task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#ALGOL_68
ALGOL 68
print( ( 0 ^ 0, newline ) )  
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#J
J
parse=:parse_parser_ eval=:monad define 'gerund structure'=:y [email protected] )   coclass 'parser' classify=: '$()*/+-'&(((>:@#@[ # 2:) #: 2 ^ i.)&;:)   rules=: '' patterns=: ,"0 assert 1   addrule=: dyad define rules=: rules,;:x patterns=: patterns,+./@classify"1 y )   'Term' addrule '$()', '0', '+-',: '0' 'Factor' addrule '$()+-', '0', '*/',: '0' 'Parens' addrule '(', '*/+-0', ')',: ')*/+-0$' rules=: rules,;:'Move'   buildTree=: monad define words=: ;:'$',y queue=: classify '$',y stack=: classify '$$$$' tokens=: ]&.>i.#words tree=: '' while.(#queue)+.6<#stack do. rule=: rules {~ i.&1 patterns (*./"1)@:(+./"1) .(*."1)4{.stack rule`:6'' end. 'syntax' assert 1 0 1 1 1 1 -: {:"1 stack gerund=: literal&.> (<,'%') (I. words=<,'/')} words gerund;1{tree )   literal=:monad define ::] ".'t=.',y 5!:1<'t' )   Term=: Factor=: monad define stack=: ({.stack),(classify '0'),4}.stack tree=: ({.tree),(<1 2 3{tree),4}.tree )   Parens=: monad define stack=: (1{stack),3}.stack tree=: (1{tree),3}.tree )   Move=: monad define 'syntax' assert 0<#queue stack=: ({:queue),stack queue=: }:queue tree=: ({:tokens),tree tokens=: }:tokens )   parse=:monad define tmp=: conew 'parser' r=: buildTree__tmp y coerase tmp r )
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Nim
Nim
import math   import gintro/[glib, gobject, gtk, gio, cairo]   const   Width = 601 Height = 601   Limit = 12 * math.PI   Origin = (x: float(Width div 2), y: float(Height div 2)) B = floor((Width div 2) / Limit)   #---------------------------------------------------------------------------------------------------   proc draw(area: DrawingArea; context: Context) = ## Draw the spiral.   var theta = 0.0 var delta = 0.01 var (prevx, prevy) = Origin   # Clear the region. context.moveTo(0, 0) context.setSource(0.0, 0.0, 0.0) context.paint()   # Draw the spiral. context.setSource(1.0, 1.0, 0.0) context.moveTo(Origin.x, Origin.y) while theta < Limit: let r = B * theta let x = Origin.x + r * cos(theta) # X-coordinate on drawing area. let y = Origin.y + r * sin(theta) # Y-coordinate on drawing area. context.lineTo(x, y) context.stroke() # Set data for next round. context.moveTo(x, y) prevx = x prevy = y theta += delta   #---------------------------------------------------------------------------------------------------   proc onDraw(area: DrawingArea; context: Context; data: pointer): bool = ## Callback to draw/redraw the drawing area contents.   area.draw(context) result = true   #---------------------------------------------------------------------------------------------------   proc activate(app: Application) = ## Activate the application.   let window = app.newApplicationWindow() window.setSizeRequest(Width, Height) window.setTitle("Archimedean spiral")   # Create the drawing area. let area = newDrawingArea() window.add(area)   # Connect the "draw" event to the callback to draw the spiral. discard area.connect("draw", ondraw, pointer(nil))   window.showAll()   #———————————————————————————————————————————————————————————————————————————————————————————————————   let app = newApplication(Application, "Rosetta.spiral") discard app.connect("activate", activate) discard app.run()
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#PARI.2FGP
PARI/GP
  \\ The Archimedean spiral \\ ArchiSpiral() - Where: lps is a number of loops, c is a direction 0/1 \\ (counter-clockwise/clockwise). 6/6/16 aev \\ Note: cartes2() can be found here on \\ http://rosettacode.org/wiki/Polyspiral#PARI.2FGP page. ArchiSpiral(size,lps,c=0)={ my(a=.0,ai=.1,r=.0,ri=.1,as=lps*2*Pi,n=as/ai,x,y,vc,vx=List(.0),vy=vx); if(c<0||c>1, c=0); if(c, ai*=-1); print(" *** The Archimedean spiral: size=",size," loops=",lps," c=",c); for(i=1, n, vc=cartes2(r,a); x=vc[1]; y=vc[2]; listput(vx,x); listput(vy,y); r+=ri; a+=ai; );\\fend i plothraw(Vec(vx),Vec(vy)); } {\\ Executing: ArchiSpiral(640,5); \\ArchiSpiral1.png ArchiSpiral(640,5,1); \\ArchiSpiral2.png }  
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Arturo
Arturo
isOpen: map 1..101 => false   loop 1..100 'pass -> loop (range.step:pass pass 100) 'door [ isOpen\[door]: not? isOpen\[door] ]   loop 1..100 'x -> if isOpen\[x] [ print ["Door" x "is open."] ]
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#COBOL
COBOL
IDENTIFICATION DIVISION. PROGRAM-ID. arrays.   DATA DIVISION. WORKING-STORAGE SECTION. 01 fixed-length-table. 03 fixed-table-elt PIC X OCCURS 5 TIMES.   01 table-length PIC 9(5) VALUE 1. 01 variable-length-table. 03 variable-table-elt PIC X OCCURS 1 TO 5 TIMES DEPENDING ON table-length.   01 initial-value-area. 03 initial-values. 05 FILLER PIC X(10) VALUE "One". 05 FILLER PIC X(10) VALUE "Two". 05 FILLER PIC X(10) VALUE "Three". 03 initial-value-table REDEFINES initial-values. 05 initial-table-elt PIC X(10) OCCURS 3 TIMES.   01 indexed-table. 03 indexed-elt PIC X OCCURS 5 TIMES INDEXED BY table-index.   PROCEDURE DIVISION. *> Assigning the contents of an entire table. MOVE "12345" TO fixed-length-table   *> Indexing an array (using an index) MOVE 1 TO table-index MOVE "1" TO indexed-elt (table-index)   *> Pushing a value into a variable-length table. ADD 1 TO table-length MOVE "1" TO variable-table-elt (2)   GOBACK .
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#J
J
x=: 1j1 y=: 3.14159j1.2 x+y NB. addition 4.14159j2.2 x*y NB. multiplication 1.94159j4.34159  %x NB. inversion 0.5j_0.5 -x NB. negation _1j_1 +x NB. (complex) conjugation 1j_1  
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Lingo
Lingo
-- parent script "Frac" property num property denom   ---------------------------------------- -- @constructor -- @param {integer} numerator -- @param {integer} [denominator=1] ---------------------------------------- on new (me, numerator, denominator) if voidP(denominator) then denominator = 1 if denominator=0 then return VOID -- rule out division by zero g = me._gcd(numerator, denominator) if g<>0 then numerator = numerator/g denominator = denominator/g else numerator = 0 denominator = 1 end if if denominator<0 then numerator = -numerator denominator = -denominator end if me.num = numerator me.denom = denominator return me end   ---------------------------------------- -- Returns string representation "<num>/<denom>" -- @return {string} ---------------------------------------- on toString (me) return me.num&"/"&me.denom end   ---------------------------------------- -- ---------------------------------------- on _gcd (me, a, b) if a = 0 then return b if b = 0 then return a if a > b then return me._gcd(b, a mod b) return me._gcd(a, b mod a) end
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Nim
Nim
import math   proc agm(a, g: float,delta: float = 1.0e-15): float = var aNew: float = 0 aOld: float = a gOld: float = g while (abs(aOld - gOld) > delta): aNew = 0.5 * (aOld + gOld) gOld = sqrt(aOld * gOld) aOld = aNew result = aOld   echo agm(1.0,1.0/sqrt(2.0))
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Oberon-2
Oberon-2
  MODULE Agm; IMPORT Math := LRealMath, Out;   CONST epsilon = 1.0E-15;   PROCEDURE Of*(a,g: LONGREAL): LONGREAL; VAR na,ng,og: LONGREAL; BEGIN na := a; ng := g; LOOP og := ng; ng := Math.sqrt(na * ng); na := (na + og) * 0.5; IF na - ng <= epsilon THEN EXIT END END; RETURN ng; END Of;   BEGIN Out.LongReal(Of(1,1 / Math.sqrt(2)),0,0);Out.Ln END Agm.  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#APL
APL
0*0 1
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#AppleScript
AppleScript
return 0 ^ 0
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Java
Java
import java.util.Stack;   public class ArithmeticEvaluation {   public interface Expression { BigRational eval(); }   public enum Parentheses {LEFT}   public enum BinaryOperator { ADD('+', 1), SUB('-', 1), MUL('*', 2), DIV('/', 2);   public final char symbol; public final int precedence;   BinaryOperator(char symbol, int precedence) { this.symbol = symbol; this.precedence = precedence; }   public BigRational eval(BigRational leftValue, BigRational rightValue) { switch (this) { case ADD: return leftValue.add(rightValue); case SUB: return leftValue.subtract(rightValue); case MUL: return leftValue.multiply(rightValue); case DIV: return leftValue.divide(rightValue); } throw new IllegalStateException(); }   public static BinaryOperator forSymbol(char symbol) { for (BinaryOperator operator : values()) { if (operator.symbol == symbol) { return operator; } } throw new IllegalArgumentException(String.valueOf(symbol)); } }   public static class Number implements Expression { private final BigRational number;   public Number(BigRational number) { this.number = number; }   @Override public BigRational eval() { return number; }   @Override public String toString() { return number.toString(); } }   public static class BinaryExpression implements Expression { public final Expression leftOperand; public final BinaryOperator operator; public final Expression rightOperand;   public BinaryExpression(Expression leftOperand, BinaryOperator operator, Expression rightOperand) { this.leftOperand = leftOperand; this.operator = operator; this.rightOperand = rightOperand; }   @Override public BigRational eval() { BigRational leftValue = leftOperand.eval(); BigRational