task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Deepcopy | Deepcopy | Task
Demonstrate how to copy data structures containing complex heterogeneous and cyclic semantics.
This is often referred to as deep copying, and is normally required where structures are mutable and to ensure that independent copies can be manipulated without side-effects.
If this facility is not built into the language, it is permissible to use functions from a common library, or a coded procedure.
The task should show:
Relevant semantics of structures, such as their homogeneous or heterogeneous properties, or containment of (self- or mutual-reference) cycles.
Any limitations of the method.
That the structure and its copy are different.
Suitable links to external documentation for common libraries.
| #Wren | Wren | import "/trait" for Cloneable, CloneableSeq
import "/seq" for Lst
class MyMap is Cloneable {
construct new (m) {
if (m.type != Map) Fiber.abort("Argument must be a Map.")
_m = m
}
m { _m }
toString { _m.toString }
clone() {
// Map keys are always immutable built-in types so we only need to worry about
// their values which can be anything.
var m2 = {}
for (me in _m) {
var v = me.value
m2[me.key] = (v is List) ? Lst.clone(v) :
(v is Cloneable || v is CloneableSeq) ? v.clone() : v
}
return MyMap.new(m2)
}
}
var my = MyMap.new({"a": 0, "b": 1, "c": [2, 3], "d": MyMap.new({"e": 4})})
var my2 = my.clone()
System.print("Before any changes:")
System.print(" my = %(my)")
System.print(" my2 = %(my2)")
// now change my2
my2.m["a"] = 5
my2.m["b"] = 6
my2.m["c"][0] = 7
my2.m["c"][1] = 8
my2.m["d"].m["e"] = 9
my2.m["d"].m["f"] = 10
System.print("\nAfter changes to my2:")
System.print(" my = %(my)")
System.print(" my2 = %(my2)") |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #BBC_BASIC | BBC BASIC | *FLOAT 64
hand% = 617
REM Initialise card library:
SYS "LoadLibrary", "CARDS.DLL" TO cards%
IF cards% = 0 ERROR 100, "No CARDS library"
SYS "GetProcAddress", cards%, "cdtInit" TO cdtInit%
SYS "GetProcAddress", cards%, "cdtDraw" TO cdtDraw%
SYS cdtInit%, ^dx%, ^dy%
VDU 23,22,8*dx%;5*dy%;8,16,16,128
REM Initialise deck:
DIM card&(51)
FOR I% = 0 TO 51 : card&(I%) = I% : NEXT
REM Shuffle deck:
dummy% = FNrng(hand%)
FOR I% = 51 TO 0 STEP -1
C% = FNrng(-1) MOD (I% + 1)
SWAP card&(C%), card&(I%)
NEXT
REM Display deck:
FOR I% = 0 TO 51
C% = card&(51 - I%)
X% = (I% MOD 8) * dx%
Y% = (I% DIV 8) * dy% * 2 / 3
SYS cdtDraw%, @memhdc%, X%, Y%, C%, 0, 0
NEXT
SYS "InvalidateRect", @hwnd%, 0, 0
*GSAVE freecell
END
DEF FNrng(seed)
PRIVATE state, M%
IF seed >= 0 THEN
state = seed
ELSE
state = (state * 214013 + 2531011)
FOR M% = 52 TO 31 STEP -1
IF state >= 2^M% state -= 2^M%
NEXT
ENDIF
= state >> 16 |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #Befunge | Befunge | vutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDC
>4$0" :rebmun emaG">:#,_$&>55+,>"O?+"**2+*"C4'' "**v
>8%!492*+*48*\-,1-:11p0g\0p11g#^_@A23456789TJQKCDHS*
^+3:g11,g2+"/"%4,g2+g14/4:-\"v"g0:%g11+*-/2-10-1*<>+
>8#8*#4*#::#%*#*/#*:#*0#:\#*`#:8#::#*:#8*#8:#2*#+^#< |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #C.23 | C# | using System;
using System.Collections.Generic;
using System.Text;
namespace DeBruijn {
class Program {
const string digits = "0123456789";
static string DeBruijn(int k, int n) {
var alphabet = digits.Substring(0, k);
var a = new byte[k * n];
var seq = new List<byte>();
void db(int t, int p) {
if (t > n) {
if (n % p == 0) {
seq.AddRange(new ArraySegment<byte>(a, 1, p));
}
} else {
a[t] = a[t - p];
db(t + 1, p);
var j = a[t - p] + 1;
while (j < k) {
a[t] = (byte)j;
db(t + 1, t);
j++;
}
}
}
db(1, 1);
var buf = new StringBuilder();
foreach (var i in seq) {
buf.Append(alphabet[i]);
}
var b = buf.ToString();
return b + b.Substring(0, n - 1);
}
static bool AllDigits(string s) {
foreach (var c in s) {
if (c < '0' || '9' < c) {
return false;
}
}
return true;
}
static void Validate(string db) {
var le = db.Length;
var found = new int[10_000];
var errs = new List<string>();
// Check all strings of 4 consecutive digits within 'db'
// to see if all 10,000 combinations occur without duplication.
for (int i = 0; i < le - 3; i++) {
var s = db.Substring(i, 4);
if (AllDigits(s)) {
int.TryParse(s, out int n);
found[n]++;
}
}
for (int i = 0; i < 10_000; i++) {
if (found[i] == 0) {
errs.Add(string.Format(" PIN number {0,4} missing", i));
} else if (found[i] > 1) {
errs.Add(string.Format(" PIN number {0,4} occurs {1} times", i, found[i]));
}
}
var lerr = errs.Count;
if (lerr == 0) {
Console.WriteLine(" No errors found");
} else {
var pl = lerr == 1 ? "" : "s";
Console.WriteLine(" {0} error{1} found:", lerr, pl);
errs.ForEach(Console.WriteLine);
}
}
static string Reverse(string s) {
char[] arr = s.ToCharArray();
Array.Reverse(arr);
return new string(arr);
}
static void Main() {
var db = DeBruijn(10, 4);
var le = db.Length;
Console.WriteLine("The length of the de Bruijn sequence is {0}", le);
Console.WriteLine("\nThe first 130 digits of the de Bruijn sequence are: {0}", db.Substring(0, 130));
Console.WriteLine("\nThe last 130 digits of the de Bruijn sequence are: {0}", db.Substring(le - 130, 130));
Console.WriteLine("\nValidating the deBruijn sequence:");
Validate(db);
Console.WriteLine("\nValidating the reversed deBruijn sequence:");
Validate(Reverse(db));
var bytes = db.ToCharArray();
bytes[4443] = '.';
db = new string(bytes);
Console.WriteLine("\nValidating the overlaid deBruijn sequence:");
Validate(db);
}
}
} |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Factor | Factor | PREDICATE: my-int < integer [ 0 > ] [ 11 < ] bi and ; |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Forth | Forth | DECIMAL
: CLIP ( n lo hi -- n') ROT MIN MAX ;
: BETWEEN ( n lo hi -- flag) 1+ WITHIN ;
\ programmer chooses CLIPPED or SAFE integer assignment
: CLIP! ( n addr -- ) SWAP 1 10 CLIP SWAP ! ;
: SAFE! ( n addr -- )
OVER 1 10 BETWEEN 0= ABORT" out of range!"
! ; |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Delphi | Delphi |
program Death_Star;
{$APPTYPE CONSOLE}
uses
Winapi.Windows,
System.SysUtils,
system.Math,
Vcl.Graphics,
Vcl.Imaging.pngimage;
type
TVector = array of double;
var
light: TVector = [20, -40, -10];
function ClampInt(value, amin, amax: Integer): Integer;
begin
Result := Max(amin, Min(amax, value))
end;
procedure Normalize(var v: TVector);
begin
var len := Sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
v[0] := v[0] / len;
v[1] := v[1] / len;
v[2] := v[2] / len;
end;
function Dot(x, y: TVector): Double;
begin
var d := x[0] * y[0] + x[1] * y[1] + x[2] * y[2];
if d < 0 then
Result := -d
else
Result := 0;
end;
type
TSphere = record
cx, cy, cz, r: Double;
end;
const
pos: TSphere = (
cx: 0;
cy: 0;
cz: 0;
r: 120
);
const
neg: TSphere = (
cx: -90;
cy: -90;
cz: -30;
r: 80
);
function HitSphere(sph: TSphere; x, y: double; var z1, z2: Double): Boolean;
begin
x := x - sph.cx;
y := y - sph.cy;
var zsq := sph.r * sph.r - (x * x + y * y);
if (zsq < 0) then
Exit(False);
zsq := Sqrt(zsq);
z1 := sph.cz - zsq;
z2 := sph.cz + zsq;
Result := True;
end;
function DeathStar(pos, neg: TSphere; k, amb: Double; light: TVector): TBitmap;
var
w, h, yMax, xMax, s: double;
zp1, zp2, zn1, zn2, b: Double;
x, y: Integer;
hit: Boolean;
vec: TVector;
intensity: Byte;
ox, oy: Integer;
begin
w := pos.r * 4;
h := pos.r * 3;
ox := -trunc(pos.cx - w / 2);
oy := -trunc(pos.cy - h / 2);
vec := [0, 0, 0];
Result := TBitmap.Create;
Result.SetSize(trunc(w), trunc(h));
yMax := pos.cy + pos.r;
for y := Trunc(pos.cy - pos.r) to Trunc(yMax) do
begin
xMax := pos.cx + pos.r;
for x := trunc(pos.cy - pos.r) to trunc(xMax) do
begin
hit := HitSphere(pos, x, y, zp1, zp2);
if not hit then
continue;
hit := HitSphere(neg, x, y, zn1, zn2);
if hit then
begin
if zn1 > zp1 then
hit := false
else if zn2 > zp2 then
continue;
end;
if hit then
begin
vec[0] := neg.cx - x;
vec[1] := neg.cy - y;
vec[2] := neg.cz - zn2;
end
else
begin
vec[0] := x - pos.cx;
vec[1] := y - pos.cy;
vec[2] := zp1 - pos.cz;
end;
Normalize(vec);
s := max(0, dot(light, vec));
b := Power(s, k) + amb;
intensity := ClampInt(round(255 * b / (1 + amb)), 0, 254);
Result.Canvas.Pixels[x + ox, y + oy] := rgb(intensity, intensity, intensity);
end;
end;
end;
var
bmp: TBitmap;
begin
Normalize(light);
bmp := DeathStar(pos, neg, 1.2, 0.3, light);
with TPngImage.Create do
begin
Assign(bmp);
TransparentColor := clwhite;
SaveToFile('out.png');
bmp.Free;
Free;
end;
end. |
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #PicoLisp | PicoLisp | (load "@lib/math.l")
(de deconv (G F)
(let A (pop 'F)
(make
(for (N . H) (head (- (length F)) G)
(for (I . M) (made)
(dec 'H
(*/ M (get F (- N I)) 1.0) ) )
(link (*/ H 1.0 A)) ) ) ) ) |
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #Python | Python | def ToReducedRowEchelonForm( M ):
if not M: return
lead = 0
rowCount = len(M)
columnCount = len(M[0])
for r in range(rowCount):
if lead >= columnCount:
return
i = r
while M[i][lead] == 0:
i += 1
if i == rowCount:
i = r
lead += 1
if columnCount == lead:
return
M[i],M[r] = M[r],M[i]
lv = M[r][lead]
M[r] = [ mrx / lv for mrx in M[r]]
for i in range(rowCount):
if i != r:
lv = M[i][lead]
M[i] = [ iv - lv*rv for rv,iv in zip(M[r],M[i])]
lead += 1
return M
def pmtx(mtx):
print ('\n'.join(''.join(' %4s' % col for col in row) for row in mtx))
def convolve(f, h):
g = [0] * (len(f) + len(h) - 1)
for hindex, hval in enumerate(h):
for findex, fval in enumerate(f):
g[hindex + findex] += fval * hval
return g
def deconvolve(g, f):
lenh = len(g) - len(f) + 1
mtx = [[0 for x in range(lenh+1)] for y in g]
for hindex in range(lenh):
for findex, fval in enumerate(f):
gindex = hindex + findex
mtx[gindex][hindex] = fval
for gindex, gval in enumerate(g):
mtx[gindex][lenh] = gval
ToReducedRowEchelonForm( mtx )
return [mtx[i][lenh] for i in range(lenh)] # h
if __name__ == '__main__':
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
assert convolve(f,h) == g
assert deconvolve(g, f) == h |
http://rosettacode.org/wiki/Deepcopy | Deepcopy | Task
Demonstrate how to copy data structures containing complex heterogeneous and cyclic semantics.
This is often referred to as deep copying, and is normally required where structures are mutable and to ensure that independent copies can be manipulated without side-effects.
If this facility is not built into the language, it is permissible to use functions from a common library, or a coded procedure.
The task should show:
Relevant semantics of structures, such as their homogeneous or heterogeneous properties, or containment of (self- or mutual-reference) cycles.
Any limitations of the method.
That the structure and its copy are different.
Suitable links to external documentation for common libraries.
| #Z80_Assembly | Z80 Assembly | LD HL,(&C000)
LD (&D000),HL |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #Bracmat | Bracmat | ( ( createArray
= array rank ranks suit suits
. A 2 3 4 5 6 7 8 9 T J Q K:?ranks
& :?array
& whl
' ( !ranks:%?rank ?ranks
& ♣ ♦ ♥ ♠:?suits
& whl
' ( !suits:%?suit ?suits
& !array str$(!rank !suit):?array
)
)
& !array
)
& ( deal
= A B D L Z pick card dealt deck
, i last rand row state
. !arg:(?deck:? [?L.?state)
& 8:?row
& :?dealt
& ( pick
= sep
. ( -1+!row:>0:?row
& " ":?sep
| \n:?sep&8:?row
)
& !dealt !arg !sep:?dealt
)
& 2^31:?B
& 2^16:?D
& "
'Hard code' the numbers B and D into the rand function using
macro expansion. (Gives a marginally faster execution speed.)
"
&
' (
. mod$(!state*214013+2531011.$B):?state
& div$(!state.$D)
)
: (=?rand)
& !L+1:?L
& whl
' ( mod$(rand$.!L+-1:?L):?i
& !deck:?A [!i %?card ?Z
& ( !Z:?Z %@?last&!A !last !Z
| !A
)
: ?deck
& pick$!card
)
& pick$\n
& str$!dealt
)
& createArray$:?deck
& put$("Game #1\n","dealt.txt",NEW)
& put$(deal$(!deck.1),"dealt.txt",APP)
& put$("
Game #617
","dealt.txt",APP)
& put$(deal$(!deck.617),"dealt.txt",APP)
&
) |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #C | C | #include <stdio.h>
#include <stdlib.h>
#include <locale.h>
wchar_t s_suits[] = L"♣♦♥♠", s_nums[] = L"A23456789TJQK";
#define RMAX32 ((1U << 31) - 1)
static int seed = 1;
int rnd(void) { return (seed = (seed * 214013 + 2531011) & RMAX32) >> 16; }
void srnd(int x) { seed = x; }
void show(const int *c)
{
int i;
for (i = 0; i < 52; c++) {
printf(" \033[%dm%lc\033[m%lc", 32 - (1 + *c) % 4 / 2,
s_suits[*c % 4], s_nums[*c / 4]);
if (!(++i % 8) || i == 52) putchar('\n');
}
}
void deal(int s, int *t)
{
int i, j;
srnd(s);
for (i = 0; i < 52; i++) t[i] = 51 - i;
for (i = 0; i < 51; i++) {
j = 51 - rnd() % (52 - i);
s = t[i], t[i] = t[j], t[j] = s;
}
}
int main(int c, char **v)
{
int s, card[52];
if (c < 2 || (s = atoi(v[1])) <= 0) s = 11982;
setlocale(LC_ALL, "");
deal(s, card);
printf("Hand %d\n", s);
show(card);
return 0;
} |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #C.2B.2B | C++ | #include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <string>
#include <sstream>
#include <vector>
typedef unsigned char byte;
std::string deBruijn(int k, int n) {
std::vector<byte> a(k * n, 0);
std::vector<byte> seq;
std::function<void(int, int)> db;
db = [&](int t, int p) {
if (t > n) {
if (n % p == 0) {
for (int i = 1; i < p + 1; i++) {
seq.push_back(a[i]);
}
}
} else {
a[t] = a[t - p];
db(t + 1, p);
auto j = a[t - p] + 1;
while (j < k) {
a[t] = j & 0xFF;
db(t + 1, t);
j++;
}
}
};
db(1, 1);
std::string buf;
for (auto i : seq) {
buf.push_back('0' + i);
}
return buf + buf.substr(0, n - 1);
}
bool allDigits(std::string s) {
for (auto c : s) {
if (c < '0' || '9' < c) {
return false;
}
}
return true;
}
void validate(std::string db) {
auto le = db.size();
std::vector<int> found(10000, 0);
std::vector<std::string> errs;
// Check all strings of 4 consecutive digits within 'db'
// to see if all 10,000 combinations occur without duplication.
for (size_t i = 0; i < le - 3; i++) {
auto s = db.substr(i, 4);
if (allDigits(s)) {
auto n = stoi(s);
found[n]++;
}
}
for (int i = 0; i < 10000; i++) {
if (found[i] == 0) {
std::stringstream ss;
ss << " PIN number " << i << " missing";
errs.push_back(ss.str());
} else if (found[i] > 1) {
std::stringstream ss;
ss << " PIN number " << i << " occurs " << found[i] << " times";
errs.push_back(ss.str());
}
}
if (errs.empty()) {
std::cout << " No errors found\n";
} else {
auto pl = (errs.size() == 1) ? "" : "s";
std::cout << " " << errs.size() << " error" << pl << " found:\n";
for (auto e : errs) {
std::cout << e << '\n';
}
}
}
int main() {
std::ostream_iterator<byte> oi(std::cout, "");
auto db = deBruijn(10, 4);
std::cout << "The length of the de Bruijn sequence is " << db.size() << "\n\n";
std::cout << "The first 130 digits of the de Bruijn sequence are: ";
std::copy_n(db.cbegin(), 130, oi);
std::cout << "\n\nThe last 130 digits of the de Bruijn sequence are: ";
std::copy(db.cbegin() + (db.size() - 130), db.cend(), oi);
std::cout << "\n";
std::cout << "\nValidating the de Bruijn sequence:\n";
validate(db);
std::cout << "\nValidating the reversed de Bruijn sequence:\n";
auto rdb = db;
std::reverse(rdb.begin(), rdb.end());
validate(rdb);
auto by = db;
by[4443] = '.';
std::cout << "\nValidating the overlaid de Bruijn sequence:\n";
validate(by);
return 0;
} |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Fortran | Fortran | module Bounded
implicit none
type BoundedInteger
integer, private :: v ! we cannot allow direct access to this, or we
integer, private :: from, to ! can't check the bounds!
logical, private :: critical
end type BoundedInteger
interface assignment(=)
module procedure bounded_assign_bb, bounded_assign_bi !, &
! bounded_assign_ib
end interface
interface operator(+)
module procedure bounded_add_bbb !, bounded_add_bbi, &
! bounded_add_bib, bounded_add_ibb, &
! bounded_add_iib, bounded_add_ibi, &
! bounded_add_bii
end interface
private :: bounded_assign_bb, bounded_assign_bi, &
bounded_add_bbb
contains
subroutine set_bound(bi, lower, upper, critical, value)
type(BoundedInteger), intent(out) :: bi
integer, intent(in) :: lower, upper
integer, intent(in), optional :: value
logical, intent(in), optional :: critical
bi%from = min(lower, upper)
bi%to = max(lower, upper)
if ( present(critical) ) then
bi%critical = critical
else
bi%critical = .false.
end if
if ( present(value) ) then
bi = value
end if
end subroutine set_bound
subroutine bounded_assign_bb(a, b)
type(BoundedInteger), intent(out) :: a
type(BoundedInteger), intent(in) :: b
call bounded_assign_bi(a, b%v)
end subroutine bounded_assign_bb
subroutine bounded_assign_bi(a, b)
type(BoundedInteger), intent(out) :: a
integer, intent(in) :: b
if ( (a%from <= b) .and. (a%to >= b) ) then
a%v = b
else
write(0,*) "BoundedInteger: out of bound assignment"
if ( a%critical ) then
stop
else
if ( b < a%from ) then
a%v = a%from
else
a%v = a%to
end if
write(0,"(A,' (',I0, ')')") "BoundedInteger: set to nearest bound", a%v
end if
end if
end subroutine bounded_assign_bi
function bounded_add_bbb(a, b) result(c)
type(BoundedInteger) :: c
type(BoundedInteger), intent(in) :: a, b
integer :: t
c%from = max(a%from, b%from)
c%to = min(a%to, b%to)
t = a%v + b%v
if ( c%from <= t .and. c%to >= t ) then
c%v = t
else
write(0,*) "BoundedInteger: out of bound sum"
if ( a%critical .or. b%critical ) then
stop
else
if ( t < c%from ) then
c%v = c%from
else
c%v = c%to
end if
write(0,"(A,' (',I0,')')") "BoundedInteger: set to nearest bound", c%v
end if
end if
end function bounded_add_bbb
end module Bounded |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #DWScript | DWScript | const cShades = '.:!*oe&#%@';
type TVector = array [0..2] of Float;
var light : TVector = [-50.0, 30, 50];
procedure Normalize(var v : TVector);
begin
var len := Sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
v[0] /= len; v[1] /= len; v[2] /= len;
end;
function Dot(x, y : TVector) : Float;
begin
var d :=x[0]*y[0] + x[1]*y[1] + x[2]*y[2];
if d<0 then
Result:=-d
else Result:=0;
end;
type
TSphere = record
cx, cy, cz, r : Float;
end;
const big : TSphere = (cx: 20; cy: 20; cz: 0; r: 20);
const small : TSphere = (cx: 7; cy: 7; cz: -10; r: 15);
function HitSphere(sph : TSphere; x, y : Float; var z1, z2 : Float) : Boolean;
begin
x -= sph.cx;
y -= sph.cy;
var zsq = sph.r * sph.r - (x * x + y * y);
if (zsq < 0) then Exit False;
zsq := Sqrt(zsq);
z1 := sph.cz - zsq;
z2 := sph.cz + zsq;
Result:=True;
end;
procedure DrawSphere(k, ambient : Float);
var
i, j, intensity : Integer;
b : Float;
x, y, zb1, zb2, zs1, zs2 : Float;
vec : TVector;
begin
for i:=Trunc(big.cy-big.r) to Trunc(big.cy+big.r)+1 do begin
y := i + 0.5;
for j := Trunc(big.cx-2*big.r) to Trunc(big.cx+2*big.r) do begin
x := (j-big.cx)/2 + 0.5 + big.cx;
if not HitSphere(big, x, y, zb1, zb2) then begin
Print(' ');
continue;
end;
if not HitSphere(small, x, y, zs1, zs2) then begin
vec[0] := x - big.cx;
vec[1] := y - big.cy;
vec[2] := zb1 - big.cz;
end else begin
if zs1 < zb1 then begin
if zs2 > zb2 then begin
Print(' ');
continue;
end;
if zs2 > zb1 then begin
vec[0] := small.cx - x;
vec[1] := small.cy - y;
vec[2] := small.cz - zs2;
end else begin
vec[0] := x - big.cx;
vec[1] := y - big.cy;
vec[2] := zb1 - big.cz;
end;
end else begin
vec[0] := x - big.cx;
vec[1] := y - big.cy;
vec[2] := zb1 - big.cz;
end;
end;
Normalize(vec);
b := Power(Dot(light, vec), k) + ambient;
intensity := Round((1 - b) * Length(cShades));
Print(cShades[ClampInt(intensity+1, 1, Length(cShades))]);
end;
PrintLn('');
end;
end;
Normalize(light);
DrawSphere(2, 0.3); |
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #R | R | conv <- function(a, b) {
p <- length(a)
q <- length(b)
n <- p + q - 1
r <- nextn(n, f=2)
y <- fft(fft(c(a, rep(0, r-p))) * fft(c(b, rep(0, r-q))), inverse=TRUE)/r
y[1:n]
}
deconv <- function(a, b) {
p <- length(a)
q <- length(b)
n <- p - q + 1
r <- nextn(max(p, q), f=2)
y <- fft(fft(c(a, rep(0, r-p))) / fft(c(b, rep(0, r-q))), inverse=TRUE)/r
return(y[1:n])
}
|
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #Racket | Racket |
#lang racket
(require math/matrix)
(define T matrix-transpose)
(define (convolution-matrix f m n)
(define l (matrix-num-rows f))
(for*/matrix m n ([i (in-range 0 m)] [j (in-range 0 n)])
(cond [(or (< i j) (>= i (+ j l))) 0]
[(matrix-ref f (- i j) 0)])))
(define (least-square X y)
(matrix-solve (matrix* (T X) X) (matrix* (T X) y)))
(define (deconvolve g f)
(define lg (matrix-num-rows g))
(define lf (matrix-num-rows f))
(define lh (+ (- lg lf) 1))
(least-square (convolution-matrix f lg lh) g))
|
http://rosettacode.org/wiki/Deconvolution/2D%2B | Deconvolution/2D+ | This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in
d
{\displaystyle {\mathit {d}}}
dimensions of two functions
H
,
F
:
Z
d
→
R
{\displaystyle H,F:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to real numbers as the function
G
:
Z
d
→
R
{\displaystyle G:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
also taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to reals and satisfying
G
(
n
0
,
…
,
n
d
−
1
)
=
∑
m
0
=
−
∞
∞
…
∑
m
d
−
1
=
−
∞
∞
F
(
m
0
,
…
,
m
d
−
1
)
H
(
n
0
−
m
0
,
…
,
n
d
−
1
−
m
d
−
1
)
{\displaystyle G(n_{0},\dots ,n_{d-1})=\sum _{m_{0}=-\infty }^{\infty }\dots \sum _{m_{d-1}=-\infty }^{\infty }F(m_{0},\dots ,m_{d-1})H(n_{0}-m_{0},\dots ,n_{d-1}-m_{d-1})}
for all
d
{\displaystyle {\mathit {d}}}
-tuples of integers
(
n
0
,
…
,
n
d
−
1
)
∈
Z
d
{\displaystyle (n_{0},\dots ,n_{d-1})\in \mathbb {Z} ^{d}}
. Assume
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
(and therefore
G
{\displaystyle {\mathit {G}}}
) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists
f
{\displaystyle {\mathit {f}}}
,
h
{\displaystyle {\mathit {h}}}
, and
g
{\displaystyle {\mathit {g}}}
.
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by solving for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
. (See Deconvolution/1D for details.)
The function should work for
g
{\displaystyle {\mathit {g}}}
of arbitrary length in each dimension (i.e., not hard coded or constant) and
f
{\displaystyle {\mathit {f}}}
of any length up to that of
g
{\displaystyle {\mathit {g}}}
in the corresponding dimension.
