task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #PARI.2FGP | PARI/GP | point.x=1;
point.y=2; |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Pascal | Pascal | type point = record
x, y: integer;
end; |
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #VBA | VBA | Sub copystring()
a = "Hello World!"
b = a
a = "I'm gone"
Debug.Print b
Debug.Print a
End Sub |
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Vim_Script | Vim Script | let str1 = "original string"
let str2 = str1
let str1 = "new string"
echo "String 1:" str1
echo "String 2:" str2 |
http://rosettacode.org/wiki/Constrained_random_points_on_a_circle | Constrained random points on a circle | Task
Generate 100 <x,y> coordinate pairs such that x and y are integers sampled from the uniform distribution with the condition that
10
≤
x
2
+
y
2
≤
15
{\displaystyle 10\leq {\sqrt {x^{2}+y^{2}}}\leq 15}
.
Then display/plot them. The outcome should be a "fuzzy" circle. The actual number of points plotted may be less than 100, given that some pairs may be generated more than once.
There are several possible approaches to accomplish this. Here are two possible algorithms.
1) Generate random pairs of integers and filter out those that don't satisfy this condition:
10
≤
x
2
+
y
2
≤
15
{\displaystyle 10\leq {\sqrt {x^{2}+y^{2}}}\leq 15}
.
2) Precalculate the set of all possible points (there are 404 of them) and select randomly from this set.
| #Scala | Scala | import java.awt.{ Color, geom,Graphics2D ,Rectangle}
import scala.math.hypot
import scala.swing.{MainFrame,Panel,SimpleSwingApplication}
import scala.swing.Swing.pair2Dimension
import scala.util.Random
object CirculairConstrainedRandomPoints extends SimpleSwingApplication {
//min/max of display-x resp. y
val dx0, dy0 = 30; val dxm, dym = 430
val prefSizeX, prefSizeY = 480
val palet = Map("b" -> Color.blue, "g" -> Color.green, "r" -> Color.red, "s" -> Color.black)
val cs = List((0, 0, 10, "b"), (0, 0, 15, "g")) //circle position and color
val xmax, ymax = 20; val xmin, ymin = -xmax
class Coord(x: Double, y: Double) {
def dx = (((dxm - dx0) / 2 + x.toDouble / xmax * (dxm - dx0) / 2) + dx0).toInt
def dy = (((dym - dy0) / 2 - y.toDouble / ymax * (dym - dy0) / 2) + dy0).toInt
}
object Coord {
def apply(x: Double, y: Double) = new Coord(x, y)
}
//points:
val points =
new Iterator[Int] { val r = new Random;def next = r.nextInt(31) - 15; def hasNext = true }.toStream.
zip(new Iterator[Int] { val r = new Random; def next = r.nextInt(31) - 15; def hasNext = true }.toStream).
map { case (x, y) => (x, y, hypot(x, y)) }.filter { case (x, y, r) => r >= 10 && r <= 15 }.take(100).toSeq.
map { case (x, y, r) => new Rectangle(Coord(x, y).dx - 2, Coord(x, y).dy - 2, 4, 4) }
private def ui = new Panel {
background = Color.white
preferredSize = (prefSizeX, prefSizeY)
class Circle(center: Coord, r: Double, val color: Color) {
val dr = (Coord(r, 0).dx - pcentre.dx) * 2
val dx = center.dx - dr / 2
val dy = center.dy - dr / 2
}
object Circle {
def apply(x: Double, y: Double, r: Double, color: Color) =
new Circle(Coord(x, y), r, color)
}
val pcentre = Coord(0, 0)
val pxmax = Coord(xmax, 0); val pxmin = Coord(xmin, 0)
val pymax = Coord(0, ymax); val pymin = Coord(0, ymin)
//axes:
val a_path = new geom.GeneralPath
a_path.moveTo(pxmin.dx, pxmin.dy); a_path.lineTo(pxmax.dx, pxmax.dy) //x-axis
a_path.moveTo(pymin.dx, pymin.dy); a_path.lineTo(pymax.dx, pymax.dy) //y-axis
//labeling:
val labels = List(-20, -15, -10, -5, 5, 10, 15, 20)
labels.foreach { x => { val p = Coord(x, 0); a_path.moveTo(p.dx, p.dy - 3); a_path.lineTo(p.dx, p.dy + 3) } }
labels.foreach { y => { val p = Coord(0, y); a_path.moveTo(p.dx - 3, p.dy); a_path.lineTo(p.dx + 3, p.dy) } }
val xlabels = labels.map(x => { val p = Coord(x, 0); Triple(x.toString, p.dx - 3, p.dy + 20) })
val ylabels = labels.map(y => { val p = Coord(0, y); Triple(y.toString, p.dx - 20, p.dy + 5) })
//circles:
val circles = cs.map { case (x, y, r, c) => Circle(x, y, r, palet(c)) }
override def paintComponent(g: Graphics2D) = {
super.paintComponent(g)
circles.foreach { c => { g.setColor(c.color); g.drawOval(c.dx, c.dy, c.dr, c.dr) } }
g.setColor(palet("r")); points.foreach(g.draw(_))
g.setColor(palet("s")); g.draw(a_path)
xlabels.foreach { case (text, px, py) => g.drawString(text, px, py) }
ylabels.foreach { case (text, px, py) => g.drawString(text, px, py) }
}
} // def ui
def top = new MainFrame {
title = "Rosetta Code >>> Task: Constrained random points on a circle | Language: Scala"
contents = ui
}
} |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI */
/* program condstr.s */
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
/* Initialized data */
.data
szMessTest1: .asciz "The test 1 is equal.\n"
szMessTest1N: .asciz "The test 1 is not equal.\n"
szMessTest2: .asciz "The test 2 is equal.\n"
szMessTest2N: .asciz "The test 2 is not equal.\n"
szMessTest3: .asciz "The test 3 is <.\n"
szMessTest3N: .asciz "The test 3 is >.\n"
szMessTest4: .asciz "The test 4 is <=.\n"
szMessTest4N: .asciz "The test 4 is >.\n"
szMessTest5: .asciz "The test 5 is negative.\n"
szMessTest5N: .asciz "The test 5 is positive ou equal 0.\n"
szMessTest6: .asciz "Test 6 : carry is off.\n"
szMessTest6N: .asciz "Test 6 : carry is set.\n"
szMessTest7: .asciz "Test 7 : no overflow.\n"
szMessTest7N: .asciz "Test 7 : overflow.\n"
szMessTest8: .asciz "Test 8 : then.\n"
szMessTest8N: .asciz "Test 8 : else.\n"
/* UnInitialized data */
.bss
/* code section */
.text
.global main
main: /* entry of program */
push {fp,lr} /* saves 2 registers */
@ test equal zero, not equal zero
@movs r1,#0 @ comments
movs r1,#1 @ @ s --> flags and uncomments
ldreq r0,iAdrszMessTest1
ldrne r0,iAdrszMessTest1N
bl affichageMess
@ test equal 5, not equal 5
@mov r1,#5
mov r1,#10
cmp r1,#5
ldreq r0,iAdrszMessTest2
ldrne r0,iAdrszMessTest2N
bl affichageMess
@ test < 5, > 5 SIGNED
mov r1,#-10
@mov r1,#10
cmp r1,#5
ldrlt r0,iAdrszMessTest3
ldrgt r0,iAdrszMessTest3N
bl affichageMess
@ test < 5, > 5 UNSIGNED
@mov r1,#-10
mov r1,#2
cmp r1,#5
ldrls r0,iAdrszMessTest4
ldrhi r0,iAdrszMessTest4N
bl affichageMess
@ test < 0, > 0
@movs r1,#-10
movs r1,#2 @ s --> flags
ldrmi r0,iAdrszMessTest5
ldrpl r0,iAdrszMessTest5N
bl affichageMess
@ carry off carry on
@mov r1,#-10 @ for carry set
@mov r1,#10 @ for carry off
mov r1,#(2<<30) - 1 @ for carry off
adds r1,#20 @ s --> flags
ldrcc r0,iAdrszMessTest6 @ carry clear
ldrcs r0,iAdrszMessTest6N @ carry set
bl affichageMess
@ overflow off overflow on
@mov r1,#-10 @ for not overflow
@mov r1,#10 @ for not overflow
mov r1,#(2<<30) - 1 @ for overflow
adds r1,#20 @ s --> flags
ldrvc r0,iAdrszMessTest7 @ overflow off
ldrvs r0,iAdrszMessTest7N @ overflow on
bl affichageMess
@ other if then else
mov r1,#5 @ for then
@mov r1,#20 @ for else
cmp r1,#10
ble 1f @ less or equal
@bge 1f @ greather or equal
@else
ldr r0,iAdrszMessTest8N @ overflow off
bl affichageMess
b 2f
1: @ then
ldr r0,iAdrszMessTest8 @ overflow off
bl affichageMess
2:
100: /* standard end of the program */
mov r0, #0 @ return code
pop {fp,lr} @restaur 2 registers
mov r7, #EXIT @ request to exit program
swi 0 @ perform the system call
iAdrszMessTest1: .int szMessTest1
iAdrszMessTest1N: .int szMessTest1N
iAdrszMessTest2: .int szMessTest2
iAdrszMessTest2N: .int szMessTest2N
iAdrszMessTest3: .int szMessTest3
iAdrszMessTest3N: .int szMessTest3N
iAdrszMessTest4: .int szMessTest4
iAdrszMessTest4N: .int szMessTest4N
iAdrszMessTest5: .int szMessTest5
iAdrszMessTest5N: .int szMessTest5N
iAdrszMessTest6: .int szMessTest6
iAdrszMessTest6N: .int szMessTest6N
iAdrszMessTest7: .int szMessTest7
iAdrszMessTest7N: .int szMessTest7N
iAdrszMessTest8: .int szMessTest8
iAdrszMessTest8N: .int szMessTest8N
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {fp,lr} /* save registres */
push {r0,r1,r2,r7} /* save others registers */
mov r2,#0 /* counter length */
1: /* loop length calculation */
ldrb r1,[r0,r2] /* read octet start position + index */
cmp r1,#0 /* if 0 its over */
addne r2,r2,#1 /* else add 1 in the length */
bne 1b /* and loop */
/* so here r2 contains the length of the message */
mov r1,r0 /* address message in r1 */
mov r0,#STDOUT /* code to write to the standard output Linux */
mov r7, #WRITE /* code call system "write" */
swi #0 /* call systeme */
pop {r0,r1,r2,r7} /* restaur others registers */
pop {fp,lr} /* restaur des 2 registres */
bx lr /* return */
|
http://rosettacode.org/wiki/Commatizing_numbers | Commatizing numbers | Commatizing numbers (as used here, is a handy expedient made-up word) is the act of adding commas to a number (or string), or to the numeric part of a larger string.
Task
Write a function that takes a string as an argument with optional arguments or parameters (the format of parameters/options is left to the programmer) that in general, adds commas (or some
other characters, including blanks or tabs) to the first numeric part of a string (if it's suitable for commatizing as per the rules below), and returns that newly commatized string.
Some of the commatizing rules (specified below) are arbitrary, but they'll be a part of this task requirements, if only to make the results consistent amongst national preferences and other disciplines.
The number may be part of a larger (non-numeric) string such as:
«US$1744 millions» ──or──
±25000 motes.
The string may possibly not have a number suitable for commatizing, so it should be untouched and no error generated.
If any argument (option) is invalid, nothing is changed and no error need be generated (quiet execution, no fail execution). Error message generation is optional.
The exponent part of a number is never commatized. The following string isn't suitable for commatizing: 9.7e+12000
Leading zeroes are never commatized. The string 0000000005714.882 after commatization is: 0000000005,714.882
Any period (.) in a number is assumed to be a decimal point.
The original string is never changed except by the addition of commas [or whatever character(s) is/are used for insertion], if at all.
To wit, the following should be preserved:
leading signs (+, -) ── even superfluous signs
leading/trailing/embedded blanks, tabs, and other whitespace
the case (upper/lower) of the exponent indicator, e.g.: 4.8903d-002
Any exponent character(s) should be supported:
1247e12
57256.1D-4
4444^60
7500∙10**35
8500x10**35
9500↑35
+55000↑3
1000**100
2048²
409632
10000pow(pi)
Numbers may be terminated with any non-digit character, including subscripts and/or superscript: 41421356243 or 7320509076(base 24).
The character(s) to be used for the comma can be specified, and may contain blanks, tabs, and other whitespace characters, as well as multiple characters. The default is the comma (,) character.
The period length can be specified (sometimes referred to as "thousands" or "thousands separators"). The period length can be defined as the length (or number) of the decimal digits between commas. The default period length is 3.
E.G.: in this example, the period length is five: 56789,12340,14148
The location of where to start the scanning for the target field (the numeric part) should be able to be specified. The default is 1.
The character strings below may be placed in a file (and read) or stored as simple strings within the program.
Strings to be used as a minimum
The value of pi (expressed in base 10) should be separated with blanks every 5 places past the decimal point,
the Zimbabwe dollar amount should use a decimal point for the "comma" separator:
pi=3.14159265358979323846264338327950288419716939937510582097494459231
The author has two Z$100000000000000 Zimbabwe notes (100 trillion).
"-in Aus$+1411.8millions"
===US$0017440 millions=== (in 2000 dollars)
123.e8000 is pretty big.
The land area of the earth is 57268900(29% of the surface) square miles.
Ain't no numbers in this here words, nohow, no way, Jose.
James was never known as 0000000007
Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe.
␢␢␢$-140000±100 millions.
6/9/1946 was a good year for some.
where the penultimate string has three leading blanks (real blanks are to be used).
Also see
The Wiki entry: (sir) Arthur Eddington's number of protons in the universe.
| #ALGOL_68 | ALGOL 68 | # returns text commatized according to the rules of the task and the #
# period, location and separator paramters #
PROC commatize = ( STRING text, INT location, INT period, STRING separator )STRING:
IF STRING str := text[ AT 1 ];
# handle the options #
INT start position := IF location = 0 THEN 1 ELSE location FI;
INT period length := IF period = 0 THEN 3 ELSE period FI;
STRING separator string := IF separator = "" THEN "," ELSE separator FI;
period length < 1 OR start position < 1 OR start position > UPB str
THEN
# invalid parameters - return the text unchanged #
text
ELIF # attempt to find a non-zero digit #
INT number pos := start position;
WHILE IF number pos > UPB str
THEN FALSE
ELSE str[ number pos ] < "1" OR str[ number pos ] > "9"
FI
DO
number pos +:= 1
OD;
number pos > UPB str
THEN # no digits in the string - return the text unchanged #
text
ELSE # have at least one digit #
STRING result := str[ 1 : number pos - 1 ];
# find the final digit #
INT number end := number pos;
WHILE IF number end >= UPB str
THEN FALSE
ELSE str[ number end + 1 ] >= "0" AND str[ number end + 1 ] <= "9"
FI
DO
number end +:= 1
OD;
# copy the digits commatizing as required #
INT digit count := ( number end - number pos ) + 1;
WHILE digit count > 1 DO
result +:= str[ number pos ];
number pos +:= 1;
digit count -:= 1;
IF digit count MOD period length = 0 THEN
# need a comma after this digit #
result +:= separator string
FI
OD;
# final digit and the rest of the string #
result +:= str[ number pos : ];
result
FI # commatize # ;
# modes and operators to allow us to specify optional parameters to the #
# commatizing procedure #
MODE COMMATIZINGOPTIONS = STRUCT( STRING text, INT location, INT period, STRING separator );
PRIO LOCATION = 9;
OP LOCATION = ( STRING text, INT location )COMMATIZINGOPTIONS: COMMATIZINGOPTIONS( text, location, 0, "" );
PRIO PERIOD = 9;
OP PERIOD = ( STRING text, INT period )COMMATIZINGOPTIONS: COMMATIZINGOPTIONS( text, 0, period, "" );
PRIO SEPARATOR = 9;
OP SEPARATOR = ( STRING text, CHAR separator )COMMATIZINGOPTIONS: COMMATIZINGOPTIONS( text, 0, 0, separator );
OP SEPARATOR = ( STRING text, STRING separator )COMMATIZINGOPTIONS: COMMATIZINGOPTIONS( text, 0, 0, separator );
OP LOCATION = ( COMMATIZINGOPTIONS opts, INT location )COMMATIZINGOPTIONS:
COMMATIZINGOPTIONS( text OF opts, location, period OF opts, separator OF opts );
OP PERIOD = ( COMMATIZINGOPTIONS opts, INT period )COMMATIZINGOPTIONS:
COMMATIZINGOPTIONS( text OF opts, location OF opts, period, separator OF opts );
OP SEPARATOR = ( COMMATIZINGOPTIONS opts, CHAR separator )COMMATIZINGOPTIONS:
COMMATIZINGOPTIONS( text OF opts, location OF opts, period OF opts, separator );
OP SEPARATOR = ( COMMATIZINGOPTIONS opts, STRING separator )COMMATIZINGOPTIONS:
COMMATIZINGOPTIONS( text OF opts, location OF opts, period OF opts, separator );
OP COMMATIZE = ( STRING text )STRING: commatize( text, 0, 0, "" );
OP COMMATIZE = ( COMMATIZINGOPTIONS opts )STRING:
commatize( text OF opts, location OF opts, period OF opts, separator OF opts );
# test the commatization procedure and operators #
print( ( COMMATIZE( "pi=3.14159265358979323846264338327950288419716939937510582097494459231" PERIOD 5 SEPARATOR " " LOCATION 6 ),
newline ) );
print( ( COMMATIZE( "The author has two Z$100000000000000 Zimbabwe notes (100 trillion)." SEPARATOR "." ), newline ) );
print( ( COMMATIZE """-in Aus$+1411.8millions""", newline ) );
print( ( COMMATIZE "===US$0017440 millions=== (in 2000 dollars)", newline ) );
print( ( COMMATIZE "123.e8000 is pretty big.", newline ) );
print( ( COMMATIZE "The land area of the earth is 57268900(29% of the surface) square miles.", newline ) );
print( ( COMMATIZE "Ain't no numbers in this here words, nohow, no way, Jose.", newline ) );
print( ( COMMATIZE "James was never known as 0000000007", newline ) );
print( ( COMMATIZE "Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe.",
newline ) );
print( ( COMMATIZE " $-140000±100 millions.", newline ) );
print( ( COMMATIZE "6/9/1946 was a good year for some.", newline ) ) |
http://rosettacode.org/wiki/Compiler/virtual_machine_interpreter | Compiler/virtual machine interpreter | A virtual machine implements a computer in software.
Task[edit]
Write a virtual machine interpreter. This interpreter should be able to run virtual
assembly language programs created via the task. This is a
byte-coded, 32-bit word stack based virtual machine.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Input format:
Given the following program:
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
The output from the Code generator is a virtual assembly code program:
Output from gen, input to VM
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
The first line of the input specifies the datasize required and the number of constant
strings, in the order that they are reference via the code.
The data can be stored in a separate array, or the data can be stored at the beginning of
the stack. Data is addressed starting at 0. If there are 3 variables, the 3rd one if
referenced at address 2.
If there are one or more constant strings, they come next. The code refers to these
strings by their index. The index starts at 0. So if there are 3 strings, and the code
wants to reference the 3rd string, 2 will be used.
Next comes the actual virtual assembly code. The first number is the code address of that
instruction. After that is the instruction mnemonic, followed by optional operands,
depending on the instruction.
Registers:
sp:
the stack pointer - points to the next top of stack. The stack is a 32-bit integer
array.
pc:
the program counter - points to the current instruction to be performed. The code is an
array of bytes.
Data:
data
string pool
Instructions:
Each instruction is one byte. The following instructions also have a 32-bit integer
operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
Print the word at stack top as a character.
prtc
Print the word at stack top as an integer.
prti
Stack top points to an index into the string pool. Print that entry.
prts
Unconditional stop.
halt
A simple example virtual machine
def run_vm(data_size)
int stack[data_size + 1000]
set stack[0..data_size - 1] to 0
int pc = 0
while True:
op = code[pc]
pc += 1
if op == FETCH:
stack.append(stack[bytes_to_int(code[pc:pc+word_size])[0]]);
pc += word_size
elif op == STORE:
stack[bytes_to_int(code[pc:pc+word_size])[0]] = stack.pop();
pc += word_size
elif op == PUSH:
stack.append(bytes_to_int(code[pc:pc+word_size])[0]);
pc += word_size
elif op == ADD: stack[-2] += stack[-1]; stack.pop()
elif op == SUB: stack[-2] -= stack[-1]; stack.pop()
elif op == MUL: stack[-2] *= stack[-1]; stack.pop()
elif op == DIV: stack[-2] /= stack[-1]; stack.pop()
elif op == MOD: stack[-2] %= stack[-1]; stack.pop()
elif op == LT: stack[-2] = stack[-2] < stack[-1]; stack.pop()
elif op == GT: stack[-2] = stack[-2] > stack[-1]; stack.pop()
elif op == LE: stack[-2] = stack[-2] <= stack[-1]; stack.pop()
elif op == GE: stack[-2] = stack[-2] >= stack[-1]; stack.pop()
elif op == EQ: stack[-2] = stack[-2] == stack[-1]; stack.pop()
elif op == NE: stack[-2] = stack[-2] != stack[-1]; stack.pop()
elif op == AND: stack[-2] = stack[-2] and stack[-1]; stack.pop()
elif op == OR: stack[-2] = stack[-2] or stack[-1]; stack.pop()
elif op == NEG: stack[-1] = -stack[-1]
elif op == NOT: stack[-1] = not stack[-1]
elif op == JMP: pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == JZ: if stack.pop() then pc += word_size else pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == PRTC: print stack[-1] as a character; stack.pop()
elif op == PRTS: print the constant string referred to by stack[-1]; stack.pop()
elif op == PRTI: print stack[-1] as an integer; stack.pop()
elif op == HALT: break
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
AST Interpreter task
| #D | D | //
// The Rosetta Code Virtual Machine in D.
//
// This code was migrated from an implementation in ATS. I have tried
// to keep it possible to compare the two languages easily, although
// in some cases the demonstration of "low level" techniques in ATS
// (such as avoiding memory leaks that might require garbage
// collection), or the use of linked lists as intermediate storage, or
// other such matters, seemed inappropriate to duplicate in D
// programming.
//
// (For example: in ATS, using a fully built linked list to initialize
// an array solves typechecking issues that simply do not exist in D's
// type system.)
//
import std.ascii;
import std.conv;
import std.stdint;
import std.stdio;
import std.string;
import std.typecons;
enum Op {
HALT = 0x0000, // 00000
ADD = 0x0001, // 00001
SUB = 0x0002, // 00010
MUL = 0x0003, // 00011
DIV = 0x0004, // 00100
MOD = 0x0005, // 00101
LT = 0x0006, // 00110
GT = 0x0007, // 00111
LE = 0x0008, // 01000
GE = 0x0009, // 01001
EQ = 0x000A, // 01010
NE = 0x000B, // 01011
AND = 0x000C, // 01100
OR = 0x000D, // 01101
NEG = 0x000E, // 01110
NOT = 0x000F, // 01111
PRTC = 0x0010, // 10000
PRTI = 0x0011, // 10001
PRTS = 0x0012, // 10010
FETCH = 0x0013, // 10011
STORE = 0x0014, // 10100
PUSH = 0x0015, // 10101
JMP = 0x0016, // 10110
JZ = 0x0017 // 10111
}
const string[] opcodeOrder =
["halt", // 00000 bit pattern
"add", // 00001
"sub", // 00010
"mul", // 00011
"div", // 00100
"mod", // 00101
"lt", // 00110
"gt", // 00111
"le", // 01000
"ge", // 01001
"eq", // 01010
"ne", // 01011
"and", // 01100
"or", // 01101
"neg", // 01110
"not", // 01111
"prtc", // 10000
"prti", // 10001
"prts", // 10010
"fetch", // 10011
"store", // 10100
"push", // 10101
"jmp", // 10110
"jz"]; // 10111
enum Register {
PC = 0,
SP = 1,
MAX = SP
}
alias vmint = uint32_t;
class VM {
string[] strings;
ubyte[] code;
vmint[] data;
vmint[] stack;
vmint[Register.MAX + 1] registers;
}
class BadVMException : Exception
{
this(string msg, string file = __FILE__, size_t line = __LINE__)
{
super(msg, file, line);
}
}
class VMRuntimeException : Exception
{
this(string msg, string file = __FILE__, size_t line = __LINE__)
{
super(msg, file, line);
}
}
vmint
twosComplement (vmint x)
{
// This computes the negative of x, if x is regarded as signed.
pragma(inline);
return (~x) + vmint(1U);
}
vmint
add (vmint x, vmint y)
{
// This works whether x or y is regarded as unsigned or signed.
pragma(inline);
return x + y;
}
vmint
sub (vmint x, vmint y)
{
// This works whether x or y is regarded as unsigned or signed.
pragma(inline);
return x - y;
}
vmint
equality (vmint x, vmint y)
{
pragma(inline);
return vmint(x == y);
}
vmint
inequality (vmint x, vmint y)
{
pragma(inline);
return vmint(x != y);
}
vmint
signedLt (vmint x, vmint y)
{
pragma(inline);
return vmint(int32_t(x) < int32_t(y));
}
vmint
signedGt (vmint x, vmint y)
{
pragma(inline);
return vmint(int32_t(x) > int32_t(y));
}
vmint
signedLte (vmint x, vmint y)
{
pragma(inline);
return vmint(int32_t(x) <= int32_t(y));
}
vmint
signedGte (vmint x, vmint y)
{
pragma(inline);
return vmint(int32_t(x) >= int32_t(y));
}
vmint
signedMul (vmint x, vmint y)
{
pragma(inline);
return vmint(int32_t(x) * int32_t(y));
}
vmint
signedDiv (vmint x, vmint y)
{
pragma(inline);
return vmint(int32_t(x) / int32_t(y));
}
vmint
signedMod (vmint x, vmint y)
{
pragma(inline);
return vmint(int32_t(x) % int32_t(y));
}
vmint
logicalNot (vmint x)
{
pragma(inline);
return vmint(!x);
}
vmint
logicalAnd (vmint x, vmint y)
{
pragma(inline);
return vmint((!!x) * (!!y));
}
vmint
logicalOr (vmint x, vmint y)
{
pragma(inline);
return (vmint(1) - vmint((!x) * (!y)));
}
vmint
parseDigits (string s, size_t i, size_t j)
{
const badInteger = "bad integer";
if (j == i)
throw new BadVMException (badInteger);
auto x = vmint(0);
for (size_t k = i; k < j; k += 1)
if (!isDigit (s[k]))
throw new BadVMException (badInteger);
else
// The result is allowed to overflow freely.
x = (vmint(10) * x) + vmint(s[k] - '0');
return x;
}
vmint
parseInteger (string s, size_t i, size_t j)
{
const badInteger = "bad integer";
vmint retval;
if (j == i)
throw new BadVMException (badInteger);
else if (j == i + vmint(1) && !isDigit (s[i]))
throw new BadVMException (badInteger);
else if (s[i] != '-')
retval = parseDigits (s, i, j);
else if (j == i + vmint(1))
throw new BadVMException (badInteger);
else
retval = twosComplement (parseDigits (s, i + vmint(1), j));
return retval;
}
size_t
skipWhitespace (string s, size_t n, size_t i)
{
while (i < n && isWhite (s[i]))
i += 1;
return i;
}
size_t
skipNonwhitespace (string s, size_t n, size_t i)
{
while (i < n && !isWhite (s[i]))
i += 1;
return i;
}
bool
substrEqual (string s, size_t i, size_t j, string t)
{
// Is s[i .. j-1] equal to t?
auto retval = false;
auto m = t.length;
if (m == j - i)
{
auto k = size_t(0);
while (k < m && s[i + k] == t[k])
k += 1;
retval = (k == m);
}
return retval;
}
string
dequoteString (string s, size_t n)
{
const badQuotedString = "bad quoted string";
string t = "";
s = strip(s);
if (s.length < 2 || s[0] != '"' || s[$ - 1] != '"')
throw new BadVMException (badQuotedString);
auto i = 1;
while (i < s.length - 1)
if (s[i] != '\\')
{
t ~= s[i];
i += 1;
}
else if (i + 1 == s.length - 1)
throw new BadVMException (badQuotedString);
else if (s[i + 1] == 'n')
{
t ~= '\n';
i += 2;
}
else if (s[i + 1] == '\\')
{
t ~= '\\';
i += 2;
}
else
throw new BadVMException (badQuotedString);
return t;
}
string[]
readStrings (File f, size_t stringsSize)
{
const badQuotedString = "Bad quoted string.";
string[] strings;
strings.length = stringsSize;
for (size_t k = 0; k < stringsSize; k += 1)
{
auto line = f.readln();
strings[k] = dequoteString (line, line.length);
}
return strings;
}
ubyte
opcodeNameTo_ubyte (string str, size_t i, size_t j)
{
size_t k = 0;
while (k < opcodeOrder.length &&
!substrEqual (str, i, j, opcodeOrder[k]))
k += 1;
if (k == opcodeOrder.length)
throw new BadVMException ("unrecognized opcode name");
return to!ubyte(k);
}
ubyte
vmintByte0 (vmint i)
{
return (i & 0xFF);
}
ubyte
vmintByte1 (vmint i)
{
return ((i >> 8) & 0xFF);
}
ubyte
vmintByte2 (vmint i)
{
return ((i >> 16) & 0xFF);
}
ubyte
vmintByte3 (vmint i)
{
return (i >> 24);
}
ubyte[]
parseInstruction (string line)
{
const bad_instruction = "bad VM instruction";
const n = line.length;
auto i = skipWhitespace (line, n, 0);
// Skip the address field.
i = skipNonwhitespace (line, n, i);
i = skipWhitespace (line, n, i);
auto j = skipNonwhitespace (line, n, i);
auto opcode = opcodeNameTo_ubyte (line, i, j);
auto startOfArgument = j;
ubyte[] finishPush ()
{
const i1 = skipWhitespace (line, n, startOfArgument);
const j1 = skipNonwhitespace (line, n, i1);
const arg = parseInteger (line, i1, j1);
// Little-endian storage.
return [opcode, vmintByte0 (arg), vmintByte1 (arg),
vmintByte2 (arg), vmintByte3 (arg)];
}
ubyte[] finishFetchOrStore ()
{
const i1 = skipWhitespace (line, n, startOfArgument);
const j1 = skipNonwhitespace (line, n, i1);
if (j1 - i1 < 3 || line[i1] != '[' || line[j1 - 1] != ']')
throw new BadVMException (bad_instruction);
const arg = parseInteger (line, i1 + 1, j1 - 1);
// Little-endian storage.
return [opcode, vmintByte0 (arg), vmintByte1 (arg),
vmintByte2 (arg), vmintByte3 (arg)];
}
ubyte[] finishJmpOrJz ()
{
const i1 = skipWhitespace (line, n, startOfArgument);
const j1 = skipNonwhitespace (line, n, i1);
if (j1 - i1 < 3 || line[i1] != '(' || line[j1 - 1] != ')')
throw new BadVMException (bad_instruction);
const arg = parseInteger (line, i1 + 1, j1 - 1);
// Little-endian storage.
return [opcode, vmintByte0 (arg), vmintByte1 (arg),
vmintByte2 (arg), vmintByte3 (arg)];
}
ubyte[] retval;
switch (opcode)
{
case Op.PUSH:
retval = finishPush ();
break;
case Op.FETCH:
case Op.STORE:
retval = finishFetchOrStore ();
break;
case Op.JMP:
case Op.JZ:
retval = finishJmpOrJz ();
break;
default:
retval = [opcode];
break;
}
return retval;
}
ubyte[]
readCode (File f)
{
// Read the instructions from the input, producing an array of
// array of instruction bytes.
ubyte[] code = [];
auto line = f.readln();
while (line !is null)
{
code ~= parseInstruction (line);
line = f.readln();
}
return code;
}
void
parseHeaderLine (string line, ref size_t dataSize,
ref size_t stringsSize)
{
const bad_vm_header_line = "bad VM header line";
const n = line.length;
auto i = skipWhitespace (line, n, 0);
auto j = skipNonwhitespace (line, n, i);
if (!substrEqual (line, i, j, "Datasize:"))
throw new BadVMException (bad_vm_header_line);
i = skipWhitespace (line, n, j);
j = skipNonwhitespace (line, n, i);
dataSize = parseInteger (line, i, j);
i = skipWhitespace (line, n, j);
j = skipNonwhitespace (line, n, i);
if (!substrEqual (line, i, j, "Strings:"))
throw new BadVMException (bad_vm_header_line);
i = skipWhitespace (line, n, j);
j = skipNonwhitespace (line, n, i);
stringsSize = parseInteger (line, i, j);
}
VM
readVM (File f)
{
const line = f.readln();
size_t dataSize;
size_t stringsSize;
parseHeaderLine (line, dataSize, stringsSize);
VM vm = new VM();
vm.strings = readStrings (f, stringsSize);
vm.code = readCode (f);
vm.data.length = dataSize;
vm.stack.length = 65536; // A VERY big stack, MUCH bigger than is
// "reasonable" for this VM. The same size
// as in the ATS, however.
vm.registers[Register.PC] = vmint(0);
vm.registers[Register.SP] = vmint(0);
return vm;
}
vmint
pop (VM vm)
{
pragma(inline);
const spBefore = vm.registers[Register.SP];
if (spBefore == 0)
throw new VMRuntimeException ("stack underflow");
const spAfter = spBefore - vmint(1);
vm.registers[Register.SP] = spAfter;
return vm.stack[spAfter];
}
void
push (VM vm, vmint x)
{
pragma(inline);
const spBefore = vm.registers[Register.SP];
if (vm.stack.length <= spBefore)
throw new VMRuntimeException ("stack overflow");
vm.stack[spBefore] = x;
const spAfter = spBefore + vmint(1);
vm.registers[Register.SP] = spAfter;
}
vmint
fetchData (VM vm, vmint index)
{
pragma(inline);
if (vm.data.length <= index)
throw new VMRuntimeException
("fetch from outside the data section");
return vm.data[index];
}
void
storeData (VM vm, vmint index, vmint x)
{
pragma(inline);
if (vm.data.length <= index)
throw new VMRuntimeException
("store to outside the data section");
vm.data[index] = x;
}
vmint
getArgument (VM vm)
{
pragma(inline);
auto pc = vm.registers[Register.PC];
if (vm.code.length <= pc + vmint(4))
throw new VMRuntimeException
("the program counter is out of bounds");
// The data is stored little-endian.
const byte0 = vmint (vm.code[pc]);
const byte1 = vmint (vm.code[pc + vmint(1)]);
const byte2 = vmint (vm.code[pc + vmint(2)]);
const byte3 = vmint (vm.code[pc + vmint(3)]);
return (byte0) | (byte1 << 8) | (byte2 << 16) | (byte3 << 24);
}
void
skipArgument (VM vm)
{
pragma(inline);
vm.registers[Register.PC] += vmint(4);
}
//
// The string mixins below are going to do for us *some* of what the
// ATS template system did for us. The two methods hardly resemble
// each other, but both can be used to construct function definitions
// at compile time.
//
template
UnaryOperation (alias name, alias func)
{
const char[] UnaryOperation =
"void " ~
name ~ " (VM vm)
{
pragma(inline);
const sp = vm.registers[Register.SP];
if (sp == vmint(0))
throw new VMRuntimeException (\"stack underflow\");
const x = vm.stack[sp - vmint(1)];
const z = " ~ func ~ " (x);
vm.stack[sp - vmint(1)] = z;
}";
}
template
BinaryOperation (alias name, alias func)
{
const char[] BinaryOperation =
"void " ~
name ~ " (VM vm)
{
pragma(inline);
const spBefore = vm.registers[Register.SP];
if (spBefore <= vmint(1))
throw new VMRuntimeException (\"stack underflow\");
const spAfter = spBefore - vmint(1);
vm.registers[Register.SP] = spAfter;
const x = vm.stack[spAfter - vmint(1)];
const y = vm.stack[spAfter];
const z = " ~ func ~ "(x, y);
vm.stack[spAfter - vmint(1)] = z;
}";
}
mixin (UnaryOperation!("uopNeg", "twosComplement"));
mixin (UnaryOperation!("uopNot", "logicalNot"));
mixin (BinaryOperation!("binopAdd", "add"));
mixin (BinaryOperation!("binopSub", "sub"));
mixin (BinaryOperation!("binopMul", "signedMul"));
mixin (BinaryOperation!("binopDiv", "signedDiv"));
mixin (BinaryOperation!("binopMod", "signedMod"));
mixin (BinaryOperation!("binopEq", "equality"));
mixin (BinaryOperation!("binopNe", "inequality"));
mixin (BinaryOperation!("binopLt", "signedLt"));
mixin (BinaryOperation!("binopGt", "signedGt"));
mixin (BinaryOperation!("binopLe", "signedLte"));
mixin (BinaryOperation!("binopGe", "signedGte"));
mixin (BinaryOperation!("binopAnd", "logicalAnd"));
mixin (BinaryOperation!("binopOr", "logicalOr"));
void
doPush (VM vm)
{
pragma(inline);
const arg = getArgument (vm);
push (vm, arg);
skipArgument (vm);
}
void
doFetch (VM vm)
{
pragma(inline);
const i = getArgument (vm);
const x = fetchData (vm, i);
push (vm, x);
skipArgument (vm);
}
void
doStore (VM vm)
{
pragma(inline);
const i = getArgument (vm);
const x = pop (vm);
storeData (vm, i, x);
skipArgument (vm);
}
void
doJmp (VM vm)
{
pragma(inline);
const arg = getArgument (vm);
vm.registers[Register.PC] += arg;
}
void
doJz (VM vm)
{
pragma(inline);
const x = pop (vm);
if (x == vmint(0))
doJmp (vm);
else
skipArgument (vm);
}
void
doPrtc (File fOut, VM vm)
{
const x = pop (vm);
fOut.write (to!char(x));
}
void
doPrti (File fOut, VM vm)
{
const x = pop (vm);
fOut.write (int32_t(x));
}
void
doPrts (File fOut, VM vm)
{
const i = pop (vm);
if (vm.strings.length <= i)
throw new VMRuntimeException ("string index out of bounds");
fOut.write (vm.strings[i]);
}
void
vmStep (File fOut, VM vm, ref bool machineHalt, ref bool badOpcode)
{
const pc = vm.registers[Register.PC];
if (vm.code.length <= pc)
throw new VMRuntimeException
("the program counter is out of bounds");
vm.registers[Register.PC] = pc + vmint(1);
const opcode = vm.code[pc];
const uOpcode = uint(opcode);
// Dispatch by bifurcation on the bit pattern of the opcode. This
// method is logarithmic in the number of opcode values.
machineHalt = false;
badOpcode = false;
if ((uOpcode & (~0x1FU)) == 0U)
{
if ((uOpcode & 0x10U) == 0U)
{
if ((uOpcode & 0x08U) == 0U)
{
if ((uOpcode & 0x04U) == 0U)
{
if ((uOpcode & 0x02U) == 0U)
{
if ((uOpcode & 0x01U) == 0U)
machineHalt = true;
else
binopAdd (vm);
}
else
{
if ((uOpcode & 0x01U) == 0U)
binopSub (vm);
else
binopMul (vm);
}
}
else
{
if ((uOpcode & 0x02U) == 0U)
{
if ((uOpcode & 0x01U) == 0U)
binopDiv (vm);
else
binopMod (vm);
}
else
{
if ((uOpcode & 0x01U) == 0U)
binopLt (vm);
else
binopGt (vm);
}
}
}
else
{
if ((uOpcode & 0x04U) == 0U)
{
if ((uOpcode & 0x02U) == 0U)
{
if ((uOpcode & 0x01U) == 0U)
binopLe (vm);
else
binopGe (vm);
}
else
{
if ((uOpcode & 0x01U) == 0U)
binopEq (vm);
else
binopNe (vm);
}
}
else
{
if ((uOpcode & 0x02U) == 0U)
{
if ((uOpcode & 0x01U) == 0U)
binopAnd (vm);
else
binopOr (vm);
}
else
{
if ((uOpcode & 0x01U) == 0U)
uopNeg (vm);
else
uopNot (vm);
}
}
}
}
else
{
if ((uOpcode & 0x08U) == 0U)
{
if ((uOpcode & 0x04U) == 0U)
{
if ((uOpcode & 0x02U) == 0U)
{
if ((uOpcode & 0x01U) == 0U)
doPrtc (fOut, vm);
else
doPrti (fOut, vm);
}
else
{
if ((uOpcode & 0x01U) == 0U)
doPrts (fOut, vm);
else
doFetch (vm);
}
}
else
{
if ((uOpcode & 0x02U) == 0U)
{
if ((uOpcode & 0x01U) == 0U)
doStore (vm);
else
doPush (vm);
}
else
{
if ((uOpcode & 0x01U) == 0U)
doJmp (vm);
else
doJz (vm);
}
}
}
else
badOpcode = true;
}
}
else
badOpcode = true;
}
void
vmContinue (File fOut, VM vm)
{
auto machineHalt = false;
auto badOpcode = false;
while (!machineHalt && !badOpcode)
vmStep (fOut, vm, machineHalt, badOpcode);
if (badOpcode)
throw new VMRuntimeException ("unrecognized opcode at runtime");
}
void
vmInitialize (VM vm)
{
foreach (ref x; vm.data)
x = vmint(0);
vm.registers[Register.PC] = vmint(0);
vm.registers[Register.SP] = vmint(0);
}
void
vmRun (File fOut, VM vm)
{
vmInitialize (vm);
vmContinue (fOut, vm);
}
void
ensure_that_vmint_is_suitable ()
{
// Try to guarantee that vmint is exactly 32 bits, and that it
// allows overflow in either direction.
assert (vmint(0xFFFFFFFFU) + vmint(1U) == vmint(0U));
assert (vmint(0U) - vmint(1U) == vmint(0xFFFFFFFFU));
assert (vmint(-1234) == twosComplement (vmint(1234)));
}
int
main (char[][] args)
{
auto inpFilename = "-";
auto outFilename = "-";
if (2 <= args.length)
inpFilename = to!string (args[1]);
if (3 <= args.length)
outFilename = to!string (args[2]);
auto inpF = stdin;
if (inpFilename != "-")
inpF = File (inpFilename, "r");
auto vm = readVM (inpF);
if (inpFilename != "-")
inpF.close();
auto outF = stdout;
if (outFilename != "-")
outF = File (outFilename, "w");
ensure_that_vmint_is_suitable ();
vmRun (outF, vm);
if (outFilename != "-")
outF.close();
return 0;
} |
http://rosettacode.org/wiki/Compiler/code_generator | Compiler/code generator | A code generator translates the output of the syntax analyzer and/or semantic analyzer
into lower level code, either assembly, object, or virtual.
Task[edit]
Take the output of the Syntax analyzer task - which is a flattened Abstract Syntax Tree (AST) - and convert it to virtual machine code, that can be run by the
Virtual machine interpreter. The output is in text format, and represents virtual assembly code.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
while.ast can be input into the code generator.
The following table shows the input to lex, lex output, the AST produced by the parser, and the generated virtual assembly code.
Run as: lex < while.t | parse | gen
Input to lex
Output from lex, input to parse
Output from parse
Output from gen, input to VM
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
Input format
As shown in the table, above, the output from the syntax analyzer is a flattened AST.
In the AST, Identifier, Integer, and String, are terminal nodes, e.g, they do not have child nodes.
Loading this data into an internal parse tree should be as simple as:
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";"
return None
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Output format - refer to the table above
The first line is the header: Size of data, and number of constant strings.
size of data is the number of 32-bit unique variables used. In this example, one variable, count
number of constant strings is just that - how many there are
After that, the constant strings
Finally, the assembly code
Registers
sp: the stack pointer - points to the next top of stack. The stack is a 32-bit integer array.
pc: the program counter - points to the current instruction to be performed. The code is an array of bytes.
Data
32-bit integers and strings
Instructions
Each instruction is one byte. The following instructions also have a 32-bit integer operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
prtc
Print the word at stack top as a character.
prti
Print the word at stack top as an integer.
prts
Stack top points to an index into the string pool. Print that entry.
halt
Unconditional stop.
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Virtual Machine Interpreter task
AST Interpreter task
| #AWK | AWK |
function error(msg) {
printf("%s\n", msg)
exit(1)
}
function bytes_to_int(bstr, i, sum) {
sum = 0
for (i=word_size-1; i>=0; i--) {
sum *= 256
sum += code[bstr+i]
}
return sum
}
function make_node(oper, left, right, value) {
node_type [next_free_node_index] = oper
node_left [next_free_node_index] = left
node_right[next_free_node_index] = right
node_value[next_free_node_index] = value
return next_free_node_index ++
}
function make_leaf(oper, n) {
return make_node(oper, 0, 0, n)
}
function emit_byte(x) {
code[next_free_code_index++] = x
}
function emit_word(x, i) {
for (i=0; i<word_size; i++) {
emit_byte(int(x)%256);
x = int(x/256)
}
}
function emit_word_at(at, n, i) {
for (i=0; i<word_size; i++) {
code[at+i] = int(n)%256
n = int(n/256)
}
}
function hole( t) {
t = next_free_code_index
emit_word(0)
return t
}
function fetch_var_offset(name, n) {
if (name in globals) {
n = globals[name]
} else {
globals[name] = globals_n
n = globals_n
globals_n += 1
}
return n
}
function fetch_string_offset(the_string, n) {
n = string_pool[the_string]
if (n == "") {
string_pool[the_string] = string_n
n = string_n
string_n += 1
}
return n
}
function code_gen(x, n, p1, p2) {
if (x == 0) {
return
} else if (node_type[x] == "nd_Ident") {
emit_byte(FETCH)
n = fetch_var_offset(node_value[x])
emit_word(n)
} else if (node_type[x] == "nd_Integer") {
emit_byte(PUSH)
emit_word(node_value[x])
} else if (node_type[x] == "nd_String") {
emit_byte(PUSH)
n = fetch_string_offset(node_value[x])
emit_word(n)
} else if (node_type[x] == "nd_Assign") {
n = fetch_var_offset(node_value[node_left[x]])
code_gen(node_right[x])
emit_byte(STORE)
emit_word(n)
} else if (node_type[x] == "nd_If") {
code_gen(node_left[x]) # expr
emit_byte(JZ) # if false, jump
p1 = hole() # make room for jump dest
code_gen(node_left[node_right[x]]) # if true statements
if (node_right[node_right[x]] != 0) {
emit_byte(JMP) # jump over else statements
p2 = hole()
}
emit_word_at(p1, next_free_code_index - p1)
if (node_right[node_right[x]] != 0) {
code_gen(node_right[node_right[x]]) # else statements
emit_word_at(p2, next_free_code_index - p2)
}
} else if (node_type[x] == "nd_While") {
p1 =next_free_code_index
code_gen(node_left[x])
emit_byte(JZ)
p2 = hole()
code_gen(node_right[x])
emit_byte(JMP) # jump back to the top
emit_word(p1 - next_free_code_index)
emit_word_at(p2, next_free_code_index - p2)
} else if (node_type[x] == "nd_Sequence") {
code_gen(node_left[x])
code_gen(node_right[x])
} else if (node_type[x] == "nd_Prtc") {
code_gen(node_left[x])
emit_byte(PRTC)
} else if (node_type[x] == "nd_Prti") {
code_gen(node_left[x])
emit_byte(PRTI)
} else if (node_type[x] == "nd_Prts") {
code_gen(node_left[x])
emit_byte(PRTS)
} else if (node_type[x] in operators) {
code_gen(node_left[x])
code_gen(node_right[x])
emit_byte(operators[node_type[x]])
} else if (node_type[x] in unary_operators) {
code_gen(node_left[x])
emit_byte(unary_operators[node_type[x]])
} else {
error("error in code generator - found '" node_type[x] "', expecting operator")
}
}
function code_finish() {
emit_byte(HALT)
}
function list_code() {
printf("Datasize: %d Strings: %d\n", globals_n, string_n)
# Make sure that arrays are sorted by value in ascending order.
PROCINFO["sorted_in"] = "@val_str_asc"
# This is a dependency on GAWK.
for (k in string_pool)
print(k)
pc = 0
while (pc < next_free_code_index) {
printf("%4d ", pc)
op = code[pc]
pc += 1
if (op == FETCH) {
x = bytes_to_int(pc)
printf("fetch [%d]\n", x);
pc += word_size
} else if (op == STORE) {
x = bytes_to_int(pc)
printf("store [%d]\n", x);
pc += word_size
} else if (op == PUSH) {
x = bytes_to_int(pc)
printf("push %d\n", x);
pc += word_size
} else if (op == ADD) { print("add")
} else if (op == SUB) { print("sub")
} else if (op == MUL) { print("mul")
} else if (op == DIV) { print("div")
} else if (op == MOD) { print("mod")
} else if (op == LT) { print("lt")
} else if (op == GT) { print("gt")
} else if (op == LE) { print("le")
} else if (op == GE) { print("ge")
} else if (op == EQ) { print("eq")
} else if (op == NE) { print("ne")
} else if (op == AND) { print("and")
} else if (op == OR) { print("or")
} else if (op == NEG) { print("neg")
} else if (op == NOT) { print("not")
} else if (op == JMP) {
x = bytes_to_int(pc)
printf("jmp (%d) %d\n", x, pc + x);
pc += word_size
} else if (op == JZ) {
x = bytes_to_int(pc)
printf("jz (%d) %d\n", x, pc + x);
pc += word_size
} else if (op == PRTC) { print("prtc")
} else if (op == PRTI) { print("prti")
} else if (op == PRTS) { print("prts")
} else if (op == HALT) { print("halt")
} else { error("list_code: Unknown opcode '" op "'")
}
} # while pc
}
function load_ast( line, line_list, text, n, node_type, value, left, right) {
getline line
n=split(line, line_list)
text = line_list[1]
if (text == ";")
return 0
node_type = all_syms[text]
if (n > 1) {
value = line_list[2]
for (i=3;i<=n;i++)
value = value " " line_list[i]
if (value ~ /^[0-9]+$/)
value = int(value)
return make_leaf(node_type, value)
}
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
}
BEGIN {
all_syms["Identifier" ] = "nd_Ident"
all_syms["String" ] = "nd_String"
all_syms["Integer" ] = "nd_Integer"
all_syms["Sequence" ] = "nd_Sequence"
all_syms["If" ] = "nd_If"
all_syms["Prtc" ] = "nd_Prtc"
all_syms["Prts" ] = "nd_Prts"
all_syms["Prti" ] = "nd_Prti"
all_syms["While" ] = "nd_While"
all_syms["Assign" ] = "nd_Assign"
all_syms["Negate" ] = "nd_Negate"
all_syms["Not" ] = "nd_Not"
all_syms["Multiply" ] = "nd_Mul"
all_syms["Divide" ] = "nd_Div"
all_syms["Mod" ] = "nd_Mod"
all_syms["Add" ] = "nd_Add"
all_syms["Subtract" ] = "nd_Sub"
all_syms["Less" ] = "nd_Lss"
all_syms["LessEqual" ] = "nd_Leq"
all_syms["Greater" ] = "nd_Gtr"
all_syms["GreaterEqual"] = "nd_Geq"
all_syms["Equal" ] = "nd_Eql"
all_syms["NotEqual" ] = "nd_Neq"
all_syms["And" ] = "nd_And"
all_syms["Or" ] = "nd_Or"
FETCH=1; STORE=2; PUSH=3; ADD=4; SUB=5; MUL=6;
DIV=7; MOD=8; LT=9; GT=10; LE=11; GE=12;
EQ=13; NE=14; AND=15; OR=16; NEG=17; NOT=18;
JMP=19; JZ=20; PRTC=21; PRTS=22; PRTI=23; HALT=24;
operators["nd_Lss"] = LT
operators["nd_Gtr"] = GT
operators["nd_Leq"] = LE
operators["nd_Geq"] = GE
operators["nd_Eql"] = EQ
operators["nd_Neq"] = NE
operators["nd_And"] = AND
operators["nd_Or" ] = OR
operators["nd_Sub"] = SUB
operators["nd_Add"] = ADD
operators["nd_Div"] = DIV
operators["nd_Mul"] = MUL
operators["nd_Mod"] = MOD
unary_operators["nd_Negate"] = NEG
unary_operators["nd_Not" ] = NOT
next_free_node_index = 1
next_free_code_index = 0
globals_n = 0
string_n = 0
word_size = 4
input_file = "-"
if (ARGC > 1)
input_file = ARGV[1]
n = load_ast()
code_gen(n)
code_finish()
list_code()
}
|
http://rosettacode.org/wiki/Compare_sorting_algorithms%27_performance | Compare sorting algorithms' performance |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Measure a relative performance of sorting algorithms implementations.