rightValue = rightOperand.eval(); return operator.eval(leftValue, rightValue); }   @Override public String toString() { return "(" + leftOperand + " " + operator.symbol + " " + rightOperand + ")"; } }   private static void createNewOperand(BinaryOperator operator, Stack<Expression> operands) { Expression rightOperand = operands.pop(); Expression leftOperand = operands.pop(); operands.push(new BinaryExpression(leftOperand, operator, rightOperand)); }   public static Expression parse(String input) { int curIndex = 0; boolean afterOperand = false; Stack<Expression> operands = new Stack<>(); Stack<Object> operators = new Stack<>(); while (curIndex < input.length()) { int startIndex = curIndex; char c = input.charAt(curIndex++);   if (Character.isWhitespace(c)) continue;   if (afterOperand) { if (c == ')') { Object operator; while (!operators.isEmpty() && ((operator = operators.pop()) != Parentheses.LEFT)) createNewOperand((BinaryOperator) operator, operands); continue; } afterOperand = false; BinaryOperator operator = BinaryOperator.forSymbol(c); while (!operators.isEmpty() && (operators.peek() != Parentheses.LEFT) && (((BinaryOperator) operators.peek()).precedence >= operator.precedence)) createNewOperand((BinaryOperator) operators.pop(), operands); operators.push(operator); continue; }   if (c == '(') { operators.push(Parentheses.LEFT); continue; }   afterOperand = true; while (curIndex < input.length()) { c = input.charAt(curIndex); if (((c < '0') || (c > '9')) && (c != '.')) break; curIndex++; } operands.push(new Number(BigRational.valueOf(input.substring(startIndex, curIndex)))); }   while (!operators.isEmpty()) { Object operator = operators.pop(); if (operator == Parentheses.LEFT) throw new IllegalArgumentException(); createNewOperand((BinaryOperator) operator, operands); }   Expression expression = operands.pop(); if (!operands.isEmpty()) throw new IllegalArgumentException(); return expression; }   public static void main(String[] args) { String[] testExpressions = { "2+3", "2+3/4", "2*3-4", "2*(3+4)+5/6", "2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10", "2*-3--4+-.25"}; for (String testExpression : testExpressions) { Expression expression = parse(testExpression); System.out.printf("Input: \"%s\", AST: \"%s\", value=%s%n", testExpression, expression, expression.eval()); } } }
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Perl
Perl
use Imager; use constant PI => 3.14159265;   my ($w, $h) = (400, 400); my $img = Imager->new(xsize => $w, ysize => $h);   for ($theta = 0; $theta < 52*PI; $theta += 0.025) { $x = $w/2 + $theta * cos($theta/PI); $y = $h/2 + $theta * sin($theta/PI); $img->setpixel(x => $x, y => $y, color => '#FF00FF'); }   $img->write(file => 'Archimedean-spiral.png');  
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Phix
Phix
-- -- demo\rosetta\Archimedean_spiral.exw -- =================================== -- with javascript_semantics include pGUI.e Ihandle dlg, canvas cdCanvas cddbuffer, cdcanvas function redraw_cb(Ihandle /*ih*/) integer {w, h} = IupGetIntInt(canvas, "DRAWSIZE"), a = 0, b = 5, cx = floor(w/2), cy = floor(h/2) cdCanvasActivate(cddbuffer) for deg=0 to 360*7 do atom rad = deg*PI/180, r = rad*b + a integer x = cx + floor(r*cos(rad)), y = cy + floor(r*sin(rad)) cdCanvasPixel(cddbuffer, x, y, #00FF00) end for cdCanvasFlush(cddbuffer) return IUP_DEFAULT end function function map_cb(Ihandle ih) cdcanvas = cdCreateCanvas(CD_IUP, ih) cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas) cdCanvasSetBackground(cddbuffer, CD_WHITE) cdCanvasSetForeground(cddbuffer, CD_RED) return IUP_DEFAULT end function procedure main() IupOpen() canvas = IupCanvas("RASTERSIZE=500x500") -- initial size IupSetCallbacks(canvas, {"MAP_CB", Icallback("map_cb"), "ACTION", Icallback("redraw_cb")}) dlg = IupDialog(canvas,`TITLE="Archimedean spiral"`) IupShow(dlg) IupSetAttribute(canvas, "RASTERSIZE", NULL) -- release the minimum limitation if platform()!=JS then IupMainLoop() IupClose() end if end procedure main()
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Astro
Astro
var doors = falses(100)   for a in 1..100: for b in a..a..100: doors[b] = not doors[b]   for a in 1..100: print "Door $a is ${(doors[a]) ? 'open.': 'closed.'}"  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#CoffeeScript
CoffeeScript
array1 = [] array1[0] = "Dillenidae" array1[1] = "animus" array1[2] = "Kona" alert "Elements of array1: " + array1 # Dillenidae,animus,Kona   array2 = ["Cepphus", "excreta", "Gansu"] alert "Value of array2[1]: " + array2[1] # excreta
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Java
Java
public class Complex { public final double real; public final double imag;   public Complex() { this(0, 0); }   public Complex(double r, double i) { real = r; imag = i; }   public Complex add(Complex b) { return new Complex(this.real + b.real, this.imag + b.imag); }   public Complex mult(Complex b) { // FOIL of (a+bi)(c+di) with i*i = -1 return new Complex(this.real * b.real - this.imag * b.imag, this.real * b.imag + this.imag * b.real); }   public Complex inv() { // 1/(a+bi) * (a-bi)/(a-bi) = 1/(a+bi) but it's more workable double denom = real * real + imag * imag; return new Complex(real / denom, -imag / denom); }   public Complex neg() { return new Complex(-real, -imag); }   public Complex conj() { return new Complex(real, -imag); }   @Override public String toString() { return real + " + " + imag + " * i"; }   public static void main(String[] args) { Complex a = new Complex(Math.PI, -5); //just some numbers Complex b = new Complex(-1, 2.5); System.out.println(a.neg()); System.out.println(a.add(b)); System.out.println(a.inv()); System.out.println(a.mult(b)); System.out.println(a.conj()); } }
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Lua
Lua
function gcd(a,b) return a == 0 and b or gcd(b % a, a) end   do local function coerce(a, b) if type(a) == "number" then return rational(a, 1), b end if type(b) == "number" then return a, rational(b, 1) end return a, b end rational = setmetatable({ __add = function(a, b) local a, b = coerce(a, b) return rational(a.num * b.den + a.den * b.num, a.den * b.den) end, __sub = function(a, b) local a, b = coerce(a, b) return rational(a.num * b.den - a.den * b.num, a.den * b.den) end, __mul = function(a, b) local a, b = coerce(a, b) return rational(a.num * b.num, a.den * b.den) end, __div = function(a, b) local a, b = coerce(a, b) return rational(a.num * b.den, a.den * b.num) end, __pow = function(a, b) if type(a) == "number" then return a ^ (b.num / b.den) end return rational(a.num ^ b, a.den ^ b) --runs into a problem if these aren't integers end, __concat = function(a, b) if getmetatable(a) == rational then return a.num .. "/" .. a.den .. b end return a .. b.num .. "/" .. b.den end, __unm = function(a) return rational(-a.num, -a.den) end}, { __call = function(z, a, b) return setmetatable({num = a / gcd(a, b),den = b / gcd(a, b)}, z) end} ) end   print(rational(2, 3) + rational(3, 5) - rational(1, 10) .. "") --> 7/6 print((rational(4, 5) * rational(5, 9)) ^ rational(1, 2) .. "") --> 2/3 print(rational(45, 60) / rational(5, 2) .. "") --> 3/10 print(5 + rational(1, 3) .. "") --> 16/3   function findperfs(n) local ret = {} for i = 1, n do sum = rational(1, i) for fac = 2, i^.5 do if i % fac == 0 then sum = sum + rational(1, fac) + rational(fac, i) end end if sum.den == sum.num then ret[#ret + 1] = i end end return table.concat(ret, '\n') end print(findperfs(2^19))
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Objeck
Objeck
  class ArithmeticMean { function : Amg(a : Float, g : Float) ~ Nil { a1 := a; g1 := g; while((a1-g1)->Abs() >= Float->Power(10, -14)) { tmp := (a1+g1)/2.0; g1 := Float->SquareRoot(a1*g1); a1 := tmp; }; a1->PrintLine(); }   function : Main(args : String[]) ~ Nil { Amg(1,1/Float->SquareRoot(2)); } }  
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#OCaml
OCaml
let rec agm a g tol = if tol > abs_float (a -. g) then a else agm (0.5*.(a+.g)) (sqrt (a*.g)) tol   let _ = Printf.printf "%.16f\n" (agm 1.0 (sqrt 0.5) 1e-15)
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Applesoft_BASIC
Applesoft BASIC
]? 0^0 1
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Arturo
Arturo
print 0 ^ 0 print 0.0 ^ 0
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#JavaScript
JavaScript
function evalArithmeticExp(s) { s = s.replace(/\s/g,'').replace(/^\+/,''); var rePara = /\([^\(\)]*\)/; var exp = s.match(rePara);   while (exp = s.match(rePara)) { s = s.replace(exp[0], evalExp(exp[0])); } return evalExp(s);   function evalExp(s) { s = s.replace(/[\(\)]/g,''); var reMD = /\d+\.?\d*\s*[\*\/]\s*[+-]?\d+\.?\d*/; var reM = /\*/; var reAS = /-?\d+\.?\d*\s*[\+-]\s*[+-]?\d+\.?\d*/; var reA = /\d\+/; var exp;   while (exp = s.match(reMD)) { s = exp[0].match(reM)? s.replace(exp[0], multiply(exp[0])) : s.replace(exp[0], divide(exp[0])); }   while (exp = s.match(reAS)) { s = exp[0].match(reA)? s.replace(exp[0], add(exp[0])) : s.replace(exp[0], subtract(exp[0])); }   return '' + s;   function multiply(s, b) { b = s.split('*'); return b[0] * b[1]; }   function divide(s, b) { b = s.split('/'); return b[0] / b[1]; }   function add(s, b) { s = s.replace(/^\+/,'').replace(/\++/,'+'); b = s.split('+'); return Number(b[0]) + Number(b[1]); }   function subtract(s, b) { s = s.replace(/\+-|-\+/g,'-');   if (s.match(/--/)) { return add(s.replace(/--/,'+')); } b = s.split('-'); return b.length == 3? -1 * b[1] - b[2] : b[0] - b[1]; } } }
