task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/URL_encoding | URL encoding | Task
Provide a function or mechanism to convert a provided string into URL encoding representation.
In URL encoding, special characters, control characters and extended characters
are converted into a percent symbol followed by a two digit hexadecimal code,
So a space character encodes into %20 within the string.
For the purposes of this task, every character except 0-9, A-Z and a-z requires conversion, so the following characters all require conversion by default:
ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F (127 decimal).
ASCII symbols (Character ranges 32-47 decimal (20-2F hex))
ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))
ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))
ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))
Extended characters with character codes of 128 decimal (80 hex) and above.
Example
The string "http://foo bar/" would be encoded as "http%3A%2F%2Ffoo%20bar%2F".
Variations
Lowercase escapes are legal, as in "http%3a%2f%2ffoo%20bar%2f".
Some standards give different rules: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, section 2.3, says that "-._~" should not be encoded. HTML 5, section 4.10.22.5 URL-encoded form data, says to preserve "-._*", and to encode space " " to "+". The options below provide for utilization of an exception string, enabling preservation (non encoding) of particular characters to meet specific standards.
Options
It is permissible to use an exception string (containing a set of symbols
that do not need to be converted).
However, this is an optional feature and is not a requirement of this task.
Related tasks
URL decoding
URL parser
| #Lingo | Lingo | put urlencode("http://foo bar/")
-- "http%3a%2f%2ffoo+bar%2f" |
http://rosettacode.org/wiki/URL_encoding | URL encoding | Task
Provide a function or mechanism to convert a provided string into URL encoding representation.
In URL encoding, special characters, control characters and extended characters
are converted into a percent symbol followed by a two digit hexadecimal code,
So a space character encodes into %20 within the string.
For the purposes of this task, every character except 0-9, A-Z and a-z requires conversion, so the following characters all require conversion by default:
ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F (127 decimal).
ASCII symbols (Character ranges 32-47 decimal (20-2F hex))
ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))
ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))
ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))
Extended characters with character codes of 128 decimal (80 hex) and above.
Example
The string "http://foo bar/" would be encoded as "http%3A%2F%2Ffoo%20bar%2F".
Variations
Lowercase escapes are legal, as in "http%3a%2f%2ffoo%20bar%2f".
Some standards give different rules: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, section 2.3, says that "-._~" should not be encoded. HTML 5, section 4.10.22.5 URL-encoded form data, says to preserve "-._*", and to encode space " " to "+". The options below provide for utilization of an exception string, enabling preservation (non encoding) of particular characters to meet specific standards.
Options
It is permissible to use an exception string (containing a set of symbols
that do not need to be converted).
However, this is an optional feature and is not a requirement of this task.
Related tasks
URL decoding
URL parser
| #LiveCode | LiveCode | urlEncode("http://foo bar/")
-- http%3A%2F%2Ffoo+bar%2F |
http://rosettacode.org/wiki/Variables | Variables | Task
Demonstrate a language's methods of:
variable declaration
initialization
assignment
datatypes
scope
referencing, and
other variable related facilities
| #HolyC | HolyC | U8 i; |
http://rosettacode.org/wiki/Variables | Variables | Task
Demonstrate a language's methods of:
variable declaration
initialization
assignment
datatypes
scope
referencing, and
other variable related facilities
| #Icon_and_Unicon | Icon and Unicon | global gvar # a global
procedure main(arglist) # arglist is a parameter of main
local a,b,i,x # a, b, i, x are locals withing main
static y # a static (silly in main)
x := arglist[1]
a := 1.0
i := 10
b := [x,a,i,b]
# ... rest of program
end |
http://rosettacode.org/wiki/Van_Eck_sequence | Van Eck sequence | The sequence is generated by following this pseudo-code:
A: The first term is zero.
Repeatedly apply:
If the last term is *new* to the sequence so far then:
B: The next term is zero.
Otherwise:
C: The next term is how far back this last term occured previously.
Example
Using A:
0
Using B:
0 0
Using C:
0 0 1
Using B:
0 0 1 0
Using C: (zero last occurred two steps back - before the one)
0 0 1 0 2
Using B:
0 0 1 0 2 0
Using C: (two last occurred two steps back - before the zero)
0 0 1 0 2 0 2 2
Using C: (two last occurred one step back)
0 0 1 0 2 0 2 2 1
Using C: (one last appeared six steps back)
0 0 1 0 2 0 2 2 1 6
...
Task
Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers.
Use it to display here, on this page:
The first ten terms of the sequence.
Terms 991 - to - 1000 of the sequence.
References
Don't Know (the Van Eck Sequence) - Numberphile video.
Wikipedia Article: Van Eck's Sequence.
OEIS sequence: A181391.
| #Python | Python | def van_eck():
n, seen, val = 0, {}, 0
while True:
yield val
last = {val: n}
val = n - seen.get(val, n)
seen.update(last)
n += 1
#%%
if __name__ == '__main__':
print("Van Eck: first 10 terms: ", list(islice(van_eck(), 10)))
print("Van Eck: terms 991 - 1000:", list(islice(van_eck(), 1000))[-10:]) |
http://rosettacode.org/wiki/Vampire_number | Vampire number | A vampire number is a natural decimal number with an even number of digits, that can be factored into two integers.
These two factors are called the fangs, and must have the following properties:
they each contain half the number of the decimal digits of the original number
together they consist of exactly the same decimal digits as the original number
at most one of them has a trailing zero
An example of a vampire number and its fangs: 1260 : (21, 60)
Task
Print the first 25 vampire numbers and their fangs.
Check if the following numbers are vampire numbers and, if so, print them and their fangs:
16758243290880, 24959017348650, 14593825548650
Note that a vampire number can have more than one pair of fangs.
See also
numberphile.com.
vampire search algorithm
vampire numbers on OEIS
| #zkl | zkl | fcn fangs(N){ //-->if Vampire number: (N,(a,b,c,...)), where a*x==N
var [const] tens=[0 .. 18].pump(List,(10.0).pow,"toInt");
(half:=N.numDigits) : if (_.isOdd) return(T);;
half/=2; digits:=N.toString().sort();
lo:=tens[half-1].max((N+tens[half])/(tens[half]));
hi:=(N/lo).min(N.toFloat().sqrt());
fs:=[lo .. hi].filter('wrap(n){
N%n==0 and (n%10!=0 or (N/n)%10!=0) and
(n.toString()+(N/n).toString()).sort()==digits
});
fs and T(N,fs) or T;
} |
http://rosettacode.org/wiki/Variadic_function | Variadic function | Task
Create a function which takes in a variable number of arguments and prints each one on its own line.
Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime.
Functions of this type are also known as Variadic Functions.
Related task
Call a function
| #Python | Python | def print_all(*things):
for x in things:
print x |
http://rosettacode.org/wiki/Variadic_function | Variadic function | Task
Create a function which takes in a variable number of arguments and prints each one on its own line.
Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime.
Functions of this type are also known as Variadic Functions.
Related task
Call a function
| #Qi | Qi |
(define varargs-func
A -> (print A))
(define varargs
[varargs | Args] -> [varargs-func [list | Args]]
A -> A)
(sugar in varargs 1)
|
http://rosettacode.org/wiki/Vector_products | Vector products | A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: (X, Y, Z).
If you imagine a graph with the x and y axis being at right angles to each other and having a third, z axis coming out of the page, then a triplet of numbers, (X, Y, Z) would represent a point in the region, and a vector from the origin to the point.
Given the vectors:
A = (a1, a2, a3)
B = (b1, b2, b3)
C = (c1, c2, c3)
then the following common vector products are defined:
The dot product (a scalar quantity)
A • B = a1b1 + a2b2 + a3b3
The cross product (a vector quantity)
A x B = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)
The scalar triple product (a scalar quantity)
A • (B x C)
The vector triple product (a vector quantity)
A x (B x C)
Task
Given the three vectors:
a = ( 3, 4, 5)
b = ( 4, 3, 5)
c = (-5, -12, -13)
Create a named function/subroutine/method to compute the dot product of two vectors.
Create a function to compute the cross product of two vectors.
Optionally create a function to compute the scalar triple product of three vectors.
Optionally create a function to compute the vector triple product of three vectors.
Compute and display: a • b
Compute and display: a x b
Compute and display: a • (b x c), the scalar triple product.
Compute and display: a x (b x c), the vector triple product.
References
A starting page on Wolfram MathWorld is Vector Multiplication .
Wikipedia dot product.
Wikipedia cross product.
Wikipedia triple product.
Related tasks
Dot product
Quaternion type
| #Go | Go | package main
import "fmt"
type vector struct {
x, y, z float64
}
var (
a = vector{3, 4, 5}
b = vector{4, 3, 5}
c = vector{-5, -12, -13}
)
func dot(a, b vector) float64 {
return a.x*b.x + a.y*b.y + a.z*b.z
}
func cross(a, b vector) vector {
return vector{a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x}
}
func s3(a, b, c vector) float64 {
return dot(a, cross(b, c))
}
func v3(a, b, c vector) vector {
return cross(a, cross(b, c))
}
func main() {
fmt.Println(dot(a, b))
fmt.Println(cross(a, b))
fmt.Println(s3(a, b, c))
fmt.Println(v3(a, b, c))
} |
http://rosettacode.org/wiki/Validate_International_Securities_Identification_Number | Validate International Securities Identification Number | An International Securities Identification Number (ISIN) is a unique international identifier for a financial security such as a stock or bond.
Task
Write a function or program that takes a string as input, and checks whether it is a valid ISIN.
It is only valid if it has the correct format, and the embedded checksum is correct.
Demonstrate that your code passes the test-cases listed below.
Details
The format of an ISIN is as follows:
┌───────────── a 2-character ISO country code (A-Z)
│ ┌─────────── a 9-character security code (A-Z, 0-9)
│ │ ┌── a checksum digit (0-9)
AU0000XVGZA3
For this task, you may assume that any 2-character alphabetic sequence is a valid country code.
The checksum can be validated as follows:
Replace letters with digits, by converting each character from base 36 to base 10, e.g. AU0000XVGZA3 →1030000033311635103.
Perform the Luhn test on this base-10 number.
There is a separate task for this test: Luhn test of credit card numbers.
You don't have to replicate the implementation of this test here ─── you can just call the existing function from that task. (Add a comment stating if you did this.)
Test cases
ISIN
Validity
Comment
US0378331005
valid
US0373831005
not valid
The transposition typo is caught by the checksum constraint.
U50378331005
not valid
The substitution typo is caught by the format constraint.
US03378331005
not valid
The duplication typo is caught by the format constraint.
AU0000XVGZA3
valid
AU0000VXGZA3
valid
Unfortunately, not all transposition typos are caught by the checksum constraint.
FR0000988040
valid
(The comments are just informational. Your function should simply return a Boolean result. See #Raku for a reference solution.)
Related task:
Luhn test of credit card numbers
Also see
Interactive online ISIN validator
Wikipedia article: International Securities Identification Number
| #Ring | Ring |
# Project : Validate International Securities Identification Number
decimals(0)
test = ["US0378331005",
"US0373831005",
"U50378331005",
"US03378331005",
"AU0000XVGZA3",
"AU0000VXGZA3",
"FR0000988040"]
for n = 1 to len(test)
testold = test[n]
ascii1 = ascii(left(test[n],1))
ascii2 = ascii(substr(test[n],2,1))
if len(test[n]) != 12 or (ascii1 < 65 or ascii1 > 90) or (ascii2 < 65 or ascii2 > 90)
see test[n] + " -> Invalid" + nl
loop
ok
for m = 1 to len(test[n])
if ascii(test[n][m]) > 64 and ascii(test[n][m]) < 91
asc = ascii(test[n][m]) - 55
test[n] = left(test[n],m-1) + string(asc) + right(test[n],len(test[n])-m)
ok
next
see testold + " -> " + cardtest(test[n]) + nl
next
func cardtest(numstr)
revstring = revstr(numstr)
s1 = revodd(revstring)
s2 = reveven(revstring)
s3 =right(string(s1+s2), 1)
if s3 = "0"
return "Valid"
else
return "Invalid"
ok
func revstr(str)
strnew = ""
for nr = len(str) to 1 step -1
strnew = strnew + str[nr]
next
return strnew
func revodd(str)
strnew = ""
for nr = 1 to len(str) step 2
strnew = strnew + str[nr]
next
sumodd = 0
for p = 1 to len(strnew)
sumodd = sumodd + number(strnew[p])
next
return sumodd
func reveven(str)
strnew = ""
for nr = 2 to len(str) step 2
strnew = strnew + str[nr]
next
lsteven = []
for p = 1 to len(strnew)
add(lsteven, string(2*number(strnew[p])))
next
arreven = list(len(lsteven))
for q = 1 to len(lsteven)
sum = 0
for w = 1 to len(lsteven[q])
sum = sum + lsteven[q][w]
next
arreven[q] = sum
next
sumarr = 0
for x = 1 to len(arreven)
sumarr = sumarr + arreven[x]
next
return sumarr
|
http://rosettacode.org/wiki/Validate_International_Securities_Identification_Number | Validate International Securities Identification Number | An International Securities Identification Number (ISIN) is a unique international identifier for a financial security such as a stock or bond.
Task
Write a function or program that takes a string as input, and checks whether it is a valid ISIN.
It is only valid if it has the correct format, and the embedded checksum is correct.
Demonstrate that your code passes the test-cases listed below.
Details
The format of an ISIN is as follows:
┌───────────── a 2-character ISO country code (A-Z)
│ ┌─────────── a 9-character security code (A-Z, 0-9)
│ │ ┌── a checksum digit (0-9)
AU0000XVGZA3
For this task, you may assume that any 2-character alphabetic sequence is a valid country code.
The checksum can be validated as follows:
Replace letters with digits, by converting each character from base 36 to base 10, e.g. AU0000XVGZA3 →1030000033311635103.
Perform the Luhn test on this base-10 number.
There is a separate task for this test: Luhn test of credit card numbers.
You don't have to replicate the implementation of this test here ─── you can just call the existing function from that task. (Add a comment stating if you did this.)
Test cases
ISIN
Validity
Comment
US0378331005
valid
US0373831005
not valid
The transposition typo is caught by the checksum constraint.
U50378331005
not valid
The substitution typo is caught by the format constraint.
US03378331005
not valid
The duplication typo is caught by the format constraint.
AU0000XVGZA3
valid
AU0000VXGZA3
valid
Unfortunately, not all transposition typos are caught by the checksum constraint.
FR0000988040
valid
(The comments are just informational. Your function should simply return a Boolean result. See #Raku for a reference solution.)
Related task:
Luhn test of credit card numbers
Also see
Interactive online ISIN validator
Wikipedia article: International Securities Identification Number
| #Ruby | Ruby | RE = /\A[A-Z]{2}[A-Z0-9]{9}[0-9]{1}\z/
def valid_isin?(str)
return false unless str =~ RE
luhn(str.chars.map{|c| c.to_i(36)}.join)
end
p %w(US0378331005
US0373831005
U50378331005
US03378331005
AU0000XVGZA3
AU0000VXGZA3
FR0000988040).map{|tc| valid_isin?(tc) }
# => [true, false, false, false, true, true, true] |
http://rosettacode.org/wiki/Van_der_Corput_sequence | Van der Corput sequence | When counting integers in binary, if you put a (binary) point to the righEasyLangt of the count then the column immediately to the left denotes a digit with a multiplier of
2
0
{\displaystyle 2^{0}}
; the digit in the next column to the left has a multiplier of
2
1
{\displaystyle 2^{1}}
; and so on.
So in the following table:
0.
1.
10.
11.
...
the binary number "10" is
1
×
2
1
+
0
×
2
0
{\displaystyle 1\times 2^{1}+0\times 2^{0}}
.
You can also have binary digits to the right of the “point”, just as in the decimal number system. In that case, the digit in the place immediately to the right of the point has a weight of
2
−
1
{\displaystyle 2^{-1}}
, or
1
/
2
{\displaystyle 1/2}
.
The weight for the second column to the right of the point is
2
−
2
{\displaystyle 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
. And so on.
If you take the integer binary count of the first table, and reflect the digits about the binary point, you end up with the van der Corput sequence of numbers in base 2.
.0
.1
.01
.11
...
The third member of the sequence, binary 0.01, is therefore
0
×
2
−
1
+
1
×
2
−
2
{\displaystyle 0\times 2^{-1}+1\times 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
.
Distribution of 2500 points each: Van der Corput (top) vs pseudorandom
0
≤
x
<
1
{\displaystyle 0\leq x<1}
Monte Carlo simulations
This sequence is also a superset of the numbers representable by the "fraction" field of an old IEEE floating point standard. In that standard, the "fraction" field represented the fractional part of a binary number beginning with "1." e.g. 1.101001101.
Hint
A hint at a way to generate members of the sequence is to modify a routine used to change the base of an integer:
>>> def base10change(n, base):
digits = []
while n:
n,remainder = divmod(n, base)
digits.insert(0, remainder)
return digits
>>> base10change(11, 2)
[1, 0, 1, 1]
the above showing that 11 in decimal is
1
×
2
3
+
0
×
2
2
+
1
×
2
1
+
1
×
2
0
{\displaystyle 1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1\times 2^{0}}
.
Reflected this would become .1101 or
1
×
2
−
1
+
1
×
2
−
2
+
0
×
2
−
3
+
1
×
2
−
4
{\displaystyle 1\times 2^{-1}+1\times 2^{-2}+0\times 2^{-3}+1\times 2^{-4}}
Task description
Create a function/method/routine that given n, generates the n'th term of the van der Corput sequence in base 2.
Use the function to compute and display the first ten members of the sequence. (The first member of the sequence is for n=0).
As a stretch goal/extra credit, compute and show members of the sequence for bases other than 2.
See also
The Basic Low Discrepancy Sequences
Non-decimal radices/Convert
Van der Corput sequence
| #PicoLisp | PicoLisp | (scl 6)
(de vdc (N B)
(default B 2)
(let (R 0 A 1.0)
(until (=0 N)
(inc 'R (* (setq A (/ A B)) (% N B)))
(setq N (/ N B)) )
R ) )
(for B (2 3 4)
(prinl "Base: " B)
(for N (range 0 9)
(prinl N ": " (round (vdc N B) 4)) ) ) |
http://rosettacode.org/wiki/Van_der_Corput_sequence | Van der Corput sequence | When counting integers in binary, if you put a (binary) point to the righEasyLangt of the count then the column immediately to the left denotes a digit with a multiplier of
2
0
{\displaystyle 2^{0}}
; the digit in the next column to the left has a multiplier of
2
1
{\displaystyle 2^{1}}
; and so on.
So in the following table:
0.
1.
10.
11.
...
the binary number "10" is
1
×
2
1
+
0
×
2
0
{\displaystyle 1\times 2^{1}+0\times 2^{0}}
.
You can also have binary digits to the right of the “point”, just as in the decimal number system. In that case, the digit in the place immediately to the right of the point has a weight of
2
−
1
{\displaystyle 2^{-1}}
, or
1
/
2
{\displaystyle 1/2}
.
The weight for the second column to the right of the point is
2
−
2
{\displaystyle 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
. And so on.
If you take the integer binary count of the first table, and reflect the digits about the binary point, you end up with the van der Corput sequence of numbers in base 2.
.0
.1
.01
.11
...
The third member of the sequence, binary 0.01, is therefore
0
×
2
−
1
+
1
×
2
−
2
{\displaystyle 0\times 2^{-1}+1\times 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
.
Distribution of 2500 points each: Van der Corput (top) vs pseudorandom
0
≤
x
<
1
{\displaystyle 0\leq x<1}
Monte Carlo simulations
This sequence is also a superset of the numbers representable by the "fraction" field of an old IEEE floating point standard. In that standard, the "fraction" field represented the fractional part of a binary number beginning with "1." e.g. 1.101001101.
Hint
A hint at a way to generate members of the sequence is to modify a routine used to change the base of an integer:
>>> def base10change(n, base):
digits = []
while n:
n,remainder = divmod(n, base)
digits.insert(0, remainder)
return digits
>>> base10change(11, 2)
[1, 0, 1, 1]
the above showing that 11 in decimal is
1
×
2
3
+
0
×
2
2
+
1
×
2
1
+
1
×
2
0
{\displaystyle 1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1\times 2^{0}}
.
Reflected this would become .1101 or
1
×
2
−
1
+
1
×
2
−
2
+
0
×
2
−
3
+
1
×
2
−
4
{\displaystyle 1\times 2^{-1}+1\times 2^{-2}+0\times 2^{-3}+1\times 2^{-4}}
Task description
Create a function/method/routine that given n, generates the n'th term of the van der Corput sequence in base 2.
Use the function to compute and display the first ten members of the sequence. (The first member of the sequence is for n=0).
As a stretch goal/extra credit, compute and show members of the sequence for bases other than 2.
See also
The Basic Low Discrepancy Sequences
Non-decimal radices/Convert
Van der Corput sequence
| #PL.2FI | PL/I |
vdcb: procedure (an) returns (bit (31)); /* 6 July 2012 */
declare an fixed binary (31);
declare (n, i) fixed binary (31);
declare v bit (31) varying;
n = an; v = ''b;
do i = 1 by 1 while (n > 0);
if iand(n, 1) = 1 then v = v || '1'b; else v = v || '0'b;
n = isrl(n, 1);
end;
return (v);
end vdcb;
declare i fixed binary (31);
do i = 0 to 10;
put skip list ('0.' || vdcb(i));
end;
|
http://rosettacode.org/wiki/URL_decoding | URL decoding | This task (the reverse of URL encoding and distinct from URL parser) is to provide a function
or mechanism to convert an URL-encoded string into its original unencoded form.
Test cases
The encoded string "http%3A%2F%2Ffoo%20bar%2F" should be reverted to the unencoded form "http://foo bar/".
The encoded string "google.com/search?q=%60Abdu%27l-Bah%C3%A1" should revert to the unencoded form "google.com/search?q=`Abdu'l-Bahá".
| #Kotlin | Kotlin | // version 1.1.2
import java.net.URLDecoder
fun main(args: Array<String>) {
val encoded = arrayOf("http%3A%2F%2Ffoo%20bar%2F", "google.com/search?q=%60Abdu%27l-Bah%C3%A1")
for (e in encoded) println(URLDecoder.decode(e, "UTF-8"))
} |
http://rosettacode.org/wiki/URL_decoding | URL decoding | This task (the reverse of URL encoding and distinct from URL parser) is to provide a function
or mechanism to convert an URL-encoded string into its original unencoded form.
Test cases
The encoded string "http%3A%2F%2Ffoo%20bar%2F" should be reverted to the unencoded form "http://foo bar/".
The encoded string "google.com/search?q=%60Abdu%27l-Bah%C3%A1" should revert to the unencoded form "google.com/search?q=`Abdu'l-Bahá".
| #Ksh | Ksh |
url_decode()
{
decode="${*//+/ }"
eval print -r -- "\$'${decode//'%'@(??)/'\'x\1"'\$'"}'" 2>/dev/null
}
url_decode "http%3A%2F%2Ffoo%20bar%2F"
url_decode "google.com/search?q=%60Abdu%27l-Bah%C3%A1"
|
http://rosettacode.org/wiki/UPC | UPC | Goal
Convert UPC bar codes to decimal.
Specifically:
The UPC standard is actually a collection of standards -- physical standards, data format standards, product reference standards...
Here, in this task, we will focus on some of the data format standards, with an imaginary physical+electrical implementation which converts physical UPC bar codes to ASCII (with spaces and # characters representing the presence or absence of ink).
Sample input
Below, we have a representation of ten different UPC-A bar codes read by our imaginary bar code reader:
# # # ## # ## # ## ### ## ### ## #### # # # ## ## # # ## ## ### # ## ## ### # # #
# # # ## ## # #### # # ## # ## # ## # # # ### # ### ## ## ### # # ### ### # # #
# # # # # ### # # # # # # # # # # ## # ## # ## # ## # # #### ### ## # #
# # ## ## ## ## # # # # ### # ## ## # # # ## ## # ### ## ## # # #### ## # # #
# # ### ## # ## ## ### ## # ## # # ## # # ### # ## ## # # ### # ## ## # # #
# # # # ## ## # # # # ## ## # # # # # #### # ## # #### #### # # ## # #### # #
# # # ## ## # # ## ## # ### ## ## # # # # # # # # ### # # ### # # # # #
# # # # ## ## # # ## ## ### # # # # # ### ## ## ### ## ### ### ## # ## ### ## # #
# # ### ## ## # # #### # ## # #### # #### # # # # # ### # # ### # # # ### # # #
# # # #### ## # #### # # ## ## ### #### # # # # ### # ### ### # # ### # # # ### # #
Some of these were entered upside down, and one entry has a timing error.
Task
Implement code to find the corresponding decimal representation of each, rejecting the error.
Extra credit for handling the rows entered upside down (the other option is to reject them).
Notes
Each digit is represented by 7 bits:
0: 0 0 0 1 1 0 1
1: 0 0 1 1 0 0 1
2: 0 0 1 0 0 1 1
3: 0 1 1 1 1 0 1
4: 0 1 0 0 0 1 1
5: 0 1 1 0 0 0 1
6: 0 1 0 1 1 1 1
7: 0 1 1 1 0 1 1
8: 0 1 1 0 1 1 1
9: 0 0 0 1 0 1 1
On the left hand side of the bar code a space represents a 0 and a # represents a 1.