Plot execution time vs. input sequence length dependencies for various implementation of sorting algorithm and different input sequence types (example figures).
Consider three type of input sequences:
ones: sequence of all 1's. Example: {1, 1, 1, 1, 1}
range: ascending sequence, i.e. already sorted. Example: {1, 2, 3, 10, 15}
shuffled range: sequence with elements randomly distributed. Example: {5, 3, 9, 6, 8}
Consider at least two different sorting functions (different algorithms or/and different implementation of the same algorithm).
For example, consider Bubble Sort, Insertion sort, Quicksort or/and implementations of Quicksort with different pivot selection mechanisms. Where possible, use existing implementations.
Preliminary subtask:
Bubble Sort, Insertion sort, Quicksort, Radix sort, Shell sort
Query Performance
Write float arrays to a text file
Plot x, y arrays
Polynomial Fitting
General steps:
Define sorting routines to be considered.
Define appropriate sequence generators and write timings.
Plot timings.
What conclusions about relative performance of the sorting routines could be made based on the plots?
| #D | D | import std.stdio, std.algorithm, std.container, std.datetime,
std.random, std.typetuple;
immutable int[] allOnes, sortedData, randomData;
static this() { // Initialize global Arrays.
immutable size_t arraySize = 10_000;
allOnes = new int[arraySize];
//allOnes[] = 1;
foreach (ref d; allOnes)
d = 1;
sortedData = new int[arraySize];
foreach (immutable i, ref d; sortedData)
d = i;
randomData = new int[arraySize];
foreach (ref d; randomData)
d = uniform(0, int.max);
}
// BubbleSort:
void bubbleSort(T)(T[] list) {
for (int i = list.length - 1; i > 0; i--)
for (int j = i -1; j >= 0; j--)
if (list[i] < list[j])
swap(list[i], list[j]);
}
void allOnesBubble() {
auto data = allOnes.dup;
data.bubbleSort;
assert(data.isSorted);
}
void sortedBubble() {
auto data = sortedData.dup;
data.bubbleSort;
assert(data.isSorted);
}
void randomBubble() {
auto data = randomData.dup;
data.bubbleSort;
assert(data.isSorted);
}
// InsertionSort:
void insertionSort(T)(T[] list) {
foreach (immutable i, currElem; list) {
size_t j = i;
for (; j > 0 && currElem < list[j - 1]; j--)
list[j] = list[j - 1];
list[j] = currElem;
}
}
void allOnesInsertion() {
auto data = allOnes.dup;
data.insertionSort;
assert(data.isSorted);
}
void sortedInsertion() {
auto data = sortedData.dup;
data.insertionSort;
assert(data.isSorted);
}
void randomInsertion() {
auto data = randomData.dup;
data.insertionSort;
assert(data.isSorted);
}
// HeapSort:
void heapSort(T)(T[] data) {
auto h = data.heapify;
while (!h.empty)
h.removeFront;
}
void allOnesHeap() {
auto data = allOnes.dup;
data.heapSort;
assert(data.isSorted);
}
void sortedHeap() {
auto data = sortedData.dup;
data.heapSort;
assert(data.isSorted);
}
void randomHeap() {
auto data = randomData.dup;
data.heapSort;
assert(data.isSorted);
}
// Built-in sort:
void allOnesBuiltIn() {
auto data = allOnes.dup;
data.sort!q{a < b};
assert(data.isSorted);
}
void sortedBuiltIn() {
auto data = sortedData.dup;
data.sort!q{a < b};
assert(data.isSorted);
}
void randomBuiltIn() {
auto data = randomData.dup;
data.sort!q{a < b};
assert(data.isSorted);
}
static void show(in TickDuration[4u] r) {
alias args = TypeTuple!("usecs", int);
writefln(" Bubble Sort: %10d", r[0].to!args);
writefln(" Insertion Sort: %10d", r[1].to!args);
writefln(" Heap Sort: %10d", r[3].to!args);
writefln(" Built-in Sort: %10d", r[2].to!args);
}
void main() {
enum nRuns = 100;
writeln("Timings in microseconds:");
writeln(" Testing against all ones:");
nRuns.benchmark!(allOnesBubble, allOnesInsertion,
allOnesHeap, allOnesBuiltIn).show;
writeln("\n Testing against sorted data.");
nRuns.benchmark!(sortedBubble, sortedInsertion,
sortedHeap, sortedBuiltIn).show;
writeln("\n Testing against random data.");
nRuns.benchmark!(randomBubble, randomInsertion,
randomHeap, randomBuiltIn).show;
} |
http://rosettacode.org/wiki/Compiler/AST_interpreter | Compiler/AST interpreter | An AST interpreter interprets an Abstract Syntax Tree (AST)
produced by a Syntax Analyzer.
Task[edit]
Take the AST output from the Syntax analyzer task, and interpret it as appropriate.
Refer to the Syntax analyzer task for details of the AST.
Loading the AST from the syntax analyzer is as simple as (pseudo code)
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
The interpreter algorithm is relatively simple
interp(x)
if x == NULL return NULL
elif x.node_type == Integer return x.value converted to an integer
elif x.node_type == Ident return the current value of variable x.value
elif x.node_type == String return x.value
elif x.node_type == Assign
globals[x.left.value] = interp(x.right)
return NULL
elif x.node_type is a binary operator return interp(x.left) operator interp(x.right)
elif x.node_type is a unary operator, return return operator interp(x.left)
elif x.node_type == If
if (interp(x.left)) then interp(x.right.left)
else interp(x.right.right)
return NULL
elif x.node_type == While
while (interp(x.left)) do interp(x.right)
return NULL
elif x.node_type == Prtc
print interp(x.left) as a character, no newline
return NULL
elif x.node_type == Prti
print interp(x.left) as an integer, no newline
return NULL
elif x.node_type == Prts
print interp(x.left) as a string, respecting newlines ("\n")
return NULL
elif x.node_type == Sequence
interp(x.left)
interp(x.right)
return NULL
else
error("unknown node type")
Notes:
Because of the simple nature of our tiny language, Semantic analysis is not needed.
Your interpreter should use C like division semantics, for both division and modulus. For division of positive operands, only the non-fractional portion of the result should be returned. In other words, the result should be truncated towards 0.
This means, for instance, that 3 / 2 should result in 1.
For division when one of the operands is negative, the result should be truncated towards 0.
This means, for instance, that 3 / -2 should result in -1.
Test program
prime.t
lex <prime.t | parse | interp
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
Virtual Machine Interpreter task
| #Perl | Perl | #!/usr/bin/perl
use strict; # interpreter.pl - execute a flatAST
use warnings; # http://www.rosettacode.org/wiki/Compiler/AST_interpreter
use integer;
my %variables;
tree()->run;
sub tree
{
my $line = <> // die "incomplete tree\n";
(local $_, my $arg) = $line =~ /^(\w+|;)\s+(.*)/ or die "bad input $line";
/String/ ? bless [$arg =~ tr/""//dr =~ s/\\(.)/$1 eq 'n' ? "\n" : $1/ger], $_ :
/Identifier|Integer/ ? bless [ $arg ], $_ :
/;/ ? bless [], 'Null' :
bless [ tree(), tree() ], $_;
}
sub Add::run { $_[0][0]->run + $_[0][1]->run }
sub And::run { $_[0][0]->run && $_[0][1]->run }
sub Assign::run { $variables{$_[0][0][0]} = $_[0][1]->run }
sub Divide::run { $_[0][0]->run / $_[0][1]->run }
sub Equal::run { $_[0][0]->run == $_[0][1]->run ? 1 : 0 }
sub Greater::run { $_[0][0]->run > $_[0][1]->run ? 1 : 0 }
sub GreaterEqual::run { $_[0][0]->run >= $_[0][1]->run ? 1 : 0 }
sub Identifier::run { $variables{$_[0][0]} // 0 }
sub If::run { $_[0][0]->run ? $_[0][1][0]->run : $_[0][1][1]->run }
sub Integer::run { $_[0][0] }
sub Less::run { $_[0][0]->run < $_[0][1]->run ? 1 : 0 }
sub LessEqual::run { $_[0][0]->run <= $_[0][1]->run ? 1 : 0 }
sub Mod::run { $_[0][0]->run % $_[0][1]->run }
sub Multiply::run { $_[0][0]->run * $_[0][1]->run }
sub Negate::run { - $_[0][0]->run }
sub Not::run { $_[0][0]->run ? 0 : 1 }
sub NotEqual::run { $_[0][0]->run != $_[0][1]->run ? 1 : 0 }
sub Null::run {}
sub Or::run { $_[0][0]->run || $_[0][1]->run }
sub Prtc::run { print chr $_[0][0]->run }
sub Prti::run { print $_[0][0]->run }
sub Prts::run { print $_[0][0][0] }
sub Sequence::run { $_->run for $_[0]->@* }
sub Subtract::run { $_[0][0]->run - $_[0][1]->run }
sub While::run { $_[0][1]->run while $_[0][0]->run } |
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #C.2B.2B | C++ | #include <iostream>
#include <algorithm>
#include <string>
#include <list>
using namespace std;
bool cmp(const string& a, const string& b)
{
return b.length() < a.length(); // reverse sort!
}
void compareAndReportStringsLength(list<string> listOfStrings)
{
if (!listOfStrings.empty())
{
char Q = '"';
string has_length(" has length ");
string predicate_max(" and is the longest string");
string predicate_min(" and is the shortest string");
string predicate_ave(" and is neither the longest nor the shortest string");
list<string> ls(listOfStrings); // clone to avoid side-effects
ls.sort(cmp);
int max = ls.front().length();
int min = ls.back().length();
for (list<string>::iterator s = ls.begin(); s != ls.end(); s++)
{
int length = s->length();
string* predicate;
if (length == max)
predicate = &predicate_max;
else if (length == min)
predicate = &predicate_min;
else
predicate = &predicate_ave;
cout << Q << *s << Q << has_length << length << *predicate << endl;
}
}
}
int main(int argc, char* argv[])
{
list<string> listOfStrings{ "abcd", "123456789", "abcdef", "1234567" };
compareAndReportStringsLength(listOfStrings);
return EXIT_SUCCESS;
} |
http://rosettacode.org/wiki/Compiler/syntax_analyzer | Compiler/syntax analyzer | A Syntax analyzer transforms a token stream (from the Lexical analyzer)
into a Syntax tree, based on a grammar.
Task[edit]
Take the output from the Lexical analyzer task,
and convert it to an Abstract Syntax Tree (AST),
based on the grammar below. The output should be in a flattened format.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a parser module/library/class, it would be great
if two versions of the solution are provided: One without the parser module, and one
with.
Grammar
The simple programming language to be analyzed is more or less a (very tiny) subset of
C. The formal grammar in
Extended Backus-Naur Form (EBNF):
stmt_list = {stmt} ;
stmt = ';'
| Identifier '=' expr ';'
| 'while' paren_expr stmt
| 'if' paren_expr stmt ['else' stmt]
| 'print' '(' prt_list ')' ';'
| 'putc' paren_expr ';'
| '{' stmt_list '}'
;
paren_expr = '(' expr ')' ;
prt_list = (string | expr) {',' (String | expr)} ;
expr = and_expr {'||' and_expr} ;
and_expr = equality_expr {'&&' equality_expr} ;
equality_expr = relational_expr [('==' | '!=') relational_expr] ;
relational_expr = addition_expr [('<' | '<=' | '>' | '>=') addition_expr] ;
addition_expr = multiplication_expr {('+' | '-') multiplication_expr} ;
multiplication_expr = primary {('*' | '/' | '%') primary } ;
primary = Identifier
| Integer
| '(' expr ')'
| ('+' | '-' | '!') primary
;
The resulting AST should be formulated as a Binary Tree.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
The following table shows the input to lex, lex output, and the AST produced by the parser
Input to lex
Output from lex, input to parse
Output from parse
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Specifications
List of node type names
Identifier String Integer Sequence If Prtc Prts Prti While Assign Negate Not Multiply Divide Mod
Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
In the text below, Null/Empty nodes are represented by ";".
Non-terminal (internal) nodes
For Operators, the following nodes should be created:
Multiply Divide Mod Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
For each of the above nodes, the left and right sub-nodes are the operands of the
respective operation.
In pseudo S-Expression format:
(Operator expression expression)
Negate, Not
For these node types, the left node is the operand, and the right node is null.
(Operator expression ;)
Sequence - sub-nodes are either statements or Sequences.
If - left node is the expression, the right node is If node, with it's left node being the
if-true statement part, and the right node being the if-false (else) statement part.
(If expression (If statement else-statement))
If there is not an else, the tree becomes:
(If expression (If statement ;))
Prtc
(Prtc (expression) ;)
Prts
(Prts (String "the string") ;)
Prti
(Prti (Integer 12345) ;)
While - left node is the expression, the right node is the statement.
(While expression statement)
Assign - left node is the left-hand side of the assignment, the right node is the
right-hand side of the assignment.
(Assign Identifier expression)
Terminal (leaf) nodes:
Identifier: (Identifier ident_name)
Integer: (Integer 12345)
String: (String "Hello World!")
";": Empty node
Some simple examples
Sequences denote a list node; they are used to represent a list. semicolon's represent a null node, e.g., the end of this path.
This simple program:
a=11;
Produces the following AST, encoded as a binary tree:
Under each non-leaf node are two '|' lines. The first represents the left sub-node, the second represents the right sub-node:
(1) Sequence
(2) |-- ;
(3) |-- Assign
(4) |-- Identifier: a
(5) |-- Integer: 11
In flattened form:
(1) Sequence
(2) ;
(3) Assign
(4) Identifier a
(5) Integer 11
This program:
a=11;
b=22;
c=33;
Produces the following AST:
( 1) Sequence
( 2) |-- Sequence
( 3) | |-- Sequence
( 4) | | |-- ;
( 5) | | |-- Assign
( 6) | | |-- Identifier: a
( 7) | | |-- Integer: 11
( 8) | |-- Assign
( 9) | |-- Identifier: b
(10) | |-- Integer: 22
(11) |-- Assign
(12) |-- Identifier: c
(13) |-- Integer: 33
In flattened form:
( 1) Sequence
( 2) Sequence
( 3) Sequence
( 4) ;
( 5) Assign
( 6) Identifier a
( 7) Integer 11
( 8) Assign
( 9) Identifier b
(10) Integer 22
(11) Assign
(12) Identifier c
(13) Integer 33
Pseudo-code for the parser.
Uses Precedence Climbing for expression parsing, and
Recursive Descent for statement parsing. The AST is also built:
def expr(p)
if tok is "("
x = paren_expr()
elif tok in ["-", "+", "!"]
gettok()
y = expr(precedence of operator)
if operator was "+"
x = y
else
x = make_node(operator, y)
elif tok is an Identifier
x = make_leaf(Identifier, variable name)
gettok()
elif tok is an Integer constant
x = make_leaf(Integer, integer value)
gettok()
else
error()
while tok is a binary operator and precedence of tok >= p
save_tok = tok
gettok()
q = precedence of save_tok
if save_tok is not right associative
q += 1
x = make_node(Operator save_tok represents, x, expr(q))
return x
def paren_expr()
expect("(")
x = expr(0)
expect(")")
return x
def stmt()
t = NULL
if accept("if")
e = paren_expr()
s = stmt()
t = make_node(If, e, make_node(If, s, accept("else") ? stmt() : NULL))
elif accept("putc")
t = make_node(Prtc, paren_expr())
expect(";")
elif accept("print")
expect("(")
repeat
if tok is a string
e = make_node(Prts, make_leaf(String, the string))
gettok()
else
e = make_node(Prti, expr(0))
t = make_node(Sequence, t, e)
until not accept(",")
expect(")")
expect(";")
elif tok is ";"
gettok()
elif tok is an Identifier
v = make_leaf(Identifier, variable name)
gettok()
expect("=")
t = make_node(Assign, v, expr(0))
expect(";")
elif accept("while")
e = paren_expr()
t = make_node(While, e, stmt()
elif accept("{")
while tok not equal "}" and tok not equal end-of-file
t = make_node(Sequence, t, stmt())
expect("}")
elif tok is end-of-file
pass
else
error()
return t
def parse()
t = NULL
gettok()
repeat
t = make_node(Sequence, t, stmt())
until tok is end-of-file
return t
Once the AST is built, it should be output in a flattened format. This can be as simple as the following
def prt_ast(t)
if t == NULL
print(";\n")
else
print(t.node_type)
if t.node_type in [Identifier, Integer, String] # leaf node
print the value of the Ident, Integer or String, "\n"
else
print("\n")
prt_ast(t.left)
prt_ast(t.right)
If the AST is correctly built, loading it into a subsequent program should be as simple as
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Finally, the AST can also be tested by running it against one of the AST Interpreter solutions.
Test program, assuming this is in a file called prime.t
lex <prime.t | parse
Input to lex
Output from lex, input to parse
Output from parse
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
4 1 Identifier count
4 7 Op_assign
4 9 Integer 1
4 10 Semicolon
5 1 Identifier n
5 3 Op_assign
5 5 Integer 1
5 6 Semicolon
6 1 Identifier limit
6 7 Op_assign
6 9 Integer 100
6 12 Semicolon
7 1 Keyword_while
7 7 LeftParen
7 8 Identifier n
7 10 Op_less
7 12 Identifier limit
7 17 RightParen
7 19 LeftBrace
8 5 Identifier k
8 6 Op_assign
8 7 Integer 3
8 8 Semicolon
9 5 Identifier p
9 6 Op_assign
9 7 Integer 1
9 8 Semicolon
10 5 Identifier n
10 6 Op_assign
10 7 Identifier n
10 8 Op_add
10 9 Integer 2
10 10 Semicolon
11 5 Keyword_while
11 11 LeftParen
11 12 LeftParen
11 13 Identifier k
11 14 Op_multiply
11 15 Identifier k
11 16 Op_lessequal
11 18 Identifier n
11 19 RightParen
11 21 Op_and
11 24 LeftParen
11 25 Identifier p
11 26 RightParen
11 27 RightParen
11 29 LeftBrace
12 9 Identifier p
12 10 Op_assign
12 11 Identifier n
12 12 Op_divide
12 13 Identifier k
12 14 Op_multiply
12 15 Identifier k
12 16 Op_notequal
12 18 Identifier n
12 19 Semicolon
13 9 Identifier k
13 10 Op_assign
13 11 Identifier k
13 12 Op_add
13 13 Integer 2
13 14 Semicolon
14 5 RightBrace
15 5 Keyword_if
15 8 LeftParen
15 9 Identifier p
15 10 RightParen
15 12 LeftBrace
16 9 Keyword_print
16 14 LeftParen
16 15 Identifier n
16 16 Comma
16 18 String " is prime\n"
16 31 RightParen
16 32 Semicolon
17 9 Identifier count
17 15 Op_assign
17 17 Identifier count
17 23 Op_add
17 25 Integer 1
17 26 Semicolon
18 5 RightBrace
19 1 RightBrace
20 1 Keyword_print
20 6 LeftParen
20 7 String "Total primes found: "
20 29 Comma
20 31 Identifier count
20 36 Comma
20 38 String "\n"
20 42 RightParen
20 43 Semicolon
21 1 End_of_input
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier count
Integer 1
Assign
Identifier n
Integer 1
Assign
Identifier limit
Integer 100
While
Less
Identifier n
Identifier limit
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier k
Integer 3
Assign
Identifier p
Integer 1
Assign
Identifier n
Add
Identifier n
Integer 2
While
And
LessEqual
Multiply
Identifier k
Identifier k
Identifier n
Identifier p
Sequence
Sequence
;
Assign
Identifier p
NotEqual
Multiply
Divide
Identifier n
Identifier k
Identifier k
Identifier n
Assign
Identifier k
Add
Identifier k
Integer 2
If
Identifier p
If
Sequence
Sequence
;
Sequence
Sequence
;
Prti
Identifier n
;
Prts
String " is prime\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
;
Sequence
Sequence
Sequence
;
Prts
String "Total primes found: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #Icon | Icon | #
# The Rosetta Code Tiny-Language Parser, in Icon.
#
# This implementation is based closely on the pseudocode and the C
# reference implementation.
#
# ximage from the IPL is useful for debugging. Use "xdump(x)" to
# pretty-print x.
#link ximage
record token_record (line_no, column_no, tok, tokval)
record token_getter (nxt, curr)
procedure main (args)
local inpf_name, outf_name
local inpf, outf
local nexttok, currtok, current_token, gettok
local ast
inpf_name := "-"
outf_name := "-"
if 1 <= *args then inpf_name := args[1]
if 2 <= *args then outf_name := args[2]
inpf :=
if inpf_name == "-" then
&input
else
(open(inpf_name, "r") |
stop("failed to open \"" || inpf_name || "\" for input"))
outf :=
if outf_name == "-" then
&output
else
(open(outf_name, "w") |
stop("failed to open \"" || outf_name || "\" for output"))
current_token := [&null]
nexttok := create generate_tokens(inpf, current_token)
currtok := create get_current_token (current_token)
gettok := token_getter(nexttok, currtok)
ast := parse(gettok)
prt_ast(outf, ast)
close(inpf)
close(outf)
end
procedure prt_ast (outf, ast)
if *ast = 0 then {
write(outf, ";")
} else {
writes(outf, ast[1])
if ast[1] == ("Identifier" | "Integer" | "String") then {
write(outf, " ", ast[2])
} else {
write(outf)
prt_ast(outf, ast[2])
prt_ast(outf, ast[3])
}
}
end
procedure generate_tokens (inpf, current_token)
local s
while s := read(inpf) do {
if trim(s) ~== "" then {
current_token[1] := string_to_token_record(s)
suspend current_token[1]
}
}
end
procedure get_current_token (current_token)
repeat (suspend current_token[1])
end
procedure string_to_token_record (s)
local line_no, column_no, tok, tokval
static spaces
initial {
spaces := ' \t\f\v\r\n'
}
trim(s) ? {
tab(many(spaces))
line_no := integer(tab(many(&digits)))
tab(many(spaces))
column_no := integer(tab(many(&digits)))
tab(many(spaces))
tok := tab(many(&letters ++ '_'))
tab(many(spaces))
tokval := tab(0)
}
return token_record(line_no, column_no, tok, tokval)
end
procedure parse (gettok)
local tok
local t
t := []
@gettok.nxt
tok := "Not End_of_input"
while tok ~== "End_of_input" do {
t := ["Sequence", t, stmt(gettok)]
tok := (@gettok.curr).tok
}
return t
end
procedure stmt (gettok)
local e, s, t, v
local tok
local done
t := []
if accept(gettok, "Keyword_if") then {
e := paren_expr(gettok)
s := stmt(gettok)
t := ["If", e, ["If", s,
if accept(gettok, "Keyword_else")
then stmt(gettok) else []]]
} else if accept(gettok, "Keyword_putc") then {
t := ["Prtc", paren_expr(gettok), []]
expect(gettok, "Putc", "Semicolon")
} else if accept(gettok, "Keyword_print") then {
expect(gettok, "Print", "LeftParen")
done := 0
while done = 0 do {
tok := @gettok.curr
if tok.tok == "String" then {
e := ["Prts", ["String", tok.tokval], []]
@gettok.nxt
} else {
e := ["Prti", expr(gettok, 0), []]
}
t := ["Sequence", t, e]
accept(gettok, "Comma") | (done := 1)
}
expect(gettok, "Print", "RightParen")
expect(gettok, "Print", "Semicolon")
} else if (@gettok.curr).tok == "Semicolon" then {
@gettok.nxt
} else if (@gettok.curr).tok == "Identifier" then {
v := ["Identifier", (@gettok.curr).tokval]
@gettok.nxt
expect(gettok, "assign", "Op_assign")
t := ["Assign", v, expr(gettok, 0)]
expect(gettok, "assign", "Semicolon")
} else if accept(gettok, "Keyword_while") then {
e := paren_expr(gettok)
t := ["While", e, stmt(gettok)]
} else if accept(gettok, "LeftBrace") then {
until (@gettok.curr).tok == ("RightBrace" | "End_of_input") do {
t := ["Sequence", t, stmt(gettok)]
}
expect(gettok, "Lbrace", "RightBrace")
} else if (@gettok.curr).tok ~== "End_of_input" then {
tok := @gettok.curr
error(tok, ("expecting start of statement, found '" ||
text(tok.tok) || "'"))
}
return t
end
procedure paren_expr (gettok)
local x
expect(gettok, "paren_expr", "LeftParen");
x := expr(gettok, 0);
expect(gettok, "paren_expr", "RightParen");
return x
end
procedure expr (gettok, p)
local tok, save_tok
local x, y
local q
tok := @gettok.curr
case tok.tok of {
"LeftParen" : {
x := paren_expr(gettok)
}
"Op_subtract" : {
@gettok.nxt
y := expr(gettok, precedence("Op_negate"))
x := ["Negate", y, []]
}
"Op_add" : {
@gettok.nxt
x := expr(gettok, precedence("Op_negate"))
}
"Op_not" : {
@gettok.nxt
y := expr(gettok, precedence("Op_not"))
x := ["Not", y, []]
}
"Identifier" : {
x := ["Identifier", tok.tokval]
@gettok.nxt
}
"Integer" : {
x := ["Integer", tok.tokval]
@gettok.nxt
}
default : {
error(tok, "Expecting a primary, found: " || text(tok.tok))
}
}
while (tok := @gettok.curr &
is_binary(tok.tok) &
p <= precedence(tok.tok)) do
{
save_tok := tok
@gettok.nxt
q := precedence(save_tok.tok)
if not is_right_associative(save_tok.tok) then q +:= 1
x := [operator(save_tok.tok), x, expr(gettok, q)]
}
return x
end
procedure accept (gettok, tok)
local nxt
if (@gettok.curr).tok == tok then nxt := @gettok.nxt else fail
return nxt
end
procedure expect (gettok, msg, tok)
if (@gettok.curr).tok ~== tok then {
error(@gettok.curr,
msg || ": Expecting '" || text(tok) || "', found '" ||
text((@gettok.curr).tok) || "'")
}
return @gettok.nxt
end
procedure error (token, msg)
write("(", token.line_no, ", ", token.column_no, ") error: ", msg)
exit(1)
end
procedure precedence (tok)
local p
case tok of {
"Op_multiply" : p := 13
"Op_divide" : p := 13
"Op_mod" : p := 13
"Op_add" : p := 12
"Op_subtract" : p := 12
"Op_negate" : p := 14
"Op_not" : p := 14
"Op_less" : p := 10
"Op_lessequal" : p := 10
"Op_greater" : p := 10
"Op_greaterequal" : p := 10
"Op_equal" : p := 9
"Op_notequal" : p := 9
"Op_and" : p := 5
"Op_or" : p := 4
default : p := -1
}
return p
end
procedure is_binary (tok)
return ("Op_add" |
"Op_subtract" |
"Op_multiply" |
"Op_divide" |
"Op_mod" |
"Op_less" |
"Op_lessequal" |
"Op_greater" |
"Op_greaterequal" |
"Op_equal" |
"Op_notequal" |
"Op_and" |
"Op_or") == tok
fail
end
procedure is_right_associative (tok)
# None of the current operators is right associative.
fail
end
procedure operator (tok)
local s
case tok of {
"Op_multiply" : s := "Multiply"
"Op_divide" : s := "Divide"
"Op_mod" : s := "Mod"
"Op_add" : s := "Add"
"Op_subtract" : s := "Subtract"
"Op_negate" : s := "Negate"
"Op_not" : s := "Not"
"Op_less" : s := "Less"
"Op_lessequal" : s := "LessEqual"
"Op_greater" : s := "Greater"
"Op_greaterequal" : s := "GreaterEqual"
"Op_equal" : s := "Equal"
"Op_notequal" : s := "NotEqual"
"Op_and" : s := "And"
"Op_or" : s := "Or"
}
return s
end
procedure text (tok)
local s
case tok of {
"Keyword_else" : s := "else"
"Keyword_if" : s := "if"
"Keyword_print" : s := "print"
"Keyword_putc" : s := "putc"
"Keyword_while" : s := "while"
"Op_multiply" : s := "*"
"Op_divide" : s := "/"
"Op_mod" : s := "%"
"Op_add" : s := "+"
"Op_subtract" : s := "-"
"Op_negate" : s := "-"
"Op_less" : s := "<"
"Op_lessequal" : s := "<="
"Op_greater" : s := ">"
"Op_greaterequal" : s := ">="
"Op_equal" : s := "=="
"Op_notequal" : s := "!="
"Op_not" : s := "!"
"Op_assign" : s := "="
"Op_and" : s := "&&"
"Op_or" : s := "||"
"LeftParen" : s := "("
"RightParen" : s := ")"
"LeftBrace" : s := "{"
"RightBrace" : s := "}"
"Semicolon" : s := ";"
"Comma" : s := ","
"Identifier" : s := "Ident"
"Integer" : s := "Integer literal"
"String" : s := "String literal"
"End_of_input" : s := "EOI"
}
return s
end |
http://rosettacode.org/wiki/Conway%27s_Game_of_Life | Conway's Game of Life | The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.
Conway's game of life is described here:
A cell C is represented by a 1 when alive, or 0 when dead, in an m-by-m (or m×m) square array of cells.
We calculate N - the sum of live cells in C's eight-location neighbourhood, then cell C is alive or dead in the next generation based on the following table:
C N new C
1 0,1 -> 0 # Lonely
1 4,5,6,7,8 -> 0 # Overcrowded
1 2,3 -> 1 # Lives
0 3 -> 1 # It takes three to give birth!
0 0,1,2,4,5,6,7,8 -> 0 # Barren
Assume cells beyond the boundary are always dead.
The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.
Task
Although you should test your implementation on more complex examples such as the glider in a larger universe, show the action of the blinker (three adjoining cells in a row all alive), over three generations, in a 3 by 3 grid.
References
Its creator John Conway, explains the game of life. Video from numberphile on youtube.
John Conway Inventing Game of Life - Numberphile video.
Related task
Langton's ant - another well known cellular automaton.
| #C | C | #include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define for_x for (int x = 0; x < w; x++)
#define for_y for (int y = 0; y < h; y++)
#define for_xy for_x for_y
void show(void *u, int w, int h)
{
int (*univ)[w] = u;
printf("\033[H");
for_y {
for_x printf(univ[y][x] ? "\033[07m \033[m" : " ");
printf("\033[E");
}
fflush(stdout);
}
void evolve(void *u, int w, int h)
{
unsigned (*univ)[w] = u;
unsigned new[h][w];
for_y for_x {
int n = 0;
for (int y1 = y - 1; y1 <= y + 1; y1++)
for (int x1 = x - 1; x1 <= x + 1; x1++)
if (univ[(y1 + h) % h][(x1 + w) % w])
n++;
if (univ[y][x]) n--;
new[y][x] = (n == 3 || (n == 2 && univ[y][x]));
}
for_y for_x univ[y][x] = new[y][x];
}
void game(int w, int h)
{
unsigned univ[h][w];
for_xy univ[y][x] = rand() < RAND_MAX / 10 ? 1 : 0;
while (1) {
show(univ, w, h);
evolve(univ, w, h);
usleep(200000);
}
}
int main(int c, char **v)
{
int w = 0, h = 0;
if (c > 1) w = atoi(v[1]);
if (c > 2) h = atoi(v[2]);
if (w <= 0) w = 30;
if (h <= 0) h = 30;
game(w, h);
} |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Perl | Perl | my @point = (3, 8); |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Phix | Phix | with javascript_semantics
enum x,y
type point(object p)
return sequence(p) and length(p)=y and atom(p[x]) and atom(p[y])
end type
point p = {175,3.375}
p[x] -= p[y]*20
puts(1,"point p is ")
?p
printf(1,"p[x]:%g, p[y]:%g\n",{p[x],p[y]})
p[x] = 0 -- fine
p[y] = "string" -- run-time error (not pwa/p2js)
|
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Visual_Basic_.NET | Visual Basic .NET | 'Immutable Strings
Dim a = "Test string"
Dim b = a 'reference to same string
Dim c = New String(a.ToCharArray) 'new string, normally not used
'Mutable Strings
Dim x As New Text.StringBuilder("Test string")
Dim y = x 'reference
Dim z = New Text.StringBuilder(x.ToString) 'new string |
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Wren | Wren | var s = "wren"
var t = s
System.print("Are 's' and 't' equal? %(s == t)") |
http://rosettacode.org/wiki/Constrained_random_points_on_a_circle | Constrained random points on a circle | Task
Generate 100 <x,y> coordinate pairs such that x and y are integers sampled from the uniform distribution with the condition that
10
≤
x
2
+
y
2
≤
15
{\displaystyle 10\leq {\sqrt {x^{2}+y^{2}}}\leq 15}
.
Then display/plot them. The outcome should be a "fuzzy" circle. The actual number of points plotted may be less than 100, given that some pairs may be generated more than once.
There are several possible approaches to accomplish this. Here are two possible algorithms.
1) Generate random pairs of integers and filter out those that don't satisfy this condition:
10
≤
x
2
+
y
2
≤
15
{\displaystyle 10\leq {\sqrt {x^{2}+y^{2}}}\leq 15}
.
2) Precalculate the set of all possible points (there are 404 of them) and select randomly from this set.
| #Sidef | Sidef | var points = [];
while (points.len < 100) {
var (x, y) = 2.of{31.rand.int - 15}...;
var r2 = (x**2 + y**2);
if ((r2 >= 100) && (r2 <= 225)) {
points.append([x, y]);
}
}
print <<'HEAD';
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox 0 0 400 400
200 200 translate 10 10 scale
0 setlinewidth
1 0 0 setrgbcolor
0 0 10 0 360 arc stroke
0 0 15 360 0 arcn stroke
0 setgray
/pt { .1 0 360 arc fill } def
HEAD
points.each { |pt| say "#{pt.join(' ')} pt" };
print '%%EOF'; |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Arturo | Arturo | num: 2
if? num=2 [
print "yep, num is 2"
]
else [
print "something went wrong..."
] |
http://rosettacode.org/wiki/Commatizing_numbers | Commatizing numbers | Commatizing numbers (as used here, is a handy expedient made-up word) is the act of adding commas to a number (or string), or to the numeric part of a larger string.
Task
Write a function that takes a string as an argument with optional arguments or parameters (the format of parameters/options is left to the programmer) that in general, adds commas (or some
other characters, including blanks or tabs) to the first numeric part of a string (if it's suitable for commatizing as per the rules below), and returns that newly commatized string.
Some of the commatizing rules (specified below) are arbitrary, but they'll be a part of this task requirements, if only to make the results consistent amongst national preferences and other disciplines.
The number may be part of a larger (non-numeric) string such as:
«US$1744 millions» ──or──
±25000 motes.
The string may possibly not have a number suitable for commatizing, so it should be untouched and no error generated.
If any argument (option) is invalid, nothing is changed and no error need be generated (quiet execution, no fail execution). Error message generation is optional.
The exponent part of a number is never commatized. The following string isn't suitable for commatizing: 9.7e+12000
Leading zeroes are never commatized. The string 0000000005714.882 after commatization is: 0000000005,714.882
Any period (.) in a number is assumed to be a decimal point.
The original string is never changed except by the addition of commas [or whatever character(s) is/are used for insertion], if at all.
To wit, the following should be preserved:
leading signs (+, -) ── even superfluous signs
leading/trailing/embedded blanks, tabs, and other whitespace
the case (upper/lower) of the exponent indicator, e.g.: 4.8903d-002
Any exponent character(s) should be supported:
1247e12
57256.1D-4
4444^60
7500∙10**35
8500x10**35
9500↑35
+55000↑3
1000**100
2048²
409632
10000pow(pi)
Numbers may be terminated with any non-digit character, including subscripts and/or superscript: 41421356243 or 7320509076(base 24).
The character(s) to be used for the comma can be specified, and may contain blanks, tabs, and other whitespace characters, as well as multiple characters. The default is the comma (,) character.
The period length can be specified (sometimes referred to as "thousands" or "thousands separators"). The period length can be defined as the length (or number) of the decimal digits between commas. The default period length is 3.
E.G.: in this example, the period length is five: 56789,12340,14148
The location of where to start the scanning for the target field (the numeric part) should be able to be specified. The default is 1.
The character strings below may be placed in a file (and read) or stored as simple strings within the program.
Strings to be used as a minimum
The value of pi (expressed in base 10) should be separated with blanks every 5 places past the decimal point,
the Zimbabwe dollar amount should use a decimal point for the "comma" separator:
pi=3.14159265358979323846264338327950288419716939937510582097494459231
The author has two Z$100000000000000 Zimbabwe notes (100 trillion).
"-in Aus$+1411.8millions"
===US$0017440 millions=== (in 2000 dollars)
123.e8000 is pretty big.
The land area of the earth is 57268900(29% of the surface) square miles.
Ain't no numbers in this here words, nohow, no way, Jose.
James was never known as 0000000007
Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe.
␢␢␢$-140000±100 millions.
6/9/1946 was a good year for some.
where the penultimate string has three leading blanks (real blanks are to be used).
Also see
The Wiki entry: (sir) Arthur Eddington's number of protons in the universe.
| #C.23 | C# |
static string[] inputs = {
"pi=3.14159265358979323846264338327950288419716939937510582097494459231",
"The author has two Z$100000000000000 Zimbabwe notes (100 trillion).",
"\"-in Aus$+1411.8millions\"",
"===US$0017440 millions=== (in 2000 dollars)"
};
void Main()
{
inputs.Select(s => Commatize(s, 0, 3, ","))
.ToList()
.ForEach(Console.WriteLine);
}
string Commatize(string text, int startPosition, int interval, string separator)
{
var matches = Regex.Matches(text.Substring(startPosition), "[0-9]*");
var x = matches.Cast<Match>().Select(match => Commatize(match, interval, separator, text)).ToList();
return string.Join("", x);
}
string Commatize(Match match, int interval, string separator, string original)
{
if (match.Length <= interval)
return original.Substring(match.Index,
match.Index == original.Length ? 0 : Math.Max(match.Length, 1));
return string.Join(separator, match.Value.Split(interval));
}
public static class Extension
{
public static string[] Split(this string source, int interval)
{
return SplitImpl(source, interval).ToArray();
}
static IEnumerable<string>SplitImpl(string source, int interval)
{
for (int i = 1; i < source.Length; i++)
{
if (i % interval != 0) continue;
yield return source.Substring(i - interval, interval);
}
}
}
|
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #11l | 11l | L(strings_s) [‘AA AA AA AA’, ‘AA ACB BB CC’]
V strings = strings_s.split(‘ ’)
print(strings)
print(all(zip(strings, strings[1..]).map(a -> a[0] == a[1])))
print(all(zip(strings, strings[1..]).map(a -> a[0] < a[1])))
print() |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #11l | 11l | :start:
print(‘Program name: ’:argv[0])
print("Arguments:\n":argv[1..].join("\n")) |
http://rosettacode.org/wiki/Compiler/virtual_machine_interpreter | Compiler/virtual machine interpreter | A virtual machine implements a computer in software.
Task[edit]
Write a virtual machine interpreter. This interpreter should be able to run virtual
assembly language programs created via the task. This is a
byte-coded, 32-bit word stack based virtual machine.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Input format:
Given the following program:
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
The output from the Code generator is a virtual assembly code program:
Output from gen, input to VM
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
The first line of the input specifies the datasize required and the number of constant
strings, in the order that they are reference via the code.
The data can be stored in a separate array, or the data can be stored at the beginning of
the stack. Data is addressed starting at 0. If there are 3 variables, the 3rd one if
referenced at address 2.
If there are one or more constant strings, they come next. The code refers to these
strings by their index. The index starts at 0. So if there are 3 strings, and the code
wants to reference the 3rd string, 2 will be used.
Next comes the actual virtual assembly code. The first number is the code address of that
instruction. After that is the instruction mnemonic, followed by optional operands,
depending on the instruction.
Registers:
sp:
the stack pointer - points to the next top of stack. The stack is a 32-bit integer
array.
pc:
the program counter - points to the current instruction to be performed. The code is an
array of bytes.
Data:
data
string pool
Instructions:
Each instruction is one byte. The following instructions also have a 32-bit integer
operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
Print the word at stack top as a character.
prtc
Print the word at stack top as an integer.
prti
Stack top points to an index into the string pool. Print that entry.
prts
Unconditional stop.
halt
A simple example virtual machine
def run_vm(data_size)
int stack[data_size + 1000]
set stack[0..data_size - 1] to 0
int pc = 0
while True:
op = code[pc]
pc += 1
if op == FETCH:
stack.append(stack[bytes_to_int(code[pc:pc+word_size])[0]]);
pc += word_size
elif op == STORE:
stack[bytes_to_int(code[pc:pc+word_size])[0]] = stack.pop();
pc += word_size
elif op == PUSH:
stack.append(bytes_to_int(code[pc:pc+word_size])[0]);
pc += word_size
elif op == ADD: stack[-2] += stack[-1]; stack.pop()
elif op == SUB: stack[-2] -= stack[-1]; stack.pop()
elif op == MUL: stack[-2] *= stack[-1]; stack.pop()
elif op == DIV: stack[-2] /= stack[-1]; stack.pop()
elif op == MOD: stack[-2] %= stack[-1]; stack.pop()
elif op == LT: stack[-2] = stack[-2] < stack[-1]; stack.pop()
elif op == GT: stack[-2] = stack[-2] > stack[-1]; stack.pop()
elif op == LE: stack[-2] = stack[-2] <= stack[-1]; stack.pop()
elif op == GE: stack[-2] = stack[-2] >= stack[-1]; stack.pop()
elif op == EQ: stack[-2] = stack[-2] == stack[-1]; stack.pop()
elif op == NE: stack[-2] = stack[-2] != stack[-1]; stack.pop()
elif op == AND: stack[-2] = stack[-2] and stack[-1]; stack.pop()
elif op == OR: stack[-2] = stack[-2] or stack[-1]; stack.pop()
elif op == NEG: stack[-1] = -stack[-1]
elif op == NOT: stack[-1] = not stack[-1]
elif op == JMP: pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == JZ: if stack.pop() then pc += word_size else pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == PRTC: print stack[-1] as a character; stack.pop()
elif op == PRTS: print the constant string referred to by stack[-1]; stack.pop()
elif op == PRTI: print stack[-1] as an integer; stack.pop()
elif op == HALT: break
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
AST Interpreter task
| #Forth | Forth | CREATE BUF 0 , \ single-character look-ahead buffer
: PEEK BUF @ 0= IF KEY BUF ! THEN BUF @ ;
: GETC PEEK 0 BUF ! ;
: SPACE? DUP BL = SWAP 9 14 WITHIN OR ;
: >SPACE BEGIN PEEK SPACE? WHILE GETC DROP REPEAT ;
: DIGIT? 48 58 WITHIN ;
: >INT ( -- n) >SPACE 0
BEGIN PEEK DIGIT?
WHILE GETC [CHAR] 0 - SWAP 10 * + REPEAT ;
CREATE A 0 ,
: C@A ( -- c) A @ C@ ;
: C@A+ ( -- c) C@A 1 CHARS A +! ;
: C!A+ ( c --) A @ C! 1 CHARS A +! ;
: WORD ( -- c-addr) >SPACE PAD 1+ A !
BEGIN PEEK SPACE? INVERT WHILE GETC C!A+ REPEAT
>SPACE PAD A @ OVER - 1- PAD C! ;
: >STRING ( -- c-addr) >SPACE GETC DROP PAD 1+ A !
BEGIN PEEK [CHAR] " <> WHILE GETC C!A+ REPEAT
GETC DROP PAD A @ OVER - 1- PAD C! ;
: \INTERN ( c-addr -- c-addr) HERE >R A ! C@A+ DUP C,
BEGIN DUP WHILE C@A+
DUP [CHAR] \ = IF DROP -1 R@ +! C@A+
[CHAR] n = IF 10 ELSE [CHAR] \ THEN
THEN C, 1-
REPEAT DROP R> ;
: . 0 .R ;
CREATE DATA 0 ,
CREATE STRINGS 0 ,
: >DATA HERE DATA !
WORD DROP >INT 4 * BEGIN DUP WHILE 0 C, 1- REPEAT DROP ;
: >STRINGS HERE STRINGS !
WORD DROP >INT DUP >R CELLS ALLOT
0 BEGIN DUP R@ < WHILE
DUP CELLS >STRING \INTERN STRINGS @ ROT + ! 1+
REPEAT R> DROP DROP ;
: >HEADER >DATA >STRINGS ;
: i32! ( n addr --)
OVER $FF AND OVER C! 1+
OVER 8 RSHIFT $FF AND OVER C! 1+
OVER 16 RSHIFT $FF AND OVER C! 1+
SWAP 24 RSHIFT $FF AND SWAP C! ;
: i32@ ( addr -- n) >R \ This is kinda slow... hmm
R@ C@
R@ 1 + C@ 8 LSHIFT OR
R@ 2 + C@ 16 LSHIFT OR
R> 3 + C@ 24 LSHIFT OR
DUP $7FFFFFFF AND SWAP $80000000 AND - ; \ sign extend
: i32, ( n --) HERE 4 ALLOT i32! ;
: i32@+ ( -- n) A @ i32@ A @ 4 + A ! ;
CREATE BYTECODE 0 ,
: @fetch i32@+ 4 * DATA @ + i32@ ;
: @store i32@+ 4 * DATA @ + i32! ;
: @jmp i32@+ BYTECODE @ + A ! ;
: @jz IF 4 A +! ELSE @jmp THEN ;
: @prts CELLS STRINGS @ + @ COUNT TYPE ;
: @div >R S>D R> SM/REM SWAP DROP ;
CREATE OPS
' @fetch , ' @store , ' i32@+ , ' @jmp , ' @jz ,
' EMIT , ' . , ' @prts , ' NEGATE , ' 0= ,
' + , ' - , ' * , ' @div , ' MOD ,
' < , ' > , ' <= , ' >= ,
' = , ' <> , ' AND , ' OR , ' BYE ,
CREATE #OPS 0 ,
: OP: CREATE #OPS @ , 1 #OPS +! DOES> @ ;
OP: fetch OP: store OP: push OP: jmp OP: jz
OP: prtc OP: prti OP: prts OP: neg OP: not
OP: add OP: sub OP: mul OP: div OP: mod
OP: lt OP: gt OP: le OP: ge
OP: eq OP: ne OP: and OP: or OP: halt
: >OP WORD FIND
0= IF ." Unrecognized opcode" ABORT THEN EXECUTE ;
: >i32 >INT i32, ;
: >[i32] GETC DROP >i32 GETC DROP ;
: >OFFSET WORD DROP ( drop relative offset) >i32 ;
CREATE >PARAM ' >[i32] DUP , , ' >i32 , ' >OFFSET DUP , ,
: >BYTECODE HERE >R
BEGIN >INT DROP >OP >R R@ C,
R@ 5 < IF R@ CELLS >PARAM + @ EXECUTE THEN
R> halt = UNTIL R> BYTECODE ! ;
: RUN BYTECODE @ A !