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Processing
Processing
float x, y; float theta; float rotation;   void setup() { size(300, 300); theta = 0; rotation = 0.1; background(255); }   void draw() { translate(width/2.0, height/2.0); x = theta*cos(theta/PI); y = theta*sin(theta/PI); point(x, y); theta = theta + rotation; // check restart if (x>width/2.0) frameCount=-1; }
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#PureBasic
PureBasic
#MAXLOOP = 7*360 #XCENTER = 640/2 #YCENTER = 480/2 #SCALAR = 200   If OpenWindow(0, 100, 200, 640, 480, "Archimedean spiral") If CreateImage(0, 640, 480,24,RGB(255,255,255)) If StartDrawing(ImageOutput(0)) i.f=0.0 While i<=#MAXLOOP x.f=#XCENTER+Cos(Radian(i))*#SCALAR*i/#MAXLOOP y.f=#YCENTER+Sin(Radian(i))*#SCALAR*i/#MAXLOOP Plot(x,y,RGB(50,50,50)) i+0.05 Wend StopDrawing() EndIf EndIf ImageGadget(0, 0, 0, 0, 0, ImageID(0)) Repeat : Event = WaitWindowEvent() : Until Event = #PB_Event_CloseWindow EndIf End
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#11l
11l
V n = 20 F z(=n) I n == 0 R [0] V fib = [2, 1] L fib[0] < n fib = [sum(fib[0.<2])] [+] fib [Int] dig L(f) fib I f <= n dig [+]= 1 n -= f E dig [+]= 0 R I dig[0] {dig} E dig[1..]   L(i) 0..n print(‘#3: #8’.format(i, z(i).map(d -> String(d)).join(‘’)))
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Asymptote
Asymptote
for(int i = 1; i < 100; ++i) { if (i % i^2 < 11) { write("Door ", i^2, suffix=none); write(" is open"); } }
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#ColdFusion
ColdFusion
<cfset arr1 = ArrayNew(1)>
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#JavaScript
JavaScript
function Complex(r, i) { this.r = r; this.i = i; }   Complex.add = function() { var num = arguments[0];   for(var i = 1, ilim = arguments.length; i < ilim; i += 1){ num.r += arguments[i].r; num.i += arguments[i].i; }   return num; }   Complex.multiply = function() { var num = arguments[0];   for(var i = 1, ilim = arguments.length; i < ilim; i += 1){ num.r = (num.r * arguments[i].r) - (num.i * arguments[i].i); num.i = (num.i * arguments[i].r) - (num.r * arguments[i].i); }   return num; }   Complex.negate = function (z) { return new Complex(-1*z.r, -1*z.i); }   Complex.invert = function(z) { var denom = Math.pow(z.r,2) + Math.pow(z.i,2); return new Complex(z.r/denom, -1*z.i/denom); }   Complex.conjugate = function(z) { return new Complex(z.r, -1*z.i); }   // BONUSES!     Complex.prototype.toString = function() { return this.r === 0 && this.i === 0 ? "0" : (this.r !== 0 ? this.r : "") + ((this.r !== 0 || this.i < 0) && this.i !== 0 ? (this.i > 0 ? "+" : "-") : "" ) + ( this.i !== 0 ? Math.abs(this.i) + "i" : "" ); }   Complex.prototype.getMod = function() { return Math.sqrt( Math.pow(this.r,2) , Math.pow(this.i,2) ) }
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#M2000_Interpreter
M2000 Interpreter
  Class Rational { \\ this is a compact version for this task numerator as decimal, denominator as decimal gcd=lambda->0 lcm=lambda->0 operator "+" { Read l denom=.lcm(l.denominator, .denominator) .numerator<=denom/l.denominator*l.numerator+denom/.denominator*.numerator if .numerator==0 then denom=1 .denominator<=denom } Group Real { value { link parent numerator, denominator to n, d =n/d } } Group ToString$ { value { link parent numerator, denominator to n, d =Str$(n)+"/"+Str$(d,"") } } class: Module Rational (.numerator, .denominator) { if .denominator<=0 then Error "Positive only denominator" gcd1=lambda (a as decimal, b as decimal) -> { if a<b then swap a,b g=a mod b while g { a=b:b=g: g=a mod b } =abs(b) } .gcd<=gcd1 .lcm<=lambda gcd=gcd1 (a as decimal, b as decimal) -> { =a/gcd(a,b)*b } } } sum=rational(1, 1) onediv=rational(1,1) divcand=rational(1,1) Profiler For sum.denominator= 2 to 2**15 { divcand.denominator=sum.denominator For onediv.denominator=2 to sqrt(sum.denominator) { if sum.denominator mod onediv.denominator = 0 then { divcand.numerator=onediv.denominator sum=sum+onediv+divcand } } if sum.real=1 then Print sum.denominator;" is perfect" sum.numerator=1 } Print timecount  
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Oforth
Oforth
: agm \ a b -- m while( 2dup <> ) [ 2dup + 2 / -rot * sqrt ] drop ;
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#OOC
OOC
  import math // import for sqrt() function   amean: func (x: Double, y: Double) -> Double { (x + y) / 2. } gmean: func (x: Double, y: Double) -> Double { sqrt(x * y) } agm: func (a: Double, g: Double) -> Double { while ((a - g) abs() > pow(10, -12)) { (a1, g1) := (amean(a, g), gmean(a, g)) (a, g) = (a1, g1) } a }   main: func { "%.16f" printfln(agm(1., sqrt(0.5))) }  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Asymptote
Asymptote
write("0 ^ 0 = ", 0 ** 0);
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#AutoHotkey
AutoHotkey
MsgBox % 0 ** 0
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#jq
jq
def star(E): (E | star(E)) // .; def plus(E): E | (plus(E) // . ); def optional(E): E // .; def amp(E): . as $in | E | $in; def neg(E): select( [E] == [] );
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Jsish
Jsish
/* Arithmetic evaluation, in Jsish */ function evalArithmeticExp(s) { s = s.replace(/\s/g,'').replace(/^\+/,''); var rePara = /\([^\(\)]*\)/; var exp;   function evalExp(s) { s = s.replace(/[\(\)]/g,''); var reMD = /[0-9]+\.?[0-9]*\s*[\*\/]\s*[+-]?[0-9]+\.?[0-9]*/; var reM = /\*/; var reAS = /-?[0-9]+\.?[0-9]*\s*[\+-]\s*[+-]?[0-9]+\.?[0-9]*/; var reA = /[0-9]\+/; var exp;   function multiply(s, b=0) { b = s.split('*'); return b[0] * b[1]; }   function divide(s, b=0) { b = s.split('/'); return b[0] / b[1]; }   function add(s, b=0) { s = s.replace(/^\+/,'').replace(/\++/,'+'); b = s.split('+'); return Number(b[0]) + Number(b[1]); }   function subtract(s, b=0) { s = s.replace(/\+-|-\+/g,'-');   if (s.match(/--/)) { return add(s.replace(/--/,'+')); } b = s.split('-'); return b.length == 3 ? -1 * b[1] - b[2] : b[0] - b[1]; }   while (exp = s.match(reMD)) { s = exp[0].match(reM) ? s.replace(exp[0], multiply(exp[0]).toString()) : s.replace(exp[0], divide(exp[0]).toString()); }   while (exp = s.match(reAS)) { s = exp[0].match(reA)? s.replace(exp[0], add(exp[0]).toString()) : s.replace(exp[0], subtract(exp[0]).toString()); }   return '' + s; }   while (exp = s.match(rePara)) { s = s.replace(exp[0], evalExp(exp[0])); }   return evalExp(s); }   if (Interp.conf('unitTest')) { ; evalArithmeticExp('2+3'); ; evalArithmeticExp('2+3/4'); ; evalArithmeticExp('2*3-4'); ; evalArithmeticExp('2*(3+4)+5/6'); ; evalArithmeticExp('2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10'); ; evalArithmeticExp('2*-3--4+-0.25'); }   /* =!EXPECTSTART!= evalArithmeticExp('2+3') ==> 5 evalArithmeticExp('2+3/4') ==> 2.75 evalArithmeticExp('2*3-4') ==> 2 evalArithmeticExp('2*(3+4)+5/6') ==> 14.8333333333333 evalArithmeticExp('2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10') ==> 7000 evalArithmeticExp('2*-3--4+-0.25') ==> -2.25 =!EXPECTEND!= */
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Python
Python
from turtle import * from math import * color("blue") down() for i in range(200): t = i / 20 * pi x = (1 + 5 * t) * cos(t) y = (1 + 5 * t) * sin(t) goto(x, y) up() done()
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Quackery
Quackery
[ $ "turtleduck.qky" loadfile ] now! turtle 0 n->v 900 times [ 2dup walk 1 20 v+ 1 36 turn ] 2drop
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#R
R
with(list(s=seq(0, 10 * pi, length.out=500)), plot((1 + s) * exp(1i * s), type="l"))
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#360_Assembly
360 Assembly
* Zeckendorf number representation 04/04/2017 ZECKEN CSECT USING ZECKEN,R13 base register B 72(R15) skip savearea DC 17F'0' savearea STM R14,R12,12(R13) save previous context ST R13,4(R15) link backward ST R15,8(R13) link forward LR R13,R15 set addressability LA R6,0 i=0 DO WHILE=(C,R6,LE,=A(20)) do i=0 to 20 MVC PG,=CL80'xx : ' init buffer LA R10,PG pgi=0 XDECO R6,XDEC i MVC 0(2,R10),XDEC+10 output i LA R10,5(R10) pgi+=5 MVC FIB,=A(1) fib(1)=1 MVC FIB+4,=A(2) fib(2)=2 LA R7,2 j=2 LR R1,R7 j SLA R1,2 @fib(j) DO WHILE=(C,R6,GT,FIB-4(R1) do while fib(j)<i LA R7,1(R7) j++ LR R1,R7 j SLA R1,2 ~ L R2,FIB-8(R1) fib(j-1) A R2,FIB-12(R1) fib(j-2) ST R2,FIB-4(R1) fib(j)=fib(j-1)+fib(j-2) LR R1,R7 j SLA R1,2 @fib(j) ENDDO , enddo j LR R8,R6 k=i MVI BB,X'00' bb=false DO WHILE=(C,R7,GE,=A(1)) do j=j to 1 by -1 LR R1,R7 j SLA R1,2 ~ IF C,R8,GE,FIB-4(R1) THEN if fib(j)<=k then MVI BB,X'01' bb=true MVC 0(1,R10),=C'1' output '1' LA R10,1(R10) pgi+=1 LR R1,R7 j SLA R1,2 ~ S R8,FIB-4(R1) k=k-fib(j) ELSE , else IF CLI,BB,EQ,X'01' THEN if bb then MVC 0(1,R10),=C'0' output '0' LA R10,1(R10) pgi+=1 ENDIF , endif ENDIF , endif BCTR R7,0 j-- ENDDO , enddo j IF CLI,BB,NE,X'01' THEN if not bb then MVC 0(1,R10),=C'0' output '0' ENDIF , endif XPRNT PG,L'PG print buffer LA R6,1(R6) i++ ENDDO , enddo i L R13,4(0,R13) restore previous savearea pointer LM R14,R12,12(R13) restore previous context XR R15,R15 rc=0 BR R14 exit FIB DS 32F Fibonnacci table BB DS X flag PG DS CL80 buffer XDEC DS CL12 temp YREGS END ZECKEN
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Action.21
Action!