The deconv function will need to be parameterized by the dimension
d
{\displaystyle {\mathit {d}}}
unless the dimension can be inferred from the data structures representing
g
{\displaystyle {\mathit {g}}}
and
f
{\displaystyle {\mathit {f}}}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
f
{\displaystyle {\mathit {f}}}
is
h
{\displaystyle {\mathit {h}}}
and that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
h
{\displaystyle {\mathit {h}}}
is
f
{\displaystyle {\mathit {f}}}
. Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2]
f: [ 6, -9, -7, -5]
g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
f: [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
g: [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f: [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g: [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
| #C | C | #include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>
double PI;
typedef double complex cplx;
void _fft(cplx buf[], cplx out[], int n, int step)
{
if (step < n) {
_fft(out, buf, n, step * 2);
_fft(out + step, buf + step, n, step * 2);
for (int i = 0; i < n; i += 2 * step) {
cplx t = cexp(-I * PI * i / n) * out[i + step];
buf[i / 2] = out[i] + t;
buf[(i + n)/2] = out[i] - t;
}
}
}
void fft(cplx buf[], int n)
{
cplx out[n];
for (int i = 0; i < n; i++) out[i] = buf[i];
_fft(buf, out, n, 1);
}
/* pad array length to power of two */
cplx *pad_two(double g[], int len, int *ns)
{
int n = 1;
if (*ns) n = *ns;
else while (n < len) n *= 2;
cplx *buf = calloc(sizeof(cplx), n);
for (int i = 0; i < len; i++) buf[i] = g[i];
*ns = n;
return buf;
}
void deconv(double g[], int lg, double f[], int lf, double out[], int row_len) {
int ns = 0;
cplx *g2 = pad_two(g, lg, &ns);
cplx *f2 = pad_two(f, lf, &ns);
fft(g2, ns);
fft(f2, ns);
cplx h[ns];
for (int i = 0; i < ns; i++) h[i] = g2[i] / f2[i];
fft(h, ns);
for (int i = 0; i < ns; i++) {
if (cabs(creal(h[i])) < 1e-10)
h[i] = 0;
}
for (int i = 0; i > lf - lg - row_len; i--)
out[-i] = h[(i + ns) % ns]/32;
free(g2);
free(f2);
}
double* unpack2(void *m, int rows, int len, int to_len)
{
double *buf = calloc(sizeof(double), rows * to_len);
for (int i = 0; i < rows; i++)
for (int j = 0; j < len; j++)
buf[i * to_len + j] = ((double(*)[len])m)[i][j];
return buf;
}
void pack2(double * buf, int rows, int from_len, int to_len, void *out)
{
for (int i = 0; i < rows; i++)
for (int j = 0; j < to_len; j++)
((double(*)[to_len])out)[i][j] = buf[i * from_len + j] / 4;
}
void deconv2(void *g, int row_g, int col_g, void *f, int row_f, int col_f, void *out) {
double *g2 = unpack2(g, row_g, col_g, col_g);
double *f2 = unpack2(f, row_f, col_f, col_g);
double ff[(row_g - row_f + 1) * col_g];
deconv(g2, row_g * col_g, f2, row_f * col_g, ff, col_g);
pack2(ff, row_g - row_f + 1, col_g, col_g - col_f + 1, out);
free(g2);
free(f2);
}
double* unpack3(void *m, int x, int y, int z, int to_y, int to_z)
{
double *buf = calloc(sizeof(double), x * to_y * to_z);
for (int i = 0; i < x; i++)
for (int j = 0; j < y; j++) {
for (int k = 0; k < z; k++)
buf[(i * to_y + j) * to_z + k] =
((double(*)[y][z])m)[i][j][k];
}
return buf;
}
void pack3(double * buf, int x, int y, int z, int to_y, int to_z, void *out)
{
for (int i = 0; i < x; i++)
for (int j = 0; j < to_y; j++)
for (int k = 0; k < to_z; k++)
((double(*)[to_y][to_z])out)[i][j][k] =
buf[(i * y + j) * z + k] / 4;
}
void deconv3(void *g, int gx, int gy, int gz, void *f, int fx, int fy, int fz, void *out) {
double *g2 = unpack3(g, gx, gy, gz, gy, gz);
double *f2 = unpack3(f, fx, fy, fz, gy, gz);
double ff[(gx - fx + 1) * gy * gz];
deconv(g2, gx * gy * gz, f2, fx * gy * gz, ff, gy * gz);
pack3(ff, gx - fx + 1, gy, gz, gy - fy + 1, gz - fz + 1, out);
free(g2);
free(f2);
}
int main()
{
PI = atan2(1,1) * 4;
double h[2][3][4] = {
{{-6, -8, -5, 9}, {-7, 9, -6, -8}, { 2, -7, 9, 8}},
{{ 7, 4, 4, -6}, { 9, 9, 4, -4}, {-3, 7, -2, -3}}
};
int hx = 2, hy = 3, hz = 4;
double f[3][2][3] = { {{-9, 5, -8}, { 3, 5, 1}},
{{-1, -7, 2}, {-5, -6, 6}},
{{ 8, 5, 8}, {-2, -6, -4}} };
int fx = 3, fy = 2, fz = 3;
double g[4][4][6] = {
{ { 54, 42, 53, -42, 85, -72}, { 45,-170, 94, -36, 48, 73},
{-39, 65,-112, -16, -78, -72}, { 6, -11, -6, 62, 49, 8} },
{ {-57, 49, -23, 52, -135, 66},{-23, 127, -58, -5, -118, 64},
{ 87, -16, 121, 23, -41, -12},{-19, 29, 35,-148, -11, 45} },
{ {-55, -147, -146, -31, 55, 60},{-88, -45, -28, 46, -26,-144},
{-12, -107, -34, 150, 249, 66},{ 11, -15, -34, 27, -78, -50} },
{ { 56, 67, 108, 4, 2,-48},{ 58, 67, 89, 32, 32, -8},
{-42, -31,-103, -30,-23, -8},{ 6, 4, -26, -10, 26, 12}
}
};
int gx = 4, gy = 4, gz = 6;
double h2[gx - fx + 1][gy - fy + 1][gz - fz + 1];
deconv3(g, gx, gy, gz, f, fx, fy, fz, h2);
printf("deconv3(g, f):\n");
for (int i = 0; i < gx - fx + 1; i++) {
for (int j = 0; j < gy - fy + 1; j++) {
for (int k = 0; k < gz - fz + 1; k++)
printf("%g ", h2[i][j][k]);
printf("\n");
}
if (i < gx - fx) printf("\n");
}
double f2[gx - hx + 1][gy - hy + 1][gz - hz + 1];
deconv3(g, gx, gy, gz, h, hx, hy, hz, f2);
printf("\ndeconv3(g, h):\n");
for (int i = 0; i < gx - hx + 1; i++) {
for (int j = 0; j < gy - hy + 1; j++) {
for (int k = 0; k < gz - hz + 1; k++)
printf("%g ", f2[i][j][k]);
printf("\n");
}
if (i < gx - hx) printf("\n");
}
}
/* two-D case; since task doesn't require showing it, it's commented out */
/*
int main()
{
PI = atan2(1,1) * 4;
double h[][6] = { {-8, 1, -7, -2, -9, 4},
{4, 5, -5, 2, 7, -1},
{-6, -3, -3, -6, 9, 5} };
int hr = 3, hc = 6;
double f[][5] = { {-5, 2, -2, -6, -7},
{9, 7, -6, 5, -7},
{1, -1, 9, 2, -7},
{5, 9, -9, 2, -5},
{-8, 5, -2, 8, 5} };
int fr = 5, fc = 5;
double g[][10] = {
{40, -21, 53, 42, 105, 1, 87, 60, 39, -28},
{-92, -64, 19, -167, -71, -47, 128, -109, 40, -21},
{58, 85, -93, 37, 101, -14, 5, 37, -76, -56},
{-90, -135, 60, -125, 68, 53, 223, 4, -36, -48},
{78, 16, 7, -199, 156, -162, 29, 28, -103, -10},
{-62, -89, 69, -61, 66, 193, -61, 71, -8, -30},
{48, -6, 21, -9, -150, -22, -56, 32, 85, 25} };
int gr = 7, gc = 10;
double h2[gr - fr + 1][gc - fc + 1];
deconv2(g, gr, gc, f, fr, fc, h2);
for (int i = 0; i < gr - fr + 1; i++) {
for (int j = 0; j < gc - fc + 1; j++)
printf(" %g", h2[i][j]);
printf("\n");
}
double f2[gr - hr + 1][gc - hc + 1];
deconv2(g, gr, gc, h, hr, hc, f2);
for (int i = 0; i < gr - hr + 1; i++) {
for (int j = 0; j < gc - hc + 1; j++)
printf(" %g", f2[i][j]);
printf("\n");
}
}*/ |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #C.23 | C# | using System;
using System.Collections.Generic;
using System.Text;
namespace FreeCellDeals
{
public class RNG
{
private int _state;
public RNG()
{
_state = (int)DateTime.Now.Ticks;
}
public RNG(int n)
{
_state = n;
}
public int Next()
{
return ((_state = 214013 * _state + 2531011) & int.MaxValue) >> 16;
}
}
public enum Rank
{
Ace,
One,
Two,
Three,
Four,
Five,
Six,
Seven,
Eight,
Nine,
Ten,
Jack,
Queen,
King
}
public enum Suit
{
Clubs,
Diamonds,
Hearts,
Spades
}
public class Card
{
private const string Ranks = "A23456789TJQK";
private const string Suits = "CDHS";
private Rank _rank;
public Rank Rank
{
get
{
return _rank;
}
set
{
if ((int)value < 0 || (int)value > 12)
{
throw new InvalidOperationException("Setting card rank out of range");
}
_rank = value;
}
}
private Suit _suit;
public Suit Suit
{
get
{
return _suit;
}
set
{
if ((int)value < 0 || (int)value > 3)
{
throw new InvalidOperationException("Setting card rank out of range");
}
_suit = value;
}
}
public Card(Rank rank, Suit suit)
{
Rank = rank;
Suit = suit;
}
public int NRank()
{
return (int) Rank;
}
public int NSuit()
{
return (int) Suit;
}
public override string ToString()
{
return new string(new[] {Ranks[NRank()], Suits[NSuit()]});
}
}
public class FreeCellDeal
{
public List<Card> Deck { get; private set; }
public FreeCellDeal(int iDeal)
{
RNG rng = new RNG(iDeal);
List<Card> rDeck = new List<Card>();
Deck = new List<Card>();
for (int rank = 0; rank < 13; rank++)
{
for (int suit = 0; suit < 4; suit++)
{
rDeck.Add(new Card((Rank)rank, (Suit)suit));
}
}
// Normally we deal from the front of a deck. The algorithm "deals" from the back so we reverse the
// deck here to more conventionally deal from the front/start of the array.
for (int iCard = 51; iCard >= 0; iCard--)
{
int iSwap = rng.Next() % (iCard + 1);
Deck.Add(rDeck[iSwap]);
rDeck[iSwap] = rDeck[iCard];
}
}
public override string ToString()
{
StringBuilder sb = new StringBuilder();
for (int iRow = 0; iRow < 6; iRow++ )
{
for (int iCol = 0; iCol < 8; iCol++)
{
sb.AppendFormat("{0} ", Deck[iRow * 8 + iCol]);
}
sb.Append("\n");
}
for (int iCard = 48; iCard < 52; iCard++)
{
sb.AppendFormat("{0} ", Deck[iCard]);
}
return sb.ToString();
}
}
class Program
{
static void Main()
{
Console.WriteLine(new FreeCellDeal(1));
Console.WriteLine();
Console.WriteLine(new FreeCellDeal(617));
}
}
} |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #CLU | CLU | % Generate the De Bruijn sequence consisiting of N-digit numbers
de_bruijn = cluster is generate
rep = null
own k: int := 0
own n: int := 0
own a: array[int] := array[int]$[]
own seq: array[int] := array[int]$[]
generate = proc (k_, n_: int) returns (string)
k := k_
n := n_
a := array[int]$fill(0, k*n, 0)
seq := array[int]$[]
db(1, 1)
s: stream := stream$create_output()
for i: int in array[int]$elements(seq) do
stream$puts(s, int$unparse(i))
end
return(stream$get_contents(s))
end generate
db = proc (t, p: int)
if t>n then
if n//p = 0 then
for i: int in int$from_to(1, p) do
array[int]$addh(seq, a[i])
end
end
else
a[t] := a[t - p]
db(t+1, p)
for j: int in int$from_to(a[t - p] + 1, k-1) do
a[t] := j
db(t + 1, t)
end
end
end db
end de_bruijn
% Reverse a string
reverse = proc (s: string) returns (string)
r: array[char] := array[char]$predict(1, string$size(s))
for c: char in string$chars(s) do
array[char]$addl(r, c)
end
return(string$ac2s(r))
end reverse
% Find all missing N-digit values
find_missing = proc (db: string, n: int) returns (sequence[string])
db := db || string$substr(db, 1, n) % wrap
missing: array[string] := array[string]$[]
s: stream := stream$create_output()
for i: int in int$from_to(0, 10**n-1) do
%s: stream := stream$create_output()
stream$reset(s)
stream$putzero(s, int$unparse(i), n)
val: string := stream$get_contents(s)
if string$indexs(val, db) = 0 then
array[string]$addh(missing, val)
end
end
return(sequence[string]$a2s(missing))
end find_missing
% Report all missing values, or 'none'.
validate = proc (s: stream, db: string, n: int)
stream$puts(s, "Validating...")
missing: sequence[string] := find_missing(db, n)
for v: string in sequence[string]$elements(missing) do
stream$puts(s, " " || v)
end
if sequence[string]$size(missing) = 0 then
stream$puts(s, " none")
end
stream$putl(s, " missing.")
end validate
start_up = proc ()
po: stream := stream$primary_output()
% Generate the De Bruijn sequence for 4-digit numbers
db: string := de_bruijn$generate(10, 4)
% Report length and first and last digits
stream$putl(po, "Length: " || int$unparse(string$size(db)))
stream$putl(po, "First 130 characters:")
stream$putl(po, string$substr(db, 1, 130))
stream$putl(po, "Last 130 characters:")
stream$putl(po, string$substr(db, string$size(db)-130, 130))
% See if there are any missing values in the sequence
validate(po, db, 4)
% Reverse and validate again
stream$putl(po, "Reversing...")
validate(po, reverse(db), 4)
% Replace the 4444'th element with '.' and validate again
stream$putl(po, "Setting the 4444'th character to '.'...")
db := string$substr(db, 1, 4443) || "." || string$rest(db, 4445)
validate(po, db, 4)
end start_up |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #D | D | import std.array;
import std.conv;
import std.format;
import std.range;
import std.stdio;
immutable DIGITS = "0123456789";
string deBruijn(int k, int n) {
auto alphabet = DIGITS[0..k];
byte[] a;
a.length = k * n;
byte[] seq;
void db(int t, int p) {
if (t > n) {
if (n % p == 0) {
auto temp = a[1..p + 1];
seq ~= temp;
}
} else {
a[t] = a[t - p];
db(t + 1, p);
auto j = a[t - p] + 1;
while (j < k) {
a[t] = cast(byte)(j & 0xFF);
db(t + 1, t);
j++;
}
}
}
db(1, 1);
string buf;
foreach (i; seq) {
buf ~= alphabet[i];
}
return buf ~ buf[0 .. n - 1];
}
bool allDigits(string s) {
foreach (c; s) {
if (c < '0' || '9' < c) {
return false;
}
}
return true;
}
void validate(string db) {
auto le = db.length;
int[10_000] found;
string[] errs;
// Check all strings of 4 consecutive digits within 'db'
// to see if all 10,000 combinations occur without duplication.
foreach (i; 0 .. le - 3) {
auto s = db[i .. i + 4];
if (allDigits(s)) {
auto n = s.to!int;
found[n]++;
}
}
foreach (i; 0 .. 10_000) {
if (found[i] == 0) {
errs ~= format(" PIN number %04d missing", i);
} else if (found[i] > 1) {
errs ~= format(" PIN number %04d occurs %d times", i, found[i]);
}
}
if (errs.empty) {
writeln(" No errors found");
} else {
auto pl = (errs.length == 1) ? "" : "s";
writeln(" ", errs.length, " error", pl, " found:");
writefln("%-(%s\n%)", errs);
}
}
void main() {
auto db = deBruijn(10, 4);
writeln("The length of the de Bruijn sequence is ", db.length);
writeln("\nThe first 130 digits of the de Bruijn sequence are: ", db[0 .. 130]);
writeln("\nThe last 130 digits of the de Bruijn sequence are: ", db[$ - 130 .. $]);
writeln("\nValidating the deBruijn sequence:");
validate(db);
writeln("\nValidating the reversed deBruijn sequence:");
validate(db.retro.to!string);
auto by = db.dup;
by[4443] = '.';
db = by.idup;
writeln("\nValidating the overlaid deBruijn sequence:");
validate(db);
} |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Free_Pascal | Free Pascal | type
range = 1..10;
var
n: range;
begin
n := 10;
{$rangeChecks on}
n := n + 10; // will yield a run-time error
end; |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Frink | Frink | res = 254 / in
v = callJava["frink.graphics.VoxelArray", "makeSphere", [1/2 inch res]]
dish = callJava["frink.graphics.VoxelArray", "makeSphere", [1/2 inch res]]
dish.translate[round[.45 inch res], round[.45 inch res], round[.45 inch res]]
v.remove[dish]
v.projectX[undef].show["X"]
v.projectY[undef].show["Y"]
v.projectZ[undef].show["Z"]
filename = "DeathStar.stl"
print["Writing $filename..."]
w = new Writer[filename]
w.println[v.toSTLFormat["DeathStar", 1/(res mm)]]
w.close[]
println["done."]
|
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Go | Go | package main
import (
"fmt"
"image"
"image/color"
"image/png"
"math"
"os"
)
type vector [3]float64
func (v *vector) normalize() {
invLen := 1 / math.Sqrt(dot(v, v))
v[0] *= invLen
v[1] *= invLen
v[2] *= invLen
}
func dot(x, y *vector) float64 {
return x[0]*y[0] + x[1]*y[1] + x[2]*y[2]
}
type sphere struct {
cx, cy, cz int
r int
}
func (s *sphere) hit(x, y int) (z1, z2 float64, hit bool) {
x -= s.cx
y -= s.cy
if zsq := s.r*s.r - (x*x + y*y); zsq >= 0 {
zsqrt := math.Sqrt(float64(zsq))
return float64(s.cz) - zsqrt, float64(s.cz) + zsqrt, true
}
return 0, 0, false
}
func deathStar(pos, neg *sphere, k, amb float64, dir *vector) *image.Gray {
w, h := pos.r*4, pos.r*3
bounds := image.Rect(pos.cx-w/2, pos.cy-h/2, pos.cx+w/2, pos.cy+h/2)
img := image.NewGray(bounds)
vec := new(vector)
for y, yMax := pos.cy-pos.r, pos.cy+pos.r; y <= yMax; y++ {
for x, xMax := pos.cx-pos.r, pos.cx+pos.r; x <= xMax; x++ {
zb1, zb2, hit := pos.hit(x, y)
if !hit {
continue
}
zs1, zs2, hit := neg.hit(x, y)
if hit {
if zs1 > zb1 {
hit = false
} else if zs2 > zb2 {
continue
}
}
if hit {
vec[0] = float64(neg.cx - x)
vec[1] = float64(neg.cy - y)
vec[2] = float64(neg.cz) - zs2
} else {
vec[0] = float64(x - pos.cx)
vec[1] = float64(y - pos.cy)
vec[2] = zb1 - float64(pos.cz)
}
vec.normalize()
s := dot(dir, vec)
if s < 0 {
s = 0
}
lum := 255 * (math.Pow(s, k) + amb) / (1 + amb)
if lum < 0 {
lum = 0
} else if lum > 255 {
lum = 255
}
img.SetGray(x, y, color.Gray{uint8(lum)})
}
}
return img
}
func main() {
dir := &vector{20, -40, -10}
dir.normalize()
pos := &sphere{0, 0, 0, 120}
neg := &sphere{-90, -90, -30, 100}
img := deathStar(pos, neg, 1.5, .2, dir)
f, err := os.Create("dstar.png")
if err != nil {
fmt.Println(err)
return
}
if err = png.Encode(f, img); err != nil {
fmt.Println(err)
}
if err = f.Close(); err != nil {
fmt.Println(err)
}
} |
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #Raku | Raku | sub deconvolve (@g, @f) {
my \h = 1 + @g - @f;
my @m;
@m[^@g;^h] »+=» 0;
@m[^@g; h] »=« @g;
for ^h -> \j { for @f.kv -> \k, \v { @m[j+k;j] = v } }
(rref @m)[^h;h]
}
sub convolve (@f, @h) {
my @g = 0 xx + @f + @h - 1;
@g[^@f X+ ^@h] »+=« (@f X× @h);
@g
}
# Reduced Row Echelon Form simultaneous equation solver
# Can handle over-specified systems of equations (N unknowns in N + M equations)
sub rref (@m) {
@m = trim-system @m;
my ($lead, $rows, $cols) = 0, @m, @m[0];
for ^$rows -> $r {
return @m unless $lead < $cols;
my $i = $r;
until @m[$i;$lead] {
next unless ++$i == $rows;
$i = $r;
return @m if ++$lead == $cols;
}
@m[$i, $r] = @m[$r, $i] if $r != $i;
@m[$r] »/=» $ = @m[$r;$lead];
for ^$rows -> $n {
next if $n == $r;
@m[$n] »-=» @m[$r] »×» (@m[$n;$lead] // 0);
}
++$lead;
}
@m
}
# Reduce to N equations in N unknowns; a no-op unless rows > cols
sub trim-system (@m) {
return @m unless @m ≥ @m[0];
my (\vars, @t) = @m[0] - 1;
for ^vars -> \lead {
for ^@m -> \row {
@t.append: @m.splice(row, 1) and last if @m[row;lead];
}
}
while @t < vars and @m { @t.push: shift @m }
@t
}
my @h = (-8,-9,-3,-1,-6,7);
my @f = (-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1);
my @g = (24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7);
.say for ~@g, ~convolve(@f, @h),'';
.say for ~@h, ~deconvolve(@g, @f),'';
.say for ~@f, ~deconvolve(@g, @h),''; |
http://rosettacode.org/wiki/Deconvolution/2D%2B | Deconvolution/2D+ | This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in
d
{\displaystyle {\mathit {d}}}
dimensions of two functions
H
,
F
:
Z
d
→
R
{\displaystyle H,F:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to real numbers as the function
G
:
Z
d
→
R
{\displaystyle G:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
also taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to reals and satisfying
G
(
n
0
,
…
,
n
d
−
1
)
=
∑
m
0
=
−
∞
∞
…
∑
m
d
−
1
=
−
∞
∞
F
(
m
0
,
…
,
m
d
−
1
)
H
(
n
0
−
m
0
,
…
,
n
d
−
1
−
m
d
−
1
)
{\displaystyle G(n_{0},\dots ,n_{d-1})=\sum _{m_{0}=-\infty }^{\infty }\dots \sum _{m_{d-1}=-\infty }^{\infty }F(m_{0},\dots ,m_{d-1})H(n_{0}-m_{0},\dots ,n_{d-1}-m_{d-1})}
for all
d
{\displaystyle {\mathit {d}}}
-tuples of integers
(
n
0
,
…
,
n
d
−
1
)
∈
Z
d
{\displaystyle (n_{0},\dots ,n_{d-1})\in \mathbb {Z} ^{d}}
. Assume
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
(and therefore
G
{\displaystyle {\mathit {G}}}
) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists
f
{\displaystyle {\mathit {f}}}
,
h
{\displaystyle {\mathit {h}}}
, and
g
{\displaystyle {\mathit {g}}}
.
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by solving for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
. (See Deconvolution/1D for details.)
The function should work for
g
{\displaystyle {\mathit {g}}}
of arbitrary length in each dimension (i.e., not hard coded or constant) and
f
{\displaystyle {\mathit {f}}}
of any length up to that of
g
{\displaystyle {\mathit {g}}}
in the corresponding dimension.
The deconv function will need to be parameterized by the dimension
d
{\displaystyle {\mathit {d}}}
unless the dimension can be inferred from the data structures representing
g
{\displaystyle {\mathit {g}}}
and
f
{\displaystyle {\mathit {f}}}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
f
{\displaystyle {\mathit {f}}}
is
h
{\displaystyle {\mathit {h}}}
and that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
h
{\displaystyle {\mathit {h}}}
is
f
{\displaystyle {\mathit {f}}}
. Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2]
f: [ 6, -9, -7, -5]
g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
f: [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
g: [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f: [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g: [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
| #D | D | import std.stdio, std.conv, std.algorithm, std.numeric, std.range;
class M(T) {
private size_t[] dim;
private size_t[] subsize;
private T[] d;
this(size_t[] dimension...) pure nothrow {
setDimension(dimension);
d[] = 0; // init each entry to zero;
}
M!T dup() {
auto m = new M!T(dim);
return m.set1DArray(d);
}
M!T setDimension(size_t[] dimension ...) pure nothrow {
foreach (const e; dimension)
assert(e > 0, "no zero dimension");
dim = dimension.dup;
subsize = dim.dup;
foreach (immutable i; 0 .. dim.length)
subsize[i] = reduce!q{a * b}(1, dim[i + 1 .. $]);
immutable dlength = dim[0] * subsize[0];
if (d.length != dlength)
d = new T[dlength];
return this;
}
M!T set1DArray(in T[] t ...) pure nothrow @nogc {
auto minLen = min(t.length, d.length);
d[] = 0;
d[0 .. minLen] = t[0 .. minLen];
return this;
}
size_t[] seq2idx(in size_t seq) const pure nothrow {
size_t acc = seq, tmp;
size_t[] idx;
foreach (immutable e; subsize) {
idx ~= tmp = acc / e;
acc = acc - tmp * e; // same as % (mod) e.
}
return idx;
}
size_t size() const pure nothrow @nogc @property {
return d.length;
}
size_t rank() const pure nothrow @nogc @property {
return dim.length;
}
size_t[] shape() const pure nothrow @property { return dim.dup; }
T[] raw() const pure nothrow @property { return d.dup; }
bool checkBound(size_t[] idx ...) const pure nothrow @nogc {
if (idx.length > dim.length)
return false;
foreach (immutable i, immutable dm; idx)
if (dm >= dim[i])
return false;
return true;
}
T opIndex(size_t[] idx ...) const pure nothrow @nogc {
assert(checkBound(idx), "OOPS");
return d[dotProduct(idx, subsize)];
}
T opIndexAssign(T v, size_t[] idx ...) pure nothrow @nogc {
assert(checkBound(idx), "OOPS");
d[dotProduct(idx, subsize)] = v;
return v;
}
override bool opEquals(Object o) const pure {
const rhs = to!(M!T)(o);
return dim == rhs.dim && d == rhs.d;
}
int opApply(int delegate(ref size_t[]) dg) const {
size_t[] yieldIdx;
foreach (immutable i; 0 .. d.length) {
yieldIdx = seq2idx(i);
if (dg(yieldIdx))
break;
}
return 0;
}
int opApply(int delegate(ref size_t[], ref T) dg) {
size_t idx1d = 0;
foreach (idx; this) {
if (dg(idx, d[idx1d++]))
break;
}
return 0;
}
// _this_ is h, rhs is f, output g.
M!T convolute(M!T rhs) const pure nothrow {
auto dm = dim.dup;
dm[] += rhs.dim[] - 1;
M!T m = new M!T(dm); // dm will be reused as m's idx.
auto bound = m.size;
foreach (immutable i; 0 .. d.length) {
auto thisIdx = seq2idx(i);
foreach (immutable j; 0 .. rhs.d.length) {
dm[] = thisIdx[] + rhs.seq2idx(j)[];
immutable midx1d = dotProduct(dm, m.subsize);
if (midx1d < bound)
m.d[midx1d] += d[i] * rhs.d[j];
else
break; // Bound reach, OK to break.
}
}
return m;
}
// _this_ is g, rhs is f, output is h.