On the right hand side of the bar code, a # represents a 0 and a space represents a 1
Alternatively (for the above): spaces always represent zeros and # characters always represent ones, but the representation is logically negated -- 1s and 0s are flipped -- on the right hand side of the bar code.
The UPC-A bar code structure
It begins with at least 9 spaces (which our imaginary bar code reader unfortunately doesn't always reproduce properly),
then has a # # sequence marking the start of the sequence,
then has the six "left hand" digits,
then has a # # sequence in the middle,
then has the six "right hand digits",
then has another # # (end sequence), and finally,
then ends with nine trailing spaces (which might be eaten by wiki edits, and in any event, were not quite captured correctly by our imaginary bar code reader).
Finally, the last digit is a checksum digit which may be used to help detect errors.
Verification
Multiply each digit in the represented 12 digit sequence by the corresponding number in (3,1,3,1,3,1,3,1,3,1,3,1) and add the products.
The sum (mod 10) must be 0 (must have a zero as its last digit) if the UPC number has been read correctly.
| #Julia | Julia | const pat1 = (" ## #", " ## #", " # ##", " #### #", " # ##",
" ## #", " # ####", " ### ##", " ## ###", " # ##")
const pat2 = [replace(x, r"[# ]" => (x) -> x == " " ? "#" : " ") for x in pat1]
const ptod1 = Dict((b => a - 1) for (a, b) in enumerate(pat1))
const ptod2 = Dict((b => a - 1) for (a, b) in enumerate(pat2))
const reg = Regex("^\\s*# #\\s*((?:" * join(pat1, "|") *
"){6})\\s*# #\\s*((?:" * join(pat2, "|") * "){6})\\s*# #\\s*")
const lines = [
" # # # ## # ## # ## ### ## ### ## #### # # # ## ## # # ## ## ### # ## ## ### # # # ",
" # # # ## ## # #### # # ## # ## # ## # # # ### # ### ## ## ### # # ### ### # # # ",
" # # # # # ### # # # # # # # # # # ## # ## # ## # ## # # #### ### ## # # ",
" # # ## ## ## ## # # # # ### # ## ## # # # ## ## # ### ## ## # # #### ## # # # ",
" # # ### ## # ## ## ### ## # ## # # ## # # ### # ## ## # # ### # ## ## # # # ",
" # # # # ## ## # # # # ## ## # # # # # #### # ## # #### #### # # ## # #### # # ",
" # # # ## ## # # ## ## # ### ## ## # # # # # # # # ### # # ### # # # # # ",
" # # # # ## ## # # ## ## ### # # # # # ### ## ## ### ## ### ### ## # ## ### ## # # ",
" # # ### ## ## # # #### # ## # #### # #### # # # # # ### # # ### # # # ### # # # ",
" # # # #### ## # #### # # ## ## ### #### # # # # ### # ### ### # # ### # # # ### # # ",
]
function decodeUPC(line)
if (m = match(reg, line)) != nothing
mats, dig = filter(!isempty, m.captures), Int[]
for mat in mats
append!(dig, [ptod1[x.match] for x in eachmatch(r"(.......)", mat)
if haskey(ptod1, x.match)])
append!(dig, [ptod2[x.match] for x in eachmatch(r"(.......)", mat)
if haskey(ptod2, x.match)])
end
dsum = sum([(isodd(i) ? 3 : 1) * n for (i, n) in enumerate(dig)])
(dsum % 10 == 0) && return prod(string.(dig))
end
return ""
end
for line in lines
println((s = decodeUPC(line)) != "" ? s :
(s = decodeUPC(reverse(line))) != "" ? s : "Invalid")
end
|
http://rosettacode.org/wiki/Update_a_configuration_file | Update a configuration file | We have a configuration file as follows:
# This is a configuration file in standard configuration file format
#
# Lines begininning with a hash or a semicolon are ignored by the application
# program. Blank lines are also ignored by the application program.
# The first word on each non comment line is the configuration option.
# Remaining words or numbers on the line are configuration parameter
# data fields.
# Note that configuration option names are not case sensitive. However,
# configuration parameter data is case sensitive and the lettercase must
# be preserved.
# This is a favourite fruit
FAVOURITEFRUIT banana
# This is a boolean that should be set
NEEDSPEELING
# This boolean is commented out
; SEEDSREMOVED
# How many bananas we have
NUMBEROFBANANAS 48
The task is to manipulate the configuration file as follows:
Disable the needspeeling option (using a semicolon prefix)
Enable the seedsremoved option by removing the semicolon and any leading whitespace
Change the numberofbananas parameter to 1024
Enable (or create if it does not exist in the file) a parameter for numberofstrawberries with a value of 62000
Note that configuration option names are not case sensitive. This means that changes should be effected, regardless of the case.
Options should always be disabled by prefixing them with a semicolon.
Lines beginning with hash symbols should not be manipulated and left unchanged in the revised file.
If a configuration option does not exist within the file (in either enabled or disabled form), it should be added during this update. Duplicate configuration option names in the file should be removed, leaving just the first entry.
For the purpose of this task, the revised file should contain appropriate entries, whether enabled or not for needspeeling,seedsremoved,numberofbananas and numberofstrawberries.)
The update should rewrite configuration option names in capital letters. However lines beginning with hashes and any parameter data must not be altered (eg the banana for favourite fruit must not become capitalized). The update process should also replace double semicolon prefixes with just a single semicolon (unless it is uncommenting the option, in which case it should remove all leading semicolons).
Any lines beginning with a semicolon or groups of semicolons, but no following option should be removed, as should any leading or trailing whitespace on the lines. Whitespace between the option and parameters should consist only of a single
space, and any non-ASCII extended characters, tabs characters, or control codes
(other than end of line markers), should also be removed.
Related tasks
Read a configuration file
| #PHP | PHP | <?php
$conf = file_get_contents('update-conf-file.txt');
// Disable the needspeeling option (using a semicolon prefix)
$conf = preg_replace('/^(needspeeling)(|\s*\S*)$/mi', '; $1', $conf);
// Enable the seedsremoved option by removing the semicolon and any leading whitespace
$conf = preg_replace('/^;?\s*(seedsremoved)/mi', '$1', $conf);
// Change the numberofbananas parameter to 1024
$conf = preg_replace('/^(numberofbananas)(|\s*\S*)$/mi', '$1 1024', $conf);
// Enable (or create if it does not exist in the file) a parameter for numberofstrawberries with a value of 62000
if (preg_match('/^;?\s*(numberofstrawberries)/mi', $conf, $matches)) {
$conf = preg_replace('/^(numberofstrawberries)(|\s*\S*)$/mi', '$1 62000', $conf);
} else {
$conf .= 'NUMBEROFSTRAWBERRIES 62000' . PHP_EOL;
}
echo $conf; |
http://rosettacode.org/wiki/User_input/Text | User input/Text | User input/Text is part of Short Circuit's Console Program Basics selection.
Task
Input a string and the integer 75000 from the text console.
See also: User input/Graphical
| #Fortran | Fortran | character(20) :: s
integer :: i
print*, "Enter a string (max 20 characters)"
read*, s
print*, "Enter the integer 75000"
read*, i |
http://rosettacode.org/wiki/User_input/Text | User input/Text | User input/Text is part of Short Circuit's Console Program Basics selection.
Task
Input a string and the integer 75000 from the text console.
See also: User input/Graphical
| #FreeBASIC | FreeBASIC | ' FB 1.05.0 Win64
Dim s As String
Dim i AS Integer
Input "Please enter a string : "; s
Do
Input "Please enter 75000 : "; i
Loop Until i = 75000
Print
Print s, i
Sleep |
http://rosettacode.org/wiki/User_input/Graphical | User input/Graphical |
In this task, the goal is to input a string and the integer 75000, from graphical user interface.
See also: User input/Text
| #M2000_Interpreter | M2000 Interpreter |
Module CheckIt {
Def aName$="No Name", Num$
\\ we open a new stack, and hold old
Stack New {
If Ask$("Give your name:",,,,,aName$)="OK" Then Read aName$
If Ask$("Give a Number: (75000)",,,,,"")="OK" Then Read Num$
if Num$<>"75000" or aName$="" Then loop
}
\ now old stack came back
Print Num$, aName$
Print Letter$ \\ Letter$ pop a string from stack
}
CheckIt "Thank You"
|
http://rosettacode.org/wiki/User_input/Graphical | User input/Graphical |
In this task, the goal is to input a string and the integer 75000, from graphical user interface.
See also: User input/Text
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | str = InputString["Input a string"]; nb =
InputString["Input a number"]; Print[str, " " , ToString@nb] |
http://rosettacode.org/wiki/UTF-8_encode_and_decode | UTF-8 encode and decode | As described in UTF-8 and in Wikipedia, UTF-8 is a popular encoding of (multi-byte) Unicode code-points into eight-bit octets.
The goal of this task is to write a encoder that takes a unicode code-point (an integer representing a unicode character) and returns a sequence of 1-4 bytes representing that character in the UTF-8 encoding.
Then you have to write the corresponding decoder that takes a sequence of 1-4 UTF-8 encoded bytes and return the corresponding unicode character.
Demonstrate the functionality of your encoder and decoder on the following five characters:
Character Name Unicode UTF-8 encoding (hex)
---------------------------------------------------------------------------------
A LATIN CAPITAL LETTER A U+0041 41
ö LATIN SMALL LETTER O WITH DIAERESIS U+00F6 C3 B6
Ж CYRILLIC CAPITAL LETTER ZHE U+0416 D0 96
€ EURO SIGN U+20AC E2 82 AC
𝄞 MUSICAL SYMBOL G CLEF U+1D11E F0 9D 84 9E
Provided below is a reference implementation in Common Lisp.
| #Nim | Nim | import unicode, sequtils, strformat, strutils
const UChars = ["\u0041", "\u00F6", "\u0416", "\u20AC", "\u{1D11E}"]
proc toSeqByte(r: Rune): seq[byte] =
let s = r.toUTF8
result = @(s.toOpenArrayByte(0, s.high))
proc toRune(s: seq[byte]): Rune =
s.mapIt(chr(it)).join().toRunes[0]
echo "Character Unicode UTF-8 encoding (hex)"
for uchar in UChars:
# Convert the UTF-8 string to a rune (codepoint).
var r = uchar.toRunes[0]
# Convert the rune to a sequence of bytes.
let s = r.toSeqByte
# Convert back the sequence of bytes to a rune.
r = s.toRune
# Display.
echo &"""{uchar:>5} U+{r.int.toHex(5)} {s.map(toHex).join(" ")}""" |
http://rosettacode.org/wiki/UTF-8_encode_and_decode | UTF-8 encode and decode | As described in UTF-8 and in Wikipedia, UTF-8 is a popular encoding of (multi-byte) Unicode code-points into eight-bit octets.
The goal of this task is to write a encoder that takes a unicode code-point (an integer representing a unicode character) and returns a sequence of 1-4 bytes representing that character in the UTF-8 encoding.
Then you have to write the corresponding decoder that takes a sequence of 1-4 UTF-8 encoded bytes and return the corresponding unicode character.
Demonstrate the functionality of your encoder and decoder on the following five characters:
Character Name Unicode UTF-8 encoding (hex)
---------------------------------------------------------------------------------
A LATIN CAPITAL LETTER A U+0041 41
ö LATIN SMALL LETTER O WITH DIAERESIS U+00F6 C3 B6
Ж CYRILLIC CAPITAL LETTER ZHE U+0416 D0 96
€ EURO SIGN U+20AC E2 82 AC
𝄞 MUSICAL SYMBOL G CLEF U+1D11E F0 9D 84 9E
Provided below is a reference implementation in Common Lisp.
| #Perl | Perl | #!/usr/bin/perl
use strict;
use warnings;
use Unicode::UCD 'charinfo'; # getting the unicode name of the character
use utf8; # using non-ascii-characters in source code
binmode STDOUT, ":encoding(UTF-8)"; # printing non-ascii-characters to screen
my @chars = map {ord} qw/A ö Ж € 𝄞/; # @chars contains the unicode points
my $print_format = '%5s %-35s';
printf "$print_format %8s %s\n" , 'char', 'name', 'unicode', 'utf-8 encoding';
map{
my $name = charinfo($_)->{'name'}; # get unicode name
printf "$print_format %06x " , chr, lc $name, $_;
my $utf8 = chr; # single char (using implicit $_)
utf8::encode($utf8); # inplace encoding into utf8 parts
map{ # for each utf8 char print ord
printf " %x", ord;
} split //, $utf8;
print "\n";
} @chars; |
http://rosettacode.org/wiki/URL_parser | URL parser | URLs are strings with a simple syntax:
scheme://[username:password@]domain[:port]/path?query_string#fragment_id
Task
Parse a well-formed URL to retrieve the relevant information: scheme, domain, path, ...
Note: this task has nothing to do with URL encoding or URL decoding.
According to the standards, the characters:
! * ' ( ) ; : @ & = + $ , / ? % # [ ]
only need to be percent-encoded (%) in case of possible confusion.
Also note that the path, query and fragment are case sensitive, even if the scheme and domain are not.
The way the returned information is provided (set of variables, array, structured, record, object,...)
is language-dependent and left to the programmer, but the code should be clear enough to reuse.
Extra credit is given for clear error diagnostics.
Here is the official standard: https://tools.ietf.org/html/rfc3986,
and here is a simpler BNF: http://www.w3.org/Addressing/URL/5_URI_BNF.html.
Test cases
According to T. Berners-Lee
foo://example.com:8042/over/there?name=ferret#nose should parse into:
scheme = foo
domain = example.com
port = :8042
path = over/there
query = name=ferret
fragment = nose
urn:example:animal:ferret:nose should parse into:
scheme = urn
path = example:animal:ferret:nose
other URLs that must be parsed include:
jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true
ftp://ftp.is.co.za/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc2396.txt#header1
ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two
mailto:[email protected]
news:comp.infosystems.www.servers.unix
tel:+1-816-555-1212
telnet://192.0.2.16:80/
urn:oasis:names:specification:docbook:dtd:xml:4.1.2
| #Scala | Scala | import java.net.URI
object WebAddressParser extends App {
parseAddress("foo://example.com:8042/over/there?name=ferret#nose")
parseAddress("ftp://ftp.is.co.za/rfc/rfc1808.txt")
parseAddress("http://example.com/?a=1&b=2+2&c=3&c=4&d=%65%6e%63%6F%64%65%64")
parseAddress("http://www.ietf.org/rfc/rfc2396.txt#header1")
parseAddress("https://bob:[email protected]/place")
parseAddress("jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true")
parseAddress("ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two")
parseAddress("ldap://[2001:db8::7]/c=GB?objectClass?one")
parseAddress("mailto:[email protected]")
parseAddress("news:comp.infosystems.www.servers.unix")
parseAddress("ssh://[email protected]")
parseAddress("tel:+1-816-555-1212")
parseAddress("telnet://192.0.2.16:80/")
parseAddress("urn:example:animal:ferret:nose")
parseAddress("urn:oasis:names:specification:docbook:dtd:xml:4.1.2")
parseAddress("This is not a URI!")
private def parseAddress(a: String): Unit = {
print(f"Parsing $a%-72s")
try {
val u = new URI(a)
print("\u2714\tscheme = " + u.getScheme)
print("\tdomain = " + u.getHost)
print("\tport = " + (if (-1 == u.getPort) "default" else u.getPort))
print("\tpath = " + (if (u.getPath == null) u.getSchemeSpecificPart else u.getPath))
print("\tquery = " + u.getQuery)
println("\tfragment = " + u.getFragment)
} catch { case ex: Throwable => println('\u2718') }
}
} |
http://rosettacode.org/wiki/URL_encoding | URL encoding | Task
Provide a function or mechanism to convert a provided string into URL encoding representation.
In URL encoding, special characters, control characters and extended characters
are converted into a percent symbol followed by a two digit hexadecimal code,
So a space character encodes into %20 within the string.
For the purposes of this task, every character except 0-9, A-Z and a-z requires conversion, so the following characters all require conversion by default:
ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F (127 decimal).
ASCII symbols (Character ranges 32-47 decimal (20-2F hex))
ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))
ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))
ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))
Extended characters with character codes of 128 decimal (80 hex) and above.
Example
The string "http://foo bar/" would be encoded as "http%3A%2F%2Ffoo%20bar%2F".
Variations
Lowercase escapes are legal, as in "http%3a%2f%2ffoo%20bar%2f".
Some standards give different rules: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, section 2.3, says that "-._~" should not be encoded. HTML 5, section 4.10.22.5 URL-encoded form data, says to preserve "-._*", and to encode space " " to "+". The options below provide for utilization of an exception string, enabling preservation (non encoding) of particular characters to meet specific standards.
Options
It is permissible to use an exception string (containing a set of symbols
that do not need to be converted).
However, this is an optional feature and is not a requirement of this task.
Related tasks
URL decoding
URL parser
| #Lua | Lua | function encodeChar(chr)
return string.format("%%%X",string.byte(chr))
end
function encodeString(str)
local output, t = string.gsub(str,"[^%w]",encodeChar)
return output
end
-- will print "http%3A%2F%2Ffoo%20bar%2F"
print(encodeString("http://foo bar/")) |
http://rosettacode.org/wiki/URL_encoding | URL encoding | Task
Provide a function or mechanism to convert a provided string into URL encoding representation.
In URL encoding, special characters, control characters and extended characters
are converted into a percent symbol followed by a two digit hexadecimal code,
So a space character encodes into %20 within the string.
For the purposes of this task, every character except 0-9, A-Z and a-z requires conversion, so the following characters all require conversion by default:
ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F (127 decimal).
ASCII symbols (Character ranges 32-47 decimal (20-2F hex))
ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))
ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))
ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))
Extended characters with character codes of 128 decimal (80 hex) and above.
Example
The string "http://foo bar/" would be encoded as "http%3A%2F%2Ffoo%20bar%2F".
Variations
Lowercase escapes are legal, as in "http%3a%2f%2ffoo%20bar%2f".
Some standards give different rules: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, section 2.3, says that "-._~" should not be encoded. HTML 5, section 4.10.22.5 URL-encoded form data, says to preserve "-._*", and to encode space " " to "+". The options below provide for utilization of an exception string, enabling preservation (non encoding) of particular characters to meet specific standards.
Options
It is permissible to use an exception string (containing a set of symbols
that do not need to be converted).
However, this is an optional feature and is not a requirement of this task.
Related tasks
URL decoding
URL parser
| #M2000_Interpreter | M2000 Interpreter |
Module Checkit {
Function decodeUrl$(a$) {
DIM a$()
a$()=Piece$(a$, "%")
if len(a$())=1 then =str$(a$):exit
k=each(a$(),2)
acc$=str$(a$(0))
While k {
acc$+=str$(Chr$(Eval("0x"+left$(a$(k^),2)))+Mid$(a$(k^),3))
}
=string$(acc$ as utf8dec)
}
Group Parse$ {
all$, c=1
tc$=""
Enum UrlType {None=0, RFC3986, HTML5}
variation
TypeData=("","-._~","-._*")
Function Next {
.tc$<=mid$(.all$,.c,1)
.c++
=.tc$<>""
}
Value {
=.tc$
}
Function DecodeOne$ {
if .tc$="" then exit
if .tc$ ~"[A-Za-z0-9]" then =.tc$ : exit
If .tc$=" " Then =if$(.variation=.HTML5->"+","%20") :exit
if instr(.TypeData#val$(.variation),.tc$)>0 then =.tc$ :exit
="%"+hex$(asc(.tc$), 1)
}
Function Decode$ {
acc$=""
.c<=1
While .Next() {
acc$+=.DecodeOne$()
}
=acc$
}
Set () {
\\ using optional argument
var=.None
Read a$, ? var
a$=chr$(string$(a$ as utf8enc))
.variation<=var
.all$<=a$
.c<=1
}
}
\\ MAIN
Parse$()="http://foo bar/"
Print Quote$(Parse.Decode$())
Parse.variation=Parse.HTML5
Print Quote$(Parse.Decode$())
Parse.variation=Parse.RFC3986
Print Quote$(Parse.Decode$())
Parse$(Parse.RFC3986) ={mailto:"Irma User" <[email protected]>}
Print Quote$(Parse.Decode$())
Parse$(Parse.RFC3986) ={http://foo.bar.com/~user-name/_subdir/*~.html}
m=each(Parse.UrlType)
while m {
Parse.variation=eval(m)
Print Quote$(Parse.Decode$())
Print decodeUrl$(Parse.Decode$())
}
}
CheckIt
|
http://rosettacode.org/wiki/Variables | Variables | Task
Demonstrate a language's methods of:
variable declaration
initialization
assignment
datatypes
scope
referencing, and
other variable related facilities
| #J | J | val=. 0 |
http://rosettacode.org/wiki/Van_Eck_sequence | Van Eck sequence | The sequence is generated by following this pseudo-code:
A: The first term is zero.
Repeatedly apply:
If the last term is *new* to the sequence so far then:
B: The next term is zero.
Otherwise:
C: The next term is how far back this last term occured previously.
Example
Using A:
0
Using B:
0 0
Using C:
0 0 1
Using B:
0 0 1 0
Using C: (zero last occurred two steps back - before the one)
0 0 1 0 2
Using B:
0 0 1 0 2 0
Using C: (two last occurred two steps back - before the zero)
0 0 1 0 2 0 2 2
Using C: (two last occurred one step back)
0 0 1 0 2 0 2 2 1
Using C: (one last appeared six steps back)
0 0 1 0 2 0 2 2 1 6
...
Task
Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers.
Use it to display here, on this page:
The first ten terms of the sequence.
Terms 991 - to - 1000 of the sequence.
References
Don't Know (the Van Eck Sequence) - Numberphile video.
Wikipedia Article: Van Eck's Sequence.
OEIS sequence: A181391.
| #Quackery | Quackery | [ ' [ 0 ]
swap 1 - times
[ dup behead swap find
1+ 2dup swap found *
swap join ]
reverse ] is van-eck ( n --> [ )
10 van-eck echo cr
1000 van-eck -10 split echo drop |
http://rosettacode.org/wiki/Van_Eck_sequence | Van Eck sequence | The sequence is generated by following this pseudo-code:
A: The first term is zero.
Repeatedly apply:
If the last term is *new* to the sequence so far then:
B: The next term is zero.
Otherwise:
C: The next term is how far back this last term occured previously.
Example
Using A:
0
Using B:
0 0
Using C:
0 0 1
Using B:
0 0 1 0
Using C: (zero last occurred two steps back - before the one)
0 0 1 0 2
Using B:
0 0 1 0 2 0
Using C: (two last occurred two steps back - before the zero)
0 0 1 0 2 0 2 2
Using C: (two last occurred one step back)
0 0 1 0 2 0 2 2 1
Using C: (one last appeared six steps back)
0 0 1 0 2 0 2 2 1 6
...
Task
Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers.
Use it to display here, on this page:
The first ten terms of the sequence.
Terms 991 - to - 1000 of the sequence.
References
Don't Know (the Van Eck Sequence) - Numberphile video.
Wikipedia Article: Van Eck's Sequence.
OEIS sequence: A181391.
| #Racket | Racket | #lang racket
(require racket/stream)
(define (van-eck)
(define (next val n seen)
(define val1 (- n (hash-ref seen val n)))
(stream-cons val (next val1 (+ n 1) (hash-set seen val n))))
(next 0 0 (hash)))
(define (get m n s)
(stream->list
(stream-take (stream-tail s m)
(- n m))))
"First 10 terms:" (get 0 10 (van-eck))
"Terms 991 to 1000 terms:" (get 990 1000 (van-eck)) ; counting from 0 |
http://rosettacode.org/wiki/Variadic_function | Variadic function | Task
Create a function which takes in a variable number of arguments and prints each one on its own line.
Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime.
Functions of this type are also known as Variadic Functions.
Related task
Call a function
| #Quackery | Quackery | [ pack witheach
[ echo$ cr ] ] is counted-echo$ ( $ ... n --> )
[ this ] is marker ( --> m )
[ []
[ swap dup marker oats
iff drop done
nested swap join
again ] ] is gather ( m x ... --> [ )
[ gather witheach
[ echo$ cr ] ] is markered-echo$ ( m $ ... --> )
$ "this" $ "is" $ "a" $ "formica" $ "table" 5 counted-echo$
cr
marker $ "green" $ "is" $ "its" $ "colour" markered-echo$ |
http://rosettacode.org/wiki/Variadic_function | Variadic function | Task
Create a function which takes in a variable number of arguments and prints each one on its own line.
Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime.
Functions of this type are also known as Variadic Functions.
Related task
Call a function
| #R | R | printallargs1 <- function(...) list(...)
printallargs1(1:5, "abc", TRUE)
# [[1]]
# [1] 1 2 3 4 5
#
# [[2]]
# [1] "abc"
#
# [[3]]
# [1] TRUE |
http://rosettacode.org/wiki/Vector_products | Vector products | A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: (X, Y, Z).
If you imagine a graph with the x and y axis being at right angles to each other and having a third, z axis coming out of the page, then a triplet of numbers, (X, Y, Z) would represent a point in the region, and a vector from the origin to the point.
