Datasets:

Modalities:
Tabular
Text
Formats:
csv
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
pfilonenko's picture
Update README.md
410b758 verified
metadata
license: apache-2.0

Machine Learning for Two-Sample Testing under Right-Censored Data: A Simulation Study

The paper can be downloaded here.

About

This dataset is a supplement to the github repositiry and paper addressed to solve the two-sample problem under right-censored observations using Machine Learning. The problem statement can be formualted as H0: S1(t)=S2(t) versus H: S1(t)≠S_2(t) where S1(t) and S2(t) are survival functions of samples X1 and X2.

This dataset contains the synthetic data simulated by the Monte Carlo method and Inverse Transform Sampling.

Contents

Citing

@misc {petr_philonenko_2024,
    author       = { {Petr Philonenko} },
    title        = { ML_for_TwoSampleTesting (Revision a4ae672) },
    year         = 2024,
    url          = { https://huggingface.co/datasets/pfilonenko/ML_for_TwoSampleTesting },
    doi          = { 10.57967/hf/2978 },
    publisher    = { Hugging Face }
}

Repository

The files of this dataset have following structure:

data
├── 1_raw
│   └── two_sample_problem_dataset.tsv.gz    (121,986,000 rows)
├── 2_samples
│   ├── sample_train.tsv.gz                   (24,786,000 rows)
│   └── sample_simulation.tsv.gz              (97,200,000 rows)
└── 3_dataset_with_ML_pred
    └── dataset_with_ML_pred.tsv.gz           (97,200,000 rows)
  • two_sample_problem_dataset.tsv.gz is a raw simulated data. In the github repositiry, this file must be located in the ML_for_TwoSampleTesting/proposed_ml_for_two_sample_testing/data/1_raw/
  • sample_train.tsv.gz and sample_simulation.tsv.gz are train and test samples splited from the two_sample_problem_dataset.tsv.gz. In the github repositiry, these files must be located in the ML_for_TwoSampleTesting/proposed_ml_for_two_sample_testing/data/2_samples/
  • dataset_with_ML_pred.tsv.gz is the test sample supplemented by the predictions of the proposed ML-methods. In the github repositiry, this file must be located in the ML_for_TwoSampleTesting/proposed_ml_for_two_sample_testing/data/3_dataset_with_ML_pred/

Fields

In these files, there are following fields:

  1. PARAMETERS OF SAMPLE SIMULATION
  • iter is an iteration number of the Monte Carlo replication (in total, 37650);
  • sample is a type of the sample (train, val, test). This field is used to split dataset into train-validate-test samples for ML-model training;
  • H0_H1 is a true hypothesis: if H0, then samples X1 and X2 were simulated under S1(t)=S2(t); if H1, then samples X1 and X2 were simulated under S1(t)≠S2(t);
  • Hi is an alternative (H01-H09, H11-H19, or H21-H29) with competing hypotheses S1(t) and S2(t). Detailed description of these alternatives can be found in the paper;
  • n1 is the size of the sample 1;
  • n2 is the size of the sample 2;
  • perc is a set (expected) censoring rate for the samples 1 and 2;
  • real_perc1 is an actual censoring rate of the sample 1;
  • real_perc2 is an actual censoring rate of the sample 2;
  1. STATISTICS OF CLASSICAL TWO-SAMPLE TESTS
  • Peto_test is a statistic of the Peto and Peto’s Generalized Wilcoxon test (which is computed on two samples under parameters described above);
  • Gehan_test is a statistic of the Gehan’s Generalized Wilcoxon test;
  • logrank_test is a statistic of the logrank test;
  • CoxMantel_test is a statistic of the Cox-Mantel test;
  • BN_GPH_test is a statistic of the Bagdonavičius-Nikulin test (Generalized PH model);
  • BN_MCE_test is a statistic of the Bagdonavičius-Nikulin test (Multiple Crossing-Effect model);
  • BN_SCE_test is a statistic of the Bagdonavičius-Nikulin test (Single Crossing-Effect model);
  • Q_test is a statistic of the Q-test;
  • MAX_Value_test is a statistic of the Maximum Value test;
  • MIN3_test is a statistic of the MIN3 test;
  • WLg_logrank_test is a statistic of the Weighted Logrank test (weighted function: 'logrank');
  • WLg_TaroneWare_test is a statistic of the Weighted Logrank test (weighted function: 'Tarone-Ware');
  • WLg_Breslow_test is a statistic of the Weighted Logrank test (weighted function: 'Breslow');
  • WLg_PetoPrentice_test is a statistic of the Weighted Logrank test (weighted function: 'Peto-Prentice');
  • WLg_Prentice_test is a statistic of the Weighted Logrank test (weighted function: 'Prentice');
  • WKM_test is a statistic of the Weighted Kaplan-Meier test;
  1. STATISTICS OF THE PROPOSED ML-METHODS FOR TWO-SAMPLE PROBLEM
  • CatBoost_test is a statistic of the proposed ML-method based on the CatBoost framework;
  • XGBoost_test is a statistic of the proposed ML-method based on the XGBoost framework;
  • LightAutoML_test is a statistic of the proposed ML-method based on the LightAutoML (LAMA) framework;
  • SKLEARN_RF_test is a statistic of the proposed ML-method based on Random Forest (implemented in sklearn);
  • SKLEARN_LogReg_test is a statistic of the proposed ML-method based on Logistic Regression (implemented in sklearn);
  • SKLEARN_GB_test is a statistic of the proposed ML-method based on Gradient Boosting Machine (implemented in sklearn).

