task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5
Sum multiples of 3 and 5
Task The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n. Show output for n = 1000. This is is the same as Project Euler problem 1. Extra credit: do this efficiently for n = 1e20 or higher.
#C
C
#include <stdio.h> #include <stdlib.h>   unsigned long long sum35(unsigned long long limit) { unsigned long long sum = 0; for (unsigned long long i = 0; i < limit; i++) if (!(i % 3) || !(i % 5)) sum += i; return sum; }   int main(int argc, char **argv) { unsigned long long limit;   if (argc == 2) limit = strtoull(argv[1], NULL, 10); else limit = 1000;   printf("%lld\n", sum35(limit)); return 0; }
http://rosettacode.org/wiki/Sum_digits_of_an_integer
Sum digits of an integer
Task Take a   Natural Number   in a given base and return the sum of its digits:   110         sums to   1   123410   sums to   10   fe16       sums to   29   f0e16     sums to   29
#Befunge
Befunge
" :rebmuN">:#,_&0v |_,#!>#:<"Base: "< <>10g+\00g/:v:p00& v^\p01<%g00:_55+\> >" :muS">:#,_$\.,@
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#C.2B.2B
C++
#include <iostream> #include <numeric> #include <vector>   double add_square(double prev_sum, double new_val) { return prev_sum + new_val*new_val; }   double vec_add_squares(std::vector<double>& v) { return std::accumulate(v.begin(), v.end(), 0.0, add_square); }   int main() { // first, show that for empty vectors we indeed get 0 std::vector<double> v; // empty std::cout << vec_add_squares(v) << std::endl;   // now, use some values double data[] = { 0, 1, 3, 1.5, 42, 0.1, -4 }; v.assign(data, data+7); std::cout << vec_add_squares(v) << std::endl; return 0; }
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#Ada
Ada
  with Ada.Command_Line; use Ada.Command_Line; with Ada.Sequential_IO; with Ada.Strings.Maps; use Ada.Strings.Maps; with Ada.Text_IO;   procedure Cipher is package Char_IO is new Ada.Sequential_IO (Character); use Char_IO; Alphabet: constant String := "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; Key : constant String := "VsciBjedgrzyHalvXZKtUPumGfIwJxqOCFRApnDhQWobLkESYMTN"; My_Map : Character_Mapping; Input, Output : File_Type; Buffer  : Character; begin declare use Ada.Text_IO; begin if Argument_Count /= 1 then Put_Line("Usage: " & Command_Name & " <encode|decode>"); else if Argument(1) = "encode" then My_Map := To_Mapping(From => Alphabet, To => Key); elsif Argument(1) = "decode" then My_Map := To_Mapping(From => Key, To => Alphabet); else Put_Line("Unrecognised Argument: " & Argument(1)); return; end if; end if; end; Open (File => Input, Mode => In_File, Name => "input.txt"); Create (File => Output, Mode => Out_File, Name => "output.txt"); loop Read (File => Input, Item => Buffer); Buffer := Value(Map => My_Map, Element => Buffer); Write (File => Output, Item => Buffer); end loop; exception when Char_IO.End_Error => if Is_Open(Input) then Close (Input); end if; if Is_Open(Output) then Close (Output); end if; end Cipher;  
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#Arturo
Arturo
key: {:]kYV}(!7P$n5_0i R:?jOWtF/=-pe'AD&@r6%ZXs"v*N[#wSl9zq2^+g;LoB`aGh{3.HIu4fbK)mU8|dMET><,Qc\C1yxJ:}   encode: function [str][ bs: new [] loop split str 'ch -> 'bs ++ to :string key\[(to :integer to :char ch)-32] return join bs ]   decode: function [str][ bs: new [] loop split str 'ch -> 'bs ++ to :string to :char (index key ch)+32 return join bs ]   s: "The quick brown fox jumps over the lazy dog, who barks VERY loudly!"   enc: encode s print ["encoded:" enc] print ["decoded:" decode enc]
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#Babel
Babel
main: { [2 3 5 7 11 13] sp }   sum!  : { <- 0 -> { + } eachar } product!: { <- 1 -> { * } eachar }   sp!: { dup sum %d cr << product %d cr << }   Result: 41 30030
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#BASIC
BASIC
dim array(5) as integer = { 1, 2, 3, 4, 5 }   dim sum as integer = 0 dim prod as integer = 1 for index as integer = lbound(array) to ubound(array) sum += array(index) prod *= array(index) next
http://rosettacode.org/wiki/Sum_of_a_series
Sum of a series
Compute the   nth   term of a series,   i.e. the sum of the   n   first terms of the corresponding sequence. Informally this value, or its limit when   n   tends to infinity, is also called the sum of the series, thus the title of this task. For this task, use: S n = ∑ k = 1 n 1 k 2 {\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}} and compute   S 1000 {\displaystyle S_{1000}} This approximates the   zeta function   for   S=2,   whose exact value ζ ( 2 ) = π 2 6 {\displaystyle \zeta (2)={\pi ^{2} \over 6}} is the solution of the Basel problem.
#BQN
BQN
+´÷√⁼1+↕1000 1.6439345666815597
http://rosettacode.org/wiki/Sum_to_100
Sum to 100
Task Find solutions to the   sum to one hundred   puzzle. Add (insert) the mathematical operators     +   or   -     (plus or minus)   before any of the digits in the decimal numeric string   123456789   such that the resulting mathematical expression adds up to a particular sum   (in this iconic case,   100). Example: 123 + 4 - 5 + 67 - 89 = 100 Show all output here.   Show all solutions that sum to   100   Show the sum that has the maximum   number   of solutions   (from zero to infinity‡)   Show the lowest positive sum that   can't   be expressed   (has no solutions),   using the rules for this task   Show the ten highest numbers that can be expressed using the rules for this task   (extra credit) ‡   (where   infinity   would be a relatively small   123,456,789) An example of a sum that can't be expressed   (within the rules of this task)   is:   5074 (which,   of course,   isn't the lowest positive sum that can't be expressed).
#Common_Lisp
Common Lisp
(defun f (lst &optional (sum 100) (so-far nil)) "Takes a list of digits as argument" (if (null lst) (cond ((= sum 0) (format t "~d = ~{~@d~}~%" (apply #'+ so-far) (reverse so-far)) 1) (t 0) ) (let ((total 0) (len (length lst)) ) (dotimes (i len total) (let* ((str1 (butlast lst i)) (num1 (or (numlist-to-string str1) 0)) (rem (nthcdr (- len i) lst)) ) (incf total (+ (f rem (- sum num1) (cons num1 so-far)) (f rem (+ sum num1) (cons (- num1) so-far)) )))))))     (defun numlist-to-string (lst) "Convert a list of digits into an integer" (when lst (parse-integer (format nil "~{~d~}" lst)) ))    
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5
Sum multiples of 3 and 5
Task The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n. Show output for n = 1000. This is is the same as Project Euler problem 1. Extra credit: do this efficiently for n = 1e20 or higher.
#C.23
C#
  using System; using System.Collections.Generic; using System.Numerics;   namespace RosettaCode { class Program { static void Main() { List<BigInteger> candidates = new List<BigInteger>(new BigInteger[] { 1000, 100000, 10000000, 10000000000, 1000000000000000 }); candidates.Add(BigInteger.Parse("100000000000000000000"));   foreach (BigInteger candidate in candidates) { BigInteger c = candidate - 1; BigInteger answer3 = GetSumOfNumbersDivisibleByN(c, 3); BigInteger answer5 = GetSumOfNumbersDivisibleByN(c, 5); BigInteger answer15 = GetSumOfNumbersDivisibleByN(c, 15);   Console.WriteLine("The sum of numbers divisible by 3 or 5 between 1 and {0} is {1}", c, answer3 + answer5 - answer15); }   Console.ReadKey(true); }   private static BigInteger GetSumOfNumbersDivisibleByN(BigInteger candidate, uint n) { BigInteger largest = candidate; while (largest % n > 0) largest--; BigInteger totalCount = (largest / n); BigInteger pairCount = totalCount / 2; bool unpairedNumberOnFoldLine = (totalCount % 2 == 1); BigInteger pairSum = largest + n; return pairCount * pairSum + (unpairedNumberOnFoldLine ? pairSum / 2 : 0); }   } }  
http://rosettacode.org/wiki/Sum_digits_of_an_integer
Sum digits of an integer
Task Take a   Natural Number   in a given base and return the sum of its digits:   110         sums to   1   123410   sums to   10   fe16       sums to   29   f0e16     sums to   29
#BQN
BQN
SumDigits ← { 𝕊 𝕩: 10 𝕊 𝕩; 𝕨 𝕊 0: 0; (𝕨|𝕩)+𝕨𝕊⌊𝕩÷𝕨 }   •Show SumDigits 1 •Show SumDigits 1234 •Show 16 SumDigits 254
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#Chef
Chef
Sum of squares.   First input is length of vector, then rest of input is vector.   Ingredients. 1 g eggs 0 g bacon   Method. Put bacon into the 1st mixing bowl. Take eggs from refrigerator. Square the eggs. Take bacon from refrigerator. Put bacon into 2nd mixing bowl. Combine bacon into 2nd mixing bowl. Fold bacon into 2nd mixing bowl. Add the bacon into the 1st mixing bowl. Ask the eggs until squared. Pour contents of the 1st mixing bowl into the 1st baking dish.   Serves 1.    
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#Clojure
Clojure
(defn sum-of-squares [v] (reduce #(+ %1 (* %2 %2)) 0 v))
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#C
C
  #include<stdlib.h> #include<stdio.h> #include<wchar.h>   #define ENCRYPT 0 #define DECRYPT 1 #define ALPHA 33 #define OMEGA 126   int wideStrLen(wchar_t* str){ int i = 0; while(str[i++]!=00);   return i; }   void processFile(char* fileName,char plainKey, char cipherKey,int flag){   FILE* inpFile = fopen(fileName,"r"); FILE* outFile;   int i,len, diff = (flag==ENCRYPT)?(int)cipherKey - (int)plainKey:(int)plainKey - (int)cipherKey; wchar_t str[1000], *outStr; char* outFileName = (char*)malloc((strlen(fileName)+5)*sizeof(char));   sprintf(outFileName,"%s_%s",fileName,(flag==ENCRYPT)?"ENC":"DEC");   outFile = fopen(outFileName,"w");   while(fgetws(str,1000,inpFile)!=NULL){ len = wideStrLen(str);   outStr = (wchar_t*)malloc((len + 1)*sizeof(wchar_t));   for(i=0;i<len;i++){ if((int)str[i]>=ALPHA && (int)str[i]<=OMEGA && flag == ENCRYPT) outStr[i] = (wchar_t)((int)str[i]+diff); else if((int)str[i]-diff>=ALPHA && (int)str[i]-diff<=OMEGA && flag == DECRYPT) outStr[i] = (wchar_t)((int)str[i]-diff); else outStr[i] = str[i]; } outStr[i]=str[i];   fputws(outStr,outFile);   free(outStr); }   fclose(inpFile); fclose(outFile); }   int main(int argC,char* argV[]){ if(argC!=5) printf("Usage : %s <file name, plain key, cipher key, action (E)ncrypt or (D)ecrypt>",argV[0]); else{ processFile(argV[1],argV[2][0],argV[3][0],(argV[4][0]=='E'||argV[4][0]=='e')?ENCRYPT:DECRYPT);   printf("File %s_%s has been written to the same location as input file.",argV[1],(argV[4][0]=='E'||argV[4][0]=='e')?"ENC":"DEC"); }   return 0; }  
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#BASIC256
BASIC256
arraybase 1 dim array(5) array[1] = 1 array[2] = 2 array[3] = 3 array[4] = 4 array[5] = 5   sum = 0 prod = 1 for index = 1 to array[?] sum += array[index] prod *= array[index] next index print "The sum is "; sum #15 print "and the product is "; prod #120 end
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#bc
bc
a[0] = 3.0 a[1] = 1 a[2] = 4.0 a[3] = 1.0 a[4] = 5 a[5] = 9.00 n = 6 p = 1 for (i = 0; i < n; i++) { s += a[i] p *= a[i] } "Sum: "; s "Product: "; p
http://rosettacode.org/wiki/Sum_of_a_series
Sum of a series
Compute the   nth   term of a series,   i.e. the sum of the   n   first terms of the corresponding sequence. Informally this value, or its limit when   n   tends to infinity, is also called the sum of the series, thus the title of this task. For this task, use: S n = ∑ k = 1 n 1 k 2 {\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}} and compute   S 1000 {\displaystyle S_{1000}} This approximates the   zeta function   for   S=2,   whose exact value ζ ( 2 ) = π 2 6 {\displaystyle \zeta (2)={\pi ^{2} \over 6}} is the solution of the Basel problem.
#Bracmat
Bracmat
( 0:?i & 0:?S & whl'(1+!i:~>1000:?i&!i^-2+!S:?S) & out$!S & out$(flt$(!S,10)) );
http://rosettacode.org/wiki/Sum_to_100
Sum to 100
Task Find solutions to the   sum to one hundred   puzzle. Add (insert) the mathematical operators     +   or   -     (plus or minus)   before any of the digits in the decimal numeric string   123456789   such that the resulting mathematical expression adds up to a particular sum   (in this iconic case,   100). Example: 123 + 4 - 5 + 67 - 89 = 100 Show all output here.   Show all solutions that sum to   100   Show the sum that has the maximum   number   of solutions   (from zero to infinity‡)   Show the lowest positive sum that   can't   be expressed   (has no solutions),   using the rules for this task   Show the ten highest numbers that can be expressed using the rules for this task   (extra credit) ‡   (where   infinity   would be a relatively small   123,456,789) An example of a sum that can't be expressed   (within the rules of this task)   is:   5074 (which,   of course,   isn't the lowest positive sum that can't be expressed).
#D
D
import std.stdio;   void main() { import std.algorithm : each, max, reduce, sort; import std.range : take;   Stat stat = new Stat();   comment("Show all solutions that sum to 100"); immutable givenSum = 100; print(givenSum);   comment("Show the sum that has the maximum number of solutions"); const int maxCount = reduce!max(stat.sumCount.keys); int maxSum; foreach(key, entry; stat.sumCount[maxCount]) { if (key >= 0) { maxSum = key; break; } } writeln(maxSum, " has ", maxCount, " solutions");   comment("Show the lowest positive number that can't be expressed"); int value = 0; while (value in stat.countSum) { value++; } writeln(value);   comment("Show the ten highest numbers that can be expressed"); const int n = stat.countSum.keys.length; auto sums = stat.countSum.keys; sums.sort!"a>b" .take(10) .each!print; }   void comment(string commentString) { writeln(); writeln(commentString); writeln(); }   void print(int givenSum) { Expression expression = new Expression(); for (int i=0; i<Expression.NUMBER_OF_EXPRESSIONS; i++, expression.next()) { if (expression.toInt() == givenSum) { expression.print(); } } }   class Expression { private enum NUMBER_OF_DIGITS = 9; private enum ADD = 0; private enum SUB = 1; private enum JOIN = 2;   enum NUMBER_OF_EXPRESSIONS = 2 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3; byte[NUMBER_OF_DIGITS] code;   Expression next() { for (int i=0; i<NUMBER_OF_DIGITS; i++) { if (++code[i] > JOIN) { code[i] = ADD; } else { break; } } return this; }   int toInt() { int value = 0; int number = 0; int sign = (+1); for (int digit=1; digit<=9; digit++) { switch (code[NUMBER_OF_DIGITS - digit]) { case ADD: value += sign * number; number = digit; sign = (+1); break; case SUB: value += sign * number; number = digit; sign = (-1); break; case JOIN: number = 10 * number + digit; break; default: assert(false); } } return value + sign * number; }   void toString(scope void delegate(const(char)[]) sink) const { import std.conv : to; import std.format : FormatSpec, formatValue; import std.range : put;   auto fmt = FormatSpec!char("s"); for (int digit=1; digit<=NUMBER_OF_DIGITS; digit++) { switch (code[NUMBER_OF_DIGITS - digit]) { case ADD: if (digit > 1) { put(sink, '+'); } break; case SUB: put(sink, '-'); break; default: break; } formatValue(sink, digit, fmt); } }   void print() { print(stdout); }   void print(File printStream) { printStream.writefln("%9d = %s", toInt(), this); } }   class Stat { int[int] countSum; bool[int][int] sumCount;   this() { Expression expression = new Expression(); for (int i=0; i<Expression.NUMBER_OF_EXPRESSIONS; i++, expression.next()) { int sum = expression.toInt(); countSum[sum]++; } foreach (key, entry; countSum) { bool[int] set; if (entry in sumCount) { set = sumCount[entry]; } else { set.clear(); } set[key] = true; sumCount[entry] = set; } } }
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5
Sum multiples of 3 and 5
Task The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n. Show output for n = 1000. This is is the same as Project Euler problem 1. Extra credit: do this efficiently for n = 1e20 or higher.
