task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Function_definition
|
Function definition
|
A function is a body of code that returns a value.
The value returned may depend on arguments provided to the function.
Task
Write a definition of a function called "multiply" that takes two arguments and returns their product.
(Argument types should be chosen so as not to distract from showing how functions are created and values returned).
Related task
Function prototype
|
#BASIC
|
BASIC
|
DECLARE FUNCTION multiply% (a AS INTEGER, b AS INTEGER)
FUNCTION multiply% (a AS INTEGER, b AS INTEGER)
multiply = a * b
END FUNCTION
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#Python
|
Python
|
from collections import deque
from itertools import islice, count
def fusc():
q = deque([1])
yield 0
yield 1
while True:
x = q.popleft()
q.append(x)
yield x
x += q[0]
q.append(x)
yield x
def longest_fusc():
sofar = 0
for i, f in zip(count(), fusc()):
if f >= sofar:
yield(i, f)
sofar = 10 * sofar or 10
print('First 61:')
print(list(islice(fusc(), 61)))
print('\nLength records:')
for i, f in islice(longest_fusc(), 6):
print(f'fusc({i}) = {f}')
|
http://rosettacode.org/wiki/Gamma_function
|
Gamma function
|
Task
Implement one algorithm (or more) to compute the Gamma (
Γ
{\displaystyle \Gamma }
) function (in the real field only).
If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function.
The Gamma function can be defined as:
Γ
(
x
)
=
∫
0
∞
t
x
−
1
e
−
t
d
t
{\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt}
This suggests a straightforward (but inefficient) way of computing the
Γ
{\displaystyle \Gamma }
through numerical integration.
Better suggested methods:
Lanczos approximation
Stirling's approximation
|
#Limbo
|
Limbo
|
implement Lanczos7;
include "sys.m"; sys: Sys;
include "draw.m";
include "math.m"; math: Math;
lgamma, exp, pow, sqrt: import math;
Lanczos7: module {
init: fn(nil: ref Draw->Context, nil: list of string);
};
init(nil: ref Draw->Context, nil: list of string)
{
sys = load Sys Sys->PATH;
math = load Math Math->PATH;
# We ignore some floating point exceptions:
math->FPcontrol(0, Math->OVFL|Math->UNFL);
ns : list of real = -0.5 :: 0.1 :: 0.5 :: 1.0 :: 1.5 :: 2.0 :: 3.0 :: 10.0 :: 140.0 :: 170.0 :: nil;
sys->print("%5s %24s %24s\n", "x", "math->lgamma", "lanczos7");
while(ns != nil) {
x := hd ns;
ns = tl ns;
# math->lgamma returns a tuple.
(i, r) := lgamma(x);
g := real i * exp(r);
sys->print("%5.1f %24.16g %24.16g\n", x, g, lanczos7(x));
}
}
lanczos7(z: real): real
{
t := z + 6.5;
x := 0.99999999999980993 +
676.5203681218851/z -
1259.1392167224028/(z+1.0) +
771.32342877765313/(z+2.0) -
176.61502916214059/(z+3.0) +
12.507343278686905/(z+4.0) -
0.13857109526572012/(z+5.0) +
9.9843695780195716e-6/(z+6.0) +
1.5056327351493116e-7/(z+7.0);
return sqrt(2.0) * sqrt(Math->Pi) * pow(t, z - 0.5) * exp(-t) * x;
}
|
http://rosettacode.org/wiki/Gapful_numbers
|
Gapful numbers
|
Numbers (positive integers expressed in base ten) that are (evenly) divisible by the number formed by the
first and last digit are known as gapful numbers.
Evenly divisible means divisible with no remainder.
All one─ and two─digit numbers have this property and are trivially excluded. Only
numbers ≥ 100 will be considered for this Rosetta Code task.
Example
187 is a gapful number because it is evenly divisible by the
number 17 which is formed by the first and last decimal digits
of 187.
About 7.46% of positive integers are gapful.
Task
Generate and show all sets of numbers (below) on one line (horizontally) with a title, here on this page
Show the first 30 gapful numbers
Show the first 15 gapful numbers ≥ 1,000,000
Show the first 10 gapful numbers ≥ 1,000,000,000
Related tasks
Harshad or Niven series.
palindromic gapful numbers.
largest number divisible by its digits.
Also see
The OEIS entry: A108343 gapful numbers.
numbersaplenty gapful numbers
|
#SQL
|
SQL
|
/*
This code is an implementation of gapful numbers in SQL ORACLE 19c
p_start -- start point
p_count -- total number to be found
*/
WITH
FUNCTION gapful_numbers(p_start IN INTEGER, p_count IN INTEGER) RETURN varchar2 IS
v_start INTEGER := p_start;
v_count INTEGER := 0;
v_res varchar2(32767);
BEGIN
v_res := 'First '||p_count||' gapful numbers starting from '||p_start||': ';
-- main cycle
while TRUE loop
IF MOD(v_start,to_number(substr(v_start,1,1)||substr(v_start,-1))) = 0 THEN
v_res := v_res || v_start;
v_count := v_count + 1;
exit WHEN v_count = p_count;
v_res := v_res || ', ';
END IF;
v_start := v_start + 1;
END loop;
--
RETURN v_res;
--
END;
--Test
SELECT gapful_numbers(100,30) AS res FROM dual
UNION ALL
SELECT gapful_numbers(1000000,15) AS res FROM dual
UNION ALL
SELECT gapful_numbers(1000000000,10) AS res FROM dual;
/
|
http://rosettacode.org/wiki/Gaussian_elimination
|
Gaussian elimination
|
Task
Solve Ax=b using Gaussian elimination then backwards substitution.
A being an n by n matrix.
Also, x and b are n by 1 vectors.
To improve accuracy, please use partial pivoting and scaling.
See also
the Wikipedia entry: Gaussian elimination
|
#Raku
|
Raku
|
sub gauss-jordan-solve (@a, @b) {
@b.kv.map: { @a[$^k].append: $^v };
@a.&rref[*]»[*-1];
}
# reduced row echelon form
sub rref (@m) {
my ($lead, $rows, $cols) = 0, @m, @m[0];
for ^$rows -> $r {
$lead < $cols or return @m;
my $i = $r;
until @m[$i;$lead] {
++$i == $rows or next;
$i = $r;
++$lead == $cols and return @m;
}
@m[$i, $r] = @m[$r, $i] if $r != $i;
@m[$r] »/=» $ = @m[$r;$lead];
for ^$rows -> $n {
next if $n == $r;
@m[$n] »-=» @m[$r] »×» (@m[$n;$lead] // 0);
}
++$lead;
}
@m
}
sub rat-or-int ($num) {
return $num unless $num ~~ Rat;
return $num.narrow if $num.narrow ~~ Int;
$num.nude.join: '/';
}
sub say-it ($message, @array, $fmt = " %8s") {
say "\n$message";
$_».&rat-or-int.fmt($fmt).put for @array;
}
my @a = (
[ 1.00, 0.00, 0.00, 0.00, 0.00, 0.00 ],
[ 1.00, 0.63, 0.39, 0.25, 0.16, 0.10 ],
[ 1.00, 1.26, 1.58, 1.98, 2.49, 3.13 ],
[ 1.00, 1.88, 3.55, 6.70, 12.62, 23.80 ],
[ 1.00, 2.51, 6.32, 15.88, 39.90, 100.28 ],
[ 1.00, 3.14, 9.87, 31.01, 97.41, 306.02 ],
);
my @b = ( -0.01, 0.61, 0.91, 0.99, 0.60, 0.02 );
say-it 'A matrix:', @a, "%6.2f";
say-it 'or, A in exact rationals:', @a;
say-it 'B matrix:', @b, "%6.2f";
say-it 'or, B in exact rationals:', @b;
say-it 'x matrix:', (my @gj = gauss-jordan-solve @a, @b), "%16.12f";
say-it 'or, x in exact rationals:', @gj, "%28s";
|
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
|
Generate lower case ASCII alphabet
|
Task
Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence.
For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code.
During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code:
set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z}
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Pascal
|
Pascal
|
program lowerCaseAscii(input, output, stdErr);
var
alphabet: set of char;
begin
// as per ISO 7185, 'a'..'z' do not necessarily have to be contiguous
alphabet := [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'
];
end.
|
http://rosettacode.org/wiki/Hello_world/Text
|
Hello world/Text
|
Hello world/Text is part of Short Circuit's Console Program Basics selection.
Task
Display the string Hello world! on a text console.
Related tasks
Hello world/Graphical
Hello world/Line Printer
Hello world/Newbie
Hello world/Newline omission
Hello world/Standard error
Hello world/Web server
|
#PL.2FI
|
PL/I
|
goodbye:proc options(main);
put list('Hello world!');
end goodbye;
|
http://rosettacode.org/wiki/Generator/Exponential
|
Generator/Exponential
|
A generator is an executable entity (like a function or procedure) that contains code that yields a sequence of values, one at a time, so that each time you call the generator, the next value in the sequence is provided.
Generators are often built on top of coroutines or objects so that the internal state of the object is handled “naturally”.
Generators are often used in situations where a sequence is potentially infinite, and where it is possible to construct the next value of the sequence with only minimal state.
Task
Create a function that returns a generation of the m'th powers of the positive integers starting from zero, in order, and without obvious or simple upper limit. (Any upper limit to the generator should not be stated in the source but should be down to factors such as the languages natural integer size limit or computational time/size).
Use it to create a generator of:
Squares.
Cubes.
Create a new generator that filters all cubes from the generator of squares.
Drop the first 20 values from this last generator of filtered results, and then show the next 10 values.
Note that this task requires the use of generators in the calculation of the result.
Also see
Generator
|
#VBA
|
VBA
|
Public lastsquare As Long
Public nextsquare As Long
Public lastcube As Long
Public midcube As Long
Public nextcube As Long
Private Sub init()
lastsquare = 1
nextsquare = -1
lastcube = -1
midcube = 0
nextcube = 1
End Sub
Private Function squares() As Long
lastsquare = lastsquare + nextsquare
nextsquare = nextsquare + 2
squares = lastsquare
End Function
Private Function cubes() As Long
lastcube = lastcube + nextcube
nextcube = nextcube + midcube
midcube = midcube + 6
cubes = lastcube
End Function
Public Sub main()
init
cube = cubes
For i = 1 To 30
Do While True
square = squares
Do While cube < square
cube = cubes
Loop
If square <> cube Then
Exit Do
End If
Loop
If i > 20 Then
Debug.Print square;
End If
Next i
End Sub
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#JavaScript
|
JavaScript
|
function compose(f, g) {
return function(x) {
return f(g(x));
};
}
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#Joy
|
Joy
|
g f
|
http://rosettacode.org/wiki/Fractal_tree
|
Fractal tree
|
Generate and draw a fractal tree.
Draw the trunk
At the end of the trunk, split by some angle and draw two branches
Repeat at the end of each branch until a sufficient level of branching is reached
Related tasks
Pythagoras Tree
|
#Perl
|
Perl
|
use GD::Simple;
my ($width, $height) = (1000,1000); # image dimension
my $scale = 6/10; # branch scale relative to trunk
my $length = 400; # trunk size
my $img = GD::Simple->new($width,$height);
$img->fgcolor('black');
$img->penSize(1,1);
tree($width/2, $height, $length, 270);
print $img->png;
sub tree
{
my ($x, $y, $len, $angle) = @_;
return if $len < 1;
$img->moveTo($x,$y);
$img->angle($angle);
$img->line($len);
($x, $y) = $img->curPos();
tree($x, $y, $len*$scale, $angle+35);
tree($x, $y, $len*$scale, $angle-35);
}
|
http://rosettacode.org/wiki/Fraction_reduction
|
Fraction reduction
|
There is a fine line between numerator and denominator. ─── anonymous
A method to "reduce" some reducible fractions is to cross out a digit from the
numerator and the denominator. An example is:
16 16
──── and then (simply) cross─out the sixes: ────
64 64
resulting in:
1
───
4
Naturally, this "method" of reduction must reduce to the proper value (shown as a fraction).
This "method" is also known as anomalous cancellation and also accidental cancellation.
(Of course, this "method" shouldn't be taught to impressionable or gullible minds.) 😇
Task
Find and show some fractions that can be reduced by the above "method".
show 2-digit fractions found (like the example shown above)
show 3-digit fractions
show 4-digit fractions
show 5-digit fractions (and higher) (optional)
show each (above) n-digit fractions separately from other different n-sized fractions, don't mix different "sizes" together
for each "size" fraction, only show a dozen examples (the 1st twelve found)
(it's recognized that not every programming solution will have the same generation algorithm)
for each "size" fraction:
show a count of how many reducible fractions were found. The example (above) is size 2
show a count of which digits were crossed out (one line for each different digit)
for each "size" fraction, show a count of how many were found. The example (above) is size 2
show each n-digit example (to be shown on one line):
show each n-digit fraction
show each reduced n-digit fraction
show what digit was crossed out for the numerator and the denominator
Task requirements/restrictions
only proper fractions and their reductions (the result) are to be used (no vulgar fractions)
only positive fractions are to be used (no negative signs anywhere)
only base ten integers are to be used for the numerator and denominator
no zeros (decimal digit) can be used within the numerator or the denominator
the numerator and denominator should be composed of the same number of digits
no digit can be repeated in the numerator
no digit can be repeated in the denominator
(naturally) there should be a shared decimal digit in the numerator and the denominator
fractions can be shown as 16/64 (for example)
Show all output here, on this page.
Somewhat related task
Farey sequence (It concerns fractions.)
References
Wikipedia entry: proper and improper fractions.
Wikipedia entry: anomalous cancellation and/or accidental cancellation.
|
#Python
|
Python
|
def indexOf(haystack, needle):
idx = 0
for straw in haystack:
if straw == needle:
return idx
else:
idx += 1
return -1
def getDigits(n, le, digits):
while n > 0:
r = n % 10
if r == 0 or indexOf(digits, r) >= 0:
return False
le -= 1
digits[le] = r
n = int(n / 10)
return True
def removeDigit(digits, le, idx):
pows = [1, 10, 100, 1000, 10000]
sum = 0
pow = pows[le - 2]
i = 0
while i < le:
if i == idx:
i += 1
continue
sum = sum + digits[i] * pow
pow = int(pow / 10)
i += 1
return sum
def main():
lims = [ [ 12, 97 ], [ 123, 986 ], [ 1234, 9875 ], [ 12345, 98764 ] ]
count = [0 for i in range(5)]
omitted = [[0 for i in range(10)] for j in range(5)]
i = 0
while i < len(lims):
n = lims[i][0]
while n < lims[i][1]:
nDigits = [0 for k in range(i + 2)]
nOk = getDigits(n, i + 2, nDigits)
if not nOk:
n += 1
continue
d = n + 1
while d <= lims[i][1] + 1:
dDigits = [0 for k in range(i + 2)]
dOk = getDigits(d, i + 2, dDigits)
if not dOk:
d += 1
continue
nix = 0
while nix < len(nDigits):
digit = nDigits[nix]
dix = indexOf(dDigits, digit)
if dix >= 0:
rn = removeDigit(nDigits, i + 2, nix)
rd = removeDigit(dDigits, i + 2, dix)
if (1.0 * n / d) == (1.0 * rn / rd):
count[i] += 1
omitted[i][digit] += 1
if count[i] <= 12:
print "%d/%d = %d/%d by omitting %d's" % (n, d, rn, rd, digit)
nix += 1
d += 1
n += 1
print
i += 1
i = 2
while i <= 5:
print "There are %d %d-digit fractions of which:" % (count[i - 2], i)
j = 1
while j <= 9:
if omitted[i - 2][j] == 0:
j += 1
continue
print "%6s have %d's omitted" % (omitted[i - 2][j], j)
j += 1
print
i += 1
return None
main()
|
http://rosettacode.org/wiki/Fractran
|
Fractran
|
FRACTRAN is a Turing-complete esoteric programming language invented by the mathematician John Horton Conway.
A FRACTRAN program is an ordered list of positive fractions
P
=
(
f
1
,
f
2
,
…
,
f
m
)
{\displaystyle P=(f_{1},f_{2},\ldots ,f_{m})}
, together with an initial positive integer input
n
{\displaystyle n}
.
The program is run by updating the integer
n
{\displaystyle n}
as follows:
for the first fraction,
f
i
{\displaystyle f_{i}}
, in the list for which
n
f
i
{\displaystyle nf_{i}}
is an integer, replace
n
{\displaystyle n}
with
n
f
i
{\displaystyle nf_{i}}
;
repeat this rule until no fraction in the list produces an integer when multiplied by
n
{\displaystyle n}
, then halt.
Conway gave a program for primes in FRACTRAN:
17
/
91
{\displaystyle 17/91}
,
78
/
85
{\displaystyle 78/85}
,
19
/
51
{\displaystyle 19/51}
,
23
/
38
{\displaystyle 23/38}
,
29
/
33
{\displaystyle 29/33}
,
77
/
29
{\displaystyle 77/29}
,
95
/
23
{\displaystyle 95/23}
,
77
/
19
{\displaystyle 77/19}
,
1
/
17
{\displaystyle 1/17}
,
11
/
13
{\displaystyle 11/13}
,
13
/
11
{\displaystyle 13/11}
,
15
/
14
{\displaystyle 15/14}
,
15
/
2
{\displaystyle 15/2}
,
55
/
1
{\displaystyle 55/1}
Starting with
n
=
2
{\displaystyle n=2}
, this FRACTRAN program will change
n
{\displaystyle n}
to
15
=
2
×
(
15
/
2
)
{\displaystyle 15=2\times (15/2)}
, then
825
=
15
×
(
55
/
1
)
{\displaystyle 825=15\times (55/1)}
, generating the following sequence of integers:
2
{\displaystyle 2}
,
15
{\displaystyle 15}
,
825
{\displaystyle 825}
,
725
{\displaystyle 725}
,
1925
{\displaystyle 1925}
,
2275
{\displaystyle 2275}
,
425
{\displaystyle 425}
,
390
{\displaystyle 390}
,
330
{\displaystyle 330}
,
290
{\displaystyle 290}
,
770
{\displaystyle 770}
,
…
{\displaystyle \ldots }
After 2, this sequence contains the following powers of 2:
2
2
=
4
{\displaystyle 2^{2}=4}
,
2
3
=
8
{\displaystyle 2^{3}=8}
,
2
5
=
32
{\displaystyle 2^{5}=32}
,
2
7
=
128
{\displaystyle 2^{7}=128}
,
2
11
=
2048
{\displaystyle 2^{11}=2048}
,
2
13
=
8192
{\displaystyle 2^{13}=8192}
,
2
17
=
131072
{\displaystyle 2^{17}=131072}
,
2
19
=
524288
{\displaystyle 2^{19}=524288}
,
…
{\displaystyle \ldots }
which are the prime powers of 2.
