task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
Generate lower case ASCII alphabet
Task Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence. For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code. During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code: set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z} Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Z80_Assembly
Z80 Assembly
org &8000 ld a,'a' ;data ld b,26 ;loop counter ld hl,Alphabet ;destination loop: ld (hl),a ;store "a" into ram inc a ;next letter inc hl ;next storage byte djnz loop ;repeat until 26 letters were stored.   call Monitor_MemDump ;hexdumps the specified address and bytecount to screen - created by Keith S. of Chibiakumas byte 32 ;number of bytes to display word Alphabet ;address to dump from   ret ;return to basic   Alphabet: ds 26,0 ;reserve 26 bytes of ram, init all to zero.
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#R
R
cat("Hello world!\n")
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#REBOL
REBOL
rebol [ Title: "Functional Composition" URL: http://rosettacode.org/wiki/Functional_Composition ]   ; "compose" means something else in REBOL, therefore I use a 'compose-functions name.   compose-functions: func [ {compose the given functions F and G} f [any-function!] g [any-function!] ] [ func [x] compose [(:f) (:g) x] ]
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#REXX
REXX
compose: procedure; parse arg f,g,x; interpret 'return' f"(" g'(' x "))"   exit /*control should never gets here, but this was added just in case.*/
http://rosettacode.org/wiki/Fractran
Fractran
FRACTRAN is a Turing-complete esoteric programming language invented by the mathematician John Horton Conway. A FRACTRAN program is an ordered list of positive fractions P = ( f 1 , f 2 , … , f m ) {\displaystyle P=(f_{1},f_{2},\ldots ,f_{m})} , together with an initial positive integer input n {\displaystyle n} . The program is run by updating the integer n {\displaystyle n} as follows: for the first fraction, f i {\displaystyle f_{i}} , in the list for which n f i {\displaystyle nf_{i}} is an integer, replace n {\displaystyle n} with n f i {\displaystyle nf_{i}}  ; repeat this rule until no fraction in the list produces an integer when multiplied by n {\displaystyle n} , then halt. Conway gave a program for primes in FRACTRAN: 17 / 91 {\displaystyle 17/91} , 78 / 85 {\displaystyle 78/85} , 19 / 51 {\displaystyle 19/51} , 23 / 38 {\displaystyle 23/38} , 29 / 33 {\displaystyle 29/33} , 77 / 29 {\displaystyle 77/29} , 95 / 23 {\displaystyle 95/23} , 77 / 19 {\displaystyle 77/19} , 1 / 17 {\displaystyle 1/17} , 11 / 13 {\displaystyle 11/13} , 13 / 11 {\displaystyle 13/11} , 15 / 14 {\displaystyle 15/14} , 15 / 2 {\displaystyle 15/2} , 55 / 1 {\displaystyle 55/1} Starting with n = 2 {\displaystyle n=2} , this FRACTRAN program will change n {\displaystyle n} to 15 = 2 × ( 15 / 2 ) {\displaystyle 15=2\times (15/2)} , then 825 = 15 × ( 55 / 1 ) {\displaystyle 825=15\times (55/1)} , generating the following sequence of integers: 2 {\displaystyle 2} , 15 {\displaystyle 15} , 825 {\displaystyle 825} , 725 {\displaystyle 725} , 1925 {\displaystyle 1925} , 2275 {\displaystyle 2275} , 425 {\displaystyle 425} , 390 {\displaystyle 390} , 330 {\displaystyle 330} , 290 {\displaystyle 290} , 770 {\displaystyle 770} , … {\displaystyle \ldots } After 2, this sequence contains the following powers of 2: 2 2 = 4 {\displaystyle 2^{2}=4} , 2 3 = 8 {\displaystyle 2^{3}=8} , 2 5 = 32 {\displaystyle 2^{5}=32} , 2 7 = 128 {\displaystyle 2^{7}=128} , 2 11 = 2048 {\displaystyle 2^{11}=2048} , 2 13 = 8192 {\displaystyle 2^{13}=8192} , 2 17 = 131072 {\displaystyle 2^{17}=131072} , 2 19 = 524288 {\displaystyle 2^{19}=524288} , … {\displaystyle \ldots } which are the prime powers of 2. Task Write a program that reads a list of fractions in a natural format from the keyboard or from a string, to parse it into a sequence of fractions (i.e. two integers), and runs the FRACTRAN starting from a provided integer, writing the result at each step. It is also required that the number of steps is limited (by a parameter easy to find). Extra credit Use this program to derive the first 20 or so prime numbers. See also For more on how to program FRACTRAN as a universal programming language, see: J. H. Conway (1987). Fractran: A Simple Universal Programming Language for Arithmetic. In: Open Problems in Communication and Computation, pages 4–26. Springer. J. H. Conway (2010). "FRACTRAN: A simple universal programming language for arithmetic". In Jeffrey C. Lagarias. The Ultimate Challenge: the 3x+1 problem. American Mathematical Society. pp. 249–264. ISBN 978-0-8218-4940-8. Zbl 1216.68068. Number Pathology: Fractran by Mark C. Chu-Carroll; October 27, 2006.