M!T deconvolute(M!T rhs) const pure nothrow {
auto dm = dim.dup;
foreach (i, e; dm)
assert(e + 1 > rhs.dim[i],
"deconv : dimensions is zero or negative");
dm[] -= (rhs.dim[] - 1);
auto m = new M!T(dm); // dm will be reused as rhs' idx.
foreach (immutable i; 0 .. m.size) {
auto idx = m.seq2idx(i);
m.d[i] = this[idx];
foreach (immutable j; 0 .. i) {
immutable jdx = m.seq2idx(j);
dm[] = idx[] - jdx[];
if (rhs.checkBound(dm))
m.d[i] -= m.d[j] * rhs[dm];
}
m.d[i] /= rhs.d[0];
}
return m;
}
override string toString() const pure { return d.text; }
}
auto fold(T)(T[] arr, ref size_t[] d) pure {
if (d.length == 0)
d ~= arr.length;
static if (is(T U : U[])) { // Is arr an array of arrays?
assert(arr.length > 0, "no empty dimension");
d ~= arr[0].length;
foreach (e; arr)
assert(e.length == arr[0].length, "Not rectangular");
return fold(arr.reduce!q{a ~ b}, d);
} else {
assert(arr.length == d.reduce!q{a * b}, "Not same size");
return arr;
}
}
auto arr2M(T)(T a) pure {
size_t[] dm;
auto d = fold(a, dm);
alias E = ElementType!(typeof(d));
auto m = new M!E(dm);
m.set1DArray(d);
return m;
}
void main() {
alias Mi = M!int;
auto hh = [[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]];
auto ff = [[[-9, 5, -8], [3, 5, 1]],[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]];
auto h = arr2M(hh);
auto f = arr2M(ff);
const g = h.convolute(f);
writeln("g == f convolute h ? ", g == f.convolute(h));
writeln("h == g deconv f ? ", h == g.deconvolute(f));
writeln("f == g deconv h ? ", f == g.deconvolute(h));
writeln(" f = ", f);
writeln("g deconv h = ", g.deconvolute(h));
} |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #C.2B.2B | C++ |
#include <windows.h>
#include <iostream>
//--------------------------------------------------------------------------------------------------
using namespace std;
//--------------------------------------------------------------------------------------------------
class fc_dealer
{
public:
void deal( int game )
{
_gn = game;
fillDeck();
shuffle();
display();
}
private:
void fillDeck()
{
int p = 0;
for( int c = 0; c < 13; c++ )
for( int s = 0; s < 4; s++ )
_cards[p++] = c | s << 4;
}
void shuffle()
{
srand( _gn );
int cc = 52, nc, lc;
while( cc )
{
nc = rand() % cc;
lc = _cards[--cc];
_cards[cc] = _cards[nc];
_cards[nc] = lc;
}
}
void display()
{
char* suit = "CDHS";
char* symb = "A23456789TJQK";
int z = 0;
cout << "GAME #" << _gn << endl << "=======================" << endl;
for( int c = 51; c >= 0; c-- )
{
cout << symb[_cards[c] & 15] << suit[_cards[c] >> 4] << " ";
if( ++z >= 8 )
{
cout << endl;
z = 0;
}
}
}
int _cards[52], _gn;
};
//--------------------------------------------------------------------------------------------------
int main( int argc, char* argv[] )
{
fc_dealer dealer;
int gn;
while( true )
{
cout << endl << "Game number please ( 0 to QUIT ): "; cin >> gn;
if( !gn ) break;
system( "cls" );
dealer.deal( gn );
cout << endl << endl;
}
return 0;
}
//--------------------------------------------------------------------------------------------------
|
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Go | Go | package main
import (
"bytes"
"fmt"
"strconv"
"strings"
)
const digits = "0123456789"
func deBruijn(k, n int) string {
alphabet := digits[0:k]
a := make([]byte, k*n)
var seq []byte
var db func(int, int) // recursive closure
db = func(t, p int) {
if t > n {
if n%p == 0 {
seq = append(seq, a[1:p+1]...)
}
} else {
a[t] = a[t-p]
db(t+1, p)
for j := int(a[t-p] + 1); j < k; j++ {
a[t] = byte(j)
db(t+1, t)
}
}
}
db(1, 1)
var buf bytes.Buffer
for _, i := range seq {
buf.WriteByte(alphabet[i])
}
b := buf.String()
return b + b[0:n-1] // as cyclic append first (n-1) digits
}
func allDigits(s string) bool {
for _, b := range s {
if b < '0' || b > '9' {
return false
}
}
return true
}
func validate(db string) {
le := len(db)
found := make([]int, 10000)
var errs []string
// Check all strings of 4 consecutive digits within 'db'
// to see if all 10,000 combinations occur without duplication.
for i := 0; i < le-3; i++ {
s := db[i : i+4]
if allDigits(s) {
n, _ := strconv.Atoi(s)
found[n]++
}
}
for i := 0; i < 10000; i++ {
if found[i] == 0 {
errs = append(errs, fmt.Sprintf(" PIN number %04d missing", i))
} else if found[i] > 1 {
errs = append(errs, fmt.Sprintf(" PIN number %04d occurs %d times", i, found[i]))
}
}
lerr := len(errs)
if lerr == 0 {
fmt.Println(" No errors found")
} else {
pl := "s"
if lerr == 1 {
pl = ""
}
fmt.Printf(" %d error%s found:\n", lerr, pl)
fmt.Println(strings.Join(errs, "\n"))
}
}
func reverse(s string) string {
bytes := []byte(s)
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
bytes[i], bytes[j] = bytes[j], bytes[i]
}
return string(bytes)
}
func main() {
db := deBruijn(10, 4)
le := len(db)
fmt.Println("The length of the de Bruijn sequence is", le)
fmt.Println("\nThe first 130 digits of the de Bruijn sequence are:")
fmt.Println(db[0:130])
fmt.Println("\nThe last 130 digits of the de Bruijn sequence are:")
fmt.Println(db[le-130:])
fmt.Println("\nValidating the de Bruijn sequence:")
validate(db)
fmt.Println("\nValidating the reversed de Bruijn sequence:")
dbr := reverse(db)
validate(dbr)
bytes := []byte(db)
bytes[4443] = '.'
db = string(bytes)
fmt.Println("\nValidating the overlaid de Bruijn sequence:")
validate(db)
} |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #FreeBASIC | FreeBASIC | ' FB 1.05.0 Win64
Type MyInteger
Private:
Dim i_ As Integer
Public:
Declare Constructor(i_ As Integer)
Declare Property I() As Integer
Declare Operator Cast() As Integer
Declare Operator Cast() As String
End Type
Constructor MyInteger(i_ As Integer)
If i_ < 1 Then
i_ = 1
ElseIf i_ > 10 Then
i_ = 10
End If
This.i_ = i_
End Constructor
Property MyInteger.I() As Integer
Return i_
End Property
Operator MyInteger.Cast() As Integer
Return i_
End Operator
Operator MyInteger.Cast() As String
Return Str(i_)
End Operator
Dim i As MyInteger = 11 ' implicit constructor call; i_ automatically limited to 10
Dim j As MyInteger = 3 ' implicit constructor call; no adjustment needed
Dim k As Integer = 4
Print "i = "; i; " j = " ; j; " k = "; k; " j + 6 ="; j.I + 6; " j + k ="; j + k
Print
Print "Press any key to quit"
Sleep |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Haskell | Haskell | import Data.List (genericLength)
shades = ".:!*oe%#&@"
n = genericLength shades
dot a b = sum $ zipWith (*) a b
normalize x = (/ sqrt (x `dot` x)) <$> x
deathStar r k amb = unlines $
[ [ if x*x + y*y <= r*r
then let vec = normalize $ normal x y
b = (light `dot` vec) ** k + amb
intensity = (1 - b)*(n - 1)
in shades !! round ((0 `max` intensity) `min` n)
else ' '
| y <- map (/2.12) [- 2*r - 0.5 .. 2*r + 0.5] ]
| x <- [ - r - 0.5 .. r + 0.5] ]
where
light = normalize [-30,-30,-50]
normal x y
| (x+r)**2 + (y+r)**2 <= r**2 = [x+r, y+r, sph2 x y]
| otherwise = [x, y, sph1 x y]
sph1 x y = sqrt (r*r - x*x - y*y)
sph2 x y = r - sqrt (r*r - (x+r)**2 - (y+r)**2) |
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #REXX | REXX | /*REXX pgm performs deconvolution of two arrays: deconv(g,f)=h and deconv(g,h)=f */
call make 'H', "-8 -9 -3 -1 -6 7"
call make 'F', "-3 -6 -1 8 -6 3 -1 -9 -9 3 -2 5 2 -2 -7 -1"
call make 'G', "24 75 71 -34 3 22 -45 23 245 25 52 25 -67 -96 96 31 55 36 29 -43 -7"
call show 'H' /*display the elements of array H. */
call show 'F' /* " " " " " F. */
call show 'G' /* " " " " " G. */
call deco 'G', "F", 'X' /*deconvolution of G and F ───► X */
call test 'X', "H" /*test: is array H equal to array X?*/
call deco 'G', "H", 'Y' /*deconvolution of G and H ───► Y */
call test 'F', "Y" /*test: is array F equal to array Y?*/
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
deco: parse arg $1,$2,$r; b= @.$2.# + 1; a= @.$1.# + 1 /*get sizes of array 1&2*/
@.$r.#= a - b /*size of return array. */
do n=0 to a-b /*define return array. */
@.$r.n= @.$1.n /*define RETURN element.*/
if n<b then L= 0 /*define the variable L.*/
else L= n - b + 1 /* " " " " */
if n>0 then do j=L to n-1; _= n-j /*define elements > 0. */
@.$r.n= @.$r.n - @.$r.j * @.$2._ /*compute " " " */
end /*j*/ /* [↑] subtract product.*/
@.$r.n= @.$r.n / @.$2.0 /*divide array element. */
end /*n*/; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
make: parse arg $,z; @.$.#= words(z) - 1 /*obtain args; set size.*/
do k=0 to @.$.#; @.$.k= word(z, k + 1) /*define array element. */
end /*k*/; return /*array starts at unity.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: parse arg $,z,_; do s=0 to @.$.#; _= strip(_ @.$.s) /*obtain the arguments. */
end /*s*/ /* [↑] build the list. */
say 'array' $": " _; return /*show the list; return*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
test: parse arg $1,$2; do t=0 to max(@.$1.#, @.$2.#) /*obtain the arguments. */
if @.$1.t= @.$2.t then iterate /*create array list. */
say "***error*** arrays" $1 ' and ' $2 "aren't equal."
end /*t*/; return /* [↑] build the list. */ |
http://rosettacode.org/wiki/Deconvolution/2D%2B | Deconvolution/2D+ | This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in
d
{\displaystyle {\mathit {d}}}
dimensions of two functions
H
,
F
:
Z
d
→
R
{\displaystyle H,F:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to real numbers as the function
G
:
Z
d
→
R
{\displaystyle G:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
also taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to reals and satisfying
G
(
n
0
,
…
,
n
d
−
1
)
=
∑
m
0
=
−
∞
∞
…
∑
m
d
−
1
=
−
∞
∞
F
(
m
0
,
…
,
m
d
−
1
)
H
(
n
0
−
m
0
,
…
,
n
d
−
1
−
m
d
−
1
)
{\displaystyle G(n_{0},\dots ,n_{d-1})=\sum _{m_{0}=-\infty }^{\infty }\dots \sum _{m_{d-1}=-\infty }^{\infty }F(m_{0},\dots ,m_{d-1})H(n_{0}-m_{0},\dots ,n_{d-1}-m_{d-1})}
for all
d
{\displaystyle {\mathit {d}}}
-tuples of integers
(
n
0
,
…
,
n
d
−
1
)
∈
Z
d
{\displaystyle (n_{0},\dots ,n_{d-1})\in \mathbb {Z} ^{d}}
. Assume
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
(and therefore
G
{\displaystyle {\mathit {G}}}
) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists
f
{\displaystyle {\mathit {f}}}
,
h
{\displaystyle {\mathit {h}}}
, and
g
{\displaystyle {\mathit {g}}}
.
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by solving for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
. (See Deconvolution/1D for details.)
The function should work for
g
{\displaystyle {\mathit {g}}}
of arbitrary length in each dimension (i.e., not hard coded or constant) and
f
{\displaystyle {\mathit {f}}}
of any length up to that of
g
{\displaystyle {\mathit {g}}}
in the corresponding dimension.
The deconv function will need to be parameterized by the dimension
d
{\displaystyle {\mathit {d}}}
unless the dimension can be inferred from the data structures representing
g
{\displaystyle {\mathit {g}}}
and
f
{\displaystyle {\mathit {f}}}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
f
{\displaystyle {\mathit {f}}}
is
h
{\displaystyle {\mathit {h}}}
and that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
h
{\displaystyle {\mathit {h}}}
is
f
{\displaystyle {\mathit {f}}}
. Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2]
f: [ 6, -9, -7, -5]
g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
f: [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
g: [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f: [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g: [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
| #Go | Go | package main
import (
"fmt"
"math"
"math/cmplx"
)
func fft(buf []complex128, n int) {
out := make([]complex128, n)
copy(out, buf)
fft2(buf, out, n, 1)
}
func fft2(buf, out []complex128, n, step int) {
if step < n {
fft2(out, buf, n, step*2)
fft2(out[step:], buf[step:], n, step*2)
for j := 0; j < n; j += 2 * step {
fj, fn := float64(j), float64(n)
t := cmplx.Exp(-1i*complex(math.Pi, 0)*complex(fj, 0)/complex(fn, 0)) * out[j+step]
buf[j/2] = out[j] + t
buf[(j+n)/2] = out[j] - t
}
}
}
/* pad slice length to power of two */
func padTwo(g []float64, le int, ns *int) []complex128 {
n := 1
if *ns != 0 {
n = *ns
} else {
for n < le {
n *= 2
}
}
buf := make([]complex128, n)
for i := 0; i < le; i++ {
buf[i] = complex(g[i], 0)
}
*ns = n
return buf
}
func deconv(g []float64, lg int, f []float64, lf int, out []float64, rowLe int) {
ns := 0
g2 := padTwo(g, lg, &ns)
f2 := padTwo(f, lf, &ns)
fft(g2, ns)
fft(f2, ns)
h := make([]complex128, ns)
for i := 0; i < ns; i++ {
h[i] = g2[i] / f2[i]
}
fft(h, ns)
for i := 0; i < ns; i++ {
if math.Abs(real(h[i])) < 1e-10 {
h[i] = 0
}
}
for i := 0; i > lf-lg-rowLe; i-- {
out[-i] = real(h[(i+ns)%ns] / 32)
}
}
func unpack2(m [][]float64, rows, le, toLe int) []float64 {
buf := make([]float64, rows*toLe)
for i := 0; i < rows; i++ {
for j := 0; j < le; j++ {
buf[i*toLe+j] = m[i][j]
}
}
return buf
}
func pack2(buf []float64, rows, fromLe, toLe int, out [][]float64) {
for i := 0; i < rows; i++ {
for j := 0; j < toLe; j++ {
out[i][j] = buf[i*fromLe+j] / 4
}
}
}
func deconv2(g [][]float64, rowG, colG int, f [][]float64, rowF, colF int, out [][]float64) {
g2 := unpack2(g, rowG, colG, colG)
f2 := unpack2(f, rowF, colF, colG)
ff := make([]float64, (rowG-rowF+1)*colG)
deconv(g2, rowG*colG, f2, rowF*colG, ff, colG)
pack2(ff, rowG-rowF+1, colG, colG-colF+1, out)
}
func unpack3(m [][][]float64, x, y, z, toY, toZ int) []float64 {
buf := make([]float64, x*toY*toZ)
for i := 0; i < x; i++ {
for j := 0; j < y; j++ {
for k := 0; k < z; k++ {
buf[(i*toY+j)*toZ+k] = m[i][j][k]
}
}
}
return buf
}
func pack3(buf []float64, x, y, z, toY, toZ int, out [][][]float64) {
for i := 0; i < x; i++ {
for j := 0; j < toY; j++ {
for k := 0; k < toZ; k++ {
out[i][j][k] = buf[(i*y+j)*z+k] / 4
}
}
}
}
func deconv3(g [][][]float64, gx, gy, gz int, f [][][]float64, fx, fy, fz int, out [][][]float64) {
g2 := unpack3(g, gx, gy, gz, gy, gz)
f2 := unpack3(f, fx, fy, fz, gy, gz)
ff := make([]float64, (gx-fx+1)*gy*gz)
deconv(g2, gx*gy*gz, f2, fx*gy*gz, ff, gy*gz)
pack3(ff, gx-fx+1, gy, gz, gy-fy+1, gz-fz+1, out)
}
func main() {
f := [][][]float64{
{{-9, 5, -8}, {3, 5, 1}},
{{-1, -7, 2}, {-5, -6, 6}},
{{8, 5, 8}, {-2, -6, -4}},
}
fx, fy, fz := len(f), len(f[0]), len(f[0][0])
g := [][][]float64{
{{54, 42, 53, -42, 85, -72}, {45, -170, 94, -36, 48, 73},
{-39, 65, -112, -16, -78, -72}, {6, -11, -6, 62, 49, 8}},
{{-57, 49, -23, 52, -135, 66}, {-23, 127, -58, -5, -118, 64},
{87, -16, 121, 23, -41, -12}, {-19, 29, 35, -148, -11, 45}},
{{-55, -147, -146, -31, 55, 60}, {-88, -45, -28, 46, -26, -144},
{-12, -107, -34, 150, 249, 66}, {11, -15, -34, 27, -78, -50}},
{{56, 67, 108, 4, 2, -48}, {58, 67, 89, 32, 32, -8},
{-42, -31, -103, -30, -23, -8}, {6, 4, -26, -10, 26, 12},
},
}
gx, gy, gz := len(g), len(g[0]), len(g[0][0])
h := [][][]float64{
{{-6, -8, -5, 9}, {-7, 9, -6, -8}, {2, -7, 9, 8}},
{{7, 4, 4, -6}, {9, 9, 4, -4}, {-3, 7, -2, -3}},
}
hx, hy, hz := gx-fx+1, gy-fy+1, gz-fz+1
h2 := make([][][]float64, hx)
for i := 0; i < hx; i++ {
h2[i] = make([][]float64, hy)
for j := 0; j < hy; j++ {
h2[i][j] = make([]float64, hz)
}
}
deconv3(g, gx, gy, gz, f, fx, fy, fz, h2)
fmt.Println("deconv3(g, f):\n")
for i := 0; i < hx; i++ {
for j := 0; j < hy; j++ {
for k := 0; k < hz; k++ {
fmt.Printf("% .10g ", h2[i][j][k])
}
fmt.Println()
}
if i < hx-1 {
fmt.Println()
}
}
kx, ky, kz := gx-hx+1, gy-hy+1, gz-hz+1
f2 := make([][][]float64, kx)
for i := 0; i < kx; i++ {
f2[i] = make([][]float64, ky)
for j := 0; j < ky; j++ {
f2[i][j] = make([]float64, kz)
}
}
deconv3(g, gx, gy, gz, h, hx, hy, hz, f2)
fmt.Println("\ndeconv(g, h):\n")
for i := 0; i < kx; i++ {
for j := 0; j < ky; j++ {
for k := 0; k < kz; k++ {
fmt.Printf("% .10g ", f2[i][j][k])
}
fmt.Println()
}
if i < kx-1 {
fmt.Println()
}
}
} |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #Ceylon | Ceylon | shared void freeCellDeal() {
//a function that returns a random number generating function
function createRNG(variable Integer state) =>
() => (state = (214_013 * state + 2_531_011) % 2^31) / 2^16;
void deal(Integer num) {
// create an array with a list comprehension
variable value deck = Array {
for(rank in "A23456789TJQK")
for(suit in "CDHS")
"``rank````suit``"
};
value rng = createRNG(num);
for(i in 1..52) {
value index = rng() % deck.size;
assert(exists lastIndex = deck.lastIndex);
//swap the random card with the last one
deck.swap(index, lastIndex);
//print the last one
process.write("``deck.last else "missing card"`` " );
if(i % 8 == 0) {
print("");
}
//and shrink the array to remove the last card
deck = deck[...lastIndex - 1];
}
}
deal(1);
print("\n");
deal(617);
} |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #Clojure | Clojure | (def deck (into [] (for [rank "A23456789TJQK" suit "CDHS"] (str rank suit))))
(defn lcg [seed]
(map #(bit-shift-right % 16)
(rest (iterate #(mod (+ (* % 214013) 2531011) (bit-shift-left 1 31)) seed))))
(defn gen [seed]
(map (fn [rnd rng] (into [] [(mod rnd rng) (dec rng)]))
(lcg seed) (range 52 0 -1)))
(defn xchg [v [src dst]] (assoc v dst (v src) src (v dst)))
(defn show [seed] (map #(println %) (partition 8 8 ""
(reverse (reduce xchg deck (gen seed))))))
(show 1) |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Groovy | Groovy | import java.util.function.BiConsumer
class DeBruijn {
interface Recursable<T, U> {
void apply(T t, U u, Recursable<T, U> r);
}
static <T, U> BiConsumer<T, U> recurse(Recursable<T, U> f) {
return { t, u -> f.apply(t, u, f) }
}
private static String deBruijn(int k, int n) {
byte[] a = new byte[k * n]
Arrays.fill(a, (byte) 0)
List<Byte> seq = new ArrayList<>()
BiConsumer<Integer, Integer> db = recurse({ int t, int p, f ->
if (t > n) {
if (n % p == 0) {
for (int i = 1; i < p + 1; ++i) {
seq.add(a[i])
}
}
} else {
a[t] = a[t - p]
f.apply(t + 1, p, f)
int j = a[t - p] + 1
while (j < k) {
a[t] = (byte) (j & 0xFF)
f.apply(t + 1, t, f)
j++
}
}
})
db.accept(1, 1)
StringBuilder sb = new StringBuilder()
for (Byte i : seq) {
sb.append("0123456789".charAt(i))
}
sb.append(sb.subSequence(0, n - 1))
return sb.toString()
}
private static boolean allDigits(String s) {
for (int i = 0; i < s.length(); ++i) {
char c = s.charAt(i)
if (!Character.isDigit(c)) {
return false
}
}
return true
}
private static void validate(String db) {
int le = db.length()
int[] found = new int[10_000]
Arrays.fill(found, 0)
List<String> errs = new ArrayList<>()
// Check all strings of 4 consecutive digits within 'db'
// to see if all 10,000 combinations occur without duplication.
for (int i = 0; i < le - 3; ++i) {
String s = db.substring(i, i + 4)
if (allDigits(s)) {
int n = Integer.parseInt(s)
found[n]++
}
}
for (int i = 0; i < 10_000; ++i) {
if (found[i] == 0) {
errs.add(String.format(" PIN number %d is missing", i))
} else if (found[i] > 1) {
errs.add(String.format(" PIN number %d occurs %d times", i, found[i]))
}
}
if (errs.isEmpty()) {
System.out.println(" No errors found")
} else {
String pl = (errs.size() == 1) ? "" : "s"
System.out.printf(" %d error%s found:\n", errs.size(), pl)
errs.forEach(System.out.&println)
}
}
static void main(String[] args) {
String db = deBruijn(10, 4)
System.out.printf("The length of the de Bruijn sequence is %d\n\n", db.length())
System.out.printf("The first 130 digits of the de Bruijn sequence are: %s\n\n", db.substring(0, 130))
System.out.printf("The last 130 digits of the de Bruijn sequence are: %s\n\n", db.substring(db.length() - 130))
System.out.println("Validating the de Bruijn sequence:")
validate(db)
StringBuilder sb = new StringBuilder(db)
String rdb = sb.reverse().toString()
System.out.println()
System.out.println("Validating the de Bruijn sequence:")
validate(rdb)
sb = new StringBuilder(db)
sb.setCharAt(4443, '.' as char)
System.out.println()
System.out.println("Validating the overlaid de Bruijn sequence:")
validate(sb.toString())
}
} |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Frink | Frink | oneToTen[x] := isInteger[x] AND x >= 1 AND x <= 10
var y is oneToTen = 1
while (true)
{
println[y]
y = y + 1
} |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Go | Go | package main
import "fmt"
type TinyInt int
func NewTinyInt(i int) TinyInt {
if i < 1 {
i = 1
} else if i > 10 {
i = 10
}
return TinyInt(i)
}
func (t1 TinyInt) Add(t2 TinyInt) TinyInt {
return NewTinyInt(int(t1) + int(t2))
}
func (t1 TinyInt) Sub(t2 TinyInt) TinyInt {
return NewTinyInt(int(t1) - int(t2))
}
func (t1 TinyInt) Mul(t2 TinyInt) TinyInt {
return NewTinyInt(int(t1) * int(t2))
}
func (t1 TinyInt) Div(t2 TinyInt) TinyInt {
return NewTinyInt(int(t1) / int(t2))
}
func (t1 TinyInt) Rem(t2 TinyInt) TinyInt {
return NewTinyInt(int(t1) % int(t2))
}
func (t TinyInt) Inc() TinyInt {
return t.Add(TinyInt(1))
}
func (t TinyInt) Dec() TinyInt {
return t.Sub(TinyInt(1))
}
func main() {
t1 := NewTinyInt(6)
t2 := NewTinyInt(3)
fmt.Println("t1 =", t1)
fmt.Println("t2 =", t2)
fmt.Println("t1 + t2 =", t1.Add(t2))
fmt.Println("t1 - t2 =", t1.Sub(t2))
fmt.Println("t1 * t2 =", t1.Mul(t2))
fmt.Println("t1 / t2 =", t1.Div(t2))
fmt.Println("t1 % t2 =", t1.Rem(t2))
fmt.Println("t1 + 1 =", t1.Inc())
fmt.Println("t1 - 1 =", t1.Dec())
} |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #J | J |
load'graphics/viewmat'
mag =: +/&.:*:"1
norm=: %"1 0 mag
dot =: +/@:*"1
NB. (pos;posr;neg;negr) getvec (x,y)
getvec =: 4 :0 "1
pt =. y
'pos posr neg negr' =. x
if. (dot~ pt-}:pos) > *:posr do.
0 0 0
else.
zb =. ({:pos) (-,+) posr -&.:*: pt mag@:- }:pos
if. (dot~ pt-}:neg) > *:negr do.
(pt,{:zb) - pos
else.
zs =. ({:neg) (-,+) negr -&.:*: pt mag@:- }:neg
if. zs >&{. zb do. (pt,{:zb) - pos
elseif. zs >&{: zb do. 0 0 0
elseif. ({.zs) < ({:zb) do. neg - (pt,{.zs)
elseif. do. (pt,{.zb) - pos end.
end.
end.
)
NB. (k;ambient;light) draw_sphere (pos;posr;neg;negr)
draw_sphere =: 4 :0
'pos posr neg negr' =. y
'k ambient light' =. x
vec=. norm y getvec ,"0// (2{.pos) +/ i: 200 j.~ 0.5+posr
b=. (mag vec) * ambient + k * 0>. light dot vec
)
togray =: 256#. 255 255 255 <.@*"1 0 (%>./@,)
env=.(2; 0.5; (norm _50 30 50))
sph=. 20 20 0; 20; 1 1 _6; 20
'rgb' viewmat togray env draw_sphere sph |
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #Scala | Scala | object Deconvolution1D extends App {
val (h, f) = (Array(-8, -9, -3, -1, -6, 7), Array(-3, -6, -1, 8, -6, 3, -1, -9, -9, 3, -2, 5, 2, -2, -7, -1))
val g = Array(24, 75, 71, -34, 3, 22, -45, 23, 245, 25, 52, 25, -67, -96, 96, 31, 55, 36, 29, -43, -7)
val sb = new StringBuilder
private def deconv(g: Array[Int], f: Array[Int]) = {
val h = Array.ofDim[Int](g.length - f.length + 1)
for (n <- h.indices) {
h(n) = g(n)
for (i <- math.max(n - f.length + 1, 0) until n) h(n) -= h(i) * f(n - i)
h(n) /= f(0)
}
h
}
sb.append(s"h = ${h.mkString("[", ", ", "]")}\n")
.append(s"deconv(g, f) = ${deconv(g, f).mkString("[", ", ", "]")}\n")
.append(s"f = ${f.mkString("[", ", ", "]")}\n")
.append(s"deconv(g, h) = ${deconv(g, h).mkString("[", ", ", "]")}")
println(sb.result())
} |
http://rosettacode.org/wiki/Deconvolution/2D%2B | Deconvolution/2D+ | This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in
d
{\displaystyle {\mathit {d}}}
dimensions of two functions
H
,
F
:
Z
d
→
R
{\displaystyle H,F:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to real numbers as the function
G
:
Z
d
→
R
{\displaystyle G:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
also taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to reals and satisfying
G
(
n
0
,
…
,
n
d
−
1
)
=
∑
m
0
=
−
∞
∞
…
∑
m
d
−
1
=
−
∞
∞
F
(
m
0
,
…
,
m
d
−
1
)
H
(
n
0
−
m
0
,
…
,
n
d
−
1
−
m
d
−
1
)
{\displaystyle G(n_{0},\dots ,n_{d-1})=\sum _{m_{0}=-\infty }^{\infty }\dots \sum _{m_{d-1}=-\infty }^{\infty }F(m_{0},\dots ,m_{d-1})H(n_{0}-m_{0},\dots ,n_{d-1}-m_{d-1})}
for all
d
{\displaystyle {\mathit {d}}}
-tuples of integers
(
n
0
,
…
,
n
d
−
1
)
∈
Z
d
{\displaystyle (n_{0},\dots ,n_{d-1})\in \mathbb {Z} ^{d}}
. Assume
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
(and therefore
G
{\displaystyle {\mathit {G}}}
) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists
f
{\displaystyle {\mathit {f}}}
,
h
{\displaystyle {\mathit {h}}}
, and
g
{\displaystyle {\mathit {g}}}
.
