3 import TD3, TD3_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_omniverse_isaacgym_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, Model from skrl.resources.noises.jax import GaussianNoise from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixins class DeterministicActor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.relu(nn.Dense(512)(inputs["states"])) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(self.num_actions)(x) return nn.tanh(x), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = nn.relu(nn.Dense(512)(x)) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="Ant", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # TD3 requires 6 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/td3.html#models models = {} models["policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["target_policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["critic_1"] = Critic(env.observation_space, env.action_space, device) models["critic_2"] = Critic(env.observation_space, env.action_space, device) models["target_critic_1"] = Critic(env.observation_space, env.action_space, device) models["target_critic_2"] = Critic(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/td3.html#configuration-and-hyperparameters cfg = TD3_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = GaussianNoise(0, 0.1, device=device) cfg["smooth_regularization_noise"] = GaussianNoise(0, 0.1, device=device) cfg["smooth_regularization_clip"] = 0.5 cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/jax/Ant" agent = TD3(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/omniisaacgym/torch_cartpole_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_omniverse_isaacgym_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(40)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 32), nn.ELU(), nn.Linear(32, 32), nn.ELU()) self.mean_layer = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) self.value_layer = nn.Linear(32, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="Cartpole") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 1 # 16 * 512 / 8192 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 2.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.1 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 16 cfg["experiment"]["checkpoint_interval"] = 80 cfg["experiment"]["directory"] = "runs/torch/Cartpole" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1600, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/OmniIsaacGymEnvs-Cartpole-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/omniisaacgym/torch_quadcopter_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_omniverse_isaacgym_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU()) self.mean_layer = nn.Linear(128, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) self.value_layer = nn.Linear(128, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="Quadcopter") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 4 # 16 * 4096 / 16384 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 1e-3 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.016} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.1 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 80 cfg["experiment"]["checkpoint_interval"] = 800 cfg["experiment"]["directory"] = "runs/torch/Quadcopter" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 16000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/OmniIsaacGymEnvs-Quadcopter-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/omniisaacgym/jax_factory_task_nut_bolt_pick_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_omniverse_isaacgym_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return x, log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="FactoryTaskNutBoltPick") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=240, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 240 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 60 # 240 * 128 / 512 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 1e-4 cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0.016 cfg["rewards_shaper"] = None cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 614 cfg["experiment"]["checkpoint_interval"] = 6144 cfg["experiment"]["directory"] = "runs/jax/FactoryTaskNutBoltPick" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 120000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/omniisaacgym/jax_crazyflie_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_omniverse_isaacgym_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.tanh(nn.Dense(256)(inputs["states"])) x = nn.tanh(nn.Dense(256)(x)) x = nn.tanh(nn.Dense(128)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return x, log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.tanh(nn.Dense(256)(inputs["states"])) x = nn.tanh(nn.Dense(256)(x)) x = nn.tanh(nn.Dense(128)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Omniverse Isaac Gym environment env = load_omniverse_isaacgym_env(task_name="Crazyflie") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 4 # 16 * 4096 / 16384 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 1e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.016} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.01 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 80 cfg["experiment"]["checkpoint_interval"] = 800 cfg["experiment"]["directory"] = "runs/jax/Crazyflie" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 16000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/shimmy/torch_shimmy_dm_control_acrobot_swingup_sparse_sac.py
import gymnasium as gym import torch import torch.nn as nn import torch.nn.functional as F # import the skrl components to build the RL system from skrl.agents.torch.ddpg import DDPG, DDPG_DEFAULT_CONFIG from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, Model from skrl.resources.noises.torch import OrnsteinUhlenbeckNoise from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixin class Actor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.linear_layer_1 = nn.Linear(self.num_observations, 400) self.linear_layer_2 = nn.Linear(400, 300) self.action_layer = nn.Linear(300, self.num_actions) def compute(self, inputs, role): x = F.relu(self.linear_layer_1(inputs["states"])) x = F.relu(self.linear_layer_2(x)) return torch.tanh(self.action_layer(x)), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.linear_layer_1 = nn.Linear(self.num_observations + self.num_actions, 400) self.linear_layer_2 = nn.Linear(400, 300) self.linear_layer_3 = nn.Linear(300, 1) def compute(self, inputs, role): x = F.relu(self.linear_layer_1(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1))) x = F.relu(self.linear_layer_2(x)) return self.linear_layer_3(x), {} # load and wrap the environment env = gym.make("dm_control/acrobot-swingup_sparse-v0") env = wrap_env(env) device = env.device # instantiate a memory as experience replay memory = RandomMemory(memory_size=20000, num_envs=env.num_envs, device=device, replacement=False) # instantiate the agent's models (function approximators). # DDPG requires 4 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#models models = {} models["policy"] = Actor(env.observation_space, env.action_space, device) models["target_policy"] = Actor(env.observation_space, env.action_space, device) models["critic"] = Critic(env.observation_space, env.action_space, device) models["target_critic"] = Critic(env.observation_space, env.action_space, device) # initialize models' parameters (weights and biases) for model in models.values(): model.init_parameters(method_name="normal_", mean=0.0, std=0.1) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#configuration-and-hyperparameters cfg = DDPG_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.1, base_scale=1.0, device=device) cfg["discount_factor"] = 0.98 cfg["batch_size"] = 100 cfg["random_timesteps"] = 1000 cfg["learning_starts"] = 1000 # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 75 cfg["experiment"]["checkpoint_interval"] = 750 cfg["experiment"]["directory"] = "runs/torch/dm_control_acrobot_swingup_sparse" agent = DDPG(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 15000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=[agent]) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/shimmy/jax_shimmy_openai_gym_compatibility_pendulum_ddpg.py
import gymnasium as gym import flax.linen as nn import jax import jax.numpy as jnp # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ddpg import DDPG, DDPG_DEFAULT_CONFIG from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, Model from skrl.resources.noises.jax import OrnsteinUhlenbeckNoise from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "numpy" # or "jax" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixin class Actor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) @nn.compact def __call__(self, inputs, role): x = nn.relu(nn.Dense(400)(inputs["states"])) x = nn.relu(nn.Dense(300)(x)) x = nn.Dense(self.num_actions)(x) # Pendulum-v1 action_space is -2 to 2 return 2 * nn.tanh(x), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = nn.relu(nn.Dense(400)(x)) x = nn.relu(nn.Dense(300)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the environment env = gym.make("GymV21Environment-v0", env_id="Pendulum-v1") env = wrap_env(env) device = env.device # instantiate a memory as experience replay memory = RandomMemory(memory_size=15000, num_envs=env.num_envs, device=device, replacement=False) # instantiate the agent's models (function approximators). # DDPG requires 4 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#models models = {} models["policy"] = Actor(env.observation_space, env.action_space, device) models["target_policy"] = Actor(env.observation_space, env.action_space, device) models["critic"] = Critic(env.observation_space, env.action_space, device) models["target_critic"] = Critic(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # initialize models' parameters (weights and biases) for model in models.values(): model.init_parameters(method_name="normal", stddev=0.1) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#configuration-and-hyperparameters cfg = DDPG_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.1, base_scale=1.0, device=device) cfg["batch_size"] = 100 cfg["random_timesteps"] = 100 cfg["learning_starts"] = 100 # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 300 cfg["experiment"]["checkpoint_interval"] = 1500 cfg["experiment"]["directory"] = "runs/torch/GymV21Environment_Pendulum" agent = DDPG(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 15000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=[agent]) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/shimmy/torch_shimmy_atari_pong_dqn.py
import gymnasium as gym import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.dqn import DQN, DQN_DEFAULT_CONFIG from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, Model from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define model (deterministic model) using mixin class QNetwork(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # load and wrap the environment env = gym.make("ALE/Pong-v5") env = wrap_env(env) device = env.device # instantiate a memory as experience replay memory = RandomMemory(memory_size=15000, num_envs=env.num_envs, device=device, replacement=False) # instantiate the agent's models (function approximators). # DQN requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/dqn.html#models models = {} models["q_network"] = QNetwork(env.observation_space, env.action_space, device) models["target_q_network"] = QNetwork(env.observation_space, env.action_space, device) # initialize models' parameters (weights and biases) for model in models.values(): model.init_parameters(method_name="normal_", mean=0.0, std=0.1) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/dqn.html#configuration-and-hyperparameters cfg = DQN_DEFAULT_CONFIG.copy() cfg["learning_starts"] = 100 cfg["exploration"]["initial_epsilon"] = 1.0 cfg["exploration"]["final_epsilon"] = 0.04 cfg["exploration"]["timesteps"] = 1500 # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 1000 cfg["experiment"]["checkpoint_interval"] = 5000 cfg["experiment"]["directory"] = "runs/torch/ALE_Pong" agent = DQN(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 50000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=[agent]) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/shimmy/jax_shimmy_atari_pong_dqn.py
import gymnasium as gym import flax.linen as nn import jax import jax.numpy as jnp # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.dqn import DQN, DQN_DEFAULT_CONFIG from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, Model from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "numpy" # or "jax" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define model (deterministic model) using mixin class QNetwork(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) @nn.compact def __call__(self, inputs, role): x = nn.relu(nn.Dense(64)(inputs["states"])) x = nn.relu(nn.Dense(64)(x)) x = nn.Dense(self.num_actions)(x) return x, {} # load and wrap the environment env = gym.make("ALE/Pong-v5") env = wrap_env(env) device = env.device # instantiate a memory as experience replay memory = RandomMemory(memory_size=15000, num_envs=env.num_envs, device=device, replacement=False) # instantiate the agent's models (function approximators). # DQN requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/dqn.html#models models = {} models["q_network"] = QNetwork(env.observation_space, env.action_space, device) models["target_q_network"] = QNetwork(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # initialize models' parameters (weights and biases) for model in models.values(): model.init_parameters(method_name="normal", stddev=0.1) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/dqn.html#configuration-and-hyperparameters cfg = DQN_DEFAULT_CONFIG.copy() cfg["learning_starts"] = 100 cfg["exploration"]["final_epsilon"] = 0.04 cfg["exploration"]["timesteps"] = 1500 # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 1000 cfg["experiment"]["checkpoint_interval"] = 5000 cfg["experiment"]["directory"] = "runs/torch/ALE_Pong" agent = DQN(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 50000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=[agent]) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/shimmy/torch_shimmy_openai_gym_compatibility_pendulum_ddpg.py
import gymnasium as gym import torch import torch.nn as nn import torch.nn.functional as F # import the skrl components to build the RL system from skrl.agents.torch.ddpg import DDPG, DDPG_DEFAULT_CONFIG from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, Model from skrl.resources.noises.torch import OrnsteinUhlenbeckNoise from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixin class Actor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.linear_layer_1 = nn.Linear(self.num_observations, 400) self.linear_layer_2 = nn.Linear(400, 300) self.action_layer = nn.Linear(300, self.num_actions) def compute(self, inputs, role): x = F.relu(self.linear_layer_1(inputs["states"])) x = F.relu(self.linear_layer_2(x)) # Pendulum-v1 action_space is -2 to 2 return 2 * torch.tanh(self.action_layer(x)), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.linear_layer_1 = nn.Linear(self.num_observations + self.num_actions, 400) self.linear_layer_2 = nn.Linear(400, 300) self.linear_layer_3 = nn.Linear(300, 1) def compute(self, inputs, role): x = F.relu(self.linear_layer_1(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1))) x = F.relu(self.linear_layer_2(x)) return self.linear_layer_3(x), {} # load and wrap the environment env = gym.make("GymV21Environment-v0", env_id="Pendulum-v1") env = wrap_env(env) device = env.device # instantiate a memory as experience replay memory = RandomMemory(memory_size=15000, num_envs=env.num_envs, device=device, replacement=False) # instantiate the agent's models (function approximators). # DDPG requires 4 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#models models = {} models["policy"] = Actor(env.observation_space, env.action_space, device) models["target_policy"] = Actor(env.observation_space, env.action_space, device) models["critic"] = Critic(env.observation_space, env.action_space, device) models["target_critic"] = Critic(env.observation_space, env.action_space, device) # initialize models' parameters (weights and biases) for model in models.values(): model.init_parameters(method_name="normal_", mean=0.0, std=0.1) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#configuration-and-hyperparameters cfg = DDPG_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.1, base_scale=1.0, device=device) cfg["batch_size"] = 100 cfg["random_timesteps"] = 100 cfg["learning_starts"] = 100 # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 300 cfg["experiment"]["checkpoint_interval"] = 1500 cfg["experiment"]["directory"] = "runs/torch/GymV21Environment_Pendulum" agent = DDPG(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 15000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=[agent]) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/shimmy/jax_shimmy_dm_control_acrobot_swingup_sparse_sac.py
import gymnasium as gym import flax.linen as nn import jax import jax.numpy as jnp # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ddpg import DDPG, DDPG_DEFAULT_CONFIG from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, Model from skrl.resources.noises.jax import OrnsteinUhlenbeckNoise from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "numpy" # or "jax" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixin class Actor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) @nn.compact def __call__(self, inputs, role): x = nn.relu(nn.Dense(400)(inputs["states"])) x = nn.relu(nn.Dense(300)(x)) x = nn.Dense(self.num_actions)(x) return nn.tanh(x), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = nn.relu(nn.Dense(400)(x)) x = nn.relu(nn.Dense(300)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the environment env = gym.make("dm_control/acrobot-swingup_sparse-v0") env = wrap_env(env) device = env.device # instantiate a memory as experience replay memory = RandomMemory(memory_size=20000, num_envs=env.num_envs, device=device, replacement=False) # instantiate the agent's models (function approximators). # DDPG requires 4 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#models models = {} models["policy"] = Actor(env.observation_space, env.action_space, device) models["target_policy"] = Actor(env.observation_space, env.action_space, device) models["critic"] = Critic(env.observation_space, env.action_space, device) models["target_critic"] = Critic(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # initialize models' parameters (weights and biases) for model in models.values(): model.init_parameters(method_name="normal", stddev=0.1) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#configuration-and-hyperparameters cfg = DDPG_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.1, base_scale=1.0, device=device) cfg["discount_factor"] = 0.98 cfg["batch_size"] = 100 cfg["random_timesteps"] = 1000 cfg["learning_starts"] = 1000 # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 75 cfg["experiment"]["checkpoint_interval"] = 750 cfg["experiment"]["directory"] = "runs/torch/dm_control_acrobot_swingup_sparse" agent = DDPG(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 15000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=[agent]) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/utils/tensorboard_file_iterator.py
import numpy as np import matplotlib.pyplot as plt from skrl.utils import postprocessing labels = [] rewards = [] # load the Tensorboard files and iterate over them (tag: "Reward / Total reward (mean)") tensorboard_iterator = postprocessing.TensorboardFileIterator("runs/*/events.out.tfevents.*", tags=["Reward / Total reward (mean)"]) for dirname, data in tensorboard_iterator: rewards.append(data["Reward / Total reward (mean)"]) labels.append(dirname) # convert to numpy arrays and compute mean and std rewards = np.array(rewards) mean = np.mean(rewards[:,:,1], axis=0) std = np.std(rewards[:,:,1], axis=0) # creae two subplots (one for each reward and one for the mean) fig, ax = plt.subplots(1, 2, figsize=(15, 5)) # plot the rewards for each experiment for reward, label in zip(rewards, labels): ax[0].plot(reward[:,0], reward[:,1], label=label) ax[0].set_title("Total reward (for each experiment)") ax[0].set_xlabel("Timesteps") ax[0].set_ylabel("Reward") ax[0].grid(True) ax[0].legend() # plot the mean and std (across experiments) ax[1].fill_between(rewards[0,:,0], mean - std, mean + std, alpha=0.5, label="std") ax[1].plot(rewards[0,:,0], mean, label="mean") ax[1].set_title("Total reward (mean and std of all experiments)") ax[1].set_xlabel("Timesteps") ax[1].set_ylabel("Reward") ax[1].grid(True) ax[1].legend() # show and save the figure plt.show() plt.savefig("total_reward.png")
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_ant_td3.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.td3 import TD3, TD3_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, Model from skrl.resources.noises.torch import GaussianNoise from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixins class DeterministicActor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, self.num_actions), nn.Tanh()) def compute(self, inputs, role): return self.net(inputs["states"]), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations + self.num_actions, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 1)) def compute(self, inputs, role): return self.net(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1)), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # TD3 requires 5 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/td3.html#models models = {} models["policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["target_policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["critic_1"] = Critic(env.observation_space, env.action_space, device) models["critic_2"] = Critic(env.observation_space, env.action_space, device) models["target_critic_1"] = Critic(env.observation_space, env.action_space, device) models["target_critic_2"] = Critic(env.observation_space, env.action_space, device) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/td3.html#configuration-and-hyperparameters cfg = TD3_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = GaussianNoise(0, 0.1, device=device) cfg["smooth_regularization_noise"] = GaussianNoise(0, 0.2, device=device) cfg["smooth_regularization_clip"] = 0.5 cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/torch/Isaac-Ant-v0" agent = TD3(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_velocity_anymal_c_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 128), nn.ELU(), nn.Linear(128, 128), nn.ELU(), nn.Linear(128, 128), nn.ELU()) self.mean_layer = nn.Linear(128, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) self.value_layer = nn.Linear(128, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Velocity-Anymal-C-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=24, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 24 # memory_size cfg["learning_epochs"] = 5 cfg["mini_batches"] = 4 # 24 * 4096 / 24576 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 1e-3 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 60 cfg["experiment"]["checkpoint_interval"] = 600 cfg["experiment"]["directory"] = "runs/torch/Isaac-Velocity-Anymal-C-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 12000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_cartpole_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(40)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(32)(inputs["states"])) x = nn.elu(nn.Dense(32)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.ones(self.num_actions)) return x, log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(32)(inputs["states"])) x = nn.elu(nn.Dense(32)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Cartpole-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 1 # 16 * 512 / 8192 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 2.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = True cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 16 cfg["experiment"]["checkpoint_interval"] = 80 cfg["experiment"]["directory"] = "runs/jax/Isaac-Cartpole-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1600, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Cartpole-v0-PPO", filename="agent.pickle") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_humanoid_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-5, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 400), nn.ELU(), nn.Linear(400, 200), nn.ELU(), nn.Linear(200, 100), nn.ELU()) self.mean_layer = nn.Linear(100, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) self.value_layer = nn.Linear(100, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return torch.tanh(self.mean_layer(self.net(inputs["states"]))), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Humanoid-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=32, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 32 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 8 # 32 * 1024 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 4.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, *args, **kwargs: rewards * 0.01 cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 80 cfg["experiment"]["checkpoint_interval"] = 800 cfg["experiment"]["directory"] = "runs/torch/Isaac-Humanoid-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 16000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Humanoid-v0-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_ant_sac.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.sac import SAC, SAC_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class StochasticActor(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-5, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.relu(nn.Dense(512)(inputs["states"])) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return nn.tanh(x), log_std, {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = nn.relu(nn.Dense(512)(x)) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # SAC requires 5 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/sac.html#models models = {} models["policy"] = StochasticActor(env.observation_space, env.action_space, device) models["critic_1"] = Critic(env.observation_space, env.action_space, device) models["critic_2"] = Critic(env.observation_space, env.action_space, device) models["target_critic_1"] = Critic(env.observation_space, env.action_space, device) models["target_critic_2"] = Critic(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/sac.html#configuration-and-hyperparameters cfg = SAC_DEFAULT_CONFIG.copy() cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["grad_norm_clip"] = 0 cfg["learn_entropy"] = True cfg["entropy_learning_rate"] = 5e-3 cfg["initial_entropy_value"] = 1.0 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/jax/Isaac-Ant-v0" agent = SAC(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_ant_sac.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.sac import SAC, SAC_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class StochasticActor(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-5, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations + self.num_actions, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 1)) def compute(self, inputs, role): return self.net(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1)), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # SAC requires 5 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/sac.html#models models = {} models["policy"] = StochasticActor(env.observation_space, env.action_space, device) models["critic_1"] = Critic(env.observation_space, env.action_space, device) models["critic_2"] = Critic(env.observation_space, env.action_space, device) models["target_critic_1"] = Critic(env.observation_space, env.action_space, device) models["target_critic_2"] = Critic(env.observation_space, env.action_space, device) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/sac.html#configuration-and-hyperparameters cfg = SAC_DEFAULT_CONFIG.copy() cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["grad_norm_clip"] = 0 cfg["learn_entropy"] = True cfg["entropy_learning_rate"] = 5e-3 cfg["initial_entropy_value"] = 1.0 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/torch/Isaac-Ant-v0" agent = SAC(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_ant_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU()) self.mean_layer = nn.Linear(64, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) self.value_layer = nn.Linear(64, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 4 # 16 * 1024 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, *args, **kwargs: rewards * 0.1 cfg["time_limit_bootstrap"] = True cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 40 cfg["experiment"]["checkpoint_interval"] = 400 cfg["experiment"]["directory"] = "runs/torch/Isaac-Ant-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 8000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Ant-v0-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_lift_franka_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveLR from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.ones(self.num_actions)) return x, log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Lift-Franka-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=96, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 96 # memory_size cfg["learning_epochs"] = 5 cfg["mini_batches"] = 4 # 96 * 4096 / 98304 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 1e-3 cfg["learning_rate_scheduler"] = KLAdaptiveLR cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01, "min_lr": 1e-5} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.01 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = True cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 336 cfg["experiment"]["checkpoint_interval"] = 3360 cfg["experiment"]["directory"] = "runs/jax/Isaac-Lift-Franka-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 67200, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Lift-Franka-v0-PPO", filename="agent.pickle") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_lift_franka_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveLR from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU()) self.mean_layer = nn.Linear(64, self.num_actions) self.log_std_parameter = nn.Parameter(torch.ones(self.num_actions)) self.value_layer = nn.Linear(64, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Lift-Franka-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=96, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 96 # memory_size cfg["learning_epochs"] = 5 cfg["mini_batches"] = 4 # 96 * 4096 / 98304 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 1e-3 cfg["learning_rate_scheduler"] = KLAdaptiveLR cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01, "min_lr": 1e-5} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.01 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = True cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 336 cfg["experiment"]["checkpoint_interval"] = 3360 cfg["experiment"]["directory"] = "runs/torch/Isaac-Lift-Franka-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 67200, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Lift-Franka-v0-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_ant_ddpg.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ddpg import DDPG, DDPG_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, Model from skrl.resources.noises.jax import OrnsteinUhlenbeckNoise from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixins class DeterministicActor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.relu(nn.Dense(512)(inputs["states"])) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(self.num_actions)(x) return nn.tanh(x), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = nn.relu(nn.Dense(512)(x)) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # DDPG requires 4 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#models models = {} models["policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["target_policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["critic"] = Critic(env.observation_space, env.action_space, device) models["target_critic"] = Critic(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#configuration-and-hyperparameters cfg = DDPG_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.1, base_scale=0.5, device=device) cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/jax/Isaac-Ant-v0" agent = DDPG(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_reach_franka_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: 0.5 * jnp.ones(self.num_actions)) return nn.tanh(x), log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Reach-Franka-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 8 # 16 * 2048 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 2.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 80 cfg["experiment"]["checkpoint_interval"] = 800 cfg["experiment"]["directory"] = "runs/jax/Isaac-Reach-Franka-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 16000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Reach-Franka-v0-PPO", filename="agent.pickle") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_humanoid_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-5, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(400)(inputs["states"])) x = nn.elu(nn.Dense(200)(x)) x = nn.elu(nn.Dense(100)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return nn.tanh(x), log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(400)(inputs["states"])) x = nn.elu(nn.Dense(200)(x)) x = nn.elu(nn.Dense(100)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Humanoid-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=32, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 32 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 8 # 32 * 1024 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 4.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, *args, **kwargs: rewards * 0.01 cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 80 cfg["experiment"]["checkpoint_interval"] = 800 cfg["experiment"]["directory"] = "runs/jax/Isaac-Humanoid-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 16000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Humanoid-v0-PPO", filename="agent.pickle") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_reach_franka_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU()) self.mean_layer = nn.Linear(64, self.num_actions) self.log_std_parameter = nn.Parameter(0.5 * torch.ones(self.num_actions)) self.value_layer = nn.Linear(64, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return torch.tanh(self.mean_layer(self.net(inputs["states"]))), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Reach-Franka-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 8 # 16 * 2048 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 2.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 80 cfg["experiment"]["checkpoint_interval"] = 800 cfg["experiment"]["directory"] = "runs/torch/Isaac-Reach-Franka-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 16000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Reach-Franka-v0-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_ant_ddpg.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ddpg import DDPG, DDPG_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, Model from skrl.resources.noises.torch import OrnsteinUhlenbeckNoise from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixins class DeterministicActor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, self.num_actions), nn.Tanh()) def compute(self, inputs, role): return self.net(inputs["states"]), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations + self.num_actions, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 1)) def compute(self, inputs, role): return self.net(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1)), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # DDPG requires 4 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#models models = {} models["policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["target_policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["critic"] = Critic(env.observation_space, env.action_space, device) models["target_critic"] = Critic(env.observation_space, env.action_space, device) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ddpg.html#configuration-and-hyperparameters cfg = DDPG_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.1, base_scale=0.5, device=device) cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/torch/Isaac-Ant-v0" agent = DDPG(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_ant_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return x, log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(256)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(64)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 4 # 16 * 1024 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, *args, **kwargs: rewards * 0.1 cfg["time_limit_bootstrap"] = True cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 40 cfg["experiment"]["checkpoint_interval"] = 400 cfg["experiment"]["directory"] = "runs/jax/Isaac-Ant-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 8000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Ant-v0-PPO", filename="agent.pickle") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_ant_td3.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.td3 import TD3, TD3_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, Model from skrl.resources.noises.jax import GaussianNoise from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (deterministic models) using mixins class DeterministicActor(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.relu(nn.Dense(512)(inputs["states"])) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(self.num_actions)(x) return nn.tanh(x), {} class Critic(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = nn.relu(nn.Dense(512)(x)) x = nn.relu(nn.Dense(256)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Ant-v0", num_envs=64) env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=15625, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # TD3 requires 6 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/td3.html#models models = {} models["policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["target_policy"] = DeterministicActor(env.observation_space, env.action_space, device) models["critic_1"] = Critic(env.observation_space, env.action_space, device) models["critic_2"] = Critic(env.observation_space, env.action_space, device) models["target_critic_1"] = Critic(env.observation_space, env.action_space, device) models["target_critic_2"] = Critic(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/td3.html#configuration-and-hyperparameters cfg = TD3_DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = GaussianNoise(0, 0.1, device=device) cfg["smooth_regularization_noise"] = GaussianNoise(0, 0.1, device=device) cfg["smooth_regularization_clip"] = 0.5 cfg["gradient_steps"] = 1 cfg["batch_size"] = 4096 cfg["discount_factor"] = 0.99 cfg["polyak"] = 0.005 cfg["actor_learning_rate"] = 5e-4 cfg["critic_learning_rate"] = 5e-4 cfg["random_timesteps"] = 80 cfg["learning_starts"] = 80 cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 800 cfg["experiment"]["checkpoint_interval"] = 8000 cfg["experiment"]["directory"] = "runs/jax/Isaac-Ant-v0" agent = TD3(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 160000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/isaacorbit/torch_cartpole_ppo.py
import torch import torch.nn as nn # import the skrl components to build the RL system from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.torch import load_isaac_orbit_env from skrl.envs.wrappers.torch import wrap_env from skrl.memories.torch import RandomMemory from skrl.models.torch import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.trainers.torch import SequentialTrainer from skrl.utils import set_seed # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define shared model (stochastic and deterministic models) using mixins class Shared(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 32), nn.ELU(), nn.Linear(32, 32), nn.ELU()) self.mean_layer = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.ones(self.num_actions)) self.value_layer = nn.Linear(32, 1) def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Cartpole-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Shared(env.observation_space, env.action_space, device) models["value"] = models["policy"] # same instance: shared model # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 16 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 1 # 16 * 512 / 8192 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 2.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = True cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 16 cfg["experiment"]["checkpoint_interval"] = 80 cfg["experiment"]["directory"] = "runs/torch/Isaac-Cartpole-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1600, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train() # # --------------------------------------------------------- # # comment the code above: `trainer.train()`, and... # # uncomment the following lines to evaluate a trained agent # # --------------------------------------------------------- # from skrl.utils.huggingface import download_model_from_huggingface # # download the trained agent's checkpoint from Hugging Face Hub and load it # path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Cartpole-v0-PPO", filename="agent.pt") # agent.load(path) # # start evaluation # trainer.eval()
Toni-SM/skrl/docs/source/examples/isaacorbit/jax_velocity_anymal_c_ppo.py
