task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#D
D
cities = [ {"UK", "London"}, {"US", "New York"}, {"US", "Birmingham"}, {"UK", "Birmingham"} ]   IO.inspect Enum.sort(cities) IO.inspect Enum.sort(cities, fn a,b -> elem(a,0) >= elem(b,0) end) IO.inspect Enum.sort_by(cities, fn {country, _city} -> country end) IO.inspect Enum.sort_by(cities, fn {_country, city} -> city end)
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#D.C3.A9j.C3.A0_Vu
Déjà Vu
cities = [ {"UK", "London"}, {"US", "New York"}, {"US", "Birmingham"}, {"UK", "Birmingham"} ]   IO.inspect Enum.sort(cities) IO.inspect Enum.sort(cities, fn a,b -> elem(a,0) >= elem(b,0) end) IO.inspect Enum.sort_by(cities, fn {country, _city} -> country end) IO.inspect Enum.sort_by(cities, fn {_country, city} -> city end)
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Isabelle
Isabelle
theory LexList imports Main "~~/src/HOL/Library/Char_ord" "~~/src/HOL/Library/List_Lexorder" begin   definition ord_ascii_zero :: nat where "ord_ascii_zero == of_char (CHR ''0'')"   text‹Get the string representation for a single digit.› definition ascii_of_digit :: "nat ⇒ string" where "ascii_of_digit n ≡ if n ≥ 10 then undefined else [char_of (n + ord_ascii_zero)]"   fun ascii_of :: "nat ⇒ string" where "ascii_of n = (if n < 10 then ascii_of_digit n else ascii_of (n div 10) @ ascii_of_digit (n mod 10))"   lemma ‹ascii_of 123 = ''123''› by code_simp   value ‹sort (map ascii_of (upt 1 13))› end
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#J
J
task=: [: (/: ":"0) 1 + i. task 13
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Java
Java
import java.util.List; import java.util.stream.*;   public class LexicographicalNumbers {   static List<Integer> lexOrder(int n) { int first = 1, last = n; if (n < 1) { first = n; last = 1; } return IntStream.rangeClosed(first, last) .mapToObj(Integer::toString) .sorted() .map(Integer::valueOf) .collect(Collectors.toList()); }   public static void main(String[] args) { System.out.println("In lexicographical order:\n"); int[] ints = {0, 5, 13, 21, -22}; for (int n : ints) { System.out.printf("%3d: %s\n", n, lexOrder(n)); } } }
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Factor
Factor
USING: arrays io kernel prettyprint sequences sorting ; IN: rosetta-code.sort-three   : sort3 ( b c a -- a b c ) 3array natural-sort first3 ;   "lions, tigers, and" "bears, oh my!" "(from the \"Wizard of OZ\")" sort3 [ print ] tri@   77444 -12 0 sort3 [ . ] tri@
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#FALSE
FALSE
{ [s]waps two variables. (varref; varref) → () } [ b: { loads the value at the top of the stack into b } a: { loads the value at the top of the stack into a }   a;; t: { loads the value stored in the variable stored in a (hence the double dereference) into t } b;; a;: { loads the value stored in the variable stored in b into the variable stored in a } t; b;: { loads the value stored in t into the variable stored in b } ]s:   { [p]rints the three variables. } [ "X = " x;. 10, "Y = " y;. 10, "Z = " z;. 10, ]p:   77444 x: 12_ y: 0 z:   p;!   { if x > y, swap x and y } x;y;> [xys;!] ?   { if y > z, swap y and z } y;z;> [yzs;!] ?   { if x > y, swap x and y } x;y;> [xys;!] ?   "After sorting: "   p;!
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#E
E
/** returns a if it is nonzero, otherwise b() */ def nonzeroOr(a, b) { return if (a.isZero()) { b() } else { a } }   ["Here", "are", "some", "sample", "strings", "to", "be", "sorted"] \ .sort(fn a, b { nonzeroOr(b.size().op__cmp(a.size()), fn { a.compareToIgnoreCase(b) }) })
http://rosettacode.org/wiki/Sorting_algorithms/Comb_sort
Sorting algorithms/Comb sort
Sorting algorithms/Comb sort You are encouraged to solve this task according to the task description, using any language you may know. Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a   comb sort. The Comb Sort is a variant of the Bubble Sort. Like the Shell sort, the Comb Sort increases the gap used in comparisons and exchanges. Dividing the gap by   ( 1 − e − φ ) − 1 ≈ 1.247330950103979 {\displaystyle (1-e^{-\varphi })^{-1}\approx 1.247330950103979}   works best, but   1.3   may be more practical. Some implementations use the insertion sort once the gap is less than a certain amount. Also see   the Wikipedia article:   Comb sort. Variants: Combsort11 makes sure the gap ends in (11, 8, 6, 4, 3, 2, 1), which is significantly faster than the other two possible endings. Combsort with different endings changes to a more efficient sort when the data is almost sorted (when the gap is small).   Comb sort with a low gap isn't much better than the Bubble Sort. Pseudocode: function combsort(array input) gap := input.size //initialize gap size loop until gap = 1 and swaps = 0 //update the gap value for a next comb. Below is an example gap := int(gap / 1.25) if gap < 1 //minimum gap is 1 gap := 1 end if i := 0 swaps := 0 //see Bubble Sort for an explanation //a single "comb" over the input list loop until i + gap >= input.size //see Shell sort for similar idea if input[i] > input[i+gap] swap(input[i], input[i+gap]) swaps := 1 // Flag a swap has occurred, so the // list is not guaranteed sorted end if i := i + 1 end loop end loop end function
#Perl
Perl
sub combSort { my @arr = @_; my $gap = @arr; my $swaps = 1; while ($gap > 1 || $swaps) { $gap /= 1.25 if $gap > 1; $swaps = 0; foreach my $i (0 .. $#arr - $gap) { if ($arr[$i] > $arr[$i+$gap]) { @arr[$i, $i+$gap] = @arr[$i+$gap, $i]; $swaps = 1; } } } return @arr; }
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#Nemerle
Nemerle
using System; using System.Console; using Nemerle.Imperative;   module Bogosort { public static Bogosort[T] (this x : array[T]) : void where T : IComparable { def rnd = Random(); def shuffle(a) { foreach (i in [0 .. (a.Length - 2)]) a[i] <-> a[(rnd.Next(i, a.Length))]; }   def isSorted(b) { when (b.Length <= 1) return true; foreach (i in [1 .. (b.Length - 1)]) when (b[i].CompareTo(b[i - 1]) < 0) return false; true; }   def loop() { unless (isSorted(x)) {shuffle(x); loop();}; }   loop() }   Main() : void { def sortme = array[1, 5, 3, 6, 7, 3, 8, -2]; sortme.Bogosort(); foreach (i in sortme) Write($"$i "); } }
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#BCPL
BCPL
get "libhdr"   let bubblesort(v, length) be $( let sorted = false until sorted $( sorted := true length := length - 1 for i=0 to length-1 if v!i > v!(i+1) $( let x = v!i v!i := v!(i+1) v!(i+1) := x sorted := false $) $) $)   let start() be $( let v = table 10,8,6,4,2,1,3,5,7,9 bubblesort(v, 10) for i=0 to 9 do writef("%N ", v!i) wrch('*N') $)
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Groovy
Groovy
def makeSwap = { a, i, j = i+1 -> print "."; a[[j,i]] = a[[i,j]] }   def checkSwap = { list, i, j = i+1 -> [(list[i] > list[j])].find{ it }.each { makeSwap(list, i, j) } }   def gnomeSort = { input -> def swap = checkSwap.curry(input) def index = 1 while (index < input.size()) { index += (swap(index-1) && index > 1) ? -1 : 1 } input }
http://rosettacode.org/wiki/Sorting_algorithms/Bead_sort
Sorting algorithms/Bead sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of positive integers using the Bead Sort Algorithm. A   bead sort   is also known as a   gravity sort. Algorithm has   O(S),   where   S   is the sum of the integers in the input set:   Each bead is moved individually. This is the case when bead sort is implemented without a mechanism to assist in finding empty spaces below the beads, such as in software implementations.
#Lua
Lua
-- Display message followed by all values of a table in one line function show (msg, t) io.write(msg .. ":\t") for _, v in pairs(t) do io.write(v .. " ") end print() end   -- Return a table of random numbers function randList (length, lo, hi) local t = {} for i = 1, length do table.insert(t, math.random(lo, hi)) end return t end   -- Count instances of numbers that appear in counting to each list value function tally (list) local tal = {} for k, v in pairs(list) do for i = 1, v do if tal[i] then tal[i] = tal[i] + 1 else tal[i] = 1 end end end return tal end   -- Sort a table of positive integers into descending order function beadSort (numList) show("Before sort", numList) local abacus = tally(numList) show("Tally list", abacus) local sorted = tally(abacus) show("After sort", sorted) end   -- Main procedure math.randomseed(os.time()) beadSort(randList(10, 1, 10))
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Fortran
Fortran
PROGRAM COCKTAIL IMPLICIT NONE   INTEGER :: intArray(10) = (/ 4, 9, 3, -2, 0, 7, -5, 1, 6, 8 /)   WRITE(*,"(A,10I5)") "Unsorted array:", intArray CALL Cocktail_sort(intArray) WRITE(*,"(A,10I5)") "Sorted array  :", intArray   CONTAINS   SUBROUTINE Cocktail_sort(a) INTEGER, INTENT(IN OUT) :: a(:) INTEGER :: i, bottom, top, temp LOGICAL :: swapped   bottom = 1 top = SIZE(a) - 1 DO WHILE (bottom < top ) swapped = .FALSE. DO i = bottom, top IF (array(i) > array(i+1)) THEN temp = array(i) array(i) = array(i+1) array(i+1) = temp swapped = .TRUE. END IF END DO IF (.NOT. swapped) EXIT DO i = top, bottom + 1, -1 IF (array(i) < array(i-1)) THEN temp = array(i) array(i) = array(i-1) array(i-1) = temp swapped = .TRUE. END IF END DO IF (.NOT. swapped) EXIT bottom = bottom + 1 top = top - 1 END DO END SUBROUTINE Cocktail_sort   END PROGRAM COCKTAIL
http://rosettacode.org/wiki/Sorting_algorithms/Counting_sort
Sorting algorithms/Counting sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Counting sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Implement the Counting sort.   This is a way of sorting integers when the minimum and maximum value are known. Pseudocode function countingSort(array, min, max): count: array of (max - min + 1) elements initialize count with 0 for each number in array do count[number - min] := count[number - min] + 1 done z := 0 for i from min to max do while ( count[i - min] > 0 ) do array[z] := i z := z+1 count[i - min] := count[i - min] - 1 done done The min and max can be computed apart, or be known a priori. Note:   we know that, given an array of integers,   its maximum and minimum values can be always found;   but if we imagine the worst case for an array that can hold up to 32 bit integers,   we see that in order to hold the counts,   an array of up to 232 elements may be needed.   I.E.:   we need to hold a count value up to 232-1,   which is a little over 4.2 Gbytes.   So the counting sort is more practical when the range is (very) limited,   and minimum and maximum values are known   a priori.     (However, as a counterexample,   the use of   sparse arrays   minimizes the impact of the memory usage,   as well as removing the need of having to know the minimum and maximum values   a priori.)