Given the vectors:
A = (a1, a2, a3)
B = (b1, b2, b3)
C = (c1, c2, c3)
then the following common vector products are defined:
The dot product (a scalar quantity)
A • B = a1b1 + a2b2 + a3b3
The cross product (a vector quantity)
A x B = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)
The scalar triple product (a scalar quantity)
A • (B x C)
The vector triple product (a vector quantity)
A x (B x C)
Task
Given the three vectors:
a = ( 3, 4, 5)
b = ( 4, 3, 5)
c = (-5, -12, -13)
Create a named function/subroutine/method to compute the dot product of two vectors.
Create a function to compute the cross product of two vectors.
Optionally create a function to compute the scalar triple product of three vectors.
Optionally create a function to compute the vector triple product of three vectors.
Compute and display: a • b
Compute and display: a x b
Compute and display: a • (b x c), the scalar triple product.
Compute and display: a x (b x c), the vector triple product.
References
A starting page on Wolfram MathWorld is Vector Multiplication .
Wikipedia dot product.
Wikipedia cross product.
Wikipedia triple product.
Related tasks
Dot product
Quaternion type
| #Groovy | Groovy | def pairwiseOperation = { x, y, Closure binaryOp ->
assert x && y && x.size() == y.size()
[x, y].transpose().collect(binaryOp)
}
def pwMult = pairwiseOperation.rcurry { it[0] * it[1] }
def dotProduct = { x, y ->
assert x && y && x.size() == y.size()
pwMult(x, y).sum()
} |
http://rosettacode.org/wiki/Validate_International_Securities_Identification_Number | Validate International Securities Identification Number | An International Securities Identification Number (ISIN) is a unique international identifier for a financial security such as a stock or bond.
Task
Write a function or program that takes a string as input, and checks whether it is a valid ISIN.
It is only valid if it has the correct format, and the embedded checksum is correct.
Demonstrate that your code passes the test-cases listed below.
Details
The format of an ISIN is as follows:
┌───────────── a 2-character ISO country code (A-Z)
│ ┌─────────── a 9-character security code (A-Z, 0-9)
│ │ ┌── a checksum digit (0-9)
AU0000XVGZA3
For this task, you may assume that any 2-character alphabetic sequence is a valid country code.
The checksum can be validated as follows:
Replace letters with digits, by converting each character from base 36 to base 10, e.g. AU0000XVGZA3 →1030000033311635103.
Perform the Luhn test on this base-10 number.
There is a separate task for this test: Luhn test of credit card numbers.
You don't have to replicate the implementation of this test here ─── you can just call the existing function from that task. (Add a comment stating if you did this.)
Test cases
ISIN
Validity
Comment
US0378331005
valid
US0373831005
not valid
The transposition typo is caught by the checksum constraint.
U50378331005
not valid
The substitution typo is caught by the format constraint.
US03378331005
not valid
The duplication typo is caught by the format constraint.
AU0000XVGZA3
valid
AU0000VXGZA3
valid
Unfortunately, not all transposition typos are caught by the checksum constraint.
FR0000988040
valid
(The comments are just informational. Your function should simply return a Boolean result. See #Raku for a reference solution.)
Related task:
Luhn test of credit card numbers
Also see
Interactive online ISIN validator
Wikipedia article: International Securities Identification Number
| #Rust | Rust | extern crate luhn_cc;
use luhn_cc::compute_luhn;
fn main() {
assert_eq!(validate_isin("US0378331005"), true);
assert_eq!(validate_isin("US0373831005"), false);
assert_eq!(validate_isin("U50378331005"), false);
assert_eq!(validate_isin("US03378331005"), false);
assert_eq!(validate_isin("AU0000XVGZA3"), true);
assert_eq!(validate_isin("AU0000VXGZA3"), true);
assert_eq!(validate_isin("FR0000988040"), true);
}
fn validate_isin(isin: &str) -> bool {
// Preliminary checks to avoid working on non-ASCII stuff
if !isin.chars().all(|x| x.is_alphanumeric()) || isin.len() != 12 {
return false;
}
if !isin[..2].chars().all(|x| x.is_alphabetic())
|| !isin[2..12].chars().all(|x| x.is_alphanumeric())
|| !isin.chars().last().unwrap().is_numeric()
{
return false;
}
// Converts the alphanumeric string in a numeric-only string
let bytes = isin.as_bytes();
let s2 = bytes.iter()
.flat_map(|&c| {
if c.is_ascii_digit() {
vec![c]
}
else {
(c + 10 - ('A' as u8)).to_string().into_bytes()
}
}).collect::<Vec<u8>>();
let string = std::str::from_utf8(&s2).unwrap();
let number = string.parse::<usize>().unwrap();
return compute_luhn(number);
}
|
http://rosettacode.org/wiki/Validate_International_Securities_Identification_Number | Validate International Securities Identification Number | An International Securities Identification Number (ISIN) is a unique international identifier for a financial security such as a stock or bond.
Task
Write a function or program that takes a string as input, and checks whether it is a valid ISIN.
It is only valid if it has the correct format, and the embedded checksum is correct.
Demonstrate that your code passes the test-cases listed below.
Details
The format of an ISIN is as follows:
┌───────────── a 2-character ISO country code (A-Z)
│ ┌─────────── a 9-character security code (A-Z, 0-9)
│ │ ┌── a checksum digit (0-9)
AU0000XVGZA3
For this task, you may assume that any 2-character alphabetic sequence is a valid country code.
The checksum can be validated as follows:
Replace letters with digits, by converting each character from base 36 to base 10, e.g. AU0000XVGZA3 →1030000033311635103.
Perform the Luhn test on this base-10 number.
There is a separate task for this test: Luhn test of credit card numbers.
You don't have to replicate the implementation of this test here ─── you can just call the existing function from that task. (Add a comment stating if you did this.)
Test cases
ISIN
Validity
Comment
US0378331005
valid
US0373831005
not valid
The transposition typo is caught by the checksum constraint.
U50378331005
not valid
The substitution typo is caught by the format constraint.
US03378331005
not valid
The duplication typo is caught by the format constraint.
AU0000XVGZA3
valid
AU0000VXGZA3
valid
Unfortunately, not all transposition typos are caught by the checksum constraint.
FR0000988040
valid
(The comments are just informational. Your function should simply return a Boolean result. See #Raku for a reference solution.)
Related task:
Luhn test of credit card numbers
Also see
Interactive online ISIN validator
Wikipedia article: International Securities Identification Number
| #SAS | SAS | data test;
length isin $20 ok $1;
input isin;
keep isin ok;
array s{24};
link isin;
return;
isin:
ok="N";
n=length(isin);
if n=12 then do;
j=0;
do i=1 to n;
k=rank(substr(isin,i,1));
if k>=48 & k<=57 then do;
if i<3 then return;
j+1;
s{j}=k-48;
end;
else if k>=65 & k<=90 then do;
if i=12 then return;
k+-55;
j+1;
s{j}=int(k/10);
j+1;
s{j}=mod(k,10);
end;
else return;
end;
v=sum(of s{*});
do i=j-1 to 1 by -2;
v+s{i}-9*(s{i}>4);
end;
if mod(v,10)=0 then ok="Y";
end;
return;
cards;
US0378331005
US0373831005
U50378331005
US03378331005
AU0000XVGZA3
AU0000VXGZA3
FR0000988040
;
run; |
http://rosettacode.org/wiki/Van_der_Corput_sequence | Van der Corput sequence | When counting integers in binary, if you put a (binary) point to the righEasyLangt of the count then the column immediately to the left denotes a digit with a multiplier of
2
0
{\displaystyle 2^{0}}
; the digit in the next column to the left has a multiplier of
2
1
{\displaystyle 2^{1}}
; and so on.
So in the following table:
0.
1.
10.
11.
...
the binary number "10" is
1
×
2
1
+
0
×
2
0
{\displaystyle 1\times 2^{1}+0\times 2^{0}}
.
You can also have binary digits to the right of the “point”, just as in the decimal number system. In that case, the digit in the place immediately to the right of the point has a weight of
2
−
1
{\displaystyle 2^{-1}}
, or
1
/
2
{\displaystyle 1/2}
.
The weight for the second column to the right of the point is
2
−
2
{\displaystyle 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
. And so on.
If you take the integer binary count of the first table, and reflect the digits about the binary point, you end up with the van der Corput sequence of numbers in base 2.
.0
.1
.01
.11
...
The third member of the sequence, binary 0.01, is therefore
0
×
2
−
1
+
1
×
2
−
2
{\displaystyle 0\times 2^{-1}+1\times 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
.
Distribution of 2500 points each: Van der Corput (top) vs pseudorandom
0
≤
x
<
1
{\displaystyle 0\leq x<1}
Monte Carlo simulations
This sequence is also a superset of the numbers representable by the "fraction" field of an old IEEE floating point standard. In that standard, the "fraction" field represented the fractional part of a binary number beginning with "1." e.g. 1.101001101.
Hint
A hint at a way to generate members of the sequence is to modify a routine used to change the base of an integer:
>>> def base10change(n, base):
digits = []
while n:
n,remainder = divmod(n, base)
digits.insert(0, remainder)
return digits
>>> base10change(11, 2)
[1, 0, 1, 1]
the above showing that 11 in decimal is
1
×
2
3
+
0
×
2
2
+
1
×
2
1
+
1
×
2
0
{\displaystyle 1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1\times 2^{0}}
.
Reflected this would become .1101 or
1
×
2
−
1
+
1
×
2
−
2
+
0
×
2
−
3
+
1
×
2
−
4
{\displaystyle 1\times 2^{-1}+1\times 2^{-2}+0\times 2^{-3}+1\times 2^{-4}}
Task description
Create a function/method/routine that given n, generates the n'th term of the van der Corput sequence in base 2.
Use the function to compute and display the first ten members of the sequence. (The first member of the sequence is for n=0).
As a stretch goal/extra credit, compute and show members of the sequence for bases other than 2.
See also
The Basic Low Discrepancy Sequences
Non-decimal radices/Convert
Van der Corput sequence
| #Prolog | Prolog | % vdc( N, Base, Out )
% Out = the Van der Corput representation of N in given Base
vdc( 0, _, [] ).
vdc( N, Base, Out ) :-
Nr is mod(N, Base),
Nq is N // Base,
vdc( Nq, Base, Tmp ),
Out = [Nr|Tmp].
% Writes every element of a list to stdout; no newlines
write_list( [] ).
write_list( [H|T] ) :-
write( H ),
write_list( T ).
% Writes the Nth Van der Corput item.
print_vdc( N, Base ) :-
vdc( N, Base, Lst ),
write('0.'),
write_list( Lst ).
print_vdc( N ) :-
print_vdc( N, 2 ).
% Prints the first N+1 elements of the Van der Corput
% sequence, each to its own line
print_some( 0, _ ) :-
write( '0.0' ).
print_some( N, Base ) :-
M is N - 1,
print_some( M, Base ),
nl,
print_vdc( N, Base ).
print_some( N ) :-
print_some( N, 2 ).
test :-
writeln('First 10 members in base 2:'),
print_some( 9 ),
nl,
write('7th member in base 4 (stretch goal) => '),
print_vdc( 7, 4 ).
|
http://rosettacode.org/wiki/URL_decoding | URL decoding | This task (the reverse of URL encoding and distinct from URL parser) is to provide a function
or mechanism to convert an URL-encoded string into its original unencoded form.
Test cases
The encoded string "http%3A%2F%2Ffoo%20bar%2F" should be reverted to the unencoded form "http://foo bar/".
The encoded string "google.com/search?q=%60Abdu%27l-Bah%C3%A1" should revert to the unencoded form "google.com/search?q=`Abdu'l-Bahá".
| #Lambdatalk | Lambdatalk |
1) define a new javascript primitive:
{script
LAMBDATALK.DICT['decodeURIComponent'] = function() {
return decodeURIComponent( arguments[0].trim() );
};
}
2) and use it:
{decodeURIComponent http%3A%2F%2Ffoo%20bar%2F}
-> http://foo bar/
|
http://rosettacode.org/wiki/URL_decoding | URL decoding | This task (the reverse of URL encoding and distinct from URL parser) is to provide a function
or mechanism to convert an URL-encoded string into its original unencoded form.
Test cases
The encoded string "http%3A%2F%2Ffoo%20bar%2F" should be reverted to the unencoded form "http://foo bar/".
The encoded string "google.com/search?q=%60Abdu%27l-Bah%C3%A1" should revert to the unencoded form "google.com/search?q=`Abdu'l-Bahá".
| #Lasso | Lasso | bytes('http%3A%2F%2Ffoo%20bar%2F') -> decodeurl |
http://rosettacode.org/wiki/UPC | UPC | Goal
Convert UPC bar codes to decimal.
Specifically:
The UPC standard is actually a collection of standards -- physical standards, data format standards, product reference standards...
Here, in this task, we will focus on some of the data format standards, with an imaginary physical+electrical implementation which converts physical UPC bar codes to ASCII (with spaces and # characters representing the presence or absence of ink).
Sample input
Below, we have a representation of ten different UPC-A bar codes read by our imaginary bar code reader:
# # # ## # ## # ## ### ## ### ## #### # # # ## ## # # ## ## ### # ## ## ### # # #
# # # ## ## # #### # # ## # ## # ## # # # ### # ### ## ## ### # # ### ### # # #
# # # # # ### # # # # # # # # # # ## # ## # ## # ## # # #### ### ## # #
# # ## ## ## ## # # # # ### # ## ## # # # ## ## # ### ## ## # # #### ## # # #
# # ### ## # ## ## ### ## # ## # # ## # # ### # ## ## # # ### # ## ## # # #
# # # # ## ## # # # # ## ## # # # # # #### # ## # #### #### # # ## # #### # #
# # # ## ## # # ## ## # ### ## ## # # # # # # # # ### # # ### # # # # #
# # # # ## ## # # ## ## ### # # # # # ### ## ## ### ## ### ### ## # ## ### ## # #
# # ### ## ## # # #### # ## # #### # #### # # # # # ### # # ### # # # ### # # #
# # # #### ## # #### # # ## ## ### #### # # # # ### # ### ### # # ### # # # ### # #
Some of these were entered upside down, and one entry has a timing error.
Task
Implement code to find the corresponding decimal representation of each, rejecting the error.
Extra credit for handling the rows entered upside down (the other option is to reject them).
Notes
Each digit is represented by 7 bits:
0: 0 0 0 1 1 0 1
1: 0 0 1 1 0 0 1
2: 0 0 1 0 0 1 1
3: 0 1 1 1 1 0 1
4: 0 1 0 0 0 1 1
5: 0 1 1 0 0 0 1
6: 0 1 0 1 1 1 1
7: 0 1 1 1 0 1 1
8: 0 1 1 0 1 1 1
9: 0 0 0 1 0 1 1
On the left hand side of the bar code a space represents a 0 and a # represents a 1.
On the right hand side of the bar code, a # represents a 0 and a space represents a 1
Alternatively (for the above): spaces always represent zeros and # characters always represent ones, but the representation is logically negated -- 1s and 0s are flipped -- on the right hand side of the bar code.
The UPC-A bar code structure
It begins with at least 9 spaces (which our imaginary bar code reader unfortunately doesn't always reproduce properly),
then has a # # sequence marking the start of the sequence,
then has the six "left hand" digits,
then has a # # sequence in the middle,
then has the six "right hand digits",
then has another # # (end sequence), and finally,
then ends with nine trailing spaces (which might be eaten by wiki edits, and in any event, were not quite captured correctly by our imaginary bar code reader).
Finally, the last digit is a checksum digit which may be used to help detect errors.
Verification
Multiply each digit in the represented 12 digit sequence by the corresponding number in (3,1,3,1,3,1,3,1,3,1,3,1) and add the products.
The sum (mod 10) must be 0 (must have a zero as its last digit) if the UPC number has been read correctly.
| #Kotlin | Kotlin | val LEFT_DIGITS = mapOf(
" ## #" to 0,
" ## #" to 1,
" # ##" to 2,
" #### #" to 3,
" # ##" to 4,
" ## #" to 5,
" # ####" to 6,
" ### ##" to 7,
" ## ###" to 8,
" # ##" to 9
)
val RIGHT_DIGITS = LEFT_DIGITS.mapKeys {
it.key.replace(' ', 's').replace('#', ' ').replace('s', '#')
}
const val END_SENTINEL = "# #"
const val MID_SENTINEL = " # # "
fun decodeUPC(input: String) {
fun decode(candidate: String): Pair<Boolean, List<Int>> {
var pos = 0
var part = candidate.slice(pos until pos + END_SENTINEL.length)
if (part == END_SENTINEL) {
pos += END_SENTINEL.length
} else {
return Pair(false, emptyList())
}
val output = mutableListOf<Int>()
for (i in 0 until 6) {
part = candidate.slice(pos until pos + 7)
pos += 7
if (LEFT_DIGITS.containsKey(part)) {
output.add(LEFT_DIGITS.getOrDefault(part, -1))
} else {
return Pair(false, output.toList())
}
}
part = candidate.slice(pos until pos + MID_SENTINEL.length)
if (part == MID_SENTINEL) {
pos += MID_SENTINEL.length
} else {
return Pair(false, output.toList())
}
for (i in 0 until 6) {
part = candidate.slice(pos until pos + 7)
pos += 7
if (RIGHT_DIGITS.containsKey(part)) {
output.add(RIGHT_DIGITS.getOrDefault(part, -1))
} else {
return Pair(false, output.toList())
}
}
part = candidate.slice(pos until pos + END_SENTINEL.length)
if (part == END_SENTINEL) {
pos += END_SENTINEL.length
} else {
return Pair(false, output.toList())
}
val sum = output.mapIndexed { i, v -> if (i % 2 == 0) v * 3 else v }.sum()
return Pair(sum % 10 == 0, output.toList())
}
val candidate = input.trim()
var out = decode(candidate)
if (out.first) {
println(out.second)
} else {
out = decode(candidate.reversed())
if (out.first) {
print(out.second)
println(" Upside down")
} else {
if (out.second.size == 12) {
println("Invalid checksum")
} else {
println("Invalid digit(s)")
}
}
}
}
fun main() {
val barcodes = listOf(
" # # # ## # ## # ## ### ## ### ## #### # # # ## ## # # ## ## ### # ## ## ### # # # ",
" # # # ## ## # #### # # ## # ## # ## # # # ### # ### ## ## ### # # ### ### # # # ",
" # # # # # ### # # # # # # # # # # ## # ## # ## # ## # # #### ### ## # # ",
" # # ## ## ## ## # # # # ### # ## ## # # # ## ## # ### ## ## # # #### ## # # # ",
" # # ### ## # ## ## ### ## # ## # # ## # # ### # ## ## # # ### # ## ## # # # ",
" # # # # ## ## # # # # ## ## # # # # # #### # ## # #### #### # # ## # #### # # ",
" # # # ## ## # # ## ## # ### ## ## # # # # # # # # ### # # ### # # # # # ",
" # # # # ## ## # # ## ## ### # # # # # ### ## ## ### ## ### ### ## # ## ### ## # # ",
" # # ### ## ## # # #### # ## # #### # #### # # # # # ### # # ### # # # ### # # # ",
" # # # #### ## # #### # # ## ## ### #### # # # # ### # ### ### # # ### # # # ### # # ",
)
for (barcode in barcodes) {
decodeUPC(barcode)
}
} |
http://rosettacode.org/wiki/Update_a_configuration_file | Update a configuration file | We have a configuration file as follows:
# This is a configuration file in standard configuration file format
#
# Lines begininning with a hash or a semicolon are ignored by the application
# program. Blank lines are also ignored by the application program.
# The first word on each non comment line is the configuration option.
# Remaining words or numbers on the line are configuration parameter
# data fields.
# Note that configuration option names are not case sensitive. However,
# configuration parameter data is case sensitive and the lettercase must
# be preserved.
# This is a favourite fruit
FAVOURITEFRUIT banana
# This is a boolean that should be set
NEEDSPEELING
# This boolean is commented out
; SEEDSREMOVED
# How many bananas we have
NUMBEROFBANANAS 48
The task is to manipulate the configuration file as follows:
Disable the needspeeling option (using a semicolon prefix)
Enable the seedsremoved option by removing the semicolon and any leading whitespace
Change the numberofbananas parameter to 1024
Enable (or create if it does not exist in the file) a parameter for numberofstrawberries with a value of 62000
Note that configuration option names are not case sensitive. This means that changes should be effected, regardless of the case.
Options should always be disabled by prefixing them with a semicolon.
Lines beginning with hash symbols should not be manipulated and left unchanged in the revised file.
If a configuration option does not exist within the file (in either enabled or disabled form), it should be added during this update. Duplicate configuration option names in the file should be removed, leaving just the first entry.
For the purpose of this task, the revised file should contain appropriate entries, whether enabled or not for needspeeling,seedsremoved,numberofbananas and numberofstrawberries.)
The update should rewrite configuration option names in capital letters. However lines beginning with hashes and any parameter data must not be altered (eg the banana for favourite fruit must not become capitalized). The update process should also replace double semicolon prefixes with just a single semicolon (unless it is uncommenting the option, in which case it should remove all leading semicolons).
Any lines beginning with a semicolon or groups of semicolons, but no following option should be removed, as should any leading or trailing whitespace on the lines. Whitespace between the option and parameters should consist only of a single
space, and any non-ASCII extended characters, tabs characters, or control codes
(other than end of line markers), should also be removed.
Related tasks
Read a configuration file
| #PicoLisp | PicoLisp | (let Data # Read all data
(in "config"
(make
(until (eof)
(link (trim (split (line) " "))) ) ) )
(setq Data # Fix comments
(mapcar
'((L)
(while (head '(";" ";") (car L))
(pop L) )
(if (= '(";") (car L))
L
(cons NIL L) ) )
Data ) )
(let (Need NIL Seed NIL NBan NIL NStr NIL Favo NIL)
(map
'((L)
(let D (mapcar uppc (cadar L))
(cond
((= '`(chop "NEEDSPEELING") D)
(if Need
(set L)
(on Need)
(unless (caar L)
(set (car L) '(";")) ) ) )
((= '`(chop "SEEDSREMOVED") D)
(if Seed
(set L)
(on Seed)
(when (caar L)
(set (car L)) ) ) )
((= '`(chop "NUMBEROFBANANAS") D)
(if NBan
(set L)
(on NBan)
(set (cddar L) 1024) ) )
((= '`(chop "NUMBEROFSTRAWBERRIES") D)
(if NStr
(set L)
(on NStr) ) )
((= '`(chop "FAVOURITEFRUIT") D)
(if Favo
(set L)
(on Favo) ) ) ) ) )
Data )
(unless Need
(conc Data (cons (list NIL "NEEDSPEELING"))) )
(unless Seed
(conc Data (cons (list NIL "SEEDSREMOVED"))) )
(unless NBan
(conc Data (cons (list NIL "NUMBEROFBANANAS" 1024))) )
(unless NStr
(conc Data (cons (list NIL "NUMBEROFSTRAWBERRIES" 62000))) ) )
(out "config"
(for L Data
(prinl (glue " " (if (car L) L (cdr L)))) ) ) ) |
http://rosettacode.org/wiki/User_input/Text | User input/Text | User input/Text is part of Short Circuit's Console Program Basics selection.
Task
Input a string and the integer 75000 from the text console.
See also: User input/Graphical
| #Frink | Frink |
s = input["Enter a string: "]
i = parseInt[input["Enter an integer: "]]
|
http://rosettacode.org/wiki/User_input/Text | User input/Text | User input/Text is part of Short Circuit's Console Program Basics selection.
Task
Input a string and the integer 75000 from the text console.
See also: User input/Graphical
| #Go | Go | package main
import "fmt"
func main() {
var s string
var i int
if _, err := fmt.Scan(&s, &i); err == nil && i == 75000 {
fmt.Println("good")
} else {
fmt.Println("wrong")
}
} |
http://rosettacode.org/wiki/User_input/Graphical | User input/Graphical |
In this task, the goal is to input a string and the integer 75000, from graphical user interface.
See also: User input/Text
| #Nanoquery | Nanoquery | import Nanoquery.Util.Windows
// a function to handle the main window closing
def finish(caller, event)
exit
end
// create a window
w = new(Window, "Input").setTitle("Input")
w.setSize(320, 190)
w.setHandler(w.closing, finish)
// create two labels to go next to the input boxes
stringlabel = new(Label).setParent(w)
intlabel = new(Label).setParent(w)
stringlabel.setText("String: "); stringlabel.setPosition(20, 25)
intlabel.setText("Integer: "); intlabel.setPosition(20, 75)
// create two textboxes for input
stringbox = new(Textbox).setParent(w)
intbox = new(Textbox).setParent(w)
stringbox.setPosition(100, 20); stringbox.setWidth(200); stringbox.setHeight(30)
intbox.setPosition(100, 70); intbox.setWidth(200); intbox.setHeight(30)
// a function that handles when the 'done' button is clicked
def done_clicked(caller, event)
global stringbox
global intbox
global w
s = stringbox.getText()
i = intbox.getText()
try
if int(i) = 75000
println "String: " + s
println "Integer: " + i
exit
else
w.showMessageBox("Please enter 75000 for the integer value")
end
catch
w.showMessageBox("Please enter 75000 for the integer value")
end
end
// create the 'done' button
done = new(Button).setParent(w)
done.setText("Done"); done.setPosition(250,120)
done.setHandler(done.clicked, done_clicked)
// display the window
w.show() |
http://rosettacode.org/wiki/User_input/Graphical | User input/Graphical |
In this task, the goal is to input a string and the integer 75000, from graphical user interface.