PROC Encode(INT x CHAR ARRAY s) INT ARRAY fib(22)= [1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657] INT i BYTE append   IF x=0 THEN s(0)=1 s(1)='0 RETURN FI   i=21 append=0 s(0)=0 WHILE i>=0 DO IF x>=fib(i) THEN x==-fib(i) s(0)==+1 s(s(0))='1 append=1 ELSEIF append THEN s(0)==+1 s(s(0))='0 FI i==-1 OD RETURN   PROC Main() INT i CHAR ARRAY s(10)   FOR i=0 TO 20 DO Encode(i,s) PrintF("%I -> %S%E",i,s) OD RETURN
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#ATS
ATS
  #include "share/atspre_staload.hats"   implement main0((*void*)) = let // var A = @[bool][100](false) val A = $UNSAFE.cast{arrayref(bool,100)}(addr@A) // fnx loop ( pass: intGte(0) ) : void = if pass < 100 then loop2 (pass, pass) // end of [if] and loop2 ( pass: natLt(100), door: intGte(0) ) : void = if door < 100 then (A[door] := ~A[door]; loop2(pass, door+pass+1)) else loop(pass+1) // end of [if] // fun loop3 ( door: intGte(0) ) : void = if door < 100 then ( println!("door #", door+1, " is ", (if A[door] then "open" else "closed"): string, "."); loop3(door+1) ) (* end of [then] *) // end of [if] // in loop(0); loop3 (0) end // end of [main0]  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Common_Lisp
Common Lisp
(let ((array (make-array 10))) (setf (aref array 0) 1 (aref array 1) 3) (print array))
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#jq
jq
def real(z): if (z|type) == "number" then z else z[0] end;   def imag(z): if (z|type) == "number" then 0 else z[1] end;   def plus(x; y): if (x|type) == "number" then if (y|type) == "number" then [ x+y, 0 ] else [ x + y[0], y[1]] end elif (y|type) == "number" then plus(y;x) else [ x[0] + y[0], x[1] + y[1] ] end;   def multiply(x; y): if (x|type) == "number" then if (y|type) == "number" then [ x*y, 0 ] else [x * y[0], x * y[1]] end elif (y|type) == "number" then multiply(y;x) else [ x[0] * y[0] - x[1] * y[1], x[0] * y[1] + x[1] * y[0]] end;   def multiply: reduce .[] as $x (1; multiply(.; $x));   def negate(x): multiply(-1; x);   def minus(x; y): plus(x; multiply(-1; y));   def conjugate(z): if (z|type) == "number" then [z, 0] else [z[0], -(z[1]) ] end;   def invert(z): if (z|type) == "number" then [1/z, 0] else ( (z[0] * z[0]) + (z[1] * z[1]) ) as $d # use "0 + ." to convert -0 back to 0 | [ z[0]/$d, (0 + -(z[1]) / $d)] end;   def divide(x;y): multiply(x; invert(y));   def exp(z): def expi(x): [ (x|cos), (x|sin) ]; if (z|type) == "number" then z|exp elif z[0] == 0 then expi(z[1]) # for efficiency else multiply( (z[0]|exp); expi(z[1]) ) end ;   def test(x;y): "x = \( x )", "y = \( y )", "x+y: \( plus(x;y))", "x*y: \( multiply(x;y))", "-x: \( negate(x))", "1/x: \( invert(x))", "conj(x): \( conjugate(x))", "(x/y)*y: \( multiply( divide(x;y) ; y) )", "e^iπ: \( exp( [0, 4 * (1|atan) ] ) )" ;   test( [1,1]; [0,1] )
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Maple
Maple
  > a := 3 / 5; a := 3/5   > numer( a ); 3   > denom( a ); 5  
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#ooRexx
ooRexx
numeric digits 20 say agm(1, 1/rxcalcsqrt(2,16))   ::routine agm use strict arg a, g numeric digits 20   a1 = a g1 = g   loop while abs(a1 - g1) >= 1e-14 temp = (a1 + g1)/2 g1 = rxcalcsqrt(a1*g1,16) a1 = temp end return a1+0   ::requires rxmath LIBRARY
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#PARI.2FGP
PARI/GP
agm(1,1/sqrt(2))
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#AWK
AWK
  # syntax: GAWK -f ZERO_TO_THE_ZERO_POWER.AWK BEGIN { print(0 ^ 0) exit(0) }  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#BaCon
BaCon
PRINT POW(0, 0)
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Julia
Julia
julia> expr="2 * (3 -1) + 2 * 5" "2 * (3 -1) + 2 * 5"   julia> parsed = parse(expr) #Julia provides low-level access to language parser for AST/Expr creation :(+(*(2,-(3,1)),*(2,5)))   julia> t = typeof(parsed) Expr   julia> names(t) #shows type fields (:head,:args,:typ)   julia> parsed.args #Inspect our 'Expr' type innards 3-element Any Array:  :+  :(*(2,-(3,1)))  :(*(2,5))   julia> typeof(parsed.args[2]) #'Expr' types can nest Expr   julia> parsed.args[2].args 3-element Any Array:  :* 2  :(-(3,1))   julia> parsed.args[2].args[3].args #Will nest until lowest level of AST 3-element Any Array:  :- 3 1   julia> eval(parsed) 14   julia> eval(parse("1 - 5 * 2 / 20 + 1")) 1.5   julia> eval(parse("2 * (3 + ((5) / (7 - 11)))")) 3.5
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Racket
Racket
#lang racket/base (require plot racket/math)   ;; x and y bounds set to centralise the circle (define (archemedian-spiral-renderer2d a b θ/τ-max #:samples (samples (line-samples))) (define (f θ) (+ a (* b θ))) (define max-dim (+ a (* θ/τ-max 2 pi b))) (polar f 0 (* θ/τ-max 2 pi) #:x-min (- max-dim) #:x-max max-dim #:y-min (- max-dim) #:y-max max-dim #:samples samples))   (plot (list (archemedian-spiral-renderer2d 0.0 24 4)))   ;; writes to a file so hopefully, I can post it to RC... (plot-file (list (archemedian-spiral-renderer2d 0.0 24 4)) "images/archemidian-spiral-racket.png")
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Raku
Raku
use Image::PNG::Portable;   my ($w, $h) = (400, 400);   my $png = Image::PNG::Portable.new: :width($w), :height($h);   (0, .025 ... 52*π).race.map: -> \Θ { $png.set: |((cis( Θ / π ) * Θ).reals »+« ($w/2, $h/2))».Int, 255, 0, 255; }   $png.write: 'Archimedean-spiral-perl6.png';
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Ada
Ada
with Ada.Text_IO, Ada.Strings.Unbounded;   procedure Print_Zeck is   function Zeck_Increment(Z: String) return String is begin if Z="" then return "1"; elsif Z(Z'Last) = '1' then return Zeck_Increment(Z(Z'First .. Z'Last-1)) & '0'; elsif Z(Z'Last-1) = '0' then return Z(Z'First .. Z'Last-1) & '1'; else -- Z has at least two digits and ends with "10" return Zeck_Increment(Z(Z'First .. Z'Last-2)) & "00"; end if; end Zeck_Increment;   use Ada.Strings.Unbounded; Current: Unbounded_String := Null_Unbounded_String;   begin for I in 1 .. 20 loop Current := To_Unbounded_String(Zeck_Increment(To_String(Current))); Ada.Text_IO.Put(To_String(Current) & " "); end loop; end Print_Zeck;
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#AutoHotkey
AutoHotkey
Loop, 100 Door%A_Index% := "closed"   Loop, 100 { x := A_Index, y := A_Index While (x <= 100) { CurrentDoor := Door%x% If CurrentDoor contains closed { Door%x% := "open" x += y } else if CurrentDoor contains open { Door%x% := "closed" x += y } } }   Loop, 100 { CurrentDoor := Door%A_Index% If CurrentDoor contains open Res .= "Door " A_Index " is open`n" } MsgBox % Res
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Component_Pascal
Component Pascal
  MODULE TestArray; (* Implemented in BlackBox Component Builder *)   IMPORT Out;   (* Static array *)   PROCEDURE DoOneDim*; CONST M = 5; VAR a: ARRAY M OF INTEGER; BEGIN a[0] := 100; (* set first element's value of array a to 100 *) a[M-1] := -100; (* set M-th element's value of array a to -100 *) Out.Int(a[0], 0); Out.Ln; Out.Int(a[M-1], 0); Out.Ln; END DoOneDim;   PROCEDURE DoTwoDim*; VAR b: ARRAY 5, 4 OF INTEGER; BEGIN b[1, 2] := 100; (* second row, third column element *) b[4, 3] := -100; (* fifth row, fourth column element *) Out.Int(b[1, 2], 0); Out.Ln; Out.Int(b[4, 3], 0); Out.Ln; END DoTwoDim;   END TestArray.
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Julia
Julia
julia> z1 = 1.5 + 3im julia> z2 = 1.5 + 1.5im julia> z1 + z2 3.0 + 4.5im julia> z1 - z2 0.0 + 1.5im julia> z1 * z2 -2.25 + 6.75im julia> z1 / z2 1.5 + 0.5im julia> - z1 -1.5 - 3.0im julia> conj(z1), z1' # two ways to conjugate (1.5 - 3.0im,1.5 - 3.0im) julia> abs(z1) 3.3541019662496847 julia> z1^z2 -1.102482955327779 - 0.38306415117199305im julia> real(z1) 1.5 julia> imag(z1) 3.0
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
4/16 3/8 8/4 4Pi/2 16!/10! Sqrt[9/16] Sqrt[3/4] (23/12)^5 2 + 1/(1 + 1/(3 + 1/4))   1/2+1/3+1/5 8/Pi+Pi/8 //Together 13/17 + 7/31 Sum[1/n,{n,1,100}] (*summation of 1/1 + 1/2 + 1/3 + 1/4+ .........+ 1/99 + 1/100*)   1/2-1/3 a=1/3;a+=1/7   1/4==2/8 1/4>3/8 Pi/E >23/20 1/3!=123/370 Sin[3]/Sin[2]>3/20   Numerator[6/9] Denominator[6/9]
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Pascal
Pascal
Program ArithmeticGeometricMean;   uses gmp;   procedure agm (in1, in2: mpf_t; var out1, out2: mpf_t); begin mpf_add (out1, in1, in2); mpf_div_ui (out1, out1, 2); mpf_mul (out2, in1, in2); mpf_sqrt (out2, out2); end;   const nl = chr(13)+chr(10); var x0, y0, resA, resB: mpf_t; i: integer; begin mpf_set_default_prec (65568);   mpf_init_set_ui (y0, 1); mpf_init_set_d (x0, 0.5); mpf_sqrt (x0, x0); mpf_init (resA); mpf_init (resB);   for i := 0 to 6 do begin agm(x0, y0, resA, resB); agm(resA, resB, x0, y0); end; mp_printf ('%.20000Ff'+nl, @x0); mp_printf ('%.20000Ff'+nl+nl, @y0); end.