Task
Write a program that reads a list of fractions in a natural format from the keyboard or from a string,
to parse it into a sequence of fractions (i.e. two integers),
and runs the FRACTRAN starting from a provided integer, writing the result at each step.
It is also required that the number of steps is limited (by a parameter easy to find).
Extra credit
Use this program to derive the first 20 or so prime numbers.
See also
For more on how to program FRACTRAN as a universal programming language, see:
J. H. Conway (1987). Fractran: A Simple Universal Programming Language for Arithmetic. In: Open Problems in Communication and Computation, pages 4–26. Springer.
J. H. Conway (2010). "FRACTRAN: A simple universal programming language for arithmetic". In Jeffrey C. Lagarias. The Ultimate Challenge: the 3x+1 problem. American Mathematical Society. pp. 249–264. ISBN 978-0-8218-4940-8. Zbl 1216.68068.
Number Pathology: Fractran by Mark C. Chu-Carroll; October 27, 2006.
|
#Java
|
Java
|
import java.util.Vector;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class Fractran{
public static void main(String []args){
new Fractran("17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1", 2);
}
final int limit = 15;
Vector<Integer> num = new Vector<>();
Vector<Integer> den = new Vector<>();
public Fractran(String prog, Integer val){
compile(prog);
dump();
exec(2);
}
void compile(String prog){
Pattern regexp = Pattern.compile("\\s*(\\d*)\\s*\\/\\s*(\\d*)\\s*(.*)");
Matcher matcher = regexp.matcher(prog);
while(matcher.find()){
num.add(Integer.parseInt(matcher.group(1)));
den.add(Integer.parseInt(matcher.group(2)));
matcher = regexp.matcher(matcher.group(3));
}
}
void exec(Integer val){
int n = 0;
while(val != null && n<limit){
System.out.println(n+": "+val);
val = step(val);
n++;
}
}
Integer step(int val){
int i=0;
while(i<den.size() && val%den.get(i) != 0) i++;
if(i<den.size())
return num.get(i)*val/den.get(i);
return null;
}
void dump(){
for(int i=0; i<den.size(); i++)
System.out.print(num.get(i)+"/"+den.get(i)+" ");
System.out.println();
}
}
|
http://rosettacode.org/wiki/Function_definition
|
Function definition
|
A function is a body of code that returns a value.
The value returned may depend on arguments provided to the function.
Task
Write a definition of a function called "multiply" that takes two arguments and returns their product.
(Argument types should be chosen so as not to distract from showing how functions are created and values returned).
Related task
Function prototype
|
#Batch_File
|
Batch File
|
@ECHO OFF
SET /A result = 0
CALL :multiply 2 3
ECHO %result%
GOTO :eof
:multiply
SET /A result = %1 * %2
GOTO :eof
:eof
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#Quackery
|
Quackery
|
[ 1 & ] is odd ( n --> b )
[ 0 swap
[ dip 1+
10 / dup
0 = until ]
drop ] is digits ( n --> n )
[ dup dup size
dup odd iff
[ dup 1 - 2 /
dip
[ 1 + 2 / peek
over ]
peek + ]
else
[ 2 / peek ]
join ] is nextfusc ( [ --> [ )
say "First 61 terms." cr
' [ 0 1 ]
59 times nextfusc
witheach [ echo sp ]
cr cr
say "Terms where the digit count increases." cr
say "fusc(0) = 0" cr
1 ' [ 0 1 ]
[ nextfusc
dup -1 peek digits
rot 2dup > iff
[ drop swap
say "fusc("
dup -1 peek echo
say ") = "
dup size 1 - echo cr ]
else [ nip swap ]
dup size 1000000 = until ]
2drop
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#R
|
R
|
firstNFuscNumbers <- function(n)
{
stopifnot(n > 0)
if(n == 1) return(0) else fusc <- c(0, 1)
if(n > 2)
{
for(i in seq(from = 3, to = n, by = 1))
{
fusc[i] <- if(i %% 2) fusc[(i + 1) / 2] else fusc[i / 2] + fusc[(i + 2) / 2]
}
}
fusc
}
first61 <- firstNFuscNumbers(61)
cat("The first 61 Fusc numbers are:", "\n", first61, "\n")
|
http://rosettacode.org/wiki/Gamma_function
|
Gamma function
|
Task
Implement one algorithm (or more) to compute the Gamma (
Γ
{\displaystyle \Gamma }
) function (in the real field only).
If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function.
The Gamma function can be defined as:
Γ
(
x
)
=
∫
0
∞
t
x
−
1
e
−
t
d
t
{\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt}
This suggests a straightforward (but inefficient) way of computing the
Γ
{\displaystyle \Gamma }
through numerical integration.
Better suggested methods:
Lanczos approximation
Stirling's approximation
|
#Lua
|
Lua
|
gamma, coeff, quad, qui, set = 0.577215664901, -0.65587807152056, -0.042002635033944, 0.16653861138228, -0.042197734555571
function recigamma(z)
return z + gamma * z^2 + coeff * z^3 + quad * z^4 + qui * z^5 + set * z^6
end
function gammafunc(z)
if z == 1 then return 1
elseif math.abs(z) <= 0.5 then return 1 / recigamma(z)
else return (z - 1) * gammafunc(z-1)
end
end
|
http://rosettacode.org/wiki/Gapful_numbers
|
Gapful numbers
|
Numbers (positive integers expressed in base ten) that are (evenly) divisible by the number formed by the
first and last digit are known as gapful numbers.
Evenly divisible means divisible with no remainder.
All one─ and two─digit numbers have this property and are trivially excluded. Only
numbers ≥ 100 will be considered for this Rosetta Code task.
Example
187 is a gapful number because it is evenly divisible by the
number 17 which is formed by the first and last decimal digits
of 187.
About 7.46% of positive integers are gapful.
Task
Generate and show all sets of numbers (below) on one line (horizontally) with a title, here on this page
Show the first 30 gapful numbers
Show the first 15 gapful numbers ≥ 1,000,000
Show the first 10 gapful numbers ≥ 1,000,000,000
Related tasks
Harshad or Niven series.
palindromic gapful numbers.
largest number divisible by its digits.
Also see
The OEIS entry: A108343 gapful numbers.
numbersaplenty gapful numbers
|
#Swift
|
Swift
|
func isGapful(n: Int) -> Bool {
guard n > 100 else {
return true
}
let asString = String(n)
let div = Int("\(asString.first!)\(asString.last!)")!
return n % div == 0
}
let first30 = (100...).lazy.filter(isGapful).prefix(30)
let mil = (1_000_000...).lazy.filter(isGapful).prefix(15)
let bil = (1_000_000_000...).lazy.filter(isGapful).prefix(15)
print("First 30 gapful numbers: \(Array(first30))")
print("First 15 >= 1,000,000: \(Array(mil))")
print("First 15 >= 1,000,000,000: \(Array(bil))")
|
http://rosettacode.org/wiki/Gapful_numbers
|
Gapful numbers
|
Numbers (positive integers expressed in base ten) that are (evenly) divisible by the number formed by the
first and last digit are known as gapful numbers.
Evenly divisible means divisible with no remainder.
All one─ and two─digit numbers have this property and are trivially excluded. Only
numbers ≥ 100 will be considered for this Rosetta Code task.
Example
187 is a gapful number because it is evenly divisible by the
number 17 which is formed by the first and last decimal digits
of 187.
About 7.46% of positive integers are gapful.
Task
Generate and show all sets of numbers (below) on one line (horizontally) with a title, here on this page
Show the first 30 gapful numbers
Show the first 15 gapful numbers ≥ 1,000,000
Show the first 10 gapful numbers ≥ 1,000,000,000
Related tasks
Harshad or Niven series.
palindromic gapful numbers.
largest number divisible by its digits.
Also see
The OEIS entry: A108343 gapful numbers.
numbersaplenty gapful numbers
|
#Tcl
|
Tcl
|
proc ungap n {
if {[string length $n] < 3} {
return $n
}
return [string index $n 0][string index $n end]
}
proc gapful n {
return [expr {0 == ($n % [ungap $n])}]
}
## --> list of gapful numbers >= n
proc GFlist {count n} {
set r {}
while {[llength $r] < $count} {
if {[gapful $n]} {
lappend r $n
}
incr n
}
return $r
}
proc show {count n} {
puts "The first $count gapful >= $n: [GFlist $count $n]"
}
show 30 100
show 15 1000000
show 10 1000000000
|
http://rosettacode.org/wiki/Gaussian_elimination
|
Gaussian elimination
|
Task
Solve Ax=b using Gaussian elimination then backwards substitution.
A being an n by n matrix.
Also, x and b are n by 1 vectors.
To improve accuracy, please use partial pivoting and scaling.
See also
the Wikipedia entry: Gaussian elimination
|
#REXX
|
REXX
|
/* REXX ---------------------------------------------------------------
* 07.08.2014 Walter Pachl translated from PL/I)
* improved to get integer results for, e.g. this input:
-6 -18 13 6 -6 -15 -2 -9 -231
2 20 9 2 16 -12 -18 -5 647
23 18 -14 -14 -1 16 25 -17 -907
-8 -1 -19 4 3 -14 23 8 248
25 20 -6 15 0 -10 9 17 1316
-13 -1 3 5 -2 17 14 -12 -1080
19 24 -21 -5 -19 0 -24 -17 1006
20 -3 -14 -16 -23 -25 -15 20 1496
*--------------------------------------------------------------------*/
Numeric Digits 20
Parse Arg t
n=3
Parse Value '1 2 3 14' With a.1.1 a.1.2 a.1.3 b.1
Parse Value '2 1 3 13' With a.2.1 a.2.2 a.2.3 b.2
Parse Value '3 -2 -1 -4' With a.3.1 a.3.2 a.3.3 b.3
If t=6 Then Do
n=6
Parse Value '1.00 0.00 0.00 0.00 0.00 0.00 ' With a.1.1 a.1.2 a.1.3 a.1.4 a.1.5 a.1.6 .
Parse Value '1.00 0.63 0.39 0.25 0.16 0.10 ' With a.2.1 a.2.2 a.2.3 a.2.4 a.2.5 a.2.6 .
Parse Value '1.00 1.26 1.58 1.98 2.49 3.13 ' With a.3.1 a.3.2 a.3.3 a.3.4 a.3.5 a.3.6 .
Parse Value '1.00 1.88 3.55 6.70 12.62 23.80 ' With a.4.1 a.4.2 a.4.3 a.4.4 a.4.5 a.4.6 .
Parse Value '1.00 2.51 6.32 15.88 39.90 100.28' With a.5.1 a.5.2 a.5.3 a.5.4 a.5.5 a.5.6 .
Parse Value '1.00 3.14 9.87 31.01 97.41 306.02' With a.6.1 a.6.2 a.6.3 a.6.4 a.6.5 a.6.6 .
Parse Value '-0.01 0.61 0.91 0.99 0.60 0.02' With b.1 b.2 b.3 b.4 b.5 b.6 .
End
Do i=1 To n
Do j=1 To n
sa.i.j=a.i.j
End
sb.i=b.i
End
Say 'The equations are:'
do i = 1 to n;
ol=''
Do j=1 To n
ol=ol format(a.i.j,4,4)
End
ol=ol' 'format(b.i,4,4)
Say ol
end
call Gauss_elimination
call Backward_substitution
Say 'Solutions:'
Do i=1 To n
Say 'x('i')='||x.i
End
/* Check solutions: */
Say 'Residuals:'
do i = 1 to n
res=0
Do j=1 To n
res=res+(sa.i.j*x.j)
End
res=res-sb.i
Say 'res('i')='res
End
Exit
Gauss_elimination:
Do j=1 to n-1
ma=a.j.j
Do ja=j+1 To n
mb=a.ja.j
Do i=1 To n
new=a.j.i*mb-a.ja.i*ma
a.ja.i=new
End
b.ja=b.j*mb-b.ja*ma
End
End
Return
Backward_substitution:
x.n = b.n / a.n.n
do j = n-1 to 1 by -1
t = 0
do i = j+1 to n
t = t + a.j.i*x.i
end
x.j = (b.j - t) / a.j.j
end
Return
|
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
|
Generate lower case ASCII alphabet
|
Task
Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence.
For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code.
During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code:
set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z}
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Perl
|
Perl
|
print 'a'..'z'
|
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
|
Generate lower case ASCII alphabet
|
Task
Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence.
For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code.
During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code:
set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z}
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Phix
|
Phix
|
string az = ""
for ch='a' to 'z' do
az &= ch
end for
?az
?tagset('z','a')
|
http://rosettacode.org/wiki/Hello_world/Text
|
Hello world/Text
|
Hello world/Text is part of Short Circuit's Console Program Basics selection.
Task
Display the string Hello world! on a text console.
Related tasks
Hello world/Graphical
Hello world/Line Printer
Hello world/Newbie
Hello world/Newline omission
Hello world/Standard error
Hello world/Web server
|
#PL.2FM
|
PL/M
|
100H:
/* CP/M BDOS SYSTEM CALL */
BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
/* PRINT A $ TERMINATED STRING */
PRINT$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
/* HELLO, WORLD! IN MIXED CASE */
DECLARE HELLO$WORLD ( 14 ) BYTE
INITIAL( 'H', 65H, 6CH, 6CH, 6FH, ',', ' '
, 'W', 6FH, 72H, 6CH, 64H, 21H, '$'
);
CALL PRINT$STRING( .HELLO$WORLD );
EOF
|
http://rosettacode.org/wiki/Generator/Exponential
|
Generator/Exponential
|
A generator is an executable entity (like a function or procedure) that contains code that yields a sequence of values, one at a time, so that each time you call the generator, the next value in the sequence is provided.
Generators are often built on top of coroutines or objects so that the internal state of the object is handled “naturally”.
Generators are often used in situations where a sequence is potentially infinite, and where it is possible to construct the next value of the sequence with only minimal state.
Task
Create a function that returns a generation of the m'th powers of the positive integers starting from zero, in order, and without obvious or simple upper limit. (Any upper limit to the generator should not be stated in the source but should be down to factors such as the languages natural integer size limit or computational time/size).
Use it to create a generator of:
Squares.
Cubes.
Create a new generator that filters all cubes from the generator of squares.
Drop the first 20 values from this last generator of filtered results, and then show the next 10 values.
Note that this task requires the use of generators in the calculation of the result.
Also see
Generator
|
#Visual_Basic_.NET
|
Visual Basic .NET
|
Module Program
Iterator Function IntegerPowers(exp As Integer) As IEnumerable(Of Integer)
Dim i As Integer = 0
Do
Yield CInt(Math.Pow(i, exp))
i += 1
Loop
End Function
Function Squares() As IEnumerable(Of Integer)
Return IntegerPowers(2)
End Function
Function Cubes() As IEnumerable(Of Integer)
Return IntegerPowers(3)
End Function
Iterator Function SquaresWithoutCubes() As IEnumerable(Of Integer)
Dim cubeSequence = Cubes().GetEnumerator()
Dim nextGreaterOrEqualCube As Integer = 0
For Each curSquare In Squares()
Do While nextGreaterOrEqualCube < curSquare
cubeSequence.MoveNext()
nextGreaterOrEqualCube = cubeSequence.Current
Loop
If nextGreaterOrEqualCube <> curSquare Then Yield curSquare
Next
End Function
Sub Main()
For Each x In From i In SquaresWithoutCubes() Skip 20 Take 10
Console.WriteLine(x)
Next
End Sub
End Module
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#jq
|
jq
|
# apply g first and then f
def compose(f; g): g | f;
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#Julia
|
Julia
|
@show (asin ∘ sin)(0.5)
|
http://rosettacode.org/wiki/Fractal_tree
|
Fractal tree
|
Generate and draw a fractal tree.
Draw the trunk
At the end of the trunk, split by some angle and draw two branches
Repeat at the end of each branch until a sufficient level of branching is reached
Related tasks
Pythagoras Tree
|
#Phix
|
Phix
|
--
-- demo\rosetta\FractalTree.exw
-- ============================
--
with javascript_semantics
include pGUI.e
Ihandle dlg, canvas
cdCanvas cddbuffer, cdcanvas
procedure drawTree(integer level, atom angle, len, integer x, y)
integer xn = x + floor(len*cos(angle)),
yn = y + floor(len*sin(angle)),
red = 255-level*8,
green = level*12+100
cdCanvasSetForeground(cddbuffer, red*#10000 + green*#100)
cdCanvasSetLineWidth(cddbuffer,floor(5-level/3))
cdCanvasLine(cddbuffer, x, 480-y, xn, 480-yn)
if level<12 then
drawTree(level+1, angle-0.4, len*0.8, xn, yn) --left
drawTree(level+1, angle+0.1, len*0.8, xn, yn) --right
end if
end procedure
function redraw_cb(Ihandle /*ih*/, integer /*posx*/, /*posy*/)
cdCanvasActivate(cddbuffer)
cdCanvasClear(cddbuffer)
drawTree(0, -PI/2.0, 80.0, 360, 460)
cdCanvasFlush(cddbuffer)
return IUP_DEFAULT
end function
function map_cb(Ihandle ih)
cdcanvas = cdCreateCanvas(CD_IUP, ih)
cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
cdCanvasSetBackground(cddbuffer, CD_PARCHMENT)
return IUP_DEFAULT
end function
procedure main()
IupOpen()
canvas = IupCanvas("RASTERSIZE=640x480")
IupSetCallbacks(canvas, {"MAP_CB", Icallback("map_cb"),
"ACTION", Icallback("redraw_cb")})
dlg = IupDialog(canvas,"RESIZE=NO")
IupSetAttribute(dlg, "TITLE", "Fractal Tree")
IupShow(dlg)
if platform()!=JS then
IupMainLoop()
IupClose()
end if
end procedure
main()
|
http://rosettacode.org/wiki/Fraction_reduction
|
Fraction reduction
|
There is a fine line between numerator and denominator. ─── anonymous
A method to "reduce" some reducible fractions is to cross out a digit from the
numerator and the denominator. An example is:
16 16
──── and then (simply) cross─out the sixes: ────
64 64
resulting in:
1
───
4
Naturally, this "method" of reduction must reduce to the proper value (shown as a fraction).
This "method" is also known as anomalous cancellation and also accidental cancellation.