See also: User input/Text
| #NetRexx | NetRexx | /* NetRexx */
options replace format comments java crossref symbols nobinary
import javax.swing.JOptionPane
unumber = 0
ustring = ''
do
unumber = Integer.parseInt(JOptionPane.showInputDialog("Enter an Integer"))
ustring = JOptionPane.showInputDialog("Enter a String")
catch ex = Exception
ex.printStackTrace
end
unumber = unumber * 1.0 -- just to prove unumber is really a number
say 'Number:' unumber.right(10)', String:' ustring
return
|
http://rosettacode.org/wiki/UTF-8_encode_and_decode | UTF-8 encode and decode | As described in UTF-8 and in Wikipedia, UTF-8 is a popular encoding of (multi-byte) Unicode code-points into eight-bit octets.
The goal of this task is to write a encoder that takes a unicode code-point (an integer representing a unicode character) and returns a sequence of 1-4 bytes representing that character in the UTF-8 encoding.
Then you have to write the corresponding decoder that takes a sequence of 1-4 UTF-8 encoded bytes and return the corresponding unicode character.
Demonstrate the functionality of your encoder and decoder on the following five characters:
Character Name Unicode UTF-8 encoding (hex)
---------------------------------------------------------------------------------
A LATIN CAPITAL LETTER A U+0041 41
ö LATIN SMALL LETTER O WITH DIAERESIS U+00F6 C3 B6
Ж CYRILLIC CAPITAL LETTER ZHE U+0416 D0 96
€ EURO SIGN U+20AC E2 82 AC
𝄞 MUSICAL SYMBOL G CLEF U+1D11E F0 9D 84 9E
Provided below is a reference implementation in Common Lisp.
| #Phix | Phix | constant tests = {#0041, #00F6, #0416, #20AC, #1D11E}
function hex(sequence s, string fmt) -- output helper
return join(apply(true,sprintf,{{fmt},s}),',')
end function
for i=1 to length(tests) do
integer codepoint = tests[i]
sequence s = utf32_to_utf8({codepoint}),
r = utf8_to_utf32(s)
printf(1,"#%04x -> {%s} -> {%s}\n",{codepoint, hex(s,"#%02x"),hex(r,"#%04x")})
end for
|
http://rosettacode.org/wiki/URL_parser | URL parser | URLs are strings with a simple syntax:
scheme://[username:password@]domain[:port]/path?query_string#fragment_id
Task
Parse a well-formed URL to retrieve the relevant information: scheme, domain, path, ...
Note: this task has nothing to do with URL encoding or URL decoding.
According to the standards, the characters:
! * ' ( ) ; : @ & = + $ , / ? % # [ ]
only need to be percent-encoded (%) in case of possible confusion.
Also note that the path, query and fragment are case sensitive, even if the scheme and domain are not.
The way the returned information is provided (set of variables, array, structured, record, object,...)
is language-dependent and left to the programmer, but the code should be clear enough to reuse.
Extra credit is given for clear error diagnostics.
Here is the official standard: https://tools.ietf.org/html/rfc3986,
and here is a simpler BNF: http://www.w3.org/Addressing/URL/5_URI_BNF.html.
Test cases
According to T. Berners-Lee
foo://example.com:8042/over/there?name=ferret#nose should parse into:
scheme = foo
domain = example.com
port = :8042
path = over/there
query = name=ferret
fragment = nose
urn:example:animal:ferret:nose should parse into:
scheme = urn
path = example:animal:ferret:nose
other URLs that must be parsed include:
jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true
ftp://ftp.is.co.za/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc2396.txt#header1
ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two
mailto:[email protected]
news:comp.infosystems.www.servers.unix
tel:+1-816-555-1212
telnet://192.0.2.16:80/
urn:oasis:names:specification:docbook:dtd:xml:4.1.2
| #Tcl | Tcl | package require uri
package require uri::urn
# a little bit of trickery to format results:
proc pdict {d} {
array set \t $d
parray \t
}
proc parse_uri {uri} {
regexp {^(.*?):(.*)$} $uri -> scheme rest
if {$scheme in $::uri::schemes} {
# uri already knows how to split it:
set parts [uri::split $uri]
} else {
# parse as though it's http:
set parts [uri::SplitHttp $rest]
dict set parts scheme $scheme
}
dict filter $parts value ?* ;# omit empty sections
}
set tests {
foo://example.com:8042/over/there?name=ferret#nose
urn:example:animal:ferret:nose
jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true
ftp://ftp.is.co.za/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc2396.txt#header1
ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two
mailto:[email protected]
news:comp.infosystems.www.servers.unix
tel:+1-816-555-1212
telnet://192.0.2.16:80/
urn:oasis:names:specification:docbook:dtd:xml:4.1.2
}
foreach uri $tests {
puts \n$uri
pdict [parse_uri $uri]
} |
http://rosettacode.org/wiki/URL_encoding | URL encoding | Task
Provide a function or mechanism to convert a provided string into URL encoding representation.
In URL encoding, special characters, control characters and extended characters
are converted into a percent symbol followed by a two digit hexadecimal code,
So a space character encodes into %20 within the string.
For the purposes of this task, every character except 0-9, A-Z and a-z requires conversion, so the following characters all require conversion by default:
ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F (127 decimal).
ASCII symbols (Character ranges 32-47 decimal (20-2F hex))
ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))
ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))
ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))
Extended characters with character codes of 128 decimal (80 hex) and above.
Example
The string "http://foo bar/" would be encoded as "http%3A%2F%2Ffoo%20bar%2F".
Variations
Lowercase escapes are legal, as in "http%3a%2f%2ffoo%20bar%2f".
Some standards give different rules: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, section 2.3, says that "-._~" should not be encoded. HTML 5, section 4.10.22.5 URL-encoded form data, says to preserve "-._*", and to encode space " " to "+". The options below provide for utilization of an exception string, enabling preservation (non encoding) of particular characters to meet specific standards.
Options
It is permissible to use an exception string (containing a set of symbols
that do not need to be converted).
However, this is an optional feature and is not a requirement of this task.
Related tasks
URL decoding
URL parser
| #Maple | Maple | URL:-Escape("http://foo bar/"); |
http://rosettacode.org/wiki/URL_encoding | URL encoding | Task
Provide a function or mechanism to convert a provided string into URL encoding representation.
In URL encoding, special characters, control characters and extended characters
are converted into a percent symbol followed by a two digit hexadecimal code,
So a space character encodes into %20 within the string.
For the purposes of this task, every character except 0-9, A-Z and a-z requires conversion, so the following characters all require conversion by default:
ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F (127 decimal).
ASCII symbols (Character ranges 32-47 decimal (20-2F hex))
ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))
ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))
ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))
Extended characters with character codes of 128 decimal (80 hex) and above.
Example
The string "http://foo bar/" would be encoded as "http%3A%2F%2Ffoo%20bar%2F".
Variations
Lowercase escapes are legal, as in "http%3a%2f%2ffoo%20bar%2f".
Some standards give different rules: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, section 2.3, says that "-._~" should not be encoded. HTML 5, section 4.10.22.5 URL-encoded form data, says to preserve "-._*", and to encode space " " to "+". The options below provide for utilization of an exception string, enabling preservation (non encoding) of particular characters to meet specific standards.
Options
It is permissible to use an exception string (containing a set of symbols
that do not need to be converted).
However, this is an optional feature and is not a requirement of this task.
Related tasks
URL decoding
URL parser
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | URLEncoding[url_] :=
StringReplace[url,
x : Except[
Join[CharacterRange["0", "9"], CharacterRange["a", "z"],
CharacterRange["A", "Z"]]] :>
StringJoin[("%" ~~ #) & /@
IntegerString[ToCharacterCode[x, "UTF8"], 16]]] |
http://rosettacode.org/wiki/Variables | Variables | Task
Demonstrate a language's methods of:
variable declaration
initialization
assignment
datatypes
scope
referencing, and
other variable related facilities
| #Java | Java | int a;
double b;
AClassNameHere c; |
http://rosettacode.org/wiki/Variables | Variables | Task
Demonstrate a language's methods of:
variable declaration
initialization
assignment
datatypes
scope
referencing, and
other variable related facilities
| #JavaScript | JavaScript | [] unstack |
http://rosettacode.org/wiki/Van_Eck_sequence | Van Eck sequence | The sequence is generated by following this pseudo-code:
A: The first term is zero.
Repeatedly apply:
If the last term is *new* to the sequence so far then:
B: The next term is zero.
Otherwise:
C: The next term is how far back this last term occured previously.
Example
Using A:
0
Using B:
0 0
Using C:
0 0 1
Using B:
0 0 1 0
Using C: (zero last occurred two steps back - before the one)
0 0 1 0 2
Using B:
0 0 1 0 2 0
Using C: (two last occurred two steps back - before the zero)
0 0 1 0 2 0 2 2
Using C: (two last occurred one step back)
0 0 1 0 2 0 2 2 1
Using C: (one last appeared six steps back)
0 0 1 0 2 0 2 2 1 6
...
Task
Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers.
Use it to display here, on this page:
The first ten terms of the sequence.
Terms 991 - to - 1000 of the sequence.
References
Don't Know (the Van Eck Sequence) - Numberphile video.
Wikipedia Article: Van Eck's Sequence.
OEIS sequence: A181391.
| #Raku | Raku | sub n-van-ecks ($init) {
$init, -> $i, {
state %v;
state $k;
$k++;
my $t = %v{$i}.defined ?? $k - %v{$i} !! 0;
%v{$i} = $k;
$t
} ... *
}
for <
A181391 0
A171911 1
A171912 2
A171913 3
A171914 4
A171915 5
A171916 6
A171917 7
A171918 8
> -> $seq, $start {
my @seq = n-van-ecks($start);
# The task
put qq:to/END/
Van Eck sequence OEIS:$seq; with the first term: $start
First 10 terms: {@seq[^10]}
Terms 991 through 1000: {@seq[990..999]}
END
} |
http://rosettacode.org/wiki/Variadic_function | Variadic function | Task
Create a function which takes in a variable number of arguments and prints each one on its own line.
Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime.
Functions of this type are also known as Variadic Functions.
Related task
Call a function
| #Racket | Racket |
-> (define (vfun . xs) (for-each displayln xs))
-> (vfun)
-> (vfun 1)
1
-> (vfun 1 2 3 4)
1
2
3
4
-> (apply vfun (range 10 15))
10
11
12
13
14
|
http://rosettacode.org/wiki/Variadic_function | Variadic function | Task
Create a function which takes in a variable number of arguments and prints each one on its own line.
Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime.
Functions of this type are also known as Variadic Functions.
Related task
Call a function
| #Raku | Raku | sub foo {
.say for @_;
say .key, ': ', .value for %_;
}
foo 1, 2, command => 'buckle my shoe',
3, 4, order => 'knock at the door'; |
http://rosettacode.org/wiki/Vector_products | Vector products | A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: (X, Y, Z).
If you imagine a graph with the x and y axis being at right angles to each other and having a third, z axis coming out of the page, then a triplet of numbers, (X, Y, Z) would represent a point in the region, and a vector from the origin to the point.
Given the vectors:
A = (a1, a2, a3)
B = (b1, b2, b3)
C = (c1, c2, c3)
then the following common vector products are defined:
The dot product (a scalar quantity)
A • B = a1b1 + a2b2 + a3b3
The cross product (a vector quantity)
A x B = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)
The scalar triple product (a scalar quantity)
A • (B x C)
The vector triple product (a vector quantity)
A x (B x C)
Task
Given the three vectors:
a = ( 3, 4, 5)
b = ( 4, 3, 5)
c = (-5, -12, -13)
Create a named function/subroutine/method to compute the dot product of two vectors.
Create a function to compute the cross product of two vectors.
Optionally create a function to compute the scalar triple product of three vectors.
Optionally create a function to compute the vector triple product of three vectors.
Compute and display: a • b
Compute and display: a x b
Compute and display: a • (b x c), the scalar triple product.
Compute and display: a x (b x c), the vector triple product.
References
A starting page on Wolfram MathWorld is Vector Multiplication .
Wikipedia dot product.
Wikipedia cross product.
Wikipedia triple product.
Related tasks
Dot product
Quaternion type
| #Haskell | Haskell | import Data.Monoid ((<>))
type Vector a = [a]
type Scalar a = a
a, b, c, d :: Vector Int
a = [3, 4, 5]
b = [4, 3, 5]
c = [-5, -12, -13]
d = [3, 4, 5, 6]
dot
:: (Num t)
=> Vector t -> Vector t -> Scalar t
dot u v
| length u == length v = sum $ zipWith (*) u v
| otherwise = error "Dotted Vectors must be of equal dimension."
cross
:: (Num t)
=> Vector t -> Vector t -> Vector t
cross u v
| length u == 3 && length v == 3 =
[ u !! 1 * v !! 2 - u !! 2 * v !! 1
, u !! 2 * head v - head u * v !! 2
, head u * v !! 1 - u !! 1 * head v
]
| otherwise = error "Crossed Vectors must both be three dimensional."
scalarTriple
:: (Num t)
=> Vector t -> Vector t -> Vector t -> Scalar t
scalarTriple q r s = dot q $ cross r s
vectorTriple
:: (Num t)
=> Vector t -> Vector t -> Vector t -> Vector t
vectorTriple q r s = cross q $ cross r s
main :: IO ()
main =
mapM_
putStrLn
[ "a . b = " <> show (dot a b)
, "a x b = " <> show (cross a b)
, "a . b x c = " <> show (scalarTriple a b c)
, "a x b x c = " <> show (vectorTriple a b c)
, "a . d = " <> show (dot a d)
] |
http://rosettacode.org/wiki/Validate_International_Securities_Identification_Number | Validate International Securities Identification Number | An International Securities Identification Number (ISIN) is a unique international identifier for a financial security such as a stock or bond.
Task
Write a function or program that takes a string as input, and checks whether it is a valid ISIN.
It is only valid if it has the correct format, and the embedded checksum is correct.
Demonstrate that your code passes the test-cases listed below.
Details
The format of an ISIN is as follows:
┌───────────── a 2-character ISO country code (A-Z)
│ ┌─────────── a 9-character security code (A-Z, 0-9)
│ │ ┌── a checksum digit (0-9)
AU0000XVGZA3
For this task, you may assume that any 2-character alphabetic sequence is a valid country code.
The checksum can be validated as follows:
Replace letters with digits, by converting each character from base 36 to base 10, e.g. AU0000XVGZA3 →1030000033311635103.
Perform the Luhn test on this base-10 number.
There is a separate task for this test: Luhn test of credit card numbers.
You don't have to replicate the implementation of this test here ─── you can just call the existing function from that task. (Add a comment stating if you did this.)
Test cases
ISIN
Validity
Comment
US0378331005
valid
US0373831005
not valid
The transposition typo is caught by the checksum constraint.
U50378331005
not valid
The substitution typo is caught by the format constraint.
US03378331005
not valid
The duplication typo is caught by the format constraint.
AU0000XVGZA3
valid
AU0000VXGZA3
valid
Unfortunately, not all transposition typos are caught by the checksum constraint.
FR0000988040
valid
(The comments are just informational. Your function should simply return a Boolean result. See #Raku for a reference solution.)
Related task:
Luhn test of credit card numbers
Also see
Interactive online ISIN validator
Wikipedia article: International Securities Identification Number
| #Scala | Scala | object Isin extends App {
val isins = Seq("US0378331005", "US0373831005", "U50378331005",
"US03378331005", "AU0000XVGZA3","AU0000VXGZA3", "FR0000988040")
private def ISINtest(isin: String): Boolean = {
val isin0 = isin.trim.toUpperCase
def luhnTestS(number: String): Boolean = {
def luhnTestN(digits: Seq[Int]): Boolean = {
def checksum(digits: Seq[Int]): Int = {
digits.reverse.zipWithIndex
.foldLeft(0) {
case (sum, (digit, i)) =>
if (i % 2 == 0) sum + digit
else sum + (digit * 2) / 10 + (digit * 2) % 10
} % 10
}
checksum(digits) == 0
}
luhnTestN(number.map { c =>
assert(c.isDigit, s"$number has a non-digit error")
c.asDigit
})
}
if (!isin0.matches("^[A-Z]{2}[A-Z0-9]{9}\\d$")) false
else {
val sb = new StringBuilder
for (c <- isin0.substring(0, 12)) sb.append(Character.digit(c, 36))
luhnTestS(sb.toString)
}
}
isins.foreach(isin => println(f"$isin is ${if (ISINtest(isin)) "" else "not"}%s valid"))
} |
http://rosettacode.org/wiki/Van_der_Corput_sequence | Van der Corput sequence | When counting integers in binary, if you put a (binary) point to the righEasyLangt of the count then the column immediately to the left denotes a digit with a multiplier of
2
0
{\displaystyle 2^{0}}
; the digit in the next column to the left has a multiplier of
2
1
{\displaystyle 2^{1}}
; and so on.
So in the following table:
0.
1.
10.
11.
...
the binary number "10" is
1
×
2
1
+
0
×
2
0
{\displaystyle 1\times 2^{1}+0\times 2^{0}}
.
You can also have binary digits to the right of the “point”, just as in the decimal number system. In that case, the digit in the place immediately to the right of the point has a weight of
2
−
1
{\displaystyle 2^{-1}}
, or
1
/
2
{\displaystyle 1/2}
.
The weight for the second column to the right of the point is
2
−
2
{\displaystyle 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
. And so on.
If you take the integer binary count of the first table, and reflect the digits about the binary point, you end up with the van der Corput sequence of numbers in base 2.
.0
.1
.01
.11
...
The third member of the sequence, binary 0.01, is therefore
0
×
2
−
1
+
1
×
2
−
2
{\displaystyle 0\times 2^{-1}+1\times 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
.
Distribution of 2500 points each: Van der Corput (top) vs pseudorandom
0
≤
x
<
1
{\displaystyle 0\leq x<1}
Monte Carlo simulations
This sequence is also a superset of the numbers representable by the "fraction" field of an old IEEE floating point standard. In that standard, the "fraction" field represented the fractional part of a binary number beginning with "1." e.g. 1.101001101.
Hint
A hint at a way to generate members of the sequence is to modify a routine used to change the base of an integer:
>>> def base10change(n, base):
digits = []
while n:
n,remainder = divmod(n, base)
digits.insert(0, remainder)
return digits
>>> base10change(11, 2)
[1, 0, 1, 1]
the above showing that 11 in decimal is
1
×
2
3
+
0
×
2
2
+
1
×
2
1
+
1
×
2
0
{\displaystyle 1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1\times 2^{0}}
.
Reflected this would become .1101 or
1
×
2
−
1
+
1
×
2
−
2
+
0
×
2
−
3
+
1
×
2
−
4
{\displaystyle 1\times 2^{-1}+1\times 2^{-2}+0\times 2^{-3}+1\times 2^{-4}}
Task description
Create a function/method/routine that given n, generates the n'th term of the van der Corput sequence in base 2.
Use the function to compute and display the first ten members of the sequence. (The first member of the sequence is for n=0).
As a stretch goal/extra credit, compute and show members of the sequence for bases other than 2.
See also
The Basic Low Discrepancy Sequences
Non-decimal radices/Convert
Van der Corput sequence
| #PureBasic | PureBasic | Procedure.d nBase(n.i,b.i)
Define r.d,s.i=1
While n
s*b
r+(Mod(n,b)/s)
n=Int(n/b)
Wend
ProcedureReturn r
EndProcedure
Define.i b,c
OpenConsole("van der Corput - Sequence")
For b=2 To 5
Print("Base "+Str(b)+": ")
For c=0 To 9
Print(StrD(nBase(c,b),5)+~"\t")
Next
PrintN("")
Next
Input() |
http://rosettacode.org/wiki/Van_der_Corput_sequence | Van der Corput sequence | When counting integers in binary, if you put a (binary) point to the righEasyLangt of the count then the column immediately to the left denotes a digit with a multiplier of
2
0
{\displaystyle 2^{0}}
; the digit in the next column to the left has a multiplier of
2
1
{\displaystyle 2^{1}}
; and so on.
So in the following table:
0.
1.
10.
11.
...
the binary number "10" is
1
×
2
1
+
0
×
2
0
{\displaystyle 1\times 2^{1}+0\times 2^{0}}
.
You can also have binary digits to the right of the “point”, just as in the decimal number system. In that case, the digit in the place immediately to the right of the point has a weight of
2
−
1
{\displaystyle 2^{-1}}
, or
1
/
2
{\displaystyle 1/2}
.
The weight for the second column to the right of the point is
2
−
2
{\displaystyle 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
. And so on.
If you take the integer binary count of the first table, and reflect the digits about the binary point, you end up with the van der Corput sequence of numbers in base 2.
.0
.1
.01
.11
...
The third member of the sequence, binary 0.01, is therefore
0
×
2
−
1
+
1
×
2
−
2
{\displaystyle 0\times 2^{-1}+1\times 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
.
Distribution of 2500 points each: Van der Corput (top) vs pseudorandom
0
≤
x
<
1
{\displaystyle 0\leq x<1}
Monte Carlo simulations
This sequence is also a superset of the numbers representable by the "fraction" field of an old IEEE floating point standard. In that standard, the "fraction" field represented the fractional part of a binary number beginning with "1." e.g. 1.101001101.
Hint
A hint at a way to generate members of the sequence is to modify a routine used to change the base of an integer:
>>> def base10change(n, base):
digits = []
while n:
n,remainder = divmod(n, base)
digits.insert(0, remainder)
return digits
>>> base10change(11, 2)
[1, 0, 1, 1]
the above showing that 11 in decimal is
1
×
2
3
+
0
×
2
2
+
1
×
2
1
+
1
×
2
0
{\displaystyle 1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1\times 2^{0}}
.
Reflected this would become .1101 or
1
×
2
−
1
+
1
×
2
−
2
+
0
×
2
−
3
+
1
×
2
−
4
{\displaystyle 1\times 2^{-1}+1\times 2^{-2}+0\times 2^{-3}+1\times 2^{-4}}
Task description
Create a function/method/routine that given n, generates the n'th term of the van der Corput sequence in base 2.
Use the function to compute and display the first ten members of the sequence. (The first member of the sequence is for n=0).
As a stretch goal/extra credit, compute and show members of the sequence for bases other than 2.
See also
The Basic Low Discrepancy Sequences
Non-decimal radices/Convert
Van der Corput sequence
| #Python | Python | def vdc(n, base=2):
vdc, denom = 0,1
while n:
denom *= base
n, remainder = divmod(n, base)
vdc += remainder / denom
return vdc |
http://rosettacode.org/wiki/URL_decoding | URL decoding | This task (the reverse of URL encoding and distinct from URL parser) is to provide a function
or mechanism to convert an URL-encoded string into its original unencoded form.
Test cases
The encoded string "http%3A%2F%2Ffoo%20bar%2F" should be reverted to the unencoded form "http://foo bar/".
The encoded string "google.com/search?q=%60Abdu%27l-Bah%C3%A1" should revert to the unencoded form "google.com/search?q=`Abdu'l-Bahá".
| #Liberty_BASIC | Liberty BASIC |
dim lookUp$( 256)
for i =0 to 256
lookUp$( i) ="%" +dechex$( i)
next i
url$ ="http%3A%2F%2Ffoo%20bar%2F"
print "Supplied URL '"; url$; "'"
print "As string '"; url2string$( url$); "'"
end
function url2string$( i$)
for j =1 to len( i$)
c$ =mid$( i$, j, 1)
if c$ ="%" then
nc$ =chr$( hexdec( mid$( i$, j +1, 2)))
url2string$ =url2string$ +nc$
j =j +2
else
url2string$ =url2string$ +c$
end if
next j
end function
|
http://rosettacode.org/wiki/URL_decoding | URL decoding | This task (the reverse of URL encoding and distinct from URL parser) is to provide a function
or mechanism to convert an URL-encoded string into its original unencoded form.
Test cases
The encoded string "http%3A%2F%2Ffoo%20bar%2F" should be reverted to the unencoded form "http://foo bar/".
The encoded string "google.com/search?q=%60Abdu%27l-Bah%C3%A1" should revert to the unencoded form "google.com/search?q=`Abdu'l-Bahá".
| #Lingo | Lingo | ----------------------------------------
-- URL decodes a string
-- @param {string} str
-- @return {string}
----------------------------------------
on urldecode (str)
res = ""
ba = bytearray()
len = str.length
repeat with i = 1 to len
c = str.char[i]
if (c = "%") then
-- fastest hex-to-dec conversion hack based on Lingo's rgb object
ba.writeInt8(rgb(str.char[i+1..i+2]).blue)
i = i + 2
else if (c = "+") then
ba.writeInt8(32)
else
ba.writeInt8(chartonum(c))
end if
end repeat
ba.position = 1
return ba.readRawString(ba.length)
end |
http://rosettacode.org/wiki/UPC | UPC | Goal
Convert UPC bar codes to decimal.