#Wren
Wren
import "/big" for BigInt, BigRat   var isPowerOfTwo = Fn.new { |bi| bi & (bi - BigInt.one) == BigInt.zero }   var fractran = Fn.new { |program, n, limit, primesOnly| var fractions = program.split(" ").where { |s| s != "" } .map { |s| BigRat.fromRationalString(s) } .toList var results = [] if (!primesOnly) results.add(n) var nn = BigInt.new(n) while (results.count < limit) { var fracs = fractions.where { |f| (f * nn).isInteger }.toList if (fracs.count == 0) break var frac = fracs[0] nn = nn * frac.num / frac.den if (!primesOnly) { results.add(nn.toSmall) } else if (primesOnly && isPowerOfTwo.call(nn)) { var prime = (nn.toNum.log / 2.log).floor results.add(prime) } } return results }   var program = "17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1" System.print("First twenty numbers:") System.print(fractran.call(program, 2, 20, false)) System.print("\nFirst ten primes:") System.print(fractran.call(program, 2, 10, true))
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#dc
dc
[*] sm
http://rosettacode.org/wiki/Gamma_function
Gamma function
Task Implement one algorithm (or more) to compute the Gamma ( Γ {\displaystyle \Gamma } ) function (in the real field only). If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function. The Gamma function can be defined as: Γ ( x ) = ∫ 0 ∞ t x − 1 e − t d t {\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt} This suggests a straightforward (but inefficient) way of computing the Γ {\displaystyle \Gamma } through numerical integration. Better suggested methods: Lanczos approximation Stirling's approximation
#Stata
Stata
mata _gamma_coef = 1.0, 5.772156649015328606065121e-1, -6.558780715202538810770195e-1, -4.200263503409523552900393e-2, 1.665386113822914895017008e-1, -4.219773455554433674820830e-2, -9.621971527876973562114922e-3, 7.218943246663099542395010e-3, -1.165167591859065112113971e-3, -2.152416741149509728157300e-4, 1.280502823881161861531986e-4, -2.013485478078823865568939e-5, -1.250493482142670657345359e-6, 1.133027231981695882374130e-6, -2.056338416977607103450154e-7, 6.116095104481415817862499e-9, 5.002007644469222930055665e-9, -1.181274570487020144588127e-9, 1.04342671169110051049154e-10, 7.782263439905071254049937e-12, -3.696805618642205708187816e-12, 5.100370287454475979015481e-13, -2.05832605356650678322243e-14, -5.348122539423017982370017e-15, 1.226778628238260790158894e-15, -1.181259301697458769513765e-16, 1.186692254751600332579777e-18, 1.412380655318031781555804e-18, -2.298745684435370206592479e-19, 1.714406321927337433383963e-20   function gamma_(x_) { external _gamma_coef x = x_ y = 1 while (x<0.5) y = y/x++ while (x>1.5) y = --x*y z = _gamma_coef[30] x-- for (i=29; i>=1; i--) z = z*x+_gamma_coef[i] return(y/z) }   function map(f,a) { n = rows(a) p = cols(a) b = J(n,p,.) for (i=1; i<=n; i++) { for (j=1; j<=p; j++) { b[i,j] = (*f)(a[i,j]) } } return(b) }   x=(1::1000)/100 u=map(&gamma(),x) v=map(&gamma_(),x) max(abs((v-u):/u)) end
http://rosettacode.org/wiki/Gamma_function
Gamma function
Task Implement one algorithm (or more) to compute the Gamma ( Γ {\displaystyle \Gamma } ) function (in the real field only). If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function. The Gamma function can be defined as: Γ ( x ) = ∫ 0 ∞ t x − 1 e − t d t {\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt} This suggests a straightforward (but inefficient) way of computing the Γ {\displaystyle \Gamma } through numerical integration. Better suggested methods: Lanczos approximation Stirling's approximation
#Tcl
Tcl
package require math package require math::calculus   # gamma(1) and gamma(1.5)   set f 1.0 set f2 [expr {sqrt(acos(-1.))/2.}]   for {set x 1.0} {$x <= 10.0} {set x [expr {$x + 0.5}]} {   # method 1 - numerical integration, Romberg's method, special # case for an improper integral   set g1 [math::calculus::romberg \ [list apply {{x t} {expr {$t ** ($x-1) * exp(-$t)}}} $x] \ 0 1 -relerror 1e-8] set g2 [math::calculus::romberg_infinity \ [list apply {{x t} {expr {$t ** ($x-1) * exp(-$t)}}} $x] \ 1 Inf -relerror 1e-8] set gamma [expr {[lindex $g1 0] + [lindex $g2 0]}]   # method 2 - library function   set libgamma [expr {exp([math::ln_Gamma $x])}]   # method 3 - special forms for integer and half-integer arguments   if {$x == entier($x)} { puts [format {%4.1f %13.6f %13.6f %13.6f} $x $gamma $libgamma $f] set f [expr $f * $x] } else { puts [format {%4.1f %13.6f %13.6f %13.6f} $x $gamma $libgamma $f2] set f2 [expr $f2 * $x] } }
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
Generate lower case ASCII alphabet
Task Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence. For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code. During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code: set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z} Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#zkl
zkl
["a".."z"] // lasy list ["a".."z"].walk() //-->L("a","b","c","d","e",... "a".toAsc().pump(26,List,"toChar") // another way to create the list "a".toAsc().pump(26,String,"toChar") // create a string //-->"abcdefghijklmnopqrstuvwxyz" Utils.Helpers.lowerLetters // string const
http://rosettacode.org/wiki/Generate_lower_case_ASCII_alphabet
Generate lower case ASCII alphabet
Task Generate an array, list, lazy sequence, or even an indexable string of all the lower case ASCII characters, from a to z. If the standard library contains such a sequence, show how to access it, but don't fail to show how to generate a similar sequence. For this basic task use a reliable style of coding, a style fit for a very large program, and use strong typing if available. It's bug prone to enumerate all the lowercase characters manually in the code. During code review it's not immediate obvious to spot the bug in a Tcl line like this contained in a page of code: set alpha {a b c d e f g h i j k m n o p q r s t u v w x y z} Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Zig
Zig
const std = @import("std");   pub fn main() !void { const cnt_lower = 26; var lower: [cnt_lower]u8 = undefined; comptime var i = 0; inline while (i < cnt_lower) : (i += 1) lower[i] = i + 'a';   const stdout_wr = std.io.getStdOut().writer(); for (lower) |l| try stdout_wr.print("{c} ", .{l}); try stdout_wr.writeByte('\n'); }
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Ra
Ra
  class HelloWorld **Prints "Hello world!"**   on start   print "Hello world!"  