BEGIN C@A+ CELLS OPS + @ EXECUTE AGAIN ;
>HEADER >BYTECODE RUN |
http://rosettacode.org/wiki/Compiler/code_generator | Compiler/code generator | A code generator translates the output of the syntax analyzer and/or semantic analyzer
into lower level code, either assembly, object, or virtual.
Task[edit]
Take the output of the Syntax analyzer task - which is a flattened Abstract Syntax Tree (AST) - and convert it to virtual machine code, that can be run by the
Virtual machine interpreter. The output is in text format, and represents virtual assembly code.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
while.ast can be input into the code generator.
The following table shows the input to lex, lex output, the AST produced by the parser, and the generated virtual assembly code.
Run as: lex < while.t | parse | gen
Input to lex
Output from lex, input to parse
Output from parse
Output from gen, input to VM
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
Input format
As shown in the table, above, the output from the syntax analyzer is a flattened AST.
In the AST, Identifier, Integer, and String, are terminal nodes, e.g, they do not have child nodes.
Loading this data into an internal parse tree should be as simple as:
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";"
return None
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Output format - refer to the table above
The first line is the header: Size of data, and number of constant strings.
size of data is the number of 32-bit unique variables used. In this example, one variable, count
number of constant strings is just that - how many there are
After that, the constant strings
Finally, the assembly code
Registers
sp: the stack pointer - points to the next top of stack. The stack is a 32-bit integer array.
pc: the program counter - points to the current instruction to be performed. The code is an array of bytes.
Data
32-bit integers and strings
Instructions
Each instruction is one byte. The following instructions also have a 32-bit integer operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
prtc
Print the word at stack top as a character.
prti
Print the word at stack top as an integer.
prts
Stack top points to an index into the string pool. Print that entry.
halt
Unconditional stop.
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Virtual Machine Interpreter task
AST Interpreter task
| #C | C | #include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <stdint.h>
#include <ctype.h>
typedef unsigned char uchar;
typedef enum {
nd_Ident, nd_String, nd_Integer, nd_Sequence, nd_If, nd_Prtc, nd_Prts, nd_Prti, nd_While,
nd_Assign, nd_Negate, nd_Not, nd_Mul, nd_Div, nd_Mod, nd_Add, nd_Sub, nd_Lss, nd_Leq,
nd_Gtr, nd_Geq, nd_Eql, nd_Neq, nd_And, nd_Or
} NodeType;
typedef enum { FETCH, STORE, PUSH, ADD, SUB, MUL, DIV, MOD, LT, GT, LE, GE, EQ, NE, AND,
OR, NEG, NOT, JMP, JZ, PRTC, PRTS, PRTI, HALT
} Code_t;
typedef uchar code;
typedef struct Tree {
NodeType node_type;
struct Tree *left;
struct Tree *right;
char *value;
} Tree;
#define da_dim(name, type) type *name = NULL; \
int _qy_ ## name ## _p = 0; \
int _qy_ ## name ## _max = 0
#define da_redim(name) do {if (_qy_ ## name ## _p >= _qy_ ## name ## _max) \
name = realloc(name, (_qy_ ## name ## _max += 32) * sizeof(name[0]));} while (0)
#define da_rewind(name) _qy_ ## name ## _p = 0
#define da_append(name, x) do {da_redim(name); name[_qy_ ## name ## _p++] = x;} while (0)
#define da_len(name) _qy_ ## name ## _p
#define da_add(name) do {da_redim(name); _qy_ ## name ## _p++;} while (0)
FILE *source_fp, *dest_fp;
static int here;
da_dim(object, code);
da_dim(globals, const char *);
da_dim(string_pool, const char *);
// dependency: Ordered by NodeType, must remain in same order as NodeType enum
struct {
char *enum_text;
NodeType node_type;
Code_t opcode;
} atr[] = {
{"Identifier" , nd_Ident, -1 },
{"String" , nd_String, -1 },
{"Integer" , nd_Integer, -1 },
{"Sequence" , nd_Sequence, -1 },
{"If" , nd_If, -1 },
{"Prtc" , nd_Prtc, -1 },
{"Prts" , nd_Prts, -1 },
{"Prti" , nd_Prti, -1 },
{"While" , nd_While, -1 },
{"Assign" , nd_Assign, -1 },
{"Negate" , nd_Negate, NEG},
{"Not" , nd_Not, NOT},
{"Multiply" , nd_Mul, MUL},
{"Divide" , nd_Div, DIV},
{"Mod" , nd_Mod, MOD},
{"Add" , nd_Add, ADD},
{"Subtract" , nd_Sub, SUB},
{"Less" , nd_Lss, LT },
{"LessEqual" , nd_Leq, LE },
{"Greater" , nd_Gtr, GT },
{"GreaterEqual", nd_Geq, GE },
{"Equal" , nd_Eql, EQ },
{"NotEqual" , nd_Neq, NE },
{"And" , nd_And, AND},
{"Or" , nd_Or, OR },
};
void error(const char *fmt, ... ) {
va_list ap;
char buf[1000];
va_start(ap, fmt);
vsprintf(buf, fmt, ap);
va_end(ap);
printf("error: %s\n", buf);
exit(1);
}
Code_t type_to_op(NodeType type) {
return atr[type].opcode;
}
Tree *make_node(NodeType node_type, Tree *left, Tree *right) {
Tree *t = calloc(sizeof(Tree), 1);
t->node_type = node_type;
t->left = left;
t->right = right;
return t;
}
Tree *make_leaf(NodeType node_type, char *value) {
Tree *t = calloc(sizeof(Tree), 1);
t->node_type = node_type;
t->value = strdup(value);
return t;
}
/*** Code generator ***/
void emit_byte(int c) {
da_append(object, (uchar)c);
++here;
}
void emit_int(int32_t n) {
union {
int32_t n;
unsigned char c[sizeof(int32_t)];
} x;
x.n = n;
for (size_t i = 0; i < sizeof(x.n); ++i) {
emit_byte(x.c[i]);
}
}
int hole() {
int t = here;
emit_int(0);
return t;
}
void fix(int src, int dst) {
*(int32_t *)(object + src) = dst-src;
}
int fetch_var_offset(const char *id) {
for (int i = 0; i < da_len(globals); ++i) {
if (strcmp(id, globals[i]) == 0)
return i;
}
da_add(globals);
int n = da_len(globals) - 1;
globals[n] = strdup(id);
return n;
}
int fetch_string_offset(const char *st) {
for (int i = 0; i < da_len(string_pool); ++i) {
if (strcmp(st, string_pool[i]) == 0)
return i;
}
da_add(string_pool);
int n = da_len(string_pool) - 1;
string_pool[n] = strdup(st);
return n;
}
void code_gen(Tree *x) {
int p1, p2, n;
if (x == NULL) return;
switch (x->node_type) {
case nd_Ident:
emit_byte(FETCH);
n = fetch_var_offset(x->value);
emit_int(n);
break;
case nd_Integer:
emit_byte(PUSH);
emit_int(atoi(x->value));
break;
case nd_String:
emit_byte(PUSH);
n = fetch_string_offset(x->value);
emit_int(n);
break;
case nd_Assign:
n = fetch_var_offset(x->left->value);
code_gen(x->right);
emit_byte(STORE);
emit_int(n);
break;
case nd_If:
code_gen(x->left); // if expr
emit_byte(JZ); // if false, jump
p1 = hole(); // make room for jump dest
code_gen(x->right->left); // if true statements
if (x->right->right != NULL) {
emit_byte(JMP);
p2 = hole();
}
fix(p1, here);
if (x->right->right != NULL) {
code_gen(x->right->right);
fix(p2, here);
}
break;
case nd_While:
p1 = here;
code_gen(x->left); // while expr
emit_byte(JZ); // if false, jump
p2 = hole(); // make room for jump dest
code_gen(x->right); // statements
emit_byte(JMP); // back to the top
fix(hole(), p1); // plug the top
fix(p2, here); // plug the 'if false, jump'
break;
case nd_Sequence:
code_gen(x->left);
code_gen(x->right);
break;
case nd_Prtc:
code_gen(x->left);
emit_byte(PRTC);
break;
case nd_Prti:
code_gen(x->left);
emit_byte(PRTI);
break;
case nd_Prts:
code_gen(x->left);
emit_byte(PRTS);
break;
case nd_Lss: case nd_Gtr: case nd_Leq: case nd_Geq: case nd_Eql: case nd_Neq:
case nd_And: case nd_Or: case nd_Sub: case nd_Add: case nd_Div: case nd_Mul:
case nd_Mod:
code_gen(x->left);
code_gen(x->right);
emit_byte(type_to_op(x->node_type));
break;
case nd_Negate: case nd_Not:
code_gen(x->left);
emit_byte(type_to_op(x->node_type));
break;
default:
error("error in code generator - found %d, expecting operator\n", x->node_type);
}
}
void code_finish() {
emit_byte(HALT);
}
void list_code() {
fprintf(dest_fp, "Datasize: %d Strings: %d\n", da_len(globals), da_len(string_pool));
for (int i = 0; i < da_len(string_pool); ++i)
fprintf(dest_fp, "%s\n", string_pool[i]);
code *pc = object;
again: fprintf(dest_fp, "%5d ", (int)(pc - object));
switch (*pc++) {
case FETCH: fprintf(dest_fp, "fetch [%d]\n", *(int32_t *)pc);
pc += sizeof(int32_t); goto again;
case STORE: fprintf(dest_fp, "store [%d]\n", *(int32_t *)pc);
pc += sizeof(int32_t); goto again;
case PUSH : fprintf(dest_fp, "push %d\n", *(int32_t *)pc);
pc += sizeof(int32_t); goto again;
case ADD : fprintf(dest_fp, "add\n"); goto again;
case SUB : fprintf(dest_fp, "sub\n"); goto again;
case MUL : fprintf(dest_fp, "mul\n"); goto again;
case DIV : fprintf(dest_fp, "div\n"); goto again;
case MOD : fprintf(dest_fp, "mod\n"); goto again;
case LT : fprintf(dest_fp, "lt\n"); goto again;
case GT : fprintf(dest_fp, "gt\n"); goto again;
case LE : fprintf(dest_fp, "le\n"); goto again;
case GE : fprintf(dest_fp, "ge\n"); goto again;
case EQ : fprintf(dest_fp, "eq\n"); goto again;
case NE : fprintf(dest_fp, "ne\n"); goto again;
case AND : fprintf(dest_fp, "and\n"); goto again;
case OR : fprintf(dest_fp, "or\n"); goto again;
case NOT : fprintf(dest_fp, "not\n"); goto again;
case NEG : fprintf(dest_fp, "neg\n"); goto again;
case JMP : fprintf(dest_fp, "jmp (%d) %d\n",
*(int32_t *)pc, (int32_t)(pc + *(int32_t *)pc - object));
pc += sizeof(int32_t); goto again;
case JZ : fprintf(dest_fp, "jz (%d) %d\n",
*(int32_t *)pc, (int32_t)(pc + *(int32_t *)pc - object));
pc += sizeof(int32_t); goto again;
case PRTC : fprintf(dest_fp, "prtc\n"); goto again;
case PRTI : fprintf(dest_fp, "prti\n"); goto again;
case PRTS : fprintf(dest_fp, "prts\n"); goto again;
case HALT : fprintf(dest_fp, "halt\n"); break;
default:error("listcode:Unknown opcode %d\n", *(pc - 1));
}
}
void init_io(FILE **fp, FILE *std, const char mode[], const char fn[]) {
if (fn[0] == '\0')
*fp = std;
else if ((*fp = fopen(fn, mode)) == NULL)
error(0, 0, "Can't open %s\n", fn);
}
NodeType get_enum_value(const char name[]) {
for (size_t i = 0; i < sizeof(atr) / sizeof(atr[0]); i++) {
if (strcmp(atr[i].enum_text, name) == 0) {
return atr[i].node_type;
}
}
error("Unknown token %s\n", name);
return -1;
}
char *read_line(int *len) {
static char *text = NULL;
static int textmax = 0;
for (*len = 0; ; (*len)++) {
int ch = fgetc(source_fp);
if (ch == EOF || ch == '\n') {
if (*len == 0)
return NULL;
break;
}
if (*len + 1 >= textmax) {
textmax = (textmax == 0 ? 128 : textmax * 2);
text = realloc(text, textmax);
}
text[*len] = ch;
}
text[*len] = '\0';
return text;
}
char *rtrim(char *text, int *len) { // remove trailing spaces
for (; *len > 0 && isspace(text[*len - 1]); --(*len))
;
text[*len] = '\0';
return text;
}
Tree *load_ast() {
int len;
char *yytext = read_line(&len);
yytext = rtrim(yytext, &len);
// get first token
char *tok = strtok(yytext, " ");
if (tok[0] == ';') {
return NULL;
}
NodeType node_type = get_enum_value(tok);
// if there is extra data, get it
char *p = tok + strlen(tok);
if (p != &yytext[len]) {
for (++p; isspace(*p); ++p)
;
return make_leaf(node_type, p);
}
Tree *left = load_ast();
Tree *right = load_ast();
return make_node(node_type, left, right);
}
int main(int argc, char *argv[]) {
init_io(&source_fp, stdin, "r", argc > 1 ? argv[1] : "");
init_io(&dest_fp, stdout, "wb", argc > 2 ? argv[2] : "");
code_gen(load_ast());
code_finish();
list_code();
return 0;
} |
http://rosettacode.org/wiki/Compare_sorting_algorithms%27_performance | Compare sorting algorithms' performance |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Measure a relative performance of sorting algorithms implementations.
Plot execution time vs. input sequence length dependencies for various implementation of sorting algorithm and different input sequence types (example figures).
Consider three type of input sequences:
ones: sequence of all 1's. Example: {1, 1, 1, 1, 1}
range: ascending sequence, i.e. already sorted. Example: {1, 2, 3, 10, 15}
shuffled range: sequence with elements randomly distributed. Example: {5, 3, 9, 6, 8}
Consider at least two different sorting functions (different algorithms or/and different implementation of the same algorithm).
For example, consider Bubble Sort, Insertion sort, Quicksort or/and implementations of Quicksort with different pivot selection mechanisms. Where possible, use existing implementations.
Preliminary subtask:
Bubble Sort, Insertion sort, Quicksort, Radix sort, Shell sort
Query Performance
Write float arrays to a text file
Plot x, y arrays
Polynomial Fitting
General steps:
Define sorting routines to be considered.
Define appropriate sequence generators and write timings.
Plot timings.
What conclusions about relative performance of the sorting routines could be made based on the plots?
| #Erlang | Erlang |
-module( compare_sorting_algorithms ).
-export( [task/0] ).
task() ->
Ns = [100, 1000, 10000],
Lists = [{"ones", fun list_of_ones/1, Ns}, {"ranges", fun list_of_ranges/1, Ns}, {"reversed_ranges", fun list_of_reversed_ranges/1, Ns}, {"shuffleds", fun list_of_shuffleds/1, Ns}],
Sorts = [{bubble_sort, fun bubble_sort:list/1}, {insertion_sort, fun sort:insertion/1}, {iquick_sort, fun quicksort:qsort/1}],
Results = [time_list(X, Sorts) || X <- Lists],
[file:write_file(X++".png", egd_chart:graph(Y, [{x_label, "log N"}, {y_label, "log ms"}])) || {X, Y} <- Results].
list_of_ones( N ) -> [1 || _X <- lists:seq(1, N)].
list_of_ranges( N ) -> [X || X <- lists:seq(1, N)].
list_of_reversed_ranges( N ) -> lists:reverse( list_of_ranges(N) ).
list_of_shuffleds( N ) -> [random:uniform(N) || _X <- lists:seq(1, N)].
time_list( {List, List_fun, Values}, Sorts ) ->
Results = [{Sort, time_sort(Sort_fun, List_fun, Values)} || {Sort, Sort_fun} <- Sorts],
{List, Results}.
time_sort( Sort_fun, List_fun, Values ) ->
[time(Sort_fun, List_fun, X) || X <- Values].
time( Fun, List_fun, N ) ->
{Time, _Result} = timer:tc( fun() -> Fun( List_fun(N) ) end ),
{math:log10(N), math:log10(Time)}.
|
http://rosettacode.org/wiki/Compiler/AST_interpreter | Compiler/AST interpreter | An AST interpreter interprets an Abstract Syntax Tree (AST)
produced by a Syntax Analyzer.
Task[edit]
Take the AST output from the Syntax analyzer task, and interpret it as appropriate.
Refer to the Syntax analyzer task for details of the AST.
Loading the AST from the syntax analyzer is as simple as (pseudo code)
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
The interpreter algorithm is relatively simple
interp(x)
if x == NULL return NULL
elif x.node_type == Integer return x.value converted to an integer
elif x.node_type == Ident return the current value of variable x.value
elif x.node_type == String return x.value
elif x.node_type == Assign
globals[x.left.value] = interp(x.right)
return NULL
elif x.node_type is a binary operator return interp(x.left) operator interp(x.right)
elif x.node_type is a unary operator, return return operator interp(x.left)
elif x.node_type == If
if (interp(x.left)) then interp(x.right.left)
else interp(x.right.right)
return NULL
elif x.node_type == While
while (interp(x.left)) do interp(x.right)
return NULL
elif x.node_type == Prtc
print interp(x.left) as a character, no newline
return NULL
elif x.node_type == Prti
print interp(x.left) as an integer, no newline
return NULL
elif x.node_type == Prts
print interp(x.left) as a string, respecting newlines ("\n")
return NULL
elif x.node_type == Sequence
interp(x.left)
interp(x.right)
return NULL
else
error("unknown node type")
Notes:
Because of the simple nature of our tiny language, Semantic analysis is not needed.
Your interpreter should use C like division semantics, for both division and modulus. For division of positive operands, only the non-fractional portion of the result should be returned. In other words, the result should be truncated towards 0.
This means, for instance, that 3 / 2 should result in 1.
For division when one of the operands is negative, the result should be truncated towards 0.
This means, for instance, that 3 / -2 should result in -1.
Test program
prime.t
lex <prime.t | parse | interp
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
Virtual Machine Interpreter task
| #Phix | Phix | --
-- demo\rosetta\Compiler\interp.exw
-- ================================
--
with javascript_semantics
include parse.e
sequence vars = {},
vals = {}
function var_idx(sequence inode)
if inode[1]!=tk_Identifier then ?9/0 end if
string ident = inode[2]
integer n = find(ident,vars)
if n=0 then
vars = append(vars,ident)
vals = append(vals,0)
n = length(vars)
end if
return n
end function
function interp(object t)
if t!=NULL then
integer ntype = t[1]
object t2 = t[2],
t3 = iff(length(t)=3?t[3]:0)
switch ntype do
case tk_Sequence: {} = interp(t2) {} = interp(t3)
case tk_assign: vals[var_idx(t2)] = interp(t3)
case tk_Identifier: return vals[var_idx(t)]
case tk_Integer: return t2
case tk_String: return t2
case tk_lt: return interp(t2) < interp(t3)
case tk_add: return interp(t2) + interp(t3)
case tk_sub: return interp(t2) - interp(t3)
case tk_while: while interp(t2) do {} = interp(t3) end while
case tk_Prints: puts(1,interp(t2))
case tk_Printi: printf(1,"%d",interp(t2))
case tk_putc: printf(1,"%c",interp(t2))
case tk_and: return interp(t2) and interp(t3)
case tk_or: return interp(t2) or interp(t3)
case tk_le: return interp(t2) <= interp(t3)
case tk_ge: return interp(t2) >= interp(t3)
case tk_ne: return interp(t2) != interp(t3)
case tk_gt: return interp(t2) > interp(t3)
case tk_mul: return interp(t2) * interp(t3)
case tk_div: return trunc(interp(t2)/interp(t3))
case tk_mod: return remainder(interp(t2),interp(t3))
case tk_if: {} = interp(t3[iff(interp(t2)?2:3)])
case tk_not: return not interp(t2)
case tk_neg: return - interp(t2)
else
error("unknown node type")
end switch
end if
return NULL
end function
procedure main(sequence cl)
open_files(cl)
toks = lex()
object t = parse()
{} = interp(t)
close_files()
end procedure
--main(command_line())
main({0,0,"primes.c"})
|
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #C.23 | C# | using System;
using System.Collections.Generic;
namespace example
{
class Program
{
static void Main(string[] args)
{
var strings = new string[] { "abcd", "123456789", "abcdef", "1234567" };
compareAndReportStringsLength(strings);
}
private static void compareAndReportStringsLength(string[] strings)
{
if (strings.Length > 0)
{
char Q = '"';
string hasLength = " has length ";
string predicateMax = " and is the longest string";
string predicateMin = " and is the shortest string";
string predicateAve = " and is neither the longest nor the shortest string";
string predicate;
(int, int)[] li = new (int, int)[strings.Length];
for (int i = 0; i < strings.Length; i++)
li[i] = (strings[i].Length, i);
Array.Sort(li, ((int, int) a, (int, int) b) => b.Item1 - a.Item1);
int maxLength = li[0].Item1;
int minLength = li[strings.Length - 1].Item1;
for (int i = 0; i < strings.Length; i++)
{
int length = li[i].Item1;
string str = strings[li[i].Item2];
if (length == maxLength)
predicate = predicateMax;
else if (length == minLength)
predicate = predicateMin;
else
predicate = predicateAve;
Console.WriteLine(Q + str + Q + hasLength + length + predicate);
}
}
}
}
}
|
http://rosettacode.org/wiki/Compiler/syntax_analyzer | Compiler/syntax analyzer | A Syntax analyzer transforms a token stream (from the Lexical analyzer)
into a Syntax tree, based on a grammar.
Task[edit]
Take the output from the Lexical analyzer task,
and convert it to an Abstract Syntax Tree (AST),
based on the grammar below. The output should be in a flattened format.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a parser module/library/class, it would be great
if two versions of the solution are provided: One without the parser module, and one
with.
Grammar
The simple programming language to be analyzed is more or less a (very tiny) subset of
C. The formal grammar in
Extended Backus-Naur Form (EBNF):
stmt_list = {stmt} ;
stmt = ';'
| Identifier '=' expr ';'
| 'while' paren_expr stmt
| 'if' paren_expr stmt ['else' stmt]
| 'print' '(' prt_list ')' ';'
| 'putc' paren_expr ';'
| '{' stmt_list '}'
;
paren_expr = '(' expr ')' ;
prt_list = (string | expr) {',' (String | expr)} ;
expr = and_expr {'||' and_expr} ;
and_expr = equality_expr {'&&' equality_expr} ;
equality_expr = relational_expr [('==' | '!=') relational_expr] ;
relational_expr = addition_expr [('<' | '<=' | '>' | '>=') addition_expr] ;
addition_expr = multiplication_expr {('+' | '-') multiplication_expr} ;
multiplication_expr = primary {('*' | '/' | '%') primary } ;
primary = Identifier
| Integer
| '(' expr ')'
| ('+' | '-' | '!') primary
;
The resulting AST should be formulated as a Binary Tree.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
The following table shows the input to lex, lex output, and the AST produced by the parser
Input to lex
Output from lex, input to parse
Output from parse
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Specifications
List of node type names
Identifier String Integer Sequence If Prtc Prts Prti While Assign Negate Not Multiply Divide Mod
Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
In the text below, Null/Empty nodes are represented by ";".
Non-terminal (internal) nodes
For Operators, the following nodes should be created:
Multiply Divide Mod Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
For each of the above nodes, the left and right sub-nodes are the operands of the
respective operation.
In pseudo S-Expression format:
(Operator expression expression)
Negate, Not
For these node types, the left node is the operand, and the right node is null.
(Operator expression ;)
Sequence - sub-nodes are either statements or Sequences.
If - left node is the expression, the right node is If node, with it's left node being the
if-true statement part, and the right node being the if-false (else) statement part.
(If expression (If statement else-statement))
If there is not an else, the tree becomes:
(If expression (If statement ;))
Prtc
(Prtc (expression) ;)
Prts
(Prts (String "the string") ;)
Prti
(Prti (Integer 12345) ;)
While - left node is the expression, the right node is the statement.
(While expression statement)
Assign - left node is the left-hand side of the assignment, the right node is the
right-hand side of the assignment.
(Assign Identifier expression)
Terminal (leaf) nodes:
Identifier: (Identifier ident_name)
Integer: (Integer 12345)
String: (String "Hello World!")
";": Empty node
Some simple examples
Sequences denote a list node; they are used to represent a list. semicolon's represent a null node, e.g., the end of this path.
This simple program:
a=11;
Produces the following AST, encoded as a binary tree:
Under each non-leaf node are two '|' lines. The first represents the left sub-node, the second represents the right sub-node:
(1) Sequence
(2) |-- ;
(3) |-- Assign
(4) |-- Identifier: a
(5) |-- Integer: 11
In flattened form:
(1) Sequence
(2) ;
(3) Assign
(4) Identifier a
(5) Integer 11
This program:
a=11;
b=22;
c=33;
Produces the following AST:
( 1) Sequence
( 2) |-- Sequence
( 3) | |-- Sequence
( 4) | | |-- ;
( 5) | | |-- Assign
( 6) | | |-- Identifier: a
( 7) | | |-- Integer: 11
( 8) | |-- Assign
( 9) | |-- Identifier: b
(10) | |-- Integer: 22
(11) |-- Assign
(12) |-- Identifier: c
(13) |-- Integer: 33
In flattened form:
( 1) Sequence
( 2) Sequence
( 3) Sequence
( 4) ;
( 5) Assign
( 6) Identifier a
( 7) Integer 11
( 8) Assign
( 9) Identifier b
(10) Integer 22
(11) Assign
(12) Identifier c
(13) Integer 33
Pseudo-code for the parser.
Uses Precedence Climbing for expression parsing, and
Recursive Descent for statement parsing. The AST is also built:
def expr(p)
if tok is "("
x = paren_expr()
elif tok in ["-", "+", "!"]
gettok()
y = expr(precedence of operator)
if operator was "+"
x = y
else
x = make_node(operator, y)
elif tok is an Identifier
x = make_leaf(Identifier, variable name)
gettok()
elif tok is an Integer constant
x = make_leaf(Integer, integer value)
gettok()
else
error()
while tok is a binary operator and precedence of tok >= p
save_tok = tok
gettok()
q = precedence of save_tok
if save_tok is not right associative
q += 1
x = make_node(Operator save_tok represents, x, expr(q))
return x
def paren_expr()
expect("(")
x = expr(0)
expect(")")
return x
def stmt()
t = NULL
if accept("if")
e = paren_expr()
s = stmt()
t = make_node(If, e, make_node(If, s, accept("else") ? stmt() : NULL))
elif accept("putc")
t = make_node(Prtc, paren_expr())
expect(";")
elif accept("print")
expect("(")
repeat
if tok is a string
e = make_node(Prts, make_leaf(String, the string))
gettok()
else
e = make_node(Prti, expr(0))
t = make_node(Sequence, t, e)
until not accept(",")
expect(")")
expect(";")
elif tok is ";"
gettok()
elif tok is an Identifier
v = make_leaf(Identifier, variable name)
gettok()
expect("=")
t = make_node(Assign, v, expr(0))
expect(";")
elif accept("while")
e = paren_expr()
t = make_node(While, e, stmt()
elif accept("{")
while tok not equal "}" and tok not equal end-of-file
t = make_node(Sequence, t, stmt())
expect("}")
elif tok is end-of-file
pass
else
error()
return t
def parse()
t = NULL
gettok()
repeat
t = make_node(Sequence, t, stmt())
until tok is end-of-file
return t
Once the AST is built, it should be output in a flattened format. This can be as simple as the following
def prt_ast(t)
if t == NULL
print(";\n")
else
print(t.node_type)
if t.node_type in [Identifier, Integer, String] # leaf node
print the value of the Ident, Integer or String, "\n"
else
print("\n")
prt_ast(t.left)
prt_ast(t.right)
If the AST is correctly built, loading it into a subsequent program should be as simple as
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Finally, the AST can also be tested by running it against one of the AST Interpreter solutions.
Test program, assuming this is in a file called prime.t
lex <prime.t | parse
Input to lex
Output from lex, input to parse
Output from parse
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
4 1 Identifier count
4 7 Op_assign
4 9 Integer 1
4 10 Semicolon
5 1 Identifier n
5 3 Op_assign
5 5 Integer 1
5 6 Semicolon
6 1 Identifier limit
6 7 Op_assign
6 9 Integer 100
6 12 Semicolon
7 1 Keyword_while
7 7 LeftParen
7 8 Identifier n
7 10 Op_less
7 12 Identifier limit
7 17 RightParen
7 19 LeftBrace
8 5 Identifier k
8 6 Op_assign
8 7 Integer 3
8 8 Semicolon
9 5 Identifier p
9 6 Op_assign
9 7 Integer 1
9 8 Semicolon
10 5 Identifier n
10 6 Op_assign
10 7 Identifier n
10 8 Op_add
10 9 Integer 2
10 10 Semicolon
11 5 Keyword_while
11 11 LeftParen
11 12 LeftParen
11 13 Identifier k
11 14 Op_multiply
11 15 Identifier k
11 16 Op_lessequal
11 18 Identifier n
11 19 RightParen
11 21 Op_and
11 24 LeftParen
11 25 Identifier p
11 26 RightParen
11 27 RightParen
11 29 LeftBrace
12 9 Identifier p
12 10 Op_assign
12 11 Identifier n
12 12 Op_divide
12 13 Identifier k
12 14 Op_multiply
12 15 Identifier k
12 16 Op_notequal
12 18 Identifier n
12 19 Semicolon
13 9 Identifier k
13 10 Op_assign
13 11 Identifier k
13 12 Op_add
13 13 Integer 2
13 14 Semicolon
14 5 RightBrace
15 5 Keyword_if
15 8 LeftParen
15 9 Identifier p
15 10 RightParen
15 12 LeftBrace
16 9 Keyword_print
16 14 LeftParen
16 15 Identifier n
16 16 Comma
16 18 String " is prime\n"
16 31 RightParen
16 32 Semicolon
17 9 Identifier count
17 15 Op_assign
17 17 Identifier count
17 23 Op_add
17 25 Integer 1
17 26 Semicolon
18 5 RightBrace
19 1 RightBrace
20 1 Keyword_print
20 6 LeftParen
20 7 String "Total primes found: "
20 29 Comma
20 31 Identifier count
20 36 Comma
20 38 String "\n"
20 42 RightParen
20 43 Semicolon
21 1 End_of_input
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier count
Integer 1
Assign
Identifier n
Integer 1
Assign
Identifier limit
Integer 100
While
Less
Identifier n
Identifier limit
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier k
Integer 3
Assign
Identifier p
Integer 1
Assign
Identifier n
Add
Identifier n
Integer 2
While
And
LessEqual
Multiply
Identifier k
Identifier k
Identifier n
Identifier p
Sequence
Sequence
;
Assign
Identifier p
NotEqual
Multiply
Divide
Identifier n
Identifier k
Identifier k
Identifier n
Assign
Identifier k
Add
Identifier k
Integer 2
If
Identifier p
If
Sequence
Sequence
;
Sequence
Sequence
;
Prti
Identifier n
;
Prts
String " is prime\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
;
Sequence
Sequence
Sequence
;
Prts
String "Total primes found: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #J | J | require'format/printf'
tkref=: tokenize 'End_of_input*/%+--<<=>>===!=!&&||print=print(if{else}while;,putc)a""0'
tkref,. (tknames)=: tknames=:;: {{)n
End_of_input Op_multiply Op_divide Op_mod Op_add Op_subtract Op_negate Op_less
Op_lessequal Op_greater Op_greaterequal Op_equal Op_notequal Op_not Op_and
Op_or Keyword_print Op_assign Keyword_print LeftParen Keyword_if LeftBrace Keyword_else RightBrace
Keyword_while Semicolon Comma Keyword_putc RightParen
Identifier String Integer
}}-.LF
tkV=: 2 (tkref i.tokenize '*/%+-<<=>>===!=&&||')} (#tktyp)#0
tkV=: 1 (1 0+tkref i.tokenize '-!')} tkV
tkPrec=: 13 13 13 12 12 10 10 10 10 9 9 5 4 (tkref i.tokenize'*/%+-<<=>>==!=&&||')} tkV<._1
tkPrec=: 14 (1 0+tkref i.tokenize'-!')} tkPrec
NB. proofread |:(<"1 tkV,.tkPrec),tkref,:tknames
tkref,.(ndDisp)=: ndDisp=:;:{{)n
Sequence Multiply Divide Mod Add Subtract Negate Less LessEqual Greater
GreaterEqual Equal NotEqual Not And Or Prts Assign Prti x If x x x While
x x Prtc x Identifier String Integer
}}-.LF
NB. proofread |:tkref,:ndDisp
gettoken=: {{
'tok_ln tok_col'=: (0;ndx){::x
'tok_name tok_value'=: (1;ndx){::x
if. 'Error'-:tok_name do.
error 'invalid word ',":tok_value
end.
ind=. tknames i.<tok_name
tok_text=: ind{::tkref
tok_valence=: ind{::tkV
tok_precedence=: ind{::tkPrec
ndx=:ndx+1
node_display=: ind{::ndDisp
}}
parse=: {{
ndx=: tok_ln=: tok_col=: 0
gettok=: y&gettoken
gettok''
t=.a:
whilst.-.(a:-:t)+.tok_name-:End_of_input do.
t=. Sequence make_node t stmt''
end.
}}
stmt=:{{)v
t=. a:
select.tok_name
case.Keyword_if do.
s=. stmt e=. paren_expr gettok''
if.Keyword_else-:tok_name
do. S=. stmt gettok''
else. S=. a: end.
t=. If make_node e If make_node s S
case.Keyword_putc do.
e=. paren_expr gettok''
t=. Prtc make_node e a:
Prtc expect Semicolon
case.Keyword_print do.gettok''
'Print' expect LeftParen
while.do.
if.String-:tok_name
do. gettok e=. Prts make_node (String make_leaf tok_value) a:
else. e=. Prti make_node (expr 0) a: end.
t=. Sequence make_node t e
if.Comma-:tok_name
do.Comma expect Comma
else.break.end.
end.
'Print' expect RightParen
'Print' expect Semicolon
case.Semicolon do.gettok''
case.Identifier do.
gettok v=. Identifier make_leaf tok_value
Assign expect Op_assign
t=. Assign make_node v e=. expr 0
Assign expect Semicolon
case.Keyword_while do.
t=. While make_node e s=. stmt e=. paren_expr gettok''
case.LeftBrace do.
'LeftBrace' expect LeftBrace
while.-.(<tok_name) e. RightBrace;End_of_input do.
t=. Sequence make_node t stmt''
end.
'LeftBrace' expect RightBrace
case.End_of_input do.
case.do. error 'Expecting start of statement, found %s'sprintf<tok_text
end.
t
}}
paren_expr=: {{
'paren_expr' expect LeftParen
t=. expr 0
'paren_expr' expect RightParen
t
}}
not_prec=: tkPrec{~tknames i.<Op_not
expr=: {{
select.tok_name
case.LeftParen do.e=. paren_expr''
case.Op_add do.gettok''
e=. expr not_prec
case.Op_subtract do.gettok''
e=. Negate make_node (expr not_prec) a:
case.Op_not do.gettok''
e=. Not make_node (expr not_prec) a:
case.Identifier do.
gettok e=. Identifier make_leaf tok_value
case.Integer do.
gettok e=. Integer make_leaf tok_value
case.do. error 'Expecting a primary, found %s'sprintf<tok_text
end.
while.(2=tok_valence)*tok_precedence>:y do.
q=. 1+tok_precedence [ op=. node_display NB. no right associative operators
gettok''
node=. expr q
e=. op make_node e node
end.
e
}}
expect=: {{
if.y-:tok_name do. gettok'' return.end.
error '%s: Expecting "%s", found "%s"'sprintf x;(tkref{::~tknames i.<y);tok_text
}}
make_leaf=: {{
x;y
}}
make_node=: {{
m;n;<y
}}
error=: {{
echo 'Error: line %d, column %d: %s\n'sprintf tok_ln;tok_col;y throw.
}}
syntax=: {{
;(flatAST parse y),each LF
}}
flatAST=: {{
assert.*L.y
select.#y
case.1 do.<';' assert.y-:a:
case.2 do.<;:inv ":each y
case.3 do.({.y),(flatAST 1{::y),flatAST 2{::y
case.do.assert.0
end.
}}
|
http://rosettacode.org/wiki/Conway%27s_Game_of_Life | Conway's Game of Life | The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.
Conway's game of life is described here:
A cell C is represented by a 1 when alive, or 0 when dead, in an m-by-m (or m×m) square array of cells.
We calculate N - the sum of live cells in C's eight-location neighbourhood, then cell C is alive or dead in the next generation based on the following table:
C N new C
1 0,1 -> 0 # Lonely
1 4,5,6,7,8 -> 0 # Overcrowded
1 2,3 -> 1 # Lives
0 3 -> 1 # It takes three to give birth!
0 0,1,2,4,5,6,7,8 -> 0 # Barren
Assume cells beyond the boundary are always dead.
The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.
Task
Although you should test your implementation on more complex examples such as the glider in a larger universe, show the action of the blinker (three adjoining cells in a row all alive), over three generations, in a 3 by 3 grid.
References
Its creator John Conway, explains the game of life. Video from numberphile on youtube.
John Conway Inventing Game of Life - Numberphile video.
Related task
Langton's ant - another well known cellular automaton.
| #C.23 | C# |
using System;
using System.Text;
using System.Threading;
namespace ConwaysGameOfLife
{
// Plays Conway's Game of Life on the console with a random initial state.
class Program
{
// The delay in milliseconds between board updates.
private const int DELAY = 50;
// The cell colors.
private const ConsoleColor DEAD_COLOR = ConsoleColor.White;
private const ConsoleColor LIVE_COLOR = ConsoleColor.Black;
// The color of the cells that are off of the board.
private const ConsoleColor EXTRA_COLOR = ConsoleColor.Gray;
private const char EMPTY_BLOCK_CHAR = ' ';
private const char FULL_BLOCK_CHAR = '\u2588';
// Holds the current state of the board.
private static bool[,] board;
// The dimensions of the board in cells.
private static int width = 32;
private static int height = 32;
// True if cell rules can loop around edges.
private static bool loopEdges = true;
static void Main(string[] args)
{
// Use initializeRandomBoard for a larger, random board.
initializeDemoBoard();
initializeConsole();
// Run the game until the Escape key is pressed.
while (!Console.KeyAvailable || Console.ReadKey(true).Key != ConsoleKey.Escape) {
Program.drawBoard();
Program.updateBoard();
// Wait for a bit between updates.
Thread.Sleep(DELAY);
}
}
// Sets up the Console.
private static void initializeConsole()
{
Console.BackgroundColor = EXTRA_COLOR;
Console.Clear();
Console.CursorVisible = false;
// Each cell is two characters wide.
// Using an extra row on the bottom to prevent scrolling when drawing the board.
int width = Math.Max(Program.width, 8) * 2 + 1;
int height = Math.Max(Program.height, 8) + 1;
Console.SetWindowSize(width, height);
Console.SetBufferSize(width, height);
Console.BackgroundColor = DEAD_COLOR;
Console.ForegroundColor = LIVE_COLOR;
}
// Creates the initial board with a random state.
private static void initializeRandomBoard()
{
var random = new Random();
Program.board = new bool[Program.width, Program.height];
for (var y = 0; y < Program.height; y++) {
for (var x = 0; x < Program.width; x++) {
// Equal probability of being true or false.
Program.board[x, y] = random.Next(2) == 0;
}
}
}
// Creates a 3x3 board with a blinker.
private static void initializeDemoBoard()
{
Program.width = 3;
Program.height = 3;
Program.loopEdges = false;
Program.board = new bool[3, 3];
Program.board[1, 0] = true;
Program.board[1, 1] = true;
Program.board[1, 2] = true;
}
// Draws the board to the console.
private static void drawBoard()
{
// One Console.Write call is much faster than writing each cell individually.
var builder = new StringBuilder();
for (var y = 0; y < Program.height; y++) {
for (var x = 0; x < Program.width; x++) {
char c = Program.board[x, y] ? FULL_BLOCK_CHAR : EMPTY_BLOCK_CHAR;
// Each cell is two characters wide.
builder.Append(c);
builder.Append(c);
}
builder.Append('\n');
}
// Write the string to the console.
Console.SetCursorPosition(0, 0);
Console.Write (builder.ToString());
}
// Moves the board to the next state based on Conway's rules.
private static void updateBoard()
{
// A temp variable to hold the next state while it's being calculated.
bool[,] newBoard = new bool[Program.width, Program.height];
for (var y = 0; y < Program.height; y++) {
for (var x = 0; x < Program.width; x++) {
var n = countLiveNeighbors(x, y);
var c = Program.board[x, y];
// A live cell dies unless it has exactly 2 or 3 live neighbors.
// A dead cell remains dead unless it has exactly 3 live neighbors.
newBoard[x, y] = c && (n == 2 || n == 3) || !c && n == 3;
}
}
// Set the board to its new state.
Program.board = newBoard;
}
// Returns the number of live neighbors around the cell at position (x,y).
private static int countLiveNeighbors(int x, int y)
{
// The number of live neighbors.
int value = 0;
// This nested loop enumerates the 9 cells in the specified cells neighborhood.
for (var j = -1; j <= 1; j++) {
// If loopEdges is set to false and y+j is off the board, continue.
if (!Program.loopEdges && y + j < 0 || y + j >= Program.height) {
continue;
}
// Loop around the edges if y+j is off the board.
int k = (y + j + Program.height) % Program.height;
for (var i = -1; i <= 1; i++) {
// If loopEdges is set to false and x+i is off the board, continue.
if (!Program.loopEdges && x + i < 0 || x + i >= Program.width) {
continue;
}
// Loop around the edges if x+i is off the board.
int h = (x + i + Program.width) % Program.width;
// Count the neighbor cell at (h,k) if it is alive.
value += Program.board[h, k] ? 1 : 0;
}
}
// Subtract 1 if (x,y) is alive since we counted it as a neighbor.
return value - (Program.board[x, y] ? 1 : 0);
}
}
}
|
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #PHP | PHP | # Using pack/unpack
$point = pack("ii", 1, 2);
$u = unpack("ix/iy", $point);
echo $x;
echo $y;
list($x,$y) = unpack("ii", $point);
echo $x;
echo $y; |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #PicoLisp | PicoLisp | (class +Point)
(dm T (X Y)
(=: x X)
(=: y Y) )
(setq P (new '(+Point) 3 4))
(show P) |
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #X86_Assembly | X86 Assembly |
section .data
string db "Hello World", 0
section .bss
string2 resb 12
section .text
global _main
_main:
mov ecx, 0
looping:
mov al, [string + ecx]
mov [string2 + ecx], al
inc ecx
cmp al, 0 ;copy until we find the terminating 0
je end
jmp looping
end:
xor eax, eax
ret
|
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #X86-64_Assembly | X86-64 Assembly |
option casemap:none
option literals:on
printf proto :dword, :VARARG
exit proto :dword
.data
s db "Goodbye, World!",0
.data?
d db 20 dup (?)
dp dq ?
tb dd ?
.code
main proc
lea rsi, s ;; Put the address of var S into the source index(RSI)
xor rcx, rcx ;; Zero out RCX
_getsize:
inc rcx ;; Advanced the index by 1
cmp byte ptr [rsi+rcx],0 ;; check the current byte for terminating 0
jne _getsize ;; nope, jump back and check again
mov tb, ecx ;; tb = Total bytes, Keep a copy of the size of the string
lea rsi, s ;; Copy the address of s into the source index(rsi)
lea rdi, d ;; Copy the address of d into the destination index(rdi)
rep movsb ;; Copy bytes from ESI to EDI until RCX is 0
lea rax, s ;; Get the address of S
mov dp, rax ;; Copy it from RAX to dp
mov rbx,rdi ;; Make a copy of RDI, cause over writes due to ABI call args T_T
invoke printf, CSTR("-> s (0x%x) = %s",10), rsi, addr s
invoke printf, CSTR("-> d (0x%x) = %s",10), rbx, addr d
invoke printf, CSTR("-> dp (0x%x) = %s",10), addr dp, dp
invoke printf, CSTR("-> bytes copied: %i",10), tb
xor rsi, rsi
call exit
ret
main endp
end
|
http://rosettacode.org/wiki/Constrained_random_points_on_a_circle | Constrained random points on a circle | Task
Generate 100 <x,y> coordinate pairs such that x and y are integers sampled from the uniform distribution with the condition that
10
≤
x
2
+
y
2
≤
15
{\displaystyle 10\leq {\sqrt {x^{2}+y^{2}}}\leq 15}
.
Then display/plot them. The outcome should be a "fuzzy" circle. The actual number of points plotted may be less than 100, given that some pairs may be generated more than once.
There are several possible approaches to accomplish this. Here are two possible algorithms.
1) Generate random pairs of integers and filter out those that don't satisfy this condition:
10
≤
x
2
+
y
2
≤
15
{\displaystyle 10\leq {\sqrt {x^{2}+y^{2}}}\leq 15}
.
2) Precalculate the set of all possible points (there are 404 of them) and select randomly from this set.
| #Standard_ML | Standard ML | open XWindows ;
open Motif ;
val plotWindow = fn coords => (* input list of int*int within 'dim' *)
let
val dim = {tw=325,th=325} ;
val shell = XtAppInitialise "" "demo" "top" [] [ XmNwidth (#tw dim), XmNheight (#th dim) ] ; (* single call only *)
val main = XmCreateMainWindow shell "main" [ XmNmappedWhenManaged true ] ;
val canvas = XmCreateDrawingArea main "drawarea" [ XmNwidth (#tw dim), XmNheight (#th dim) ] ;
val usegc = DefaultGC (XtDisplay canvas) ;
val put = fn (w,s,t)=> (
XSetForeground usegc 0xfffffff ;
XFillRectangle (XtWindow canvas) usegc (Area{x=0,y=0,w = #tw dim, h= #th dim}) ;
XSetForeground usegc 0 ;
XDrawPoints (XtWindow canvas) usegc ( List.map (fn (x,y)=>XPoint {x=x,y=y}) coords ) CoordModeOrigin ;
t )
in
(
XtSetCallbacks canvas [ (XmNexposeCallback , put) ] XmNarmCallback ;
XtManageChild canvas ;
XtManageChild main ;
XtRealizeWidget shell
)
end;
val urandomlist = fn seed => fn n =>
(* put code from (www.rosettacode.org) wiki/Random_numbers#Standard_ML 'urandomlist' here
input : seed and number of drawings *)
end;
val normalizedPts = fn () => (* select ([0,1]*[0,1]) points in normalized bandwidth *)
let
val realseeds = ( 972.1 , 10009.3 ) ;
val usum = fn (u,v) => u*(u-1.0) + v*(v-1.0) ;
val lim = ( ~350.0/900.0, ~225.0/900.0 ) ; (* limits to usum *)
val select = fn i => usum i <= #2 lim andalso usum i >= #1 lim ; (* select according to inequalities *)
val uv = ListPair.zip ( urandomlist (#1 realseeds) 2500 , urandomlist (#2 realseeds) 2500 ) (* take 2500 couples *)
in
List.take ( List.filter select uv , 1000 )
end ; |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Astro | Astro | if x == 0:
foo()
elif x == 1:
bar()
elif x == 2:
baz()
else:
qux()
match x:
0 => foo()
1 => bar()
2 => baz()
_ => qux()
(a) ? b : c |
http://rosettacode.org/wiki/Commatizing_numbers | Commatizing numbers | Commatizing numbers (as used here, is a handy expedient made-up word) is the act of adding commas to a number (or string), or to the numeric part of a larger string.
Task
Write a function that takes a string as an argument with optional arguments or parameters (the format of parameters/options is left to the programmer) that in general, adds commas (or some
other characters, including blanks or tabs) to the first numeric part of a string (if it's suitable for commatizing as per the rules below), and returns that newly commatized string.
Some of the commatizing rules (specified below) are arbitrary, but they'll be a part of this task requirements, if only to make the results consistent amongst national preferences and other disciplines.
The number may be part of a larger (non-numeric) string such as:
«US$1744 millions» ──or──
±25000 motes.
The string may possibly not have a number suitable for commatizing, so it should be untouched and no error generated.
If any argument (option) is invalid, nothing is changed and no error need be generated (quiet execution, no fail execution). Error message generation is optional.
The exponent part of a number is never commatized. The following string isn't suitable for commatizing: 9.7e+12000
Leading zeroes are never commatized. The string 0000000005714.882 after commatization is: 0000000005,714.882
Any period (.) in a number is assumed to be a decimal point.
The original string is never changed except by the addition of commas [or whatever character(s) is/are used for insertion], if at all.