#Nim
Nim
proc countingSort[T](a: var openarray[T]; min, max: int) = let range = max - min + 1 var count = newSeq[T](range) var z = 0   for i in 0 ..< a.len: inc count[a[i] - min]   for i in min .. max: for j in 0 ..< count[i - min]: a[z] = i inc z   var a = @[5, 3, 1, 7, 4, 1, 1, 20] countingSort(a, 1, 20) echo a
http://rosettacode.org/wiki/Sorting_algorithms/Counting_sort
Sorting algorithms/Counting sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Counting sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Implement the Counting sort.   This is a way of sorting integers when the minimum and maximum value are known. Pseudocode function countingSort(array, min, max): count: array of (max - min + 1) elements initialize count with 0 for each number in array do count[number - min] := count[number - min] + 1 done z := 0 for i from min to max do while ( count[i - min] > 0 ) do array[z] := i z := z+1 count[i - min] := count[i - min] - 1 done done The min and max can be computed apart, or be known a priori. Note:   we know that, given an array of integers,   its maximum and minimum values can be always found;   but if we imagine the worst case for an array that can hold up to 32 bit integers,   we see that in order to hold the counts,   an array of up to 232 elements may be needed.   I.E.:   we need to hold a count value up to 232-1,   which is a little over 4.2 Gbytes.   So the counting sort is more practical when the range is (very) limited,   and minimum and maximum values are known   a priori.     (However, as a counterexample,   the use of   sparse arrays   minimizes the impact of the memory usage,   as well as removing the need of having to know the minimum and maximum values   a priori.)
#Objeck
Objeck
  bundle Default { class Cocktail { function : Main(args : String[]) ~ Nil { values := [9, 7, 10, 2, 9, 7, 4, 3, 10, 2, 7, 10]; CountingSort(values, 2, 10); each(i : values) { values[i]->PrintLine(); }; }   function : CountingSort(array : Int[], min : Int, max : Int) ~ Nil { count := Int->New[max - min + 1]; each(i : array) { number := array[i]; v := count[number - min]; count[number - min] := v + 1; };   z := 0; for(i := min; i <= max; i += 1;) { while(count[i - min] > 0) { array[z] := i; z += 1; v := count[i - min] count[i - min] := v - 1; }; }; } } }  
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#ALGOL_W
ALGOL W
begin % sort a disjoint sub-set of a list  %  % Quicksorts in-place the array of integers v, from lb to ub % procedure quicksort ( integer array v( * )  ; integer value lb, ub ) ; if ub > lb then begin  % more than one element, so must sort % integer left, right, pivot; left  := lb; right  := ub;  % choosing the middle element of the array as the pivot % pivot  := v( left + ( ( right + 1 ) - left ) div 2 ); while begin while left <= ub and v( left ) < pivot do left  := left + 1; while right >= lb and v( right ) > pivot do right := right - 1; left <= right end do begin integer swap; swap  := v( left ); v( left ) := v( right ); v( right ) := swap; left  := left + 1; right  := right - 1 end while_left_le_right ; quicksort( v, lb, right ); quicksort( v, left, ub ) end quicksort ;  % Quicksorts in-place the array of integers v, using  %  % the indxexes in unsortedIndexes which has bounds lb to ub  %  % it is assumed all elements of unsortedIndexes are in the  %  % range for subscripts of v  % procedure indexedQuicksort ( integer array v, unsortedIndexes ( * )  ; integer value lb, ub ) ; if ub > lb then begin  % more than one element, so must sort % integer array indexes ( lb :: ub ); integer left, right, pivot, p;  % sort the indexes % for i := lb until ub do indexes( i ) := unsortedIndexes( i ); quicksort( indexes, lb, ub );  % sort the indexed items of the v array % left  := lb; right  := ub;  % choosing the middle element of the array as the pivot % p  := left + ( ( ( right + 1 ) - left ) div 2 ); pivot  := v( indexes( p ) ); while begin while left <= ub and v( indexes( left ) ) < pivot do left  := left + 1; while right >= lb and v( indexes( right ) ) > pivot do right := right - 1; left <= right end do begin integer swap; swap  := v( indexes( left ) ); v( indexes( left ) ) := v( indexes( right ) ); v( indexes( right ) ) := swap; left  := left + 1; right  := right - 1 end while_left_le_right ; indexedQuicksort( v, indexes, lb, right ); indexedQuicksort( v, indexes, left, ub ) end indexedQuicksort ; begin % task % integer array indexes ( 0 :: 2 ); integer array values ( 0 :: 7 ); integer aPos; aPos := 0; for v := 7, 6, 5, 4, 3, 2, 1, 0 do begin values( aPos ) := v; aPos  := aPos + 1 end for_v ; indexes( 0 ) := 6; indexes( 1 ) := 1; indexes( 2 ) := 7; i_w := 1; s_w := 0; % set output formatting % write( "[" ); for v := 0 until 7 do writeon( " ", values( v ) ); writeon( " ]" ); indexedQuicksort( values, indexes, 0, 2 ); writeon( " -> [" ); for v := 0 until 7 do writeon( " ", values( v ) ); writeon( " ]" ) end end.
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#Elixir
Elixir
cities = [ {"UK", "London"}, {"US", "New York"}, {"US", "Birmingham"}, {"UK", "Birmingham"} ]   IO.inspect Enum.sort(cities) IO.inspect Enum.sort(cities, fn a,b -> elem(a,0) >= elem(b,0) end) IO.inspect Enum.sort_by(cities, fn {country, _city} -> country end) IO.inspect Enum.sort_by(cities, fn {_country, city} -> city end)
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#Erlang
Erlang
# According to section 21.18 of the reference manual, Sort is not stable (it's a Shell sort). # However, SortingPerm is stable. We will see it on an example, showing indexes of elements after the sort.   n := 20; L := List([1 .. n], i -> Random("AB")); # "AABABBBABBABAABABBAB"     p := SortingPerm(L); # (3,10,15,17,18,19,9,14,7,13,6,12,16,8,4)(5,11)   a := Permuted(L, p);; b := Permuted([1 .. n], p);;   PrintArray(TransposedMat(List([1 .. n], i -> [a[i], b[i]]))); # [ [ 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B' ], # [ 1, 2, 4, 8, 11, 13, 14, 16, 19, 3, 5, 6, 7, 9, 10, 12, 15, 17, 18, 20 ] ]
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#F.23
F#
# According to section 21.18 of the reference manual, Sort is not stable (it's a Shell sort). # However, SortingPerm is stable. We will see it on an example, showing indexes of elements after the sort.   n := 20; L := List([1 .. n], i -> Random("AB")); # "AABABBBABBABAABABBAB"     p := SortingPerm(L); # (3,10,15,17,18,19,9,14,7,13,6,12,16,8,4)(5,11)   a := Permuted(L, p);; b := Permuted([1 .. n], p);;   PrintArray(TransposedMat(List([1 .. n], i -> [a[i], b[i]]))); # [ [ 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B' ], # [ 1, 2, 4, 8, 11, 13, 14, 16, 19, 3, 5, 6, 7, 9, 10, 12, 15, 17, 18, 20 ] ]
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#Factor
Factor
# According to section 21.18 of the reference manual, Sort is not stable (it's a Shell sort). # However, SortingPerm is stable. We will see it on an example, showing indexes of elements after the sort.   n := 20; L := List([1 .. n], i -> Random("AB")); # "AABABBBABBABAABABBAB"     p := SortingPerm(L); # (3,10,15,17,18,19,9,14,7,13,6,12,16,8,4)(5,11)   a := Permuted(L, p);; b := Permuted([1 .. n], p);;   PrintArray(TransposedMat(List([1 .. n], i -> [a[i], b[i]]))); # [ [ 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B' ], # [ 1, 2, 4, 8, 11, 13, 14, 16, 19, 3, 5, 6, 7, 9, 10, 12, 15, 17, 18, 20 ] ]
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Ksh
Ksh
  #!/bin/ksh   # Sort numbers lexicographically   # # Variables: # integer N=${1:-13}   # # Functions: #   # # Function _fillarray(arr, N) - fill assoc. array 1 -> N # function _fillarray { typeset _arr ; nameref _arr="$1" typeset _N ; integer _N=$2 typeset _i _st _en ; integer _i _st _en   (( ! _N )) && _arr=0 && return (( _N<0 )) && _st=${_N} && _en=1 (( _N>0 )) && _st=1 && _en=${_N}   for ((_i=_st; _i<=_en; _i++)); do _arr[${_i}]=${_i} done }   ###### # main # ######   set -a -s -A arr typeset -A arr _fillarray arr ${N}   print -- ${arr[*]}
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#jq
jq
def sort_range($a;$b): [range($a;$b)] | sort_by(tostring);   # Example # jq's index origin is 0, so ... sort_range(1;14)
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Julia
Julia
lexorderedsequence(n) = sort(collect(n > 0 ? (1:n) : n:1), lt=(a,b) -> string(a) < string(b))   for i in [0, 5, 13, 21, -32] println(lexorderedsequence(i)) end  
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#FreeBASIC
FreeBASIC
#macro sort_three( x, y, z ) if x>y then swap x, y if y>z then swap y, z if x>y then swap x, y #endmacro   'demonstrate this for strings dim as string x = "lions, tigers, and" dim as string y = "bears, oh my!" dim as string z = "(from the ""Wizard of OZ"")"   sort_three(x,y,z) print x print y print z : print     'demonstrate this for signed integers dim as integer a = 77444 dim as integer b = -12 dim as integer c = 0   sort_three(a,b,c) print a print b print c
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Forth
Forth
\ sort 3 integers VARIABLE X VARIABLE Y VARIABLE Z   : VARS@ ( --- n n n) X @ Y @ Z @ ; \ read variables : VARS! ( n n n -- ) Z ! Y ! X ! ; \ store variables   : ?SWAP ( a b -- a b) \ conditional swap 2DUP < IF SWAP THEN ;   : SORT3INTS ( a b c -- c b a)  ?SWAP >R  ?SWAP R>  ?SWAP ;
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#EGL
EGL
program SortExample   function main() test1 string[] = ["Here", "are", "some", "sample", "strings", "to", "be", "sorted"]; test1.sort(sortFunction);   SysLib.writeStdout("Test 1:"); for(i int from 1 to test1.getSize()) SysLib.writeStdout(test1[i]); end   test2 string[] = ["Cat", "apple", "Adam", "zero", "Xmas", "quit", "Level", "add", "Actor", "base", "butter"]; test2.sort(sortFunction);   SysLib.writeStdout("Test 2:"); for(i int from 1 to test2.getSize()) SysLib.writeStdout(test2[i]); end end   function sortFunction(a any in, b any in) returns (int) result int = (b as string).length() - (a as string).length(); if (result == 0) case when ((a as string).toLowerCase() > (b as string).toLowerCase()) result = 1; when ((a as string).toLowerCase() < (b as string).toLowerCase()) result = -1; otherwise result = 0; end end   return result; end   end