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Ring
Ring
  # Project : Function composition   sumprod = func1(:func2,2,3) see sumprod + nl   func func1(func2,x,y) temp = call func2(x,y) res = temp + x + y return res   func func2(x,y) res = x * y return res  
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Ruby
Ruby
def compose(f,g) lambda {|x| f[g[x]]} end s = compose(Math.method(:sin), Math.method(:cos)) p s[0.5] # => 0.769196354841008   # verify p Math.sin(Math.cos(0.5)) # => 0.769196354841008
http://rosettacode.org/wiki/Fractran
Fractran
FRACTRAN is a Turing-complete esoteric programming language invented by the mathematician John Horton Conway. A FRACTRAN program is an ordered list of positive fractions P = ( f 1 , f 2 , … , f m ) {\displaystyle P=(f_{1},f_{2},\ldots ,f_{m})} , together with an initial positive integer input n {\displaystyle n} . The program is run by updating the integer n {\displaystyle n} as follows: for the first fraction, f i {\displaystyle f_{i}} , in the list for which n f i {\displaystyle nf_{i}} is an integer, replace n {\displaystyle n} with n f i {\displaystyle nf_{i}}  ; repeat this rule until no fraction in the list produces an integer when multiplied by n {\displaystyle n} , then halt. Conway gave a program for primes in FRACTRAN: 17 / 91 {\displaystyle 17/91} , 78 / 85 {\displaystyle 78/85} , 19 / 51 {\displaystyle 19/51} , 23 / 38 {\displaystyle 23/38} , 29 / 33 {\displaystyle 29/33} , 77 / 29 {\displaystyle 77/29} , 95 / 23 {\displaystyle 95/23} , 77 / 19 {\displaystyle 77/19} , 1 / 17 {\displaystyle 1/17} , 11 / 13 {\displaystyle 11/13} , 13 / 11 {\displaystyle 13/11} , 15 / 14 {\displaystyle 15/14} , 15 / 2 {\displaystyle 15/2} , 55 / 1 {\displaystyle 55/1} Starting with n = 2 {\displaystyle n=2} , this FRACTRAN program will change n {\displaystyle n} to 15 = 2 × ( 15 / 2 ) {\displaystyle 15=2\times (15/2)} , then 825 = 15 × ( 55 / 1 ) {\displaystyle 825=15\times (55/1)} , generating the following sequence of integers: 2 {\displaystyle 2} , 15 {\displaystyle 15} , 825 {\displaystyle 825} , 725 {\displaystyle 725} , 1925 {\displaystyle 1925} , 2275 {\displaystyle 2275} , 425 {\displaystyle 425} , 390 {\displaystyle 390} , 330 {\displaystyle 330} , 290 {\displaystyle 290} , 770 {\displaystyle 770} , … {\displaystyle \ldots } After 2, this sequence contains the following powers of 2: 2 2 = 4 {\displaystyle 2^{2}=4} , 2 3 = 8 {\displaystyle 2^{3}=8} , 2 5 = 32 {\displaystyle 2^{5}=32} , 2 7 = 128 {\displaystyle 2^{7}=128} , 2 11 = 2048 {\displaystyle 2^{11}=2048} , 2 13 = 8192 {\displaystyle 2^{13}=8192} , 2 17 = 131072 {\displaystyle 2^{17}=131072} , 2 19 = 524288 {\displaystyle 2^{19}=524288} , … {\displaystyle \ldots } which are the prime powers of 2. Task Write a program that reads a list of fractions in a natural format from the keyboard or from a string, to parse it into a sequence of fractions (i.e. two integers), and runs the FRACTRAN starting from a provided integer, writing the result at each step. It is also required that the number of steps is limited (by a parameter easy to find). Extra credit Use this program to derive the first 20 or so prime numbers. See also For more on how to program FRACTRAN as a universal programming language, see: J. H. Conway (1987). Fractran: A Simple Universal Programming Language for Arithmetic. In: Open Problems in Communication and Computation, pages 4–26. Springer. J. H. Conway (2010). "FRACTRAN: A simple universal programming language for arithmetic". In Jeffrey C. Lagarias. The Ultimate Challenge: the 3x+1 problem. American Mathematical Society. pp. 249–264. ISBN 978-0-8218-4940-8. Zbl 1216.68068. Number Pathology: Fractran by Mark C. Chu-Carroll; October 27, 2006.
#zkl
zkl
var fracs="17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17," "11/13, 13/11, 15/14, 15/2, 55/1"; fcn fractranW(n,fracsAsOneBigString){ //-->Walker (iterator) fracs:=(fracsAsOneBigString-" ").split(",").apply( fcn(frac){ frac.split("/").apply("toInt") }); //( (n,d), (n,d), ...) Walker(fcn(rn,fracs){ n:=rn.value; foreach a,b in (fracs){ if(n*a%b == 0){ rn.set(n*a/b); return(n); } } }.fp(Ref(n),fracs)) }
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Delphi
Delphi
function multiply(a, b: integer): integer; begin result := a * b; end;
http://rosettacode.org/wiki/Gamma_function
Gamma function
Task Implement one algorithm (or more) to compute the Gamma ( Γ {\displaystyle \Gamma } ) function (in the real field only). If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function. The Gamma function can be defined as: Γ ( x ) = ∫ 0 ∞ t x − 1 e − t d t {\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt} This suggests a straightforward (but inefficient) way of computing the Γ {\displaystyle \Gamma } through numerical integration. Better suggested methods: Lanczos approximation Stirling's approximation
#TI-83_BASIC
TI-83 BASIC
.5! -> .8862269255
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Racket
Racket
  (printf "Hello world!\n")  
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Rust
Rust
fn compose<'a,F,G,T,U,V>(f: F, g: G) -> Box<Fn(T) -> V + 'a> where F: Fn(U) -> V + 'a, G: Fn(T) -> U + 'a, { Box::new(move |x| f(g(x))) }
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Scala
Scala
def compose[A](f: A => A, g: A => A) = { x: A => f(g(x)) }   def add1(x: Int) = x+1 val add2 = compose(add1, add1)