Simulation

For this dataset, the full source code (C++) is available here. It makes possible to reproduce and extend the simulation by the Monte Carlo method. Here, we present two fragments of the source code (main.cpp and simulation_for_machine_learning.h) which can help to understand the main steps of the simulation process.

main.cpp

#include"simulation_for_machine_learning.h"

// Select two-sample tests
vector<HomogeneityTest*> AllTests()
{
    vector<HomogeneityTest*> D;
    
    // ---- Classical Two-Sample tests for Uncensored Case ----
    //D.push_back( new HT_AndersonDarlingPetitt );
    //D.push_back( new HT_KolmogorovSmirnovTest );
    //D.push_back( new HT_LehmannRosenblatt );
    
    // ---- Two-Sample tests for Right-Censored Case ----
    D.push_back( new HT_Peto );
    D.push_back( new HT_Gehan );
    D.push_back( new HT_Logrank );
    
    D.push_back( new HT_BagdonaviciusNikulinGeneralizedCox );
    D.push_back( new HT_BagdonaviciusNikulinMultiple );
    D.push_back( new HT_BagdonaviciusNikulinSingle );

    D.push_back( new HT_QTest );			//Q-test
    D.push_back( new HT_MAX );				//Maximum Value test
    D.push_back( new HT_SynthesisTest );	//MIN3 test
    
    D.push_back( new HT_WeightedLogrank("logrank") );
    D.push_back( new HT_WeightedLogrank("Tarone–Ware") );
    D.push_back( new HT_WeightedLogrank("Breslow") );
    D.push_back( new HT_WeightedLogrank("Peto–Prentice") );
    D.push_back( new HT_WeightedLogrank("Prentice") );
    
    D.push_back( new HT_WeightedKaplanMeyer );
        
    return D;
}

// Example of two-sample testing using this code
void EXAMPLE_1(vector<HomogeneityTest*> &D)
{
    // load the samples
    Sample T1(".//samples//1Chemotherapy.txt");
    Sample T2(".//samples//2Radiotherapy.txt");

    // two-sample testing through selected tests
    for(int j=0; j<D.size(); j++)
    {
        char test_name[512];
        D[j]->TitleTest(test_name);
        

        double Sn = D[j]->CalculateStatistic(T1, T2);
        double pvalue = D[j]->p_value(T1, T2, 27000);  // 27k in accodring to the Kolmogorov's theorem => simulation error MAX||G(S|H0)-Gn(S|H0)|| <= 0.01

        printf("%s\n", &test_name);
        printf("\t Sn: %lf\n", Sn);
        printf("\t pv: %lf\n", pvalue);
        printf("--------------------------------");
    }
}

// Example of the dataset simulation for the proposed ML-method
void EXAMPLE_2(vector<HomogeneityTest*> &D)
{
    // Run dataset (train or test sample) simulation (results in ".//to_machine_learning_2024//")
    simulation_for_machine_learning sm(D);
}

// init point
int main()
{
    // Set the number of threads
    int k = omp_get_max_threads() - 1;
    omp_set_num_threads( k );

    // Select two-sample tests
    auto D = AllTests();
    
    // Example of two-sample testing using this code
    EXAMPLE_1(D);

    // Example of the dataset simulation for the proposed ML-method
    EXAMPLE_2(D);

    // Freeing memory
    ClearMemory(D);
    
    printf("The mission is completed.\n");
    return 0;
}

simulation_for_machine_learning.h

#ifndef simulation_for_machine_learning_H
#define simulation_for_machine_learning_H

#include"HelpFucntions.h"

// Object of the data simulation for training of the proposed ML-method
class simulation_for_machine_learning{
    private:
        // p-value computation using the Test and Test Statistic (Sn)
        double pvalue(double Sn, HomogeneityTest* Test)
        {
            auto f = Test->F( Sn );
            double pv = 0;
            if( Test->TestType().c_str() == "right" )
                pv = 1.0 - f;
            else
                if( Test->TestType().c_str() == "left" )
                    pv = f;
                else    // "double"
                    pv = 2.0*min( f, 1-f );
            return pv;
        }

        // Process of simulation
        void Simulation(int iter, vector<HomogeneityTest*> &D, int rank, mt19937boost Gw)
        {
            // preparation the file to save
            char file_to_save[512];
            sprintf(file_to_save,".//to_machine_learning_2024//to_machine_learning[rank=%d].csv", rank);

            // if it is the first iteration, the head of the table must be read
            if( iter == 0 )
            {
                FILE *ou = fopen(file_to_save,"w");
                fprintf(ou, "num;H0/H1;model;n1;n2;perc;real_perc1;real_perc2;");
                for(int i=0; i<D.size(); i++)
                {
                    char title_of_test[512];
                    D[i]->TitleTest(title_of_test);
                    fprintf(ou, "Sn [%s];p-value [%s];", title_of_test, title_of_test);
                }
                fprintf(ou, "\n");
                fclose(ou);
            }