To wit, the following should be preserved:
leading signs (+, -) ── even superfluous signs
leading/trailing/embedded blanks, tabs, and other whitespace
the case (upper/lower) of the exponent indicator, e.g.: 4.8903d-002
Any exponent character(s) should be supported:
1247e12
57256.1D-4
4444^60
7500∙10**35
8500x10**35
9500↑35
+55000↑3
1000**100
2048²
409632
10000pow(pi)
Numbers may be terminated with any non-digit character, including subscripts and/or superscript: 41421356243 or 7320509076(base 24).
The character(s) to be used for the comma can be specified, and may contain blanks, tabs, and other whitespace characters, as well as multiple characters. The default is the comma (,) character.
The period length can be specified (sometimes referred to as "thousands" or "thousands separators"). The period length can be defined as the length (or number) of the decimal digits between commas. The default period length is 3.
E.G.: in this example, the period length is five: 56789,12340,14148
The location of where to start the scanning for the target field (the numeric part) should be able to be specified. The default is 1.
The character strings below may be placed in a file (and read) or stored as simple strings within the program.
Strings to be used as a minimum
The value of pi (expressed in base 10) should be separated with blanks every 5 places past the decimal point,
the Zimbabwe dollar amount should use a decimal point for the "comma" separator:
pi=3.14159265358979323846264338327950288419716939937510582097494459231
The author has two Z$100000000000000 Zimbabwe notes (100 trillion).
"-in Aus$+1411.8millions"
===US$0017440 millions=== (in 2000 dollars)
123.e8000 is pretty big.
The land area of the earth is 57268900(29% of the surface) square miles.
Ain't no numbers in this here words, nohow, no way, Jose.
James was never known as 0000000007
Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe.
␢␢␢$-140000±100 millions.
6/9/1946 was a good year for some.
where the penultimate string has three leading blanks (real blanks are to be used).
Also see
The Wiki entry: (sir) Arthur Eddington's number of protons in the universe.
| #D | D | import std.stdio, std.regex, std.range;
auto commatize(in char[] txt, in uint start=0, in uint step=3,
in string ins=",") @safe
in {
assert(step > 0);
} body {
if (start > txt.length || step > txt.length)
return txt;
// First number may begin with digit or decimal point. Exponents ignored.
enum decFloField = ctRegex!("[0-9]*\\.[0-9]+|[0-9]+");
auto matchDec = matchFirst(txt[start .. $], decFloField);
if (!matchDec)
return txt;
// Within a decimal float field:
// A decimal integer field to commatize is positive and not after a point.
enum decIntField = ctRegex!("(?<=\\.)|[1-9][0-9]*");
// A decimal fractional field is preceded by a point, and is only digits.
enum decFracField = ctRegex!("(?<=\\.)[0-9]+");
return txt[0 .. start] ~ matchDec.pre ~ matchDec.hit
.replace!(m => m.hit.retro.chunks(step).join(ins).retro)(decIntField)
.replace!(m => m.hit.chunks(step).join(ins))(decFracField)
~ matchDec.post;
}
unittest {
// An attempted solution may have one or more of the following errors:
// ignoring a number that has only zero before its decimal point
assert("0.0123456".commatize == "0.012,345,6");
// commatizing numbers other than the first
assert("1000 2.3000".commatize == "1,000 2.3000");
// only commatizing in one direction from the decimal point
assert("0001123.456789".commatize == "0001,123.456,789");
// detecting prefixes such as "Z$" requires detecting other prefixes
assert(" NZ$300000".commatize == " NZ$300,000");
// detecting a decimal field that isn't attached to the first number
assert(" 2600 and .0125".commatize == " 2,600 and .0125");
// ignoring the start value, or confusing base 0 (used here) with base 1
assert("1 77000".commatize(1) == "1 77,000");
// ignoring a number that begins with a point, or treating it as integer
assert(" .0104004".commatize == " .010,400,4");
}
void main() {
"pi=3.14159265358979323846264338327950288419716939937510582097494459231"
.commatize(0, 5, " ").writeln;
"The author has two Z$100000000000000 Zimbabwe notes (100 trillion)."
.commatize(0, 3, ".").writeln;
foreach (const line; "commatizing_numbers_using_defaults.txt".File.byLine)
line.commatize.writeln;
} |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #360_Assembly | 360 Assembly | * Compare a list of strings 31/01/2017
COMPLIST CSECT
USING COMPLIST,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) prolog
ST R13,4(R15) " <-
ST R15,8(R13) " ->
LR R13,R15 " addressability
MVC SNAME,=C'ABC'
LA R1,SNAME
LA R2,ABC
BAL R14,TEST call test('ABC',abc)
MVC SNAME,=C'AAA'
LA R1,SNAME
LA R2,AAA
BAL R14,TEST call test('AAA',aaa)
MVC SNAME,=C'ACB'
LA R1,SNAME
LA R2,ACB
BAL R14,TEST call test('ACB',acb)
L R13,4(0,R13) epilog
LM R14,R12,12(R13) " restore
XR R15,R15 " rc=0
BR R14 exit
*------- ---- test(name,xlist) -----------------------
TEST MVC NAME,0(R1) store argument #1
MVC XLIST(6),0(R2) store argument #2
MVI ALLEQ,X'01' alleq=true
MVI INCRE,X'01' incre=true
LA R6,1 i=1
LOOPI LA R2,NXLIST hbound(xlist)
BCTR R2,0 -1
CR R6,R2 do i to hbound(xlist)-1
BH ELOOPI
MVC XBOOL,ALLEQ
OC XBOOL,INCRE or
CLI XBOOL,X'01' and while alleq or incre
BNE ELOOPI
LA R2,1(R6) i+1
SLA R2,1 *2
LA R3,XLIST-2(R2) @xlist(i+1)
LR R1,R6 i
SLA R1,1 *2
LA R4,XLIST-2(R1) @xlist(i)
CLC 0(2,R3),0(R4) if xlist(i+1)=xlist(i)
BNE SEL1B
MVI INCRE,X'00' incre=false
B SEL1END
SEL1B CLC 0(2,R3),0(R4) if xlist(i+1)<xlist(i)
BNL SEL1OTH
MVI INCRE,X'00' incre=false
MVI ALLEQ,X'00' alleq=false
B SEL1END
SEL1OTH MVI ALLEQ,X'00' alleq=false
SEL1END LA R6,1(R6) i=i+1
B LOOPI
ELOOPI CLI ALLEQ,X'01' if alleq
BNE SEL2B
MVC TXT,=CL40'all elements are equal'
B SEL2END
SEL2B CLI INCRE,X'01' if incre
BNE SEL2OTH
MVC TXT,=CL40'elements are in increasing order'
B SEL2END
SEL2OTH MVC TXT,=CL40'neither equal nor in increasing order'
SEL2END MVI PG,C' '
MVC PG+1(79),PG clear buffer
MVC PG(3),NAME
MVC PG+3(3),=C' : '
MVC PG+6(40),TXT
XPRNT PG,L'PG
BR R14 return to caller
* ---- ----------------------------------------
SNAME DS CL3
ABC DC CL2'AA',CL2'BB',CL2'CC'
AAA DC CL2'AA',CL2'AA',CL2'AA'
ACB DC CL2'AA',CL2'CC',CL2'BB'
NAME DS CL3
XLIST DS 3CL2
NXLIST EQU (*-XLIST)/L'XLIST
ALLEQ DS X
INCRE DS X
TXT DS CL40
XBOOL DS X
PG DS CL80
YREGS
END COMPLIST |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Action.21 | Action! | DEFINE PTR="CARD"
BYTE FUNC AreEqual(PTR ARRAY a BYTE len)
INT i
FOR i=1 TO len-1
DO
IF SCompare(a(0),a(i))#0 THEN
RETURN (0)
FI
OD
RETURN (1)
BYTE FUNC IsAscendingOrder(PTR ARRAY a BYTE len)
INT i
FOR i=1 TO len-1
DO
IF SCompare(a(i-1),a(i))>=0 THEN
RETURN (0)
FI
OD
RETURN (1)
PROC Test(PTR ARRAY a BYTE len)
INT i
Print("Input array: [")
FOR i=0 TO len-1
DO
Print(a(i))
IF i<len-1 THEN
Put(32)
FI
OD
PrintE("]")
IF AreEqual(a,len) THEN
PrintE("All strings are lexically equal.")
ELSE
PrintE("Not all strings are lexically equal.")
FI
IF IsAscendingOrder(a,len) THEN
PrintE("The list is in strict ascending order.")
ELSE
PrintE("The list is not in strict ascending order.")
FI
PutE()
RETURN
PROC Main()
PTR ARRAY a1(4),a2(4),a3(4),a4(1)
a1(0)="aaa" a1(1)="aaa" a1(2)="aaa" a1(3)="aaa"
Test(a1,4)
a2(0)="aaa" a2(1)="aab" a2(2)="aba" a2(3)="baa"
Test(a2,4)
a3(0)="aaa" a3(1)="aab" a3(2)="aba" a3(3)="aba"
Test(a3,4)
a4(0)="aaa"
Test(a4,1)
RETURN |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #8080_Assembly | 8080 Assembly | putch: equ 2 ; CP/M syscall to print character
puts: equ 9 ; CP/M syscall to print $-terminated string
arglen: equ 80h ; Length of argument
argmt: equ 81h ; Argument string
fcb1: equ 5Ch ; FCBs
fcb2: equ 6Ch
org 100h
;;; Print all argument(s) as given
lxi d,cmdln ; Print 'Command line: '
mvi c,puts
call 5
lda arglen ; Retrieve the length of the argument
lxi h,argmt ; Pointer to argument string
call plstr
;;; CP/M also assumes that the first two words on the command
;;; line are filenames, and prepares two FCBs with the filenames
;;; in them. If there are no filenames, they will be blank.
lxi d,file1 ; Print the first one
mvi c,puts
call 5
mvi a,11 ; Filenames are 8+3 characters long and padded with
lxi h,fcb1+1 ; spaces
call plstr
lxi d,file2 ; Print the second one
mvi c,puts
call 5
mvi a,11
lxi h,fcb2+1
; ... fall through - on small systems saving bytes is a virtue
;;; This subroutine prints a length-A string in HL.
plstr: ana a ; If A=0, print nothing.
rz
push psw ; Save A and HL registers on the stack
push h ; (CP/M syscalls clobber all registers)
mov e,m ; Print character under HL
mvi c,putch
call 5
pop h ; Restore A and HL registers
pop psw
inx h ; Increment string pointer
dcr a ; Decrement character counter
jnz plstr ; Print next character if not zero
ret
cmdln: db 'Command line: $'
file1: db 13,10,'File 1: $'
file2: db 13,10,'File 2: $' |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #8086_Assembly | 8086 Assembly | with Ada.Command_line; use Ada.Command_Line;
with Ada.Text_IO; use Ada.Text_IO;
procedure Print_Commands is
begin
-- The number of command line arguments is retrieved from the function Argument_Count
-- The actual arguments are retrieved from the function Argument
-- The program name is retrieved from the function Command_Name
Put(Command_Name & " ");
for Arg in 1..Argument_Count loop
Put(Argument(Arg) & " ");
end loop;
New_Line;
end Print_Commands; |
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #11l | 11l | // Single line comment
\\ Also single line comment (continuation of the comment in previous line)
\[ This is
a multi line
comment ]
\{ And
this }
\( And
this )
\‘ And
this ’ |
http://rosettacode.org/wiki/Compiler/virtual_machine_interpreter | Compiler/virtual machine interpreter | A virtual machine implements a computer in software.
Task[edit]
Write a virtual machine interpreter. This interpreter should be able to run virtual
assembly language programs created via the task. This is a
byte-coded, 32-bit word stack based virtual machine.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Input format:
Given the following program:
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
The output from the Code generator is a virtual assembly code program:
Output from gen, input to VM
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
The first line of the input specifies the datasize required and the number of constant
strings, in the order that they are reference via the code.
The data can be stored in a separate array, or the data can be stored at the beginning of
the stack. Data is addressed starting at 0. If there are 3 variables, the 3rd one if
referenced at address 2.
If there are one or more constant strings, they come next. The code refers to these
strings by their index. The index starts at 0. So if there are 3 strings, and the code
wants to reference the 3rd string, 2 will be used.
Next comes the actual virtual assembly code. The first number is the code address of that
instruction. After that is the instruction mnemonic, followed by optional operands,
depending on the instruction.
Registers:
sp:
the stack pointer - points to the next top of stack. The stack is a 32-bit integer
array.
pc:
the program counter - points to the current instruction to be performed. The code is an
array of bytes.
Data:
data
string pool
Instructions:
Each instruction is one byte. The following instructions also have a 32-bit integer
operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
Print the word at stack top as a character.
prtc
Print the word at stack top as an integer.
prti
Stack top points to an index into the string pool. Print that entry.
prts
Unconditional stop.
halt
A simple example virtual machine
def run_vm(data_size)
int stack[data_size + 1000]
set stack[0..data_size - 1] to 0
int pc = 0
while True:
op = code[pc]
pc += 1
if op == FETCH:
stack.append(stack[bytes_to_int(code[pc:pc+word_size])[0]]);
pc += word_size
elif op == STORE:
stack[bytes_to_int(code[pc:pc+word_size])[0]] = stack.pop();
pc += word_size
elif op == PUSH:
stack.append(bytes_to_int(code[pc:pc+word_size])[0]);
pc += word_size
elif op == ADD: stack[-2] += stack[-1]; stack.pop()
elif op == SUB: stack[-2] -= stack[-1]; stack.pop()
elif op == MUL: stack[-2] *= stack[-1]; stack.pop()
elif op == DIV: stack[-2] /= stack[-1]; stack.pop()
elif op == MOD: stack[-2] %= stack[-1]; stack.pop()
elif op == LT: stack[-2] = stack[-2] < stack[-1]; stack.pop()
elif op == GT: stack[-2] = stack[-2] > stack[-1]; stack.pop()
elif op == LE: stack[-2] = stack[-2] <= stack[-1]; stack.pop()
elif op == GE: stack[-2] = stack[-2] >= stack[-1]; stack.pop()
elif op == EQ: stack[-2] = stack[-2] == stack[-1]; stack.pop()
elif op == NE: stack[-2] = stack[-2] != stack[-1]; stack.pop()
elif op == AND: stack[-2] = stack[-2] and stack[-1]; stack.pop()
elif op == OR: stack[-2] = stack[-2] or stack[-1]; stack.pop()
elif op == NEG: stack[-1] = -stack[-1]
elif op == NOT: stack[-1] = not stack[-1]
elif op == JMP: pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == JZ: if stack.pop() then pc += word_size else pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == PRTC: print stack[-1] as a character; stack.pop()
elif op == PRTS: print the constant string referred to by stack[-1]; stack.pop()
elif op == PRTI: print stack[-1] as an integer; stack.pop()
elif op == HALT: break
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
AST Interpreter task
| #Fortran | Fortran | module compiler_type_kinds
use, intrinsic :: iso_fortran_env, only: int32
use, intrinsic :: iso_fortran_env, only: int64
implicit none
private
! Synonyms.
integer, parameter, public :: size_kind = int64
integer, parameter, public :: length_kind = size_kind
integer, parameter, public :: nk = size_kind
! Synonyms for character capable of storing a Unicode code point.
integer, parameter, public :: unicode_char_kind = selected_char_kind ('ISO_10646')
integer, parameter, public :: ck = unicode_char_kind
! Synonyms for integers capable of storing a Unicode code point.
integer, parameter, public :: unicode_ichar_kind = int32
integer, parameter, public :: ick = unicode_ichar_kind
! Synonyms for integers in the virtual machine or the interpreter’s
! runtime. (The Rosetta Code task says integers in the virtual
! machine are 32-bit, but there is nothing in the task that prevents
! us using 64-bit integers in the compiler and interpreter.)
integer, parameter, public :: runtime_int_kind = int64
integer, parameter, public :: rik = runtime_int_kind
end module compiler_type_kinds
module helpers
use, non_intrinsic :: compiler_type_kinds, only: nk, rik, ck
implicit none
private
public :: new_storage_size
public :: next_power_of_two
public :: isspace
public :: quoted_string
public :: int32_to_vm_bytes
public :: uint32_to_vm_bytes
public :: int32_from_vm_bytes
public :: uint32_from_vm_bytes
public :: bool2int
character(1, kind = ck), parameter, public :: horizontal_tab_char = char (9, kind = ck)
character(1, kind = ck), parameter, public :: linefeed_char = char (10, kind = ck)
character(1, kind = ck), parameter, public :: vertical_tab_char = char (11, kind = ck)
character(1, kind = ck), parameter, public :: formfeed_char = char (12, kind = ck)
character(1, kind = ck), parameter, public :: carriage_return_char = char (13, kind = ck)
character(1, kind = ck), parameter, public :: space_char = ck_' '
! The following is correct for Unix and its relatives.
character(1, kind = ck), parameter, public :: newline_char = linefeed_char
character(1, kind = ck), parameter, public :: backslash_char = char (92, kind = ck)
contains
elemental function new_storage_size (length_needed) result (size)
integer(kind = nk), intent(in) :: length_needed
integer(kind = nk) :: size
! Increase storage by orders of magnitude.
if (2_nk**32 < length_needed) then
size = huge (1_nk)
else
size = next_power_of_two (length_needed)
end if
end function new_storage_size
elemental function next_power_of_two (x) result (y)
integer(kind = nk), intent(in) :: x
integer(kind = nk) :: y
!
! It is assumed that no more than 64 bits are used.
!
! The branch-free algorithm is that of
! https://archive.is/nKxAc#RoundUpPowerOf2
!
! Fill in bits until one less than the desired power of two is
! reached, and then add one.
!
y = x - 1
y = ior (y, ishft (y, -1))
y = ior (y, ishft (y, -2))
y = ior (y, ishft (y, -4))
y = ior (y, ishft (y, -8))
y = ior (y, ishft (y, -16))
y = ior (y, ishft (y, -32))
y = y + 1
end function next_power_of_two
elemental function isspace (ch) result (bool)
character(1, kind = ck), intent(in) :: ch
logical :: bool
bool = (ch == horizontal_tab_char) .or. &
& (ch == linefeed_char) .or. &
& (ch == vertical_tab_char) .or. &
& (ch == formfeed_char) .or. &
& (ch == carriage_return_char) .or. &
& (ch == space_char)
end function isspace
function quoted_string (str) result (qstr)
character(*, kind = ck), intent(in) :: str
character(:, kind = ck), allocatable :: qstr
integer(kind = nk) :: n, i, j
! Compute n = the size of qstr.
n = 2_nk
do i = 1_nk, len (str, kind = nk)
select case (str(i:i))
case (newline_char, backslash_char)
n = n + 2
case default
n = n + 1
end select
end do
allocate (character(n, kind = ck) :: qstr)
! Quote the string.
qstr(1:1) = ck_'"'
j = 2_nk
do i = 1_nk, len (str, kind = nk)
select case (str(i:i))
case (newline_char)
qstr(j:j) = backslash_char
qstr((j + 1):(j + 1)) = ck_'n'
j = j + 2
case (backslash_char)
qstr(j:j) = backslash_char
qstr((j + 1):(j + 1)) = backslash_char
j = j + 2
case default
qstr(j:j) = str(i:i)
j = j + 1
end select
end do
if (j /= n) error stop ! Check code correctness.
qstr(n:n) = ck_'"'
end function quoted_string
subroutine int32_to_vm_bytes (n, bytes, i)
integer(kind = rik), intent(in) :: n
character(1), intent(inout) :: bytes(0:*)
integer(kind = rik), intent(in) :: i
!
! The virtual machine is presumed to be little-endian. Because I
! slightly prefer little-endian.
!
bytes(i) = achar (ibits (n, 0, 8))
bytes(i + 1) = achar (ibits (n, 8, 8))
bytes(i + 2) = achar (ibits (n, 16, 8))
bytes(i + 3) = achar (ibits (n, 24, 8))
end subroutine int32_to_vm_bytes
subroutine uint32_to_vm_bytes (n, bytes, i)
integer(kind = rik), intent(in) :: n
character(1), intent(inout) :: bytes(0:*)
integer(kind = rik), intent(in) :: i
call int32_to_vm_bytes (n, bytes, i)
end subroutine uint32_to_vm_bytes
subroutine int32_from_vm_bytes (n, bytes, i)
integer(kind = rik), intent(out) :: n
character(1), intent(in) :: bytes(0:*)
integer(kind = rik), intent(in) :: i
!
! The virtual machine is presumed to be little-endian. Because I
! slightly prefer little-endian.
!
call uint32_from_vm_bytes (n, bytes, i)
if (ibits (n, 31, 1) == 1) then
! Extend the sign bit.
n = ior (n, not ((2_rik ** 32) - 1))
end if
end subroutine int32_from_vm_bytes
subroutine uint32_from_vm_bytes (n, bytes, i)
integer(kind = rik), intent(out) :: n
character(1), intent(in) :: bytes(0:*)
integer(kind = rik), intent(in) :: i
!
! The virtual machine is presumed to be little-endian. Because I
! slightly prefer little-endian.
!
integer(kind = rik) :: n0, n1, n2, n3
n0 = iachar (bytes(i), kind = rik)
n1 = ishft (iachar (bytes(i + 1), kind = rik), 8)
n2 = ishft (iachar (bytes(i + 2), kind = rik), 16)
n3 = ishft (iachar (bytes(i + 3), kind = rik), 24)
n = ior (n0, ior (n1, ior (n2, n3)))
end subroutine uint32_from_vm_bytes
elemental function bool2int (bool) result (int)
logical, intent(in) :: bool
integer(kind = rik) :: int
if (bool) then
int = 1_rik
else
int = 0_rik
end if
end function bool2int
end module helpers
module string_buffers
use, intrinsic :: iso_fortran_env, only: error_unit
use, intrinsic :: iso_fortran_env, only: int64
use, non_intrinsic :: compiler_type_kinds, only: nk, ck, ick
use, non_intrinsic :: helpers
implicit none
private
public :: strbuf_t
public :: skip_whitespace
public :: skip_non_whitespace
public :: skip_whitespace_backwards
public :: at_end_of_line
type :: strbuf_t
integer(kind = nk), private :: len = 0
!
! ‘chars’ is made public for efficient access to the individual
! characters.
!
character(1, kind = ck), allocatable, public :: chars(:)
contains
procedure, pass, private :: ensure_storage => strbuf_t_ensure_storage
procedure, pass :: to_unicode_full_string => strbuf_t_to_unicode_full_string
procedure, pass :: to_unicode_substring => strbuf_t_to_unicode_substring
procedure, pass :: length => strbuf_t_length
procedure, pass :: set => strbuf_t_set
procedure, pass :: append => strbuf_t_append
generic :: to_unicode => to_unicode_full_string
generic :: to_unicode => to_unicode_substring
generic :: assignment(=) => set
end type strbuf_t
contains
function strbuf_t_to_unicode_full_string (strbuf) result (s)
class(strbuf_t), intent(in) :: strbuf
character(:, kind = ck), allocatable :: s
!
! This does not actually ensure that the string is valid Unicode;
! any 31-bit ‘character’ is supported.
!
integer(kind = nk) :: i
allocate (character(len = strbuf%len, kind = ck) :: s)
do i = 1, strbuf%len
s(i:i) = strbuf%chars(i)
end do
end function strbuf_t_to_unicode_full_string
function strbuf_t_to_unicode_substring (strbuf, i, j) result (s)
!
! ‘Extreme’ values of i and j are allowed, as shortcuts for ‘from
! the beginning’, ‘up to the end’, or ‘empty substring’.
!
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i, j
character(:, kind = ck), allocatable :: s
!
! This does not actually ensure that the string is valid Unicode;
! any 31-bit ‘character’ is supported.
!
integer(kind = nk) :: i1, j1
integer(kind = nk) :: n
integer(kind = nk) :: k
i1 = max (1_nk, i)
j1 = min (strbuf%len, j)
n = max (0_nk, (j1 - i1) + 1_nk)
allocate (character(n, kind = ck) :: s)
do k = 1, n
s(k:k) = strbuf%chars(i1 + (k - 1_nk))
end do
end function strbuf_t_to_unicode_substring
elemental function strbuf_t_length (strbuf) result (n)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk) :: n
n = strbuf%len
end function strbuf_t_length
subroutine strbuf_t_ensure_storage (strbuf, length_needed)
class(strbuf_t), intent(inout) :: strbuf
integer(kind = nk), intent(in) :: length_needed
integer(kind = nk) :: len_needed
integer(kind = nk) :: new_size
type(strbuf_t) :: new_strbuf
len_needed = max (length_needed, 1_nk)
if (.not. allocated (strbuf%chars)) then
! Initialize a new strbuf%chars array.
new_size = new_storage_size (len_needed)
allocate (strbuf%chars(1:new_size))
else if (ubound (strbuf%chars, 1) < len_needed) then
! Allocate a new strbuf%chars array, larger than the current
! one, but containing the same characters.
new_size = new_storage_size (len_needed)
allocate (new_strbuf%chars(1:new_size))
new_strbuf%chars(1:strbuf%len) = strbuf%chars(1:strbuf%len)
call move_alloc (new_strbuf%chars, strbuf%chars)
end if
end subroutine strbuf_t_ensure_storage
subroutine strbuf_t_set (dst, src)
class(strbuf_t), intent(inout) :: dst
class(*), intent(in) :: src
integer(kind = nk) :: n
integer(kind = nk) :: i
select type (src)
type is (character(*, kind = ck))
n = len (src, kind = nk)
call dst%ensure_storage(n)
do i = 1, n
dst%chars(i) = src(i:i)
end do
dst%len = n
type is (character(*))
n = len (src, kind = nk)
call dst%ensure_storage(n)
do i = 1, n
dst%chars(i) = src(i:i)
end do
dst%len = n
class is (strbuf_t)
n = src%len
call dst%ensure_storage(n)
dst%chars(1:n) = src%chars(1:n)
dst%len = n
class default
error stop
end select
end subroutine strbuf_t_set
subroutine strbuf_t_append (dst, src)
class(strbuf_t), intent(inout) :: dst
class(*), intent(in) :: src
integer(kind = nk) :: n_dst, n_src, n
integer(kind = nk) :: i
select type (src)
type is (character(*, kind = ck))
n_dst = dst%len
n_src = len (src, kind = nk)
n = n_dst + n_src
call dst%ensure_storage(n)
do i = 1, n_src
dst%chars(n_dst + i) = src(i:i)
end do
dst%len = n
type is (character(*))
n_dst = dst%len
n_src = len (src, kind = nk)
n = n_dst + n_src
call dst%ensure_storage(n)
do i = 1, n_src
dst%chars(n_dst + i) = src(i:i)
end do
dst%len = n
class is (strbuf_t)
n_dst = dst%len
n_src = src%len
n = n_dst + n_src
call dst%ensure_storage(n)
dst%chars((n_dst + 1):n) = src%chars(1:n_src)
dst%len = n
class default
error stop
end select
end subroutine strbuf_t_append
function skip_whitespace (strbuf, i) result (j)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i
integer(kind = nk) :: j
logical :: done
j = i
done = .false.
do while (.not. done)
if (at_end_of_line (strbuf, j)) then
done = .true.
else if (.not. isspace (strbuf%chars(j))) then
done = .true.
else
j = j + 1
end if
end do
end function skip_whitespace
function skip_non_whitespace (strbuf, i) result (j)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i
integer(kind = nk) :: j
logical :: done
j = i
done = .false.
do while (.not. done)
if (at_end_of_line (strbuf, j)) then
done = .true.
else if (isspace (strbuf%chars(j))) then
done = .true.
else
j = j + 1
end if
end do
end function skip_non_whitespace
function skip_whitespace_backwards (strbuf, i) result (j)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i
integer(kind = nk) :: j
logical :: done
j = i
done = .false.
do while (.not. done)
if (j == -1) then
done = .true.
else if (.not. isspace (strbuf%chars(j))) then
done = .true.
else
j = j - 1
end if
end do
end function skip_whitespace_backwards
function at_end_of_line (strbuf, i) result (bool)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i
logical :: bool
bool = (strbuf%length() < i)
end function at_end_of_line
end module string_buffers
module reading_one_line_from_a_stream
use, intrinsic :: iso_fortran_env, only: input_unit
use, intrinsic :: iso_fortran_env, only: error_unit
use, non_intrinsic :: compiler_type_kinds, only: nk, ck, ick
use, non_intrinsic :: string_buffers
implicit none
private
! get_line_from_stream: read an entire input line from a stream into
! a strbuf_t.
public :: get_line_from_stream
character(1, kind = ck), parameter :: linefeed_char = char (10, kind = ck)
! The following is correct for Unix and its relatives.
character(1, kind = ck), parameter :: newline_char = linefeed_char
contains
subroutine get_line_from_stream (unit_no, eof, no_newline, strbuf)
integer, intent(in) :: unit_no
logical, intent(out) :: eof ! End of file?
logical, intent(out) :: no_newline ! There is a line but it has no
! newline? (Thus eof also must
! be .true.)
class(strbuf_t), intent(inout) :: strbuf
character(1, kind = ck) :: ch
strbuf = ''
call get_ch (unit_no, eof, ch)
do while (.not. eof .and. ch /= newline_char)
call strbuf%append (ch)
call get_ch (unit_no, eof, ch)
end do
no_newline = eof .and. (strbuf%length() /= 0)
end subroutine get_line_from_stream
subroutine get_ch (unit_no, eof, ch)
!
! Read a single code point from the stream.
!
! Currently this procedure simply inputs ‘ASCII’ bytes rather than
! Unicode code points.
!
integer, intent(in) :: unit_no
logical, intent(out) :: eof
character(1, kind = ck), intent(out) :: ch
integer :: stat
character(1) :: c = '*'
eof = .false.
if (unit_no == input_unit) then
call get_input_unit_char (c, stat)
else
read (unit = unit_no, iostat = stat) c
end if
if (stat < 0) then
ch = ck_'*'
eof = .true.
else if (0 < stat) then
write (error_unit, '("Input error with status code ", I0)') stat
stop 1
else
ch = char (ichar (c, kind = ick), kind = ck)
end if
end subroutine get_ch
!!!
!!! If you tell gfortran you want -std=f2008 or -std=f2018, you likely
!!! will need to add also -fall-intrinsics or -U__GFORTRAN__
!!!
!!! The first way, you get the FGETC intrinsic. The latter way, you
!!! get the C interface code that uses getchar(3).
!!!
#ifdef __GFORTRAN__
subroutine get_input_unit_char (c, stat)
!
! The following works if you are using gfortran.
!
! (FGETC is considered a feature for backwards compatibility with
! g77. However, I know of no way to reconfigure input_unit as a
! Fortran 2003 stream, for use with ordinary ‘read’.)
!
character, intent(inout) :: c
integer, intent(out) :: stat
call fgetc (input_unit, c, stat)
end subroutine get_input_unit_char
#else
subroutine get_input_unit_char (c, stat)
!
! An alternative implementation of get_input_unit_char. This
! actually reads input from the C standard input, which might not
! be the same as input_unit.
!
use, intrinsic :: iso_c_binding, only: c_int
character, intent(inout) :: c
integer, intent(out) :: stat
interface
!
! Use getchar(3) to read characters from standard input. This
! assumes there is actually such a function available, and that
! getchar(3) does not exist solely as a macro. (One could write
! one’s own getchar() if necessary, of course.)
!
function getchar () result (c) bind (c, name = 'getchar')
use, intrinsic :: iso_c_binding, only: c_int
integer(kind = c_int) :: c
end function getchar
end interface
integer(kind = c_int) :: i_char
i_char = getchar ()
!
! The C standard requires that EOF have a negative value. If the
! value returned by getchar(3) is not EOF, then it will be
! representable as an unsigned char. Therefore, to check for end
! of file, one need only test whether i_char is negative.
!
if (i_char < 0) then
stat = -1
else
stat = 0
c = char (i_char)
end if
end subroutine get_input_unit_char
#endif
end module reading_one_line_from_a_stream
module vm_reader
use, intrinsic :: iso_fortran_env, only: error_unit
use, non_intrinsic :: compiler_type_kinds
use, non_intrinsic :: helpers
use, non_intrinsic :: string_buffers
use, non_intrinsic :: reading_one_line_from_a_stream
implicit none
private
public :: vm_code_t
public :: vm_t
public :: read_vm
!
! Arbitrarily chosen opcodes.
!
! I think there should be a no-operation ‘nop’ opcode, to reserve
! space for later hand-patching. :)
!
integer, parameter, public :: opcode_nop = 0
integer, parameter, public :: opcode_halt = 1
integer, parameter, public :: opcode_add = 2
integer, parameter, public :: opcode_sub = 3
integer, parameter, public :: opcode_mul = 4
integer, parameter, public :: opcode_div = 5
integer, parameter, public :: opcode_mod = 6
integer, parameter, public :: opcode_lt = 7
integer, parameter, public :: opcode_gt = 8
integer, parameter, public :: opcode_le = 9
integer, parameter, public :: opcode_ge = 10
integer, parameter, public :: opcode_eq = 11
integer, parameter, public :: opcode_ne = 12
integer, parameter, public :: opcode_and = 13
integer, parameter, public :: opcode_or = 14
integer, parameter, public :: opcode_neg = 15
integer, parameter, public :: opcode_not = 16
integer, parameter, public :: opcode_prtc = 17
integer, parameter, public :: opcode_prti = 18
integer, parameter, public :: opcode_prts = 19
integer, parameter, public :: opcode_fetch = 20
integer, parameter, public :: opcode_store = 21
integer, parameter, public :: opcode_push = 22
integer, parameter, public :: opcode_jmp = 23
integer, parameter, public :: opcode_jz = 24
character(8, kind = ck), parameter, public :: opcode_names(0:24) = &
& (/ "nop ", &
& "halt ", &
& "add ", &
& "sub ", &
& "mul ", &
& "div ", &
& "mod ", &
& "lt ", &
& "gt ", &
& "le ", &
& "ge ", &
& "eq ", &
& "ne ", &
& "and ", &
& "or ", &
& "neg ", &
& "not ", &
& "prtc ", &
& "prti ", &
& "prts ", &
& "fetch ", &
& "store ", &
& "push ", &
& "jmp ", &
& "jz " /)
type :: vm_code_t
integer(kind = rik), private :: len = 0_rik
character(1), allocatable :: bytes(:)
contains
procedure, pass, private :: ensure_storage => vm_code_t_ensure_storage
procedure, pass :: length => vm_code_t_length
end type vm_code_t
type :: vm_t
integer(kind = rik), allocatable :: string_boundaries(:)
character(:, kind = ck), allocatable :: strings
character(1), allocatable :: data(:)
character(1), allocatable :: stack(:)
type(vm_code_t) :: code
integer(kind = rik) :: sp = 0_rik
integer(kind = rik) :: pc = 0_rik
end type vm_t
contains
subroutine vm_code_t_ensure_storage (code, length_needed)
class(vm_code_t), intent(inout) :: code
integer(kind = nk), intent(in) :: length_needed
integer(kind = nk) :: len_needed
integer(kind = nk) :: new_size
type(vm_code_t) :: new_code
len_needed = max (length_needed, 1_nk)
if (.not. allocated (code%bytes)) then
! Initialize a new code%bytes array.
new_size = new_storage_size (len_needed)
allocate (code%bytes(0:(new_size - 1)))
else if (ubound (code%bytes, 1) < len_needed - 1) then
! Allocate a new code%bytes array, larger than the current one,
! but containing the same bytes.
new_size = new_storage_size (len_needed)
allocate (new_code%bytes(0:(new_size - 1)))
new_code%bytes(0:(code%len - 1)) = code%bytes(0:(code%len - 1))
call move_alloc (new_code%bytes, code%bytes)
end if
end subroutine vm_code_t_ensure_storage
elemental function vm_code_t_length (code) result (len)
class(vm_code_t), intent(in) :: code
integer(kind = rik) :: len
len = code%len
end function vm_code_t_length
subroutine read_vm (inp, strbuf, vm)
integer, intent(in) :: inp
type(strbuf_t), intent(inout) :: strbuf
type(vm_t), intent(out) :: vm
integer(kind = rik) :: data_size
integer(kind = rik) :: number_of_strings
! Read the header.
call read_datasize_and_number_of_strings (inp, strbuf, data_size, number_of_strings)
! Allocate storage for data_size 32-bit numbers. Initialize them
! to zero, for no better reason than that C initializes global
! variables to zero.
allocate (vm%data(0_rik:(4_rik * (data_size - 1))), source = achar (0))
! Allocate storage for indices/bounds of the strings to be loaded
! into the string storage space.
allocate (vm%string_boundaries(0_rik:number_of_strings))
! Fill the strings storage and the string boundaries array.
call read_strings (inp, strbuf, number_of_strings, vm)
! Read the program instructions.
call read_code (inp, strbuf, vm)
! Allocate a stack. Let us say that the stack size must be a
! multiple of 4, and is fixed at 65536 = 4**8 bytes. Pushing a
! 32-bit integer increases the stack pointer by 4, popping
! decreases it by 4.
allocate (vm%stack(0_rik:(4_rik ** 8)))
end subroutine read_vm
subroutine read_datasize_and_number_of_strings (inp, strbuf, data_size, number_of_strings)
integer, intent(in) :: inp
type(strbuf_t), intent(inout) :: strbuf
integer(kind = rik), intent(out) :: data_size
integer(kind = rik), intent(out) :: number_of_strings
logical :: eof
logical :: no_newline
integer(kind = nk) :: i, j
character(:, kind = ck), allocatable :: data_size_str
character(:, kind = ck), allocatable :: number_of_strings_str
integer :: stat
call get_line_from_stream (inp, eof, no_newline, strbuf)
if (eof) call bad_vm_assembly
i = skip_whitespace (strbuf, 1_nk)
i = skip_datasize_keyword (strbuf, i)
i = skip_whitespace (strbuf, i)
i = skip_specific_character (strbuf, i, ck_':')
i = skip_whitespace (strbuf, i)
j = skip_non_whitespace (strbuf, i)
if (j == i) call bad_vm_assembly
allocate (data_size_str, source = strbuf%to_unicode (i, j - 1))
i = skip_whitespace(strbuf, j)
i = skip_strings_keyword (strbuf, i)
i = skip_whitespace (strbuf, i)
i = skip_specific_character (strbuf, i, ck_':')
i = skip_whitespace (strbuf, i)
j = skip_non_whitespace (strbuf, i)
if (j == i) call bad_vm_assembly
allocate (number_of_strings_str, source = strbuf%to_unicode (i, j - 1))
read (data_size_str, *, iostat = stat) data_size
if (stat /= 0) call bad_vm_assembly
read (number_of_strings_str, *, iostat = stat) number_of_strings
if (stat /= 0) call bad_vm_assembly
end subroutine read_datasize_and_number_of_strings
subroutine read_strings (inp, strbuf, number_of_strings, vm)
integer, intent(in) :: inp
type(strbuf_t), intent(inout) :: strbuf
integer(kind = rik), intent(in) :: number_of_strings
type(vm_t), intent(inout) :: vm
type(strbuf_t) :: strings_temporary
integer(kind = rik) :: i
vm%string_boundaries(0) = 0_rik
do i = 0_rik, number_of_strings - 1
call read_one_string (inp, strbuf, strings_temporary)
vm%string_boundaries(i + 1) = strings_temporary%length()
end do
allocate (vm%strings, source = strings_temporary%to_unicode())
end subroutine read_strings
subroutine read_one_string (inp, strbuf, strings_temporary)
integer, intent(in) :: inp
type(strbuf_t), intent(inout) :: strbuf
type(strbuf_t), intent(inout) :: strings_temporary
logical :: eof
logical :: no_newline
integer(kind = nk) :: i
logical :: done
call get_line_from_stream (inp, eof, no_newline, strbuf)
if (eof) call bad_vm_assembly
i = skip_whitespace (strbuf, 1_nk)
i = skip_specific_character (strbuf, i, ck_'"')
done = .false.
do while (.not. done)
if (i == strbuf%length() + 1) call bad_vm_assembly
if (strbuf%chars(i) == ck_'"') then
done = .true.
else if (strbuf%chars(i) == backslash_char) then
if (i == strbuf%length()) call bad_vm_assembly
select case (strbuf%chars(i + 1))
case (ck_'n')
call strings_temporary%append(newline_char)
case (backslash_char)
call strings_temporary%append(backslash_char)
case default
call bad_vm_assembly
end select
i = i + 2
else
call strings_temporary%append(strbuf%chars(i))
i = i + 1
end if
end do
end subroutine read_one_string
subroutine read_code (inp, strbuf, vm)
integer, intent(in) :: inp
type(strbuf_t), intent(inout) :: strbuf
type(vm_t), intent(inout) :: vm
logical :: eof
logical :: no_newline
call get_line_from_stream (inp, eof, no_newline, strbuf)
do while (.not. eof)
call parse_instruction (strbuf, vm%code)
call get_line_from_stream (inp, eof, no_newline, strbuf)
end do
end subroutine read_code
subroutine parse_instruction (strbuf, code)
type(strbuf_t), intent(in) :: strbuf
type(vm_code_t), intent(inout) :: code
integer(kind = nk) :: i, j
integer :: stat
integer :: opcode
integer(kind = rik) :: i_vm
integer(kind = rik) :: arg
character(8, kind = ck) :: opcode_name_str
character(:, kind = ck), allocatable :: i_vm_str
character(:, kind = ck), allocatable :: arg_str
i = skip_whitespace (strbuf, 1_nk)
j = skip_non_whitespace (strbuf, i)
if (j == i) call bad_vm_assembly
allocate (i_vm_str, source = strbuf%to_unicode(i, j - 1))
read (i_vm_str, *, iostat = stat) i_vm
if (stat /= 0) call bad_vm_assembly
i = skip_whitespace (strbuf, j)
j = skip_non_whitespace (strbuf, i)
opcode_name_str = ck_' '
opcode_name_str(1:(j - i)) = strbuf%to_unicode(i, j - 1)
opcode = findloc (opcode_names, opcode_name_str, 1) - 1
if (opcode == -1) call bad_vm_assembly
select case (opcode)
case (opcode_push)
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode)
i = skip_whitespace (strbuf, j)
j = skip_non_whitespace (strbuf, i)
if (j == i) call bad_vm_assembly
allocate (arg_str, source = strbuf%to_unicode(i, j - 1))
read (arg_str, *, iostat = stat) arg
if (stat /= 0) call bad_vm_assembly
call int32_to_vm_bytes (arg, code%bytes, i_vm + 1)
code%len = max (code%len, i_vm + 5)
case (opcode_fetch, opcode_store)
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode)
i = skip_whitespace (strbuf, j)
i = skip_specific_character (strbuf, i, ck_'[')
i = skip_whitespace (strbuf, i)
j = skip_non_whitespace (strbuf, i)
if (j == i) call bad_vm_assembly
if (strbuf%chars(j - 1) == ck_']') j = j - 1
allocate (arg_str, source = strbuf%to_unicode(i, j - 1))
read (arg_str, *, iostat = stat) arg
if (stat /= 0) call bad_vm_assembly
call uint32_to_vm_bytes (arg, code%bytes, i_vm + 1)
code%len = max (code%len, i_vm + 5)
case (opcode_jmp, opcode_jz)
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode)
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode)
i = skip_whitespace (strbuf, j)
i = skip_specific_character (strbuf, i, ck_'(')
i = skip_whitespace (strbuf, i)
j = skip_non_whitespace (strbuf, i)
if (j == i) call bad_vm_assembly
if (strbuf%chars(j - 1) == ck_')') j = j - 1
allocate (arg_str, source = strbuf%to_unicode(i, j - 1))
read (arg_str, *, iostat = stat) arg
if (stat /= 0) call bad_vm_assembly
call int32_to_vm_bytes (arg, code%bytes, i_vm + 1)
code%len = max (code%len, i_vm + 5)
case default
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode)
code%len = max (code%len, i_vm + 1)
end select
end subroutine parse_instruction
function skip_datasize_keyword (strbuf, i) result (j)
type(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i
integer(kind = nk) :: j
j = skip_specific_character (strbuf, i, ck_'D')
j = skip_specific_character (strbuf, j, ck_'a')
j = skip_specific_character (strbuf, j, ck_'t')
j = skip_specific_character (strbuf, j, ck_'a')
j = skip_specific_character (strbuf, j, ck_'s')
j = skip_specific_character (strbuf, j, ck_'i')
j = skip_specific_character (strbuf, j, ck_'z')
j = skip_specific_character (strbuf, j, ck_'e')
end function skip_datasize_keyword
function skip_strings_keyword (strbuf, i) result (j)
type(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i
integer(kind = nk) :: j
j = skip_specific_character (strbuf, i, ck_'S')
j = skip_specific_character (strbuf, j, ck_'t')
j = skip_specific_character (strbuf, j, ck_'r')
j = skip_specific_character (strbuf, j, ck_'i')
j = skip_specific_character (strbuf, j, ck_'n')
j = skip_specific_character (strbuf, j, ck_'g')
j = skip_specific_character (strbuf, j, ck_'s')
end function skip_strings_keyword
function skip_specific_character (strbuf, i, ch) result (j)
type(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i
character(1, kind = ck), intent(in) :: ch
integer(kind = nk) :: j
if (strbuf%length() < i) call bad_vm_assembly
if (strbuf%chars(i) /= ch) call bad_vm_assembly
j = i + 1
end function skip_specific_character
subroutine bad_vm_assembly
write (error_unit, '("The input is not a correct virtual machine program.")')
stop 1
end subroutine bad_vm_assembly
end module vm_reader
module vm_runner
use, intrinsic :: iso_fortran_env, only: error_unit
use, non_intrinsic :: compiler_type_kinds
use, non_intrinsic :: helpers
use, non_intrinsic :: vm_reader
implicit none
private
public :: run_vm
contains
subroutine run_vm (outp, vm)
integer, intent(in) :: outp
type(vm_t), intent(inout) :: vm
logical :: done
integer :: opcode
vm%sp = 0
vm%pc = 0
done = .false.
do while (.not. done)
if (vm%pc < 0 .or. vm%code%length() <= vm%pc) call pc_error
opcode = iachar (vm%code%bytes(vm%pc))
vm%pc = vm%pc + 1
select case (opcode)
case (opcode_nop)
continue
case (opcode_halt)
done = .true.
case (opcode_add)
call alu_add (vm)
case (opcode_sub)
call alu_sub (vm)
case (opcode_mul)
call alu_mul (vm)
case (opcode_div)
call alu_div (vm)
case (opcode_mod)
call alu_mod (vm)
case (opcode_lt)
call alu_lt (vm)
case (opcode_gt)
call alu_gt (vm)
case (opcode_le)
call alu_le (vm)
case (opcode_ge)
call alu_ge (vm)
case (opcode_eq)
call alu_eq (vm)
case (opcode_ne)
call alu_ne (vm)
case (opcode_and)
call alu_and (vm)
case (opcode_or)
call alu_or (vm)
case (opcode_neg)
call alu_neg (vm)
case (opcode_not)
call alu_not (vm)
case (opcode_prtc)
call prtc (outp, vm)
case (opcode_prti)
call prti (outp, vm)
case (opcode_prts)
call prts (outp, vm)
case (opcode_fetch)
call fetch_int32 (vm)
case (opcode_store)
call store_int32 (vm)
case (opcode_push)
call push_int32 (vm)
case (opcode_jmp)
call jmp (vm)
case (opcode_jz)
call jz (vm)
case default
write (error_unit, '("VM opcode unrecognized: ", I0)') opcode
stop 1
end select
end do
end subroutine run_vm
subroutine push_int32 (vm)
type(vm_t), intent(inout) :: vm
!
! Push the 32-bit integer data at pc to the stack, then increment
! pc by 4.
!
if (ubound (vm%stack, 1) < vm%sp) then
write (error_unit, '("VM stack overflow")')
stop 1
end if
if (vm%code%length() <= vm%pc + 4) call pc_error
vm%stack(vm%sp:(vm%sp + 3)) = vm%code%bytes(vm%pc:(vm%pc + 3))
vm%sp = vm%sp + 4
vm%pc = vm%pc + 4
end subroutine push_int32
subroutine fetch_int32 (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: i
integer(kind = rik) :: x
if (vm%code%length() <= vm%pc + 4) call pc_error
call uint32_from_vm_bytes (i, vm%code%bytes, vm%pc)
vm%pc = vm%pc + 4
if (ubound (vm%data, 1) < i * 4) then
write (error_unit, '("VM data access error")')
stop 1
end if
call int32_from_vm_bytes (x, vm%data, i * 4)
if (ubound (vm%stack, 1) < vm%sp) then
write (error_unit, '("VM stack overflow")')
stop 1
end if
call int32_to_vm_bytes (x, vm%stack, vm%sp)
vm%sp = vm%sp + 4
end subroutine fetch_int32
subroutine store_int32 (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: i
integer(kind = rik) :: x
if (vm%code%length() <= vm%pc + 4) call pc_error
call uint32_from_vm_bytes (i, vm%code%bytes, vm%pc)
vm%pc = vm%pc + 4
call ensure_there_is_enough_stack_data (vm, 4_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 4)
vm%sp = vm%sp - 4
if (ubound (vm%data, 1) < i * 4) then
write (error_unit, '("VM data access error")')
stop 1
end if
call int32_to_vm_bytes (x, vm%data, i * 4)
end subroutine store_int32
subroutine jmp (vm)
type(vm_t), intent(inout) :: vm
!
! Add the 32-bit data at pc to pc itself.