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Diego
Diego
begin_funct({number}, multiply)_param({number}, a, b); with_funct[]_calc([a]*[b]); end_funct[];   me_msg()_funct(multiply)_param(1,2);
http://rosettacode.org/wiki/Gamma_function
Gamma function
Task Implement one algorithm (or more) to compute the Gamma ( Γ {\displaystyle \Gamma } ) function (in the real field only). If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function. The Gamma function can be defined as: Γ ( x ) = ∫ 0 ∞ t x − 1 e − t d t {\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt} This suggests a straightforward (but inefficient) way of computing the Γ {\displaystyle \Gamma } through numerical integration. Better suggested methods: Lanczos approximation Stirling's approximation
#Visual_FoxPro
Visual FoxPro
  LOCAL i As Integer, x As Double, o As lanczos CLOSE DATABASES ALL CLEAR CREATE CURSOR results (ZVal B(1), GamVal B(15)) INDEX ON zval TAG ZVal COLLATE "Machine" SET ORDER TO 0 o = CREATEOBJECT("lanczos") FOR i = 1 TO 20 x = i/10 INSERT INTO results VALUES (x, o.Gamma(x)) ENDFOR UPDATE results SET GamVal = ROUND(GamVal, 0) WHERE ZVal = INT(ZVal) *!* This just creates the output text - it is not part of the algorithm DO cursor2txt.prg WITH "results", .T.   DEFINE CLASS lanczos As Session #DEFINE FPF 5.5 #DEFINE HALF 0.5 #DEFINE PY PI() DIMENSION LanCoeff[7] nSize = 0   PROCEDURE Init DODEFAULT() WITH THIS .LanCoeff[1] = 1.000000000190015 .LanCoeff[2] = 76.18009172947146 .LanCoeff[3] = -86.50532032941677 .LanCoeff[4] = 24.01409824083091 .LanCoeff[5] = -1.231739572450155 .LanCoeff[6] = 0.0012086509738662 .LanCoeff[7] = -0.000005395239385 .nSize = ALEN(.LanCoeff) ENDWITH ENDPROC   FUNCTION Gamma(z) RETURN EXP(THIS.LogGamma(z)) ENDFUNC   FUNCTION LogGamma(z) LOCAL a As Double, b As Double, i As Integer, j As Integer, lg As Double IF z < 0.5 lg = LOG(PY/SIN(PY*z)) - THIS.LogGamma(1 - z) ELSE WITH THIS z = z - 1 b = z + FPF a = .LanCoeff[1] FOR i = 2 TO .nSize j = i - 1 a = a + .LanCoeff[i]/(z + j) ENDFOR lg = (LOG(SQRT(2*PY)) + LOG(a) - b) + LOG(b)*(z + HALF) ENDWITH ENDIF RETURN lg ENDFUNC   ENDDEFINE  
http://rosettacode.org/wiki/Gamma_function
Gamma function
Task Implement one algorithm (or more) to compute the Gamma ( Γ {\displaystyle \Gamma } ) function (in the real field only). If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function. The Gamma function can be defined as: Γ ( x ) = ∫ 0 ∞ t x − 1 e − t d t {\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt} This suggests a straightforward (but inefficient) way of computing the Γ {\displaystyle \Gamma } through numerical integration. Better suggested methods: Lanczos approximation Stirling's approximation
#Vlang
Vlang
import math fn main() { println(" x math.Gamma Lanczos7") for x in [-.5, .1, .5, 1, 1.5, 2, 3, 10, 140, 170] { println("${x:5.1f} ${math.gamma(x):24.16} ${lanczos7(x):24.16}") } }   fn lanczos7(z f64) f64 { t := z + 6.5 x := .99999999999980993 + 676.5203681218851/z - 1259.1392167224028/(z+1) + 771.32342877765313/(z+2) - 176.61502916214059/(z+3) + 12.507343278686905/(z+4) - .13857109526572012/(z+5) + 9.9843695780195716e-6/(z+6) + 1.5056327351493116e-7/(z+7) return math.sqrt2 * math.sqrt_pi * math.pow(t, z-.5) * math.exp(-t) * x }
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Raku
Raku
say 'Hello world!';
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Scheme
Scheme
(define (compose f g) (lambda (x) (f (g x))))   ;; or:   (define ((compose f g) x) (f (g x)))   ;; or to compose an arbitrary list of 1 argument functions:   (define-syntax compose (lambda (x) (syntax-case x () ((_) #'(lambda (y) y)) ((_ f) #'f) ((_ f g h ...) #'(lambda (y) (f ((compose g h ...) y)))))))    
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Sidef
Sidef
func compose(f, g) { func(x) { f(g(x)) } }   var fg = compose(func(x){ sin(x) }, func(x){ cos(x) }) say fg(0.5) # => 0.76919635484100842185251475805107
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Draco
Draco
proc multiply(word a, b) word: a * b corp
http://rosettacode.org/wiki/Gamma_function
Gamma function
Task Implement one algorithm (or more) to compute the Gamma ( Γ {\displaystyle \Gamma } ) function (in the real field only). If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function. The Gamma function can be defined as: Γ ( x ) = ∫ 0 ∞ t x − 1 e − t d t {\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt} This suggests a straightforward (but inefficient) way of computing the Γ {\displaystyle \Gamma } through numerical integration. Better suggested methods: Lanczos approximation Stirling's approximation
#Wren
Wren
import "/fmt" for Fmt import "/math" for Math   var stirling = Fn.new { |x| (2 * Num.pi / x).sqrt * (x / Math.e).pow(x) }   System.print(" x\tStirling\t\tLanczos\n") for (i in 1..20) { var d = i / 10 System.write("%(Fmt.f(4, d, 2))\t") System.write("%(Fmt.f(16, stirling.call(d), 14))\t") System.print("%(Fmt.f(16, Math.gamma(d), 14))") }
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Raven
Raven
'Hello world!' print
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Slate
Slate
[| :x | x + 1] ** [| :x | x squared] applyTo: {3}
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Smalltalk
Smalltalk
| composer fg | composer := [ :f :g | [ :x | f value: (g value: x) ] ]. fg := composer value: [ :x | x + 1 ] value: [ :x | x * x ].   (fg value:3) displayNl.