""" Notes for Isaac Sim 2022.2.1 or earlier (Python 3.7 environment): * Python 3.7 is only supported up to jax<=0.3.25. See: https://github.com/google/jax/blob/main/CHANGELOG.md#jaxlib-041-dec-13-2022. * Builds for jaxlib<=0.3.25 are only available up to NVIDIA CUDA 11 and cuDNN 8.2 versions. See: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html and search for `cuda11/jaxlib-0.3.25+cuda11.cudnn82-cp37-cp37m-manylinux2014_x86_64.whl`. * The `jax.Device = jax.xla.Device` statement is required by skrl to support jax<0.4.3. * Models require overloading the `__hash__` method to avoid "TypeError: Failed to hash Flax Module". """ import flax.linen as nn import jax import jax.numpy as jnp jax.Device = jax.xla.Device # for Isaac Sim 2022.2.1 or earlier # import the skrl components to build the RL system from skrl import config from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.envs.loaders.jax import load_isaac_orbit_env from skrl.envs.wrappers.jax import wrap_env from skrl.memories.jax import RandomMemory from skrl.models.jax import DeterministicMixin, GaussianMixin, Model from skrl.resources.preprocessors.jax import RunningStandardScaler from skrl.resources.schedulers.jax import KLAdaptiveRL from skrl.trainers.jax import SequentialTrainer from skrl.utils import set_seed config.jax.backend = "jax" # or "numpy" # seed for reproducibility set_seed() # e.g. `set_seed(42)` for fixed seed # define models (stochastic and deterministic models) using mixins class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(128)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(128)(x)) x = nn.Dense(self.num_actions)(x) log_std = self.param("log_std", lambda _: jnp.zeros(self.num_actions)) return x, log_std, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def __hash__(self): # for Isaac Sim 2022.2.1 or earlier return id(self) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.elu(nn.Dense(128)(inputs["states"])) x = nn.elu(nn.Dense(128)(x)) x = nn.elu(nn.Dense(128)(x)) x = nn.Dense(1)(x) return x, {} # load and wrap the Isaac Orbit environment env = load_isaac_orbit_env(task_name="Isaac-Velocity-Anymal-C-v0") env = wrap_env(env) device = env.device # instantiate a memory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=24, num_envs=env.num_envs, device=device) # instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#models models = {} models["policy"] = Policy(env.observation_space, env.action_space, device) models["value"] = Value(env.observation_space, env.action_space, device) # instantiate models' state dict for role, model in models.items(): model.init_state_dict(role) # configure and instantiate the agent (visit its documentation to see all the options) # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 24 # memory_size cfg["learning_epochs"] = 5 cfg["mini_batches"] = 4 # 24 * 4096 / 24576 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 1e-3 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 1.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = None cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints (in timesteps) cfg["experiment"]["write_interval"] = 60 cfg["experiment"]["checkpoint_interval"] = 600 cfg["experiment"]["directory"] = "runs/jax/Isaac-Velocity-Anymal-C-v0" agent = PPO(models=models, memory=memory, cfg=cfg, observation_space=env.observation_space, action_space=env.action_space, device=device) # configure and instantiate the RL trainer cfg_trainer = {"timesteps": 12000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_omniverse_isaacgym_env.py
import torch import numpy as np from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.franka import Franka as Robot from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from skrl.utils import omniverse_isaacgym_utils # post_physics_step calls # - get_observations() # - get_states() # - calculate_metrics() # - is_done() # - get_extras() TASK_CFG = {"test": False, "device_id": 0, "headless": True, "sim_device": "gpu", "enable_livestream": False, "warp": False, "seed": 42, "task": {"name": "ReachingFranka", "physics_engine": "physx", "env": {"numEnvs": 1024, "envSpacing": 1.5, "episodeLength": 100, "enableDebugVis": False, "clipObservations": 1000.0, "clipActions": 1.0, "controlFrequencyInv": 4, "actionScale": 2.5, "dofVelocityScale": 0.1, "controlSpace": "cartesian"}, "sim": {"dt": 0.0083, # 1 / 120 "use_gpu_pipeline": True, "gravity": [0.0, 0.0, -9.81], "add_ground_plane": True, "use_flatcache": True, "enable_scene_query_support": False, "enable_cameras": False, "default_physics_material": {"static_friction": 1.0, "dynamic_friction": 1.0, "restitution": 0.0}, "physx": {"worker_thread_count": 4, "solver_type": 1, "use_gpu": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "contact_offset": 0.005, "rest_offset": 0.0, "bounce_threshold_velocity": 0.2, "friction_offset_threshold": 0.04, "friction_correlation_distance": 0.025, "enable_sleeping": True, "enable_stabilization": True, "max_depenetration_velocity": 1000.0, "gpu_max_rigid_contact_count": 524288, "gpu_max_rigid_patch_count": 33554432, "gpu_found_lost_pairs_capacity": 524288, "gpu_found_lost_aggregate_pairs_capacity": 262144, "gpu_total_aggregate_pairs_capacity": 1048576, "gpu_max_soft_body_contacts": 1048576, "gpu_max_particle_contacts": 1048576, "gpu_heap_capacity": 33554432, "gpu_temp_buffer_capacity": 16777216, "gpu_max_num_partitions": 8}, "robot": {"override_usd_defaults": False, "fixed_base": False, "enable_self_collisions": False, "enable_gyroscopic_forces": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.005, "stabilization_threshold": 0.001, "density": -1, "max_depenetration_velocity": 1000.0, "contact_offset": 0.005, "rest_offset": 0.0}, "target": {"override_usd_defaults": False, "fixed_base": True, "make_kinematic": True, "enable_self_collisions": False, "enable_gyroscopic_forces": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.005, "stabilization_threshold": 0.001, "density": -1, "max_depenetration_velocity": 1000.0, "contact_offset": 0.005, "rest_offset": 0.0}}}} class RobotView(ArticulationView): def __init__(self, prim_paths_expr: str, name: str = "robot_view") -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) class ReachingFrankaTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.dt = 1 / 120.0 self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._action_scale = self._task_cfg["env"]["actionScale"] self._dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self._control_space = self._task_cfg["env"]["controlSpace"] # observation and action space self._num_observations = 18 if self._control_space == "joint": self._num_actions = 7 elif self._control_space == "cartesian": self._num_actions = 3 else: raise ValueError("Invalid control space: {}".format(self._control_space)) self._end_effector_link = "panda_leftfinger" RLTask.__init__(self, name, env) def set_up_scene(self, scene) -> None: self.get_robot() self.get_target() super().set_up_scene(scene) # robot view self._robots = RobotView(prim_paths_expr="/World/envs/.*/robot", name="robot_view") scene.add(self._robots) # end-effectors view self._end_effectors = RigidPrimView(prim_paths_expr="/World/envs/.*/robot/{}".format(self._end_effector_link), name="end_effector_view") scene.add(self._end_effectors) # hands view (cartesian) if self._control_space == "cartesian": self._hands = RigidPrimView(prim_paths_expr="/World/envs/.*/robot/panda_hand", name="hand_view", reset_xform_properties=False) scene.add(self._hands) # target view self._targets = RigidPrimView(prim_paths_expr="/World/envs/.*/target", name="target_view", reset_xform_properties=False) scene.add(self._targets) self.init_data() def get_robot(self): robot = Robot(prim_path=self.default_zero_env_path + "/robot", translation=torch.tensor([0.0, 0.0, 0.0]), orientation=torch.tensor([1.0, 0.0, 0.0, 0.0]), name="robot") self._sim_config.apply_articulation_settings("robot", get_prim_at_path(robot.prim_path), self._sim_config.parse_actor_config("robot")) def get_target(self): target = DynamicSphere(prim_path=self.default_zero_env_path + "/target", name="target", radius=0.025, color=torch.tensor([1, 0, 0])) self._sim_config.apply_articulation_settings("target", get_prim_at_path(target.prim_path), self._sim_config.parse_actor_config("target")) target.set_collision_enabled(False) def init_data(self) -> None: self.robot_default_dof_pos = torch.tensor(np.radians([0, -45, 0, -135, 0, 90, 45, 0, 0]), device=self._device, dtype=torch.float32) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) if self._control_space == "cartesian": self.jacobians = torch.zeros((self._num_envs, 10, 6, 9), device=self._device) self.hand_pos, self.hand_rot = torch.zeros((self._num_envs, 3), device=self._device), torch.zeros((self._num_envs, 4), device=self._device) def get_observations(self) -> dict: robot_dof_pos = self._robots.get_joint_positions(clone=False) robot_dof_vel = self._robots.get_joint_velocities(clone=False) end_effector_pos, end_effector_rot = self._end_effectors.get_world_poses(clone=False) target_pos, target_rot = self._targets.get_world_poses(clone=False) dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) \ / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self._dof_vel_scale generalization_noise = torch.rand((dof_vel_scaled.shape[0], 7), device=self._device) + 0.5 self.obs_buf[:, 0] = self.progress_buf / self._max_episode_length self.obs_buf[:, 1:8] = dof_pos_scaled[:, :7] self.obs_buf[:, 8:15] = dof_vel_scaled[:, :7] * generalization_noise self.obs_buf[:, 15:18] = target_pos - self._env_pos # compute distance for calculate_metrics() and is_done() self._computed_distance = torch.norm(end_effector_pos - target_pos, dim=-1) if self._control_space == "cartesian": self.jacobians = self._robots.get_jacobians(clone=False) self.hand_pos, self.hand_rot = self._hands.get_world_poses(clone=False) self.hand_pos -= self._env_pos return {self._robots.name: {"obs_buf": self.obs_buf}} def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) env_ids_int32 = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) if self._control_space == "joint": targets = self.robot_dof_targets[:, :7] + self.robot_dof_speed_scales[:7] * self.dt * self.actions * self._action_scale elif self._control_space == "cartesian": goal_position = self.hand_pos + actions / 100.0 delta_dof_pos = omniverse_isaacgym_utils.ik(jacobian_end_effector=self.jacobians[:, 8 - 1, :, :7], # franka hand index: 8 current_position=self.hand_pos, current_orientation=self.hand_rot, goal_position=goal_position, goal_orientation=None) targets = self.robot_dof_targets[:, :7] + delta_dof_pos self.robot_dof_targets[:, :7] = torch.clamp(targets, self.robot_dof_lower_limits[:7], self.robot_dof_upper_limits[:7]) self.robot_dof_targets[:, 7:] = 0 self._robots.set_joint_position_targets(self.robot_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids) -> None: indices = env_ids.to(dtype=torch.int32) # reset robot pos = torch.clamp(self.robot_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_robot_dofs), device=self._device) - 0.5), self.robot_dof_lower_limits, self.robot_dof_upper_limits) dof_pos = torch.zeros((len(indices), self._robots.num_dof), device=self._device) dof_pos[:, :] = pos dof_pos[:, 7:] = 0 dof_vel = torch.zeros((len(indices), self._robots.num_dof), device=self._device) self.robot_dof_targets[env_ids, :] = pos self.robot_dof_pos[env_ids, :] = pos self._robots.set_joint_position_targets(self.robot_dof_targets[env_ids], indices=indices) self._robots.set_joint_positions(dof_pos, indices=indices) self._robots.set_joint_velocities(dof_vel, indices=indices) # reset target pos = (torch.rand((len(env_ids), 3), device=self._device) - 0.5) * 2 \ * torch.tensor([0.25, 0.25, 0.10], device=self._device) \ + torch.tensor([0.50, 0.00, 0.20], device=self._device) self._targets.set_world_poses(pos + self._env_pos[env_ids], indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.num_robot_dofs = self._robots.num_dof self.robot_dof_pos = torch.zeros((self.num_envs, self.num_robot_dofs), device=self._device) dof_limits = self._robots.get_dof_limits() self.robot_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.robot_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.robot_dof_speed_scales = torch.ones_like(self.robot_dof_lower_limits) self.robot_dof_targets = torch.zeros((self._num_envs, self.num_robot_dofs), dtype=torch.float, device=self._device) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = -self._computed_distance def is_done(self) -> None: self.reset_buf.fill_(0) # target reached self.reset_buf = torch.where(self._computed_distance <= 0.035, torch.ones_like(self.reset_buf), self.reset_buf) # max episode length self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_real_skrl_eval.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.envs.torch import wrap_env # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # Load the environment from reaching_franka_real_env import ReachingFranka control_space = "joint" # joint or cartesian motion_type = "waypoint" # waypoint or impedance camera_tracking = False # True for USB-camera tracking env = ReachingFranka(robot_ip="172.16.0.2", device="cpu", control_space=control_space, motion_type=motion_type, camera_tracking=camera_tracking) # wrap the environment env = wrap_env(env) device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if control_space == "joint": agent.load("./agent_joint.pt") elif control_space == "cartesian": agent.load("./agent_cartesian.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_real_env.py
import gym import time import threading import numpy as np from packaging import version import frankx class ReachingFranka(gym.Env): def __init__(self, robot_ip="172.16.0.2", device="cuda:0", control_space="joint", motion_type="waypoint", camera_tracking=False): # gym API self._drepecated_api = version.parse(gym.__version__) < version.parse(" 0.25.0") self.device = device self.control_space = control_space # joint or cartesian self.motion_type = motion_type # waypoint or impedance if self.control_space == "cartesian" and self.motion_type == "impedance": # The operation of this mode (Cartesian-impedance) was adjusted later without being able to test it on the real robot. # Dangerous movements may occur for the operator and the robot. # Comment the following line of code if you want to proceed with this mode. raise ValueError("See comment in the code to proceed with this mode") pass # camera tracking (disabled by default) self.camera_tracking = camera_tracking if self.camera_tracking: threading.Thread(target=self._update_target_from_camera).start() # spaces self.observation_space = gym.spaces.Box(low=-1000, high=1000, shape=(18,), dtype=np.float32) if self.control_space == "joint": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(7,), dtype=np.float32) elif self.control_space == "cartesian": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32) else: raise ValueError("Invalid control space:", self.control_space) # init real franka print("Connecting to robot at {}...".format(robot_ip)) self.robot = frankx.Robot(robot_ip) self.robot.set_default_behavior() self.robot.recover_from_errors() # the robot's response can be better managed by independently setting the following properties, for example: # - self.robot.velocity_rel = 0.2 # - self.robot.acceleration_rel = 0.1 # - self.robot.jerk_rel = 0.01 self.robot.set_dynamic_rel(0.25) self.gripper = self.robot.get_gripper() print("Robot connected") self.motion = None self.motion_thread = None self.dt = 1 / 120.0 self.action_scale = 2.5 self.dof_vel_scale = 0.1 self.max_episode_length = 100 self.robot_dof_speed_scales = 1 self.target_pos = np.array([0.65, 0.2, 0.2]) self.robot_default_dof_pos = np.radians([0, -45, 0, -135, 0, 90, 45]) self.robot_dof_lower_limits = np.array([-2.8973, -1.7628, -2.8973, -3.0718, -2.8973, -0.0175, -2.8973]) self.robot_dof_upper_limits = np.array([ 2.8973, 1.7628, 2.8973, -0.0698, 2.8973, 3.7525, 2.8973]) self.progress_buf = 1 self.obs_buf = np.zeros((18,), dtype=np.float32) def _update_target_from_camera(self): pixel_to_meter = 1.11 / 375 # m/px: adjust for custom cases import cv2 cap = cv2.VideoCapture(0) while cap.isOpened(): ret, frame = cap.read() if not ret: break # convert to HSV and remove noise hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) hsv = cv2.medianBlur(hsv, 15) # color matching in HSV mask = cv2.inRange(hsv, np.array([80, 100, 100]), np.array([100, 255, 255])) M = cv2.moments(mask) if M["m00"]: x = M["m10"] / M["m00"] y = M["m01"] / M["m00"] # real-world position (fixed z to 0.2 meters) pos = np.array([pixel_to_meter * (y - 185), pixel_to_meter * (x - 320), 0.2]) if self is not None: self.target_pos = pos # draw target frame = cv2.circle(frame, (int(x), int(y)), 30, (0,0,255), 2) frame = cv2.putText(frame, str(np.round(pos, 4).tolist()), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 1, cv2.LINE_AA) # show images cv2.imshow("frame", frame) cv2.imshow("mask", mask) k = cv2.waitKey(1) & 0xFF if k == ord('q'): cap.release() def _get_observation_reward_done(self): # get robot state try: robot_state = self.robot.get_state(read_once=True) except frankx.InvalidOperationException: robot_state = self.robot.get_state(read_once=False) # observation robot_dof_pos = np.array(robot_state.q) robot_dof_vel = np.array(robot_state.dq) end_effector_pos = np.array(robot_state.O_T_EE[-4:-1]) dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self.dof_vel_scale self.obs_buf[0] = self.progress_buf / float(self.max_episode_length) self.obs_buf[1:8] = dof_pos_scaled self.obs_buf[8:15] = dof_vel_scaled self.obs_buf[15:18] = self.target_pos # reward distance = np.linalg.norm(end_effector_pos - self.target_pos) reward = -distance # done done = self.progress_buf >= self.max_episode_length - 1 done = done or distance <= 0.075 print("Distance:", distance) if done: print("Target or Maximum episode length reached") time.sleep(1) return self.obs_buf, reward, done def reset(self): print("Reseting...") # end current motion if self.motion is not None: self.motion.finish() self.motion_thread.join() self.motion = None self.motion_thread = None # open/close gripper # self.gripper.open() # self.gripper.clamp() # go to 1) safe position, 2) random position self.robot.move(frankx.JointMotion(self.robot_default_dof_pos.tolist())) dof_pos = self.robot_default_dof_pos + 0.25 * (np.random.rand(7) - 0.5) self.robot.move(frankx.JointMotion(dof_pos.tolist())) # get target position from prompt if not self.camera_tracking: while True: try: print("Enter target position (X, Y, Z) in meters") raw = input("or press [Enter] key for a random target position: ") if raw: self.target_pos = np.array([float(p) for p in raw.replace(' ', '').split(',')]) else: noise = (2 * np.random.rand(3) - 1) * np.array([0.25, 0.25, 0.10]) self.target_pos = np.array([0.5, 0.0, 0.2]) + noise print("Target position:", self.target_pos) break except ValueError: print("Invalid input. Try something like: 0.65, 0.0, 0.2") # initial pose affine = frankx.Affine(frankx.Kinematics.forward(dof_pos.tolist())) affine = affine * frankx.Affine(x=0, y=0, z=-0.10335, a=np.pi/2) # motion type if self.motion_type == "waypoint": self.motion = frankx.WaypointMotion([frankx.Waypoint(affine)], return_when_finished=False) elif self.motion_type == "impedance": self.motion = frankx.ImpedanceMotion(500, 50) else: raise ValueError("Invalid motion type:", self.motion_type) self.motion_thread = self.robot.move_async(self.motion) if self.motion_type == "impedance": self.motion.target = affine input("Press [Enter] to continue") self.progress_buf = 0 observation, reward, done = self._get_observation_reward_done() if self._drepecated_api: return observation else: return observation, {} def step(self, action): self.progress_buf += 1 # control space # joint if self.control_space == "joint": # get robot state try: robot_state = self.robot.get_state(read_once=True) except frankx.InvalidOperationException: robot_state = self.robot.get_state(read_once=False) # forward kinematics dof_pos = np.array(robot_state.q) + (self.robot_dof_speed_scales * self.dt * action * self.action_scale) affine = frankx.Affine(self.robot.forward_kinematics(dof_pos.flatten().tolist())) affine = affine * frankx.Affine(x=0, y=0, z=-0.10335, a=np.pi/2) # cartesian elif self.control_space == "cartesian": action /= 100.0 if self.motion_type == "waypoint": affine = frankx.Affine(x=action[0], y=action[1], z=action[2]) elif self.motion_type == "impedance": # get robot pose try: robot_pose = self.robot.current_pose(read_once=True) except frankx.InvalidOperationException: robot_pose = self.robot.current_pose(read_once=False) affine = robot_pose * frankx.Affine(x=action[0], y=action[1], z=action[2]) # motion type # waypoint motion if self.motion_type == "waypoint": if self.control_space == "joint": self.motion.set_next_waypoint(frankx.Waypoint(affine)) elif self.control_space == "cartesian": self.motion.set_next_waypoint(frankx.Waypoint(affine, frankx.Waypoint.Relative)) # impedance motion elif self.motion_type == "impedance": self.motion.target = affine else: raise ValueError("Invalid motion type:", self.motion_type) # the use of time.sleep is for simplicity. This does not guarantee control at a specific frequency time.sleep(0.1) # lower frequency, at 30Hz there are discontinuities observation, reward, done = self._get_observation_reward_done() if self._drepecated_api: return observation, reward, done, {} else: return observation, reward, done, done, {} def render(self, *args, **kwargs): pass def close(self): pass
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_isaacgym_skrl_eval.py
import isaacgym import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.envs.torch import wrap_env # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # instantiate and configure the task headless = True # set headless to False for rendering from reaching_franka_isaacgym_env import ReachingFrankaTask, TASK_CFG TASK_CFG["headless"] = headless TASK_CFG["env"]["numEnvs"] = 64 TASK_CFG["env"]["controlSpace"] = "joint" # "joint" or "cartesian" env = ReachingFrankaTask(cfg=TASK_CFG) # wrap the environment env = wrap_env(env, "isaacgym-preview4") device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if TASK_CFG["env"]["controlSpace"] == "joint": agent.load("./agent_joint_isaacgym.pt") elif TASK_CFG["env"]["controlSpace"] == "cartesian": agent.load("./agent_cartesian_isaacgym.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_omniverse_isaacgym_skrl_eval.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils.omniverse_isaacgym_utils import get_env_instance from skrl.envs.torch import wrap_env from skrl.utils import set_seed # Seed for reproducibility seed = set_seed() # e.g. `set_seed(42)` for fixed seed # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # instance VecEnvBase and setup task headless = False # set headless to False for rendering env = get_env_instance(headless=headless) from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from reaching_franka_omniverse_isaacgym_env import ReachingFrankaTask, TASK_CFG TASK_CFG["seed"] = seed TASK_CFG["headless"] = headless TASK_CFG["task"]["env"]["numEnvs"] = 64 TASK_CFG["task"]["env"]["controlSpace"] = "joint" # "joint" or "cartesian" sim_config = SimConfig(TASK_CFG) task = ReachingFrankaTask(name="ReachingFranka", sim_config=sim_config, env=env) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=True) # wrap the environment env = wrap_env(env, "omniverse-isaacgym") device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if TASK_CFG["task"]["env"]["controlSpace"] == "joint": agent.load("./agent_joint.pt") elif TASK_CFG["task"]["env"]["controlSpace"] == "cartesian": agent.load("./agent_cartesian.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 5000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_isaacgym_env.py
import os import numpy as np import torch from isaacgym import gymtorch, gymapi # isaacgymenvs (VecTask class) import sys import isaacgymenvs sys.path.append(list(isaacgymenvs.__path__)[0]) from tasks.base.vec_task import VecTask from skrl.utils import isaacgym_utils TASK_CFG = {"name": "ReachingFranka", "physics_engine": "physx", "rl_device": "cuda:0", "sim_device": "cuda:0", "graphics_device_id": 0, "headless": False, "virtual_screen_capture": False, "force_render": True, "env": {"numEnvs": 1024, "envSpacing": 1.5, "episodeLength": 100, "enableDebugVis": False, "clipObservations": 1000.0, "clipActions": 1.0, "controlFrequencyInv": 4, "actionScale": 2.5, "dofVelocityScale": 0.1, "controlSpace": "cartesian", "enableCameraSensors": False}, "sim": {"dt": 0.0083, # 1 / 120 "substeps": 1, "up_axis": "z", "use_gpu_pipeline": True, "gravity": [0.0, 0.0, -9.81], "physx": {"num_threads": 4, "solver_type": 1, "use_gpu": True, "num_position_iterations": 4, "num_velocity_iterations": 1, "contact_offset": 0.005, "rest_offset": 0.0, "bounce_threshold_velocity": 0.2, "max_depenetration_velocity": 1000.0, "default_buffer_size_multiplier": 5.0, "max_gpu_contact_pairs": 1048576, "num_subscenes": 4, "contact_collection": 0}}, "task": {"randomize": False}} class ReachingFrankaTask(VecTask): def __init__(self, cfg): self.cfg = cfg rl_device = cfg["rl_device"] sim_device = cfg["sim_device"] graphics_device_id = cfg["graphics_device_id"] headless = cfg["headless"] virtual_screen_capture = cfg["virtual_screen_capture"] force_render = cfg["force_render"] self.dt = 1 / 120.0 self._action_scale = self.cfg["env"]["actionScale"] self._dof_vel_scale = self.cfg["env"]["dofVelocityScale"] self._control_space = self.cfg["env"]["controlSpace"] self.max_episode_length = self.cfg["env"]["episodeLength"] # name required for VecTask self.debug_viz = self.cfg["env"]["enableDebugVis"] # observation and action space self.cfg["env"]["numObservations"] = 18 if self._control_space == "joint": self.cfg["env"]["numActions"] = 7 elif self._control_space == "cartesian": self.cfg["env"]["numActions"] = 3 else: raise ValueError("Invalid control space: {}".format(self._control_space)) self._end_effector_link = "panda_leftfinger" # setup VecTask super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) # tensors and views: DOFs, roots, rigid bodies dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) root_state_tensor = self.gym.acquire_actor_root_state_tensor(self.sim) rigid_body_state_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) self.root_state = gymtorch.wrap_tensor(root_state_tensor) self.rigid_body_state = gymtorch.wrap_tensor(rigid_body_state_tensor) self.dof_pos = self.dof_state.view(self.num_envs, -1, 2)[..., 0] self.dof_vel = self.dof_state.view(self.num_envs, -1, 2)[..., 1] self.root_pos = self.root_state[:, 0:3].view(self.num_envs, -1, 3) self.root_rot = self.root_state[:, 3:7].view(self.num_envs, -1, 4) self.root_vel_lin = self.root_state[:, 7:10].view(self.num_envs, -1, 3) self.root_vel_ang = self.root_state[:, 10:13].view(self.num_envs, -1, 3) self.rigid_body_pos = self.rigid_body_state[:, 0:3].view(self.num_envs, -1, 3) self.rigid_body_rot = self.rigid_body_state[:, 3:7].view(self.num_envs, -1, 4) self.rigid_body_vel_lin = self.rigid_body_state[:, 7:10].view(self.num_envs, -1, 3) self.rigid_body_vel_ang = self.rigid_body_state[:, 10:13].view(self.num_envs, -1, 3) # tensors and views: jacobian if self._control_space == "cartesian": jacobian_tensor = self.gym.acquire_jacobian_tensor(self.sim, "robot") self.jacobian = gymtorch.wrap_tensor(jacobian_tensor) self.jacobian_end_effector = self.jacobian[:, self.rigid_body_dict_robot[self._end_effector_link] - 1, :, :7] self.reset_idx(torch.arange(self.num_envs, device=self.device)) def create_sim(self): self.sim_params.up_axis = gymapi.UP_AXIS_Z self.sim_params.gravity.x = 0 self.sim_params.gravity.y = 0 self.sim_params.gravity.z = -9.81 self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params) self._create_ground_plane() self._create_envs(self.num_envs, self.cfg["env"]["envSpacing"], int(np.sqrt(self.num_envs))) def _create_ground_plane(self): plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) self.gym.add_ground(self.sim, plane_params) def _create_envs(self, num_envs, spacing, num_per_row): lower = gymapi.Vec3(-spacing, -spacing, 0.0) upper = gymapi.Vec3(spacing, spacing, spacing) asset_root = os.path.join(os.path.dirname(os.path.abspath(isaacgymenvs.__file__)), "../assets") robot_asset_file = "urdf/franka_description/robots/franka_panda.urdf" # robot asset asset_options = gymapi.AssetOptions() asset_options.flip_visual_attachments = True asset_options.fix_base_link = True asset_options.collapse_fixed_joints = True asset_options.disable_gravity = True asset_options.thickness = 0.001 asset_options.default_dof_drive_mode = gymapi.DOF_MODE_POS asset_options.use_mesh_materials = True robot_asset = self.gym.load_asset(self.sim, asset_root, robot_asset_file, asset_options) # target asset asset_options = gymapi.AssetOptions() asset_options.fix_base_link = True asset_options.collapse_fixed_joints = False asset_options.disable_gravity = True asset_options.thickness = 0.001 asset_options.use_mesh_materials = True target_asset = self.gym.create_sphere(self.sim, 0.025, asset_options) robot_dof_stiffness = torch.tensor([400, 400, 400, 400, 400, 400, 400, 1.0e6, 1.0e6], dtype=torch.float32, device=self.device) robot_dof_damping = torch.tensor([80, 80, 80, 80, 80, 80, 80, 1.0e2, 1.0e2], dtype=torch.float, device=self.device) # set robot dof properties robot_dof_props = self.gym.get_asset_dof_properties(robot_asset) self.robot_dof_lower_limits = [] self.robot_dof_upper_limits = [] for i in range(9): robot_dof_props["driveMode"][i] = gymapi.DOF_MODE_POS if self.physics_engine == gymapi.SIM_PHYSX: robot_dof_props["stiffness"][i] = robot_dof_stiffness[i] robot_dof_props["damping"][i] = robot_dof_damping[i] else: robot_dof_props["stiffness"][i] = 7000.0 robot_dof_props["damping"][i] = 50.0 self.robot_dof_lower_limits.append(robot_dof_props["lower"][i]) self.robot_dof_upper_limits.append(robot_dof_props["upper"][i]) self.robot_dof_lower_limits = torch.tensor(self.robot_dof_lower_limits, device=self.device) self.robot_dof_upper_limits = torch.tensor(self.robot_dof_upper_limits, device=self.device) self.robot_dof_speed_scales = torch.ones_like(self.robot_dof_lower_limits) robot_dof_props["effort"][7] = 200 robot_dof_props["effort"][8] = 200 self.handle_targets = [] self.handle_robots = [] self.handle_envs = [] indexes_sim_robot = [] indexes_sim_target = [] for i in range(self.num_envs): # create env instance env_ptr = self.gym.create_env(self.sim, lower, upper, num_per_row) # create robot instance pose = gymapi.Transform() pose.p = gymapi.Vec3(0.0, 0.0, 0.0) pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1) robot_actor = self.gym.create_actor(env=env_ptr, asset=robot_asset, pose=pose, name="robot", group=i, # collision group filter=1, # mask off collision segmentationId=0) self.gym.set_actor_dof_properties(env_ptr, robot_actor, robot_dof_props) indexes_sim_robot.append(self.gym.get_actor_index(env_ptr, robot_actor, gymapi.DOMAIN_SIM)) # create target instance pose = gymapi.Transform() pose.p = gymapi.Vec3(0.5, 0.0, 0.2) pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1) target_actor = self.gym.create_actor(env=env_ptr, asset=target_asset, pose=pose, name="target", group=i + 1, # collision group filter=1, # mask off collision segmentationId=1) indexes_sim_target.append(self.gym.get_actor_index(env_ptr, target_actor, gymapi.DOMAIN_SIM)) self.gym.set_rigid_body_color(env_ptr, target_actor, 0, gymapi.MESH_VISUAL, gymapi.Vec3(1., 0., 0.)) self.handle_envs.append(env_ptr) self.handle_robots.append(robot_actor) self.handle_targets.append(target_actor) self.indexes_sim_robot = torch.tensor(indexes_sim_robot, dtype=torch.int32, device=self.device) self.indexes_sim_target = torch.tensor(indexes_sim_target, dtype=torch.int32, device=self.device) self.num_robot_dofs = self.gym.get_asset_dof_count(robot_asset) self.rigid_body_dict_robot = self.gym.get_asset_rigid_body_dict(robot_asset) self.init_data() def init_data(self): self.robot_default_dof_pos = torch.tensor(np.radians([0, -45, 0, -135, 0, 90, 45, 0, 0]), device=self.device, dtype=torch.float32) self.robot_dof_targets = torch.zeros((self.num_envs, self.num_robot_dofs), device=self.device, dtype=torch.float32) if self._control_space == "cartesian": self.end_effector_pos = torch.zeros((self.num_envs, 3), device=self.device) self.end_effector_rot = torch.zeros((self.num_envs, 4), device=self.device) def compute_reward(self): self.rew_buf[:] = -self._computed_distance self.reset_buf.fill_(0) # target reached self.reset_buf = torch.where(self._computed_distance <= 0.035, torch.ones_like(self.reset_buf), self.reset_buf) # max episode length self.reset_buf = torch.where(self.progress_buf >= self.max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) # double restart correction (why?, is it necessary?) self.rew_buf = torch.where(self.progress_buf == 0, -0.75 * torch.ones_like(self.reset_buf), self.rew_buf) self.reset_buf = torch.where(self.progress_buf == 0, torch.zeros_like(self.reset_buf), self.reset_buf) def compute_observations(self): self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) if self._control_space == "cartesian": self.gym.refresh_jacobian_tensors(self.sim) robot_dof_pos = self.dof_pos robot_dof_vel = self.dof_vel self.end_effector_pos = self.rigid_body_pos[:, self.rigid_body_dict_robot[self._end_effector_link]] self.end_effector_rot = self.rigid_body_rot[:, self.rigid_body_dict_robot[self._end_effector_link]] target_pos = self.root_pos[:, 1] target_rot = self.root_rot[:, 1] dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) \ / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self._dof_vel_scale generalization_noise = torch.rand((dof_vel_scaled.shape[0], 7), device=self.device) + 0.5 self.obs_buf[:, 0] = self.progress_buf / self.max_episode_length self.obs_buf[:, 1:8] = dof_pos_scaled[:, :7] self.obs_buf[:, 8:15] = dof_vel_scaled[:, :7] * generalization_noise self.obs_buf[:, 15:18] = target_pos # compute distance for compute_reward() self._computed_distance = torch.norm(self.end_effector_pos - target_pos, dim=-1) def reset_idx(self, env_ids): # reset robot pos = torch.clamp(self.robot_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_robot_dofs), device=self.device) - 0.5), self.robot_dof_lower_limits, self.robot_dof_upper_limits) pos[:, 7:] = 0 self.robot_dof_targets[env_ids, :] = pos[:] self.dof_pos[env_ids, :] = pos[:] self.dof_vel[env_ids, :] = 0 indexes = self.indexes_sim_robot[env_ids] self.gym.set_dof_position_target_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.robot_dof_targets), gymtorch.unwrap_tensor(indexes), len(env_ids)) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(indexes), len(env_ids)) # reset targets pos = (torch.rand((len(env_ids), 3), device=self.device) - 0.5) * 2 pos[:, 0] = 0.50 + pos[:, 0] * 0.25 pos[:, 1] = 0.00 + pos[:, 1] * 0.25 pos[:, 2] = 0.20 + pos[:, 2] * 0.10 self.root_pos[env_ids, 1, :] = pos[:] indexes = self.indexes_sim_target[env_ids] self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_state), gymtorch.unwrap_tensor(indexes), len(env_ids)) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def pre_physics_step(self, actions): actions = actions.clone().to(self.device) if self._control_space == "joint": targets = self.robot_dof_targets[:, :7] + self.robot_dof_speed_scales[:7] * self.dt * actions * self._action_scale elif self._control_space == "cartesian": goal_position = self.end_effector_pos + actions / 100.0 delta_dof_pos = isaacgym_utils.ik(jacobian_end_effector=self.jacobian_end_effector, current_position=self.end_effector_pos, current_orientation=self.end_effector_rot, goal_position=goal_position, goal_orientation=None) targets = self.robot_dof_targets[:, :7] + delta_dof_pos self.robot_dof_targets[:, :7] = torch.clamp(targets, self.robot_dof_lower_limits[:7], self.robot_dof_upper_limits[:7]) self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(self.robot_dof_targets)) def post_physics_step(self): self.progress_buf += 1 env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids) self.compute_observations() self.compute_reward()
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_omniverse_isaacgym_skrl_train.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin, DeterministicMixin from skrl.memories.torch import RandomMemory from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils.omniverse_isaacgym_utils import get_env_instance from skrl.envs.torch import wrap_env from skrl.utils import set_seed # Seed for reproducibility seed = set_seed() # e.g. `set_seed(42)` for fixed seed # Define the models (stochastic and deterministic models) for the agent using helper mixin. # - Policy: takes as input the environment's observation/state and returns an action # - Value: takes the state as input and provides a value to guide the policy class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, 1)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # instance VecEnvBase and setup task headless = True # set headless to False for rendering env = get_env_instance(headless=headless) from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from reaching_franka_omniverse_isaacgym_env import ReachingFrankaTask, TASK_CFG TASK_CFG["seed"] = seed TASK_CFG["headless"] = headless TASK_CFG["task"]["env"]["numEnvs"] = 1024 TASK_CFG["task"]["env"]["controlSpace"] = "joint" # "joint" or "cartesian" sim_config = SimConfig(TASK_CFG) task = ReachingFrankaTask(name="ReachingFranka", sim_config=sim_config, env=env) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=True) # wrap the environment env = wrap_env(env, "omniverse-isaacgym") device = env.device # Instantiate a RandomMemory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # Instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) models_ppo["value"] = Value(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["rollouts"] = 16 cfg_ppo["learning_epochs"] = 8 cfg_ppo["mini_batches"] = 8 cfg_ppo["discount_factor"] = 0.99 cfg_ppo["lambda"] = 0.95 cfg_ppo["learning_rate"] = 5e-4 cfg_ppo["learning_rate_scheduler"] = KLAdaptiveRL cfg_ppo["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["grad_norm_clip"] = 1.0 cfg_ppo["ratio_clip"] = 0.2 cfg_ppo["value_clip"] = 0.2 cfg_ppo["clip_predicted_values"] = True cfg_ppo["entropy_loss_scale"] = 0.0 cfg_ppo["value_loss_scale"] = 2.0 cfg_ppo["kl_threshold"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg_ppo["value_preprocessor"] = RunningStandardScaler cfg_ppo["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints each 32 and 250 timesteps respectively cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 250 agent = PPO(models=models_ppo, memory=memory, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 5000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/real_world/franka_emika_panda/reaching_franka_isaacgym_skrl_train.py
import isaacgym import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin, DeterministicMixin from skrl.memories.torch import RandomMemory from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.envs.torch import wrap_env from skrl.utils import set_seed # set the seed for reproducibility set_seed(42) # Define the models (stochastic and deterministic models) for the agent using helper mixin. # - Policy: takes as input the environment's observation/state and returns an action # - Value: takes the state as input and provides a value to guide the policy class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, 1)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # instantiate and configure the task headless = True # set headless to False for rendering from reaching_franka_isaacgym_env import ReachingFrankaTask, TASK_CFG TASK_CFG["headless"] = headless TASK_CFG["env"]["numEnvs"] = 1024 TASK_CFG["env"]["controlSpace"] = "joint" # "joint" or "cartesian" env = ReachingFrankaTask(cfg=TASK_CFG) # wrap the environment env = wrap_env(env, "isaacgym-preview4") device = env.device # Instantiate a RandomMemory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # Instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) models_ppo["value"] = Value(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["rollouts"] = 16 cfg_ppo["learning_epochs"] = 8 cfg_ppo["mini_batches"] = 8 cfg_ppo["discount_factor"] = 0.99 cfg_ppo["lambda"] = 0.95 cfg_ppo["learning_rate"] = 5e-4 cfg_ppo["learning_rate_scheduler"] = KLAdaptiveRL cfg_ppo["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["grad_norm_clip"] = 1.0 cfg_ppo["ratio_clip"] = 0.2 cfg_ppo["value_clip"] = 0.2 cfg_ppo["clip_predicted_values"] = True cfg_ppo["entropy_loss_scale"] = 0.0 cfg_ppo["value_loss_scale"] = 2.0 cfg_ppo["kl_threshold"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg_ppo["value_preprocessor"] = RunningStandardScaler cfg_ppo["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints each 32 and 250 timesteps respectively cfg_ppo["experiment"]["write_interval"] = 5 cfg_ppo["experiment"]["checkpoint_interval"] = 250 agent = PPO(models=models_ppo, memory=memory, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 5000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_real_env.py