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#BASIC
BASIC
print "0 ^ 0 = "; 0 ^ 0
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#BBC_BASIC
BBC BASIC
PRINT 0^0
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Bc
Bc
  0 ^ 0  
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Kotlin
Kotlin
// version 1.2.10   /* if string is empty, returns zero */ fun String.toDoubleOrZero() = this.toDoubleOrNull() ?: 0.0   fun multiply(s: String): String { val b = s.split('*').map { it.toDoubleOrZero() } return (b[0] * b[1]).toString() }   fun divide(s: String): String { val b = s.split('/').map { it.toDoubleOrZero() } return (b[0] / b[1]).toString() }   fun add(s: String): String { var t = s.replace(Regex("""^\+"""), "").replace(Regex("""\++"""), "+") val b = t.split('+').map { it.toDoubleOrZero() } return (b[0] + b[1]).toString() }   fun subtract(s: String): String { var t = s.replace(Regex("""(\+-|-\+)"""), "-") if ("--" in t) return add(t.replace("--", "+")) val b = t.split('-').map { it.toDoubleOrZero() } return (if (b.size == 3) -b[1] - b[2] else b[0] - b[1]).toString() }   fun evalExp(s: String): String { var t = s.replace(Regex("""[()]"""), "") val reMD = Regex("""\d+\.?\d*\s*[*/]\s*[+-]?\d+\.?\d*""") val reM = Regex( """\*""") val reAS = Regex("""-?\d+\.?\d*\s*[+-]\s*[+-]?\d+\.?\d*""") val reA = Regex("""\d\+""")   while (true) { val match = reMD.find(t) if (match == null) break val exp = match.value val match2 = reM.find(exp) t = if (match2 != null) t.replace(exp, multiply(exp)) else t.replace(exp, divide(exp)) }   while (true) { val match = reAS.find(t) if (match == null) break val exp = match.value val match2 = reA.find(exp) t = if (match2 != null) t.replace(exp, add(exp)) else t.replace(exp, subtract(exp)) }   return t }   fun evalArithmeticExp(s: String): Double { var t = s.replace(Regex("""\s"""), "").replace("""^\+""", "") val rePara = Regex("""\([^()]*\)""") while(true) { val match = rePara.find(t) if (match == null) break val exp = match.value t = t.replace(exp, evalExp(exp)) } return evalExp(t).toDoubleOrZero() }   fun main(arsg: Array<String>) { listOf( "2+3", "2+3/4", "2*3-4", "2*(3+4)+5/6", "2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10", "2*-3--4+-0.25", "-4 - 3", "((((2))))+ 3 * 5", "1 + 2 * (3 + (4 * 5 + 6 * 7 * 8) - 9) / 10", "1 + 2*(3 - 2*(3 - 2)*((2 - 4)*5 - 22/(7 + 2*(3 - 1)) - 1)) + 1" ).forEach { println("$it = ${evalArithmeticExp(it)}") } }
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#REXX
REXX
/*REXX pgm plots several cycles (half a spiral) of the Archimedean spiral (ASCII plot).*/ parse arg cy a b inc chr . /*obtain optional arguments from the CL*/ if cy=='' | cy=="," then cy= 3 /*Not specified? Then use the default.*/ if a=='' | a=="," then a= 1 /* " " " " " " */ if b=='' | b=="," then b= 9 /* " " " " " " */ if inc=='' | inc=="," then inc= 0.02 /* " " " " " " */ if chr=='' | chr=="," then chr= '∙' /* " " " " " " */ if length(chr)==3 then chr= d2c(chr) /*plot character coded in decimal? */ if length(chr)==2 then chr= x2c(chr) /* " " " " hexadecimal? */ cy= max(2, cy); LOx= . /*set the LOx variable (a semaphore).*/ parse value scrsize() with sd sw . /*get the size of the terminal screen. */ w= sw - 1  ; mw= w * (cy-1) * 4 /*set useable width; max width for calc*/ h= sd - 1 + cy*10; mh= h * (cy-1) /* " " depth; " depth " " */ @.= /*initialize the line based plot field.*/ do t=1 to pi()*cy by inc /*calc all the coördinates for spiral. */ r= a + b* t /* " " " R " " */ x= w + r*cos(t); xx= x % 2 /* " " " X " " */ y= h + r*sin(t); yy= y % 2 /* " " " Y " " */ if x<0 | y<0 | x>mw | y>mh then iterate /*Is X or Y out of bounds? Then skip.*/ if LOx==. then do; LOx= xx; HIx= xx; LOy= yy; HIy= yy end /* [↑] find the minimums and maximums.*/ LOx= min(LOx, xx); HIx= max(HIx, xx) /*determine the X MIN and MAX. */ LOy= min(LOy, yy); HIy= max(HIy, yy) /* " " Y " " " */ @.yy= overlay(chr, @.yy, xx+1) /*assign the plot character (glyph). */ end /*t*/ call plot /*invoke plotting subroutine (to term).*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ pi: pi=3.1415926535897932384626433832795028841971693993751058209749445923078; return pi plot: do row=HIy to LOy by -1; say substr(@.row, LOx+1); end; return r2r: return arg(1) // (pi() * 2) /*normalize radians ───► a unit circle.*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ cos: procedure; parse arg x; x= r2r(x); _= 1; a= abs(x); hpi= pi * .5 numeric fuzz min(6, digits() - 3); if a=pi then return -1 if a=hpi | a=hpi*3 then return 0 if a=pi / 3 then return .5 if a=pi * 2 / 3 then return -.5; q= x*x; z= 1 do k=2 by 2 until p=z; p= z; _= -_ *q/(k*k-k); z= z+_; end; return z /*──────────────────────────────────────────────────────────────────────────────────────*/ sin: procedure; parse arg x; x= r2r(x); _= x; numeric fuzz min(5, max(1, digits() -3)) if x=pi * .5 then return 1; if x==pi*1.5 then return -1 if abs(x)=pi | x=0 then return 0; q= x*x; z= x do k=2 by 2 until p=z; p= z; _= -_ *q/(k*k+k); z= z+_; end; return z
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#ALGOL_68
ALGOL 68
# print some Zeckendorf number representations #   # We handle 32-bit numbers, the maximum fibonacci number that can fit in a # # 32 bit number is F(45) #   # build a table of 32-bit fibonacci numbers # [ 45 ]INT fibonacci; fibonacci[ 1 ] := 1; fibonacci[ 2 ] := 2; FOR i FROM 3 TO UPB fibonacci DO fibonacci[ i ] := fibonacci[ i - 1 ] + fibonacci[ i - 2 ] OD;   # returns the Zeckendorf representation of n or "?" if one cannot be found # PROC to zeckendorf = ( INT n )STRING: IF n = 0 THEN "0" ELSE STRING result := ""; INT f pos := UPB fibonacci; INT rest := ABS n; # find the first non-zero Zeckendorf digit # WHILE f pos > LWB fibonacci AND rest < fibonacci[ f pos ] DO f pos -:= 1 OD; # if we found a digit, build the representation # IF f pos >= LWB fibonacci THEN # have a digit # BOOL skip digit := FALSE; WHILE f pos >= LWB fibonacci DO IF rest <= 0 THEN result +:= "0" ELIF skip digit THEN # we used the previous digit # skip digit := FALSE; result +:= "0" ELIF rest < fibonacci[ f pos ] THEN # can't use the digit at f pos # skip digit := FALSE; result +:= "0" ELSE # can use this digit # skip digit := TRUE; result +:= "1"; rest -:= fibonacci[ f pos ] FI; f pos -:= 1 OD FI; IF rest = 0 THEN # found a representation # result ELSE # can't find a representation # "?" FI FI; # to zeckendorf #   FOR i FROM 0 TO 20 DO print( ( whole( i, -3 ), " ", to zeckendorf( i ), newline ) ) OD  
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#AutoIt
AutoIt
  #include <array.au3> $doors = 100   ;door array, 0 = closed, 1 = open Local $door[$doors +1]   For $ii = 1 To $doors For $i = $ii To $doors Step $ii $door[$i] = Not $door[$i] next Next   ;display to screen For $i = 1 To $doors ConsoleWrite (Number($door[$i])& " ") If Mod($i,10) = 0 Then ConsoleWrite(@CRLF) Next  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Computer.2Fzero_Assembly
Computer/zero Assembly
load: LDA ary ADD sum STA sum   LDA load ADD one STA load   SUB end BRZ done   JMP load   done: LDA sum STP   one: 1 end: LDA ary+10   sum: 0   ary: 1 2 3 4 5 6 7 8 9 10
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Kotlin
Kotlin
class Complex(private val real: Double, private val imag: Double) { operator fun plus(other: Complex) = Complex(real + other.real, imag + other.imag)   operator fun times(other: Complex) = Complex( real * other.real - imag * other.imag, real * other.imag + imag * other.real )   fun inv(): Complex { val denom = real * real + imag * imag return Complex(real / denom, -imag / denom) }   operator fun unaryMinus() = Complex(-real, -imag)   operator fun minus(other: Complex) = this + (-other)   operator fun div(other: Complex) = this * other.inv()   fun conj() = Complex(real, -imag)   override fun toString() = if (imag >= 0.0) "$real + ${imag}i" else "$real - ${-imag}i" }   fun main(args: Array<String>) { val x = Complex(1.0, 3.0) val y = Complex(5.0, 2.0) println("x = $x") println("y = $y") println("x + y = ${x + y}") println("x - y = ${x - y}") println("x * y = ${x * y}") println("x / y = ${x / y}") println("-x = ${-x}") println("1 / x = ${x.inv()}") println("x* = ${x.conj()}") }
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Maxima
Maxima
/* Rational numbers are builtin */ a: 3 / 11; 3/11   b: 117 / 17; 117/17   a + b; 1338/187   a - b; -1236/187   a * b; 351/187   a / b; 17/429   a^5; 243/161051   num(a); 3   denom(a); 11   ratnump(a); true
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Perl
Perl
#!/usr/bin/perl -w   my ($a0, $g0, $a1, $g1);   sub agm($$) { $a0 = shift; $g0 = shift; do { $a1 = ($a0 + $g0)/2; $g1 = sqrt($a0 * $g0); $a0 = ($a1 + $g1)/2; $g0 = sqrt($a1 * $g1); } while ($a0 != $a1); return $a0; }   print agm(1, 1/sqrt(2))."\n";
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Befunge
Befunge
"PDPF"4#@(0F0FYP)@
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#BQN
BQN
0⋆0
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Liberty_BASIC
Liberty BASIC