(Of course, this "method" shouldn't be taught to impressionable or gullible minds.) 😇
Task
Find and show some fractions that can be reduced by the above "method".
show 2-digit fractions found (like the example shown above)
show 3-digit fractions
show 4-digit fractions
show 5-digit fractions (and higher) (optional)
show each (above) n-digit fractions separately from other different n-sized fractions, don't mix different "sizes" together
for each "size" fraction, only show a dozen examples (the 1st twelve found)
(it's recognized that not every programming solution will have the same generation algorithm)
for each "size" fraction:
show a count of how many reducible fractions were found. The example (above) is size 2
show a count of which digits were crossed out (one line for each different digit)
for each "size" fraction, show a count of how many were found. The example (above) is size 2
show each n-digit example (to be shown on one line):
show each n-digit fraction
show each reduced n-digit fraction
show what digit was crossed out for the numerator and the denominator
Task requirements/restrictions
only proper fractions and their reductions (the result) are to be used (no vulgar fractions)
only positive fractions are to be used (no negative signs anywhere)
only base ten integers are to be used for the numerator and denominator
no zeros (decimal digit) can be used within the numerator or the denominator
the numerator and denominator should be composed of the same number of digits
no digit can be repeated in the numerator
no digit can be repeated in the denominator
(naturally) there should be a shared decimal digit in the numerator and the denominator
fractions can be shown as 16/64 (for example)
Show all output here, on this page.
Somewhat related task
Farey sequence (It concerns fractions.)
References
Wikipedia entry: proper and improper fractions.
Wikipedia entry: anomalous cancellation and/or accidental cancellation.
|
#Racket
|
Racket
|
#lang racket
(require racket/generator
syntax/parse/define)
(define-syntax-parser for**
[(_ [x:id {~datum <-} (e ...)] rst ...) #'(e ... (λ (x) (for** rst ...)))]
[(_ e ...) #'(begin e ...)])
(define (permutations xs n yield #:lower [lower #f])
(let loop ([xs xs] [n n] [acc '()] [lower lower])
(cond
[(= n 0) (yield (reverse acc))]
[else (for ([x (in-list xs)] #:when (or (not lower) (>= x (first lower))))
(loop (remove x xs)
(sub1 n)
(cons x acc)
(and lower (= x (first lower)) (rest lower))))])))
(define (list->number xs) (foldl (λ (e acc) (+ (* 10 acc) e)) 0 xs))
(define (calc n)
(define rng (range 1 10))
(in-generator
(for** [numer <- (permutations rng n)]
[denom <- (permutations rng n #:lower numer)]
(for* (#:when (not (equal? numer denom))
[crossed (in-list numer)]
#:when (member crossed denom)
[numer* (in-value (list->number (remove crossed numer)))]
[denom* (in-value (list->number (remove crossed denom)))]
[numer** (in-value (list->number numer))]
[denom** (in-value (list->number denom))]
#:when (= (* numer** denom*) (* numer* denom**)))
(yield (list numer** denom** numer* denom* crossed))))))
(define (enumerate n)
(for ([x (calc n)] [i (in-range 12)])
(apply printf "~a/~a = ~a/~a (~a crossed out)\n" x))
(newline))
(define (stats n)
(define digits (make-hash))
(for ([x (calc n)]) (hash-update! digits (last x) add1 0))
(printf "There are ~a ~a-digit fractions of which:\n" (for/sum ([(k v) (in-hash digits)]) v) n)
(for ([digit (in-list (sort (hash->list digits) < #:key car))])
(printf " The digit ~a was crossed out ~a times\n" (car digit) (cdr digit)))
(newline))
(define (main)
(enumerate 2)
(enumerate 3)
(enumerate 4)
(enumerate 5)
(stats 2)
(stats 3)
(stats 4)
(stats 5))
(main)
|
http://rosettacode.org/wiki/Fractran
|
Fractran
|
FRACTRAN is a Turing-complete esoteric programming language invented by the mathematician John Horton Conway.
A FRACTRAN program is an ordered list of positive fractions
P
=
(
f
1
,
f
2
,
…
,
f
m
)
{\displaystyle P=(f_{1},f_{2},\ldots ,f_{m})}
, together with an initial positive integer input
n
{\displaystyle n}
.
The program is run by updating the integer
n
{\displaystyle n}
as follows:
for the first fraction,
f
i
{\displaystyle f_{i}}
, in the list for which
n
f
i
{\displaystyle nf_{i}}
is an integer, replace
n
{\displaystyle n}
with
n
f
i
{\displaystyle nf_{i}}
;
repeat this rule until no fraction in the list produces an integer when multiplied by
n
{\displaystyle n}
, then halt.
Conway gave a program for primes in FRACTRAN:
17
/
91
{\displaystyle 17/91}
,
78
/
85
{\displaystyle 78/85}
,
19
/
51
{\displaystyle 19/51}
,
23
/
38
{\displaystyle 23/38}
,
29
/
33
{\displaystyle 29/33}
,
77
/
29
{\displaystyle 77/29}
,
95
/
23
{\displaystyle 95/23}
,
77
/
19
{\displaystyle 77/19}
,
1
/
17
{\displaystyle 1/17}
,
11
/
13
{\displaystyle 11/13}
,
13
/
11
{\displaystyle 13/11}
,
15
/
14
{\displaystyle 15/14}
,
15
/
2
{\displaystyle 15/2}
,
55
/
1
{\displaystyle 55/1}
Starting with
n
=
2
{\displaystyle n=2}
, this FRACTRAN program will change
n
{\displaystyle n}
to
15
=
2
×
(
15
/
2
)
{\displaystyle 15=2\times (15/2)}
, then
825
=
15
×
(
55
/
1
)
{\displaystyle 825=15\times (55/1)}
, generating the following sequence of integers:
2
{\displaystyle 2}
,
15
{\displaystyle 15}
,
825
{\displaystyle 825}
,
725
{\displaystyle 725}
,
1925
{\displaystyle 1925}
,
2275
{\displaystyle 2275}
,
425
{\displaystyle 425}
,
390
{\displaystyle 390}
,
330
{\displaystyle 330}
,
290
{\displaystyle 290}
,
770
{\displaystyle 770}
,
…
{\displaystyle \ldots }
After 2, this sequence contains the following powers of 2:
2
2
=
4
{\displaystyle 2^{2}=4}
,
2
3
=
8
{\displaystyle 2^{3}=8}
,
2
5
=
32
{\displaystyle 2^{5}=32}
,
2
7
=
128
{\displaystyle 2^{7}=128}
,
2
11
=
2048
{\displaystyle 2^{11}=2048}
,
2
13
=
8192
{\displaystyle 2^{13}=8192}
,
2
17
=
131072
{\displaystyle 2^{17}=131072}
,
2
19
=
524288
{\displaystyle 2^{19}=524288}
,
…
{\displaystyle \ldots }
which are the prime powers of 2.
Task
Write a program that reads a list of fractions in a natural format from the keyboard or from a string,
to parse it into a sequence of fractions (i.e. two integers),
and runs the FRACTRAN starting from a provided integer, writing the result at each step.
It is also required that the number of steps is limited (by a parameter easy to find).
Extra credit
Use this program to derive the first 20 or so prime numbers.
See also
For more on how to program FRACTRAN as a universal programming language, see:
J. H. Conway (1987). Fractran: A Simple Universal Programming Language for Arithmetic. In: Open Problems in Communication and Computation, pages 4–26. Springer.
J. H. Conway (2010). "FRACTRAN: A simple universal programming language for arithmetic". In Jeffrey C. Lagarias. The Ultimate Challenge: the 3x+1 problem. American Mathematical Society. pp. 249–264. ISBN 978-0-8218-4940-8. Zbl 1216.68068.
Number Pathology: Fractran by Mark C. Chu-Carroll; October 27, 2006.
|
#JavaScript
|
JavaScript
|
// Parses the input string for the numerators and denominators
function compile(prog, numArr, denArr) {
let regex = /\s*(\d*)\s*\/\s*(\d*)\s*(.*)/m;
let result;
while (result = regex.exec(prog)) {
numArr.push(result[1]);
denArr.push(result[2]);
prog = result[3];
}
return [numArr, denArr];
}
// Outputs the result of the compile stage
function dump(numArr, denArr) {
let output = "";
for (let i in numArr) {
output += `${numArr[i]}/${denArr[i]} `;
}
return `${output}<br>`;
}
// Step
function step(val, numArr, denArr) {
let i = 0;
while (i < denArr.length && val % denArr[i] != 0) i++;
return numArr[i] * val / denArr[i];
}
// Executes Fractran
function exec(val, i, limit, numArr, denArr) {
let output = "";
while (val && i < limit) {
output += `${i}: ${val}<br>`;
val = step(val, numArr, denArr);
i++;
}
return output;
}
// Main
// Outputs to DOM (clears and writes at the body tag)
let body = document.body;
let [num, den] = compile("17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1", [], []);
body.innerHTML = dump(num, den);
body.innerHTML += exec(2, 0, 15, num, den);
|
http://rosettacode.org/wiki/Function_definition
|
Function definition
|
A function is a body of code that returns a value.
The value returned may depend on arguments provided to the function.
Task
Write a definition of a function called "multiply" that takes two arguments and returns their product.
(Argument types should be chosen so as not to distract from showing how functions are created and values returned).
Related task
Function prototype
|
#BBC_BASIC
|
BBC BASIC
|
PRINT FNmultiply(6,7)
END
DEF FNmultiply(a,b) = a * b
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#Racket
|
Racket
|
#lang racket
(require racket/generator)
(define (memoize f)
(define table (make-hash))
(λ args (hash-ref! table args (thunk (apply f args)))))
(define fusc
(memoize
(λ (n)
(cond
[(<= n 1) n]
[(even? n) (fusc (/ n 2))]
[else (+ (fusc (/ (sub1 n) 2)) (fusc (/ (add1 n) 2)))]))))
(define (comma x)
(string-join
(reverse
(for/list ([digit (in-list (reverse (string->list (~a x))))] [i (in-naturals)])
(cond
[(and (= 0 (modulo i 3)) (> i 0)) (string digit #\,)]
[else (string digit)])))
""))
;; Task 1
(displayln (string-join (for/list ([i (in-range 61)]) (comma (fusc i))) " "))
(newline)
;; Task 2
(define gen
(in-generator
(let loop ([prev 0] [i 0])
(define result (fusc i))
(define len (string-length (~a result)))
(cond
[(> len prev)
(yield (list i result))
(loop len (add1 i))]
[else (loop prev (add1 i))]))))
(for ([i (in-range 5)] [x gen])
(match-define (list index result) x)
(printf "~a: ~a\n" (comma index) (comma result)))
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#Raku
|
Raku
|
my @Fusc = 0, 1, 1, { |(@Fusc[$_ - 1] + @Fusc[$_], @Fusc[$_]) given ++$+1 } ... *;
sub comma { $^i.flip.comb(3).join(',').flip }
put "First 61 terms of the Fusc sequence:\n{@Fusc[^61]}" ~
"\n\nIndex and value for first term longer than any previous:";
for flat 'Index', 'Value', 0, 0, (1..4).map({
my $l = 10**$_;
@Fusc.first(* > $l, :kv).map: &comma
}) -> $i, $v {
printf "%15s : %s\n", $i, $v
}
|
http://rosettacode.org/wiki/Gamma_function
|
Gamma function
|
Task
Implement one algorithm (or more) to compute the Gamma (
Γ
{\displaystyle \Gamma }
) function (in the real field only).
If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function.
The Gamma function can be defined as:
Γ
(
x
)
=
∫
0
∞
t
x
−
1
e
−
t
d
t
{\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt}
This suggests a straightforward (but inefficient) way of computing the
Γ
{\displaystyle \Gamma }
through numerical integration.
Better suggested methods:
Lanczos approximation
Stirling's approximation
|
#M2000_Interpreter
|
M2000 Interpreter
|
Module PrepareLambdaFunctions {
Const e = 2.7182818284590452@
Exp= Lambda e (x) -> e^x
gammaStirling=lambda e (x As decimal)->Sqrt(2.0 * pi / x) * ((x / e) ^ x)
Rad2Deg =Lambda pidivby180=pi/180 (RadAngle)->RadAngle / pidivby180
Dim p(9)
p(0)=0.99999999999980993@, 676.5203681218851@, -1259.1392167224028@, 771.32342877765313@
p(4)=-176.61502916214059@, 12.507343278686905@, -0.13857109526572012@, 0.0000099843695780195716@
p(8)=0.00000015056327351493116@
gammaLanczos =Lambda p(), Rad2Deg, Exp (x As decimal) -> {
Def Decimal a, t
If x < 0.5 Then =pi / (Sin(Rad2Deg(pi * x)) *Lambda(1-x)) : Exit
x -= 1@
a=p(0)
t = x + 7.5@
For i= 1@ To 8@ {
a += p(i) / (x + i)
}
= Sqrt(2.0 * pi) * (t ^ (x + 0.5)) * Exp(-t) * a
}
Push gammaStirling, gammaLanczos
}
Call PrepareLambdaFunctions
Read gammaLanczos, gammaStirling
Font "Courier New"
Form 120, 40
document doc$=" χ Stirling Lanczos"+{
}
Print $(2,20),"x", "Stirling",@(55),"Lanczos", $(0)
Print
For d = 0.1 To 2 step 0.1
Print $("0.00"), d,
Print $("0.000000000000000"), gammaStirling(d),
Print $("0.0000000000000000000000000000"), gammaLanczos(d)
doc$=format$("{0:-10} {1:-30} {2:-34}",str$(d,"0.00"), str$(gammaStirling(d),"0.000000000000000"), str$(gammaLanczos(d),"0.0000000000000000000000000000"))+{
}
Next d
Print $("")
clipboard doc$
|
http://rosettacode.org/wiki/Gapful_numbers
|
Gapful numbers
|
Numbers (positive integers expressed in base ten) that are (evenly) divisible by the number formed by the
first and last digit are known as gapful numbers.
Evenly divisible means divisible with no remainder.
All one─ and two─digit numbers have this property and are trivially excluded. Only
numbers ≥ 100 will be considered for this Rosetta Code task.
Example
187 is a gapful number because it is evenly divisible by the
number 17 which is formed by the first and last decimal digits
of 187.
About 7.46% of positive integers are gapful.
Task
Generate and show all sets of numbers (below) on one line (horizontally) with a title, here on this page
Show the first 30 gapful numbers
Show the first 15 gapful numbers ≥ 1,000,000
Show the first 10 gapful numbers ≥ 1,000,000,000
Related tasks
Harshad or Niven series.
palindromic gapful numbers.
largest number divisible by its digits.
Also see
The OEIS entry: A108343 gapful numbers.
numbersaplenty gapful numbers
|
#UNIX_Shell
|
UNIX Shell
|
first-digit() {
printf '%s\n' "${1:0:1}"
}
last-digit() {
printf '%s\n' $(( $1 % 10 ))
}
bookend-number() {
printf '%s%s\n' "$(first-digit "$@")" "$(last-digit "$@")"
}
is-gapful() {
(( $1 >= 100 && $1 % $(bookend-number "$1") == 0 ))
}
gapfuls-in-range() {
local gapfuls=()
local -i i found
for (( i=$1, found=0; found < $2; ++i )); do
if is-gapful "$i"; then
if (( found )); then
printf ' ';
fi
printf '%s' "$i"
(( found++ ))
fi
done
printf '\n'
}
report-ranges() {
local range
local -i start size
for range; do
IFS=, read start size <<<"$range"
printf 'The first %d gapful numbers >= %d:\n' "$size" "$start"
gapfuls-in-range "$start" "$size"
printf '\n'
done
}
report-ranges 1,30 1000000,15 1000000000,10
|
http://rosettacode.org/wiki/Gaussian_elimination
|
Gaussian elimination
|
Task
Solve Ax=b using Gaussian elimination then backwards substitution.
A being an n by n matrix.
Also, x and b are n by 1 vectors.
To improve accuracy, please use partial pivoting and scaling.
See also
the Wikipedia entry: Gaussian elimination
|
#Ruby
|
Ruby
|
require 'bigdecimal/ludcmp'
include LUSolve
BigDecimal::limit(30)
a = [1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.63, 0.39, 0.25, 0.16, 0.10,
1.00, 1.26, 1.58, 1.98, 2.49, 3.13,
1.00, 1.88, 3.55, 6.70, 12.62, 23.80,
1.00, 2.51, 6.32, 15.88, 39.90, 100.28,
1.00, 3.14, 9.87, 31.01, 97.41, 306.02].map{|i|BigDecimal(i,16)}
b = [-0.01, 0.61, 0.91, 0.99, 0.60, 0.02].map{|i|BigDecimal(i,16)}
n = 6
zero = BigDecimal("0.0")
one = BigDecimal("1.0")
lusolve(a, b, ludecomp(a, n, zero,one), zero).each{|v| puts v.to_s('F')[0..20]}
|
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
|
Generate lower case ASCII alphabet
|
Task
Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence.
For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code.
During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code:
set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z}
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Phixmonti
|
Phixmonti
|
0 tolist
'a' 'z' 2 tolist
for
tochar 0 put
endfor
print
|
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
|
Generate lower case ASCII alphabet
|
Task
Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence.
For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code.
During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code:
set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z}
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#PHP
|
PHP
|
<?php
$lower = range('a', 'z');
var_dump($lower);
?>
|
http://rosettacode.org/wiki/Hello_world/Text
|
Hello world/Text
|
Hello world/Text is part of Short Circuit's Console Program Basics selection.
Task
Display the string Hello world! on a text console.
Related tasks
Hello world/Graphical
Hello world/Line Printer
Hello world/Newbie
Hello world/Newline omission
Hello world/Standard error
Hello world/Web server
|
#PL.2FSQL
|
PL/SQL
|
SET serveroutput ON
BEGIN
DBMS_OUTPUT.PUT_LINE('Hello world!');
END;
/
|
http://rosettacode.org/wiki/Generator/Exponential
|
Generator/Exponential
|
A generator is an executable entity (like a function or procedure) that contains code that yields a sequence of values, one at a time, so that each time you call the generator, the next value in the sequence is provided.
Generators are often built on top of coroutines or objects so that the internal state of the object is handled “naturally”.
Generators are often used in situations where a sequence is potentially infinite, and where it is possible to construct the next value of the sequence with only minimal state.
Task
Create a function that returns a generation of the m'th powers of the positive integers starting from zero, in order, and without obvious or simple upper limit. (Any upper limit to the generator should not be stated in the source but should be down to factors such as the languages natural integer size limit or computational time/size).
Use it to create a generator of:
Squares.
Cubes.
Create a new generator that filters all cubes from the generator of squares.
Drop the first 20 values from this last generator of filtered results, and then show the next 10 values.
Note that this task requires the use of generators in the calculation of the result.