import time import numpy as np import gymnasium as gym import libiiwa class ReachingIiwa(gym.Env): def __init__(self, control_space="joint"): self.control_space = control_space # joint or cartesian # spaces self.observation_space = gym.spaces.Box(low=-1000, high=1000, shape=(18,), dtype=np.float32) if self.control_space == "joint": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(7,), dtype=np.float32) elif self.control_space == "cartesian": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32) else: raise ValueError("Invalid control space:", self.control_space) # init iiwa print("Connecting to robot...") self.robot = libiiwa.LibIiwa() self.robot.set_control_interface(libiiwa.ControlInterface.CONTROL_INTERFACE_SERVO) self.robot.set_desired_joint_velocity_rel(0.5) self.robot.set_desired_joint_acceleration_rel(0.5) self.robot.set_desired_joint_jerk_rel(0.5) self.robot.set_desired_cartesian_velocity(10) self.robot.set_desired_cartesian_acceleration(10) self.robot.set_desired_cartesian_jerk(10) print("Robot connected") self.motion = None self.motion_thread = None self.dt = 1 / 120.0 self.action_scale = 2.5 self.dof_vel_scale = 0.1 self.max_episode_length = 100 self.robot_dof_speed_scales = 1 self.target_pos = np.array([0.65, 0.2, 0.2]) self.robot_default_dof_pos = np.radians([0, 0, 0, -90, 0, 90, 0]) self.robot_dof_lower_limits = np.array([-2.9671, -2.0944, -2.9671, -2.0944, -2.9671, -2.0944, -3.0543]) self.robot_dof_upper_limits = np.array([ 2.9671, 2.0944, 2.9671, 2.0944, 2.9671, 2.0944, 3.0543]) self.progress_buf = 1 self.obs_buf = np.zeros((18,), dtype=np.float32) def _get_observation_reward_done(self): # get robot state robot_state = self.robot.get_state(refresh=True) # observation robot_dof_pos = robot_state["joint_position"] robot_dof_vel = robot_state["joint_velocity"] end_effector_pos = robot_state["cartesian_position"] dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self.dof_vel_scale self.obs_buf[0] = self.progress_buf / float(self.max_episode_length) self.obs_buf[1:8] = dof_pos_scaled self.obs_buf[8:15] = dof_vel_scaled self.obs_buf[15:18] = self.target_pos # reward distance = np.linalg.norm(end_effector_pos - self.target_pos) reward = -distance # done done = self.progress_buf >= self.max_episode_length - 1 done = done or distance <= 0.075 print("Distance:", distance) if done: print("Target or Maximum episode length reached") time.sleep(1) return self.obs_buf, reward, done def reset(self): print("Reseting...") # go to 1) safe position, 2) random position self.robot.command_joint_position(self.robot_default_dof_pos) time.sleep(3) dof_pos = self.robot_default_dof_pos + 0.25 * (np.random.rand(7) - 0.5) self.robot.command_joint_position(dof_pos) time.sleep(1) # get target position from prompt while True: try: print("Enter target position (X, Y, Z) in meters") raw = input("or press [Enter] key for a random target position: ") if raw: self.target_pos = np.array([float(p) for p in raw.replace(' ', '').split(',')]) else: noise = (2 * np.random.rand(3) - 1) * np.array([0.1, 0.2, 0.2]) self.target_pos = np.array([0.6, 0.0, 0.4]) + noise print("Target position:", self.target_pos) break except ValueError: print("Invalid input. Try something like: 0.65, 0.0, 0.4") input("Press [Enter] to continue") self.progress_buf = 0 observation, reward, done = self._get_observation_reward_done() return observation, {} def step(self, action): self.progress_buf += 1 # get robot state robot_state = self.robot.get_state(refresh=True) # control space # joint if self.control_space == "joint": dof_pos = robot_state["joint_position"] + (self.robot_dof_speed_scales * self.dt * action * self.action_scale) self.robot.command_joint_position(dof_pos) # cartesian elif self.control_space == "cartesian": end_effector_pos = robot_state["cartesian_position"] + action / 100.0 self.robot.command_cartesian_pose(end_effector_pos) # the use of time.sleep is for simplicity. It does not guarantee control at a specific frequency time.sleep(1 / 30.0) observation, reward, terminated = self._get_observation_reward_done() return observation, reward, terminated, False, {} def render(self, *args, **kwargs): pass def close(self): pass
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_omniverse_isaacgym_skrl_eval.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils.omniverse_isaacgym_utils import get_env_instance from skrl.envs.torch import wrap_env from skrl.utils import set_seed # Seed for reproducibility seed = set_seed() # e.g. `set_seed(42)` for fixed seed # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # instance VecEnvBase and setup task headless = False # set headless to False for rendering env = get_env_instance(headless=headless) from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from reaching_iiwa_omniverse_isaacgym_env import ReachingIiwaTask, TASK_CFG TASK_CFG["seed"] = seed TASK_CFG["headless"] = headless TASK_CFG["task"]["env"]["numEnvs"] = 64 TASK_CFG["task"]["env"]["controlSpace"] = "joint" # "joint" or "cartesian" sim_config = SimConfig(TASK_CFG) task = ReachingIiwaTask(name="ReachingIiwa", sim_config=sim_config, env=env) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=True) # wrap the environment env = wrap_env(env, "omniverse-isaacgym") device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if TASK_CFG["task"]["env"]["controlSpace"] == "joint": agent.load("./agent_joint.pt") elif TASK_CFG["task"]["env"]["controlSpace"] == "cartesian": agent.load("./agent_cartesian.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 5000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_real_ros2_env.py
import time import numpy as np import gymnasium as gym import rclpy from rclpy.node import Node from rclpy.qos import QoSPresetProfiles import sensor_msgs.msg import geometry_msgs.msg import libiiwa_msgs.srv class ReachingIiwa(gym.Env): def __init__(self, control_space="joint"): self.control_space = control_space # joint or cartesian # spaces self.observation_space = gym.spaces.Box(low=-1000, high=1000, shape=(18,), dtype=np.float32) if self.control_space == "joint": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(7,), dtype=np.float32) elif self.control_space == "cartesian": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32) else: raise ValueError("Invalid control space:", self.control_space) # initialize the ROS node rclpy.init() self.node = Node(self.__class__.__name__) import threading threading.Thread(target=self._spin).start() # create publishers self.pub_command_joint = self.node.create_publisher(sensor_msgs.msg.JointState, '/iiwa/command/joint', QoSPresetProfiles.SYSTEM_DEFAULT.value) self.pub_command_cartesian = self.node.create_publisher(geometry_msgs.msg.Pose, '/iiwa/command/cartesian', QoSPresetProfiles.SYSTEM_DEFAULT.value) # keep compatibility with libiiwa Python API self.robot_state = {"joint_position": np.zeros((7,)), "joint_velocity": np.zeros((7,)), "cartesian_position": np.zeros((3,))} # create subscribers self.node.create_subscription(msg_type=sensor_msgs.msg.JointState, topic='/iiwa/state/joint_states', callback=self._callback_joint_states, qos_profile=QoSPresetProfiles.SYSTEM_DEFAULT.value) self.node.create_subscription(msg_type=geometry_msgs.msg.Pose, topic='/iiwa/state/end_effector_pose', callback=self._callback_end_effector_pose, qos_profile=QoSPresetProfiles.SYSTEM_DEFAULT.value) # service clients client_control_interface = self.node.create_client(libiiwa_msgs.srv.SetString, '/iiwa/set_control_interface') client_control_interface.wait_for_service() request = libiiwa_msgs.srv.SetString.Request() request.data = "SERVO" # or "servo" client_control_interface.call(request) client_joint_velocity_rel = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_joint_velocity_rel') client_joint_acceleration_rel = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_joint_acceleration_rel') client_joint_jerk_rel = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_joint_jerk_rel') client_cartesian_velocity = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_cartesian_velocity') client_cartesian_acceleration = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_cartesian_acceleration') client_cartesian_jerk = self.node.create_client(libiiwa_msgs.srv.SetNumber, '/iiwa/set_desired_cartesian_jerk') client_joint_velocity_rel.wait_for_service() client_joint_acceleration_rel.wait_for_service() client_joint_jerk_rel.wait_for_service() client_cartesian_velocity.wait_for_service() client_cartesian_acceleration.wait_for_service() client_cartesian_jerk.wait_for_service() request = libiiwa_msgs.srv.SetNumber.Request() request.data = 0.5 client_joint_velocity_rel.call(request) client_joint_acceleration_rel.call(request) client_joint_jerk_rel.call(request) request.data = 10.0 client_cartesian_velocity.call(request) client_cartesian_acceleration.call(request) client_cartesian_jerk.call(request) print("Robot connected") self.motion = None self.motion_thread = None self.dt = 1 / 120.0 self.action_scale = 2.5 self.dof_vel_scale = 0.1 self.max_episode_length = 100 self.robot_dof_speed_scales = 1 self.target_pos = np.array([0.65, 0.2, 0.2]) self.robot_default_dof_pos = np.radians([0, 0, 0, -90, 0, 90, 0]) self.robot_dof_lower_limits = np.array([-2.9671, -2.0944, -2.9671, -2.0944, -2.9671, -2.0944, -3.0543]) self.robot_dof_upper_limits = np.array([ 2.9671, 2.0944, 2.9671, 2.0944, 2.9671, 2.0944, 3.0543]) self.progress_buf = 1 self.obs_buf = np.zeros((18,), dtype=np.float32) def _spin(self): rclpy.spin(self.node) def _callback_joint_states(self, msg): self.robot_state["joint_position"] = np.array(msg.position) self.robot_state["joint_velocity"] = np.array(msg.velocity) def _callback_end_effector_pose(self, msg): positon = msg.position self.robot_state["cartesian_position"] = np.array([positon.x, positon.y, positon.z]) def _get_observation_reward_done(self): # observation robot_dof_pos = self.robot_state["joint_position"] robot_dof_vel = self.robot_state["joint_velocity"] end_effector_pos = self.robot_state["cartesian_position"] dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self.dof_vel_scale self.obs_buf[0] = self.progress_buf / float(self.max_episode_length) self.obs_buf[1:8] = dof_pos_scaled self.obs_buf[8:15] = dof_vel_scaled self.obs_buf[15:18] = self.target_pos # reward distance = np.linalg.norm(end_effector_pos - self.target_pos) reward = -distance # done done = self.progress_buf >= self.max_episode_length - 1 done = done or distance <= 0.075 print("Distance:", distance) if done: print("Target or Maximum episode length reached") time.sleep(1) return self.obs_buf, reward, done def reset(self): print("Reseting...") # go to 1) safe position, 2) random position msg = sensor_msgs.msg.JointState() msg.position = self.robot_default_dof_pos.tolist() self.pub_command_joint.publish(msg) time.sleep(3) msg.position = (self.robot_default_dof_pos + 0.25 * (np.random.rand(7) - 0.5)).tolist() self.pub_command_joint.publish(msg) time.sleep(1) # get target position from prompt while True: try: print("Enter target position (X, Y, Z) in meters") raw = input("or press [Enter] key for a random target position: ") if raw: self.target_pos = np.array([float(p) for p in raw.replace(' ', '').split(',')]) else: noise = (2 * np.random.rand(3) - 1) * np.array([0.1, 0.2, 0.2]) self.target_pos = np.array([0.6, 0.0, 0.4]) + noise print("Target position:", self.target_pos) break except ValueError: print("Invalid input. Try something like: 0.65, 0.0, 0.4") input("Press [Enter] to continue") self.progress_buf = 0 observation, reward, done = self._get_observation_reward_done() return observation, {} def step(self, action): self.progress_buf += 1 # control space # joint if self.control_space == "joint": joint_positions = self.robot_state["joint_position"] + (self.robot_dof_speed_scales * self.dt * action * self.action_scale) msg = sensor_msgs.msg.JointState() msg.position = joint_positions.tolist() self.pub_command_joint.publish(msg) # cartesian elif self.control_space == "cartesian": end_effector_pos = self.robot_state["cartesian_position"] + action / 100.0 msg = geometry_msgs.msg.Pose() msg.position.x = end_effector_pos[0] msg.position.y = end_effector_pos[1] msg.position.z = end_effector_pos[2] msg.orientation.x = np.nan msg.orientation.y = np.nan msg.orientation.z = np.nan msg.orientation.w = np.nan self.pub_command_cartesian.publish(msg) # the use of time.sleep is for simplicity. It does not guarantee control at a specific frequency time.sleep(1 / 30.0) observation, reward, terminated = self._get_observation_reward_done() return observation, reward, terminated, False, {} def render(self, *args, **kwargs): pass def close(self): # shutdown the node self.node.destroy_node() rclpy.shutdown()
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_real_skrl_eval.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.envs.torch import wrap_env # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # Load the environment from reaching_iiwa_real_env import ReachingIiwa control_space = "joint" # joint or cartesian env = ReachingIiwa(control_space=control_space) # wrap the environment env = wrap_env(env) device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if control_space == "joint": agent.load("./agent_joint.pt") elif control_space == "cartesian": agent.load("./agent_cartesian.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_omniverse_isaacgym_skrl_train.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin, DeterministicMixin from skrl.memories.torch import RandomMemory from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.schedulers.torch import KLAdaptiveRL from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.utils.omniverse_isaacgym_utils import get_env_instance from skrl.envs.torch import wrap_env from skrl.utils import set_seed # Seed for reproducibility seed = set_seed() # e.g. `set_seed(42)` for fixed seed # Define the models (stochastic and deterministic models) for the agent using helper mixin. # - Policy: takes as input the environment's observation/state and returns an action # - Value: takes the state as input and provides a value to guide the policy class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} class Value(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, 1)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # instance VecEnvBase and setup task headless = True # set headless to False for rendering env = get_env_instance(headless=headless) from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from reaching_iiwa_omniverse_isaacgym_env import ReachingIiwaTask, TASK_CFG TASK_CFG["seed"] = seed TASK_CFG["headless"] = headless TASK_CFG["task"]["env"]["numEnvs"] = 1024 TASK_CFG["task"]["env"]["controlSpace"] = "joint" # "joint" or "cartesian" sim_config = SimConfig(TASK_CFG) task = ReachingIiwaTask(name="ReachingIiwa", sim_config=sim_config, env=env) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=True) # wrap the environment env = wrap_env(env, "omniverse-isaacgym") device = env.device # Instantiate a RandomMemory as rollout buffer (any memory can be used for this) memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device) # Instantiate the agent's models (function approximators). # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) models_ppo["value"] = Value(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["rollouts"] = 16 cfg_ppo["learning_epochs"] = 8 cfg_ppo["mini_batches"] = 8 cfg_ppo["discount_factor"] = 0.99 cfg_ppo["lambda"] = 0.95 cfg_ppo["learning_rate"] = 5e-4 cfg_ppo["learning_rate_scheduler"] = KLAdaptiveRL cfg_ppo["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008} cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["grad_norm_clip"] = 1.0 cfg_ppo["ratio_clip"] = 0.2 cfg_ppo["value_clip"] = 0.2 cfg_ppo["clip_predicted_values"] = True cfg_ppo["entropy_loss_scale"] = 0.0 cfg_ppo["value_loss_scale"] = 2.0 cfg_ppo["kl_threshold"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg_ppo["value_preprocessor"] = RunningStandardScaler cfg_ppo["value_preprocessor_kwargs"] = {"size": 1, "device": device} # logging to TensorBoard and write checkpoints each 32 and 250 timesteps respectively cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 250 agent = PPO(models=models_ppo, memory=memory, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 5000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start training trainer.train()
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_real_ros_ros2_skrl_eval.py
import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import Model, GaussianMixin from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG from skrl.resources.preprocessors.torch import RunningStandardScaler from skrl.trainers.torch import SequentialTrainer from skrl.envs.torch import wrap_env # Define only the policy for evaluation class Policy(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 256), nn.ELU(), nn.Linear(256, 128), nn.ELU(), nn.Linear(128, 64), nn.ELU(), nn.Linear(64, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # Load the environment according to the ROS version def get_active_ros_version(): import os if os.environ.get("ROS_DISTRO"): return "ROS2" if os.environ.get("AMENT_PREFIX_PATH") else "ROS" return "" active_ros_version = get_active_ros_version() if active_ros_version == "ROS": from reaching_iiwa_real_ros_env import ReachingIiwa elif active_ros_version == "ROS2": from reaching_iiwa_real_ros2_env import ReachingIiwa else: print("No active ROS version found") exit() control_space = "joint" # joint or cartesian env = ReachingIiwa(control_space=control_space) # wrap the environment env = wrap_env(env) device = env.device # Instantiate the agent's policy. # PPO requires 2 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#spaces-and-models models_ppo = {} models_ppo["policy"] = Policy(env.observation_space, env.action_space, device) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters cfg_ppo = PPO_DEFAULT_CONFIG.copy() cfg_ppo["random_timesteps"] = 0 cfg_ppo["learning_starts"] = 0 cfg_ppo["state_preprocessor"] = RunningStandardScaler cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} # logging to TensorBoard each 32 timesteps an ignore checkpoints cfg_ppo["experiment"]["write_interval"] = 32 cfg_ppo["experiment"]["checkpoint_interval"] = 0 agent = PPO(models=models_ppo, memory=None, cfg=cfg_ppo, observation_space=env.observation_space, action_space=env.action_space, device=device) # load checkpoints if control_space == "joint": agent.load("./agent_joint.pt") elif control_space == "cartesian": agent.load("./agent_cartesian.pt") # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 1000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent) # start evaluation trainer.eval()
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_omniverse_isaacgym_env.py
import torch import numpy as np from omniisaacgymenvs.tasks.base.rl_task import RLTask from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from robots.iiwa14 import Iiwa14 as Robot from skrl.utils import omniverse_isaacgym_utils # post_physics_step calls # - get_observations() # - get_states() # - calculate_metrics() # - is_done() # - get_extras() TASK_CFG = {"test": False, "device_id": 0, "headless": True, "sim_device": "gpu", "enable_livestream": False, "warp": False, "seed": 42, "task": {"name": "ReachingIiwa", "physics_engine": "physx", "env": {"numEnvs": 1024, "envSpacing": 1.5, "episodeLength": 100, "enableDebugVis": False, "clipObservations": 1000.0, "clipActions": 1.0, "controlFrequencyInv": 4, "actionScale": 2.5, "dofVelocityScale": 0.1, "controlSpace": "cartesian"}, "sim": {"dt": 0.0083, # 1 / 120 "use_gpu_pipeline": True, "gravity": [0.0, 0.0, -9.81], "add_ground_plane": True, "use_flatcache": True, "enable_scene_query_support": False, "enable_cameras": False, "default_physics_material": {"static_friction": 1.0, "dynamic_friction": 1.0, "restitution": 0.0}, "physx": {"worker_thread_count": 4, "solver_type": 1, "use_gpu": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "contact_offset": 0.005, "rest_offset": 0.0, "bounce_threshold_velocity": 0.2, "friction_offset_threshold": 0.04, "friction_correlation_distance": 0.025, "enable_sleeping": True, "enable_stabilization": True, "max_depenetration_velocity": 1000.0, "gpu_max_rigid_contact_count": 524288, "gpu_max_rigid_patch_count": 33554432, "gpu_found_lost_pairs_capacity": 524288, "gpu_found_lost_aggregate_pairs_capacity": 262144, "gpu_total_aggregate_pairs_capacity": 1048576, "gpu_max_soft_body_contacts": 1048576, "gpu_max_particle_contacts": 1048576, "gpu_heap_capacity": 33554432, "gpu_temp_buffer_capacity": 16777216, "gpu_max_num_partitions": 8}, "robot": {"override_usd_defaults": False, "fixed_base": False, "enable_self_collisions": False, "enable_gyroscopic_forces": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.005, "stabilization_threshold": 0.001, "density": -1, "max_depenetration_velocity": 1000.0, "contact_offset": 0.005, "rest_offset": 0.0}, "target": {"override_usd_defaults": False, "fixed_base": True, "make_kinematic": True, "enable_self_collisions": False, "enable_gyroscopic_forces": True, "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.005, "stabilization_threshold": 0.001, "density": -1, "max_depenetration_velocity": 1000.0, "contact_offset": 0.005, "rest_offset": 0.0}}}} class RobotView(ArticulationView): def __init__(self, prim_paths_expr: str, name: str = "robot_view") -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) class ReachingIiwaTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.dt = 1 / 120.0 self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._action_scale = self._task_cfg["env"]["actionScale"] self._dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self._control_space = self._task_cfg["env"]["controlSpace"] # observation and action space self._num_observations = 18 if self._control_space == "joint": self._num_actions = 7 elif self._control_space == "cartesian": self._num_actions = 3 else: raise ValueError("Invalid control space: {}".format(self._control_space)) self._end_effector_link = "iiwa_link_7" RLTask.__init__(self, name, env) def set_up_scene(self, scene) -> None: self.get_robot() self.get_target() super().set_up_scene(scene) # robot view self._robots = RobotView(prim_paths_expr="/World/envs/.*/robot", name="robot_view") scene.add(self._robots) # end-effectors view self._end_effectors = RigidPrimView(prim_paths_expr="/World/envs/.*/robot/{}".format(self._end_effector_link), name="end_effector_view") scene.add(self._end_effectors) # target view self._targets = RigidPrimView(prim_paths_expr="/World/envs/.*/target", name="target_view", reset_xform_properties=False) scene.add(self._targets) self.init_data() def get_robot(self): robot = Robot(prim_path=self.default_zero_env_path + "/robot", translation=torch.tensor([0.0, 0.0, 0.0]), orientation=torch.tensor([1.0, 0.0, 0.0, 0.0]), name="robot") self._sim_config.apply_articulation_settings("robot", get_prim_at_path(robot.prim_path), self._sim_config.parse_actor_config("robot")) def get_target(self): target = DynamicSphere(prim_path=self.default_zero_env_path + "/target", name="target", radius=0.025, color=torch.tensor([1, 0, 0])) self._sim_config.apply_articulation_settings("target", get_prim_at_path(target.prim_path), self._sim_config.parse_actor_config("target")) target.set_collision_enabled(False) def init_data(self) -> None: self.robot_default_dof_pos = torch.tensor(np.radians([0, 0, 0, -90, 0, 90, 0]), device=self._device, dtype=torch.float32) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) if self._control_space == "cartesian": self.jacobians = torch.zeros((self._num_envs, 7, 6, 7), device=self._device) self.end_effector_pos, self.end_effector_rot = torch.zeros((self._num_envs, 3), device=self._device), torch.zeros((self._num_envs, 4), device=self._device) def get_observations(self) -> dict: robot_dof_pos = self._robots.get_joint_positions(clone=False) robot_dof_vel = self._robots.get_joint_velocities(clone=False) end_effector_pos, end_effector_rot = self._end_effectors.get_world_poses(clone=False) target_pos, target_rot = self._targets.get_world_poses(clone=False) dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) \ / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self._dof_vel_scale generalization_noise = torch.rand((dof_vel_scaled.shape[0], 7), device=self._device) + 0.5 self.obs_buf[:, 0] = self.progress_buf / self._max_episode_length self.obs_buf[:, 1:8] = dof_pos_scaled self.obs_buf[:, 8:15] = dof_vel_scaled * generalization_noise self.obs_buf[:, 15:18] = target_pos - self._env_pos # compute distance for calculate_metrics() and is_done() self._computed_distance = torch.norm(end_effector_pos - target_pos, dim=-1) if self._control_space == "cartesian": self.jacobians = self._robots.get_jacobians(clone=False) self.end_effector_pos, self.end_effector_rot = end_effector_pos, end_effector_rot self.end_effector_pos -= self._env_pos return {self._robots.name: {"obs_buf": self.obs_buf}} def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) env_ids_int32 = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) if self._control_space == "joint": targets = self.robot_dof_targets + self.robot_dof_speed_scales * self.dt * self.actions * self._action_scale elif self._control_space == "cartesian": goal_position = self.end_effector_pos + actions / 100.0 delta_dof_pos = omniverse_isaacgym_utils.ik(jacobian_end_effector=self.jacobians[:, 7 - 1, :, :7], # iiwa_link_7 index: 7 current_position=self.end_effector_pos, current_orientation=self.end_effector_rot, goal_position=goal_position, goal_orientation=None) targets = self.robot_dof_targets[:, :7] + delta_dof_pos self.robot_dof_targets = torch.clamp(targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits) self._robots.set_joint_position_targets(self.robot_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids) -> None: indices = env_ids.to(dtype=torch.int32) # reset robot pos = torch.clamp(self.robot_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_robot_dofs), device=self._device) - 0.5), self.robot_dof_lower_limits, self.robot_dof_upper_limits) dof_pos = torch.zeros((len(indices), self._robots.num_dof), device=self._device) dof_pos[:] = pos dof_vel = torch.zeros((len(indices), self._robots.num_dof), device=self._device) self.robot_dof_targets[env_ids, :] = pos self.robot_dof_pos[env_ids, :] = pos self._robots.set_joint_position_targets(self.robot_dof_targets[env_ids], indices=indices) self._robots.set_joint_positions(dof_pos, indices=indices) self._robots.set_joint_velocities(dof_vel, indices=indices) # reset target pos = (torch.rand((len(env_ids), 3), device=self._device) - 0.5) * 2 \ * torch.tensor([0.10, 0.20, 0.20], device=self._device) \ + torch.tensor([0.60, 0.00, 0.40], device=self._device) self._targets.set_world_poses(pos + self._env_pos[env_ids], indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.num_robot_dofs = self._robots.num_dof self.robot_dof_pos = torch.zeros((self.num_envs, self.num_robot_dofs), device=self._device) dof_limits = self._robots.get_dof_limits() self.robot_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.robot_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.robot_dof_speed_scales = torch.ones_like(self.robot_dof_lower_limits) self.robot_dof_targets = torch.zeros((self._num_envs, self.num_robot_dofs), dtype=torch.float, device=self._device) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = -self._computed_distance def is_done(self) -> None: self.reset_buf.fill_(0) # target reached self.reset_buf = torch.where(self._computed_distance <= 0.035, torch.ones_like(self.reset_buf), self.reset_buf) # max episode length self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
Toni-SM/skrl/docs/source/examples/real_world/kuka_lbr_iiwa/reaching_iiwa_real_ros_env.py
import time import numpy as np import gymnasium as gym import rospy import sensor_msgs.msg import geometry_msgs.msg import libiiwa_msgs.srv class ReachingIiwa(gym.Env): def __init__(self, control_space="joint"): self.control_space = control_space # joint or cartesian # spaces self.observation_space = gym.spaces.Box(low=-1000, high=1000, shape=(18,), dtype=np.float32) if self.control_space == "joint": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(7,), dtype=np.float32) elif self.control_space == "cartesian": self.action_space = gym.spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32) else: raise ValueError("Invalid control space:", self.control_space) # create publishers self.pub_command_joint = rospy.Publisher('/iiwa/command/joint', sensor_msgs.msg.JointState, queue_size=1) self.pub_command_cartesian = rospy.Publisher('/iiwa/command/cartesian', geometry_msgs.msg.Pose, queue_size=1) # keep compatibility with libiiwa Python API self.robot_state = {"joint_position": np.zeros((7,)), "joint_velocity": np.zeros((7,)), "cartesian_position": np.zeros((3,))} # create subscribers rospy.Subscriber('/iiwa/state/joint_states', sensor_msgs.msg.JointState, self._callback_joint_states) rospy.Subscriber('/iiwa/state/end_effector_pose', geometry_msgs.msg.Pose, self._callback_end_effector_pose) # create service clients rospy.wait_for_service('/iiwa/set_control_interface') proxy = rospy.ServiceProxy('/iiwa/set_control_interface', libiiwa_msgs.srv.SetString) proxy("SERVO") # or "servo" rospy.wait_for_service('/iiwa/set_desired_joint_velocity_rel') rospy.wait_for_service('/iiwa/set_desired_joint_acceleration_rel') rospy.wait_for_service('/iiwa/set_desired_joint_jerk_rel') proxy = rospy.ServiceProxy('/iiwa/set_desired_joint_velocity_rel', libiiwa_msgs.srv.SetNumber) proxy(0.5) proxy = rospy.ServiceProxy('/iiwa/set_desired_joint_acceleration_rel', libiiwa_msgs.srv.SetNumber) proxy(0.5) proxy = rospy.ServiceProxy('/iiwa/set_desired_joint_jerk_rel', libiiwa_msgs.srv.SetNumber) proxy(0.5) rospy.wait_for_service('/iiwa/set_desired_cartesian_velocity') rospy.wait_for_service('/iiwa/set_desired_cartesian_acceleration') rospy.wait_for_service('/iiwa/set_desired_cartesian_jerk') proxy = rospy.ServiceProxy('/iiwa/set_desired_cartesian_velocity', libiiwa_msgs.srv.SetNumber) proxy(10.0) proxy = rospy.ServiceProxy('/iiwa/set_desired_cartesian_acceleration', libiiwa_msgs.srv.SetNumber) proxy(10.0) proxy = rospy.ServiceProxy('/iiwa/set_desired_cartesian_jerk', libiiwa_msgs.srv.SetNumber) proxy(10.0) # initialize the ROS node rospy.init_node(self.__class__.__name__) print("Robot connected") self.motion = None self.motion_thread = None self.dt = 1 / 120.0 self.action_scale = 2.5 self.dof_vel_scale = 0.1 self.max_episode_length = 100 self.robot_dof_speed_scales = 1 self.target_pos = np.array([0.65, 0.2, 0.2]) self.robot_default_dof_pos = np.radians([0, 0, 0, -90, 0, 90, 0]) self.robot_dof_lower_limits = np.array([-2.9671, -2.0944, -2.9671, -2.0944, -2.9671, -2.0944, -3.0543]) self.robot_dof_upper_limits = np.array([ 2.9671, 2.0944, 2.9671, 2.0944, 2.9671, 2.0944, 3.0543]) self.progress_buf = 1 self.obs_buf = np.zeros((18,), dtype=np.float32) def _callback_joint_states(self, msg): self.robot_state["joint_position"] = np.array(msg.position) self.robot_state["joint_velocity"] = np.array(msg.velocity) def _callback_end_effector_pose(self, msg): positon = msg.position self.robot_state["cartesian_position"] = np.array([positon.x, positon.y, positon.z]) def _get_observation_reward_done(self): # observation robot_dof_pos = self.robot_state["joint_position"] robot_dof_vel = self.robot_state["joint_velocity"] end_effector_pos = self.robot_state["cartesian_position"] dof_pos_scaled = 2.0 * (robot_dof_pos - self.robot_dof_lower_limits) / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 dof_vel_scaled = robot_dof_vel * self.dof_vel_scale self.obs_buf[0] = self.progress_buf / float(self.max_episode_length) self.obs_buf[1:8] = dof_pos_scaled self.obs_buf[8:15] = dof_vel_scaled self.obs_buf[15:18] = self.target_pos # reward distance = np.linalg.norm(end_effector_pos - self.target_pos) reward = -distance # done done = self.progress_buf >= self.max_episode_length - 1 done = done or distance <= 0.075 print("Distance:", distance) if done: print("Target or Maximum episode length reached") time.sleep(1) return self.obs_buf, reward, done def reset(self): print("Reseting...") # go to 1) safe position, 2) random position msg = sensor_msgs.msg.JointState() msg.position = self.robot_default_dof_pos.tolist() self.pub_command_joint.publish(msg) time.sleep(3) msg.position = (self.robot_default_dof_pos + 0.25 * (np.random.rand(7) - 0.5)).tolist() self.pub_command_joint.publish(msg) time.sleep(1) # get target position from prompt while True: try: print("Enter target position (X, Y, Z) in meters") raw = input("or press [Enter] key for a random target position: ") if raw: self.target_pos = np.array([float(p) for p in raw.replace(' ', '').split(',')]) else: noise = (2 * np.random.rand(3) - 1) * np.array([0.1, 0.2, 0.2]) self.target_pos = np.array([0.6, 0.0, 0.4]) + noise print("Target position:", self.target_pos) break except ValueError: print("Invalid input. Try something like: 0.65, 0.0, 0.4") input("Press [Enter] to continue") self.progress_buf = 0 observation, reward, done = self._get_observation_reward_done() return observation, {} def step(self, action): self.progress_buf += 1 # control space # joint if self.control_space == "joint": joint_positions = self.robot_state["joint_position"] + (self.robot_dof_speed_scales * self.dt * action * self.action_scale) msg = sensor_msgs.msg.JointState() msg.position = joint_positions.tolist() self.pub_command_joint.publish(msg) # cartesian elif self.control_space == "cartesian": end_effector_pos = self.robot_state["cartesian_position"] + action / 100.0 msg = geometry_msgs.msg.Pose() msg.position.x = end_effector_pos[0] msg.position.y = end_effector_pos[1] msg.position.z = end_effector_pos[2] msg.orientation.x = np.nan msg.orientation.y = np.nan msg.orientation.z = np.nan msg.orientation.w = np.nan self.pub_command_cartesian.publish(msg) # the use of time.sleep is for simplicity. It does not guarantee control at a specific frequency time.sleep(1 / 30.0) observation, reward, terminated = self._get_observation_reward_done() return observation, reward, terminated, False, {} def render(self, *args, **kwargs): pass def close(self): pass
Toni-SM/skrl/docs/source/snippets/utils_postprocessing.py
# [start-memory_file_iterator-torch] from skrl.utils import postprocessing # assuming there is a directory called "memories" with Torch files in it memory_iterator = postprocessing.MemoryFileIterator("memories/*.pt") for filename, data in memory_iterator: filename # str: basename of the current file data # dict: keys are the names of the memory tensors in the file. # Tensor shapes are (memory size, number of envs, specific content size) # example of simple usage: # print the filenames of all memories and their tensor shapes print("\nfilename:", filename) print(" |-- states:", data['states'].shape) print(" |-- actions:", data['actions'].shape) print(" |-- rewards:", data['rewards'].shape) print(" |-- next_states:", data['next_states'].shape) print(" |-- dones:", data['dones'].shape) # [end-memory_file_iterator-torch] # [start-memory_file_iterator-numpy] from skrl.utils import postprocessing # assuming there is a directory called "memories" with NumPy files in it memory_iterator = postprocessing.MemoryFileIterator("memories/*.npz") for filename, data in memory_iterator: filename # str: basename of the current file data # dict: keys are the names of the memory arrays in the file. # Array shapes are (memory size, number of envs, specific content size) # example of simple usage: # print the filenames of all memories and their array shapes print("\nfilename:", filename) print(" |-- states:", data['states'].shape) print(" |-- actions:", data['actions'].shape) print(" |-- rewards:", data['rewards'].shape) print(" |-- next_states:", data['next_states'].shape) print(" |-- dones:", data['dones'].shape) # [end-memory_file_iterator-numpy] # [start-memory_file_iterator-csv] from skrl.utils import postprocessing # assuming there is a directory called "memories" with CSV files in it memory_iterator = postprocessing.MemoryFileIterator("memories/*.csv") for filename, data in memory_iterator: filename # str: basename of the current file data # dict: keys are the names of the memory list of lists extracted from the file. # List lengths are (memory size * number of envs) and # sublist lengths are (specific content size) # example of simple usage: # print the filenames of all memories and their list lengths print("\nfilename:", filename) print(" |-- states:", len(data['states'])) print(" |-- actions:", len(data['actions'])) print(" |-- rewards:", len(data['rewards'])) print(" |-- next_states:", len(data['next_states'])) print(" |-- dones:", len(data['dones'])) # [end-memory_file_iterator-csv] # [start-tensorboard_file_iterator-list] from skrl.utils import postprocessing # assuming there is a directory called "runs" with experiments and Tensorboard files in it tensorboard_iterator = postprocessing.TensorboardFileIterator("runs/*/events.out.tfevents.*", \ tags=["Reward / Total reward (mean)"]) for dirname, data in tensorboard_iterator: dirname # str: path of the directory (experiment name) containing the Tensorboard file data # dict: keys are the tags, values are lists of [step, value] pairs # example of simple usage: # print the directory name and the value length for the "Reward / Total reward (mean)" tag print("\ndirname:", dirname) for tag, values in data.items(): print(" |-- tag:", tag) print(" | |-- value length:", len(values)) # [end-tensorboard_file_iterator-list]
Toni-SM/skrl/docs/source/snippets/shared_model.py
# [start-mlp-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin, DeterministicMixin # define the shared model class SharedModel(GaussianMixin, DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction, role="policy") DeterministicMixin.__init__(self, clip_actions, role="value") # shared layers/network self.net = nn.Sequential(nn.Linear(self.num_observations, 32), nn.ELU(), nn.Linear(32, 32), nn.ELU()) # separated layers ("policy") self.mean_layer = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) # separated layer ("value") self.value_layer = nn.Linear(32, 1) # override the .act(...) method to disambiguate its call def act(self, inputs, role): if role == "policy": return GaussianMixin.act(self, inputs, role) elif role == "value": return DeterministicMixin.act(self, inputs, role) # forward the input to compute model output according to the specified role def compute(self, inputs, role): if role == "policy": return self.mean_layer(self.net(inputs["states"])), self.log_std_parameter, {} elif role == "value": return self.value_layer(self.net(inputs["states"])), {} # instantiate the shared model and pass the same instance to the other key models = {} models["policy"] = SharedModel(env.observation_space, env.action_space, env.device) models["value"] = models["policy"] # [end-mlp-torch]
Toni-SM/skrl/docs/source/snippets/noises.py
# [start-base-class-torch] from typing import Union, Tuple import torch from skrl.resources.noises.torch import Noise class CustomNoise(Noise): def __init__(self, device: Union[str, torch.device] = "cuda:0") -> None: """ :param device: Device on which a torch tensor is or will be allocated (default: "cuda:0") :type device: str or torch.device, optional """ super().__init__(device) def sample(self, size: Union[Tuple[int], torch.Size]) -> torch.Tensor: """Sample noise :param size: Shape of the sampled tensor :type size: tuple or list of integers, or torch.Size :return: Sampled noise :rtype: torch.Tensor """ # ================================ # - sample noise # ================================ # [end-base-class-torch] # [start-base-class-jax] from typing import Optional, Union, Tuple import numpy as np import jaxlib import jax.numpy as jnp from skrl.resources.noises.torch import Noise class CustomNoise(Noise): def __init__(self, device: Optional[Union[str, jaxlib.xla_extension.Device]] = None) -> None: """Custom noise :param device: Device on which a jax array is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or jaxlib.xla_extension.Device, optional """ super().__init__(device) def sample(self, size: Tuple[int]) -> Union[np.ndarray, jnp.ndarray]: """Sample noise :param size: Shape of the sampled tensor :type size: tuple or list of integers :return: Sampled noise :rtype: np.ndarray or jnp.ndarray """ # ================================ # - sample noise # ================================ # [end-base-class-jax] # ============================================================================= # [torch-start-gaussian] from skrl.resources.noises.torch import GaussianNoise cfg = DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = GaussianNoise(mean=0, std=0.2, device="cuda:0") # [torch-end-gaussian] # [jax-start-gaussian] from skrl.resources.noises.jax import GaussianNoise cfg = DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = GaussianNoise(mean=0, std=0.2) # [jax-end-gaussian] # ============================================================================= # [torch-start-ornstein-uhlenbeck] from skrl.resources.noises.torch import OrnsteinUhlenbeckNoise cfg = DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.2, base_scale=1.0, device="cuda:0") # [torch-end-ornstein-uhlenbeck] # [jax-start-ornstein-uhlenbeck] from skrl.resources.noises.jax import OrnsteinUhlenbeckNoise cfg = DEFAULT_CONFIG.copy() cfg["exploration"]["noise"] = OrnsteinUhlenbeckNoise(theta=0.15, sigma=0.2, base_scale=1.0) # [jax-end-ornstein-uhlenbeck]
Toni-SM/skrl/docs/source/snippets/gaussian_model.py