Specifically:
The UPC standard is actually a collection of standards -- physical standards, data format standards, product reference standards...
Here, in this task, we will focus on some of the data format standards, with an imaginary physical+electrical implementation which converts physical UPC bar codes to ASCII (with spaces and # characters representing the presence or absence of ink).
Sample input
Below, we have a representation of ten different UPC-A bar codes read by our imaginary bar code reader:
# # # ## # ## # ## ### ## ### ## #### # # # ## ## # # ## ## ### # ## ## ### # # #
# # # ## ## # #### # # ## # ## # ## # # # ### # ### ## ## ### # # ### ### # # #
# # # # # ### # # # # # # # # # # ## # ## # ## # ## # # #### ### ## # #
# # ## ## ## ## # # # # ### # ## ## # # # ## ## # ### ## ## # # #### ## # # #
# # ### ## # ## ## ### ## # ## # # ## # # ### # ## ## # # ### # ## ## # # #
# # # # ## ## # # # # ## ## # # # # # #### # ## # #### #### # # ## # #### # #
# # # ## ## # # ## ## # ### ## ## # # # # # # # # ### # # ### # # # # #
# # # # ## ## # # ## ## ### # # # # # ### ## ## ### ## ### ### ## # ## ### ## # #
# # ### ## ## # # #### # ## # #### # #### # # # # # ### # # ### # # # ### # # #
# # # #### ## # #### # # ## ## ### #### # # # # ### # ### ### # # ### # # # ### # #
Some of these were entered upside down, and one entry has a timing error.
Task
Implement code to find the corresponding decimal representation of each, rejecting the error.
Extra credit for handling the rows entered upside down (the other option is to reject them).
Notes
Each digit is represented by 7 bits:
0: 0 0 0 1 1 0 1
1: 0 0 1 1 0 0 1
2: 0 0 1 0 0 1 1
3: 0 1 1 1 1 0 1
4: 0 1 0 0 0 1 1
5: 0 1 1 0 0 0 1
6: 0 1 0 1 1 1 1
7: 0 1 1 1 0 1 1
8: 0 1 1 0 1 1 1
9: 0 0 0 1 0 1 1
On the left hand side of the bar code a space represents a 0 and a # represents a 1.
On the right hand side of the bar code, a # represents a 0 and a space represents a 1
Alternatively (for the above): spaces always represent zeros and # characters always represent ones, but the representation is logically negated -- 1s and 0s are flipped -- on the right hand side of the bar code.
The UPC-A bar code structure
It begins with at least 9 spaces (which our imaginary bar code reader unfortunately doesn't always reproduce properly),
then has a # # sequence marking the start of the sequence,
then has the six "left hand" digits,
then has a # # sequence in the middle,
then has the six "right hand digits",
then has another # # (end sequence), and finally,
then ends with nine trailing spaces (which might be eaten by wiki edits, and in any event, were not quite captured correctly by our imaginary bar code reader).
Finally, the last digit is a checksum digit which may be used to help detect errors.
Verification
Multiply each digit in the represented 12 digit sequence by the corresponding number in (3,1,3,1,3,1,3,1,3,1,3,1) and add the products.
The sum (mod 10) must be 0 (must have a zero as its last digit) if the UPC number has been read correctly.
| #Ksh | Ksh | #!/bin/ksh
# Find the corresponding UPC decimal representation of each, rejecting the error
# # Variables:
#
UPC_data_file="../upc.data"
END_SEQ='# #' # Start and End sequence
MID_SEQ=' # # ' # Middle sequence
typeset -a CHK_ARR=( 3 1 3 1 3 1 3 1 3 1 3 1 )
integer bpd=7 # Number of bits per digit
integer numdig=6 # Number of digits per "side"
typeset -a umess=( '' 'Upside down')
typeset -a udig=( 0001101 0011001 0010011 0111101 0100011 0110001 0101111 0111011 0110111 0001011 )
# # Functions:
#
# # Function _validate(array) - verify result with CHK_ARR
#
function _validate {
typeset _arr ; nameref _arr="$1"
typeset _ifs ; _ifs="$2"
typeset _dp _singlearr _oldIFS
_oldIFS=$IFS ; IFS=${_ifs}
typeset -ia _singlearr=( ${_arr[@]} )
integer _dp=$(_dotproduct _singlearr CHK_ARR)
IFS=${_oldIFS}
return $(( _dp % 10 ))
}
# # Function _dotproduct(arr1, arr2) - return dot product
#
function _dotproduct {
typeset _arr1 ; nameref _arr1="$1"
typeset _arr2 ; nameref _arr2="$2"
typeset _i _dp ; integer _i _dp
for (( _i=0; _i<${#_arr1[*]}; _i++ )); do
(( _dp += ( _arr1[_i] * _arr2[_i] ) ))
done
echo ${_dp}
}
# # Function _flipit(string) - return flipped string
#
function _flipit {
typeset _buf ; _buf="$1"
typeset _tmp ; unset _tmp
for (( _i=$(( ${#_buf}-1 )); _i>=0; _i-- )); do
_tmp="${_tmp}${_buf:${_i}:1}"
done
echo "${_tmp}"
}
# # Function _bitget(string, side) - return bitless string & bit
#
function _bitget {
typeset _buff ; _buff="$1"
typeset _side ; integer _side=$2
typeset _ubit _bit
_ubit=${_buff:0:1}
[[ ${_ubit} == \# ]] && _bit=1 || _bit=0
(( _side )) && (( _bit = ! _bit ))
echo ${_buff#*${_ubit}}
return ${_bit}
}
# # Function _decode(upc_arr, digit_arr)
#
function _decode {
typeset _uarr ; nameref _uarr="$1" # UPC code array
typeset _darr ; nameref _darr="$2" # Decimal array
typeset _s _d _b _bit _digit _uarrcopy ; integer _s _d _b _bit
typeset -a _uarrcopy=( ${_uarr[@]} )
for (( _s=0; _s<${#_uarr[*]}; _s++ )); do # each "side"
for (( _d=0; _d<numdig; _d++ )) ; do # each "digit"
for (( _b=0; _b<bpd; _b++ )) ; do # each "bit"
_uarr[_s]=$(_bitget ${_uarr[_s]} ${_s}) ; _bit=$?
_digit="${_digit}${_bit}"
done
_darr[_s]="${_darr[_s]} $(_todec ${_digit})"
if (( $? )); then # May be upside-down
typeset -a _uarr=( ${_uarrcopy[@]} ) # Replace
return 1
fi
unset _digit
done
done
}
# # Function _todec(digit) - Return numeric digit from upc code
#
function _todec {
typeset _bdig ; _bdig="$1"
typeset _i ; integer _i
for (( _i=0; _i<${#udig[*]}; _i++ )); do
[[ ${_bdig} == ${udig[_i]} ]] && echo ${_i} && return 0
done
return 1
}
# # Function _parseUPC(str, arr) - parse UPS string into 2 ele array
#
function _parseUPC {
typeset _buf ; typeset _buf="$1"
typeset _arr ; nameref _arr="$2"
typeset _pre _mid
_pre="${_buf%%${END_SEQ}*}"
_buf="${_buf#*${_pre}}" # Strip preamble
_buf="${_buf#*${END_SEQ}}" # Strip $SEQ
_arr[0]="${_buf:0:$((bpd * numdig))}" # Get the left hand digits
_buf="${_buf#*${_arr[0]}}" # Strip left side digits
_mid="${_buf:0:5}" # Check the middle SEQ
_buf="${_buf#*${MID_SEQ}}" # Strip $SEQ
_arr[1]="${_buf:0:$((bpd * numdig))}" # Get the right hand digits
_buf="${_buf#*${_arr[1]}}" # Strip right side digits
_end="${_buf:0:3}" # Check the end SEQ
_buf="${_buf#*${END_SEQ}}" # Strip $SEQ
}
######
# main #
######
oldIFS="$IFS" ; IFS=''
while read; do
[[ "$REPLY" == \;* ]] && continue
unset side_arr ; typeset -a side_arr # [0]=left [1]=right
_parseUPC "$REPLY" side_arr
unset digit_arr ; typeset -a digit_arr # [0]=left [1]=right
_decode side_arr digit_arr ; integer uflg=$?
if (( uflg )); then # Flip sides and reverse UPC_code
unset digit_arr ; typeset -a digit_arr # [0]=left [1]=right
buff="$(_flipit "${side_arr[0]}")"
side_arr[0]="$(_flipit "${side_arr[1]}")"
side_arr[1]="${buff}"
_decode side_arr digit_arr ; integer vflg=$?
fi
(( ! vflg )) && _validate digit_arr "${oldIFS}" ; integer vflg=$?
if (( vflg )); then
print "INVALID DIGIT(S)"
unset vflg
else
print "${digit_arr[*]} ${umess[uflg]}"
unset uflg
fi
done < ${UPC_data_file} |
http://rosettacode.org/wiki/Update_a_configuration_file | Update a configuration file | We have a configuration file as follows:
# This is a configuration file in standard configuration file format
#
# Lines begininning with a hash or a semicolon are ignored by the application
# program. Blank lines are also ignored by the application program.
# The first word on each non comment line is the configuration option.
# Remaining words or numbers on the line are configuration parameter
# data fields.
# Note that configuration option names are not case sensitive. However,
# configuration parameter data is case sensitive and the lettercase must
# be preserved.
# This is a favourite fruit
FAVOURITEFRUIT banana
# This is a boolean that should be set
NEEDSPEELING
# This boolean is commented out
; SEEDSREMOVED
# How many bananas we have
NUMBEROFBANANAS 48
The task is to manipulate the configuration file as follows:
Disable the needspeeling option (using a semicolon prefix)
Enable the seedsremoved option by removing the semicolon and any leading whitespace
Change the numberofbananas parameter to 1024
Enable (or create if it does not exist in the file) a parameter for numberofstrawberries with a value of 62000
Note that configuration option names are not case sensitive. This means that changes should be effected, regardless of the case.
Options should always be disabled by prefixing them with a semicolon.
Lines beginning with hash symbols should not be manipulated and left unchanged in the revised file.
If a configuration option does not exist within the file (in either enabled or disabled form), it should be added during this update. Duplicate configuration option names in the file should be removed, leaving just the first entry.
For the purpose of this task, the revised file should contain appropriate entries, whether enabled or not for needspeeling,seedsremoved,numberofbananas and numberofstrawberries.)
The update should rewrite configuration option names in capital letters. However lines beginning with hashes and any parameter data must not be altered (eg the banana for favourite fruit must not become capitalized). The update process should also replace double semicolon prefixes with just a single semicolon (unless it is uncommenting the option, in which case it should remove all leading semicolons).
Any lines beginning with a semicolon or groups of semicolons, but no following option should be removed, as should any leading or trailing whitespace on the lines. Whitespace between the option and parameters should consist only of a single
space, and any non-ASCII extended characters, tabs characters, or control codes
(other than end of line markers), should also be removed.
Related tasks
Read a configuration file
| #PowerShell | PowerShell |
function Update-ConfigurationFile
{
[CmdletBinding()]
Param
(
[Parameter(Mandatory=$false,
Position=0)]
[ValidateScript({Test-Path $_})]
[string]
$Path = ".\config.txt",
[Parameter(Mandatory=$false)]
[string]
$FavouriteFruit,
[Parameter(Mandatory=$false)]
[int]
$NumberOfBananas,
[Parameter(Mandatory=$false)]
[int]
$NumberOfStrawberries,
[Parameter(Mandatory=$false)]
[ValidateSet("On", "Off")]
[string]
$NeedsPeeling,
[Parameter(Mandatory=$false)]
[ValidateSet("On", "Off")]
[string]
$SeedsRemoved
)
[string[]]$lines = Get-Content $Path
Clear-Content $Path
if (-not ($lines | Select-String -Pattern "^\s*NumberOfStrawberries" -Quiet))
{
"", "# How many strawberries we have", "NumberOfStrawberries 0" | ForEach-Object {$lines += $_}
}
foreach ($line in $lines)
{
$line = $line -replace "^\s*","" ## Strip leading whitespace
if ($line -match "[;].*\s*") {continue} ## Strip semicolons
switch -Regex ($line)
{
"(^$)|(^#\s.*)" ## Blank line or comment
{
$line = $line
}
"^FavouriteFruit\s*.*" ## Parameter FavouriteFruit
{
if ($FavouriteFruit)
{
$line = "FAVOURITEFRUIT $FavouriteFruit"
}
}
"^NumberOfBananas\s*.*" ## Parameter NumberOfBananas
{
if ($NumberOfBananas)
{
$line = "NUMBEROFBANANAS $NumberOfBananas"
}
}
"^NumberOfStrawberries\s*.*" ## Parameter NumberOfStrawberries
{
if ($NumberOfStrawberries)
{
$line = "NUMBEROFSTRAWBERRIES $NumberOfStrawberries"
}
}
".*NeedsPeeling\s*.*" ## Parameter NeedsPeeling
{
if ($NeedsPeeling -eq "On")
{
$line = "NEEDSPEELING"
}
elseif ($NeedsPeeling -eq "Off")
{
$line = "; NEEDSPEELING"
}
}
".*SeedsRemoved\s*.*" ## Parameter SeedsRemoved
{
if ($SeedsRemoved -eq "On")
{
$line = "SEEDSREMOVED"
}
elseif ($SeedsRemoved -eq "Off")
{
$line = "; SEEDSREMOVED"
}
}
Default ## Whatever...
{
$line = $line
}
}
Add-Content $Path -Value $line -Force
}
}
|
http://rosettacode.org/wiki/User_input/Text | User input/Text | User input/Text is part of Short Circuit's Console Program Basics selection.
Task
Input a string and the integer 75000 from the text console.
See also: User input/Graphical
| #Groovy | Groovy | word = System.in.readLine()
num = System.in.readLine().toInteger() |
http://rosettacode.org/wiki/User_input/Text | User input/Text | User input/Text is part of Short Circuit's Console Program Basics selection.
Task
Input a string and the integer 75000 from the text console.
See also: User input/Graphical
| #Haskell | Haskell | import System.IO (hFlush, stdout)
main = do
putStr "Enter a string: "
hFlush stdout
str <- getLine
putStr "Enter an integer: "
hFlush stdout
num <- readLn :: IO Int
putStrLn $ str ++ (show num) |
http://rosettacode.org/wiki/User_input/Graphical | User input/Graphical |
In this task, the goal is to input a string and the integer 75000, from graphical user interface.
See also: User input/Text
| #NewLISP | NewLISP | ; file: input-gui.lsp
; url: http://rosettacode.org/wiki/User_input/Graphical
; author: oofoe 2012-02-02
; Colours
(setq ok '(.8 1 .8) fail '(1 .5 .5))
; Load library and initialize GUI server:
(load (append (env "NEWLISPDIR") "/guiserver.lsp"))
(gs:init)
; Validation Callback
; There is a bug in the "gs:get-text" function that causes it to fail
; silently if the text field is empty. Therfore, I set the field
; background to red first and only clear it if the field returns
; correctly.
(define (validate)
(gs:set-color 'string fail)
(if (not (empty? (gs:get-text 'string)))
(gs:set-color 'string ok))
(gs:set-color 'number fail)
(if (= 75000 (int (gs:get-text 'number)))
(gs:set-color 'number ok))
)
; Create main window frame and set layout.
(gs:frame 'main 100 100 256 128 "User Input/Graphical")
(gs:set-flow-layout 'main "left" 4 4)
; Create and add widgets.
(gs:label 'instructions "Please enter a string and the number 75000:")
(gs:text-field 'string 'validate 32)
(gs:text-field 'number 'validate 8)
(gs:button 'check 'validate "validate...")
(gs:add-to 'main 'instructions 'string 'number 'check)
; Show main window.
(gs:set-visible 'main true)
; Start event loop.
(gs:listen)
; No (exit) needed -- guiserver kills program on window close.
|
http://rosettacode.org/wiki/UTF-8_encode_and_decode | UTF-8 encode and decode | As described in UTF-8 and in Wikipedia, UTF-8 is a popular encoding of (multi-byte) Unicode code-points into eight-bit octets.
The goal of this task is to write a encoder that takes a unicode code-point (an integer representing a unicode character) and returns a sequence of 1-4 bytes representing that character in the UTF-8 encoding.
Then you have to write the corresponding decoder that takes a sequence of 1-4 UTF-8 encoded bytes and return the corresponding unicode character.
Demonstrate the functionality of your encoder and decoder on the following five characters:
Character Name Unicode UTF-8 encoding (hex)
---------------------------------------------------------------------------------
A LATIN CAPITAL LETTER A U+0041 41
ö LATIN SMALL LETTER O WITH DIAERESIS U+00F6 C3 B6
Ж CYRILLIC CAPITAL LETTER ZHE U+0416 D0 96
€ EURO SIGN U+20AC E2 82 AC
𝄞 MUSICAL SYMBOL G CLEF U+1D11E F0 9D 84 9E
Provided below is a reference implementation in Common Lisp.
| #Processing | Processing | import java.nio.charset.StandardCharsets;
Integer[] code_points = {0x0041, 0x00F6, 0x0416, 0x20AC, 0x1D11E};
void setup() {
size(850, 230);
background(255);
fill(0);
textSize(16);
int tel_1 = 80;
int tel_2 = 50;
text("Char Name Unicode UTF-8 (encoding) Decoded", 40, 40);
for (int cp : code_points) {
byte[] encoded = new String(new int[]{cp}, 0, 1).getBytes(StandardCharsets.UTF_8);
for (byte b : encoded) {
text(hex(b), tel_2+530, tel_1);
tel_2 += 30;
}
text(char(cp), 50, tel_1);
text(Character.getName(cp), 100, tel_1);
String unicode = hex(cp);
while (unicode.length() > 4 && unicode.indexOf("0") == 0) unicode = unicode.substring(1);
text("U+"+unicode, 450, tel_1);
Character decoded = char(new String(encoded, StandardCharsets.UTF_8).codePointAt(0));
text(decoded, 750, tel_1);
tel_1 += 30; tel_2 = 50;
}
} |
http://rosettacode.org/wiki/URL_parser | URL parser | URLs are strings with a simple syntax:
scheme://[username:password@]domain[:port]/path?query_string#fragment_id
Task
Parse a well-formed URL to retrieve the relevant information: scheme, domain, path, ...
Note: this task has nothing to do with URL encoding or URL decoding.
According to the standards, the characters:
! * ' ( ) ; : @ & = + $ , / ? % # [ ]
only need to be percent-encoded (%) in case of possible confusion.
Also note that the path, query and fragment are case sensitive, even if the scheme and domain are not.
The way the returned information is provided (set of variables, array, structured, record, object,...)
is language-dependent and left to the programmer, but the code should be clear enough to reuse.
Extra credit is given for clear error diagnostics.
Here is the official standard: https://tools.ietf.org/html/rfc3986,
and here is a simpler BNF: http://www.w3.org/Addressing/URL/5_URI_BNF.html.
Test cases
According to T. Berners-Lee
foo://example.com:8042/over/there?name=ferret#nose should parse into:
scheme = foo
domain = example.com
port = :8042
path = over/there
query = name=ferret
fragment = nose
urn:example:animal:ferret:nose should parse into:
scheme = urn
path = example:animal:ferret:nose
other URLs that must be parsed include:
jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true
ftp://ftp.is.co.za/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc2396.txt#header1
ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two
mailto:[email protected]
news:comp.infosystems.www.servers.unix
tel:+1-816-555-1212
telnet://192.0.2.16:80/
urn:oasis:names:specification:docbook:dtd:xml:4.1.2
| #VBScript | VBScript |
Function parse_url(url)
parse_url = "URL: " & url
If InStr(url,"//") Then
'parse the scheme
scheme = Split(url,"//")
parse_url = parse_url & vbcrlf & "Scheme: " & Mid(scheme(0),1,Len(scheme(0))-1)
'parse the domain
domain = Split(scheme(1),"/")
'check if the domain includes a username, password, and port
If InStr(domain(0),"@") Then
cred = Split(domain(0),"@")
If InStr(cred(0),".") Then
username = Mid(cred(0),1,InStr(1,cred(0),".")-1)
password = Mid(cred(0),InStr(1,cred(0),".")+1,Len(cred(0))-InStr(1,cred(0),"."))
ElseIf InStr(cred(0),":") Then
username = Mid(cred(0),1,InStr(1,cred(0),":")-1)
password = Mid(cred(0),InStr(1,cred(0),":")+1,Len(cred(0))-InStr(1,cred(0),":"))
End If
parse_url = parse_url & vbcrlf & "Username: " & username & vbCrLf &_
"Password: " & password
'check if the domain have a port
If InStr(cred(1),":") Then
host = Mid(cred(1),1,InStr(1,cred(1),":")-1)
port = Mid(cred(1),InStr(1,cred(1),":")+1,Len(cred(1))-InStr(1,cred(1),":"))
parse_url = parse_url & vbCrLf & "Domain: " & host & vbCrLf & "Port: " & port
Else
parse_url = parse_url & vbCrLf & "Domain: " & cred(1)
End If
ElseIf InStr(domain(0),":") And Instr(domain(0),"[") = False And Instr(domain(0),"]") = False Then
host = Mid(domain(0),1,InStr(1,domain(0),":")-1)
port = Mid(domain(0),InStr(1,domain(0),":")+1,Len(domain(0))-InStr(1,domain(0),":"))
parse_url = parse_url & vbCrLf & "Domain: " & host & vbCrLf & "Port: " & port
ElseIf Instr(domain(0),"[") And Instr(domain(0),"]:") Then
host = Mid(domain(0),1,InStr(1,domain(0),"]"))
port = Mid(domain(0),InStr(1,domain(0),"]")+2,Len(domain(0))-(InStr(1,domain(0),"]")+1))
parse_url = parse_url & vbCrLf & "Domain: " & host & vbCrLf & "Port: " & port
Else
parse_url = parse_url & vbCrLf & "Domain: " & domain(0)
End If
'parse the path if exist
If UBound(domain) > 0 Then
For i = 1 To UBound(domain)
If i < UBound(domain) Then
path = path & domain(i) & "/"
ElseIf InStr(domain(i),"?") Then
path = path & Mid(domain(i),1,InStr(1,domain(i),"?")-1)
If InStr(domain(i),"#") Then
query = Mid(domain(i),InStr(1,domain(i),"?")+1,InStr(1,domain(i),"#")-InStr(1,domain(i),"?")-1)
fragment = Mid(domain(i),InStr(1,domain(i),"#")+1,Len(domain(i))-InStr(1,domain(i),"#"))
path = path & vbcrlf & "Query: " & query & vbCrLf & "Fragment: " & fragment
Else
query = Mid(domain(i),InStr(1,domain(i),"?")+1,Len(domain(i))-InStr(1,domain(i),"?"))
path = path & vbcrlf & "Query: " & query
End If
ElseIf InStr(domain(i),"#") Then
fragment = Mid(domain(i),InStr(1,domain(i),"#")+1,Len(domain(i))-InStr(1,domain(i),"#"))
path = path & Mid(domain(i),1,InStr(1,domain(i),"#")-1) & vbCrLf &_
"Fragment: " & fragment
Else
path = path & domain(i)
End If
Next
parse_url = parse_url & vbCrLf & "Path: " & path
End If
ElseIf InStr(url,":") Then
scheme = Mid(url,1,InStr(1,url,":")-1)
path = Mid(url,InStr(1,url,":")+1,Len(url)-InStr(1,url,":"))
parse_url = parse_url & vbcrlf & "Scheme: " & scheme & vbCrLf & "Path: " & path
Else
parse_url = parse_url & vbcrlf & "Invalid!!!"
End If
End Function
'test the convoluted function :-(
WScript.StdOut.WriteLine parse_url("foo://example.com:8042/over/there?name=ferret#nose")
WScript.StdOut.WriteLine "-------------------------------"
WScript.StdOut.WriteLine parse_url("jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true")
WScript.StdOut.WriteLine "-------------------------------"
WScript.StdOut.WriteLine parse_url("ftp://ftp.is.co.za/rfc/rfc1808.txt")
WScript.StdOut.WriteLine "-------------------------------"
WScript.StdOut.WriteLine parse_url("http://www.ietf.org/rfc/rfc2396.txt#header1")
WScript.StdOut.WriteLine "-------------------------------"
WScript.StdOut.WriteLine parse_url("ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two")
WScript.StdOut.WriteLine "-------------------------------"
WScript.StdOut.WriteLine parse_url("mailto:[email protected]")
WScript.StdOut.WriteLine "-------------------------------"
WScript.StdOut.WriteLine parse_url("news:comp.infosystems.www.servers.unix")
WScript.StdOut.WriteLine "-------------------------------"
WScript.StdOut.WriteLine parse_url("tel:+1-816-555-1212")
WScript.StdOut.WriteLine "-------------------------------"
WScript.StdOut.WriteLine parse_url("telnet://192.0.2.16:80/")
WScript.StdOut.WriteLine "-------------------------------"
WScript.StdOut.WriteLine parse_url("urn:oasis:names:specification:docbook:dtd:xml:4.1.2")
WScript.StdOut.WriteLine "-------------------------------"
WScript.StdOut.WriteLine parse_url("this code is messy, long, and needs a makeover!!!")
|
http://rosettacode.org/wiki/URL_encoding | URL encoding | Task
Provide a function or mechanism to convert a provided string into URL encoding representation.