#C.2B.2B
C++
  #include <iostream>   //-------------------------------------------------------------------------------------------------- typedef unsigned long long bigInt;   using namespace std; //-------------------------------------------------------------------------------------------------- class m35 { public: void doIt( bigInt i ) { bigInt sum = 0; for( bigInt a = 1; a < i; a++ ) if( !( a % 3 ) || !( a % 5 ) ) sum += a;   cout << "Sum is " << sum << " for n = " << i << endl << endl; }   // this method uses less than half iterations than the first one void doIt_b( bigInt i ) { bigInt sum = 0; for( bigInt a = 0; a < 28; a++ ) { if( !( a % 3 ) || !( a % 5 ) ) { sum += a; for( bigInt s = 30; s < i; s += 30 ) if( a + s < i ) sum += ( a + s );   } } cout << "Sum is " << sum << " for n = " << i << endl << endl; } }; //-------------------------------------------------------------------------------------------------- int main( int argc, char* argv[] ) { m35 m; m.doIt( 1000 ); return system( "pause" ); }  
http://rosettacode.org/wiki/Sum_digits_of_an_integer
Sum digits of an integer
Task Take a   Natural Number   in a given base and return the sum of its digits:   110         sums to   1   123410   sums to   10   fe16       sums to   29   f0e16     sums to   29
#C
C
#include <stdio.h>   int SumDigits(unsigned long long n, const int base) { int sum = 0; for (; n; n /= base) sum += n % base; return sum; }   int main() { printf("%d %d %d %d %d\n", SumDigits(1, 10), SumDigits(12345, 10), SumDigits(123045, 10), SumDigits(0xfe, 16), SumDigits(0xf0e, 16) ); return 0; }
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#CLU
CLU
sum_squares = proc (ns: sequence[int]) returns (int) sum: int := 0 for n: int in sequence[int]$elements(ns) do sum := sum + n ** 2 end return(sum) end sum_squares   start_up = proc () po: stream := stream$primary_output()   stream$putl(po, int$unparse(sum_squares(sequence[int]$[]))) stream$putl(po, int$unparse(sum_squares(sequence[int]$[1,2,3,4,5]))) stream$putl(po, int$unparse(sum_squares(sequence[int]$[42]))) end start_up
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#CoffeeScript
CoffeeScript
  sumOfSquares = ( list ) -> list.reduce (( sum, x ) -> sum + ( x * x )), 0  
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#C.23
C#
using System; using System.IO; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;   namespace SubstitutionCipherProject { class SubstitutionCipher { static void Main(string[] args) { doEncDec("e:\\source.txt", "enc.txt", true); doEncDec("enc.txt", "dec.txt", false); Console.WriteLine("Done"); Console.ReadKey(); } static void doEncDec(String source, String target, bool IsEncrypt) { ITransform trans;   if (IsEncrypt) trans = new Encrypt(); else trans = new Decrypt();   FileInfo sfi = new FileInfo(source); FileStream sstream = sfi.OpenRead(); StreamReader sr = new StreamReader(sstream);   FileInfo tfi = new FileInfo(target); FileStream tstream = tfi.OpenWrite(); TransformWriter tw = new TransformWriter(tstream, trans); StreamWriter sw = new StreamWriter(tw);   String line; while ((line = sr.ReadLine()) != null) sw.WriteLine(line); sw.Close(); } } public interface ITransform { byte transform(byte ch); } public class Encrypt : ITransform { const String str = "xyfagchbimpourvnqsdewtkjzl"; byte ITransform.transform(byte ch) { if (char.IsLower((char)ch)) ch = (byte)str[ch - (byte)'a']; return ch; } } class Decrypt : ITransform { const String str = "xyfagchbimpourvnqsdewtkjzl"; byte ITransform.transform(byte ch) { if (char.IsLower((char)ch)) ch = (byte)(str.IndexOf((char)ch) + 'a'); return ch; } } class TransformWriter : Stream, IDisposable { private Stream outs; private ITransform trans;   public TransformWriter(Stream s, ITransform t) { this.outs = s; this.trans = t; }   public override bool CanRead { get { return false; } }   public override bool CanSeek { get { return false; } }   public override bool CanWrite { get { return true; } } public override void Flush() { outs.Flush(); }   public override long Length { get { return outs.Length; } } public override long Position { get { return outs.Position; } set { outs.Position = value; } } public override long Seek(long offset, SeekOrigin origin) { return outs.Seek(offset, origin); }   public override void SetLength(long value) { outs.SetLength(value); }   public override void Write(byte[] buf, int off, int len) { for (int i = off; i < off + len; i++) buf[i] = trans.transform(buf[i]); outs.Write(buf, off, len); }   void IDisposable.Dispose() { outs.Dispose(); }   public override void Close() { outs.Close(); }   public override int Read(byte[] cbuf, int off, int count) { return outs.Read(cbuf, off, count); } } }
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#Befunge
Befunge
0 &>: #v_ $. @ >1- \ & + \v ^ <
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#BQN
BQN
SumProd ← +´⋈×´ +´⋈×´ SumProd 1‿2‿3‿4‿5 ⟨ 15 120 ⟩
http://rosettacode.org/wiki/Sum_of_a_series
Sum of a series
Compute the   nth   term of a series,   i.e. the sum of the   n   first terms of the corresponding sequence. Informally this value, or its limit when   n   tends to infinity, is also called the sum of the series, thus the title of this task. For this task, use: S n = ∑ k = 1 n 1 k 2 {\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}} and compute   S 1000 {\displaystyle S_{1000}} This approximates the   zeta function   for   S=2,   whose exact value ζ ( 2 ) = π 2 6 {\displaystyle \zeta (2)={\pi ^{2} \over 6}} is the solution of the Basel problem.
#Brat
Brat
p 1.to(1000).reduce 0 { sum, x | sum + 1.0 / x ^ 2 } #Prints 1.6439345666816
http://rosettacode.org/wiki/Sum_to_100
Sum to 100
Task Find solutions to the   sum to one hundred   puzzle. Add (insert) the mathematical operators     +   or   -     (plus or minus)   before any of the digits in the decimal numeric string   123456789   such that the resulting mathematical expression adds up to a particular sum   (in this iconic case,   100). Example: 123 + 4 - 5 + 67 - 89 = 100 Show all output here.   Show all solutions that sum to   100   Show the sum that has the maximum   number   of solutions   (from zero to infinity‡)   Show the lowest positive sum that   can't   be expressed   (has no solutions),   using the rules for this task   Show the ten highest numbers that can be expressed using the rules for this task   (extra credit) ‡   (where   infinity   would be a relatively small   123,456,789) An example of a sum that can't be expressed   (within the rules of this task)   is:   5074 (which,   of course,   isn't the lowest positive sum that can't be expressed).
#Delphi
Delphi
defmodule Sum do def to(val) do generate |> Enum.map(&{eval(&1), &1}) |> Enum.filter(fn {v, _s} -> v==val end) |> Enum.each(&IO.inspect &1) end   def max_solve do generate |> Enum.group_by(&eval &1) |> Enum.filter_map(fn {k,_} -> k>=0 end, fn {k,v} -> {length(v),k} end) |> Enum.max |> fn {len,sum} -> IO.puts "sum of #{sum} has the maximum number of solutions : #{len}" end.() end   def min_solve do solve = generate |> Enum.group_by(&eval &1) Stream.iterate(1, &(&1+1)) |> Enum.find(fn n -> solve[n]==nil end) |> fn sum -> IO.puts "lowest positive sum that can't be expressed : #{sum}" end.() end   def highest_sums(n\\10) do IO.puts "highest sums :" generate |> Enum.map(&eval &1) |> Enum.uniq |> Enum.sort_by(fn sum -> -sum end) |> Enum.take(n) |> IO.inspect end   defp generate do x = ["+", "-", ""] for a <- ["-", ""], b <- x, c <- x, d <- x, e <- x, f <- x, g <- x, h <- x, i <- x, do: "#{a}1#{b}2#{c}3#{d}4#{e}5#{f}6#{g}7#{h}8#{i}9" end   defp eval(str), do: Code.eval_string(str) |> elem(0) end   Sum.to(100) Sum.max_solve Sum.min_solve Sum.highest_sums
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5
Sum multiples of 3 and 5
Task The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n. Show output for n = 1000. This is is the same as Project Euler problem 1. Extra credit: do this efficiently for n = 1e20 or higher.
#Clojure
Clojure
(defn sum-mults [n & mults] (let [pred (apply some-fn (map #(fn [x] (zero? (mod x %))) mults))] (->> (range n) (filter pred) (reduce +))))   (println (sum-mults 1000 3 5))
http://rosettacode.org/wiki/Sum_digits_of_an_integer
Sum digits of an integer
Task Take a   Natural Number   in a given base and return the sum of its digits:   110         sums to   1   123410   sums to   10   fe16       sums to   29   f0e16     sums to   29
#C.23
C#
namespace RosettaCode.SumDigitsOfAnInteger { using System; using System.Collections.Generic; using System.Linq;   internal static class Program { /// <summary> /// Enumerates the digits of a number in a given base. /// </summary> /// <param name="number"> The number. </param> /// <param name="base"> The base. </param> /// <returns> The digits of the number in the given base. </returns> /// <remarks> /// The digits are enumerated from least to most significant. /// </remarks> private static IEnumerable<int> Digits(this int number, int @base = 10) { while (number != 0) { int digit; number = Math.DivRem(number, @base, out digit); yield return digit; } }   /// <summary> /// Sums the digits of a number in a given base. /// </summary> /// <param name="number"> The number. </param> /// <param name="base"> The base. </param> /// <returns> The sum of the digits of the number in the given base. </returns> private static int SumOfDigits(this int number, int @base = 10) { return number.Digits(@base).Sum(); }   /// <summary> /// Demonstrates <see cref="SumOfDigits" />. /// </summary> private static void Main() { foreach (var example in new[] { new {Number = 1, Base = 10}, new {Number = 12345, Base = 10}, new {Number = 123045, Base = 10}, new {Number = 0xfe, Base = 0x10}, new {Number = 0xf0e, Base = 0x10} }) { Console.WriteLine(example.Number.SumOfDigits(example.Base)); } } } }
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#Common_Lisp
Common Lisp
(defun sum-of-squares (vector) (loop for x across vector sum (expt x 2)))
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#Cowgol
Cowgol
include "cowgol.coh"; include "argv.coh";   # Sum of squares sub sumsquare(vec: [int32], len: intptr): (out: uint32) is out := 0; while len > 0 loop var cur := [vec]; # make positive first so we can use extra range of uint32 if cur < 0 then cur := -cur; end if; out := out + cur as uint32 * cur as uint32; vec := @next vec; len := len - 1; end loop; end sub;     # Read array from command line, allowing empty line (giving 0) var nums: int32[128]; var len: @indexof nums := 0;   ArgvInit(); loop var argmt := ArgvNext(); # read number if argmt == (0 as [uint8]) then break; # stop when no more numbers end if;   var dummy: [uint8]; (nums[len], dummy) := AToI(argmt); len := len + 1; end loop;   # Print sum of squares of numbers print_i32(sumsquare(&nums[0], len as intptr)); print_nl();
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#C.2B.2B
C++
  #include <iostream> #include <string> #include <fstream>   class cipher { public: bool work( std::string e, std::string f, std::string k ) { if( e.length() < 1 ) return false; fileBuffer = readFile( f ); if( "" == fileBuffer ) return false; keyBuffer = readFile( k ); if( "" == keyBuffer ) return false;   outName = f; outName.insert( outName.find_first_of( "." ), "_out" );   switch( e[0] ) { case 'e': return encode(); case 'd': return decode(); } return false; } private: bool encode() { size_t idx, len = keyBuffer.length() >> 1; for( std::string::iterator i = fileBuffer.begin(); i != fileBuffer.end(); i++ ) { idx = keyBuffer.find_first_of( *i ); if( idx < len ) outBuffer.append( 1, keyBuffer.at( idx + len ) ); else outBuffer.append( 1, *i ); } return saveOutput(); } bool decode() { size_t idx, l = keyBuffer.length(), len = l >> 1; for( std::string::iterator i = fileBuffer.begin(); i != fileBuffer.end(); i++ ) { idx = keyBuffer.find_last_of( *i ); if( idx >= len && idx < l ) outBuffer.append( 1, keyBuffer.at( idx - len ) ); else outBuffer.append( 1, *i ); } return saveOutput(); } bool saveOutput() { std::ofstream o( outName.c_str() ); o.write( outBuffer.c_str(), outBuffer.size() ); o.close(); return true; } std::string readFile( std::string fl ) { std::string buffer = ""; std::ifstream f( fl.c_str(), std::ios_base::in ); if( f.good() ) { buffer = std::string( ( std::istreambuf_iterator<char>( f ) ), std::istreambuf_iterator<char>() ); f.close(); } return buffer; } std::string fileBuffer, keyBuffer, outBuffer, outName; };   int main( int argc, char* argv[] ) { if( argc < 4 ) { std::cout << "<d or e>\tDecrypt or Encrypt\n<filename>\tInput file, the output file will have" "'_out' added to it.\n<key>\t\tfile with the key to encode/decode\n\n"; } else { cipher c; if( c.work( argv[1], argv[2], argv[3] ) ) std::cout << "\nFile successfully saved!\n\n"; else std::cout << "Something went wrong!\n\n"; } return 0; }  
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#Bracmat
Bracmat
( ( sumprod = sum prod num . 0:?sum & 1:?prod & (  !arg  :  ? ( #%?num ? & !num+!sum:?sum & !num*!prod:?prod & ~ ) | (!sum.!prod) ) ) & out$sumprod$(2 3 5 7 11 13 17 19) );
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#C
C
/* using pointer arithmetic (because we can, I guess) */ int arg[] = { 1,2,3,4,5 }; int arg_length = sizeof(arg)/sizeof(arg[0]); int *end = arg+arg_length; int sum = 0, prod = 1; int *p;   for (p = arg; p!=end; ++p) { sum += *p; prod *= *p; }
http://rosettacode.org/wiki/Sum_of_a_series
Sum of a series
Compute the   nth   term of a series,   i.e. the sum of the   n   first terms of the corresponding sequence. Informally this value, or its limit when   n   tends to infinity, is also called the sum of the series, thus the title of this task. For this task, use: S n = ∑ k = 1 n 1 k 2 {\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}} and compute   S 1000 {\displaystyle S_{1000}} This approximates the   zeta function   for   S=2,   whose exact value ζ ( 2 ) = π 2 6 {\displaystyle \zeta (2)={\pi ^{2} \over 6}} is the solution of the Basel problem.
#C
C
#include <stdio.h>   double Invsqr(double n) { return 1 / (n*n); }   int main (int argc, char *argv[]) { int i, start = 1, end = 1000; double sum = 0.0;   for( i = start; i <= end; i++) sum += Invsqr((double)i);   printf("%16.14f\n", sum);   return 0; }
http://rosettacode.org/wiki/Sum_to_100
Sum to 100
Task Find solutions to the   sum to one hundred   puzzle. Add (insert) the mathematical operators     +   or   -     (plus or minus)   before any of the digits in the decimal numeric string   123456789   such that the resulting mathematical expression adds up to a particular sum   (in this iconic case,   100). Example: 123 + 4 - 5 + 67 - 89 = 100 Show all output here.   Show all solutions that sum to   100   Show the sum that has the maximum   number   of solutions   (from zero to infinity‡)   Show the lowest positive sum that   can't   be expressed   (has no solutions),   using the rules for this task   Show the ten highest numbers that can be expressed using the rules for this task   (extra credit) ‡   (where   infinity   would be a relatively small   123,456,789) An example of a sum that can't be expressed   (within the rules of this task)   is:   5074 (which,   of course,   isn't the lowest positive sum that can't be expressed).