# [start-definition-torch] class GaussianModel(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) # [end-definition-torch] # [start-definition-jax] class GaussianModel(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) # [end-definition-jax] # ============================================================================= # [start-mlp-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin # define the model class MLP(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.net = nn.Sequential(nn.Linear(self.num_observations, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # [end-mlp-sequential-torch] # [start-mlp-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, GaussianMixin # define the model class MLP(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.fc1 = nn.Linear(self.num_observations, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): x = self.fc1(inputs["states"]) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # [end-mlp-functional-torch] # [start-mlp-setup-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, GaussianMixin # define the model class MLP(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def setup(self): self.fc1 = nn.Dense(64) self.fc2 = nn.Dense(32) self.fc3 = nn.Dense(self.num_actions) self.log_std_parameter = self.param("log_std_parameter", lambda _: jnp.zeros(self.num_actions)) def __call__(self, inputs, role): x = self.fc1(inputs["states"]) x = nn.relu(x) x = self.fc2(x) x = nn.relu(x) x = self.fc3(x) return nn.tanh(x), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-setup-jax] # [start-mlp-compact-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, GaussianMixin # define the model class MLP(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.Dense(64)(inputs["states"]) x = nn.relu(x) x = nn.Dense(32)(x) x = nn.relu(x) x = nn.Dense(self.num_actions)(x) log_std_parameter = self.param("log_std_parameter", lambda _: jnp.zeros(self.num_actions)) return nn.tanh(x), log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-compact-jax] # ============================================================================= # [start-cnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin # define the model class CNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.net = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 16), nn.Tanh(), nn.Linear(16, 64), nn.Tanh(), nn.Linear(64, 32), nn.Tanh(), nn.Linear(32, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) return self.net(inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2)), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # [end-cnn-sequential-torch] # [start-cnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, GaussianMixin # define the model class CNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum"): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.conv1 = nn.Conv2d(3, 32, kernel_size=8, stride=4) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 16) self.fc3 = nn.Linear(16, 64) self.fc4 = nn.Linear(64, 32) self.fc5 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2) x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = torch.flatten(x, start_dim=1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.tanh(x) x = self.fc3(x) x = torch.tanh(x) x = self.fc4(x) x = torch.tanh(x) x = self.fc5(x) return x, self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # [end-cnn-functional-torch] # [start-cnn-setup-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, GaussianMixin # define the model class CNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) def setup(self): self.conv1 = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID") self.conv2 = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID") self.conv3 = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID") self.fc1 = nn.Dense(512) self.fc2 = nn.Dense(16) self.fc3 = nn.Dense(64) self.fc4 = nn.Dense(32) self.fc5 = nn.Dense(self.num_actions) self.log_std_parameter = self.param("log_std_parameter", lambda _: jnp.zeros(self.num_actions)) def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = self.conv1(x) x = nn.relu(x) x = self.conv2(x) x = nn.relu(x) x = self.conv3(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = self.fc1(x) x = nn.relu(x) x = self.fc2(x) x = nn.tanh(x) x = self.fc3(x) x = nn.tanh(x) x = self.fc4(x) x = nn.tanh(x) x = self.fc5(x) return nn.tanh(x), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-setup-jax] # [start-cnn-compact-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, GaussianMixin # define the model class CNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID")(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = nn.Dense(512)(x) x = nn.relu(x) x = nn.Dense(16)(x) x = nn.tanh(x) x = nn.Dense(64)(x) x = nn.tanh(x) x = nn.Dense(32)(x) x = nn.tanh(x) x = nn.Dense(self.num_actions)(x) log_std_parameter = self.param("log_std_parameter", lambda _: jnp.zeros(self.num_actions)) return nn.tanh(x), log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-compact-jax] # ============================================================================= # [start-rnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin # define the model class RNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-sequential-torch] # [start-rnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, GaussianMixin # define the model class RNN(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-functional-torch] # ============================================================================= # [start-gru-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin # define the model class GRU(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-sequential-torch] # [start-gru-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, GaussianMixin # define the model class GRU(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-functional-torch] # ============================================================================= # [start-lstm-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, GaussianMixin # define the model class LSTM(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-sequential-torch] # [start-lstm-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, GaussianMixin # define the model class LSTM(GaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) GaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-functional-torch]
Toni-SM/skrl/docs/source/snippets/model_mixin.py
# [start-model-torch] from typing import Optional, Union, Mapping, Sequence, Tuple, Any import gym, gymnasium import torch from skrl.models.torch import Model class CustomModel(Model): def __init__(self, observation_space: Union[int, Sequence[int], gym.Space, gymnasium.Space], action_space: Union[int, Sequence[int], gym.Space, gymnasium.Space], device: Optional[Union[str, torch.device]] = None) -> None: """Custom model :param observation_space: Observation/state space or shape. The ``num_observations`` property will contain the size of that space :type observation_space: int, sequence of int, gym.Space, gymnasium.Space :param action_space: Action space or shape. The ``num_actions`` property will contain the size of that space :type action_space: int, sequence of int, gym.Space, gymnasium.Space :param device: Device on which a torch tensor is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or torch.device, optional """ super().__init__(observation_space, action_space, device) # ===================================== # - define custom attributes and others # ===================================== flax.linen.Module.__post_init__(self) def act(self, inputs: Mapping[str, Union[torch.Tensor, Any]], role: str = "") -> Tuple[torch.Tensor, Union[torch.Tensor, None], Mapping[str, Union[torch.Tensor, Any]]]: """Act according to the specified behavior :param inputs: Model inputs. The most common keys are: - ``"states"``: state of the environment used to make the decision - ``"taken_actions"``: actions taken by the policy for the given states :type inputs: dict where the values are typically torch.Tensor :param role: Role play by the model (default: ``""``) :type role: str, optional :return: Model output. The first component is the action to be taken by the agent. The second component is the log of the probability density function for stochastic models or None for deterministic models. The third component is a dictionary containing extra output values :rtype: tuple of torch.Tensor, torch.Tensor or None, and dictionary """ # ============================== # - act in response to the state # ============================== # [end-model-torch] # [start-model-jax] from typing import Optional, Union, Mapping, Tuple, Any import gym, gymnasium import flax import jaxlib import jax.numpy as jnp from skrl.models.jax import Model class CustomModel(Model): def __init__(self, observation_space: Union[int, Sequence[int], gym.Space, gymnasium.Space], action_space: Union[int, Sequence[int], gym.Space, gymnasium.Space], device: Optional[Union[str, jaxlib.xla_extension.Device]] = None, parent: Optional[Any] = None, name: Optional[str] = None) -> None: """Custom model :param observation_space: Observation/state space or shape. The ``num_observations`` property will contain the size of that space :type observation_space: int, sequence of int, gym.Space, gymnasium.Space :param action_space: Action space or shape. The ``num_actions`` property will contain the size of that space :type action_space: int, sequence of int, gym.Space, gymnasium.Space :param device: Device on which a jax array is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or jaxlib.xla_extension.Device, optional :param parent: The parent Module of this Module (default: ``None``). It is a Flax reserved attribute :type parent: str, optional :param name: The name of this Module (default: ``None``). It is a Flax reserved attribute :type name: str, optional """ Model.__init__(self, observation_space, action_space, device, parent, name) # ===================================== # - define custom attributes and others # ===================================== flax.linen.Module.__post_init__(self) def act(self, inputs: Mapping[str, Union[jnp.ndarray, Any]], role: str = "", params: Optional[jnp.ndarray] = None) -> Tuple[jnp.ndarray, Union[jnp.ndarray, None], Mapping[str, Union[jnp.ndarray, Any]]]: """Act according to the specified behavior :param inputs: Model inputs. The most common keys are: - ``"states"``: state of the environment used to make the decision - ``"taken_actions"``: actions taken by the policy for the given states :type inputs: dict where the values are typically jnp.ndarray :param role: Role play by the model (default: ``""``) :type role: str, optional :param params: Parameters used to compute the output (default: ``None``). If ``None``, internal parameters will be used :type params: jnp.array :return: Model output. The first component is the action to be taken by the agent. The second component is the log of the probability density function. The third component is a dictionary containing the mean actions ``"mean_actions"`` and extra output values :rtype: tuple of jnp.ndarray, jnp.ndarray or None, and dictionary """ # ============================== # - act in response to the state # ============================== # [end-model-jax] # ============================================================================= # [start-mixin-torch] from typing import Union, Mapping, Tuple, Any import torch class CustomMixin: def __init__(self, role: str = "") -> None: """Custom mixin :param role: Role play by the model (default: ``""``) :type role: str, optional """ # ===================================== # - define custom attributes and others # ===================================== def act(self, inputs: Mapping[str, Union[torch.Tensor, Any]], role: str = "") -> Tuple[torch.Tensor, Union[torch.Tensor, None], Mapping[str, Union[torch.Tensor, Any]]]: """Act according to the specified behavior :param inputs: Model inputs. The most common keys are: - ``"states"``: state of the environment used to make the decision - ``"taken_actions"``: actions taken by the policy for the given states :type inputs: dict where the values are typically torch.Tensor :param role: Role play by the model (default: ``""``) :type role: str, optional :return: Model output. The first component is the action to be taken by the agent. The second component is the log of the probability density function for stochastic models or None for deterministic models. The third component is a dictionary containing extra output values :rtype: tuple of torch.Tensor, torch.Tensor or None, and dictionary """ # ============================== # - act in response to the state # ============================== # [end-mixin-torch] # [start-mixin-jax] from typing import Optional, Union, Mapping, Tuple, Any import flax import jax.numpy as jnp class CustomMixin: def __init__(self, role: str = "") -> None: """Custom mixin :param role: Role play by the model (default: ``""``) :type role: str, optional """ # ===================================== # - define custom attributes and others # ===================================== flax.linen.Module.__post_init__(self) def act(self, inputs: Mapping[str, Union[jnp.ndarray, Any]], role: str = "", params: Optional[jnp.ndarray] = None) -> Tuple[jnp.ndarray, Union[jnp.ndarray, None], Mapping[str, Union[jnp.ndarray, Any]]]: """Act according to the specified behavior :param inputs: Model inputs. The most common keys are: - ``"states"``: state of the environment used to make the decision - ``"taken_actions"``: actions taken by the policy for the given states :type inputs: dict where the values are typically jnp.ndarray :param role: Role play by the model (default: ``""``) :type role: str, optional :param params: Parameters used to compute the output (default: ``None``). If ``None``, internal parameters will be used :type params: jnp.array :return: Model output. The first component is the action to be taken by the agent. The second component is the log of the probability density function. The third component is a dictionary containing the mean actions ``"mean_actions"`` and extra output values :rtype: tuple of jnp.ndarray, jnp.ndarray or None, and dictionary """ # ============================== # - act in response to the state # ============================== # [end-mixin-jax]
Toni-SM/skrl/docs/source/snippets/multivariate_gaussian_model.py
# [start-definition-torch] class MultivariateGaussianModel(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) # [end-definition-torch] # ============================================================================= # [start-mlp-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class MLP(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Linear(self.num_observations, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2) # [end-mlp-sequential-torch] # [start-mlp-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class MLP(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.fc1 = nn.Linear(self.num_observations, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): x = self.fc1(inputs["states"]) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2) # [end-mlp-functional-torch] # ============================================================================= # [start-cnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class CNN(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.net = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 16), nn.Tanh(), nn.Linear(16, 64), nn.Tanh(), nn.Linear(64, 32), nn.Tanh(), nn.Linear(32, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) return self.net(inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2)), self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2) # [end-cnn-sequential-torch] # [start-cnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class CNN(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.conv1 = nn.Conv2d(3, 32, kernel_size=8, stride=4) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 16) self.fc3 = nn.Linear(16, 64) self.fc4 = nn.Linear(64, 32) self.fc5 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2) x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = torch.flatten(x, start_dim=1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.tanh(x) x = self.fc3(x) x = torch.tanh(x) x = self.fc4(x) x = torch.tanh(x) x = self.fc5(x) return x, self.log_std_parameter, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2) # [end-cnn-functional-torch] # ============================================================================= # [start-rnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class RNN(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-sequential-torch] # [start-rnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class RNN(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-functional-torch] # ============================================================================= # [start-gru-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class GRU(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-sequential-torch] # [start-gru-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class GRU(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-functional-torch] # ============================================================================= # [start-lstm-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class LSTM(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions), nn.Tanh()) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), self.log_std_parameter, {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-sequential-torch] # [start-lstm-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultivariateGaussianMixin # define the model class LSTM(MultivariateGaussianMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultivariateGaussianMixin.__init__(self, clip_actions, clip_log_std, min_log_std, max_log_std) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, self.num_actions) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return torch.tanh(x), self.log_std_parameter, {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=True, clip_log_std=True, min_log_std=-20, max_log_std=2, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-functional-torch]
Toni-SM/skrl/docs/source/snippets/multi_agents_basic_usage.py
# [start-ippo-torch] # import the agent and its default configuration from skrl.multi_agents.torch.ippo import IPPO, IPPO_DEFAULT_CONFIG # instantiate the agent's models models = {} for agent_name in env.possible_agents: models[agent_name] = {} models[agent_name]["policy"] = ... models[agent_name]["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = IPPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memories <memories>) agent = IPPO(possible_agents=env.possible_agents, models=models, memory=memories, # only required during training cfg=cfg_agent, observation_spaces=env.observation_spaces, action_spaces=env.action_spaces, device=env.device) # [end-ippo-torch] # [start-ippo-jax] # import the agent and its default configuration from skrl.multi_agents.jax.ippo import IPPO, IPPO_DEFAULT_CONFIG # instantiate the agent's models models = {} for agent_name in env.possible_agents: models[agent_name] = {} models[agent_name]["policy"] = ... models[agent_name]["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = IPPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memories <memories>) agent = IPPO(possible_agents=env.possible_agents, models=models, memory=memories, # only required during training cfg=cfg_agent, observation_spaces=env.observation_spaces, action_spaces=env.action_spaces, device=env.device) # [end-ippo-jax] # [start-mappo-torch] # import the agent and its default configuration from skrl.multi_agents.torch.mappo import MAPPO, MAPPO_DEFAULT_CONFIG # instantiate the agent's models models = {} for agent_name in env.possible_agents: models[agent_name] = {} models[agent_name]["policy"] = ... models[agent_name]["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = MAPPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memories <memories>) agent = MAPPO(possible_agents=env.possible_agents, models=models, memory=memories, # only required during training cfg=cfg_agent, observation_spaces=env.observation_spaces, action_spaces=env.action_spaces, device=env.device, shared_observation_spaces=env.shared_observation_spaces) # [end-mappo-torch] # [start-mappo-jax] # import the agent and its default configuration from skrl.multi_agents.jax.mappo import MAPPO, MAPPO_DEFAULT_CONFIG # instantiate the agent's models models = {} for agent_name in env.possible_agents: models[agent_name] = {} models[agent_name]["policy"] = ... models[agent_name]["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = MAPPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memories <memories>) agent = MAPPO(possible_agents=env.possible_agents, models=models, memory=memories, # only required during training cfg=cfg_agent, observation_spaces=env.observation_spaces, action_spaces=env.action_spaces, device=env.device, shared_observation_spaces=env.shared_observation_spaces) # [end-mappo-jax]
Toni-SM/skrl/docs/source/snippets/categorical_model.py
# [start-definition-torch] class CategoricalModel(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) # [end-definition-torch] # [start-definition-jax] class CategoricalModel(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) CategoricalMixin.__init__(self, unnormalized_log_prob) # [end-definition-jax] # ============================================================================= # [start-mlp-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, CategoricalMixin # define the model class MLP(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.net = nn.Sequential(nn.Linear(self.num_observations, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # [end-mlp-sequential-torch] # [start-mlp-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, CategoricalMixin # define the model class MLP(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.fc1 = nn.Linear(self.num_observations, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def compute(self, inputs, role): x = self.fc1(inputs["states"]) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # [end-mlp-functional-torch] # [start-mlp-setup-jax] import flax.linen as nn from skrl.models.jax import Model, CategoricalMixin # define the model class MLP(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) CategoricalMixin.__init__(self, unnormalized_log_prob) def setup(self): self.fc1 = nn.Dense(64) self.fc2 = nn.Dense(32) self.fc3 = nn.Dense(self.num_actions) def __call__(self, inputs, role): x = self.fc1(inputs["states"]) x = nn.relu(x) x = self.fc2(x) x = nn.relu(x) x = self.fc3(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-setup-jax] # [start-mlp-compact-jax] import flax.linen as nn from skrl.models.jax import Model, CategoricalMixin # define the model class MLP(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) CategoricalMixin.__init__(self, unnormalized_log_prob) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.Dense(64)(inputs["states"]) x = nn.relu(x) x = nn.Dense(32)(x) x = nn.relu(x) x = nn.Dense(self.num_actions)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-compact-jax] # ============================================================================= # [start-cnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, CategoricalMixin # define the model class CNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.net = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 16), nn.Tanh(), nn.Linear(16, 64), nn.Tanh(), nn.Linear(64, 32), nn.Tanh(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) return self.net(inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2)), {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # [end-cnn-sequential-torch] # [start-cnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, CategoricalMixin # define the model class CNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.conv1 = nn.Conv2d(3, 32, kernel_size=8, stride=4) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 16) self.fc3 = nn.Linear(16, 64) self.fc4 = nn.Linear(64, 32) self.fc5 = nn.Linear(32, self.num_actions) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2) x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = torch.flatten(x, start_dim=1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.tanh(x) x = self.fc3(x) x = torch.tanh(x) x = self.fc4(x) x = torch.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # [end-cnn-functional-torch] # [start-cnn-setup-jax] import flax.linen as nn from skrl.models.jax import Model, CategoricalMixin # define the model class CNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) CategoricalMixin.__init__(self, unnormalized_log_prob) def setup(self): self.conv1 = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID") self.conv2 = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID") self.conv3 = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID") self.fc1 = nn.Dense(512) self.fc2 = nn.Dense(16) self.fc3 = nn.Dense(64) self.fc4 = nn.Dense(32) self.fc5 = nn.Dense(self.num_actions) def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = self.conv1(x) x = nn.relu(x) x = self.conv2(x) x = nn.relu(x) x = self.conv3(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = self.fc1(x) x = nn.relu(x) x = self.fc2(x) x = nn.tanh(x) x = self.fc3(x) x = nn.tanh(x) x = self.fc4(x) x = nn.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-setup-jax] # [start-cnn-compact-jax] import flax.linen as nn from skrl.models.jax import Model, CategoricalMixin # define the model class CNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) CategoricalMixin.__init__(self, unnormalized_log_prob) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID")(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = nn.Dense(512)(x) x = nn.relu(x) x = nn.Dense(16)(x) x = nn.tanh(x) x = nn.Dense(64)(x) x = nn.tanh(x) x = nn.Dense(32)(x) x = nn.tanh(x) x = nn.Dense(self.num_actions)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True) # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-compact-jax] # ============================================================================= # [start-rnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, CategoricalMixin # define the model class RNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-sequential-torch] # [start-rnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, CategoricalMixin # define the model class RNN(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-functional-torch] # ============================================================================= # [start-gru-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, CategoricalMixin # define the model class GRU(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-sequential-torch] # [start-gru-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, CategoricalMixin # define the model class GRU(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-functional-torch] # ============================================================================= # [start-lstm-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, CategoricalMixin # define the model class LSTM(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-sequential-torch] # [start-lstm-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, CategoricalMixin # define the model class LSTM(CategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) CategoricalMixin.__init__(self, unnormalized_log_prob) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-functional-torch]
Toni-SM/skrl/docs/source/snippets/agents_basic_usage.py
# [torch-start-a2c] # import the agent and its default configuration from skrl.agents.torch.a2c import A2C, A2C_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = A2C_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = A2C(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-a2c] # [jax-start-a2c] # import the agent and its default configuration from skrl.agents.jax.a2c import A2C, A2C_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = A2C_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = A2C(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-a2c] # [torch-start-a2c-rnn] # import the agent and its default configuration from skrl.agents.torch.a2c import A2C_RNN as A2C, A2C_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = A2C_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = A2C(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-a2c-rnn] # ============================================================================= # [torch-start-amp] # import the agent and its default configuration from skrl.agents.torch.amp import AMP, AMP_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training models["discriminator"] = ... # only required during training # adjust some configuration if necessary cfg_agent = AMP_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) # (assuming defined memories for motion <motion_dataset> and <reply_buffer>) # (assuming defined methods to collect motion <collect_reference_motions> and <collect_observation>) agent = AMP(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device, amp_observation_space=env.amp_observation_space, motion_dataset=motion_dataset, reply_buffer=reply_buffer, collect_reference_motions=collect_reference_motions, collect_observation=collect_observation) # [torch-end-amp] # ============================================================================= # [torch-start-cem] # import the agent and its default configuration from skrl.agents.torch.cem import CEM, CEM_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... # adjust some configuration if necessary cfg_agent = CEM_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = CEM(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-cem] # [jax-start-cem] # import the agent and its default configuration from skrl.agents.jax.cem import CEM, CEM_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... # adjust some configuration if necessary cfg_agent = CEM_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = CEM(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-cem] # ============================================================================= # [torch-start-ddpg] # import the agent and its default configuration from skrl.agents.torch.ddpg import DDPG, DDPG_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic"] = ... # only required during training models["target_critic"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DDPG_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DDPG(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-ddpg] # [jax-start-ddpg] # import the agent and its default configuration from skrl.agents.jax.ddpg import DDPG, DDPG_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic"] = ... # only required during training models["target_critic"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DDPG_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DDPG(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-ddpg] # [torch-start-ddpg-rnn] # import the agent and its default configuration from skrl.agents.torch.ddpg import DDPG_RNN as DDPG, DDPG_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic"] = ... # only required during training models["target_critic"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DDPG_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DDPG(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-ddpg-rnn] # ============================================================================= # [torch-start-ddqn] # import the agent and its default configuration from skrl.agents.torch.dqn import DDQN, DDQN_DEFAULT_CONFIG # instantiate the agent's models models = {} models["q_network"] = ... models["target_q_network"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DDQN_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DDQN(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-ddqn] # [jax-start-ddqn] # import the agent and its default configuration from skrl.agents.jax.dqn import DDQN, DDQN_DEFAULT_CONFIG # instantiate the agent's models models = {} models["q_network"] = ... models["target_q_network"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DDQN_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DDQN(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-ddqn] # ============================================================================= # [torch-start-dqn] # import the agent and its default configuration from skrl.agents.torch.dqn import DQN, DQN_DEFAULT_CONFIG # instantiate the agent's models models = {} models["q_network"] = ... models["target_q_network"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DQN_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DQN(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-dqn] # [jax-start-dqn] # import the agent and its default configuration from skrl.agents.jax.dqn import DQN, DQN_DEFAULT_CONFIG # instantiate the agent's models models = {} models["q_network"] = ... models["target_q_network"] = ... # only required during training # adjust some configuration if necessary cfg_agent = DQN_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = DQN(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-dqn] # ============================================================================= # [torch-start-ppo] # import the agent and its default configuration from skrl.agents.torch.ppo import PPO, PPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = PPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = PPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-ppo] # [jax-start-ppo] # import the agent and its default configuration from skrl.agents.jax.ppo import PPO, PPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = PPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = PPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-ppo] # [torch-start-ppo-rnn] # import the agent and its default configuration from skrl.agents.torch.ppo import PPO_RNN as PPO, PPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = PPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = PPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-ppo-rnn] # ============================================================================= # [torch-start-q-learning] # import the agent and its default configuration from skrl.agents.torch.q_learning import Q_LEARNING, Q_LEARNING_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... # adjust some configuration if necessary cfg_agent = Q_LEARNING_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env>) agent = Q_LEARNING(models=models, memory=None, cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-q-learning] # ============================================================================= # [torch-start-rpo-with-rpo] class Policy(GaussianMixin, Model): ... def compute(self, inputs, role): # compute the mean actions using the neural network mean_actions = self.net(inputs["states"]) # perturb the mean actions by adding a randomized uniform sample rpo_alpha = inputs["alpha"] perturbation = torch.zeros_like(mean_actions).uniform_(-rpo_alpha, rpo_alpha) mean_actions += perturbation return mean_actions, self.log_std_parameter, {} # [torch-end-rpo-with-rpo] # [jax-start-rpo-with-rpo] class Policy(GaussianMixin, Model): ... def __call__(self, inputs, role): # compute the mean actions using the neural network mean_actions = ... log_std = ... # perturb the mean actions by adding a randomized uniform sample rpo_alpha = inputs["alpha"] perturbation = jax.random.uniform(inputs["key"], mean_actions.shape, minval=-rpo_alpha, maxval=rpo_alpha) mean_actions += perturbation return mean_actions, log_std, {} # [jax-end-rpo-with-rpo] # [torch-start-rpo-without-rpo] class Policy(GaussianMixin, Model): ... def compute(self, inputs, role): # compute the mean actions using the neural network mean_actions = self.net(inputs["states"]) # perturb the mean actions by adding a randomized uniform sample rpo_alpha = 0.5 perturbation = torch.zeros_like(mean_actions).uniform_(-rpo_alpha, rpo_alpha) mean_actions += perturbation return mean_actions, self.log_std_parameter, {} # [torch-end-rpo-without-rpo] # [jax-start-rpo-without-rpo] class Policy(GaussianMixin, Model): ... def __call__(self, inputs, role): # compute the mean actions using the neural network mean_actions = ... log_std = ... # perturb the mean actions by adding a randomized uniform sample rpo_alpha = 0.5 perturbation = jax.random.uniform(inputs["key"], mean_actions.shape, minval=-rpo_alpha, maxval=rpo_alpha) mean_actions += perturbation return mean_actions, log_std, {} # [jax-end-rpo-without-rpo] # [torch-start-rpo] # import the agent and its default configuration from skrl.agents.torch.rpo import RPO, RPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = RPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = RPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-rpo] # [jax-start-rpo] # import the agent and its default configuration from skrl.agents.jax.rpo import RPO, RPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = RPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = RPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-rpo] # [torch-start-rpo-rnn] # import the agent and its default configuration from skrl.agents.torch.rpo import RPO_RNN as RPO, RPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = RPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = RPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-rpo-rnn] # ============================================================================= # [torch-start-sac] # import the agent and its default configuration from skrl.agents.torch.sac import SAC, SAC_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = SAC_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = SAC(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-sac] # [jax-start-sac] # import the agent and its default configuration from skrl.agents.jax.sac import SAC, SAC_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = SAC_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = SAC(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-sac] # [torch-start-sac-rnn] # import the agent and its default configuration from skrl.agents.torch.sac import SAC_RNN as SAC, SAC_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = SAC_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = SAC(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-sac-rnn] # ============================================================================= # [torch-start-sarsa] # import the agent and its default configuration from skrl.agents.torch.sarsa import SARSA, SARSA_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... # adjust some configuration if necessary cfg_agent = SARSA_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env>) agent = SARSA(models=models, memory=None, cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-sarsa] # ============================================================================= # [torch-start-td3] # import the agent and its default configuration from skrl.agents.torch.td3 import TD3, TD3_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = TD3_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = TD3(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-td3] # [jax-start-td3] # import the agent and its default configuration from skrl.agents.jax.td3 import TD3, TD3_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = TD3_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = TD3(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [jax-end-td3] # [torch-start-td3-rnn] # import the agent and its default configuration from skrl.agents.torch.td3 import TD3_RNN as TD3, TD3_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["target_policy"] = ... # only required during training models["critic_1"] = ... # only required during training models["critic_2"] = ... # only required during training models["target_critic_1"] = ... # only required during training models["target_critic_2"] = ... # only required during training # adjust some configuration if necessary cfg_agent = TD3_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = TD3(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-td3-rnn] # ============================================================================= # [torch-start-trpo] # import the agent and its default configuration from skrl.agents.torch.trpo import TRPO, TRPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = TRPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = TRPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-trpo] # [torch-start-trpo-rnn] # import the agent and its default configuration from skrl.agents.torch.trpo import TRPO_RNN as TRPO, TRPO_DEFAULT_CONFIG # instantiate the agent's models models = {} models["policy"] = ... models["value"] = ... # only required during training # adjust some configuration if necessary cfg_agent = TRPO_DEFAULT_CONFIG.copy() cfg_agent["<KEY>"] = ... # instantiate the agent # (assuming a defined environment <env> and memory <memory>) agent = TRPO(models=models, memory=memory, # only required during training cfg=cfg_agent, observation_space=env.observation_space, action_space=env.action_space, device=env.device) # [torch-end-trpo-rnn]
Toni-SM/skrl/docs/source/snippets/memories.py
# [start-base-class-torch] from typing import Union, Tuple, List import torch from skrl.memories.torch import Memory class CustomMemory(Memory): def __init__(self, memory_size: int, num_envs: int = 1, device: Union[str, torch.device] = "cuda:0") -> None: """Custom memory :param memory_size: Maximum number of elements in the first dimension of each internal storage :type memory_size: int :param num_envs: Number of parallel environments (default: 1) :type num_envs: int, optional :param device: Device on which a torch tensor is or will be allocated (default: "cuda:0") :type device: str or torch.device, optional """ super().__init__(memory_size, num_envs, device) def sample(self, names: Tuple[str], batch_size: int, mini_batches: int = 1) -> List[List[torch.Tensor]]: """Sample a batch from memory :param names: Tensors names from which to obtain the samples :type names: tuple or list of strings :param batch_size: Number of element to sample :type batch_size: int :param mini_batches: Number of mini-batches to sample (default: 1) :type mini_batches: int, optional :return: Sampled data from tensors sorted according to their position in the list of names. The sampled tensors will have the following shape: (batch size, data size) :rtype: list of torch.Tensor list """ # ================================ # - sample a batch from memory. # It is possible to generate only the sampling indexes and call self.sample_by_index(...) # ================================ # [end-base-class-torch] # [start-base-class-jax] from typing import Optional, Union, Tuple, List import jaxlib import jax.numpy as jnp from skrl.memories.jax import Memory class CustomMemory(Memory): def __init__(self, memory_size: int, num_envs: int = 1, device: Optional[jaxlib.xla_extension.Device] = None) -> None: """Custom memory :param memory_size: Maximum number of elements in the first dimension of each internal storage :type memory_size: int :param num_envs: Number of parallel environments (default: 1) :type num_envs: int, optional :param device: Device on which an array is or will be allocated (default: None) :type device: jaxlib.xla_extension.Device, optional """ super().__init__(memory_size, num_envs, device) def sample(self, names: Tuple[str], batch_size: int, mini_batches: int = 1) -> List[List[jnp.ndarray]]: """Sample a batch from memory :param names: Tensors names from which to obtain the samples :type names: tuple or list of strings :param batch_size: Number of element to sample :type batch_size: int :param mini_batches: Number of mini-batches to sample (default: 1) :type mini_batches: int, optional :return: Sampled data from tensors sorted according to their position in the list of names. The sampled tensors will have the following shape: (batch size, data size) :rtype: list of jnp.ndarray list """ # ================================ # - sample a batch from memory. # It is possible to generate only the sampling indexes and call self.sample_by_index(...) # ================================ # [end-base-class-jax] # ============================================================================= # [start-random-torch] # import the memory class from skrl.memories.torch import RandomMemory # instantiate the memory (assumes there is a wrapped environment: env) memory = RandomMemory(memory_size=1000, num_envs=env.num_envs, device=env.device) # [end-random-torch] # [start-random-jax] # import the memory class from skrl.memories.jax import RandomMemory # instantiate the memory (assumes there is a wrapped environment: env) memory = RandomMemory(memory_size=1000, num_envs=env.num_envs, device=env.device) # [end-random-jax]
Toni-SM/skrl/docs/source/snippets/data.py