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Dragon
Dragon
func multiply(a, b) { return a*b }
http://rosettacode.org/wiki/Gamma_function
Gamma function
Task Implement one algorithm (or more) to compute the Gamma ( Γ {\displaystyle \Gamma } ) function (in the real field only). If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function. The Gamma function can be defined as: Γ ( x ) = ∫ 0 ∞ t x − 1 e − t d t {\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt} This suggests a straightforward (but inefficient) way of computing the Γ {\displaystyle \Gamma } through numerical integration. Better suggested methods: Lanczos approximation Stirling's approximation
#Yabasic
Yabasic
dim c(12)   sub gamma(z) local accm, k, k1_factrl   accm = c(1) if accm=0 then accm = sqrt(2*PI) c(1) = accm k1_factrl = 1 for k=2 to 12 c(k) = exp(13-k)*(13-k)^(k-1.5)/k1_factrl k1_factrl = k1_factrl * -(k-1) next end if for k=2 to 12 accm = accm + c(k)/(z+k-1) next accm = accm * exp(-(z+12))*(z+12)^(z+0.5) return accm/z end sub   sub si(x) print x using "%18.13f" end sub     for i = 0.1 to 2.1 step .1 print i, " = "; : si(gamma(i)) next
http://rosettacode.org/wiki/Gamma_function
Gamma function
Task Implement one algorithm (or more) to compute the Gamma ( Γ {\displaystyle \Gamma } ) function (in the real field only). If your language has the function as built-in or you know a library which has it, compare your implementation's results with the results of the built-in/library function. The Gamma function can be defined as: Γ ( x ) = ∫ 0 ∞ t x − 1 e − t d t {\displaystyle \Gamma (x)=\displaystyle \int _{0}^{\infty }t^{x-1}e^{-t}dt} This suggests a straightforward (but inefficient) way of computing the Γ {\displaystyle \Gamma } through numerical integration. Better suggested methods: Lanczos approximation Stirling's approximation
#zkl
zkl
fcn taylorGamma(x){ var table = T( 0x1p+0, 0x1.2788cfc6fb618f4cp-1, -0x1.4fcf4026afa2dcecp-1, -0x1.5815e8fa27047c8cp-5, 0x1.5512320b43fbe5dep-3, -0x1.59af103c340927bep-5, -0x1.3b4af28483e214e4p-7, 0x1.d919c527f60b195ap-8, -0x1.317112ce3a2a7bd2p-10, -0x1.c364fe6f1563ce9cp-13, 0x1.0c8a78cd9f9d1a78p-13, -0x1.51ce8af47eabdfdcp-16, -0x1.4fad41fc34fbb2p-20, 0x1.302509dbc0de2c82p-20, -0x1.b9986666c225d1d4p-23, 0x1.a44b7ba22d628acap-28, 0x1.57bc3fc384333fb2p-28, -0x1.44b4cedca388f7c6p-30, 0x1.cae7675c18606c6p-34, 0x1.11d065bfaf06745ap-37, -0x1.0423bac8ca3faaa4p-38, 0x1.1f20151323cd0392p-41, -0x1.72cb88ea5ae6e778p-46, -0x1.815f72a05f16f348p-48, 0x1.6198491a83bccbep-50, -0x1.10613dde57a88bd6p-53, 0x1.5e3fee81de0e9c84p-60, 0x1.a0dc770fb8a499b6p-60, -0x1.0f635344a29e9f8ep-62, 0x1.43d79a4b90ce8044p-66).reverse();   y  := x.toFloat() - 1.0; sm := table[1,*].reduce('wrap(sm,an){ sm * y + an },table[0]);   return(1.0 / sm); }
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#RATFOR
RATFOR
    program hello   write(*,101)"Hello World" 101 format(A)   end    
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Standard_ML
Standard ML
fun compose (f, g) x = f (g x)
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#SuperCollider
SuperCollider
  f = { |x| x + 1 }; g = { |x| x * 2 }; h = g <> f; h.(8); // returns 18  
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#DWScript
DWScript
function Multiply(a, b : Integer) : Integer; begin Result := a * b; end;
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#RASEL
RASEL
A"!dlroW ,olleH">:?@,Hj
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Swift
Swift
func compose<A,B,C>(f: (B) -> C, g: (A) -> B) -> (A) -> C { return { f(g($0)) } }   let sin_asin = compose(sin, asin) println(sin_asin(0.5))
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Tcl
Tcl
package require Tcl 8.5 namespace path {::tcl::mathfunc}   proc compose {f g} { list apply [list {f g x} {{*}$f [{*}$g $x]}] $f $g] }   set sin_asin [compose sin asin] {*}$sin_asin 0.5 ;# ==> 0.5 {*}[compose abs int] -3.14 ;# ==> 3
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Dyalect
Dyalect
func multiply(a, b) { a * b }
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#REALbasic
REALbasic
Function Run(args() as String) As Integer Print "Hello world!" Quit End Function
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#TypeScript
TypeScript
  function compose<T, U, V> (fn1: (input: T) => U, fn2: (input: U) => V){ return function(value: T) { return fn2(fn1(value)) } }   function size (s: string): number { return s.length; }   function isEven(x: number): boolean { return x % 2 === 0; }   const evenSize = compose(size, isEven);   console.log(evenSize("ABCD")) // true console.log(evenSize("ABC")) // false  
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#uBasic.2F4tH
uBasic/4tH
Print FUNC(_Compose (_f, _g, 3)) End   _Compose Param (3) : Return (FUNC(a@(FUNC(b@(c@))))) _f Param (1) : Return (a@ + 1) _g Param (1) : Return (a@ * 2)
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#D.C3.A9j.C3.A0_Vu
Déjà Vu
multiply a b: * a b
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#11l
11l
F isProbablePrime(n, k = 10) I n < 2 | n % 2 == 0 R n == 2   V d = n - 1 V s = 0 L d % 2 == 0 d I/= 2 s++   assert(2 ^ s * d == n - 1)   Int nn I n < 7FFF'FFFF nn = Int(n) E nn = 7FFF'FFFF   L(_) 0 .< k V a = random:(2 .< nn) V x = pow(a, d, n) I x == 1 | x == n - 1 L.continue L(_) 0 .< s - 1 x = pow(x, 2, n) I x == 1 R 0B I x == n - 1 L.break L.was_no_break R 0B   R 1B   F is_prime(a) I a == 2 R 1B I a < 2 | a % 2 == 0 R 0B L(i) (3 .. Int(sqrt(a))).step(2) I a % i == 0 R 0B R 1B   V primorial = BigInt(1)   V nn = 50 V lim = 75 V s = Set[Int]() L(n) 1.. I is_prime(n) primorial *= n V m = 3 L I isProbablePrime(primorial + m, 25) s.add(m) L.break m += 2 I --lim == 0 L.break   print(‘First ’nn‘ fortunate numbers:’) L(m) sorted(Array(s))[0 .< nn] V i = L.index print(‘#3’.format(m), end' I (i + 1) % 10 == 0 {"\n"} E ‘ ’)
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#REBOL
REBOL
print "Hello world!"
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#UNIX_Shell
UNIX Shell
compose() { eval "$1() { $3 | $2; }" }   downvowel() { tr AEIOU aeiou; } upcase() { tr a-z A-Z; } compose c downvowel upcase echo 'Cozy lummox gives smart squid who asks for job pen.' | c # => CoZY LuMMoX GiVeS SMaRT SQuiD WHo aSKS FoR JoB PeN.