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Elena
Elena
import extensions; import system'routines; import system'culture;   public program() { var items := new string[]{ "Here", "are", "some", "sample", "strings", "to", "be", "sorted" };   console.printLine("Unsorted: ", items.asEnumerable());   console.printLine("Descending length: ", items.clone() .sort:(p,n => p.Length > n.Length).asEnumerable());   console.printLine("Ascending order: ", items.clone() .sort:(p,n => p.toUpper(invariantLocale) < n.toUpper(invariantLocale)).asEnumerable()) }
http://rosettacode.org/wiki/Sorting_algorithms/Comb_sort
Sorting algorithms/Comb sort
Sorting algorithms/Comb sort You are encouraged to solve this task according to the task description, using any language you may know. Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a   comb sort. The Comb Sort is a variant of the Bubble Sort. Like the Shell sort, the Comb Sort increases the gap used in comparisons and exchanges. Dividing the gap by   ( 1 − e − φ ) − 1 ≈ 1.247330950103979 {\displaystyle (1-e^{-\varphi })^{-1}\approx 1.247330950103979}   works best, but   1.3   may be more practical. Some implementations use the insertion sort once the gap is less than a certain amount. Also see   the Wikipedia article:   Comb sort. Variants: Combsort11 makes sure the gap ends in (11, 8, 6, 4, 3, 2, 1), which is significantly faster than the other two possible endings. Combsort with different endings changes to a more efficient sort when the data is almost sorted (when the gap is small).   Comb sort with a low gap isn't much better than the Bubble Sort. Pseudocode: function combsort(array input) gap := input.size //initialize gap size loop until gap = 1 and swaps = 0 //update the gap value for a next comb. Below is an example gap := int(gap / 1.25) if gap < 1 //minimum gap is 1 gap := 1 end if i := 0 swaps := 0 //see Bubble Sort for an explanation //a single "comb" over the input list loop until i + gap >= input.size //see Shell sort for similar idea if input[i] > input[i+gap] swap(input[i], input[i+gap]) swaps := 1 // Flag a swap has occurred, so the // list is not guaranteed sorted end if i := i + 1 end loop end loop end function
#Phix
Phix
with javascript_semantics function comb_sort(sequence s) integer gap = length(s)-1 while 1 do gap = max(floor(gap/1.3),1) integer swapped = 0 for i=1 to length(s)-gap do object si = s[i] if si>s[i+gap] then s[i] = s[i+gap] s[i+gap] = si swapped = 1 end if end for if gap=1 and swapped=0 then exit end if end while return s end function ?comb_sort(shuffle(tagset(10)))
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#NetRexx
NetRexx
/* NetRexx */ options replace format comments java crossref savelog symbols nobinary   import java.util.List   method isSorted(list = List) private static returns boolean   if list.isEmpty then return isTrue   it = list.iterator last = Comparable it.next loop label i_ while it.hasNext current = Comparable it.next if last.compareTo(current) > 0 then return isFalse last = current end i_   return isTrue   method bogoSort(list = List) private static loop label s_ while \isSorted(list) Collections.shuffle(list) end s_   return   method main(args = String[]) public constant samples = [int 31, 41, 59, 26, 53, 58, 97, 93, 23, 84] alst = ArrayList(samples.length) loop iv = 0 to samples.length - 1 alst.add(Integer(samples[iv])) end iv   say 'unsorted:' alst.toString bogoSort(alst) say 'sorted: ' alst.toString   return   method isTrue public static returns boolean return 1 == 1   method isFalse public static returns boolean return \isTrue  
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#C
C
#include <stdio.h>   void bubble_sort (int *a, int n) { int i, t, j = n, s = 1; while (s) { s = 0; for (i = 1; i < j; i++) { if (a[i] < a[i - 1]) { t = a[i]; a[i] = a[i - 1]; a[i - 1] = t; s = 1; } } j--; } }   int main () { int a[] = {4, 65, 2, -31, 0, 99, 2, 83, 782, 1}; int n = sizeof a / sizeof a[0]; int i; for (i = 0; i < n; i++) printf("%d%s", a[i], i == n - 1 ? "\n" : " "); bubble_sort(a, n); for (i = 0; i < n; i++) printf("%d%s", a[i], i == n - 1 ? "\n" : " "); return 0; }  
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Haskell
Haskell
gnomeSort [] = [] gnomeSort (x:xs) = gs [x] xs where gs vv@(v:vs) (w:ws) | v<=w = gs (w:vv) ws | otherwise = gs vs (w:v:ws) gs [] (y:ys) = gs [y] ys gs xs [] = reverse xs -- keeping the first argument of gs in reverse order avoids the deterioration into cubic behaviour
http://rosettacode.org/wiki/Sorting_algorithms/Bead_sort
Sorting algorithms/Bead sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of positive integers using the Bead Sort Algorithm. A   bead sort   is also known as a   gravity sort. Algorithm has   O(S),   where   S   is the sum of the integers in the input set:   Each bead is moved individually. This is the case when bead sort is implemented without a mechanism to assist in finding empty spaces below the beads, such as in software implementations.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
beadsort[ a ] := Module[ { m, sorted, s ,t }, sorted = a; m = Max[a]; t=ConstantArray[0, {m,m} ]; If[ Min[a] < 0, Print["can't sort"]]; For[ i = 1, i < Length[a], i++, t[[i,1;;a[[i]]]]=1 ] For[ i = 1 ,i <= m, i++, s = Total[t[[;;,i]]]; t[[ ;; , i]] = 0; t[[1 ;; s , i]] = 1; ] For[ i=1,i<=Length[a],i++, sorted[[i]] = Total[t[[i,;;]]]; ] Print[sorted]; ] beadsort[{2,1,5,3,6}]
http://rosettacode.org/wiki/Sorting_algorithms/Bead_sort
Sorting algorithms/Bead sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of positive integers using the Bead Sort Algorithm. A   bead sort   is also known as a   gravity sort. Algorithm has   O(S),   where   S   is the sum of the integers in the input set:   Each bead is moved individually. This is the case when bead sort is implemented without a mechanism to assist in finding empty spaces below the beads, such as in software implementations.
#NetRexx
NetRexx
/* NetRexx */ options replace format comments java crossref symbols nobinary   runSample(arg) return   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method bead_sort(harry = Rexx[]) public static binary returns Rexx[] MIN_ = 'MIN' MAX_ = 'MAX' beads = Rexx 0 beads[MIN_] = 0 beads[MAX_] = 0   loop val over harry -- collect occurences of beads in indexed string indexed on value if val < beads[MIN_] then beads[MIN_] = val -- keep track of min value if val > beads[MAX_] then beads[MAX_] = val -- keep track of max value beads[val] = beads[val] + 1 end val   harry_sorted = Rexx[harry.length] bi = 0 loop xx = beads[MIN_] to beads[MAX_] -- extract beads in value order and insert in result array if beads[xx] == 0 then iterate xx loop for beads[xx] harry_sorted[bi] = xx bi = bi + 1 end end xx   return harry_sorted   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method runSample(arg) public static unsorted = [734, 3, 1, 24, 324, -1024, -666, -1, 0, 324, 32, 0, 432, 42, 3, 4, 1, 1] sorted = bead_sort(unsorted) say arrayToString(unsorted) say arrayToString(sorted) return -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method arrayToString(harry = Rexx[]) private static list = Rexx '' loop vv over harry list = list vv end vv return '['list.space(1, ',')']'  
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#FreeBASIC
FreeBASIC
' version 21-10-2016 ' compile with: fbc -s console ' for boundry checks on array's compile with: fbc -s console -exx   Sub cocktailsort(bs() As Long) ' sort from lower bound to the highter bound ' array's can have subscript range from -2147483648 to +2147483647 Dim As Long lb = LBound(bs) Dim As Long ub = UBound(bs) -1 Dim As Long done, i   Do done = 0 ' going up For i = lb To ub If bs(i) > bs(i +1) Then Swap bs(i), bs(i +1) done = 1 End If Next ub = ub -1 If done = 0 Then Exit Do ' 0 means the array is sorted done = 0 ' going down For i = ub To lb Step -1 If bs(i) > bs(i +1) Then Swap bs(i), bs(i +1) done = 1 End If Next lb = lb +1 Loop Until done = 0 ' 0 means the array is sorted   End Sub   ' ------=< MAIN >=------   Dim As Long i, array(-7 To 7)   Dim As Long a = LBound(array), b = UBound(array)   Randomize Timer For i = a To b : array(i) = i  : Next For i = a To b ' little shuffle Swap array(i), array(Int(Rnd * (b - a +1)) + a) Next     Print "unsorted "; For i = a To b : Print Using "####"; array(i); : Next : Print cocktailsort(array()) ' sort the array Print " sorted "; For i = a To b : Print Using "####"; array(i); : Next : Print     ' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Sorting_algorithms/Counting_sort
Sorting algorithms/Counting sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Counting sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Implement the Counting sort.   This is a way of sorting integers when the minimum and maximum value are known. Pseudocode function countingSort(array, min, max): count: array of (max - min + 1) elements initialize count with 0 for each number in array do count[number - min] := count[number - min] + 1 done z := 0 for i from min to max do while ( count[i - min] > 0 ) do array[z] := i z := z+1 count[i - min] := count[i - min] - 1 done done The min and max can be computed apart, or be known a priori. Note:   we know that, given an array of integers,   its maximum and minimum values can be always found;   but if we imagine the worst case for an array that can hold up to 32 bit integers,   we see that in order to hold the counts,   an array of up to 232 elements may be needed.   I.E.:   we need to hold a count value up to 232-1,   which is a little over 4.2 Gbytes.   So the counting sort is more practical when the range is (very) limited,   and minimum and maximum values are known   a priori.     (However, as a counterexample,   the use of   sparse arrays   minimizes the impact of the memory usage,   as well as removing the need of having to know the minimum and maximum values   a priori.)