# [start-tensorboard-configuration] DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } # [end-tensorboard-configuration] # [start-wandb-configuration] DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } # [end-wandb-configuration] # [start-checkpoint-configuration] DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } # [end-checkpoint-configuration] # [start-checkpoint-load-agent-torch] from skrl.agents.torch.ppo import PPO # Instantiate the agent agent = PPO(models=models, # models dict memory=memory, # memory instance, or None if not required cfg=agent_cfg, # configuration dict (preprocessors, learning rate schedulers, etc.) observation_space=env.observation_space, action_space=env.action_space, device=env.device) # Load the checkpoint agent.load("./runs/22-09-29_22-48-49-816281_DDPG/checkpoints/agent_1200.pt") # [end-checkpoint-load-agent-torch] # [start-checkpoint-load-agent-jax] from skrl.agents.jax.ppo import PPO # Instantiate the agent agent = PPO(models=models, # models dict memory=memory, # memory instance, or None if not required cfg=agent_cfg, # configuration dict (preprocessors, learning rate schedulers, etc.) observation_space=env.observation_space, action_space=env.action_space, device=env.device) # Load the checkpoint agent.load("./runs/22-09-29_22-48-49-816281_DDPG/checkpoints/agent_1200.pickle") # [end-checkpoint-load-agent-jax] # [start-checkpoint-load-model-torch] from skrl.models.torch import Model, DeterministicMixin # Define the model class Policy(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # Instantiate the model policy = Policy(env.observation_space, env.action_space, env.device, clip_actions=True) # Load the checkpoint policy.load("./runs/22-09-29_22-48-49-816281_DDPG/checkpoints/2500_policy.pt") # [end-checkpoint-load-model-torch] # [start-checkpoint-load-model-jax] from skrl.models.jax import Model, DeterministicMixin # Define the model class Policy(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.Dense(32)(inputs["states"]) x = nn.relu(x) x = nn.Dense(32)(x) x = nn.relu(x) x = nn.Dense(self.num_actions)(x) return x, {} # Instantiate the model policy = Policy(env.observation_space, env.action_space, env.device, clip_actions=True) # Load the checkpoint policy.load("./runs/22-09-29_22-48-49-816281_DDPG/checkpoints/2500_policy.pickle") # [end-checkpoint-load-model-jax] # [start-checkpoint-load-huggingface-torch] from skrl.agents.torch.ppo import PPO from skrl.utils.huggingface import download_model_from_huggingface # Instantiate the agent agent = PPO(models=models, # models dict memory=memory, # memory instance, or None if not required cfg=agent_cfg, # configuration dict (preprocessors, learning rate schedulers, etc.) observation_space=env.observation_space, action_space=env.action_space, device=env.device) # Load the checkpoint from Hugging Face Hub path = download_model_from_huggingface("skrl/OmniIsaacGymEnvs-Cartpole-PPO", filename="agent.pt") agent.load(path) # [end-checkpoint-load-huggingface-torch] # [start-checkpoint-load-huggingface-jax] from skrl.agents.jax.ppo import PPO from skrl.utils.huggingface import download_model_from_huggingface # Instantiate the agent agent = PPO(models=models, # models dict memory=memory, # memory instance, or None if not required cfg=agent_cfg, # configuration dict (preprocessors, learning rate schedulers, etc.) observation_space=env.observation_space, action_space=env.action_space, device=env.device) # Load the checkpoint from Hugging Face Hub path = download_model_from_huggingface("skrl/OmniIsaacGymEnvs-Cartpole-PPO", filename="agent.pickle") agent.load(path) # [end-checkpoint-load-huggingface-jax] # [start-checkpoint-migrate-agent-torch] from skrl.agents.torch.ppo import PPO # Instantiate the agent agent = PPO(models=models, # models dict memory=memory, # memory instance, or None if not required cfg=agent_cfg, # configuration dict (preprocessors, learning rate schedulers, etc.) observation_space=env.observation_space, action_space=env.action_space, device=env.device) # Migrate a rl_games checkpoint agent.migrate(path="./runs/Cartpole/nn/Cartpole.pth") # [end-checkpoint-migrate-agent-torch] # [start-checkpoint-migrate-model-torch] from skrl.models.torch import Model, DeterministicMixin # Define the model class Policy(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # Instantiate the model policy = Policy(env.observation_space, env.action_space, env.device, clip_actions=True) # Migrate a rl_games checkpoint (only the model) policy.migrate(path="./runs/Cartpole/nn/Cartpole.pth") # or migrate a stable-baselines3 checkpoint policy.migrate(path="./ddpg_pendulum.zip") # or migrate a checkpoint of any other library state_dict = torch.load("./external_model.pt") policy.migrate(state_dict=state_dict) # [end-checkpoint-migrate-model-torch] # [start-export-memory-torch] from skrl.memories.torch import RandomMemory # Instantiate a memory and enable its export memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device, export=True, export_format="pt", export_directory="./memories") # [end-export-memory-torch] # [start-export-memory-jax] from skrl.memories.jax import RandomMemory # Instantiate a memory and enable its export memory = RandomMemory(memory_size=16, num_envs=env.num_envs, device=device, export=True, export_format="np", export_directory="./memories") # [end-export-memory-jax]
Toni-SM/skrl/docs/source/snippets/isaacgym_utils.py
import math from isaacgym import gymapi from skrl.utils import isaacgym_utils # create a web viewer instance web_viewer = isaacgym_utils.WebViewer() # configure and create simulation sim_params = gymapi.SimParams() sim_params.up_axis = gymapi.UP_AXIS_Z sim_params.gravity = gymapi.Vec3(0.0, 0.0, -9.8) sim_params.physx.solver_type = 1 sim_params.physx.num_position_iterations = 4 sim_params.physx.num_velocity_iterations = 1 sim_params.physx.use_gpu = True sim_params.use_gpu_pipeline = True gym = gymapi.acquire_gym() sim = gym.create_sim(compute_device=0, graphics_device=0, type=gymapi.SIM_PHYSX, params=sim_params) # setup num_envs and env's grid num_envs = 1 spacing = 2.0 env_lower = gymapi.Vec3(-spacing, -spacing, 0.0) env_upper = gymapi.Vec3(spacing, 0.0, spacing) # add ground plane plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) gym.add_ground(sim, plane_params) envs = [] cameras = [] for i in range(num_envs): # create env env = gym.create_env(sim, env_lower, env_upper, int(math.sqrt(num_envs))) # add sphere pose = gymapi.Transform() pose.p, pose.r = gymapi.Vec3(0.0, 0.0, 1.0), gymapi.Quat(0.0, 0.0, 0.0, 1.0) gym.create_actor(env, gym.create_sphere(sim, 0.2, None), pose, "sphere", i, 0) # add camera cam_props = gymapi.CameraProperties() cam_props.width, cam_props.height = 300, 300 cam_handle = gym.create_camera_sensor(env, cam_props) gym.set_camera_location(cam_handle, env, gymapi.Vec3(1, 1, 1), gymapi.Vec3(0, 0, 0)) envs.append(env) cameras.append(cam_handle) # setup web viewer web_viewer.setup(gym, sim, envs, cameras) gym.prepare_sim(sim) for i in range(100000): gym.simulate(sim) # render the scene web_viewer.render(fetch_results=True, step_graphics=True, render_all_camera_sensors=True, wait_for_page_load=True)
Toni-SM/skrl/docs/source/snippets/deterministic_model.py
# [start-definition-torch] class DeterministicModel(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) # [end-definition-torch] # [start-definition-jax] class DeterministicModel(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) # [end-definition-jax] # ============================================================================= # [start-mlp-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, DeterministicMixin # define the model class MLP(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.net = nn.Sequential(nn.Linear(self.num_observations + self.num_actions, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 1)) def compute(self, inputs, role): return self.net(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1)), {} # instantiate the model (assumes there is a wrapped environment: env) critic = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # [end-mlp-sequential-torch] # [start-mlp-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, DeterministicMixin # define the model class MLP(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.fc1 = nn.Linear(self.num_observations + self.num_actions, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) def compute(self, inputs, role): x = self.fc1(torch.cat([inputs["states"], inputs["taken_actions"]], dim=1)) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.fc3(x), {} # instantiate the model (assumes there is a wrapped environment: env) critic = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # [end-mlp-functional-torch] # [start-mlp-setup-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, DeterministicMixin # define the model class MLP(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def setup(self): self.fc1 = nn.Dense(64) self.fc2 = nn.Dense(32) self.fc3 = nn.Dense(1) def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = self.fc1(x) x = nn.relu(x) x = self.fc2(x) x = nn.relu(x) x = self.fc3(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) critic = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # initialize model's state dict critic.init_state_dict("critic") # [end-mlp-setup-jax] # [start-mlp-compact-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, DeterministicMixin # define the model class MLP(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = jnp.concatenate([inputs["states"], inputs["taken_actions"]], axis=-1) x = nn.relu(nn.Dense(64)(x)) x = nn.relu(nn.Dense(32)(x)) x = nn.Dense(1)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) critic = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # initialize model's state dict critic.init_state_dict("critic") # [end-mlp-compact-jax] # ============================================================================= # [start-cnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, DeterministicMixin # define the model class CNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.features_extractor = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 16), nn.Tanh()) self.net = nn.Sequential(nn.Linear(16 + self.num_actions, 64), nn.Tanh(), nn.Linear(64, 32), nn.Tanh(), nn.Linear(32, 1)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = self.features_extractor(inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2)) return self.net(torch.cat([x, inputs["taken_actions"]], dim=1)), {} # instantiate the model (assumes there is a wrapped environment: env) critic = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # [end-cnn-sequential-torch] # [start-cnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, DeterministicMixin # define the model class CNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.conv1 = nn.Conv2d(3, 32, kernel_size=8, stride=4) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 16) self.fc3 = nn.Linear(16 + self.num_actions, 64) self.fc4 = nn.Linear(64, 32) self.fc5 = nn.Linear(32, 1) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2) x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = torch.flatten(x, start_dim=1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.tanh(x) x = self.fc3(torch.cat([x, inputs["taken_actions"]], dim=1)) x = torch.tanh(x) x = self.fc4(x) x = torch.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) critic = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # [end-cnn-functional-torch] # [start-cnn-setup-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, DeterministicMixin # define the model class CNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) def setup(self): self.conv1 = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID") self.conv2 = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID") self.conv3 = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID") self.fc1 = nn.Dense(512) self.fc2 = nn.Dense(16) self.fc3 = nn.Dense(64) self.fc4 = nn.Dense(32) self.fc5 = nn.Dense(1) def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = self.conv1(x) x = nn.relu(x) x = self.conv2(x) x = nn.relu(x) x = self.conv3(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = self.fc1(x) x = nn.relu(x) x = self.fc2(x) x = nn.tanh(x) x = jnp.concatenate([x, inputs["taken_actions"]], axis=-1) x = self.fc3(x) x = nn.tanh(x) x = self.fc4(x) x = nn.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) critic = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # initialize model's state dict critic.init_state_dict("critic") # [end-cnn-setup-jax] # [start-cnn-compact-jax] import jax.numpy as jnp import flax.linen as nn from skrl.models.jax import Model, DeterministicMixin # define the model class CNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device=None, clip_actions=False, **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) DeterministicMixin.__init__(self, clip_actions) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID")(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = nn.Dense(512)(x) x = nn.relu(x) x = nn.Dense(16)(x) x = nn.tanh(x) x = jnp.concatenate([x, inputs["taken_actions"]], axis=-1) x = nn.Dense(64)(x) x = nn.tanh(x) x = nn.Dense(32)(x) x = nn.tanh(x) x = nn.Dense(1)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) critic = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False) # initialize model's state dict critic.init_state_dict("critic") # [end-cnn-compact-jax] # ============================================================================= # [start-rnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, DeterministicMixin # define the model class RNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size + self.num_actions, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 1)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) critic = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-sequential-torch] # [start-rnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, DeterministicMixin # define the model class RNN(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size + self.num_actions, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.fc3(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) critic = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-functional-torch] # ============================================================================= # [start-gru-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, DeterministicMixin # define the model class GRU(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size + self.num_actions, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 1)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) critic = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-sequential-torch] # [start-gru-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, DeterministicMixin # define the model class GRU(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size + self.num_actions, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.fc3(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) critic = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-functional-torch] # ============================================================================= # [start-lstm-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, DeterministicMixin # define the model class LSTM(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size + self.num_actions, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 1)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) critic = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-sequential-torch] # [start-lstm-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, DeterministicMixin # define the model class LSTM(DeterministicMixin, Model): def __init__(self, observation_space, action_space, device, clip_actions=False, num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) DeterministicMixin.__init__(self, clip_actions) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size + self.num_actions, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # critic models are only used during training rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence sequence_index = 1 if role == "target_critic" else 0 # target networks act on the next state of the environment hidden_states = hidden_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,sequence_index,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(torch.cat([rnn_output, inputs["taken_actions"]], dim=1)) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.fc3(x), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) critic = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, clip_actions=False, num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-functional-torch]
Toni-SM/skrl/docs/source/snippets/loaders.py
# [start-omniverse-isaac-gym-envs-parameters-torch] # import the environment loader from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(task_name="Cartpole") # [end-omniverse-isaac-gym-envs-parameters-torch] # [start-omniverse-isaac-gym-envs-parameters-jax] # import the environment loader from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(task_name="Cartpole") # [end-omniverse-isaac-gym-envs-parameters-jax] # [start-omniverse-isaac-gym-envs-cli-torch] # import the environment loader from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env() # [end-omniverse-isaac-gym-envs-cli-torch] # [start-omniverse-isaac-gym-envs-cli-jax] # import the environment loader from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env() # [end-omniverse-isaac-gym-envs-cli-jax] # [start-omniverse-isaac-gym-envs-multi-threaded-parameters-torch] import threading # import the environment loader from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(task_name="Cartpole", multi_threaded=True, timeout=30) # ... # start training in a separate thread threading.Thread(target=trainer.train).start() # run the simulation in the main thread env.run() # [end-omniverse-isaac-gym-envs-multi-threaded-parameters-torch] # [start-omniverse-isaac-gym-envs-multi-threaded-parameters-jax] import threading # import the environment loader from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(task_name="Cartpole", multi_threaded=True, timeout=30) # ... # start training in a separate thread threading.Thread(target=trainer.train).start() # run the simulation in the main thread env.run() # [end-omniverse-isaac-gym-envs-multi-threaded-parameters-jax] # [start-omniverse-isaac-gym-envs-multi-threaded-cli-torch] import threading # import the environment loader from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(multi_threaded=True, timeout=30) # ... # start training in a separate thread threading.Thread(target=trainer.train).start() # run the simulation in the main thread env.run() # [end-omniverse-isaac-gym-envs-multi-threaded-cli-torch] # [start-omniverse-isaac-gym-envs-multi-threaded-cli-jax] import threading # import the environment loader from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load environment env = load_omniverse_isaacgym_env(multi_threaded=True, timeout=30) # ... # start training in a separate thread threading.Thread(target=trainer.train).start() # run the simulation in the main thread env.run() # [end-omniverse-isaac-gym-envs-multi-threaded-cli-jax] # ============================================================================= # [start-isaac-orbit-envs-parameters-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaac_orbit_env # load environment env = load_isaac_orbit_env(task_name="Isaac-Cartpole-v0") # [end-isaac-orbit-envs-parameters-torch] # [start-isaac-orbit-envs-parameters-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaac_orbit_env # load environment env = load_isaac_orbit_env(task_name="Isaac-Cartpole-v0") # [end-isaac-orbit-envs-parameters-jax] # [start-isaac-orbit-envs-cli-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaac_orbit_env # load environment env = load_isaac_orbit_env() # [end-isaac-orbit-envs-cli-torch] # [start-isaac-orbit-envs-cli-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaac_orbit_env # load environment env = load_isaac_orbit_env() # [end-isaac-orbit-envs-cli-jax] # ============================================================================= # [start-isaac-gym-envs-preview-4-api] import isaacgymenvs env = isaacgymenvs.make(seed=0, task="Cartpole", num_envs=2000, sim_device="cuda:0", rl_device="cuda:0", graphics_device_id=0, headless=False) # [end-isaac-gym-envs-preview-4-api] # [start-isaac-gym-envs-preview-4-parameters-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview4 # load environment env = load_isaacgym_env_preview4(task_name="Cartpole") # [end-isaac-gym-envs-preview-4-parameters-torch] # [start-isaac-gym-envs-preview-4-parameters-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview4 # load environment env = load_isaacgym_env_preview4(task_name="Cartpole") # [end-isaac-gym-envs-preview-4-parameters-jax] # [start-isaac-gym-envs-preview-4-cli-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview4 # load environment env = load_isaacgym_env_preview4() # [end-isaac-gym-envs-preview-4-cli-torch] # [start-isaac-gym-envs-preview-4-cli-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview4 # load environment env = load_isaacgym_env_preview4() # [end-isaac-gym-envs-preview-4-cli-jax] # [start-isaac-gym-envs-preview-3-parameters-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview3 # load environment env = load_isaacgym_env_preview3(task_name="Cartpole") # [end-isaac-gym-envs-preview-3-parameters-torch] # [start-isaac-gym-envs-preview-3-parameters-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview3 # load environment env = load_isaacgym_env_preview3(task_name="Cartpole") # [end-isaac-gym-envs-preview-3-parameters-jax] # [start-isaac-gym-envs-preview-3-cli-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview3 # load environment env = load_isaacgym_env_preview3() # [end-isaac-gym-envs-preview-3-cli-torch] # [start-isaac-gym-envs-preview-3-cli-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview3 # load environment env = load_isaacgym_env_preview3() # [end-isaac-gym-envs-preview-3-cli-jax] # [start-isaac-gym-envs-preview-2-parameters-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview2 # load environment env = load_isaacgym_env_preview2(task_name="Cartpole") # [end-isaac-gym-envs-preview-2-parameters-torch] # [start-isaac-gym-envs-preview-2-parameters-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview2 # load environment env = load_isaacgym_env_preview2(task_name="Cartpole") # [end-isaac-gym-envs-preview-2-parameters-jax] # [start-isaac-gym-envs-preview-2-cli-torch] # import the environment loader from skrl.envs.loaders.torch import load_isaacgym_env_preview2 # load environment env = load_isaacgym_env_preview2() # [end-isaac-gym-envs-preview-2-cli-torch] # [start-isaac-gym-envs-preview-2-cli-jax] # import the environment loader from skrl.envs.loaders.jax import load_isaacgym_env_preview2 # load environment env = load_isaacgym_env_preview2() # [end-isaac-gym-envs-preview-2-cli-jax]
Toni-SM/skrl/docs/source/snippets/multicategorical_model.py
# [start-definition-torch] class MultiCategoricalModel(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum"): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) # [end-definition-torch] # [start-definition-jax] class MultiCategoricalModel(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) # [end-definition-jax] # ============================================================================= # [start-mlp-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultiCategoricalMixin # define the model class MLP(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum"): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.net = nn.Sequential(nn.Linear(self.num_observations, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): return self.net(inputs["states"]), {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # [end-mlp-sequential-torch] # [start-mlp-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultiCategoricalMixin # define the model class MLP(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum"): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.fc1 = nn.Linear(self.num_observations, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def compute(self, inputs, role): x = self.fc1(inputs["states"]) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # [end-mlp-functional-torch] # [start-mlp-setup-jax] import flax.linen as nn from skrl.models.jax import Model, MultiCategoricalMixin # define the model class MLP(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) def setup(self): self.fc1 = nn.Dense(64) self.fc2 = nn.Dense(32) self.fc3 = nn.Dense(self.num_actions) def __call__(self, inputs, role): x = self.fc1(inputs["states"]) x = nn.relu(x) x = self.fc2(x) x = nn.relu(x) x = self.fc3(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-setup-jax] # [start-mlp-compact-jax] import flax.linen as nn from skrl.models.jax import Model, MultiCategoricalMixin # define the model class MLP(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = nn.Dense(64)(inputs["states"]) x = nn.relu(x) x = nn.Dense(32)(x) x = nn.relu(x) x = nn.Dense(self.num_actions)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = MLP(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-mlp-compact-jax] # ============================================================================= # [start-cnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultiCategoricalMixin # define the model class CNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum"): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.net = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 16), nn.Tanh(), nn.Linear(16, 64), nn.Tanh(), nn.Linear(64, 32), nn.Tanh(), nn.Linear(32, self.num_actions)) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) return self.net(inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2)), {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # [end-cnn-sequential-torch] # [start-cnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultiCategoricalMixin # define the model class CNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum"): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.conv1 = nn.Conv2d(3, 32, kernel_size=8, stride=4) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 16) self.fc3 = nn.Linear(16, 64) self.fc4 = nn.Linear(64, 32) self.fc5 = nn.Linear(32, self.num_actions) def compute(self, inputs, role): # permute (samples, width * height * channels) -> (samples, channels, width, height) x = inputs["states"].view(-1, *self.observation_space.shape).permute(0, 3, 1, 2) x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) x = torch.flatten(x, start_dim=1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.tanh(x) x = self.fc3(x) x = torch.tanh(x) x = self.fc4(x) x = torch.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # [end-cnn-functional-torch] # [start-cnn-setup-jax] import flax.linen as nn from skrl.models.jax import Model, MultiCategoricalMixin # define the model class CNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) def setup(self): self.conv1 = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID") self.conv2 = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID") self.conv3 = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID") self.fc1 = nn.Dense(512) self.fc2 = nn.Dense(16) self.fc3 = nn.Dense(64) self.fc4 = nn.Dense(32) self.fc5 = nn.Dense(self.num_actions) def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = self.conv1(x) x = nn.relu(x) x = self.conv2(x) x = nn.relu(x) x = self.conv3(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = self.fc1(x) x = nn.relu(x) x = self.fc2(x) x = nn.tanh(x) x = self.fc3(x) x = nn.tanh(x) x = self.fc4(x) x = nn.tanh(x) x = self.fc5(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-setup-jax] # [start-cnn-compact-jax] import flax.linen as nn from skrl.models.jax import Model, MultiCategoricalMixin # define the model class CNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device=None, unnormalized_log_prob=True, reduction="sum", **kwargs): Model.__init__(self, observation_space, action_space, device, **kwargs) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) @nn.compact # marks the given module method allowing inlined submodules def __call__(self, inputs, role): x = inputs["states"].reshape((-1, *self.observation_space.shape)) x = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID")(x) x = nn.relu(x) x = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID")(x) x = nn.relu(x) x = x.reshape((x.shape[0], -1)) x = nn.Dense(512)(x) x = nn.relu(x) x = nn.Dense(16)(x) x = nn.tanh(x) x = nn.Dense(64)(x) x = nn.tanh(x) x = nn.Dense(32)(x) x = nn.tanh(x) x = nn.Dense(self.num_actions)(x) return x, {} # instantiate the model (assumes there is a wrapped environment: env) policy = CNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum") # initialize model's state dict policy.init_state_dict("policy") # [end-cnn-compact-jax] # ============================================================================= # [start-rnn-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultiCategoricalMixin # define the model class RNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-sequential-torch] # [start-rnn-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultiCategoricalMixin # define the model class RNN(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.rnn = nn.RNN(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.rnn(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.rnn(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = RNN(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-rnn-functional-torch] # ============================================================================= # [start-gru-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultiCategoricalMixin # define the model class GRU(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-sequential-torch] # [start-gru-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultiCategoricalMixin # define the model class GRU(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hout self.sequence_length = sequence_length self.gru = nn.GRU(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size)]}} # hidden states (D ∗ num_layers, N, Hout) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states = inputs["rnn"][0] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) # get the hidden states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, hidden_states = self.gru(rnn_input[:,i0:i1,:], hidden_states) hidden_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, hidden_states = self.gru(rnn_input, hidden_states) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [hidden_states]} # instantiate the model (assumes there is a wrapped environment: env) policy = GRU(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-gru-functional-torch] # ============================================================================= # [start-lstm-sequential-torch] import torch import torch.nn as nn from skrl.models.torch import Model, MultiCategoricalMixin # define the model class LSTM(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.net = nn.Sequential(nn.Linear(self.hidden_size, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) return self.net(rnn_output), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-sequential-torch] # [start-lstm-functional-torch] import torch import torch.nn as nn import torch.nn.functional as F from skrl.models.torch import Model, MultiCategoricalMixin # define the model class LSTM(MultiCategoricalMixin, Model): def __init__(self, observation_space, action_space, device, unnormalized_log_prob=True, reduction="sum", num_envs=1, num_layers=1, hidden_size=64, sequence_length=10): Model.__init__(self, observation_space, action_space, device) MultiCategoricalMixin.__init__(self, unnormalized_log_prob, reduction) self.num_envs = num_envs self.num_layers = num_layers self.hidden_size = hidden_size # Hcell (Hout is Hcell because proj_size = 0) self.sequence_length = sequence_length self.lstm = nn.LSTM(input_size=self.num_observations, hidden_size=self.hidden_size, num_layers=self.num_layers, batch_first=True) # batch_first -> (batch, sequence, features) self.fc1 = nn.Linear(self.hidden_size, 64) self.fc2 = nn.Linear(64, 32) self.logits = nn.Linear(32, self.num_actions) def get_specification(self): # batch size (N) is the number of envs during rollout return {"rnn": {"sequence_length": self.sequence_length, "sizes": [(self.num_layers, self.num_envs, self.hidden_size), # hidden states (D ∗ num_layers, N, Hout) (self.num_layers, self.num_envs, self.hidden_size)]}} # cell states (D ∗ num_layers, N, Hcell) def compute(self, inputs, role): states = inputs["states"] terminated = inputs.get("terminated", None) hidden_states, cell_states = inputs["rnn"][0], inputs["rnn"][1] # training if self.training: rnn_input = states.view(-1, self.sequence_length, states.shape[-1]) # (N, L, Hin): N=batch_size, L=sequence_length hidden_states = hidden_states.view(self.num_layers, -1, self.sequence_length, hidden_states.shape[-1]) # (D * num_layers, N, L, Hout) cell_states = cell_states.view(self.num_layers, -1, self.sequence_length, cell_states.shape[-1]) # (D * num_layers, N, L, Hcell) # get the hidden/cell states corresponding to the initial sequence hidden_states = hidden_states[:,:,0,:].contiguous() # (D * num_layers, N, Hout) cell_states = cell_states[:,:,0,:].contiguous() # (D * num_layers, N, Hcell) # reset the RNN state in the middle of a sequence if terminated is not None and torch.any(terminated): rnn_outputs = [] terminated = terminated.view(-1, self.sequence_length) indexes = [0] + (terminated[:,:-1].any(dim=0).nonzero(as_tuple=True)[0] + 1).tolist() + [self.sequence_length] for i in range(len(indexes) - 1): i0, i1 = indexes[i], indexes[i + 1] rnn_output, (hidden_states, cell_states) = self.lstm(rnn_input[:,i0:i1,:], (hidden_states, cell_states)) hidden_states[:, (terminated[:,i1-1]), :] = 0 cell_states[:, (terminated[:,i1-1]), :] = 0 rnn_outputs.append(rnn_output) rnn_states = (hidden_states, cell_states) rnn_output = torch.cat(rnn_outputs, dim=1) # no need to reset the RNN state in the sequence else: rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # rollout else: rnn_input = states.view(-1, 1, states.shape[-1]) # (N, L, Hin): N=num_envs, L=1 rnn_output, rnn_states = self.lstm(rnn_input, (hidden_states, cell_states)) # flatten the RNN output rnn_output = torch.flatten(rnn_output, start_dim=0, end_dim=1) # (N, L, D ∗ Hout) -> (N * L, D ∗ Hout) x = self.fc1(rnn_output) x = F.relu(x) x = self.fc2(x) x = F.relu(x) return self.logits(x), {"rnn": [rnn_states[0], rnn_states[1]]} # instantiate the model (assumes there is a wrapped environment: env) policy = LSTM(observation_space=env.observation_space, action_space=env.action_space, device=env.device, unnormalized_log_prob=True, reduction="sum", num_envs=env.num_envs, num_layers=1, hidden_size=64, sequence_length=10) # [end-lstm-functional-torch]
Toni-SM/skrl/docs/source/snippets/agent.py
# [start-agent-base-class-torch] from typing import Union, Tuple, Dict, Any, Optional import gym, gymnasium import copy import torch from skrl.memories.torch import Memory from skrl.models.torch import Model from skrl.agents.torch import Agent CUSTOM_DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } class CUSTOM(Agent): def __init__(self, models: Dict[str, Model], memory: Optional[Union[Memory, Tuple[Memory]]] = None, observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None, action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None, device: Optional[Union[str, torch.device]] = None, cfg: Optional[dict] = None) -> None: """Custom agent :param models: Models used by the agent :type models: dictionary of skrl.models.torch.Model :param memory: Memory to storage the transitions. If it is a tuple, the first element will be used for training and for the rest only the environment transitions will be added :type memory: skrl.memory.torch.Memory, list of skrl.memory.torch.Memory or None :param observation_space: Observation/state space or shape (default: None) :type observation_space: int, tuple or list of integers, gym.Space, gymnasium.Space or None, optional :param action_space: Action space or shape (default: None) :type action_space: int, tuple or list of integers, gym.Space, gymnasium.Space or None, optional :param device: Device on which a torch tensor is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or torch.device, optional :param cfg: Configuration dictionary :type cfg: dict """ _cfg = copy.deepcopy(CUSTOM_DEFAULT_CONFIG) _cfg.update(cfg if cfg is not None else {}) super().__init__(models=models, memory=memory, observation_space=observation_space, action_space=action_space, device=device, cfg=_cfg) # ======================================================================= # - get and process models from `self.models` # - populate `self.checkpoint_modules` dictionary for storing checkpoints # - parse configurations from `self.cfg` # - setup optimizers and learning rate scheduler # - set up preprocessors # ======================================================================= def init(self, trainer_cfg: Optional[Dict[str, Any]] = None) -> None: """Initialize the agent """ super().init(trainer_cfg=trainer_cfg) self.set_mode("eval") # ================================================================= # - create tensors in memory if required # - # create temporary variables needed for storage and computation # ================================================================= def act(self, states: torch.Tensor, timestep: int, timesteps: int) -> torch.Tensor: """Process the environment's states to make a decision (actions) using the main policy :param states: Environment's states :type states: torch.Tensor :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int :return: Actions :rtype: torch.Tensor """ # ====================================== # - sample random actions if required or # sample and return agent's actions # ====================================== def record_transition(self, states: torch.Tensor, actions: torch.Tensor, rewards: torch.Tensor, next_states: torch.Tensor, terminated: torch.Tensor, truncated: torch.Tensor, infos: Any, timestep: int, timesteps: int) -> None: """Record an environment transition in memory :param states: Observations/states of the environment used to make the decision :type states: torch.Tensor :param actions: Actions taken by the agent :type actions: torch.Tensor :param rewards: Instant rewards achieved by the current actions :type rewards: torch.Tensor :param next_states: Next observations/states of the environment :type next_states: torch.Tensor :param terminated: Signals to indicate that episodes have terminated :type terminated: torch.Tensor :param truncated: Signals to indicate that episodes have been truncated :type truncated: torch.Tensor :param infos: Additional information about the environment :type infos: Any type supported by the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps) # ======================================== # - record agent's specific data in memory # ======================================== def pre_interaction(self, timestep: int, timesteps: int) -> None: """Callback called before the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== def post_interaction(self, timestep: int, timesteps: int) -> None: """Callback called after the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== # call parent's method for checkpointing and TensorBoard writing super().post_interaction(timestep, timesteps) def _update(self, timestep: int, timesteps: int) -> None: """Algorithm's main update step :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # =================================================== # - implement algorithm's update step # - record tracking data using `self.track_data(...)` # =================================================== # [end-agent-base-class-torch] # [start-agent-base-class-jax] from typing import Union, Tuple, Dict, Any, Optional import gym, gymnasium import copy import jaxlib import jax.numpy as jnp from skrl.memories.jax import Memory from skrl.models.jax import Model from skrl.resources.optimizers.jax import Adam from skrl.agents.jax import Agent CUSTOM_DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } class CUSTOM(Agent): def __init__(self, models: Dict[str, Model], memory: Optional[Union[Memory, Tuple[Memory]]] = None, observation_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None, action_space: Optional[Union[int, Tuple[int], gym.Space, gymnasium.Space]] = None, device: Optional[Union[str, jaxlib.xla_extension.Device]] = None, cfg: Optional[dict] = None) -> None: """Custom agent :param models: Models used by the agent :type models: dictionary of skrl.models.jax.Model :param memory: Memory to storage the transitions. If it is a tuple, the first element will be used for training and for the rest only the environment transitions will be added :type memory: skrl.memory.jax.Memory, list of skrl.memory.jax.Memory or None :param observation_space: Observation/state space or shape (default: None) :type observation_space: int, tuple or list of integers, gym.Space, gymnasium.Space or None, optional :param action_space: Action space or shape (default: None) :type action_space: int, tuple or list of integers, gym.Space, gymnasium.Space or None, optional :param device: Device on which a jax array is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or jaxlib.xla_extension.Device, optional :param cfg: Configuration dictionary :type cfg: dict """ _cfg = CUSTOM_DEFAULT_CONFIG _cfg.update(cfg if cfg is not None else {}) super().__init__(models=models, memory=memory, observation_space=observation_space, action_space=action_space, device=device, cfg=_cfg) # ======================================================================= # - get and process models from `self.models` # - populate `self.checkpoint_modules` dictionary for storing checkpoints # - parse configurations from `self.cfg` # - setup optimizers and learning rate scheduler # - set up preprocessors # ======================================================================= def init(self, trainer_cfg: Optional[Dict[str, Any]] = None) -> None: """Initialize the agent """ super().init(trainer_cfg=trainer_cfg) self.set_mode("eval") # ================================================================= # - create tensors in memory if required # - # create temporary variables needed for storage and computation # - set up models for just-in-time compilation with XLA # ================================================================= def act(self, states: jnp.ndarray, timestep: int, timesteps: int) -> jnp.ndarray: """Process the environment's states to make a decision (actions) using the main policy :param states: Environment's states :type states: jnp.ndarray :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int :return: Actions :rtype: jnp.ndarray """ # ====================================== # - sample random actions if required or # sample and return agent's actions # ====================================== def record_transition(self, states: jnp.ndarray, actions: jnp.ndarray, rewards: jnp.ndarray, next_states: jnp.ndarray, terminated: jnp.ndarray, truncated: jnp.ndarray, infos: Any, timestep: int, timesteps: int) -> None: """Record an environment transition in memory :param states: Observations/states of the environment used to make the decision :type states: jnp.ndarray :param actions: Actions taken by the agent :type actions: jnp.ndarray :param rewards: Instant rewards achieved by the current actions :type rewards: jnp.ndarray :param next_states: Next observations/states of the environment :type next_states: jnp.ndarray :param terminated: Signals to indicate that episodes have terminated :type terminated: jnp.ndarray :param truncated: Signals to indicate that episodes have been truncated :type truncated: jnp.ndarray :param infos: Additional information about the environment :type infos: Any type supported by the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps) # ======================================== # - record agent's specific data in memory # ======================================== def pre_interaction(self, timestep: int, timesteps: int) -> None: """Callback called before the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== def post_interaction(self, timestep: int, timesteps: int) -> None: """Callback called after the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== # call parent's method for checkpointing and TensorBoard writing super().post_interaction(timestep, timesteps) def _update(self, timestep: int, timesteps: int) -> None: """Algorithm's main update step :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # =================================================== # - implement algorithm's update step # - record tracking data using `self.track_data(...)` # =================================================== # [end-agent-base-class-jax]
Toni-SM/skrl/docs/source/snippets/tabular_model.py