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Unlambda
Unlambda
``s`ksk
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#E
E
def multiply(a, b) { return a * b }
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Arturo
Arturo
firstPrimes: select 1..100 => prime? primorial: function [n][ product first.n: n firstPrimes ]   fortunates: [] i: 1   while [8 > size fortunates][ m: 3 pmi: primorial i while -> not? prime? m + pmi -> m: m+2 fortunates: unique fortunates ++ m i: i + 1 ]   print sort fortunates
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Factor
Factor
USING: grouping io kernel math math.factorials math.primes math.ranges prettyprint sequences sets sorting ;   "First 50 distinct fortunate numbers:" print 75 [1,b] [ primorial dup next-prime 2dup - abs 1 = [ next-prime ] when - abs ] map members natural-sort 50 head 10 group simple-table.
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#FreeBASIC
FreeBASIC
  #include "isprime.bas" #include "sets.bas" #include "bubblesort.bas"   function prime(n as uinteger) as uinteger if n = 1 then return 2 dim as integer c=1, p=3 while c<n if isprime(p) then c+=1 p += 2 wend return p end function   function primorial( n as uinteger ) as ulongint dim as ulongint ret = 1 for i as uinteger = 1 to n ret *= prime(i) next i return ret end function   function fortunate(n as uinteger) as uinteger dim as uinteger m = 3 dim as ulongint pp = primorial(n) while not isprime(m+pp) m+=2 wend return m end function   redim as integer forts(-1) dim as integer n = 0, m while ubound(forts) < 6 n += 1 m = fortunate(n) if not is_in(m, forts()) then add_to_set(m, forts()) end if wend   bubblesort(forts()) for n=0 to 6 print forts(n) next n
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#RED
RED
print "Hello world!"
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Ursala
Ursala
compose("f","g") "x" = "f" "g" "x"
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#VBScript
VBScript
  option explicit class closure   private composition   sub compose( f1, f2 ) composition = f2 & "(" & f1 & "(p1))" end sub   public default function apply( p1 ) apply = eval( composition ) end function   public property get formula formula = composition end property   end class  
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#EasyLang
EasyLang
func multiply a b . r . r = a * b . call multiply 7 5 res print res
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Go
Go
package main   import ( "fmt" "math/big" "rcu" "sort" )   func main() { primes := rcu.Primes(379) primorial := big.NewInt(1) var fortunates []int bPrime := new(big.Int) for _, prime := range primes { bPrime.SetUint64(uint64(prime)) primorial.Mul(primorial, bPrime) for j := 3; ; j += 2 { jj := big.NewInt(int64(j)) bPrime.Add(primorial, jj) if bPrime.ProbablyPrime(5) { fortunates = append(fortunates, j) break } } } m := make(map[int]bool) for _, f := range fortunates { m[f] = true } fortunates = fortunates[:0] for k := range m { fortunates = append(fortunates, k) } sort.Ints(fortunates) fmt.Println("After sorting, the first 50 distinct fortunate numbers are:") for i, f := range fortunates[0:50] { fmt.Printf("%3d ", f) if (i+1)%10 == 0 { fmt.Println() } } fmt.Println() }
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Haskell
Haskell
import Data.Numbers.Primes (primes) import Math.NumberTheory.Primes.Testing (isPrime) import Data.List (nub)   primorials :: [Integer] primorials = 1 : scanl1 (*) primes   nextPrime :: Integer -> Integer nextPrime n | even n = head $ dropWhile (not . isPrime) [n+1, n+3..] | even n = nextPrime (n+1)   fortunateNumbers :: [Integer] fortunateNumbers = (\p -> nextPrime (p + 2) - p) <$> tail primorials
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Relation
Relation
  ' Hello world!  
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#WDTE
WDTE
let compose f g => (@ c x => g x -> f);
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Wortel
Wortel
! @[f g] x ; f(g(x))
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#EchoLisp
EchoLisp
  (define (multiply a b) (* a b)) → multiply ;; (1) (multiply 1/3 666) → 222   ;; a function is a lambda definition : multiply → (λ (_a _b) (#* _a _b))   ;; The following is the same as (1) : (define multiply (lambda(a b) (* a b))) multiply → (🔒 λ (_a _b) (#* _a _b)) ;; a closure     ;; a function may be compiled (lib 'compile) (compile 'multiply "-float-verbose") → 💡 [0] compiling _🔶_multiply ((#* _a _b)) ;; object code (javascript) : var ref,top = _blocks[_topblock]; /* */return ( /* */(_stack[top] *_stack[1 + top]) /* */);   multiply → (λ (_a _b) (#🔶_multiply)) ;; compiled function  
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#jq
jq
def primes: 2, range(3; infinite; 2) | select(is_prime);   # generate an infinite stream of primorials def primorials: foreach primes as $p (1; .*$p; .);   # Emit a sorted array of the first $limit distinct fortunate numbers # generated in order of the primoridials def fortunates($limit): label $out | foreach primorials as $p ([]; first( range(3; infinite; 2) | select($p + . | is_prime)) as $q | . + [$q] | unique; if length >= $limit then ., break $out else empty end);   fortunates(10)
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Julia
Julia
using Primes   primorials(N) = accumulate(*, primes(N), init = big"1")   primorial = primorials(800)   fortunate(n) = nextprime(primorial[n] + 2) - primorial[n]   println("After sorting, the first 50 distinct fortunate numbers are:") foreach(p -> print(rpad(last(p), 5), first(p) % 10 == 0 ? "\n" : ""), (map(fortunate, 1:100) |> unique |> sort!)[begin:50] |> enumerate)  
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
ClearAll[primorials] primorials[n_] := Times @@ Prime[Range[n]] vals = Table[ primor = primorials[i]; s = NextPrime[primor]; t = NextPrime[s]; Min[DeleteCases[{s - primor, t - primor}, 1]] , {i, 100} ]; TakeSmallest[DeleteDuplicates[vals], 50]
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Nim
Nim
import algorithm, sequtils, strutils import bignum   const N = 50 # Number of fortunate numbers. Lim = 75 # Number of primorials to compute.     iterator primorials(lim: Positive): Int = var prime = newInt(2) var primorial = newInt(1) for _ in 1..lim: primorial *= prime prime = prime.nextPrime() yield primorial     var list: seq[int] for p in primorials(Lim): var m = 3 while true: if probablyPrime(p + m, 25) != 0: list.add m break inc m, 2   list.sort() list = list.deduplicate(true) if list.len < N: quit "Not enough values. Wanted $1, got $2.".format(N, list.len), QuitFailure list.setLen(N) echo "First $# fortunate numbers:".format(N) for i, m in list: stdout.write ($m).align(3), if (i + 1) mod 10 == 0: '\n' else: ' '
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Perl
Perl
use strict; use warnings; use List::Util <first uniq>; use ntheory qw<pn_primorial is_prime>;   my $upto = 50; my @candidates; for my $p ( map { pn_primorial($_) } 1..2*$upto ) { push @candidates, first { is_prime($_ + $p) } 2..100*$upto; }   my @fortunate = sort { $a <=> $b } uniq grep { is_prime $_ } @candidates;   print "First $upto distinct fortunate numbers:\n" . (sprintf "@{['%6d' x $upto]}", @fortunate) =~ s/(.{60})/$1\n/gr;
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#ReScript
ReScript
Js.log("Hello world!")