#OCaml
OCaml
let counting_sort_array arr lo hi = let count = Array.make (hi-lo+1) 0 in Array.iter (fun i -> count.(i-lo) <- count.(i-lo) + 1) arr; Array.concat (Array.to_list (Array.mapi (fun i x -> Array.make x (lo+i)) count))
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#11l
11l
nums = [2,4,3,1,2] nums.sort()
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#APL
APL
  ∇SDS[⎕]∇ ∇ [0] Z←I SDS L [1] L[I[⍋I]]←Z[⍋Z←L[I←∪I]] [2] Z←L ∇  
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#AppleScript
AppleScript
use AppleScript version "2.4" use framework "Foundation" use scripting additions     -- disjointSort :: [Int] -> [Int] -> [Int] on disjointSort(ixs, xs) set ks to sort(ixs) script nth -- 1-based index on |λ|(k) item (succ(k)) of xs end |λ| end script set dct to mapFromList(zip(ks, sort(map(nth, ks))))   script build on |λ|(x, i) set mb to lookupDict(pred(i) as string, dct) if Nothing of mb then x else |Just| of mb end if end |λ| end script map(build, xs) end disjointSort     on run disjointSort({6, 1, 7}, {7, 6, 5, 4, 3, 2, 1, 0}) end run       -- GENERIC FUNCTIONS ----------------------------------------------------   -- Just :: a -> Maybe a on Just(x) {type:"Maybe", Nothing:false, Just:x} end Just   -- Nothing :: Maybe a on Nothing() {type:"Maybe", Nothing:true} end Nothing   -- length :: [a] -> Int on |length|(xs) set c to class of xs if list is c or string is c then length of xs else (2 ^ 29 - 1) -- (maxInt - simple proxy for non-finite) end if end |length|   -- lookupDict :: a -> Dict -> Maybe b on lookupDict(k, dct) set ca to current application set v to (ca's NSDictionary's dictionaryWithDictionary:dct)'s objectForKey:k if v ≠ missing value then Just(item 1 of ((ca's NSArray's arrayWithObject:v) as list)) else Nothing() end if end lookupDict   -- map :: (a -> b) -> [a] -> [b] on map(f, xs) tell mReturn(f) set lng to length of xs set lst to {} repeat with i from 1 to lng set end of lst to |λ|(item i of xs, i, xs) end repeat return lst end tell end map   -- mapFromList :: [(k, v)] -> Dict on mapFromList(kvs) set tpl to unzip(kvs) script on |λ|(x) x as string end |λ| end script (current application's NSDictionary's ¬ dictionaryWithObjects:(|2| of tpl) ¬ forKeys:map(result, |1| of tpl)) as record end mapFromList   -- min :: Ord a => a -> a -> a on min(x, y) if y < x then y else x end if end min   -- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: First-class m => (a -> b) -> m (a -> b) on mReturn(f) if class of f is script then f else script property |λ| : f end script end if end mReturn   -- pred :: Enum a => a -> a on pred(x) x - 1 end pred   -- sort :: Ord a => [a] -> [a] on sort(xs) ((current application's NSArray's arrayWithArray:xs)'s ¬ sortedArrayUsingSelector:"compare:") as list end sort   -- succ :: Enum a => a -> a on succ(x) 1 + x end succ   -- take :: Int -> [a] -> [a] -- take :: Int -> String -> String on take(n, xs) set c to class of xs if list is c then if 0 < n then items 1 thru min(n, length of xs) of xs else {} end if else if string is c then if 0 < n then text 1 thru min(n, length of xs) of xs else "" end if else if script is c then set ys to {} repeat with i from 1 to n set v to xs's |λ|() if missing value is v then return ys else set end of ys to v end if end repeat return ys else missing value end if end take   -- Tuple (,) :: a -> b -> (a, b) on Tuple(a, b) {type:"Tuple", |1|:a, |2|:b, length:2} end Tuple   -- unzip :: [(a,b)] -> ([a],[b]) on unzip(xys) set xs to {} set ys to {} repeat with xy in xys set end of xs to |1| of xy set end of ys to |2| of xy end repeat return Tuple(xs, ys) end unzip   -- zip :: [a] -> [b] -> [(a, b)] on zip(xs, ys) zipWith(Tuple, xs, ys) end zip   -- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] on zipWith(f, xs, ys) set lng to min(|length|(xs), |length|(ys)) if 1 > lng then return {} set xs_ to take(lng, xs) -- Allow for non-finite set ys_ to take(lng, ys) -- generators like cycle etc set lst to {} tell mReturn(f) repeat with i from 1 to lng set end of lst to |λ|(item i of xs_, item i of ys_) end repeat return lst end tell end zipWith
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#Fortran
Fortran
# According to section 21.18 of the reference manual, Sort is not stable (it's a Shell sort). # However, SortingPerm is stable. We will see it on an example, showing indexes of elements after the sort.   n := 20; L := List([1 .. n], i -> Random("AB")); # "AABABBBABBABAABABBAB"     p := SortingPerm(L); # (3,10,15,17,18,19,9,14,7,13,6,12,16,8,4)(5,11)   a := Permuted(L, p);; b := Permuted([1 .. n], p);;   PrintArray(TransposedMat(List([1 .. n], i -> [a[i], b[i]]))); # [ [ 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B' ], # [ 1, 2, 4, 8, 11, 13, 14, 16, 19, 3, 5, 6, 7, 9, 10, 12, 15, 17, 18, 20 ] ]
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#FreeBASIC
FreeBASIC
# According to section 21.18 of the reference manual, Sort is not stable (it's a Shell sort). # However, SortingPerm is stable. We will see it on an example, showing indexes of elements after the sort.   n := 20; L := List([1 .. n], i -> Random("AB")); # "AABABBBABBABAABABBAB"     p := SortingPerm(L); # (3,10,15,17,18,19,9,14,7,13,6,12,16,8,4)(5,11)   a := Permuted(L, p);; b := Permuted([1 .. n], p);;   PrintArray(TransposedMat(List([1 .. n], i -> [a[i], b[i]]))); # [ [ 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B' ], # [ 1, 2, 4, 8, 11, 13, 14, 16, 19, 3, 5, 6, 7, 9, 10, 12, 15, 17, 18, 20 ] ]
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#GAP
GAP
# According to section 21.18 of the reference manual, Sort is not stable (it's a Shell sort). # However, SortingPerm is stable. We will see it on an example, showing indexes of elements after the sort.   n := 20; L := List([1 .. n], i -> Random("AB")); # "AABABBBABBABAABABBAB"     p := SortingPerm(L); # (3,10,15,17,18,19,9,14,7,13,6,12,16,8,4)(5,11)   a := Permuted(L, p);; b := Permuted([1 .. n], p);;   PrintArray(TransposedMat(List([1 .. n], i -> [a[i], b[i]]))); # [ [ 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B' ], # [ 1, 2, 4, 8, 11, 13, 14, 16, 19, 3, 5, 6, 7, 9, 10, 12, 15, 17, 18, 20 ] ]
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Kotlin
Kotlin
// Version 1.2.51   fun lexOrder(n: Int): List<Int> { var first = 1 var last = n if (n < 1) { first = n last = 1 } return (first..last).map { it.toString() }.sorted().map { it.toInt() } }   fun main(args: Array<String>) { println("In lexicographical order:\n") for (n in listOf(0, 5, 13, 21, -22)) { println("${"%3d".format(n)}: ${lexOrder(n)}") } }
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Lambdatalk
Lambdatalk
  1) lexicographically sorting a sequence of numbers {S.sort before 1 2 3 4 5 6 7 8 9 10 11 12 13} -> 1 10 11 12 13 2 3 4 5 6 7 8 9   2) lexicographically sorting an array of numbers {A.sort! before {A.new 1 2 3 4 5 6 7 8 9 10 11 12 13}} -> [1,10,11,12,13,2,3,4,5,6,7,8,9]  
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Fortran
Fortran
TYPE(MONGREL) INTEGER TYPEIS INTEGER VI REAL VF CHARACTER*(enuff) VC ...etc... END TYPE MONGREL TYPE (MONGREL) DOG
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#F.C5.8Drmul.C3.A6
Fōrmulæ
{$mode objFPC}   generic procedure sort<T>(var X, Y: T); procedure swap; var Z: T; begin Z := X; X := Y; Y := Z end; begin if X > Y then begin swap end end;   generic procedure sort<T>(var X, Y, Z: T); begin specialize sort<T>(X, Y); specialize sort<T>(X, Z); specialize sort<T>(Y, Z) end;   generic procedure print<T>(const X, Y, Z: T); begin writeLn('X = ', X); writeLn('Y = ', Y); writeLn('Z = ', Z) end;   { === MAIN ============================================================= } var A, B, C: string; I, J, K: integer; P, Q, R: real; begin A := 'lions, tigers, and'; B := 'bears, oh my!'; C := '(from the "Wizard of OZ")';   specialize sort<string>(A, B, C); specialize print<string>(A, B, C);   writeLn; I := 77444; J := -12; K := 0; specialize sort<integer>(I, J, K); specialize print<integer>(I, J, K);   writeLn; P := 12.34; Q := -56.78; R := 9.01; specialize sort<real>(P, Q, R); specialize print<real>(P, Q, R) end.
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Elixir
Elixir
strs = ~w[this is a set of strings to sort This Is A Set Of Strings To Sort]   comparator = fn s1,s2 -> if String.length(s1)==String.length(s2), do: String.downcase(s1) <= String.downcase(s2), else: String.length(s1) >= String.length(s2) end IO.inspect Enum.sort(strs, comparator)   # or IO.inspect Enum.sort_by(strs, fn str -> {-String.length(str), String.downcase(str)} end)
http://rosettacode.org/wiki/Sorting_algorithms/Comb_sort
Sorting algorithms/Comb sort
Sorting algorithms/Comb sort You are encouraged to solve this task according to the task description, using any language you may know. Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a   comb sort. The Comb Sort is a variant of the Bubble Sort. Like the Shell sort, the Comb Sort increases the gap used in comparisons and exchanges. Dividing the gap by   ( 1 − e − φ ) − 1 ≈ 1.247330950103979 {\displaystyle (1-e^{-\varphi })^{-1}\approx 1.247330950103979}   works best, but   1.3   may be more practical. Some implementations use the insertion sort once the gap is less than a certain amount. Also see   the Wikipedia article:   Comb sort. Variants: Combsort11 makes sure the gap ends in (11, 8, 6, 4, 3, 2, 1), which is significantly faster than the other two possible endings. Combsort with different endings changes to a more efficient sort when the data is almost sorted (when the gap is small).   Comb sort with a low gap isn't much better than the Bubble Sort. Pseudocode: function combsort(array input) gap := input.size //initialize gap size loop until gap = 1 and swaps = 0 //update the gap value for a next comb. Below is an example gap := int(gap / 1.25) if gap < 1 //minimum gap is 1 gap := 1 end if i := 0 swaps := 0 //see Bubble Sort for an explanation //a single "comb" over the input list loop until i + gap >= input.size //see Shell sort for similar idea if input[i] > input[i+gap] swap(input[i], input[i+gap]) swaps := 1 // Flag a swap has occurred, so the // list is not guaranteed sorted end if i := i + 1 end loop end loop end function
#PHP
PHP
function combSort($arr){ $gap = count($arr); $swap = true; while ($gap > 1 || $swap){ if($gap > 1) $gap /= 1.25;   $swap = false; $i = 0; while($i+$gap < count($arr)){ if($arr[$i] > $arr[$i+$gap]){ list($arr[$i], $arr[$i+$gap]) = array($arr[$i+$gap],$arr[$i]); $swap = true; } $i++; } } return $arr; }
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#Nim
Nim
import random   randomize()   proc isSorted[T](s: openarray[T]): bool = var last = low(T) for c in s: if c < last: return false last = c return true   proc bogoSort[T](a: var openarray[T]) = while not isSorted a: shuffle a   var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782] bogoSort a echo a
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#C.23
C#
using System; using System.Collections.Generic;   namespace RosettaCode.BubbleSort { public static class BubbleSortMethods { //The "this" keyword before the method parameter identifies this as a C# extension //method, which can be called using instance method syntax on any generic list, //without having to modify the generic List<T> code provided by the .NET framework. public static void BubbleSort<T>(this List<T> list) where T : IComparable { bool madeChanges; int itemCount = list.Count; do { madeChanges = false; itemCount--; for (int i = 0; i < itemCount; i++) { if (list[i].CompareTo(list[i + 1]) > 0) { T temp = list[i + 1]; list[i + 1] = list[i]; list[i] = temp; madeChanges = true; } } } while (madeChanges); } }   //A short test program to demonstrate the BubbleSort. The compiler will change the //call to testList.BubbleSort() into one to BubbleSortMethods.BubbleSort<T>(testList). class Program { static void Main() { List<int> testList = new List<int> { 3, 7, 3, 2, 1, -4, 10, 12, 4 }; testList.BubbleSort(); foreach (var t in testList) Console.Write(t + " "); } } }
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Haxe
Haxe
class GnomeSort { @:generic public static function sort<T>(arr:Array<T>) { var i = 1; var j = 2; while (i < arr.length) { if (Reflect.compare(arr[i - 1], arr[i]) <= 0) { i = j++; } else { var temp = arr[i]; arr[i] = arr[i - 1]; arr[i - 1] = temp; if (--i == 0) { i = j++; } } } } }   class Main { static function main() { var integerArray = [1, 10, 2, 5, -1, 5, -19, 4, 23, 0]; var floatArray = [1.0, -3.2, 5.2, 10.8, -5.7, 7.3, 3.5, 0.0, -4.1, -9.5]; var stringArray = ['We', 'hold', 'these', 'truths', 'to', 'be', 'self-evident', 'that', 'all', 'men', 'are', 'created', 'equal']; Sys.println('Unsorted Integers: ' + integerArray); GnomeSort.sort(integerArray); Sys.println('Sorted Integers: ' + integerArray); Sys.println('Unsorted Floats: ' + floatArray); GnomeSort.sort(floatArray); Sys.println('Sorted Floats: ' + floatArray); Sys.println('Unsorted Strings: ' + stringArray); GnomeSort.sort(stringArray); Sys.println('Sorted Strings: ' + stringArray); } }
http://rosettacode.org/wiki/Sorting_algorithms/Bead_sort
Sorting algorithms/Bead sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of positive integers using the Bead Sort Algorithm. A   bead sort   is also known as a   gravity sort. Algorithm has   O(S),   where   S   is the sum of the integers in the input set:   Each bead is moved individually. This is the case when bead sort is implemented without a mechanism to assist in finding empty spaces below the beads, such as in software implementations.