#Elixir
Elixir
defmodule Sum do def to(val) do generate |> Enum.map(&{eval(&1), &1}) |> Enum.filter(fn {v, _s} -> v==val end) |> Enum.each(&IO.inspect &1) end   def max_solve do generate |> Enum.group_by(&eval &1) |> Enum.filter_map(fn {k,_} -> k>=0 end, fn {k,v} -> {length(v),k} end) |> Enum.max |> fn {len,sum} -> IO.puts "sum of #{sum} has the maximum number of solutions : #{len}" end.() end   def min_solve do solve = generate |> Enum.group_by(&eval &1) Stream.iterate(1, &(&1+1)) |> Enum.find(fn n -> solve[n]==nil end) |> fn sum -> IO.puts "lowest positive sum that can't be expressed : #{sum}" end.() end   def highest_sums(n\\10) do IO.puts "highest sums :" generate |> Enum.map(&eval &1) |> Enum.uniq |> Enum.sort_by(fn sum -> -sum end) |> Enum.take(n) |> IO.inspect end   defp generate do x = ["+", "-", ""] for a <- ["-", ""], b <- x, c <- x, d <- x, e <- x, f <- x, g <- x, h <- x, i <- x, do: "#{a}1#{b}2#{c}3#{d}4#{e}5#{f}6#{g}7#{h}8#{i}9" end   defp eval(str), do: Code.eval_string(str) |> elem(0) end   Sum.to(100) Sum.max_solve Sum.min_solve Sum.highest_sums
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5
Sum multiples of 3 and 5
Task The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n. Show output for n = 1000. This is is the same as Project Euler problem 1. Extra credit: do this efficiently for n = 1e20 or higher.
#COBOL
COBOL
  Identification division. Program-id. three-five-sum.   Data division. Working-storage section. 01 ws-the-limit pic 9(18) value 1000. 01 ws-the-number pic 9(18). 01 ws-the-sum pic 9(18). 01 ws-sum-out pic z(18).   Procedure division. Main-program. Perform Do-sum varying ws-the-number from 1 by 1 until ws-the-number = ws-the-limit. Move ws-the-sum to ws-sum-out. Display "Sum = " ws-sum-out. End-run.   Do-sum. If function mod(ws-the-number, 3) = zero or function mod(ws-the-number, 5) = zero then add ws-the-number to ws-the-sum.  
http://rosettacode.org/wiki/Sum_digits_of_an_integer
Sum digits of an integer
Task Take a   Natural Number   in a given base and return the sum of its digits:   110         sums to   1   123410   sums to   10   fe16       sums to   29   f0e16     sums to   29
#C.2B.2B
C++
#include <iostream> #include <cmath> int SumDigits(const unsigned long long int digits, const int BASE = 10) { int sum = 0; unsigned long long int x = digits; for (int i = log(digits)/log(BASE); i>0; i--){ const double z = std::pow(BASE,i); const unsigned long long int t = x/z; sum += t; x -= t*z; } return x+sum; }   int main() { std::cout << SumDigits(1) << ' ' << SumDigits(12345) << ' ' << SumDigits(123045) << ' ' << SumDigits(0xfe, 16) << ' ' << SumDigits(0xf0e, 16) << std::endl; return 0; }
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#Crystal
Crystal
  def sum_squares(a) a.map{|e| e*e}.sum() end   puts sum_squares([1, 2, 3]) # => 14  
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#D
D
T sumSquares(T)(T[] a) pure nothrow @safe @nogc { T sum = 0; foreach (e; a) sum += e ^^ 2; return sum; }   void main() { import std.stdio: writeln;   [3.1, 1.0, 4.0, 1.0, 5.0, 9.0].sumSquares.writeln; }
http://rosettacode.org/wiki/Substring/Top_and_tail
Substring/Top and tail
The task is to demonstrate how to remove the first and last characters from a string. The solution should demonstrate how to obtain the following results: String with first character removed String with last character removed String with both the first and last characters removed If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it. The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16. Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#11l
11l
print(‘knight’[1..]) print(‘socks’[0 .< (len)-1]) print(‘brooms’[1 .< (len)-1])
http://rosettacode.org/wiki/Subtractive_generator
Subtractive generator
A subtractive generator calculates a sequence of random numbers, where each number is congruent to the subtraction of two previous numbers from the sequence. The formula is r n = r ( n − i ) − r ( n − j ) ( mod m ) {\displaystyle r_{n}=r_{(n-i)}-r_{(n-j)}{\pmod {m}}} for some fixed values of i {\displaystyle i} , j {\displaystyle j} and m {\displaystyle m} , all positive integers. Supposing that i > j {\displaystyle i>j} , then the state of this generator is the list of the previous numbers from r n − i {\displaystyle r_{n-i}} to r n − 1 {\displaystyle r_{n-1}} . Many states generate uniform random integers from 0 {\displaystyle 0} to m − 1 {\displaystyle m-1} , but some states are bad. A state, filled with zeros, generates only zeros. If m {\displaystyle m} is even, then a state, filled with even numbers, generates only even numbers. More generally, if f {\displaystyle f} is a factor of m {\displaystyle m} , then a state, filled with multiples of f {\displaystyle f} , generates only multiples of f {\displaystyle f} . All subtractive generators have some weaknesses. The formula correlates r n {\displaystyle r_{n}} , r ( n − i ) {\displaystyle r_{(n-i)}} and r ( n − j ) {\displaystyle r_{(n-j)}} ; these three numbers are not independent, as true random numbers would be. Anyone who observes i {\displaystyle i} consecutive numbers can predict the next numbers, so the generator is not cryptographically secure. The authors of Freeciv (utility/rand.c) and xpat2 (src/testit2.c) knew another problem: the low bits are less random than the high bits. The subtractive generator has a better reputation than the linear congruential generator, perhaps because it holds more state. A subtractive generator might never multiply numbers: this helps where multiplication is slow. A subtractive generator might also avoid division: the value of r ( n − i ) − r ( n − j ) {\displaystyle r_{(n-i)}-r_{(n-j)}} is always between − m {\displaystyle -m} and m {\displaystyle m} , so a program only needs to add m {\displaystyle m} to negative numbers. The choice of i {\displaystyle i} and j {\displaystyle j} affects the period of the generator. A popular choice is i = 55 {\displaystyle i=55} and j = 24 {\displaystyle j=24} , so the formula is r n = r ( n − 55 ) − r ( n − 24 ) ( mod m ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {m}}} The subtractive generator from xpat2 uses r n = r ( n − 55 ) − r ( n − 24 ) ( mod 10 9 ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {10^{9}}}} The implementation is by J. Bentley and comes from program_tools/universal.c of the DIMACS (netflow) archive at Rutgers University. It credits Knuth, TAOCP, Volume 2, Section 3.2.2 (Algorithm A). Bentley uses this clever algorithm to seed the generator. Start with a single s e e d {\displaystyle seed} in range 0 {\displaystyle 0} to 10 9 − 1 {\displaystyle 10^{9}-1} . Set s 0 = s e e d {\displaystyle s_{0}=seed} and s 1 = 1 {\displaystyle s_{1}=1} . The inclusion of s 1 = 1 {\displaystyle s_{1}=1} avoids some bad states (like all zeros, or all multiples of 10). Compute s 2 , s 3 , . . . , s 54 {\displaystyle s_{2},s_{3},...,s_{54}} using the subtractive formula s n = s ( n − 2 ) − s ( n − 1 ) ( mod 10 9 ) {\displaystyle s_{n}=s_{(n-2)}-s_{(n-1)}{\pmod {10^{9}}}} . Reorder these 55 values so r 0 = s 34 {\displaystyle r_{0}=s_{34}} , r 1 = s 13 {\displaystyle r_{1}=s_{13}} , r 2 = s 47 {\displaystyle r_{2}=s_{47}} , ..., r n = s ( 34 ∗ ( n + 1 ) ( mod 55 ) ) {\displaystyle r_{n}=s_{(34*(n+1){\pmod {55}})}} . This is the same order as s 0 = r 54 {\displaystyle s_{0}=r_{54}} , s 1 = r 33 {\displaystyle s_{1}=r_{33}} , s 2 = r 12 {\displaystyle s_{2}=r_{12}} , ..., s n = r ( ( 34 ∗ n ) − 1 ( mod 55 ) ) {\displaystyle s_{n}=r_{((34*n)-1{\pmod {55}})}} . This rearrangement exploits how 34 and 55 are relatively prime. Compute the next 165 values r 55 {\displaystyle r_{55}} to r 219 {\displaystyle r_{219}} . Store the last 55 values. This generator yields the sequence r 220 {\displaystyle r_{220}} , r 221 {\displaystyle r_{221}} , r 222 {\displaystyle r_{222}} and so on. For example, if the seed is 292929, then the sequence begins with r 220 = 467478574 {\displaystyle r_{220}=467478574} , r 221 = 512932792 {\displaystyle r_{221}=512932792} , r 222 = 539453717 {\displaystyle r_{222}=539453717} . By starting at r 220 {\displaystyle r_{220}} , this generator avoids a bias from the first numbers of the sequence. This generator must store the last 55 numbers of the sequence, so to compute the next r n {\displaystyle r_{n}} . Any array or list would work; a ring buffer is ideal but not necessary. Implement a subtractive generator that replicates the sequences from xpat2.
#11l
11l
Deque[Int] s V seed = 292929   s.append(seed) s.append(1)   L(n) 2..54 s.append((s[n - 2] - s[n - 1]) % 10 ^ 9)   Deque[Int] r L(n) 55 V i = (34 * (n + 1)) % 55 r.append(s[i])   F py_mod(a, b) R ((a % b) + b) % b   F getnextr()  :r.append(py_mod((:r[0] - :r[31]), 10 ^ 9))  :r.pop_left() R :r[54]   L 0 .< 219 - 54 getnextr()   L 5 print(‘result = ’getnextr())
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#D
D
import std.stdio; import std.string; import std.traits;   string text = `Here we have to do is there will be a input/source file in which we are going to Encrypt the file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher.`;   void main() { auto enc = encode(text); writeln("Encoded: ", enc); writeln; writeln("Decoded: ", decode(enc)); }   enum FORWARD = "A~B!C@D#E$F%G^H&I*J(K)L+M=N[O]P{Q}R<S>T/U?V:W;X.Y,Z a\tbcdefghijkl\nmnopqrstuvwxyz"; auto encode(string input) { return tr(input, FORWARD, REVERSE); }   enum REVERSE = "VsciBjedgrzy\nHalvXZKtUP um\tGf?I/w>J<x.q,OC:F;R{A]p}n[D+h=Q)W(o*b&L^k%E$S#Y@M!T~N"; auto decode(string input) { return tr(input, REVERSE, FORWARD); }
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#Factor
Factor
USING: assocs combinators combinators.short-circuit command-line hashtables io io.encodings.utf8 io.files kernel math.order multiline namespaces qw sequences ; IN: rosetta-code.substitution-cipher   CONSTANT: alphabet "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"   CONSTANT: default-key "VsciBjedgrzyHalvXZKtUPumGfIwJxqOCFRApnDhQWobLkESYMTN"   SYMBOL: key   STRING: usage Usage: substitution <encode|decode> input-file output-file [key-file] (Optional -- for custom alphabet keys.)   Example: substitution encode my-poem.txt my-encoded-poem.txt ;   : check-args ( seq -- ? ) { [ length 3 4 between? not ] [ first qw{ encode decode } member? not ] } 1|| [ usage print f ] [ t ] if ;   : init-key ( seq -- ) dup length 4 = [ last utf8 file-contents ] [ drop default-key ] if key set ;   : >sub-map ( seq -- assoc ) [ alphabet key get ] dip first "encode" = [ swap ] unless zip >hashtable ;   : encipher ( seq assoc -- newseq ) [ dupd at dup [ nip ] [ drop ] if ] curry { } map-as ;   : substitute ( seq -- ) { [ init-key ] [ second ] [ >sub-map ] [ third ] } cleave [ utf8 file-contents ] [ encipher ] [ utf8 set-file-contents ] tri* ;   : main ( -- ) command-line get dup check-args [ substitute ] [ drop ] if ;   MAIN: main
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#C.23
C#
int sum = 0, prod = 1; int[] arg = { 1, 2, 3, 4, 5 }; foreach (int value in arg) { sum += value; prod *= value; }
http://rosettacode.org/wiki/Sum_of_a_series
Sum of a series
Compute the   nth   term of a series,   i.e. the sum of the   n   first terms of the corresponding sequence. Informally this value, or its limit when   n   tends to infinity, is also called the sum of the series, thus the title of this task. For this task, use: S n = ∑ k = 1 n 1 k 2 {\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}} and compute   S 1000 {\displaystyle S_{1000}} This approximates the   zeta function   for   S=2,   whose exact value ζ ( 2 ) = π 2 6 {\displaystyle \zeta (2)={\pi ^{2} \over 6}} is the solution of the Basel problem.
#C.23
C#
class Program { static void Main(string[] args) { // Create and fill a list of number 1 to 1000   List<double> myList = new List<double>(); for (double i = 1; i < 1001; i++) { myList.Add(i); } // Calculate the sum of 1/x^2   var sum = myList.Sum(x => 1/(x*x));   Console.WriteLine(sum); Console.ReadLine(); } }
http://rosettacode.org/wiki/Sum_to_100
Sum to 100
Task Find solutions to the   sum to one hundred   puzzle. Add (insert) the mathematical operators     +   or   -     (plus or minus)   before any of the digits in the decimal numeric string   123456789   such that the resulting mathematical expression adds up to a particular sum   (in this iconic case,   100). Example: 123 + 4 - 5 + 67 - 89 = 100 Show all output here.   Show all solutions that sum to   100   Show the sum that has the maximum   number   of solutions   (from zero to infinity‡)   Show the lowest positive sum that   can't   be expressed   (has no solutions),   using the rules for this task   Show the ten highest numbers that can be expressed using the rules for this task   (extra credit) ‡   (where   infinity   would be a relatively small   123,456,789) An example of a sum that can't be expressed   (within the rules of this task)   is:   5074 (which,   of course,   isn't the lowest positive sum that can't be expressed).
#F.23
F#
  (* Generate the data set Nigel Galloway February 22nd., 2017 *) type N = {n:string; g:int} let N = seq { let rec fn n i g e l = seq { match i with |9 -> yield {n=l + "-9"; g=g+e-9} yield {n=l + "+9"; g=g+e+9} yield {n=l + "9"; g=g+e*10+9*n} |_ -> yield! fn -1 (i+1) (g+e) -i (l + string -i) yield! fn 1 (i+1) (g+e) i (l + "+" + string i) yield! fn n (i+1) g (e*10+i*n) (l + string i) } yield! fn 1 2 0 1 "1" yield! fn -1 2 0 -1 "-1" }  
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5
Sum multiples of 3 and 5
Task The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n. Show output for n = 1000. This is is the same as Project Euler problem 1. Extra credit: do this efficiently for n = 1e20 or higher.