Also see
Generator
|
#XPL0
|
XPL0
|
code ChOut=8, IntOut=11;
func Gen(M); \Generate Mth powers of positive integers
int M;
int N, R, I;
[N:= [0, 0, 0, 0]; \provides own/static variables
R:= 1;
for I:= 1 to M do R:= R*N(M);
N(M):= N(M)+1;
return R;
];
func Filter; \Generate squares of positive integers that aren't cubes
int S, C;
[C:= [0]; \static variable = smallest cube > current square
repeat S:= Gen(2);
while S > C(0) do C(0):= Gen(3);
until S # C(0);
return S;
];
int I;
[for I:= 1 to 20 do Filter; \drop first 20 values
for I:= 1 to 10 do [IntOut(0, Filter); ChOut(0, ^ )]; \show next 10 values
]
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#K
|
K
|
compose:{'[x;y]}
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#Klingphix
|
Klingphix
|
include ..\Utilitys.tlhy
:*2 2 * ;
:++ 1 + ;
:composite swap exec swap exec ;
@++ @*2 3 composite ? { result: 7 }
"End " input
|
http://rosettacode.org/wiki/Fractal_tree
|
Fractal tree
|
Generate and draw a fractal tree.
Draw the trunk
At the end of the trunk, split by some angle and draw two branches
Repeat at the end of each branch until a sufficient level of branching is reached
Related tasks
Pythagoras Tree
|
#PHP
|
PHP
|
<?php
header("Content-type: image/png");
$width = 512;
$height = 512;
$img = imagecreatetruecolor($width,$height);
$bg = imagecolorallocate($img,255,255,255);
imagefilledrectangle($img, 0, 0, $width, $width, $bg);
$depth = 8;
function drawTree($x1, $y1, $angle, $depth){
global $img;
if ($depth != 0){
$x2 = $x1 + (int)(cos(deg2rad($angle)) * $depth * 10.0);
$y2 = $y1 + (int)(sin(deg2rad($angle)) * $depth * 10.0);
imageline($img, $x1, $y1, $x2, $y2, imagecolorallocate($img,0,0,0));
drawTree($x2, $y2, $angle - 20, $depth - 1);
drawTree($x2, $y2, $angle + 20, $depth - 1);
}
}
drawTree($width/2, $height, -90, $depth);
imagepng($img);
imagedestroy($img);
?>
|
http://rosettacode.org/wiki/Fraction_reduction
|
Fraction reduction
|
There is a fine line between numerator and denominator. ─── anonymous
A method to "reduce" some reducible fractions is to cross out a digit from the
numerator and the denominator. An example is:
16 16
──── and then (simply) cross─out the sixes: ────
64 64
resulting in:
1
───
4
Naturally, this "method" of reduction must reduce to the proper value (shown as a fraction).
This "method" is also known as anomalous cancellation and also accidental cancellation.
(Of course, this "method" shouldn't be taught to impressionable or gullible minds.) 😇
Task
Find and show some fractions that can be reduced by the above "method".
show 2-digit fractions found (like the example shown above)
show 3-digit fractions
show 4-digit fractions
show 5-digit fractions (and higher) (optional)
show each (above) n-digit fractions separately from other different n-sized fractions, don't mix different "sizes" together
for each "size" fraction, only show a dozen examples (the 1st twelve found)
(it's recognized that not every programming solution will have the same generation algorithm)
for each "size" fraction:
show a count of how many reducible fractions were found. The example (above) is size 2
show a count of which digits were crossed out (one line for each different digit)
for each "size" fraction, show a count of how many were found. The example (above) is size 2
show each n-digit example (to be shown on one line):
show each n-digit fraction
show each reduced n-digit fraction
show what digit was crossed out for the numerator and the denominator
Task requirements/restrictions
only proper fractions and their reductions (the result) are to be used (no vulgar fractions)
only positive fractions are to be used (no negative signs anywhere)
only base ten integers are to be used for the numerator and denominator
no zeros (decimal digit) can be used within the numerator or the denominator
the numerator and denominator should be composed of the same number of digits
no digit can be repeated in the numerator
no digit can be repeated in the denominator
(naturally) there should be a shared decimal digit in the numerator and the denominator
fractions can be shown as 16/64 (for example)
Show all output here, on this page.
Somewhat related task
Farey sequence (It concerns fractions.)
References
Wikipedia entry: proper and improper fractions.
Wikipedia entry: anomalous cancellation and/or accidental cancellation.
|
#Raku
|
Raku
|
my %reduced;
my $digits = 2..4;
for $digits.map: * - 1 -> $exp {
my $start = sum (0..$exp).map( { 10 ** $_ * ($exp - $_ + 1) });
my $end = 10**($exp+1) - sum (^$exp).map( { 10 ** $_ * ($exp - $_) } ) - 1;
($start ..^ $end).race(:8degree, :3batch).map: -> $den {
next if $den.contains: '0';
next if $den.comb.unique <= $exp;
for $start ..^ $den -> $num {
next if $num.contains: '0';
next if $num.comb.unique <= $exp;
my $set = ($den.comb.head(* - 1).Set ∩ $num.comb.skip(1).Set);
next if $set.elems < 1;
for $set.keys {
my $ne = $num.trans: $_ => '', :delete;
my $de = $den.trans: $_ => '', :delete;
if $ne / $de == $num / $den {
print "\b" x 40, "$num/$den:$_ => $ne/$de";
%reduced{"$num/$den:$_"} = "$ne/$de";
}
}
}
}
print "\b" x 40, ' ' x 40, "\b" x 40;
my $digit = $exp +1;
my %d = %reduced.pairs.grep: { .key.chars == ($digit * 2 + 3) };
say "\n({+%d}) $digit digit reduceable fractions:";
for 1..9 {
my $cnt = +%d.pairs.grep( *.key.contains: ":$_" );
next unless $cnt;
say " $cnt with removed $_";
}
say "\n 12 Random (or all, if less) $digit digit reduceable fractions:";
say " {.key.substr(0, $digit * 2 + 1)} => {.value} removed {.key.substr(* - 1)}"
for %d.pairs.pick(12).sort;
}
|
http://rosettacode.org/wiki/Fractran
|
Fractran
|
FRACTRAN is a Turing-complete esoteric programming language invented by the mathematician John Horton Conway.
A FRACTRAN program is an ordered list of positive fractions
P
=
(
f
1
,
f
2
,
…
,
f
m
)
{\displaystyle P=(f_{1},f_{2},\ldots ,f_{m})}
, together with an initial positive integer input
n
{\displaystyle n}
.
The program is run by updating the integer
n
{\displaystyle n}
as follows:
for the first fraction,
f
i
{\displaystyle f_{i}}
, in the list for which
n
f
i
{\displaystyle nf_{i}}
is an integer, replace
n
{\displaystyle n}
with
n
f
i
{\displaystyle nf_{i}}
;
repeat this rule until no fraction in the list produces an integer when multiplied by
n
{\displaystyle n}
, then halt.
Conway gave a program for primes in FRACTRAN:
17
/
91
{\displaystyle 17/91}
,
78
/
85
{\displaystyle 78/85}
,
19
/
51
{\displaystyle 19/51}
,
23
/
38
{\displaystyle 23/38}
,
29
/
33
{\displaystyle 29/33}
,
77
/
29
{\displaystyle 77/29}
,
95
/
23
{\displaystyle 95/23}
,
77
/
19
{\displaystyle 77/19}
,
1
/
17
{\displaystyle 1/17}
,
11
/
13
{\displaystyle 11/13}
,
13
/
11
{\displaystyle 13/11}
,
15
/
14
{\displaystyle 15/14}
,
15
/
2
{\displaystyle 15/2}
,
55
/
1
{\displaystyle 55/1}
Starting with
n
=
2
{\displaystyle n=2}
, this FRACTRAN program will change
n
{\displaystyle n}
to
15
=
2
×
(
15
/
2
)
{\displaystyle 15=2\times (15/2)}
, then
825
=
15
×
(
55
/
1
)
{\displaystyle 825=15\times (55/1)}
, generating the following sequence of integers:
2
{\displaystyle 2}
,
15
{\displaystyle 15}
,
825
{\displaystyle 825}
,
725
{\displaystyle 725}
,
1925
{\displaystyle 1925}
,
2275
{\displaystyle 2275}
,
425
{\displaystyle 425}
,
390
{\displaystyle 390}
,
330
{\displaystyle 330}
,
290
{\displaystyle 290}
,
770
{\displaystyle 770}
,
…
{\displaystyle \ldots }
After 2, this sequence contains the following powers of 2:
2
2
=
4
{\displaystyle 2^{2}=4}
,
2
3
=
8
{\displaystyle 2^{3}=8}
,
2
5
=
32
{\displaystyle 2^{5}=32}
,
2
7
=
128
{\displaystyle 2^{7}=128}
,
2
11
=
2048
{\displaystyle 2^{11}=2048}
,
2
13
=
8192
{\displaystyle 2^{13}=8192}
,
2
17
=
131072
{\displaystyle 2^{17}=131072}
,
2
19
=
524288
{\displaystyle 2^{19}=524288}
,
…
{\displaystyle \ldots }
which are the prime powers of 2.
Task
Write a program that reads a list of fractions in a natural format from the keyboard or from a string,
to parse it into a sequence of fractions (i.e. two integers),
and runs the FRACTRAN starting from a provided integer, writing the result at each step.
It is also required that the number of steps is limited (by a parameter easy to find).
Extra credit
Use this program to derive the first 20 or so prime numbers.
See also
For more on how to program FRACTRAN as a universal programming language, see:
J. H. Conway (1987). Fractran: A Simple Universal Programming Language for Arithmetic. In: Open Problems in Communication and Computation, pages 4–26. Springer.
J. H. Conway (2010). "FRACTRAN: A simple universal programming language for arithmetic". In Jeffrey C. Lagarias. The Ultimate Challenge: the 3x+1 problem. American Mathematical Society. pp. 249–264. ISBN 978-0-8218-4940-8. Zbl 1216.68068.
Number Pathology: Fractran by Mark C. Chu-Carroll; October 27, 2006.
|
#Julia
|
Julia
|
function fractran(n::Integer, ratios::Vector{<:Rational}, steplim::Integer)
rst = zeros(BigInt, steplim)
for i in 1:steplim
rst[i] = n
if (pos = findfirst(x -> isinteger(n * x), ratios)) > 0
n *= ratios[pos]
else
break
end
end
return rst
end
using IterTools
macro ratio_str(s)
a = split(s, r"[\s,/]+")
return collect(parse(BigInt, n) // parse(BigInt, d) for (n, d) in partition(a, 2))
end
fracs = ratio"""17 / 91, 78 / 85, 19 / 51, 23 / 38, 29 / 33, 77 / 29, 95 / 23,
77 / 19, 1 / 17, 11 / 13, 13 / 11, 15 / 14, 15 / 2, 55 / 1"""
println("The first 20 in the series are ", fractran(2, fracs, 20))
prmfound = 0
n = big(2)
while prmfound < 20
global n
global prmfound
if isinteger(log2(n))
prmfound += 1
println("Prime $prmfound found: $n is 2 ^ $(Int(log2(n)))")
end
n = fractran(n, fracs, 2)[2]
end
|
http://rosettacode.org/wiki/Function_definition
|
Function definition
|
A function is a body of code that returns a value.
The value returned may depend on arguments provided to the function.
Task
Write a definition of a function called "multiply" that takes two arguments and returns their product.
(Argument types should be chosen so as not to distract from showing how functions are created and values returned).
Related task
Function prototype
|
#bc
|
bc
|
define multiply(a, b) { return a*b }
print multiply(2, 3)
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#REXX
|
REXX
|
/*REXX program calculates and displays the fusc (or Stern's Diatomic) sequence. */
parse arg st # xw . /*obtain optional arguments from the CL*/
if st=='' | st=="," then st= 0 /*Not specified? Then use the default.*/
if #=='' | #=="," then #= 61 /* " " " " " " */
if xw=='' | xw=="," then xw= 0 /* " " " " " " */
list= xw<1 /*boolean value: LIST to show numbers*/
@.=; @.0= 0; @.1= 1 /*assign array default; assign low vals*/
mL= 0 /*the maximum length (digits) so far. */
$= /* " list of fusc numbers " " */
do j=0 for # /*process a bunch of integers from zero*/
if j>1 then if j//2 then do; _= (j-1) % 2; p= (j+1) % 2; @.j= @._ + @.p; end
else do; _= j % 2; @.j= @._; end
if list then if j>=st then $= $ commas(@.j) /*add it to a list*/
else nop /*NOP≡placeholder.*/
else do; if length(@.j)<=mL then iterate /*still too small.*/
mL= length(@.j) /*found increase. */
if mL==1 then say '═══index═══ ═══fusc number═══'
say right( commas(j), 9) right( commas(@.j), 14)
if mL==xw then leave /*Found max length? Then stop looking.*/
end /* [↑] display fusc #s of maximum len.*/
end /*j*/
/*$ has a superfluous leading blank. */
if $\=='' then say strip($) /*display a horizontal list of fusc #s.*/
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?; do _=length(?)-3 to 1 by -3; ?=insert(',', ?, _); end; return ?
|
http://rosettacode.org/wiki/Gamma_function
|
Gamma function
|
Task
Implement one algorithm (or more) to compute the Gamma (
Γ
{\displaystyle \Gamma }
) function (in the real field only).
If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function.
The Gamma function can be defined as:
Γ
(
x
)
=
∫
0
∞
t
x
−
1
e
−
t
d
t
{\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt}
This suggests a straightforward (but inefficient) way of computing the
Γ
{\displaystyle \Gamma }
through numerical integration.
Better suggested methods:
Lanczos approximation
Stirling's approximation
|
#Maple
|
Maple
|
GAMMA(17/2);
GAMMA(7*I);
M := Matrix(2, 3, 'fill' = -3.6);
MTM:-gamma(M);
|
http://rosettacode.org/wiki/Gapful_numbers
|
Gapful numbers
|
Numbers (positive integers expressed in base ten) that are (evenly) divisible by the number formed by the
first and last digit are known as gapful numbers.
Evenly divisible means divisible with no remainder.
All one─ and two─digit numbers have this property and are trivially excluded. Only
numbers ≥ 100 will be considered for this Rosetta Code task.
Example
187 is a gapful number because it is evenly divisible by the
number 17 which is formed by the first and last decimal digits
of 187.
About 7.46% of positive integers are gapful.
Task
Generate and show all sets of numbers (below) on one line (horizontally) with a title, here on this page
Show the first 30 gapful numbers
Show the first 15 gapful numbers ≥ 1,000,000
Show the first 10 gapful numbers ≥ 1,000,000,000
Related tasks
Harshad or Niven series.
palindromic gapful numbers.
largest number divisible by its digits.
Also see
The OEIS entry: A108343 gapful numbers.
numbersaplenty gapful numbers
|
#Visual_Basic_.NET
|
Visual Basic .NET
|
Module Module1
Function FirstNum(n As Integer) As Integer
REM Divide by ten until the leading digit remains.
While n >= 10
n /= 10
End While
Return n
End Function
Function LastNum(n As Integer) As Integer
REM Modulo gives you the last digit.
Return n Mod 10
End Function
Sub FindGap(n As Integer, gaps As Integer)
Dim count = 0
While count < gaps
Dim i = FirstNum(n) * 10 + LastNum(n)
REM Modulo with our new integer and output the result.
If n Mod i = 0 Then
Console.Write("{0} ", n)
count += 1
End If
n += 1
End While
Console.WriteLine()
Console.WriteLine()
End Sub
Sub Main()
Console.WriteLine("The first 30 gapful numbers are: ")
FindGap(100, 30)
Console.WriteLine("The first 15 gapful numbers > 1,000,000 are: ")
FindGap(1000000, 15)
Console.WriteLine("The first 10 gapful numbers > 1,000,000,000 are: ")
FindGap(1000000000, 10)
End Sub
End Module
|
http://rosettacode.org/wiki/Gaussian_elimination
|
Gaussian elimination
|
Task
Solve Ax=b using Gaussian elimination then backwards substitution.
A being an n by n matrix.
Also, x and b are n by 1 vectors.
To improve accuracy, please use partial pivoting and scaling.
See also
the Wikipedia entry: Gaussian elimination
|
#Rust
|
Rust
|
// using a Vec<f32> might be a better idea
// for now, let us create a fixed size array
// of size:
const SIZE: usize = 6;
pub fn eliminate(mut system: [[f32; SIZE+1]; SIZE]) -> Option<Vec<f32>> {
// produce the row reduced echelon form
//
// for every row...
for i in 0..SIZE-1 {
// for every column in that row...
for j in i..SIZE-1 {
if system[i][i] == 0f32 {
continue;
} else {
// reduce every element under that element to 0
let factor = system[j + 1][i] as f32 / system[i][i] as f32;
for k in i..SIZE+1 {
// potential optimization: set every element to zero, instead of subtracting
// i think subtraction helps showcase the process better
system[j + 1][k] -= factor * system[i][k] as f32;
}
}
}
}
// produce gaussian eliminated array
//
// the process follows a similar pattern
// but this one reduces the upper triangular
// elements
for i in (1..SIZE).rev() {
if system[i][i] == 0f32 {
continue;
} else {
for j in (1..i+1).rev() {
let factor = system[j - 1][i] as f32 / system[i][i] as f32;
for k in (0..SIZE+1).rev() {
system[j - 1][k] -= factor * system[i][k] as f32;
}
}
}
}
// produce solutions through back substitution
let mut solutions: Vec<f32> = vec![];
for i in 0..SIZE {
if system[i][i] == 0f32 {
return None;
}
else {
system[i][SIZE] /= system[i][i] as f32;
system[i][i] = 1f32;
println!("X{} = {}", i + 1, system[i][SIZE]);
solutions.push(system[i][SIZE])
}
}
return Some(solutions);
}
#[cfg(test)]
mod tests {
use super::*;
// sample run of the program
#[test]
fn eliminate_seven_by_six() {
let system: [[f32; SIZE +1]; SIZE] = [
[1.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , -0.01 ] ,
[1.00 , 0.63 , 0.39 , 0.25 , 0.16 , 0.10 , 0.61 ] ,
[1.00 , 1.26 , 1.58 , 1.98 , 2.49 , 3.13 , 0.91 ] ,
[1.00 , 1.88 , 3.55 , 6.70 , 12.62 , 23.80 , 0.99 ] ,
[1.00 , 2.51 , 6.32 , 15.88 , 39.90 , 100.28 , 0.60 ] ,
[1.00 , 3.14 , 9.87 , 31.01 , 97.41 , 306.02 , 0.02 ]
] ;
let solutions = eliminate(system).unwrap();
assert_eq!(6, solutions.len());
let assert_solns = vec![-0.01, 1.60278, -1.61320, 1.24549, -0.49098, 0.06576];
for (ans, key) in solutions.iter().zip(assert_solns.iter()) {
if (ans - key).abs() > 1E-4 { panic!("Test Failed!") }
}
}
}
|
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
|
Generate lower case ASCII alphabet
|
Task
Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence.
For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code.