  '[RC] Arithmetic evaluation.bas 'Buld the tree (with linked nodes, in array 'cause LB has no pointers) 'applying shunting yard algorythm. 'Then evaluate tree   global stack$ 'operator/brakets stack stack$=""   maxStack = 100 dim stack(maxStack) 'nodes stack global SP 'stack pointer SP = 0   '------------------- global maxNode,curFree global FirstOp,SecondOp,isNumber,NodeCont global opList$ opList$ = "+-*/^"   maxNode=100 FirstOp=1 'pointers to other nodes; 0 means no pointer SecondOp=2 isNumber=3 'like, 1 is number, 0 is operator NodeCont=4 'number if isNumber; or mid$("+-*/^", i, 1) for 1..5 operator   dim node(NodeCont, maxNode) 'will be used from 1, 0 plays null pointer (no link)   curFree=1 'first free node '-------------------   in$ = " 1 + 2 ^ 3 * 4 - 12 / 6 " print "Input: " print in$   'read tokens token$ = "#" while 1 i=i+1 token$ = word$(in$, i) if token$ = "" then i=i-1: exit while   select case case token$ = "(" 'If the token is a left parenthesis, then push it onto the stack. call stack.push token$   case token$ = ")" 'If the token is a right parenthesis: 'Until the token at the top of the stack is a left parenthesis, pop operators off the stack onto the output queue. 'Pop the left parenthesis from the stack, but not onto the output queue. 'If the stack runs out without finding a left parenthesis, then there are mismatched parentheses. while stack.peek$() <> "(" 'if stack is empty if stack$="" then print "Error: no matching '(' for token ";i: end 'add operator node to tree child2=node.pop() child1=node.pop() call node.push addOpNode(child1,child2,stack.pop$()) wend discard$=stack.pop$() 'discard "("   case isOperator(token$) 'If the token is an operator, o1, then: 'while there is an operator token, o2, at the top of the stack, and 'either o1 is left-associative and its precedence is equal to that of o2, 'or o1 has precedence less than that of o2, ' pop o2 off the stack, onto the output queue; 'push o1 onto the stack op1$=token$ while(isOperator(stack.peek$())) op2$=stack.peek$() if (op2$<>"^" and precedence(op1$) = precedence(op2$)) _ OR (precedence(op1$) < precedence(op2$)) then '"^" is the only right-associative operator 'add operator node to tree child2=node.pop() child1=node.pop() call node.push addOpNode(child1,child2,stack.pop$()) else exit while end if wend call stack.push op1$   case else 'number 'actually, wrohg operator could end up here, like say % 'If the token is a number, then 'add leaf node to tree (number) call node.push addNumNode(val(token$)) end select   wend   'When there are no more tokens to read: 'While there are still operator tokens in the stack: ' If the operator token on the top of the stack is a parenthesis, then there are mismatched parentheses. ' Pop the operator onto the output queue. while stack$<>"" if stack.peek$() = "(" then print "no matching ')'": end 'add operator node to tree child2=node.pop() child1=node.pop() call node.push addOpNode(child1,child2,stack.pop$()) wend   root = node.pop() 'call dumpNodes print "Tree:" call drawTree root, 1, 0, 3 locate 1, 10 print "Result: ";evaluate(root)   end   '------------------------------------------ function isOperator(op$) isOperator = instr(opList$, op$)<>0 AND len(op$)=1 end function   function precedence(op$) if isOperator(op$) then precedence = 1 _ + (instr("+-*/^", op$)<>0) _ + (instr("*/^", op$)<>0) _ + (instr("^", op$)<>0) end if end function   '------------------------------------------ sub stack.push s$ stack$=s$+"|"+stack$ end sub   function stack.pop$() 'it does return empty on empty stack or queue stack.pop$=word$(stack$,1,"|") stack$=mid$(stack$,instr(stack$,"|")+1) end function   function stack.peek$() 'it does return empty on empty stack or queue stack.peek$=word$(stack$,1,"|") end function   '--------------------------------------- sub node.push s stack(SP)=s SP=SP+1 end sub   function node.pop() 'it does return -999999 on empty stack if SP<1 then pop=-999999: exit function SP=SP-1 node.pop=stack(SP) end function   '======================================= sub dumpNodes for i = 1 to curFree-1 print i, for j = 1 to 4 print node(j, i), next print next print end sub   function evaluate(node) if node=0 then exit function if node(isNumber, node) then evaluate = node(NodeCont, node) exit function end if 'else operator op1 = evaluate(node(FirstOp, node)) op2 = evaluate(node(SecondOp, node)) select case node(NodeCont, node) 'opList$, "+-*/^" case 1 evaluate = op1+op2 case 2 evaluate = op1-op2 case 3 evaluate = op1*op2 case 4 evaluate = op1/op2 case 5 evaluate = op1^op2 end select end function   sub drawTree node, level, leftRight, offsetY if node=0 then exit sub call drawTree node(FirstOp, node), level+1, leftRight-1/2^level, offsetY   'print node 'count on 80 char maiwin x = 40*(1+leftRight) y = level+offsetY locate x, y 'print x, y,">"; if node(isNumber, node) then print node(NodeCont, node) else print mid$(opList$, node(NodeCont, node),1) end if   call drawTree node(SecondOp, node), level+1, leftRight+1/2^level, offsetY end sub   function addNumNode(num) 'returns new node newNode=curFree curFree=curFree+1 node(isNumber,newNode)=1 node(NodeCont,newNode)=num   addNumNode = newNode end function   function addOpNode(firstChild, secondChild, op$) 'returns new node 'FirstOrSecond ignored if parent is 0 newNode=curFree curFree=curFree+1 node(isNumber,newNode)=0 node(NodeCont,newNode)=instr(opList$, op$)   node(FirstOp,newNode)=firstChild node(SecondOp,newNode)=secondChild   addOpNode = newNode end function  
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Ring
Ring
  /* +--------------------------------------------------------------------------------------------------------- + Program Name : Archimedean spiral +--------------------------------------------------------------------------------------------------------- */ Load "guilib.ring"   horzSize = 400 vertSize = 400   counter = 0 ### cycle thru colors colorRed = new qcolor() { setrgb(255,000,000,255) } colorGreen = new qcolor() { setrgb(000,255,000,255) } colorBlue = new qcolor() { setrgb(000,000,255,255) } colorYellow = new qcolor() { setrgb(255,255,000,255) }   penUseR = new qpen() { setcolor(colorRed) setwidth(1) } penUseG = new qpen() { setcolor(colorGreen) setwidth(1) } penUseB = new qpen() { setcolor(colorBlue) setwidth(1) } penUseY = new qpen() { setcolor(colorYellow) setwidth(1) }   deg2rad = atan(1) * 4 / 180 screensize = 600 turns = 5 halfscrn = screensize / 2 sf = (turns * (screensize - 100)) / halfscrn x = 1 y = 1 r = 0 inc = 0.50 ### control increment speed of r   New qapp { win1 = new qwidget() { setwindowtitle("Draw Spiral") setgeometry(100,100,600,600)   label1 = new qlabel(win1) { setgeometry(10,10,600,600) settext("") }     Canvas = new qlabel(win1) { MonaLisa = new qPixMap2( 600,600) color = new qcolor(){ setrgb(255,0,0,255) }   daVinci = new qpainter() { begin(MonaLisa) penUse = new qpen() { setcolor(colorRed) setwidth(1) } setpen(penUseR) #endpaint() ### This will Stop the Painting }   setpixmap(MonaLisa) }   oTimer = new qTimer(win1) { setinterval(1) ### 1 millisecond settimeoutevent("DrawCounter()") start() }   show() ### Will show Painting ONLY after exec } exec() }     ###====================================================   Func DrawCounter()   x = cos(r * deg2rad) * r / sf y = sin(r * deg2rad) * r / sf r += inc ### 0.20 fast, 0.90 slow   if r >= turns * 360 r = inc x = 1 y = 1 counter++ whichColor = counter % 4 See "whichColor: "+ whichColor +nl   if whichColor = 0 daVinci.setpen(penUseR) ok if whichColor = 1 daVinci.setpen(penUseG) ok if whichColor = 2 daVinci.setpen(penUseB) ok if whichColor = 3 daVinci.setpen(penUseY) ok ok   hpoint = halfscrn + x ypoint = halfscrn - y   daVinci.drawpoint(hpoint, ypoint) Canvas.setpixmap(MonaLisa) ### Need this setpixmap to display imageLabel win1.show() ### Need this show to display imageLabel   return  
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Ruby
Ruby
  INCR = 0.1 attr_reader :x, :theta   def setup sketch_title 'Archimedian Spiral' @theta = 0 @x = 0 background(255) translate(width / 2.0, height / 2.0) begin_shape (0..50*PI).step(INCR) do |theta| @x = theta * cos(theta / PI) curve_vertex(x, theta * sin(theta / PI)) end end_shape end   def settings size(300, 300) end  
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#AppleScript
AppleScript
--------------------- ZECKENDORF NUMBERS -------------------   -- zeckendorf :: Int -> String on zeckendorf(n) script f on |λ|(n, x) if n < x then [n, 0] else [n - x, 1] end if end |λ| end script   if n = 0 then {0} as string else item 2 of mapAccumL(f, n, |reverse|(just of tailMay(fibUntil(n)))) as string end if end zeckendorf   -- fibUntil :: Int -> [Int] on fibUntil(n) set xs to {} set limit to n   script atLimit property ceiling : limit on |λ|(x) (item 2 of x) > (atLimit's ceiling) end |λ| end script   script nextPair property series : xs on |λ|([a, b]) set nextPair's series to nextPair's series & b [b, a + b] end |λ| end script   |until|(atLimit, nextPair, {0, 1}) return nextPair's series end fibUntil   ---------------------------- TEST -------------------------- on run   intercalate(linefeed, ¬ map(zeckendorf, enumFromTo(0, 20)))   end run   --------------------- GENERIC FUNCTIONS --------------------   -- enumFromTo :: Int -> Int -> [Int] on enumFromTo(m, n) if m > n then set d to -1 else set d to 1 end if set lst to {} repeat with i from m to n by d set end of lst to i end repeat return lst end enumFromTo   -- foldl :: (a -> b -> a) -> a -> [b] -> a on foldl(f, startValue, xs) tell mReturn(f) set v to startValue set lng to length of xs repeat with i from 1 to lng set v to |λ|(v, item i of xs, i, xs) end repeat return v end tell end foldl   -- 'The mapAccumL function behaves like a combination of map and foldl; -- it applies a function to each element of a list, passing an -- accumulating parameter from left to right, and returning a final -- value of this accumulator together with the new list.' (see Hoogle)   -- mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y]) on mapAccumL(f, acc, xs) script on |λ|(a, x) tell mReturn(f) to set pair to |λ|(item 1 of a, x) [item 1 of pair, (item 2 of a) & item 2 of pair] end |λ| end script   foldl(result, [acc, []], xs) end mapAccumL   -- map :: (a -> b) -> [a] -> [b] on map(f, xs) tell mReturn(f) set lng to length of xs set lst to {} repeat with i from 1 to lng set end of lst to |λ|(item i of xs, i, xs) end repeat return lst end tell end map   -- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Script on mReturn(f) if class of f is script then f else script property |λ| : f end script end if end mReturn   -- intercalate :: Text -> [Text] -> Text on intercalate(strText, lstText) set {dlm, my text item delimiters} to {my text item delimiters, strText} set strJoined to lstText as text set my text item delimiters to dlm return strJoined end intercalate   -- reverse :: [a] -> [a] on |reverse|(xs) if class of xs is text then (reverse of characters of xs) as text else reverse of xs end if end |reverse|   -- tailMay :: [a] -> Maybe [a] on tailMay(xs) if length of xs > 1 then {nothing:false, just:items 2 thru -1 of xs} else {nothing:true} end if end tailMay   -- until :: (a -> Bool) -> (a -> a) -> a -> a on |until|(p, f, x) set mp to mReturn(p) set v to x   tell mReturn(f) repeat until mp's |λ|(v) set v to |λ|(v) end repeat end tell return v end |until|