#Nim
Nim
proc beadSort[T](a: var openarray[T]) = var max = low(T) var sum = 0   for x in a: if x > max: max = x   var beads = newSeq[int](max * a.len)   for i in 0 ..< a.len: for j in 0 ..< a[i]: beads[i * max + j] = 1   for j in 0 ..< max: sum = 0 for i in 0 ..< a.len: sum += beads[i * max + j] beads[i * max + j] = 0   for i in a.len - sum ..< a.len: beads[i * max + j] = 1   for i in 0 ..< a.len: var j = 0 while j < max and beads[i * max + j] > 0: inc j a[i] = j   var a = @[5, 3, 1, 7, 4, 1, 1, 20] beadSort a echo a
http://rosettacode.org/wiki/Sorting_algorithms/Bead_sort
Sorting algorithms/Bead sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of positive integers using the Bead Sort Algorithm. A   bead sort   is also known as a   gravity sort. Algorithm has   O(S),   where   S   is the sum of the integers in the input set:   Each bead is moved individually. This is the case when bead sort is implemented without a mechanism to assist in finding empty spaces below the beads, such as in software implementations.
#OCaml
OCaml
let rec columns l = match List.filter ((<>) []) l with [] -> [] | l -> List.map List.hd l :: columns (List.map List.tl l)   let replicate n x = Array.to_list (Array.make n x)   let bead_sort l = List.map List.length (columns (columns (List.map (fun e -> replicate e 1) l)))
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Gambas
Gambas
Public Sub Main() Dim siCount, siRev, siProcess As Short Dim bSorting As Boolean Dim byToSort As Byte[] = [249, 28, 111, 36, 171, 98, 29, 448, 44, 154, 147, 102, 46, 183, 24, 120, 19, 123, 2, 17, 226, 11, 211, 25, 191, 205, 77]   Print "To sort: -" ShowWorking(byToSort) Print   Repeat bSorting = False siRev = byToSort.Max - 1 For siCount = 0 To byToSort.Max - 1 siProcess = siCount GoSub Check siProcess = siRev GoSub Check Dec siRev Next If bSorting Then ShowWorking(byToSort) Until bSorting = False   Return   Check:   If byToSort[siProcess] > byToSort[siProcess + 1] Then Swap byToSort[siProcess], byToSort[siProcess + 1] bSorting = True Endif   Return   End '----------------------------------------- Public Sub ShowWorking(byToSort As Byte[]) Dim siCount As Byte   For siCount = 0 To byToSort.Max Print Str(byToSort[siCount]); If siCount <> byToSort.Max Then Print ","; Next   Print   End
http://rosettacode.org/wiki/Sorting_algorithms/Counting_sort
Sorting algorithms/Counting sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Counting sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Implement the Counting sort.   This is a way of sorting integers when the minimum and maximum value are known. Pseudocode function countingSort(array, min, max): count: array of (max - min + 1) elements initialize count with 0 for each number in array do count[number - min] := count[number - min] + 1 done z := 0 for i from min to max do while ( count[i - min] > 0 ) do array[z] := i z := z+1 count[i - min] := count[i - min] - 1 done done The min and max can be computed apart, or be known a priori. Note:   we know that, given an array of integers,   its maximum and minimum values can be always found;   but if we imagine the worst case for an array that can hold up to 32 bit integers,   we see that in order to hold the counts,   an array of up to 232 elements may be needed.   I.E.:   we need to hold a count value up to 232-1,   which is a little over 4.2 Gbytes.   So the counting sort is more practical when the range is (very) limited,   and minimum and maximum values are known   a priori.     (However, as a counterexample,   the use of   sparse arrays   minimizes the impact of the memory usage,   as well as removing the need of having to know the minimum and maximum values   a priori.)
#Octave
Octave
function r = counting_sort(arr, minval, maxval) r = arr; z = 1; for i = minval:maxval cnt = sum(arr == i); while( cnt-- > 0 ) r(z++) = i; endwhile endfor endfunction
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#4D
4D
ARRAY INTEGER($nums;0) APPEND TO ARRAY($nums;2) APPEND TO ARRAY($nums;4) APPEND TO ARRAY($nums;3) APPEND TO ARRAY($nums;1) APPEND TO ARRAY($nums;2) SORT ARRAY($nums) ` sort in ascending order SORT ARRAY($nums;<) ` sort in descending order
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#8th
8th
  [ 10,2,100 ] ' n:cmp a:sort . cr  
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Arturo
Arturo
sortDisjoint: function [data, indices][ result: new data inds: new indices sort 'inds   vals: new [] loop inds 'i -> 'vals ++ result\[i] sort 'vals   loop.with:'j inds 'i -> result\[i]: vals\[j] return result ]   d: [7 6 5 4 3 2 1 0] print sortDisjoint d [6 1 7]
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#Go
Go
def cityList = ['UK London', 'US New York', 'US Birmingham', 'UK Birmingham',].asImmutable() [ 'Sort by city': { city -> city[4..-1] }, 'Sort by country': { city -> city[0..3] }, ].each{ String label, Closure orderBy -> println "\n\nBefore ${label}" cityList.each { println it } println "\nAfter ${label}" cityList.sort(false, orderBy).each{ println it } }
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#Groovy
Groovy
def cityList = ['UK London', 'US New York', 'US Birmingham', 'UK Birmingham',].asImmutable() [ 'Sort by city': { city -> city[4..-1] }, 'Sort by country': { city -> city[0..3] }, ].each{ String label, Closure orderBy -> println "\n\nBefore ${label}" cityList.each { println it } println "\nAfter ${label}" cityList.sort(false, orderBy).each{ println it } }
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Lua
Lua
function lexNums (limit) local numbers = {} for i = 1, limit do table.insert(numbers, tostring(i)) end table.sort(numbers) return numbers end   local numList = lexNums(13) print(table.concat(numList, " "))
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#M2000_Interpreter
M2000 Interpreter
  Module Checkit { Function lexicographical(N) { const nl$=Chr$(13)+Chr$(10) If N<>0 then { if N=1 then =(1,) : Exit Document A$ For k=1 to N-1 A$=Str$(k,"")+{ } Next k A$=Str$(N,"") Method A$, "SetBinaryCompare" Sort A$ Flush \\ convert strings to numbers in one statement \\ in stack of values Data Param(Replace$(nl$,",", a$)) \\ return stack as array =Array([]) } else =(0,) ' empty array } Print lexicographical(5) ' 1 2 3 4 5 Print lexicographical(13) ' 1 10 11 12 13 2 3 4 5 6 7 8 9 Print lexicographical(21) ' 1 10 11 12 13 14 15 16 17 18 19 2 20 21 3 4 5 6 7 8 9 Print lexicographical(-22) ' -1 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -2 -20 -21 -22 -3 -4 -5 -6 -7 -8 -9 0 1 } Checkit Module Checkit { Function lexicographical$(N) { const nl$=Chr$(13)+Chr$(10) If N<>0 then { if N=1 then =(1,) : Exit Document A$ For k=1 to N-1 A$=Str$(k,"")+{ } Next k A$=Str$(N,"") \\ by default id TextCompare, so 0 an 1 comes first in -22 Method A$, "SetBinaryCompare" Sort A$ Flush ="["+Replace$(nl$," ", a$)+"]"   } else =("",) ' empty array } Print lexicographical$(5) ' [1 2 3 4 5] Print lexicographical$(13) ' [1 10 11 12 13 2 3 4 5 6 7 8 9] Print lexicographical$(21) '[1 10 11 12 13 14 15 16 17 18 19 2 20 21 3 4 5 6 7 8 9] Print lexicographical$(-22) ' [-1 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -2 -20 -21 -22 -3 -4 -5 -6 -7 -8 -9 0 1] } Checkit  
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
SortBy[Range[13],ToString]
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Free_Pascal
Free Pascal
{$mode objFPC}   generic procedure sort<T>(var X, Y: T); procedure swap; var Z: T; begin Z := X; X := Y; Y := Z end; begin if X > Y then begin swap end end;   generic procedure sort<T>(var X, Y, Z: T); begin specialize sort<T>(X, Y); specialize sort<T>(X, Z); specialize sort<T>(Y, Z) end;   generic procedure print<T>(const X, Y, Z: T); begin writeLn('X = ', X); writeLn('Y = ', Y); writeLn('Z = ', Z) end;   { === MAIN ============================================================= } var A, B, C: string; I, J, K: integer; P, Q, R: real; begin A := 'lions, tigers, and'; B := 'bears, oh my!'; C := '(from the "Wizard of OZ")';   specialize sort<string>(A, B, C); specialize print<string>(A, B, C);   writeLn; I := 77444; J := -12; K := 0; specialize sort<integer>(I, J, K); specialize print<integer>(I, J, K);   writeLn; P := 12.34; Q := -56.78; R := 9.01; specialize sort<real>(P, Q, R); specialize print<real>(P, Q, R) end.
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Erlang
Erlang
  -module( sort_using_custom_comparator ).   -export( [task/0] ).   task() -> lists:sort( fun longest_first_case_insensitive/2, ["this", "is", "a", "set", "of", "strings", "to", "sort", "This", "Is", "A", "Set", "Of", "Strings", "To", "Sort"] ).       longest_first_case_insensitive( String1, String2 ) when erlang:length(String1) =:= erlang:length(String2) -> string:to_lower(String1) < string:to_lower(String2); longest_first_case_insensitive( String1, String2 ) when erlang:length(String1) =< erlang:length(String2) -> false; longest_first_case_insensitive( _String1, _String2 ) -> true.  
http://rosettacode.org/wiki/Sorting_algorithms/Comb_sort
Sorting algorithms/Comb sort
Sorting algorithms/Comb sort You are encouraged to solve this task according to the task description, using any language you may know. Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a   comb sort. The Comb Sort is a variant of the Bubble Sort. Like the Shell sort, the Comb Sort increases the gap used in comparisons and exchanges. Dividing the gap by   ( 1 − e − φ ) − 1 ≈ 1.247330950103979 {\displaystyle (1-e^{-\varphi })^{-1}\approx 1.247330950103979}   works best, but   1.3   may be more practical. Some implementations use the insertion sort once the gap is less than a certain amount. Also see   the Wikipedia article:   Comb sort. Variants: Combsort11 makes sure the gap ends in (11, 8, 6, 4, 3, 2, 1), which is significantly faster than the other two possible endings. Combsort with different endings changes to a more efficient sort when the data is almost sorted (when the gap is small).   Comb sort with a low gap isn't much better than the Bubble Sort. Pseudocode: function combsort(array input) gap := input.size //initialize gap size loop until gap = 1 and swaps = 0 //update the gap value for a next comb. Below is an example gap := int(gap / 1.25) if gap < 1 //minimum gap is 1 gap := 1 end if i := 0 swaps := 0 //see Bubble Sort for an explanation //a single "comb" over the input list loop until i + gap >= input.size //see Shell sort for similar idea if input[i] > input[i+gap] swap(input[i], input[i+gap]) swaps := 1 // Flag a swap has occurred, so the // list is not guaranteed sorted end if i := i + 1 end loop end loop end function
#PicoLisp
PicoLisp
(de combSort (Lst) (let (Gap (length Lst) Swaps NIL) (while (or (> Gap 1) Swaps) (setq Gap (max 1 (/ (* Gap 4) 5))) (off Swaps) (use Lst (for (G (cdr (nth Lst Gap)) G (cdr G)) (when (> (car Lst) (car G)) (xchg Lst G) (on Swaps) ) (pop 'Lst) ) ) ) ) Lst )
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#Oberon-2
Oberon-2
MODULE Bogo;   IMPORT Out, Random;   VAR a: ARRAY 10 OF INTEGER;   PROCEDURE Init; VAR i: INTEGER; BEGIN FOR i := 0 TO LEN(a) - 1 DO a[i] := i + 1; END; END Init;   PROCEDURE Sorted(VAR a: ARRAY OF INTEGER): BOOLEAN; VAR i: INTEGER; BEGIN IF LEN(a) <= 1 THEN RETURN TRUE; END; FOR i := 1 TO LEN(a) - 1 DO IF (a[i] < a[i - 1]) THEN RETURN FALSE; END; END; RETURN TRUE; END Sorted;   PROCEDURE Shuffle*(VAR a: ARRAY OF INTEGER); VAR n, t, r: INTEGER; BEGIN FOR n := 0 TO LEN(a) - 1 DO r := Random.Roll(n); t := a[n]; a[n] := a[r]; a[r] := t; END; END Shuffle;   BEGIN Init; Shuffle(a); WHILE ~Sorted(a) DO Shuffle(a); END; FOR i := 0 TO LEN(a) - 1 DO Out.Int(a[i], 0); Out.String(" "); END; Out.Ln; END Bogo.