In URL encoding, special characters, control characters and extended characters
are converted into a percent symbol followed by a two digit hexadecimal code,
So a space character encodes into %20 within the string.
For the purposes of this task, every character except 0-9, A-Z and a-z requires conversion, so the following characters all require conversion by default:
ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F (127 decimal).
ASCII symbols (Character ranges 32-47 decimal (20-2F hex))
ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))
ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))
ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))
Extended characters with character codes of 128 decimal (80 hex) and above.
Example
The string "http://foo bar/" would be encoded as "http%3A%2F%2Ffoo%20bar%2F".
Variations
Lowercase escapes are legal, as in "http%3a%2f%2ffoo%20bar%2f".
Some standards give different rules: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, section 2.3, says that "-._~" should not be encoded. HTML 5, section 4.10.22.5 URL-encoded form data, says to preserve "-._*", and to encode space " " to "+". The options below provide for utilization of an exception string, enabling preservation (non encoding) of particular characters to meet specific standards.
Options
It is permissible to use an exception string (containing a set of symbols
that do not need to be converted).
However, this is an optional feature and is not a requirement of this task.
Related tasks
URL decoding
URL parser
| #MATLAB_.2F_Octave | MATLAB / Octave | function u = urlencoding(s)
u = '';
for k = 1:length(s),
if isalnum(s(k))
u(end+1) = s(k);
else
u=[u,'%',dec2hex(s(k)+0)];
end;
end
end |
http://rosettacode.org/wiki/URL_encoding | URL encoding | Task
Provide a function or mechanism to convert a provided string into URL encoding representation.
In URL encoding, special characters, control characters and extended characters
are converted into a percent symbol followed by a two digit hexadecimal code,
So a space character encodes into %20 within the string.
For the purposes of this task, every character except 0-9, A-Z and a-z requires conversion, so the following characters all require conversion by default:
ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F (127 decimal).
ASCII symbols (Character ranges 32-47 decimal (20-2F hex))
ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))
ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))
ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))
Extended characters with character codes of 128 decimal (80 hex) and above.
Example
The string "http://foo bar/" would be encoded as "http%3A%2F%2Ffoo%20bar%2F".
Variations
Lowercase escapes are legal, as in "http%3a%2f%2ffoo%20bar%2f".
Some standards give different rules: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, section 2.3, says that "-._~" should not be encoded. HTML 5, section 4.10.22.5 URL-encoded form data, says to preserve "-._*", and to encode space " " to "+". The options below provide for utilization of an exception string, enabling preservation (non encoding) of particular characters to meet specific standards.
Options
It is permissible to use an exception string (containing a set of symbols
that do not need to be converted).
However, this is an optional feature and is not a requirement of this task.
Related tasks
URL decoding
URL parser
| #NetRexx | NetRexx | /* NetRexx */
options replace format comments java crossref symbols nobinary
/* -------------------------------------------------------------------------- */
testcase()
say
say 'RFC3986'
testcase('RFC3986')
say
say 'HTML5'
testcase('HTML5')
say
return
/* -------------------------------------------------------------------------- */
method encode(url, varn) public static
variation = varn.upper
opts = ''
opts['RFC3986'] = '-._~'
opts['HTML5'] = '-._*'
rp = ''
loop while url.length > 0
parse url tc +1 url
select
when tc.datatype('A') then do
rp = rp || tc
end
when tc == ' ' then do
if variation = 'HTML5' then
rp = rp || '+'
else
rp = rp || '%' || tc.c2x
end
otherwise do
if opts[variation].pos(tc) > 0 then do
rp = rp || tc
end
else do
rp = rp || '%' || tc.c2x
end
end
end
end
return rp
/* -------------------------------------------------------------------------- */
method testcase(variation = '') public static
url = [ -
'http://foo bar/' -
, 'mailto:"Ivan Aim" <[email protected]>' -
, 'mailto:"Irma User" <[email protected]>' -
, 'http://foo.bar.com/~user-name/_subdir/*~.html' -
]
loop i_ = 0 to url.length - 1
say url[i_]
say encode(url[i_], variation)
end i_
return
|
http://rosettacode.org/wiki/Variables | Variables | Task
Demonstrate a language's methods of:
variable declaration
initialization
assignment
datatypes
scope
referencing, and
other variable related facilities
| #Joy | Joy | [] unstack |
http://rosettacode.org/wiki/Variables | Variables | Task
Demonstrate a language's methods of:
variable declaration
initialization
assignment
datatypes
scope
referencing, and
other variable related facilities
| #jq | jq | jq -n '1 as $x | (2 as $x | $x) | $x' |
http://rosettacode.org/wiki/Van_Eck_sequence | Van Eck sequence | The sequence is generated by following this pseudo-code:
A: The first term is zero.
Repeatedly apply:
If the last term is *new* to the sequence so far then:
B: The next term is zero.
Otherwise:
C: The next term is how far back this last term occured previously.
Example
Using A:
0
Using B:
0 0
Using C:
0 0 1
Using B:
0 0 1 0
Using C: (zero last occurred two steps back - before the one)
0 0 1 0 2
Using B:
0 0 1 0 2 0
Using C: (two last occurred two steps back - before the zero)
0 0 1 0 2 0 2 2
Using C: (two last occurred one step back)
0 0 1 0 2 0 2 2 1
Using C: (one last appeared six steps back)
0 0 1 0 2 0 2 2 1 6
...
Task
Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers.
Use it to display here, on this page:
The first ten terms of the sequence.
Terms 991 - to - 1000 of the sequence.
References
Don't Know (the Van Eck Sequence) - Numberphile video.
Wikipedia Article: Van Eck's Sequence.
OEIS sequence: A181391.
| #REXX | REXX | /*REXX pgm generates/displays the 'start ──► end' elements of the Van Eck sequence.*/
parse arg LO HI $ . /*obtain optional arguments from the CL*/
if LO=='' | LO=="," then LO= 1 /*Not specified? Then use the default.*/
if HI=='' | HI=="," then HI= 10 /* " " " " " " */
if $=='' | $=="," then $= 0 /* " " " " " " */
$$=; z= $ /*$$: old seq: $: initial value of seq*/
do HI-1; z= wordpos( reverse(z), reverse($$) ); $$= $; $= $ z
end /*HI-1*/ /*REVERSE allows backwards search in $.*/
/*stick a fork in it, we're all done. */
say 'terms ' LO " through " HI ' of the Van Eck sequence are: ' subword($,LO,HI-LO+1) |
http://rosettacode.org/wiki/Van_Eck_sequence | Van Eck sequence | The sequence is generated by following this pseudo-code:
A: The first term is zero.
Repeatedly apply:
If the last term is *new* to the sequence so far then:
B: The next term is zero.
Otherwise:
C: The next term is how far back this last term occured previously.
Example
Using A:
0
Using B:
0 0
Using C:
0 0 1
Using B:
0 0 1 0
Using C: (zero last occurred two steps back - before the one)
0 0 1 0 2
Using B:
0 0 1 0 2 0
Using C: (two last occurred two steps back - before the zero)
0 0 1 0 2 0 2 2
Using C: (two last occurred one step back)
0 0 1 0 2 0 2 2 1
Using C: (one last appeared six steps back)
0 0 1 0 2 0 2 2 1 6
...
Task
Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers.
Use it to display here, on this page:
The first ten terms of the sequence.
Terms 991 - to - 1000 of the sequence.
References
Don't Know (the Van Eck Sequence) - Numberphile video.
Wikipedia Article: Van Eck's Sequence.
OEIS sequence: A181391.
| #Ruby | Ruby | van_eck = Enumerator.new do |y|
ar = [0]
loop do
y << (term = ar.last) # yield
ar << (ar.count(term)==1 ? 0 : ar.size - 1 - ar[0..-2].rindex(term))
end
end
ve = van_eck.take(1000)
p ve.first(10), ve.last(10)
|
http://rosettacode.org/wiki/Variadic_function | Variadic function | Task
Create a function which takes in a variable number of arguments and prints each one on its own line.
Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime.
Functions of this type are also known as Variadic Functions.
Related task
Call a function
| #RapidQ | RapidQ | SUBI printAll (...)
FOR i = 1 TO ParamValCount
PRINT ParamVal(i)
NEXT i
FOR i = 1 TO ParamStrCount
PRINT ParamStr$(i)
NEXT i
END SUBI
printAll 4, 3, 5, 6, 4, 3
printAll 4, 3, 5
printAll "Rosetta", "Code", "Is", "Awesome!" |
http://rosettacode.org/wiki/Variadic_function | Variadic function | Task
Create a function which takes in a variable number of arguments and prints each one on its own line.
Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime.
Functions of this type are also known as Variadic Functions.
Related task
Call a function
| #REALbasic | REALbasic |
Sub PrintArgs(ParamArray Args() As String)
For i As Integer = 0 To Ubound(Args)
Print(Args(i))
Next
End Sub
|
http://rosettacode.org/wiki/Vector_products | Vector products | A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: (X, Y, Z).
If you imagine a graph with the x and y axis being at right angles to each other and having a third, z axis coming out of the page, then a triplet of numbers, (X, Y, Z) would represent a point in the region, and a vector from the origin to the point.
Given the vectors:
A = (a1, a2, a3)
B = (b1, b2, b3)
C = (c1, c2, c3)
then the following common vector products are defined:
The dot product (a scalar quantity)
A • B = a1b1 + a2b2 + a3b3
The cross product (a vector quantity)
A x B = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)
The scalar triple product (a scalar quantity)
A • (B x C)
The vector triple product (a vector quantity)
A x (B x C)
Task
Given the three vectors:
a = ( 3, 4, 5)
b = ( 4, 3, 5)
c = (-5, -12, -13)
Create a named function/subroutine/method to compute the dot product of two vectors.
Create a function to compute the cross product of two vectors.
Optionally create a function to compute the scalar triple product of three vectors.
Optionally create a function to compute the vector triple product of three vectors.
Compute and display: a • b
Compute and display: a x b
Compute and display: a • (b x c), the scalar triple product.
Compute and display: a x (b x c), the vector triple product.
References
A starting page on Wolfram MathWorld is Vector Multiplication .
Wikipedia dot product.
Wikipedia cross product.
Wikipedia triple product.
Related tasks
Dot product
Quaternion type
| #Icon_and_Unicon | Icon and Unicon | # record type to store a 3D vector
record Vector3D(x, y, z)
# procedure to display vector as a string
procedure toString (vector)
return "(" || vector.x || ", " || vector.y || ", " || vector.z || ")"
end
procedure dotProduct (a, b)
return a.x * b.x + a.y * b.y + a.z * b.z
end
procedure crossProduct (a, b)
x := a.y * b.z - a.z * b.y
y := a.z * b.x - a.x * b.z
z := a.x * b.y - a.y * b.x
return Vector3D(x, y, z)
end
procedure scalarTriple (a, b, c)
return dotProduct (a, crossProduct (b, c))
end
procedure vectorTriple (a, b, c)
return crossProduct (a, crossProduct (b, c))
end
# main procedure, to run given test
procedure main ()
a := Vector3D(3, 4, 5)
b := Vector3D(4, 3, 5)
c := Vector3D(-5, -12, -13)
writes ("A.B : " || toString(a) || "." || toString(b) || " = ")
write (dotProduct (a, b))
writes ("AxB : " || toString(a) || "x" || toString(b) || " = ")
write (toString(crossProduct (a, b)))
writes ("A.(BxC) : " || toString(a) || ".(" || toString(b) || "x" || toString(c) || ") = ")
write (scalarTriple (a, b, c))
writes ("Ax(BxC) : " || toString(a) || "x(" || toString(b) || "x" || toString(c) || ") = ")
write (toString(vectorTriple (a, b, c)))
end |
http://rosettacode.org/wiki/Validate_International_Securities_Identification_Number | Validate International Securities Identification Number | An International Securities Identification Number (ISIN) is a unique international identifier for a financial security such as a stock or bond.
Task
Write a function or program that takes a string as input, and checks whether it is a valid ISIN.
It is only valid if it has the correct format, and the embedded checksum is correct.
Demonstrate that your code passes the test-cases listed below.
Details
The format of an ISIN is as follows:
┌───────────── a 2-character ISO country code (A-Z)
│ ┌─────────── a 9-character security code (A-Z, 0-9)
│ │ ┌── a checksum digit (0-9)
AU0000XVGZA3
For this task, you may assume that any 2-character alphabetic sequence is a valid country code.
The checksum can be validated as follows:
Replace letters with digits, by converting each character from base 36 to base 10, e.g. AU0000XVGZA3 →1030000033311635103.
Perform the Luhn test on this base-10 number.
There is a separate task for this test: Luhn test of credit card numbers.
You don't have to replicate the implementation of this test here ─── you can just call the existing function from that task. (Add a comment stating if you did this.)
Test cases
ISIN
Validity
Comment
US0378331005
valid
US0373831005
not valid
The transposition typo is caught by the checksum constraint.
U50378331005
not valid
The substitution typo is caught by the format constraint.
US03378331005
not valid
The duplication typo is caught by the format constraint.
AU0000XVGZA3
valid
AU0000VXGZA3
valid
Unfortunately, not all transposition typos are caught by the checksum constraint.
FR0000988040
valid
(The comments are just informational. Your function should simply return a Boolean result. See #Raku for a reference solution.)
Related task:
Luhn test of credit card numbers
Also see
Interactive online ISIN validator
Wikipedia article: International Securities Identification Number
| #SQL_PL | SQL PL |
--#SET TERMINATOR @
SET SERVEROUTPUT ON @
CREATE OR REPLACE FUNCTION VALIDATE_ISIN (
IN IDENTIFIER VARCHAR(12)
) RETURNS SMALLINT
-- ) RETURNS BOOLEAN
BEGIN
DECLARE CHECKSUM_FUNC CHAR(1);
DECLARE CONVERTED VARCHAR(24);
DECLARE I SMALLINT;
DECLARE LENGTH SMALLINT;
DECLARE RET SMALLINT DEFAULT 1;
--DECLARE RET BOOLEAN DEFAULT FALSE;
DECLARE CHAR_AT CHAR(1);
DECLARE INVALID_CHAR CONDITION FOR SQLSTATE 'ISIN1';
SET CHAR_AT = SUBSTR(IDENTIFIER, 1, 1);
IF (ASCII(CHAR_AT) < 65 OR 90 < ASCII(CHAR_AT)) THEN
SIGNAL INVALID_CHAR SET MESSAGE_TEXT = 'Country code with invalid characters';
END IF;
SET CHAR_AT = SUBSTR(IDENTIFIER, 2, 1);
IF (ASCII(CHAR_AT) < 65 OR 90 < ASCII(CHAR_AT)) THEN
SIGNAL INVALID_CHAR SET MESSAGE_TEXT = 'Country code with invalid characters';
END IF;
-- Convert letters to numbers.
SET I = 1;
SET CONVERTED = '';
SET LENGTH = LENGTH(IDENTIFIER);
WHILE (I <= LENGTH) DO
SET CHAR_AT = SUBSTR(IDENTIFIER, I, 1);
IF (48 <= ASCII(CHAR_AT) AND ASCII(CHAR_AT) <= 57) THEN
SET CONVERTED = CONVERTED || CHAR_AT;
ELSE
SET CONVERTED = CONVERTED || (ASCII(CHAR_AT) - 55);
END IF;
SET I = I + 1;
END WHILE;
CALL DBMS_OUTPUT.PUT_LINE(CONVERTED);
-- This function is implemented in Rosetta code.
SET CHECKSUM_FUNC = LUHN_TEST(CONVERTED);
IF (CHECKSUM_FUNC = 0) THEN
SET RET = 0;
--SET RET = TRUE;
END IF;
RETURN RET;
END @
|
http://rosettacode.org/wiki/Van_der_Corput_sequence | Van der Corput sequence | When counting integers in binary, if you put a (binary) point to the righEasyLangt of the count then the column immediately to the left denotes a digit with a multiplier of
2
0
{\displaystyle 2^{0}}
; the digit in the next column to the left has a multiplier of
2
1
{\displaystyle 2^{1}}
; and so on.
So in the following table:
0.
1.
10.
11.
...
the binary number "10" is
1
×
2
1
+
0
×
2
0
{\displaystyle 1\times 2^{1}+0\times 2^{0}}
.
You can also have binary digits to the right of the “point”, just as in the decimal number system. In that case, the digit in the place immediately to the right of the point has a weight of
2
−
1
{\displaystyle 2^{-1}}
, or
1
/
2
{\displaystyle 1/2}
.
The weight for the second column to the right of the point is
2
−
2
{\displaystyle 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
. And so on.
If you take the integer binary count of the first table, and reflect the digits about the binary point, you end up with the van der Corput sequence of numbers in base 2.
.0
.1
.01
.11
...
The third member of the sequence, binary 0.01, is therefore
0
×
2
−
1
+
1
×
2
−
2
{\displaystyle 0\times 2^{-1}+1\times 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
.
Distribution of 2500 points each: Van der Corput (top) vs pseudorandom
0
≤
x
<
1
{\displaystyle 0\leq x<1}
Monte Carlo simulations
This sequence is also a superset of the numbers representable by the "fraction" field of an old IEEE floating point standard. In that standard, the "fraction" field represented the fractional part of a binary number beginning with "1." e.g. 1.101001101.
Hint
A hint at a way to generate members of the sequence is to modify a routine used to change the base of an integer:
>>> def base10change(n, base):
digits = []
while n:
n,remainder = divmod(n, base)
digits.insert(0, remainder)
return digits
>>> base10change(11, 2)
[1, 0, 1, 1]
the above showing that 11 in decimal is
1
×
2
3
+
0
×
2
2
+
1
×
2
1
+
1
×
2
0
{\displaystyle 1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1\times 2^{0}}
.
Reflected this would become .1101 or
1
×
2
−
1
+
1
×
2
−
2
+
0
×
2
−
3
+
1
×
2
−
4
{\displaystyle 1\times 2^{-1}+1\times 2^{-2}+0\times 2^{-3}+1\times 2^{-4}}
Task description
Create a function/method/routine that given n, generates the n'th term of the van der Corput sequence in base 2.
Use the function to compute and display the first ten members of the sequence. (The first member of the sequence is for n=0).
As a stretch goal/extra credit, compute and show members of the sequence for bases other than 2.
See also
The Basic Low Discrepancy Sequences
Non-decimal radices/Convert
Van der Corput sequence
| #Quackery | Quackery | [ $ "bigrat.qky" loadfile ] now!
[ [] swap
[ dup while
base share /mod
rot join swap
again ]
drop ] is digits ( n --> [ )
[ base put
digits reverse
dup 0 swap
witheach
[ base share rot * + ]
base take rot size **
reduce ] is corput ( n n --> n/d )
5 times
[ say "base "
i^ 2 + dup echo
say ": "
10 times
[ i^ over corput
vulgar$ echo$ sp sp ]
cr drop ] |
http://rosettacode.org/wiki/Van_der_Corput_sequence | Van der Corput sequence | When counting integers in binary, if you put a (binary) point to the righEasyLangt of the count then the column immediately to the left denotes a digit with a multiplier of
2
0
{\displaystyle 2^{0}}
; the digit in the next column to the left has a multiplier of
2
1
{\displaystyle 2^{1}}
; and so on.
So in the following table:
0.
1.
10.
11.
...
the binary number "10" is
1
×
2
1
+
0
×
2
0
{\displaystyle 1\times 2^{1}+0\times 2^{0}}
.
You can also have binary digits to the right of the “point”, just as in the decimal number system. In that case, the digit in the place immediately to the right of the point has a weight of
2
−
1
{\displaystyle 2^{-1}}
, or
1
/
2
{\displaystyle 1/2}
.
The weight for the second column to the right of the point is
2
−
2
{\displaystyle 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
. And so on.
If you take the integer binary count of the first table, and reflect the digits about the binary point, you end up with the van der Corput sequence of numbers in base 2.
.0
.1
.01
.11
...
The third member of the sequence, binary 0.01, is therefore
0
×
2
−
1
+
1
×
2
−
2
{\displaystyle 0\times 2^{-1}+1\times 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
.
Distribution of 2500 points each: Van der Corput (top) vs pseudorandom
0
≤
x
<
1
{\displaystyle 0\leq x<1}
Monte Carlo simulations
This sequence is also a superset of the numbers representable by the "fraction" field of an old IEEE floating point standard. In that standard, the "fraction" field represented the fractional part of a binary number beginning with "1." e.g. 1.101001101.
Hint
A hint at a way to generate members of the sequence is to modify a routine used to change the base of an integer:
>>> def base10change(n, base):
digits = []
while n:
n,remainder = divmod(n, base)
digits.insert(0, remainder)
return digits
>>> base10change(11, 2)
[1, 0, 1, 1]
the above showing that 11 in decimal is
1
×
2
3
+
0
×
2
2
+
1
×
2
1
+
1
×
2
0
{\displaystyle 1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1\times 2^{0}}
.
Reflected this would become .1101 or
1
×
2
−
1
+
1
×
2
−
2
+
0
×
2
−
3
+
1
×
2
−
4
{\displaystyle 1\times 2^{-1}+1\times 2^{-2}+0\times 2^{-3}+1\times 2^{-4}}
Task description
Create a function/method/routine that given n, generates the n'th term of the van der Corput sequence in base 2.
Use the function to compute and display the first ten members of the sequence. (The first member of the sequence is for n=0).
As a stretch goal/extra credit, compute and show members of the sequence for bases other than 2.
See also
The Basic Low Discrepancy Sequences
Non-decimal radices/Convert
Van der Corput sequence
| #Racket | Racket | #lang racket
(define (van-der-Corput n base)
(if (zero? n)
0
(let-values ([(q r) (quotient/remainder n base)])
(/ (+ r (van-der-Corput q base))
base)))) |
http://rosettacode.org/wiki/URL_decoding | URL decoding | This task (the reverse of URL encoding and distinct from URL parser) is to provide a function
or mechanism to convert an URL-encoded string into its original unencoded form.
Test cases
The encoded string "http%3A%2F%2Ffoo%20bar%2F" should be reverted to the unencoded form "http://foo bar/".
The encoded string "google.com/search?q=%60Abdu%27l-Bah%C3%A1" should revert to the unencoded form "google.com/search?q=`Abdu'l-Bahá".
| #LiveCode | LiveCode | put urlDecode("http%3A%2F%2Ffoo%20bar%2F") & cr & \
urlDecode("google.com/search?q=%60Abdu%27l-Bah%C3%A1") |
http://rosettacode.org/wiki/URL_decoding | URL decoding | This task (the reverse of URL encoding and distinct from URL parser) is to provide a function
or mechanism to convert an URL-encoded string into its original unencoded form.
Test cases
The encoded string "http%3A%2F%2Ffoo%20bar%2F" should be reverted to the unencoded form "http://foo bar/".
The encoded string "google.com/search?q=%60Abdu%27l-Bah%C3%A1" should revert to the unencoded form "google.com/search?q=`Abdu'l-Bahá".
| #Lua | Lua | function decodeChar(hex)
return string.char(tonumber(hex,16))
end
function decodeString(str)
local output, t = string.gsub(str,"%%(%x%x)",decodeChar)
return output
end
-- will print "http://foo bar/"
print(decodeString("http%3A%2F%2Ffoo%20bar%2F")) |
http://rosettacode.org/wiki/UPC | UPC | Goal
Convert UPC bar codes to decimal.
Specifically:
The UPC standard is actually a collection of standards -- physical standards, data format standards, product reference standards...
Here, in this task, we will focus on some of the data format standards, with an imaginary physical+electrical implementation which converts physical UPC bar codes to ASCII (with spaces and # characters representing the presence or absence of ink).
Sample input
Below, we have a representation of ten different UPC-A bar codes read by our imaginary bar code reader:
# # # ## # ## # ## ### ## ### ## #### # # # ## ## # # ## ## ### # ## ## ### # # #
# # # ## ## # #### # # ## # ## # ## # # # ### # ### ## ## ### # # ### ### # # #
# # # # # ### # # # # # # # # # # ## # ## # ## # ## # # #### ### ## # #
# # ## ## ## ## # # # # ### # ## ## # # # ## ## # ### ## ## # # #### ## # # #
# # ### ## # ## ## ### ## # ## # # ## # # ### # ## ## # # ### # ## ## # # #
# # # # ## ## # # # # ## ## # # # # # #### # ## # #### #### # # ## # #### # #
# # # ## ## # # ## ## # ### ## ## # # # # # # # # ### # # ### # # # # #
# # # # ## ## # # ## ## ### # # # # # ### ## ## ### ## ### ### ## # ## ### ## # #
# # ### ## ## # # #### # ## # #### # #### # # # # # ### # # ### # # # ### # # #
# # # #### ## # #### # # ## ## ### #### # # # # ### # ### ### # # ### # # # ### # #
Some of these were entered upside down, and one entry has a timing error.
Task
Implement code to find the corresponding decimal representation of each, rejecting the error.
Extra credit for handling the rows entered upside down (the other option is to reject them).