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#Wren
Wren
var compose = Fn.new { |f, g| Fn.new { |x| f.call(g.call(x)) } }   var double = Fn.new { |x| 2 * x }   var addOne = Fn.new { |x| x + 1 }   System.print(compose.call(double, addOne).call(3))
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#zkl
zkl
Utils.Helpers.fcomp('+(1),'*(2))(5) //-->11
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Efene
Efene
multiply = fn (A, B) { A * B }   @public run = fn () { io.format("~p~n", [multiply(2, 5)]) }
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Phix
Phix
with javascript_semantics include mpfr.e mpz primorial = mpz_init(1), pj = mpz_init() sequence fortunates = {} for p=1 to 75 do mpz_mul_si(primorial,primorial,get_prime(p)) integer j = 3 mpz_add_si(pj,primorial,3) while not mpz_prime(pj) do mpz_add_si(pj,pj,2) j = j + 2 end while fortunates &= j end for fortunates = unique(deep_copy(fortunates))[1..50] fortunates = join_by(apply(true,sprintf,{{"%3d"},fortunates}),1,10) printf(1,"The first 50 distinct fortunate numbers are:\n%s\n",{fortunates})
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Python
Python
from sympy.ntheory.generate import primorial from sympy.ntheory import isprime   def fortunate_number(n): '''Return the fortunate number for positive integer n.''' # Since primorial(n) is even for all positive integers n, # it suffices to search for the fortunate numbers among odd integers. i = 3 primorial_ = primorial(n) while True: if isprime(primorial_ + i): return i i += 2   fortunate_numbers = set() for i in range(1, 76): fortunate_numbers.add(fortunate_number(i))   # Extract the first 50 numbers. first50 = sorted(list(fortunate_numbers))[:50]   print('The first 50 fortunate numbers:') print(('{:<3} ' * 10).format(*(first50[:10]))) print(('{:<3} ' * 10).format(*(first50[10:20]))) print(('{:<3} ' * 10).format(*(first50[20:30]))) print(('{:<3} ' * 10).format(*(first50[30:40]))) print(('{:<3} ' * 10).format(*(first50[40:])))
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Retro
Retro
  'Hello_world! s:put  
http://rosettacode.org/wiki/Function_composition
Function composition
Task Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument. The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x. Example compose(f, g) (x) = f(g(x)) Reference: Function composition Hint: In some languages, implementing compose correctly requires creating a closure.
#ZX_Spectrum_Basic
ZX Spectrum Basic
10 DEF FN f(x)=SQR x 20 DEF FN g(x)=ABS x 30 DEF FN c(x)=FN f(FN g(x)) 40 PRINT FN c(-4)
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Eiffel
Eiffel
  multiply(a, b: INTEGER): INTEGER do Result := a*b end  
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Raku
Raku
my @primorials = [\*] grep *.is-prime, ^∞;   say display :title("First 50 distinct fortunate numbers:\n"), (squish sort @primorials[^75].hyper.map: -> $primorial { (2..∞).first: (* + $primorial).is-prime })[^50];   sub display ($list, :$cols = 10, :$fmt = '%6d', :$title = "{+$list} matching:\n") { cache $list; $title ~ $list.batch($cols)».fmt($fmt).join: "\n" }
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#REXX
REXX
/*REXX program finds/displays fortunate numbers N, where N is specified (default=8).*/ numeric digits 12 parse arg n cols . /*obtain optional argument from the CL.*/ if n=='' | n=="," then n= 8 /*Not specified? Then use the default.*/ if cols=='' | cols=="," then cols= 10 /* " " " " " " */ call genP n**2 /*build array of semaphores for primes.*/ pp.= 1 do i=1 for n+1; im= i - 1; pp.i= pp.im * @.i /*calculate primorial numbers*/ end /*i*/ i=i-1; call genp pp.i + 1000 title= ' fortunate numbers' w= 10 /*maximum width of a number in any col.*/ say ' index │'center(title, 1 + cols*(w+1) ) say '───────┼'center("" , 1 + cols*(w+1), '─') found= 0; idx= 1 /*number of fortunate (so far) & index.*/ !!.= 0; maxFN= 0 /*(stemmed) array of fortunate numbers*/ do j=1 until found==n; pt= pp.j /*search for fortunate numbers in range*/ pt= pp.j /*get the precalculated primorial prime*/ do m=3 by 2; t= pt + m /*find M that satisfies requirement. */ if !.t=='' then leave /*Is !.t prime? Then we found a good M*/ end /*m*/ if !!.m then iterate /*Fortunate # already found? Then skip*/  !!.m= 1; found= found + 1 /*assign fortunate number; bump count.*/ maxFN= max(maxFN, t) /*obtain max fortunate # for displaying*/ end /*j*/ $=; finds= 0 /*$: line of output; FINDS: count.*/ do k=1 for maxFN; if \!!.k then iterate /*show the fortunate numbers we found. */ finds= finds + 1 /*bump the count of numbers (for $). */ c= commas(k) /*maybe add commas to the number. */ $= $ right(c, max(w, length(c) ) ) /*add a nice prime ──► list, allow big#*/ if found//cols\==0 then iterate /*have we populated a line of output? */ say center(idx, 7)'│' substr($, 2); $= /*display what we have so far (cols). */ idx= idx + cols /*bump the index count for the output*/ end /*k*/   if $\=='' then say center(idx, 7)"│" substr($, 2) /*possible display residual output.*/ say '───────┴'center("" , 1 + cols*(w+1), '─') /*display the foot separator. */ say say 'Found ' commas(found) title exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ? /*──────────────────────────────────────────────────────────────────────────────────────*/ genP: @.1=2; @.2=3; @.3=5; @.4=7; @.5=11 /*define some low primes. */  !.=0;  !.2=;  !.3=;  !.5=;  !.7=;  !.11= /* " " " " semaphores. */ #= 5; sq.#= @.#**2 /*squares of low primes.*/ do j=@.#+2 by 2 to arg(1) /*find odd primes from here on. */ parse var j '' -1 _; if _==5 then iterate /*J ÷ by 5 ? */ if j//3==0 then iterate; if j//7==0 then iterate /*" " " 3?; J ÷ by 7 ? */ do k=5 while sq.k<=j /* [↓] divide by the known odd primes.*/ if j // @.k == 0 then iterate j /*Is J ÷ X? Then not prime. ___ */ end /*k*/ /* [↑] only process numbers ≤ √ J */ #= #+1; @.#= j; sq.#= j*j;  !.j= /*bump # of Ps; assign next P; P²; P# */ end /*j*/; return
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#REXX
REXX
/*REXX program to show a line of text. */ say 'Hello world!'