!
integer(kind = rik) :: x
if (vm%code%length() <= vm%pc + 4) call pc_error
call int32_from_vm_bytes (x, vm%code%bytes, vm%pc)
vm%pc = vm%pc + x
end subroutine jmp
subroutine jz (vm)
type(vm_t), intent(inout) :: vm
!
! Conditionally add the 32-bit data at pc to pc itself.
!
integer(kind = rik) :: x
call ensure_there_is_enough_stack_data (vm, 4_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 4)
vm%sp = vm%sp - 4
if (x == 0) then
if (vm%code%length() <= vm%pc + 4) call pc_error
call int32_from_vm_bytes (x, vm%code%bytes, vm%pc)
vm%pc = vm%pc + x
else
vm%pc = vm%pc + 4
end if
end subroutine jz
subroutine alu_neg (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x
call ensure_there_is_enough_stack_data (vm, 4_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 4)
x = -x
call int32_to_vm_bytes (x, vm%stack, vm%sp - 4)
end subroutine alu_neg
subroutine alu_not (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x
call ensure_there_is_enough_stack_data (vm, 4_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 4)
x = bool2int (x == 0_rik)
call int32_to_vm_bytes (x, vm%stack, vm%sp - 4)
end subroutine alu_not
subroutine alu_add (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = x + y
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_add
subroutine alu_sub (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = x - y
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_sub
subroutine alu_mul (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = x * y
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_mul
subroutine alu_div (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = x / y ! This works like ‘/’ in C.
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_div
subroutine alu_mod (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = mod (x, y) ! This works like ‘%’ in C.
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_mod
subroutine alu_lt (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = bool2int (x < y)
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_lt
subroutine alu_gt (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = bool2int (x > y)
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_gt
subroutine alu_le (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = bool2int (x <= y)
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_le
subroutine alu_ge (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = bool2int (x >= y)
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_ge
subroutine alu_eq (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = bool2int (x == y)
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_eq
subroutine alu_ne (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = bool2int (x /= y)
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_ne
subroutine alu_and (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = bool2int (x /= 0 .and. y /= 0)
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_and
subroutine alu_or (vm)
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x, y, z
call ensure_there_is_enough_stack_data (vm, 8_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 8)
call int32_from_vm_bytes (y, vm%stack, vm%sp - 4)
z = bool2int (x /= 0 .or. y /= 0)
call int32_to_vm_bytes (z, vm%stack, vm%sp - 8)
vm%sp = vm%sp - 4
end subroutine alu_or
subroutine ensure_there_is_enough_stack_data (vm, n)
type(vm_t), intent(in) :: vm
integer(kind = rik), intent(in) :: n
if (vm%sp < n) then
write (error_unit, '("VM stack underflow")')
stop 1
end if
end subroutine ensure_there_is_enough_stack_data
subroutine prtc (outp, vm)
integer, intent(in) :: outp
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x
call ensure_there_is_enough_stack_data (vm, 4_rik)
call uint32_from_vm_bytes (x, vm%stack, vm%sp - 4)
write (outp, '(A1)', advance = 'no') char (x, kind = ck)
vm%sp = vm%sp - 4
end subroutine prtc
subroutine prti (outp, vm)
integer, intent(in) :: outp
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x
call ensure_there_is_enough_stack_data (vm, 4_rik)
call int32_from_vm_bytes (x, vm%stack, vm%sp - 4)
write (outp, '(I0)', advance = 'no') x
vm%sp = vm%sp - 4
end subroutine prti
subroutine prts (outp, vm)
integer, intent(in) :: outp
type(vm_t), intent(inout) :: vm
integer(kind = rik) :: x
integer(kind = rik) :: i, j
call ensure_there_is_enough_stack_data (vm, 4_rik)
call uint32_from_vm_bytes (x, vm%stack, vm%sp - 4)
if (ubound (vm%string_boundaries, 1) - 1 < x) then
write (error_unit, '("VM string boundary error")')
stop 1
end if
i = vm%string_boundaries(x)
j = vm%string_boundaries(x + 1)
write (outp, '(A)', advance = 'no') vm%strings((i + 1):j)
vm%sp = vm%sp - 4
end subroutine prts
subroutine pc_error
write (error_unit, '("VM program counter error")')
stop 1
end subroutine pc_error
end module vm_runner
program vm
use, intrinsic :: iso_fortran_env, only: input_unit
use, intrinsic :: iso_fortran_env, only: output_unit
use, intrinsic :: iso_fortran_env, only: error_unit
use, non_intrinsic :: compiler_type_kinds
use, non_intrinsic :: string_buffers
use, non_intrinsic :: vm_reader
use, non_intrinsic :: vm_runner
implicit none
integer, parameter :: inp_unit_no = 100
integer, parameter :: outp_unit_no = 101
integer :: arg_count
character(200) :: arg
integer :: inp
integer :: outp
arg_count = command_argument_count ()
if (3 <= arg_count) then
call print_usage
else
if (arg_count == 0) then
inp = input_unit
outp = output_unit
else if (arg_count == 1) then
call get_command_argument (1, arg)
inp = open_for_input (trim (arg))
outp = output_unit
else if (arg_count == 2) then
call get_command_argument (1, arg)
inp = open_for_input (trim (arg))
call get_command_argument (2, arg)
outp = open_for_output (trim (arg))
end if
block
type(strbuf_t) :: strbuf
type(vm_t) :: vm
call read_vm (inp, strbuf, vm)
call run_vm (outp, vm)
end block
end if
contains
function open_for_input (filename) result (unit_no)
character(*), intent(in) :: filename
integer :: unit_no
integer :: stat
open (unit = inp_unit_no, file = filename, status = 'old', &
& action = 'read', access = 'stream', form = 'unformatted', &
& iostat = stat)
if (stat /= 0) then
write (error_unit, '("Error: failed to open ", 1A, " for input")') filename
stop 1
end if
unit_no = inp_unit_no
end function open_for_input
function open_for_output (filename) result (unit_no)
character(*), intent(in) :: filename
integer :: unit_no
integer :: stat
open (unit = outp_unit_no, file = filename, action = 'write', iostat = stat)
if (stat /= 0) then
write (error_unit, '("Error: failed to open ", 1A, " for output")') filename
stop 1
end if
unit_no = outp_unit_no
end function open_for_output
subroutine print_usage
character(200) :: progname
call get_command_argument (0, progname)
write (output_unit, '("Usage: ", 1A, " [INPUT_FILE [OUTPUT_FILE]]")') &
& trim (progname)
end subroutine print_usage
end program vm |
http://rosettacode.org/wiki/Compiler/code_generator | Compiler/code generator | A code generator translates the output of the syntax analyzer and/or semantic analyzer
into lower level code, either assembly, object, or virtual.
Task[edit]
Take the output of the Syntax analyzer task - which is a flattened Abstract Syntax Tree (AST) - and convert it to virtual machine code, that can be run by the
Virtual machine interpreter. The output is in text format, and represents virtual assembly code.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
while.ast can be input into the code generator.
The following table shows the input to lex, lex output, the AST produced by the parser, and the generated virtual assembly code.
Run as: lex < while.t | parse | gen
Input to lex
Output from lex, input to parse
Output from parse
Output from gen, input to VM
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
Input format
As shown in the table, above, the output from the syntax analyzer is a flattened AST.
In the AST, Identifier, Integer, and String, are terminal nodes, e.g, they do not have child nodes.
Loading this data into an internal parse tree should be as simple as:
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";"
return None
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Output format - refer to the table above
The first line is the header: Size of data, and number of constant strings.
size of data is the number of 32-bit unique variables used. In this example, one variable, count
number of constant strings is just that - how many there are
After that, the constant strings
Finally, the assembly code
Registers
sp: the stack pointer - points to the next top of stack. The stack is a 32-bit integer array.
pc: the program counter - points to the current instruction to be performed. The code is an array of bytes.
Data
32-bit integers and strings
Instructions
Each instruction is one byte. The following instructions also have a 32-bit integer operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
prtc
Print the word at stack top as a character.
prti
Print the word at stack top as an integer.
prts
Stack top points to an index into the string pool. Print that entry.
halt
Unconditional stop.
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Virtual Machine Interpreter task
AST Interpreter task
| #COBOL | COBOL | >>SOURCE FORMAT IS FREE
identification division.
*> this code is dedicated to the public domain
*> (GnuCOBOL) 2.3-dev.0
program-id. generator.
environment division.
configuration section.
repository. function all intrinsic.
data division.
working-storage section.
01 program-name pic x(32) value spaces global.
01 input-name pic x(32) value spaces global.
01 input-status pic xx global.
01 ast-record global.
03 ast-type pic x(14).
03 ast-value pic x(48).
03 filler redefines ast-value.
05 asl-left pic 999.
05 asl-right pic 999.
01 error-record pic x(64) value spaces global.
01 loadstack global.
03 l pic 99 value 0.
03 l-lim pic 99 value 64.
03 load-entry occurs 64.
05 l-node pic x(14).
05 l-left pic 999.
05 l-right pic 999.
05 l-link pic 999.
01 abstract-syntax-tree global.
03 t pic 999 value 0.
03 t1 pic 999.
03 t-lim pic 999 value 998.
03 filler occurs 998.
05 p1 pic 999.
05 p2 pic 999.
05 p3 pic 999.
05 n1 pic 999.
05 leaf.
07 leaf-type pic x(14).
07 leaf-value pic x(48).
05 node redefines leaf.
07 node-type pic x(14).
07 node-left pic 999.
07 node-right pic 999.
01 opcodes global.
03 opFETCH pic x value x'00'.
03 opSTORE pic x value x'01'.
03 opPUSH pic x value x'02'.
03 opADD pic x value x'03'.
03 opSUB pic x value x'04'.
03 opMUL pic x value x'05'.
03 opDIV pic x value x'06'.
03 opMOD pic x value x'07'.
03 opLT pic x value x'08'.
03 opGT pic x value x'09'.
03 opLE pic x value x'0A'.
03 opGE pic x value x'0B'.
03 opEQ pic x value x'0C'.
03 opNE pic x value x'0D'.
03 opAND pic x value x'0E'.
03 opOR pic x value x'0F'.
03 opNEG pic x value x'10'.
03 opNOT pic x value x'11'.
03 opJMP pic x value x'13'.
03 opJZ pic x value x'14'.
03 opPRTC pic x value x'15'.
03 opPRTS pic x value x'16'.
03 opPRTI pic x value x'17'.
03 opHALT pic x value x'18'.
01 variables global.
03 v pic 99.
03 v-max pic 99 value 0.
03 v-lim pic 99 value 16.
03 variable-entry occurs 16 pic x(48).
01 strings global.
03 s pic 99.
03 s-max pic 99 value 0.
03 s-lim pic 99 value 16.
03 string-entry occurs 16 pic x(48).
01 generated-code global.
03 c pic 999 value 1.
03 c1 pic 999.
03 c-lim pic 999 value 512.
03 kode pic x(512).
procedure division chaining program-name.
start-generator.
call 'loadast'
if program-name <> spaces
call 'readinput' *> close input-file
end-if
>>d perform print-ast
call 'codegen' using t
call 'emitbyte' using opHALT
>>d call 'showhex' using kode c
call 'listcode'
stop run
.
print-ast.
call 'printast' using t
display 'ast:' upon syserr
display 't=' t
perform varying t1 from 1 by 1 until t1 > t
if leaf-type(t1) = 'Identifier' or 'Integer' or 'String'
display t1 space trim(leaf-type(t1)) space trim(leaf-value(t1)) upon syserr
else
display t1 space node-left(t1) space node-right(t1) space trim(node-type(t1))
upon syserr
end-if
end-perform
.
identification division.
program-id. codegen common recursive.
data division.
working-storage section.
01 r pic ---9.
linkage section.
01 n pic 999.
procedure division using n.
start-codegen.
if n = 0
exit program
end-if
>>d display 'at 'c ' node=' space n space node-type(n) upon syserr
evaluate node-type(n)
when 'Identifier'
call 'emitbyte' using opFetch
call 'variableoffset' using leaf-value(n)
call 'emitword' using v '0'
when 'Integer'
call 'emitbyte' using opPUSH
call 'emitword' using leaf-value(n) '0'
when 'String'
call 'emitbyte' using opPUSH
call 'stringoffset' using leaf-value(n)
call 'emitword' using s '0'
when 'Assign'
call 'codegen' using node-right(n)
call 'emitbyte' using opSTORE
move node-left(n) to n1(n)
call 'variableoffset' using leaf-value(n1(n))
call 'emitword' using v '0'
when 'If'
call 'codegen' using node-left(n) *> conditional expr
call 'emitbyte' using opJZ *> jump to false path or exit
move c to p1(n)
call 'emitword' using '0' '0'
move node-right(n) to n1(n) *> true path
call 'codegen' using node-left(n1(n))
if node-right(n1(n)) <> 0 *> there is a false path
call 'emitbyte' using opJMP *> jump past false path
move c to p2(n)
call 'emitword' using '0' '0'
compute r = c - p1(n) *> fill in jump to false path
call 'emitword' using r p1(n)
call 'codegen' using node-right(n1(n)) *> false path
compute r = c - p2(n) *> fill in jump to exit
call 'emitword' using r p2(n)
else
compute r = c - p1(n)
call 'emitword' using r p1(n) *> fill in jump to exit
end-if
when 'While'
move c to p3(n) *> save address of while start
call 'codegen' using node-left(n) *> conditional expr
call 'emitbyte' using opJZ *> jump to exit
move c to p2(n)
call 'emitword' using '0' '0'
call 'codegen' using node-right(n) *> while body
call 'emitbyte' using opJMP *> jump to while start
compute r = p3(n) - c
call 'emitword' using r '0'
compute r = c - p2(n) *> fill in jump to exit
call 'emitword' using r p2(n)
when 'Sequence'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
when 'Prtc'
call 'codegen' using node-left(n)
call 'emitbyte' using opPRTC
when 'Prti'
call 'codegen' using node-left(n)
call 'emitbyte' using opPRTI
when 'Prts'
call 'codegen' using node-left(n)
call 'emitbyte' using opPRTS
when 'Less'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opLT
when 'Greater'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opGT
when 'LessEqual'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opLE
when 'GreaterEqual'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opGE
when 'Equal'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opEQ
when 'NotEqual'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opNE
when 'And'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opAND
when 'Or'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opOR
when 'Subtract'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opSUB
when 'Add'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opADD
when 'Divide'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opDIV
when 'Multiply'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opMUL
when 'Mod'
call 'codegen' using node-left(n)
call 'codegen' using node-right(n)
call 'emitbyte' using opMOD
when 'Negate'
call 'codegen' using node-left(n)
call 'emitbyte' using opNEG
when 'Not'
call 'codegen' using node-left(n)
call 'emitbyte' using opNOT
when other
string 'in generator unknown node type: ' node-type(n) into error-record
call 'reporterror'
end-evaluate
.
end program codegen.
identification division.
program-id. variableoffset common.
data division.
linkage section.
01 variable-value pic x(48).
procedure division using variable-value.
start-variableoffset.
perform varying v from 1 by 1
until v > v-max
or variable-entry(v) = variable-value
continue
end-perform
if v > v-lim
string 'in generator variable offset v exceeds ' v-lim into error-record
call 'reporterror'
end-if
if v > v-max
move v to v-max
move variable-value to variable-entry(v)
end-if
.
end program variableoffset.
identification division.
program-id. stringoffset common.
data division.
linkage section.
01 string-value pic x(48).
procedure division using string-value.
start-stringoffset.
perform varying s from 1 by 1
until s > s-max
or string-entry(s) = string-value
continue
end-perform
if s > s-lim
string ' generator stringoffset s exceeds ' s-lim into error-record
call 'reporterror'
end-if
if s > s-max
move s to s-max
move string-value to string-entry(s)
end-if
subtract 1 from s *> convert index to offset
.
end program stringoffset.
identification division.
program-id. emitbyte common.
data division.
linkage section.
01 opcode pic x.
procedure division using opcode.
start-emitbyte.
if c >= c-lim
string 'in generator emitbyte c exceeds ' c-lim into error-record
call 'reporterror'
end-if
move opcode to kode(c:1)
add 1 to c
.
end program emitbyte.
identification division.
program-id. emitword common.
data division.
working-storage section.
01 word-x.
03 word usage binary-int.
01 loc pic 999.
linkage section.
01 word-value any length.
01 loc-value any length.
procedure division using word-value loc-value.
start-emitword.
if c + length(word) > c-lim
string 'in generator emitword exceeds ' c-lim into error-record
call 'reporterror'
end-if
move numval(word-value) to word
move numval(loc-value) to loc
if loc = 0
move word-x to kode(c:length(word))
add length(word) to c
else
move word-x to kode(loc:length(word))
end-if
.
end program emitword.
identification division.
program-id. listcode common.
data division.
working-storage section.
01 word-x.
03 word usage binary-int.
01 address-display pic ---9.
01 address-absolute pic zzz9.
01 data-display pic -(9)9.
01 v-display pic z9.
01 s-display pic z9.
01 c-display pic zzz9.
procedure division.
start-listcode.
move v-max to v-display
move s-max to s-display
display 'Datasize: ' trim(v-display) space 'Strings: ' trim(s-display)
perform varying s from 1 by 1
until s > s-max
display string-entry(s)
end-perform
move 1 to c1
perform until c1 >= c
compute c-display = c1 - 1
display c-display space with no advancing
evaluate kode(c1:1)
when opFETCH
add 1 to c1
move kode(c1:4) to word-x
compute address-display = word - 1
display 'fetch [' trim(address-display) ']'
add 3 to c1
when opSTORE
add 1 to c1
move kode(c1:4) to word-x
compute address-display = word - 1
display 'store [' trim(address-display) ']'
add 3 to c1
when opPUSH
add 1 to c1
move kode(c1:4) to word-x
move word to data-display
display 'push ' trim(data-display)
add 3 to c1
when opADD display 'add'
when opSUB display 'sub'
when opMUL display 'mul'
when opDIV display 'div'
when opMOD display 'mod'
when opLT display 'lt'
when opGT display 'gt'
when opLE display 'le'
when opGE display 'ge'
when opEQ display 'eq'
when opNE display 'ne'
when opAND display 'and'
when opOR display 'or'
when opNEG display 'neg'
when opNOT display 'not'
when opJMP
move kode(c1 + 1:length(word)) to word-x
move word to address-display
compute address-absolute = c1 + word
display 'jmp (' trim(address-display) ') ' trim(address-absolute)
add length(word) to c1
when opJZ
move kode(c1 + 1:length(word)) to word-x
move word to address-display
compute address-absolute = c1 + word
display 'jz (' trim(address-display) ') ' trim(address-absolute)
add length(word) to c1
when opPRTC display 'prtc'
when opPRTI display 'prti'
when opPRTS display 'prts'
when opHALT display 'halt'
when other
string 'in generator unknown opcode ' kode(c1:1) into error-record
call 'reporterror'
end-evaluate
add 1 to c1
end-perform
.
end program listcode.
identification division.
program-id. loadast common recursive.
procedure division.
start-loadast.
if l >= l-lim
string 'in generator loadast l exceeds ' l-lim into error-record
call 'reporterror'
end-if
add 1 to l
call 'readinput'
evaluate true
when ast-record = ';'
when input-status = '10'
move 0 to return-code
when ast-type = 'Identifier'
when ast-type = 'Integer'
when ast-type = 'String'
call 'makeleaf' using ast-type ast-value
move t to return-code
when ast-type = 'Sequence'
move ast-type to l-node(l)
call 'loadast'
move return-code to l-left(l)
call 'loadast'
move t to l-right(l)
call 'makenode' using l-node(l) l-left(l) l-right(l)
move t to return-code
when other
move ast-type to l-node(l)
call 'loadast'
move return-code to l-left(l)
call 'loadast'
move return-code to l-right(l)
call 'makenode' using l-node(l) l-left(l) l-right(l)
move t to return-code
end-evaluate
subtract 1 from l
.
end program loadast.
identification division.
program-id. printast common recursive.
data division.
linkage section.
01 n pic 999.
procedure division using n.
start-printast.
if n = 0
display ';' upon syserr
exit program
end-if
display leaf-type(n) upon syserr
evaluate leaf-type(n)
when 'Identifier'
when 'Integer'
when 'String'
display leaf-type(n) space trim(leaf-value(n)) upon syserr
when other
display node-type(n) upon syserr
call 'printast' using node-left(n)
call 'printast' using node-right(n)
end-evaluate
.
end program printast.
identification division.
program-id. makenode common.
data division.
linkage section.
01 parm-type any length.
01 parm-l-left pic 999.
01 parm-l-right pic 999.
procedure division using parm-type parm-l-left parm-l-right.
start-makenode.
if t >= t-lim
string 'in generator makenode t exceeds ' t-lim into error-record
call 'reporterror'
end-if
add 1 to t
move parm-type to node-type(t)
move parm-l-left to node-left(t)
move parm-l-right to node-right(t)
.
end program makenode.
identification division.
program-id. makeleaf common.
data division.
linkage section.
01 parm-type any length.
01 parm-value pic x(48).
procedure division using parm-type parm-value.
start-makeleaf.
add 1 to t
if t >= t-lim
string 'in generator makeleaf t exceeds ' t-lim into error-record
call 'reporterror'
end-if
move parm-type to leaf-type(t)
move parm-value to leaf-value(t)
.
end program makeleaf.
identification division.
program-id. readinput common.
environment division.
input-output section.
file-control.
select input-file assign using input-name
status is input-status
organization is line sequential.
data division.
file section.
fd input-file.
01 input-record pic x(64).
procedure division.
start-readinput.
if program-name = spaces
move '00' to input-status
accept ast-record on exception move '10' to input-status end-accept
exit program
end-if
if input-name = spaces
string program-name delimited by space '.ast' into input-name
open input input-file
if input-status = '35'
string 'in generator ' trim(input-name) ' not found' into error-record
call 'reporterror'
end-if
end-if
read input-file into ast-record
evaluate input-status
when '00'
continue
when '10'
close input-file
when other
string 'in generator ' trim(input-name) ' unexpected input-status: ' input-status
into error-record
call 'reporterror'
end-evaluate
.
end program readinput.
program-id. reporterror common.
procedure division.
start-reporterror.
report-error.
display error-record upon syserr
stop run with error status -1
.
end program reporterror.
identification division.
program-id. showhex common.
data division.
working-storage section.
01 hex.
03 filler pic x(32) value '000102030405060708090A0B0C0D0E0F'.
03 filler pic x(32) value '101112131415161718191A1B1C1D1E1F'.
03 filler pic x(32) value '202122232425262728292A2B2C2D2E2F'.
03 filler pic x(32) value '303132333435363738393A3B3C3D3E3F'.
03 filler pic x(32) value '404142434445464748494A4B4C4D4E4F'.
03 filler pic x(32) value '505152535455565758595A5B5C5D5E5F'.
03 filler pic x(32) value '606162636465666768696A6B6C6D6E6F'.
03 filler pic x(32) value '707172737475767778797A7B7C7D7E7F'.
03 filler pic x(32) value '808182838485868788898A8B8C8D8E8F'.
03 filler pic x(32) value '909192939495969798999A9B9C9D9E9F'.
03 filler pic x(32) value 'A0A1A2A3A4A5A6A7A8A9AAABACADAEAF'.
03 filler pic x(32) value 'B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF'.
03 filler pic x(32) value 'C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF'.
03 filler pic x(32) value 'D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF'.
03 filler pic x(32) value 'E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF'.
03 filler pic x(32) value 'F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF'.
01 cdx pic 9999.
01 bdx pic 999.
01 byte-count pic 9.
01 bytes-per-word pic 9 value 4.
01 word-count pic 9.
01 words-per-line pic 9 value 8.
linkage section.
01 data-field any length.
01 length-data-field pic 999.
procedure division using
by reference data-field
by reference length-data-field.
start-showhex.
move 1 to byte-count
move 1 to word-count
perform varying cdx from 1 by 1
until cdx > length-data-field
compute bdx = 2 * ord(data-field(cdx:1)) - 1 end-compute
display hex(bdx:2) with no advancing upon syserr
add 1 to byte-count end-add
if byte-count > bytes-per-word
display ' ' with no advancing upon syserr
move 1 to byte-count
add 1 to word-count end-add
end-if
if word-count > words-per-line
display ' ' upon syserr
move 1 to word-count
end-if
end-perform
if word-count <> 1
or byte-count <> 1
display ' ' upon syserr
end-if
display ' ' upon syserr
goback
.
end program showhex.
end program generator. |
http://rosettacode.org/wiki/Compare_sorting_algorithms%27_performance | Compare sorting algorithms' performance |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Measure a relative performance of sorting algorithms implementations.
Plot execution time vs. input sequence length dependencies for various implementation of sorting algorithm and different input sequence types (example figures).
Consider three type of input sequences:
ones: sequence of all 1's. Example: {1, 1, 1, 1, 1}
range: ascending sequence, i.e. already sorted. Example: {1, 2, 3, 10, 15}
shuffled range: sequence with elements randomly distributed. Example: {5, 3, 9, 6, 8}
Consider at least two different sorting functions (different algorithms or/and different implementation of the same algorithm).
For example, consider Bubble Sort, Insertion sort, Quicksort or/and implementations of Quicksort with different pivot selection mechanisms. Where possible, use existing implementations.
Preliminary subtask:
Bubble Sort, Insertion sort, Quicksort, Radix sort, Shell sort
Query Performance
Write float arrays to a text file
Plot x, y arrays
Polynomial Fitting
General steps:
Define sorting routines to be considered.
Define appropriate sequence generators and write timings.
Plot timings.
What conclusions about relative performance of the sorting routines could be made based on the plots?
| #Go | Go | package main
import (
"log"
"math/rand"
"testing"
"time"
"github.com/gonum/plot"
"github.com/gonum/plot/plotter"
"github.com/gonum/plot/plotutil"
"github.com/gonum/plot/vg"
)
// Step 1, sort routines.
// These functions are copied without changes from the RC tasks Bubble Sort,
// Insertion sort, and Quicksort.
func bubblesort(a []int) {
for itemCount := len(a) - 1; ; itemCount-- {
hasChanged := false
for index := 0; index < itemCount; index++ {
if a[index] > a[index+1] {
a[index], a[index+1] = a[index+1], a[index]
hasChanged = true
}
}
if hasChanged == false {
break
}
}
}
func insertionsort(a []int) {
for i := 1; i < len(a); i++ {
value := a[i]
j := i - 1
for j >= 0 && a[j] > value {
a[j+1] = a[j]
j = j - 1
}
a[j+1] = value
}
}
func quicksort(a []int) {
var pex func(int, int)
pex = func(lower, upper int) {
for {
switch upper - lower {
case -1, 0:
return
case 1:
if a[upper] < a[lower] {
a[upper], a[lower] = a[lower], a[upper]
}
return
}
bx := (upper + lower) / 2
b := a[bx]
lp := lower
up := upper
outer:
for {
for lp < upper && !(b < a[lp]) {
lp++
}
for {
if lp > up {
break outer
}
if a[up] < b {
break
}
up--
}
a[lp], a[up] = a[up], a[lp]
lp++
up--
}
if bx < lp {
if bx < lp-1 {
a[bx], a[lp-1] = a[lp-1], b
}
up = lp - 2
} else {
if bx > lp {
a[bx], a[lp] = a[lp], b
}
up = lp - 1
lp++
}
if up-lower < upper-lp {
pex(lower, up)
lower = lp
} else {
pex(lp, upper)
upper = up
}
}
}
pex(0, len(a)-1)
}
// Step 2.0 sequence routines. 2.0 is the easy part. 2.5, timings, follows.
func ones(n int) []int {
s := make([]int, n)
for i := range s {
s[i] = 1
}
return s
}
func ascending(n int) []int {
s := make([]int, n)
v := 1
for i := 0; i < n; {
if rand.Intn(3) == 0 {
s[i] = v
i++
}
v++
}
return s
}
func shuffled(n int) []int {
return rand.Perm(n)
}
// Steps 2.5 write timings, and 3 plot timings are coded together.
// If write means format and output human readable numbers, step 2.5
// is satisfied with the log output as the program runs. The timings
// are plotted immediately however for step 3, not read and parsed from
// any formated output.
const (
nPts = 7 // number of points per test
inc = 1000 // data set size increment per point
)
var (
p *plot.Plot
sortName = []string{"Bubble sort", "Insertion sort", "Quicksort"}
sortFunc = []func([]int){bubblesort, insertionsort, quicksort}
dataName = []string{"Ones", "Ascending", "Shuffled"}
dataFunc = []func(int) []int{ones, ascending, shuffled}
)
func main() {
rand.Seed(time.Now().Unix())
var err error
p, err = plot.New()
if err != nil {
log.Fatal(err)
}
p.X.Label.Text = "Data size"
p.Y.Label.Text = "microseconds"
p.Y.Scale = plot.LogScale{}
p.Y.Tick.Marker = plot.LogTicks{}
p.Y.Min = .5 // hard coded to make enough room for legend
for dx, name := range dataName {
s, err := plotter.NewScatter(plotter.XYs{})
if err != nil {
log.Fatal(err)
}
s.Shape = plotutil.DefaultGlyphShapes[dx]
p.Legend.Add(name, s)
}
for sx, name := range sortName {
l, err := plotter.NewLine(plotter.XYs{})
if err != nil {
log.Fatal(err)
}
l.Color = plotutil.DarkColors[sx]
p.Legend.Add(name, l)
}
for sx := range sortFunc {
bench(sx, 0, 1) // for ones, a single timing is sufficient.
bench(sx, 1, 5) // ascending and shuffled have some randomness though,
bench(sx, 2, 5) // so average timings on 5 different random sets.
}
if err := p.Save(5*vg.Inch, 5*vg.Inch, "comp.png"); err != nil {
log.Fatal(err)
}
}
func bench(sx, dx, rep int) {
log.Println("bench", sortName[sx], dataName[dx], "x", rep)
pts := make(plotter.XYs, nPts)
sf := sortFunc[sx]
for i := range pts {
x := (i + 1) * inc
// to avoid timing sequence creation, create sequence before timing
// then just copy the data inside the timing loop. copy time should
// be the same regardless of sequence data.
s0 := dataFunc[dx](x) // reference sequence
s := make([]int, x) // working copy
var tSort int64
for j := 0; j < rep; j++ {
tSort += testing.Benchmark(func(b *testing.B) {
for i := 0; i < b.N; i++ {
copy(s, s0)
sf(s)
}
}).NsPerOp()
}
tSort /= int64(rep)
log.Println(x, "items", tSort, "ns") // step 2.5, write timings
pts[i] = struct{ X, Y float64 }{float64(x), float64(tSort) * .001}
}
pl, ps, err := plotter.NewLinePoints(pts) // step 3, plot timings
if err != nil {
log.Fatal(err)
}
pl.Color = plotutil.DarkColors[sx]
ps.Color = plotutil.DarkColors[sx]
ps.Shape = plotutil.DefaultGlyphShapes[dx]
p.Add(pl, ps)
} |
http://rosettacode.org/wiki/Compiler/AST_interpreter | Compiler/AST interpreter | An AST interpreter interprets an Abstract Syntax Tree (AST)
produced by a Syntax Analyzer.
Task[edit]
Take the AST output from the Syntax analyzer task, and interpret it as appropriate.
Refer to the Syntax analyzer task for details of the AST.
Loading the AST from the syntax analyzer is as simple as (pseudo code)
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
The interpreter algorithm is relatively simple
interp(x)
if x == NULL return NULL
elif x.node_type == Integer return x.value converted to an integer
elif x.node_type == Ident return the current value of variable x.value
elif x.node_type == String return x.value
elif x.node_type == Assign
globals[x.left.value] = interp(x.right)
return NULL
elif x.node_type is a binary operator return interp(x.left) operator interp(x.right)
elif x.node_type is a unary operator, return return operator interp(x.left)
elif x.node_type == If
if (interp(x.left)) then interp(x.right.left)
else interp(x.right.right)
return NULL
elif x.node_type == While
while (interp(x.left)) do interp(x.right)
return NULL
elif x.node_type == Prtc
print interp(x.left) as a character, no newline
return NULL
elif x.node_type == Prti
print interp(x.left) as an integer, no newline
return NULL
elif x.node_type == Prts
print interp(x.left) as a string, respecting newlines ("\n")
return NULL
elif x.node_type == Sequence
interp(x.left)
interp(x.right)
return NULL
else
error("unknown node type")
Notes:
Because of the simple nature of our tiny language, Semantic analysis is not needed.
Your interpreter should use C like division semantics, for both division and modulus. For division of positive operands, only the non-fractional portion of the result should be returned. In other words, the result should be truncated towards 0.
This means, for instance, that 3 / 2 should result in 1.
For division when one of the operands is negative, the result should be truncated towards 0.
This means, for instance, that 3 / -2 should result in -1.
Test program
prime.t
lex <prime.t | parse | interp
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
Virtual Machine Interpreter task
| #Python | Python | from __future__ import print_function
import sys, shlex, operator
nd_Ident, nd_String, nd_Integer, nd_Sequence, nd_If, nd_Prtc, nd_Prts, nd_Prti, nd_While, \
nd_Assign, nd_Negate, nd_Not, nd_Mul, nd_Div, nd_Mod, nd_Add, nd_Sub, nd_Lss, nd_Leq, \
nd_Gtr, nd_Geq, nd_Eql, nd_Neq, nd_And, nd_Or = range(25)
all_syms = {
"Identifier" : nd_Ident, "String" : nd_String,
"Integer" : nd_Integer, "Sequence" : nd_Sequence,
"If" : nd_If, "Prtc" : nd_Prtc,
"Prts" : nd_Prts, "Prti" : nd_Prti,
"While" : nd_While, "Assign" : nd_Assign,
"Negate" : nd_Negate, "Not" : nd_Not,
"Multiply" : nd_Mul, "Divide" : nd_Div,
"Mod" : nd_Mod, "Add" : nd_Add,
"Subtract" : nd_Sub, "Less" : nd_Lss,
"LessEqual" : nd_Leq, "Greater" : nd_Gtr,
"GreaterEqual": nd_Geq, "Equal" : nd_Eql,
"NotEqual" : nd_Neq, "And" : nd_And,
"Or" : nd_Or}
input_file = None
globals = {}
#*** show error and exit
def error(msg):
print("%s" % (msg))
exit(1)
class Node:
def __init__(self, node_type, left = None, right = None, value = None):
self.node_type = node_type
self.left = left
self.right = right
self.value = value
#***
def make_node(oper, left, right = None):
return Node(oper, left, right)
#***
def make_leaf(oper, n):
return Node(oper, value = n)
#***
def fetch_var(var_name):
n = globals.get(var_name, None)
if n == None:
globals[var_name] = n = 0
return n
#***
def interp(x):
global globals
if x == None: return None
elif x.node_type == nd_Integer: return int(x.value)
elif x.node_type == nd_Ident: return fetch_var(x.value)
elif x.node_type == nd_String: return x.value
elif x.node_type == nd_Assign:
globals[x.left.value] = interp(x.right)
return None
elif x.node_type == nd_Add: return interp(x.left) + interp(x.right)
elif x.node_type == nd_Sub: return interp(x.left) - interp(x.right)
elif x.node_type == nd_Mul: return interp(x.left) * interp(x.right)
# use C like division semantics
# another way: abs(x) / abs(y) * cmp(x, 0) * cmp(y, 0)
elif x.node_type == nd_Div: return int(float(interp(x.left)) / interp(x.right))
elif x.node_type == nd_Mod: return int(float(interp(x.left)) % interp(x.right))
elif x.node_type == nd_Lss: return interp(x.left) < interp(x.right)
elif x.node_type == nd_Gtr: return interp(x.left) > interp(x.right)
elif x.node_type == nd_Leq: return interp(x.left) <= interp(x.right)
elif x.node_type == nd_Geq: return interp(x.left) >= interp(x.right)
elif x.node_type == nd_Eql: return interp(x.left) == interp(x.right)
elif x.node_type == nd_Neq: return interp(x.left) != interp(x.right)
elif x.node_type == nd_And: return interp(x.left) and interp(x.right)
elif x.node_type == nd_Or: return interp(x.left) or interp(x.right)
elif x.node_type == nd_Negate: return -interp(x.left)
elif x.node_type == nd_Not: return not interp(x.left)
elif x.node_type == nd_If:
if (interp(x.left)):
interp(x.right.left)
else:
interp(x.right.right)
return None
elif x.node_type == nd_While:
while (interp(x.left)):
interp(x.right)
return None
elif x.node_type == nd_Prtc:
print("%c" % (interp(x.left)), end='')
return None
elif x.node_type == nd_Prti:
print("%d" % (interp(x.left)), end='')
return None
elif x.node_type == nd_Prts:
print(interp(x.left), end='')
return None
elif x.node_type == nd_Sequence:
interp(x.left)
interp(x.right)
return None
else:
error("error in code generator - found %d, expecting operator" % (x.node_type))
def str_trans(srce):
dest = ""
i = 0
srce = srce[1:-1]
while i < len(srce):
if srce[i] == '\\' and i + 1 < len(srce):
if srce[i + 1] == 'n':
dest += '\n'
i += 2
elif srce[i + 1] == '\\':
dest += '\\'
i += 2
else:
dest += srce[i]
i += 1
return dest
def load_ast():
line = input_file.readline()
line_list = shlex.split(line, False, False)
text = line_list[0]
value = None
if len(line_list) > 1:
value = line_list[1]
if value.isdigit():
value = int(value)
if text == ";":
return None
node_type = all_syms[text]
if value != None:
if node_type == nd_String:
value = str_trans(value)
return make_leaf(node_type, value)
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
#*** main driver
input_file = sys.stdin
if len(sys.argv) > 1:
try:
input_file = open(sys.argv[1], "r", 4096)
except IOError as e:
error(0, 0, "Can't open %s" % sys.argv[1])
n = load_ast()
interp(n) |
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #CFEngine | CFEngine |
bundle agent __main__
{
vars:
"strings" slist => { "abcd", "123456789", "abcdef", "1234567" };
"sorted[$(with)]"
string => "$(strings)",
with => string_length( "$(strings)" );
"sort_idx" slist => reverse( sort( getindices( "sorted" ), lex ) );
reports:
"'$(sorted[$(sort_idx)])' is $(sort_idx) characters in length.";
}
|
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #BASIC | BASIC | *** (1) TWO STRINGS ***
LONGER STRING (13)
SHORT STRING (12)
*** (2) MORE THAN 2 STRINGS***
SHE DOESN'T STUDY GERMAN ON MONDAY (34)
EVERY CHILD LIKES AN ICE CREAM (30)
THE COURSE STARTS NEXT SUNDAY (29)
DOES SHE LIVE IN PARIS? (23)
SHE SWIMS EVERY MORNING (23)
THE EARTH IS SPHERICAL (22)
WE SEE THEM EVERY WEEK (22)
HE DOESN'T TEACH MATH (21)
CATS HATE WATER (15)
I LIKE TEA (10)
|
http://rosettacode.org/wiki/Compiler/syntax_analyzer | Compiler/syntax analyzer | A Syntax analyzer transforms a token stream (from the Lexical analyzer)
into a Syntax tree, based on a grammar.
Task[edit]
Take the output from the Lexical analyzer task,
and convert it to an Abstract Syntax Tree (AST),
based on the grammar below. The output should be in a flattened format.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a parser module/library/class, it would be great
if two versions of the solution are provided: One without the parser module, and one
with.
Grammar
The simple programming language to be analyzed is more or less a (very tiny) subset of
C. The formal grammar in
Extended Backus-Naur Form (EBNF):
stmt_list = {stmt} ;
stmt = ';'
| Identifier '=' expr ';'
| 'while' paren_expr stmt
| 'if' paren_expr stmt ['else' stmt]
| 'print' '(' prt_list ')' ';'
| 'putc' paren_expr ';'
| '{' stmt_list '}'
;
paren_expr = '(' expr ')' ;
prt_list = (string | expr) {',' (String | expr)} ;
expr = and_expr {'||' and_expr} ;
and_expr = equality_expr {'&&' equality_expr} ;
equality_expr = relational_expr [('==' | '!=') relational_expr] ;
relational_expr = addition_expr [('<' | '<=' | '>' | '>=') addition_expr] ;
addition_expr = multiplication_expr {('+' | '-') multiplication_expr} ;
multiplication_expr = primary {('*' | '/' | '%') primary } ;
primary = Identifier
| Integer
| '(' expr ')'
| ('+' | '-' | '!') primary
;
The resulting AST should be formulated as a Binary Tree.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
The following table shows the input to lex, lex output, and the AST produced by the parser
Input to lex
Output from lex, input to parse
Output from parse
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Specifications
List of node type names
Identifier String Integer Sequence If Prtc Prts Prti While Assign Negate Not Multiply Divide Mod
Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
In the text below, Null/Empty nodes are represented by ";".
Non-terminal (internal) nodes
For Operators, the following nodes should be created:
Multiply Divide Mod Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
For each of the above nodes, the left and right sub-nodes are the operands of the
respective operation.
In pseudo S-Expression format:
(Operator expression expression)
Negate, Not
For these node types, the left node is the operand, and the right node is null.
(Operator expression ;)
Sequence - sub-nodes are either statements or Sequences.
If - left node is the expression, the right node is If node, with it's left node being the
if-true statement part, and the right node being the if-false (else) statement part.
(If expression (If statement else-statement))
If there is not an else, the tree becomes:
(If expression (If statement ;))
Prtc
(Prtc (expression) ;)
Prts
(Prts (String "the string") ;)
Prti
(Prti (Integer 12345) ;)
While - left node is the expression, the right node is the statement.
(While expression statement)
Assign - left node is the left-hand side of the assignment, the right node is the
right-hand side of the assignment.
(Assign Identifier expression)
Terminal (leaf) nodes:
Identifier: (Identifier ident_name)
Integer: (Integer 12345)
String: (String "Hello World!")
";": Empty node
Some simple examples
Sequences denote a list node; they are used to represent a list. semicolon's represent a null node, e.g., the end of this path.
This simple program:
a=11;
Produces the following AST, encoded as a binary tree:
Under each non-leaf node are two '|' lines. The first represents the left sub-node, the second represents the right sub-node:
(1) Sequence
(2) |-- ;
(3) |-- Assign
(4) |-- Identifier: a
(5) |-- Integer: 11
In flattened form:
(1) Sequence
(2) ;
(3) Assign
(4) Identifier a
(5) Integer 11
This program:
a=11;
b=22;
c=33;
Produces the following AST:
( 1) Sequence
( 2) |-- Sequence
( 3) | |-- Sequence
( 4) | | |-- ;
( 5) | | |-- Assign
( 6) | | |-- Identifier: a
( 7) | | |-- Integer: 11
( 8) | |-- Assign
( 9) | |-- Identifier: b
(10) | |-- Integer: 22
(11) |-- Assign
(12) |-- Identifier: c
(13) |-- Integer: 33
In flattened form:
( 1) Sequence
( 2) Sequence
( 3) Sequence
( 4) ;
( 5) Assign
( 6) Identifier a
( 7) Integer 11
( 8) Assign
( 9) Identifier b
(10) Integer 22
(11) Assign
(12) Identifier c
(13) Integer 33
Pseudo-code for the parser.
Uses Precedence Climbing for expression parsing, and
Recursive Descent for statement parsing. The AST is also built:
def expr(p)
if tok is "("
x = paren_expr()
elif tok in ["-", "+", "!"]
gettok()
y = expr(precedence of operator)
if operator was "+"
x = y
else
x = make_node(operator, y)
elif tok is an Identifier
x = make_leaf(Identifier, variable name)
gettok()
elif tok is an Integer constant
x = make_leaf(Integer, integer value)
gettok()
else
error()
while tok is a binary operator and precedence of tok >= p
save_tok = tok
gettok()
q = precedence of save_tok
if save_tok is not right associative
q += 1
x = make_node(Operator save_tok represents, x, expr(q))
return x
def paren_expr()
expect("(")
x = expr(0)
expect(")")
return x
def stmt()
t = NULL
if accept("if")
e = paren_expr()
s = stmt()
t = make_node(If, e, make_node(If, s, accept("else") ? stmt() : NULL))
elif accept("putc")
t = make_node(Prtc, paren_expr())
expect(";")
elif accept("print")
expect("(")
repeat
if tok is a string
e = make_node(Prts, make_leaf(String, the string))
gettok()
else
e = make_node(Prti, expr(0))
t = make_node(Sequence, t, e)
until not accept(",")
expect(")")
expect(";")
elif tok is ";"
gettok()
elif tok is an Identifier
v = make_leaf(Identifier, variable name)
gettok()
expect("=")
t = make_node(Assign, v, expr(0))
expect(";")
elif accept("while")
e = paren_expr()
t = make_node(While, e, stmt()
elif accept("{")
while tok not equal "}" and tok not equal end-of-file
t = make_node(Sequence, t, stmt())
expect("}")
elif tok is end-of-file
pass
else
error()
return t
def parse()
t = NULL
gettok()
repeat
t = make_node(Sequence, t, stmt())
until tok is end-of-file
return t
Once the AST is built, it should be output in a flattened format. This can be as simple as the following
def prt_ast(t)
if t == NULL
print(";\n")
else
print(t.node_type)
if t.node_type in [Identifier, Integer, String] # leaf node
print the value of the Ident, Integer or String, "\n"
else
print("\n")
prt_ast(t.left)
prt_ast(t.right)
If the AST is correctly built, loading it into a subsequent program should be as simple as
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Finally, the AST can also be tested by running it against one of the AST Interpreter solutions.