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by solving for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
. (See Deconvolution/1D for details.)
The function should work for
g
{\displaystyle {\mathit {g}}}
of arbitrary length in each dimension (i.e., not hard coded or constant) and
f
{\displaystyle {\mathit {f}}}
of any length up to that of
g
{\displaystyle {\mathit {g}}}
in the corresponding dimension.
The deconv function will need to be parameterized by the dimension
d
{\displaystyle {\mathit {d}}}
unless the dimension can be inferred from the data structures representing
g
{\displaystyle {\mathit {g}}}
and
f
{\displaystyle {\mathit {f}}}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
f
{\displaystyle {\mathit {f}}}
is
h
{\displaystyle {\mathit {h}}}
and that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
h
{\displaystyle {\mathit {h}}}
is
f
{\displaystyle {\mathit {f}}}
. Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2]
f: [ 6, -9, -7, -5]
g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
f: [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
g: [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f: [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g: [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
| #J | J | deconv3 =: 4 : 0
sz =. x >:@-&$ y NB. shape of z
poi =. ,<"1 ($y) ,"0/&(,@i.) sz NB. pair of indexes
t=. /: sc=: , <@(+"1)/&(#: ,@i.)/ ($y),:sz NB. order of ,y
T0=. (<"0,x) ,:~ (]/:"1 {.)&.> (<, y) ({:@] ,: ({"1~ {.))&.> sc <@|:@:>/.&(t&{) poi NB. set of boxed equations
T1=. (,x),.~(<0 #~ */sz) (({:@])`({.@])`[})&> {.T0 NB. set of linear equations
sz $ 1e_8 round ({:"1 %. }:"1) T1
)
round=: [ * <.@%~ |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #Common_Lisp | Common Lisp | (defun make-rng (seed)
#'(lambda ()
(ash (setf seed (mod (+ (* 214013 seed) 2531011) (expt 2 31))) -16)))
(defun split (s) (map 'list #'string s))
(defun make-deck (seed)
(let ((hand (make-array 52 :fill-pointer 0))
(rng (make-rng seed)))
(dolist (d (split "A23456789TJQK"))
(dolist (s (split "♣♦♥♠"))
(vector-push (concatenate 'string d s) hand)))
(dotimes (i 52)
(rotatef (aref hand (- 51 i))
(aref hand (mod (funcall rng) (- 52 i)))))
(nreverse hand)))
(defun show-deck (seed)
(let ((hand (make-deck seed)))
(format t "~%Hand ~d~%" seed)
(dotimes (i 52)
(format t "~A " (aref hand i))
(if (= (mod i 8) 7) (write-line "")))))
(show-deck 1)
(show-deck 617) |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Haskell | Haskell | import Data.List
import Data.Map ((!))
import qualified Data.Map as M
-- represents a permutation in a cycle notation
cycleForm :: [Int] -> [[Int]]
cycleForm p = unfoldr getCycle $ M.fromList $ zip [0..] p
where
getCycle p
| M.null p = Nothing
| otherwise =
let Just ((x,y), m) = M.minViewWithKey p
c = if x == y then [] else takeWhile (/= x) (iterate (m !) y)
in Just (c ++ [x], foldr M.delete m c)
-- the set of Lyndon words generated by inverse Burrows—Wheeler transform
lyndonWords :: Ord a => [a] -> Int -> [[a]]
lyndonWords s n = map (ref !!) <$> cycleForm perm
where
ref = concat $ replicate (length s ^ (n - 1)) s
perm = s >>= (`elemIndices` ref)
-- returns the de Bruijn sequence of order n for an alphabeth s
deBruijn :: Ord a => [a] -> Int -> [a]
deBruijn s n = let lw = concat $ lyndonWords n s
in lw ++ take (n-1) lw |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Haskell | Haskell | {-# OPTIONS -fglasgow-exts #-}
data Check a b = Check { unCheck :: b } deriving (Eq, Ord)
class Checked a b where
check :: b -> Check a b
lift f x = f (unCheck x)
liftc f x = check $ f (unCheck x)
lift2 f x y = f (unCheck x) (unCheck y)
lift2c f x y = check $ f (unCheck x) (unCheck y)
lift2p f x y = (check u, check v) where (u,v) = f (unCheck x) (unCheck y)
instance Show b => Show (Check a b) where
show (Check x) = show x
showsPrec p (Check x) = showsPrec p x
instance (Enum b, Checked a b) => Enum (Check a b) where
succ = liftc succ
pred = liftc pred
toEnum = check . toEnum
fromEnum = lift fromEnum
instance (Num b, Checked a b) => Num (Check a b) where
(+) = lift2c (+)
(-) = lift2c (-)
(*) = lift2c (*)
negate = liftc negate
abs = liftc abs
signum = liftc signum
fromInteger = check . fromInteger
instance (Real b, Checked a b) => Real (Check a b) where
toRational = lift toRational
instance (Integral b, Checked a b) => Integral (Check a b) where
quot = lift2c quot
rem = lift2c rem
div = lift2c div
mod = lift2c mod
quotRem = lift2p quotRem
divMod = lift2p divMod
toInteger = lift toInteger |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Java | Java | import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.geometry.Point3D;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.input.KeyCode;
import javafx.scene.input.KeyEvent;
import javafx.scene.shape.MeshView;
import javafx.scene.shape.TriangleMesh;
import javafx.scene.transform.Rotate;
import javafx.stage.Stage;
public class DeathStar extends Application {
private static final int DIVISION = 200;// the bigger the higher resolution
float radius = 300;// radius of the sphere
@Override
public void start(Stage primaryStage) throws Exception {
Point3D otherSphere = new Point3D(-radius, 0, -radius * 1.5);
final TriangleMesh triangleMesh = createMesh(DIVISION, radius, otherSphere);
MeshView a = new MeshView(triangleMesh);
a.setTranslateY(radius);
a.setTranslateX(radius);
a.setRotationAxis(Rotate.Y_AXIS);
Scene scene = new Scene(new Group(a));
// uncomment if you want to move the other sphere
// scene.setOnKeyPressed(new EventHandler<KeyEvent>() {
// Point3D sphere = otherSphere;
//
// @Override
// public void handle(KeyEvent e) {
// KeyCode code = e.getCode();
// switch (code) {
// case UP:
// sphere = sphere.add(0, -10, 0);
// break;
// case DOWN:
// sphere = sphere.add(0, 10, 0);
// break;
// case LEFT:
// sphere = sphere.add(-10, 0, 0);
// break;
// case RIGHT:
// sphere = sphere.add(10, 0, 0);
// break;
// case W:
// sphere = sphere.add(0, 0, 10);
// break;
// case S:
// sphere = sphere.add(0, 0, -10);
// break;
// default:
// return;
// }
// a.setMesh(createMesh(DIVISION, radius, sphere));
//
// }
// });
primaryStage.setScene(scene);
primaryStage.show();
}
static TriangleMesh createMesh(final int division, final float radius, final Point3D centerOtherSphere) {
Rotate rotate = new Rotate(180, centerOtherSphere);
final int div2 = division / 2;
final int nPoints = division * (div2 - 1) + 2;
final int nTPoints = (division + 1) * (div2 - 1) + division * 2;
final int nFaces = division * (div2 - 2) * 2 + division * 2;
final float rDiv = 1.f / division;
float points[] = new float[nPoints * 3];
float tPoints[] = new float[nTPoints * 2];
int faces[] = new int[nFaces * 6];
int pPos = 0, tPos = 0;
for (int y = 0; y < div2 - 1; ++y) {
float va = rDiv * (y + 1 - div2 / 2) * 2 * (float) Math.PI;
float sin_va = (float) Math.sin(va);
float cos_va = (float) Math.cos(va);
float ty = 0.5f + sin_va * 0.5f;
for (int i = 0; i < division; ++i) {
double a = rDiv * i * 2 * (float) Math.PI;
float hSin = (float) Math.sin(a);
float hCos = (float) Math.cos(a);
points[pPos + 0] = hSin * cos_va * radius;
points[pPos + 2] = hCos * cos_va * radius;
points[pPos + 1] = sin_va * radius;
final Point3D point3D = new Point3D(points[pPos + 0], points[pPos + 1], points[pPos + 2]);
double distance = centerOtherSphere.distance(point3D);
if (distance <= radius) {
Point3D subtract = centerOtherSphere.subtract(point3D);
Point3D transform = rotate.transform(subtract);
points[pPos + 0] = (float) transform.getX();
points[pPos + 1] = (float) transform.getY();
points[pPos + 2] = (float) transform.getZ();
}
tPoints[tPos + 0] = 1 - rDiv * i;
tPoints[tPos + 1] = ty;
pPos += 3;
tPos += 2;
}
tPoints[tPos + 0] = 0;
tPoints[tPos + 1] = ty;
tPos += 2;
}
points[pPos + 0] = 0;
points[pPos + 1] = -radius;
points[pPos + 2] = 0;
points[pPos + 3] = 0;
points[pPos + 4] = radius;
points[pPos + 5] = 0;
pPos += 6;
int pS = (div2 - 1) * division;
float textureDelta = 1.f / 256;
for (int i = 0; i < division; ++i) {
tPoints[tPos + 0] = rDiv * (0.5f + i);
tPoints[tPos + 1] = textureDelta;
tPos += 2;
}
for (int i = 0; i < division; ++i) {
tPoints[tPos + 0] = rDiv * (0.5f + i);
tPoints[tPos + 1] = 1 - textureDelta;
tPos += 2;
}
int fIndex = 0;
for (int y = 0; y < div2 - 2; ++y) {
for (int x = 0; x < division; ++x) {
int p0 = y * division + x;
int p1 = p0 + 1;
int p2 = p0 + division;
int p3 = p1 + division;
int t0 = p0 + y;
int t1 = t0 + 1;
int t2 = t0 + division + 1;
int t3 = t1 + division + 1;
// add p0, p1, p2
faces[fIndex + 0] = p0;
faces[fIndex + 1] = t0;
faces[fIndex + 2] = p1 % division == 0 ? p1 - division : p1;
faces[fIndex + 3] = t1;
faces[fIndex + 4] = p2;
faces[fIndex + 5] = t2;
fIndex += 6;
// add p3, p2, p1
faces[fIndex + 0] = p3 % division == 0 ? p3 - division : p3;
faces[fIndex + 1] = t3;
faces[fIndex + 2] = p2;
faces[fIndex + 3] = t2;
faces[fIndex + 4] = p1 % division == 0 ? p1 - division : p1;
faces[fIndex + 5] = t1;
fIndex += 6;
}
}
int p0 = pS;
int tB = (div2 - 1) * (division + 1);
for (int x = 0; x < division; ++x) {
int p2 = x, p1 = x + 1, t0 = tB + x;
faces[fIndex + 0] = p0;
faces[fIndex + 1] = t0;
faces[fIndex + 2] = p1 == division ? 0 : p1;
faces[fIndex + 3] = p1;
faces[fIndex + 4] = p2;
faces[fIndex + 5] = p2;
fIndex += 6;
}
p0 = p0 + 1;
tB = tB + division;
int pB = (div2 - 2) * division;
for (int x = 0; x < division; ++x) {
int p1 = pB + x, p2 = pB + x + 1, t0 = tB + x;
int t1 = (div2 - 2) * (division + 1) + x, t2 = t1 + 1;
faces[fIndex + 0] = p0;
faces[fIndex + 1] = t0;
faces[fIndex + 2] = p1;
faces[fIndex + 3] = t1;
faces[fIndex + 4] = p2 % division == 0 ? p2 - division : p2;
faces[fIndex + 5] = t2;
fIndex += 6;
}
TriangleMesh m = new TriangleMesh();
m.getPoints().setAll(points);
m.getTexCoords().setAll(tPoints);
m.getFaces().setAll(faces);
return m;
}
public static void main(String[] args) {
launch(args);
}
}
|
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #Swift | Swift | func deconv(g: [Double], f: [Double]) -> [Double] {
let fs = f.count
var ret = [Double](repeating: 0, count: g.count - fs + 1)
for n in 0..<ret.count {
ret[n] = g[n]
let lower = n >= fs ? n - fs + 1 : 0
for i in lower..<n {
ret[n] -= ret[i] * f[n - i]
}
ret[n] /= f[0]
}
return ret
}
let h = [-8.0, -9.0, -3.0, -1.0, -6.0, 7.0]
let f = [-3.0, -6.0, -1.0, 8.0, -6.0, 3.0, -1.0, -9.0,
-9.0, 3.0, -2.0, 5.0, 2.0, -2.0, -7.0, -1.0]
let g = [24.0, 75.0, 71.0, -34.0, 3.0, 22.0, -45.0,
23.0, 245.0, 25.0, 52.0, 25.0, -67.0, -96.0,
96.0, 31.0, 55.0, 36.0, 29.0, -43.0, -7.0]
print("\(h.map({ Int($0) }))")
print("\(deconv(g: g, f: f).map({ Int($0) }))\n")
print("\(f.map({ Int($0) }))")
print("\(deconv(g: g, f: h).map({ Int($0) }))") |
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #Tcl | Tcl | package require Tcl 8.5
namespace eval 1D {
namespace ensemble create; # Will be same name as namespace
namespace export convolve deconvolve
# Access core language math utility commands
namespace path {::tcl::mathfunc ::tcl::mathop}
# Utility for converting a matrix to Reduced Row Echelon Form
# From http://rosettacode.org/wiki/Reduced_row_echelon_form#Tcl
proc toRREF {m} {
set lead 0
set rows [llength $m]
set cols [llength [lindex $m 0]]
for {set r 0} {$r < $rows} {incr r} {
if {$cols <= $lead} {
break
}
set i $r
while {[lindex $m $i $lead] == 0} {
incr i
if {$rows == $i} {
set i $r
incr lead
if {$cols == $lead} {
# Tcl can't break out of nested loops
return $m
}
}
}
# swap rows i and r
foreach j [list $i $r] row [list [lindex $m $r] [lindex $m $i]] {
lset m $j $row
}
# divide row r by m(r,lead)
set val [lindex $m $r $lead]
for {set j 0} {$j < $cols} {incr j} {
lset m $r $j [/ [double [lindex $m $r $j]] $val]
}
for {set i 0} {$i < $rows} {incr i} {
if {$i != $r} {
# subtract m(i,lead) multiplied by row r from row i
set val [lindex $m $i $lead]
for {set j 0} {$j < $cols} {incr j} {
lset m $i $j \
[- [lindex $m $i $j] [* $val [lindex $m $r $j]]]
}
}
}
incr lead
}
return $m
}
# How to apply a 1D convolution of two "functions"
proc convolve {f h} {
set g [lrepeat [+ [llength $f] [llength $h] -1] 0]
set fi -1
foreach fv $f {
incr fi
set hi -1
foreach hv $h {
set gi [+ $fi [incr hi]]
lset g $gi [+ [lindex $g $gi] [* $fv $hv]]
}
}
return $g
}
# How to apply a 1D deconvolution of two "functions"
proc deconvolve {g f} {
# Compute the length of the result vector
set hlen [- [llength $g] [llength $f] -1]
# Build a matrix of equations to solve
set matrix {}
set i -1
foreach gv $g {
lappend matrix [list {*}[lrepeat $hlen 0] $gv]
set j [incr i]
foreach fv $f {
if {$j < 0} {
break
} elseif {$j < $hlen} {
lset matrix $i $j $fv
}
incr j -1
}
}
# Convert to RREF, solving the system of simultaneous equations
set reduced [toRREF $matrix]
# Extract the deconvolution from the last column of the reduced matrix
for {set i 0} {$i<$hlen} {incr i} {
lappend result [lindex $reduced $i end]
}
return $result
}
} |
http://rosettacode.org/wiki/Deconvolution/2D%2B | Deconvolution/2D+ | This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in
d
{\displaystyle {\mathit {d}}}
dimensions of two functions
H
,
F
:
Z
d
→
R
{\displaystyle H,F:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to real numbers as the function
G
:
Z
d
→
R
{\displaystyle G:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
also taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to reals and satisfying
G
(
n
0
,
…
,
n
d
−
1
)
=
∑
m
0
=
−
∞
∞
…
∑
m
d
−
1
=
−
∞
∞
F
(
m
0
,
…
,
m
d
−
1
)
H
(
n
0
−
m
0
,
…
,
n
d
−
1
−
m
d
−
1
)
{\displaystyle G(n_{0},\dots ,n_{d-1})=\sum _{m_{0}=-\infty }^{\infty }\dots \sum _{m_{d-1}=-\infty }^{\infty }F(m_{0},\dots ,m_{d-1})H(n_{0}-m_{0},\dots ,n_{d-1}-m_{d-1})}
for all
d
{\displaystyle {\mathit {d}}}
-tuples of integers
(
n
0
,
…
,
n
d
−
1
)
∈
Z
d
{\displaystyle (n_{0},\dots ,n_{d-1})\in \mathbb {Z} ^{d}}
. Assume
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
(and therefore
G
{\displaystyle {\mathit {G}}}
) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists
f
{\displaystyle {\mathit {f}}}
,
h
{\displaystyle {\mathit {h}}}
, and
g
{\displaystyle {\mathit {g}}}
.
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by solving for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
. (See Deconvolution/1D for details.)
The function should work for
g
{\displaystyle {\mathit {g}}}
of arbitrary length in each dimension (i.e., not hard coded or constant) and
f
{\displaystyle {\mathit {f}}}
of any length up to that of
g
{\displaystyle {\mathit {g}}}
in the corresponding dimension.
The deconv function will need to be parameterized by the dimension
d
{\displaystyle {\mathit {d}}}
unless the dimension can be inferred from the data structures representing
g
{\displaystyle {\mathit {g}}}
and
f
{\displaystyle {\mathit {f}}}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
f
{\displaystyle {\mathit {f}}}
is
h
{\displaystyle {\mathit {h}}}
and that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
h
{\displaystyle {\mathit {h}}}
is
f
{\displaystyle {\mathit {f}}}
. Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2]
f: [ 6, -9, -7, -5]
g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
f: [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
g: [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f: [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g: [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
| #Julia | Julia | using FFTW, DSP
const h1 = [-8, 2, -9, -2, 9, -8, -2]
const f1 = [ 6, -9, -7, -5]
const g1 = [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
const h2nested = [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
const f2nested = [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
const g2nested = [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
const h3nested = [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
const f3nested = [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
const g3nested = [
[ [54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[ [-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[ [-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[ [56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
function flatnested2d(a, siz)
ret = zeros(Int, prod(siz))
for i in 1:length(a), j in 1:length(a[1])
ret[siz[2] * (i - 1) + j] = a[i][j]
end
Float64.(ret)
end
function flatnested3d(a, siz)
ret = zeros(Int, prod(siz))
for i in 1:length(a), j in 1:length(a[1]), k in 1:length(a[1][1])
ret[siz[2] * siz[3] * (i - 1) + siz[3] * (j - 1) + k] = a[i][j][k]
end
Float64.(ret)
end
topow2(siz) = map(x -> nextpow(2, x), siz)
deconv1d(f1, g1) = Int.(round.(deconv(Float64.(g1), Float64.(f1))))
function deconv2d(f2, g2, xd2)
siz = topow2([length(g2), length(g2[1])])
h2 = Int.(round.(real.(ifft(fft(flatnested2d(g2, siz)) ./ fft(flatnested2d(f2, siz))))))
[[h2[siz[2] * (i - 1) + j] for j in 1:xd2[2]] for i in 1:xd2[1]]
end
function deconv3d(f3, g3, xd3)
siz = topow2([length(g3), length(g3[1]), length(g3[1][1])])
h3 = Int.(round.(real.(ifft(fft(flatnested3d(g3, siz)) ./ fft(flatnested3d(f3, siz))))))
[[[h3[siz[2] * siz[3] *(i - 1) + siz[3] * (j - 1) + k] for k in 1:xd3[3]]
for j in 1:xd3[2]] for i in 1:xd3[1]]
end
deconvn(f, g, tup=()) = length(tup) < 2 ? deconv1d(f, g) :
length(tup) == 2 ? deconv2d(f, g, tup) :
length(tup) == 3 ? deconv3d(f, g, tup) :
println("Array nesting > 3D not supported")
deconvn(f1, g1) # 1D
deconvn(f2nested, g2nested, (length(h2nested), length(h2nested[1]))) # 2D
println(deconvn(f3nested, g3nested,
(length(h3nested), length(h3nested[1]), length(h3nested[1][1])))) # 3D
|
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #D | D | import std.stdio, std.conv, std.algorithm, std.range;
struct RandomGenerator {
uint seed = 1;
@property uint next() pure nothrow @safe @nogc {
seed = (seed * 214_013 + 2_531_011) & int.max;
return seed >> 16;
}
}
struct Deck {
int[52] cards;
void deal(in uint seed) pure nothrow @safe @nogc {
enum int nc = cards.length; // Must be signed for iota.
nc.iota.retro.copy(cards[]);
auto rnd = RandomGenerator(seed);
foreach (immutable i, ref c; cards)
c.swap(cards[(nc - 1) - rnd.next % (nc - i)]);
}
void show() const @safe {
writefln("%(%-( %s%)\n%)",
cards[]
.chunks(8)
.map!(row => row.map!(c => only("A23456789TJQK"[c / 4],
"CDHS"[c % 4]))));
}
}
void main(in string[] args) @safe {
immutable seed = (args.length == 2) ? args[1].to!uint : 11_982;
writeln("Hand ", seed);
Deck cards;
cards.deal(seed);
cards.show;
} |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #J | J | NB. implement inverse Burrows—Wheeler transform sequence method
repeat_alphabet=: [: , [: i.&> (^ <:) # [
assert 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 -: 2 repeat_alphabet 4
de_bruijn=: ({~ ([: ; [: C. /:^:2))@:repeat_alphabet NB. K de_bruijn N
pins=: #&10 #: [: i. 10&^ NB. pins y generates all y digit PINs
groups=: [ ]\ ] , ({.~ <:)~ NB. length x infixes of sequence y cyclically extended by x-1
verify_PINs=: (/:~@:groups -: pins@:[) NB. LENGTH verify_PINs SEQUENCE
|
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Java | Java | import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.function.BiConsumer;
public class DeBruijn {
public interface Recursable<T, U> {
void apply(T t, U u, Recursable<T, U> r);
}
public static <T, U> BiConsumer<T, U> recurse(Recursable<T, U> f) {
return (t, u) -> f.apply(t, u, f);
}
private static String deBruijn(int k, int n) {
byte[] a = new byte[k * n];
Arrays.fill(a, (byte) 0);
List<Byte> seq = new ArrayList<>();
BiConsumer<Integer, Integer> db = recurse((t, p, f) -> {
if (t > n) {
if (n % p == 0) {
for (int i = 1; i < p + 1; ++i) {
seq.add(a[i]);
}
}
} else {
a[t] = a[t - p];
f.apply(t + 1, p, f);
int j = a[t - p] + 1;
while (j < k) {
a[t] = (byte) (j & 0xFF);
f.apply(t + 1, t, f);
j++;
}
}
});
db.accept(1, 1);
StringBuilder sb = new StringBuilder();
for (Byte i : seq) {
sb.append("0123456789".charAt(i));
}
sb.append(sb.subSequence(0, n - 1));
return sb.toString();
}
private static boolean allDigits(String s) {
for (int i = 0; i < s.length(); ++i) {
char c = s.charAt(i);
if (!Character.isDigit(c)) {
return false;
}
}
return true;
}
private static void validate(String db) {
int le = db.length();
int[] found = new int[10_000];
Arrays.fill(found, 0);
List<String> errs = new ArrayList<>();
// Check all strings of 4 consecutive digits within 'db'
// to see if all 10,000 combinations occur without duplication.
for (int i = 0; i < le - 3; ++i) {
String s = db.substring(i, i + 4);
if (allDigits(s)) {
int n = Integer.parseInt(s);
found[n]++;
}
}
for (int i = 0; i < 10_000; ++i) {
if (found[i] == 0) {
errs.add(String.format(" PIN number %d is missing", i));
} else if (found[i] > 1) {
errs.add(String.format(" PIN number %d occurs %d times", i, found[i]));
}
}
if (errs.isEmpty()) {
System.out.println(" No errors found");
} else {
String pl = (errs.size() == 1) ? "" : "s";
System.out.printf(" %d error%s found:\n", errs.size(), pl);
errs.forEach(System.out::println);
}
}
public static void main(String[] args) {
String db = deBruijn(10, 4);
System.out.printf("The length of the de Bruijn sequence is %d\n\n", db.length());
System.out.printf("The first 130 digits of the de Bruijn sequence are: %s\n\n", db.substring(0, 130));
System.out.printf("The last 130 digits of the de Bruijn sequence are: %s\n\n", db.substring(db.length() - 130));
System.out.println("Validating the de Bruijn sequence:");
validate(db);
StringBuilder sb = new StringBuilder(db);
String rdb = sb.reverse().toString();
System.out.println();
System.out.println("Validating the de Bruijn sequence:");
validate(rdb);
sb = new StringBuilder(db);
sb.setCharAt(4443, '.');
System.out.println();
System.out.println("Validating the overlaid de Bruijn sequence:");
validate(sb.toString());
}
} |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #J | J |
NB. z locale by default on path.
type_z_=: 3!:0
nameClass_z_=: 4!:0
signalError_z_=: 13!:8
NB. create a restricted object from an appropriate integer
create_restrict_ =: monad define
'Domain error: expected integer' assert 1 4 e.~ type y NB. or Boolean
'Domain error: not on [1,10]' assert (0 -.@:e. [: , (0&<*.<&11)) y
value=: y
)
add_restrict_=: monad define
if. 0 = nameClass<'value__y' do.
(value + value__y) conew 0{::coname''
else.
'value unavailable'signalError 21
end.
)
|
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #JavaScript | JavaScript |
<!DOCTYPE html>
<html>
<body style="margin:0">
<canvas id="myCanvas" width="250" height="250" style="border:1px solid #d3d3d3;">
Your browser does not support the HTML5 canvas tag.