#Common_Lisp
Common Lisp
(defun sum-3-5-slow (limit) (loop for x below limit when (or (zerop (rem x 3)) (zerop (rem x 5))) sum x))
http://rosettacode.org/wiki/Sum_digits_of_an_integer
Sum digits of an integer
Task Take a   Natural Number   in a given base and return the sum of its digits:   110         sums to   1   123410   sums to   10   fe16       sums to   29   f0e16     sums to   29
#Clojure
Clojure
(defn sum-digits [n base] (let [number (if-not (string? n) (Long/toString n base) n)] (reduce + (map #(Long/valueOf (str %) base) number))))
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#Dart
Dart
sumOfSquares(list) { var sum=0; list.forEach((var n) { sum+=(n*n); }); return sum; }   main() { print(sumOfSquares([])); print(sumOfSquares([1,2,3])); print(sumOfSquares([10])); }
http://rosettacode.org/wiki/Substring/Top_and_tail
Substring/Top and tail
The task is to demonstrate how to remove the first and last characters from a string. The solution should demonstrate how to obtain the following results: String with first character removed String with last character removed String with both the first and last characters removed If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it. The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16. Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#360_Assembly
360 Assembly
* Substring/Top and tail 04/03/2017 SUBSTRTT CSECT USING SUBSTRTT,R13 base register B 72(R15) skip savearea DC 17F'0' savearea STM R14,R12,12(R13) save previous context ST R13,4(R15) link backward ST R15,8(R13) link forward LR R13,R15 set addressability * XPRNT S8,L'S8 print s8 MVC S7,S8+1 s7=substr(s8,2,7) XPRNT S7,L'S7 print s7 MVC S7,S8 s7=substr(s8,1,7) XPRNT S7,L'S7 print s7 MVC S6,S8+1 s6=substr(s8,2,6) XPRNT S6,L'S6 print s6 * L R13,4(0,R13) epilog LM R14,R12,12(R13) restore previous context XR R15,R15 rc=0 BR R14 exit S8 DC CL8'12345678' S7 DS CL7 S6 DS CL6 YREGS END SUBSTRTT
http://rosettacode.org/wiki/Substring/Top_and_tail
Substring/Top and tail
The task is to demonstrate how to remove the first and last characters from a string. The solution should demonstrate how to obtain the following results: String with first character removed String with last character removed String with both the first and last characters removed If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it. The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16. Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#ACL2
ACL2
(defun str-rest (str) (coerce (rest (coerce str 'list)) 'string))   (defun rdc (xs) (if (endp (rest xs)) nil (cons (first xs) (rdc (rest xs)))))   (defun str-rdc (str) (coerce (rdc (coerce str 'list)) 'string))   (str-rdc "string") (str-rest "string") (str-rest (str-rdc "string"))
http://rosettacode.org/wiki/Subtractive_generator
Subtractive generator
A subtractive generator calculates a sequence of random numbers, where each number is congruent to the subtraction of two previous numbers from the sequence. The formula is r n = r ( n − i ) − r ( n − j ) ( mod m ) {\displaystyle r_{n}=r_{(n-i)}-r_{(n-j)}{\pmod {m}}} for some fixed values of i {\displaystyle i} , j {\displaystyle j} and m {\displaystyle m} , all positive integers. Supposing that i > j {\displaystyle i>j} , then the state of this generator is the list of the previous numbers from r n − i {\displaystyle r_{n-i}} to r n − 1 {\displaystyle r_{n-1}} . Many states generate uniform random integers from 0 {\displaystyle 0} to m − 1 {\displaystyle m-1} , but some states are bad. A state, filled with zeros, generates only zeros. If m {\displaystyle m} is even, then a state, filled with even numbers, generates only even numbers. More generally, if f {\displaystyle f} is a factor of m {\displaystyle m} , then a state, filled with multiples of f {\displaystyle f} , generates only multiples of f {\displaystyle f} . All subtractive generators have some weaknesses. The formula correlates r n {\displaystyle r_{n}} , r ( n − i ) {\displaystyle r_{(n-i)}} and r ( n − j ) {\displaystyle r_{(n-j)}} ; these three numbers are not independent, as true random numbers would be. Anyone who observes i {\displaystyle i} consecutive numbers can predict the next numbers, so the generator is not cryptographically secure. The authors of Freeciv (utility/rand.c) and xpat2 (src/testit2.c) knew another problem: the low bits are less random than the high bits. The subtractive generator has a better reputation than the linear congruential generator, perhaps because it holds more state. A subtractive generator might never multiply numbers: this helps where multiplication is slow. A subtractive generator might also avoid division: the value of r ( n − i ) − r ( n − j ) {\displaystyle r_{(n-i)}-r_{(n-j)}} is always between − m {\displaystyle -m} and m {\displaystyle m} , so a program only needs to add m {\displaystyle m} to negative numbers. The choice of i {\displaystyle i} and j {\displaystyle j} affects the period of the generator. A popular choice is i = 55 {\displaystyle i=55} and j = 24 {\displaystyle j=24} , so the formula is r n = r ( n − 55 ) − r ( n − 24 ) ( mod m ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {m}}} The subtractive generator from xpat2 uses r n = r ( n − 55 ) − r ( n − 24 ) ( mod 10 9 ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {10^{9}}}} The implementation is by J. Bentley and comes from program_tools/universal.c of the DIMACS (netflow) archive at Rutgers University. It credits Knuth, TAOCP, Volume 2, Section 3.2.2 (Algorithm A). Bentley uses this clever algorithm to seed the generator. Start with a single s e e d {\displaystyle seed} in range 0 {\displaystyle 0} to 10 9 − 1 {\displaystyle 10^{9}-1} . Set s 0 = s e e d {\displaystyle s_{0}=seed} and s 1 = 1 {\displaystyle s_{1}=1} . The inclusion of s 1 = 1 {\displaystyle s_{1}=1} avoids some bad states (like all zeros, or all multiples of 10). Compute s 2 , s 3 , . . . , s 54 {\displaystyle s_{2},s_{3},...,s_{54}} using the subtractive formula s n = s ( n − 2 ) − s ( n − 1 ) ( mod 10 9 ) {\displaystyle s_{n}=s_{(n-2)}-s_{(n-1)}{\pmod {10^{9}}}} . Reorder these 55 values so r 0 = s 34 {\displaystyle r_{0}=s_{34}} , r 1 = s 13 {\displaystyle r_{1}=s_{13}} , r 2 = s 47 {\displaystyle r_{2}=s_{47}} , ..., r n = s ( 34 ∗ ( n + 1 ) ( mod 55 ) ) {\displaystyle r_{n}=s_{(34*(n+1){\pmod {55}})}} . This is the same order as s 0 = r 54 {\displaystyle s_{0}=r_{54}} , s 1 = r 33 {\displaystyle s_{1}=r_{33}} , s 2 = r 12 {\displaystyle s_{2}=r_{12}} , ..., s n = r ( ( 34 ∗ n ) − 1 ( mod 55 ) ) {\displaystyle s_{n}=r_{((34*n)-1{\pmod {55}})}} . This rearrangement exploits how 34 and 55 are relatively prime. Compute the next 165 values r 55 {\displaystyle r_{55}} to r 219 {\displaystyle r_{219}} . Store the last 55 values. This generator yields the sequence r 220 {\displaystyle r_{220}} , r 221 {\displaystyle r_{221}} , r 222 {\displaystyle r_{222}} and so on. For example, if the seed is 292929, then the sequence begins with r 220 = 467478574 {\displaystyle r_{220}=467478574} , r 221 = 512932792 {\displaystyle r_{221}=512932792} , r 222 = 539453717 {\displaystyle r_{222}=539453717} . By starting at r 220 {\displaystyle r_{220}} , this generator avoids a bias from the first numbers of the sequence. This generator must store the last 55 numbers of the sequence, so to compute the next r n {\displaystyle r_{n}} . Any array or list would work; a ring buffer is ideal but not necessary. Implement a subtractive generator that replicates the sequences from xpat2.
#Ada
Ada
package Subtractive_Generator is type State is private; procedure Initialize (Generator : in out State; Seed : Natural); procedure Next (Generator : in out State; N : out Natural); private type Number_Array is array (Natural range <>) of Natural; type State is record R  : Number_Array (0 .. 54); Last : Natural; end record; end Subtractive_Generator;
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#Fortran
Fortran
program substitution implicit none   integer, parameter :: len_max = 256 integer, parameter :: eof = -1 integer :: in_unit = 9, out_unit = 10, ios character(len_max) :: line   open(in_unit, file="plain.txt", iostat=ios) if (ios /= 0) then write(*,*) "Error opening plain.txt file" stop end if   open(out_unit, file="encrypted.txt", iostat=ios) if (ios /= 0) then write(*,*) "Error opening encrypted.txt file" stop end if   ! Encryption do read(in_unit, "(a)", iostat=ios) line if (ios > 0) then write(*,*) "Error reading plain.txt file" stop else if (ios == eof) then exit end if   call cipher(trim(line)) write(out_unit, "(a)", iostat=ios) trim(line) if (ios /= 0) then write(*,*) "Error writing encrypted.txt file" stop end if end do   close(in_unit) close(out_unit)   open(in_unit, file="encrypted.txt", iostat=ios) if (ios /= 0) then write(*,*) "Error opening encrypted.txt file" stop end if   open(out_unit, file="decrypted.txt", iostat=ios) if (ios /= 0) then write(*,*) "Error opening decrypted.txt file" stop end if   ! Decryption do read(in_unit, "(a)", iostat=ios) line if (ios > 0) then write(*,*) "Error reading encrypted.txt file" stop else if (ios == eof) then exit end if   call cipher(trim(line)) write(out_unit, "(a)", iostat=ios) trim(line) if (ios /= 0) then write(*,*) "Error writing decrypted.txt file" stop end if end do   close(in_unit) close(out_unit)   contains   subroutine cipher(text) character(*), intent(in out) :: text integer :: i   ! Substitutes A -> Z, B -> Y ... Y -> B, Z -> A and ditto for lower case ! works for both encryption and decryption   do i = 1, len(text) select case(text(i:i)) case ('A':'Z') text(i:i) = achar(155 - iachar(text(i:i))) case ('a':'z') text(i:i) = achar(219 - iachar(text(i:i))) end select end do end subroutine   end program
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#C.2B.2B
C++
#include <numeric> #include <functional>   int arg[] = { 1, 2, 3, 4, 5 }; int sum = std::accumulate(arg, arg+5, 0, std::plus<int>()); // or just // std::accumulate(arg, arg + 5, 0); // since plus() is the default functor for accumulate int prod = std::accumulate(arg, arg+5, 1, std::multiplies<int>());
http://rosettacode.org/wiki/Sum_of_a_series
Sum of a series
Compute the   nth   term of a series,   i.e. the sum of the   n   first terms of the corresponding sequence. Informally this value, or its limit when   n   tends to infinity, is also called the sum of the series, thus the title of this task. For this task, use: S n = ∑ k = 1 n 1 k 2 {\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}} and compute   S 1000 {\displaystyle S_{1000}} This approximates the   zeta function   for   S=2,   whose exact value ζ ( 2 ) = π 2 6 {\displaystyle \zeta (2)={\pi ^{2} \over 6}} is the solution of the Basel problem.
#C.2B.2B
C++
#include <iostream>   double f(double x);   int main() { unsigned int start = 1; unsigned int end = 1000; double sum = 0;   for( unsigned int x = start; x <= end; ++x ) { sum += f(x); } std::cout << "Sum of f(x) from " << start << " to " << end << " is " << sum << std::endl; return 0; }     double f(double x) { return ( 1.0 / ( x * x ) ); }
http://rosettacode.org/wiki/Sum_to_100
Sum to 100
Task Find solutions to the   sum to one hundred   puzzle. Add (insert) the mathematical operators     +   or   -     (plus or minus)   before any of the digits in the decimal numeric string   123456789   such that the resulting mathematical expression adds up to a particular sum   (in this iconic case,   100). Example: 123 + 4 - 5 + 67 - 89 = 100 Show all output here.   Show all solutions that sum to   100   Show the sum that has the maximum   number   of solutions   (from zero to infinity‡)   Show the lowest positive sum that   can't   be expressed   (has no solutions),   using the rules for this task   Show the ten highest numbers that can be expressed using the rules for this task   (extra credit) ‡   (where   infinity   would be a relatively small   123,456,789) An example of a sum that can't be expressed   (within the rules of this task)   is:   5074 (which,   of course,   isn't the lowest positive sum that can't be expressed).
#Forth
Forth
CREATE *OPS CHAR + C, CHAR - C, CHAR # C, CREATE 0OPS CHAR - C, CHAR # C, CREATE BUFF 43 C, 43 CHARS ALLOT CREATE PTR CELL ALLOT CREATE LIMITS 2 C, 3 C, 3 C, 3 C, 3 C, 3 C, 3 C, 3 C, 3 C, CREATE INDX 0 C, 0 C, 0 C, 0 C, 0 C, 0 C, 0 C, 0 C, 0 C, CREATE OPS 0OPS , *OPS , *OPS , *OPS , *OPS , *OPS , *OPS , *OPS , *OPS , : B0 BUFF 1+ dup PTR ! 43 blank ; : B, ( c --) PTR @ C! 1 PTR +! ; CREATE STATS 123456790 ALLOT STATS 123456790 ERASE   : inc ( c-addr c-lim u -- t|f) 1- tuck + >r swap dup rot + ( addr a-addr) ( R: l-addr) BEGIN dup C@ 1+ dup r@ C@ = IF drop 2dup = IF 2drop FALSE rdrop EXIT \ no inc, contents invalid ELSE 0 over C! 1- r> 1- >r \ reset and carry THEN ELSE swap C! drop TRUE rdrop EXIT THEN AGAIN ; : INDX+ INDX LIMITS 9 inc 0= ; : SYNTH B0 [CHAR] 0 B, 9 0 DO INDX I + C@ OPS I CELLS + @ + C@ dup [CHAR] # <> IF BL B, B, BL B, ELSE drop THEN I [CHAR] 1 + B, LOOP BUFF COUNT ; : .MOST cr ." Sum that has the maximum number of solutions" cr 4 spaces STATS 0 STATS 1+ 123456789 bounds DO dup I c@ < IF drop drop I I c@ THEN LOOP swap STATS - . ." has " . ." solutions" ; : .CANT cr ." Lowest positive sum that can't be expressed" cr 4 spaces STATS 1+ ( 0 not positive) BEGIN dup c@ WHILE 1+ REPEAT STATS - . ; : .BEST cr ." Ten highest numbers that can be expressed" cr 4 spaces 0 >r [ STATS 123456789 + ]L BEGIN r@ 10 < over STATS >= and WHILE dup c@ IF dup STATS - . r> 1+ >r THEN 1- REPEAT r> drop ; : . 0 <# #S #> TYPE ; : .INFX cr 4 spaces 9 0 DO INDX I + C@ OPS I cells + @ + C@ dup [char] # <> IF emit ELSE drop THEN I 1+ . LOOP ; : REPORT ( n) dup 100 = IF .INFX THEN dup 0> IF STATS + dup c@ 1+ swap c! ELSE drop THEN ; : >NUM 0. bl word count >number 2drop d>s ; : # 10 * + ; \ numeric concatenation : + >NUM + ; \ infix + : - >NUM - ; \ infix - : .SOLUTIONS cr ." Solutions that sum to 100:" BEGIN SYNTH EVALUATE REPORT INDX+ UNTIL ; : SUM100 .SOLUTIONS .MOST .CANT .BEST cr ;
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5
Sum multiples of 3 and 5
Task The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n. Show output for n = 1000. This is is the same as Project Euler problem 1. Extra credit: do this efficiently for n = 1e20 or higher.
#Component_Pascal
Component Pascal
  MODULE Sum3_5; IMPORT StdLog, Strings, Args;   PROCEDURE DoSum(n: INTEGER):INTEGER; VAR i,sum: INTEGER; BEGIN sum := 0;i := 0; WHILE (i < n) DO IF (i MOD 3 = 0) OR (i MOD 5 = 0) THEN INC(sum,i) END; INC(i) END; RETURN sum END DoSum;   PROCEDURE Compute*; VAR params: Args.Params; i,n,res: INTEGER; BEGIN Args.Get(params); Strings.StringToInt(params.args[0],n,res); StdLog.String("Sum: ");StdLog.Int(DoSum(n)); StdLog.Ln END Compute;   END Sum3_5.  
http://rosettacode.org/wiki/Sum_digits_of_an_integer
Sum digits of an integer
Task Take a   Natural Number   in a given base and return the sum of its digits:   110         sums to   1   123410   sums to   10   fe16       sums to   29   f0e16     sums to   29
#Common_Lisp
Common Lisp
(defun sum-digits (number base) (loop for n = number then q for (q r) = (multiple-value-list (truncate n base)) sum r until (zerop q)))
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#Delphi
Delphi
program SumOfSq;   {$APPTYPE CONSOLE}   uses Math;   type TDblArray = array of Double;   var A: TDblArray;   begin Writeln(SumOfSquares([]):6:2); // 0.00 Writeln(SumOfSquares([1, 2, 3, 4]):6:2); // 30.00 A:= nil; Writeln(SumOfSquares(A):6:2); // 0.00 A:= TDblArray.Create(1, 2, 3, 4); Writeln(SumOfSquares(A):6:2); // 30.00 Readln; end.
http://rosettacode.org/wiki/Successive_prime_differences
Successive prime differences
The series of increasing prime numbers begins: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... The task applies a filter to the series returning groups of successive primes, (s'primes), that differ from the next by a given value or values. Example 1: Specifying that the difference between s'primes be 2 leads to the groups: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), ... (Known as Twin primes or Prime pairs) Example 2: Specifying more than one difference between s'primes leads to groups of size one greater than the number of differences. Differences of 2, 4 leads to the groups: (5, 7, 11), (11, 13, 17), (17, 19, 23), (41, 43, 47), .... In the first group 7 is two more than 5 and 11 is four more than 7; as well as 5, 7, and 11 being successive primes. Differences are checked in the order of the values given, (differences of 4, 2 would give different groups entirely). Task In each case use a list of primes less than 1_000_000 For the following Differences show the first and last group, as well as the number of groups found: Differences of 2. Differences of 1. Differences of 2, 2. Differences of 2, 4. Differences of 4, 2. Differences of 6, 4, 2. Show output here. Note: Generation of a list of primes is a secondary aspect of the task. Use of a built in function, well known library, or importing/use of prime generators from other Rosetta Code tasks is encouraged. references https://pdfs.semanticscholar.org/78a1/7349819304863ae061df88dbcb26b4908f03.pdf https://www.primepuzzles.net/puzzles/puzz_011.htm https://matheplanet.de/matheplanet/nuke/html/viewtopic.php?topic=232720&start=0
#11l
11l
F primes_upto(limit) V is_prime = [0B] * 2 [+] [1B] * (limit - 1) L(n) 0 .< Int(limit ^ 0.5 + 1.5) I is_prime[n] L(i) (n * n .< limit + 1).step(n) is_prime[i] = 0B R enumerate(is_prime).filter((i, prime) -> prime).map((i, prime) -> i)   F successive_primes(primes, diffs) [[Int]] results V dl = diffs.len   L(i) 0 .< primes.len - dl V group = [0] * (dl + 1) group[0] = primes[i] L(j) i .+ dl I primes[j + 1] - primes[j] != diffs[j - i] L.break group[j - i + 1] = primes[j + 1] L.was_no_break results [+]= group   R results   V prime_list = primes_upto(1'000'000)   print(‘For primes less than 1,000,000:-’) L(diffs) [[2], [1], [2, 2], [2, 4], [4, 2], [6, 4, 2]] print(‘ For differences of #. ->’.format(diffs)) V sp = successive_primes(prime_list, diffs) print(‘ First group = ’sp[0]) print(‘ Last group = ’sp.last) print(‘ Number found = ’sp.len) print()
http://rosettacode.org/wiki/Substring/Top_and_tail
Substring/Top and tail
The task is to demonstrate how to remove the first and last characters from a string. The solution should demonstrate how to obtain the following results: String with first character removed String with last character removed String with both the first and last characters removed If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it. The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16. Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Action.21
Action!