Test program, assuming this is in a file called prime.t
lex <prime.t | parse
Input to lex
Output from lex, input to parse
Output from parse
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
4 1 Identifier count
4 7 Op_assign
4 9 Integer 1
4 10 Semicolon
5 1 Identifier n
5 3 Op_assign
5 5 Integer 1
5 6 Semicolon
6 1 Identifier limit
6 7 Op_assign
6 9 Integer 100
6 12 Semicolon
7 1 Keyword_while
7 7 LeftParen
7 8 Identifier n
7 10 Op_less
7 12 Identifier limit
7 17 RightParen
7 19 LeftBrace
8 5 Identifier k
8 6 Op_assign
8 7 Integer 3
8 8 Semicolon
9 5 Identifier p
9 6 Op_assign
9 7 Integer 1
9 8 Semicolon
10 5 Identifier n
10 6 Op_assign
10 7 Identifier n
10 8 Op_add
10 9 Integer 2
10 10 Semicolon
11 5 Keyword_while
11 11 LeftParen
11 12 LeftParen
11 13 Identifier k
11 14 Op_multiply
11 15 Identifier k
11 16 Op_lessequal
11 18 Identifier n
11 19 RightParen
11 21 Op_and
11 24 LeftParen
11 25 Identifier p
11 26 RightParen
11 27 RightParen
11 29 LeftBrace
12 9 Identifier p
12 10 Op_assign
12 11 Identifier n
12 12 Op_divide
12 13 Identifier k
12 14 Op_multiply
12 15 Identifier k
12 16 Op_notequal
12 18 Identifier n
12 19 Semicolon
13 9 Identifier k
13 10 Op_assign
13 11 Identifier k
13 12 Op_add
13 13 Integer 2
13 14 Semicolon
14 5 RightBrace
15 5 Keyword_if
15 8 LeftParen
15 9 Identifier p
15 10 RightParen
15 12 LeftBrace
16 9 Keyword_print
16 14 LeftParen
16 15 Identifier n
16 16 Comma
16 18 String " is prime\n"
16 31 RightParen
16 32 Semicolon
17 9 Identifier count
17 15 Op_assign
17 17 Identifier count
17 23 Op_add
17 25 Integer 1
17 26 Semicolon
18 5 RightBrace
19 1 RightBrace
20 1 Keyword_print
20 6 LeftParen
20 7 String "Total primes found: "
20 29 Comma
20 31 Identifier count
20 36 Comma
20 38 String "\n"
20 42 RightParen
20 43 Semicolon
21 1 End_of_input
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier count
Integer 1
Assign
Identifier n
Integer 1
Assign
Identifier limit
Integer 100
While
Less
Identifier n
Identifier limit
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier k
Integer 3
Assign
Identifier p
Integer 1
Assign
Identifier n
Add
Identifier n
Integer 2
While
And
LessEqual
Multiply
Identifier k
Identifier k
Identifier n
Identifier p
Sequence
Sequence
;
Assign
Identifier p
NotEqual
Multiply
Divide
Identifier n
Identifier k
Identifier k
Identifier n
Assign
Identifier k
Add
Identifier k
Integer 2
If
Identifier p
If
Sequence
Sequence
;
Sequence
Sequence
;
Prti
Identifier n
;
Prts
String " is prime\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
;
Sequence
Sequence
Sequence
;
Prts
String "Total primes found: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #Java | Java |
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.util.HashMap;
class Parser {
private List<Token> source;
private Token token;
private int position;
static class Node {
public NodeType nt;
public Node left, right;
public String value;
Node() {
this.nt = null;
this.left = null;
this.right = null;
this.value = null;
}
Node(NodeType node_type, Node left, Node right, String value) {
this.nt = node_type;
this.left = left;
this.right = right;
this.value = value;
}
public static Node make_node(NodeType nodetype, Node left, Node right) {
return new Node(nodetype, left, right, "");
}
public static Node make_node(NodeType nodetype, Node left) {
return new Node(nodetype, left, null, "");
}
public static Node make_leaf(NodeType nodetype, String value) {
return new Node(nodetype, null, null, value);
}
}
static class Token {
public TokenType tokentype;
public String value;
public int line;
public int pos;
Token(TokenType token, String value, int line, int pos) {
this.tokentype = token; this.value = value; this.line = line; this.pos = pos;
}
@Override
public String toString() {
return String.format("%5d %5d %-15s %s", this.line, this.pos, this.tokentype, this.value);
}
}
static enum TokenType {
End_of_input(false, false, false, -1, NodeType.nd_None),
Op_multiply(false, true, false, 13, NodeType.nd_Mul),
Op_divide(false, true, false, 13, NodeType.nd_Div),
Op_mod(false, true, false, 13, NodeType.nd_Mod),
Op_add(false, true, false, 12, NodeType.nd_Add),
Op_subtract(false, true, false, 12, NodeType.nd_Sub),
Op_negate(false, false, true, 14, NodeType.nd_Negate),
Op_not(false, false, true, 14, NodeType.nd_Not),
Op_less(false, true, false, 10, NodeType.nd_Lss),
Op_lessequal(false, true, false, 10, NodeType.nd_Leq),
Op_greater(false, true, false, 10, NodeType.nd_Gtr),
Op_greaterequal(false, true, false, 10, NodeType.nd_Geq),
Op_equal(false, true, true, 9, NodeType.nd_Eql),
Op_notequal(false, true, false, 9, NodeType.nd_Neq),
Op_assign(false, false, false, -1, NodeType.nd_Assign),
Op_and(false, true, false, 5, NodeType.nd_And),
Op_or(false, true, false, 4, NodeType.nd_Or),
Keyword_if(false, false, false, -1, NodeType.nd_If),
Keyword_else(false, false, false, -1, NodeType.nd_None),
Keyword_while(false, false, false, -1, NodeType.nd_While),
Keyword_print(false, false, false, -1, NodeType.nd_None),
Keyword_putc(false, false, false, -1, NodeType.nd_None),
LeftParen(false, false, false, -1, NodeType.nd_None),
RightParen(false, false, false, -1, NodeType.nd_None),
LeftBrace(false, false, false, -1, NodeType.nd_None),
RightBrace(false, false, false, -1, NodeType.nd_None),
Semicolon(false, false, false, -1, NodeType.nd_None),
Comma(false, false, false, -1, NodeType.nd_None),
Identifier(false, false, false, -1, NodeType.nd_Ident),
Integer(false, false, false, -1, NodeType.nd_Integer),
String(false, false, false, -1, NodeType.nd_String);
private final int precedence;
private final boolean right_assoc;
private final boolean is_binary;
private final boolean is_unary;
private final NodeType node_type;
TokenType(boolean right_assoc, boolean is_binary, boolean is_unary, int precedence, NodeType node) {
this.right_assoc = right_assoc;
this.is_binary = is_binary;
this.is_unary = is_unary;
this.precedence = precedence;
this.node_type = node;
}
boolean isRightAssoc() { return this.right_assoc; }
boolean isBinary() { return this.is_binary; }
boolean isUnary() { return this.is_unary; }
int getPrecedence() { return this.precedence; }
NodeType getNodeType() { return this.node_type; }
}
static enum NodeType {
nd_None(""), nd_Ident("Identifier"), nd_String("String"), nd_Integer("Integer"), nd_Sequence("Sequence"), nd_If("If"),
nd_Prtc("Prtc"), nd_Prts("Prts"), nd_Prti("Prti"), nd_While("While"),
nd_Assign("Assign"), nd_Negate("Negate"), nd_Not("Not"), nd_Mul("Multiply"), nd_Div("Divide"), nd_Mod("Mod"), nd_Add("Add"),
nd_Sub("Subtract"), nd_Lss("Less"), nd_Leq("LessEqual"),
nd_Gtr("Greater"), nd_Geq("GreaterEqual"), nd_Eql("Equal"), nd_Neq("NotEqual"), nd_And("And"), nd_Or("Or");
private final String name;
NodeType(String name) {
this.name = name;
}
@Override
public String toString() { return this.name; }
}
static void error(int line, int pos, String msg) {
if (line > 0 && pos > 0) {
System.out.printf("%s in line %d, pos %d\n", msg, line, pos);
} else {
System.out.println(msg);
}
System.exit(1);
}
Parser(List<Token> source) {
this.source = source;
this.token = null;
this.position = 0;
}
Token getNextToken() {
this.token = this.source.get(this.position++);
return this.token;
}
Node expr(int p) {
Node result = null, node;
TokenType op;
int q;
if (this.token.tokentype == TokenType.LeftParen) {
result = paren_expr();
} else if (this.token.tokentype == TokenType.Op_add || this.token.tokentype == TokenType.Op_subtract) {
op = (this.token.tokentype == TokenType.Op_subtract) ? TokenType.Op_negate : TokenType.Op_add;
getNextToken();
node = expr(TokenType.Op_negate.getPrecedence());
result = (op == TokenType.Op_negate) ? Node.make_node(NodeType.nd_Negate, node) : node;
} else if (this.token.tokentype == TokenType.Op_not) {
getNextToken();
result = Node.make_node(NodeType.nd_Not, expr(TokenType.Op_not.getPrecedence()));
} else if (this.token.tokentype == TokenType.Identifier) {
result = Node.make_leaf(NodeType.nd_Ident, this.token.value);
getNextToken();
} else if (this.token.tokentype == TokenType.Integer) {
result = Node.make_leaf(NodeType.nd_Integer, this.token.value);
getNextToken();
} else {
error(this.token.line, this.token.pos, "Expecting a primary, found: " + this.token.tokentype);
}
while (this.token.tokentype.isBinary() && this.token.tokentype.getPrecedence() >= p) {
op = this.token.tokentype;
getNextToken();
q = op.getPrecedence();
if (!op.isRightAssoc()) {
q++;
}
node = expr(q);
result = Node.make_node(op.getNodeType(), result, node);
}
return result;
}
Node paren_expr() {
expect("paren_expr", TokenType.LeftParen);
Node node = expr(0);
expect("paren_expr", TokenType.RightParen);
return node;
}
void expect(String msg, TokenType s) {
if (this.token.tokentype == s) {
getNextToken();
return;
}
error(this.token.line, this.token.pos, msg + ": Expecting '" + s + "', found: '" + this.token.tokentype + "'");
}
Node stmt() {
Node s, s2, t = null, e, v;
if (this.token.tokentype == TokenType.Keyword_if) {
getNextToken();
e = paren_expr();
s = stmt();
s2 = null;
if (this.token.tokentype == TokenType.Keyword_else) {
getNextToken();
s2 = stmt();
}
t = Node.make_node(NodeType.nd_If, e, Node.make_node(NodeType.nd_If, s, s2));
} else if (this.token.tokentype == TokenType.Keyword_putc) {
getNextToken();
e = paren_expr();
t = Node.make_node(NodeType.nd_Prtc, e);
expect("Putc", TokenType.Semicolon);
} else if (this.token.tokentype == TokenType.Keyword_print) {
getNextToken();
expect("Print", TokenType.LeftParen);
while (true) {
if (this.token.tokentype == TokenType.String) {
e = Node.make_node(NodeType.nd_Prts, Node.make_leaf(NodeType.nd_String, this.token.value));
getNextToken();
} else {
e = Node.make_node(NodeType.nd_Prti, expr(0), null);
}
t = Node.make_node(NodeType.nd_Sequence, t, e);
if (this.token.tokentype != TokenType.Comma) {
break;
}
getNextToken();
}
expect("Print", TokenType.RightParen);
expect("Print", TokenType.Semicolon);
} else if (this.token.tokentype == TokenType.Semicolon) {
getNextToken();
} else if (this.token.tokentype == TokenType.Identifier) {
v = Node.make_leaf(NodeType.nd_Ident, this.token.value);
getNextToken();
expect("assign", TokenType.Op_assign);
e = expr(0);
t = Node.make_node(NodeType.nd_Assign, v, e);
expect("assign", TokenType.Semicolon);
} else if (this.token.tokentype == TokenType.Keyword_while) {
getNextToken();
e = paren_expr();
s = stmt();
t = Node.make_node(NodeType.nd_While, e, s);
} else if (this.token.tokentype == TokenType.LeftBrace) {
getNextToken();
while (this.token.tokentype != TokenType.RightBrace && this.token.tokentype != TokenType.End_of_input) {
t = Node.make_node(NodeType.nd_Sequence, t, stmt());
}
expect("LBrace", TokenType.RightBrace);
} else if (this.token.tokentype == TokenType.End_of_input) {
} else {
error(this.token.line, this.token.pos, "Expecting start of statement, found: " + this.token.tokentype);
}
return t;
}
Node parse() {
Node t = null;
getNextToken();
while (this.token.tokentype != TokenType.End_of_input) {
t = Node.make_node(NodeType.nd_Sequence, t, stmt());
}
return t;
}
void printAST(Node t) {
int i = 0;
if (t == null) {
System.out.println(";");
} else {
System.out.printf("%-14s", t.nt);
if (t.nt == NodeType.nd_Ident || t.nt == NodeType.nd_Integer || t.nt == NodeType.nd_String) {
System.out.println(" " + t.value);
} else {
System.out.println();
printAST(t.left);
printAST(t.right);
}
}
}
public static void main(String[] args) {
if (args.length > 0) {
try {
String value, token;
int line, pos;
Token t;
boolean found;
List<Token> list = new ArrayList<>();
Map<String, TokenType> str_to_tokens = new HashMap<>();
str_to_tokens.put("End_of_input", TokenType.End_of_input);
str_to_tokens.put("Op_multiply", TokenType.Op_multiply);
str_to_tokens.put("Op_divide", TokenType.Op_divide);
str_to_tokens.put("Op_mod", TokenType.Op_mod);
str_to_tokens.put("Op_add", TokenType.Op_add);
str_to_tokens.put("Op_subtract", TokenType.Op_subtract);
str_to_tokens.put("Op_negate", TokenType.Op_negate);
str_to_tokens.put("Op_not", TokenType.Op_not);
str_to_tokens.put("Op_less", TokenType.Op_less);
str_to_tokens.put("Op_lessequal", TokenType.Op_lessequal);
str_to_tokens.put("Op_greater", TokenType.Op_greater);
str_to_tokens.put("Op_greaterequal", TokenType.Op_greaterequal);
str_to_tokens.put("Op_equal", TokenType.Op_equal);
str_to_tokens.put("Op_notequal", TokenType.Op_notequal);
str_to_tokens.put("Op_assign", TokenType.Op_assign);
str_to_tokens.put("Op_and", TokenType.Op_and);
str_to_tokens.put("Op_or", TokenType.Op_or);
str_to_tokens.put("Keyword_if", TokenType.Keyword_if);
str_to_tokens.put("Keyword_else", TokenType.Keyword_else);
str_to_tokens.put("Keyword_while", TokenType.Keyword_while);
str_to_tokens.put("Keyword_print", TokenType.Keyword_print);
str_to_tokens.put("Keyword_putc", TokenType.Keyword_putc);
str_to_tokens.put("LeftParen", TokenType.LeftParen);
str_to_tokens.put("RightParen", TokenType.RightParen);
str_to_tokens.put("LeftBrace", TokenType.LeftBrace);
str_to_tokens.put("RightBrace", TokenType.RightBrace);
str_to_tokens.put("Semicolon", TokenType.Semicolon);
str_to_tokens.put("Comma", TokenType.Comma);
str_to_tokens.put("Identifier", TokenType.Identifier);
str_to_tokens.put("Integer", TokenType.Integer);
str_to_tokens.put("String", TokenType.String);
Scanner s = new Scanner(new File(args[0]));
String source = " ";
while (s.hasNext()) {
String str = s.nextLine();
StringTokenizer st = new StringTokenizer(str);
line = Integer.parseInt(st.nextToken());
pos = Integer.parseInt(st.nextToken());
token = st.nextToken();
value = "";
while (st.hasMoreTokens()) {
value += st.nextToken() + " ";
}
found = false;
if (str_to_tokens.containsKey(token)) {
found = true;
list.add(new Token(str_to_tokens.get(token), value, line, pos));
}
if (found == false) {
throw new Exception("Token not found: '" + token + "'");
}
}
Parser p = new Parser(list);
p.printAST(p.parse());
} catch (FileNotFoundException e) {
error(-1, -1, "Exception: " + e.getMessage());
} catch (Exception e) {
error(-1, -1, "Exception: " + e.getMessage());
}
} else {
error(-1, -1, "No args");
}
}
}
|
http://rosettacode.org/wiki/Conway%27s_Game_of_Life | Conway's Game of Life | The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.
Conway's game of life is described here:
A cell C is represented by a 1 when alive, or 0 when dead, in an m-by-m (or m×m) square array of cells.
We calculate N - the sum of live cells in C's eight-location neighbourhood, then cell C is alive or dead in the next generation based on the following table:
C N new C
1 0,1 -> 0 # Lonely
1 4,5,6,7,8 -> 0 # Overcrowded
1 2,3 -> 1 # Lives
0 3 -> 1 # It takes three to give birth!
0 0,1,2,4,5,6,7,8 -> 0 # Barren
Assume cells beyond the boundary are always dead.
The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.
Task
Although you should test your implementation on more complex examples such as the glider in a larger universe, show the action of the blinker (three adjoining cells in a row all alive), over three generations, in a 3 by 3 grid.
References
Its creator John Conway, explains the game of life. Video from numberphile on youtube.
John Conway Inventing Game of Life - Numberphile video.
Related task
Langton's ant - another well known cellular automaton.
| #C.2B.2B | C++ | #include <iostream>
#define HEIGHT 4
#define WIDTH 4
struct Shape {
public:
char xCoord;
char yCoord;
char height;
char width;
char **figure;
};
struct Glider : public Shape {
static const char GLIDER_SIZE = 3;
Glider( char x , char y );
~Glider();
};
struct Blinker : public Shape {
static const char BLINKER_HEIGHT = 3;
static const char BLINKER_WIDTH = 1;
Blinker( char x , char y );
~Blinker();
};
class GameOfLife {
public:
GameOfLife( Shape sh );
void print();
void update();
char getState( char state , char xCoord , char yCoord , bool toggle);
void iterate(unsigned int iterations);
private:
char world[HEIGHT][WIDTH];
char otherWorld[HEIGHT][WIDTH];
bool toggle;
Shape shape;
};
GameOfLife::GameOfLife( Shape sh ) :
shape(sh) ,
toggle(true)
{
for ( char i = 0; i < HEIGHT; i++ ) {
for ( char j = 0; j < WIDTH; j++ ) {
world[i][j] = '.';
}
}
for ( char i = shape.yCoord; i - shape.yCoord < shape.height; i++ ) {
for ( char j = shape.xCoord; j - shape.xCoord < shape.width; j++ ) {
if ( i < HEIGHT && j < WIDTH ) {
world[i][j] =
shape.figure[ i - shape.yCoord ][j - shape.xCoord ];
}
}
}
}
void GameOfLife::print() {
if ( toggle ) {
for ( char i = 0; i < HEIGHT; i++ ) {
for ( char j = 0; j < WIDTH; j++ ) {
std::cout << world[i][j];
}
std::cout << std::endl;
}
} else {
for ( char i = 0; i < HEIGHT; i++ ) {
for ( char j = 0; j < WIDTH; j++ ) {
std::cout << otherWorld[i][j];
}
std::cout << std::endl;
}
}
for ( char i = 0; i < WIDTH; i++ ) {
std::cout << '=';
}
std::cout << std::endl;
}
void GameOfLife::update() {
if (toggle) {
for ( char i = 0; i < HEIGHT; i++ ) {
for ( char j = 0; j < WIDTH; j++ ) {
otherWorld[i][j] =
GameOfLife::getState(world[i][j] , i , j , toggle);
}
}
toggle = !toggle;
} else {
for ( char i = 0; i < HEIGHT; i++ ) {
for ( char j = 0; j < WIDTH; j++ ) {
world[i][j] =
GameOfLife::getState(otherWorld[i][j] , i , j , toggle);
}
}
toggle = !toggle;
}
}
char GameOfLife::getState( char state, char yCoord, char xCoord, bool toggle ) {
char neighbors = 0;
if ( toggle ) {
for ( char i = yCoord - 1; i <= yCoord + 1; i++ ) {
for ( char j = xCoord - 1; j <= xCoord + 1; j++ ) {
if ( i == yCoord && j == xCoord ) {
continue;
}
if ( i > -1 && i < HEIGHT && j > -1 && j < WIDTH ) {
if ( world[i][j] == 'X' ) {
neighbors++;
}
}
}
}
} else {
for ( char i = yCoord - 1; i <= yCoord + 1; i++ ) {
for ( char j = xCoord - 1; j <= xCoord + 1; j++ ) {
if ( i == yCoord && j == xCoord ) {
continue;
}
if ( i > -1 && i < HEIGHT && j > -1 && j < WIDTH ) {
if ( otherWorld[i][j] == 'X' ) {
neighbors++;
}
}
}
}
}
if (state == 'X') {
return ( neighbors > 1 && neighbors < 4 ) ? 'X' : '.';
}
else {
return ( neighbors == 3 ) ? 'X' : '.';
}
}
void GameOfLife::iterate( unsigned int iterations ) {
for ( int i = 0; i < iterations; i++ ) {
print();
update();
}
}
Glider::Glider( char x , char y ) {
xCoord = x;
yCoord = y;
height = GLIDER_SIZE;
width = GLIDER_SIZE;
figure = new char*[GLIDER_SIZE];
for ( char i = 0; i < GLIDER_SIZE; i++ ) {
figure[i] = new char[GLIDER_SIZE];
}
for ( char i = 0; i < GLIDER_SIZE; i++ ) {
for ( char j = 0; j < GLIDER_SIZE; j++ ) {
figure[i][j] = '.';
}
}
figure[0][1] = 'X';
figure[1][2] = 'X';
figure[2][0] = 'X';
figure[2][1] = 'X';
figure[2][2] = 'X';
}
Glider::~Glider() {
for ( char i = 0; i < GLIDER_SIZE; i++ ) {
delete[] figure[i];
}
delete[] figure;
}
Blinker::Blinker( char x , char y ) {
xCoord = x;
yCoord = y;
height = BLINKER_HEIGHT;
width = BLINKER_WIDTH;
figure = new char*[BLINKER_HEIGHT];
for ( char i = 0; i < BLINKER_HEIGHT; i++ ) {
figure[i] = new char[BLINKER_WIDTH];
}
for ( char i = 0; i < BLINKER_HEIGHT; i++ ) {
for ( char j = 0; j < BLINKER_WIDTH; j++ ) {
figure[i][j] = 'X';
}
}
}
Blinker::~Blinker() {
for ( char i = 0; i < BLINKER_HEIGHT; i++ ) {
delete[] figure[i];
}
delete[] figure;
}
int main() {
Glider glider(0,0);
GameOfLife gol(glider);
gol.iterate(5);
Blinker blinker(1,0);
GameOfLife gol2(blinker);
gol2.iterate(4);
}
|
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Pike | Pike |
class Point {
int x, y;
void create(int _x, int _y)
{
x = _x;
y = _y;
}
}
void main()
{
object point = Point(10, 20);
write("%d %d\n", point->x, point->y);
}
|
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #PL.2FI | PL/I |
define structure
1 point,
2 x float,
2 y float;
|
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #XPL0 | XPL0 | proc StrCopy(A, B); \Copy string: A --> B
char A, B; \Strings: B must already have enough space "Reserved"
int I; \Beware if strings overlap
for I:= 0 to -1>>1-1 do
[B(I):= A(I);
if A(I) >= $80 then return
];
char S1, S2, S3(13);
[S1:= "Hello, world!"; \S1 now points to the string
S2:= S1; \S2 now also points to the string
StrCopy(S1, S3); \S3 points to a separate copy of the string
] |
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Z80_Assembly | Z80 Assembly | ld hl,MyString
ld (PointerVariable),hl
MyString: ;assembler equates this label to a memory location at compile time
byte "Hello",0
PointerVariable:
word 0 ;placeholder for the address of the above string, gets written to by the code above. |
http://rosettacode.org/wiki/Constrained_random_points_on_a_circle | Constrained random points on a circle | Task
Generate 100 <x,y> coordinate pairs such that x and y are integers sampled from the uniform distribution with the condition that
10
≤
x
2
+
y
2
≤
15
{\displaystyle 10\leq {\sqrt {x^{2}+y^{2}}}\leq 15}
.
Then display/plot them. The outcome should be a "fuzzy" circle. The actual number of points plotted may be less than 100, given that some pairs may be generated more than once.
There are several possible approaches to accomplish this. Here are two possible algorithms.
1) Generate random pairs of integers and filter out those that don't satisfy this condition:
10
≤
x
2
+
y
2
≤
15
{\displaystyle 10\leq {\sqrt {x^{2}+y^{2}}}\leq 15}
.
2) Precalculate the set of all possible points (there are 404 of them) and select randomly from this set.
| #Swift | Swift | let nPoints = 100
func generatePoint() -> (Int, Int) {
while true {
let x = Int.random(in: -15...16)
let y = Int.random(in: -15...16)
let r2 = x * x + y * y
if r2 >= 100 && r2 <= 225 {
return (x, y)
}
}
}
func filteringMethod() {
var rows = [[String]](repeating: Array(repeating: " ", count: 62), count: 31)
for _ in 0..<nPoints {
let (x, y) = generatePoint()
rows[y + 15][x + 15 * 2] = "*"
}
for row in rows {
print(row.joined())
}
}
func precalculatingMethod() {
var possiblePoints = [(Int, Int)]()
for y in -15...15 {
for x in -15...15 {
let r2 = x * x + y * y
if r2 >= 100 && r2 <= 225 {
possiblePoints.append((x, y))
}
}
}
possiblePoints.shuffle()
var rows = [[String]](repeating: Array(repeating: " ", count: 62), count: 31)
for (x, y) in possiblePoints {
rows[y + 15][x + 15 * 2] = "*"
}
for row in rows {
print(row.joined())
}
}
print("Filtering method:")
filteringMethod()
print("Precalculating method:")
precalculatingMethod() |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #AutoHotkey | AutoHotkey | x = 1
If x
MsgBox, x is %x%
Else If x > 1
MsgBox, x is %x%
Else
MsgBox, x is %x% |
http://rosettacode.org/wiki/Commatizing_numbers | Commatizing numbers | Commatizing numbers (as used here, is a handy expedient made-up word) is the act of adding commas to a number (or string), or to the numeric part of a larger string.
Task
Write a function that takes a string as an argument with optional arguments or parameters (the format of parameters/options is left to the programmer) that in general, adds commas (or some
other characters, including blanks or tabs) to the first numeric part of a string (if it's suitable for commatizing as per the rules below), and returns that newly commatized string.
Some of the commatizing rules (specified below) are arbitrary, but they'll be a part of this task requirements, if only to make the results consistent amongst national preferences and other disciplines.
The number may be part of a larger (non-numeric) string such as:
«US$1744 millions» ──or──
±25000 motes.
The string may possibly not have a number suitable for commatizing, so it should be untouched and no error generated.
If any argument (option) is invalid, nothing is changed and no error need be generated (quiet execution, no fail execution). Error message generation is optional.
The exponent part of a number is never commatized. The following string isn't suitable for commatizing: 9.7e+12000
Leading zeroes are never commatized. The string 0000000005714.882 after commatization is: 0000000005,714.882
Any period (.) in a number is assumed to be a decimal point.
The original string is never changed except by the addition of commas [or whatever character(s) is/are used for insertion], if at all.
To wit, the following should be preserved:
leading signs (+, -) ── even superfluous signs
leading/trailing/embedded blanks, tabs, and other whitespace
the case (upper/lower) of the exponent indicator, e.g.: 4.8903d-002
Any exponent character(s) should be supported:
1247e12
57256.1D-4
4444^60
7500∙10**35
8500x10**35
9500↑35
+55000↑3
1000**100
2048²
409632
10000pow(pi)
Numbers may be terminated with any non-digit character, including subscripts and/or superscript: 41421356243 or 7320509076(base 24).
The character(s) to be used for the comma can be specified, and may contain blanks, tabs, and other whitespace characters, as well as multiple characters. The default is the comma (,) character.
The period length can be specified (sometimes referred to as "thousands" or "thousands separators"). The period length can be defined as the length (or number) of the decimal digits between commas. The default period length is 3.
E.G.: in this example, the period length is five: 56789,12340,14148
The location of where to start the scanning for the target field (the numeric part) should be able to be specified. The default is 1.
The character strings below may be placed in a file (and read) or stored as simple strings within the program.
Strings to be used as a minimum
The value of pi (expressed in base 10) should be separated with blanks every 5 places past the decimal point,
the Zimbabwe dollar amount should use a decimal point for the "comma" separator:
pi=3.14159265358979323846264338327950288419716939937510582097494459231
The author has two Z$100000000000000 Zimbabwe notes (100 trillion).
"-in Aus$+1411.8millions"
===US$0017440 millions=== (in 2000 dollars)
123.e8000 is pretty big.
The land area of the earth is 57268900(29% of the surface) square miles.
Ain't no numbers in this here words, nohow, no way, Jose.
James was never known as 0000000007
Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe.
␢␢␢$-140000±100 millions.
6/9/1946 was a good year for some.
where the penultimate string has three leading blanks (real blanks are to be used).
Also see
The Wiki entry: (sir) Arthur Eddington's number of protons in the universe.
| #Delphi | Delphi |
program Commatizing_numbers;
{$APPTYPE CONSOLE}
uses
System.SysUtils,
System.RegularExpressions,
system.StrUtils;
const
PATTERN = '(\.[0-9]+|[1-9]([0-9]+)?(\.[0-9]+)?)';
TESTS: array[0..13] of string = ('123456789.123456789', '.123456789',
'57256.1D-4', 'pi=3.14159265358979323846264338327950288419716939937510582097494459231',
'The author has two Z$100000000000000 Zimbabwe notes (100 trillion).',
'-in Aus$+1411.8millions', '===US$0017440 millions=== (in 2000 dollars)',
'123.e8000 is pretty big.',
'The land area of the earth is 57268900(29% of the surface) square miles.',
'Ain''t no numbers in this here words, nohow, no way, Jose.',
'James was never known as 0000000007',
'Arthur Eddington wrote: I believe there are ' +
'15747724136275002577605653961181555468044717914527116709366231425076185631031296' +
' protons in the universe.', ' $-140000±100 millions.',
'6/9/1946 was a good year for some.');
var
regex: TRegEx;
function Commatize(s: string; startIndex, period: integer; sep: string): string;
var
m: TMatch;
s1, ip, pi, dp: string;
splits: TArray<string>;
i: integer;
begin
regex := TRegEx.Create(PATTERN);
if (startIndex < 0) or (startIndex >= s.Length) or (period < 1) or (sep.IsEmpty) then
exit(s);
m := regex.Match(s.Substring(startIndex, s.Length));
if not m.Success then
exit(s);
s1 := m.Groups[0].Value;
splits := s1.Split(['.']);
ip := splits[0];
if ip.Length > period then
begin
pi := ReverseString(ip);
i := ((ip.Length - 1) div period) * period;
while i >= period do
begin
pi := pi.Substring(0, i) + sep + pi.Substring(i);
i := i - period;
end;
ip := ReverseString(pi);
end;
if s1.Contains('.') then
begin
dp := splits[1];
if dp.Length > period then
begin
i := ((dp.Length - 1) div period) * period;
while i >= period do
begin
dp := dp.Substring(0, i) + sep + dp.Substring(i);
i := i - period;
end;
end;
ip := ip + '.' + dp;
end;
Result := s.Substring(0, startIndex) + s.Substring(startIndex).Replace(s1, ip, []);
end;
var
i: integer;
begin
Writeln(commatize(TESTS[0], 0, 2, '*'));
Writeln(commatize(TESTS[1], 0, 3, '-'));
Writeln(commatize(TESTS[2], 0, 4, '__'));
Writeln(commatize(TESTS[3], 0, 5, ' '));
Writeln(commatize(TESTS[4], 0, 3, '.'));
for i := 5 to High(TESTS) do
Writeln(commatize(TESTS[i], 0, 3, ','));
readln;
end. |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Ada | Ada | package String_Vec is new Ada.Containers.Indefinite_Vectors
(Index_Type => Positive, Element_Type => String);
use type String_Vec.Vector; |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ALGOL_68 | ALGOL 68 | []STRING list1 = ("AA","BB","CC");
[]STRING list2 = ("AA","AA","AA");
[]STRING list3 = ("AA","CC","BB");
[]STRING list4 = ("AA","ACB","BB","CC");
[]STRING list5 = ("single_element");
[][]STRING all lists to test = (list1, list2, list3, list4, list5);
PROC equal = ([]STRING list) BOOL:
BEGIN
BOOL ok := TRUE;
FOR i TO UPB list - 1 WHILE ok DO
ok := list[i] = list[i+1]
OD;
ok
END;
PROC less than = ([]STRING list) BOOL:
BEGIN
BOOL ok := TRUE;
FOR i TO UPB list - 1 WHILE ok DO
ok := list[i] < list[i + 1]
OD;
ok
END;
FOR i TO UPB all lists to test DO
[]STRING list = all lists to test[i];
print (("list:", (STRING s; FOR i TO UPB list DO s +:= " " + list[i] OD; s), new line));
IF equal (list) THEN
print (("...is lexically equal", new line))
ELSE
print (("...is not lexically equal", new line))
FI;
IF less than (list) THEN
print (("...is in strict ascending order", new line))
ELSE
print (("...is not in strict ascending order", new line))
FI
OD |
http://rosettacode.org/wiki/Compiler/lexical_analyzer | Compiler/lexical analyzer | Definition from Wikipedia:
Lexical analysis is the process of converting a sequence of characters (such as in a computer program or web page) into a sequence of tokens (strings with an identified "meaning"). A program that performs lexical analysis may be called a lexer, tokenizer, or scanner (though "scanner" is also used to refer to the first stage of a lexer).
Task[edit]
Create a lexical analyzer for the simple programming language specified below. The
program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a lexer module/library/class, it would be great
if two versions of the solution are provided: One without the lexer module, and one with.
Input Specification
The simple programming language to be analyzed is more or less a subset of C. It supports the following tokens:
Operators
Name
Common name
Character sequence
Op_multiply
multiply
*
Op_divide
divide
/
Op_mod
mod
%
Op_add
plus
+
Op_subtract
minus
-
Op_negate
unary minus
-
Op_less
less than
<
Op_lessequal
less than or equal
<=
Op_greater
greater than
>
Op_greaterequal
greater than or equal
>=
Op_equal
equal
==
Op_notequal
not equal
!=
Op_not
unary not
!
Op_assign
assignment
=
Op_and
logical and
&&
Op_or
logical or
¦¦
The - token should always be interpreted as Op_subtract by the lexer. Turning some Op_subtract into Op_negate will be the job of the syntax analyzer, which is not part of this task.
Symbols
Name
Common name
Character
LeftParen
left parenthesis
(
RightParen
right parenthesis
)
LeftBrace
left brace
{
RightBrace
right brace
}
Semicolon
semi-colon
;
Comma
comma
,
Keywords
Name
Character sequence
Keyword_if
if
Keyword_else
else
Keyword_while
while
Keyword_print
print
Keyword_putc
putc
Identifiers and literals
These differ from the the previous tokens, in that each occurrence of them has a value associated with it.
Name
Common name
Format description
Format regex
Value
Identifier
identifier
one or more letter/number/underscore characters, but not starting with a number
[_a-zA-Z][_a-zA-Z0-9]*
as is
Integer
integer literal
one or more digits
[0-9]+
as is, interpreted as a number
Integer
char literal
exactly one character (anything except newline or single quote) or one of the allowed escape sequences, enclosed by single quotes
'([^'\n]|\\n|\\\\)'
the ASCII code point number of the character, e.g. 65 for 'A' and 10 for '\n'
String
string literal
zero or more characters (anything except newline or double quote), enclosed by double quotes
"[^"\n]*"
the characters without the double quotes and with escape sequences converted
For char and string literals, the \n escape sequence is supported to represent a new-line character.
For char and string literals, to represent a backslash, use \\.
No other special sequences are supported. This means that:
Char literals cannot represent a single quote character (value 39).
String literals cannot represent strings containing double quote characters.
Zero-width tokens
Name
Location
End_of_input
when the end of the input stream is reached
White space
Zero or more whitespace characters, or comments enclosed in /* ... */, are allowed between any two tokens, with the exceptions noted below.
"Longest token matching" is used to resolve conflicts (e.g., in order to match <= as a single token rather than the two tokens < and =).
Whitespace is required between two tokens that have an alphanumeric character or underscore at the edge.
This means: keywords, identifiers, and integer literals.
e.g. ifprint is recognized as an identifier, instead of the keywords if and print.
e.g. 42fred is invalid, and neither recognized as a number nor an identifier.
Whitespace is not allowed inside of tokens (except for chars and strings where they are part of the value).
e.g. & & is invalid, and not interpreted as the && operator.
For example, the following two program fragments are equivalent, and should produce the same token stream except for the line and column positions:
if ( p /* meaning n is prime */ ) {
print ( n , " " ) ;
count = count + 1 ; /* number of primes found so far */
}
if(p){print(n," ");count=count+1;}
Complete list of token names
End_of_input Op_multiply Op_divide Op_mod Op_add Op_subtract
Op_negate Op_not Op_less Op_lessequal Op_greater Op_greaterequal
Op_equal Op_notequal Op_assign Op_and Op_or Keyword_if
Keyword_else Keyword_while Keyword_print Keyword_putc LeftParen RightParen
LeftBrace RightBrace Semicolon Comma Identifier Integer
String
Output Format
The program output should be a sequence of lines, each consisting of the following whitespace-separated fields:
the line number where the token starts
the column number where the token starts
the token name
the token value (only for Identifier, Integer, and String tokens)
the number of spaces between fields is up to you. Neatly aligned is nice, but not a requirement.
This task is intended to be used as part of a pipeline, with the other compiler tasks - for example:
lex < hello.t | parse | gen | vm
Or possibly:
lex hello.t lex.out
parse lex.out parse.out
gen parse.out gen.out
vm gen.out
This implies that the output of this task (the lexical analyzer) should be suitable as input to any of the Syntax Analyzer task programs.
Diagnostics
The following error conditions should be caught:
Error
Example
Empty character constant
''
Unknown escape sequence.
\r
Multi-character constant.
'xx'
End-of-file in comment. Closing comment characters not found.
End-of-file while scanning string literal. Closing string character not found.
End-of-line while scanning string literal. Closing string character not found before end-of-line.
Unrecognized character.
|
Invalid number. Starts like a number, but ends in non-numeric characters.
123abc
Test Cases
Input
Output
Test Case 1:
/*
Hello world
*/
print("Hello, World!\n");
4 1 Keyword_print
4 6 LeftParen
4 7 String "Hello, World!\n"
4 24 RightParen
4 25 Semicolon
5 1 End_of_input
Test Case 2:
/*
Show Ident and Integers
*/
phoenix_number = 142857;
print(phoenix_number, "\n");
4 1 Identifier phoenix_number
4 16 Op_assign
4 18 Integer 142857
4 24 Semicolon
5 1 Keyword_print
5 6 LeftParen
5 7 Identifier phoenix_number
5 21 Comma
5 23 String "\n"
5 27 RightParen
5 28 Semicolon
6 1 End_of_input
Test Case 3:
/*
All lexical tokens - not syntactically correct, but that will
have to wait until syntax analysis
*/
/* Print */ print /* Sub */ -
/* Putc */ putc /* Lss */ <
/* If */ if /* Gtr */ >
/* Else */ else /* Leq */ <=
/* While */ while /* Geq */ >=
/* Lbrace */ { /* Eq */ ==
/* Rbrace */ } /* Neq */ !=
/* Lparen */ ( /* And */ &&
/* Rparen */ ) /* Or */ ||
/* Uminus */ - /* Semi */ ;
/* Not */ ! /* Comma */ ,
/* Mul */ * /* Assign */ =
/* Div */ / /* Integer */ 42
/* Mod */ % /* String */ "String literal"
/* Add */ + /* Ident */ variable_name
/* character literal */ '\n'
/* character literal */ '\\'
/* character literal */ ' '
5 16 Keyword_print
5 40 Op_subtract
6 16 Keyword_putc
6 40 Op_less
7 16 Keyword_if
7 40 Op_greater
8 16 Keyword_else
8 40 Op_lessequal
9 16 Keyword_while
9 40 Op_greaterequal
10 16 LeftBrace
10 40 Op_equal
11 16 RightBrace
11 40 Op_notequal
12 16 LeftParen
12 40 Op_and
13 16 RightParen
13 40 Op_or
14 16 Op_subtract
14 40 Semicolon
15 16 Op_not
15 40 Comma
16 16 Op_multiply
16 40 Op_assign
17 16 Op_divide
17 40 Integer 42
18 16 Op_mod
18 40 String "String literal"
19 16 Op_add
19 40 Identifier variable_name
20 26 Integer 10
21 26 Integer 92
22 26 Integer 32
23 1 End_of_input
Test Case 4:
/*** test printing, embedded \n and comments with lots of '*' ***/
print(42);
print("\nHello World\nGood Bye\nok\n");
print("Print a slash n - \\n.\n");
2 1 Keyword_print
2 6 LeftParen
2 7 Integer 42
2 9 RightParen
2 10 Semicolon
3 1 Keyword_print
3 6 LeftParen
3 7 String "\nHello World\nGood Bye\nok\n"
3 38 RightParen
3 39 Semicolon
4 1 Keyword_print
4 6 LeftParen
4 7 String "Print a slash n - \\n.\n"
4 33 RightParen
4 34 Semicolon
5 1 End_of_input
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Syntax Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #Ada | Ada | with Ada.Text_IO, Ada.Streams.Stream_IO, Ada.Strings.Unbounded, Ada.Command_Line,
Ada.Exceptions;
use Ada.Strings, Ada.Strings.Unbounded, Ada.Streams, Ada.Exceptions;
procedure Main is
package IO renames Ada.Text_IO;
package Lexer is
type Token is (Op_multiply, Op_divide, Op_mod, Op_add, Op_subtract, Op_negate,
Op_less, Op_lessequal, Op_greater, Op_greaterequal, Op_equal,
Op_notequal, Op_not, Op_assign, Op_and, Op_or,
LeftParen, RightParen, LeftBrace, RightBrace, Semicolon, Comma,
Keyword_if, Keyword_else, Keyword_while, Keyword_print, Keyword_putc,
Identifier, Token_Integer, Token_String, End_of_input,
Empty_Char_Error, Invalid_Escape_Error, Multi_Char_Error, EOF_Comment_Error,
EOF_String_Error, EOL_String_Error, Invalid_Char_Error, Invalid_Num_Error
);
subtype Operator is Token range Op_multiply .. Op_or;
subtype Symbol is Token range Token'Succ(Operator'Last) .. Comma;
subtype Keyword is Token range Token'Succ(Symbol'Last) .. Keyword_putc;
subtype Error is Token range Empty_Char_Error .. Invalid_Num_Error;
subtype Operator_or_Error is Token
with Static_Predicate => Operator_or_Error in Operator | Error;
subtype Whitespace is Character
with Static_Predicate => Whitespace in ' ' | ASCII.HT | ASCII.CR | ASCII.LF;
Lexer_Error : exception;
Invalid_Escape_Code : constant Character := ASCII.NUL;
procedure run(input : Stream_IO.File_Type);
end Lexer;
package body Lexer is
use type Stream_IO.Count;
procedure run(input : Stream_IO.File_Type) is
type State is (State_Start, State_Identifier, State_Integer, State_Char, State_String,
State_Comment);
curr_state : State := State_Start;
curr_char : Character;
curr_col, curr_row, token_col, token_row : Positive := 1;
token_text : Unbounded_String := Unbounded.Null_Unbounded_String;
function look_ahead return Character is
next_char : Character := ASCII.LF;
begin
if not Stream_IO.End_Of_File(input) then
next_char := Character'Input(Stream_IO.Stream(input));
Stream_IO.Set_Index(input, Stream_IO.Index(input) - 1);
end if;
return next_char;
end look_ahead;
procedure next_char is
next : Character := Character'Input(Stream_IO.Stream(input));
begin
curr_col := curr_col + 1;
if curr_char = ASCII.LF then
curr_row := curr_row + 1;
curr_col := 1;
end if;
curr_char := next;
end next_char;
procedure print_token(tok : Token; text : String := "") is
procedure raise_error(text : String) is
begin
raise Lexer_Error with "Error: " & text;
end;
begin
IO.Put(token_row'Image & ASCII.HT & token_col'Image & ASCII.HT);
case tok is
when Operator | Symbol | Keyword | End_of_input => IO.Put_Line(tok'Image);
when Token_Integer => IO.Put_Line("INTEGER" & ASCII.HT & text);
when Token_String => IO.Put_Line("STRING" & ASCII.HT & ASCII.Quotation & text & ASCII.Quotation);
when Identifier => IO.Put_Line(tok'Image & ASCII.HT & text);
when Empty_Char_Error => raise_error("empty character constant");
when Invalid_Escape_Error => raise_error("unknown escape sequence: " & text);
when Multi_Char_Error => raise_error("multi-character constant: " & text);
when EOF_Comment_Error => raise_error("EOF in comment");
when EOF_String_Error => raise_error("EOF in string");
when EOL_String_Error => raise_error("EOL in string");
when Invalid_Char_Error => raise_error("invalid character: " & curr_char);
when Invalid_Num_Error => raise_error("invalid number: " & text);
end case;
end print_token;
procedure lookahead_choose(determiner : Character; a, b : Operator_or_Error) is
begin
if look_ahead = determiner then
print_token(a);
next_char;
else
print_token(b);
end if;
end lookahead_choose;
function to_escape_code(c : Character) return Character is
begin
case c is
when 'n' => return ASCII.LF;
when '\' => return '\';
when others =>
print_token(Invalid_Escape_Error, ASCII.Back_Slash & c);
return Invalid_Escape_Code;
end case;
end to_escape_code;
begin
curr_char := Character'Input(Stream_IO.Stream(input));
loop
case curr_state is
when State_Start =>
token_col := curr_col;
token_row := curr_row;
case curr_char is
when '*' => print_token(Op_multiply);
when '/' =>
if look_ahead = '*' then
next_char;
curr_state := State_Comment;
else
print_token(Op_divide);
end if;
when '%' => print_token(Op_mod);
when '+' => print_token(Op_add);
when '-' => print_token(Op_subtract);
when '(' => print_token(LeftParen);
when ')' => print_token(RightParen);
when '{' => print_token(LeftBrace);
when '}' => print_token(RightBrace);
when ';' => print_token(Semicolon);
when ',' => print_token(Comma);
when '<' => lookahead_choose('=', Op_lessequal, Op_less);
when '>' => lookahead_choose('=', Op_greaterequal, Op_greater);
when '!' => lookahead_choose('=', Op_notequal, Op_not);
when '=' => lookahead_choose('=', Op_equal, Op_assign);
when '&' => lookahead_choose('&', Op_and, Invalid_Char_Error);
when '|' => lookahead_choose('|', Op_or, Invalid_Char_Error);
when 'a' .. 'z' | 'A' .. 'Z' | '_' =>
Unbounded.Append(token_text, curr_char);
curr_state := State_Identifier;
when '0' .. '9' =>
Unbounded.Append(token_text, curr_char);
curr_state := State_Integer;
when ''' => curr_state := State_Char;
when ASCII.Quotation => curr_state := State_String;
when Whitespace => null;
when others => null;
end case;
next_char;
when State_Identifier =>
case curr_char is
when 'a' .. 'z' | 'A' .. 'Z' | '0' .. '9' | '_' =>
Unbounded.Append(token_text, curr_char);
next_char;
when others =>
if token_text = "if" then
print_token(Keyword_if);
elsif token_text = "else" then
print_token(Keyword_else);
elsif token_text = "while" then
print_token(Keyword_while);
elsif token_text = "print" then
print_token(Keyword_print);
elsif token_text = "putc" then
print_token(Keyword_putc);
else
print_token(Identifier, To_String(token_text));
end if;
Unbounded.Set_Unbounded_String(token_text, "");
curr_state := State_Start;
end case;
when State_Integer =>
case curr_char is
when '0' .. '9' =>
Unbounded.Append(token_text, curr_char);
next_char;
when 'a' .. 'z' | 'A' .. 'Z' | '_' =>
print_token(Invalid_Num_Error, To_String(token_text));
when others =>
print_token(Token_Integer, To_String(token_text));
Unbounded.Set_Unbounded_String(token_text, "");
curr_state := State_Start;
end case;
when State_Char =>
case curr_char is
when ''' =>
if Unbounded.Length(token_text) = 0 then
print_token(Empty_Char_Error);
elsif Unbounded.Length(token_text) = 1 then
print_token(Token_Integer, Character'Pos(Element(token_text, 1))'Image);
else
print_token(Multi_Char_Error, To_String(token_text));
end if;
Set_Unbounded_String(token_text, "");
curr_state := State_Start;
when '\' =>
Unbounded.Append(token_text, to_escape_code(look_ahead));
next_char;
when others => Unbounded.Append(token_text, curr_char);
end case;
next_char;
when State_String =>
case curr_char is
when ASCII.Quotation =>
print_token(Token_String, To_String(token_text));
Set_Unbounded_String(token_text, "");
curr_state := State_Start;
when '\' =>
if to_escape_code(look_ahead) /= Invalid_Escape_Code then
Unbounded.Append(token_text, curr_char);
end if;
when ASCII.LF | ASCII.CR => print_token(EOL_String_Error);
when others => Unbounded.Append(token_text, curr_char);
end case;
next_char;
when State_Comment =>
case curr_char is
when '*' =>
if look_ahead = '/' then
next_char;
curr_state := State_Start;
end if;
when others => null;
end case;
next_char;
end case;
end loop;
exception
when error : Stream_IO.End_Error =>
if curr_state = State_String then
print_token(EOF_String_Error);
else
print_token(End_of_input);
end if;
when error : Lexer.Lexer_Error => IO.Put_Line(Exception_Message(error));
end run;
end Lexer;
source_file : Stream_IO.File_Type;
begin
if Ada.Command_Line.Argument_Count < 1 then
IO.Put_Line("usage: lex [filename]");
return;
end if;
Stream_IO.Open(source_file, Stream_IO.In_File, Ada.Command_Line.Argument(1));
Lexer.run(source_file);
exception
when error : others => IO.Put_Line("Error: " & Exception_Message(error));
end Main;
|
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #Ada | Ada | with Ada.Command_line; use Ada.Command_Line;
with Ada.Text_IO; use Ada.Text_IO;
procedure Print_Commands is
begin
-- The number of command line arguments is retrieved from the function Argument_Count
-- The actual arguments are retrieved from the function Argument
-- The program name is retrieved from the function Command_Name
Put(Command_Name & " ");
for Arg in 1..Argument_Count loop
Put(Argument(Arg) & " ");
end loop;
New_Line;
end Print_Commands; |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #Aikido | Aikido |
foreach arg in args {
println ("arg: " + arg)
}
|
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #360_Assembly | 360 Assembly |
* An asterisk in column one denotes a comment line
* Comments may also follow any syntactically complete instruction:
LA 1,0 Comment
NOP Comment (after a NOP instruction)
* Comments after instructions with omitted operands require a comma ","
END , Comment (without comma, "Comment" assumed an operand of "END")
|
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #4D | 4D | `Comments in 4th Dimension begin with the accent character and extend to the end of the line (until 4D version 2004).
// This is a comment starting from 4D v11 and newer. Accent character is replaced by // |
http://rosettacode.org/wiki/Compiler/virtual_machine_interpreter | Compiler/virtual machine interpreter | A virtual machine implements a computer in software.
Task[edit]
Write a virtual machine interpreter. This interpreter should be able to run virtual
assembly language programs created via the task. This is a
byte-coded, 32-bit word stack based virtual machine.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Input format:
Given the following program:
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
The output from the Code generator is a virtual assembly code program:
Output from gen, input to VM
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
The first line of the input specifies the datasize required and the number of constant
strings, in the order that they are reference via the code.
The data can be stored in a separate array, or the data can be stored at the beginning of
the stack. Data is addressed starting at 0. If there are 3 variables, the 3rd one if
referenced at address 2.
If there are one or more constant strings, they come next. The code refers to these
strings by their index. The index starts at 0. So if there are 3 strings, and the code
wants to reference the 3rd string, 2 will be used.
Next comes the actual virtual assembly code. The first number is the code address of that
instruction. After that is the instruction mnemonic, followed by optional operands,
depending on the instruction.
Registers:
sp:
the stack pointer - points to the next top of stack. The stack is a 32-bit integer
array.
pc:
the program counter - points to the current instruction to be performed. The code is an
array of bytes.