During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code:
set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z}
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Picat
|
Picat
|
main =>
Alpha1 = (0'a..0'z).map(chr),
println(Alpha1),
Alpha2 = [chr(I) : I in 97..122],
println(Alpha2).
|
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
|
Generate lower case ASCII alphabet
|
Task
Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence.
For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code.
During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code:
set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z}
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#PicoLisp
|
PicoLisp
|
(mapcar char (range (char "a") (char "z")))
|
http://rosettacode.org/wiki/Hello_world/Text
|
Hello world/Text
|
Hello world/Text is part of Short Circuit's Console Program Basics selection.
Task
Display the string Hello world! on a text console.
Related tasks
Hello world/Graphical
Hello world/Line Printer
Hello world/Newbie
Hello world/Newline omission
Hello world/Standard error
Hello world/Web server
|
#Plain_English
|
Plain English
|
\This prints Hello World within the CAL-4700 IDE.
\...and backslashes are comments!
To run:
Start up.
Write "Hello World!" to the console.
Wait for the escape key.
Shut down.
|
http://rosettacode.org/wiki/Generator/Exponential
|
Generator/Exponential
|
A generator is an executable entity (like a function or procedure) that contains code that yields a sequence of values, one at a time, so that each time you call the generator, the next value in the sequence is provided.
Generators are often built on top of coroutines or objects so that the internal state of the object is handled “naturally”.
Generators are often used in situations where a sequence is potentially infinite, and where it is possible to construct the next value of the sequence with only minimal state.
Task
Create a function that returns a generation of the m'th powers of the positive integers starting from zero, in order, and without obvious or simple upper limit. (Any upper limit to the generator should not be stated in the source but should be down to factors such as the languages natural integer size limit or computational time/size).
Use it to create a generator of:
Squares.
Cubes.
Create a new generator that filters all cubes from the generator of squares.
Drop the first 20 values from this last generator of filtered results, and then show the next 10 values.
Note that this task requires the use of generators in the calculation of the result.
Also see
Generator
|
#Wren
|
Wren
|
var powers = Fn.new { |m|
var i = 0
return Fn.new {
var p = i.pow(m)
i = i + 1
return p
}
}
var squaresNotCubes = Fn.new { |squares, cubes|
var sq = squares.call()
var cu = cubes.call()
return Fn.new {
var p
while (true) {
if (sq < cu) {
p = sq
sq = squares.call()
return p
}
if (sq == cu) sq = squares.call()
cu = cubes.call()
}
}
}
var squares = powers.call(2)
var cubes = powers.call(3)
var sqNotCu = squaresNotCubes.call(squares, cubes)
for (i in 0..29) {
var p = sqNotCu.call()
if (i > 19) System.write("%(p) ")
}
System.print()
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#Kotlin
|
Kotlin
|
// version 1.0.6
fun f(x: Int): Int = x * x
fun g(x: Int): Int = x + 2
fun compose(f: (Int) -> Int, g: (Int) -> Int): (Int) -> Int = { f(g(it)) }
fun main(args: Array<String>) {
val x = 10
println(compose(::f, ::g)(x))
}
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#Lambdatalk
|
Lambdatalk
|
{def compose
{lambda {:f :g :x}
{:f {:g :x}}}}
-> compose
{def funcA {lambda {:x} {* :x 10}}}
-> funcA
{def funcB {lambda {:x} {+ :x 5}}}
-> funcB
{def f {compose funcA funcB}}
-> f
{{f} 3}
-> 80
|
http://rosettacode.org/wiki/Fractal_tree
|
Fractal tree
|
Generate and draw a fractal tree.
Draw the trunk
At the end of the trunk, split by some angle and draw two branches
Repeat at the end of each branch until a sufficient level of branching is reached
Related tasks
Pythagoras Tree
|
#PicoLisp
|
PicoLisp
|
(load "@lib/math.l")
(de fractalTree (Img X Y A D)
(unless (=0 D)
(let (R (*/ A pi 180.0) DX (*/ (cos R) D 0.2) DY (*/ (sin R) D 0.2))
(brez Img X Y DX DY)
(fractalTree Img (+ X DX) (+ Y DY) (+ A 30.0) (dec D))
(fractalTree Img (+ X DX) (+ Y DY) (- A 30.0) (dec D)) ) ) )
(let Img (make (do 300 (link (need 400 0)))) # Create image 400 x 300
(fractalTree Img 200 300 -90.0 10) # Draw tree
(out "img.pbm" # Write to bitmap file
(prinl "P1")
(prinl 400 " " 300)
(mapc prinl Img) ) )
|
http://rosettacode.org/wiki/Fractal_tree
|
Fractal tree
|
Generate and draw a fractal tree.
Draw the trunk
At the end of the trunk, split by some angle and draw two branches
Repeat at the end of each branch until a sufficient level of branching is reached
Related tasks
Pythagoras Tree
|
#Plain_English
|
Plain English
|
To run:
Start up.
Clear the screen to the lightest blue color.
Pick a brownish color.
Put the screen's bottom minus 1/2 inch into the context's spot's y coord.
Draw a tree given 3 inches.
Refresh the screen.
Wait for the escape key.
Shut down.
To draw a tree given a size:
If the size is less than 1/32 inch, exit.
Put the size divided by 1/4 inch into the pen size.
If the size is less than 1/4 inch, pick a greenish color.
Remember where we are.
Stroke the size.
Turn left 1/16 of the way. Draw another tree given the size times 2/3. Turn right 1/16 of the way.
Turn right 1/16 of the way. Draw a third tree given the size times 2/3. Turn left 1/16 of the way.
Go back to where we were.
|
http://rosettacode.org/wiki/Fraction_reduction
|
Fraction reduction
|
There is a fine line between numerator and denominator. ─── anonymous
A method to "reduce" some reducible fractions is to cross out a digit from the
numerator and the denominator. An example is:
16 16
──── and then (simply) cross─out the sixes: ────
64 64
resulting in:
1
───
4
Naturally, this "method" of reduction must reduce to the proper value (shown as a fraction).
This "method" is also known as anomalous cancellation and also accidental cancellation.
(Of course, this "method" shouldn't be taught to impressionable or gullible minds.) 😇
Task
Find and show some fractions that can be reduced by the above "method".
show 2-digit fractions found (like the example shown above)
show 3-digit fractions
show 4-digit fractions
show 5-digit fractions (and higher) (optional)
show each (above) n-digit fractions separately from other different n-sized fractions, don't mix different "sizes" together
for each "size" fraction, only show a dozen examples (the 1st twelve found)
(it's recognized that not every programming solution will have the same generation algorithm)
for each "size" fraction:
show a count of how many reducible fractions were found. The example (above) is size 2
show a count of which digits were crossed out (one line for each different digit)
for each "size" fraction, show a count of how many were found. The example (above) is size 2
show each n-digit example (to be shown on one line):
show each n-digit fraction
show each reduced n-digit fraction
show what digit was crossed out for the numerator and the denominator
Task requirements/restrictions
only proper fractions and their reductions (the result) are to be used (no vulgar fractions)
only positive fractions are to be used (no negative signs anywhere)
only base ten integers are to be used for the numerator and denominator
no zeros (decimal digit) can be used within the numerator or the denominator
the numerator and denominator should be composed of the same number of digits
no digit can be repeated in the numerator
no digit can be repeated in the denominator
(naturally) there should be a shared decimal digit in the numerator and the denominator
fractions can be shown as 16/64 (for example)
Show all output here, on this page.
Somewhat related task
Farey sequence (It concerns fractions.)
References
Wikipedia entry: proper and improper fractions.
Wikipedia entry: anomalous cancellation and/or accidental cancellation.
|
#REXX
|
REXX
|
/*REXX pgm reduces fractions by "crossing out" matching digits in nominator&denominator.*/
parse arg high show . /*obtain optional arguments from the CL*/
if high=='' | high=="," then high= 4 /*Not specified? Then use the default.*/
if show=='' | show=="," then show= 12 /* " " " " " " */
say center(' some samples of reduced fractions by crossing out digits ', 79, "═")
$.=0 /*placeholder array for counts; init. 0*/
do L=2 to high; say /*do 2-dig fractions to HIGH-dig fract.*/
lim= 10**L - 1 /*calculate the upper limit just once. */
do n=10**(L-1) to lim /*generate some N digit fractions. */
if pos(0, n) \==0 then iterate /*Does it have a zero? Then skip it.*/
if hasDup(n) then iterate /* " " " " dup? " " " */
do d=n+1 to lim /*only process like-sized #'s */
if pos(0, d)\==0 then iterate /*Have a zero? Then skip it. */
if verify(d, n, 'M')==0 then iterate /*No digs in common? Skip it.*/
if hasDup(d) then iterate /*Any digs are dups? " " */
q= n/d /*compute quotient just once. */
do e=1 for L; xo= substr(n, e, 1) /*try crossing out each digit.*/
nn= space( translate(n, , xo), 0) /*elide from the numerator. */
dd= space( translate(d, , xo), 0) /* " " " denominator. */
if nn/dd \== q then iterate /*Not the same quotient? Skip.*/
$.L= $.L + 1 /*Eureka! We found one. */
$.L.xo= $.L.xo + 1 /*count the silly reduction. */
if $.L>show then iterate /*Too many found? Don't show.*/
say center(n'/'d " = " nn'/'dd " by crossing out the" xo"'s.", 79)
end /*e*/
end /*d*/
end /*n*/
end /*L*/
say; @with= ' with crossed-out' /* [↓] show counts for any reductions.*/
do k=1 for 9 /*traipse through each cross─out digit.*/
if $.k==0 then iterate /*Is this a zero count? Then skip it. */
say; say center('There are ' $.k " "k'-digit fractions.', 79, "═")
@for= ' For ' /*literal for SAY indentation (below). */
do #=1 for 9; if $.k.#==0 then iterate
say @for k"-digit fractions, there are " right($.k.#, k-1) @with #"'s."
end /*#*/
end /*k*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
hasDup: parse arg x; /* if L<2 then return 0 */ /*L will never be 1.*/
do i=1 for L-1; if pos(substr(x,i,1), substr(x,i+1)) \== 0 then return 1
end /*i*/; return 0
|
http://rosettacode.org/wiki/Fractran
|
Fractran
|
FRACTRAN is a Turing-complete esoteric programming language invented by the mathematician John Horton Conway.
A FRACTRAN program is an ordered list of positive fractions
P
=
(
f
1
,
f
2
,
…
,
f
m
)
{\displaystyle P=(f_{1},f_{2},\ldots ,f_{m})}
, together with an initial positive integer input
n
{\displaystyle n}
.
The program is run by updating the integer
n
{\displaystyle n}
as follows:
for the first fraction,
f
i
{\displaystyle f_{i}}
, in the list for which
n
f
i
{\displaystyle nf_{i}}
is an integer, replace
n
{\displaystyle n}
with
n
f
i
{\displaystyle nf_{i}}
;
repeat this rule until no fraction in the list produces an integer when multiplied by
n
{\displaystyle n}
, then halt.
Conway gave a program for primes in FRACTRAN:
17
/
91
{\displaystyle 17/91}
,
78
/
85
{\displaystyle 78/85}
,
19
/
51
{\displaystyle 19/51}
,
23
/
38
{\displaystyle 23/38}
,
29
/
33
{\displaystyle 29/33}
,
77
/
29
{\displaystyle 77/29}
,
95
/
23
{\displaystyle 95/23}
,
77
/
19
{\displaystyle 77/19}
,
1
/
17
{\displaystyle 1/17}
,
11
/
13
{\displaystyle 11/13}
,
13
/
11
{\displaystyle 13/11}
,
15
/
14
{\displaystyle 15/14}
,
15
/
2
{\displaystyle 15/2}
,
55
/
1
{\displaystyle 55/1}
Starting with
n
=
2
{\displaystyle n=2}
, this FRACTRAN program will change
n
{\displaystyle n}
to
15
=
2
×
(
15
/
2
)
{\displaystyle 15=2\times (15/2)}
, then
825
=
15
×
(
55
/
1
)
{\displaystyle 825=15\times (55/1)}
, generating the following sequence of integers:
2
{\displaystyle 2}
,
15
{\displaystyle 15}
,
825
{\displaystyle 825}
,
725
{\displaystyle 725}
,
1925
{\displaystyle 1925}
,
2275
{\displaystyle 2275}
,
425
{\displaystyle 425}
,
390
{\displaystyle 390}
,
330
{\displaystyle 330}
,
290
{\displaystyle 290}
,
770
{\displaystyle 770}
,
…
{\displaystyle \ldots }
After 2, this sequence contains the following powers of 2:
2
2
=
4
{\displaystyle 2^{2}=4}
,
2
3
=
8
{\displaystyle 2^{3}=8}
,
2
5
=
32
{\displaystyle 2^{5}=32}
,
2
7
=
128
{\displaystyle 2^{7}=128}
,
2
11
=
2048
{\displaystyle 2^{11}=2048}
,
2
13
=
8192
{\displaystyle 2^{13}=8192}
,
2
17
=
131072
{\displaystyle 2^{17}=131072}
,
2
19
=
524288
{\displaystyle 2^{19}=524288}
,
…
{\displaystyle \ldots }
which are the prime powers of 2.
Task
Write a program that reads a list of fractions in a natural format from the keyboard or from a string,
to parse it into a sequence of fractions (i.e. two integers),
and runs the FRACTRAN starting from a provided integer, writing the result at each step.
It is also required that the number of steps is limited (by a parameter easy to find).
Extra credit
Use this program to derive the first 20 or so prime numbers.
See also
For more on how to program FRACTRAN as a universal programming language, see:
J. H. Conway (1987). Fractran: A Simple Universal Programming Language for Arithmetic. In: Open Problems in Communication and Computation, pages 4–26. Springer.
J. H. Conway (2010). "FRACTRAN: A simple universal programming language for arithmetic". In Jeffrey C. Lagarias. The Ultimate Challenge: the 3x+1 problem. American Mathematical Society. pp. 249–264. ISBN 978-0-8218-4940-8. Zbl 1216.68068.
Number Pathology: Fractran by Mark C. Chu-Carroll; October 27, 2006.
|
#Kotlin
|
Kotlin
|
// version 1.1.3
import java.math.BigInteger
class Fraction(val num: BigInteger, val denom: BigInteger) {
operator fun times(n: BigInteger) = Fraction (n * num, denom)
fun isIntegral() = num % denom == BigInteger.ZERO
}
fun String.toFraction(): Fraction {
val split = this.split('/')
return Fraction(BigInteger(split[0]), BigInteger(split[1]))
}
val BigInteger.isPowerOfTwo get() = this.and(this - BigInteger.ONE) == BigInteger.ZERO
val log2 = Math.log(2.0)
fun fractran(program: String, n: Int, limit: Int, primesOnly: Boolean): List<Int> {
val fractions = program.split(' ').map { it.toFraction() }
val results = mutableListOf<Int>()
if (!primesOnly) results.add(n)
var nn = BigInteger.valueOf(n.toLong())
while (results.size < limit) {
val frac = fractions.find { (it * nn).isIntegral() } ?: break
nn = nn * frac.num / frac.denom
if (!primesOnly) {
results.add(nn.toInt())
}
else if (primesOnly && nn.isPowerOfTwo) {
val prime = (Math.log(nn.toDouble()) / log2).toInt()
results.add(prime)
}
}
return results
}
fun main(args: Array<String>) {
val program = "17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1"
println("First twenty numbers:")
println(fractran(program, 2, 20, false))
println("\nFirst twenty primes:")
println(fractran(program, 2, 20, true))
}
|
http://rosettacode.org/wiki/Function_definition
|
Function definition
|
A function is a body of code that returns a value.
The value returned may depend on arguments provided to the function.
Task
Write a definition of a function called "multiply" that takes two arguments and returns their product.
(Argument types should be chosen so as not to distract from showing how functions are created and values returned).
Related task
Function prototype
|
#BCPL
|
BCPL
|
let multiply(a, b) = a * b
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#Ring
|
Ring
|
# Project: Fusc sequence
max = 60
fusc = list(36000)
fusc[1] = 1
see "working..." + nl
see "wait for done..." + nl
see "The first 61 fusc numbers are:" + nl
fuscseq(max)
see "0"
for m = 1 to max
see " " + fusc[m]
next
see nl
see "The fusc numbers whose length > any previous fusc number length are:" + nl
see "Index Value" + nl
see " 0 0" + nl
d = 10
for i = 1 to 36000
if fusc[i] >= d
see " " + i + " " + fusc[i] + nl
if d = 0
d = 1
ok
d = d*10
ok
next
see "done..." + nl
func fuscseq(max)
for n = 2 to 36000
if n%2 = 1
fusc[n] = fusc[(n-1)/2] + fusc[(n+1)/2]
but n%2 = 0
fusc[n] = fusc[n/2]
ok
next
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#Ruby
|
Ruby
|
fusc = Enumerator.new do |y|
y << 0
y << 1
arr = [0,1]
2.step do |n|
res = n.even? ? arr[n/2] : arr[(n-1)/2] + arr[(n+1)/2]
y << res
arr << res
end
end
fusc_max_digits = Enumerator.new do |y|
cur_max, cur_exp = 0, 0
0.step do |i|
f = fusc.next
if f >= cur_max
cur_exp += 1
cur_max = 10**cur_exp
y << [i, f]
end
end
end
puts fusc.take(61).join(" ")
fusc_max_digits.take(6).each{|pair| puts "%15s : %s" % pair }
|
http://rosettacode.org/wiki/Gamma_function
|
Gamma function
|
Task
Implement one algorithm (or more) to compute the Gamma (
Γ
{\displaystyle \Gamma }
) function (in the real field only).
If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function.
The Gamma function can be defined as:
Γ
(
x
)
=
∫
0
∞
t
x
−
1
e
−
t
d
t
{\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt}
This suggests a straightforward (but inefficient) way of computing the
Γ
{\displaystyle \Gamma }
through numerical integration.
Better suggested methods:
Lanczos approximation
Stirling's approximation
|
#Mathematica.2FWolfram_Language
|
Mathematica/Wolfram Language
|
Gamma[x]
|
http://rosettacode.org/wiki/Gamma_function
|
Gamma function
|
Task
Implement one algorithm (or more) to compute the Gamma (
Γ
{\displaystyle \Gamma }
) function (in the real field only).
If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function.
The Gamma function can be defined as:
Γ
(
x
)
=
∫
0
∞
t
x
−
1
e
−
t
d
t
{\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt}
This suggests a straightforward (but inefficient) way of computing the
Γ
{\displaystyle \Gamma }
through numerical integration.