Notes
Each digit is represented by 7 bits:
0: 0 0 0 1 1 0 1
1: 0 0 1 1 0 0 1
2: 0 0 1 0 0 1 1
3: 0 1 1 1 1 0 1
4: 0 1 0 0 0 1 1
5: 0 1 1 0 0 0 1
6: 0 1 0 1 1 1 1
7: 0 1 1 1 0 1 1
8: 0 1 1 0 1 1 1
9: 0 0 0 1 0 1 1
On the left hand side of the bar code a space represents a 0 and a # represents a 1.
On the right hand side of the bar code, a # represents a 0 and a space represents a 1
Alternatively (for the above): spaces always represent zeros and # characters always represent ones, but the representation is logically negated -- 1s and 0s are flipped -- on the right hand side of the bar code.
The UPC-A bar code structure
It begins with at least 9 spaces (which our imaginary bar code reader unfortunately doesn't always reproduce properly),
then has a # # sequence marking the start of the sequence,
then has the six "left hand" digits,
then has a # # sequence in the middle,
then has the six "right hand digits",
then has another # # (end sequence), and finally,
then ends with nine trailing spaces (which might be eaten by wiki edits, and in any event, were not quite captured correctly by our imaginary bar code reader).
Finally, the last digit is a checksum digit which may be used to help detect errors.
Verification
Multiply each digit in the represented 12 digit sequence by the corresponding number in (3,1,3,1,3,1,3,1,3,1,3,1) and add the products.
The sum (mod 10) must be 0 (must have a zero as its last digit) if the UPC number has been read correctly.
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | s=" # # # ## # ## # ## ### ## ### ## #### # # # ## ## # # ## ## ### # ## ## ### # # #
# # # ## ## # #### # # ## # ## # ## # # # ### # ### ## ## ### # # ### ### # # #
# # # # # ### # # # # # # # # # # ## # ## # ## # ## # # #### ### ## # #
# # ## ## ## ## # # # # ### # ## ## # # # ## ## # ### ## ## # # #### ## # # #
# # ### ## # ## ## ### ## # ## # # ## # # ### # ## ## # # ### # ## ## # # #
# # # # ## ## # # # # ## ## # # # # # #### # ## # #### #### # # ## # #### # #
# # # ## ## # # ## ## # ### ## ## # # # # # # # # ### # # ### # # # # #
# # # # ## ## # # ## ## ### # # # # # ### ## ## ### ## ### ### ## # ## ### ## # #
# # ### ## ## # # #### # ## # #### # #### # # # # # ### # # ### # # # ### # # #
# # # #### ## # #### # # ## ## ### #### # # # # ### # ### ### # # ### # # # ### # # ";
s//=Characters[StringSplit[#,"\n"]]&;
s=%/.{"#"->0," "->1};
Map[BarcodeRecognize@*Image@*List][s] |
http://rosettacode.org/wiki/Update_a_configuration_file | Update a configuration file | We have a configuration file as follows:
# This is a configuration file in standard configuration file format
#
# Lines begininning with a hash or a semicolon are ignored by the application
# program. Blank lines are also ignored by the application program.
# The first word on each non comment line is the configuration option.
# Remaining words or numbers on the line are configuration parameter
# data fields.
# Note that configuration option names are not case sensitive. However,
# configuration parameter data is case sensitive and the lettercase must
# be preserved.
# This is a favourite fruit
FAVOURITEFRUIT banana
# This is a boolean that should be set
NEEDSPEELING
# This boolean is commented out
; SEEDSREMOVED
# How many bananas we have
NUMBEROFBANANAS 48
The task is to manipulate the configuration file as follows:
Disable the needspeeling option (using a semicolon prefix)
Enable the seedsremoved option by removing the semicolon and any leading whitespace
Change the numberofbananas parameter to 1024
Enable (or create if it does not exist in the file) a parameter for numberofstrawberries with a value of 62000
Note that configuration option names are not case sensitive. This means that changes should be effected, regardless of the case.
Options should always be disabled by prefixing them with a semicolon.
Lines beginning with hash symbols should not be manipulated and left unchanged in the revised file.
If a configuration option does not exist within the file (in either enabled or disabled form), it should be added during this update. Duplicate configuration option names in the file should be removed, leaving just the first entry.
For the purpose of this task, the revised file should contain appropriate entries, whether enabled or not for needspeeling,seedsremoved,numberofbananas and numberofstrawberries.)
The update should rewrite configuration option names in capital letters. However lines beginning with hashes and any parameter data must not be altered (eg the banana for favourite fruit must not become capitalized). The update process should also replace double semicolon prefixes with just a single semicolon (unless it is uncommenting the option, in which case it should remove all leading semicolons).
Any lines beginning with a semicolon or groups of semicolons, but no following option should be removed, as should any leading or trailing whitespace on the lines. Whitespace between the option and parameters should consist only of a single
space, and any non-ASCII extended characters, tabs characters, or control codes
(other than end of line markers), should also be removed.
Related tasks
Read a configuration file
| #Python | Python | #!/usr/bin/env python
#----------------------------------------------------------------------------
# STANDARD MODULES
#----------------------------------------------------------------------------
import re
import string
#----------------------------------------------------------------------------
# GLOBAL: VARIABLES
#----------------------------------------------------------------------------
DISABLED_PREFIX = ';'
#----------------------------------------------------------------------------
# CLASS Option
#----------------------------------------------------------------------------
class Option(object):
"""An option, characterized by its name and its (optional) value. and by
its status, which can be enabled or disabled.
If its value is None, it is regarded to as a boolean option with a
value of true.
"""
#------------------------------------------------------------------------
def __init__(self, name, value=None, disabled=False,
disabled_prefix=DISABLED_PREFIX):
"""Create an Option instance, setting its name to 'name' (always
converted to a string) and its value to 'value'. If 'disabled' is
True, the option is considered disabled, otherwise enabled.
The string 'disabled_prefix' is used as a prefix when generating the
string representation of the option.
"""
self.name = str(name)
self.value = value
self.disabled = bool(disabled)
self.disabled_prefix = disabled_prefix
#------------------------------------------------------------------------
def __str__(self):
"""Return a string representation of the Option instance.
This always includes the option name, followed by a space and the
option value (if it is not None). If the option is disabled, the
whole string is preprendend by the string stored in the instance
attribute 'disabled_prefix' and a space.
"""
disabled = ('', '%s ' % self.disabled_prefix)[self.disabled]
value = (' %s' % self.value, '')[self.value is None]
return ''.join((disabled, self.name, value))
#------------------------------------------------------------------------
def get(self):
"""Return the option value.
If the stored value is None, the option is regarded to as a
boolean one and its enabled status is returned. Othrwise its value
is returned.
"""
enabled = not bool(self.disabled)
if self.value is None:
value = enabled
else:
value = enabled and self.value
return value
#----------------------------------------------------------------------------
# CLASS Config
#----------------------------------------------------------------------------
class Config(object):
"""A set of configuration options and comment strings.
"""
# Regular expression matching a valid option line.
reOPTION = r'^\s*(?P<disabled>%s*)\s*(?P<name>\w+)(?:\s+(?P<value>.+?))?\s*$'
#------------------------------------------------------------------------
def __init__(self, fname=None, disabled_prefix=DISABLED_PREFIX):
"""Initialize a Config instance, optionally reading the contents of
the configuration file 'fname'.
The string 'disabled_prefix' is used as a prefix when generating the
string representation of the options.
"""
self.disabled_prefix = disabled_prefix
self.contents = [] # Sequence of strings and Option instances.
self.options = {} # Map an option name to an Option instance.
self.creOPTION = re.compile(self.reOPTION % self.disabled_prefix)
if fname:
self.parse_file(fname)
#------------------------------------------------------------------------
def __str__(self):
"""Return a string representation of the Config instance.
This is just the concatenation of all the items stored in the
attribute 'contents'.
"""
return '\n'.join(map(str, self.contents))
#------------------------------------------------------------------------
def parse_file(self, fname):
"""Parse all the lines of file 'fname' by applying the method
'parser_lines' on the file contents.
"""
with open(fname) as f:
self.parse_lines(f)
return self
#------------------------------------------------------------------------
def parse_lines(self, lines):
"""Parse all the lines of iterable 'lines' by invoking the method
'parse_line' for each line in 'lines'.
"""
for line in lines:
self.parse_line(line)
return self
#------------------------------------------------------------------------
def parse_line(self, line):
"""Parse the line 'line', looking for options.
If an option line is found, spaces are stripped from the start and
the end of 'line' and any non-printable character is removed as well.
Only the first occurrence of an option is processed, all the other
occurrences are ignored. A valid option is added to the instance
attribute 'contents' (in order to preserve its position among the
other lines). It is also added to the mapping stored in the instance
attribute 'options'.
Any non-option string is added the the instance attribute 'contents',
except those lines starting with the string stored into the instance
attribute 'disabled_prefix' which are not followed by any option
name.
"""
s = ''.join(c for c in line.strip() if c in string.printable)
moOPTION = self.creOPTION.match(s)
if moOPTION:
name = moOPTION.group('name').upper()
if not name in self.options:
self.add_option(name, moOPTION.group('value'),
moOPTION.group('disabled'))
else:
if not s.startswith(self.disabled_prefix):
self.contents.append(line.rstrip())
return self
#------------------------------------------------------------------------
def add_option(self, name, value=None, disabled=False):
"""Create a new Option instance, named 'name' (always converted to
uppercase) with value 'value' and set its disabled status to
'disabled'.
The Option instance is added to the instance attribute 'contents'.
It is also added to the mapping stored in the instance attribute
'options'.
"""
name = name.upper()
opt = Option(name, value, disabled)
self.options[name] = opt
self.contents.append(opt)
return opt
#------------------------------------------------------------------------
def set_option(self, name, value=None, disabled=False):
"""Look for an option named 'name' (always converted to
uppercase) among the options stored in the instance
attribute 'options'.
If it is not found, a new Option instance is created.
In any case its value is set to 'value' and its disabled
status to 'disabled'.
"""
name = name.upper()
opt = self.options.get(name)
if opt:
opt.value = value
opt.disabled = disabled
else:
opt = self.add_option(name, value, disabled)
return opt
#------------------------------------------------------------------------
def enable_option(self, name, value=None):
"""Enable the option named 'name' (always converted to
uppercase) and set its value to 'value'.
If the option is not found, it is created and added to the
end of the instance attribute 'contents'.
"""
return self.set_option(name, value, False)
#------------------------------------------------------------------------
def disable_option(self, name, value=None):
"""Disable the option named 'name' (always converted to
uppercase) and set its value to 'value'.
If the option is not found, it is created and added to the
end of the instance attribute 'contents'.
"""
return self.set_option(name, value, True)
#------------------------------------------------------------------------
def get_option(self, name):
"""Return the value of the option named 'name' (always
converted to uppercase).
If the option is not found in the instance attribute
'options', None is returned. If the stored value is None,
it is regarded to as a boolean option and its enable status
is returned. Otherwise its value is returned.
"""
opt = self.options.get(name.upper())
value = opt.get() if opt else None
return value
#----------------------------------------------------------------------------
# MAIN
#----------------------------------------------------------------------------
if __name__ == '__main__':
import sys
cfg = Config(sys.argv[1] if len(sys.argv) > 1 else None)
cfg.disable_option('needspeeling')
cfg.enable_option('seedsremoved')
cfg.enable_option('numberofbananas', 1024)
cfg.enable_option('numberofstrawberries', 62000)
print cfg
|
http://rosettacode.org/wiki/User_input/Text | User input/Text | User input/Text is part of Short Circuit's Console Program Basics selection.
Task
Input a string and the integer 75000 from the text console.
See also: User input/Graphical
| #hexiscript | hexiscript | print "Enter a string: "
let s scan str
print "Enter a number: "
let n scan int |
http://rosettacode.org/wiki/User_input/Text | User input/Text | User input/Text is part of Short Circuit's Console Program Basics selection.
Task
Input a string and the integer 75000 from the text console.
See also: User input/Graphical
| #HolyC | HolyC | U8 *s;
s = GetStr("Enter a string: ");
U32 *n;
do {
n = GetStr("Enter 75000: ");
} while(Str2I64(n) != 75000);
Print("Your string: %s\n", s);
Print("75000: %d\n", Str2I64(n)); |
http://rosettacode.org/wiki/User_input/Graphical | User input/Graphical |
In this task, the goal is to input a string and the integer 75000, from graphical user interface.
See also: User input/Text
| #Nim | Nim | import strutils
import gintro/[glib, gobject, gtk, gio]
type MainWindow = ref object of ApplicationWindow
strEntry: Entry
intEntry: SpinButton
#---------------------------------------------------------------------------------------------------
proc displayValues(strval: string; intval: int) =
## Display a dialog window with the values entered by the user.
let dialog = newDialog()
dialog.setModal(true)
let label1 = newLabel(" String value is “$1”.".format(strval))
label1.setHalign(Align.start)
dialog.contentArea.packStart(label1, true, true, 5)
let msg = " Integer value is $1 which is ".format(intval) &
(if intval == 75000: "right. " else: "wrong (expected 75000). ")
let label2 = newLabel(msg)
dialog.contentArea.packStart(label2, true, true, 5)
discard dialog.addButton("OK", ord(ResponseType.ok))
dialog.showAll()
discard dialog.run()
dialog.destroy()
#---------------------------------------------------------------------------------------------------
proc onOk(button: Button; window: MainWindow) =
## Callback executed when the OK button has been clicked.
let strval = window.strEntry.text()
let intval = window.intEntry.value().toInt
displayValues(strval, intval)
if intval == 75_000:
window.destroy()
#---------------------------------------------------------------------------------------------------
proc activate(app: Application) =
## Activate the application.
let window = newApplicationWindow(MainWindow, app)
window.setTitle("User input")
let content = newBox(Orientation.vertical, 10)
content.setHomogeneous(true)
let grid = newGrid()
grid.setColumnSpacing(30)
let bbox = newButtonBox(Orientation.horizontal)
bbox.setLayout(ButtonBoxStyle.spread)
let strLabel = newLabel("Enter some text")
strLabel.setHalign(Align.start)
window.strEntry = newEntry()
grid.attach(strLabel, 0, 0, 1, 1)
grid.attach(window.strEntry, 1, 0, 1, 1)
let intLabel = newLabel("Enter 75000")
intLabel.setHalign(Align.start)
window.intEntry = newSpinButtonWithRange(0, 80_000, 1)
grid.attach(intLabel, 0, 1, 1, 1)
grid.attach(window.intEntry, 1, 1, 1, 1)
let btnOk = newButton("OK")
bbox.add(btnOk)
content.packStart(grid, true, true, 0)
content.packEnd(bbox, true, true, 0)
window.setBorderWidth(5)
window.add(content)
discard btnOk.connect("clicked", onOk, window)
window.showAll()
#———————————————————————————————————————————————————————————————————————————————————————————————————
let app = newApplication(Application, "Rosetta.UserInput")
discard app.connect("activate", activate)
discard app.run() |
http://rosettacode.org/wiki/User_input/Graphical | User input/Graphical |
In this task, the goal is to input a string and the integer 75000, from graphical user interface.
See also: User input/Text
| #Oz | Oz | functor
import
Application
QTk at 'x-oz://system/wp/QTk.ozf'
System
define
Number NumberWidget
Text
StatusLabel
WindowClosed
GUI = td(action:OnClose
return:WindowClosed
lr(label(text:"Enter some text:" width:20)
entry(return:Text glue:ew)
glue:ew)
lr(label(text:"Enter a number:" width:20)
numberentry(max:100000 return:Number handle:NumberWidget)
label(handle:StatusLabel width:20)
glue:ew
)
button(text:"Ok" glue:ew
action:OnClose
)
)
proc {OnClose}
if {NumberWidget get($)} \= 75000 then
{StatusLabel set(text:"Invalid value")}
else
{Window close}
end
end
Window = {QTk.build GUI}
{Window show}
{Wait WindowClosed}
{System.showInfo "You entered; "#Text#", "#Number}
{Application.exit 0}
end |
http://rosettacode.org/wiki/UTF-8_encode_and_decode | UTF-8 encode and decode | As described in UTF-8 and in Wikipedia, UTF-8 is a popular encoding of (multi-byte) Unicode code-points into eight-bit octets.
The goal of this task is to write a encoder that takes a unicode code-point (an integer representing a unicode character) and returns a sequence of 1-4 bytes representing that character in the UTF-8 encoding.
Then you have to write the corresponding decoder that takes a sequence of 1-4 UTF-8 encoded bytes and return the corresponding unicode character.
Demonstrate the functionality of your encoder and decoder on the following five characters:
Character Name Unicode UTF-8 encoding (hex)
---------------------------------------------------------------------------------
A LATIN CAPITAL LETTER A U+0041 41
ö LATIN SMALL LETTER O WITH DIAERESIS U+00F6 C3 B6
Ж CYRILLIC CAPITAL LETTER ZHE U+0416 D0 96
€ EURO SIGN U+20AC E2 82 AC
𝄞 MUSICAL SYMBOL G CLEF U+1D11E F0 9D 84 9E
Provided below is a reference implementation in Common Lisp.
| #PureBasic | PureBasic | #UTF8_codePointMaxByteCount = 4 ;UTF-8 encoding uses only a maximum of 4 bytes to encode a codepoint
Procedure UTF8_encode(x, Array encoded_codepoint.a(1)) ;x is codepoint to encode, the array will contain output
;Array encoded_codepoint() is used for output.
;After encode element zero holds the count of significant bytes in elements 1 to 4
If ArraySize(encoded_codepoint()) < #UTF8_codePointMaxByteCount
ReDim encoded_codepoint.a(#UTF8_codePointMaxByteCount)
EndIf
Select x
Case 0 To $7F
encoded_codepoint(0) = 1
encoded_codepoint(1) = x ;all 7 bits
Case $80 To $7FF
encoded_codepoint(0) = 2
encoded_codepoint(2) = (x & %00111111) | %10000000 ;lowest 6 bits
encoded_codepoint(1) = (x >> 6) | %11000000 ;highest bits 7 -> 11
Case $800 To $FFFF
encoded_codepoint(0) = 3
encoded_codepoint(3) = (x & %00111111) | %10000000 ;lowest 6 bits
encoded_codepoint(2) = ((x >> 6) & %00111111) | %10000000 ;bits 7 -> 12
encoded_codepoint(1) = (x >> 12) | %11100000 ;highest bits 13 -> 16
Case $10000 To $10FFFF
encoded_codepoint(0) = 4
encoded_codepoint(4) = (x & %00111111) | %10000000 ;lowest 6 bits
encoded_codepoint(3) = ((x >> 6) & %00111111) | %10000000 ;bits 7 -> 12
encoded_codepoint(2) = ((x >> 12) & %00111111) | %10000000 ;bits 13 -> 18
encoded_codepoint(1) = (x >> 18) | %11110000 ;highest bits 19 -> 21
Default
encoded_codepoint(0) = 0 ;error, codepoint is not valid and can't be encoded
EndSelect
EndProcedure
Procedure UTF8_decode(Array encoded_codepoint.a(1))
;Array encoded_codepoint() holds the UTF-8 encoding in elements 1 to 4, element zero isn't used for decoding.
Protected x = -1 ;initialzie with error value for possible improper encoding
If ArraySize(encoded_codepoint()) < #UTF8_codePointMaxByteCount
ProcedureReturn x ;Input array was not dimensioned properly.
EndIf
;Determine the number of bytes in the UTF8 encoding by looking at first byte
;and then proceeding accordingly.
Select encoded_codepoint(1)
Case %00000000 To %01111111 ;1 byte encoding
x = encoded_codepoint(1)
Case %11000000 To %11011111 ;2 byte encoding
x = (encoded_codepoint(1) & %00011111) << 6 ;last 5 bits only
x | (encoded_codepoint(2) & %00111111)
Case %11100000 To %11101111 ;3 byte encoding
x = (encoded_codepoint(1) & %00001111) << 6 ;last 4 bits only
x << 6 + (encoded_codepoint(2) & %00111111)
x << 6 + (encoded_codepoint(3) & %00111111)
Case %11110000 To %11110111 ;4 byte encoding
x = (encoded_codepoint(1) & %00000111) << 6 ;last 3 bits only
x << 6 + (encoded_codepoint(2) & %00111111)
x << 6 + (encoded_codepoint(3) & %00111111)
x << 6 + (encoded_codepoint(4) & %00111111)
EndSelect
ProcedureReturn x
EndProcedure
;helper procedure to format output for this example
Procedure.s formatOutput(c$, c, Array encoded_utf.a(1), dcp) ;character, codepooint, UTf8 encoding, decoded codepoint
Protected o$, i, encoding$
o$ = " " + LSet(c$, 8) + LSet("U+" + RSet(Hex(c), 5, "0"), 10)
For i = 1 To encoded_utf(0)
encoding$ + RSet(Hex(encoded_utf(i)), 2, "0") + " "
Next
o$ + " " + LSet(encoding$, 11, " ") + " " + RSet(Hex(dcp), 5, "0")
ProcedureReturn o$
EndProcedure
DataSection
;unicode code points in hex
unicode_codepoints:
Data.i 5, $41, $F6, $416, $20AC, $1D11E
;The names for these codepoints are: latin capital letter a; latin small letter o With diaeresis
;cyrillic capital letter zhe; euro sign; musical symbol g clef.
EndDataSection
;read initial unicode codepoint values
Restore unicode_codepoints
Read num_codepoints
num_codepoints - 1
Dim codepoint(num_codepoints)
For i = 0 To num_codepoints
Read codepoint(i)
Next
;This array is used for input and output from the UTF8 encode and decode procedures. After encoding its elements
;hold the byte count of the encoding followed by the respective bytes. For decoding element zero is not used and
;elements 1 To 4 holds the bytes to be decoded.
Dim encoded_codepoint.a(#UTF8_codePointMaxByteCount)
If OpenConsole("", #PB_UTF8)
PrintN(LSet("", 11) + LSet("Unicode", 12) + LSet("UTF-8",14) + LSet("Decoded",12))
PrintN(LSet("Character", 11) + LSet("Code Point", 12) + LSet("Encoding",14) + LSet("Code Point",12))
PrintN(LSet("---------", 11) + LSet("----------", 12) + LSet("-----------",14) + LSet("-----------",12))
For i = 0 To num_codepoints
UTF8_encode(codepoint(i), encoded_codepoint())
dcp = UTF8_decode(encoded_codepoint()) ;Decoded UTF-8 encoding should match original codepoint that was encoded.
PrintN(formatOutput(Chr(codepoint(i)), codepoint(i), encoded_codepoint(), dcp))
Next
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
EndIf |
http://rosettacode.org/wiki/URL_parser | URL parser | URLs are strings with a simple syntax:
scheme://[username:password@]domain[:port]/path?query_string#fragment_id
Task
Parse a well-formed URL to retrieve the relevant information: scheme, domain, path, ...
Note: this task has nothing to do with URL encoding or URL decoding.
According to the standards, the characters:
! * ' ( ) ; : @ & = + $ , / ? % # [ ]
only need to be percent-encoded (%) in case of possible confusion.
Also note that the path, query and fragment are case sensitive, even if the scheme and domain are not.
The way the returned information is provided (set of variables, array, structured, record, object,...)
is language-dependent and left to the programmer, but the code should be clear enough to reuse.
Extra credit is given for clear error diagnostics.
Here is the official standard: https://tools.ietf.org/html/rfc3986,
and here is a simpler BNF: http://www.w3.org/Addressing/URL/5_URI_BNF.html.
Test cases
According to T. Berners-Lee
foo://example.com:8042/over/there?name=ferret#nose should parse into:
scheme = foo
domain = example.com
port = :8042
path = over/there
query = name=ferret
fragment = nose
urn:example:animal:ferret:nose should parse into:
scheme = urn
path = example:animal:ferret:nose
other URLs that must be parsed include:
jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true
ftp://ftp.is.co.za/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc2396.txt#header1
ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two
mailto:[email protected]
news:comp.infosystems.www.servers.unix
tel:+1-816-555-1212
telnet://192.0.2.16:80/
urn:oasis:names:specification:docbook:dtd:xml:4.1.2
| #Vlang | Vlang | import net.urllib
const urls = ['jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true',
'ftp://ftp.is.co.za/rfc/rfc1808.txt',
'http://www.ietf.org/rfc/rfc2396.txt#header1',
'ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two',
'mailto:[email protected]',
'news:comp.infosystems.www.servers.unix',
'tel:+1-816-555-1212',
'telnet://192.0.2.16:80/',
'urn:oasis:names:specification:docbook:dtd:xml:4.1.2',
'foo://example.com:8042/over/there?name=ferret#nose'
]
fn main() {
for url in urls {
u := urllib.parse(url)?
println(u)
print_url(u)
}
}
fn print_url(u urllib.URL) {
println(" Scheme: $u.scheme")
if u.opaque != "" {
println(" Opaque: $u.opaque")
}
if u.str() == '' {
println(" Username: $u.user.username")
if u.user.password != '' {
println(" Password: $u.user.password")
}
}
if u.host != "" {
if u.port() != '' {
println(" Host: ${u.hostname()}")
println(" Port: ${u.port()}")
} else {
println(" Host: $u.host")
}
}
if u.path != "" {
println(" Path: $u.path")
}
if u.raw_query != "" {
println(" RawQuery: $u.raw_query")
m := u.query().data
for q in m {
println(" Key: $q.key Values: $q.value")
}
}
if u.fragment != "" {
println(" Fragment: $u.fragment")
}
} |
http://rosettacode.org/wiki/URL_parser | URL parser | URLs are strings with a simple syntax:
scheme://[username:password@]domain[:port]/path?query_string#fragment_id
Task
Parse a well-formed URL to retrieve the relevant information: scheme, domain, path, ...