</canvas>
<script>
var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");
//Fill the canvas with a dark gray background
ctx.fillStyle = "#222222";
ctx.fillRect(0,0,250,250);
// Create radial gradient for large base circle
var grd = ctx.createRadialGradient(225,175,190,225,150,130);
grd.addColorStop(0,"#EEEEEE");
grd.addColorStop(1,"black");
//Apply gradient and fill circle
ctx.fillStyle = grd;
ctx.beginPath();
ctx.arc(125,125,105,0,2*Math.PI);
ctx.fill();
// Create linear gradient for small inner circle
var grd = ctx.createLinearGradient(75,90,102,90);
grd.addColorStop(0,"black");
grd.addColorStop(1,"gray");
//Apply gradient and fill circle
ctx.fillStyle = grd;
ctx.beginPath();
ctx.arc(90,90,30,0,2*Math.PI);
ctx.fill();
//Add another small circle on top of the previous one to enhance the "shadow"
ctx.fillStyle = "black";
ctx.beginPath();
ctx.arc(80,90,17,0,2*Math.PI);
ctx.fill();
</script>
</body>
</html>
|
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #Ursala | Ursala | #import std
#import nat
band = pad0+ ~&rSS+ zipt^*D(~&r,^lrrSPT/~<K33tx zipt^/~&r ~&lSNyCK33+ zipp0)^/~&rx ~&B->NlNSPC ~&bt
deconv = lapack..dgelsd^\~&l ~&||0.!**+ band
|
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #Vlang | Vlang | fn main() {
h := [f64(-8), -9, -3, -1, -6, 7]
f := [f64(-3), -6, -1, 8, -6, 3, -1, -9, -9, 3, -2, 5, 2, -2, -7, -1]
g := [f64(24), 75, 71, -34, 3, 22, -45, 23, 245, 25, 52, 25, -67, -96,
96, 31, 55, 36, 29, -43, -7]
println(h)
println(deconv(g, f))
println(f)
println(deconv(g, h))
}
fn deconv(g []f64, f []f64) []f64 {
mut h := []f64{len: g.len-f.len+1}
for n in 0..h.len {
h[n] = g[n]
mut lower := 0
if n >= f.len {
lower = n - f.len + 1
}
for i in lower..n {
h[n] -= h[i] * f[n-i]
}
h[n] /= f[0]
}
return h
} |
http://rosettacode.org/wiki/Deconvolution/2D%2B | Deconvolution/2D+ | This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in
d
{\displaystyle {\mathit {d}}}
dimensions of two functions
H
,
F
:
Z
d
→
R
{\displaystyle H,F:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to real numbers as the function
G
:
Z
d
→
R
{\displaystyle G:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
also taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to reals and satisfying
G
(
n
0
,
…
,
n
d
−
1
)
=
∑
m
0
=
−
∞
∞
…
∑
m
d
−
1
=
−
∞
∞
F
(
m
0
,
…
,
m
d
−
1
)
H
(
n
0
−
m
0
,
…
,
n
d
−
1
−
m
d
−
1
)
{\displaystyle G(n_{0},\dots ,n_{d-1})=\sum _{m_{0}=-\infty }^{\infty }\dots \sum _{m_{d-1}=-\infty }^{\infty }F(m_{0},\dots ,m_{d-1})H(n_{0}-m_{0},\dots ,n_{d-1}-m_{d-1})}
for all
d
{\displaystyle {\mathit {d}}}
-tuples of integers
(
n
0
,
…
,
n
d
−
1
)
∈
Z
d
{\displaystyle (n_{0},\dots ,n_{d-1})\in \mathbb {Z} ^{d}}
. Assume
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
(and therefore
G
{\displaystyle {\mathit {G}}}
) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists
f
{\displaystyle {\mathit {f}}}
,
h
{\displaystyle {\mathit {h}}}
, and
g
{\displaystyle {\mathit {g}}}
.
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by solving for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
. (See Deconvolution/1D for details.)
The function should work for
g
{\displaystyle {\mathit {g}}}
of arbitrary length in each dimension (i.e., not hard coded or constant) and
f
{\displaystyle {\mathit {f}}}
of any length up to that of
g
{\displaystyle {\mathit {g}}}
in the corresponding dimension.
The deconv function will need to be parameterized by the dimension
d
{\displaystyle {\mathit {d}}}
unless the dimension can be inferred from the data structures representing
g
{\displaystyle {\mathit {g}}}
and
f
{\displaystyle {\mathit {f}}}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
f
{\displaystyle {\mathit {f}}}
is
h
{\displaystyle {\mathit {h}}}
and that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
h
{\displaystyle {\mathit {h}}}
is
f
{\displaystyle {\mathit {f}}}
. Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2]
f: [ 6, -9, -7, -5]
g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
f: [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
g: [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f: [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g: [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | Round[ListDeconvolve[{6, -9, -7, -5}, {-48, 84, -16, 95, 125, -70, 7, 29, 54, 10}, Method -> "Wiener"]]
Round[ListDeconvolve[{{-5, 2, -2, -6, -7}, {9, 7, -6, 5, -7}, {1, -1, 9, 2, -7}, {5, 9, -9, 2, -5}, {-8, 5, -2, 8, 5}},
{{40, -21, 53, 42, 105, 1, 87, 60, 39, -28}, {-92, -64, 19, -167, -71, -47, 128, -109, 40, -21},
{58, 85, -93, 37, 101, -14, 5, 37, -76, -56}, {-90, -135, 60, -125, 68, 53, 223, 4, -36, -48},
{78, 16, 7, -199, 156, -162, 29, 28, -103, -10}, {-62, -89, 69, -61, 66, 193, -61, 71, -8, -30},
{48, -6, 21, -9, -150, -22, -56, 32, 85, 25}}, Method -> "Wiener"]]
Round[ListDeconvolve [{{{-9, 5, -8}, {3, 5, 1}}, {{-1, -7, 2}, {-5, -6, 6}}, {{8, 5, 8}, {-2, -6, -4}}},
{{{54, 42, 53, -42, 85, -72}, {45, -170, 94, -36, 48, 73}, {-39, 65, -112, -16, -78, -72},
{6, -11, -6, 62, 49, 8}}, {{-57, 49, -23, 52, -135, 66}, {-23, 127, -58, -5, -118, 64}, {87, -16, 121, 23, -41, -12},
{-19, 29, 35, -148, -11, 45}}, {{-55, -147, -146, -31, 55, 60}, {-88, -45, -28, 46, -26, -144},
{-12, -107, -34, 150, 249, 66}, {11, -15, -34, 27, -78, -50}}, {{56, 67, 108, 4, 2, -48}, {58, 67, 89, 32, 32, -8},
{-42, -31, -103, -30, -23, -8}, {6, 4, -26, -10, 26, 12}}}, Method -> "Wiener"]] |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #Delphi | Delphi |
program Deal_cards_for_FreeCell;
{$APPTYPE CONSOLE}
uses
System.SysUtils;
type
TRandom = record
Seed: Int64;
function Next: Integer;
end;
TCard = record
const
kSuits = '♣♦♥♠';
kValues = 'A23456789TJQK';
var
Value: Integer;
Suit: Integer;
procedure Create(rawvalue: Integer); overload;
procedure Create(value, suit: Integer); overload;
procedure Assign(other: TCard);
function ToString: string;
end;
TDeck = record
Cards: TArray<TCard>;
procedure Create(Seed: Integer);
function ToString: string;
end;
{ TRandom }
function TRandom.Next: Integer;
begin
Seed := ((Seed * 214013 + 2531011) and Integer.MaxValue);
Result := Seed shr 16;
end;
{ TCard }
procedure TCard.Create(rawvalue: Integer);
begin
Create(rawvalue div 4, rawvalue mod 4);
end;
procedure TCard.Assign(other: TCard);
begin
Create(other.Value, other.Suit);
end;
procedure TCard.Create(value, suit: Integer);
begin
self.Value := value;
self.Suit := suit;
end;
function TCard.ToString: string;
begin
result := format('%s%s', [kValues[value + 1], kSuits[suit + 1]]);
end;
{ TDeck }
procedure TDeck.Create(Seed: Integer);
var
r: TRandom;
i, j: integer;
tmp: Tcard;
begin
r.Seed := Seed;
SetLength(Cards, 52);
for i := 0 to 51 do
Cards[i].Create(51 - i);
for i := 0 to 50 do
begin
j := 51 - (r.Next mod (52 - i));
tmp.Assign(Cards[i]);
Cards[i].Assign(Cards[j]);
Cards[j].Assign(tmp);
end;
end;
function TDeck.ToString: string;
var
i: Integer;
begin
Result := '';
for i := 0 to length(Cards) - 1 do
begin
Result := Result + Cards[i].ToString;
if i mod 8 = 7 then
Result := Result + #10
else
Result := Result + ' ';
end;
end;
var
Deck: TDeck;
begin
Deck.Create(1);
Writeln('Deck 1'#10, Deck.ToString, #10);
Deck.Create(617);
Writeln('Deck 617'#10, Deck.ToString);
readln;
end. |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Julia | Julia | function debruijn(k::Integer, n::Integer)
alphabet = b"0123456789abcdefghijklmnopqrstuvwxyz"[1:k]
a = zeros(UInt8, k * n)
seq = UInt8[]
function db(t, p)
if t > n
if n % p == 0
append!(seq, a[2:p+1])
end
else
a[t + 1] = a[t - p + 1]
db(t + 1, p)
for j in a[t-p+1]+1:k-1
a[t + 1] = j
db(t + 1, t)
end
end
end
db(1, 1)
return String([alphabet[i + 1] for i in vcat(seq, seq[1:n-1])])
end
function verifyallPIN(str, k, n, deltaposition=0)
if deltaposition != 0
str = str[1:deltaposition-1] * "." * str[deltaposition+1:end]
end
result = true
for i in 1:k^n-1
pin = string(i, pad=n)
if !occursin(pin, str)
println("PIN $pin does not occur in the sequence.")
result = false
end
end
println("The sequence does ", result ? "" : "not ", "contain all PINs.")
end
const s = debruijn(10, 4)
println("The length of the sequence is $(length(s)). The first 130 digits are:\n",
s[1:130], "\nand the last 130 digits are:\n", s[end-130:end])
print("Testing sequence: "), verifyallPIN(s, 10, 4)
print("Testing the reversed sequence: "), verifyallPIN(reverse(s), 10, 4)
println("\nAfter replacing 4444th digit with \'.\':"), verifyallPIN(s, 10, 4, 4444)
|
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Kotlin | Kotlin | const val digits = "0123456789"
fun deBruijn(k: Int, n: Int): String {
val alphabet = digits.substring(0, k)
val a = ByteArray(k * n)
val seq = mutableListOf<Byte>()
fun db(t: Int, p: Int) {
if (t > n) {
if (n % p == 0) {
seq.addAll(a.sliceArray(1..p).asList())
}
} else {
a[t] = a[t - p]
db(t + 1, p)
var j = a[t - p] + 1
while (j < k) {
a[t] = j.toByte()
db(t + 1, t)
j++
}
}
}
db(1, 1)
val buf = StringBuilder()
for (i in seq) {
buf.append(alphabet[i.toInt()])
}
val b = buf.toString()
return b + b.subSequence(0, n - 1)
}
fun allDigits(s: String): Boolean {
for (c in s) {
if (c < '0' || '9' < c) {
return false
}
}
return true
}
fun validate(db: String) {
val le = db.length
val found = MutableList(10_000) { 0 }
val errs = mutableListOf<String>()
// Check all strings of 4 consecutive digits within 'db'
// to see if all 10,000 combinations occur without duplication.
for (i in 0 until le - 3) {
val s = db.substring(i, i + 4)
if (allDigits(s)) {
val n = s.toInt()
found[n]++
}
}
for (i in 0 until 10_000) {
if (found[i] == 0) {
errs.add(" PIN number %04d missing".format(i))
} else if (found[i] > 1) {
errs.add(" PIN number %04d occurs %d times".format(i, found[i]))
}
}
val lerr = errs.size
if (lerr == 0) {
println(" No errors found")
} else {
val pl = if (lerr == 1) {
""
} else {
"s"
}
println(" $lerr error$pl found:")
println(errs.joinToString("\n"))
}
}
fun main() {
var db = deBruijn(10, 4)
val le = db.length
println("The length of the de Bruijn sequence is $le")
println("\nThe first 130 digits of the de Bruijn sequence are: ${db.subSequence(0, 130)}")
println("\nThe last 130 digits of the de Bruijn sequence are: ${db.subSequence(le - 130, le)}")
println("\nValidating the deBruijn sequence:")
validate(db)
println("\nValidating the reversed deBruijn sequence:")
validate(db.reversed())
val bytes = db.toCharArray()
bytes[4443] = '.'
db = String(bytes)
println("\nValidating the overlaid deBruijn sequence:")
validate(db)
} |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Java | Java | class BoundedIntOutOfBoundsException extends Exception
{
public BoundedIntOutOfBoundsException(int v, int l, int u) {
super("value " + v + " is out of bounds [" + l + "," + u + "]");
}
}
class BoundedInt {
private int value;
private int lower;
private int upper;
public BoundedInt(int l, int u) {
lower = Math.min(l, u);
upper = Math.max(l, u);
}
private boolean checkBounds(int v) {
return (v >= this.lower) && (v <= this.upper);
}
public void assign(BoundedInt i) throws BoundedIntOutOfBoundsException {{
assign(i.value()); //could still throw Exception if the other BoundedInt has different bounds
}
public void assign(int v) throws BoundedIntOutOfBoundsException {
if ( checkBounds(v) ) {
this.value = v;
} else {
throw new BoundedIntOutOfBoundsException(v, this.lower, this.upper);
}
}
public int add(BoundedInt i) throws BoundedIntOutOfBoundsException {
return add(i.value());
}
public int add(int i) throws BoundedIntOutOfBoundsException {
if ( checkBounds(this.value + i) ) {
this.value += i;
} else {
throw new BoundedIntOutOfBoundsException(this.value + i, this.lower, this.upper);
}
return this.value;
}
public int value() {
return this.value;
}
}
public class Bounded {
public static void main(String[] args) throws BoundedIntOutOfBoundsException {
BoundedInt a = new BoundedInt(1, 10);
BoundedInt b = new BoundedInt(1, 10);
a.assign(6);
try {
b.assign(12);
} catch (Exception e) {
System.out.println(e.getMessage());
}
b.assign(9);
try {
a.add(b.value());
} catch (Exception e) {
System.out.println(e.getMessage());
}
}
} |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Julia | Julia | # run in REPL
using GLMakie
function deathstar()
n = 60
θ = [0; (0.5: n - 0.5) / n; 1]
φ = [(0: 2n - 2) * 2 / (2n - 1); 2]
# if x is +0.9 radius units, replace it with the coordinates of sphere surface
# at (1.2,0,0) center, radius 0.5 units
x = [(x1 = cospi(φ)*sinpi(θ)) > 0.9 ? 1.2 - x1 * 0.5 : x1 for θ in θ, φ in φ]
y = [sinpi(φ)*sinpi(θ) for θ in θ, φ in φ]
z = [cospi(θ) for θ in θ, φ in φ]
scene = Scene(backgroundcolor=:black)
surface!(scene, x, y, z, color = rand(RGBAf0, 124, 124), show_axis=false)
return scene
end
scene = deathstar()
|
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #LSL | LSL | default {
state_entry() {
llSetPrimitiveParams([PRIM_NAME, "RosettaCode DeathStar"]);
llSetPrimitiveParams([PRIM_DESC, llGetObjectName()]);
llSetPrimitiveParams([PRIM_TYPE, PRIM_TYPE_SPHERE, PRIM_HOLE_CIRCLE, <0.0, 1.0, 0.0>, 0.0, <0.0, 0.0, 0.0>, <0.12, 1.0, 0.0>]);
llSetPrimitiveParams([PRIM_ROTATION, <-0.586217, 0.395411, -0.586217, 0.395411>]);
llSetPrimitiveParams([PRIM_TEXTURE, ALL_SIDES, TEXTURE_BLANK, ZERO_VECTOR, ZERO_VECTOR, 0.0]);
llSetPrimitiveParams([PRIM_TEXT, llGetObjectName(), <1.0, 1.0, 1.0>, 1.0]);
llSetPrimitiveParams([PRIM_COLOR, ALL_SIDES, <0.5, 0.5, 0.5>, 1.0]);
llSetPrimitiveParams([PRIM_BUMP_SHINY, ALL_SIDES, PRIM_SHINY_HIGH, PRIM_BUMP_NONE]);
llSetPrimitiveParams([PRIM_SIZE, <10.0, 10.0, 10.0>]);
llSetPrimitiveParams([PRIM_OMEGA, <0.0, 0.0, 1.0>, 1.0, 1.0]);
}
} |
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #Wren | Wren | var deconv = Fn.new { |g, f|
var h = List.filled(g.count - f.count + 1, 0)
for (n in 0...h.count) {
h[n] = g[n]
var lower = (n >= f.count) ? n - f.count + 1 : 0
var i = lower
while (i < n) {
h[n] = h[n] - h[i]*f[n-i]
i = i + 1
}
h[n] = h[n] / f[0]
}
return h
}
var h = [-8, -9, -3, -1, -6, 7]
var f = [-3, -6, -1, 8, -6, 3, -1, -9, -9, 3, -2, 5, 2, -2, -7, -1]
var g = [24, 75, 71, -34, 3, 22, -45, 23, 245, 25, 52, 25, -67, -96, 96, 31, 55, 36, 29, -43, -7]
System.print(h)
System.print(deconv.call(g, f))
System.print(f)
System.print(deconv.call(g, h)) |
http://rosettacode.org/wiki/Deconvolution/2D%2B | Deconvolution/2D+ | This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in
d
{\displaystyle {\mathit {d}}}
dimensions of two functions
H
,
F
:
Z
d
→
R
{\displaystyle H,F:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to real numbers as the function
G
:
Z
d
→
R
{\displaystyle G:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
also taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to reals and satisfying
G
(
n
0
,
…
,
n
d
−
1
)
=
∑
m
0
=
−
∞
∞
…
∑
m
d
−
1
=
−
∞
∞
F
(
m
0
,
…
,
m
d
−
1
)
H
(
n
0
−
m
0
,
…
,
n
d
−
1
−
m
d
−
1
)
{\displaystyle G(n_{0},\dots ,n_{d-1})=\sum _{m_{0}=-\infty }^{\infty }\dots \sum _{m_{d-1}=-\infty }^{\infty }F(m_{0},\dots ,m_{d-1})H(n_{0}-m_{0},\dots ,n_{d-1}-m_{d-1})}
for all
d
{\displaystyle {\mathit {d}}}
-tuples of integers
(
n
0
,
…
,
n
d
−
1
)
∈
Z
d
{\displaystyle (n_{0},\dots ,n_{d-1})\in \mathbb {Z} ^{d}}
. Assume
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
(and therefore
G
{\displaystyle {\mathit {G}}}
) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists
f
{\displaystyle {\mathit {f}}}
,
h
{\displaystyle {\mathit {h}}}
, and
g
{\displaystyle {\mathit {g}}}
.
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by solving for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
. (See Deconvolution/1D for details.)
The function should work for
g
{\displaystyle {\mathit {g}}}
of arbitrary length in each dimension (i.e., not hard coded or constant) and
f
{\displaystyle {\mathit {f}}}
of any length up to that of
g
{\displaystyle {\mathit {g}}}
in the corresponding dimension.
The deconv function will need to be parameterized by the dimension
d
{\displaystyle {\mathit {d}}}
unless the dimension can be inferred from the data structures representing
g
{\displaystyle {\mathit {g}}}
and
f
{\displaystyle {\mathit {f}}}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
f
{\displaystyle {\mathit {f}}}
is
h
{\displaystyle {\mathit {h}}}
and that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
h
{\displaystyle {\mathit {h}}}
is
f
{\displaystyle {\mathit {f}}}
. Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2]
f: [ 6, -9, -7, -5]
g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
f: [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
g: [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f: [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g: [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
| #Nim | Nim | import sequtils, typetraits
type Size = uint64
type M[T: SomeNumber] = object
dims: seq[Size]
subsizes: seq[Size]
data: seq[T]
####################################################################################################
# Miscellaneous.
func dotProduct[T: SomeNumber](a, b: openArray[T]): T =
assert a.len == b.len
for i in 0..a.high:
result += a[i] * b[i]
####################################################################################################
# Operations on M objects.
func setDimensions(m: var M; dimensions: varargs[Size]) =
for dim in dimensions:
if dim == 0:
raise newException(IndexDefect, "wrong dimension: 0")
m.dims = @dimensions
m.subsizes = m.dims
for i in 0..dimensions.high:
m.subsizes[i] = m.dims[(i+1)..^1].foldl(a * b, Size(1))
let dlength = m.dims[0] * m.subsizes[0]
if Size(m.data.len) != dlength:
m.data.setLen(dlength)
#---------------------------------------------------------------------------------------------------
func initM(m: var M; dimensions: varargs[Size]) =
m.setDimensions(dimensions)
#---------------------------------------------------------------------------------------------------
func set1DArray(m: var M; t: varargs[m.T]) =
let minLen = min(m.data.len, t.len)
m.data.setLen(minLen)
m.data[0..<minLen] = t[0..<minLen]
#---------------------------------------------------------------------------------------------------
func seqToIdx(m: M; s: Size): seq[Size] =
var acc = s
for subsize in m.subsizes:
result.add(acc div subsize)
acc = acc mod subsize
#---------------------------------------------------------------------------------------------------
template size(m: M): Size = Size(m.data.len)
#---------------------------------------------------------------------------------------------------
func checkBounds(m: M; indexes: varargs[Size]): bool =
if indexes.len > m.dims.len:
return false
for i, dim in indexes:
if dim >= m.dims[i]:
return false
result = true
#---------------------------------------------------------------------------------------------------
func `[]`(m: M; indexes: varargs[Size]): m.T =
if not m.checkBounds(indexes):
raise newException(IndexDefect, "index out of range: " & $indexes)
m.data[dotProduct(indexes, m.subsizes)]
#---------------------------------------------------------------------------------------------------
func `[]=`(m: M; indexes: varargs[int]; val: m.T) =
if not m.checkBounds(indexes):
raise newException(IndexDefect, "index out of range: " & $indexes)
m.data[dotProduct(indexes, m.subsizes)] = val
#---------------------------------------------------------------------------------------------------
func `==`(a, b: M): bool = a.dims == b.dims and a.data == b.data
#---------------------------------------------------------------------------------------------------
func `$`(m: M): string = $m.data
####################################################################################################
# Convolution/deconvolution.
func convolute(h, f: M): M =
## Result is "g".
var dims = h.dims
for i in 0..dims.high:
dims[i] += f.dims[i] - 1
result.initM(dims)
let bound = result.size
for i in 0..<h.size:
let hIndexes = h.seqToIdx(i)
for j in 0..<f.size:
let fIndexes = f.seqToIdx(j)
for k in 0..dims.high:
dims[k] = hIndexes[k] + fIndexes[k]
let idx1d = dotProduct(dims, result.subsizes)
if idx1d < bound:
result.data[idx1d] += h.data[i] * f.data[j]
else:
break # Bound reached.
#---------------------------------------------------------------------------------------------------
func deconvolute(g, f: M): M =
## Result is "h".
var dims = g.dims
for i, d in dims:
if d + 1 <= f.dims[i]:
raise newException(IndexDefect, "a dimension is zero or negative")
for i in 0..dims.high:
dims[i] -= f.dims[i] - 1
result.initM(dims)
for i in 0..<result.size:
let iIndexes = result.seqToIdx(i)
result.data[i] = g[iIndexes]
for j in 0..<i:
let jIndexes = result.seqToIdx(j)
for k in 0..dims.high:
dims[k] = iIndexes[k] - jIndexes[k]
if f.checkBounds(dims):
result.data[i] -= result.data[j] * f[dims]
when result.T is SomeInteger:
result.data[i] = result.data[i] div f.data[0]
else:
result.data[i] /= f.data[0]
####################################################################################################
# Transformation of a sequence into an M object.
func fold[T](a: seq[T]; d: var seq[Size]): auto =
if d.len == 0:
d.add(Size(a.len))
when a.elementType is seq:
if a.len == 0:
raise newException(ValueError, "empty dimension")
d.add(Size(a[0].len))
for elem in a:
if elem.len != a[0].len:
raise newException(ValueError, "not rectangular")
result = fold(a.foldl(a & b), d)
else:
if Size(a.len) != d.foldl(a * b):
raise newException(ValueError, "not same size")
result = a
#---------------------------------------------------------------------------------------------------
func arrtoM[T](a: T): auto =
var dims: seq[Size]
let d = fold(a, dims)
var res: M[d.elementType]
res.initM(dims)
res.set1DArray(d)
return res
#———————————————————————————————————————————————————————————————————————————————————————————————————
const H = @[ @[ @[-6, -8, -5, 9], @[-7, 9, -6, -8], @[ 2, -7, 9, 8] ],
@[ @[ 7, 4, 4, -6], @[ 9, 9, 4, -4], @[-3, 7, -2, -3] ] ]
const F = @[ @[ @[-9, 5, -8], @[ 3, 5, 1] ],
@[ @[-1, -7, 2], @[-5, -6, 6] ],
@[ @[ 8, 5, 8], @[-2, -6, -4] ] ]
let h = arrToM(H)
let f = arrToM(F)
let g = h.convolute(f)
echo "g == f convolute h ? ", g == f.convolute(h)
echo "h == g deconv f ? ", h == g.deconvolute(f)
echo "f == g deconv h ? ", f == g.deconvolute(h)
echo " f = ", f
echo "g deconv f = ", g.deconvolute(h) |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #Elixir | Elixir | defmodule FreeCell do
import Bitwise
@suits ~w( C D H S )
@pips ~w( A 2 3 4 5 6 7 8 9 T J Q K )
@orig_deck for pip <- @pips, suit <- @suits, do: pip <> suit
def deal(games) do
games = if length(games) == 0, do: [Enum.random(1..32000)], else: games
Enum.each(games, fn seed ->
IO.puts "Game ##{seed}"
Enum.reduce(52..2, {seed,@orig_deck}, fn len,{state,deck} ->
state = ((214013 * state) + 2531011) &&& 0x7fff_ffff
index = rem(state >>> 16, len)
last = len - 1
{a, b} = {Enum.at(deck, index), Enum.at(deck, last)}
{state, deck |> List.replace_at(index, b) |> List.replace_at(last, a)}
end)
|> elem(1)
|> Enum.reverse
|> Enum.chunk(8,8,[])
|> Enum.each(fn row -> Enum.join(row, " ") |> IO.puts end)
IO.puts ""
end)
end
end
System.argv |> Enum.map(&String.to_integer/1)
|> FreeCell.deal |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #ERRE | ERRE |
PROGRAM FREECELL
!$DOUBLE
DIM CARDS%[52]
PROCEDURE XRANDOM(SEED->XRND)
POW31=2^31
POW16=2^16
SEED=SEED*214013+2531011
SEED=SEED-POW31*INT(SEED/POW31)
XRND=INT(SEED/POW16)
END PROCEDURE
PROCEDURE DEAL(CARDS%[],GAME_NUM)
LOCAL I%,J%,S%
SEED=GAME_NUM
FOR I%=1 TO 52 DO
CARDS%[I%]=52-I%
END FOR
FOR I%=1 TO 51 DO
XRANDOM(SEED->XRND)
J%=52-XRND MOD (53-I%)
S%=CARDS%[I%]
CARDS%[I%]=CARDS%[J%]
CARDS%[J%]=S%
END FOR
END PROCEDURE
PROCEDURE SHOW(CARDS%[])
LOCAL INDEX%
FOR INDEX%=1 TO 52 DO
PRINT(MID$(SUITS$,CARDS%[INDEX%] MOD 4+1,1);MID$(NUMS$,CARDS%[INDEX%] DIV 4+1,1);" ";)
IF INDEX% MOD 8=0 OR INDEX%=52 THEN
PRINT
END IF
END FOR
END PROCEDURE
BEGIN
PRINT(CHR$(12);)
SUITS$="♣♦♥♠"
NUMS$="A23456789TJQK"
GAME_NUM=1982 ! if missing command line
IF CMDLINE$<>"" THEN GAME_NUM=VAL(CMDLINE$) END IF
SEED=1
DEAL(CARDS%[],GAME_NUM)
PRINT("Hand ";GAME_NUM)
SHOW(CARDS%[])
END PROGRAM
|
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Lua | Lua | function tprint(tbl)
for i,v in pairs(tbl) do
print(v)
end
end
function deBruijn(k, n)
local a = {}
for i=1, k*n do
table.insert(a, 0)
end
local seq = {}
function db(t, p)
if t > n then
if n % p == 0 then
for i=1, p do
table.insert(seq, a[i + 1])
end
end
else
a[t + 1] = a[t - p + 1]
db(t + 1, p)
local j = a[t - p + 1] + 1
while j < k do
a[t + 1] = j % 256
db(t + 1, t)
j = j + 1
end
end
end
db(1, 1)
local buf = ""
for i,v in pairs(seq) do
buf = buf .. tostring(v)
end
return buf .. buf:sub(1, n - 1)
end
function allDigits(s)
return s:match('[0-9]+') == s
end
function validate(db)
local le = string.len(db)
local found = {}
local errs = {}
for i=1, 10000 do
table.insert(found, 0)
end
-- Check all strings of 4 consecutive digits within 'db'
-- to see if all 10,000 combinations occur without duplication.