Data:
data
string pool
Instructions:
Each instruction is one byte. The following instructions also have a 32-bit integer
operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
Print the word at stack top as a character.
prtc
Print the word at stack top as an integer.
prti
Stack top points to an index into the string pool. Print that entry.
prts
Unconditional stop.
halt
A simple example virtual machine
def run_vm(data_size)
int stack[data_size + 1000]
set stack[0..data_size - 1] to 0
int pc = 0
while True:
op = code[pc]
pc += 1
if op == FETCH:
stack.append(stack[bytes_to_int(code[pc:pc+word_size])[0]]);
pc += word_size
elif op == STORE:
stack[bytes_to_int(code[pc:pc+word_size])[0]] = stack.pop();
pc += word_size
elif op == PUSH:
stack.append(bytes_to_int(code[pc:pc+word_size])[0]);
pc += word_size
elif op == ADD: stack[-2] += stack[-1]; stack.pop()
elif op == SUB: stack[-2] -= stack[-1]; stack.pop()
elif op == MUL: stack[-2] *= stack[-1]; stack.pop()
elif op == DIV: stack[-2] /= stack[-1]; stack.pop()
elif op == MOD: stack[-2] %= stack[-1]; stack.pop()
elif op == LT: stack[-2] = stack[-2] < stack[-1]; stack.pop()
elif op == GT: stack[-2] = stack[-2] > stack[-1]; stack.pop()
elif op == LE: stack[-2] = stack[-2] <= stack[-1]; stack.pop()
elif op == GE: stack[-2] = stack[-2] >= stack[-1]; stack.pop()
elif op == EQ: stack[-2] = stack[-2] == stack[-1]; stack.pop()
elif op == NE: stack[-2] = stack[-2] != stack[-1]; stack.pop()
elif op == AND: stack[-2] = stack[-2] and stack[-1]; stack.pop()
elif op == OR: stack[-2] = stack[-2] or stack[-1]; stack.pop()
elif op == NEG: stack[-1] = -stack[-1]
elif op == NOT: stack[-1] = not stack[-1]
elif op == JMP: pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == JZ: if stack.pop() then pc += word_size else pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == PRTC: print stack[-1] as a character; stack.pop()
elif op == PRTS: print the constant string referred to by stack[-1]; stack.pop()
elif op == PRTI: print stack[-1] as an integer; stack.pop()
elif op == HALT: break
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
AST Interpreter task
| #Go | Go | package main
import (
"bufio"
"encoding/binary"
"fmt"
"log"
"math"
"os"
"strconv"
"strings"
)
type code = byte
const (
fetch code = iota
store
push
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
neg
not
jmp
jz
prtc
prts
prti
halt
)
var codeMap = map[string]code{
"fetch": fetch,
"store": store,
"push": push,
"add": add,
"sub": sub,
"mul": mul,
"div": div,
"mod": mod,
"lt": lt,
"gt": gt,
"le": le,
"ge": ge,
"eq": eq,
"ne": ne,
"and": and,
"or": or,
"neg": neg,
"not": not,
"jmp": jmp,
"jz": jz,
"prtc": prtc,
"prts": prts,
"prti": prti,
"halt": halt,
}
var (
err error
scanner *bufio.Scanner
object []code
stringPool []string
)
func reportError(msg string) {
log.Fatalf("error : %s\n", msg)
}
func check(err error) {
if err != nil {
log.Fatal(err)
}
}
func btoi(b bool) int32 {
if b {
return 1
}
return 0
}
func itob(i int32) bool {
if i != 0 {
return true
}
return false
}
func emitByte(c code) {
object = append(object, c)
}
func emitWord(n int) {
bs := make([]byte, 4)
binary.LittleEndian.PutUint32(bs, uint32(n))
for _, b := range bs {
emitByte(code(b))
}
}
/*** Virtual Machine interpreter ***/
func runVM(dataSize int) {
stack := make([]int32, dataSize+1)
pc := int32(0)
for {
op := object[pc]
pc++
switch op {
case fetch:
x := int32(binary.LittleEndian.Uint32(object[pc : pc+4]))
stack = append(stack, stack[x])
pc += 4
case store:
x := int32(binary.LittleEndian.Uint32(object[pc : pc+4]))
ln := len(stack)
stack[x] = stack[ln-1]
stack = stack[:ln-1]
pc += 4
case push:
x := int32(binary.LittleEndian.Uint32(object[pc : pc+4]))
stack = append(stack, x)
pc += 4
case add:
ln := len(stack)
stack[ln-2] += stack[ln-1]
stack = stack[:ln-1]
case sub:
ln := len(stack)
stack[ln-2] -= stack[ln-1]
stack = stack[:ln-1]
case mul:
ln := len(stack)
stack[ln-2] *= stack[ln-1]
stack = stack[:ln-1]
case div:
ln := len(stack)
stack[ln-2] = int32(float64(stack[ln-2]) / float64(stack[ln-1]))
stack = stack[:ln-1]
case mod:
ln := len(stack)
stack[ln-2] = int32(math.Mod(float64(stack[ln-2]), float64(stack[ln-1])))
stack = stack[:ln-1]
case lt:
ln := len(stack)
stack[ln-2] = btoi(stack[ln-2] < stack[ln-1])
stack = stack[:ln-1]
case gt:
ln := len(stack)
stack[ln-2] = btoi(stack[ln-2] > stack[ln-1])
stack = stack[:ln-1]
case le:
ln := len(stack)
stack[ln-2] = btoi(stack[ln-2] <= stack[ln-1])
stack = stack[:ln-1]
case ge:
ln := len(stack)
stack[ln-2] = btoi(stack[ln-2] >= stack[ln-1])
stack = stack[:ln-1]
case eq:
ln := len(stack)
stack[ln-2] = btoi(stack[ln-2] == stack[ln-1])
stack = stack[:ln-1]
case ne:
ln := len(stack)
stack[ln-2] = btoi(stack[ln-2] != stack[ln-1])
stack = stack[:ln-1]
case and:
ln := len(stack)
stack[ln-2] = btoi(itob(stack[ln-2]) && itob(stack[ln-1]))
stack = stack[:ln-1]
case or:
ln := len(stack)
stack[ln-2] = btoi(itob(stack[ln-2]) || itob(stack[ln-1]))
stack = stack[:ln-1]
case neg:
ln := len(stack)
stack[ln-1] = -stack[ln-1]
case not:
ln := len(stack)
stack[ln-1] = btoi(!itob(stack[ln-1]))
case jmp:
x := int32(binary.LittleEndian.Uint32(object[pc : pc+4]))
pc += x
case jz:
ln := len(stack)
v := stack[ln-1]
stack = stack[:ln-1]
if v != 0 {
pc += 4
} else {
x := int32(binary.LittleEndian.Uint32(object[pc : pc+4]))
pc += x
}
case prtc:
ln := len(stack)
fmt.Printf("%c", stack[ln-1])
stack = stack[:ln-1]
case prts:
ln := len(stack)
fmt.Printf("%s", stringPool[stack[ln-1]])
stack = stack[:ln-1]
case prti:
ln := len(stack)
fmt.Printf("%d", stack[ln-1])
stack = stack[:ln-1]
case halt:
return
default:
reportError(fmt.Sprintf("Unknown opcode %d\n", op))
}
}
}
func translate(s string) string {
var d strings.Builder
for i := 0; i < len(s); i++ {
if s[i] == '\\' && (i+1) < len(s) {
if s[i+1] == 'n' {
d.WriteByte('\n')
i++
} else if s[i+1] == '\\' {
d.WriteByte('\\')
i++
}
} else {
d.WriteByte(s[i])
}
}
return d.String()
}
func loadCode() int {
var dataSize int
firstLine := true
for scanner.Scan() {
line := strings.TrimRight(scanner.Text(), " \t")
if len(line) == 0 {
if firstLine {
reportError("empty line")
} else {
break
}
}
lineList := strings.Fields(line)
if firstLine {
dataSize, err = strconv.Atoi(lineList[1])
check(err)
nStrings, err := strconv.Atoi(lineList[3])
check(err)
for i := 0; i < nStrings; i++ {
scanner.Scan()
s := strings.Trim(scanner.Text(), "\"\n")
stringPool = append(stringPool, translate(s))
}
firstLine = false
continue
}
offset, err := strconv.Atoi(lineList[0])
check(err)
instr := lineList[1]
opCode, ok := codeMap[instr]
if !ok {
reportError(fmt.Sprintf("Unknown instruction %s at %d", instr, opCode))
}
emitByte(opCode)
switch opCode {
case jmp, jz:
p, err := strconv.Atoi(lineList[3])
check(err)
emitWord(p - offset - 1)
case push:
value, err := strconv.Atoi(lineList[2])
check(err)
emitWord(value)
case fetch, store:
value, err := strconv.Atoi(strings.Trim(lineList[2], "[]"))
check(err)
emitWord(value)
}
}
check(scanner.Err())
return dataSize
}
func main() {
codeGen, err := os.Open("codegen.txt")
check(err)
defer codeGen.Close()
scanner = bufio.NewScanner(codeGen)
runVM(loadCode())
} |
http://rosettacode.org/wiki/Compiler/code_generator | Compiler/code generator | A code generator translates the output of the syntax analyzer and/or semantic analyzer
into lower level code, either assembly, object, or virtual.
Task[edit]
Take the output of the Syntax analyzer task - which is a flattened Abstract Syntax Tree (AST) - and convert it to virtual machine code, that can be run by the
Virtual machine interpreter. The output is in text format, and represents virtual assembly code.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
while.ast can be input into the code generator.
The following table shows the input to lex, lex output, the AST produced by the parser, and the generated virtual assembly code.
Run as: lex < while.t | parse | gen
Input to lex
Output from lex, input to parse
Output from parse
Output from gen, input to VM
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
Input format
As shown in the table, above, the output from the syntax analyzer is a flattened AST.
In the AST, Identifier, Integer, and String, are terminal nodes, e.g, they do not have child nodes.
Loading this data into an internal parse tree should be as simple as:
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";"
return None
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Output format - refer to the table above
The first line is the header: Size of data, and number of constant strings.
size of data is the number of 32-bit unique variables used. In this example, one variable, count
number of constant strings is just that - how many there are
After that, the constant strings
Finally, the assembly code
Registers
sp: the stack pointer - points to the next top of stack. The stack is a 32-bit integer array.
pc: the program counter - points to the current instruction to be performed. The code is an array of bytes.
Data
32-bit integers and strings
Instructions
Each instruction is one byte. The following instructions also have a 32-bit integer operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
prtc
Print the word at stack top as a character.
prti
Print the word at stack top as an integer.
prts
Stack top points to an index into the string pool. Print that entry.
halt
Unconditional stop.
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Virtual Machine Interpreter task
AST Interpreter task
| #Forth | Forth | CREATE BUF 0 ,
: PEEK BUF @ 0= IF KEY BUF ! THEN BUF @ ;
: GETC PEEK 0 BUF ! ;
: SPACE? DUP BL = SWAP 9 14 WITHIN OR ;
: >SPACE BEGIN PEEK SPACE? WHILE GETC DROP REPEAT ;
: DIGIT? 48 58 WITHIN ;
: >Integer >SPACE 0
BEGIN PEEK DIGIT?
WHILE GETC [CHAR] 0 - SWAP 10 * + REPEAT ;
: SKIP ( xt --)
BEGIN PEEK OVER EXECUTE WHILE GETC DROP REPEAT DROP ;
: WORD ( xt -- c-addr) DUP >R SKIP PAD 1+
BEGIN PEEK R@ EXECUTE INVERT
WHILE GETC OVER C! CHAR+
REPEAT R> SKIP PAD TUCK - 1- PAD C! ;
: INTERN ( c-addr -- c-addr)
HERE TUCK OVER C@ CHAR+ DUP ALLOT CMOVE ;
: "? [CHAR] " = ;
: "TYPE" [CHAR] " EMIT TYPE [CHAR] " EMIT ;
: . 0 .R ;
: 3@ ( addr -- w3 w2 w1)
[ 2 CELLS ]L + DUP @ SWAP CELL - DUP @ SWAP CELL - @ ;
CREATE BUF' 12 ALLOT
: PREPEND ( c-addr c -- c-addr) BUF' 1+ C!
COUNT 10 MIN DUP 1+ BUF' C! BUF' 2 + SWAP CMOVE BUF' ;
: >NODE ( c-addr -- n) [CHAR] $ PREPEND FIND
IF EXECUTE ELSE ." unrecognized node " COUNT TYPE CR THEN ;
: NODE ( n left right -- addr) HERE >R , , , R> ;
: CONS ( a b l -- l) HERE >R , , , R> ;
: FIRST ( l -- a) [ 2 CELLS ]L + @ ;
: SECOND ( l -- b) CELL+ @ ;
: C=? ( c-addr1 c-addr2 -- t|f) COUNT ROT COUNT COMPARE 0= ;
: LOOKUP ( c-addr l -- n t | c-addr f)
BEGIN DUP WHILE OVER OVER FIRST C=?
IF NIP SECOND TRUE EXIT THEN @
REPEAT DROP FALSE ;
CREATE GLOBALS 0 , CREATE STRINGS 0 ,
: DEPTH ( pool -- n) DUP IF SECOND 1+ THEN ;
: FISH ( c-addr pool -- n pool') TUCK LOOKUP IF SWAP
ELSE INTERN OVER DEPTH ROT OVER >R CONS R> SWAP THEN ;
: >Identifier ['] SPACE? WORD GLOBALS @ FISH GLOBALS ! ;
: >String ['] "? WORD STRINGS @ FISH STRINGS ! ;
: >; 0 ;
: HANDLER [CHAR] @ PREPEND FIND DROP ;
: READER ( c-addr -- xt t | f)
[CHAR] > PREPEND FIND DUP 0= IF NIP THEN ;
DEFER GETAST
: READ ( c-addr -- right left) READER
IF EXECUTE 0 ELSE GETAST GETAST THEN SWAP ;
: (GETAST) ['] SPACE? WORD DUP HANDLER >R READ R> NODE ;
' (GETAST) IS GETAST
CREATE PC 0 ,
: i32! ( n addr --)
OVER $FF AND OVER C! 1+
OVER 8 RSHIFT $FF AND OVER C! 1+
OVER 16 RSHIFT $FF AND OVER C! 1+
OVER 24 RSHIFT $FF AND OVER C! DROP DROP ;
: i32, ( n --) HERE i32! 4 ALLOT 4 PC +! ;
: i8, ( c --) C, 1 PC +! ;
: i8@+ DUP 1+ SWAP C@ 1 PC +! ;
: i32@+ ( addr -- addr+4 n)
i8@+ >R i8@+ 8 LSHIFT R> OR >R
i8@+ 16 LSHIFT R> OR >R i8@+ 24 LSHIFT R> OR ;
CREATE #OPS 0 ,
: OP: CREATE #OPS @ , 1 #OPS +! DOES> @ ;
OP: fetch OP: store OP: push OP: jmp OP: jz
OP: prtc OP: prti OP: prts OP: neg OP: not
OP: add OP: sub OP: mul OP: div OP: mod
OP: lt OP: gt OP: le OP: ge
OP: eq OP: ne OP: and OP: or OP: halt
: GEN ( ast --) 3@ EXECUTE ;
: @; ( r l) DROP DROP ;
: @Identifier fetch i8, i32, DROP ;
: @Integer push i8, i32, DROP ;
: @String push i8, i32, DROP ;
: @Prtc GEN prtc i8, DROP ;
: @Prti GEN prti i8, DROP ;
: @Prts GEN prts i8, DROP ;
: @Not GEN not i8, DROP ;
: @Negate GEN neg i8, DROP ;
: @Sequence GEN GEN ;
: @Assign CELL+ @ >R GEN store i8, R> i32, ;
: @While PC @ SWAP GEN jz i8, HERE >R 0 i32,
SWAP GEN jmp i8, i32, PC @ R> i32! ;
: @If GEN jz i8, HERE >R 0 i32,
CELL+ DUP CELL+ @ DUP @ ['] @; = IF DROP @
ELSE SWAP @ GEN jmp i8, HERE 0 i32, PC @ R> i32! >R
THEN GEN PC @ R> i32! ;
: BINARY >R GEN GEN R> i8, ;
: @Subtract sub BINARY ; : @Add add BINARY ;
: @Mod mod BINARY ; : @Multiply mul BINARY ;
: @Divide div BINARY ;
: @Less lt BINARY ; : @LessEqual le BINARY ;
: @Greater gt BINARY ; : @GreaterEqual ge BINARY ;
: @Equal eq BINARY ; : @NotEqual ne BINARY ;
: @And and BINARY ; : @Or or BINARY ;
: REVERSE ( l -- l') 0 SWAP
BEGIN DUP WHILE TUCK DUP @ ROT ROT ! REPEAT DROP ;
: .STRINGS STRINGS @ REVERSE BEGIN DUP
WHILE DUP FIRST COUNT "TYPE" CR @ REPEAT DROP ;
: .HEADER ( --)
." Datasize: " GLOBALS @ DEPTH . SPACE
." Strings: " STRINGS @ DEPTH . CR .STRINGS ;
: GENERATE ( ast -- addr u)
0 PC ! HERE >R GEN halt i8, R> PC @ ;
: ," [CHAR] " PARSE TUCK HERE SWAP CMOVE ALLOT ;
CREATE "OPS"
," fetch store push jmp jz prtc prti prts "
," neg not add sub mul div mod lt "
," gt le ge eq ne and or halt "
: .i32 i32@+ . ;
: .[i32] [CHAR] [ EMIT .i32 [CHAR] ] EMIT ;
: .off [CHAR] ( EMIT PC @ >R i32@+ DUP R> - . [CHAR] ) EMIT
SPACE . ;
CREATE .INT ' .[i32] , ' .[i32] , ' .i32 , ' .off , ' .off ,
: EMIT ( addr u --) >R 0 PC !
BEGIN PC @ R@ <
WHILE PC @ 5 .R SPACE i8@+
DUP 6 * "OPS" + 6 TYPE
DUP 5 < IF CELLS .INT + @ EXECUTE ELSE DROP THEN CR
REPEAT DROP R> DROP ;
GENERATE EMIT BYE |
http://rosettacode.org/wiki/Compare_sorting_algorithms%27_performance | Compare sorting algorithms' performance |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Measure a relative performance of sorting algorithms implementations.
Plot execution time vs. input sequence length dependencies for various implementation of sorting algorithm and different input sequence types (example figures).
Consider three type of input sequences:
ones: sequence of all 1's. Example: {1, 1, 1, 1, 1}
range: ascending sequence, i.e. already sorted. Example: {1, 2, 3, 10, 15}
shuffled range: sequence with elements randomly distributed. Example: {5, 3, 9, 6, 8}
Consider at least two different sorting functions (different algorithms or/and different implementation of the same algorithm).
For example, consider Bubble Sort, Insertion sort, Quicksort or/and implementations of Quicksort with different pivot selection mechanisms. Where possible, use existing implementations.
Preliminary subtask:
Bubble Sort, Insertion sort, Quicksort, Radix sort, Shell sort
Query Performance
Write float arrays to a text file
Plot x, y arrays
Polynomial Fitting
General steps:
Define sorting routines to be considered.
Define appropriate sequence generators and write timings.
Plot timings.
What conclusions about relative performance of the sorting routines could be made based on the plots?
| #Haskell | Haskell | import Data.Time.Clock
import Data.List
type Time = Integer
type Sorter a = [a] -> [a]
-- Simple timing function (in microseconds)
timed :: IO a -> IO (a, Time)
timed prog = do
t0 <- getCurrentTime
x <- prog
t1 <- x `seq` getCurrentTime
return (x, ceiling $ 1000000 * diffUTCTime t1 t0)
-- testing sorting algorithm on a given set
test :: [a] -> Sorter a -> IO [(Int, Time)]
test set srt = mapM (timed . run) ns
where
ns = take 15 $ iterate (\x -> (x * 5) `div` 3) 10
run n = pure $ length $ srt (take n set)
-- sample sets
constant = repeat 1
presorted = [1..]
random = (`mod` 100) <$> iterate step 42
where
step x = (x * a + c) `mod` m
(a, c, m) = (1103515245, 12345, 2^31-1) |
http://rosettacode.org/wiki/Compiler/AST_interpreter | Compiler/AST interpreter | An AST interpreter interprets an Abstract Syntax Tree (AST)
produced by a Syntax Analyzer.
Task[edit]
Take the AST output from the Syntax analyzer task, and interpret it as appropriate.
Refer to the Syntax analyzer task for details of the AST.
Loading the AST from the syntax analyzer is as simple as (pseudo code)
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
The interpreter algorithm is relatively simple
interp(x)
if x == NULL return NULL
elif x.node_type == Integer return x.value converted to an integer
elif x.node_type == Ident return the current value of variable x.value
elif x.node_type == String return x.value
elif x.node_type == Assign
globals[x.left.value] = interp(x.right)
return NULL
elif x.node_type is a binary operator return interp(x.left) operator interp(x.right)
elif x.node_type is a unary operator, return return operator interp(x.left)
elif x.node_type == If
if (interp(x.left)) then interp(x.right.left)
else interp(x.right.right)
return NULL
elif x.node_type == While
while (interp(x.left)) do interp(x.right)
return NULL
elif x.node_type == Prtc
print interp(x.left) as a character, no newline
return NULL
elif x.node_type == Prti
print interp(x.left) as an integer, no newline
return NULL
elif x.node_type == Prts
print interp(x.left) as a string, respecting newlines ("\n")
return NULL
elif x.node_type == Sequence
interp(x.left)
interp(x.right)
return NULL
else
error("unknown node type")
Notes:
Because of the simple nature of our tiny language, Semantic analysis is not needed.
Your interpreter should use C like division semantics, for both division and modulus. For division of positive operands, only the non-fractional portion of the result should be returned. In other words, the result should be truncated towards 0.
This means, for instance, that 3 / 2 should result in 1.
For division when one of the operands is negative, the result should be truncated towards 0.
This means, for instance, that 3 / -2 should result in -1.
Test program
prime.t
lex <prime.t | parse | interp
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
Virtual Machine Interpreter task
| #RATFOR | RATFOR | ######################################################################
#
# The Rosetta Code AST interpreter in Ratfor 77.
#
#
# In FORTRAN 77 and therefore in Ratfor 77, there is no way to specify
# that a value should be put on a call stack. Therefore there is no
# way to implement recursive algorithms in Ratfor 77 (although see the
# Ratfor for the "syntax analyzer" task, where a recursive language is
# implemented *in* Ratfor). Thus we cannot simply follow the
# recursive pseudocode, and instead use non-recursive algorithms.
#
# How to deal with FORTRAN 77 input is another problem. I use
# formatted input, treating each line as an array of type
# CHARACTER--regrettably of no more than some predetermined, finite
# length. It is a very simple method and presents no significant
# difficulties, aside from the restriction on line length of the
# input.
#
# Output is a bigger problem. If one uses gfortran, "advance='no'" is
# available, but not if one uses f2c. The method employed here is to
# construct the output in lines--regrettably, again, of fixed length.
#
#
# On a POSIX platform, the program can be compiled with f2c and run
# somewhat as follows:
#
# ratfor77 interp-in-ratfor.r > interp-in-ratfor.f
# f2c -C -Nc80 interp-in-ratfor.f
# cc interp-in-ratfor.c -lf2c
# ./a.out < compiler-tests/primes.ast
#
# With gfortran, a little differently:
#
# ratfor77 interp-in-ratfor.r > interp-in-ratfor.f
# gfortran -fcheck=all -std=legacy interp-in-ratfor.f
# ./a.out < compiler-tests/primes.ast
#
#
# I/O is strictly from default input and to default output, which, on
# POSIX systems, usually correspond respectively to standard input and
# standard output. (I did not wish to have to deal with unit numbers;
# these are now standardized in ISO_FORTRAN_ENV, but that is not
# available in FORTRAN 77.)
#
#---------------------------------------------------------------------
# Some parameters you may wish to modify.
define(LINESZ, 256) # Size of an input line.
define(OUTLSZ, 1024) # Size of an output line.
define(STRNSZ, 4096) # Size of the string pool.
define(NODSSZ, 4096) # Size of the nodes pool.
define(STCKSZ, 4096) # Size of stacks.
define(MAXVAR, 256) # Maximum number of variables.
#---------------------------------------------------------------------
define(NEWLIN, 10) # The Unix newline character (ASCII LF).
define(DQUOTE, 34) # The double quote character.
define(BACKSL, 92) # The backslash character.
#---------------------------------------------------------------------
define(NODESZ, 3)
define(NNEXTF, 1) # Index for next-free.
define(NTAG, 1) # Index for the tag.
# For an internal node --
define(NLEFT, 2) # Index for the left node.
define(NRIGHT, 3) # Index for the right node.
# For a leaf node --
define(NITV, 2) # Index for the string pool index.
define(NITN, 3) # Length of the value.
define(NIL, -1) # Nil node.
define(RGT, 10000)
define(STAGE2, 20000)
# The following all must be less than RGT.
define(NDID, 0)
define(NDSTR, 1)
define(NDINT, 2)
define(NDSEQ, 3)
define(NDIF, 4)
define(NDPRTC, 5)
define(NDPRTS, 6)
define(NDPRTI, 7)
define(NDWHIL, 8)
define(NDASGN, 9)
define(NDNEG, 10)
define(NDNOT, 11)
define(NDMUL, 12)
define(NDDIV, 13)
define(NDMOD, 14)
define(NDADD, 15)
define(NDSUB, 16)
define(NDLT, 17)
define(NDLE, 18)
define(NDGT, 19)
define(NDGE, 20)
define(NDEQ, 21)
define(NDNE, 22)
define(NDAND, 23)
define(NDOR, 24)
#---------------------------------------------------------------------
function issp (c)
# Is a character a space character?
implicit none
character c
logical issp
integer ic
ic = ichar (c)
issp = (ic == 32 || (9 <= ic && ic <= 13))
end
function skipsp (str, i, imax)
# Skip past spaces in a string.
implicit none
character str(*)
integer i
integer imax
integer skipsp
logical issp
logical done
skipsp = i
done = .false.
while (!done)
{
if (imax <= skipsp)
done = .true.
else if (!issp (str(skipsp)))
done = .true.
else
skipsp = skipsp + 1
}
end
function skipns (str, i, imax)
# Skip past non-spaces in a string.
implicit none
character str(*)
integer i
integer imax
integer skipns
logical issp
logical done
skipns = i
done = .false.
while (!done)
{
if (imax <= skipns)
done = .true.
else if (issp (str(skipns)))
done = .true.
else
skipns = skipns + 1
}
end
function trimrt (str, n)
# Find the length of a string, if one ignores trailing spaces.
implicit none
character str(*)
integer n
integer trimrt
logical issp
logical done
trimrt = n
done = .false.
while (!done)
{
if (trimrt == 0)
done = .true.
else if (!issp (str(trimrt)))
done = .true.
else
trimrt = trimrt - 1
}
end
#---------------------------------------------------------------------
subroutine addstq (strngs, istrng, src, i0, n0, i, n)
# Add a quoted string to the string pool.
implicit none
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
character src(*) # Source string.
integer i0, n0 # Index and length in source string.
integer i, n # Index and length in string pool.
integer j
logical done
1000 format ('attempt to treat an unquoted string as a quoted string')
if (src(i0) != char (DQUOTE) || src(i0 + n0 - 1) != char (DQUOTE))
{
write (*, 1000)
stop
}
i = istrng
n = 0
j = i0 + 1
done = .false.
while (j != i0 + n0 - 1)
if (i == STRNSZ)
{
write (*, '(''string pool exhausted'')')
stop
}
else if (src(j) == char (BACKSL))
{
if (j == i0 + n0 - 1)
{
write (*, '(''incorrectly formed quoted string'')')
stop
}
if (src(j + 1) == 'n')
strngs(istrng) = char (NEWLIN)
else if (src(j + 1) == char (BACKSL))
strngs(istrng) = src(j + 1)
else
{
write (*, '(''unrecognized escape sequence'')')
stop
}
istrng = istrng + 1
n = n + 1
j = j + 2
}
else
{
strngs(istrng) = src(j)
istrng = istrng + 1
n = n + 1
j = j + 1
}
end
subroutine addstu (strngs, istrng, src, i0, n0, i, n)
# Add an unquoted string to the string pool.
implicit none
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
character src(*) # Source string.
integer i0, n0 # Index and length in source string.
integer i, n # Index and length in string pool.
integer j
if (STRNSZ < istrng + (n0 - 1))
{
write (*, '(''string pool exhausted'')')
stop
}
for (j = 0; j < n0; j = j + 1)
strngs(istrng + j) = src(i0 + j)
i = istrng
n = n0
istrng = istrng + n0
end
subroutine addstr (strngs, istrng, src, i0, n0, i, n)
# Add a string (possibly given as a quoted string) to the string
# pool.
implicit none
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
character src(*) # Source string.
integer i0, n0 # Index and length in source string.
integer i, n # Index and length in string pool.
if (n0 == 0)
{
i = 0
n = 0
}
else if (src(i0) == char (DQUOTE))
call addstq (strngs, istrng, src, i0, n0, i, n)
else
call addstu (strngs, istrng, src, i0, n0, i, n)
end
#---------------------------------------------------------------------
subroutine push (stack, sp, i)
implicit none
integer stack(STCKSZ)
integer sp # Stack pointer.
integer i # Value to push.
if (sp == STCKSZ)
{
write (*, '(''stack overflow in push'')')
stop
}
stack(sp) = i
sp = sp + 1
end
function pop (stack, sp)
implicit none
integer stack(STCKSZ)
integer sp # Stack pointer.
integer pop
if (sp == 1)
{
write (*, '(''stack underflow in pop'')')
stop
}
sp = sp - 1
pop = stack(sp)
end
function nstack (sp)
implicit none
integer sp # Stack pointer.
integer nstack
nstack = sp - 1 # Current cardinality of the stack.
end
#---------------------------------------------------------------------
subroutine initnd (nodes, frelst)
# Initialize the nodes pool.
implicit none
integer nodes (NODESZ, NODSSZ)
integer frelst # Head of the free list.
integer i
for (i = 1; i < NODSSZ; i = i + 1)
nodes(NNEXTF, i) = i + 1
nodes(NNEXTF, NODSSZ) = NIL
frelst = 1
end
subroutine newnod (nodes, frelst, i)
# Get the index for a new node taken from the free list.
integer nodes (NODESZ, NODSSZ)
integer frelst # Head of the free list.
integer i # Index of the new node.
integer j
if (frelst == NIL)
{
write (*, '(''nodes pool exhausted'')')
stop
}
i = frelst
frelst = nodes(NNEXTF, frelst)
for (j = 1; j <= NODESZ; j = j + 1)
nodes(j, i) = 0
end
subroutine frenod (nodes, frelst, i)
# Return a node to the free list.
integer nodes (NODESZ, NODSSZ)
integer frelst # Head of the free list.
integer i # Index of the node to free.
nodes(NNEXTF, i) = frelst
frelst = i
end
function strtag (str, i, n)
implicit none
character str(*)
integer i, n
integer strtag
character*16 s
integer j
for (j = 0; j < 16; j = j + 1)
if (j < n)
s(j + 1 : j + 1) = str(i + j)
else
s(j + 1 : j + 1) = ' '
if (s == "Identifier ")
strtag = NDID
else if (s == "String ")
strtag = NDSTR
else if (s == "Integer ")
strtag = NDINT
else if (s == "Sequence ")
strtag = NDSEQ
else if (s == "If ")
strtag = NDIF
else if (s == "Prtc ")
strtag = NDPRTC
else if (s == "Prts ")
strtag = NDPRTS
else if (s == "Prti ")
strtag = NDPRTI
else if (s == "While ")
strtag = NDWHIL
else if (s == "Assign ")
strtag = NDASGN
else if (s == "Negate ")
strtag = NDNEG
else if (s == "Not ")
strtag = NDNOT
else if (s == "Multiply ")
strtag = NDMUL
else if (s == "Divide ")
strtag = NDDIV
else if (s == "Mod ")
strtag = NDMOD
else if (s == "Add ")
strtag = NDADD
else if (s == "Subtract ")
strtag = NDSUB
else if (s == "Less ")
strtag = NDLT
else if (s == "LessEqual ")
strtag = NDLE
else if (s == "Greater ")
strtag = NDGT
else if (s == "GreaterEqual ")
strtag = NDGE
else if (s == "Equal ")
strtag = NDEQ
else if (s == "NotEqual ")
strtag = NDNE
else if (s == "And ")
strtag = NDAND
else if (s == "Or ")
strtag = NDOR
else if (s == "; ")
strtag = NIL
else
{
write (*, '(''unrecognized input line: '', A16)') s
stop
}
end
subroutine readln (strngs, istrng, tag, iarg, narg)
# Read a line of the AST input.
implicit none
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer tag # The node tag or NIL.
integer iarg # Index of an argument in the string pool.
integer narg # Length of an argument in the string pool.
integer trimrt
integer strtag
integer skipsp
integer skipns
character line(LINESZ)
character*20 fmt
integer i, j, n
# Read a line of text as an array of characters.
write (fmt, '(''('', I10, ''A)'')') LINESZ
read (*, fmt) line
n = trimrt (line, LINESZ)
i = skipsp (line, 1, n + 1)
j = skipns (line, i, n + 1)
tag = strtag (line, i, j - i)
i = skipsp (line, j, n + 1)
call addstr (strngs, istrng, line, i, (n + 1) - i, iarg, narg)
end
function hasarg (tag)
implicit none
integer tag
logical hasarg
hasarg = (tag == NDID || tag == NDINT || tag == NDSTR)
end
subroutine rdast (strngs, istrng, nodes, frelst, iast)
# Read in the AST. A non-recursive algorithm is used.
implicit none
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer nodes (NODESZ, NODSSZ) # Nodes pool.
integer frelst # Head of the free list.
integer iast # Index of root node of the AST.
integer nstack
integer pop
logical hasarg
integer stack(STCKSZ)
integer sp # Stack pointer.
integer tag, iarg, narg
integer i, j, k
sp = 1
call readln (strngs, istrng, tag, iarg, narg)
if (tag == NIL)
iast = NIL
else
{
call newnod (nodes, frelst, i)
iast = i
nodes(NTAG, i) = tag
nodes(NITV, i) = 0
nodes(NITN, i) = 0
if (hasarg (tag))
{
nodes(NITV, i) = iarg
nodes(NITN, i) = narg
}
else
{
call push (stack, sp, i + RGT)
call push (stack, sp, i)
while (nstack (sp) != 0)
{
j = pop (stack, sp)
k = mod (j, RGT)
call readln (strngs, istrng, tag, iarg, narg)
if (tag == NIL)
i = NIL
else
{
call newnod (nodes, frelst, i)
nodes(NTAG, i) = tag
if (hasarg (tag))
{
nodes(NITV, i) = iarg
nodes(NITN, i) = narg
}
else
{
call push (stack, sp, i + RGT)
call push (stack, sp, i)
}
}
if (j == k)
nodes(NLEFT, k) = i
else
nodes(NRIGHT, k) = i
}
}
}
end
#---------------------------------------------------------------------
subroutine flushl (outbuf, noutbf)
# Flush a line from the output buffer.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
character*20 fmt
integer i
if (noutbf == 0)
write (*, '()')
else
{
write (fmt, 1000) noutbf
1000 format ('(', I10, 'A)')
write (*, fmt) (outbuf(i), i = 1, noutbf)
noutbf = 0
}
end
subroutine wrtchr (outbuf, noutbf, ch)
# Write a character to output.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
character ch # The character to output.
# This routine silently truncates anything that goes past the buffer
# boundary.
if (ch == char (NEWLIN))
call flushl (outbuf, noutbf)
else if (noutbf < OUTLSZ)
{
noutbf = noutbf + 1
outbuf(noutbf) = ch
}
end
subroutine wrtstr (outbuf, noutbf, str, i, n)
# Write a substring to output.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
character str(*) # The string from which to output.
integer i, n # Index and length of the substring.
integer j
for (j = 0; j < n; j = j + 1)
call wrtchr (outbuf, noutbf, str(i + j))
end
subroutine wrtint (outbuf, noutbf, ival)
# Write a non-negative integer to output.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
integer ival # The non-negative integer to print.
integer skipsp
character*40 buf
integer i
# Using "write" probably is the slowest way one could think of to do
# this, but people do formatted output all the time, anyway. :) The
# reason, of course, is that output tends to be slow anyway.
write (buf, '(I40)') ival
for (i = skipsp (buf, 1, 41); i <= 40; i = i + 1)
call wrtchr (outbuf, noutbf, buf(i:i))
end
#---------------------------------------------------------------------
define(VARSZ, 3)
define(VNAMEI, 1) # Variable name's index in the string pool.
define(VNAMEN, 2) # Length of the name.
define(VVALUE, 3) # Variable's value.
function fndvar (vars, numvar, strngs, istrng, i0, n0)
implicit none
integer vars(VARSZ, MAXVAR) # Variables.
integer numvar # Number of variables.
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer i0, n0 # Index and length in the string pool.
integer fndvar # The location of the variable.
integer j, k
integer i, n
logical done1
logical done2
j = 1
done1 = .false.
while (!done1)
if (j == numvar + 1)
done1 = .true.
else if (n0 == vars(VNAMEN, j))
{
k = 0
done2 = .false.
while (!done2)
if (n0 <= k)
done2 = .true.
else if (strngs(i0 + k) == strngs(vars(VNAMEI, j) + k))
k = k + 1
else
done2 = .true.
if (k < n0)
j = j + 1
else
{
done2 = .true.
done1 = .true.
}
}
else
j = j + 1
if (j == numvar + 1)
{
if (numvar == MAXVAR)
{
write (*, '(''too many variables'')')
stop
}
numvar = numvar + 1
call addstu (strngs, istrng, strngs, i0, n0, i, n)
vars(VNAMEI, numvar) = i
vars(VNAMEN, numvar) = n
vars(VVALUE, numvar) = 0
fndvar = numvar
}
else
fndvar = j
end
function strint (strngs, i, n)
# Convert a string to a non-negative integer.
implicit none
character strngs(STRNSZ) # String pool.
integer i, n
integer strint
integer j
strint = 0
for (j = 0; j < n; j = j + 1)
strint = (10 * strint) + (ichar (strngs(i + j)) - ichar ('0'))
end
function logl2i (u)
# Convert LOGICAL to INTEGER.
implicit none
logical u
integer logl2i
if (u)
logl2i = 1
else
logl2i = 0
end
subroutine run (vars, numvar, _
strngs, istrng, _
nodes, frelst, _
outbuf, noutbf, iast)
# Run (interpret) the AST. The algorithm employed is non-recursive.
implicit none
integer vars(VARSZ, MAXVAR) # Variables.
integer numvar # Number of variables.
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer nodes (NODESZ, NODSSZ) # Nodes pool.
integer frelst # Head of the free list.
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
integer iast # Root node of the AST.
integer fndvar
integer logl2i
integer nstack
integer pop
integer strint
integer dstack(STCKSZ) # Data stack.
integer idstck # Data stack pointer.
integer xstack(STCKSZ) # Execution stack.
integer ixstck # Execution stack pointer.
integer i
integer i0, n0
integer tag
integer ivar
integer ival1, ival2
integer inode1, inode2
idstck = 1
ixstck = 1
call push (xstack, ixstck, iast)
while (nstack (ixstck) != 0)
{
i = pop (xstack, ixstck)
if (i == NIL)
tag = NIL
else
tag = nodes(NTAG, i)
if (tag == NIL)
continue
else if (tag == NDSEQ)
{
if (nodes(NRIGHT, i) != NIL)
call push (xstack, ixstck, nodes(NRIGHT, i))
if (nodes(NLEFT, i) != NIL)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDID)
{
# Push the value of a variable.
i0 = nodes(NITV, i)
n0 = nodes(NITN, i)
ivar = fndvar (vars, numvar, strngs, istrng, i0, n0)
call push (dstack, idstck, vars(VVALUE, ivar))
}
else if (tag == NDINT)
{
# Push the value of an integer literal.
i0 = nodes(NITV, i)
n0 = nodes(NITN, i)
call push (dstack, idstck, strint (strngs, i0, n0))
}
else if (tag == NDNEG)
{
# Evaluate the argument and prepare to negate it.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDNEG + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDNEG + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Negate the evaluated argument.
ival1 = pop (dstack, idstck)
call push (dstack, idstck, -ival1)
}
else if (tag == NDNOT)
{
# Evaluate the argument and prepare to NOT it.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDNOT + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDNOT + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# NOT the evaluated argument.
ival1 = pop (dstack, idstck)
call push (dstack, idstck, logl2i (ival1 == 0))
}
else if (tag == NDAND)
{
# Evaluate the arguments and prepare to AND them.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDAND + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDAND + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# AND the evaluated arguments.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, _
logl2i (ival1 != 0 && ival2 != 0))
}
else if (tag == NDOR)
{
# Evaluate the arguments and prepare to OR them.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDOR + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDOR + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# OR the evaluated arguments.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, _
logl2i (ival1 != 0 || ival2 != 0))
}
else if (tag == NDADD)
{
# Evaluate the arguments and prepare to add them.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDADD + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDADD + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Add the evaluated arguments.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, ival1 + ival2)
}
else if (tag == NDSUB)
{
# Evaluate the arguments and prepare to subtract them.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDSUB + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDSUB + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Subtract the evaluated arguments.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, ival1 - ival2)
}
else if (tag == NDMUL)
{
# Evaluate the arguments and prepare to multiply them.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDMUL + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDMUL + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Multiply the evaluated arguments.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, ival1 * ival2)
}
else if (tag == NDDIV)
{
# Evaluate the arguments and prepare to compute the quotient
# after division.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDDIV + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDDIV + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Divide the evaluated arguments.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, ival1 / ival2)
}
else if (tag == NDMOD)
{
# Evaluate the arguments and prepare to compute the
# remainder after division.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDMOD + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDMOD + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# MOD the evaluated arguments.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, mod (ival1, ival2))
}
else if (tag == NDEQ)
{
# Evaluate the arguments and prepare to test their equality.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDEQ + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDEQ + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Test for equality.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, logl2i (ival1 == ival2))
}
else if (tag == NDNE)
{
# Evaluate the arguments and prepare to test their
# inequality.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDNE + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDNE + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Test for inequality.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, logl2i (ival1 != ival2))
}
else if (tag == NDLT)
{
# Evaluate the arguments and prepare to test their
# order.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDLT + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDLT + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Do the test.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, logl2i (ival1 < ival2))
}
else if (tag == NDLE)
{
# Evaluate the arguments and prepare to test their
# order.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDLE + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDLE + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Do the test.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, logl2i (ival1 <= ival2))
}
else if (tag == NDGT)
{
# Evaluate the arguments and prepare to test their
# order.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDGT + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDGT + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Do the test.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, logl2i (ival1 > ival2))
}
else if (tag == NDGE)
{
# Evaluate the arguments and prepare to test their
# order.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDGE + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDGE + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Do the test.
ival2 = pop (dstack, idstck)
ival1 = pop (dstack, idstck)
call push (dstack, idstck, logl2i (ival1 >= ival2))
}
else if (tag == NDASGN)
{
# Prepare a new node to do the actual assignment.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDASGN + STAGE2
nodes(NITV, inode1) = nodes(NITV, nodes(NLEFT, i))
nodes(NITN, inode1) = nodes(NITN, nodes(NLEFT, i))
call push (xstack, ixstck, inode1)
# Evaluate the expression.
call push (xstack, ixstck, nodes(NRIGHT, i))
}
else if (tag == NDASGN + STAGE2)
{
# Do the actual assignment, and free the STAGE2 node.
i0 = nodes(NITV, i)
n0 = nodes(NITN, i)
call frenod (nodes, frelst, i)
ival1 = pop (dstack, idstck)
ivar = fndvar (vars, numvar, strngs, istrng, i0, n0)
vars(VVALUE, ivar) = ival1
}
else if (tag == NDIF)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDIF + STAGE2
# The "then" and "else" clauses, respectively:
nodes(NLEFT, inode1) = nodes(NLEFT, nodes(NRIGHT, i))
nodes(NRIGHT, inode1) = nodes(NRIGHT, nodes(NRIGHT, i))
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDIF + STAGE2)
{
inode1 = nodes(NLEFT, i) # "Then" clause.
inode2 = nodes(NRIGHT, i) # "Else" clause.
call frenod (nodes, frelst, i)
ival1 = pop (dstack, idstck)
if (ival1 != 0)
call push (xstack, ixstck, inode1)
else if (inode2 != NIL)
call push (xstack, ixstck, inode2)
}
else if (tag == NDWHIL)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDWHIL + STAGE2
nodes(NLEFT, inode1) = nodes(NRIGHT, i) # Loop body.
nodes(NRIGHT, inode1) = i # Top of loop.
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDWHIL + STAGE2)
{
inode1 = nodes(NLEFT, i) # Loop body.
inode2 = nodes(NRIGHT, i) # Top of loop.
call frenod (nodes, frelst, i)
ival1 = pop (dstack, idstck)
if (ival1 != 0)
{
call push (xstack, ixstck, inode2) # Top of loop.
call push (xstack, ixstck, inode1) # The body.
}
}
else if (tag == NDPRTS)
{
# Print a string literal. (String literals occur only--and
# always--within Prts nodes; therefore one need not devise a
# way push strings to the stack.)
i0 = nodes(NITV, nodes(NLEFT, i))
n0 = nodes(NITN, nodes(NLEFT, i))
call wrtstr (outbuf, noutbf, strngs, i0, n0)
}
else if (tag == NDPRTC)
{
# Evaluate the argument and prepare to print it.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDPRTC + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDPRTC + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Print the evaluated argument.
ival1 = pop (dstack, idstck)
call wrtchr (outbuf, noutbf, char (ival1))
}
else if (tag == NDPRTI)
{
# Evaluate the argument and prepare to print it.
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDPRTI + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDPRTI + STAGE2)
{
# Free the STAGE2 node.
call frenod (nodes, frelst, i)
# Print the evaluated argument.
ival1 = pop (dstack, idstck)
call wrtint (outbuf, noutbf, ival1)
}
}
end
#---------------------------------------------------------------------
program interp
implicit none
integer vars(VARSZ, MAXVAR) # Variables.
integer numvar # Number of variables.
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer nodes (NODESZ, NODSSZ) # Nodes pool.
integer frelst # Head of the free list.
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
integer iast # Root node of the AST.
numvar = 0
istrng = 1
noutbf = 0
call initnd (nodes, frelst)
call rdast (strngs, istrng, nodes, frelst, iast)
call run (vars, numvar, _
strngs, istrng, _
nodes, frelst, _
outbuf, noutbf, iast)
if (noutbf != 0)
call flushl (outbuf, noutbf)
end
###################################################################### |
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Fortran | Fortran |
program demo_sort_indexed
implicit none
call print_sorted_by_length( [character(len=20) :: "shorter","longer"] )
call print_sorted_by_length( [character(len=20) :: "abcd","123456789","abcdef","1234567"] )
call print_sorted_by_length( [character(len=20) :: 'the','quick','brown','fox','jumps','over','the','lazy','dog'])
contains
subroutine print_sorted_by_length(list)
character(len=*) :: list(:)
integer :: i
list(sort_int(len_trim(list)))=list ! sort by length from small to large
write(*,'(i9,1x,a)')(len_trim(list(i)), list(i),i=size(list),1,-1)! print from last to first
write(*,*)
end subroutine print_sorted_by_length
function sort_int(input) result(counts) ! **very** inefficient mini index sort
integer :: input(:), counts(size(input)), i
counts=[(count(input(i) > input)+count(input(i) == input(:i)),i=1, size(input) )]
end function sort_int
end program demo_sort_indexed
|
http://rosettacode.org/wiki/Compiler/syntax_analyzer | Compiler/syntax analyzer | A Syntax analyzer transforms a token stream (from the Lexical analyzer)
into a Syntax tree, based on a grammar.
Task[edit]
Take the output from the Lexical analyzer task,
and convert it to an Abstract Syntax Tree (AST),
based on the grammar below. The output should be in a flattened format.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a parser module/library/class, it would be great
if two versions of the solution are provided: One without the parser module, and one
with.
Grammar
The simple programming language to be analyzed is more or less a (very tiny) subset of
C. The formal grammar in
Extended Backus-Naur Form (EBNF):
stmt_list = {stmt} ;
stmt = ';'
| Identifier '=' expr ';'
| 'while' paren_expr stmt
| 'if' paren_expr stmt ['else' stmt]
| 'print' '(' prt_list ')' ';'
| 'putc' paren_expr ';'
| '{' stmt_list '}'
;
paren_expr = '(' expr ')' ;
prt_list = (string | expr) {',' (String | expr)} ;
expr = and_expr {'||' and_expr} ;
and_expr = equality_expr {'&&' equality_expr} ;
equality_expr = relational_expr [('==' | '!=') relational_expr] ;
relational_expr = addition_expr [('<' | '<=' | '>' | '>=') addition_expr] ;
addition_expr = multiplication_expr {('+' | '-') multiplication_expr} ;
multiplication_expr = primary {('*' | '/' | '%') primary } ;
primary = Identifier
| Integer
| '(' expr ')'
| ('+' | '-' | '!') primary
;
The resulting AST should be formulated as a Binary Tree.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
The following table shows the input to lex, lex output, and the AST produced by the parser
Input to lex
Output from lex, input to parse
Output from parse
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Specifications
List of node type names
Identifier String Integer Sequence If Prtc Prts Prti While Assign Negate Not Multiply Divide Mod
Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
In the text below, Null/Empty nodes are represented by ";".
Non-terminal (internal) nodes
For Operators, the following nodes should be created:
Multiply Divide Mod Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
For each of the above nodes, the left and right sub-nodes are the operands of the
respective operation.
In pseudo S-Expression format:
(Operator expression expression)
Negate, Not
For these node types, the left node is the operand, and the right node is null.
(Operator expression ;)
Sequence - sub-nodes are either statements or Sequences.
If - left node is the expression, the right node is If node, with it's left node being the
if-true statement part, and the right node being the if-false (else) statement part.
(If expression (If statement else-statement))
If there is not an else, the tree becomes:
(If expression (If statement ;))
Prtc
(Prtc (expression) ;)
Prts
(Prts (String "the string") ;)
Prti
(Prti (Integer 12345) ;)
While - left node is the expression, the right node is the statement.