PROC Main() CHAR ARRAY text="qwertyuiop" CHAR ARRAY res(20) BYTE n,m   PrintF("Original string:%E ""%S""%E%E",text)   SCopyS(res,text,2,text(0)) PrintF("String without the top:%E ""%S""%E%E",res)   SCopyS(res,text,1,text(0)-1) PrintF("String without the tail:%E ""%S""%E%E",res)   SCopyS(res,text,2,text(0)-1) PrintF("String without the top and the tail:%E ""%S""%E%E",res) RETURN
http://rosettacode.org/wiki/Substring/Top_and_tail
Substring/Top and tail
The task is to demonstrate how to remove the first and last characters from a string. The solution should demonstrate how to obtain the following results: String with first character removed String with last character removed String with both the first and last characters removed If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it. The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16. Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Ada
Ada
with Ada.Text_IO;   procedure Remove_Characters is S: String := "upraisers"; use Ada.Text_IO; begin Put_Line("Full String: """ & S & """"); Put_Line("Without_First: """ & S(S'First+1 .. S'Last) & """"); Put_Line("Without_Last: """ & S(S'First .. S'Last-1) & """"); Put_Line("Without_Both: """ & S(S'First+1 .. S'Last-1) & """"); end Remove_Characters;
http://rosettacode.org/wiki/Subtractive_generator
Subtractive generator
A subtractive generator calculates a sequence of random numbers, where each number is congruent to the subtraction of two previous numbers from the sequence. The formula is r n = r ( n − i ) − r ( n − j ) ( mod m ) {\displaystyle r_{n}=r_{(n-i)}-r_{(n-j)}{\pmod {m}}} for some fixed values of i {\displaystyle i} , j {\displaystyle j} and m {\displaystyle m} , all positive integers. Supposing that i > j {\displaystyle i>j} , then the state of this generator is the list of the previous numbers from r n − i {\displaystyle r_{n-i}} to r n − 1 {\displaystyle r_{n-1}} . Many states generate uniform random integers from 0 {\displaystyle 0} to m − 1 {\displaystyle m-1} , but some states are bad. A state, filled with zeros, generates only zeros. If m {\displaystyle m} is even, then a state, filled with even numbers, generates only even numbers. More generally, if f {\displaystyle f} is a factor of m {\displaystyle m} , then a state, filled with multiples of f {\displaystyle f} , generates only multiples of f {\displaystyle f} . All subtractive generators have some weaknesses. The formula correlates r n {\displaystyle r_{n}} , r ( n − i ) {\displaystyle r_{(n-i)}} and r ( n − j ) {\displaystyle r_{(n-j)}} ; these three numbers are not independent, as true random numbers would be. Anyone who observes i {\displaystyle i} consecutive numbers can predict the next numbers, so the generator is not cryptographically secure. The authors of Freeciv (utility/rand.c) and xpat2 (src/testit2.c) knew another problem: the low bits are less random than the high bits. The subtractive generator has a better reputation than the linear congruential generator, perhaps because it holds more state. A subtractive generator might never multiply numbers: this helps where multiplication is slow. A subtractive generator might also avoid division: the value of r ( n − i ) − r ( n − j ) {\displaystyle r_{(n-i)}-r_{(n-j)}} is always between − m {\displaystyle -m} and m {\displaystyle m} , so a program only needs to add m {\displaystyle m} to negative numbers. The choice of i {\displaystyle i} and j {\displaystyle j} affects the period of the generator. A popular choice is i = 55 {\displaystyle i=55} and j = 24 {\displaystyle j=24} , so the formula is r n = r ( n − 55 ) − r ( n − 24 ) ( mod m ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {m}}} The subtractive generator from xpat2 uses r n = r ( n − 55 ) − r ( n − 24 ) ( mod 10 9 ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {10^{9}}}} The implementation is by J. Bentley and comes from program_tools/universal.c of the DIMACS (netflow) archive at Rutgers University. It credits Knuth, TAOCP, Volume 2, Section 3.2.2 (Algorithm A). Bentley uses this clever algorithm to seed the generator. Start with a single s e e d {\displaystyle seed} in range 0 {\displaystyle 0} to 10 9 − 1 {\displaystyle 10^{9}-1} . Set s 0 = s e e d {\displaystyle s_{0}=seed} and s 1 = 1 {\displaystyle s_{1}=1} . The inclusion of s 1 = 1 {\displaystyle s_{1}=1} avoids some bad states (like all zeros, or all multiples of 10). Compute s 2 , s 3 , . . . , s 54 {\displaystyle s_{2},s_{3},...,s_{54}} using the subtractive formula s n = s ( n − 2 ) − s ( n − 1 ) ( mod 10 9 ) {\displaystyle s_{n}=s_{(n-2)}-s_{(n-1)}{\pmod {10^{9}}}} . Reorder these 55 values so r 0 = s 34 {\displaystyle r_{0}=s_{34}} , r 1 = s 13 {\displaystyle r_{1}=s_{13}} , r 2 = s 47 {\displaystyle r_{2}=s_{47}} , ..., r n = s ( 34 ∗ ( n + 1 ) ( mod 55 ) ) {\displaystyle r_{n}=s_{(34*(n+1){\pmod {55}})}} . This is the same order as s 0 = r 54 {\displaystyle s_{0}=r_{54}} , s 1 = r 33 {\displaystyle s_{1}=r_{33}} , s 2 = r 12 {\displaystyle s_{2}=r_{12}} , ..., s n = r ( ( 34 ∗ n ) − 1 ( mod 55 ) ) {\displaystyle s_{n}=r_{((34*n)-1{\pmod {55}})}} . This rearrangement exploits how 34 and 55 are relatively prime. Compute the next 165 values r 55 {\displaystyle r_{55}} to r 219 {\displaystyle r_{219}} . Store the last 55 values. This generator yields the sequence r 220 {\displaystyle r_{220}} , r 221 {\displaystyle r_{221}} , r 222 {\displaystyle r_{222}} and so on. For example, if the seed is 292929, then the sequence begins with r 220 = 467478574 {\displaystyle r_{220}=467478574} , r 221 = 512932792 {\displaystyle r_{221}=512932792} , r 222 = 539453717 {\displaystyle r_{222}=539453717} . By starting at r 220 {\displaystyle r_{220}} , this generator avoids a bias from the first numbers of the sequence. This generator must store the last 55 numbers of the sequence, so to compute the next r n {\displaystyle r_{n}} . Any array or list would work; a ring buffer is ideal but not necessary. Implement a subtractive generator that replicates the sequences from xpat2.
#AutoHotkey
AutoHotkey
r := InitR(292929)   Loop, 10 Out .= (A_Index + 219) ":`t" GetRand(r) "`n"   MsgBox, % Out   GetRand(r) { i := Mod(r["j"], 55) , r[i] := Mod(r[i] - r[Mod(i + 31, 55)], r["m"]) , r["j"] += 1 return, (r[i] < 0 ? r[i] + r["m"] : r[i]) }   InitR(Seed) { r := {"j": 0, "m": 10 ** 9}, s := {0: Seed, 1: 1} Loop, 53 s[A_Index + 1] := Mod(s[A_Index - 1] - s[A_Index], r["m"]) Loop, 55 r[A_Index - 1] := s[Mod(34 * A_Index, 55)] Loop, 165 i := Mod(A_Index + 54, 55) , r[i] := Mod(r[i] - r[Mod(A_Index + 30, 55)], r["m"]) return, r }
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#FreeBASIC
FreeBASIC
' FB 1.05.0 Win64   ' uses same alphabet and key as Ada language example Const string1 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" Const string2 = "VsciBjedgrzyHalvXZKtUPumGfIwJxqOCFRApnDhQWobLkESYMTN"   Sub process(inputFile As String, outputFile As String, encrypt As Boolean) Open inputFile For Input As #1 If err > 0 Then Print "Unable to open input file" Sleep End End If Dim As String alpha, key If encrypt Then alpha = string1 : key = string2 Else alpha = string2 : key = string1 End If Open outputFile For Output As #2 Dim s As String Dim p As Integer While Not Eof(1) Line Input #1, s For i As Integer = 0 To Len(s) - 1 If (s[i] >= 65 AndAlso s[i] <= 90) OrElse (s[i] >= 97 AndAlso s[i] <= 122) Then p = Instr(alpha, Mid(s, i + 1, 1)) - 1 s[i] = key[p] End If Next Print #2, s Wend Close #1 : Close #2 End Sub   process "plain.txt", "encrypted.txt", true process "encrypted.txt", "decrypted.txt", false Print Print "Press any key to quit" Sleep
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#Chef
Chef
Sum and Product of Numbers as a Piece of Cake.   This recipe sums N given numbers.   Ingredients. 1 N 0 sum 1 product 1 number   Method. Put sum into 1st mixing bowl. Put product into 2nd mixing bowl. Take N from refrigerator. Chop N. Take number from refrigerator. Add number into 1st mixing bowl. Combine number into 2nd mixing bowl. Chop N until choped. Pour contents of 2nd mixing bowl into the baking dish. Pour contents of 1st mixing bowl into the baking dish.   Serves 1.
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#Clean
Clean
array = {1, 2, 3, 4, 5} Sum = sum [x \\ x <-: array] Prod = foldl (*) 1 [x \\ x <-: array]
http://rosettacode.org/wiki/Sum_of_a_series
Sum of a series
Compute the   nth   term of a series,   i.e. the sum of the   n   first terms of the corresponding sequence. Informally this value, or its limit when   n   tends to infinity, is also called the sum of the series, thus the title of this task. For this task, use: S n = ∑ k = 1 n 1 k 2 {\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}} and compute   S 1000 {\displaystyle S_{1000}} This approximates the   zeta function   for   S=2,   whose exact value ζ ( 2 ) = π 2 6 {\displaystyle \zeta (2)={\pi ^{2} \over 6}} is the solution of the Basel problem.
#CLIPS
CLIPS
(deffunction S (?x) (/ 1 (* ?x ?x))) (deffunction partial-sum-S (?start ?stop) (bind ?sum 0) (loop-for-count (?i ?start ?stop) do (bind ?sum (+ ?sum (S ?i))) ) (return ?sum) )
http://rosettacode.org/wiki/Sum_to_100
Sum to 100
Task Find solutions to the   sum to one hundred   puzzle. Add (insert) the mathematical operators     +   or   -     (plus or minus)   before any of the digits in the decimal numeric string   123456789   such that the resulting mathematical expression adds up to a particular sum   (in this iconic case,   100). Example: 123 + 4 - 5 + 67 - 89 = 100 Show all output here.   Show all solutions that sum to   100   Show the sum that has the maximum   number   of solutions   (from zero to infinity‡)   Show the lowest positive sum that   can't   be expressed   (has no solutions),   using the rules for this task   Show the ten highest numbers that can be expressed using the rules for this task   (extra credit) ‡   (where   infinity   would be a relatively small   123,456,789) An example of a sum that can't be expressed   (within the rules of this task)   is:   5074 (which,   of course,   isn't the lowest positive sum that can't be expressed).
#Fortran
Fortran
C ROSSETACODE: SUM TO 100, FORTRAN IV C FIND SOLUTIONS TO THE "SUM TO ONE HUNDRED" PUZZLE C ================================================= PROGRAM SUMTO100 DATA NEXPRM1/13121/ WRITE(6,110) 110 FORMAT(1X/1X,34HSHOW ALL SOLUTIONS THAT SUM TO 100/) DO 10 I = 0,NEXPRM1 10 IF ( IEVAL(I) .EQ. 100 ) CALL PREXPR(I) WRITE(6,120) 120 FORMAT(1X/1X, 153HSHOW THE SUM THAT HAS THE MAXIMUM NUMBER OF SOLUTIONS/) NBEST = -1 DO 30 I = 0, NEXPRM1 ITEST = IEVAL(I) IF ( ITEST .LT. 0 ) GOTO 30 NTEST = 0 DO 20 J = 0, NEXPRM1 20 IF ( IEVAL(J) .EQ. ITEST ) NTEST = NTEST + 1 IF ( NTEST .LE. NBEST ) GOTO 30 IBEST = ITEST NBEST = NTEST 30 CONTINUE WRITE(6,121) IBEST, NBEST 121 FORMAT(1X,I8,5H HAS ,I8,10H SOLUTIONS/) WRITE(6,130) 130 FORMAT(1X/1X, 155HSHOW THE LOWEST POSITIVE NUMBER THAT CAN'T BE EXPRESSED/) DO 50 I = 0,123456789 DO 40 J = 0,NEXPRM1 40 IF ( I .EQ. IEVAL(J) ) GOTO 50 GOTO 60 50 CONTINUE 60 WRITE(6,131) I 131 FORMAT(1X,I8) WRITE(6,140) 140 FORMAT(1X/1X, 150HSHOW THE TEN HIGHEST NUMBERS THAT CAN BE EXPRESSED/) ILIMIT = 123456789 DO 90 I = 1,10 IBEST = 0 DO 70 J = 0, NEXPRM1 ITEST = IEVAL(J) 70 IF( (ITEST .LE. ILIMIT) .AND. (ITEST .GT. IBEST)) IBEST = ITEST DO 80 J = 0, NEXPRM1 80 IF ( IEVAL(J) .EQ. IBEST ) CALL PREXPR(J) 90 ILIMIT = IBEST - 1 END C EVALUATE THE VALUE OF THE GIVEN ENCODED EXPRESSION C -------------------------------------------------- FUNCTION IEVAL(ICODE) IC = ICODE IEVAL = 0 N = 0 IP = 1 DO 50 K = 9,1,-1 N = IP*K + N GOTO (10,20,40,30) MOD(IC,3)+1 10 IEVAL = IEVAL + N GOTO 30 20 IEVAL = IEVAL - N 30 N = 0 IP = 1 GOTO 50 40 IP = IP * 10 50 IC = IC / 3 END C PRINT THE ENCODED EXPRESSION IN THE READABLE FORMAT C --------------------------------------------------- SUBROUTINE PREXPR(ICODE) DIMENSION IH(9),IHPMJ(4) DATA IHPMJ/1H+,1H-,1H ,1H?/ IA = 19683 IB = 6561 DO 10 K = 1,9 IH(K) = IHPMJ(MOD(ICODE,IA) / IB+1) IA = IB 10 IB = IB / 3 IVALUE = IEVAL(ICODE) WRITE(6,110) IVALUE, IH 110 FORMAT(I9,3H = 1A1,1H1,1A1,1H2,1A1,1H3,1A1,1H4,1A1,1H5,1A1,1H6,1A1 1,1H7,1A1,1H8,1A1,1H9) END
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5
Sum multiples of 3 and 5
Task The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n. Show output for n = 1000. This is is the same as Project Euler problem 1. Extra credit: do this efficiently for n = 1e20 or higher.