# [start-definition-torch] class TabularModel(TabularMixin, Model): def __init__(self, observation_space, action_space, device=None, num_envs=1): Model.__init__(self, observation_space, action_space, device) TabularMixin.__init__(self, num_envs) # [end-definition-torch] # ============================================================================= # [start-epsilon-greedy-torch] import torch from skrl.models.torch import Model, TabularMixin # define the model class EpilonGreedyPolicy(TabularMixin, Model): def __init__(self, observation_space, action_space, device, num_envs=1, epsilon=0.1): Model.__init__(self, observation_space, action_space, device) TabularMixin.__init__(self, num_envs) self.epsilon = epsilon self.q_table = torch.ones((num_envs, self.num_observations, self.num_actions), dtype=torch.float32) def compute(self, inputs, role): states = inputs["states"] actions = torch.argmax(self.q_table[torch.arange(self.num_envs).view(-1, 1), states], dim=-1, keepdim=True).view(-1,1) indexes = (torch.rand(states.shape[0], device=self.device) < self.epsilon).nonzero().view(-1) if indexes.numel(): actions[indexes] = torch.randint(self.num_actions, (indexes.numel(), 1), device=self.device) return actions, {} # instantiate the model (assumes there is a wrapped environment: env) policy = EpilonGreedyPolicy(observation_space=env.observation_space, action_space=env.action_space, device=env.device, num_envs=env.num_envs, epsilon=0.15) # [end-epsilon-greedy-torch]
Toni-SM/skrl/docs/source/snippets/multi_agent.py
# [start-multi-agent-base-class-torch] from typing import Union, Dict, Any, Optional, Sequence, Mapping import gym, gymnasium import copy import torch from skrl.memories.torch import Memory from skrl.models.torch import Model from skrl.multi_agents.torch import MultiAgent CUSTOM_DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } class CUSTOM(MultiAgent): def __init__(self, possible_agents: Sequence[str], models: Dict[str, Model], memories: Optional[Mapping[str, Memory]] = None, observation_spaces: Optional[Union[Mapping[str, int], Mapping[str, gym.Space], Mapping[str, gymnasium.Space]]] = None, action_spaces: Optional[Union[Mapping[str, int], Mapping[str, gym.Space], Mapping[str, gymnasium.Space]]] = None, device: Optional[Union[str, torch.device]] = None, cfg: Optional[dict] = None) -> None: """Custom multi-agent :param possible_agents: Name of all possible agents the environment could generate :type possible_agents: list of str :param models: Models used by the agents. External keys are environment agents' names. Internal keys are the models required by the algorithm :type models: nested dictionary of skrl.models.torch.Model :param memories: Memories to storage the transitions. :type memories: dictionary of skrl.memory.torch.Memory, optional :param observation_spaces: Observation/state spaces or shapes (default: ``None``) :type observation_spaces: dictionary of int, sequence of int, gym.Space or gymnasium.Space, optional :param action_spaces: Action spaces or shapes (default: ``None``) :type action_spaces: dictionary of int, sequence of int, gym.Space or gymnasium.Space, optional :param device: Device on which a torch tensor is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or torch.device, optional :param cfg: Configuration dictionary :type cfg: dict """ _cfg = copy.deepcopy(CUSTOM_DEFAULT_CONFIG) _cfg.update(cfg if cfg is not None else {}) super().__init__(possible_agents=possible_agents, models=models, memories=memories, observation_spaces=observation_spaces, action_spaces=action_spaces, device=device, cfg=_cfg) # ======================================================================= # - get and process models from `self.models` # - populate `self.checkpoint_modules` dictionary for storing checkpoints # - parse configurations from `self.cfg` # - setup optimizers and learning rate scheduler # - set up preprocessors # ======================================================================= def init(self, trainer_cfg: Optional[Dict[str, Any]] = None) -> None: """Initialize the agent """ super().init(trainer_cfg=trainer_cfg) self.set_mode("eval") # ================================================================= # - create tensors in memory if required # - # create temporary variables needed for storage and computation # ================================================================= def act(self, states: Mapping[str, torch.Tensor], timestep: int, timesteps: int) -> torch.Tensor: """Process the environment's states to make a decision (actions) using the main policies :param states: Environment's states :type states: dictionary of torch.Tensor :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int :return: Actions :rtype: torch.Tensor """ # ====================================== # - sample random actions if required or # sample and return agent's actions # ====================================== def record_transition(self, states: Mapping[str, torch.Tensor], actions: Mapping[str, torch.Tensor], rewards: Mapping[str, torch.Tensor], next_states: Mapping[str, torch.Tensor], terminated: Mapping[str, torch.Tensor], truncated: Mapping[str, torch.Tensor], infos: Mapping[str, Any], timestep: int, timesteps: int) -> None: """Record an environment transition in memory :param states: Observations/states of the environment used to make the decision :type states: dictionary of torch.Tensor :param actions: Actions taken by the agent :type actions: dictionary of torch.Tensor :param rewards: Instant rewards achieved by the current actions :type rewards: dictionary of torch.Tensor :param next_states: Next observations/states of the environment :type next_states: dictionary of torch.Tensor :param terminated: Signals to indicate that episodes have terminated :type terminated: dictionary of torch.Tensor :param truncated: Signals to indicate that episodes have been truncated :type truncated: dictionary of torch.Tensor :param infos: Additional information about the environment :type infos: dictionary of any supported type :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps) # ======================================== # - record agent's specific data in memory # ======================================== def pre_interaction(self, timestep: int, timesteps: int) -> None: """Callback called before the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== def post_interaction(self, timestep: int, timesteps: int) -> None: """Callback called after the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== # call parent's method for checkpointing and TensorBoard writing super().post_interaction(timestep, timesteps) def _update(self, timestep: int, timesteps: int) -> None: """Algorithm's main update step :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # =================================================== # - implement algorithm's update step # - record tracking data using `self.track_data(...)` # =================================================== # [end-multi-agent-base-class-torch] # [start-multi-agent-base-class-jax] from typing import Union, Dict, Any, Optional, Sequence, Mapping import gym, gymnasium import copy import jaxlib import jax.numpy as jnp from skrl.memories.jax import Memory from skrl.models.jax import Model from skrl.resources.optimizers.jax import Adam from skrl.multi_agents.jax import MultiAgent CUSTOM_DEFAULT_CONFIG = { # ... "experiment": { "directory": "", # experiment's parent directory "experiment_name": "", # experiment name "write_interval": 250, # TensorBoard writing interval (timesteps) "checkpoint_interval": 1000, # interval for checkpoints (timesteps) "store_separately": False, # whether to store checkpoints separately "wandb": False, # whether to use Weights & Biases "wandb_kwargs": {} # wandb kwargs (see https://docs.wandb.ai/ref/python/init) } } class CUSTOM(MultiAgent): def __init__(self, possible_agents: Sequence[str], models: Dict[str, Model], memories: Optional[Mapping[str, Memory]] = None, observation_spaces: Optional[Union[Mapping[str, int], Mapping[str, gym.Space], Mapping[str, gymnasium.Space]]] = None, action_spaces: Optional[Union[Mapping[str, int], Mapping[str, gym.Space], Mapping[str, gymnasium.Space]]] = None, device: Optional[Union[str, jaxlib.xla_extension.Device]] = None, cfg: Optional[dict] = None) -> None: """Custom multi-agent :param possible_agents: Name of all possible agents the environment could generate :type possible_agents: list of str :param models: Models used by the agents. External keys are environment agents' names. Internal keys are the models required by the algorithm :type models: nested dictionary of skrl.models.torch.Model :param memories: Memories to storage the transitions. :type memories: dictionary of skrl.memory.torch.Memory, optional :param observation_spaces: Observation/state spaces or shapes (default: ``None``) :type observation_spaces: dictionary of int, sequence of int, gym.Space or gymnasium.Space, optional :param action_spaces: Action spaces or shapes (default: ``None``) :type action_spaces: dictionary of int, sequence of int, gym.Space or gymnasium.Space, optional :param device: Device on which a jax array is or will be allocated (default: ``None``). If None, the device will be either ``"cuda:0"`` if available or ``"cpu"`` :type device: str or jaxlib.xla_extension.Device, optional :param cfg: Configuration dictionary :type cfg: dict """ _cfg = copy.deepcopy(CUSTOM_DEFAULT_CONFIG) _cfg.update(cfg if cfg is not None else {}) super().__init__(possible_agents=possible_agents, models=models, memories=memories, observation_spaces=observation_spaces, action_spaces=action_spaces, device=device, cfg=_cfg) # ======================================================================= # - get and process models from `self.models` # - populate `self.checkpoint_modules` dictionary for storing checkpoints # - parse configurations from `self.cfg` # - setup optimizers and learning rate scheduler # - set up preprocessors # ======================================================================= def init(self, trainer_cfg: Optional[Dict[str, Any]] = None) -> None: """Initialize the agent """ super().init(trainer_cfg=trainer_cfg) self.set_mode("eval") # ================================================================= # - create tensors in memory if required # - # create temporary variables needed for storage and computation # ================================================================= def act(self, states: Mapping[str, jnp.ndarray], timestep: int, timesteps: int) -> jnp.ndarray: """Process the environment's states to make a decision (actions) using the main policies :param states: Environment's states :type states: dictionary of jnp.ndarray :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int :return: Actions :rtype: jnp.ndarray """ # ====================================== # - sample random actions if required or # sample and return agent's actions # ====================================== def record_transition(self, states: Mapping[str, jnp.ndarray], actions: Mapping[str, jnp.ndarray], rewards: Mapping[str, jnp.ndarray], next_states: Mapping[str, jnp.ndarray], terminated: Mapping[str, jnp.ndarray], truncated: Mapping[str, jnp.ndarray], infos: Mapping[str, Any], timestep: int, timesteps: int) -> None: """Record an environment transition in memory :param states: Observations/states of the environment used to make the decision :type states: dictionary of jnp.ndarray :param actions: Actions taken by the agent :type actions: dictionary of jnp.ndarray :param rewards: Instant rewards achieved by the current actions :type rewards: dictionary of jnp.ndarray :param next_states: Next observations/states of the environment :type next_states: dictionary of jnp.ndarray :param terminated: Signals to indicate that episodes have terminated :type terminated: dictionary of jnp.ndarray :param truncated: Signals to indicate that episodes have been truncated :type truncated: dictionary of jnp.ndarray :param infos: Additional information about the environment :type infos: dictionary of any type supported by the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ super().record_transition(states, actions, rewards, next_states, terminated, truncated, infos, timestep, timesteps) # ======================================== # - record agent's specific data in memory # ======================================== def pre_interaction(self, timestep: int, timesteps: int) -> None: """Callback called before the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== def post_interaction(self, timestep: int, timesteps: int) -> None: """Callback called after the interaction with the environment :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # ===================================== # - call `self.update(...)` if required # ===================================== # call parent's method for checkpointing and TensorBoard writing super().post_interaction(timestep, timesteps) def _update(self, timestep: int, timesteps: int) -> None: """Algorithm's main update step :param timestep: Current timestep :type timestep: int :param timesteps: Number of timesteps :type timesteps: int """ # =================================================== # - implement algorithm's update step # - record tracking data using `self.track_data(...)` # =================================================== # [end-multi-agent-base-class-jax]
Toni-SM/skrl/docs/source/snippets/wrapping.py
# [pytorch-start-omniverse-isaacgym] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load the environment env = load_omniverse_isaacgym_env(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="omniverse-isaacgym")' # [pytorch-end-omniverse-isaacgym] # [jax-start-omniverse-isaacgym] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load the environment env = load_omniverse_isaacgym_env(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="omniverse-isaacgym")' # [jax-end-omniverse-isaacgym] # [pytorch-start-omniverse-isaacgym-mt] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_omniverse_isaacgym_env # load the multi-threaded environment env = load_omniverse_isaacgym_env(task_name="Cartpole", multi_threaded=True, timeout=30) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="omniverse-isaacgym")' # [pytorch-end-omniverse-isaacgym-mt] # [jax-start-omniverse-isaacgym-mt] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_omniverse_isaacgym_env # load the multi-threaded environment env = load_omniverse_isaacgym_env(task_name="Cartpole", multi_threaded=True, timeout=30) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="omniverse-isaacgym")' # [jax-end-omniverse-isaacgym-mt] # [pytorch-start-isaac-orbit] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_isaac_orbit_env # load the environment env = load_isaac_orbit_env(task_name="Isaac-Cartpole-v0") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaac-orbit")' # [pytorch-end-isaac-orbit] # [jax-start-isaac-orbit] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_isaac_orbit_env # load the environment env = load_isaac_orbit_env(task_name="Isaac-Cartpole-v0") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaac-orbit")' # [jax-end-isaac-orbit] # [pytorch-start-isaacgym-preview4-make] import isaacgymenvs # import the environment wrapper from skrl.envs.wrappers.torch import wrap_env # create/load the environment using the easy-to-use API from NVIDIA env = isaacgymenvs.make(seed=0, task="Cartpole", num_envs=512, sim_device="cuda:0", rl_device="cuda:0", graphics_device_id=0, headless=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview4")' # [pytorch-end-isaacgym-preview4-make] # [jax-start-isaacgym-preview4-make] import isaacgymenvs # import the environment wrapper from skrl.envs.wrappers.jax import wrap_env # create/load the environment using the easy-to-use API from NVIDIA env = isaacgymenvs.make(seed=0, task="Cartpole", num_envs=512, sim_device="cuda:0", rl_device="cuda:0", graphics_device_id=0, headless=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview4")' # [jax-end-isaacgym-preview4-make] # [pytorch-start-isaacgym-preview4] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_isaacgym_env_preview4 # load the environment env = load_isaacgym_env_preview4(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview4")' # [pytorch-end-isaacgym-preview4] # [jax-start-isaacgym-preview4] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_isaacgym_env_preview4 # load the environment env = load_isaacgym_env_preview4(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview4")' # [jax-end-isaacgym-preview4] # [pytorch-start-isaacgym-preview3] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_isaacgym_env_preview3 # load the environment env = load_isaacgym_env_preview3(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview3")' # [pytorch-end-isaacgym-preview3] # [jax-start-isaacgym-preview3] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_isaacgym_env_preview3 # load the environment env = load_isaacgym_env_preview3(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview3")' # [jax-end-isaacgym-preview3] # [pytorch-start-isaacgym-preview2] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_isaacgym_env_preview2 # load the environment env = load_isaacgym_env_preview2(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview2")' # [pytorch-end-isaacgym-preview2] # [jax-start-isaacgym-preview2] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_isaacgym_env_preview2 # load the environment env = load_isaacgym_env_preview2(task_name="Cartpole") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="isaacgym-preview2")' # [jax-end-isaacgym-preview2] # [pytorch-start-gym] # import the environment wrapper and gym from skrl.envs.wrappers.torch import wrap_env import gym # load the environment env = gym.make('Pendulum-v1') # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gym")' # [pytorch-end-gym] # [jax-start-gym] # import the environment wrapper and gym from skrl.envs.wrappers.jax import wrap_env import gym # load the environment env = gym.make('Pendulum-v1') # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gym")' # [jax-end-gym] # [pytorch-start-gym-vectorized] # import the environment wrapper and gym from skrl.envs.wrappers.torch import wrap_env import gym # load a vectorized environment env = gym.vector.make("Pendulum-v1", num_envs=10, asynchronous=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gym")' # [pytorch-end-gym-vectorized] # [jax-start-gym-vectorized] # import the environment wrapper and gym from skrl.envs.wrappers.jax import wrap_env import gym # load a vectorized environment env = gym.vector.make("Pendulum-v1", num_envs=10, asynchronous=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gym")' # [jax-end-gym-vectorized] # [pytorch-start-gymnasium] # import the environment wrapper and gymnasium from skrl.envs.wrappers.torch import wrap_env import gymnasium as gym # load the environment env = gym.make('Pendulum-v1') # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [pytorch-end-gymnasium] # [jax-start-gymnasium] # import the environment wrapper and gymnasium from skrl.envs.wrappers.jax import wrap_env import gymnasium as gym # load the environment env = gym.make('Pendulum-v1') # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [jax-end-gymnasium] # [pytorch-start-gymnasium-vectorized] # import the environment wrapper and gymnasium from skrl.envs.wrappers.torch import wrap_env import gymnasium as gym # load a vectorized environment env = gym.vector.make("Pendulum-v1", num_envs=10, asynchronous=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [pytorch-end-gymnasium-vectorized] # [jax-start-gymnasium-vectorized] # import the environment wrapper and gymnasium from skrl.envs.wrappers.jax import wrap_env import gymnasium as gym # load a vectorized environment env = gym.vector.make("Pendulum-v1", num_envs=10, asynchronous=False) # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [jax-end-gymnasium-vectorized] # [pytorch-start-shimmy] # import the environment wrapper and gymnasium from skrl.envs.wrappers.torch import wrap_env import gymnasium as gym # load the environment (API conversion) env = gym.make("ALE/Pong-v5") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [pytorch-end-shimmy] # [jax-start-shimmy] # import the environment wrapper and gymnasium from skrl.envs.wrappers.jax import wrap_env import gymnasium as gym # load the environment (API conversion) env = gym.make("ALE/Pong-v5") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="gymnasium")' # [jax-end-shimmy] # [pytorch-start-deepmind] # import the environment wrapper and the deepmind suite from skrl.envs.wrappers.torch import wrap_env from dm_control import suite # load the environment env = suite.load(domain_name="cartpole", task_name="swingup") # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="dm")' # [pytorch-end-deepmind] # [pytorch-start-robosuite] # import the environment wrapper from skrl.envs.wrappers.torch import wrap_env # import the robosuite wrapper import robosuite from robosuite.controllers import load_controller_config # load the environment controller_config = load_controller_config(default_controller="OSC_POSE") env = robosuite.make("TwoArmLift", robots=["Sawyer", "Panda"], # load a Sawyer robot and a Panda robot gripper_types="default", # use default grippers per robot arm controller_configs=controller_config, # each arm is controlled using OSC env_configuration="single-arm-opposed", # (two-arm envs only) arms face each other has_renderer=True, # on-screen rendering render_camera="frontview", # visualize the "frontview" camera has_offscreen_renderer=False, # no off-screen rendering control_freq=20, # 20 hz control for applied actions horizon=200, # each episode terminates after 200 steps use_object_obs=True, # provide object observations to agent use_camera_obs=False, # don't provide image observations to agent reward_shaping=True) # use a dense reward signal for learning # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="robosuite")' # [pytorch-end-robosuite] # [start-bidexhands-torch] # import the environment wrapper and loader from skrl.envs.wrappers.torch import wrap_env from skrl.envs.loaders.torch import load_bidexhands_env # load the environment env = load_bidexhands_env(task_name="ShadowHandOver") # wrap the environment env = wrap_env(env, wrapper="bidexhands") # [end-bidexhands-torch] # [start-bidexhands-jax] # import the environment wrapper and loader from skrl.envs.wrappers.jax import wrap_env from skrl.envs.loaders.jax import load_bidexhands_env # load the environment env = load_bidexhands_env(task_name="ShadowHandOver") # wrap the environment env = wrap_env(env, wrapper="bidexhands") # [end-bidexhands-jax] # [start-pettingzoo-torch] # import the environment wrapper from skrl.envs.wrappers.torch import wrap_env # import a PettingZoo environment from pettingzoo.sisl import multiwalker_v9 # load the environment env = multiwalker_v9.parallel_env() # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="pettingzoo")' # [end-pettingzoo-torch] # [start-pettingzoo-jax] # import the environment wrapper from skrl.envs.wrappers.jax import wrap_env # import a PettingZoo environment from pettingzoo.sisl import multiwalker_v9 # load the environment env = multiwalker_v9.parallel_env() # wrap the environment env = wrap_env(env) # or 'env = wrap_env(env, wrapper="pettingzoo")' # [end-pettingzoo-jax]
Toni-SM/skrl/docs/source/snippets/trainer.py
# [pytorch-start-base] from typing import Union, List, Optional import copy from skrl.envs.wrappers.torch import Wrapper from skrl.agents.torch import Agent from skrl.trainers.torch import Trainer CUSTOM_DEFAULT_CONFIG = { "timesteps": 100000, # number of timesteps to train for "headless": False, # whether to use headless mode (no rendering) "disable_progressbar": False, # whether to disable the progressbar. If None, disable on non-TTY "close_environment_at_exit": True, # whether to close the environment on normal program termination } class CustomTrainer(Trainer): def __init__(self, env: Wrapper, agents: Union[Agent, List[Agent], List[List[Agent]]], agents_scope: Optional[List[int]] = None, cfg: Optional[dict] = None) -> None: """ :param env: Environment to train on :type env: skrl.envs.wrappers.torch.Wrapper :param agents: Agents to train :type agents: Union[Agent, List[Agent]] :param agents_scope: Number of environments for each agent to train on (default: []) :type agents_scope: tuple or list of integers :param cfg: Configuration dictionary :type cfg: dict, optional """ _cfg = copy.deepcopy(CUSTOM_DEFAULT_CONFIG) _cfg.update(cfg if cfg is not None else {}) agents_scope = agents_scope if agents_scope is not None else [] super().__init__(env=env, agents=agents, agents_scope=agents_scope, cfg=_cfg) # ================================ # - init agents # ================================ def train(self) -> None: """Train the agents """ # ================================ # - run training loop # + call agents.pre_interaction(...) # + compute actions using agents.act(...) # + step environment using env.step(...) # + render scene using env.render(...) # + record environment transition in memory using agents.record_transition(...) # + call agents.post_interaction(...) # + reset environment using env.reset(...) # ================================ def eval(self) -> None: """Evaluate the agents """ # ================================ # - run evaluation loop # + compute actions using agents.act(...) # + step environment using env.step(...) # + render scene using env.render(...) # + call agents.post_interaction(...) parent method to write data to TensorBoard # + reset environment using env.reset(...) # ================================ # [pytorch-end-base] # [jax-start-base] from typing import Union, List, Optional import copy from skrl.envs.wrappers.jax import Wrapper from skrl.agents.jax import Agent from skrl.trainers.jax import Trainer CUSTOM_DEFAULT_CONFIG = { "timesteps": 100000, # number of timesteps to train for "headless": False, # whether to use headless mode (no rendering) "disable_progressbar": False, # whether to disable the progressbar. If None, disable on non-TTY "close_environment_at_exit": True, # whether to close the environment on normal program termination } class CustomTrainer(Trainer): def __init__(self, env: Wrapper, agents: Union[Agent, List[Agent], List[List[Agent]]], agents_scope: Optional[List[int]] = None, cfg: Optional[dict] = None) -> None: """ :param env: Environment to train on :type env: skrl.envs.wrappers.jax.Wrapper :param agents: Agents to train :type agents: Union[Agent, List[Agent]] :param agents_scope: Number of environments for each agent to train on (default: []) :type agents_scope: tuple or list of integers :param cfg: Configuration dictionary :type cfg: dict, optional """ _cfg = copy.deepcopy(CUSTOM_DEFAULT_CONFIG) _cfg.update(cfg if cfg is not None else {}) agents_scope = agents_scope if agents_scope is not None else [] super().__init__(env=env, agents=agents, agents_scope=agents_scope, cfg=_cfg) # ================================ # - init agents # ================================ def train(self) -> None: """Train the agents """ # ================================ # - run training loop # + call agents.pre_interaction(...) # + compute actions using agents.act(...) # + step environment using env.step(...) # + render scene using env.render(...) # + record environment transition in memory using agents.record_transition(...) # + call agents.post_interaction(...) # + reset environment using env.reset(...) # ================================ def eval(self) -> None: """Evaluate the agents """ # ================================ # - run evaluation loop # + compute actions using agents.act(...) # + step environment using env.step(...) # + render scene using env.render(...) # + call agents.post_interaction(...) parent method to write data to TensorBoard # + reset environment using env.reset(...) # ================================ # [jax-end-base] # ============================================================================= # [pytorch-start-sequential] from skrl.trainers.torch import SequentialTrainer # assuming there is an environment called 'env' # and an agent or a list of agents called 'agents' # create a sequential trainer cfg = {"timesteps": 50000, "headless": False} trainer = SequentialTrainer(env=env, agents=agents, cfg=cfg) # train the agent(s) trainer.train() # evaluate the agent(s) trainer.eval() # [pytorch-end-sequential] # [jax-start-sequential] from skrl.trainers.jax import SequentialTrainer # assuming there is an environment called 'env' # and an agent or a list of agents called 'agents' # create a sequential trainer cfg = {"timesteps": 50000, "headless": False} trainer = SequentialTrainer(env=env, agents=agents, cfg=cfg) # train the agent(s) trainer.train() # evaluate the agent(s) trainer.eval() # [jax-end-sequential] # ============================================================================= # [pytorch-start-parallel] from skrl.trainers.torch import ParallelTrainer # assuming there is an environment called 'env' # and an agent or a list of agents called 'agents' # create a sequential trainer cfg = {"timesteps": 50000, "headless": False} trainer = ParallelTrainer(env=env, agents=agents, cfg=cfg) # train the agent(s) trainer.train() # evaluate the agent(s) trainer.eval() # [pytorch-end-parallel] # ============================================================================= # [pytorch-start-step] from skrl.trainers.torch import StepTrainer # assuming there is an environment called 'env' # and an agent or a list of agents called 'agents' # create a sequential trainer cfg = {"timesteps": 50000, "headless": False} trainer = StepTrainer(env=env, agents=agents, cfg=cfg) # train the agent(s) for timestep in range(cfg["timesteps"]): trainer.train(timestep=timestep) # evaluate the agent(s) for timestep in range(cfg["timesteps"]): trainer.eval(timestep=timestep) # [pytorch-end-step] # [jax-start-step] from skrl.trainers.jax import StepTrainer # assuming there is an environment called 'env' # and an agent or a list of agents called 'agents' # create a sequential trainer cfg = {"timesteps": 50000, "headless": False} trainer = StepTrainer(env=env, agents=agents, cfg=cfg) # train the agent(s) for timestep in range(cfg["timesteps"]): trainer.train(timestep=timestep) # evaluate the agent(s) for timestep in range(cfg["timesteps"]): trainer.eval(timestep=timestep) # [jax-end-step] # ============================================================================= # [pytorch-start-manual-training] # [pytorch-end-manual-training] # [pytorch-start-manual-evaluation] # assuming there is an environment named 'env' # and an agent named 'agents' (or a state-preprocessor and a policy) states, infos = env.reset() for i in range(1000): # state-preprocessor + policy with torch.no_grad(): states = state_preprocessor(states) actions = policy.act({"states": states})[0] # step the environment next_states, rewards, terminated, truncated, infos = env.step(actions) # render the environment env.render() # check for termination/truncation if terminated.any() or truncated.any(): states, infos = env.reset() else: states = next_states # [pytorch-end-manual-evaluation] # [jax-start-manual-training] # [jax-end-manual-training] # [jax-start-manual-evaluation] # [jax-end-manual-evaluation]
Toni-SM/skrl/docs/source/_static/css/skrl.css
.nowrap { white-space: nowrap; } .sidebar-brand-text { font-size: 1.25rem !important; } tbody > tr > th.stub { font-weight: normal; text-align: left; }
Toni-SM/skrl/docs/source/_static/css/s5defs-roles.css
.black { color: black; } .gray { color: gray; } .grey { color: gray; } .silver { color: silver; } .white { color: white; } .maroon { color: maroon; } .red { color: red; } .magenta { color: magenta; } .fuchsia { color: fuchsia; } .pink { color: pink; } .orange { color: orange; } .yellow { color: yellow; } .lime { color: lime; } .green { color: #02a802; } .olive { color: olive; } .teal { color: teal; } .cyan { color: cyan; } .aqua { color: aqua; } .blue { color: #007cea; } .navy { color: navy; } .purple { color: purple; }
Toni-SM/skrl/docs/source/api/resources.rst
Resources ========= .. toctree:: :hidden: Noises <resources/noises> Preprocessors <resources/preprocessors> Learning rate schedulers <resources/schedulers> Optimizers <resources/optimizers> Resources groups a variety of components that may be used to improve the agents' performance. .. raw:: html <br><hr> Available resources are :doc:`noises <resources/noises>`, input :doc:`preprocessors <resources/preprocessors>`, learning rate :doc:`schedulers <resources/schedulers>` and :doc:`optimizers <resources/optimizers>` (this last one only for JAX). .. list-table:: :header-rows: 1 * - Noises - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Gaussian <resources/noises/gaussian>` noise - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Ornstein-Uhlenbeck <resources/noises/ornstein_uhlenbeck>` noise |_2| - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` .. list-table:: :header-rows: 1 * - Preprocessors - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Running standard scaler <resources/preprocessors/running_standard_scaler>` |_4| - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` .. list-table:: :header-rows: 1 * - Learning rate schedulers - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`KL Adaptive <resources/schedulers/kl_adaptive>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` .. list-table:: :header-rows: 1 * - Optimizers - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Adam <resources/optimizers/adam>`\ |_5| |_5| |_5| |_5| |_5| |_5| |_3| - .. centered:: :math:`\scriptscriptstyle \texttt{PyTorch}` - .. centered:: :math:`\blacksquare`
Toni-SM/skrl/docs/source/api/multi_agents.rst
Multi-agents ============ .. toctree:: :hidden: IPPO <multi_agents/ippo> MAPPO <multi_agents/mappo> Multi-agents are autonomous entities that interact with the environment to learn and improve their behavior. Multi-agents' goal is to learn optimal policies, which are correspondence between states and actions that maximize the cumulative reward received from the environment over time. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Multi-agents - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Independent Proximal Policy Optimization <multi_agents/ippo>` (**IPPO**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Multi-Agent Proximal Policy Optimization <multi_agents/mappo>` (**MAPPO**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` Base class ---------- .. note:: This is the base class for all multi-agents and provides only basic functionality that is not tied to any implementation of the optimization algorithms. **It is not intended to be used directly**. .. raw:: html <br> Basic inheritance usage ^^^^^^^^^^^^^^^^^^^^^^^ .. tabs:: .. tab:: Inheritance .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/multi_agent.py :language: python :start-after: [start-multi-agent-base-class-torch] :end-before: [end-multi-agent-base-class-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/multi_agent.py :language: python :start-after: [start-multi-agent-base-class-jax] :end-before: [end-multi-agent-base-class-jax] .. raw:: html <br> API (PyTorch) ^^^^^^^^^^^^^ .. autoclass:: skrl.multi_agents.torch.base.MultiAgent :undoc-members: :show-inheritance: :inherited-members: :private-members: _update, _empty_preprocessor, _get_internal_value, _as_dict :members: .. automethod:: __init__ .. automethod:: __str__ .. raw:: html <br> API (JAX) ^^^^^^^^^ .. autoclass:: skrl.multi_agents.jax.base.MultiAgent :undoc-members: :show-inheritance: :inherited-members: :private-members: _update, _empty_preprocessor, _get_internal_value, _as_dict :members: .. automethod:: __init__ .. automethod:: __str__
Toni-SM/skrl/docs/source/api/models.rst
Models ====== .. toctree:: :hidden: Tabular <models/tabular> Categorical <models/categorical> Multi-Categorical <models/multicategorical> Gaussian <models/gaussian> Multivariate Gaussian <models/multivariate_gaussian> Deterministic <models/deterministic> Shared model <models/shared_model> Models (or agent models) refer to a representation of the agent's policy, value function, etc. that the agent uses to make decisions. Agents can have one or more models, and their parameters are adjusted by the optimization algorithms. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Models - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Tabular model <models/tabular>` (discrete domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Categorical model <models/categorical>` (discrete domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Multi-Categorical model <models/multicategorical>` (discrete domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Gaussian model <models/gaussian>` (continuous domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Multivariate Gaussian model <models/multivariate_gaussian>` (continuous domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Deterministic model <models/deterministic>` (continuous domain) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Shared model <models/shared_model>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` Base class ---------- .. note:: This is the base class for all models in this module and provides only basic functionality that is not tied to any specific implementation. **It is not intended to be used directly**. .. raw:: html <br> Mixin and inheritance ^^^^^^^^^^^^^^^^^^^^^ .. tabs:: .. tab:: Mixin .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/model_mixin.py :language: python :start-after: [start-mixin-torch] :end-before: [end-mixin-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/model_mixin.py :language: python :start-after: [start-mixin-jax] :end-before: [end-mixin-jax] .. tab:: Model inheritance .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/model_mixin.py :language: python :start-after: [start-model-torch] :end-before: [end-model-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/model_mixin.py :language: python :start-after: [start-model-jax] :end-before: [end-model-jax] .. raw:: html <br> .. _models_base_class: API (PyTorch) ^^^^^^^^^^^^^ .. autoclass:: skrl.models.torch.base.Model :undoc-members: :show-inheritance: :private-members: _get_space_size :members: .. automethod:: __init__ .. py:property:: device Device to be used for the computations .. py:property:: observation_space Observation/state space. It is a replica of the class constructor parameter of the same name .. py:property:: action_space Action space. It is a replica of the class constructor parameter of the same name .. py:property:: num_observations Number of elements in the observation/state space .. py:property:: num_actions Number of elements in the action space .. raw:: html <br> API (JAX) ^^^^^^^^^ .. autoclass:: skrl.models.jax.base.Model :undoc-members: :show-inheritance: :private-members: _get_space_size :members: .. automethod:: __init__ .. py:property:: device Device to be used for the computations .. py:property:: observation_space Observation/state space. It is a replica of the class constructor parameter of the same name .. py:property:: action_space Action space. It is a replica of the class constructor parameter of the same name .. py:property:: num_observations Number of elements in the observation/state space .. py:property:: num_actions Number of elements in the action space
Toni-SM/skrl/docs/source/api/memories.rst
Memories ======== .. toctree:: :hidden: Random <memories/random> Memories are storage components that allow agents to collect and use/reuse current or past experiences of their interaction with the environment or other types of information. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Memories - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Random memory <memories/random>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` Base class ---------- .. note:: This is the base class for all the other classes in this module. It provides the basic functionality for the other classes. **It is not intended to be used directly**. .. raw:: html <br> Basic inheritance usage ^^^^^^^^^^^^^^^^^^^^^^^ .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/memories.py :language: python :start-after: [start-base-class-torch] :end-before: [end-base-class-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/memories.py :language: python :start-after: [start-base-class-jax] :end-before: [end-base-class-jax] .. raw:: html <br> API (PyTorch) ^^^^^^^^^^^^^ .. autoclass:: skrl.memories.torch.base.Memory :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. automethod:: __len__ .. raw:: html <br> API (JAX) ^^^^^^^^^ .. autoclass:: skrl.memories.jax.base.Memory :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. automethod:: __len__