Better suggested methods:
Lanczos approximation
Stirling's approximation
|
#Maxima
|
Maxima
|
fpprec: 30$
gamma_coeff(n) := block([a: makelist(1, n)],
a[2]: bfloat(%gamma),
for k from 3 thru n do
a[k]: bfloat((sum((-1)^j * zeta(j) * a[k - j], j, 2, k - 1) - a[2] * a[k - 1]) / (1 - k * a[1])),
a)$
poleval(a, x) := block([y: 0],
for k from length(a) thru 1 step -1 do
y: y * x + a[k],
y)$
gc: gamma_coeff(20)$
gamma_approx(x) := block([y: 1],
while x > 2 do (x: x - 1, y: y * x),
y / (poleval(gc, x - 1)))$
gamma_approx(12.3b0) - gamma(12.3b0);
/* -9.25224705314470500985141176997b-15 */
|
http://rosettacode.org/wiki/Gapful_numbers
|
Gapful numbers
|
Numbers (positive integers expressed in base ten) that are (evenly) divisible by the number formed by the
first and last digit are known as gapful numbers.
Evenly divisible means divisible with no remainder.
All one─ and two─digit numbers have this property and are trivially excluded. Only
numbers ≥ 100 will be considered for this Rosetta Code task.
Example
187 is a gapful number because it is evenly divisible by the
number 17 which is formed by the first and last decimal digits
of 187.
About 7.46% of positive integers are gapful.
Task
Generate and show all sets of numbers (below) on one line (horizontally) with a title, here on this page
Show the first 30 gapful numbers
Show the first 15 gapful numbers ≥ 1,000,000
Show the first 10 gapful numbers ≥ 1,000,000,000
Related tasks
Harshad or Niven series.
palindromic gapful numbers.
largest number divisible by its digits.
Also see
The OEIS entry: A108343 gapful numbers.
numbersaplenty gapful numbers
|
#Vlang
|
Vlang
|
fn commatize(n u64) string {
mut s := n.str()
le := s.len
for i := le - 3; i >= 1; i -= 3 {
s = '${s[0..i]},$s[i..]'
}
return s
}
fn main() {
starts := [u64(1e2), u64(1e6), u64(1e7), u64(1e9), u64(7123)]
counts := [30, 15, 15, 10, 25]
for i in 0..starts.len {
mut count := 0
mut j := starts[i]
mut pow := u64(100)
for {
if j < pow*10 {
break
}
pow *= 10
}
println("First ${counts[i]} gapful numbers starting at ${commatize(starts[i])}:")
for count < counts[i] {
fl := (j/pow)*10 + (j % 10)
if j%fl == 0 {
print("$j ")
count++
}
j++
if j >= 10*pow {
pow *= 10
}
}
println("\n")
}
}
|
http://rosettacode.org/wiki/Gapful_numbers
|
Gapful numbers
|
Numbers (positive integers expressed in base ten) that are (evenly) divisible by the number formed by the
first and last digit are known as gapful numbers.
Evenly divisible means divisible with no remainder.
All one─ and two─digit numbers have this property and are trivially excluded. Only
numbers ≥ 100 will be considered for this Rosetta Code task.
Example
187 is a gapful number because it is evenly divisible by the
number 17 which is formed by the first and last decimal digits
of 187.
About 7.46% of positive integers are gapful.
Task
Generate and show all sets of numbers (below) on one line (horizontally) with a title, here on this page
Show the first 30 gapful numbers
Show the first 15 gapful numbers ≥ 1,000,000
Show the first 10 gapful numbers ≥ 1,000,000,000
Related tasks
Harshad or Niven series.
palindromic gapful numbers.
largest number divisible by its digits.
Also see
The OEIS entry: A108343 gapful numbers.
numbersaplenty gapful numbers
|
#Wren
|
Wren
|
import "/fmt" for Fmt
var starts = [1e2, 1e6, 1e7, 1e9, 7123]
var counts = [30, 15, 15, 10, 25]
for (i in 0...starts.count) {
var count = 0
var j = starts[i]
var pow = 100
while (true) {
if (j < pow * 10) break
pow = pow * 10
}
System.print("First %(counts[i]) gapful numbers starting at %(Fmt.dc(0, starts[i]))")
while (count < counts[i]) {
var fl = (j/pow).floor*10 + (j % 10)
if (j%fl == 0) {
System.write("%(j) ")
count = count + 1
}
j = j + 1
if (j >= 10*pow) pow = pow * 10
}
System.print("\n")
}
|
http://rosettacode.org/wiki/Gaussian_elimination
|
Gaussian elimination
|
Task
Solve Ax=b using Gaussian elimination then backwards substitution.
A being an n by n matrix.
Also, x and b are n by 1 vectors.
To improve accuracy, please use partial pivoting and scaling.
See also
the Wikipedia entry: Gaussian elimination
|
#Sidef
|
Sidef
|
func gauss_jordan_solve (a, b) {
var A = gather {
^b -> each {|i| take(a[i] + b[i]) }
}
rref(A).map{ .last }
}
var a = [
[ 1.00, 0.00, 0.00, 0.00, 0.00, 0.00 ],
[ 1.00, 0.63, 0.39, 0.25, 0.16, 0.10 ],
[ 1.00, 1.26, 1.58, 1.98, 2.49, 3.13 ],
[ 1.00, 1.88, 3.55, 6.70, 12.62, 23.80 ],
[ 1.00, 2.51, 6.32, 15.88, 39.90, 100.28 ],
[ 1.00, 3.14, 9.87, 31.01, 97.41, 306.02 ],
]
var b = [ -0.01, 0.61, 0.91, 0.99, 0.60, 0.02 ]
var G = gauss_jordan_solve(a, b)
say G.map { "%27s" % .as_rat }.join("\n")
|
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
|
Generate lower case ASCII alphabet
|
Task
Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence.
For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code.
During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code:
set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z}
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#PL.2FI
|
PL/I
|
gen: procedure options (main); /* 7 April 2014. */
declare 1 ascii union,
2 letters (26) character (1),
2 iletters(26) unsigned fixed binary (8),
letter character(1);
declare i fixed binary;
letters(1), letter = lowercase('A');
do i = 2 to 26;
iletters(i) = iletters(i-1) + 1;
end;
put edit (letters) (a);
end gen;
|
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
|
Generate lower case ASCII alphabet
|
Task
Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence.
For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code.
During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code:
set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z}
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#PL.2FM
|
PL/M
|
100H: /* PRINT THE LOWERCASE LETTERS */
/* CP/M BDOS SYSTEM CALL */
BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5;END;
/* CONSOLE OUTPUT ROUTINES */
PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
/* TASK */
DECLARE C BYTE, LC ( 27 )BYTE;
DO C = 0 TO 25;
LC( C ) = C + 32 + 'A';
END;
LC( LAST( LC ) ) = '$'; /* STRING TERMINATOR */
CALL PR$STRING( .LC );
EOF
|
http://rosettacode.org/wiki/Hello_world/Text
|
Hello world/Text
|
Hello world/Text is part of Short Circuit's Console Program Basics selection.
Task
Display the string Hello world! on a text console.
Related tasks
Hello world/Graphical
Hello world/Line Printer
Hello world/Newbie
Hello world/Newline omission
Hello world/Standard error
Hello world/Web server
|
#Plan
|
Plan
|
#STEER LIST,BINARY
#PROGRAM HLWD
#LOWER
MSG1A 11HHELLO WORLD
MSG1B 11/MSG1A
#PROGRAM
#ENTRY 0
DISTY MSG1B
SUSWT 2HHH
#END
#FINISH
#STOP
|
http://rosettacode.org/wiki/Generator/Exponential
|
Generator/Exponential
|
A generator is an executable entity (like a function or procedure) that contains code that yields a sequence of values, one at a time, so that each time you call the generator, the next value in the sequence is provided.
Generators are often built on top of coroutines or objects so that the internal state of the object is handled “naturally”.
Generators are often used in situations where a sequence is potentially infinite, and where it is possible to construct the next value of the sequence with only minimal state.
Task
Create a function that returns a generation of the m'th powers of the positive integers starting from zero, in order, and without obvious or simple upper limit. (Any upper limit to the generator should not be stated in the source but should be down to factors such as the languages natural integer size limit or computational time/size).
Use it to create a generator of:
Squares.
Cubes.
Create a new generator that filters all cubes from the generator of squares.
Drop the first 20 values from this last generator of filtered results, and then show the next 10 values.
Note that this task requires the use of generators in the calculation of the result.
Also see
Generator
|
#zkl
|
zkl
|
fcn powers(m){ n:=0.0; while(1){vm.yield(n.pow(m).toInt()); n+=1} }
var squared=Utils.Generator(powers,2), cubed=Utils.Generator(powers,3);
fcn filtered(sg,cg){s:=sg.next(); c:=cg.next();
while(1){
if(s>c){c=cg.next(); continue;}
else if(s<c) vm.yield(s);
s=sg.next()
}
}
var f=Utils.Generator(filtered,squared,cubed);
f.drop(20);
f.walk(10).println();
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#LFE
|
LFE
|
(defun compose (f g)
(lambda (x)
(funcall f
(funcall g x))))
(defun compose (funcs)
(lists:foldl #'compose/2
(lambda (x) x)
funcs))
(defun check ()
(let* ((sin-asin (compose #'math:sin/1 #'math:asin/1))
(expected (math:sin (math:asin 0.5)))
(compose-result (funcall sin-asin 0.5)))
(io:format '"Expected answer: ~p~n" (list expected))
(io:format '"Answer with compose: ~p~n" (list compose-result))))
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#Lingo
|
Lingo
|
-- in some movie script
----------------------------------------
-- Composes 2 call-functions, returns a new call-function
-- @param {symbol|instance} f
-- @param {symbol|instance} g
-- @return {instance}
----------------------------------------
on compose (f, g)
return script("Composer").new(f, g)
end
|
http://rosettacode.org/wiki/Fractal_tree
|
Fractal tree
|
Generate and draw a fractal tree.
Draw the trunk
At the end of the trunk, split by some angle and draw two branches
Repeat at the end of each branch until a sufficient level of branching is reached
Related tasks
Pythagoras Tree
|
#PostScript
|
PostScript
|
%!PS
%%BoundingBox: 0 0 300 300
%%EndComments
/origstate save def
/ld {load def} bind def
/m /moveto ld /g /setgray ld /t /translate ld
/r /rotate ld /l /lineto ld
/rl /rlineto ld /s /scale ld
%%EndProlog
/PerturbateAngle {} def
/PerturbateLength {} def
% ** To add perturbations, define properly PerturbateAngle and PerturbateLength, e.g.
% /PerturbateAngle {realtime 20 mod realtime 2 mod 1 eq {add} {sub} ifelse} def
% /PerturbateLength {realtime 10 mod 100 div realtime 2 mod 1 eq {add} {sub} ifelse} def
/fractree { % [INITLENGTH, SPLIT, SFACTOR, BRANCHES]
dup 3 get 0 gt
{
0 0 m dup 0 get 0 exch l
gsave
dup 0 get 0 exch t
dup 1 get PerturbateAngle r
dup 2 get dup PerturbateLength s
dup aload pop 1 sub 4 array astore fractree stroke
grestore
gsave
dup 0 get 0 exch t
dup 1 get neg PerturbateAngle r
dup 2 get dup PerturbateLength s
dup aload pop 1 sub 4 array astore fractree stroke
grestore
} if pop
} def
%
/BRANCHES 14 def
/INITLENGTH 50 def
/SPLIT 35 def
/SFACTOR .75 def
%
% BB check
%0 0 m 300 0 rl 0 300 rl -300 0 rl closepath stroke
%
0 g 150 0 t
[INITLENGTH SPLIT SFACTOR BRANCHES] fractree stroke
%
showpage origstate restore
%%EOF
|
http://rosettacode.org/wiki/Fractal_tree
|
Fractal tree
|
Generate and draw a fractal tree.
Draw the trunk
At the end of the trunk, split by some angle and draw two branches
Repeat at the end of each branch until a sufficient level of branching is reached
Related tasks
Pythagoras Tree
|
#POV-Ray
|
POV-Ray
|
#include "colors.inc"
#include "transforms.inc"
#declare CamLoc = <0, 5, 0>;
#declare CamLook = <0,0,0>;
camera
{
location CamLoc
look_at CamLook
rotate y*90
}
light_source
{
CamLoc
color White
}
#declare Init_Height = 10;
#declare Spread_Ang = 35;
#declare Branches = 14;
#declare Scaling_Factor = 0.75;
#macro Stick(P0, P1)
cylinder {
P0, P1, 0.02
texture { pigment { Green } }
}
#end
#macro FractalTree(O, D, S, R, B)
#if (B > 0)
Stick(O, O+D*S)
FractalTree(O+D*S, vtransform(D, transform{rotate y*R}),
S*Scaling_Factor, R, B-1)
FractalTree(O+D*S, vtransform(D, transform{rotate -y*R}),
S*Scaling_Factor, R, B-1)
#end
#end
union {
FractalTree(<-2,0,0>, <1,0,0>, 1, Spread_Ang, Branches)
}
|
http://rosettacode.org/wiki/Fraction_reduction
|
Fraction reduction
|
There is a fine line between numerator and denominator. ─── anonymous
A method to "reduce" some reducible fractions is to cross out a digit from the
numerator and the denominator. An example is:
16 16
──── and then (simply) cross─out the sixes: ────
64 64
resulting in:
1
───
4
Naturally, this "method" of reduction must reduce to the proper value (shown as a fraction).
This "method" is also known as anomalous cancellation and also accidental cancellation.
(Of course, this "method" shouldn't be taught to impressionable or gullible minds.) 😇
Task
Find and show some fractions that can be reduced by the above "method".
show 2-digit fractions found (like the example shown above)
show 3-digit fractions
show 4-digit fractions
show 5-digit fractions (and higher) (optional)
show each (above) n-digit fractions separately from other different n-sized fractions, don't mix different "sizes" together
for each "size" fraction, only show a dozen examples (the 1st twelve found)
(it's recognized that not every programming solution will have the same generation algorithm)
for each "size" fraction:
show a count of how many reducible fractions were found. The example (above) is size 2
show a count of which digits were crossed out (one line for each different digit)
for each "size" fraction, show a count of how many were found. The example (above) is size 2
show each n-digit example (to be shown on one line):
show each n-digit fraction
show each reduced n-digit fraction
show what digit was crossed out for the numerator and the denominator
Task requirements/restrictions
only proper fractions and their reductions (the result) are to be used (no vulgar fractions)
only positive fractions are to be used (no negative signs anywhere)
only base ten integers are to be used for the numerator and denominator
no zeros (decimal digit) can be used within the numerator or the denominator
the numerator and denominator should be composed of the same number of digits
no digit can be repeated in the numerator
no digit can be repeated in the denominator
(naturally) there should be a shared decimal digit in the numerator and the denominator
fractions can be shown as 16/64 (for example)
Show all output here, on this page.
Somewhat related task
Farey sequence (It concerns fractions.)
References
Wikipedia entry: proper and improper fractions.
Wikipedia entry: anomalous cancellation and/or accidental cancellation.
|
#Ruby
|
Ruby
|
def indexOf(haystack, needle)
idx = 0
for straw in haystack
if straw == needle then
return idx
else
idx = idx + 1
end
end
return -1
end
def getDigits(n, le, digits)
while n > 0
r = n % 10
if r == 0 or indexOf(digits, r) >= 0 then
return false
end
le = le - 1
digits[le] = r
n = (n / 10).floor
end
return true
end
POWS = [1, 10, 100, 1000, 10000]
def removeDigit(digits, le, idx)
sum = 0
pow = POWS[le - 2]
i = 0
while i < le
if i == idx then
i = i + 1
next
end
sum = sum + digits[i] * pow
pow = (pow / 10).floor
i = i + 1
end
return sum
end
def main
lims = [ [ 12, 97 ], [ 123, 986 ], [ 1234, 9875 ], [ 12345, 98764 ] ]
count = Array.new(5, 0)
omitted = Array.new(5) { Array.new(10, 0) }
i = 0
for lim in lims
n = lim[0]
while n < lim[1]
nDigits = [0] * (i + 2)
nOk = getDigits(n, i + 2, nDigits)
if not nOk then
n = n + 1
next
end
d = n + 1
while d <= lim[1] + 1
dDigits = [0] * (i + 2)
dOk = getDigits(d, i + 2, dDigits)
if not dOk then
d = d + 1
next
end
nix = 0
while nix < nDigits.length
digit = nDigits[nix]
dix = indexOf(dDigits, digit)
if dix >= 0 then
rn = removeDigit(nDigits, i + 2, nix)
rd = removeDigit(dDigits, i + 2, dix)
if (1.0 * n / d) == (1.0 * rn / rd) then
count[i] = count[i] + 1
omitted[i][digit] = omitted[i][digit] + 1
if count[i] <= 12 then
print "%d/%d = %d/%d by omitting %d's\n" % [n, d, rn, rd, digit]
end
end
end
nix = nix + 1
end
d = d + 1
end
n = n + 1
end
print "\n"
i = i + 1
end
i = 2
while i <= 5
print "There are %d %d-digit fractions of which:\n" % [count[i - 2], i]
j = 1
while j <= 9
if omitted[i - 2][j] == 0 then
j = j + 1
next
end
print "%6s have %d's omitted\n" % [omitted[i - 2][j], j]
j = j + 1
end
print "\n"
i = i + 1
end
end
main()
|
http://rosettacode.org/wiki/Fractran
|
Fractran
|
FRACTRAN is a Turing-complete esoteric programming language invented by the mathematician John Horton Conway.
A FRACTRAN program is an ordered list of positive fractions
P
=
(
f
1
,
f
2
,
…
,
f
m
)
{\displaystyle P=(f_{1},f_{2},\ldots ,f_{m})}
, together with an initial positive integer input
n
{\displaystyle n}
.
The program is run by updating the integer
n
{\displaystyle n}
as follows:
for the first fraction,
f
i
{\displaystyle f_{i}}
, in the list for which
n
f
i
{\displaystyle nf_{i}}
is an integer, replace
n
{\displaystyle n}
with
n
f
i
{\displaystyle nf_{i}}
;
repeat this rule until no fraction in the list produces an integer when multiplied by
n
{\displaystyle n}
, then halt.