#Cowgol
Cowgol
include "cowgol.coh";   # sum multiples up to given input interface SumMulTo(mul: uint32, to: uint32): (rslt: uint32);   # naive implementation sub naiveSumMulTo implements SumMulTo is rslt := 0; var cur := mul; while cur < to loop rslt := rslt + cur; cur := cur + mul; end loop; end sub;   # number theoretical implementation sub fastSumMulTo implements SumMulTo is to := (to - 1)/mul; rslt := mul * to * (to + 1)/2; end sub;   # sum multiples of 3 and 5 up to given number using given method sub sum35(to: uint32, sum: SumMulTo): (rslt: uint32) is rslt := sum(3, to) + sum(5, to) - sum(15, to); end sub;   print("Naive method: "); print_i32(sum35(1000, naiveSumMulTo)); print_nl(); print("Fast method: "); print_i32(sum35(1000, fastSumMulTo)); print_nl();  
http://rosettacode.org/wiki/Sum_digits_of_an_integer
Sum digits of an integer
Task Take a   Natural Number   in a given base and return the sum of its digits:   110         sums to   1   123410   sums to   10   fe16       sums to   29   f0e16     sums to   29
#Cowgol
Cowgol
include "cowgol.coh";   sub digitSum(n: uint32, base: uint32): (r: uint32) is r := 0; while n > 0 loop r := r + n % base; n := n / base; end loop; end sub;   print_i32(digitSum(1, 10)); # prints 1 print_nl(); print_i32(digitSum(1234, 10)); # prints 10 print_nl(); print_i32(digitSum(0xFE, 16)); # prints 29 print_nl(); print_i32(digitSum(0xF0E, 16)); # prints 29 print_nl();
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#Draco
Draco
proc nonrec sum_squares([*] int arr) ulong: ulong sum, item; word i, len; sum := 0; len := dim(arr,1); if len>0 then for i from 0 upto len-1 do item := |arr[i]; sum := sum + item * item od fi; sum corp   proc nonrec main() void: type A0 = [0] int, A1 = [1] int, A5 = [5] int;   writeln(sum_squares(A0())); writeln(sum_squares(A1(42))); writeln(sum_squares(A5(1,2,3,4,5))) corp
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#E
E
def sumOfSquares(numbers) { var sum := 0 for x in numbers { sum += x**2 } return sum }
http://rosettacode.org/wiki/Successive_prime_differences
Successive prime differences
The series of increasing prime numbers begins: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... The task applies a filter to the series returning groups of successive primes, (s'primes), that differ from the next by a given value or values. Example 1: Specifying that the difference between s'primes be 2 leads to the groups: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), ... (Known as Twin primes or Prime pairs) Example 2: Specifying more than one difference between s'primes leads to groups of size one greater than the number of differences. Differences of 2, 4 leads to the groups: (5, 7, 11), (11, 13, 17), (17, 19, 23), (41, 43, 47), .... In the first group 7 is two more than 5 and 11 is four more than 7; as well as 5, 7, and 11 being successive primes. Differences are checked in the order of the values given, (differences of 4, 2 would give different groups entirely). Task In each case use a list of primes less than 1_000_000 For the following Differences show the first and last group, as well as the number of groups found: Differences of 2. Differences of 1. Differences of 2, 2. Differences of 2, 4. Differences of 4, 2. Differences of 6, 4, 2. Show output here. Note: Generation of a list of primes is a secondary aspect of the task. Use of a built in function, well known library, or importing/use of prime generators from other Rosetta Code tasks is encouraged. references https://pdfs.semanticscholar.org/78a1/7349819304863ae061df88dbcb26b4908f03.pdf https://www.primepuzzles.net/puzzles/puzz_011.htm https://matheplanet.de/matheplanet/nuke/html/viewtopic.php?topic=232720&start=0
#ALGOL_68
ALGOL 68
BEGIN # find some sequences of primes where the gaps between the elements # # follow specific patterns # # reurns a list of primes up to n # PROC prime list = ( INT n )[]INT: BEGIN # sieve the primes to n # INT no = 0, yes = 1; [ 1 : n ]INT p; p[ 1 ] := no; p[ 2 ] := yes; FOR i FROM 3 BY 2 TO n DO p[ i ] := yes OD; FOR i FROM 4 BY 2 TO n DO p[ i ] := no OD; FOR i FROM 3 BY 2 TO ENTIER sqrt( n ) DO IF p[ i ] = yes THEN FOR s FROM i * i BY i + i TO n DO p[ s ] := no OD FI OD; # replace the sieve with a list # INT p pos := 0; FOR i TO n DO IF p[ i ] = yes THEN p[ p pos +:= 1 ] := i FI OD; p[ 1 : p pos ] END # prime list # ; # prints the elements of list # PROC print list = ( STRING name, []INT list )VOID: BEGIN print( ( name, "[" ) ); FOR i FROM LWB list TO UPB list DO print( ( " ", whole( list[ i ], 0 ) ) ) OD; print( ( " ]" ) ) END # print list # ; # attempts to find patterns in the differences of primes and prints the results # PROC try differences = ( []INT primes, []INT pattern )VOID: BEGIN INT pattern length = ( UPB pattern - LWB pattern ) + 1; [ 1 : pattern length + 1 ]INT first; FOR i TO UPB first DO first[ i ] := 0 OD; [ 1 : pattern length + 1 ]INT last; FOR i TO UPB last DO last[ i ] := 0 OD; INT count := 0; FOR p FROM LWB primes + pattern length TO UPB primes DO BOOL matched := TRUE; INT e pos := LWB pattern; FOR e FROM p - pattern length TO p - 1 WHILE matched := primes[ e + 1 ] - primes[ e ] = pattern[ e pos ] DO e pos +:= 1 OD; IF matched THEN # found a matching sequence # count +:= 1; last := primes[ p - pattern length : p @ 1 ]; IF count = 1 THEN first := last FI FI OD; print( ( " Found ", whole( count, 0 ), " prime sequence(s) that differ by: " ) ); print list( "", pattern ); print( ( newline ) ); IF count > 0 THEN # found at least one sequence # print list( " first: ", first ); print list( " last: ", last ); print( ( newline ) ) FI; print( ( newline ) ) END # try differences # ; INT max number = 1 000 000; []INT p list = prime list( max number ); print( ( "For primes up to ", whole( max number, 0 ), "...", newline ) ); try differences( p list, ( 2 ) );try differences( p list, ( 1 ) ); try differences( p list, ( 2, 2 ) );try differences( p list, ( 2, 4 ) ); try differences( p list, ( 4, 2 ) );try differences( p list, ( 6, 4, 2 ) ); try differences( p list, ( 2, 4, 6, 8 ) );try differences( p list, ( 2, 4, 6, 8, 10 ) ); try differences( p list, ( 32, 16, 8, 4, 2 ) ) END
http://rosettacode.org/wiki/Substring/Top_and_tail
Substring/Top and tail
The task is to demonstrate how to remove the first and last characters from a string. The solution should demonstrate how to obtain the following results: String with first character removed String with last character removed String with both the first and last characters removed If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it. The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16. Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Aime
Aime
o_text(delete("knights", 0)); o_newline(); o_text(delete("knights", -1)); o_newline(); o_text(delete(delete("knights", 0), -1)); o_newline();
http://rosettacode.org/wiki/Subtractive_generator
Subtractive generator
A subtractive generator calculates a sequence of random numbers, where each number is congruent to the subtraction of two previous numbers from the sequence. The formula is r n = r ( n − i ) − r ( n − j ) ( mod m ) {\displaystyle r_{n}=r_{(n-i)}-r_{(n-j)}{\pmod {m}}} for some fixed values of i {\displaystyle i} , j {\displaystyle j} and m {\displaystyle m} , all positive integers. Supposing that i > j {\displaystyle i>j} , then the state of this generator is the list of the previous numbers from r n − i {\displaystyle r_{n-i}} to r n − 1 {\displaystyle r_{n-1}} . Many states generate uniform random integers from 0 {\displaystyle 0} to m − 1 {\displaystyle m-1} , but some states are bad. A state, filled with zeros, generates only zeros. If m {\displaystyle m} is even, then a state, filled with even numbers, generates only even numbers. More generally, if f {\displaystyle f} is a factor of m {\displaystyle m} , then a state, filled with multiples of f {\displaystyle f} , generates only multiples of f {\displaystyle f} . All subtractive generators have some weaknesses. The formula correlates r n {\displaystyle r_{n}} , r ( n − i ) {\displaystyle r_{(n-i)}} and r ( n − j ) {\displaystyle r_{(n-j)}} ; these three numbers are not independent, as true random numbers would be. Anyone who observes i {\displaystyle i} consecutive numbers can predict the next numbers, so the generator is not cryptographically secure. The authors of Freeciv (utility/rand.c) and xpat2 (src/testit2.c) knew another problem: the low bits are less random than the high bits. The subtractive generator has a better reputation than the linear congruential generator, perhaps because it holds more state. A subtractive generator might never multiply numbers: this helps where multiplication is slow. A subtractive generator might also avoid division: the value of r ( n − i ) − r ( n − j ) {\displaystyle r_{(n-i)}-r_{(n-j)}} is always between − m {\displaystyle -m} and m {\displaystyle m} , so a program only needs to add m {\displaystyle m} to negative numbers. The choice of i {\displaystyle i} and j {\displaystyle j} affects the period of the generator. A popular choice is i = 55 {\displaystyle i=55} and j = 24 {\displaystyle j=24} , so the formula is r n = r ( n − 55 ) − r ( n − 24 ) ( mod m ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {m}}} The subtractive generator from xpat2 uses r n = r ( n − 55 ) − r ( n − 24 ) ( mod 10 9 ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {10^{9}}}} The implementation is by J. Bentley and comes from program_tools/universal.c of the DIMACS (netflow) archive at Rutgers University. It credits Knuth, TAOCP, Volume 2, Section 3.2.2 (Algorithm A). Bentley uses this clever algorithm to seed the generator. Start with a single s e e d {\displaystyle seed} in range 0 {\displaystyle 0} to 10 9 − 1 {\displaystyle 10^{9}-1} . Set s 0 = s e e d {\displaystyle s_{0}=seed} and s 1 = 1 {\displaystyle s_{1}=1} . The inclusion of s 1 = 1 {\displaystyle s_{1}=1} avoids some bad states (like all zeros, or all multiples of 10). Compute s 2 , s 3 , . . . , s 54 {\displaystyle s_{2},s_{3},...,s_{54}} using the subtractive formula s n = s ( n − 2 ) − s ( n − 1 ) ( mod 10 9 ) {\displaystyle s_{n}=s_{(n-2)}-s_{(n-1)}{\pmod {10^{9}}}} . Reorder these 55 values so r 0 = s 34 {\displaystyle r_{0}=s_{34}} , r 1 = s 13 {\displaystyle r_{1}=s_{13}} , r 2 = s 47 {\displaystyle r_{2}=s_{47}} , ..., r n = s ( 34 ∗ ( n + 1 ) ( mod 55 ) ) {\displaystyle r_{n}=s_{(34*(n+1){\pmod {55}})}} . This is the same order as s 0 = r 54 {\displaystyle s_{0}=r_{54}} , s 1 = r 33 {\displaystyle s_{1}=r_{33}} , s 2 = r 12 {\displaystyle s_{2}=r_{12}} , ..., s n = r ( ( 34 ∗ n ) − 1 ( mod 55 ) ) {\displaystyle s_{n}=r_{((34*n)-1{\pmod {55}})}} . This rearrangement exploits how 34 and 55 are relatively prime. Compute the next 165 values r 55 {\displaystyle r_{55}} to r 219 {\displaystyle r_{219}} . Store the last 55 values. This generator yields the sequence r 220 {\displaystyle r_{220}} , r 221 {\displaystyle r_{221}} , r 222 {\displaystyle r_{222}} and so on. For example, if the seed is 292929, then the sequence begins with r 220 = 467478574 {\displaystyle r_{220}=467478574} , r 221 = 512932792 {\displaystyle r_{221}=512932792} , r 222 = 539453717 {\displaystyle r_{222}=539453717} . By starting at r 220 {\displaystyle r_{220}} , this generator avoids a bias from the first numbers of the sequence. This generator must store the last 55 numbers of the sequence, so to compute the next r n {\displaystyle r_{n}} . Any array or list would work; a ring buffer is ideal but not necessary. Implement a subtractive generator that replicates the sequences from xpat2.
#BBC_BASIC
BBC BASIC
dummy% = FNsubrand(292929) FOR i% = 1 TO 10 PRINT FNsubrand(0) NEXT END   DEF FNsubrand(s%) PRIVATE r%(), p% : DIM r%(54) IF s% = 0 THEN p% = (p% + 1) MOD 55 r%(p%) = r%(p%) - r%((p% + 31) MOD 55) IF r%(p%) < 0 r%(p%) += 10^9 = r%(p%) ENDIF LOCAL i% r%(54) = s% : r%(33) = 1 p% = 12 FOR i% = 2 TO 54 r%(p%) = r%((p%+42) MOD 55) - r%((p%+21) MOD 55) IF r%(p%) < 0 r%(p%) += 10^9 p% = (p% + 34) MOD 55 NEXT FOR i% = 55 TO 219 IF FNsubrand(0) NEXT = 0
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#Go
Go
package main   import ( "fmt" "strings" )   var key = "]kYV}(!7P$n5_0i R:?jOWtF/=-pe'AD&@r6%ZXs\"v*N[#wSl9zq2^+g;LoB`aGh{3.HIu4fbK)mU8|dMET><,Qc\\C1yxJ"   func encode(s string) string { bs := []byte(s) for i := 0; i < len(bs); i++ { bs[i] = key[int(bs[i]) - 32] } return string(bs) }   func decode(s string) string { bs := []byte(s) for i := 0; i < len(bs); i++ { bs[i] = byte(strings.IndexByte(key, bs[i]) + 32) } return string(bs) }   func main() { s := "The quick brown fox jumps over the lazy dog, who barks VERY loudly!" enc := encode(s) fmt.Println("Encoded: ", enc) fmt.Println("Decoded: ", decode(enc)) }
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#Clojure
Clojure
(defn sum [vals] (reduce + vals))   (defn product [vals] (reduce * vals))
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#CLU
CLU
sum_and_product = proc (a: array[int]) returns (int,int) signals (overflow) sum: int := 0 prod: int := 1 for i: int in array[int]$elements(a) do sum := sum + i prod := prod * i end resignal overflow return(sum, prod) end sum_and_product   start_up = proc () arr: array[int] := array[int]$[1,2,3,4,5,6,7,8,9,10] sum, prod: int := sum_and_product(arr)   po: stream := stream$primary_output() stream$putl(po, "Sum = " || int$unparse(sum)) stream$putl(po, "Product = " || int$unparse(prod)) end start_up
http://rosettacode.org/wiki/Sum_of_a_series
Sum of a series
Compute the   nth   term of a series,   i.e. the sum of the   n   first terms of the corresponding sequence. Informally this value, or its limit when   n   tends to infinity, is also called the sum of the series, thus the title of this task. For this task, use: S n = ∑ k = 1 n 1 k 2 {\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}} and compute   S 1000 {\displaystyle S_{1000}} This approximates the   zeta function   for   S=2,   whose exact value ζ ( 2 ) = π 2 6 {\displaystyle \zeta (2)={\pi ^{2} \over 6}} is the solution of the Basel problem.
#Clojure
Clojure
(reduce + (map #(/ 1.0 % %) (range 1 1001)))
http://rosettacode.org/wiki/Sum_to_100
Sum to 100
Task Find solutions to the   sum to one hundred   puzzle. Add (insert) the mathematical operators     +   or   -     (plus or minus)   before any of the digits in the decimal numeric string   123456789   such that the resulting mathematical expression adds up to a particular sum   (in this iconic case,   100). Example: 123 + 4 - 5 + 67 - 89 = 100 Show all output here.   Show all solutions that sum to   100   Show the sum that has the maximum   number   of solutions   (from zero to infinity‡)   Show the lowest positive sum that   can't   be expressed   (has no solutions),   using the rules for this task   Show the ten highest numbers that can be expressed using the rules for this task   (extra credit) ‡   (where   infinity   would be a relatively small   123,456,789) An example of a sum that can't be expressed   (within the rules of this task)   is:   5074 (which,   of course,   isn't the lowest positive sum that can't be expressed).
#FreeBASIC
FreeBASIC
  #define PERM 13122   'Between any two adjacent digits there can be nothing, a plus, or a minus. 'And the first term can only be + or - 'This is equivalent to an eight-digit base 3 number. We therefore only need 'to consider 2*3^8=13122 possibilities   function ndig(n as uinteger) as uinteger return 1+int(log(n+0.5)/log(10)) end function   function calculate( byval n as uinteger, outstr as string ) as integer 'calculates the sum given by one of the 13122 possibilities, as well as 'storing the equation itself as a string outstr = "9" dim as integer ret = 0, curr = 9 dim as boolean firstplus = n>=PERM/2 for i as integer = 8 to 1 step -1 select case n mod 3 case 0 'no symbol means we just prepend the next number curr += i*10^(ndig(curr)) case 1 'addition: add the current term to the running sum, and clear the current term ret += curr curr = i outstr = " + " + outstr case 2 'subtraction: minus the current term from the running sum, and clear the current term ret -= curr curr = i outstr = " - " + outstr end select outstr = str(i) + outstr 'prepend the previous digit to the string n \= 3 'get next symbol next i if firstplus = 0 then outstr = "-"+outstr ret -= curr else ret += curr end if outstr = outstr + " = " + str(ret) return ret end function   'calculate and store all 13122 solutions dim as string eqn dim as integer n, sum(0 to PERM-1), curr for n = 0 to PERM-1 curr = calculate(n, eqn) sum(n) = curr if curr = 100 then print eqn next n   'what is the sum that has the most solutions? dim as integer champ = 0, cnum = 0, i, j, acc for i = 0 to PERM-1 acc = 0 for j = i to PERM-1 if sum(j) = sum(i) then acc+=1 next j if acc>cnum then champ = sum(i) cnum=acc end if next i print "The sum with the most occurrences is ";champ;", which shows up ";cnum;" times."   'what is the first nonnegative number that has no solution for i = 0 to 123456788 for j = 0 to PERM-1 if sum(j)=i then goto nexti next j print "The first number that has no solution is ";i exit for nexti: next i   'What are the ten highest numbers? 'this partially destroys the information in the array, but who cares? 'We're almost done and these excessive questionnaires are the worst 'and most boring part of Rosetta Code tasks   print "The ten highest numbers attainable are:" champ = 0 for i = 1 to 10 for j = 0 to PERM-1 if sum(j)>sum(champ) then champ = j next j calculate(champ, eqn) print eqn sum(champ) = -9999 'overwrite to stop this being found a second time next i
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5
Sum multiples of 3 and 5
Task The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n. Show output for n = 1000. This is is the same as Project Euler problem 1. Extra credit: do this efficiently for n = 1e20 or higher.