            // Getting list of the Alternative Hypotheses (H01 - H27)
            vector<int> H;
            int l = 1;
            for(int i=100; i<940; i+=100)			// Groups of Alternative Hypotheses (I, II, III, IV, V, VI, VII, VIII, IX)
            {
                for(int j=10; j<40; j+=10)			// Alternative Hypotheses in the Group (e.g., H01, H02, H03 into the I and so on)
                    //for(int l=1; l<4; l++)		// various families of distribution of censoring time F^C(t)
                        H.push_back( 1000+i+j+l );
            }

            // Sample sizes
            vector<int> sample_sizes;
            sample_sizes.push_back( 20 );	// n1 = n2 = 20
            sample_sizes.push_back( 30 );	// n1 = n2 = 30
            sample_sizes.push_back( 50 );	// n1 = n2 = 50
            sample_sizes.push_back( 75 );	// n1 = n2 = 75
            sample_sizes.push_back( 100 );	// n1 = n2 = 100
            sample_sizes.push_back( 150 );	// n1 = n2 = 150
            sample_sizes.push_back( 200 );	// n1 = n2 = 200
            sample_sizes.push_back( 300 );	// n1 = n2 = 300
            sample_sizes.push_back( 500 );	// n1 = n2 = 500
            sample_sizes.push_back( 1000 );	// n1 = n2 = 1000

            // Simulation (Getting H, Simulation samples, Computation of the test statistics & Save to file)
            for(int i = 0; i<H.size(); i++)
            {
                int Hyp = H[i];
        
                if(rank == 0)
                    printf("\tH = %d\n",Hyp);

                for(int per = 0; per<51; per+=10)
                {
                    // ---- Getting Hi ----
                    AlternativeHypotheses H0_1(Hyp,1,0), H0_2(Hyp,2,0);
                    AlternativeHypotheses H1_1(Hyp,1,per), H1_2(Hyp,2,per);

                    for(int jj=0; jj<sample_sizes.size(); jj++)
                    {
                        int n = sample_sizes[jj];

                        // ---- Simulation samples ----
                        //competing hypothesis H0
                        Sample A0(*H0_1.D,n,Gw);
                        Sample B0(*H0_1.D,n,Gw);
                        if( per > 0 )
                        {
                            A0.CensoredTypeThird(*H1_1.D,Gw);
                            B0.CensoredTypeThird(*H1_1.D,Gw);
                        }

                        //competing hypothesis H1
                        Sample A1(*H0_1.D,n,Gw);
                        Sample B1(*H0_2.D,n,Gw);
                        if( per > 0 )
                        {
                            A1.CensoredTypeThird(*H1_1.D,Gw);
                            B1.CensoredTypeThird(*H1_2.D,Gw);
                        }

                        // ---- Computation of the test statistics & Save to file ----
                        //Sn and p-value computation under H0
                        FILE *ou = fopen(file_to_save, "a");
                        auto perc1 = A0.RealCensoredPercent();
                        auto perc2 = B0.RealCensoredPercent();
                        fprintf(ou,"%d;", iter);
                        fprintf(ou,"H0;");
                        fprintf(ou,"%d;", Hyp);
                        fprintf(ou,"%d;%d;", n,n);
                        fprintf(ou,"%d;%lf;%lf", per, perc1, perc2);
                        for(int j=0; j<D.size(); j++)
                        {
                            auto Sn_H0 = D[j]->CalculateStatistic(A0, B0);
                            auto pv_H0 = 0.0;	// skip computation (it prepares in ML-framework)
                            fprintf(ou, ";%lf;0", Sn_H0);
                        }
                        fprintf(ou, "\n");

                        //Sn and p-value computation under H1
                        perc1 = A1.RealCensoredPercent();
                        perc2 = B1.RealCensoredPercent();
                        fprintf(ou,"%d;", iter);
                        fprintf(ou,"H1;");
                        fprintf(ou,"%d;", Hyp);
                        fprintf(ou,"%d;%d;", n,n);
                        fprintf(ou,"%d;%lf;%lf", per, perc1, perc2);
                        for(int j=0; j<D.size(); j++)
                        {
                            auto Sn_H1 = D[j]->CalculateStatistic(A1, B1);
                            auto pv_H1 = 0.0;  // skip computation (it prepares in ML-framework)
                            fprintf(ou, ";%lf;0", Sn_H1);
                        }
                        fprintf(ou, "\n");
                        fclose( ou );
                    }
                }
            }
        }

    public:
        // Constructor of the class
        simulation_for_machine_learning(vector<HomogeneityTest*> &D)
        {
            int N = 37650;	// number of the Monte-Carlo replications
            #pragma omp parallel for
            for(int k=0; k<N; k++)
            {
                int rank = omp_get_thread_num();
                auto gen = GwMT19937[rank];
        
                if(rank == 0)
                    printf("\r%d", k);

                Simulation(k, D, rank, gen);
            }
        }
};

#endif