for i=1, le - 3 do
local s = db:sub(i, i + 3)
if allDigits(s) then
local n = tonumber(s)
found[n + 1] = found[n + 1] + 1
end
end
local count = 0
for i=1, 10000 do
if found[i] == 0 then
table.insert(errs, " PIN number " .. (i - 1) .. " missing")
count = count + 1
elseif found[i] > 1 then
table.insert(errs, " PIN number " .. (i - 1) .. " occurs " .. found[i] .. " times")
count = count + 1
end
end
if count == 0 then
print(" No errors found")
else
tprint(errs)
end
end
function main()
local db = deBruijn(10,4)
print("The length of the de Bruijn sequence is " .. string.len(db))
print()
io.write("The first 130 digits of the de Bruijn sequence are: ")
print(db:sub(0, 130))
print()
io.write("The last 130 digits of the de Bruijn sequence are: ")
print(db:sub(-130))
print()
print("Validating the de Bruijn sequence:")
validate(db)
print()
print("Validating the reversed de Bruijn sequence:")
validate(db:reverse())
print()
db = db:sub(1,4443) .. "." .. db:sub(4445)
print("Validating the overlaid de Bruijn sequence:")
validate(db)
print()
end
main() |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #JavaScript | JavaScript | function Num(n){
n = Math.floor(n);
if(isNaN(n))
throw new TypeError("Not a Number");
if(n < 1 || n > 10)
throw new TypeError("Out of range");
this._value = n;
}
Num.prototype.valueOf = function() { return this._value; }
Num.prototype.toString = function () { return this._value.toString();}
var w = new Num(3), x = new Num(4);
WScript.Echo(w + x); //7
WScript.Echo(x - w); //1
WScript.Echo(w * x); //12
WScript.Echo(w / x); //0.75
WScript.Echo(w < x); //true
WScript.Echo(x < w); //false
var y = new Num(0); //TypeError
var z = new Num(11); //TypeError
|
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Lua | Lua | function V3(x,y,z) return {x=x,y=y,z=z} end
function dot(v,w) return v.x*w.x + v.y*w.y + v.z*w.z end
function norm(v) local m=math.sqrt(dot(v,v)) return V3(v.x/m, v.y/m, v.z/m) end
function clamp(n,lo,hi) return math.floor(math.min(math.max(lo,n),hi)) end
function hittest(s, x, y)
local z = s.r^2 - (x-s.x)^2 - (y-s.y)^2
if z >= 0 then
z = math.sqrt(z)
return true, s.z-z, s.z+z
end
return false, 0, 0
end
function deathstar(pos, neg, sun, k, amb)
shades = {[0]=" ",".",":","!","*","o","e","&","#","%","@"}
for y = pos.x-pos.r-0.5, pos.x+pos.r+0.5 do
for x = pos.x-pos.r-0.5, pos.x+pos.r+0.5, 0.5 do
local hitpos, pz1, pz2 = hittest(pos, x, y)
local result, hitneg, nz1, nz2 = 0
if hitpos then
hitneg, nz1, nz2 = hittest(neg, x, y)
if not hitneg or nz1 > pz1 then result = 1
elseif nz2 > pz2 then result = 0
elseif nz2 > pz1 then result = 2
else result = 1
end
end
local shade = 0
if result > 0 then
if result == 1 then
shade = clamp((1-dot(sun, norm(V3(x-pos.x, y-pos.y, pz1-pos.z)))^k+amb) * #shades, 1, #shades)
else
shade = clamp((1-dot(sun, norm(V3(neg.x-x, neg.y-y, neg.z-nz2)))^k+amb) * #shades, 1, #shades)
end
end
io.write(shades[shade])
end
io.write("\n")
end
end
deathstar({x=20, y=20, z=0, r=20}, {x=10, y=10, z=-15, r=10}, norm(V3(-2,1,3)), 2, 0.1) |
http://rosettacode.org/wiki/Deconvolution/1D | Deconvolution/1D | The convolution of two functions
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
of
an integer variable is defined as the function
G
{\displaystyle {\mathit {G}}}
satisfying
G
(
n
)
=
∑
m
=
−
∞
∞
F
(
m
)
H
(
n
−
m
)
{\displaystyle G(n)=\sum _{m=-\infty }^{\infty }F(m)H(n-m)}
for all integers
n
{\displaystyle {\mathit {n}}}
. Assume
F
(
n
)
{\displaystyle F(n)}
can be non-zero only for
0
{\displaystyle 0}
≤
n
{\displaystyle {\mathit {n}}}
≤
|
F
|
{\displaystyle |{\mathit {F}}|}
, where
|
F
|
{\displaystyle |{\mathit {F}}|}
is the "length" of
F
{\displaystyle {\mathit {F}}}
, and similarly for
G
{\displaystyle {\mathit {G}}}
and
H
{\displaystyle {\mathit {H}}}
, so that the functions can be modeled as finite sequences by identifying
f
0
,
f
1
,
f
2
,
…
{\displaystyle f_{0},f_{1},f_{2},\dots }
with
F
(
0
)
,
F
(
1
)
,
F
(
2
)
,
…
{\displaystyle F(0),F(1),F(2),\dots }
, etc.
Then for example, values of
|
F
|
=
6
{\displaystyle |{\mathit {F}}|=6}
and
|
H
|
=
5
{\displaystyle |{\mathit {H}}|=5}
would determine the following value of
g
{\displaystyle {\mathit {g}}}
by definition.
g
0
=
f
0
h
0
g
1
=
f
1
h
0
+
f
0
h
1
g
2
=
f
2
h
0
+
f
1
h
1
+
f
0
h
2
g
3
=
f
3
h
0
+
f
2
h
1
+
f
1
h
2
+
f
0
h
3
g
4
=
f
4
h
0
+
f
3
h
1
+
f
2
h
2
+
f
1
h
3
+
f
0
h
4
g
5
=
f
5
h
0
+
f
4
h
1
+
f
3
h
2
+
f
2
h
3
+
f
1
h
4
g
6
=
f
5
h
1
+
f
4
h
2
+
f
3
h
3
+
f
2
h
4
g
7
=
f
5
h
2
+
f
4
h
3
+
f
3
h
4
g
8
=
f
5
h
3
+
f
4
h
4
g
9
=
f
5
h
4
{\displaystyle {\begin{array}{lllllllllll}g_{0}&=&f_{0}h_{0}\\g_{1}&=&f_{1}h_{0}&+&f_{0}h_{1}\\g_{2}&=&f_{2}h_{0}&+&f_{1}h_{1}&+&f_{0}h_{2}\\g_{3}&=&f_{3}h_{0}&+&f_{2}h_{1}&+&f_{1}h_{2}&+&f_{0}h_{3}\\g_{4}&=&f_{4}h_{0}&+&f_{3}h_{1}&+&f_{2}h_{2}&+&f_{1}h_{3}&+&f_{0}h_{4}\\g_{5}&=&f_{5}h_{0}&+&f_{4}h_{1}&+&f_{3}h_{2}&+&f_{2}h_{3}&+&f_{1}h_{4}\\g_{6}&=&&&f_{5}h_{1}&+&f_{4}h_{2}&+&f_{3}h_{3}&+&f_{2}h_{4}\\g_{7}&=&&&&&f_{5}h_{2}&+&f_{4}h_{3}&+&f_{3}h_{4}\\g_{8}&=&&&&&&&f_{5}h_{3}&+&f_{4}h_{4}\\g_{9}&=&&&&&&&&&f_{5}h_{4}\end{array}}}
We can write this in matrix form as:
(
g
0
g
1
g
2
g
3
g
4
g
5
g
6
g
7
g
8
g
9
)
=
(
f
0
f
1
f
0
f
2
f
1
f
0
f
3
f
2
f
1
f
0
f
4
f
3
f
2
f
1
f
0
f
5
f
4
f
3
f
2
f
1
f
5
f
4
f
3
f
2
f
5
f
4
f
3
f
5
f
4
f
5
)
(
h
0
h
1
h
2
h
3
h
4
)
{\displaystyle \left({\begin{array}{l}g_{0}\\g_{1}\\g_{2}\\g_{3}\\g_{4}\\g_{5}\\g_{6}\\g_{7}\\g_{8}\\g_{9}\\\end{array}}\right)=\left({\begin{array}{lllll}f_{0}\\f_{1}&f_{0}\\f_{2}&f_{1}&f_{0}\\f_{3}&f_{2}&f_{1}&f_{0}\\f_{4}&f_{3}&f_{2}&f_{1}&f_{0}\\f_{5}&f_{4}&f_{3}&f_{2}&f_{1}\\&f_{5}&f_{4}&f_{3}&f_{2}\\&&f_{5}&f_{4}&f_{3}\\&&&f_{5}&f_{4}\\&&&&f_{5}\end{array}}\right)\;\left({\begin{array}{l}h_{0}\\h_{1}\\h_{2}\\h_{3}\\h_{4}\\\end{array}}\right)}
or
g
=
A
h
{\displaystyle g=A\;h}
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by constructing and solving such a system of equations represented by the above matrix
A
{\displaystyle A}
for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
.
The function should work for
G
{\displaystyle {\mathit {G}}}
of arbitrary length (i.e., not hard coded or constant) and
F
{\displaystyle {\mathit {F}}}
of any length up to that of
G
{\displaystyle {\mathit {G}}}
. Note that
|
H
|
{\displaystyle |{\mathit {H}}|}
will be given by
|
G
|
−
|
F
|
+
1
{\displaystyle |{\mathit {G}}|-|{\mathit {F}}|+1}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Test your solution on the following data. Be sure to verify both that deconv
(
g
,
f
)
=
h
{\displaystyle (g,f)=h}
and deconv
(
g
,
h
)
=
f
{\displaystyle (g,h)=f}
and display the results in a human readable form.
h = [-8,-9,-3,-1,-6,7]
f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
| #zkl | zkl | var [const] GSL=Import("zklGSL"); // libGSL (GNU Scientific Library)
fcn dconv1D(f,g){
fsz,hsz:=f.len(), g.len() - fsz +1;
A:=GSL.Matrix(g.len(),hsz);
foreach n,fn in ([0..].zip(f)){ foreach rc in (hsz){ A[rc+n,rc]=fn } }
h:=A.AxEQb(g);
h
} |
http://rosettacode.org/wiki/Deconvolution/2D%2B | Deconvolution/2D+ | This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in
d
{\displaystyle {\mathit {d}}}
dimensions of two functions
H
,
F
:
Z
d
→
R
{\displaystyle H,F:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to real numbers as the function
G
:
Z
d
→
R
{\displaystyle G:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
also taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to reals and satisfying
G
(
n
0
,
…
,
n
d
−
1
)
=
∑
m
0
=
−
∞
∞
…
∑
m
d
−
1
=
−
∞
∞
F
(
m
0
,
…
,
m
d
−
1
)
H
(
n
0
−
m
0
,
…
,
n
d
−
1
−
m
d
−
1
)
{\displaystyle G(n_{0},\dots ,n_{d-1})=\sum _{m_{0}=-\infty }^{\infty }\dots \sum _{m_{d-1}=-\infty }^{\infty }F(m_{0},\dots ,m_{d-1})H(n_{0}-m_{0},\dots ,n_{d-1}-m_{d-1})}
for all
d
{\displaystyle {\mathit {d}}}
-tuples of integers
(
n
0
,
…
,
n
d
−
1
)
∈
Z
d
{\displaystyle (n_{0},\dots ,n_{d-1})\in \mathbb {Z} ^{d}}
. Assume
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
(and therefore
G
{\displaystyle {\mathit {G}}}
) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists
f
{\displaystyle {\mathit {f}}}
,
h
{\displaystyle {\mathit {h}}}
, and
g
{\displaystyle {\mathit {g}}}
.
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by solving for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
. (See Deconvolution/1D for details.)
The function should work for
g
{\displaystyle {\mathit {g}}}
of arbitrary length in each dimension (i.e., not hard coded or constant) and
f
{\displaystyle {\mathit {f}}}
of any length up to that of
g
{\displaystyle {\mathit {g}}}
in the corresponding dimension.
The deconv function will need to be parameterized by the dimension
d
{\displaystyle {\mathit {d}}}
unless the dimension can be inferred from the data structures representing
g
{\displaystyle {\mathit {g}}}
and
f
{\displaystyle {\mathit {f}}}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
f
{\displaystyle {\mathit {f}}}
is
h
{\displaystyle {\mathit {h}}}
and that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
h
{\displaystyle {\mathit {h}}}
is
f
{\displaystyle {\mathit {f}}}
. Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2]
f: [ 6, -9, -7, -5]
g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
f: [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
g: [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f: [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g: [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
| #Perl | Perl | use feature 'say';
use ntheory qw/forsetproduct/;
# Deconvolution of N dimensional matrices
sub deconvolve_N {
our @g; local *g = shift;
our @f; local *f = shift;
my @df = shape(@f);
my @dg = shape(@g);
my @hsize;
push @hsize, $dg[$_] - $df[$_] + 1 for 0..$#df;
my @toSolve = map { [row(\@g, \@f, \@hsize, $_)] } coords(shape(@g));
rref( \@toSolve );
my @h;
my $n = 0;
for (coords(@hsize)) {
my($k,$j,$i) = split ' ', $_;
$h[$i][$j][$k] = $toSolve[$n++][-1];
}
@h;
}
sub row {
our @g; local *g = shift;
our @f; local *f = shift;
our @hsize; local *hsize = shift;
my @gc = reverse split ' ', shift;
my @row;
my @fdim = shape(@f);
for (coords(@hsize)) {
my @hc = reverse split ' ', $_;
my @fc;
for my $i (0..$#hc) {
my $window = $gc[$i] - $hc[$i];
push(@fc, $window), next if 0 <= $window && $window < $fdim[$i];
}
push @row, $#fc == $#hc ? $f [$fc[0]] [$fc[1]] [$fc[2]] : 0;
}
push @row, $g [$gc[0]] [$gc[1]] [$gc[2]];
return @row;
}
sub rref {
our @m; local *m = shift;
@m or return;
my ($lead, $rows, $cols) = (0, scalar(@m), scalar(@{$m[0]}));
foreach my $r (0 .. $rows - 1) {
$lead < $cols or return;
my $i = $r;
until ($m[$i][$lead])
{++$i == $rows or next;
$i = $r;
++$lead == $cols and return;}
@m[$i, $r] = @m[$r, $i];
my $lv = $m[$r][$lead];
$_ /= $lv foreach @{ $m[$r] };
my @mr = @{ $m[$r] };
foreach my $i (0 .. $rows - 1)
{$i == $r and next;
($lv, my $n) = ($m[$i][$lead], -1);
$_ -= $lv * $mr[++$n] foreach @{ $m[$i] };}
++$lead;}
}
# Constructs an AoA of coordinates to all elements of N dimensional array
sub coords {
my(@dimensions) = reverse @_;
my(@ranges,@coords);
push @ranges, [0..$_-1] for @dimensions;
forsetproduct { push @coords, "@_" } @ranges;
@coords;
}
sub shape {
my(@dim);
push @dim, scalar @_;
push @dim, shape(@{$_[0]}) if 'ARRAY' eq ref $_[0];
@dim;
}
# Pretty printer for N dimensional arrays
# Assumes if first element in level is an array, then all are
sub pretty_print {
my($i, @a) = @_;
if ('ARRAY' eq ref $a[0]) {
say ' 'x$i, '[';
pretty_print($i+2, @$_) for @a;
say ' 'x$i, ']', $i ? ',' : '';
} else {
say ' 'x$i, '[', sprintf("@{['%5s'x@a]}",@a), ']', $i ? ',' : '';
}
}
my @f = (
[
[ -9, 5, -8 ],
[ 3, 5, 1 ],
],
[
[ -1, -7, 2 ],
[ -5, -6, 6 ],
],
[
[ 8, 5, 8 ],
[ -2, -6, -4 ],
]
);
my @g = (
[
[ 54, 42, 53, -42, 85, -72 ],
[ 45,-170, 94, -36, 48, 73 ],
[ -39, 65,-112, -16, -78, -72 ],
[ 6, -11, -6, 62, 49, 8 ],
],
[
[ -57, 49, -23, 52,-135, 66 ],
[ -23, 127, -58, -5,-118, 64 ],
[ 87, -16, 121, 23, -41, -12 ],
[ -19, 29, 35,-148, -11, 45 ],
],
[
[ -55,-147,-146, -31, 55, 60 ],
[ -88, -45, -28, 46, -26,-144 ],
[ -12,-107, -34, 150, 249, 66 ],
[ 11, -15, -34, 27, -78, -50 ],
],
[
[ 56, 67, 108, 4, 2, -48 ],
[ 58, 67, 89, 32, 32, -8 ],
[ -42, -31,-103, -30, -23, -8 ],
[ 6, 4, -26, -10, 26, 12 ],
]
);
my @h = deconvolve_N( \@g, \@f );
my @ff = deconvolve_N( \@g, \@h );
my $d = scalar shape(@g);
print "${d}D arrays:\n";
print "h =\n";
pretty_print(0,@h);
print "\nff =\n";
pretty_print(0,@ff); |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #F.23 | F# |
let msKindaRand seed =
let state = ref seed
(fun (_:unit) ->
state := (214013 * !state + 2531011) &&& System.Int32.MaxValue
!state / (1<<<16))
let unshuffledDeck = [0..51] |> List.map(fun n->sprintf "%c%c" "A23456789TJQK".[n / 4] "CDHS".[n % 4])
let deal boot idx =
let (last,rest) = boot |> List.rev |> fun xs->(List.head xs),(xs |> List.tail |> List.rev)
if idx=((List.length boot) - 1) then last, rest
else
rest
|> List.mapi (fun i x -> i,x)
|> List.partition (fst >> ((>) idx))
|> fun (xs,ys) -> (List.map snd xs),(List.map snd ys)
|> fun (xs,ys) -> (List.head ys),(xs @ last::(List.tail ys))
let game gameNo =
let rnd = msKindaRand gameNo
[52..-1..1]
|> List.map (fun i->rnd() % i)
|> List.fold (fun (dealt, boot) idx->deal boot idx |> fun (x,xs) -> (x::dealt, xs)) ([],unshuffledDeck)
|> fst |> List.rev
|> List.chunkBySize 8
|> List.map (String.concat " ")
|> String.concat "\n"
|> printfn "Game #%d\n%s\n" gameNo
[1; 617] |> List.iter game
|
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | seq = DeBruijnSequence[Range[0, 9], 4];
seq = seq~Join~Take[seq, 3];
Length[seq]
{seq[[;; 130]], seq[[-130 ;;]]}
Complement[
StringDrop[ToString[NumberForm[#, 4, NumberPadding -> {"0", "0"}]],
1] & /@ Range[0, 9999],
Union[StringJoin /@ Partition[ToString /@ seq, 4, 1]]]
seq = Reverse[seq];
Complement[
StringDrop[ToString[NumberForm[#, 4, NumberPadding -> {"0", "0"}]],
1] & /@ Range[0, 9999],
Union[StringJoin /@ Partition[ToString /@ seq, 4, 1]]]
seq[[4444]] = ".";
Complement[
StringDrop[ToString[NumberForm[#, 4, NumberPadding -> {"0", "0"}]],
1] & /@ Range[0, 9999],
Union[StringJoin /@ Partition[ToString /@ seq, 4, 1]]] |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Nim | Nim | import algorithm, parseutils, strformat, strutils
const Digits = "0123456789"
#---------------------------------------------------------------------------------------------------
func deBruijn(k, n: int): string =
let alphabet = Digits[0..<k]
var a = newSeq[byte](k * n)
var sequence: seq[byte]
#.................................................................................................
func db(t, p: int) =
if t > n:
if n mod p == 0:
sequence &= a[1..p]
else:
a[t] = a[t - p]
db(t + 1, p)
var j = a[t - p] + 1
while j < k.uint:
a[t] = j
db(t + 1, t)
inc j
#...............................................................................................
db(1, 1)
for i in sequence:
result &= alphabet[i]
result &= result[0..(n-2)]
#---------------------------------------------------------------------------------------------------
proc validate(db: string) =
var found: array[10_000, int]
var errs: seq[string]
## Check all strings of 4 consecutive digits within 'db'
## to see if all 10,000 combinations occur without duplication.
for i in 0..(db.len - 4):
let s = db[i..(i+3)]
var n: int
if s.parseInt(n) == 4:
inc found[n]
for n, count in found:
if count == 0:
errs &= fmt" PIN number {n:04d} missing"
elif count > 1:
errs &= fmt" PIN number {n:04d} occurs {count} times"
if errs.len == 0:
echo " No errors found"
else:
let plural = if errs.len == 1: "" else: "s"
echo fmt" {errs.len} error{plural} found"
for err in errs: echo err
#———————————————————————————————————————————————————————————————————————————————————————————————————
var db = deBruijn(10, 4)
echo fmt"The length of the de Bruijn sequence is {db.len}"
echo ""
echo fmt"The first 130 digits of the de Bruijn sequence are: {db[0..129]}"
echo ""
echo fmt"The last 130 digits of the de Bruijn sequence are: {db[^130..^1]}"
echo ""
echo "Validating the deBruijn sequence:"
db.validate()
echo ""
echo "Validating the reversed deBruijn sequence:"
reversed(db).join().validate()
echo ""
db[4443] = '.'
echo "Validating the overlaid deBruijn sequence:"
db.validate() |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #jq | jq | def typeof:
if type == "object" and has("type") then .type else type end; |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Julia | Julia | struct LittleInt <: Integer
val::Int8
function LittleInt(n::Real)
1 ≤ n ≤ 10 || throw(ArgumentError("LittleInt number must be in [1, 10]"))
return new(Int8(n))
end
end
Base.show(io::IO, x::LittleInt) = print(io, x.val)
Base.convert(::Type{T}, x::LittleInt) where T<:Number = convert(T, x.val)
Base.promote_rule(::Type{LittleInt}, ::Type{T}) where T<:Number = T
for op in (:+, :*, :÷, :-, :&, :|, :$, :<, :>, :(==))
@eval (Base.$op)(a::LittleInt, b::LittleInt) = LittleInt(($op)(a.val, b.val))
end
# Test
a = LittleInt(3)
b = LittleInt(4.0)
@show a b
@show a + b
@show b - a
@show a * LittleInt(2)
@show b ÷ LittleInt(2)
@show a * b |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Maple | Maple | with(plots):
with(plottools):
plots:-display(
implicitplot3d(x^2 + y^2 + z^2 = 1, x = -1..0.85, y = -1..1, z = -1..1, style = surface, grid = [50,50,50]),
translate(rotate(implicitplot3d(x^2 + y^2 + z^2 = 1, x = 0.85..1, y = -1..1, z = -1..1, style = surface, grid = [50,50,50]), 0, Pi, 0), 1.70, 0, 0),
axes = none, scaling = constrained, color = gray) |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | RegionPlot3D[x^2 + y^2 + z^2 < 1 && (x + 1.7)^2 + y^2 + z^2 > 1,
{x, -1, 1}, {y, -1, 1}, {z, -1, 1},
Boxed -> False, Mesh -> False, Axes -> False, Background -> Black, PlotPoints -> 100] |
http://rosettacode.org/wiki/Deconvolution/2D%2B | Deconvolution/2D+ | This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in
d
{\displaystyle {\mathit {d}}}
dimensions of two functions
H
,
F
:
Z
d
→
R
{\displaystyle H,F:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to real numbers as the function
G
:
Z
d
→
R
{\displaystyle G:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
also taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to reals and satisfying
G
(
n
0
,
…
,
n
d
−
1
)
=
∑
m
0
=
−
∞
∞
…
∑
m
d
−
1
=
−
∞
∞
F
(
m
0
,
…
,
m
d
−
1
)
H
(
n
0
−
m
0
,
…
,
n
d
−
1
−
m
d
−
1
)
{\displaystyle G(n_{0},\dots ,n_{d-1})=\sum _{m_{0}=-\infty }^{\infty }\dots \sum _{m_{d-1}=-\infty }^{\infty }F(m_{0},\dots ,m_{d-1})H(n_{0}-m_{0},\dots ,n_{d-1}-m_{d-1})}
for all
d
{\displaystyle {\mathit {d}}}
-tuples of integers
(
n
0
,
…
,
n
d
−
1
)
∈
Z
d
{\displaystyle (n_{0},\dots ,n_{d-1})\in \mathbb {Z} ^{d}}
. Assume
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
(and therefore
G
{\displaystyle {\mathit {G}}}
) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists
f
{\displaystyle {\mathit {f}}}
,
h
{\displaystyle {\mathit {h}}}
, and
g
{\displaystyle {\mathit {g}}}
.
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by solving for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
. (See Deconvolution/1D for details.)
The function should work for
g
{\displaystyle {\mathit {g}}}
of arbitrary length in each dimension (i.e., not hard coded or constant) and
f
{\displaystyle {\mathit {f}}}
of any length up to that of
g
{\displaystyle {\mathit {g}}}
in the corresponding dimension.
The deconv function will need to be parameterized by the dimension
d
{\displaystyle {\mathit {d}}}
unless the dimension can be inferred from the data structures representing
g
{\displaystyle {\mathit {g}}}
and
f
{\displaystyle {\mathit {f}}}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
f
{\displaystyle {\mathit {f}}}
is
h
{\displaystyle {\mathit {h}}}
and that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
h
{\displaystyle {\mathit {h}}}
is
f
{\displaystyle {\mathit {f}}}
. Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2]
f: [ 6, -9, -7, -5]
g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
f: [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
g: [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f: [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g: [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
| #Phix | Phix | -- demo\rosetta\Deconvolution.exw
with javascript_semantics
function m_size(sequence m)
--
-- returns the size of a matrix as a list of lengths
--
sequence res = {}
object me = m
while sequence(me) do
res &= length(me)
me = me[1]
end while
return res
end function
function make_coordset(sequence size)
--
-- returns all points in the matrix, in zero-based indexes,
-- eg {{0,0,0}..{3,3,5}} for a 4x4x6 matrix [96 in total]
--
sequence res = {}
integer count = product(size)
for i=0 to count-1 do
sequence coords = {}
integer j = i
for s=length(size) to 1 by -1 do
integer dimension = size[s]
coords &= mod(j,dimension)
j = floor(j/dimension)
end for
coords = reverse(coords)
res = append(res,coords)
end for
return res
end function
function row(sequence g, f, gs, gc, fs, hs)
--
--# Assembles a row, which is one of the simultaneous equations that needs
--# to be solved by reducing the whole set to reduced row echelon form. Note
--# that each row describes the equation for a single cell of the 'g' function.
--#
--# Arguments:
--# g The "result" matrix of the convolution being undone.
--# h The known "input" matrix of the convolution being undone.
--# gs The size descriptor of 'g', passed as argument for efficiency.
--# gc The coordinate in 'g' that we are generating the equation for.
--# fs The size descriptor of 'f', passed as argument for efficiency.
--# hs The size descriptor of 'h' (the unknown "input" matrix), passed
--# as argument for efficiency.
--
sequence row = {},
coords = make_coordset(hs)
for i=1 to length(coords) do
sequence hc = coords[i]
object fn = f
for k=1 to length(gc) do
integer d = gc[k]-hc[k]
if d<0 or d>=fs[k] then
fn = 0
exit
end if
fn = fn[d+1]
end for
row = append(row,fn)
end for
object gn = g
for i=1 to length(gc) do
gn = gn[gc[i]+1]
end for
row = append(row,gn)
return row
end function
function toRREF(sequence m)
--
-- [renamed] copy of Reduced_row_echelon_form.htm#Phix
-- plus one small tweak, as noted below, exit->return,
-- not that said seems to make any actual difference.