#Crystal
Crystal
def sum_3_5_multiples(n) (0...n).select { |i| i % 3 == 0 || i % 5 == 0 }.sum end   puts sum_3_5_multiples(1000)
http://rosettacode.org/wiki/Sum_digits_of_an_integer
Sum digits of an integer
Task Take a   Natural Number   in a given base and return the sum of its digits:   110         sums to   1   123410   sums to   10   fe16       sums to   29   f0e16     sums to   29
#Crystal
Crystal
class String def sum_digits(base : Int) : Int32 self.chars.reduce(0) { |acc, c| value = c.to_i(base) acc += value } end end   puts("1".sum_digits 10) puts("1234".sum_digits 10) puts("fe".sum_digits 16) puts("f0e".sum_digits 16)
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#Eiffel
Eiffel
  class APPLICATION   create make   feature -- Initialization   make local a: ARRAY [INTEGER] do a := <<1, -2, 3>> print ("%NSquare sum of <<1, 2, 3>>: " + sum_of_square (a).out)   a := <<>> print ("%NSquare sum of <<>>: " + sum_of_square (a).out) end   feature -- Access   sum_of_square (a: ITERABLE [INTEGER]): NATURAL -- sum of square of each items do Result := 0 across a as it loop Result := Result + (it.item * it.item).as_natural_32 end end   end  
http://rosettacode.org/wiki/Successive_prime_differences
Successive prime differences
The series of increasing prime numbers begins: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... The task applies a filter to the series returning groups of successive primes, (s'primes), that differ from the next by a given value or values. Example 1: Specifying that the difference between s'primes be 2 leads to the groups: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), ... (Known as Twin primes or Prime pairs) Example 2: Specifying more than one difference between s'primes leads to groups of size one greater than the number of differences. Differences of 2, 4 leads to the groups: (5, 7, 11), (11, 13, 17), (17, 19, 23), (41, 43, 47), .... In the first group 7 is two more than 5 and 11 is four more than 7; as well as 5, 7, and 11 being successive primes. Differences are checked in the order of the values given, (differences of 4, 2 would give different groups entirely). Task In each case use a list of primes less than 1_000_000 For the following Differences show the first and last group, as well as the number of groups found: Differences of 2. Differences of 1. Differences of 2, 2. Differences of 2, 4. Differences of 4, 2. Differences of 6, 4, 2. Show output here. Note: Generation of a list of primes is a secondary aspect of the task. Use of a built in function, well known library, or importing/use of prime generators from other Rosetta Code tasks is encouraged. references https://pdfs.semanticscholar.org/78a1/7349819304863ae061df88dbcb26b4908f03.pdf https://www.primepuzzles.net/puzzles/puzz_011.htm https://matheplanet.de/matheplanet/nuke/html/viewtopic.php?topic=232720&start=0
#Arturo
Arturo
LIM: 1000000   findDiffs: function [r][ if r=[1] -> return [[2 3]] i: 3 tupled: map 0..dec size r 'x -> fold slice r 0 x [a b][a+b] diffs: new [] while [i < LIM][ if prime? i [ prset: map tupled 't -> i + t if every? prset 'elem -> prime? elem [ 'diffs ++ @[@[i] ++ prset] ] ] i: i + 2 ]   diffs: filter diffs 'dd [ some? range (first dd)+1 (last dd)-1 'x -> and? [prime? x][not? contains? dd x] ] return diffs ]   loop [[2] [1] [2 2] [2 4] [4 2] [6 4 2]] 'rng [ print ["Differences of" join.with:", " to [:string] rng] diffs: findDiffs rng print ["\tFirst: " join.with:" " to [:string] first diffs] print ["\tLast: " join.with:" " to [:string] last diffs] print ["\tCount: " size diffs] ]
http://rosettacode.org/wiki/Substring/Top_and_tail
Substring/Top and tail
The task is to demonstrate how to remove the first and last characters from a string. The solution should demonstrate how to obtain the following results: String with first character removed String with last character removed String with both the first and last characters removed If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it. The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16. Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#ALGOL_68
ALGOL 68
#!/usr/local/bin/a68g --script #   STRING str="upraisers"; printf(($gl$, str, # remove no characters # str[LWB str+1: ], # remove the first character # str[ :UPB str-1], # remove the last character # str[LWB str+1:UPB str-1], # remove both the first and last character # str[LWB str+2: ], # remove the first 2 characters # str[ :UPB str-2], # remove the last 2 characters # str[LWB str+1:UPB str-2], # remove 1 before and 2 after # str[LWB str+2:UPB str-1], # remove 2 before and one after # str[LWB str+2:UPB str-2] # remove both the first and last 2 characters # ))
http://rosettacode.org/wiki/Subtractive_generator
Subtractive generator
A subtractive generator calculates a sequence of random numbers, where each number is congruent to the subtraction of two previous numbers from the sequence. The formula is r n = r ( n − i ) − r ( n − j ) ( mod m ) {\displaystyle r_{n}=r_{(n-i)}-r_{(n-j)}{\pmod {m}}} for some fixed values of i {\displaystyle i} , j {\displaystyle j} and m {\displaystyle m} , all positive integers. Supposing that i > j {\displaystyle i>j} , then the state of this generator is the list of the previous numbers from r n − i {\displaystyle r_{n-i}} to r n − 1 {\displaystyle r_{n-1}} . Many states generate uniform random integers from 0 {\displaystyle 0} to m − 1 {\displaystyle m-1} , but some states are bad. A state, filled with zeros, generates only zeros. If m {\displaystyle m} is even, then a state, filled with even numbers, generates only even numbers. More generally, if f {\displaystyle f} is a factor of m {\displaystyle m} , then a state, filled with multiples of f {\displaystyle f} , generates only multiples of f {\displaystyle f} . All subtractive generators have some weaknesses. The formula correlates r n {\displaystyle r_{n}} , r ( n − i ) {\displaystyle r_{(n-i)}} and r ( n − j ) {\displaystyle r_{(n-j)}} ; these three numbers are not independent, as true random numbers would be. Anyone who observes i {\displaystyle i} consecutive numbers can predict the next numbers, so the generator is not cryptographically secure. The authors of Freeciv (utility/rand.c) and xpat2 (src/testit2.c) knew another problem: the low bits are less random than the high bits. The subtractive generator has a better reputation than the linear congruential generator, perhaps because it holds more state. A subtractive generator might never multiply numbers: this helps where multiplication is slow. A subtractive generator might also avoid division: the value of r ( n − i ) − r ( n − j ) {\displaystyle r_{(n-i)}-r_{(n-j)}} is always between − m {\displaystyle -m} and m {\displaystyle m} , so a program only needs to add m {\displaystyle m} to negative numbers. The choice of i {\displaystyle i} and j {\displaystyle j} affects the period of the generator. A popular choice is i = 55 {\displaystyle i=55} and j = 24 {\displaystyle j=24} , so the formula is r n = r ( n − 55 ) − r ( n − 24 ) ( mod m ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {m}}} The subtractive generator from xpat2 uses r n = r ( n − 55 ) − r ( n − 24 ) ( mod 10 9 ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {10^{9}}}} The implementation is by J. Bentley and comes from program_tools/universal.c of the DIMACS (netflow) archive at Rutgers University. It credits Knuth, TAOCP, Volume 2, Section 3.2.2 (Algorithm A). Bentley uses this clever algorithm to seed the generator. Start with a single s e e d {\displaystyle seed} in range 0 {\displaystyle 0} to 10 9 − 1 {\displaystyle 10^{9}-1} . Set s 0 = s e e d {\displaystyle s_{0}=seed} and s 1 = 1 {\displaystyle s_{1}=1} . The inclusion of s 1 = 1 {\displaystyle s_{1}=1} avoids some bad states (like all zeros, or all multiples of 10). Compute s 2 , s 3 , . . . , s 54 {\displaystyle s_{2},s_{3},...,s_{54}} using the subtractive formula s n = s ( n − 2 ) − s ( n − 1 ) ( mod 10 9 ) {\displaystyle s_{n}=s_{(n-2)}-s_{(n-1)}{\pmod {10^{9}}}} . Reorder these 55 values so r 0 = s 34 {\displaystyle r_{0}=s_{34}} , r 1 = s 13 {\displaystyle r_{1}=s_{13}} , r 2 = s 47 {\displaystyle r_{2}=s_{47}} , ..., r n = s ( 34 ∗ ( n + 1 ) ( mod 55 ) ) {\displaystyle r_{n}=s_{(34*(n+1){\pmod {55}})}} . This is the same order as s 0 = r 54 {\displaystyle s_{0}=r_{54}} , s 1 = r 33 {\displaystyle s_{1}=r_{33}} , s 2 = r 12 {\displaystyle s_{2}=r_{12}} , ..., s n = r ( ( 34 ∗ n ) − 1 ( mod 55 ) ) {\displaystyle s_{n}=r_{((34*n)-1{\pmod {55}})}} . This rearrangement exploits how 34 and 55 are relatively prime. Compute the next 165 values r 55 {\displaystyle r_{55}} to r 219 {\displaystyle r_{219}} . Store the last 55 values. This generator yields the sequence r 220 {\displaystyle r_{220}} , r 221 {\displaystyle r_{221}} , r 222 {\displaystyle r_{222}} and so on. For example, if the seed is 292929, then the sequence begins with r 220 = 467478574 {\displaystyle r_{220}=467478574} , r 221 = 512932792 {\displaystyle r_{221}=512932792} , r 222 = 539453717 {\displaystyle r_{222}=539453717} . By starting at r 220 {\displaystyle r_{220}} , this generator avoids a bias from the first numbers of the sequence. This generator must store the last 55 numbers of the sequence, so to compute the next r n {\displaystyle r_{n}} . Any array or list would work; a ring buffer is ideal but not necessary. Implement a subtractive generator that replicates the sequences from xpat2.
#Bracmat
Bracmat
1000000000:?MOD; tbl$(state,55); 0:?si:?sj;   (subrand-seed= i,j,p2 . 1:?p2 & mod$(!arg,!MOD):?(0$?state) & 1:?i & 21:?j & whl ' ( !i:<55 & (!j:~<55&!j+-55:?j|) & !p2:?(!j$?state) & (  !arg+-1*!p2:?p2:<0 & !p2+!MOD:?p2 | ) & !(!j$state):?arg & !i+1:?i & !j+21:?j ) & 0:?s1:?i & 24:?sj & whl ' ( !i:<165 & subrand$ & !i+1:?i ));   (subrand= x . (!si:!sj&subrand-seed$0|) & (!si:>0&!si+-1|54):?si & (!sj:>0&!sj+-1|54):?sj & (  !(!si$state)+-1*!(!sj$state):?x:<0 & !x+!MOD:?x | ) & !x:?(!si$?state));   (Main= i . subrand-seed$292929 & 0:?i & whl ' ( !i:<10 & out$(subrand$) & !i+1:?i ));   Main$;
http://rosettacode.org/wiki/Subtractive_generator
Subtractive generator
A subtractive generator calculates a sequence of random numbers, where each number is congruent to the subtraction of two previous numbers from the sequence. The formula is r n = r ( n − i ) − r ( n − j ) ( mod m ) {\displaystyle r_{n}=r_{(n-i)}-r_{(n-j)}{\pmod {m}}} for some fixed values of i {\displaystyle i} , j {\displaystyle j} and m {\displaystyle m} , all positive integers. Supposing that i > j {\displaystyle i>j} , then the state of this generator is the list of the previous numbers from r n − i {\displaystyle r_{n-i}} to r n − 1 {\displaystyle r_{n-1}} . Many states generate uniform random integers from 0 {\displaystyle 0} to m − 1 {\displaystyle m-1} , but some states are bad. A state, filled with zeros, generates only zeros. If m {\displaystyle m} is even, then a state, filled with even numbers, generates only even numbers. More generally, if f {\displaystyle f} is a factor of m {\displaystyle m} , then a state, filled with multiples of f {\displaystyle f} , generates only multiples of f {\displaystyle f} . All subtractive generators have some weaknesses. The formula correlates r n {\displaystyle r_{n}} , r ( n − i ) {\displaystyle r_{(n-i)}} and r ( n − j ) {\displaystyle r_{(n-j)}} ; these three numbers are not independent, as true random numbers would be. Anyone who observes i {\displaystyle i} consecutive numbers can predict the next numbers, so the generator is not cryptographically secure. The authors of Freeciv (utility/rand.c) and xpat2 (src/testit2.c) knew another problem: the low bits are less random than the high bits. The subtractive generator has a better reputation than the linear congruential generator, perhaps because it holds more state. A subtractive generator might never multiply numbers: this helps where multiplication is slow. A subtractive generator might also avoid division: the value of r ( n − i ) − r ( n − j ) {\displaystyle r_{(n-i)}-r_{(n-j)}} is always between − m {\displaystyle -m} and m {\displaystyle m} , so a program only needs to add m {\displaystyle m} to negative numbers. The choice of i {\displaystyle i} and j {\displaystyle j} affects the period of the generator. A popular choice is i = 55 {\displaystyle i=55} and j = 24 {\displaystyle j=24} , so the formula is r n = r ( n − 55 ) − r ( n − 24 ) ( mod m ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {m}}} The subtractive generator from xpat2 uses r n = r ( n − 55 ) − r ( n − 24 ) ( mod 10 9 ) {\displaystyle r_{n}=r_{(n-55)}-r_{(n-24)}{\pmod {10^{9}}}} The implementation is by J. Bentley and comes from program_tools/universal.c of the DIMACS (netflow) archive at Rutgers University. It credits Knuth, TAOCP, Volume 2, Section 3.2.2 (Algorithm A). Bentley uses this clever algorithm to seed the generator. Start with a single s e e d {\displaystyle seed} in range 0 {\displaystyle 0} to 10 9 − 1 {\displaystyle 10^{9}-1} . Set s 0 = s e e d {\displaystyle s_{0}=seed} and s 1 = 1 {\displaystyle s_{1}=1} . The inclusion of s 1 = 1 {\displaystyle s_{1}=1} avoids some bad states (like all zeros, or all multiples of 10). Compute s 2 , s 3 , . . . , s 54 {\displaystyle s_{2},s_{3},...,s_{54}} using the subtractive formula s n = s ( n − 2 ) − s ( n − 1 ) ( mod 10 9 ) {\displaystyle s_{n}=s_{(n-2)}-s_{(n-1)}{\pmod {10^{9}}}} . Reorder these 55 values so r 0 = s 34 {\displaystyle r_{0}=s_{34}} , r 1 = s 13 {\displaystyle r_{1}=s_{13}} , r 2 = s 47 {\displaystyle r_{2}=s_{47}} , ..., r n = s ( 34 ∗ ( n + 1 ) ( mod 55 ) ) {\displaystyle r_{n}=s_{(34*(n+1){\pmod {55}})}} . This is the same order as s 0 = r 54 {\displaystyle s_{0}=r_{54}} , s 1 = r 33 {\displaystyle s_{1}=r_{33}} , s 2 = r 12 {\displaystyle s_{2}=r_{12}} , ..., s n = r ( ( 34 ∗ n ) − 1 ( mod 55 ) ) {\displaystyle s_{n}=r_{((34*n)-1{\pmod {55}})}} . This rearrangement exploits how 34 and 55 are relatively prime. Compute the next 165 values r 55 {\displaystyle r_{55}} to r 219 {\displaystyle r_{219}} . Store the last 55 values. This generator yields the sequence r 220 {\displaystyle r_{220}} , r 221 {\displaystyle r_{221}} , r 222 {\displaystyle r_{222}} and so on. For example, if the seed is 292929, then the sequence begins with r 220 = 467478574 {\displaystyle r_{220}=467478574} , r 221 = 512932792 {\displaystyle r_{221}=512932792} , r 222 = 539453717 {\displaystyle r_{222}=539453717} . By starting at r 220 {\displaystyle r_{220}} , this generator avoids a bias from the first numbers of the sequence. This generator must store the last 55 numbers of the sequence, so to compute the next r n {\displaystyle r_{n}} . Any array or list would work; a ring buffer is ideal but not necessary. Implement a subtractive generator that replicates the sequences from xpat2.