Toni-SM/skrl/docs/source/api/trainers.rst
Trainers ======== .. toctree:: :hidden: Sequential <trainers/sequential> Parallel <trainers/parallel> Step <trainers/step> Manual training <trainers/manual> Trainers are responsible for orchestrating and managing the training/evaluation of agents and their interactions with the environment. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Trainers - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Sequential trainer <trainers/sequential>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Parallel trainer <trainers/parallel>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Step trainer <trainers/step>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Manual training <trainers/manual>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` Base class ---------- .. note:: This is the base class for all the other classes in this module. It provides the basic functionality for the other classes. **It is not intended to be used directly**. .. raw:: html <br> Basic inheritance usage ^^^^^^^^^^^^^^^^^^^^^^^ .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/trainer.py :language: python :start-after: [pytorch-start-base] :end-before: [pytorch-end-base] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/trainer.py :language: python :start-after: [jax-start-base] :end-before: [jax-end-base] .. raw:: html <br> API (PyTorch) ^^^^^^^^^^^^^ .. autoclass:: skrl.trainers.torch.base.Trainer :undoc-members: :show-inheritance: :inherited-members: :private-members: _setup_agents :members: .. automethod:: __init__ .. automethod:: __str__ .. raw:: html <br> API (JAX) ^^^^^^^^^ .. autoclass:: skrl.trainers.jax.base.Trainer :undoc-members: :show-inheritance: :inherited-members: :private-members: _setup_agents :members: .. automethod:: __init__ .. automethod:: __str__
Toni-SM/skrl/docs/source/api/envs.rst
Environments ============ .. toctree:: :hidden: Wrapping (single-agent) <envs/wrapping> Wrapping (multi-agents) <envs/multi_agents_wrapping> Isaac Gym environments <envs/isaac_gym> Isaac Orbit environments <envs/isaac_orbit> Omniverse Isaac Gym environments <envs/omniverse_isaac_gym> The environment plays a fundamental and crucial role in defining the RL setup. It is the place where the agent interacts, and it is responsible for providing the agent with information about its current state, as well as the rewards/penalties associated with each action. .. raw:: html <br><hr> Grouped in this section you will find how to load environments from NVIDIA Isaac Gym, Isaac Orbit and Omniverse Isaac Gym with a simple function. In addition, you will be able to :doc:`wrap single-agent <envs/wrapping>` and :doc:`multi-agent <envs/multi_agents_wrapping>` RL environment interfaces. .. list-table:: :header-rows: 1 * - Loaders - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Isaac Gym environments <envs/isaac_gym>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Isaac Orbit environments <envs/isaac_orbit>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Omniverse Isaac Gym environments <envs/omniverse_isaac_gym>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` .. list-table:: :header-rows: 1 * - Wrappers - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Bi-DexHands - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - DeepMind - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - Gym - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Gymnasium - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Isaac Gym (previews) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Isaac Orbit - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Omniverse Isaac Gym |_5| |_5| |_5| |_5| |_2| - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - PettingZoo - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - robosuite - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - Shimmy - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare`
Toni-SM/skrl/docs/source/api/utils.rst
Utils and configurations ======================== .. toctree:: :hidden: ML frameworks configuration <config/frameworks> Random seed <utils/seed> Memory and Tensorboard file post-processing <utils/postprocessing> Model instantiators <utils/model_instantiators> Hugging Face integration <utils/huggingface> Isaac Gym utils <utils/isaacgym_utils> Omniverse Isaac Gym utils <utils/omniverse_isaacgym_utils> A set of utilities and configurations for managing an RL setup is provided as part of the library. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Configurations - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`ML frameworks <config/frameworks>` configuration |_5| |_5| |_5| |_5| |_5| |_2| - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` .. list-table:: :header-rows: 1 * - Utils - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Random seed <utils/seed>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Memory and Tensorboard :doc:`file post-processing <utils/postprocessing>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Model instantiators <utils/model_instantiators>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Hugging Face integration <utils/huggingface>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Isaac Gym utils <utils/isaacgym_utils>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Omniverse Isaac Gym utils <utils/omniverse_isaacgym_utils>` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare`
Toni-SM/skrl/docs/source/api/agents.rst
Agents ====== .. toctree:: :hidden: A2C <agents/a2c> AMP <agents/amp> CEM <agents/cem> DDPG <agents/ddpg> DDQN <agents/ddqn> DQN <agents/dqn> PPO <agents/ppo> Q-learning <agents/q_learning> RPO <agents/rpo> SAC <agents/sac> SARSA <agents/sarsa> TD3 <agents/td3> TRPO <agents/trpo> Agents are autonomous entities that interact with the environment to learn and improve their behavior. Agents' goal is to learn an optimal policy, which is a correspondence between states and actions that maximizes the cumulative reward received from the environment over time. .. raw:: html <br><hr> .. list-table:: :header-rows: 1 * - Agents - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - :doc:`Advantage Actor Critic <agents/a2c>` (**A2C**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Adversarial Motion Priors <agents/amp>` (**AMP**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Cross-Entropy Method <agents/cem>` (**CEM**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Deep Deterministic Policy Gradient <agents/ddpg>` (**DDPG**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Double Deep Q-Network <agents/ddqn>` (**DDQN**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Deep Q-Network <agents/dqn>` (**DQN**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Proximal Policy Optimization <agents/ppo>` (**PPO**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Q-learning <agents/q_learning>` (**Q-learning**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Robust Policy Optimization <agents/rpo>` (**RPO**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Soft Actor-Critic <agents/sac>` (**SAC**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`State Action Reward State Action <agents/sarsa>` (**SARSA**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - :doc:`Twin-Delayed DDPG <agents/td3>` (**TD3**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - :doc:`Trust Region Policy Optimization <agents/trpo>` (**TRPO**) - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` Base class ---------- .. note:: This is the base class for all agents in this module and provides only basic functionality that is not tied to any implementation of the optimization algorithms. **It is not intended to be used directly**. .. raw:: html <br> Basic inheritance usage ^^^^^^^^^^^^^^^^^^^^^^^ .. tabs:: .. tab:: Inheritance .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../snippets/agent.py :language: python :start-after: [start-agent-base-class-torch] :end-before: [end-agent-base-class-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../snippets/agent.py :language: python :start-after: [start-agent-base-class-jax] :end-before: [end-agent-base-class-jax] .. raw:: html <br> API (PyTorch) ^^^^^^^^^^^^^ .. autoclass:: skrl.agents.torch.base.Agent :undoc-members: :show-inheritance: :inherited-members: :private-members: _update, _empty_preprocessor, _get_internal_value :members: .. automethod:: __init__ .. automethod:: __str__ .. raw:: html <br> API (JAX) ^^^^^^^^^ .. autoclass:: skrl.agents.jax.base.Agent :undoc-members: :show-inheritance: :inherited-members: :private-members: _update, _empty_preprocessor, _get_internal_value :members: .. automethod:: __init__ .. automethod:: __str__
Toni-SM/skrl/docs/source/api/envs/omniverse_isaac_gym.rst
Omniverse Isaac Gym environments ================================ .. image:: ../../_static/imgs/example_omniverse_isaacgym.png :width: 100% :align: center :alt: Omniverse Isaac Gym environments .. raw:: html <br><br><hr> Environments ------------ The repository https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs provides the example reinforcement learning environments for Omniverse Isaac Gym. These environments can be easily loaded and configured by calling a single function provided with this library. This function also makes it possible to configure the environment from the command line arguments (see OmniIsaacGymEnvs's `configuration-and-command-line-arguments <https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs#configuration-and-command-line-arguments>`_) or from its parameters (:literal:`task_name`, :literal:`num_envs`, :literal:`headless`, and :literal:`cli_args`). Additionally, multi-threaded environments can be loaded. These are designed to isolate the RL policy in a new thread, separate from the main simulation and rendering thread. Read more about it in the OmniIsaacGymEnvs framework documentation: `Multi-Threaded Environment Wrapper <https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/blob/220d34c6b68d3f7518c4aa008ae009d13cc60c03/docs/framework.md#multi-threaded-environment-wrapper>`_. .. note:: The command line arguments has priority over the function parameters. .. note:: Only the configuration related to the environment will be used. The configuration related to RL algorithms are discarded since they do not belong to this library. .. note:: Omniverse Isaac Gym environments implement a functionality to get their configuration from the command line. Setting the :literal:`headless` option from the trainer configuration will not work. In this case, it is necessary to set the load function's :literal:`headless` argument to True or to invoke the scripts as follows: :literal:`python script.py headless=True`. .. raw:: html <br> Usage ^^^^^ .. raw:: html <br> Common environments """"""""""""""""""" In this approach, the RL algorithm maintains the main execution loop. .. tabs:: .. group-tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-omniverse-isaac-gym-envs-parameters-torch] :end-before: [end-omniverse-isaac-gym-envs-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-omniverse-isaac-gym-envs-parameters-jax] :end-before: [end-omniverse-isaac-gym-envs-parameters-jax] .. group-tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-omniverse-isaac-gym-envs-cli-torch] :end-before: [end-omniverse-isaac-gym-envs-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-omniverse-isaac-gym-envs-cli-jax] :end-before: [end-omniverse-isaac-gym-envs-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: python main.py task=Cartpole .. raw:: html <br> Multi-threaded environments """"""""""""""""""""""""""" In this approach, the RL algorithm is executed on a secondary thread while the simulation and rendering is executed on the main thread. .. tabs:: .. group-tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 1, 4, 7, 12, 15 :start-after: [start-omniverse-isaac-gym-envs-multi-threaded-parameters-torch] :end-before: [end-omniverse-isaac-gym-envs-multi-threaded-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 1, 4, 7, 12, 15 :start-after: [start-omniverse-isaac-gym-envs-multi-threaded-parameters-jax] :end-before: [end-omniverse-isaac-gym-envs-multi-threaded-parameters-jax] .. group-tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 1, 4, 7, 12, 15 :start-after: [start-omniverse-isaac-gym-envs-multi-threaded-cli-torch] :end-before: [end-omniverse-isaac-gym-envs-multi-threaded-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 1, 4, 7, 12, 15 :start-after: [start-omniverse-isaac-gym-envs-multi-threaded-cli-jax] :end-before: [end-omniverse-isaac-gym-envs-multi-threaded-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: python main.py task=Cartpole .. raw:: html <br> API ^^^ .. autofunction:: skrl.envs.loaders.torch.load_omniverse_isaacgym_env
Toni-SM/skrl/docs/source/api/envs/isaac_orbit.rst
Isaac Orbit environments ======================== .. image:: ../../_static/imgs/example_isaac_orbit.png :width: 100% :align: center :alt: Isaac Orbit environments .. raw:: html <br><br><hr> Environments ------------ The repository https://github.com/NVIDIA-Omniverse/Orbit provides the example reinforcement learning environments for Isaac orbit. These environments can be easily loaded and configured by calling a single function provided with this library. This function also makes it possible to configure the environment from the command line arguments (see Isaac Orbit's `Running an RL environment <https://isaac-orbit.github.io/orbit/source/tutorials_envs/00_gym_env.html>`_) or from its parameters (:literal:`task_name`, :literal:`num_envs`, :literal:`headless`, and :literal:`cli_args`). .. note:: The command line arguments has priority over the function parameters. .. note:: Isaac Orbit environments implement a functionality to get their configuration from the command line. Setting the :literal:`headless` option from the trainer configuration will not work. In this case, it is necessary to set the load function's :literal:`headless` argument to True or to invoke the scripts as follows: :literal:`orbit -p script.py --headless`. .. raw:: html <br> Usage ^^^^^ .. tabs:: .. tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-orbit-envs-parameters-torch] :end-before: [end-isaac-orbit-envs-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-orbit-envs-parameters-jax] :end-before: [end-isaac-orbit-envs-parameters-jax] .. tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-orbit-envs-cli-torch] :end-before: [end-isaac-orbit-envs-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-orbit-envs-cli-jax] :end-before: [end-isaac-orbit-envs-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: orbit -p main.py --task Isaac-Cartpole-v0 .. raw:: html <br> API ^^^ .. autofunction:: skrl.envs.loaders.torch.load_isaac_orbit_env
Toni-SM/skrl/docs/source/api/envs/multi_agents_wrapping.rst
:tocdepth: 3 Wrapping (multi-agents) ======================= .. raw:: html <br><hr> This library works with a common API to interact with the following RL multi-agent environments: * Farama `PettingZoo <https://pettingzoo.farama.org>`_ (parallel API) * `Bi-DexHands <https://github.com/PKU-MARL/DexterousHands>`_ To operate with them and to support interoperability between these non-compatible interfaces, a **wrapping mechanism is provided** as shown in the diagram below .. raw:: html <br> .. image:: ../../_static/imgs/multi_agent_wrapping-light.svg :width: 100% :align: center :class: only-light :alt: Environment wrapping .. image:: ../../_static/imgs/multi_agent_wrapping-dark.svg :width: 100% :align: center :class: only-dark :alt: Environment wrapping .. raw:: html <br> Usage ----- .. tabs:: .. tab:: PettingZoo .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [start-pettingzoo-torch] :end-before: [end-pettingzoo-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [start-pettingzoo-jax] :end-before: [end-pettingzoo-jax] .. tab:: Bi-DexHands .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [start-bidexhands-torch] :end-before: [end-bidexhands-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [start-bidexhands-jax] :end-before: [end-bidexhands-jax] .. raw:: html <br> API (PyTorch) ------------- .. autofunction:: skrl.envs.wrappers.torch.wrap_env .. raw:: html <br> API (JAX) --------- .. autofunction:: skrl.envs.wrappers.jax.wrap_env .. raw:: html <br> Internal API (PyTorch) ---------------------- .. autoclass:: skrl.envs.wrappers.torch.MultiAgentEnvWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. py:property:: device The device used by the environment If the wrapped environment does not have the ``device`` property, the value of this property will be ``"cuda:0"`` or ``"cpu"`` depending on the device availability .. py:property:: possible_agents A list of all possible_agents the environment could generate .. autoclass:: skrl.envs.wrappers.torch.BiDexHandsWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.PettingZooWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. raw:: html <br> Internal API (JAX) ------------------ .. autoclass:: skrl.envs.wrappers.jax.MultiAgentEnvWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. py:property:: device The device used by the environment If the wrapped environment does not have the ``device`` property, the value of this property will be ``"cuda:0"`` or ``"cpu"`` depending on the device availability .. py:property:: possible_agents A list of all possible_agents the environment could generate .. autoclass:: skrl.envs.wrappers.jax.BiDexHandsWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.jax.PettingZooWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/envs/isaac_gym.rst
Isaac Gym environments ====================== .. image:: ../../_static/imgs/example_isaacgym.png :width: 100% :align: center :alt: Omniverse Isaac Gym environments .. raw:: html <br><br><hr> Environments (preview 4) ------------------------ The repository https://github.com/NVIDIA-Omniverse/IsaacGymEnvs provides the example reinforcement learning environments for Isaac Gym (preview 4). With the release of Isaac Gym (preview 4), NVIDIA developers provide an easy-to-use API for creating/loading preset vectorized environments (see IsaacGymEnvs's `creating-an-environment <https://github.com/NVIDIA-Omniverse/IsaacGymEnvs#creating-an-environment>`_). .. tabs:: .. tab:: Easy-to-use API from NVIDIA .. literalinclude:: ../../snippets/loaders.py :language: python :start-after: [start-isaac-gym-envs-preview-4-api] :end-before: [end-isaac-gym-envs-preview-4-api] Nevertheless, in order to maintain the loading style of previous versions, **skrl** provides its own implementation for loading such environments. The environments can be easily loaded and configured by calling a single function provided with this library. This function also makes it possible to configure the environment from the command line arguments (see IsaacGymEnvs's `configuration-and-command-line-arguments <https://github.com/NVIDIA-Omniverse/IsaacGymEnvs#configuration-and-command-line-arguments>`_) or from its parameters (:literal:`task_name`, :literal:`num_envs`, :literal:`headless`, and :literal:`cli_args`). .. note:: Only the configuration related to the environment will be used. The configuration related to RL algorithms are discarded since they do not belong to this library. .. note:: Isaac Gym environments implement a functionality to get their configuration from the command line. Setting the :literal:`headless` option from the trainer configuration will not work. In this case, it is necessary to set the load function's :literal:`headless` argument to True or to invoke the scripts as follows: :literal:`python script.py headless=True`. .. raw:: html <br> Usage ^^^^^ .. tabs:: .. group-tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-4-parameters-torch] :end-before: [end-isaac-gym-envs-preview-4-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-4-parameters-jax] :end-before: [end-isaac-gym-envs-preview-4-parameters-jax] .. group-tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-4-cli-torch] :end-before: [end-isaac-gym-envs-preview-4-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-4-cli-jax] :end-before: [end-isaac-gym-envs-preview-4-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: python main.py task=Cartpole .. raw:: html <br> API ^^^ .. autofunction:: skrl.envs.loaders.torch.load_isaacgym_env_preview4 .. raw:: html <br><hr> Environments (preview 3) ------------------------ The repository https://github.com/NVIDIA-Omniverse/IsaacGymEnvs provides the example reinforcement learning environments for Isaac Gym (preview 3). These environments can be easily loaded and configured by calling a single function provided with this library. This function also makes it possible to configure the environment from the command line arguments (see IsaacGymEnvs's `configuration-and-command-line-arguments <https://github.com/NVIDIA-Omniverse/IsaacGymEnvs#configuration-and-command-line-arguments>`_) or from its parameters (:literal:`task_name`, :literal:`num_envs`, :literal:`headless`, and :literal:`cli_args`). .. note:: Only the configuration related to the environment will be used. The configuration related to RL algorithms are discarded since they do not belong to this library. .. note:: Isaac Gym environments implement a functionality to get their configuration from the command line. Setting the :literal:`headless` option from the trainer configuration will not work. In this case, it is necessary to set the load function's :literal:`headless` argument to True or to invoke the scripts as follows: :literal:`python script.py headless=True`. .. raw:: html <br> Usage ^^^^^ .. tabs:: .. group-tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-3-parameters-torch] :end-before: [end-isaac-gym-envs-preview-3-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-3-parameters-jax] :end-before: [end-isaac-gym-envs-preview-3-parameters-jax] .. group-tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-3-cli-torch] :end-before: [end-isaac-gym-envs-preview-3-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-3-cli-jax] :end-before: [end-isaac-gym-envs-preview-3-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: python main.py task=Cartpole .. raw:: html <br> API ^^^ .. autofunction:: skrl.envs.loaders.torch.load_isaacgym_env_preview3 .. raw:: html <br><hr> Environments (preview 2) ------------------------ The example reinforcement learning environments for Isaac Gym (preview 2) are located within the same package (in the :code:`python/rlgpu` directory). These environments can be easily loaded and configured by calling a single function provided with this library. This function also makes it possible to configure the environment from the command line arguments or from its parameters (:literal:`task_name`, :literal:`num_envs`, :literal:`headless`, and :literal:`cli_args`). .. note:: Isaac Gym environments implement a functionality to get their configuration from the command line. Setting the :literal:`headless` option from the trainer configuration will not work. In this case, it is necessary to set the load function's :literal:`headless` argument to True or to invoke the scripts as follows: :literal:`python script.py --headless`. .. raw:: html <br> Usage ^^^^^ .. tabs:: .. group-tab:: Function parameters .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-2-parameters-torch] :end-before: [end-isaac-gym-envs-preview-2-parameters-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-2-parameters-jax] :end-before: [end-isaac-gym-envs-preview-2-parameters-jax] .. group-tab:: Command line arguments (priority) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-2-cli-torch] :end-before: [end-isaac-gym-envs-preview-2-cli-torch] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/loaders.py :language: python :emphasize-lines: 2, 5 :start-after: [start-isaac-gym-envs-preview-2-cli-jax] :end-before: [end-isaac-gym-envs-preview-2-cli-jax] Run the main script passing the configuration as command line arguments. For example: .. code-block:: python main.py --task Cartpole .. raw:: html <br> API ^^^ .. autofunction:: skrl.envs.loaders.torch.load_isaacgym_env_preview2
Toni-SM/skrl/docs/source/api/envs/wrapping.rst
:tocdepth: 3 Wrapping (single-agent) ======================= .. raw:: html <br><hr> This library works with a common API to interact with the following RL environments: * OpenAI `Gym <https://www.gymlibrary.dev>`_ / Farama `Gymnasium <https://gymnasium.farama.org/>`_ (single and vectorized environments) * `Farama Shimmy <https://shimmy.farama.org/>`_ * `DeepMind <https://github.com/deepmind/dm_env>`_ * `robosuite <https://robosuite.ai/>`_ * `NVIDIA Isaac Gym <https://developer.nvidia.com/isaac-gym>`_ (preview 2, 3 and 4) * `NVIDIA Isaac Orbit <https://isaac-orbit.github.io/orbit/index.html>`_ * `NVIDIA Omniverse Isaac Gym <https://docs.omniverse.nvidia.com/isaacsim/latest/tutorial_gym_isaac_gym.html>`_ To operate with them and to support interoperability between these non-compatible interfaces, a **wrapping mechanism is provided** as shown in the diagram below .. raw:: html <br> .. image:: ../../_static/imgs/wrapping-light.svg :width: 100% :align: center :class: only-light :alt: Environment wrapping .. image:: ../../_static/imgs/wrapping-dark.svg :width: 100% :align: center :class: only-dark :alt: Environment wrapping .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Omniverse Isaac Gym .. tabs:: .. tab:: Common environment .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-omniverse-isaacgym] :end-before: [pytorch-end-omniverse-isaacgym] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-omniverse-isaacgym] :end-before: [jax-end-omniverse-isaacgym] .. tab:: Multi-threaded environment .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-omniverse-isaacgym-mt] :end-before: [pytorch-end-omniverse-isaacgym-mt] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-omniverse-isaacgym-mt] :end-before: [jax-end-omniverse-isaacgym-mt] .. tab:: Isaac Orbit .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-isaac-orbit] :end-before: [pytorch-end-isaac-orbit] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-isaac-orbit] :end-before: [jax-end-isaac-orbit] .. tab:: Isaac Gym .. tabs:: .. tab:: Preview 4 (isaacgymenvs.make) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-isaacgym-preview4-make] :end-before: [pytorch-end-isaacgym-preview4-make] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-isaacgym-preview4-make] :end-before: [jax-end-isaacgym-preview4-make] .. tab:: Preview 4 .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-isaacgym-preview4] :end-before: [pytorch-end-isaacgym-preview4] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-isaacgym-preview4] :end-before: [jax-end-isaacgym-preview4] .. tab:: Preview 3 .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-isaacgym-preview3] :end-before: [pytorch-end-isaacgym-preview3] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-isaacgym-preview3] :end-before: [jax-end-isaacgym-preview3] .. tab:: Preview 2 .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-isaacgym-preview2] :end-before: [pytorch-end-isaacgym-preview2] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-isaacgym-preview2] :end-before: [jax-end-isaacgym-preview2] .. tab:: Gym / Gymnasium .. tabs:: .. tab:: Gym .. tabs:: .. tab:: Single environment .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-gym] :end-before: [pytorch-end-gym] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-gym] :end-before: [jax-end-gym] .. tab:: Vectorized environment Visit the Gym documentation (`Vector <https://www.gymlibrary.dev/api/vector>`__) for more information about the creation and usage of vectorized environments .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-gym-vectorized] :end-before: [pytorch-end-gym-vectorized] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-gym-vectorized] :end-before: [jax-end-gym-vectorized] .. tab:: Gymnasium .. tabs:: .. tab:: Single environment .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-gymnasium] :end-before: [pytorch-end-gymnasium] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-gymnasium] :end-before: [jax-end-gymnasium] .. tab:: Vectorized environment Visit the Gymnasium documentation (`Vector <https://gymnasium.farama.org/api/vector>`__) for more information about the creation and usage of vectorized environments .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-gymnasium-vectorized] :end-before: [pytorch-end-gymnasium-vectorized] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-gymnasium-vectorized] :end-before: [jax-end-gymnasium-vectorized] .. tab:: Shimmy .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-shimmy] :end-before: [pytorch-end-shimmy] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [jax-start-shimmy] :end-before: [jax-end-shimmy] .. tab:: DeepMind .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-deepmind] :end-before: [pytorch-end-deepmind] .. .. group-tab:: |_4| |jax| |_4| .. .. literalinclude:: ../../snippets/wrapping.py .. :language: python .. :start-after: [jax-start-deepmind] .. :end-before: [jax-end-deepmind] .. tab:: robosuite .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/wrapping.py :language: python :start-after: [pytorch-start-robosuite] :end-before: [pytorch-end-robosuite] .. .. group-tab:: |_4| |jax| |_4| .. .. literalinclude:: ../../snippets/wrapping.py .. :language: python .. :start-after: [jax-start-robosuite] .. :end-before: [jax-end-robosuite] .. raw:: html <br> API (PyTorch) ------------- .. autofunction:: skrl.envs.wrappers.torch.wrap_env .. raw:: html <br> API (JAX) --------- .. autofunction:: skrl.envs.wrappers.jax.wrap_env .. raw:: html <br> Internal API (PyTorch) ---------------------- .. autoclass:: skrl.envs.wrappers.torch.Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. py:property:: device The device used by the environment If the wrapped environment does not have the ``device`` property, the value of this property will be ``"cuda:0"`` or ``"cpu"`` depending on the device availability .. autoclass:: skrl.envs.wrappers.torch.OmniverseIsaacGymWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.IsaacOrbitWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.IsaacGymPreview3Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.IsaacGymPreview2Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.GymWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.GymnasiumWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.DeepMindWrapper :undoc-members: :show-inheritance: :private-members: _spec_to_space, _observation_to_tensor, _tensor_to_action :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.torch.RobosuiteWrapper :undoc-members: :show-inheritance: :private-members: _spec_to_space, _observation_to_tensor, _tensor_to_action :members: .. automethod:: __init__ .. raw:: html <br> Internal API (JAX) ------------------ .. autoclass:: skrl.envs.wrappers.jax.Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. py:property:: device The device used by the environment If the wrapped environment does not have the ``device`` property, the value of this property will be ``"cuda"`` or ``"cpu"`` depending on the device availability .. autoclass:: skrl.envs.wrappers.jax.OmniverseIsaacGymWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.jax.IsaacOrbitWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.jax.IsaacGymPreview3Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.jax.IsaacGymPreview2Wrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__ .. autoclass:: skrl.envs.wrappers.jax.GymnasiumWrapper :undoc-members: :show-inheritance: :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/sarsa.rst
State Action Reward State Action (SARSA) ======================================== SARSA is a **model-free** **on-policy** algorithm that uses a **tabular** Q-function to handle **discrete** observations and action spaces Paper: `On-Line Q-Learning Using Connectionist Systems <https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.2539>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - action-value function (:math:`Q`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`a \leftarrow \pi_{Q[s,a]}(s) \qquad` where :math:`\; a \leftarrow \begin{cases} a \in_R A & x < \epsilon \\ \underset{a}{\arg\max} \; Q[s] & x \geq \epsilon \end{cases} \qquad` for :math:`\; x \leftarrow U(0,1)` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# compute next actions` | :math:`a' \leftarrow \pi_{Q[s,a]}(s') \qquad` :gray:`# the only difference with Q-learning` | :green:`# update Q-table` | :math:`Q[s,a] \leftarrow Q[s,a] \;+` :guilabel:`learning_rate` :math:`(r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q[s',a'] - Q[s,a])` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-sarsa] :end-before: [torch-end-sarsa] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/sarsa/sarsa.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Dict - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 table. This table (model) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_{Q[s,a]}(s)` - Policy (:math:`\epsilon`-greedy) - :literal:`"policy"` - observation - action - :ref:`Tabular <models_tabular>` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.sarsa.SARSA_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.sarsa.SARSA :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/cem.rst
Cross-Entropy Method (CEM) ========================== .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - loss (:math:`L`) .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`a \leftarrow \pi_\theta(s)` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# sample all memory` | :math:`s, a, r, s', d \leftarrow` states, actions, rewards, next_states, dones | :green:`# compute discounted return threshold` | :math:`[G] \leftarrow \sum_{t=0}^{E-1}` :guilabel:`discount_factor`:math:`^{t} \, r_t` for each episode | :math:`G_{_{bound}} \leftarrow q_{th_{quantile}}([G])` at the given :guilabel:`percentile` | :green:`# get elite states and actions` | :math:`s_{_{elite}} \leftarrow s[G \geq G_{_{bound}}]` | :math:`a_{_{elite}} \leftarrow a[G \geq G_{_{bound}}]` | :green:`# compute scores for the elite states` | :math:`scores \leftarrow \theta(s_{_{elite}})` | :green:`# compute policy loss` | :math:`L_{\pi_\theta} \leftarrow -\sum_{i=1}^{N} a_{_{elite}} \log(scores)` | :green:`# optimization step` | reset :math:`\text{optimizer}_\theta` | :math:`\nabla_{\theta} L_{\pi_\theta}` | step :math:`\text{optimizer}_\theta` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\theta (\text{optimizer}_\theta)` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-cem] :end-before: [torch-end-cem] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-cem] :end-before: [jax-end-cem] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/cem/cem.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 discrete function approximator. This function approximator (model) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Categorical <models_categorical>` / |br| :ref:`Multi-Categorical <models_multicategorical>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - RNN support - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.cem.CEM_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.cem.CEM :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.cem.CEM_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.cem.CEM :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/ddqn.rst
Double Deep Q-Network (DDQN) ============================ DDQN is a **model-free**, **off-policy** algorithm that relies on double Q-learning to avoid the overestimation of action-values introduced by DQN Paper: `Deep Reinforcement Learning with Double Q-Learning <https://ojs.aaai.org/index.php/AAAI/article/view/10295>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`\epsilon \leftarrow \epsilon_{_{final}} + (\epsilon_{_{initial}} - \epsilon_{_{final}}) \; e^{-1 \; \frac{\text{timestep}}{\epsilon_{_{timesteps}}}}` | :math:`a \leftarrow \begin{cases} a \in_R A & x < \epsilon \\ \underset{a}{\arg\max} \; Q_\phi(s) & x \geq \epsilon \end{cases} \qquad` for :math:`\; x \leftarrow U(0,1)` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# sample a batch from memory` | [:math:`s, a, r, s', d`] :math:`\leftarrow` states, actions, rewards, next_states, dones of size :guilabel:`batch_size` | :green:`# gradient steps` | **FOR** each gradient step up to :guilabel:`gradient_steps` **DO** | :green:`# compute target values` | :math:`Q' \leftarrow Q_{\phi_{target}}(s')` | :math:`Q_{_{target}} \leftarrow Q'[\underset{a}{\arg\max} \; Q_\phi(s')] \qquad` :gray:`# the only difference with DQN` | :math:`y \leftarrow r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q_{_{target}}` | :green:`# compute Q-network loss` | :math:`Q \leftarrow Q_\phi(s)[a]` | :math:`{Loss}_{Q_\phi} \leftarrow \frac{1}{N} \sum_{i=1}^N (Q - y)^2` | :green:`# optimize Q-network` | :math:`\nabla_{\phi} {Loss}_{Q_\phi}` | :green:`# update target network` | **IF** it's time to update target network **THEN** | :math:`\phi_{target} \leftarrow` :guilabel:`polyak` :math:`\phi + (1 \;-` :guilabel:`polyak` :math:`) \phi_{target}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\phi (\text{optimizer}_\phi)` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-ddqn] :end-before: [torch-end-ddqn] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-ddqn] :end-before: [jax-end-ddqn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/dqn/ddqn.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 2 deterministic function approximators. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`Q_\phi(s, a)` - Q-network - :literal:`"q_network"` - observation - action - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{\phi_{target}}(s, a)` - Target Q-network - :literal:`"target_q_network"` - observation - action - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.dqn.DDQN_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.dqn.DDQN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.dqn.DDQN_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.dqn.DDQN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/a2c.rst
Advantage Actor Critic (A2C) ============================ A2C (synchronous version of A3C) is a **model-free**, **stochastic** **on-policy** **policy gradient** algorithm Paper: `Asynchronous Methods for Deep Reinforcement Learning <https://arxiv.org/abs/1602.01783>`_ .. raw:: html <br><hr> Algorithm --------- .. note:: This algorithm implementation relies on the existence of parallel environments instead of parallel actor-learners .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`), value function approximator (:math:`V_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - values (:math:`V`), advantages (:math:`A`), returns (:math:`R`) | - log probabilities (:math:`logp`) | - loss (:math:`L`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V_{_{last}}') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | **IF** :math:`i` is not the last row of :math:`r` **THEN** | :math:`V_i' = V_{i+1}` | **ELSE** | :math:`V_i' \leftarrow V_{_{last}}'` | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`\neg d_i \; (V_i' \, -` :guilabel:`lambda` :math:`adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`_update(...)` | :green:`# compute returns and advantages` | :math:`V_{_{last}}' \leftarrow V_\phi(s')` | :math:`R, A \leftarrow f_{GAE}(r, d, V, V_{_{last}}')` | :green:`# sample mini-batches from memory` | [[:math:`s, a, logp, V, R, A`]] :math:`\leftarrow` states, actions, log_prob, values, returns, advantages | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, a, logp, V, R, A`] up to :guilabel:`mini_batches` **DO** | :math:`logp' \leftarrow \pi_\theta(s, a)` | :green:`# compute entropy loss` | **IF** entropy computation is enabled **THEN** | :math:`{L}_{entropy} \leftarrow \, -` :guilabel:`entropy_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N \pi_{\theta_{entropy}}` | **ELSE** | :math:`{L}_{entropy} \leftarrow 0` | :green:`# compute policy loss` | :math:`L_{\pi_\theta} \leftarrow -\frac{1}{N} \sum_{i=1}^N A \; ratio` | :green:`# compute value loss` | :math:`V_{_{predicted}} \leftarrow V_\phi(s)` | :math:`L_{V_\phi} \leftarrow \frac{1}{N} \sum_{i=1}^N (R - V_{_{predicted}})^2` | :green:`# optimization step` | reset :math:`\text{optimizer}_{\theta, \phi}` | :math:`\nabla_{\theta, \, \phi} (L_{\pi_\theta} + {L}_{entropy} + L_{V_\phi})` | :math:`\text{clip}(\lVert \nabla_{\theta, \, \phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_{\theta, \phi}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_{\theta} (\text{optimizer}_{\theta})` | step :math:`\text{scheduler}_{\phi} (\text{optimizer}_{\phi})` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`a2c_rnn.py`) to maintain the readability of the standard implementation (:literal:`a2c.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-a2c] :end-before: [torch-end-a2c] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-a2c] :end-before: [jax-end-a2c] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-a2c-rnn] :end-before: [torch-end-a2c-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/a2c/a2c.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic (discrete or continuous) and 1 deterministic function approximator. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Categorical <models_categorical>` / |br| :ref:`Multi-Categorical <models_multicategorical>` / |br| :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - for Policy and Value - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.a2c.A2C_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.a2c.A2C :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.a2c.A2C_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.a2c.A2C_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.a2c.A2C :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/q_learning.rst