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#AWK
AWK
BEGIN { for(i=1; i <= 100; i++) { doors[i] = 0 # close the doors } for(i=1; i <= 100; i++) { for(j=i; j <= 100; j += i) { doors[j] = (doors[j]+1) % 2 } } for(i=1; i <= 100; i++) { print i, doors[i] ? "open" : "close" } }
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Crystal
Crystal
  # create an array with one object in it a = ["foo"]   # Empty array literals always need a type specification: [] of Int32 # => Array(Int32).new   # The array's generic type argument T is inferred from the types of the elements inside the literal. When all elements of the array have the same type, T equals to that. Otherwise it will be a union of all element types. [1, 2, 3] # => Array(Int32) [1, "hello", 'x'] # => Array(Int32 | String | Char)   # An explicit type can be specified by immediately following the closing bracket with of and a type, each separated by whitespace. This overwrites the inferred type and can be used for example to create an array that holds only some types initially but can accept other types later. array_of_numbers = [1, 2, 3] of Float64 | Int32 # => Array(Float64 | Int32) array_of_numbers << 0.5 # => [1, 2, 3, 0.5]   array_of_int_or_string = [1, 2, 3] of Int32 | String # => Array(Int32 | String) array_of_int_or_string << "foo" # => [1, 2, 3, "foo"]   # percent array literals %w(one two three) # => ["one", "two", "three"] %i(one two three) # => [:one, :two, :three]  
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Lambdatalk
Lambdatalk
  {require lib_complex}   {def z1 {C.new 1 1}} -> z1 = (1 1)   {C.x {z1}} -> 1 {C.y {z1}} -> 1 {C.mod {z1}} -> 1.4142135623730951 {C.arg {z1}} -> 0.7853981633974483 // 45° {C.conj {z1}} -> (1 -1) {C.negat {z1}} -> (-1 -1) {C.invert {z1}} -> (0.5 -0.4999999999999999) {C.sqrt {z1}} -> (1.0986841134678098 0.45508986056222733) {C.exp {z1}} -> (1.4686939399158851 2.2873552871788423) {C.log {z1}} -> (0.3465735902799727 0.7853981633974483)   {def z2 {C.new 1.5 1.5}} -> z2 = (1.5 1.5)   {C.add {z1} {z2}} -> (2.5 2.5) {C.sub {z1} {z2}} -> (-0.5 -0.5) {C.mul {z1} {z2}} -> (0 3) {C.div {z1} {z2}} -> (0.6666666666666667 0)  
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Modula-2
Modula-2
DEFINITION MODULE Rational; TYPE RAT = RECORD numerator : INTEGER; denominator : INTEGER; END;   PROCEDURE IGCD( i : INTEGER; j : INTEGER ) : INTEGER; PROCEDURE ILCM( i : INTEGER; j : INTEGER ) : INTEGER; PROCEDURE IABS( i : INTEGER ) : INTEGER;   PROCEDURE RNormalize( i : RAT ) : RAT; PROCEDURE RCreate( num : INTEGER; dem : INTEGER ) : RAT; PROCEDURE RAdd( i : RAT; j : RAT ) : RAT; PROCEDURE RSubtract( i : RAT; j : RAT ) : RAT; PROCEDURE RMultiply( i : RAT; j : RAT ) : RAT; PROCEDURE RDivide( i : RAT; j : RAT ) : RAT; PROCEDURE RAbs( i : RAT ) : RAT; PROCEDURE RInv( i : RAT ) : RAT; PROCEDURE RNeg( i : RAT ) : RAT;   PROCEDURE RInc( i : RAT ) : RAT; PROCEDURE RDec( i : RAT ) : RAT;   PROCEDURE REQ( i : RAT; j : RAT ) : BOOLEAN; PROCEDURE RNE( i : RAT; j : RAT ) : BOOLEAN; PROCEDURE RLT( i : RAT; j : RAT ) : BOOLEAN; PROCEDURE RLE( i : RAT; j : RAT ) : BOOLEAN; PROCEDURE RGT( i : RAT; j : RAT ) : BOOLEAN; PROCEDURE RGE( i : RAT; j : RAT ) : BOOLEAN;   PROCEDURE RIsZero( i : RAT ) : BOOLEAN; PROCEDURE RIsNegative( i : RAT ) : BOOLEAN; PROCEDURE RIsPositive( i : RAT ) : BOOLEAN;   PROCEDURE RToString( i : RAT; VAR S : ARRAY OF CHAR ); PROCEDURE RToRational( s : ARRAY OF CHAR ) : RAT;   PROCEDURE WriteRational( i : RAT );   END Rational.
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Phix
Phix
function agm(atom a, atom g, atom tolerance=1.0e-15) while abs(a-g)>tolerance do {a,g} = {(a + g)/2,sqrt(a*g)} printf(1,"%0.15g\n",a) end while return a end function ?agm(1,1/sqrt(2)) -- (rounds to 10 d.p.)
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Phixmonti
Phixmonti
include ..\Utilitys.pmt   1.0e-15 var tolerance   def test over over - abs tolerance > enddef   def agm /# n1 n2 -- n3 #/ test while over over + 2 / rot rot * sqrt test endwhile enddef   1 1 2 sqrt / agm tostr ?
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Bracmat
Bracmat
0^0
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Burlesque
Burlesque
  blsq ) 0.0 0.0?^ 1.0 blsq ) 0 0?^ 1  
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Lua
Lua
require"lpeg"   P, R, C, S, V = lpeg.P, lpeg.R, lpeg.C, lpeg.S, lpeg.V   --matches arithmetic expressions and returns a syntax tree expression = P{"expr"; ws = P" "^0, number = C(R"09"^1) * V"ws", lp = "(" * V"ws", rp = ")" * V"ws", sym = C(S"+-*/") * V"ws", more = (V"sym" * V"expr")^0, expr = V"number" * V"more" + V"lp" * lpeg.Ct(V"expr" * V"more") * V"rp" * V"more"}   --evaluates a tree function eval(expr) --empty if type(expr) == "string" or type(expr) == "number" then return expr + 0 end   --arithmetic functions tb = {["+"] = function(a,b) return eval(a) + eval(b) end, ["-"] = function(a,b) return eval(a) - eval(b) end, ["*"] = function(a,b) return eval(a) * eval(b) end, ["/"] = function(a,b) return eval(a) / eval(b) end}   --you could add ^ or other operators to this pretty easily for i, v in ipairs{"*/", "+-"} do for s, u in ipairs(expr) do local k = type(u) == "string" and C(S(v)):match(u) if k then expr[s-1] = tb[k](expr[s-1],expr[s+1]) table.remove(expr, s) table.remove(expr, s) end end end return expr[1] end   print(eval{expression:match(io.read())})
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#11l
11l
V beforeTxt = |‘1100111 1100111 1100111 1100111 1100110 1100110 1100110 1100110 1100110 1100110 1100110 1100110 1111110 0000000’   V smallrc01 = |‘00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000’   V rc01 = |‘00000000000000000000000000000000000000000000000000000000000 01111111111111111100000000000000000001111111111111000000000 01111111111111111110000000000000001111111111111111000000000 01111111111111111111000000000000111111111111111111000000000 01111111100000111111100000000001111111111111111111000000000 00011111100000111111100000000011111110000000111111000000000 00011111100000111111100000000111111100000000000000000000000 00011111111111111111000000000111111100000000000000000000000 00011111111111111110000000000111111100000000000000000000000 00011111111111111111000000000111111100000000000000000000000 00011111100000111111100000000111111100000000000000000000000 00011111100000111111100000000111111100000000000000000000000 00011111100000111111100000000011111110000000111111000000000 01111111100000111111100000000001111111111111111111000000000 01111111100000111111101111110000111111111111111111011111100 01111111100000111111101111110000001111111111111111011111100 01111111100000111111101111110000000001111111111111011111100 00000000000000000000000000000000000000000000000000000000000’   F intarray(binstring) ‘Change a 2D matrix of 01 chars into a list of lists of ints’ R binstring.split("\n").map(line -> line.map(ch -> (I ch == ‘1’ {1} E 0)))   F chararray(intmatrix) ‘Change a 2d list of lists of 1/0 ints into lines of 1/0 chars’ R intmatrix.map(row -> row.map(p -> String(p)).join(‘’)).join("\n")   F toTxt(intmatrix) ‘Change a 2d list of lists of 1/0 ints into lines of '#' and '.' chars’ R intmatrix.map(row -> row.map(p -> (I p {‘#’} E ‘.’)).join(‘’)).join("\n")   F neighbours_array(x, y, image) ‘Return 8-neighbours of point p1 of picture, in order’ V i = image V (x1, y1, x_1, y_1) = (x + 1, y - 1, x - 1, y + 1) R [i[y1][x], i[y1][x1], i[y][x1], i[y_1][x1], i[y_1][x], i[y_1][x_1], i[y][x_1], i[y1][x_1]]   F neighbours_tuple(x, y, image) ‘Return 8-neighbours of point p1 of picture, in order’ V i = image V (x1, y1, x_1, y_1) = (x + 1, y - 1, x - 1, y + 1) R (i[y1][x], i[y1][x1], i[y][x1], i[y_1][x1], i[y_1][x], i[y_1][x_1], i[y][x_1], i[y1][x_1])   F transitions(neighbours) V s = 0 L(i) 7 s += Int((neighbours[i], neighbours[i + 1]) == (0, 1)) R s + Int((neighbours[7], neighbours[0]) == (0, 1))   F zhangSuen(&image) V changing1 = [(-1, -1)] V changing2 = [(-1, -1)] L !changing1.empty | !changing2.empty changing1.drop() L(y) 1 .< image.len - 1 L(x) 1 .< image[0].len - 1 V n = neighbours_array(x, y, image) V (P2, P3, P4, P5, P6, P7, P8, P9) = neighbours_tuple(x, y, image) I (image[y][x] == 1 & P4 * P6 * P8 == 0 & P2 * P4 * P6 == 0 & transitions(n) == 1 & sum(n) C 2..6) changing1.append((x, y)) L(x, y) changing1 image[y][x] = 0 changing2.drop() L(y) 1 .< image.len - 1 L(x) 1 .< image[0].len - 1 V n = neighbours_array(x, y, image) V (P2, P3, P4, P5, P6, P7, P8, P9) = neighbours_tuple(x, y, image) I (image[y][x] == 1 & P2 * P6 * P8 == 0 & P2 * P4 * P8 == 0 & transitions(n) == 1 & sum(n) C 2..6) changing2.append((x, y)) L(x, y) changing2 image[y][x] = 0 R image   L(picture) (beforeTxt, smallrc01, rc01) V image = intarray(picture) print("\nFrom:\n#.".format(toTxt(image))) V after = zhangSuen(&image) print("\nTo thinned:\n#.".format(toTxt(after)))
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Rust
Rust
#[macro_use(px)] extern crate bmp;   use bmp::{Image, Pixel}; use std::f64;   fn main() { let width = 600u32; let half_width = (width / 2) as i32; let mut img = Image::new(width, width); let draw_color = px!(255, 128, 128);   // Constants defining the spiral size. let a = 1.0_f64; let b = 9.0_f64;   // max_angle = number of spirals * 2pi. let max_angle = 5.0_f64 * 2.0_f64 * f64::consts::PI;   let mut theta = 0.0_f64; while theta < max_angle { theta = theta + 0.002_f64;   let r = a + b * theta; let x = (r * theta.cos()) as i32 + half_width; let y = (r * theta.sin()) as i32 + half_width; img.set_pixel(x as u32, y as u32, draw_color); }   // Save the image let _ = img.save("archimedean_spiral.bmp").unwrap_or_else(|e| panic!("Failed to save: {}", e)); }