#C
C
#include<stdio.h>   #define MOD 1000000000 int state[55], si = 0, sj = 0;   int subrand();   void subrand_seed(int p1) { int i, j, p2 = 1;   state[0] = p1 % MOD; for (i = 1, j = 21; i < 55; i++, j += 21) { if (j >= 55) j -= 55; state[j] = p2; if ((p2 = p1 - p2) < 0) p2 += MOD; p1 = state[j]; } si = 0; sj = 24; for (i = 0; i < 165; i++) subrand(); }   int subrand() { int x; if (si == sj) subrand_seed(0);   if (!si--) si = 54; if (!sj--) sj = 54; if ((x = state[si] - state[sj]) < 0) x += MOD;   return state[si] = x; }   int main() { subrand_seed(292929); int i; for (i = 0; i < 10; i++) printf("%d\n", subrand());   return 0; }
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#IS-BASIC
IS-BASIC
100 PROGRAM "SuChiper.bas" 110 STRING ST$(1 TO 2)*52,K$*1 120 LET ST$(1)="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" 130 LET ST$(2)="VsciBjedgrzyHalvXZKtUPumGfIwJxqOCFRApnDhQWobLkESYMTN" 140 CLEAR SCREEN:PRINT "1 - encode, 2 - decode" 150 DO 160 LET K$=INKEY$ 170 LOOP UNTIL K$="1" OR K$="2" 180 IF K$="1" THEN 190 INPUT PROMPT "File name: ":NAME$ 200 IF OPENFILE(NAME$) THEN CALL CHIPER(1) 210 ELSE 220 IF OPENFILE("Encrypte.txt") THEN CALL CHIPER(2) 230 END IF 240 DEF OPENFILE(N$) 250 LET OPENFILE=0 260 WHEN EXCEPTION USE OPENERROR 270 OPEN #1:N$ 280 END WHEN 290 LET OPENFILE=-1 300 END DEF 310 DEF CHIPER(FUNC) 320 LET EOF=0 330 WHEN EXCEPTION USE OPENERROR 340 IF FUNC=1 THEN 350 OPEN #2:"Encrypte.txt" ACCESS OUTPUT 360 LET OUTP=2 370 ELSE 380 OPEN #2:"Decrypte.txt" ACCESS OUTPUT 390 LET OUTP=1 400 END IF 410 END WHEN 420 WHEN EXCEPTION USE IOERROR 430 DO 440 GET #1:K$ 450 IF UCASE$(K$)>="A" AND UCASE$(K$)<="Z" THEN 460 PRINT #2:ST$(OUTP)(POS(ST$(FUNC),K$)); 470 ELSE 480 PRINT #2:K$; 490 END IF 500 LOOP UNTIL EOF 510 END WHEN 520 HANDLER IOERROR 530 IF EXTYPE<>9228 THEN PRINT EXSTRING$(EXTYPE) 540 CLOSE #2 550 CLOSE #1 560 LET EOF=1 570 END HANDLER 580 END DEF 590 HANDLER OPENERROR 600 PRINT EXSTRING$(EXTYPE) 610 END 620 END HANDLER
http://rosettacode.org/wiki/Substitution_cipher
Substitution cipher
Substitution Cipher Implementation - File Encryption/Decryption Task Encrypt a input/source file by replacing every upper/lower case alphabets of the source file with another predetermined upper/lower case alphabets or symbols and save it into another output/encrypted file and then again convert that output/encrypted file into original/decrypted file. This type of Encryption/Decryption scheme is often called a Substitution Cipher. Related tasks Caesar cipher Rot-13 Vigenère Cipher/Cryptanalysis See also Wikipedia: Substitution cipher
#Haskell
Haskell
import Data.Char (chr) import Data.Maybe (fromMaybe) import Data.Tuple (swap) import System.Environment (getArgs)   data Command = Cipher String | Decipher String | Invalid   alphabet :: String alphabet = chr <$> [32..126]   cipherMap :: [(Char, Char)] cipherMap = zip alphabet (shuffle 20 alphabet)   shuffle :: Int -> [a] -> [a] shuffle n xs = iterate go xs !! n where go [] = [] go xs = go (drop 2 xs) <> take 2 xs   convert :: Eq a => [(a, a)] -> [a] -> [a] convert m = map (\x -> fromMaybe x (lookup x m))   runCommand :: Command -> String runCommand (Cipher s) = convert cipherMap s runCommand (Decipher s) = convert (swap <$> cipherMap) s runCommand Invalid = "Invalid arguments. Usage: simplecipher c|d <text>"   parseArgs :: [String] -> Command parseArgs (x:y:xs) | x == "c" = Cipher y | x == "d" = Decipher y | otherwise = Invalid parseArgs _ = Invalid   main :: IO () main = parseArgs <$> getArgs >>= putStrLn . runCommand
http://rosettacode.org/wiki/Sum_and_product_of_an_array
Sum and product of an array
Task Compute the sum and product of an array of integers.
#COBOL
COBOL
IDENTIFICATION DIVISION. PROGRAM-ID. array-sum-and-product.   DATA DIVISION. WORKING-STORAGE SECTION. 78 Array-Size VALUE 10. 01 array-area VALUE "01020304050607080910". 03 array PIC 99 OCCURS Array-Size TIMES.   01 array-sum PIC 9(8). 01 array-product PIC 9(10) VALUE 1.   01 i PIC 99.   PROCEDURE DIVISION. PERFORM VARYING i FROM 1 BY 1 UNTIL Array-Size < i ADD array (i) TO array-sum MULTIPLY array (i) BY array-product END-PERFORM   DISPLAY "Sum: " array-sum DISPLAY "Product: " array-product   GOBACK .
http://rosettacode.org/wiki/Sum_of_a_series
Sum of a series
Compute the   nth   term of a series,   i.e. the sum of the   n   first terms of the corresponding sequence. Informally this value, or its limit when   n   tends to infinity, is also called the sum of the series, thus the title of this task. For this task, use: S n = ∑ k = 1 n 1 k 2 {\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k^{2}}}} and compute   S 1000 {\displaystyle S_{1000}} This approximates the   zeta function   for   S=2,   whose exact value ζ ( 2 ) = π 2 6 {\displaystyle \zeta (2)={\pi ^{2} \over 6}} is the solution of the Basel problem.
#CLU
CLU
series_sum = proc (from, to: int, fn: proctype (real) returns (real)) returns (real) sum: real := 0.0 for i: int in int$from_to(from, to) do sum := sum + fn(real$i2r(i)) end return(sum) end series_sum   one_over_k_squared = proc (k: real) returns (real) return(1.0 / (k * k)) end one_over_k_squared   start_up = proc () po: stream := stream$primary_output() result: real := series_sum(1, 1000, one_over_k_squared) stream$putl(po, f_form(result, 1, 6)) end start_up
http://rosettacode.org/wiki/Sum_to_100
Sum to 100
Task Find solutions to the   sum to one hundred   puzzle. Add (insert) the mathematical operators     +   or   -     (plus or minus)   before any of the digits in the decimal numeric string   123456789   such that the resulting mathematical expression adds up to a particular sum   (in this iconic case,   100). Example: 123 + 4 - 5 + 67 - 89 = 100 Show all output here.   Show all solutions that sum to   100   Show the sum that has the maximum   number   of solutions   (from zero to infinity‡)   Show the lowest positive sum that   can't   be expressed   (has no solutions),   using the rules for this task   Show the ten highest numbers that can be expressed using the rules for this task   (extra credit) ‡   (where   infinity   would be a relatively small   123,456,789) An example of a sum that can't be expressed   (within the rules of this task)   is:   5074 (which,   of course,   isn't the lowest positive sum that can't be expressed).
#Frink
Frink
  digits = array[1 to 9] opList = makeArray[[8], ["", " + ", " - "]] opList.pushFirst[["", "-"]] countDict = new dict   multifor ops = opList { str = "" for d = rangeOf[digits] str = str + ops@d + digits@d e = eval[str] countDict.increment[e, 1] if e == 100 println[str] } println[]   // Find the sum that has the maximum number of solutions freq = toArray[countDict] sort[freq, {|a,b| -(a@1 <=> b@1)}] max = freq@0@1 print["Maximum count is $max at: "] n = 0 while freq@n@1 == max { print[freq@n@0 + " "] n = n + 1 } println[]   // Find the smallest non-representable positive sum sort[freq, {|a,b| a@0 <=> b@0}] last = 0 for [num, count] = freq { if num > 0 and last+1 != num { println["Lowest non-representable positive sum is " + (last+1)] break } last = num }   // Find highest 10 representable numbers println["\nHighest representable numbers:"] size = length[freq] for i = size-10 to size-1 println[freq@i@0]  
http://rosettacode.org/wiki/Sum_multiples_of_3_and_5
Sum multiples of 3 and 5
Task The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n. Show output for n = 1000. This is is the same as Project Euler problem 1. Extra credit: do this efficiently for n = 1e20 or higher.
#D
D
import std.stdio, std.bigint;   BigInt sum35(in BigInt n) pure nothrow { static BigInt sumMul(in BigInt n, in int f) pure nothrow { immutable n1 = (f==n?n:(n - 1) ) / f; return f * n1 * (n1 + 1) / 2; }   return sumMul(n, 3) + sumMul(n, 5) - sumMul(n, 15); }   void main() { 1.BigInt.sum35.writeln; 3.BigInt.sum35.writeln; 5.BigInt.sum35.writeln; 1000.BigInt.sum35.writeln; (10.BigInt ^^ 20).sum35.writeln; }
http://rosettacode.org/wiki/Sum_digits_of_an_integer
Sum digits of an integer
Task Take a   Natural Number   in a given base and return the sum of its digits:   110         sums to   1   123410   sums to   10   fe16       sums to   29   f0e16     sums to   29
#D
D
import std.stdio, std.bigint;   uint sumDigits(T)(T n, in uint base=10) pure nothrow in { assert(base > 1); } body { typeof(return) total = 0; for ( ; n; n /= base) total += n % base; return total; }   void main() { 1.sumDigits.writeln; 1_234.sumDigits.writeln; sumDigits(0xfe, 16).writeln; sumDigits(0xf0e, 16).writeln; 1_234.BigInt.sumDigits.writeln; }
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#Elena
Elena
import system'routines; import extensions;   SumOfSquares(list) = list.selectBy:(x => x * x).summarize(new Integer());   public program() { console .printLine(SumOfSquares(new int[]{4, 8, 15, 16, 23, 42})) .printLine(SumOfSquares(new int[]{1, 2, 3, 4, 5})) .printLine(SumOfSquares(Array.MinValue)) }
http://rosettacode.org/wiki/Sum_of_squares
Sum of squares
Task Write a program to find the sum of squares of a numeric vector. The program should work on a zero-length vector (with an answer of   0). Related task   Mean
#Elixir
Elixir
iex(1)> Enum.reduce([3,1,4,1,5,9], 0, fn x,sum -> sum + x*x end) 133
http://rosettacode.org/wiki/Sudoku
Sudoku
Task Solve a partially filled-in normal   9x9   Sudoku grid   and display the result in a human-readable format. references Algorithmics of Sudoku   may help implement this. Python Sudoku Solver Computerphile video.
#11l
11l
T Sudoku solved = 0B grid = [0] * 81   F (rows) assert(rows.len == 9 & all(rows.map(row -> row.len == 9)), ‘Grid must be 9 x 9’) L(i) 9 L(j) 9 .grid[9 * i + j] = Int(rows[i][j])   F solve() print("Starting grid:\n\n"(.)) .placeNumber(0) print(I .solved {"Solution:\n\n"(.)} E ‘Unsolvable!’)   F placeNumber(pos) I .solved R I pos == 81 .solved = 1B R   I .grid[pos] > 0 .placeNumber(pos + 1) R   L(n) 1..9 I .checkValidity(n, pos % 9, pos I/ 9) .grid[pos] = n .placeNumber(pos + 1) I .solved R .grid[pos] = 0   F checkValidity(v, x, y) L(i) 9 I .grid[y * 9 + i] == v | .grid[i * 9 + x] == v R 0B   V startX = (x I/ 3) * 3 V startY = (y I/ 3) * 3 L(i) startY .< startY + 3 L(j) startX .< startX + 3 I .grid[i * 9 + j] == v R 0B   R 1B   F String() V s = ‘’ L(i) 9 L(j) 9 s ‘’= .grid[i * 9 + j]‘ ’ I j C (2, 5) s ‘’= ‘| ’ s ‘’= "\n" I i C (2, 5) s ‘’= "------+-------+------\n" R s   V rows = [‘850002400’, ‘720000009’, ‘004000000’, ‘000107002’, ‘305000900’, ‘040000000’, ‘000080070’, ‘017000000’, ‘000036040’]   Sudoku(rows).solve()
http://rosettacode.org/wiki/Successive_prime_differences
Successive prime differences
The series of increasing prime numbers begins: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... The task applies a filter to the series returning groups of successive primes, (s'primes), that differ from the next by a given value or values. Example 1: Specifying that the difference between s'primes be 2 leads to the groups: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), ... (Known as Twin primes or Prime pairs) Example 2: Specifying more than one difference between s'primes leads to groups of size one greater than the number of differences. Differences of 2, 4 leads to the groups: (5, 7, 11), (11, 13, 17), (17, 19, 23), (41, 43, 47), .... In the first group 7 is two more than 5 and 11 is four more than 7; as well as 5, 7, and 11 being successive primes. Differences are checked in the order of the values given, (differences of 4, 2 would give different groups entirely). Task In each case use a list of primes less than 1_000_000 For the following Differences show the first and last group, as well as the number of groups found: Differences of 2. Differences of 1. Differences of 2, 2. Differences of 2, 4. Differences of 4, 2. Differences of 6, 4, 2. Show output here. Note: Generation of a list of primes is a secondary aspect of the task. Use of a built in function, well known library, or importing/use of prime generators from other Rosetta Code tasks is encouraged. references https://pdfs.semanticscholar.org/78a1/7349819304863ae061df88dbcb26b4908f03.pdf https://www.primepuzzles.net/puzzles/puzz_011.htm https://matheplanet.de/matheplanet/nuke/html/viewtopic.php?topic=232720&start=0
#AWK
AWK
  # syntax: GAWK -f SUCCESSIVE_PRIME_DIFFERENCES.AWK BEGIN { for (i=lo=0; i<=hi=1000000; i++) { if (is_prime(i)) { p_arr[++p] = i } } printf("there are %d primes between %d - %d\n",p,lo,hi) fmt = "%-11s %5s %-15s %s\n" printf(fmt,"differences","count","first group","last group") for (a=1; a<=split("2;1;2,2;2,4;4,2;6,4,2;2,4,6;100;112",diff_arr,";"); a++) { diff_leng = split(diff_arr[a],tmp_arr,",") first_set = last_set = "" count = 0 for (b=1; b<=p; b++) { str = "" for (c=1; c<=diff_leng; c++) { if (p_arr[b+c-1] + tmp_arr[c] == p_arr[b+c]) { str = (str == "") ? (p_arr[b+c-1] "," p_arr[b+c]) : (str "," p_arr[b+c]) } } if (gsub(/,/,"&",str) == diff_leng) { count++ if (first_set == "") { first_set = str } last_set = str } } printf(fmt,diff_arr[a],count,first_set,last_set) } exit(0) } function is_prime(x, i) { if (x <= 1) { return(0) } for (i=2; i<=int(sqrt(x)); i++) { if (x % i == 0) { return(0) } } return(1) }  
http://rosettacode.org/wiki/Substring/Top_and_tail
Substring/Top and tail
The task is to demonstrate how to remove the first and last characters from a string. The solution should demonstrate how to obtain the following results: String with first character removed String with last character removed String with both the first and last characters removed If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it. The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16. Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Amazing_Hopper
Amazing Hopper
  #include <hopper.h> #proto showmessage(_X_) main: s="message", t=s ++s, _show message(s) s=t --s, _show message(s) ++s, _show message(s) {0}return   .locals showmessage(_S_) {_S_,"\n"}print back