Note: this task has nothing to do with URL encoding or URL decoding.
According to the standards, the characters:
! * ' ( ) ; : @ & = + $ , / ? % # [ ]
only need to be percent-encoded (%) in case of possible confusion.
Also note that the path, query and fragment are case sensitive, even if the scheme and domain are not.
The way the returned information is provided (set of variables, array, structured, record, object,...)
is language-dependent and left to the programmer, but the code should be clear enough to reuse.
Extra credit is given for clear error diagnostics.
Here is the official standard: https://tools.ietf.org/html/rfc3986,
and here is a simpler BNF: http://www.w3.org/Addressing/URL/5_URI_BNF.html.
Test cases
According to T. Berners-Lee
foo://example.com:8042/over/there?name=ferret#nose should parse into:
scheme = foo
domain = example.com
port = :8042
path = over/there
query = name=ferret
fragment = nose
urn:example:animal:ferret:nose should parse into:
scheme = urn
path = example:animal:ferret:nose
other URLs that must be parsed include:
jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true
ftp://ftp.is.co.za/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc2396.txt#header1
ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two
mailto:[email protected]
news:comp.infosystems.www.servers.unix
tel:+1-816-555-1212
telnet://192.0.2.16:80/
urn:oasis:names:specification:docbook:dtd:xml:4.1.2
| #Wren | Wren | var urlParse = Fn.new { |url|
var parseUrl = "URL = " + url
var index
if ((index = url.indexOf("//")) && index >= 0 && url[0...index].count { |c| c == ":" } == 1) {
// parse the scheme
var scheme = url.split("//")
parseUrl = parseUrl + "\n" + "Scheme = " + scheme[0][0..-2]
// parse the domain
var domain = scheme[1].split("/")
// check if the domain includes a username, password and port
if (domain[0].contains("@")) {
var cred = domain[0].split("@")
var split = [cred[0], ""]
if (cred[0].contains(".")) {
split = cred[0].split(".")
} else if (cred[0].contains(":")) {
split = cred[0].split(":")
}
var username = split[0]
var password = split[1]
parseUrl = parseUrl + "\n" + "Username = " + username
if (password != "") parseUrl = parseUrl + "\n" + "Password = " + password
// check if the domain has a port
if (cred[1].contains(":")) {
split = cred[1].split(":")
var host = split[0]
var port = ":" + split[1]
parseUrl = parseUrl + "\n" + "Domain = " + host + "\n" + "Port = " + port
} else {
parseUrl = parseUrl + "\n" + "Domain = " + cred[1]
}
} else if (domain[0].contains(":") && !domain[0].contains("[") && !domain[0].contains("]")) {
var split = domain[0].split(":")
var host = split[0]
var port = ":" + split[1]
parseUrl = parseUrl + "\n" + "Domain = " + host + "\n" + "Port = " + port
} else if (domain[0].contains("[") && domain[0].contains("]:")) {
var split = domain[0].split("]")
var host = split[0] + "]"
var port = ":" + split[1][1..-1]
parseUrl = parseUrl + "\n" + "Domain = " + host + "\n" + "Port = " + port
} else {
parseUrl = parseUrl + "\n" + "Domain = " + domain[0]
}
// parse the path if it exists
if (domain.count > 1) {
var path = "/"
for (i in 1...domain.count) {
if (i < domain.count - 1) {
path = path + domain[i] + "/"
} else if (domain[i].contains("?")) {
var split = domain[i].split("?")
path = path + split[0]
if (domain[i].contains("#")) {
var split2 = split[1].split("#")
var query = split2[0]
var fragment = split2[1]
path = path + "\n" + "Query = " + query + "\n" + "Fragment = " + fragment
} else {
var query = split[1]
path = path + "\n" + "Query = " + query
}
} else if (domain[i].contains("#")) {
var split = domain[i].split("#")
var fragment = split[1]
path = path + split[0] + "\n" + "Fragment = " + fragment
} else {
path = path + domain[i]
}
}
parseUrl = parseUrl + "\n" + "Path = " + path
}
} else if (url.contains(":")) {
var index = url.indexOf(":")
var scheme = url[0...index]
parseUrl = parseUrl + "\n" + "Scheme = " + scheme + "\n"
var path = url[index+1..-1]
if (!path.contains("?")) {
parseUrl = parseUrl + "Path = " + path
} else {
var split = path.split("?")
var query = split[1]
parseUrl = parseUrl + "Path = " + split[0] + "\n"
if (!query.contains("#")) {
parseUrl = parseUrl + "Query = " + query
} else {
split = query.split("#")
var fragment = split[1]
parseUrl = parseUrl + "Query = " + split[0] + "Fragment = " + fragment
}
}
} else {
parseUrl = parseUrl + "\n" + "Invalid!!!"
}
System.print(parseUrl)
System.print()
}
var urls = [
"foo://example.com:8042/over/there?name=ferret#nose",
"urn:example:animal:ferret:nose",
"jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true",
"ftp://ftp.is.co.za/rfc/rfc1808.txt",
"http://www.ietf.org/rfc/rfc2396.txt#header1",
"ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two",
"mailto:[email protected]",
"news:comp.infosystems.www.servers.unix",
"tel:+1-816-555-1212",
"telnet://192.0.2.16:80/",
"urn:oasis:names:specification:docbook:dtd:xml:4.1.2",
"ssh://[email protected]",
"https://bob:[email protected]/place",
"http://example.com/?a=1&b=2+2&c=3&c=4&d=\%65\%6e\%63\%6F\%64\%65\%64"
]
for (url in urls) urlParse.call(url) |
http://rosettacode.org/wiki/URL_encoding | URL encoding | Task
Provide a function or mechanism to convert a provided string into URL encoding representation.
In URL encoding, special characters, control characters and extended characters
are converted into a percent symbol followed by a two digit hexadecimal code,
So a space character encodes into %20 within the string.
For the purposes of this task, every character except 0-9, A-Z and a-z requires conversion, so the following characters all require conversion by default:
ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F (127 decimal).
ASCII symbols (Character ranges 32-47 decimal (20-2F hex))
ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))
ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))
ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))
Extended characters with character codes of 128 decimal (80 hex) and above.
Example
The string "http://foo bar/" would be encoded as "http%3A%2F%2Ffoo%20bar%2F".
Variations
Lowercase escapes are legal, as in "http%3a%2f%2ffoo%20bar%2f".
Some standards give different rules: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, section 2.3, says that "-._~" should not be encoded. HTML 5, section 4.10.22.5 URL-encoded form data, says to preserve "-._*", and to encode space " " to "+". The options below provide for utilization of an exception string, enabling preservation (non encoding) of particular characters to meet specific standards.
Options
It is permissible to use an exception string (containing a set of symbols
that do not need to be converted).
However, this is an optional feature and is not a requirement of this task.
Related tasks
URL decoding
URL parser
| #NewLISP | NewLISP | ;; simple encoder
;; (source http://www.newlisp.org/index.cgi?page=Code_Snippets)
(define (url-encode str)
(replace {([^a-zA-Z0-9])} str (format "%%%2X" (char $1)) 0))
(url-encode "http://foo bar/") |
http://rosettacode.org/wiki/URL_encoding | URL encoding | Task
Provide a function or mechanism to convert a provided string into URL encoding representation.
In URL encoding, special characters, control characters and extended characters
are converted into a percent symbol followed by a two digit hexadecimal code,
So a space character encodes into %20 within the string.
For the purposes of this task, every character except 0-9, A-Z and a-z requires conversion, so the following characters all require conversion by default:
ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F (127 decimal).
ASCII symbols (Character ranges 32-47 decimal (20-2F hex))
ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))
ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))
ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))
Extended characters with character codes of 128 decimal (80 hex) and above.
Example
The string "http://foo bar/" would be encoded as "http%3A%2F%2Ffoo%20bar%2F".
Variations
Lowercase escapes are legal, as in "http%3a%2f%2ffoo%20bar%2f".
Some standards give different rules: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, section 2.3, says that "-._~" should not be encoded. HTML 5, section 4.10.22.5 URL-encoded form data, says to preserve "-._*", and to encode space " " to "+". The options below provide for utilization of an exception string, enabling preservation (non encoding) of particular characters to meet specific standards.
Options
It is permissible to use an exception string (containing a set of symbols
that do not need to be converted).
However, this is an optional feature and is not a requirement of this task.
Related tasks
URL decoding
URL parser
| #Nim | Nim | import cgi
echo encodeUrl("http://foo/bar/") |
http://rosettacode.org/wiki/Variables | Variables | Task
Demonstrate a language's methods of:
variable declaration
initialization
assignment
datatypes
scope
referencing, and
other variable related facilities
| #Julia | Julia | #declaration/assignment, declaration is optional
x::Int32 = 1
#datatypes are inferred dynamically, but can also be set thru convert functions and datatype literals
x = 1 #x is inferred as Int, which is Int32 for 32-bit machines, Int64 for 64-bit machines
#variable reference
julia>x
1
x = int8(1) #x is of type Int8
x = 1.0 #x is Float64
x = y = 1 #assign both x and y to 1
global x = 1 #assigns 1 to global variable x (used inside scope blocks)
local x = 1 #assigns 1 to local variable x (used inside scope blocks)
x = 'a' #x is a 'Char' type, designated by single quotes
x = "a" #x is a 1-element string, designated by double quotes |
http://rosettacode.org/wiki/Variables | Variables | Task
Demonstrate a language's methods of:
variable declaration
initialization
assignment
datatypes
scope
referencing, and
other variable related facilities
| #Kotlin | Kotlin | // version 1.0.6
fun main(args: Array<String>) {
/* read-only variables */
val i = 3 // type inferred to be Int
val d = 2.4 // type inferred to be double
val sh: Short = 2 // type specified as Short
val ch = 'A' // type inferred to be Char
val bt: Byte = 1 // type specified as Byte
/* mutable variables */
var s = "Hey" // type inferred to be String
var l = 4L // type inferred to be Long
var b: Boolean // type specified as Boolean, not initialized immediately
var f = 4.4f // type inferred to be Float
b = true // now initialized
println("$i, $d, $sh, $ch, $bt, $s, $l, $b, $f")
s = "Bye" // OK as mutable
l = 5L // OK as mutable
b = false // OK as mutable
f = 5.6f // OK as mutable
println("$i, $d, $sh, $ch, $bt, $s, $l, $b, $f")
} |
http://rosettacode.org/wiki/Van_Eck_sequence | Van Eck sequence | The sequence is generated by following this pseudo-code:
A: The first term is zero.
Repeatedly apply:
If the last term is *new* to the sequence so far then:
B: The next term is zero.
Otherwise:
C: The next term is how far back this last term occured previously.
Example
Using A:
0
Using B:
0 0
Using C:
0 0 1
Using B:
0 0 1 0
Using C: (zero last occurred two steps back - before the one)
0 0 1 0 2
Using B:
0 0 1 0 2 0
Using C: (two last occurred two steps back - before the zero)
0 0 1 0 2 0 2 2
Using C: (two last occurred one step back)
0 0 1 0 2 0 2 2 1
Using C: (one last appeared six steps back)
0 0 1 0 2 0 2 2 1 6
...
Task
Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers.
Use it to display here, on this page:
The first ten terms of the sequence.
Terms 991 - to - 1000 of the sequence.
References
Don't Know (the Van Eck Sequence) - Numberphile video.
Wikipedia Article: Van Eck's Sequence.
OEIS sequence: A181391.
| #Rust | Rust | fn van_eck_sequence() -> impl std::iter::Iterator<Item = i32> {
let mut index = 0;
let mut last_term = 0;
let mut last_pos = std::collections::HashMap::new();
std::iter::from_fn(move || {
let result = last_term;
let mut next_term = 0;
if let Some(v) = last_pos.get_mut(&last_term) {
next_term = index - *v;
*v = index;
} else {
last_pos.insert(last_term, index);
}
last_term = next_term;
index += 1;
Some(result)
})
}
fn main() {
let mut v = van_eck_sequence().take(1000);
println!("First 10 terms of the Van Eck sequence:");
for n in v.by_ref().take(10) {
print!("{} ", n);
}
println!("\nTerms 991 to 1000 of the Van Eck sequence:");
for n in v.skip(980) {
print!("{} ", n);
}
println!();
} |
http://rosettacode.org/wiki/Van_Eck_sequence | Van Eck sequence | The sequence is generated by following this pseudo-code:
A: The first term is zero.
Repeatedly apply:
If the last term is *new* to the sequence so far then:
B: The next term is zero.
Otherwise:
C: The next term is how far back this last term occured previously.
Example
Using A:
0
Using B:
0 0
Using C:
0 0 1
Using B:
0 0 1 0
Using C: (zero last occurred two steps back - before the one)
0 0 1 0 2
Using B:
0 0 1 0 2 0
Using C: (two last occurred two steps back - before the zero)
0 0 1 0 2 0 2 2
Using C: (two last occurred one step back)
0 0 1 0 2 0 2 2 1
Using C: (one last appeared six steps back)
0 0 1 0 2 0 2 2 1 6
...
Task
Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers.
Use it to display here, on this page:
The first ten terms of the sequence.
Terms 991 - to - 1000 of the sequence.
References
Don't Know (the Van Eck Sequence) - Numberphile video.
Wikipedia Article: Van Eck's Sequence.
OEIS sequence: A181391.
| #Scala | Scala |
object VanEck extends App {
def vanEck(n: Int): List[Int] = {
def vanEck(values: List[Int]): List[Int] =
if (values.size < n)
vanEck(math.max(0, values.indexOf(values.head, 1)) :: values)
else
values
vanEck(List(0)).reverse
}
val vanEck1000 = vanEck(1000)
println(s"The first 10 terms are ${vanEck1000.take(10)}.")
println(s"Terms 991 to 1000 are ${vanEck1000.drop(990)}.")
}
|
http://rosettacode.org/wiki/Variadic_function | Variadic function | Task
Create a function which takes in a variable number of arguments and prints each one on its own line.
Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime.
Functions of this type are also known as Variadic Functions.
Related task
Call a function
| #REBOL | REBOL | rebol [
Title: "Variadic Arguments"
]
print-all: func [
args [block!] {the arguments to print}
] [
foreach arg args [print arg]
]
print-all [rebol works this way] |
http://rosettacode.org/wiki/Variadic_function | Variadic function | Task
Create a function which takes in a variable number of arguments and prints each one on its own line.
Also show, if possible in your language, how to call the function on a list of arguments constructed at runtime.
Functions of this type are also known as Variadic Functions.
Related task
Call a function
| #REXX | REXX | print_all: procedure /* [↓] is the # of args passed.*/
do j=1 for arg()
say arg(j)
end /*j*/
return |
http://rosettacode.org/wiki/Vector_products | Vector products | A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: (X, Y, Z).
If you imagine a graph with the x and y axis being at right angles to each other and having a third, z axis coming out of the page, then a triplet of numbers, (X, Y, Z) would represent a point in the region, and a vector from the origin to the point.
Given the vectors:
A = (a1, a2, a3)
B = (b1, b2, b3)
C = (c1, c2, c3)
then the following common vector products are defined:
The dot product (a scalar quantity)
A • B = a1b1 + a2b2 + a3b3
The cross product (a vector quantity)
A x B = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)
The scalar triple product (a scalar quantity)
A • (B x C)
The vector triple product (a vector quantity)
A x (B x C)
Task
Given the three vectors:
a = ( 3, 4, 5)
b = ( 4, 3, 5)
c = (-5, -12, -13)
Create a named function/subroutine/method to compute the dot product of two vectors.
Create a function to compute the cross product of two vectors.
Optionally create a function to compute the scalar triple product of three vectors.
Optionally create a function to compute the vector triple product of three vectors.
Compute and display: a • b
Compute and display: a x b
Compute and display: a • (b x c), the scalar triple product.
Compute and display: a x (b x c), the vector triple product.
References
A starting page on Wolfram MathWorld is Vector Multiplication .
Wikipedia dot product.
Wikipedia cross product.
Wikipedia triple product.
Related tasks
Dot product
Quaternion type
| #J | J | cross=: (1&|.@[ * 2&|.@]) - 2&|.@[ * 1&|.@] |
http://rosettacode.org/wiki/Validate_International_Securities_Identification_Number | Validate International Securities Identification Number | An International Securities Identification Number (ISIN) is a unique international identifier for a financial security such as a stock or bond.
Task
Write a function or program that takes a string as input, and checks whether it is a valid ISIN.
It is only valid if it has the correct format, and the embedded checksum is correct.
Demonstrate that your code passes the test-cases listed below.
Details
The format of an ISIN is as follows:
┌───────────── a 2-character ISO country code (A-Z)
│ ┌─────────── a 9-character security code (A-Z, 0-9)
│ │ ┌── a checksum digit (0-9)
AU0000XVGZA3
For this task, you may assume that any 2-character alphabetic sequence is a valid country code.
The checksum can be validated as follows:
Replace letters with digits, by converting each character from base 36 to base 10, e.g. AU0000XVGZA3 →1030000033311635103.
Perform the Luhn test on this base-10 number.
There is a separate task for this test: Luhn test of credit card numbers.
You don't have to replicate the implementation of this test here ─── you can just call the existing function from that task. (Add a comment stating if you did this.)
Test cases
ISIN
Validity
Comment
US0378331005
valid
US0373831005
not valid
The transposition typo is caught by the checksum constraint.
U50378331005
not valid
The substitution typo is caught by the format constraint.
US03378331005
not valid
The duplication typo is caught by the format constraint.
AU0000XVGZA3
valid
AU0000VXGZA3
valid
Unfortunately, not all transposition typos are caught by the checksum constraint.
FR0000988040
valid
(The comments are just informational. Your function should simply return a Boolean result. See #Raku for a reference solution.)
Related task:
Luhn test of credit card numbers
Also see
Interactive online ISIN validator
Wikipedia article: International Securities Identification Number
| #Tcl | Tcl | package require Tcl 8.6 ;# mostly needed for [assert]. Substitute a simpler one or a NOP if required. |
http://rosettacode.org/wiki/Validate_International_Securities_Identification_Number | Validate International Securities Identification Number | An International Securities Identification Number (ISIN) is a unique international identifier for a financial security such as a stock or bond.
Task
Write a function or program that takes a string as input, and checks whether it is a valid ISIN.
It is only valid if it has the correct format, and the embedded checksum is correct.
Demonstrate that your code passes the test-cases listed below.
Details
The format of an ISIN is as follows:
┌───────────── a 2-character ISO country code (A-Z)
│ ┌─────────── a 9-character security code (A-Z, 0-9)
│ │ ┌── a checksum digit (0-9)
AU0000XVGZA3
For this task, you may assume that any 2-character alphabetic sequence is a valid country code.
The checksum can be validated as follows:
Replace letters with digits, by converting each character from base 36 to base 10, e.g. AU0000XVGZA3 →1030000033311635103.
Perform the Luhn test on this base-10 number.
There is a separate task for this test: Luhn test of credit card numbers.
You don't have to replicate the implementation of this test here ─── you can just call the existing function from that task. (Add a comment stating if you did this.)
Test cases
ISIN
Validity
Comment
US0378331005
valid
US0373831005
not valid
The transposition typo is caught by the checksum constraint.
U50378331005
not valid
The substitution typo is caught by the format constraint.
US03378331005
not valid
The duplication typo is caught by the format constraint.
AU0000XVGZA3
valid
AU0000VXGZA3
valid
Unfortunately, not all transposition typos are caught by the checksum constraint.
FR0000988040
valid
(The comments are just informational. Your function should simply return a Boolean result. See #Raku for a reference solution.)
Related task:
Luhn test of credit card numbers
Also see
Interactive online ISIN validator
Wikipedia article: International Securities Identification Number
| #Transact-SQL | Transact-SQL |
CREATE FUNCTION dbo._ISINCheck( @strISIN VarChar(40) )
RETURNS bit
AS
BEGIN
--*** Test an ISIN code and return 1 if it is valid, 0 if invalid.
DECLARE @bValid bit;
SET @bValid = CASE WHEN @strISIN LIKE '[A-Z][A-Z][A-Z,0-9][A-Z,0-9][A-Z,0-9][A-Z,0-9][A-Z,0-9][A-Z,0-9][A-Z,0-9][A-Z,0-9][A-Z,0-9][0-9]' THEN 1 ELSE 0 END
IF @bValid = 1
BEGIN
DECLARE @strTest VarChar(40) = '';
DECLARE @strAdd VarChar(2);
DECLARE @p INT = 0;
WHILE @p < LEN(@strISIN)
BEGIN
SET @p = @p+1;
SET @strAdd = SUBSTRING(@strISIN,@p,1);
IF @strAdd LIKE '[A-Z]' SET @strAdd = CONVERT(VarChar(2),ASCII(UPPER(@strAdd))-55);
SET @strTest = @strTest + @strAdd;
END;
-- Proceed with Luhn test
DECLARE @strLuhn VarChar(40) = REVERSE(@strTest); -- usage: set once, never changed
DECLARE @strS2Values VarChar(10) = '0246813579'; -- constant: maps digits to their S2 summed values
SET @p = 0; -- reset loop counter
DECLARE @intValue INT;
DECLARE @intSum INT = 0;
-- loop through the reversed string, get the value (even-positioned digits are mapped) and add it to @intSum
WHILE @p < LEN(@strLuhn)
BEGIN
SET @p = @p+1;
SET @intValue = CONVERT(INT, SUBSTRING(@strLuhn,@p,1) ) -- value of the digit at position @p in the string
IF @p % 2 = 0 SET @intValue = CONVERT(INT,SUBSTRING(@strS2Values,@intValue+1,1))
SET @intSum = @intSum + @intValue
END
-- If the of the digits' mapped values ends in 0 (modulo 10 = 0) then the Luhn test succeeds
SET @bValid = CASE WHEN @intSum % 10 = 0 THEN 1 ELSE 0 END
END;
RETURN @bValid
END
|
http://rosettacode.org/wiki/Van_der_Corput_sequence | Van der Corput sequence | When counting integers in binary, if you put a (binary) point to the righEasyLangt of the count then the column immediately to the left denotes a digit with a multiplier of
2
0
{\displaystyle 2^{0}}
; the digit in the next column to the left has a multiplier of
2
1
{\displaystyle 2^{1}}
; and so on.
So in the following table:
0.
1.
10.
11.
...
the binary number "10" is
1
×
2
1
+
0
×
2
0
{\displaystyle 1\times 2^{1}+0\times 2^{0}}
.
You can also have binary digits to the right of the “point”, just as in the decimal number system. In that case, the digit in the place immediately to the right of the point has a weight of
2
−
1
{\displaystyle 2^{-1}}
, or
1
/
2
{\displaystyle 1/2}
.
The weight for the second column to the right of the point is
2
−
2
{\displaystyle 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
. And so on.
If you take the integer binary count of the first table, and reflect the digits about the binary point, you end up with the van der Corput sequence of numbers in base 2.
.0
.1
.01
.11
...
The third member of the sequence, binary 0.01, is therefore
0
×
2
−
1
+
1
×
2
−
2
{\displaystyle 0\times 2^{-1}+1\times 2^{-2}}
or
1
/
4
{\displaystyle 1/4}
.
Distribution of 2500 points each: Van der Corput (top) vs pseudorandom
0
≤
x
<
1
{\displaystyle 0\leq x<1}
Monte Carlo simulations
This sequence is also a superset of the numbers representable by the "fraction" field of an old IEEE floating point standard. In that standard, the "fraction" field represented the fractional part of a binary number beginning with "1." e.g. 1.101001101.
Hint
A hint at a way to generate members of the sequence is to modify a routine used to change the base of an integer:
>>> def base10change(n, base):
digits = []
while n:
n,remainder = divmod(n, base)
digits.insert(0, remainder)
return digits
>>> base10change(11, 2)
[1, 0, 1, 1]
the above showing that 11 in decimal is
1
×
2
3
+
0
×
2
2
+
1
×
2
1
+
1
×
2
0
{\displaystyle 1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1\times 2^{0}}
.
Reflected this would become .1101 or
1
×
2
−
1
+
1
×
2
−
2
+
0
×
2
−
3
+
1
×
2
−
4
{\displaystyle 1\times 2^{-1}+1\times 2^{-2}+0\times 2^{-3}+1\times 2^{-4}}
Task description
Create a function/method/routine that given n, generates the n'th term of the van der Corput sequence in base 2.
Use the function to compute and display the first ten members of the sequence. (The first member of the sequence is for n=0).
As a stretch goal/extra credit, compute and show members of the sequence for bases other than 2.
See also
The Basic Low Discrepancy Sequences
Non-decimal radices/Convert
Van der Corput sequence
| #Raku | Raku | constant VdC = map { :2("0." ~ .base(2).flip) }, ^Inf;
.say for VdC[^16]; |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.