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Ela
Ela
multiply x y = x * y
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Ruby
Ruby
require "gmp"   primorials = Enumerator.new do |y| cur = prod = 1 loop {y << prod *= (cur = GMP::Z(cur).nextprime)} end   limit = 50 fortunates = [] while fortunates.size < limit*2 do prim = primorials.next fortunates << (GMP::Z(prim+2).nextprime - prim) fortunates = fortunates.uniq.sort end   p fortunates[0, limit]  
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Sidef
Sidef
func fortunate(n) { var P = n.pn_primorial 2..Inf -> first {|m| P+m -> is_prob_prime } }   var limit = 50 var uniq = Set() var all = []   for (var n = 1; uniq.len < 2*limit; ++n) { var m = fortunate(n) all << m uniq << m }   say "Fortunate numbers for n = 1..#{limit}:" say all.first(limit)   say "\n#{limit} Fortunate numbers, sorted with duplicates removed:" say uniq.sort.first(limit)
http://rosettacode.org/wiki/Fortunate_numbers
Fortunate numbers
Definition A Fortunate number is the smallest integer m > 1 such that for a given positive integer n, primorial(n) + m is a prime number, where primorial(n) is the product of the first n prime numbers. For example the first fortunate number is 3 because primorial(1) is 2 and 2 + 3 = 5 which is prime whereas 2 + 2 = 4 is composite. Task After sorting and removal of any duplicates, compute and show on this page the first 8 Fortunate numbers or, if your language supports big integers, the first 50 Fortunate numbers. Related task Primorial numbers See also oeis:A005235 Fortunate numbers oeis:A046066 Fortunate numbers, sorted with duplicates removed
#Wren
Wren
import "/math" for Int import "/big" for BigInt import "/sort" for Sort import "/seq" for Lst import "/fmt" for Fmt   var primes = Int.primeSieve(379) var primorial = BigInt.one var fortunates = [] for (prime in primes) { primorial = primorial * prime var j = 3 while (true) { if ((primorial + j).isProbablePrime(5)) { fortunates.add(j) break } j = j + 2 } } fortunates = Lst.distinct(fortunates) Sort.quick(fortunates) System.print("After sorting, the first 50 distinct fortunate numbers are:") for (chunk in Lst.chunks(fortunates[0..49], 10)) Fmt.print("$3d", chunk)
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Ring
Ring
See "Hello world!"
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Elena
Elena
real multiply(real a, real b) = a * b;
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Risc-V
Risc-V
.data hello: .string "Hello World!\n\0" .text main: la a0, hello li a7, 4 ecall li a7, 10 ecall  
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Elixir
Elixir
defmodule RosettaCode do def multiply(x,y) do x * y end   def task, do: IO.puts multiply(3,5) end   RosettaCode.task
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#RTL.2F2
RTL/2
TITLE Goodbye World;   LET NL=10;   EXT PROC(REF ARRAY BYTE) TWRT;   ENT PROC INT RRJOB();   TWRT("Hello world!#NL#"); RETURN(1);   ENDPROC;
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Elm
Elm
  --There are multiple ways to create a function in Elm   --This is a named function multiply x y = x*y   --This is an anonymous function \x y -> x*y  
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Ruby
Ruby
puts "Hello world!"
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Emacs_Lisp
Emacs Lisp
(defun multiply (x y) (* x y))
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Run_BASIC
Run BASIC
print "Hello world!"
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Erlang
Erlang
% Implemented by Arjun Sunel -module(func_definition). -export([main/0]).   main() -> K=multiply(3,4), io :format("~p~n",[K]).   multiply(A,B) -> case {A,B} of {A, B} -> A * B end.
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Rust
Rust
  fn main() { print!("Hello world!"); }  
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#ERRE
ERRE
FUNCTION f(x,y,z,…) f=formula END FUNCTION
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#Salmon
Salmon
"Hello world!"!
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#Euphoria
Euphoria
function multiply( atom a, atom b ) return a * b end function
http://rosettacode.org/wiki/Hello_world/Text
Hello world/Text
Hello world/Text is part of Short Circuit's Console Program Basics selection. Task Display the string Hello world! on a text console. Related tasks   Hello world/Graphical   Hello world/Line Printer   Hello world/Newbie   Hello world/Newline omission   Hello world/Standard error   Hello world/Web server
#SAS
SAS
/* Using a data step. Will print the string in the log window */ data _null_; put "Hello world!"; run;
http://rosettacode.org/wiki/Function_definition
Function definition
A function is a body of code that returns a value. The value returned may depend on arguments provided to the function. Task Write a definition of a function called "multiply" that takes two arguments and returns their product. (Argument types should be chosen so as not to distract from showing how functions are created and values returned). Related task   Function prototype
#F.23
F#
let multiply x y = x * y // integer let fmultiply (x : float) (y : float) = x * y