Q-learning ========== Q-learning is a **model-free** **off-policy** algorithm that uses a **tabular** Q-function to handle **discrete** observations and action spaces Paper: `Learning from delayed rewards <https://www.academia.edu/3294050/Learning_from_delayed_rewards>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - action-value function (:math:`Q`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`a \leftarrow \pi_{Q[s,a]}(s) \qquad` where :math:`\; a \leftarrow \begin{cases} a \in_R A & x < \epsilon \\ \underset{a}{\arg\max} \; Q[s] & x \geq \epsilon \end{cases} \qquad` for :math:`\; x \leftarrow U(0,1)` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# compute next actions` | :math:`a' \leftarrow \underset{a}{\arg\max} \; Q[s'] \qquad` :gray:`# the only difference with SARSA` | :green:`# update Q-table` | :math:`Q[s,a] \leftarrow Q[s,a] \;+` :guilabel:`learning_rate` :math:`(r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q[s',a'] - Q[s,a])` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-q-learning] :end-before: [torch-end-q-learning] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/q_learning/q_learning.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Dict - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 table. This table (model) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_{Q[s,a]}(s)` - Policy (:math:`\epsilon`-greedy) - :literal:`"policy"` - observation - action - :ref:`Tabular <models_tabular>` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.q_learning.Q_LEARNING_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.q_learning.Q_LEARNING :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/sac.rst
Soft Actor-Critic (SAC) ======================= SAC is a **model-free**, **stochastic** **off-policy** **actor-critic** algorithm that uses double Q-learning (like TD3) and **entropy** regularization to maximize a trade-off between exploration and exploitation Paper: `Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor <https://arxiv.org/abs/1801.01290>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`), critic function approximator (:math:`Q_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - log probabilities (:math:`logp`), entropy coefficient (:math:`\alpha`) | - loss (:math:`L`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# sample a batch from memory` | [:math:`s, a, r, s', d`] :math:`\leftarrow` states, actions, rewards, next_states, dones of size :guilabel:`batch_size` | :green:`# gradient steps` | **FOR** each gradient step up to :guilabel:`gradient_steps` **DO** | :green:`# compute target values` | :math:`a',\; logp' \leftarrow \pi_\theta(s')` | :math:`Q_{1_{target}} \leftarrow Q_{{\phi 1}_{target}}(s', a')` | :math:`Q_{2_{target}} \leftarrow Q_{{\phi 2}_{target}}(s', a')` | :math:`Q_{_{target}} \leftarrow \text{min}(Q_{1_{target}}, Q_{2_{target}}) - \alpha \; logp'` | :math:`y \leftarrow r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q_{_{target}}` | :green:`# compute critic loss` | :math:`Q_1 \leftarrow Q_{\phi 1}(s, a)` | :math:`Q_2 \leftarrow Q_{\phi 2}(s, a)` | :math:`L_{Q_\phi} \leftarrow 0.5 \; (\frac{1}{N} \sum_{i=1}^N (Q_1 - y)^2 + \frac{1}{N} \sum_{i=1}^N (Q_2 - y)^2)` | :green:`# optimization step (critic)` | reset :math:`\text{optimizer}_\phi` | :math:`\nabla_{\phi} L_{Q_\phi}` | :math:`\text{clip}(\lVert \nabla_{\phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\phi` | :green:`# compute policy (actor) loss` | :math:`a,\; logp \leftarrow \pi_\theta(s)` | :math:`Q_1 \leftarrow Q_{\phi 1}(s, a)` | :math:`Q_2 \leftarrow Q_{\phi 2}(s, a)` | :math:`L_{\pi_\theta} \leftarrow \frac{1}{N} \sum_{i=1}^N (\alpha \; logp - \text{min}(Q_1, Q_2))` | :green:`# optimization step (policy)` | reset :math:`\text{optimizer}_\theta` | :math:`\nabla_{\theta} L_{\pi_\theta}` | :math:`\text{clip}(\lVert \nabla_{\theta} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\theta` | :green:`# entropy learning` | **IF** :guilabel:`learn_entropy` is enabled **THEN** | :green:`# compute entropy loss` | :math:`{L}_{entropy} \leftarrow - \frac{1}{N} \sum_{i=1}^N (log(\alpha) \; (logp + \alpha_{Target}))` | :green:`# optimization step (entropy)` | reset :math:`\text{optimizer}_\alpha` | :math:`\nabla_{\alpha} {L}_{entropy}` | step :math:`\text{optimizer}_\alpha` | :green:`# compute entropy coefficient` | :math:`\alpha \leftarrow e^{log(\alpha)}` | :green:`# update target networks` | :math:`{\phi 1}_{target} \leftarrow` :guilabel:`polyak` :math:`{\phi 1} + (1 \;-` :guilabel:`polyak` :math:`) {\phi 1}_{target}` | :math:`{\phi 2}_{target} \leftarrow` :guilabel:`polyak` :math:`{\phi 2} + (1 \;-` :guilabel:`polyak` :math:`) {\phi 2}_{target}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\theta (\text{optimizer}_\theta)` | step :math:`\text{scheduler}_\phi (\text{optimizer}_\phi)` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`sac_rnn.py`) to maintain the readability of the standard implementation (:literal:`sac.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-sac] :end-before: [torch-end-sac] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-sac] :end-before: [jax-end-sac] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-sac-rnn] :end-before: [torch-end-sac-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/sac/sac.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic and 4 deterministic function approximators. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy (actor) - :literal:`"policy"` - observation - action - :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`Q_{\phi 1}(s, a)` - Q1-network (critic 1) - :literal:`"critic_1"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{\phi 2}(s, a)` - Q2-network (critic 2) - :literal:`"critic_2"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{{\phi 1}_{target}}(s, a)` - Target Q1-network - :literal:`"target_critic_1"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{{\phi 2}_{target}}(s, a)` - Target Q2-network - :literal:`"target_critic_2"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.sac.SAC_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.sac.SAC :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.sac.SAC_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.sac.SAC_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.sac.SAC :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/trpo.rst
Trust Region Policy Optimization (TRPO) ======================================= TRPO is a **model-free**, **stochastic** **on-policy** **policy gradient** algorithm that deploys an iterative procedure to optimize the policy, with guaranteed monotonic improvement Paper: `Trust Region Policy Optimization <https://arxiv.org/abs/1502.05477>`_ .. raw:: html <br><hr> Algorithm --------- | For each iteration do | :math:`\bullet \;` Collect, in a rollout memory, a set of states :math:`s`, actions :math:`a`, rewards :math:`r`, dones :math:`d`, log probabilities :math:`logp` and values :math:`V` on policy using :math:`\pi_\theta` and :math:`V_\phi` | :math:`\bullet \;` Estimate returns :math:`R` and advantages :math:`A` using Generalized Advantage Estimation (GAE(:math:`\lambda`)) from the collected data [:math:`r, d, V`] | :math:`\bullet \;` Compute the surrogate objective (policy loss) gradient :math:`g` and the Hessian :math:`H` of :math:`KL` divergence with respect to the policy parameters :math:`\theta` | :math:`\bullet \;` Compute the search direction :math:`\; x \approx H^{-1}g \;` using the conjugate gradient method | :math:`\bullet \;` Compute the maximal (full) step length :math:`\; \beta = \sqrt{\dfrac{2 \delta}{x^T H x}} x \;` where :math:`\delta` is the desired (maximum) :math:`KL` divergence and :math:`\; \sqrt{\frac{2 \delta}{x^T H x}} \;` is the step size | :math:`\bullet \;` Perform a backtracking line search with exponential decay to find the final policy update :math:`\; \theta_{new} = \theta + \alpha \; \beta \;` ensuring improvement of the surrogate objective and satisfaction of the :math:`KL` divergence constraint | :math:`\bullet \;` Update the value function :math:`V_\phi` using the computed returns :math:`R` .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V_{_{last}}') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | **IF** :math:`i` is not the last row of :math:`r` **THEN** | :math:`V_i' = V_{i+1}` | **ELSE** | :math:`V_i' \leftarrow V_{_{last}}'` | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`\neg d_i \; (V_i' \, -` :guilabel:`lambda` :math:`adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`surrogate_loss(...)` | :blue:`def` :math:`\;f_{Loss} (\pi_\theta, s, a, logp, A) \;\rightarrow\; L_{\pi_\theta}:` | :math:`logp' \leftarrow \pi_\theta(s, a)` | :math:`L_{\pi_\theta} \leftarrow \frac{1}{N} \sum_{i=1}^N A \; e^{(logp' - logp)}` | | :literal:`conjugate_gradient(...)` (See `conjugate gradient method <https://en.wikipedia.org/wiki/Conjugate_gradient_method#As_an_iterative_method>`_) | :blue:`def` :math:`\;f_{CG} (\pi_\theta, s, b) \;\rightarrow\; x:` | :math:`x \leftarrow \text{zeros}(b)` | :math:`r \leftarrow b` | :math:`p \leftarrow b` | :math:`rr_{old} \leftarrow r \cdot r` | **FOR** each iteration up to :guilabel:`conjugate_gradient_steps` **DO** | :math:`\alpha \leftarrow \dfrac{rr_{old}}{p \cdot f_{Ax}(\pi_\theta, s, b)}` | :math:`x \leftarrow x + \alpha \; p` | :math:`r \leftarrow r - \alpha \; f_{Ax}(\pi_\theta, s)` | :math:`rr_{new} \leftarrow r \cdot r` | **IF** :math:`rr_{new} <` residual tolerance **THEN** | **BREAK LOOP** | :math:`p \leftarrow r + \dfrac{rr_{new}}{rr_{old}} \; p` | :math:`rr_{old} \leftarrow rr_{new}` | | :literal:`fisher_vector_product(...)` (See `fisher vector product in TRPO <https://www.telesens.co/2018/06/09/efficiently-computing-the-fisher-vector-product-in-trpo/>`_) | :blue:`def` :math:`\;f_{Ax} (\pi_\theta, s, v) \;\rightarrow\; hv:` | :math:`kl \leftarrow f_{KL}(\pi_\theta, \pi_\theta, s)` | :math:`g_{kl} \leftarrow \nabla_\theta kl` | :math:`g_{kl_{flat}} \leftarrow \text{flatten}(g_{kl})` | :math:`g_{hv} \leftarrow \nabla_\theta (g_{kl_{flat}} \; v)` | :math:`g_{hv_{flat}} \leftarrow \text{flatten}(g_{hv})` | :math:`hv \leftarrow g_{hv_{flat}} +` :guilabel:`damping` :math:`v` | | :literal:`kl_divergence(...)` (See `Kullback–Leibler divergence for normal distribution <https://en.wikipedia.org/wiki/Normal_distribution#Other_properties>`_) | :blue:`def` :math:`\;f_{KL} (\pi_{\theta 1}, \pi_{\theta 2}, s) \;\rightarrow\; kl:` | :math:`\mu_1, \log\sigma_1 \leftarrow \pi_{\theta 1}(s)` | :math:`\mu_2, \log\sigma_2 \leftarrow \pi_{\theta 2}(s)` | :math:`kl \leftarrow \log\sigma_1 - \log\sigma_2 + \frac{1}{2} \dfrac{(e^{\log\sigma_1})^2 + (\mu_1 - \mu_2)^2}{(e^{\log\sigma_2})^2} - \frac{1}{2}` | :math:`kl \leftarrow \frac{1}{N} \sum_{i=1}^N \, (\sum_{dim} kl)` | | :literal:`_update(...)` | :green:`# compute returns and advantages` | :math:`V_{_{last}}' \leftarrow V_\phi(s')` | :math:`R, A \leftarrow f_{GAE}(r, d, V, V_{_{last}}')` | :green:`# sample all from memory` | [[:math:`s, a, logp, A`]] :math:`\leftarrow` states, actions, log_prob, advantages | :green:`# compute policy loss gradient` | :math:`L_{\pi_\theta} \leftarrow f_{Loss}(\pi_\theta, s, a, logp, A)` | :math:`g \leftarrow \nabla_{\theta} L_{\pi_\theta}` | :math:`g_{_{flat}} \leftarrow \text{flatten}(g)` | :green:`# compute the search direction using the conjugate gradient algorithm` | :math:`search_{direction} \leftarrow f_{CG}(\pi_\theta, s, g_{_{flat}})` | :green:`# compute step size and full step` | :math:`xHx \leftarrow search_{direction} \; f_{Ax}(\pi_\theta, s, search_{direction})` | :math:`step_{size} \leftarrow \sqrt{\dfrac{2 \, \delta}{xHx}} \qquad` with :math:`\; \delta` as :guilabel:`max_kl_divergence` | :math:`\beta \leftarrow step_{size} \; search_{direction}` | :green:`# backtracking line search` | :math:`flag_{restore} \leftarrow \text{True}` | :math:`\pi_{\theta_{backup}} \leftarrow \pi_\theta` | :math:`\theta \leftarrow \text{get_parameters}(\pi_\theta)` | :math:`I_{expected} \leftarrow g_{_{flat}} \; \beta` | **FOR** :math:`\alpha \leftarrow (0.5` :guilabel:`step_fraction` :math:`)^i \;` with :math:`i = 0, 1, 2, ...` up to :guilabel:`max_backtrack_steps` **DO** | :math:`\theta_{new} \leftarrow \theta + \alpha \; \beta` | :math:`\pi_\theta \leftarrow \text{set_parameters}(\theta_{new})` | :math:`I_{expected} \leftarrow \alpha \; I_{expected}` | :math:`kl \leftarrow f_{KL}(\pi_{\theta_{backup}}, \pi_\theta, s)` | :math:`L \leftarrow f_{Loss}(\pi_\theta, s, a, logp, A)` | **IF** :math:`kl < \delta` **AND** :math:`\dfrac{L - L_{\pi_\theta}}{I_{expected}} >` :guilabel:`accept_ratio` **THEN** | :math:`flag_{restore} \leftarrow \text{False}` | **BREAK LOOP** | **IF** :math:`flag_{restore}` **THEN** | :math:`\pi_\theta \leftarrow \pi_{\theta_{backup}}` | :green:`# sample mini-batches from memory` | [[:math:`s, R`]] :math:`\leftarrow` states, returns | :green:`# learning epochs` | **FOR** each learning epoch up to :guilabel:`learning_epochs` **DO** | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, R`] up to :guilabel:`mini_batches` **DO** | :green:`# compute value loss` | :math:`V' \leftarrow V_\phi(s)` | :math:`L_{V_\phi} \leftarrow` :guilabel:`value_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N (R - V')^2` | :green:`# optimization step (value)` | reset :math:`\text{optimizer}_\phi` | :math:`\nabla_{\phi} L_{V_\phi}` | :math:`\text{clip}(\lVert \nabla_{\phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\phi` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\phi(\text{optimizer}_\phi)` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`trpo_rnn.py`) to maintain the readability of the standard implementation (:literal:`trpo.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-trpo] :end-before: [torch-end-trpo] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-trpo-rnn] :end-before: [torch-end-trpo-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/trpo/trpo.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic and 1 deterministic function approximator. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.trpo.TRPO_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.trpo.TRPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.trpo.TRPO_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/rpo.rst
Robust Policy Optimization (RPO) ================================ RPO is a **model-free**, **stochastic** **on-policy** **policy gradient** algorithm that adds a uniform random perturbation to a base parameterized distribution to help the agent maintain a certain level of stochasticity throughout the training process Paper: `Robust Policy Optimization in Deep Reinforcement Learning <https://arxiv.org/abs/2212.07536>`_ .. raw:: html <br><hr> Algorithm --------- .. note:: This algorithm is built on top of the PPO algorithm and simply adds the :literal:`alpha` hyperparameter to the policy input dictionary. It is the responsibility of the user to make use of this hyper-parameter to modify the parameterized distribution. .. tabs:: .. tab:: Within the RPO agent .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 9-11 :start-after: [torch-start-rpo-with-rpo] :end-before: [torch-end-rpo-with-rpo] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 10-12 :start-after: [jax-start-rpo-with-rpo] :end-before: [jax-end-rpo-with-rpo] .. tab:: With other agents (e.g. PPO, A2C, TRPO) .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 9-11 :start-after: [torch-start-rpo-without-rpo] :end-before: [torch-end-rpo-without-rpo] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 10-12 :start-after: [jax-start-rpo-without-rpo] :end-before: [jax-end-rpo-without-rpo] .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`), value function approximator (:math:`V_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - values (:math:`V`), advantages (:math:`A`), returns (:math:`R`) | - log probabilities (:math:`logp`) | - loss (:math:`L`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V_{_{last}}') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | **IF** :math:`i` is not the last row of :math:`r` **THEN** | :math:`V_i' = V_{i+1}` | **ELSE** | :math:`V_i' \leftarrow V_{_{last}}'` | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`\neg d_i \; (V_i' \, -` :guilabel:`lambda` :math:`adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`_update(...)` | :green:`# compute returns and advantages` | :math:`V_{_{last}}' \leftarrow V_\phi(s')` | :math:`R, A \leftarrow f_{GAE}(r, d, V, V_{_{last}}')` | :green:`# sample mini-batches from memory` | [[:math:`s, a, logp, V, R, A`]] :math:`\leftarrow` states, actions, log_prob, values, returns, advantages | :green:`# learning epochs` | **FOR** each learning epoch up to :guilabel:`learning_epochs` **DO** | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, a, logp, V, R, A`] up to :guilabel:`mini_batches` **DO** | :math:`logp' \leftarrow \pi_\theta(s, a)` | :green:`# compute approximate KL divergence` | :math:`ratio \leftarrow logp' - logp` | :math:`KL_{_{divergence}} \leftarrow \frac{1}{N} \sum_{i=1}^N ((e^{ratio} - 1) - ratio)` | :green:`# early stopping with KL divergence` | **IF** :math:`KL_{_{divergence}} >` :guilabel:`kl_threshold` **THEN** | **BREAK LOOP** | :green:`# compute entropy loss` | **IF** entropy computation is enabled **THEN** | :math:`{L}_{entropy} \leftarrow \, -` :guilabel:`entropy_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N \pi_{\theta_{entropy}}` | **ELSE** | :math:`{L}_{entropy} \leftarrow 0` | :green:`# compute policy loss` | :math:`ratio \leftarrow e^{logp' - logp}` | :math:`L_{_{surrogate}} \leftarrow A \; ratio` | :math:`L_{_{clipped\,surrogate}} \leftarrow A \; \text{clip}(ratio, 1 - c, 1 + c) \qquad` with :math:`c` as :guilabel:`ratio_clip` | :math:`L^{clip}_{\pi_\theta} \leftarrow - \frac{1}{N} \sum_{i=1}^N \min(L_{_{surrogate}}, L_{_{clipped\,surrogate}})` | :green:`# compute value loss` | :math:`V_{_{predicted}} \leftarrow V_\phi(s)` | **IF** :guilabel:`clip_predicted_values` is enabled **THEN** | :math:`V_{_{predicted}} \leftarrow V + \text{clip}(V_{_{predicted}} - V, -c, c) \qquad` with :math:`c` as :guilabel:`value_clip` | :math:`L_{V_\phi} \leftarrow` :guilabel:`value_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N (R - V_{_{predicted}})^2` | :green:`# optimization step` | reset :math:`\text{optimizer}_{\theta, \phi}` | :math:`\nabla_{\theta, \, \phi} (L^{clip}_{\pi_\theta} + {L}_{entropy} + L_{V_\phi})` | :math:`\text{clip}(\lVert \nabla_{\theta, \, \phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_{\theta, \phi}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_{\theta, \phi} (\text{optimizer}_{\theta, \phi})` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`rpo_rnn.py`) to maintain the readability of the standard implementation (:literal:`rpo.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-rpo] :end-before: [torch-end-rpo] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-rpo] :end-before: [jax-end-rpo] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-rpo-rnn] :end-before: [torch-end-rpo-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/rpo/rpo.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 continuous stochastic and 1 deterministic function approximator. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - for Policy and Value - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.rpo.RPO_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.rpo.RPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.rpo.RPO_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.rpo.RPO_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.rpo.RPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/dqn.rst
Deep Q-Network (DQN) ==================== DQN is a **model-free**, **off-policy** algorithm that trains a control policies directly from high-dimensional sensory using a deep function approximator to represent the Q-value function Paper: `Playing Atari with Deep Reinforcement Learning <https://arxiv.org/abs/1312.5602>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`\epsilon \leftarrow \epsilon_{_{final}} + (\epsilon_{_{initial}} - \epsilon_{_{final}}) \; e^{-1 \; \frac{\text{timestep}}{\epsilon_{_{timesteps}}}}` | :math:`a \leftarrow \begin{cases} a \in_R A & x < \epsilon \\ \underset{a}{\arg\max} \; Q_\phi(s) & x \geq \epsilon \end{cases} \qquad` for :math:`\; x \leftarrow U(0,1)` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# sample a batch from memory` | [:math:`s, a, r, s', d`] :math:`\leftarrow` states, actions, rewards, next_states, dones of size :guilabel:`batch_size` | :green:`# gradient steps` | **FOR** each gradient step up to :guilabel:`gradient_steps` **DO** | :green:`# compute target values` | :math:`Q' \leftarrow Q_{\phi_{target}}(s')` | :math:`Q_{_{target}} \leftarrow \underset{a}{\max} \; Q' \qquad` :gray:`# the only difference with DDQN` | :math:`y \leftarrow r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q_{_{target}}` | :green:`# compute Q-network loss` | :math:`Q \leftarrow Q_\phi(s)[a]` | :math:`{Loss}_{Q_\phi} \leftarrow \frac{1}{N} \sum_{i=1}^N (Q - y)^2` | :green:`# optimize Q-network` | :math:`\nabla_{\phi} {Loss}_{Q_\phi}` | :green:`# update target network` | **IF** it's time to update target network **THEN** | :math:`\phi_{target} \leftarrow` :guilabel:`polyak` :math:`\phi + (1 \;-` :guilabel:`polyak` :math:`) \phi_{target}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\phi (\text{optimizer}_\phi)` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-dqn] :end-before: [torch-end-dqn] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-dqn] :end-before: [jax-end-dqn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/dqn/dqn.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 2 deterministic function approximators. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`Q_\phi(s, a)` - Q-network - :literal:`"q_network"` - observation - action - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{\phi_{target}}(s, a)` - Target Q-network - :literal:`"target_q_network"` - observation - action - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.dqn.DQN_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.dqn.DQN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.dqn.DQN_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.dqn.DQN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/amp.rst
Adversarial Motion Priors (AMP) =============================== AMP is a **model-free**, **stochastic** **on-policy** **policy gradient** algorithm (trained using a combination of GAIL and PPO) for adversarial learning of physics-based character animation. It enables characters to imitate diverse behaviors from large unstructured datasets, without the need for motion planners or other mechanisms for clip selection Paper: `AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control <https://arxiv.org/abs/2104.02180>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy (:math:`\pi_\theta`), value (:math:`V_\phi`) and discriminator (:math:`D_\psi`) function approximators | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - values (:math:`V`), next values (:math:`V'`), advantages (:math:`A`), returns (:math:`R`) | - log probabilities (:math:`logp`) | - loss (:math:`L`) | - reference motion dataset (:math:`M`), AMP replay buffer (:math:`B`) | - AMP states (:math:`s_{_{AMP}}`), reference motion states (:math:`s_{_{AMP}}^{^M}`), AMP states from replay buffer (:math:`s_{_{AMP}}^{^B}`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`(V' \, +` :guilabel:`lambda` :math:`\neg d_i \; adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`_update(...)` | :green:`# update dataset of reference motions` | collect reference motions of size :guilabel:`amp_batch_size` :math:`\rightarrow\;` :math:`\text{append}(M)` | :green:`# compute combined rewards` | :math:`r_D \leftarrow -log(\text{max}( 1 - \hat{y}(D_\psi(s_{_{AMP}})), \, 10^{-4})) \qquad` with :math:`\; \hat{y}(x) = \dfrac{1}{1 + e^{-x}}` | :math:`r' \leftarrow` :guilabel:`task_reward_weight` :math:`r \, +` :guilabel:`style_reward_weight` :guilabel:`discriminator_reward_scale` :math:`r_D` | :green:`# compute returns and advantages` | :math:`R, A \leftarrow f_{GAE}(r', d, V, V')` | :green:`# sample mini-batches from memory` | [[:math:`s, a, logp, V, R, A, s_{_{AMP}}`]] :math:`\leftarrow` states, actions, log_prob, values, returns, advantages, AMP states | [[:math:`s_{_{AMP}}^{^M}`]] :math:`\leftarrow` AMP states from :math:`M` | **IF** :math:`B` is not empty **THEN** | [[:math:`s_{_{AMP}}^{^B}`]] :math:`\leftarrow` AMP states from :math:`B` | **ELSE** | [[:math:`s_{_{AMP}}^{^B}`]] :math:`\leftarrow` [[:math:`s_{_{AMP}}`]] | :green:`# learning epochs` | **FOR** each learning epoch up to :guilabel:`learning_epochs` **DO** | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, a, logp, V, R, A, s_{_{AMP}}, s_{_{AMP}}^{^B}, s_{_{AMP}}^{^M}`] up to :guilabel:`mini_batches` **DO** | :math:`logp' \leftarrow \pi_\theta(s, a)` | :green:`# compute entropy loss` | **IF** entropy computation is enabled **THEN** | :math:`{L}_{entropy} \leftarrow \, -` :guilabel:`entropy_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N \pi_{\theta_{entropy}}` | **ELSE** | :math:`{L}_{entropy} \leftarrow 0` | :green:`# compute policy loss` | :math:`ratio \leftarrow e^{logp' - logp}` | :math:`L_{_{surrogate}} \leftarrow A \; ratio` | :math:`L_{_{clipped\,surrogate}} \leftarrow A \; \text{clip}(ratio, 1 - c, 1 + c) \qquad` with :math:`c` as :guilabel:`ratio_clip` | :math:`L^{clip}_{\pi_\theta} \leftarrow - \frac{1}{N} \sum_{i=1}^N \min(L_{_{surrogate}}, L_{_{clipped\,surrogate}})` | :green:`# compute value loss` | :math:`V_{_{predicted}} \leftarrow V_\phi(s)` | **IF** :guilabel:`clip_predicted_values` is enabled **THEN** | :math:`V_{_{predicted}} \leftarrow V + \text{clip}(V_{_{predicted}} - V, -c, c) \qquad` with :math:`c` as :guilabel:`value_clip` | :math:`L_{V_\phi} \leftarrow` :guilabel:`value_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N (R - V_{_{predicted}})^2` | :green:`# compute discriminator loss` | :math:`{logit}_{_{AMP}} \leftarrow D_\psi(s_{_{AMP}}) \qquad` with :math:`s_{_{AMP}}` of size :guilabel:`discriminator_batch_size` | :math:`{logit}_{_{AMP}}^{^B} \leftarrow D_\psi(s_{_{AMP}}^{^B}) \qquad` with :math:`s_{_{AMP}}^{^B}` of size :guilabel:`discriminator_batch_size` | :math:`{logit}_{_{AMP}}^{^M} \leftarrow D_\psi(s_{_{AMP}}^{^M}) \qquad` with :math:`s_{_{AMP}}^{^M}` of size :guilabel:`discriminator_batch_size` | :green:`# discriminator prediction loss` | :math:`L_{D_\psi} \leftarrow \dfrac{1}{2}(BCE({logit}_{_{AMP}}` ++ :math:`{logit}_{_{AMP}}^{^B}, \, 0) + BCE({logit}_{_{AMP}}^{^M}, \, 1))` | with :math:`\; BCE(x,y)=-\frac{1}{N} \sum_{i=1}^N [y \; log(\hat{y}) + (1-y) \, log(1-\hat{y})] \;` and :math:`\; \hat{y} = \dfrac{1}{1 + e^{-x}}` | :green:`# discriminator logit regularization` | :math:`L_{D_\psi} \leftarrow L_{D_\psi} +` :guilabel:`discriminator_logit_regularization_scale` :math:`\sum_{i=1}^N \text{flatten}(\psi_w[-1])^2` | :green:`# discriminator gradient penalty` | :math:`L_{D_\psi} \leftarrow L_{D_\psi} +` :guilabel:`discriminator_gradient_penalty_scale` :math:`\frac{1}{N} \sum_{i=1}^N \sum (\nabla_\psi {logit}_{_{AMP}}^{^M})^2` | :green:`# discriminator weight decay` | :math:`L_{D_\psi} \leftarrow L_{D_\psi} +` :guilabel:`discriminator_weight_decay_scale` :math:`\sum_{i=1}^N \text{flatten}(\psi_w)^2` | :green:`# optimization step` | reset :math:`\text{optimizer}_{\theta, \phi, \psi}` | :math:`\nabla_{\theta, \, \phi, \, \psi} (L^{clip}_{\pi_\theta} + {L}_{entropy} + L_{V_\phi} + L_{D_\psi})` | :math:`\text{clip}(\lVert \nabla_{\theta, \, \phi, \, \psi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_{\theta, \phi, \psi}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_{\theta, \phi, \psi} (\text{optimizer}_{\theta, \phi, \psi})` | :green:`# update AMP repaly buffer` | :math:`s_{_{AMP}} \rightarrow\;` :math:`\text{append}(B)` .. raw:: html <br> Usage ----- .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-amp] :end-before: [torch-end-amp] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/amp/amp.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: AMP observation - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\square` - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic (continuous) and 2 deterministic function approximators. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`D_\psi(s_{_{AMP}})` - Discriminator - :literal:`"discriminator"` - AMP observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.amp.AMP_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.amp.AMP :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/ppo.rst
Proximal Policy Optimization (PPO) ================================== PPO is a **model-free**, **stochastic** **on-policy** **policy gradient** algorithm that alternates between sampling data through interaction with the environment, and optimizing a *surrogate* objective function while avoiding that the new policy does not move too far away from the old one Paper: `Proximal Policy Optimization Algorithms <https://arxiv.org/abs/1707.06347>`_ .. raw:: html <br><hr> Algorithm --------- | For each iteration do: | :math:`\bullet \;` Collect, in a rollout memory, a set of states :math:`s`, actions :math:`a`, rewards :math:`r`, dones :math:`d`, log probabilities :math:`logp` and values :math:`V` on policy using :math:`\pi_\theta` and :math:`V_\phi` | :math:`\bullet \;` Estimate returns :math:`R` and advantages :math:`A` using Generalized Advantage Estimation (GAE(:math:`\lambda`)) from the collected data [:math:`r, d, V`] | :math:`\bullet \;` Compute the entropy loss :math:`{L}_{entropy}` | :math:`\bullet \;` Compute the clipped surrogate objective (policy loss) with :math:`ratio` as the probability ratio between the action under the current policy and the action under the previous policy: :math:`L^{clip}_{\pi_\theta} = \mathbb{E}[\min(A \; ratio, A \; \text{clip}(ratio, 1-c, 1+c))]` | :math:`\bullet \;` Compute the value loss :math:`L_{V_\phi}` as the mean squared error (MSE) between the predicted values :math:`V_{_{predicted}}` and the estimated returns :math:`R` | :math:`\bullet \;` Optimize the total loss :math:`L = L^{clip}_{\pi_\theta} - c_1 \, L_{V_\phi} + c_2 \, {L}_{entropy}` .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\pi_\theta`), value function approximator (:math:`V_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - values (:math:`V`), advantages (:math:`A`), returns (:math:`R`) | - log probabilities (:math:`logp`) | - loss (:math:`L`) .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`compute_gae(...)` | :blue:`def` :math:`\;f_{GAE} (r, d, V, V_{_{last}}') \;\rightarrow\; R, A:` | :math:`adv \leftarrow 0` | :math:`A \leftarrow \text{zeros}(r)` | :green:`# advantages computation` | **FOR** each reverse iteration :math:`i` up to the number of rows in :math:`r` **DO** | **IF** :math:`i` is not the last row of :math:`r` **THEN** | :math:`V_i' = V_{i+1}` | **ELSE** | :math:`V_i' \leftarrow V_{_{last}}'` | :math:`adv \leftarrow r_i - V_i \, +` :guilabel:`discount_factor` :math:`\neg d_i \; (V_i' \, -` :guilabel:`lambda` :math:`adv)` | :math:`A_i \leftarrow adv` | :green:`# returns computation` | :math:`R \leftarrow A + V` | :green:`# normalize advantages` | :math:`A \leftarrow \dfrac{A - \bar{A}}{A_\sigma + 10^{-8}}` | | :literal:`_update(...)` | :green:`# compute returns and advantages` | :math:`V_{_{last}}' \leftarrow V_\phi(s')` | :math:`R, A \leftarrow f_{GAE}(r, d, V, V_{_{last}}')` | :green:`# sample mini-batches from memory` | [[:math:`s, a, logp, V, R, A`]] :math:`\leftarrow` states, actions, log_prob, values, returns, advantages | :green:`# learning epochs` | **FOR** each learning epoch up to :guilabel:`learning_epochs` **DO** | :green:`# mini-batches loop` | **FOR** each mini-batch [:math:`s, a, logp, V, R, A`] up to :guilabel:`mini_batches` **DO** | :math:`logp' \leftarrow \pi_\theta(s, a)` | :green:`# compute approximate KL divergence` | :math:`ratio \leftarrow logp' - logp` | :math:`KL_{_{divergence}} \leftarrow \frac{1}{N} \sum_{i=1}^N ((e^{ratio} - 1) - ratio)` | :green:`# early stopping with KL divergence` | **IF** :math:`KL_{_{divergence}} >` :guilabel:`kl_threshold` **THEN** | **BREAK LOOP** | :green:`# compute entropy loss` | **IF** entropy computation is enabled **THEN** | :math:`{L}_{entropy} \leftarrow \, -` :guilabel:`entropy_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N \pi_{\theta_{entropy}}` | **ELSE** | :math:`{L}_{entropy} \leftarrow 0` | :green:`# compute policy loss` | :math:`ratio \leftarrow e^{logp' - logp}` | :math:`L_{_{surrogate}} \leftarrow A \; ratio` | :math:`L_{_{clipped\,surrogate}} \leftarrow A \; \text{clip}(ratio, 1 - c, 1 + c) \qquad` with :math:`c` as :guilabel:`ratio_clip` | :math:`L^{clip}_{\pi_\theta} \leftarrow - \frac{1}{N} \sum_{i=1}^N \min(L_{_{surrogate}}, L_{_{clipped\,surrogate}})` | :green:`# compute value loss` | :math:`V_{_{predicted}} \leftarrow V_\phi(s)` | **IF** :guilabel:`clip_predicted_values` is enabled **THEN** | :math:`V_{_{predicted}} \leftarrow V + \text{clip}(V_{_{predicted}} - V, -c, c) \qquad` with :math:`c` as :guilabel:`value_clip` | :math:`L_{V_\phi} \leftarrow` :guilabel:`value_loss_scale` :math:`\frac{1}{N} \sum_{i=1}^N (R - V_{_{predicted}})^2` | :green:`# optimization step` | reset :math:`\text{optimizer}_{\theta, \phi}` | :math:`\nabla_{\theta, \, \phi} (L^{clip}_{\pi_\theta} + {L}_{entropy} + L_{V_\phi})` | :math:`\text{clip}(\lVert \nabla_{\theta, \, \phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_{\theta, \phi}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_{\theta, \phi} (\text{optimizer}_{\theta, \phi})` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`ppo_rnn.py`) to maintain the readability of the standard implementation (:literal:`ppo.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-ppo] :end-before: [torch-end-ppo] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-ppo] :end-before: [jax-end-ppo] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-ppo-rnn] :end-before: [torch-end-ppo-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/ppo/ppo.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\blacksquare` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 1 stochastic (discrete or continuous) and 1 deterministic function approximator. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\pi_\theta(s)` - Policy - :literal:`"policy"` - observation - action - :ref:`Categorical <models_categorical>` / |br| :ref:`Multi-Categorical <models_multicategorical>` / |br| :ref:`Gaussian <models_gaussian>` / |br| :ref:`MultivariateGaussian <models_multivariate_gaussian>` * - :math:`V_\phi(s)` - Value - :literal:`"value"` - observation - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - for Policy and Value - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.ppo.PPO_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.ppo.PPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.ppo.PPO_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.ppo.PPO_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.ppo.PPO :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__
Toni-SM/skrl/docs/source/api/agents/td3.rst
Twin-Delayed DDPG (TD3) ======================= TD3 is a **model-free**, **deterministic** **off-policy** **actor-critic** algorithm (based on DDPG) that relies on double Q-learning, target policy smoothing and delayed policy updates to address the problems introduced by overestimation bias in actor-critic algorithms Paper: `Addressing Function Approximation Error in Actor-Critic Methods <https://arxiv.org/abs/1802.09477>`_ .. raw:: html <br><hr> Algorithm --------- .. raw:: html <br> Algorithm implementation ^^^^^^^^^^^^^^^^^^^^^^^^ | Main notation/symbols: | - policy function approximator (:math:`\mu_\theta`), critic function approximator (:math:`Q_\phi`) | - states (:math:`s`), actions (:math:`a`), rewards (:math:`r`), next states (:math:`s'`), dones (:math:`d`) | - loss (:math:`L`) .. raw:: html <br> Decision making """"""""""""""" | | :literal:`act(...)` | :math:`a \leftarrow \mu_\theta(s)` | :math:`noise \leftarrow` sample :guilabel:`noise` | :math:`scale \leftarrow (1 - \text{timestep} \;/` :guilabel:`timesteps` :math:`) \; (` :guilabel:`initial_scale` :math:`-` :guilabel:`final_scale` :math:`) \;+` :guilabel:`final_scale` | :math:`a \leftarrow \text{clip}(a + noise * scale, {a}_{Low}, {a}_{High})` .. raw:: html <br> Learning algorithm """""""""""""""""" | | :literal:`_update(...)` | :green:`# sample a batch from memory` | [:math:`s, a, r, s', d`] :math:`\leftarrow` states, actions, rewards, next_states, dones of size :guilabel:`batch_size` | :green:`# gradient steps` | **FOR** each gradient step up to :guilabel:`gradient_steps` **DO** | :green:`# target policy smoothing` | :math:`a' \leftarrow \mu_{\theta_{target}}(s')` | :math:`noise \leftarrow \text{clip}(` :guilabel:`smooth_regularization_noise` :math:`, -c, c) \qquad` with :math:`c` as :guilabel:`smooth_regularization_clip` | :math:`a' \leftarrow a' + noise` | :math:`a' \leftarrow \text{clip}(a', {a'}_{Low}, {a'}_{High})` | :green:`# compute target values` | :math:`Q_{1_{target}} \leftarrow Q_{{\phi 1}_{target}}(s', a')` | :math:`Q_{2_{target}} \leftarrow Q_{{\phi 2}_{target}}(s', a')` | :math:`Q_{_{target}} \leftarrow \text{min}(Q_{1_{target}}, Q_{2_{target}})` | :math:`y \leftarrow r \;+` :guilabel:`discount_factor` :math:`\neg d \; Q_{_{target}}` | :green:`# compute critic loss` | :math:`Q_1 \leftarrow Q_{\phi 1}(s, a)` | :math:`Q_2 \leftarrow Q_{\phi 2}(s, a)` | :math:`L_{Q_\phi} \leftarrow \frac{1}{N} \sum_{i=1}^N (Q_1 - y)^2 + \frac{1}{N} \sum_{i=1}^N (Q_2 - y)^2` | :green:`# optimization step (critic)` | reset :math:`\text{optimizer}_\phi` | :math:`\nabla_{\phi} L_{Q_\phi}` | :math:`\text{clip}(\lVert \nabla_{\phi} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\phi` | :green:`# delayed update` | **IF** it's time for the :guilabel:`policy_delay` update **THEN** | :green:`# compute policy (actor) loss` | :math:`a \leftarrow \mu_\theta(s)` | :math:`Q_1 \leftarrow Q_{\phi 1}(s, a)` | :math:`L_{\mu_\theta} \leftarrow - \frac{1}{N} \sum_{i=1}^N Q_1` | :green:`# optimization step (policy)` | reset :math:`\text{optimizer}_\theta` | :math:`\nabla_{\theta} L_{\mu_\theta}` | :math:`\text{clip}(\lVert \nabla_{\theta} \rVert)` with :guilabel:`grad_norm_clip` | step :math:`\text{optimizer}_\theta` | :green:`# update target networks` | :math:`\theta_{target} \leftarrow` :guilabel:`polyak` :math:`\theta + (1 \;-` :guilabel:`polyak` :math:`) \theta_{target}` | :math:`{\phi 1}_{target} \leftarrow` :guilabel:`polyak` :math:`{\phi 1} + (1 \;-` :guilabel:`polyak` :math:`) {\phi 1}_{target}` | :math:`{\phi 2}_{target} \leftarrow` :guilabel:`polyak` :math:`{\phi 2} + (1 \;-` :guilabel:`polyak` :math:`) {\phi 2}_{target}` | :green:`# update learning rate` | **IF** there is a :guilabel:`learning_rate_scheduler` **THEN** | step :math:`\text{scheduler}_\theta (\text{optimizer}_\theta)` | step :math:`\text{scheduler}_\phi (\text{optimizer}_\phi)` .. raw:: html <br> Usage ----- .. note:: Support for recurrent neural networks (RNN, LSTM, GRU and any other variant) is implemented in a separate file (:literal:`td3_rnn.py`) to maintain the readability of the standard implementation (:literal:`td3.py`) .. tabs:: .. tab:: Standard implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-td3] :end-before: [torch-end-td3] .. group-tab:: |_4| |jax| |_4| .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [jax-start-td3] :end-before: [jax-end-td3] .. tab:: RNN implementation .. tabs:: .. group-tab:: |_4| |pytorch| |_4| .. note:: When using recursive models it is necessary to override their :literal:`.get_specification()` method. Visit each model's documentation for more details .. literalinclude:: ../../snippets/agents_basic_usage.py :language: python :emphasize-lines: 2 :start-after: [torch-start-td3-rnn] :end-before: [torch-end-td3-rnn] .. raw:: html <br> Configuration and hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../skrl/agents/torch/td3/td3.py :language: python :start-after: [start-config-dict-torch] :end-before: [end-config-dict-torch] .. raw:: html <br> Spaces ^^^^^^ The implementation supports the following `Gym spaces <https://www.gymlibrary.dev/api/spaces>`_ / `Gymnasium spaces <https://gymnasium.farama.org/api/spaces>`_ .. list-table:: :header-rows: 1 * - Gym/Gymnasium spaces - .. centered:: Observation - .. centered:: Action * - Discrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - MultiDiscrete - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - Box - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\blacksquare` * - Dict - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> Models ^^^^^^ The implementation uses 6 deterministic function approximators. These function approximators (models) must be collected in a dictionary and passed to the constructor of the class under the argument :literal:`models` .. list-table:: :header-rows: 1 * - Notation - Concept - Key - Input shape - Output shape - Type * - :math:`\mu_\theta(s)` - Policy (actor) - :literal:`"policy"` - observation - action - :ref:`Deterministic <models_deterministic>` * - :math:`\mu_{\theta_{target}}(s)` - Target policy - :literal:`"target_policy"` - observation - action - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{\phi 1}(s, a)` - Q1-network (critic 1) - :literal:`"critic_1"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{\phi 2}(s, a)` - Q2-network (critic 2) - :literal:`"critic_2"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{{\phi 1}_{target}}(s, a)` - Target Q1-network - :literal:`"target_critic_1"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` * - :math:`Q_{{\phi 2}_{target}}(s, a)` - Target Q2-network - :literal:`"target_critic_2"` - observation + action - 1 - :ref:`Deterministic <models_deterministic>` .. raw:: html <br> Features ^^^^^^^^ Support for advanced features is described in the next table .. list-table:: :header-rows: 1 * - Feature - Support and remarks - .. centered:: |_4| |pytorch| |_4| - .. centered:: |_4| |jax| |_4| * - Shared model - \- - .. centered:: :math:`\square` - .. centered:: :math:`\square` * - RNN support - RNN, LSTM, GRU and any other variant - .. centered:: :math:`\blacksquare` - .. centered:: :math:`\square` .. raw:: html <br> API (PyTorch) ------------- .. autoclass:: skrl.agents.torch.td3.TD3_DEFAULT_CONFIG .. autoclass:: skrl.agents.torch.td3.TD3 :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. autoclass:: skrl.agents.torch.td3.TD3_RNN :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__ .. raw:: html <br> API (JAX) --------- .. autoclass:: skrl.agents.jax.td3.TD3_DEFAULT_CONFIG .. autoclass:: skrl.agents.jax.td3.TD3 :undoc-members: :show-inheritance: :private-members: _update :members: .. automethod:: __init__