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#C.2B.2B
C++
g++ -std=c++11 bubble.cpp
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Icon_and_Unicon
Icon and Unicon
procedure main() #: demonstrate various ways to sort a list and string demosort(gnomesort,[3, 14, 1, 5, 9, 2, 6, 3],"qwerty") end   procedure gnomesort(X,op) #: return sorted list local i,j   op := sortop(op,X) # select how and what we sort   j := (i := 2) + 1 # translation of pseudo code while i <= *X do { if op(X[i],X[i-1]) then { X[i] :=: X[i -:= 1] if i > 1 then next } j := (i := j) + 1 } return X end
http://rosettacode.org/wiki/Sorting_algorithms/Bead_sort
Sorting algorithms/Bead sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of positive integers using the Bead Sort Algorithm. A   bead sort   is also known as a   gravity sort. Algorithm has   O(S),   where   S   is the sum of the integers in the input set:   Each bead is moved individually. This is the case when bead sort is implemented without a mechanism to assist in finding empty spaces below the beads, such as in software implementations.
#Octave
Octave
function sorted = beadsort(a) sorted = a; m = max(a); if ( any(a < 0) ) error("can't sort"); endif t = zeros(m, m); for i = 1:numel(a) t(i, 1:a(i)) = 1; endfor for i = 1:m s = sum(t(:, i)); t(:, i) = 0; t(1:s, i) = 1; endfor for i = 1:numel(a) sorted(i) = sum(t(i, :)); endfor endfunction   beadsort([5, 7, 1, 3, 1, 1, 20])
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Go
Go
package main   import "fmt"   func main() { a := []int{170, 45, 75, -90, -802, 24, 2, 66} fmt.Println("before:", a) cocktailSort(a) fmt.Println("after: ", a) }   func cocktailSort(a []int) { last := len(a) - 1 for { swapped := false for i := 0; i < last; i++ { if a[i] > a[i+1] { a[i], a[i+1] = a[i+1], a[i] swapped = true } } if !swapped { return } swapped = false for i := last - 1; i >= 0; i-- { if a[i] > a[i+1] { a[i], a[i+1] = a[i+1], a[i] swapped = true } } if !swapped { return } } }
http://rosettacode.org/wiki/Sorting_algorithms/Counting_sort
Sorting algorithms/Counting sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Counting sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Implement the Counting sort.   This is a way of sorting integers when the minimum and maximum value are known. Pseudocode function countingSort(array, min, max): count: array of (max - min + 1) elements initialize count with 0 for each number in array do count[number - min] := count[number - min] + 1 done z := 0 for i from min to max do while ( count[i - min] > 0 ) do array[z] := i z := z+1 count[i - min] := count[i - min] - 1 done done The min and max can be computed apart, or be known a priori. Note:   we know that, given an array of integers,   its maximum and minimum values can be always found;   but if we imagine the worst case for an array that can hold up to 32 bit integers,   we see that in order to hold the counts,   an array of up to 232 elements may be needed.   I.E.:   we need to hold a count value up to 232-1,   which is a little over 4.2 Gbytes.   So the counting sort is more practical when the range is (very) limited,   and minimum and maximum values are known   a priori.     (However, as a counterexample,   the use of   sparse arrays   minimizes the impact of the memory usage,   as well as removing the need of having to know the minimum and maximum values   a priori.)
#Oz
Oz
declare proc {CountingSort Arr Min Max} Count = {Array.new Min Max 0} Z = {NewCell {Array.low Arr}} in %% fill frequency array for J in {Array.low Arr}..{Array.high Arr} do Number = Arr.J in Count.Number := Count.Number + 1 end %% recreate array from frequencies for I in Min..Max do for C in 1..Count.I do Arr.(@Z) := I Z := @Z + 1 end end end   A = {Tuple.toArray unit(3 1 4 1 5 9 2 6 5)} in {CountingSort A 1 9} {Show {Array.toRecord unit A}}
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program integerSort64.s with selection sort */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeConstantesARM64.inc"   /*********************************/ /* Initialized data */ /*********************************/ .data szMessSortOk: .asciz "Table sorted.\n" szMessSortNok: .asciz "Table not sorted !!!!!.\n" sMessResult: .asciz "Value  : @ \n" szCarriageReturn: .asciz "\n"   .align 4 #TableNumber: .quad 1,3,6,2,5,9,10,8,4,7 TableNumber: .quad 10,9,8,7,6,5,4,3,2,1 .equ NBELEMENTS, (. - TableNumber) / 8 /*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program ldr x0,qAdrTableNumber // address number table mov x1,0 mov x2,NBELEMENTS // number of élements bl selectionSort ldr x0,qAdrTableNumber // address number table bl displayTable   ldr x0,qAdrTableNumber // address number table mov x1,NBELEMENTS // number of élements bl isSorted // control sort cmp x0,1 // sorted ? beq 1f ldr x0,qAdrszMessSortNok // no !! error sort bl affichageMess b 100f 1: // yes ldr x0,qAdrszMessSortOk bl affichageMess 100: // standard end of the program mov x0,0 // return code mov x8,EXIT // request to exit program svc 0 // perform the system call   qAdrsZoneConv: .quad sZoneConv qAdrszCarriageReturn: .quad szCarriageReturn qAdrsMessResult: .quad sMessResult qAdrTableNumber: .quad TableNumber qAdrszMessSortOk: .quad szMessSortOk qAdrszMessSortNok: .quad szMessSortNok /******************************************************************/ /* control sorted table */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the number of elements > 0 */ /* x0 return 0 if not sorted 1 if sorted */ isSorted: stp x2,lr,[sp,-16]! // save registers stp x3,x4,[sp,-16]! // save registers mov x2,0 ldr x4,[x0,x2,lsl 3] 1: add x2,x2,1 cmp x2,x1 bge 99f ldr x3,[x0,x2, lsl 3] cmp x3,x4 blt 98f mov x4,x3 b 1b 98: mov x0,0 // not sorted b 100f 99: mov x0,1 // sorted 100: ldp x3,x4,[sp],16 // restaur 2 registers ldp x2,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* selection sort */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the first element */ /* x2 contains the number of element */ selectionSort: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers stp x4,x5,[sp,-16]! // save registers stp x6,x7,[sp,-16]! // save registers mov x3,x1 // start index i sub x7,x2,1 // compute n - 1 1: // start loop mov x4,x3 add x5,x3,1 // init index 2 2: ldr x1,[x0,x4,lsl 3] // load value A[mini] ldr x6,[x0,x5,lsl 3] // load value A[j] cmp x6,x1 // compare value csel x4,x5,x4,lt // j -> mini add x5,x5,1 // increment index j cmp x5,x2 // end ? blt 2b // no -> loop cmp x4,x3 // mini <> j ? beq 3f // no ldr x1,[x0,x4,lsl 3] // yes swap A[i] A[mini] ldr x6,[x0,x3,lsl 3] str x1,[x0,x3,lsl 3] str x6,[x0,x4,lsl 3] 3: add x3,x3,1 // increment i cmp x3,x7 // end ? blt 1b // no -> loop   100: ldp x6,x7,[sp],16 // restaur 2 registers ldp x4,x5,[sp],16 // restaur 2 registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30   /******************************************************************/ /* Display table elements */ /******************************************************************/ /* x0 contains the address of table */ displayTable: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers mov x2,x0 // table address mov x3,0 1: // loop display table ldr x0,[x2,x3,lsl 3] ldr x1,qAdrsZoneConv bl conversion10 // décimal conversion ldr x0,qAdrsMessResult ldr x1,qAdrsZoneConv bl strInsertAtCharInc // insert result at @ character bl affichageMess // display message add x3,x3,1 cmp x3,NBELEMENTS - 1 ble 1b ldr x0,qAdrszCarriageReturn bl affichageMess 100: ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"    
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Action.21
Action!