--
integer lead = 1,
rows = length(m),
cols = length(m[1])
m = deep_copy(m)
for r=1 to rows do
if lead>=cols then exit end if
integer i = r
while m[i][lead]=0 do
i += 1
if i=rows then
i = r
lead += 1
-- if lead=cols then exit end if
if lead=cols then return m end if
end if
end while
sequence mi = deep_copy(m[r]),
mr = sq_div(m[i],m[i][lead])
m[i] = mi
m[r] = mr
for j=1 to rows do
if j!=r then
m[j] = sq_sub(m[j],sq_mul(m[j][lead],m[r]))
end if
end for
lead += 1
end for
return m
end function
function lset(sequence h, sequence idx, object v)
-- helper routine: store v somewhere deep inside h
h = deep_copy(h)
integer i1 = idx[1]+1
if length(idx)=1 then
h[i1] = v
else
h[i1] = lset(h[i1],idx[2..$],v)
end if
return h
end function
function deconvolve(sequence g, f)
--
--# Deconvolve a pair of matrixes. Solves for 'h' such that 'g = f convolve h'.
--#
--# Arguments:
--# g The matrix of data to be deconvolved.
--# f The matrix describing the convolution to be removed.
--
-- Compute the sizes of the various matrixes involved.
sequence gsize = m_size(g),
fsize = m_size(f),
hsize = sq_add(sq_sub(gsize,fsize),1)
-- Prepare the set of simultaneous equations to solve
sequence toSolve = {},
coords = make_coordset(gsize)
for i=1 to length(coords) do
toSolve = append(toSolve,row(g,f,gsize,coords[i],fsize,hsize))
end for
-- Solve the equations
sequence solved = toRREF(toSolve)
-- Create a result matrix of the right size
object h = 0
for i=length(hsize) to 1 by -1 do
h = repeat(h,hsize[i])
end for
-- Fill the results from the equations into the result matrix
coords = make_coordset(hsize)
for i=1 to length(coords) do
h = lset(h,coords[i],solved[i][$])
end for
return h
end function
constant f1 = { 6, -9, -7, -5},
g1 = {-48, 84, -16, 95, 125, -70, 7, 29, 54, 10},
h1 = {-8, 2, -9, -2, 9, -8, -2}
if deconvolve(g1, f1)!=h1 then ?9/0 end if
if deconvolve(g1, h1)!=f1 then ?9/0 end if
constant f2 = {{-5, 2,-2,-6,-7},
{ 9, 7,-6, 5,-7},
{ 1,-1, 9, 2,-7},
{ 5, 9,-9, 2,-5},
{-8, 5,-2, 8, 5}},
g2 = {{ 40, -21, 53, 42, 105, 1, 87, 60, 39, -28},
{-92, -64, 19,-167, -71, -47, 128,-109, 40, -21},
{ 58, 85,-93, 37, 101, -14, 5, 37, -76, -56},
{-90,-135, 60,-125, 68, 53, 223, 4, -36, -48},
{ 78, 16, 7,-199, 156,-162, 29, 28,-103, -10},
{-62, -89, 69, -61, 66, 193, -61, 71, -8, -30},
{ 48, -6, 21, -9,-150, -22, -56, 32, 85, 25}},
h2 = {{-8, 1,-7,-2,-9, 4},
{ 4, 5,-5, 2, 7,-1},
{-6,-3,-3,-6, 9, 5}}
if deconvolve(g2, f2)!=h2 then ?9/0 end if
if deconvolve(g2, h2)!=f2 then ?9/0 end if
constant f3 = {{{-9, 5, -8}, { 3, 5, 1}},
{{-1, -7, 2}, {-5, -6, 6}},
{{ 8, 5, 8}, {-2, -6, -4}}},
g3 = {{{ 54, 42, 53, -42, 85, -72},
{ 45,-170, 94, -36, 48, 73},
{-39, 65,-112, -16, -78, -72},
{ 6, -11, -6, 62, 49, 8}},
{{-57, 49, -23, 52,-135, 66},
{-23, 127, -58, -5,-118, 64},
{ 87, -16, 121, 23, -41, -12},
{-19, 29, 35,-148, -11, 45}},
{{-55,-147,-146, -31, 55, 60},
{-88, -45, -28, 46, -26,-144},
{-12,-107, -34, 150, 249, 66},
{ 11, -15, -34, 27, -78, -50}},
{{ 56, 67, 108, 4, 2, -48},
{ 58, 67, 89, 32, 32, -8},
{-42, -31,-103, -30, -23, -8},
{ 6, 4, -26, -10, 26, 12}}},
h3 = {{{ -6, -8, -5, 9},
{ -7, 9, -6, -8},
{ 2, -7, 9, 8}},
{{ 7, 4, 4, -6},
{ 9, 9, 4, -4},
{ -3, 7, -2, -3}}}
if deconvolve(g3, f3)!=h3 then ?9/0 end if
if deconvolve(g3, h3)!=f3 then ?9/0 end if
ppOpt({pp_Nest,2,pp_IntFmt,"%3d"})
pp(deconvolve(g3, f3))
pp(deconvolve(g3, h3))
|
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #Factor | Factor | USING: formatting grouping io kernel literals make math
math.functions namespaces qw sequences sequences.extras ;
IN: rosetta-code.freecell
CONSTANT: max-rand-ms $[ 1 15 shift 1 - ]
CONSTANT: suits qw{ C D H S }
CONSTANT: ranks qw{ A 2 3 4 5 6 7 8 9 T J Q K }
SYMBOL: seed
: (random) ( n1 n2 -- n3 ) seed get * + dup seed set ;
: rand-ms ( -- n )
max-rand-ms 2531011 214013 (random) -16 shift bitand ;
: init-deck ( -- seq )
ranks suits [ append ] cartesian-map concat V{ } like ;
: swap-cards ( seq -- seq' )
rand-ms over length [ mod ] [ 1 - ] bi pick exchange ;
: (deal) ( seq -- seq' )
[ [ swap-cards dup pop , ] until-empty ] { } make ;
: deal ( game# -- seq ) seed set init-deck (deal) ;
: .cards ( seq -- ) 8 group [ [ write bl ] each nl ] each nl ;
: .game ( game# -- ) dup "Game #%d\n" printf deal .cards ;
: freecell ( -- ) 1 617 [ .game ] bi@ ;
MAIN: freecell |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Pascal | Pascal |
program deBruijnSequence;
uses SysUtils;
// Create a de Bruijn sequence for the given word length and alphabet.
function deBruijn( const n : integer; // word length
const alphabet : string) : string;
var
d, k, m, s, t, seqLen : integer;
w : array of integer;
begin
k := Length( alphabet);
// de Bruijn sequence will have length k^n
seqLen := 1;
for t := 1 to n do seqLen := seqLen*k;
SetLength( result, seqLen);
d := 0; // index into de Bruijn sequence (will be pre-inc'd)
// Work through Lyndon words of length <= n, in lexicographic order.
SetLength( w, n); // w holds array of indices into the alphabet
w[0] := 1; // first Lyndon word
m := 1; // m = length of Lyndon word
repeat
// If m divides n, append the current Lyndon word to the output
if (m = n) or (m = 1) or (n mod m = 0) then begin
for t := 0 to m - 1 do begin
inc(d);
result[d] := alphabet[w[t]];
end;
end;
// Get next Lyndon word using Duval's algorithm:
// (1) Fill w with repetitions of current word
s := 0; t := m;
while (t < n) do begin
w[t] := w[s];
inc(t); inc(s);
if s = m then s := 0;
end;
// (2) Repeatedly delete highest index k from end of w, if present
m := n;
while (m > 0) and (w[m - 1] = k) do dec(m);
// (3) If word is now null, stop; else increment end value
if m > 0 then inc( w[m - 1]);
until m = 0;
Assert( d = seqLen); // check that the sequence is exactly filled in
end;
// Check a de Bruijn sequence, assuming that its alphabet consists
// of the digits '0'..'9' (in any order);
procedure CheckDecimal( const n : integer; // word length
const deB : string);
var
count : array of integer;
j, L, pin, nrErrors : integer;
wrap : string;
begin
L := Length( deB);
// The de Bruijn sequence is cyclic; make an array to handle wrapround.
SetLength( wrap, 2*n - 2);
for j := 1 to n - 1 do wrap[j] := deB[L + j - n + 1];
for j := n to 2*n - 2 do wrap[j] := deB[j - n + 1];
// Count occurrences of each PIN.
// PIN = -1 if character is not a decimal digit.
SetLength( count, L);
for j := 0 to L - 1 do count[L] := 0;
for j := 1 to L - n + 1 do begin
pin := SysUtils.StrToIntDef( Copy( deB, j, n), -1);
if pin >= 0 then inc( count[pin]);
end;
for j := 1 to n - 1 do begin
pin := SysUtils.StrToIntDef( Copy( wrap, j, n), -1);
if pin >= 0 then inc( count[pin]);
end;
// Check that all counts are 1
nrErrors := 0;
for j := 0 to L - 1 do begin
if count[j] <> 1 then begin
inc( nrErrors);
WriteLn( SysUtils.Format( ' PIN %d has count %d', [j, count[j]]));
end;
end;
WriteLn( SysUtils.Format( ' Number of errors = %d', [nrErrors]));
end;
// Main routine
var
deB, rev : string;
L, j : integer;
begin
deB := deBruijn( 4, '0123456789');
// deB := deBruijn( 4, '7368290514'); // any permutation would do
L := Length( deB);
WriteLn( SysUtils.Format( 'Length of de Bruijn sequence = %d', [L]));
if L >= 260 then begin
WriteLn;
WriteLn( 'First and last 130 characters are:');
WriteLn( Copy( deB, 1, 65));
WriteLn( Copy( deb, 66, 65));
WriteLn( '...');
WriteLn( Copy( deB, L - 129, 65));
WriteLn( Copy( deB, L - 64, 65));
end;
WriteLn;
WriteLn( 'Checking de Bruijn sequence:');
CheckDecimal( 4, deB);
// Check reversed sequence
SetLength( rev, L);
for j := 1 to L do rev[j] := deB[L + 1 - j];
WriteLn( 'Checking reversed sequence:');
CheckDecimal( 4, rev);
// Check sequence with '.' instad of decimal digit
if L >= 4444 then begin
deB[4444] := '.';
WriteLn( 'Checking vandalized sequence:');
CheckDecimal( 4, deB);
end;
end.
|
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Kotlin | Kotlin | // version 1.1
class TinyInt(i: Int) {
private val value = makeTiny(i)
operator fun plus (other: TinyInt): TinyInt = TinyInt(this.value + other.value)
operator fun minus(other: TinyInt): TinyInt = TinyInt(this.value - other.value)
operator fun times(other: TinyInt): TinyInt = TinyInt(this.value * other.value)
operator fun div (other: TinyInt): TinyInt = TinyInt(this.value / other.value)
operator fun rem (other: TinyInt): TinyInt = TinyInt(this.value % other.value)
operator fun inc() = TinyInt(this.value + 1)
operator fun dec() = TinyInt(this.value - 1)
private fun makeTiny(i: Int): Int =
when {
i < 1 -> 1
i > 10 -> 10
else -> i
}
override fun toString(): String = value.toString()
}
fun main(args: Array<String>) {
var t1 = TinyInt(6)
var t2 = TinyInt(3)
println("t1 = $t1")
println("t2 = $t2")
println("t1 + t2 = ${t1 + t2}")
println("t1 - t2 = ${t1 - t2}")
println("t1 * t2 = ${t1 * t2}")
println("t1 / t2 = ${t1 / t2}")
println("t1 % t2 = ${t1 % t2}")
println("t1 + 1 = ${++t1}")
println("t2 - 1 = ${--t2}")
} |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Nim | Nim | import math
import bitmap, grayscale_image, nimPNG
type
Vector = array[3, float]
Sphere = object
cx, cy, cz: int
r: int
#---------------------------------------------------------------------------------------------------
func dot(x, y: Vector): float {.inline.} =
x[0] * y[0] + x[1] * y[1] + x[2] * y[2]
#---------------------------------------------------------------------------------------------------
func normalize(v: var Vector) =
let invLen = 1 / sqrt(dot(v, v))
v[0] *= invLen
v[1] *= invLen
v[2] *= invLen
#---------------------------------------------------------------------------------------------------
func hit(s: Sphere; x, y: int): tuple[z1, z2: float; hit: bool] =
let x = x - s.cx
let y = y - s.cy
let zsq = s.r * s.r - (x * x + y * y)
if zsq >= 0:
let zsqrt = sqrt(zsq.toFloat)
result = (s.cz.toFloat - zsqrt, s.cz.toFloat, true)
else:
result = (0.0, 0.0, false)
#---------------------------------------------------------------------------------------------------
func deathStar(pos, neg: Sphere; k, amb: float; dir: Vector): GrayImage =
let w = pos.r * 4
let h = pos.r * 3
result = newGrayImage(w, h)
var vect: Vector
let deltaX = pos.cx - w div 2
let deltaY = pos.cy - h div 2
let xMax = pos.cx + pos.r
let yMax = pos.cy + pos.r
for y in (pos.cy - pos.r)..yMax:
for x in (pos.cx - pos.r)..xMax:
let (zb1, zb2, posHit) = pos.hit(x, y)
if not posHit: continue
var (zs1, zs2, negHit) = neg.hit(x, y)
if negHit:
if zs1 > zb1: negHit = false
elif zs2 > zb2: continue
if negHit:
vect[0] = (neg.cx - x).toFloat
vect[1] = (neg.cy - y).toFloat
vect[2] = neg.cz.toFloat - zs2
else:
vect[0] = (x - pos.cx).toFloat
vect[1] = (y - pos.cy).toFloat
vect[2] = zb1 - pos.cz.toFloat
vect.normalize()
var s = dot(dir, vect)
if s < 0: s = 0
var lum = (255 * (s.pow(k) + amb) / (1 + amb)).toInt
if lum < 0: lum = 0
elif lum > 255: lum = 255
result[x - deltaX, y - deltaY] = Luminance(lum)
#———————————————————————————————————————————————————————————————————————————————————————————————————
var dir: Vector = [float 20, -40, -10]
dir.normalize()
let pos = Sphere(cx: 0, cy: 0, cz: 0, r: 120)
let neg = Sphere(cx: -90, cy: -90, cz: -30, r: 100)
let grayImage = deathStar(pos, neg, 1.5, 0.2, dir)
# Save to PNG. We convert to an RGB image then transform the pixels
# in a sequence of bytes (actually a copy) in order to call "savePNG24".
let rgbImage = grayImage.toImage
var data = newSeqOfCap[byte](rgbImage.pixels.len * 3)
for color in rgbImage.pixels:
data.add([color.r, color.g, color.b])
echo savePNG24("death_star.png", data, rgbImage.w, rgbImage.h) |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Openscad | Openscad | // We are performing geometric subtraction
difference() {
// Create the primary sphere of radius 60 centred at the origin
translate(v = [0,0,0]) {
sphere(60);
}
/*Subtract an overlapping sphere with a radius of 40
The resultant hole will be smaller than this, because we only
only catch the edge
*/
translate(v = [0,90,0]) {
sphere(40);
}
} |
http://rosettacode.org/wiki/Day_of_the_week | Day of the week | A company decides that whenever Xmas falls on a Sunday they will give their workers all extra paid holidays so that, together with any public holidays, workers will not have to work the following week (between the 25th of December and the first of January).
Task
In what years between 2008 and 2121 will the 25th of December be a Sunday?
Using any standard date handling libraries of your programming language;
compare the dates calculated with the output of other languages to discover any anomalies in the handling of dates which may be due to, for example, overflow in types used to represent dates/times similar to y2k type problems.
| #11l | 11l | print((2008..2121).filter(y -> Time(y, 12, 25).strftime(‘%w’) == ‘0’)) |
http://rosettacode.org/wiki/Deconvolution/2D%2B | Deconvolution/2D+ | This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in
d
{\displaystyle {\mathit {d}}}
dimensions of two functions
H
,
F
:
Z
d
→
R
{\displaystyle H,F:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to real numbers as the function
G
:
Z
d
→
R
{\displaystyle G:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
also taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to reals and satisfying
G
(
n
0
,
…
,
n
d
−
1
)
=
∑
m
0
=
−
∞
∞
…
∑
m
d
−
1
=
−
∞
∞
F
(
m
0
,
…
,
m
d
−
1
)
H
(
n
0
−
m
0
,
…
,
n
d
−
1
−
m
d
−
1
)
{\displaystyle G(n_{0},\dots ,n_{d-1})=\sum _{m_{0}=-\infty }^{\infty }\dots \sum _{m_{d-1}=-\infty }^{\infty }F(m_{0},\dots ,m_{d-1})H(n_{0}-m_{0},\dots ,n_{d-1}-m_{d-1})}
for all
d
{\displaystyle {\mathit {d}}}
-tuples of integers
(
n
0
,
…
,
n
d
−
1
)
∈
Z
d
{\displaystyle (n_{0},\dots ,n_{d-1})\in \mathbb {Z} ^{d}}
. Assume
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
(and therefore
G
{\displaystyle {\mathit {G}}}
) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists
f
{\displaystyle {\mathit {f}}}
,
h
{\displaystyle {\mathit {h}}}
, and
g
{\displaystyle {\mathit {g}}}
.
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by solving for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
. (See Deconvolution/1D for details.)
The function should work for
g
{\displaystyle {\mathit {g}}}
of arbitrary length in each dimension (i.e., not hard coded or constant) and
f
{\displaystyle {\mathit {f}}}
of any length up to that of
g
{\displaystyle {\mathit {g}}}
in the corresponding dimension.
The deconv function will need to be parameterized by the dimension
d
{\displaystyle {\mathit {d}}}
unless the dimension can be inferred from the data structures representing
g
{\displaystyle {\mathit {g}}}
and
f
{\displaystyle {\mathit {f}}}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
f
{\displaystyle {\mathit {f}}}
is
h
{\displaystyle {\mathit {h}}}
and that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
h
{\displaystyle {\mathit {h}}}
is
f
{\displaystyle {\mathit {f}}}
. Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2]
f: [ 6, -9, -7, -5]
g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
f: [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
g: [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f: [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g: [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
| #Python | Python |
"""
https://rosettacode.org/wiki/Deconvolution/2D%2B
Working on 3 dimensional example using test data from the
RC task.
Python fft:
https://docs.scipy.org/doc/numpy/reference/routines.fft.html
"""
import numpy
import pprint
h = [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f = [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g = [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
def trim_zero_empty(x):
"""
Takes a structure that represents an n dimensional example.
For a 2 dimensional example it will be a list of lists.
For a 3 dimensional one it will be a list of list of lists.
etc.
Actually these are multidimensional numpy arrays but I was thinking
in terms of lists.
Returns the same structure without trailing zeros in the inner
lists and leaves out inner lists with all zeros.
"""
if len(x) > 0:
if type(x[0]) != numpy.ndarray:
# x is 1d array
return list(numpy.trim_zeros(x))
else:
# x is a multidimentional array
new_x = []
for l in x:
tl = trim_zero_empty(l)
if len(tl) > 0:
new_x.append(tl)
return new_x
else:
# x is empty list
return x
def deconv(a, b):
"""
Returns function c such that b * c = a.
https://en.wikipedia.org/wiki/Deconvolution
"""
# Convert larger polynomial using fft
ffta = numpy.fft.fftn(a)
# Get it's shape so fftn will expand
# smaller polynomial to fit.
ashape = numpy.shape(a)
# Convert smaller polynomial with fft
# using the shape of the larger one
fftb = numpy.fft.fftn(b,ashape)
# Divide the two in frequency domain
fftquotient = ffta / fftb
# Convert back to polynomial coefficients using ifft
# Should give c but with some small extra components
c = numpy.fft.ifftn(fftquotient)
# Get rid of imaginary part and round up to 6 decimals
# to get rid of small real components
trimmedc = numpy.around(numpy.real(c),decimals=6)
# Trim zeros and eliminate
# empty rows of coefficients
cleanc = trim_zero_empty(trimmedc)
return cleanc
print("deconv(g,h)=")
pprint.pprint(deconv(g,h))
print(" ")
print("deconv(g,f)=")
pprint.pprint(deconv(g,f))
|
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #Fortran | Fortran | module Freecell
use lcgs
implicit none
character(4) :: suit = "CDHS"
character(13) :: rank = "A23456789TJQK"
character(2) :: deck(0:51)
contains
subroutine Createdeck()
integer :: i, j, n
n = 0
do i = 1, 13
do j = 1, 4
deck(n) = rank(i:i) // suit(j:j)
n = n + 1
end do
end do
end subroutine
subroutine Freecelldeal(game)
integer, intent(in) :: game
integer(i64) :: rnum
integer :: i, n
character(2) :: tmp
call Createdeck()
rnum = msrand(game)
do i = 51, 1, -1
n = mod(rnum, i+1)
tmp = deck(n)
deck(n) = deck(i)
deck(i) = tmp
rnum = msrand()
end do
write(*, "(a, i0)") "Game #", game
write(*, "(8(a, tr1))") deck(51:0:-1)
write(*,*)
end subroutine
end module Freecell
program Freecell_test
use Freecell
implicit none
call Freecelldeal(1)
call Freecelldeal(617)
end program |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Perl | Perl | use strict;
use warnings;
use feature 'say';
my $seq;
for my $x (0..99) {
my $a = sprintf '%02d', $x;
next if substr($a,1,1) < substr($a,0,1);
$seq .= (substr($a,0,1) == substr($a,1,1)) ? substr($a,0,1) : $a;
for ($a+1 .. 99) {
next if substr(sprintf('%02d', $_), 1,1) <= substr($a,0,1);
$seq .= sprintf "%s%02d", $a, $_;
}
}
$seq .= '000';
sub check {
my($seq) = @_;
my %chk;
for (0.. -1 + length $seq) { $chk{substr($seq, $_, 4)}++ }
say 'Missing: ' . join ' ', grep { ! $chk{ sprintf('%04d',$_) } } 0..9999;
say 'Extra: ' . join ' ', sort grep { $chk{$_} > 1 } keys %chk;
}
my $n = 130;
say "de Bruijn sequence length: " . length $seq;
say "\nFirst $n characters:\n" . substr($seq, 0, $n );
say "\nLast $n characters:\n" . substr($seq, -$n, $n);
say "\nIncorrect 4 digit PINs in this sequence:";
check $seq;
say "\nIncorrect 4 digit PINs in the reversed sequence:";
check(reverse $seq);
say "\nReplacing the 4444th digit, '@{[substr($seq,4443,1)]}', with '5'";
substr $seq, 4443, 1, 5;
say "Incorrect 4 digit PINs in the revised sequence:";
check $seq; |
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Lasso | Lasso | define dint => type {
data private value
public oncreate(value::integer) => {
fail_if(#value < 1,#value+' less than 1 ')
fail_if(#value > 10,#value+' greater than 10')
.value = #value
}
public +(rhs::integer) => dint(.value + #rhs)
public -(rhs::integer) => dint(.value - #rhs)
public *(rhs::integer) => dint(.value * #rhs)
public /(rhs::integer) => dint(.value / #rhs)
public %(rhs::integer) => dint(.value % #rhs)
public asstring() => string(.value)
}
dint(1) // 1
dint(10) // 10
dint(0) // Error: 0 less than 1
dint(2) - 5 // Error: -3 less than 1
dint(11) // Error: 11 greater than 10
dint(10) + 1 // Error: 11 greater than 10
dint(10) * 2 // Error: 20 greater than 10
|
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #Lua | Lua | BI = { -- Bounded Integer
new = function(self, v) return setmetatable({v = self:_limit(v)}, BI_mt) end,
_limit = function(self,v) return math.max(1, math.min(math.floor(v), 10)) end,
}
BI_mt = {
__index = BI,
__call = function(self,v) return self:new(v) end,
__unm = function(self) return BI(-self.v) end,
__add = function(self,other) return BI(self.v+other.v) end,
__sub = function(self,other) return BI(self.v-other.v) end,
__mul = function(self,other) return BI(self.v*other.v) end,
__div = function(self,other) return BI(self.v/other.v) end,
__mod = function(self,other) return BI(self.v%other.v) end,
__pow = function(self,other) return BI(self.v^other.v) end,
__eq = function(self,other) return self.v==other.v end,
__lt = function(self,other) return self.v<other.v end,
__le = function(self,other) return self.v<=other.v end,
__tostring = function(self) return tostring(self.v) end
}
setmetatable(BI, BI_mt) |
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Perl | Perl | use strict;
sub sq {
my $s = 0;
$s += $_ ** 2 for @_;
$s;
}
sub hit {
my ($sph, $x, $y) = @_;
$x -= $sph->[0];
$y -= $sph->[1];
my $z = sq($sph->[3]) - sq($x, $y);
return if $z < 0;
$z = sqrt $z;
return $sph->[2] - $z, $sph->[2] + $z;
}
sub normalize {
my $v = shift;
my $n = sqrt sq(@$v);
$_ /= $n for @$v;
$v;
}
sub dot {
my ($x, $y) = @_;
my $s = $x->[0] * $y->[0] + $x->[1] * $y->[1] + $x->[2] * $y->[2];
$s > 0 ? $s : 0;
}
my $pos = [ 120, 120, 0, 120 ];
my $neg = [ -77, -33, -100, 190 ];
my $light = normalize([ -12, 13, -10 ]);
sub draw {
my ($k, $amb) = @_;
binmode STDOUT, ":raw";
print "P5\n", $pos->[0] * 2 + 3, " ", $pos->[1] * 2 + 3, "\n255\n";
for my $y (($pos->[1] - $pos->[3] - 1) .. ($pos->[1] + $pos->[3] + 1)) {
my @row = ();
for my $x (($pos->[0] - $pos->[3] - 1) .. ($pos->[0] + $pos->[3] + 1)) {
my ($hit, @hs) = 0;
my @h = hit($pos, $x, $y);
if (!@h) { $hit = 0 }
elsif (!(@hs = hit($neg, $x, $y))) { $hit = 1 }
elsif ($hs[0] > $h[0]) { $hit = 1 }
elsif ($hs[1] > $h[0]) { $hit = $hs[1] > $h[1] ? 0 : 2 }
else { $hit = 1 }
my ($val, $v);
if ($hit == 0) { $val = 0 }
elsif ($hit == 1) {
$v = [ $x - $pos->[0],
$y - $pos->[1],
$h[0] - $pos->[2] ];
} else {
$v = [ $neg->[0] - $x,
$neg->[1] - $y,
$neg->[2] - $hs[1] ];
}
if ($v) {
normalize($v);
$val = int((dot($v, $light) ** $k + $amb) * 255);
$val = ($val > 255) ? 255 : ($val < 0) ? 0 : $val;
}
push @row, $val;
}
print pack("C*", @row);
}
}
draw(2, 0.2); |
http://rosettacode.org/wiki/Day_of_the_week | Day of the week | A company decides that whenever Xmas falls on a Sunday they will give their workers all extra paid holidays so that, together with any public holidays, workers will not have to work the following week (between the 25th of December and the first of January).
Task
In what years between 2008 and 2121 will the 25th of December be a Sunday?
Using any standard date handling libraries of your programming language;
compare the dates calculated with the output of other languages to discover any anomalies in the handling of dates which may be due to, for example, overflow in types used to represent dates/times similar to y2k type problems.
| #360_Assembly | 360 Assembly | * Day of the week 06/07/2016
DOW CSECT
USING DOW,R15 base register
LA R6,2008 year=2008
LOOP C R6,=F'2121' do year=2008 to 2121
BH ELOOP .
LR R7,R6 y=year
LA R8,12 m=12
LA R9,25 d=25
C R8,=F'3' if m<3
BNL MGE3 then
LA R8,12(R8) m=m+12
BCTR R7,0 y=y-1
MGE3 LR R10,R7 y
SRDA R10,32 .