Conway gave a program for primes in FRACTRAN:
17
/
91
{\displaystyle 17/91}
,
78
/
85
{\displaystyle 78/85}
,
19
/
51
{\displaystyle 19/51}
,
23
/
38
{\displaystyle 23/38}
,
29
/
33
{\displaystyle 29/33}
,
77
/
29
{\displaystyle 77/29}
,
95
/
23
{\displaystyle 95/23}
,
77
/
19
{\displaystyle 77/19}
,
1
/
17
{\displaystyle 1/17}
,
11
/
13
{\displaystyle 11/13}
,
13
/
11
{\displaystyle 13/11}
,
15
/
14
{\displaystyle 15/14}
,
15
/
2
{\displaystyle 15/2}
,
55
/
1
{\displaystyle 55/1}
Starting with
n
=
2
{\displaystyle n=2}
, this FRACTRAN program will change
n
{\displaystyle n}
to
15
=
2
×
(
15
/
2
)
{\displaystyle 15=2\times (15/2)}
, then
825
=
15
×
(
55
/
1
)
{\displaystyle 825=15\times (55/1)}
, generating the following sequence of integers:
2
{\displaystyle 2}
,
15
{\displaystyle 15}
,
825
{\displaystyle 825}
,
725
{\displaystyle 725}
,
1925
{\displaystyle 1925}
,
2275
{\displaystyle 2275}
,
425
{\displaystyle 425}
,
390
{\displaystyle 390}
,
330
{\displaystyle 330}
,
290
{\displaystyle 290}
,
770
{\displaystyle 770}
,
…
{\displaystyle \ldots }
After 2, this sequence contains the following powers of 2:
2
2
=
4
{\displaystyle 2^{2}=4}
,
2
3
=
8
{\displaystyle 2^{3}=8}
,
2
5
=
32
{\displaystyle 2^{5}=32}
,
2
7
=
128
{\displaystyle 2^{7}=128}
,
2
11
=
2048
{\displaystyle 2^{11}=2048}
,
2
13
=
8192
{\displaystyle 2^{13}=8192}
,
2
17
=
131072
{\displaystyle 2^{17}=131072}
,
2
19
=
524288
{\displaystyle 2^{19}=524288}
,
…
{\displaystyle \ldots }
which are the prime powers of 2.
Task
Write a program that reads a list of fractions in a natural format from the keyboard or from a string,
to parse it into a sequence of fractions (i.e. two integers),
and runs the FRACTRAN starting from a provided integer, writing the result at each step.
It is also required that the number of steps is limited (by a parameter easy to find).
Extra credit
Use this program to derive the first 20 or so prime numbers.
See also
For more on how to program FRACTRAN as a universal programming language, see:
J. H. Conway (1987). Fractran: A Simple Universal Programming Language for Arithmetic. In: Open Problems in Communication and Computation, pages 4–26. Springer.
J. H. Conway (2010). "FRACTRAN: A simple universal programming language for arithmetic". In Jeffrey C. Lagarias. The Ultimate Challenge: the 3x+1 problem. American Mathematical Society. pp. 249–264. ISBN 978-0-8218-4940-8. Zbl 1216.68068.
Number Pathology: Fractran by Mark C. Chu-Carroll; October 27, 2006.
|
#Mathematica_.2F_Wolfram_Language
|
Mathematica / Wolfram Language
|
fractionlist = {17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/14, 15/2, 55/1};
n = 2;
steplimit = 20;
j = 0;
break = False;
While[break == False && j <= steplimit,
newlist = n fractionlist;
isintegerlist = IntegerQ[#] & /@ newlist;
truepositions = Position[isintegerlist, True];
If[Length[truepositions] == 0,
break = True,
Print[ToString[j] <> ": " <> ToString[n]];
n = newlist[[truepositions[[1, 1]]]]; j++;
]
]
|
http://rosettacode.org/wiki/Function_definition
|
Function definition
|
A function is a body of code that returns a value.
The value returned may depend on arguments provided to the function.
Task
Write a definition of a function called "multiply" that takes two arguments and returns their product.
(Argument types should be chosen so as not to distract from showing how functions are created and values returned).
Related task
Function prototype
|
#BlitzMax
|
BlitzMax
|
function multiply:float( a:float, b:float )
return a*b
end function
print multiply(3.1416, 1.6180)
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#Rust
|
Rust
|
fn fusc_sequence() -> impl std::iter::Iterator<Item = u32> {
let mut sequence = vec![0, 1];
let mut n = 0;
std::iter::from_fn(move || {
if n > 1 {
sequence.push(match n % 2 {
0 => sequence[n / 2],
_ => sequence[(n - 1) / 2] + sequence[(n + 1) / 2],
});
}
let result = sequence[n];
n += 1;
Some(result)
})
}
fn main() {
println!("First 61 fusc numbers:");
for n in fusc_sequence().take(61) {
print!("{} ", n)
}
println!();
let limit = 1000000000;
println!(
"Fusc numbers up to {} that are longer than any previous one:",
limit
);
let mut max = 0;
for (index, n) in fusc_sequence().take(limit).enumerate() {
if n >= max {
max = std::cmp::max(10, max * 10);
println!("index = {}, fusc number = {}", index, n);
}
}
}
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#Sidef
|
Sidef
|
func fusc(n) is cached {
return 0 if n.is_zero
return 1 if n.is_one
n.is_even ? fusc(n/2) : (fusc((n-1)/2) + fusc(((n-1)/2)+1))
}
say ("First 61 terms of the Stern-Brocot sequence: ", 61.of(fusc).join(' '))
say "\nIndex and value for first term longer than any previous:"
printf("%15s : %s\n", "Index", "Value");
var (index=0, len=0)
5.times {
index = (index..Inf -> first_by { fusc(_).len > len })
len = fusc(index).len
printf("%15s : %s\n", index.commify, fusc(index).commify)
}
|
http://rosettacode.org/wiki/Gamma_function
|
Gamma function
|
Task
Implement one algorithm (or more) to compute the Gamma (
Γ
{\displaystyle \Gamma }
) function (in the real field only).
If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function.
The Gamma function can be defined as:
Γ
(
x
)
=
∫
0
∞
t
x
−
1
e
−
t
d
t
{\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt}
This suggests a straightforward (but inefficient) way of computing the
Γ
{\displaystyle \Gamma }
through numerical integration.
Better suggested methods:
Lanczos approximation
Stirling's approximation
|
#.D0.9C.D0.9A-61.2F52
|
МК-61/52
|
П9 9 П0 ИП9 ИП9 1 + * Вx L0
05 1 + П9 ^ ln 1 - * ИП9
1 2 * 1/x + e^x <-> / 2 пи
* ИП9 / КвКор * ^ ВП 3 + Вx
- С/П
|
http://rosettacode.org/wiki/Gamma_function
|
Gamma function
|
Task
Implement one algorithm (or more) to compute the Gamma (
Γ
{\displaystyle \Gamma }
) function (in the real field only).
If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function.
The Gamma function can be defined as:
Γ
(
x
)
=
∫
0
∞
t
x
−
1
e
−
t
d
t
{\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt}
This suggests a straightforward (but inefficient) way of computing the
Γ
{\displaystyle \Gamma }
through numerical integration.
Better suggested methods:
Lanczos approximation
Stirling's approximation
|
#Modula-3
|
Modula-3
|
MODULE Gamma EXPORTS Main;
FROM IO IMPORT Put;
FROM Fmt IMPORT Extended, Style;
PROCEDURE Taylor(x: EXTENDED): EXTENDED =
CONST a = ARRAY [0..29] OF EXTENDED {
1.00000000000000000000X0, 0.57721566490153286061X0,
-0.65587807152025388108X0, -0.04200263503409523553X0,
0.16653861138229148950X0, -0.04219773455554433675X0,
-0.00962197152787697356X0, 0.00721894324666309954X0,
-0.00116516759185906511X0, -0.00021524167411495097X0,
0.00012805028238811619X0, -0.00002013485478078824X0,
-0.00000125049348214267X0, 0.00000113302723198170X0,
-0.00000020563384169776X0, 0.00000000611609510448X0,
0.00000000500200764447X0, -0.00000000118127457049X0,
0.00000000010434267117X0, 0.00000000000778226344X0,
-0.00000000000369680562X0, 0.00000000000051003703X0,
-0.00000000000002058326X0, -0.00000000000000534812X0,
0.00000000000000122678X0, -0.00000000000000011813X0,
0.00000000000000000119X0, 0.00000000000000000141X0,
-0.00000000000000000023X0, 0.00000000000000000002X0 };
VAR y := x - 1.0X0;
sum := a[LAST(a)];
BEGIN
FOR i := LAST(a) - 1 TO FIRST(a) BY -1 DO
sum := sum * y + a[i];
END;
RETURN 1.0X0 / sum;
END Taylor;
BEGIN
FOR i := 1 TO 10 DO
Put(Extended(Taylor(FLOAT(i, EXTENDED) / 3.0X0), style := Style.Sci) & "\n");
END;
END Gamma.
|
http://rosettacode.org/wiki/Gapful_numbers
|
Gapful numbers
|
Numbers (positive integers expressed in base ten) that are (evenly) divisible by the number formed by the
first and last digit are known as gapful numbers.
Evenly divisible means divisible with no remainder.
All one─ and two─digit numbers have this property and are trivially excluded. Only
numbers ≥ 100 will be considered for this Rosetta Code task.
Example
187 is a gapful number because it is evenly divisible by the
number 17 which is formed by the first and last decimal digits
of 187.
About 7.46% of positive integers are gapful.
Task
Generate and show all sets of numbers (below) on one line (horizontally) with a title, here on this page
Show the first 30 gapful numbers
Show the first 15 gapful numbers ≥ 1,000,000
Show the first 10 gapful numbers ≥ 1,000,000,000
Related tasks
Harshad or Niven series.
palindromic gapful numbers.
largest number divisible by its digits.
Also see
The OEIS entry: A108343 gapful numbers.
numbersaplenty gapful numbers
|
#XBS
|
XBS
|
func isgapful(n:number):boolean{
set s:string = tostring(n);
set d = toint(`{s::at(0)}{s::at(?s-1)}`);
send (n%d)==0
}
func findGapfulNumbers(start,amount){
set gapful=[];
set ind = start;
while(true){
if(isgapful(ind)){
gapful::insert(ind);
}
ind++;
if((?gapful)>=amount){
stop;
}
}
log(`First {amount} gapful ints at {start}: {gapful::join(", ")}`);
}
findGapfulNumbers(100,30);
findGapfulNumbers(1000000,15);
findGapfulNumbers(1000000000,15);
|
http://rosettacode.org/wiki/Gapful_numbers
|
Gapful numbers
|
Numbers (positive integers expressed in base ten) that are (evenly) divisible by the number formed by the
first and last digit are known as gapful numbers.
Evenly divisible means divisible with no remainder.
All one─ and two─digit numbers have this property and are trivially excluded. Only
numbers ≥ 100 will be considered for this Rosetta Code task.
Example
187 is a gapful number because it is evenly divisible by the
number 17 which is formed by the first and last decimal digits
of 187.
About 7.46% of positive integers are gapful.
Task
Generate and show all sets of numbers (below) on one line (horizontally) with a title, here on this page
Show the first 30 gapful numbers
Show the first 15 gapful numbers ≥ 1,000,000
Show the first 10 gapful numbers ≥ 1,000,000,000
Related tasks
Harshad or Niven series.
palindromic gapful numbers.
largest number divisible by its digits.
Also see
The OEIS entry: A108343 gapful numbers.
numbersaplenty gapful numbers
|
#XPL0
|
XPL0
|
func Gapful(N0); \Return 'true' if gapful number
int N0, N, First, Last;
[N:= N0;
N:= N/10;
Last:= rem(0);
repeat N:= N/10;
First:= rem(0);
until N = 0;
N:= First*10 + Last;
return rem(N0/N) = 0;
];
proc ShowGap(Start, Limit); \Display gapful numbers
int Start, Limit, Count, N;
[Text(0, "First "); IntOut(0, Limit); Text(0, " gapful numbers starting from ");
IntOut(0, Start); Text(0, ":^m^j");
Count:= 0; N:= Start;
loop [if Gapful(N) then
[IntOut(0, N); ChOut(0, ^ );
Count:= Count+1;
if Count >= Limit then quit;
];
N:= N+1;
];
CrLf(0);
];
[ShowGap(100, 30);
ShowGap(1_000_000, 15);
ShowGap(1_000_000_000, 10);
]
|
http://rosettacode.org/wiki/Gaussian_elimination
|
Gaussian elimination
|
Task
Solve Ax=b using Gaussian elimination then backwards substitution.
A being an n by n matrix.
Also, x and b are n by 1 vectors.
To improve accuracy, please use partial pivoting and scaling.
See also
the Wikipedia entry: Gaussian elimination
|
#Stata
|
Stata
|
void gauss(real matrix a, real matrix b, real scalar det) {
real scalar i,j,n,s
real vector js
det = 1
n = rows(a)
for (i=1; i<n; i++) {
maxindex(abs(a[i::n,i]), 1, js=., .)
j = js[1]+i-1
if (j!=i) {
a[(i\j),i..n] = a[(j\i),i..n]
b[(i\j),.] = b[(j\i),.]
det = -det
}
for (j=i+1; j<=n; j++) {
s = a[j,i]/a[i,i]
a[j,i+1..n] = a[j,i+1..n]-s*a[i,i+1..n]
b[j,.] = b[j,.]-s*b[i,.]
}
}
for (i=n; i>=1; i--) {
for (j=i+1; j<=n; j++) {
b[i,.] = b[i,.]-a[i,j]*b[j,.]
}
b[i,.] = b[i,.]/a[i,i]
det = det*a[i,i]
}
}
|
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
|
Generate lower case ASCII alphabet
|
Task
Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence.
For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code.
During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code:
set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z}
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#PL.2FSQL
|
PL/SQL
|
Declare
sbAlphabet varchar2(100);
Begin
For nuI in 97..122 loop
if sbAlphabet is null then
sbAlphabet:=chr(nuI);
Else
sbAlphabet:=sbAlphabet||','||chr(nuI);
End if;
End loop;
Dbms_Output.Put_Line(sbAlphabet);
End;
|
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
|
Generate lower case ASCII alphabet
|
Task
Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence.
For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code.
During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code:
set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z}
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
|
#Plain_English
|
Plain English
|
To run:
Start up.
Generate the lowercase ASCII alphabet giving a string.
Write the string on the console.
Wait for the escape key.
Shut down.
To generate the lowercase ASCII alphabet giving a string:
Put the little-a byte into a letter.
Loop.
Append the letter to the string.
If the letter is the little-z byte, exit.
Add 1 to the letter.
Repeat.
|
http://rosettacode.org/wiki/Hello_world/Text
|
Hello world/Text
|
Hello world/Text is part of Short Circuit's Console Program Basics selection.
Task
Display the string Hello world! on a text console.
Related tasks
Hello world/Graphical
Hello world/Line Printer
Hello world/Newbie
Hello world/Newline omission
Hello world/Standard error
Hello world/Web server
|
#Pony
|
Pony
|
actor Main
new create(env: Env) =>
env.out.print("Hello world!")
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#LOLCODE
|
LOLCODE
|
HAI 1.3
I HAS A fx, I HAS A gx
HOW IZ I composin YR f AN YR g
fx R f, gx R g
HOW IZ I composed YR x
FOUND YR I IZ fx YR I IZ gx YR x MKAY MKAY
IF U SAY SO
FOUND YR composed
IF U SAY SO
HOW IZ I incin YR num
FOUND YR SUM OF num AN 1
IF U SAY SO
HOW IZ I sqrin YR num
FOUND YR PRODUKT OF num AN num
IF U SAY SO
I HAS A incsqrin ITZ I IZ composin YR incin AN YR sqrin MKAY
VISIBLE I IZ incsqrin YR 10 MKAY BTW, prints 101
I HAS A sqrincin ITZ I IZ composin YR sqrin AN YR incin MKAY
VISIBLE I IZ sqrincin YR 10 MKAY BTW, prints 121
KTHXBYE
|
http://rosettacode.org/wiki/Function_composition
|
Function composition
|
Task
Create a function, compose, whose two arguments f and g, are both functions with one argument.
The result of compose is to be a function of one argument, (lets call the argument x), which works like applying function f to the result of applying function g to x.
Example
compose(f, g) (x) = f(g(x))
Reference: Function composition
Hint: In some languages, implementing compose correctly requires creating a closure.
|
#Lua
|
Lua
|
function compose(f, g) return function(...) return f(g(...)) end end
|
http://rosettacode.org/wiki/Fractal_tree
|
Fractal tree
|
Generate and draw a fractal tree.
Draw the trunk
At the end of the trunk, split by some angle and draw two branches
Repeat at the end of each branch until a sufficient level of branching is reached
Related tasks
Pythagoras Tree
|
#Prolog
|
Prolog
|
fractal :-
new(D, window('Fractal')),
send(D, size, size(800, 600)),
drawTree(D, 400, 500, -90, 9),
send(D, open).
drawTree(_D, _X, _Y, _Angle, 0).
drawTree(D, X1, Y1, Angle, Depth) :-
X2 is X1 + cos(Angle * pi / 180.0) * Depth * 10.0,
Y2 is Y1 + sin(Angle * pi / 180.0) * Depth * 10.0,
new(Line, line(X1, Y1, X2, Y2, none)),
send(D, display, Line),
A1 is Angle - 30,
A2 is Angle + 30,
De is Depth - 1,
drawTree(D, X2, Y2, A1, De),
drawTree(D, X2, Y2, A2, De).
|
http://rosettacode.org/wiki/Fraction_reduction
|
Fraction reduction
|
There is a fine line between numerator and denominator. ─── anonymous
A method to "reduce" some reducible fractions is to cross out a digit from the
numerator and the denominator. An example is:
16 16
──── and then (simply) cross─out the sixes: ────
64 64
resulting in:
1
───
4
Naturally, this "method" of reduction must reduce to the proper value (shown as a fraction).
This "method" is also known as anomalous cancellation and also accidental cancellation.
(Of course, this "method" shouldn't be taught to impressionable or gullible minds.) 😇
Task
Find and show some fractions that can be reduced by the above "method".
show 2-digit fractions found (like the example shown above)
show 3-digit fractions
show 4-digit fractions
show 5-digit fractions (and higher) (optional)
show each (above) n-digit fractions separately from other different n-sized fractions, don't mix different "sizes" together
for each "size" fraction, only show a dozen examples (the 1st twelve found)
(it's recognized that not every programming solution will have the same generation algorithm)
for each "size" fraction:
show a count of how many reducible fractions were found. The example (above) is size 2
show a count of which digits were crossed out (one line for each different digit)
for each "size" fraction, show a count of how many were found. The example (above) is size 2
show each n-digit example (to be shown on one line):
show each n-digit fraction
show each reduced n-digit fraction
show what digit was crossed out for the numerator and the denominator
Task requirements/restrictions
only proper fractions and their reductions (the result) are to be used (no vulgar fractions)
only positive fractions are to be used (no negative signs anywhere)
only base ten integers are to be used for the numerator and denominator
no zeros (decimal digit) can be used within the numerator or the denominator
the numerator and denominator should be composed of the same number of digits
no digit can be repeated in the numerator
no digit can be repeated in the denominator
(naturally) there should be a shared decimal digit in the numerator and the denominator
fractions can be shown as 16/64 (for example)
Show all output here, on this page.