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#SAS
SAS
data xy; h=constant('pi')/40; do i=0 to 400; t=i*h; x=(1+t)*cos(t); y=(1+t)*sin(t); output; end; keep x y; run;   proc sgplot; series x=x y=y; run;
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Arturo
Arturo
Z: function [x][ if x=0 -> return "0" fib: new [2 1] n: new x while -> n > first fib -> insert 'fib 0 fib\0 + fib\1   result: new "" loop fib 'f [ if? f =< n [ 'result ++ "1" 'n - f ] else -> 'result ++ "0" ] if result\0 = `0` -> result: slice result 1 (size result)-1 return result ]   loop 0..20 'i -> print [pad to :string i 3 pad Z i 8]
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Axiom
Axiom
(open,closed,change,open?) := (true,false,not,test); doors := bits(100,closed); for i in 1..#doors repeat for j in i..#doors by i repeat doors.j := change doors.j [i for i in 1..#doors | open? doors.i]  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#D
D
// All D arrays are capable of bounds checks.   import std.stdio, core.stdc.stdlib; import std.container: Array;   void main() { // GC-managed heap allocated dynamic array: auto array1 = new int[1]; array1[0] = 1; array1 ~= 3; // append a second item // array1[10] = 4; // run-time error writeln("A) Element 0: ", array1[0]); writeln("A) Element 1: ", array1[1]);   // Stack-allocated fixed-size array: int[5] array2; array2[0] = 1; array2[1] = 3; // array2[2] = 4; // compile-time error writeln("B) Element 0: ", array2[0]); writeln("B) Element 1: ", array2[1]);   // Stack-allocated dynamic fixed-sized array, // length known only at run-time: int n = 2; int[] array3 = (cast(int*)alloca(n * int.sizeof))[0 .. n]; array3[0] = 1; array3[1] = 3; // array3[10] = 4; // run-time error writeln("C) Element 0: ", array3[0]); writeln("C) Element 1: ", array3[1]);   // Phobos-defined heap allocated not GC-managed array: Array!int array4; array4.length = 2; array4[0] = 1; array4[1] = 3; // array4[10] = 4; // run-time exception writeln("D) Element 0: ", array4[0]); writeln("D) Element 1: ", array4[1]); }
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#LFE
LFE
  (defrecord complex real img)  
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Liberty_BASIC
Liberty BASIC
mainwin 50 10   print " Adding" call cprint cadd$( complex$( 1, 1), complex$( 3.14159265, 1.2)) print " Multiplying" call cprint cmulti$( complex$( 1, 1), complex$( 3.14159265, 1.2)) print " Inverting" call cprint cinv$( complex$( 1, 1)) print " Negating" call cprint cneg$( complex$( 1, 1))   end   sub cprint cx$ print "( "; word$( cx$, 1); " + i *"; word$( cx$, 2); ")" end sub   function complex$( a , bj ) ''complex number string-object constructor complex$ = str$( a ) ; " " ; str$( bj ) end function   function cadd$( a$ , b$ ) ar = val( word$( a$ , 1 ) ) ai = val( word$( a$ , 2 ) ) br = val( word$( b$ , 1 ) ) bi = val( word$( b$ , 2 ) ) cadd$ = complex$( ar + br , ai + bi ) end function   function cmulti$( a$ , b$ ) ar = val( word$( a$ , 1 ) ) ai = val( word$( a$ , 2 ) ) br = val( word$( b$ , 1 ) ) bi = val( word$( b$ , 2 ) ) cmulti$ = complex$( ar * br - ai * bi _ , ar * bi + ai * br ) end function   function cneg$( a$) ar = val( word$( a$ , 1 ) ) ai = val( word$( a$ , 2 ) ) cneg$ =complex$( 0 -ar, 0 -ai) end function   function cinv$( a$) ar = val( word$( a$ , 1 ) ) ai = val( word$( a$ , 2 ) ) D =ar^2 +ai^2 cinv$ =complex$( ar /D , 0 -ai /D ) end function
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Modula-3
Modula-3
INTERFACE Frac;   EXCEPTION ZeroDenominator;   TYPE   T <: Public; Public = OBJECT METHODS (* initialization and conversion *) init(a, b: INTEGER): T RAISES { ZeroDenominator }; fromInt(a: INTEGER): T; (* unary operators *) abs(): T; opposite(): T; (* binary operators *) plus(other: T): T; minus(other: T): T; times(other: T): T; dividedBy(other: T): T RAISES { ZeroDenominator }; integerDivision(other: INTEGER): T RAISES { ZeroDenominator }; (* relations *) equals(other: T): BOOLEAN; notEqualTo(other: T): BOOLEAN; lessThan(other: T): BOOLEAN; lessEqual(other: T): BOOLEAN; greaterEqual(other: T): BOOLEAN; greater(other: T): BOOLEAN; (* other easily-checked properties *) isInt(): BOOLEAN; (* inc/decrement *) inc(step: CARDINAL := 1); dec(step: CARDINAL := 1); END;   PROCEDURE One(): T; PROCEDURE Zero(): T;   (* I/O *) PROCEDURE PutRat(a: T);   END Frac.
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#PHP
PHP
  define('PRECISION', 13);   function agm($a0, $g0, $tolerance = 1e-10) { // the bc extension deals in strings and cannot convert // floats in scientific notation by itself - hence // this manual conversion to a string $limit = number_format($tolerance, PRECISION, '.', ''); $an = $a0; $gn = $g0; do { list($an, $gn) = array( bcdiv(bcadd($an, $gn), 2), bcsqrt(bcmul($an, $gn)), ); } while (bccomp(bcsub($an, $gn), $limit) > 0);   return $an; }   bcscale(PRECISION); echo agm(1, 1 / bcsqrt(2));  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#C
C
#include <stdio.h> #include <math.h> #include <complex.h>   int main() { printf("0 ^ 0 = %f\n", pow(0,0)); double complex c = cpow(0,0); printf("0+0i ^ 0+0i = %f+%fi\n", creal(c), cimag(c)); return 0; }
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#C.23
C#
using System;   namespace ZeroToTheZeroeth { class Program { static void Main(string[] args) { double k = Math.Pow(0, 0); Console.Write("0^0 is {0}", k); } } }
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#M2000_Interpreter
M2000 Interpreter
  y=100 Module CheckEval { A$="1 + 2 * (3 + (4 * 5 + 6 * 7 * 8) - 9) / 10" Print Eval(A$) x=10 Print Eval("x+5")=x+5 Print Eval("A$=A$")=True Try { Print Eval("y") ' error: y is uknown here } } Call CheckEval  
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Action.21
Action!
PROC DrawImage(BYTE ARRAY image BYTE x,y,width,height) BYTE i,j BYTE POINTER ptr   Color=2 FOR j=0 TO height-1 DO Plot(x,j+y) DrawTo(x+width-1,j+y) OD Color=1 ptr=image FOR j=0 TO height-1 DO FOR i=0 TO width-1 DO IF ptr^ THEN Plot(i+x,j+y) FI ptr==+1 OD OD RETURN   PROC Thinning(BYTE ARRAY image BYTE width,height) DEFINE PTR="CARD" DEFINE MAX="200" PTR ARRAY change(MAX) BYTE POINTER p1,p2,p3,p4,p5,p6,p7,p8,p9,p68,p24 INT count,i BYTE x,y,sum,step1   step1=1 DO count=0 p1=image p8=p1-1 p4=p1+1 p2=p1-width p6=p1+width p9=p2-1 p3=p2+1 p7=p6-1 p5=p6+1   FOR y=0 TO height-1 DO FOR x=0 TO width-1 DO IF p1^=1 AND x>0 AND y>0 AND x<width-1 AND y<height-1 THEN sum=p2^+p3^+p4^+p5^+p6^+p7^+p8^+p9^ IF sum>=2 AND sum<=6 THEN sum=0 IF p3^>p2^ THEN sum==+1 FI IF p4^>p3^ THEN sum==+1 FI IF p5^>p4^ THEN sum==+1 FI IF p6^>p5^ THEN sum==+1 FI IF p7^>p6^ THEN sum==+1 FI IF p8^>p7^ THEN sum==+1 FI IF p9^>p8^ THEN sum==+1 FI IF p2^>p9^ THEN sum==+1 FI IF sum=1 THEN IF step1 THEN p24=p4 p68=p6 ELSE p24=p2 p68=p8 FI IF p2^+p4^+p68^<3 AND p24^+p6^+p8^<3 THEN change(count)=p1 count==+1 FI FI FI FI p1==+1 p2==+1 p3==+1 p4==+1 p5==+1 p6==+1 p7==+1 p8==+1 p9==+1 OD OD step1=1-step1 FOR i=0 TO count-1 DO p1=change(i) p1^=0 OD UNTIL count=0 OD RETURN   PROC Main() BYTE ARRAY image1=[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] BYTE ARRAY image2=[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] BYTE width1=[32],height1=[10],width2=[59],height2=[18] BYTE CH=$02FC   Graphics(7+16) Color=1 SetColor(0,0,$00) SetColor(4,0,$04) SetColor(1,0,$0C)   DrawImage(image1,0,0,width1,height1) Thinning(image1,width1,height1) DrawImage(image1,width1+10,0,width1,height1)   DrawImage(image2,0,height1+10,width2,height2) Thinning(image2,width2,height2) DrawImage(image2,width2+10,height1+10,width2,height2)   DO UNTIL CH#$FF OD CH=$FF RETURN
http://rosettacode.org/wiki/Archimedean_spiral
Archimedean spiral
The Archimedean spiral is a spiral named after the Greek mathematician Archimedes. An Archimedean spiral can be described by the equation: r = a + b θ {\displaystyle \,r=a+b\theta } with real numbers a and b. Task Draw an Archimedean spiral.
#Scala
Scala
    object ArchimedeanSpiral extends App {   SwingUtilities.invokeLater(() => new JFrame("Archimedean Spiral") {   class ArchimedeanSpiral extends JPanel { setPreferredSize(new Dimension(640, 640)) setBackground(Color.white)   private def drawGrid(g: Graphics2D): Unit = { val (angle, margin, numRings) = (toRadians(45), 10, 8) val w = getWidth val (center, spacing) = (w / 2, (w - 2 * margin) / (numRings * 2))   g.setColor(new Color(0xEEEEEE)) for (i <- 0 until numRings) { val pos = margin + i * spacing val size = w - (2 * margin + i * 2 * spacing) g.drawOval(pos, pos, size, size) val ia = i * angle val x2 = center + (cos(ia) * (w - 2 * margin) / 2).toInt val y2 = center - (sin(ia) * (w - 2 * margin) / 2).toInt g.drawLine(center, center, x2, y2) } }   private def drawSpiral(g: Graphics2D): Unit = { val (degrees: Double, center) = (toRadians(0.1), getWidth / 2) val (a, b, c, end) = (0, 20, 1, 360 * 2 * 10 * degrees)   def plot(g: Graphics2D, x: Int, y: Int): Unit = g.drawOval(x, y, 1, 1)   def iter(theta: Double): Double = { if (theta < end) { val r = a + b * pow(theta, 1 / c) val x = r * cos(theta) val y = r * sin(theta) plot(g, (center + x).toInt, (center - y).toInt) iter(theta + degrees) } else theta }   g.setStroke(new BasicStroke(2)) g.setColor(Color.orange) iter(0) }   override def paintComponent(gg: Graphics): Unit = { super.paintComponent(gg) val g = gg.asInstanceOf[Graphics2D] g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON) drawGrid(g) drawSpiral(g) } }   add(new ArchimedeanSpiral, BorderLayout.CENTER) pack() setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE) setLocationRelativeTo(null) setResizable(false) setVisible(true) } )   }