INCLUDE "D2:SORT.ACT" ;from the Action! Tool Kit   PROC PrintArray(INT ARRAY a INT size) INT i   Put('[) FOR i=0 TO size-1 DO IF i>0 THEN Put(' ) FI PrintI(a(i)) OD Put(']) PutE() RETURN   PROC Test(INT ARRAY a INT size BYTE order) PrintE("Array before sort:") PrintArray(a,size) SortI(a,size,order) PrintE("Array after sort:") PrintArray(a,size) PutE() RETURN   PROC Main() DEFINE ASCENDING="0" INT ARRAY a(10)=[1 4 65535 0 3 7 4 8 20 65530], b(21)=[10 9 8 7 6 5 4 3 2 1 0 65535 65534 65533 65532 65531 65530 65529 65528 65527 65526], c(8)=[101 102 103 104 105 106 107 108], d(12)=[1 65535 1 65535 1 65535 1 65535 1 65535 1 65535]   Put(125) PutE() ;clear screen Test(a,10,ASCENDING) Test(b,21,ASCENDING) Test(c,8,ASCENDING) Test(d,12,ASCENDING) RETURN
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#AutoHotkey
AutoHotkey
Sort_disjoint_sublist(Values, Indices){ A := [], B:=[], C := [], D := [] for k, v in Indices A[v] := 1 , B[Values[v]] := v for k, v in A C.Push(k) for k, v in B D.Push(k) for k, v in D Values[C[A_Index]] := D[A_Index] return Values }
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#Haskell
Haskell
import java.util.Arrays; import java.util.Comparator;   public class RJSortStability {   public static void main(String[] args) { String[] cityList = { "UK London", "US New York", "US Birmingham", "UK Birmingham", };   String[] cn = cityList.clone(); System.out.println("\nBefore sort:"); for (String city : cn) { System.out.println(city); }   // sort by city Arrays.sort(cn, new Comparator<String>() { public int compare(String lft, String rgt) { return lft.substring(4).compareTo(rgt.substring(4)); } });   System.out.println("\nAfter sort on city:"); for (String city : cn) { System.out.println(city); }   cn = cityList.clone(); System.out.println("\nBefore sort:"); for (String city : cn) { System.out.println(city); }   // sort by country Arrays.sort(cn, new Comparator<String>() { public int compare(String lft, String rgt) { return lft.substring(0, 2).compareTo(rgt.substring(0, 2)); } });   System.out.println("\nAfter sort on country:"); for (String city : cn) { System.out.println(city); }   System.out.println(); } }
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Microsoft_Small_Basic
Microsoft Small Basic
' Lexicographical numbers - 25/07/2018 xx="000000000000000" For n=1 To 3 nn=Text.GetSubText(" 5 13 21",n*4-3,4) ll=Text.GetLength(nn) For i=1 To nn t[i]=i EndFor i=nn-1 k=0 For i=i To 1 Step -1 ok=1 For j=1 To i k=j+1 tj=Text.GetSubText(Text.Append(t[j],xx),1,ll) tk=Text.GetSubText(Text.Append(t[k],xx),1,ll) If tj>tk Then w=t[j] t[j]=t[k] t[k]=w ok=0 EndIf EndFor If ok=1 Then Goto exitfor EndIf EndFor exitfor: x="" For i=1 To nn x=x+","+t[i] EndFor TextWindow.WriteLine(nn+":"+Text.GetSubTextToEnd(x,2)) EndFor
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#MUMPS
MUMPS
  SortLexographically(n) new array,i,j for i=1:1:n set array(i_" ")="" for set j=$order(array(j)) quit:j="" write j quit  
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Nim
Nim
import algorithm, sequtils   for n in [0, 5, 13, 21, -22]: let s = if n > 1: toSeq(1..n) else: toSeq(countdown(1, n)) echo s.sortedByIt($it)
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Go
Go
package main   import ( "fmt" "log" "sort" )   var ( stringsIn = []string{ `lions, tigers, and`, `bears, oh my!`, `(from the "Wizard of OZ")`} intsIn = []int{77444, -12, 0} )   func main() { { // initialize three vars x, y, z := stringsIn[0], stringsIn[1], stringsIn[2]   // I. Task suggested technique, move values to array (slice). // It's consise and relies on library code. s := []string{x, y, z} sort.Strings(s) x, y, z = s[0], s[1], s[2]   // validate if x > y || y > z { log.Fatal() }   // II. Likely fastest technique, minimizing tests and data movement. // Least consise though, hardest to understand, and most chance to make // a coding mistake. x, y, z = stringsIn[0], stringsIn[1], stringsIn[2] // (initialize) if x < y { switch { case y < z: case x < z: y, z = z, y default: x, y, z = z, x, y } } else { switch { case x < z: x, y = y, x case z < y: x, z = z, x default: x, y, z = y, z, x } } if x > y || y > z { // (validate) log.Fatal() }   // III. A little more consise than II, easier to understand, almost // as fast. x, y, z = stringsIn[0], stringsIn[1], stringsIn[2] // (initialize) if x > y { x, y = y, x } if y > z { y, z = z, y } if x > y { x, y = y, x } if x > y || y > z { // (validate) log.Fatal() } fmt.Println("sorted strings:") fmt.Println(" ", x) fmt.Println(" ", y) fmt.Println(" ", z) fmt.Println("original data:") fmt.Println(" ", stringsIn[0]) fmt.Println(" ", stringsIn[1]) fmt.Println(" ", stringsIn[2]) } // same techniques, with integer test case { // task suggested technique x, y, z := intsIn[0], intsIn[1], intsIn[2] // (initialize) s := []int{x, y, z} sort.Ints(s) x, y, z = s[0], s[1], s[2] if x > y || y > z { // (validate) log.Fatal() }   // minimizing data movement x, y, z = intsIn[0], intsIn[1], intsIn[2] // (initialize) if x < y { switch { case y < z: case x < z: y, z = z, y default: x, y, z = z, x, y } } else { switch { case x < z: x, y = y, x case z < y: x, z = z, x default: x, y, z = y, z, x } } if x > y || y > z { // (validate) log.Fatal() }   // three swaps x, y, z = intsIn[0], intsIn[1], intsIn[2] // (initialize) if x > y { x, y = y, x } if y > z { y, z = z, y } if x > y { x, y = y, x } if x > y || y > z { // (validate) log.Fatal() } fmt.Println("sorted ints:", x, y, z) fmt.Println("original data:", intsIn) } // To put any of these techniques in a function, a function could just // take three values and return them sorted. { sort3 := func(x, y, z int) (int, int, int) { if x > y { x, y = y, x } if y > z { y, z = z, y } if x > y { x, y = y, x } return x, y, z } x, y, z := intsIn[0], intsIn[1], intsIn[2] // (initialize) x, y, z = sort3(x, y, z) if x > y || y > z { // (validate) log.Fatal() } } // Alternatively, a function could take pointers { sort3 := func(x, y, z *int) { if *x > *y { *x, *y = *y, *x } if *y > *z { *y, *z = *z, *y } if *x > *y { *x, *y = *y, *x } } x, y, z := intsIn[0], intsIn[1], intsIn[2] // (initialize) sort3(&x, &y, &z) if x > y || y > z { // (validate) log.Fatal() } } }
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Euphoria
Euphoria
include sort.e include wildcard.e include misc.e   function my_compare(sequence a, sequence b) if length(a)!=length(b) then return -compare(length(a),length(b)) else return compare(lower(a),lower(b)) end if end function   sequence strings strings = reverse({ "Here", "are", "some", "sample", "strings", "to", "be", "sorted" })   puts(1,"Unsorted:\n") pretty_print(1,strings,{2})   puts(1,"\n\nSorted:\n") pretty_print(1,custom_sort(routine_id("my_compare"),strings),{2})
http://rosettacode.org/wiki/Sorting_algorithms/Comb_sort
Sorting algorithms/Comb sort
Sorting algorithms/Comb sort You are encouraged to solve this task according to the task description, using any language you may know. Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a   comb sort. The Comb Sort is a variant of the Bubble Sort. Like the Shell sort, the Comb Sort increases the gap used in comparisons and exchanges. Dividing the gap by   ( 1 − e − φ ) − 1 ≈ 1.247330950103979 {\displaystyle (1-e^{-\varphi })^{-1}\approx 1.247330950103979}   works best, but   1.3   may be more practical. Some implementations use the insertion sort once the gap is less than a certain amount. Also see   the Wikipedia article:   Comb sort. Variants: Combsort11 makes sure the gap ends in (11, 8, 6, 4, 3, 2, 1), which is significantly faster than the other two possible endings. Combsort with different endings changes to a more efficient sort when the data is almost sorted (when the gap is small).   Comb sort with a low gap isn't much better than the Bubble Sort. Pseudocode: function combsort(array input) gap := input.size //initialize gap size loop until gap = 1 and swaps = 0 //update the gap value for a next comb. Below is an example gap := int(gap / 1.25) if gap < 1 //minimum gap is 1 gap := 1 end if i := 0 swaps := 0 //see Bubble Sort for an explanation //a single "comb" over the input list loop until i + gap >= input.size //see Shell sort for similar idea if input[i] > input[i+gap] swap(input[i], input[i+gap]) swaps := 1 // Flag a swap has occurred, so the // list is not guaranteed sorted end if i := i + 1 end loop end loop end function
#PL.2FI
PL/I
  /* From the pseudocode. */ comb_sort: procedure (A); declare A(*) fixed; declare t fixed; declare (i, gap) fixed binary (31); declare swaps bit (1) aligned;   gap = hbound(A,1) - lbound(A,1); /* initialize the gap size. */ do until (gap <= 1 & swaps); /* update the gap value for a next comb. */ put skip data (gap); gap = gap / 1.25e0; put skip data (gap); swaps = '1'b; /* a single "comb" over the array. */ do i = lbound(A,1) by 1 until (i + gap >= hbound(A,1)); if A(i) > A(i+gap) then do; t = A(i); A(i) = A(i+gap); A(i+gap) = t; swaps = '0'b; /* Flag a swap has occurred, so */ /* the list is not guaranteed sorted. */ end; end; end; end comb_sort;  
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#OCaml
OCaml
let rec is_sorted comp = function | e1 :: e2 :: r -> comp e1 e2 <= 0 && is_sorted comp (e2 :: r) | _ -> true   (* Fisher-Yates shuffle on lists; uses temp array *) let shuffle l = let ar = Array.of_list l in for n = Array.length ar - 1 downto 1 do let k = Random.int (n+1) in let temp = ar.(k) in (* swap ar.(k) and ar.(n) *) ar.(k) <- ar.(n); ar.(n) <- temp done; Array.to_list ar   let rec bogosort li = if is_sorted compare li then li else bogosort (shuffle li)
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Clojure
Clojure
(ns bubblesort (:import java.util.ArrayList))   (defn bubble-sort "Sort in-place. arr must implement the Java List interface and should support random access, e.g. an ArrayList." ([arr] (bubble-sort compare arr)) ([cmp arr] (letfn [(swap! [i j] (let [t (.get arr i)] (doto arr (.set i (.get arr j)) (.set j t)))) (sorter [stop-i] (let [changed (atom false)] (doseq [i (range stop-i)] (if (pos? (cmp (.get arr i) (.get arr (inc i)))) (do (swap! i (inc i)) (reset! changed true)))) @changed))] (doseq [stop-i (range (dec (.size arr)) -1 -1)  :while (sorter stop-i)]) arr)))   (println (bubble-sort (ArrayList. [10 9 8 7 6 5 4 3 2 1])))
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Io
Io
List do( gnomeSortInPlace := method( idx := 1 while(idx <= size, if(idx == 0 or at(idx) > at(idx - 1)) then( idx = idx + 1 ) else( swapIndices(idx, idx - 1) idx = idx - 1 ) ) self) )   lst := list(5, -1, -4, 2, 9) lst gnomeSortInPlace println # ==> list(-4, -1, 2, 5, 9)
http://rosettacode.org/wiki/Sorting_algorithms/Bead_sort
Sorting algorithms/Bead sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of positive integers using the Bead Sort Algorithm. A   bead sort   is also known as a   gravity sort. Algorithm has   O(S),   where   S   is the sum of the integers in the input set:   Each bead is moved individually. This is the case when bead sort is implemented without a mechanism to assist in finding empty spaces below the beads, such as in software implementations.
#ooRexx
ooRexx
in='10 -12 1 0 999 8 2 2 4 4' Do i=1 To words(in) z.i=word(in,i) End n=i-1 init=0 Call minmax   beads.=0; Do i=1 To words(in) z=z.i beads.z+=1 End j=0 Do i=lo To hi Do While beads.i>0 j+=1 s.j=i beads.i-=1 End; End; Call show ' Input:',z.,n Call show 'Sorted:',s.,n Exit   minmax: Do i=1 To n If init=0 Then Do init=1 lo=z.i hi=z.i End Else Do lo=min(lo,z.i) hi=max(hi,z.i) End End Return   show: Procedure Expose n Use Arg txt,a. ol=txtg> Do i=1 To n ol=ol format(a.i,3) End Say ol Return
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Groovy
Groovy
def makeSwap = { a, i, j = i+1 -> print "."; a[[j,i]] = a[[i,j]] }   def checkSwap = { a, i, j = i+1 -> [(a[i] > a[j])].find{ it }.each { makeSwap(a, i, j) } }   def cocktailSort = { list -> if (list == null || list.size() < 2) return list def n = list.size() def swap = checkSwap.curry(list) while (true) { def swapped = (0..(n-2)).any(swap) && ((-2)..(-n)).any(swap) if ( ! swapped ) break } list }
http://rosettacode.org/wiki/Sorting_algorithms/Counting_sort
Sorting algorithms/Counting sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Counting sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Implement the Counting sort.   This is a way of sorting integers when the minimum and maximum value are known. Pseudocode function countingSort(array, min, max): count: array of (max - min + 1) elements initialize count with 0 for each number in array do count[number - min] := count[number - min] + 1 done z := 0 for i from min to max do while ( count[i - min] > 0 ) do array[z] := i z := z+1 count[i - min] := count[i - min] - 1 done done The min and max can be computed apart, or be known a priori. Note:   we know that, given an array of integers,   its maximum and minimum values can be always found;   but if we imagine the worst case for an array that can hold up to 32 bit integers,   we see that in order to hold the counts,   an array of up to 232 elements may be needed.   I.E.:   we need to hold a count value up to 232-1,   which is a little over 4.2 Gbytes.   So the counting sort is more practical when the range is (very) limited,   and minimum and maximum values are known   a priori.     (However, as a counterexample,   the use of   sparse arrays   minimizes the impact of the memory usage,   as well as removing the need of having to know the minimum and maximum values   a priori.)