Somewhat related task
Farey sequence (It concerns fractions.)
References
Wikipedia entry: proper and improper fractions.
Wikipedia entry: anomalous cancellation and/or accidental cancellation.
|
#Visual_Basic_.NET
|
Visual Basic .NET
|
Module Module1
Function IndexOf(n As Integer, s As Integer()) As Integer
For ii = 1 To s.Length
Dim i = ii - 1
If s(i) = n Then
Return i
End If
Next
Return -1
End Function
Function GetDigits(n As Integer, le As Integer, digits As Integer()) As Boolean
While n > 0
Dim r = n Mod 10
If r = 0 OrElse IndexOf(r, digits) >= 0 Then
Return False
End If
le -= 1
digits(le) = r
n \= 10
End While
Return True
End Function
Function RemoveDigit(digits As Integer(), le As Integer, idx As Integer) As Integer
Dim pows = {1, 10, 100, 1000, 10000}
Dim sum = 0
Dim pow = pows(le - 2)
For ii = 1 To le
Dim i = ii - 1
If i = idx Then
Continue For
End If
sum += digits(i) * pow
pow \= 10
Next
Return sum
End Function
Sub Main()
Dim lims = {{12, 97}, {123, 986}, {1234, 9875}, {12345, 98764}}
Dim count(5) As Integer
Dim omitted(5, 10) As Integer
Dim upperBound = lims.GetLength(0)
For ii = 1 To upperBound
Dim i = ii - 1
Dim nDigits(i + 2 - 1) As Integer
Dim dDigits(i + 2 - 1) As Integer
Dim blank(i + 2 - 1) As Integer
For n = lims(i, 0) To lims(i, 1)
blank.CopyTo(nDigits, 0)
Dim nOk = GetDigits(n, i + 2, nDigits)
If Not nOk Then
Continue For
End If
For d = n + 1 To lims(i, 1) + 1
blank.CopyTo(dDigits, 0)
Dim dOk = GetDigits(d, i + 2, dDigits)
If Not dOk Then
Continue For
End If
For nixt = 1 To nDigits.Length
Dim nix = nixt - 1
Dim digit = nDigits(nix)
Dim dix = IndexOf(digit, dDigits)
If dix >= 0 Then
Dim rn = RemoveDigit(nDigits, i + 2, nix)
Dim rd = RemoveDigit(dDigits, i + 2, dix)
If (n / d) = (rn / rd) Then
count(i) += 1
omitted(i, digit) += 1
If count(i) <= 12 Then
Console.WriteLine("{0}/{1} = {2}/{3} by omitting {4}'s", n, d, rn, rd, digit)
End If
End If
End If
Next
Next
Next
Console.WriteLine()
Next
For i = 2 To 5
Console.WriteLine("There are {0} {1}-digit fractions of which:", count(i - 2), i)
For j = 1 To 9
If omitted(i - 2, j) = 0 Then
Continue For
End If
Console.WriteLine("{0,6} have {1}'s omitted", omitted(i - 2, j), j)
Next
Console.WriteLine()
Next
End Sub
End Module
|
http://rosettacode.org/wiki/Fractran
|
Fractran
|
FRACTRAN is a Turing-complete esoteric programming language invented by the mathematician John Horton Conway.
A FRACTRAN program is an ordered list of positive fractions
P
=
(
f
1
,
f
2
,
…
,
f
m
)
{\displaystyle P=(f_{1},f_{2},\ldots ,f_{m})}
, together with an initial positive integer input
n
{\displaystyle n}
.
The program is run by updating the integer
n
{\displaystyle n}
as follows:
for the first fraction,
f
i
{\displaystyle f_{i}}
, in the list for which
n
f
i
{\displaystyle nf_{i}}
is an integer, replace
n
{\displaystyle n}
with
n
f
i
{\displaystyle nf_{i}}
;
repeat this rule until no fraction in the list produces an integer when multiplied by
n
{\displaystyle n}
, then halt.
Conway gave a program for primes in FRACTRAN:
17
/
91
{\displaystyle 17/91}
,
78
/
85
{\displaystyle 78/85}
,
19
/
51
{\displaystyle 19/51}
,
23
/
38
{\displaystyle 23/38}
,
29
/
33
{\displaystyle 29/33}
,
77
/
29
{\displaystyle 77/29}
,
95
/
23
{\displaystyle 95/23}
,
77
/
19
{\displaystyle 77/19}
,
1
/
17
{\displaystyle 1/17}
,
11
/
13
{\displaystyle 11/13}
,
13
/
11
{\displaystyle 13/11}
,
15
/
14
{\displaystyle 15/14}
,
15
/
2
{\displaystyle 15/2}
,
55
/
1
{\displaystyle 55/1}
Starting with
n
=
2
{\displaystyle n=2}
, this FRACTRAN program will change
n
{\displaystyle n}
to
15
=
2
×
(
15
/
2
)
{\displaystyle 15=2\times (15/2)}
, then
825
=
15
×
(
55
/
1
)
{\displaystyle 825=15\times (55/1)}
, generating the following sequence of integers:
2
{\displaystyle 2}
,
15
{\displaystyle 15}
,
825
{\displaystyle 825}
,
725
{\displaystyle 725}
,
1925
{\displaystyle 1925}
,
2275
{\displaystyle 2275}
,
425
{\displaystyle 425}
,
390
{\displaystyle 390}
,
330
{\displaystyle 330}
,
290
{\displaystyle 290}
,
770
{\displaystyle 770}
,
…
{\displaystyle \ldots }
After 2, this sequence contains the following powers of 2:
2
2
=
4
{\displaystyle 2^{2}=4}
,
2
3
=
8
{\displaystyle 2^{3}=8}
,
2
5
=
32
{\displaystyle 2^{5}=32}
,
2
7
=
128
{\displaystyle 2^{7}=128}
,
2
11
=
2048
{\displaystyle 2^{11}=2048}
,
2
13
=
8192
{\displaystyle 2^{13}=8192}
,
2
17
=
131072
{\displaystyle 2^{17}=131072}
,
2
19
=
524288
{\displaystyle 2^{19}=524288}
,
…
{\displaystyle \ldots }
which are the prime powers of 2.
Task
Write a program that reads a list of fractions in a natural format from the keyboard or from a string,
to parse it into a sequence of fractions (i.e. two integers),
and runs the FRACTRAN starting from a provided integer, writing the result at each step.
It is also required that the number of steps is limited (by a parameter easy to find).
Extra credit
Use this program to derive the first 20 or so prime numbers.
See also
For more on how to program FRACTRAN as a universal programming language, see:
J. H. Conway (1987). Fractran: A Simple Universal Programming Language for Arithmetic. In: Open Problems in Communication and Computation, pages 4–26. Springer.
J. H. Conway (2010). "FRACTRAN: A simple universal programming language for arithmetic". In Jeffrey C. Lagarias. The Ultimate Challenge: the 3x+1 problem. American Mathematical Society. pp. 249–264. ISBN 978-0-8218-4940-8. Zbl 1216.68068.
Number Pathology: Fractran by Mark C. Chu-Carroll; October 27, 2006.
|
#Nim
|
Nim
|
import strutils
import bignum
const PrimeProg = "17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1"
iterator values(prog: openArray[Rat]; init: Natural): Int =
## Run the program "prog" with initial value "init" and yield the values.
var n = newInt(init)
var next: Rat
while true:
for fraction in prog:
next = n * fraction
if next.denom == 1:
break
n = next.num
yield n
func toFractions(fractList: string): seq[Rat] =
## Convert a string to a list of fractions.
for f in fractList.split():
result.add(newRat(f))
proc run(progStr: string; init, maxSteps: Natural = 0) =
## Run the program described by string "progStr" with initial value "init",
## stopping after "maxSteps" (0 means for ever).
## Display the value after each step.
let prog = progStr.toFractions()
var stepCount = 0
for val in prog.values(init):
inc stepCount
echo stepCount, ": ", val
if stepCount == maxSteps:
break
iterator primes(n: Natural): int =
# Yield the list of first "n" primes.
let prog = PrimeProg.toFractions()
var count = 0
for val in prog.values(2):
if isZero(val and (val - 1)):
# This is a power of two.
yield val.digits(2) - 1 # Compute the exponent as number of binary digits minus one.
inc count
if count == n:
break
# Run the program to compute primes displaying values at each step and stopping after 10 steps.
echo "First ten steps for program to find primes:"
PrimeProg.run(2, 10)
# Find the first 20 primes.
echo "\nFirst twenty prime numbers:"
for val in primes(20):
echo val
|
http://rosettacode.org/wiki/Function_definition
|
Function definition
|
A function is a body of code that returns a value.
The value returned may depend on arguments provided to the function.
Task
Write a definition of a function called "multiply" that takes two arguments and returns their product.
(Argument types should be chosen so as not to distract from showing how functions are created and values returned).
Related task
Function prototype
|
#Boo
|
Boo
|
def multiply(x as int, y as int):
return x * y
print multiply(3, 2)
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#Swift
|
Swift
|
struct FuscSeq: Sequence, IteratorProtocol {
private var arr = [0, 1]
private var i = 0
mutating func next() -> Int? {
defer {
i += 1
}
guard i > 1 else {
return arr[i]
}
switch i & 1 {
case 0:
arr.append(arr[i / 2])
case 1:
arr.append(arr[(i - 1) / 2] + arr[(i + 1) / 2])
case _:
fatalError()
}
return arr.last!
}
}
let first = FuscSeq().prefix(61)
print("First 61: \(Array(first))")
var max = -1
for (i, n) in FuscSeq().prefix(20_000_000).enumerated() {
let f = String(n).count
if f > max {
max = f
print("New max: \(i): \(n)")
}
}
|
http://rosettacode.org/wiki/Fusc_sequence
|
Fusc sequence
|
Definitions
The fusc integer sequence is defined as:
fusc(0) = 0
fusc(1) = 1
for n>1, the nth term is defined as:
if n is even; fusc(n) = fusc(n/2)
if n is odd; fusc(n) = fusc((n-1)/2) + fusc((n+1)/2)
Note that MathWorld's definition starts with unity, not zero. This task will be using the OEIS' version (above).
An observation
fusc(A) = fusc(B)
where A is some non-negative integer expressed in binary, and
where B is the binary value of A reversed.
Fusc numbers are also known as:
fusc function (named by Dijkstra, 1982)
Stern's Diatomic series (although it starts with unity, not zero)
Stern-Brocot sequence (although it starts with unity, not zero)
Task
show the first 61 fusc numbers (starting at zero) in a horizontal format.
show the fusc number (and its index) whose length is greater than any previous fusc number length.
(the length is the number of decimal digits when the fusc number is expressed in base ten.)
show all numbers with commas (if appropriate).
show all output here.
Related task
RosettaCode Stern-Brocot sequence
Also see
the MathWorld entry: Stern's Diatomic Series.
the OEIS entry: A2487.
|
#Tcl
|
Tcl
|
proc fusc n {
if {$n < 2} {
return $n
}
if {[info exists ::g_fusc($n)]} { return $::g_fusc($n) }
if {$n % 2} { ;# n is odd
set r [expr {[fusc [expr {($n-1)/2}]] + [fusc [expr {($n+1)/2}]]}]
} else { ;# n is even
set r [fusc [expr {$n/2}]]
}
if {$n < 999999} { set ::g_fusc($n) $r }
return $r
}
proc ,,, {str {sep ,} {grouplen 3}} {
set strlen [string length $str]
set padlen [expr {($grouplen - ($strlen % $grouplen)) % $grouplen}]
set r [regsub -all ... [string repeat " " $padlen]$str &$sep]
return [string range $r $padlen end-[string length $sep]]
}
proc tabline {a b c} {
puts "[format %2s $a] [format %10s $b] [format %8s $c]"
}
proc doit {{nmax 20000000}} {
for {set i 0} {$i < 61} {incr i} {
puts -nonewline " [fusc $i]"
}
puts ""
tabline L n fusc(n)
set maxL 0
for {set n 0} {$n < $nmax} {incr n} {
set f [fusc $n]
set L [string length $f]
if {$L > $maxL} {
set maxL $L
tabline $L [,,, $n] [,,, $f]
}
}
}
doit
|
http://rosettacode.org/wiki/Gamma_function
|
Gamma function
|
Task
Implement one algorithm (or more) to compute the Gamma (
Γ
{\displaystyle \Gamma }
) function (in the real field only).
If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function.
The Gamma function can be defined as:
Γ
(
x
)
=
∫
0
∞
t
x
−
1
e
−
t
d
t
{\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt}
This suggests a straightforward (but inefficient) way of computing the
Γ
{\displaystyle \Gamma }
through numerical integration.
Better suggested methods:
Lanczos approximation
Stirling's approximation
|
#Nim
|
Nim
|
import math, strformat
const A = [
1.00000000000000000000, 0.57721566490153286061, -0.65587807152025388108,
-0.04200263503409523553, 0.16653861138229148950, -0.04219773455554433675,
-0.00962197152787697356, 0.00721894324666309954, -0.00116516759185906511,
-0.00021524167411495097, 0.00012805028238811619, -0.00002013485478078824,
-0.00000125049348214267, 0.00000113302723198170, -0.00000020563384169776,
0.00000000611609510448, 0.00000000500200764447, -0.00000000118127457049,
0.00000000010434267117, 0.00000000000778226344, -0.00000000000369680562,
0.00000000000051003703, -0.00000000000002058326, -0.00000000000000534812,
0.00000000000000122678, -0.00000000000000011813, 0.00000000000000000119,
0.00000000000000000141, -0.00000000000000000023, 0.00000000000000000002 ]
proc gamma(x: float): float =
let y = x - 1
result = A[^1]
for n in countdown(A.high - 1, A.low):
result = result * y + A[n]
result = 1 / result
echo "Our gamma function Nim gamma function Difference"
echo "------------------ ------------------ ----------"
for i in 1..10:
let val1 = gamma(i.toFloat / 3)
let val2 = math.gamma(i.toFloat / 3)
echo &"{val1:18.16f} {val2:18.16f} {val1 - val2:11.4e}"
|
http://rosettacode.org/wiki/Gapful_numbers
|
Gapful numbers
|
Numbers (positive integers expressed in base ten) that are (evenly) divisible by the number formed by the
first and last digit are known as gapful numbers.
Evenly divisible means divisible with no remainder.
All one─ and two─digit numbers have this property and are trivially excluded. Only
numbers ≥ 100 will be considered for this Rosetta Code task.
Example
187 is a gapful number because it is evenly divisible by the
number 17 which is formed by the first and last decimal digits
of 187.
About 7.46% of positive integers are gapful.
Task
Generate and show all sets of numbers (below) on one line (horizontally) with a title, here on this page
Show the first 30 gapful numbers
Show the first 15 gapful numbers ≥ 1,000,000
Show the first 10 gapful numbers ≥ 1,000,000,000
Related tasks
Harshad or Niven series.
palindromic gapful numbers.
largest number divisible by its digits.
Also see
The OEIS entry: A108343 gapful numbers.
numbersaplenty gapful numbers
|
#Yabasic
|
Yabasic
|
sub is_gapful(n)
m = n
l = mod(n, 10)
while (m >= 10)
m = int(m / 10)
wend
return (m * 10) + l
end sub
sub muestra_gapful(n, gaps)
inc = 0
print "Primeros ", gaps, " numeros gapful >= ", n
while inc < gaps
if mod(n, is_gapful(n)) = 0 then
print " " , n ,
inc = inc + 1
end if
n = n + 1
wend
print chr$(10)
end sub
muestra_gapful(100, 30)
muestra_gapful(1000000, 15)
muestra_gapful(1000000000, 10)
muestra_gapful(7123,25)
end
|
http://rosettacode.org/wiki/Gapful_numbers
|
Gapful numbers
|
Numbers (positive integers expressed in base ten) that are (evenly) divisible by the number formed by the
first and last digit are known as gapful numbers.
Evenly divisible means divisible with no remainder.
All one─ and two─digit numbers have this property and are trivially excluded. Only
numbers ≥ 100 will be considered for this Rosetta Code task.
Example
187 is a gapful number because it is evenly divisible by the
number 17 which is formed by the first and last decimal digits
of 187.
About 7.46% of positive integers are gapful.
Task
Generate and show all sets of numbers (below) on one line (horizontally) with a title, here on this page
Show the first 30 gapful numbers
Show the first 15 gapful numbers ≥ 1,000,000
Show the first 10 gapful numbers ≥ 1,000,000,000
Related tasks
Harshad or Niven series.
palindromic gapful numbers.
largest number divisible by its digits.
Also see
The OEIS entry: A108343 gapful numbers.
numbersaplenty gapful numbers
|
#zkl
|
zkl
|
fcn gapfulW(start){ //--> iterator
[start..].tweak(
fcn(n){ if(n % (10*n.toString()[0] + n%10)) Void.Skip else n })
}
|
http://rosettacode.org/wiki/Gaussian_elimination
|
Gaussian elimination
|
Task
Solve Ax=b using Gaussian elimination then backwards substitution.
A being an n by n matrix.
Also, x and b are n by 1 vectors.
To improve accuracy, please use partial pivoting and scaling.
See also
the Wikipedia entry: Gaussian elimination
|
#Swift
|
Swift
|
func gaussEliminate(_ sys: [[Double]]) -> [Double]? {
var system = sys
let size = system.count
for i in 0..<size-1 where system[i][i] != 0 {
for j in i..<size-1 {
let factor = system[j + 1][i] / system[i][i]
for k in i..<size+1 {
system[j + 1][k] -= factor * system[i][k]
}
}
}
for i in (1..<size).reversed() where system[i][i] != 0 {
for j in (1..<i+1).reversed() {
let factor = system[j - 1][i] / system[i][i]
for k in (0..<size+1).reversed() {
system[j - 1][k] -= factor * system[i][k]
}
}
}
var solutions = [Double]()
for i in 0..<size {
guard system[i][i] != 0 else {
return nil
}
system[i][size] /= system[i][i]
system[i][i] = 1
solutions.append(system[i][size])
}
return solutions
}
let sys = [
[1.00, 0.00, 0.00, 0.00, 0.00, 0.00, -0.01],
[1.00, 0.63, 0.39, 0.25, 0.16, 0.10, 0.61],
[1.00, 1.26, 1.58, 1.98, 2.49, 3.13, 0.91],
[1.00, 1.88, 3.55, 6.70, 12.62, 23.80, 0.99],
[1.00, 2.51, 6.32, 15.88, 39.90, 100.28, 0.60],
[1.00, 3.14, 9.87, 31.01, 97.41, 306.02, 0.02]
]
guard let sols = gaussEliminate(sys) else {
fatalError("No solutions")
}
for (i, f) in sols.enumerated() {
print("X\(i + 1) = \(f)")
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.