D R10,=F'100' r=y//100 ; l=y/100
LR R3,R8 m
LA R3,1(R3) m+1
M R2,=F'26' *26
D R2,=F'10' /10
AR R3,R9 +d
AR R3,R10 +r
LR R2,R10 r
SRA R2,2 /4
AR R2,R3 (d+(m+1)*26/10+r+r/4
LR R3,R11 l
SRA R3,2 /4
AR R2,R3 (d+(m+1)*26/10+r+r/4+l/4
LA R5,5 5
MR R4,R11 *l
AR R2,R5 (d+(m+1)*26/10+r+r/4+l/4+5*l)
SRDA R2,32 .
D R2,=F'7' w=(d+(m+1)*26/10+r+r/4+l/4+5*l)//7
C R2,=F'1' if w=1 (sunday)
BNE WNE1 then
XDECO R6,PG edit year
XPRNT PG,12 print year
WNE1 LA R6,1(R6) year=year+1
B LOOP next year
ELOOP BR R14 exit
PG DS CL12 buffer
YREGS
END DOW |
http://rosettacode.org/wiki/Day_of_the_week | Day of the week | A company decides that whenever Xmas falls on a Sunday they will give their workers all extra paid holidays so that, together with any public holidays, workers will not have to work the following week (between the 25th of December and the first of January).
Task
In what years between 2008 and 2121 will the 25th of December be a Sunday?
Using any standard date handling libraries of your programming language;
compare the dates calculated with the output of other languages to discover any anomalies in the handling of dates which may be due to, for example, overflow in types used to represent dates/times similar to y2k type problems.
| #ABAP | ABAP | report zday_of_week
data: lv_start type i value 2007,
lv_n type i value 114,
lv_date type sy-datum,
lv_weekday type string,
lv_day type c,
lv_year type n length 4.
write 'December 25 is a Sunday in: '.
do lv_n times.
lv_year = lv_start + sy-index.
concatenate lv_year '12' '25' into lv_date.
call function 'DATE_COMPUTE_DAY'
exporting date = lv_date
importing day = lv_day.
select single langt from t246 into lv_weekday
where sprsl = sy-langu and
wotnr = lv_day.
if lv_weekday eq 'Sunday'.
write / lv_year.
endif.
enddo.
|
http://rosettacode.org/wiki/Deconvolution/2D%2B | Deconvolution/2D+ | This task is a straightforward generalization of Deconvolution/1D to higher dimensions. For example, the one dimensional case would be applicable to audio signals, whereas two dimensions would pertain to images. Define the discrete convolution in
d
{\displaystyle {\mathit {d}}}
dimensions of two functions
H
,
F
:
Z
d
→
R
{\displaystyle H,F:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to real numbers as the function
G
:
Z
d
→
R
{\displaystyle G:\mathbb {Z} ^{d}\rightarrow \mathbb {R} }
also taking
d
{\displaystyle {\mathit {d}}}
-tuples of integers to reals and satisfying
G
(
n
0
,
…
,
n
d
−
1
)
=
∑
m
0
=
−
∞
∞
…
∑
m
d
−
1
=
−
∞
∞
F
(
m
0
,
…
,
m
d
−
1
)
H
(
n
0
−
m
0
,
…
,
n
d
−
1
−
m
d
−
1
)
{\displaystyle G(n_{0},\dots ,n_{d-1})=\sum _{m_{0}=-\infty }^{\infty }\dots \sum _{m_{d-1}=-\infty }^{\infty }F(m_{0},\dots ,m_{d-1})H(n_{0}-m_{0},\dots ,n_{d-1}-m_{d-1})}
for all
d
{\displaystyle {\mathit {d}}}
-tuples of integers
(
n
0
,
…
,
n
d
−
1
)
∈
Z
d
{\displaystyle (n_{0},\dots ,n_{d-1})\in \mathbb {Z} ^{d}}
. Assume
F
{\displaystyle {\mathit {F}}}
and
H
{\displaystyle {\mathit {H}}}
(and therefore
G
{\displaystyle {\mathit {G}}}
) are non-zero over only a finite domain bounded by the origin, hence possible to represent as finite multi-dimensional arrays or nested lists
f
{\displaystyle {\mathit {f}}}
,
h
{\displaystyle {\mathit {h}}}
, and
g
{\displaystyle {\mathit {g}}}
.
For this task, implement a function (or method, procedure, subroutine, etc.) deconv to perform deconvolution (i.e., the inverse of convolution) by solving for
h
{\displaystyle {\mathit {h}}}
given
f
{\displaystyle {\mathit {f}}}
and
g
{\displaystyle {\mathit {g}}}
. (See Deconvolution/1D for details.)
The function should work for
g
{\displaystyle {\mathit {g}}}
of arbitrary length in each dimension (i.e., not hard coded or constant) and
f
{\displaystyle {\mathit {f}}}
of any length up to that of
g
{\displaystyle {\mathit {g}}}
in the corresponding dimension.
The deconv function will need to be parameterized by the dimension
d
{\displaystyle {\mathit {d}}}
unless the dimension can be inferred from the data structures representing
g
{\displaystyle {\mathit {g}}}
and
f
{\displaystyle {\mathit {f}}}
.
There may be more equations than unknowns. If convenient, use a function from a library that finds the best fitting solution to an overdetermined system of linear equations (as in the Multiple regression task). Otherwise, prune the set of equations as needed and solve as in the Reduced row echelon form task.
Debug your solution using this test data, of which a portion is shown below. Be sure to verify both that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
f
{\displaystyle {\mathit {f}}}
is
h
{\displaystyle {\mathit {h}}}
and that the deconvolution of
g
{\displaystyle {\mathit {g}}}
with
h
{\displaystyle {\mathit {h}}}
is
f
{\displaystyle {\mathit {f}}}
. Display the results in a human readable form for the three dimensional case only.
dimension 1:
h: [-8, 2, -9, -2, 9, -8, -2]
f: [ 6, -9, -7, -5]
g: [-48, 84, -16, 95, 125, -70, 7, 29, 54, 10]
dimension 2:
h: [
[-8, 1, -7, -2, -9, 4],
[4, 5, -5, 2, 7, -1],
[-6, -3, -3, -6, 9, 5]]
f: [
[-5, 2, -2, -6, -7],
[9, 7, -6, 5, -7],
[1, -1, 9, 2, -7],
[5, 9, -9, 2, -5],
[-8, 5, -2, 8, 5]]
g: [
[40, -21, 53, 42, 105, 1, 87, 60, 39, -28],
[-92, -64, 19, -167, -71, -47, 128, -109, 40, -21],
[58, 85, -93, 37, 101, -14, 5, 37, -76, -56],
[-90, -135, 60, -125, 68, 53, 223, 4, -36, -48],
[78, 16, 7, -199, 156, -162, 29, 28, -103, -10],
[-62, -89, 69, -61, 66, 193, -61, 71, -8, -30],
[48, -6, 21, -9, -150, -22, -56, 32, 85, 25]]
dimension 3:
h: [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f: [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g: [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
| #Raku | Raku | # Deconvolution of N dimensional matrices.
sub deconvolve-N ( @g, @f ) {
my @hsize = @g.shape »-« @f.shape »+» 1;
my @toSolve = coords(@g.shape).map:
{ [row(@g, @f, $^coords, @hsize)] };
my @solved = rref( @toSolve );
my @h;
for flat coords(@hsize) Z @solved[*;*-1] -> $_, $v {
@h.AT-POS(|$_) = $v;
}
@h
}
# Construct a row for each value in @g to be sent to the simultaneous equation solver
sub row ( @g, @f, @gcoord, $hsize ) {
my @row;
@gcoord = @gcoord[(^@f.shape)]; # clip extraneous values
for coords( $hsize ) -> @hc {
my @fcoord;
for ^@hc -> $i {
my $window = @gcoord[$i] - @hc[$i];
@fcoord.push($window) and next if 0 ≤ $window < @f.shape[$i];
last;
}
@row.push: @fcoord == @hc ?? @f.AT-POS(|@fcoord) !! 0;
}
@row.push: @g.AT-POS(|@gcoord);
@row
}
# Constructs an AoA of coordinates to all elements of N dimensional array
sub coords ( @dim ) {
@[reverse $_ for [X] ([^$_] for reverse @dim)]
}
# Reduced Row Echelon Form simultaneous equation solver
# Can handle over-specified systems (N unknowns in N + M equations)
sub rref (@m) {
@m = trim-system @m;
my ($lead, $rows, $cols) = 0, @m, @m[0];
for ^$rows -> $r {
return @m unless $lead < $cols;
my $i = $r;
until @m[$i;$lead] {
next unless ++$i == $rows;
$i = $r;
return @m if ++$lead == $cols;
}
@m[$i, $r] = @m[$r, $i] if $r != $i;
@m[$r] »/=» $ = @m[$r;$lead];
for ^$rows -> $n {
next if $n == $r;
@m[$n] »-=» @m[$r] »×» (@m[$n;$lead] // 0);
}
++$lead;
}
@m
}
# Reduce to N equations in N unknowns; a no-op unless rows > cols
sub trim-system (@m) {
return @m unless @m ≥ @m[0];
my (\vars, @t) = @m[0] - 1;
for ^vars -> \lead {
for ^@m -> \row {
@t.append: @m.splice(row, 1) and last if @m[row;lead];
}
}
while @t < vars and @m { @t.push: shift @m }
@t
}
# Pretty printer for N dimensional arrays
# Assumes if first element in level is an array, then all are
sub pretty-print ( @array, $indent = 0 ) {
if @array[0] ~~ Array {
say ' ' x $indent,"[";
pretty-print( $_, $indent + 2 ) for @array;
say ' ' x $indent, "]{$indent??','!!''}";
} else {
say ' ' x $indent, "[{say_it(@array)} ]{$indent??','!!''}";
}
sub say_it ( @array ) { return join ",", @array».fmt("%4s"); }
}
my @f[3;2;3] = (
[
[ -9, 5, -8 ],
[ 3, 5, 1 ],
],
[
[ -1, -7, 2 ],
[ -5, -6, 6 ],
],
[
[ 8, 5, 8 ],
[ -2, -6, -4 ],
]
);
my @g[4;4;6] = (
[
[ 54, 42, 53, -42, 85, -72 ],
[ 45,-170, 94, -36, 48, 73 ],
[ -39, 65,-112, -16, -78, -72 ],
[ 6, -11, -6, 62, 49, 8 ],
],
[
[ -57, 49, -23, 52,-135, 66 ],
[ -23, 127, -58, -5,-118, 64 ],
[ 87, -16, 121, 23, -41, -12 ],
[ -19, 29, 35,-148, -11, 45 ],
],
[
[ -55,-147,-146, -31, 55, 60 ],
[ -88, -45, -28, 46, -26,-144 ],
[ -12,-107, -34, 150, 249, 66 ],
[ 11, -15, -34, 27, -78, -50 ],
],
[
[ 56, 67, 108, 4, 2, -48 ],
[ 58, 67, 89, 32, 32, -8 ],
[ -42, -31,-103, -30, -23, -8 ],
[ 6, 4, -26, -10, 26, 12 ],
]
);
say "# {[email protected]}D array:";
my @h = deconvolve-N( @g, @f );
say "h =";
pretty-print( @h );
my @h-shaped[2;3;4] = @(deconvolve-N( @g, @f ));
my @ff = deconvolve-N( @g, @h-shaped );
say "\nff =";
pretty-print( @ff ); |
http://rosettacode.org/wiki/Deal_cards_for_FreeCell | Deal cards for FreeCell | Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
s
t
a
t
e
n
+
1
≡
214013
×
s
t
a
t
e
n
+
2531011
(
mod
2
31
)
{\displaystyle state_{n+1}\equiv 214013\times state_{n}+2531011{\pmod {2^{31}}}}
r
a
n
d
n
=
s
t
a
t
e
n
÷
2
16
{\displaystyle rand_{n}=state_{n}\div 2^{16}}
r
a
n
d
n
{\displaystyle rand_{n}}
is in range 0 to 32767.
Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
Seed the RNG with the number of the deal.
Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
Until the array is empty:
Choose a random card at index ≡ next random number (mod array length).
Swap this random card with the last card of the array.
Remove this random card from the array. (Array length goes down by 1.)
Deal this random card.
Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards
Game #1
Game #617
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games.
(Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm.
The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
Playing cards
Card shuffles
War Card_Game
Poker hand_analyser
Go Fish
| #FreeBASIC | FreeBASIC | ' version 04-11-2016
' compile with: fbc -s console
' to seed ms_lcg(seed > -1)
' to get random number ms_lcg(-1) or ms_lcg() or just ms_lcg
Function ms_lcg(seed As Integer = -1) As UInteger
Static As UInteger ms_state
If seed <> -1 Then
ms_state = seed Mod 2 ^ 31
Else
ms_state = (214013 * ms_state + 2531011) Mod 2 ^ 31
End If
Return ms_state Shr 16
End Function
' ------=< MAIN >=------
Dim As UByte card(51)
Dim As String suit = "CDHS", value = "A23456789TJQK"
Dim As Long i, c, s, v, game = 1
Dim As ULong game_nr(1 To 2) = { 1, 617}
Do
ms_lcg(game_nr(game)) ' seed generator
Print "game #"; game_nr(game)
game = game + 1
For i = 0 To 51 ' set up the cards
card(i) = i
Next
For i = 51 To 0 Step -1 ' shuffle
c = ms_lcg Mod (i +1)
Swap card(i), card(c)
Next
c = 0
Do
For i = 0 To 7
s = card(51 - c) Mod 4
v = card(51 - c) \ 4
Print Chr(value[v]); Chr(suit[s]); " ";
c = c +1
If c > 51 Then Exit Do
Next
Print
Loop
Print : Print
Loop Until game > UBound(game_nr)
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End |
http://rosettacode.org/wiki/De_Bruijn_sequences | de Bruijn sequences | The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn.
A note on Dutch capitalization: Nicolaas' last name is de Bruijn, the de isn't normally capitalized
unless it's the first word in a sentence. Rosetta Code (more or less by default or by fiat) requires the first word in the task name to be
capitalized.
In combinatorial mathematics, a de Bruijn sequence of order n on
a size-k alphabet (computer science) A is a cyclic sequence in which every
possible length-n string (computer science, formal theory) on A occurs
exactly once as a contiguous substring.
Such a sequence is denoted by B(k, n) and has
length kn, which is also the number of distinct substrings of
length n on A;
de Bruijn sequences are therefore optimally short.
There are:
(k!)k(n-1) ÷ kn
distinct de Bruijn sequences B(k, n).
Task
For this Rosetta Code task, a de Bruijn sequence is to be generated that can be used to shorten a brute-force attack on
a PIN-like code lock that does not have an "enter"
key and accepts the last n digits entered.
Note: automated teller machines (ATMs) used to work like
this, but their software has been updated to not allow a brute-force attack.
Example
A digital door lock with a 4-digit code would
have B (10, 4) solutions, with a length of 10,000 (digits).
Therefore, only at most 10,000 + 3 (as the solutions are cyclic or wrap-around) presses are needed to
open the lock.
Trying all 4-digit codes separately would require 4 × 10,000 or 40,000 presses.
Task requirements
Generate a de Bruijn sequence for a 4-digit (decimal) PIN code.
Show the length of the generated de Bruijn sequence.
(There are many possible de Bruijn sequences that solve this task, one solution is shown on the discussion page).
Show the first and last 130 digits of the de Bruijn sequence.
Verify that all four-digit (decimal) 1,000 PIN codes are contained within the de Bruijn sequence.
0000, 0001, 0002, 0003, ... 9996, 9997, 9998, 9999 (note the leading zeros).
Reverse the de Bruijn sequence.
Again, perform the (above) verification test.
Replace the 4,444th digit with a period (.) in the original de Bruijn sequence.
Perform the verification test (again). There should be four PIN codes missing.
(The last requirement is to ensure that the verification tests performs correctly. The verification processes should list
any and all missing PIN codes.)
Show all output here, on this page.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
References
Wikipedia entry: de Bruijn sequence.
MathWorld entry: de Bruijn sequence.
An OEIS entry: A166315 lexicographically earliest binary de Bruijn sequences, B(2,n) --- Not B(10,4), but possibly relevant.
| #Phix | Phix | string deBruijn = ""
for n=0 to 99 do
string a = sprintf("%02d",n)
integer a1 = a[1],
a2 = a[2]
if a2>=a1 then
deBruijn &= iff(a1=a2?a1:a)
for m=n+1 to 99 do
string ms = sprintf("%02d",m)
if ms[2]>a1 then
deBruijn &= a&ms
end if
end for
end if
end for
deBruijn &= "000"
printf(1,"de Bruijn sequence length: %d\n\n",length(deBruijn))
printf(1,"First 130 characters:\n%s\n\n",deBruijn[1..130])
printf(1,"Last 130 characters:\n%s\n\n",deBruijn[-130..-1])
function check(string text)
sequence res = {}
sequence found = repeat(0,10000)
integer k
for i=1 to length(text)-3 do
k = to_integer(text[i..i+3],-1)+1
if k!=0 then found[k] += 1 end if
end for
for i=1 to 10000 do
k = found[i]
if k!=1 then
string e = sprintf("Pin number %04d ",i-1)
e &= iff(k=0?"missing":sprintf("occurs %d times",k))
res = append(res,e)
end if
end for
k = length(res)
if k=0 then
res = "No errors found"
else
string s = iff(k=1?"":"s")
res = sprintf("%d error%s found:\n ",{k,s})&join(res,"\n ")
end if
return res
end function
printf(1,"Missing 4 digit PINs in this sequence: %s\n", check(deBruijn))
printf(1,"Missing 4 digit PINs in the reversed sequence: %s\n",check(reverse(deBruijn)))
printf(1,"4444th digit in the sequence: %c (setting it to .)\n", deBruijn[4444])
deBruijn[4444] = '.'
printf(1,"Re-running checks: %s\n",check(deBruijn))
|
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #M2000_Interpreter | M2000 Interpreter |
Module CheckDataType {
Module CheckThis {
Class typeA {
Private:
mval as currency
Public:
Property min {value}=-1
Property max {value}=0
Operator "++" {
if .mval=.[max] then Error "Number bigger than Max Value"
.mval++
}
Operator "--" {
if .mval=.[min] then Error "Number lower than Min Value"
.mval--
}
Operator "+=" (x){
if .mval>.[max]+x then Error "Number bigger than Max Value"
.mval+=x
}
Operator "-=" (x) {
if .mval<.[min]-x then Error "Number lower than Min Value"
.mval-=x
}
Value {
=.mval
}
Set (x) {
if x>.[max] then Error "Number bigger than Max Value"
if x<.[min] then Error "Number lower than Min Value"
.mval<=int(x)
}
Class:
Module typeA (.[min], .[max]) {
.mval<=.[min]
}
}
K=typeA(1, 10)
K=5
Def TypeExp$(x)=Type$(x)
Print Type$(K)="Group", TypeExp$(K)="Currency"
K--
Print K
K=K+1
Print K, K.Max, K.Min
K+=4
Print K, K.Max, K.Min
Print -K*4=-36
Try Ok {
K=400
}
If Error or Not Ok then Print Error$
\\ make a new K as K with name Z
Z=Group(K)
Print Z.Max, Z.Min, Z
K++
Z=Group(K)
Print Z=K
K-=5
\\ We make M as pointer to K
M->K
Print Eval(M), K
For M {This++}
Print Eval(M), K
For M {This=8}
Print Eval(M), K
Push Group(M), Group(M)
}
CheckThis
\\ Read Group from stack of values and place a copy in each item in A()
Dim A(4)=Group
\\ We have one more group in stack, so we read it to new variable What
\\ What isn't a pointer to object, is the object (internal is a pointer to objet but isn't usable for M2000)
Read What
What++
Print What.Max=10, What.Min=1, What=9 ' True True True
Print A(2).Max=10, A(2).Min=1, A(2)=8 ' True True True
}
CheckDataType
|
http://rosettacode.org/wiki/Define_a_primitive_data_type | Define a primitive data type | Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.
| #MATLAB | MATLAB | classdef RingInt
properties
value
end
methods
%RingInt constructor
function theInt = RingInt(varargin)
if numel(varargin) == 0
theInt.value = 1;
elseif numel(varargin) > 1
error 'The RingInt constructor can''''t take more than 1 argument.';
else
%Makes sure any doubles are coerced to ints
if not(isinteger(varargin{1}))
varargin{1} = int32(varargin{1});
end
%Maps out of bound values to the proper range
if varargin{1} > 10
theInt.value = varargin{1} - (10 * (idivide(varargin{1},10,'ceil') - 1));
elseif varargin{1} < 1
theInt.value = varargin{1} + (10 * (idivide(abs(varargin{1}),10,'floor') + 1));
else
theInt.value = varargin{1};
end
end
end %constructor
%Overload the "+" operator
function sum = plus(firstNumber,secondNumber)
if isa(firstNumber,'RingInt') && isa(secondNumber,'RingInt')
sum = firstNumber.value + secondNumber.value;
elseif isa(firstNumber,'RingInt') && not(isa(secondNumber,'RingInt'))
sum = firstNumber.value + secondNumber;
else
sum = secondNumber.value + firstNumber;
end
sum = RingInt(sum);
end %+
%Overload the "-" operator
function difference = minus(firstNumber,secondNumber)
if isa(firstNumber,'RingInt') && isa(secondNumber,'RingInt')
difference = firstNumber.value - secondNumber.value;
elseif isa(firstNumber,'RingInt') && not(isa(secondNumber,'RingInt'))
difference = firstNumber.value - secondNumber;
else
difference = firstNumber - secondNumber.value;
end
difference = RingInt(difference);
end %-
%Overload the "==" operator
function trueFalse = eq(firstNumber,secondNumber)
if isa(firstNumber,'RingInt') && isa(secondNumber,'RingInt')
trueFalse = firstNumber.value == secondNumber.value;
else
error 'You can only compare a RingInt to another RingInt';
end
end %==
%Overload the display() function
function display(ringInt)
disp(ringInt);
end
%Overload the disp() function
function disp(ringInt)
disp(sprintf('\nans =\n\n\t %d\n',ringInt.value));
end
end %methods
end %classdef
|
http://rosettacode.org/wiki/Death_Star | Death Star |
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
draw a sphere
draw a cuboid
draw a rotating cube
write language name in 3D ASCII
| #Phix | Phix | --
-- demo\rosetta\DeathStar.exw
-- ==========================
--
-- Translated from Go.
--
with javascript_semantics
include pGUI.e
constant title = "Death Star"
Ihandle dlg, canvas
cdCanvas cddbuffer, cdcanvas
function dot(sequence x, sequence y)
return sum(sq_mul(x,y))
end function
function normalize(sequence v)
atom len = sqrt(dot(v, v))
if len=0 then return {0,0,0} end if
return sq_mul(v,1/len)
end function
enum X,Y,Z
function hit(sequence s, atom x, y, r)
x -= s[X]
y -= s[Y]
atom zsq := r*r - (x*x + y*y)
if zsq >= 0 then
atom zsqrt := sqrt(zsq)
return {s[Z] - zsqrt, s[Z] + zsqrt, true}
end if
return {0, 0, false}
end function
procedure deathStar(integer width, height, atom k, atom amb, sequence direction)
atom t0 = time()+1, t1 = t0,
lmul = 255/(1+amb)
integer r = floor((min(width,height)-40)/2),
cx = floor(width/2),
cy = floor(height/2)
sequence pos = {0,0,0},
neg = {r*-3/4,r*-3/4,r*-1/4}
for y = -r to +r do
if time()>t1 then
-- Let the user know we aren't completely dead just yet
IupSetStrAttribute(dlg,"TITLE","%s - drawing (%d%%)",{title,100*(y+r)/(2*r)})
t1 = time()+1
--
-- Hmm, not entirely sure why this is needed, but without it
-- after ~7 seconds the window gets a "(Not Responding)" and
-- then something decides to force a full repaint, which at
-- fullscreen will never finish in < 7s on this ancient box.
-- I suppose this is the corrollary to the above, this time
-- letting Windows 10 know the process is not quite dead...
-- Currently and possibly forever neither of these routines
-- exist in pGUI.js, the browser is more forgiving anyway.
--
if platform()!=JS then
if IupLoopStep()=IUP_CLOSE then
IupExitLoop()
exit
end if
end if
end if
for x = -r to +r do
atom {zb1, zb2, hit1} := hit(pos, x, y, r)
if hit1 then
atom {zs1, zs2, hit2} := hit(neg, x, y, r/2)
if not hit2 or zs2<=zb2 then
bool dish = hit2 and zs1<=zb1
sequence vec = iff(dish?sq_sub(neg,{x,y,zs2}):{x,y,zb1})
atom s = dot(direction, normalize(vec)),
l = iff(s<=0?0:power(s,k))
integer lum = and_bits(#FF,lmul*(l+amb))
cdCanvasPixel(cddbuffer, cx+x, cy-y, lum*#10101)
end if
end if
end for
end for
if t1!=t0 then
IupSetStrAttribute(dlg,"TITLE",title)
end if
end procedure
function redraw_cb(Ihandle /*ih*/, integer /*posx*/, /*posy*/)
integer {width, height} = IupGetIntInt(canvas, "DRAWSIZE")
cdCanvasActivate(cddbuffer)
cdCanvasClear(cddbuffer)
deathStar(width, height, 1.5, 0.2, normalize({20, -40, -10}))
cdCanvasFlush(cddbuffer)
return IUP_DEFAULT
end function
function map_cb(Ihandle ih)
cdcanvas = cdCreateCanvas(CD_IUP, ih)
cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
cdCanvasSetBackground(cddbuffer, CD_BLACK)
return IUP_DEFAULT
end function
procedure main()
IupOpen()
canvas = IupCanvas("RASTERSIZE=340x340")
IupSetCallbacks(canvas, {"MAP_CB", Icallback("map_cb"),
"ACTION", Icallback("redraw_cb")})
dlg = IupDialog(canvas,`TITLE="%s"`,{title})
IupMap(dlg)
IupSetAttribute(canvas, "RASTERSIZE", NULL) -- release the minimum limitation
IupShow(dlg)
if platform()!=JS then
IupMainLoop()
IupClose()
end if
end procedure
main()
|
http://rosettacode.org/wiki/Day_of_the_week | Day of the week | A company decides that whenever Xmas falls on a Sunday they will give their workers all extra paid holidays so that, together with any public holidays, workers will not have to work the following week (between the 25th of December and the first of January).
Task
In what years between 2008 and 2121 will the 25th of December be a Sunday?
Using any standard date handling libraries of your programming language;
compare the dates calculated with the output of other languages to discover any anomalies in the handling of dates which may be due to, for example, overflow in types used to represent dates/times similar to y2k type problems.
| #Action.21 | Action! |
Byte FUNC DayOfWeek(BYTE day, month CARD year BYTE century)
CARD weekday
BYTE ARRAY index=[0 3 2 5 0 3 5 1 4 6 2 4]
IF year < 100 THEN
year = year + century * 100
FI
IF year < 1753 THEN RETURN(7) FI
IF month < 3 THEN
year==-1
FI
month = index(month-1)
weekday=year + year/4 - year/100 + year/400 + month + day
weekday = weekday MOD 7
RETURN (weekday)
PROC main()
CARD y
PrintE("December 25 is a Sunday in:")
FOR y = 2008 to 2121
DO
IF DayOfWeek(25, 12, y)=0 THEN
PrintCE(y)
FI
OD
RETURN
|
http://rosettacode.org/wiki/Day_of_the_week | Day of the week | A company decides that whenever Xmas falls on a Sunday they will give their workers all extra paid holidays so that, together with any public holidays, workers will not have to work the following week (between the 25th of December and the first of January).
Task
In what years between 2008 and 2121 will the 25th of December be a Sunday?
Using any standard date handling libraries of your programming language;
compare the dates calculated with the output of other languages to discover any anomalies in the handling of dates which may be due to, for example, overflow in types used to represent dates/times similar to y2k type problems.
| #Ada | Ada | with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
with Ada.Text_IO; use Ada.Text_IO;
procedure Yuletide is
begin
for Year in 2008..2121 loop
if Day_Of_Week (Time_Of (Year, 12, 25)) = Sunday then
Put_Line (Image (Time_Of (Year, 12, 25)));
end if;
end loop;
end Yuletide; |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.