#PARI.2FGP
PARI/GP
countingSort(v,mn,mx)={ my(u=vector(#v),i=0); for(n=mn,mx, for(j=1,#v,if(v[j]==n,u[i++]=n)) ); u };
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#ActionScript
ActionScript
//Comparison function must returns Numbers even though it deals with integers. function compare(x:int, y:int):Number { return Number(x-y); } var nums:Vector.<int> = Vector.<int>([5,12,3,612,31,523,1,234,2]); nums.sort(compare);
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Ada
Ada
with Gnat.Heap_Sort_G;   procedure Integer_Sort is -- Heap sort package requires data to be in index values starting at -- 1 while index value 0 is used as temporary storage type Int_Array is array(Natural range <>) of Integer; Values : Int_Array := (0,1,8,2,7,3,6,4,5);   -- define move and less than subprograms for use by the heap sort package procedure Move_Int(From : Natural; To : Natural) is begin Values(To) := Values(From); end Move_Int;   function Lt_Int(Left, Right : Natural) return Boolean is begin return Values(Left) < Values (Right); end Lt_Int;   -- Instantiate the generic heap sort package package Heap_Sort is new Gnat.Heap_Sort_G(Move_Int, Lt_Int);   begin Heap_Sort.Sort(8); end Integer_Sort;   requires an Ada05 compiler, e.g GNAT GPL 2007 with Ada.Containers.Generic_Array_Sort;   procedure Integer_Sort is -- type Int_Array is array(Natural range <>) of Integer; Values : Int_Array := (0,1,8,2,7,3,6,4,5);   -- Instantiate the generic sort package from the standard Ada library procedure Sort is new Ada.Containers.Generic_Array_Sort (Index_Type => Natural, Element_Type => Integer, Array_Type => Int_Array);   begin Sort(Values); end Integer_Sort;
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#11l
11l
V data = [ ‘1.3.6.1.4.1.11.2.17.19.3.4.0.10’, ‘1.3.6.1.4.1.11.2.17.5.2.0.79’, ‘1.3.6.1.4.1.11.2.17.19.3.4.0.4’, ‘1.3.6.1.4.1.11150.3.4.0.1’, ‘1.3.6.1.4.1.11.2.17.19.3.4.0.1’, ‘1.3.6.1.4.1.11150.3.4.0’ ]   V delim = ‘.’ // to get round ‘bug in MSVC 2017’[https://developercommunity.visualstudio.com/t/bug-with-operator-in-c/565417]   L(s) sorted(data, key' x -> x.split(:delim).map(Int)) print(s)
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#BBC_BASIC
BBC BASIC
INSTALL @lib$+"SORTLIB" Sort% = FN_sortinit(0,0) : REM Ascending   DIM list%(7) : list%() = 7, 6, 5, 4, 3, 2, 1, 0 DIM indices%(2) : indices%() = 6, 1, 7   PROCsortdisjoint(list%(), indices%()) PRINT FNshowlist(list%()) END   DEF PROCsortdisjoint(l%(), i%()) LOCAL C%, i%, n%, t%() n% = DIM(i%(),1) DIM t%(n%) FOR i% = 0 TO n% t%(i%) = l%(i%(i%)) NEXT C% = n% + 1 CALL Sort%, i%(0) CALL Sort%, t%(0) FOR i% = 0 TO n% l%(i%(i%)) = t%(i%) NEXT ENDPROC   DEF FNshowlist(l%()) LOCAL i%, o$ o$ = "[" FOR i% = 0 TO DIM(l%(),1) o$ += STR$(l%(i%)) + ", " NEXT = LEFT$(LEFT$(o$)) + "]"
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Bracmat
Bracmat
7 6 5 4 3 2 1 0:?values & 6 1 7:?indices & 0:?sortedValues:?sortedIndices & whl ' ( !indices:%?i ?indices & !values:? [!i %@?value ? & (!value.)+!sortedValues:?sortedValues & (!i.)+!sortedIndices:?sortedIndices ) & whl ' ( !sortedIndices:(?i.)+?sortedIndices & !values:?A [!i %@? ?Z & !sortedValues:(?value.)+?sortedValues & !A !value !Z:?values ) & out$!values;
http://rosettacode.org/wiki/Sort_stability
Sort stability
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort When sorting records in a table by a particular column or field, a stable sort will always retain the relative order of records that have the same key. Example In this table of countries and cities, a stable sort on the second column, the cities, would keep the   US Birmingham   above the   UK Birmingham. (Although an unstable sort might, in this case, place the   US Birmingham   above the   UK Birmingham,   a stable sort routine would guarantee it). UK London US New York US Birmingham UK Birmingham Similarly, stable sorting on just the first column would generate UK London as the first item and US Birmingham as the last item   (since the order of the elements having the same first word –   UK or US   – would be maintained). Task   Examine the documentation on any in-built sort routines supplied by a language.   Indicate if an in-built routine is supplied   If supplied, indicate whether or not the in-built routine is stable. (This Wikipedia table shows the stability of some common sort routines).
#Icon_and_Unicon
Icon and Unicon
import java.util.Arrays; import java.util.Comparator;   public class RJSortStability {   public static void main(String[] args) { String[] cityList = { "UK London", "US New York", "US Birmingham", "UK Birmingham", };   String[] cn = cityList.clone(); System.out.println("\nBefore sort:"); for (String city : cn) { System.out.println(city); }   // sort by city Arrays.sort(cn, new Comparator<String>() { public int compare(String lft, String rgt) { return lft.substring(4).compareTo(rgt.substring(4)); } });   System.out.println("\nAfter sort on city:"); for (String city : cn) { System.out.println(city); }   cn = cityList.clone(); System.out.println("\nBefore sort:"); for (String city : cn) { System.out.println(city); }   // sort by country Arrays.sort(cn, new Comparator<String>() { public int compare(String lft, String rgt) { return lft.substring(0, 2).compareTo(rgt.substring(0, 2)); } });   System.out.println("\nAfter sort on country:"); for (String city : cn) { System.out.println(city); }   System.out.println(); } }
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Perl
Perl
printf("%4d: [%s]\n", $_, join ',', sort $_ > 0 ? 1..$_ : $_..1) for 13, 21, -22
http://rosettacode.org/wiki/Sort_numbers_lexicographically
Sort numbers lexicographically
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Given an integer   n,   return   1──►n   (inclusive)   in lexicographical order. Show all output here on this page. Example Given   13, return:   [1,10,11,12,13,2,3,4,5,6,7,8,9].
#Phix
Phix
with javascript_semantics function lexicographic_order(sequence s) return extract(s,custom_sort(apply(s,sprint),tagset(length(s)))) end function ?lexicographic_order({1,0}) ?lexicographic_order(tagset(5)) ?lexicographic_order(tagset(13)) ?lexicographic_order(tagset(21,1,2)) ?lexicographic_order(tagset(11,-21,4)) ?lexicographic_order({1.25, -6, -10, 9, -11.3, 13, -3, 0})
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Haskell
Haskell
import Data.List (sort)   sortedTriple :: Ord a => (a, a, a) -> (a, a, a) sortedTriple (x, y, z) = let [a, b, c] = sort [x, y, z] in (a, b, c)   sortedListfromTriple :: Ord a => (a, a, a) -> [a] sortedListfromTriple (x, y, z) = sort [x, y, z]   -- TEST ---------------------------------------------------------------------- main :: IO () main = do print $ sortedTriple ("lions, tigers, and", "bears, oh my!", "(from the \"Wizard of OZ\")") print $ sortedListfromTriple ("lions, tigers, and", "bears, oh my!", "(from the \"Wizard of OZ\")") print $ sortedTriple (77444, -12, 0) print $ sortedListfromTriple (77444, -12, 0)
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#F.23
F#
let myCompare (s1:string) (s2:string) = match compare s2.Length s1.Length with | 0 -> compare (s1.ToLower()) (s2.ToLower()) | X -> X   let strings = ["Here"; "are"; "some"; "sample"; "strings"; "to"; "be"; "sorted"]   let sortedStrings = List.sortWith myCompare strings   printfn "%A" sortedStrings
http://rosettacode.org/wiki/Sorting_algorithms/Comb_sort
Sorting algorithms/Comb sort
Sorting algorithms/Comb sort You are encouraged to solve this task according to the task description, using any language you may know. Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a   comb sort. The Comb Sort is a variant of the Bubble Sort. Like the Shell sort, the Comb Sort increases the gap used in comparisons and exchanges. Dividing the gap by   ( 1 − e − φ ) − 1 ≈ 1.247330950103979 {\displaystyle (1-e^{-\varphi })^{-1}\approx 1.247330950103979}   works best, but   1.3   may be more practical. Some implementations use the insertion sort once the gap is less than a certain amount. Also see   the Wikipedia article:   Comb sort. Variants: Combsort11 makes sure the gap ends in (11, 8, 6, 4, 3, 2, 1), which is significantly faster than the other two possible endings. Combsort with different endings changes to a more efficient sort when the data is almost sorted (when the gap is small).   Comb sort with a low gap isn't much better than the Bubble Sort. Pseudocode: function combsort(array input) gap := input.size //initialize gap size loop until gap = 1 and swaps = 0 //update the gap value for a next comb. Below is an example gap := int(gap / 1.25) if gap < 1 //minimum gap is 1 gap := 1 end if i := 0 swaps := 0 //see Bubble Sort for an explanation //a single "comb" over the input list loop until i + gap >= input.size //see Shell sort for similar idea if input[i] > input[i+gap] swap(input[i], input[i+gap]) swaps := 1 // Flag a swap has occurred, so the // list is not guaranteed sorted end if i := i + 1 end loop end loop end function
#PowerShell
PowerShell
function CombSort ($a) { $l = $a.Length $gap = 11 while( $gap -lt $l ) { $gap = [Math]::Floor( $gap*1.3 ) } if( $l -gt 1 ) { $hasChanged = $true :outer while ($hasChanged -or ( $gap -gt 1 ) ) { $count = 0 $hasChanged = $false if( $gap -gt 1 ) { $gap = [Math]::Floor( $gap/1.3 ) } else { $l-- } for ($i = 0; $i -lt ( $l - $gap ); $i++) { if ($a[$i] -gt $a[$i+$gap]) { $a[$i], $a[$i+$gap] = $a[$i+$gap], $a[$i] $hasChanged = $true $count++ } } } } $a }   $l = 100; CombSort ( 1..$l | ForEach-Object { $Rand = New-Object Random }{ $Rand.Next( -( $l - 1 ), $l - 1 ) } )
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#Oz
Oz
declare proc {BogoSort Arr} for while:{Not {InOrder Arr}} do {Shuffle Arr} end end   fun {InOrder Arr} for I in {Array.low Arr}+1..{Array.high Arr} return:Return default:true do if Arr.(I-1) > Arr.I then {Return false} end end end   proc {Shuffle Arr} Low = {Array.low Arr} High = {Array.high Arr} in for I in High..Low;~1 do J = Low + {OS.rand} mod (I - Low + 1) OldI = Arr.I in Arr.I := Arr.J Arr.J := OldI end end   X = {Tuple.toArray unit(3 1 4 1 5 9 2 6 5)} in {BogoSort X} {Show {Array.toRecord unit X}}