(While expression statement)
Assign - left node is the left-hand side of the assignment, the right node is the
right-hand side of the assignment.
(Assign Identifier expression)
Terminal (leaf) nodes:
Identifier: (Identifier ident_name)
Integer: (Integer 12345)
String: (String "Hello World!")
";": Empty node
Some simple examples
Sequences denote a list node; they are used to represent a list. semicolon's represent a null node, e.g., the end of this path.
This simple program:
a=11;
Produces the following AST, encoded as a binary tree:
Under each non-leaf node are two '|' lines. The first represents the left sub-node, the second represents the right sub-node:
(1) Sequence
(2) |-- ;
(3) |-- Assign
(4) |-- Identifier: a
(5) |-- Integer: 11
In flattened form:
(1) Sequence
(2) ;
(3) Assign
(4) Identifier a
(5) Integer 11
This program:
a=11;
b=22;
c=33;
Produces the following AST:
( 1) Sequence
( 2) |-- Sequence
( 3) | |-- Sequence
( 4) | | |-- ;
( 5) | | |-- Assign
( 6) | | |-- Identifier: a
( 7) | | |-- Integer: 11
( 8) | |-- Assign
( 9) | |-- Identifier: b
(10) | |-- Integer: 22
(11) |-- Assign
(12) |-- Identifier: c
(13) |-- Integer: 33
In flattened form:
( 1) Sequence
( 2) Sequence
( 3) Sequence
( 4) ;
( 5) Assign
( 6) Identifier a
( 7) Integer 11
( 8) Assign
( 9) Identifier b
(10) Integer 22
(11) Assign
(12) Identifier c
(13) Integer 33
Pseudo-code for the parser.
Uses Precedence Climbing for expression parsing, and
Recursive Descent for statement parsing. The AST is also built:
def expr(p)
if tok is "("
x = paren_expr()
elif tok in ["-", "+", "!"]
gettok()
y = expr(precedence of operator)
if operator was "+"
x = y
else
x = make_node(operator, y)
elif tok is an Identifier
x = make_leaf(Identifier, variable name)
gettok()
elif tok is an Integer constant
x = make_leaf(Integer, integer value)
gettok()
else
error()
while tok is a binary operator and precedence of tok >= p
save_tok = tok
gettok()
q = precedence of save_tok
if save_tok is not right associative
q += 1
x = make_node(Operator save_tok represents, x, expr(q))
return x
def paren_expr()
expect("(")
x = expr(0)
expect(")")
return x
def stmt()
t = NULL
if accept("if")
e = paren_expr()
s = stmt()
t = make_node(If, e, make_node(If, s, accept("else") ? stmt() : NULL))
elif accept("putc")
t = make_node(Prtc, paren_expr())
expect(";")
elif accept("print")
expect("(")
repeat
if tok is a string
e = make_node(Prts, make_leaf(String, the string))
gettok()
else
e = make_node(Prti, expr(0))
t = make_node(Sequence, t, e)
until not accept(",")
expect(")")
expect(";")
elif tok is ";"
gettok()
elif tok is an Identifier
v = make_leaf(Identifier, variable name)
gettok()
expect("=")
t = make_node(Assign, v, expr(0))
expect(";")
elif accept("while")
e = paren_expr()
t = make_node(While, e, stmt()
elif accept("{")
while tok not equal "}" and tok not equal end-of-file
t = make_node(Sequence, t, stmt())
expect("}")
elif tok is end-of-file
pass
else
error()
return t
def parse()
t = NULL
gettok()
repeat
t = make_node(Sequence, t, stmt())
until tok is end-of-file
return t
Once the AST is built, it should be output in a flattened format. This can be as simple as the following
def prt_ast(t)
if t == NULL
print(";\n")
else
print(t.node_type)
if t.node_type in [Identifier, Integer, String] # leaf node
print the value of the Ident, Integer or String, "\n"
else
print("\n")
prt_ast(t.left)
prt_ast(t.right)
If the AST is correctly built, loading it into a subsequent program should be as simple as
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Finally, the AST can also be tested by running it against one of the AST Interpreter solutions.
Test program, assuming this is in a file called prime.t
lex <prime.t | parse
Input to lex
Output from lex, input to parse
Output from parse
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
4 1 Identifier count
4 7 Op_assign
4 9 Integer 1
4 10 Semicolon
5 1 Identifier n
5 3 Op_assign
5 5 Integer 1
5 6 Semicolon
6 1 Identifier limit
6 7 Op_assign
6 9 Integer 100
6 12 Semicolon
7 1 Keyword_while
7 7 LeftParen
7 8 Identifier n
7 10 Op_less
7 12 Identifier limit
7 17 RightParen
7 19 LeftBrace
8 5 Identifier k
8 6 Op_assign
8 7 Integer 3
8 8 Semicolon
9 5 Identifier p
9 6 Op_assign
9 7 Integer 1
9 8 Semicolon
10 5 Identifier n
10 6 Op_assign
10 7 Identifier n
10 8 Op_add
10 9 Integer 2
10 10 Semicolon
11 5 Keyword_while
11 11 LeftParen
11 12 LeftParen
11 13 Identifier k
11 14 Op_multiply
11 15 Identifier k
11 16 Op_lessequal
11 18 Identifier n
11 19 RightParen
11 21 Op_and
11 24 LeftParen
11 25 Identifier p
11 26 RightParen
11 27 RightParen
11 29 LeftBrace
12 9 Identifier p
12 10 Op_assign
12 11 Identifier n
12 12 Op_divide
12 13 Identifier k
12 14 Op_multiply
12 15 Identifier k
12 16 Op_notequal
12 18 Identifier n
12 19 Semicolon
13 9 Identifier k
13 10 Op_assign
13 11 Identifier k
13 12 Op_add
13 13 Integer 2
13 14 Semicolon
14 5 RightBrace
15 5 Keyword_if
15 8 LeftParen
15 9 Identifier p
15 10 RightParen
15 12 LeftBrace
16 9 Keyword_print
16 14 LeftParen
16 15 Identifier n
16 16 Comma
16 18 String " is prime\n"
16 31 RightParen
16 32 Semicolon
17 9 Identifier count
17 15 Op_assign
17 17 Identifier count
17 23 Op_add
17 25 Integer 1
17 26 Semicolon
18 5 RightBrace
19 1 RightBrace
20 1 Keyword_print
20 6 LeftParen
20 7 String "Total primes found: "
20 29 Comma
20 31 Identifier count
20 36 Comma
20 38 String "\n"
20 42 RightParen
20 43 Semicolon
21 1 End_of_input
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier count
Integer 1
Assign
Identifier n
Integer 1
Assign
Identifier limit
Integer 100
While
Less
Identifier n
Identifier limit
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier k
Integer 3
Assign
Identifier p
Integer 1
Assign
Identifier n
Add
Identifier n
Integer 2
While
And
LessEqual
Multiply
Identifier k
Identifier k
Identifier n
Identifier p
Sequence
Sequence
;
Assign
Identifier p
NotEqual
Multiply
Divide
Identifier n
Identifier k
Identifier k
Identifier n
Assign
Identifier k
Add
Identifier k
Integer 2
If
Identifier p
If
Sequence
Sequence
;
Sequence
Sequence
;
Prti
Identifier n
;
Prts
String " is prime\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
;
Sequence
Sequence
Sequence
;
Prts
String "Total primes found: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #Julia | Julia | struct ASTnode
nodetype::Int
left::Union{Nothing, ASTnode}
right::Union{Nothing, ASTnode}
value::Union{Nothing, Int, String}
end
function syntaxanalyzer(inputfile)
tkEOI, tkMul, tkDiv, tkMod, tkAdd, tkSub, tkNegate, tkNot, tkLss, tkLeq, tkGtr, tkGeq,
tkEql, tkNeq, tkAssign, tkAnd, tkOr, tkIf, tkElse, tkWhile, tkPrint, tkPutc, tkLparen, tkRparen,
tkLbrace, tkRbrace, tkSemi, tkComma, tkIdent, tkInteger, tkString = collect(1:31)
ndIdent, ndString, ndInteger, ndSequence, ndIf, ndPrtc, ndPrts, ndPrti, ndWhile,
ndAssign, ndNegate, ndNot, ndMul, ndDiv, ndMod, ndAdd, ndSub, ndLss, ndLeq,
ndGtr, ndGeq, ndEql, ndNeq, ndAnd, ndOr = collect(1:25)
TK_NAME, TK_RIGHT_ASSOC, TK_IS_BINARY, TK_IS_UNARY, TK_PRECEDENCE, TK_NODE = collect(1:6) # label Token columns
Tokens = [
["EOI" , false, false, false, -1, -1 ],
["*" , false, true, false, 13, ndMul ],
["/" , false, true, false, 13, ndDiv ],
["%" , false, true, false, 13, ndMod ],
["+" , false, true, false, 12, ndAdd ],
["-" , false, true, false, 12, ndSub ],
["-" , false, false, true, 14, ndNegate ],
["!" , false, false, true, 14, ndNot ],
["<" , false, true, false, 10, ndLss ],
["<=" , false, true, false, 10, ndLeq ],
[">" , false, true, false, 10, ndGtr ],
[">=" , false, true, false, 10, ndGeq ],
["==" , false, true, false, 9, ndEql ],
["!=" , false, true, false, 9, ndNeq ],
["=" , false, false, false, -1, ndAssign ],
["&&" , false, true, false, 5, ndAnd ],
["||" , false, true, false, 4, ndOr ],
["if" , false, false, false, -1, ndIf ],
["else" , false, false, false, -1, -1 ],
["while" , false, false, false, -1, ndWhile ],
["print" , false, false, false, -1, -1 ],
["putc" , false, false, false, -1, -1 ],
["(" , false, false, false, -1, -1 ],
[")" , false, false, false, -1, -1 ],
["{" , false, false, false, -1, -1 ],
["}" , false, false, false, -1, -1 ],
[";" , false, false, false, -1, -1 ],
["," , false, false, false, -1, -1 ],
["Ident" , false, false, false, -1, ndIdent ],
["Integer literal" , false, false, false, -1, ndInteger],
["String literal" , false, false, false, -1, ndString ]]
allsyms = Dict(
"End_of_input" => tkEOI, "Op_multiply" => tkMul, "Op_divide" => tkDiv,
"Op_mod" => tkMod, "Op_add" => tkAdd, "Op_subtract" => tkSub,
"Op_negate" => tkNegate, "Op_not" => tkNot, "Op_less" => tkLss,
"Op_lessequal" => tkLeq, "Op_greater" => tkGtr, "Op_greaterequal" => tkGeq,
"Op_equal" => tkEql, "Op_notequal" => tkNeq, "Op_assign" => tkAssign,
"Op_and" => tkAnd, "Op_or" => tkOr, "Keyword_if" => tkIf, "Keyword_else" => tkElse,
"Keyword_while" => tkWhile, "Keyword_print" => tkPrint, "Keyword_putc" => tkPutc,
"LeftParen" => tkLparen, "RightParen" => tkRparen, "LeftBrace" => tkLbrace,
"RightBrace" => tkRbrace, "Semicolon" => tkSemi, "Comma" => tkComma,
"Identifier" => tkIdent, "Integer" => tkInteger, "String" => tkString)
displaynodes = ["Identifier", "String", "Integer", "Sequence", "If", "Prtc", "Prts", "Prti", "While",
"Assign", "Negate", "Not", "Multiply", "Divide", "Mod", "Add", "Subtract", "Less",
"LessEqual", "Greater", "GreaterEqual", "Equal", "NotEqual", "And", "Or"]
errline, errcol, tok, toktext = fill("", 4)
error(msg) = throw("Error in syntax: $msg.")
nilnode = ASTnode(0, nothing, nothing, nothing)
tokother = ""
function gettok()
s = readline(inputfile)
if length(s) == 0
error("empty line")
end
linelist = split(strip(s), r"\s+", limit = 4)
# line col Ident varname
# 0 1 2 3
errline, errcol, toktext = linelist[1:3]
if !haskey(allsyms, toktext)
error("Unknown token $toktext")
end
tok = allsyms[toktext]
tokother = (tok in [tkInteger, tkIdent, tkString]) ? linelist[4] : ""
end
makenode(oper, left, right = nilnode) = ASTnode(oper, left, right, nothing)
makeleaf(oper, n::Int) = ASTnode(oper, nothing, nothing, n)
makeleaf(oper, n) = ASTnode(oper, nothing, nothing, string(n))
expect(msg, s) = if tok != s error("msg: Expecting $(Tokens[s][TK_NAME]), found $(Tokens[tok][TK_NAME])") else gettok() end
function expr(p)
x = nilnode
if tok == tkLparen
x = parenexpr()
elseif tok in [tkSub, tkAdd]
op = tok == tkSub ? tkNegate : tkAdd
gettok()
node = expr(Tokens[tkNegate][TK_PRECEDENCE])
x = (op == tkNegate) ? makenode(ndNegate, node) : node
elseif tok == tkNot
gettok()
x = makenode(ndNot, expr(Tokens[tkNot][TK_PRECEDENCE]))
elseif tok == tkIdent
x = makeleaf(ndIdent, tokother)
gettok()
elseif tok == tkInteger
x = makeleaf(ndInteger, tokother)
gettok()
else
error("Expecting a primary, found: $(Tokens[tok][TK_NAME])")
end
while Tokens[tok][TK_IS_BINARY] && (Tokens[tok][TK_PRECEDENCE] >= p)
op = tok
gettok()
q = Tokens[op][TK_PRECEDENCE]
if !Tokens[op][TK_RIGHT_ASSOC]
q += 1
end
node = expr(q)
x = makenode(Tokens[op][TK_NODE], x, node)
end
x
end
parenexpr() = (expect("paren_expr", tkLparen); node = expr(0); expect("paren_expr", tkRparen); node)
function stmt()
t = nilnode
if tok == tkIf
gettok()
e = parenexpr()
s = stmt()
s2 = nilnode
if tok == tkElse
gettok()
s2 = stmt()
end
t = makenode(ndIf, e, makenode(ndIf, s, s2))
elseif tok == tkPutc
gettok()
e = parenexpr()
t = makenode(ndPrtc, e)
expect("Putc", tkSemi)
elseif tok == tkPrint
gettok()
expect("Print", tkLparen)
while true
if tok == tkString
e = makenode(ndPrts, makeleaf(ndString, tokother))
gettok()
else
e = makenode(ndPrti, expr(0))
end
t = makenode(ndSequence, t, e)
if tok != tkComma
break
end
gettok()
end
expect("Print", tkRparen)
expect("Print", tkSemi)
elseif tok == tkSemi
gettok()
elseif tok == tkIdent
v = makeleaf(ndIdent, tokother)
gettok()
expect("assign", tkAssign)
e = expr(0)
t = makenode(ndAssign, v, e)
expect("assign", tkSemi)
elseif tok == tkWhile
gettok()
e = parenexpr()
s = stmt()
t = makenode(ndWhile, e, s)
elseif tok == tkLbrace
gettok()
while (tok != tkRbrace) && (tok != tkEOI)
t = makenode(ndSequence, t, stmt())
end
expect("Lbrace", tkRbrace)
elseif tok != tkEOI
error("Expecting start of statement, found: $(Tokens[tok][TK_NAME])")
end
return t
end
function parse()
t = nilnode
gettok()
while true
t = makenode(ndSequence, t, stmt())
if (tok == tkEOI) || (t == nilnode)
break
end
end
t
end
function prtASTnode(t)
if t == nothing
return
elseif t == nilnode
println(";")
elseif t.nodetype in [ndIdent, ndInteger, ndString]
println(rpad(displaynodes[t.nodetype], 14), t.value)
else
println(rpad(displaynodes[t.nodetype], 14))
end
prtASTnode(t.left)
prtASTnode(t.right)
end
# runs the function
prtASTnode(parse())
end
testtxt = """
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String \"count is: \"
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String \"\\n\"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input """
syntaxanalyzer(IOBuffer(testtxt)) # for isolated testing
# syntaxanalyzer(length(ARGS) > 1 ? ARGS[1] : stdin) # for use as in the Python code
|
http://rosettacode.org/wiki/Conway%27s_Game_of_Life | Conway's Game of Life | The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.
Conway's game of life is described here:
A cell C is represented by a 1 when alive, or 0 when dead, in an m-by-m (or m×m) square array of cells.
We calculate N - the sum of live cells in C's eight-location neighbourhood, then cell C is alive or dead in the next generation based on the following table:
C N new C
1 0,1 -> 0 # Lonely
1 4,5,6,7,8 -> 0 # Overcrowded
1 2,3 -> 1 # Lives
0 3 -> 1 # It takes three to give birth!
0 0,1,2,4,5,6,7,8 -> 0 # Barren
Assume cells beyond the boundary are always dead.
The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.
Task
Although you should test your implementation on more complex examples such as the glider in a larger universe, show the action of the blinker (three adjoining cells in a row all alive), over three generations, in a 3 by 3 grid.
References
Its creator John Conway, explains the game of life. Video from numberphile on youtube.
John Conway Inventing Game of Life - Numberphile video.
Related task
Langton's ant - another well known cellular automaton.
| #Chapel | Chapel |
config const gridHeight: int = 3;
config const gridWidth: int = 3;
enum State { dead = 0, alive = 1 };
class ConwaysGameofLife {
var gridDomain: domain(2);
var computeDomain: subdomain( gridDomain );
var grid: [gridDomain] int;
proc ConwaysGameofLife( height: int, width: int ) {
this.gridDomain = {0..#height+2, 0..#width+2};
this.computeDomain = this.gridDomain.expand( -1 );
}
proc step(){
var tempGrid: [this.computeDomain] State;
forall (i,j) in this.computeDomain {
var isAlive = this.grid[i,j] == State.alive;
var numAlive = (+ reduce this.grid[ i-1..i+1, j-1..j+1 ]) - if isAlive then 1 else 0;
tempGrid[i,j] = if ( (2 == numAlive && isAlive) || numAlive == 3 ) then State.alive else State.dead ;
}
this.grid[this.computeDomain] = tempGrid;
}
proc this( i: int, j: int ) ref : State {
return this.grid[i,j];
}
proc prettyPrint(): string {
var str: string;
for i in this.gridDomain.dim(1) {
if i == 0 || i == gridDomain.dim(1).last {
for j in this.gridDomain.dim(2) {
str += "-";
}
} else {
for j in this.gridDomain.dim(2) {
if j == 0 || j == this.gridDomain.dim(2).last {
str += "|";
} else {
str += if this.grid[i,j] == State.alive then "#" else " ";
}
}
}
str += "\n";
}
return str;
}
}
proc main{
var game = new ConwaysGameofLife( gridHeight, gridWidth );
game[gridHeight/2 + 1, gridWidth/2 ] = State.alive;
game[gridHeight/2 + 1, gridWidth/2 + 1 ] = State.alive;
game[gridHeight/2 + 1, gridWidth/2 + 2 ] = State.alive;
for i in 1..3 {
writeln( game.prettyPrint() );
game.step();
}
}
|
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Plain_English | Plain English | A cartesian point is a record with an x coord and a y coord. |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Pop11 | Pop11 | uses objectclass;
define :class Point;
slot x = 0;
slot y = 0;
enddefine; |
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Zig | Zig | const std = @import("std");
const debug = std.debug;
const mem = std.mem;
test "copy a string" {
const source = "A string.";
// Variable `dest1` will have the same type as `source`, which is
// `*const [9:0]u8`.
const dest1 = source;
// Variable `dest2`'s type is [9]u8.
//
// The difference between the two is that `dest1` string is null-terminated,
// while `dest2` is not.
var dest2: [source.len]u8 = undefined;
mem.copy(u8, dest2[0..], source[0..]);
debug.assert(mem.eql(u8, dest1[0..], "A string."));
debug.assert(mem.eql(u8, dest2[0..], "A string."));
} |
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #zkl | zkl | "abc".copy() // noop |
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #zonnon | zonnon |
module Main;
var
s,r: string;
c: array 60 of char;
begin
s := "plain string";r := s; writeln(s);
(* copy string to array of char *)
copy(s,c);c[0] := 'P';
(* copy array of char to string *)
copy(c,r);writeln(r);
end Main.
|
http://rosettacode.org/wiki/Constrained_random_points_on_a_circle | Constrained random points on a circle | Task
Generate 100 <x,y> coordinate pairs such that x and y are integers sampled from the uniform distribution with the condition that
10
≤
x
2
+
y
2
≤
15
{\displaystyle 10\leq {\sqrt {x^{2}+y^{2}}}\leq 15}
.
Then display/plot them. The outcome should be a "fuzzy" circle. The actual number of points plotted may be less than 100, given that some pairs may be generated more than once.
There are several possible approaches to accomplish this. Here are two possible algorithms.
1) Generate random pairs of integers and filter out those that don't satisfy this condition:
10
≤
x
2
+
y
2
≤
15
{\displaystyle 10\leq {\sqrt {x^{2}+y^{2}}}\leq 15}
.
2) Precalculate the set of all possible points (there are 404 of them) and select randomly from this set.
| #SystemVerilog | SystemVerilog | program main;
bit [39:0] bitmap [40];
class Point;
rand bit signed [4:0] x;
rand bit signed [4:0] y;
constraint on_circle_edge {
(10*10) <= (x*x + y*y);
(x*x + y*y) <= (15*15);
};
function void do_point();
randomize;
bitmap[x+20][y+20] = 1;
endfunction
endclass
initial begin
Point p = new;
repeat (100) p.do_point;
foreach (bitmap[row]) $display( "%b", bitmap[row]);
end
endprogram |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #AutoIt | AutoIt | If <expression> Then
statements
...
[ElseIf expression-n Then
[elseif statements ... ]]
...
[Else
[else statements]
...
EndIf
|
http://rosettacode.org/wiki/Commatizing_numbers | Commatizing numbers | Commatizing numbers (as used here, is a handy expedient made-up word) is the act of adding commas to a number (or string), or to the numeric part of a larger string.
Task
Write a function that takes a string as an argument with optional arguments or parameters (the format of parameters/options is left to the programmer) that in general, adds commas (or some
other characters, including blanks or tabs) to the first numeric part of a string (if it's suitable for commatizing as per the rules below), and returns that newly commatized string.
Some of the commatizing rules (specified below) are arbitrary, but they'll be a part of this task requirements, if only to make the results consistent amongst national preferences and other disciplines.
The number may be part of a larger (non-numeric) string such as:
«US$1744 millions» ──or──
±25000 motes.
The string may possibly not have a number suitable for commatizing, so it should be untouched and no error generated.
If any argument (option) is invalid, nothing is changed and no error need be generated (quiet execution, no fail execution). Error message generation is optional.
The exponent part of a number is never commatized. The following string isn't suitable for commatizing: 9.7e+12000
Leading zeroes are never commatized. The string 0000000005714.882 after commatization is: 0000000005,714.882
Any period (.) in a number is assumed to be a decimal point.
The original string is never changed except by the addition of commas [or whatever character(s) is/are used for insertion], if at all.
To wit, the following should be preserved:
leading signs (+, -) ── even superfluous signs
leading/trailing/embedded blanks, tabs, and other whitespace
the case (upper/lower) of the exponent indicator, e.g.: 4.8903d-002
Any exponent character(s) should be supported:
1247e12
57256.1D-4
4444^60
7500∙10**35
8500x10**35
9500↑35
+55000↑3
1000**100
2048²
409632
10000pow(pi)
Numbers may be terminated with any non-digit character, including subscripts and/or superscript: 41421356243 or 7320509076(base 24).
The character(s) to be used for the comma can be specified, and may contain blanks, tabs, and other whitespace characters, as well as multiple characters. The default is the comma (,) character.
The period length can be specified (sometimes referred to as "thousands" or "thousands separators"). The period length can be defined as the length (or number) of the decimal digits between commas. The default period length is 3.
E.G.: in this example, the period length is five: 56789,12340,14148
The location of where to start the scanning for the target field (the numeric part) should be able to be specified. The default is 1.
The character strings below may be placed in a file (and read) or stored as simple strings within the program.
Strings to be used as a minimum
The value of pi (expressed in base 10) should be separated with blanks every 5 places past the decimal point,
the Zimbabwe dollar amount should use a decimal point for the "comma" separator:
pi=3.14159265358979323846264338327950288419716939937510582097494459231
The author has two Z$100000000000000 Zimbabwe notes (100 trillion).
"-in Aus$+1411.8millions"
===US$0017440 millions=== (in 2000 dollars)
123.e8000 is pretty big.
The land area of the earth is 57268900(29% of the surface) square miles.
Ain't no numbers in this here words, nohow, no way, Jose.
James was never known as 0000000007
Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe.
␢␢␢$-140000±100 millions.
6/9/1946 was a good year for some.
where the penultimate string has three leading blanks (real blanks are to be used).
Also see
The Wiki entry: (sir) Arthur Eddington's number of protons in the universe.
| #Factor | Factor | USING: accessors grouping io kernel math regexp sequences
splitting strings unicode ;
: numeric ( str -- new-str )
R/ [1-9][0-9]*/ first-match >string ;
: commas ( numeric-str period separator -- str )
[ reverse ] [ group ] [ reverse join reverse ] tri* ;
: (commatize) ( text from period separator -- str )
[ cut dup numeric dup ] 2dip commas replace append ;
: commatize* ( text from period separator -- str )
reach [ digit? ] any? [ (commatize) ] [ 3drop ] if ;
: commatize ( text -- str ) 0 3 "," commatize* ;
"pi=3.14159265358979323846264338327950288419716939937510582097494459231"
5 5 " " commatize* print
"The author has two Z$100000000000000 Zimbabwe notes (100 trillion)."
0 3 "." commatize* print
{
"\"-in Aus$+1411.8millions\""
"===US$0017440 millions=== (in 2000 dollars)"
"123.e8000 is pretty big."
"The land area of the earth is 57268900(29% of the surface) square miles."
"Ain't no numbers in this here words, nohow, no way, Jose."
"James was never known as 0000000007"
"Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe."
" $-140000±100 millions."
"6/9/1946 was a good year for some."
} [ commatize print ] each |
http://rosettacode.org/wiki/Commatizing_numbers | Commatizing numbers | Commatizing numbers (as used here, is a handy expedient made-up word) is the act of adding commas to a number (or string), or to the numeric part of a larger string.
Task
Write a function that takes a string as an argument with optional arguments or parameters (the format of parameters/options is left to the programmer) that in general, adds commas (or some
other characters, including blanks or tabs) to the first numeric part of a string (if it's suitable for commatizing as per the rules below), and returns that newly commatized string.
Some of the commatizing rules (specified below) are arbitrary, but they'll be a part of this task requirements, if only to make the results consistent amongst national preferences and other disciplines.
The number may be part of a larger (non-numeric) string such as:
«US$1744 millions» ──or──
±25000 motes.
The string may possibly not have a number suitable for commatizing, so it should be untouched and no error generated.
If any argument (option) is invalid, nothing is changed and no error need be generated (quiet execution, no fail execution). Error message generation is optional.
The exponent part of a number is never commatized. The following string isn't suitable for commatizing: 9.7e+12000
Leading zeroes are never commatized. The string 0000000005714.882 after commatization is: 0000000005,714.882
Any period (.) in a number is assumed to be a decimal point.
The original string is never changed except by the addition of commas [or whatever character(s) is/are used for insertion], if at all.
To wit, the following should be preserved:
leading signs (+, -) ── even superfluous signs
leading/trailing/embedded blanks, tabs, and other whitespace
the case (upper/lower) of the exponent indicator, e.g.: 4.8903d-002
Any exponent character(s) should be supported:
1247e12
57256.1D-4
4444^60
7500∙10**35
8500x10**35
9500↑35
+55000↑3
1000**100
2048²
409632
10000pow(pi)
Numbers may be terminated with any non-digit character, including subscripts and/or superscript: 41421356243 or 7320509076(base 24).
The character(s) to be used for the comma can be specified, and may contain blanks, tabs, and other whitespace characters, as well as multiple characters. The default is the comma (,) character.
The period length can be specified (sometimes referred to as "thousands" or "thousands separators"). The period length can be defined as the length (or number) of the decimal digits between commas. The default period length is 3.
E.G.: in this example, the period length is five: 56789,12340,14148
The location of where to start the scanning for the target field (the numeric part) should be able to be specified. The default is 1.
The character strings below may be placed in a file (and read) or stored as simple strings within the program.
Strings to be used as a minimum
The value of pi (expressed in base 10) should be separated with blanks every 5 places past the decimal point,
the Zimbabwe dollar amount should use a decimal point for the "comma" separator:
pi=3.14159265358979323846264338327950288419716939937510582097494459231
The author has two Z$100000000000000 Zimbabwe notes (100 trillion).
"-in Aus$+1411.8millions"
===US$0017440 millions=== (in 2000 dollars)
123.e8000 is pretty big.
The land area of the earth is 57268900(29% of the surface) square miles.
Ain't no numbers in this here words, nohow, no way, Jose.
James was never known as 0000000007
Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe.
␢␢␢$-140000±100 millions.
6/9/1946 was a good year for some.
where the penultimate string has three leading blanks (real blanks are to be used).
Also see
The Wiki entry: (sir) Arthur Eddington's number of protons in the universe.
| #FreeBASIC | FreeBASIC | Sub commatize(s As String, sep As String = ",", start As Byte = 1, paso As Byte = 3)
Dim As Integer l = Len(s)
For i As Integer = start To l
If Asc(Mid(s, i, 1)) >= Asc("1") And Asc(Mid(s, i, 1)) <= Asc("9") Then
For j As Integer =i+1 To l+1
If j>l Then
For k As Integer = j-1-paso To i Step -paso
s = Mid(s, 1, k) + sep + Mid(s, k+1, l-k+1)
l = Len(s)
Next k
Exit For
Else
If (Asc(Mid(s, j, 1)) < Asc("0") Or Asc(Mid(s, j, 1)) > Asc("9")) Then
For k As Integer = j-1-paso To i Step -paso
s = Mid(s, 1, k) + sep + Mid(s, k+1, l-k+1)
l = Len(s)
Next k
Exit For
End If
End If
Next j
Exit For
End If
Next i
Print s
End Sub
commatize("pi=3.14159265358979323846264338327950288419716939937510582097494459231"," ",6,5)
commatize("The author has two Z$100000000000000 Zimbabwe notes (100 trillion).",".")
commatize("\'-in Aus$+1411.8millions\'",",")
commatize("===US$0017440 millions=== (in 2000 dollars)")
commatize("123.e8000 is pretty big.")
commatize("The land area of the earth is 57268900(29% of the surface) square miles.")
commatize("Ain't no numbers in this here words, nohow, no way, Jose.")
commatize("James was never known as 0000000007")
commatize("Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe.")
commatize(" $-140000±100 millions.")
commatize("6/9/1946 was a good year for some.")
Sleep |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ALGOL_W | ALGOL W | % returns true if all elements of the string array a are equal, false otherwise %
% As Algol W procedures cannot determine the bounds of an array, the bounds %
% must be specified in lo and hi %
logical procedure allStringsEqual ( string(256) array a ( * )
; integer value lo, hi
) ;
begin
logical same;
integer listPos;
same := true;
listPos := lo + 1;
while same and listPos <= hi do begin
same := a( lo ) = a( listPos );
listPos := listPos + 1
end;
same
end allStringsEqual ;
% returns true if the elements of the string array a are in ascending order, %
% false otherwise %
% As Algol W procedures cannot determine the bounds of an array, the bounds %
% must be specified in lo and hi %
logical procedure ascendingOrder ( string(256) array a ( * )
; integer value lo, hi
) ;
begin
logical ordered;
integer listPos;
ordered := true;
listPos := lo + 1;
while ordered and listPos <= hi do begin
ordered := a( listPos - 1 ) < a( listPos );
listPos := listPos + 1
end;
ordered
end ascendingOrder ; |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #AppleScript | AppleScript | -- allEqual :: [String] -> Bool
on allEqual(xs)
_and(zipWith(my _equal, xs, rest of xs))
end allEqual
-- azSorted :: [String] -> Bool
on azSorted(xs)
_and(zipWith(my azBeforeOrSame, xs, rest of xs))
end azSorted
-- _equal :: a -> a -> Bool
on _equal(a, b)
a = b
end _equal
-- azBefore :: String -> String -> Bool
on azBeforeOrSame(a, b)
a ≥ b
end azBeforeOrSame
-- _and :: [a] -> Bool
on _and(xs)
foldr(_equal, true, xs)
end _and
-- TEST
on run
set lstA to ["isiZulu", "isiXhosa", "isiNdebele", "Xitsonga", "Tshivenda", ¬
"Setswana", "Sesotho sa Leboa", "Sesotho", "English", "Afrikaans"]
set lstB to ["Afrikaans", "English", "Sesotho", "Sesotho sa Leboa", "Setswana", ¬
"Tshivenda", "Xitsonga", "isiNdebele", "isiXhosa", "isiZulu"]
set lstC to ["alpha", "alpha", "alpha", "alpha", "alpha", "alpha", "alpha", ¬
"alpha", "alpha", "alpha"]
{allEqual:map(allEqual, [lstA, lstB, lstC]), azSorted:map(azSorted, [lstA, lstB, lstC])}
-- > {allEqual:{false, false, true}, azSorted:{false, true, true}}
end run
-- GENERIC FUNCTIONS
-- foldr :: (a -> b -> a) -> a -> [b] -> a
on foldr(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from lng to 1 by -1
set v to lambda(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldr
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to lambda(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
on zipWith(f, xs, ys)
set nx to length of xs
set ny to length of ys
if nx < 1 or ny < 1 then
{}
else
set lng to cond(nx < ny, nx, ny)
set lst to {}
tell mReturn(f)
repeat with i from 1 to lng
set end of lst to lambda(item i of xs, item i of ys)
end repeat
return lst
end tell
end if
end zipWith
-- cond :: Bool -> (a -> b) -> (a -> b) -> (a -> b)
on cond(bool, f, g)
if bool then
f
else
g
end if
end cond
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property lambda : f
end script
end if
end mReturn |
http://rosettacode.org/wiki/Compiler/lexical_analyzer | Compiler/lexical analyzer | Definition from Wikipedia:
Lexical analysis is the process of converting a sequence of characters (such as in a computer program or web page) into a sequence of tokens (strings with an identified "meaning"). A program that performs lexical analysis may be called a lexer, tokenizer, or scanner (though "scanner" is also used to refer to the first stage of a lexer).
Task[edit]
Create a lexical analyzer for the simple programming language specified below. The
program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a lexer module/library/class, it would be great
if two versions of the solution are provided: One without the lexer module, and one with.
Input Specification
The simple programming language to be analyzed is more or less a subset of C. It supports the following tokens:
Operators
Name
Common name
Character sequence
Op_multiply
multiply
*
Op_divide
divide
/
Op_mod
mod
%
Op_add
plus
+
Op_subtract
minus
-
Op_negate
unary minus
-
Op_less
less than
<
Op_lessequal
less than or equal
<=
Op_greater
greater than
>
Op_greaterequal
greater than or equal
>=
Op_equal
equal
==
Op_notequal
not equal
!=
Op_not
unary not
!
Op_assign
assignment
=
Op_and
logical and
&&
Op_or
logical or
¦¦
The - token should always be interpreted as Op_subtract by the lexer. Turning some Op_subtract into Op_negate will be the job of the syntax analyzer, which is not part of this task.
Symbols
Name
Common name
Character
LeftParen
left parenthesis
(
RightParen
right parenthesis
)
LeftBrace
left brace
{
RightBrace
right brace
}
Semicolon
semi-colon
;
Comma
comma
,
Keywords
Name
Character sequence
Keyword_if
if
Keyword_else
else
Keyword_while
while
Keyword_print
print
Keyword_putc
putc
Identifiers and literals
These differ from the the previous tokens, in that each occurrence of them has a value associated with it.
Name
Common name
Format description
Format regex
Value
Identifier
identifier
one or more letter/number/underscore characters, but not starting with a number
[_a-zA-Z][_a-zA-Z0-9]*
as is
Integer
integer literal
one or more digits
[0-9]+
as is, interpreted as a number
Integer
char literal
exactly one character (anything except newline or single quote) or one of the allowed escape sequences, enclosed by single quotes
'([^'\n]|\\n|\\\\)'
the ASCII code point number of the character, e.g. 65 for 'A' and 10 for '\n'
String
string literal
zero or more characters (anything except newline or double quote), enclosed by double quotes
"[^"\n]*"
the characters without the double quotes and with escape sequences converted
For char and string literals, the \n escape sequence is supported to represent a new-line character.
For char and string literals, to represent a backslash, use \\.
No other special sequences are supported. This means that:
Char literals cannot represent a single quote character (value 39).
String literals cannot represent strings containing double quote characters.
Zero-width tokens
Name
Location
End_of_input
when the end of the input stream is reached
White space
Zero or more whitespace characters, or comments enclosed in /* ... */, are allowed between any two tokens, with the exceptions noted below.
"Longest token matching" is used to resolve conflicts (e.g., in order to match <= as a single token rather than the two tokens < and =).
Whitespace is required between two tokens that have an alphanumeric character or underscore at the edge.
This means: keywords, identifiers, and integer literals.
e.g. ifprint is recognized as an identifier, instead of the keywords if and print.
e.g. 42fred is invalid, and neither recognized as a number nor an identifier.
Whitespace is not allowed inside of tokens (except for chars and strings where they are part of the value).
e.g. & & is invalid, and not interpreted as the && operator.
For example, the following two program fragments are equivalent, and should produce the same token stream except for the line and column positions:
if ( p /* meaning n is prime */ ) {
print ( n , " " ) ;
count = count + 1 ; /* number of primes found so far */
}
if(p){print(n," ");count=count+1;}
Complete list of token names
End_of_input Op_multiply Op_divide Op_mod Op_add Op_subtract
Op_negate Op_not Op_less Op_lessequal Op_greater Op_greaterequal
Op_equal Op_notequal Op_assign Op_and Op_or Keyword_if
Keyword_else Keyword_while Keyword_print Keyword_putc LeftParen RightParen
LeftBrace RightBrace Semicolon Comma Identifier Integer
String
Output Format
The program output should be a sequence of lines, each consisting of the following whitespace-separated fields:
the line number where the token starts
the column number where the token starts
the token name
the token value (only for Identifier, Integer, and String tokens)
the number of spaces between fields is up to you. Neatly aligned is nice, but not a requirement.
This task is intended to be used as part of a pipeline, with the other compiler tasks - for example:
lex < hello.t | parse | gen | vm
Or possibly:
lex hello.t lex.out
parse lex.out parse.out
gen parse.out gen.out
vm gen.out
This implies that the output of this task (the lexical analyzer) should be suitable as input to any of the Syntax Analyzer task programs.
Diagnostics
The following error conditions should be caught:
Error
Example
Empty character constant
''
Unknown escape sequence.
\r
Multi-character constant.
'xx'
End-of-file in comment. Closing comment characters not found.
End-of-file while scanning string literal. Closing string character not found.
End-of-line while scanning string literal. Closing string character not found before end-of-line.
Unrecognized character.
|
Invalid number. Starts like a number, but ends in non-numeric characters.
123abc
Test Cases
Input
Output
Test Case 1:
/*
Hello world
*/
print("Hello, World!\n");
4 1 Keyword_print
4 6 LeftParen
4 7 String "Hello, World!\n"
4 24 RightParen
4 25 Semicolon
5 1 End_of_input
Test Case 2:
/*
Show Ident and Integers
*/
phoenix_number = 142857;
print(phoenix_number, "\n");
4 1 Identifier phoenix_number
4 16 Op_assign
4 18 Integer 142857
4 24 Semicolon
5 1 Keyword_print
5 6 LeftParen
5 7 Identifier phoenix_number
5 21 Comma
5 23 String "\n"
5 27 RightParen
5 28 Semicolon
6 1 End_of_input
Test Case 3:
/*
All lexical tokens - not syntactically correct, but that will
have to wait until syntax analysis
*/
/* Print */ print /* Sub */ -
/* Putc */ putc /* Lss */ <
/* If */ if /* Gtr */ >
/* Else */ else /* Leq */ <=
/* While */ while /* Geq */ >=
/* Lbrace */ { /* Eq */ ==
/* Rbrace */ } /* Neq */ !=
/* Lparen */ ( /* And */ &&
/* Rparen */ ) /* Or */ ||
/* Uminus */ - /* Semi */ ;
/* Not */ ! /* Comma */ ,
/* Mul */ * /* Assign */ =
/* Div */ / /* Integer */ 42
/* Mod */ % /* String */ "String literal"
/* Add */ + /* Ident */ variable_name
/* character literal */ '\n'
/* character literal */ '\\'
/* character literal */ ' '
5 16 Keyword_print
5 40 Op_subtract
6 16 Keyword_putc
6 40 Op_less
7 16 Keyword_if
7 40 Op_greater
8 16 Keyword_else
8 40 Op_lessequal
9 16 Keyword_while
9 40 Op_greaterequal
10 16 LeftBrace
10 40 Op_equal
11 16 RightBrace
11 40 Op_notequal
12 16 LeftParen
12 40 Op_and
13 16 RightParen
13 40 Op_or
14 16 Op_subtract
14 40 Semicolon
15 16 Op_not
15 40 Comma
16 16 Op_multiply
16 40 Op_assign
17 16 Op_divide
17 40 Integer 42
18 16 Op_mod
18 40 String "String literal"
19 16 Op_add
19 40 Identifier variable_name
20 26 Integer 10
21 26 Integer 92
22 26 Integer 32
23 1 End_of_input
Test Case 4:
/*** test printing, embedded \n and comments with lots of '*' ***/
print(42);
print("\nHello World\nGood Bye\nok\n");
print("Print a slash n - \\n.\n");
2 1 Keyword_print
2 6 LeftParen
2 7 Integer 42
2 9 RightParen
2 10 Semicolon
3 1 Keyword_print
3 6 LeftParen
3 7 String "\nHello World\nGood Bye\nok\n"
3 38 RightParen
3 39 Semicolon
4 1 Keyword_print
4 6 LeftParen
4 7 String "Print a slash n - \\n.\n"
4 33 RightParen
4 34 Semicolon
5 1 End_of_input
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Syntax Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #ALGOL_68 | ALGOL 68 | BEGIN
# implement C-like getchar, where EOF and EOLn are "characters" (-1 and 10 resp.). #
INT eof = -1, eoln = 10;
BOOL eof flag := FALSE;
STRING buf := "";
INT col := 1;
INT line := 0;
on logical file end (stand in, (REF FILE f)BOOL: eof flag := TRUE);
PROC getchar = INT:
IF eof flag THEN eof
ELIF col = UPB buf THEN col +:= 1; eoln
ELIF col > UPB buf THEN IF line > 0 THEN read(newline) FI;
line +:= 1;
read(buf);
IF eof flag THEN col := 1; eof
ELSE col := 0; getchar
FI
ELSE col +:= 1; ABS buf[col]
FI;
PROC nextchar = INT: IF eof flag THEN eof ELIF col >= UPB buf THEN eoln ELSE ABS buf[col+1] FI;
PROC is blank = (INT ch) BOOL: ch = 0 OR ch = 9 OR ch = 10 OR ch = 13 OR ch = ABS " ";
PROC is digit = (INT ch) BOOL: ch >= ABS "0" AND ch <= ABS "9";
PROC is ident start = (INT ch) BOOL: ch >= ABS "A" AND ch <= ABS "Z" OR
ch >= ABS "a" AND ch <= ABS "z" OR
ch = ABS "_";
PROC is ident = (INT ch) BOOL: is ident start(ch) OR is digit(ch);
PROC ident or keyword = (INT start char) VOID:
BEGIN
STRING w := REPR start char;
INT start col = col;
WHILE is ident (next char) DO w +:= REPR getchar OD;
IF w = "if" THEN output2("Keyword_if", start col)
ELIF w = "else" THEN output2("Keyword_else", start col)
ELIF w = "while" THEN output2("Keyword_while", start col)
ELIF w = "print" THEN output2("Keyword_print", start col)
ELIF w = "putc" THEN output2("Keyword_putc", start col)
ELSE output2("Identifier " + w, start col)
FI
END;
PROC char = VOID:
BEGIN
INT start col = col;
INT ch := getchar;
IF ch = ABS "'" THEN error("Empty character constant")
ELIF ch = ABS "\" THEN ch := getchar;
IF ch = ABS "n" THEN ch := 10
ELIF ch = ABS "\" THEN SKIP
ELSE error("Unknown escape sequence. \" + REPR ch)
FI
FI;
IF nextchar /= ABS "'" THEN error("Multi-character constant.") FI;
getchar;
output2("Integer " + whole(ch, 0), start col)
END;
PROC string = VOID:
BEGIN
INT start col = col;
STRING s := """";
WHILE INT ch := getchar; ch /= ABS """"
DO
IF ch = eoln THEN error("End-of-line while scanning string literal. Closing string character not found before end-of-line.")
ELIF ch = eof THEN error("End-of-file while scanning string literal. Closing string character not found.")
ELIF ch = ABS "\" THEN s +:= REPR ch; ch := getchar;
IF ch /= ABS "\" AND ch /= ABS "n" THEN error("Unknown escape sequence. \" + REPR ch) FI;
s +:= REPR ch
ELSE s +:= REPR ch
FI
OD;
output2("String " + s + """", start col)
END;
PROC comment = VOID:
BEGIN
WHILE INT ch := getchar; NOT (ch = ABS "*" AND nextchar = ABS "/")
DO IF ch = eof THEN error("End-of-file in comment. Closing comment characters not found.") FI
OD;
getchar
END;
PROC number = (INT first digit) VOID:
BEGIN
INT start col = col;
INT n := first digit - ABS "0";
WHILE is digit (nextchar) DO
INT u := getchar - ABS "0";
IF LENG n * 10 + LENG u > max int THEN error("Integer too big") FI;
n := n * 10 + u
OD;
IF is ident start (nextchar) THEN error("Invalid number. Starts like a number, but ends in non-numeric characters.") FI;
output2("Integer " + whole(n, 0), start col)
END;
PROC output = (STRING s) VOID: output2(s, col);
PROC output2 = (STRING s, INT col) VOID: print((whole(line,-8), whole(col,-8), " ", s, newline));
PROC if follows = (CHAR second, STRING longer, shorter) VOID:
IF nextchar = ABS second
THEN output(longer); getchar
ELSE output(shorter)
FI;
PROC error = (STRING s)VOID: (put(stand error, ("At ", whole(line,0), ":", whole(col,0), " ", s, new line)); stop);
PROC unrecognized = (INT char) VOID: error("Unrecognized character " + REPR char);
PROC double char = (INT first, STRING op) VOID:
IF nextchar /= first THEN unrecognized(first)
ELSE output2(op, col-1); getchar
FI;
WHILE INT ch := getchar; ch /= eof
DO
IF is blank(ch) THEN SKIP
ELIF ch = ABS "(" THEN output("LeftParen")
ELIF ch = ABS ")" THEN output("RightParen")
ELIF ch = ABS "{" THEN output("LeftBrace")
ELIF ch = ABS "}" THEN output("RightBrace")
ELIF ch = ABS ";" THEN output("Semicolon")
ELIF ch = ABS "," THEN output("Comma")
ELIF ch = ABS "*" THEN output("Op_multiply")
ELIF ch = ABS "/" THEN IF next char = ABS "*" THEN comment
ELSE output("Op_divide")
FI
ELIF ch = ABS "%" THEN output("Op_mod")
ELIF ch = ABS "+" THEN output("Op_add")
ELIF ch = ABS "-" THEN output("Op_subtract")
ELIF ch = ABS "<" THEN if follows("=", "Op_lessequal", "Op_less")
ELIF ch = ABS ">" THEN if follows("=", "Op_greaterequal", "Op_greater")
ELIF ch = ABS "=" THEN if follows("=", "Op_equal", "Op_assign")
ELIF ch = ABS "!" THEN if follows("=", "Op_notequal", "Op_not")
ELIF ch = ABS "&" THEN double char(ch, "Op_and")
ELIF ch = ABS "|" THEN double char(ch, "Op_or")
ELIF is ident start (ch) THEN ident or keyword (ch)
ELIF ch = ABS """" THEN string
ELIF ch = ABS "'" THEN char
ELIF is digit(ch) THEN number(ch)
ELSE unrecognized(ch)
FI
OD;
output("End_Of_Input")
END |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #Aime | Aime | integer i;
i = 0;
while (i < argc()) {
o_text(argv(i));
o_byte('\n');
i += 1;
} |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #ALGOL_68 | ALGOL 68 | main:(
FOR i TO argc DO
printf(($"the argument #"g(-0)" is "gl$, i, argv(i)))
OD
) |
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #6502_Assembly | 6502 Assembly | nop ; comments begin with a semicolon |
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #68000_Assembly | 68000 Assembly | MOVEM.L D0-D7/A0-A6,-(SP) ;push all registers onto the stack |
http://rosettacode.org/wiki/Compiler/virtual_machine_interpreter | Compiler/virtual machine interpreter | A virtual machine implements a computer in software.
Task[edit]
Write a virtual machine interpreter. This interpreter should be able to run virtual
assembly language programs created via the task. This is a
byte-coded, 32-bit word stack based virtual machine.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Input format:
Given the following program:
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
The output from the Code generator is a virtual assembly code program:
Output from gen, input to VM
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
The first line of the input specifies the datasize required and the number of constant
strings, in the order that they are reference via the code.
The data can be stored in a separate array, or the data can be stored at the beginning of
the stack. Data is addressed starting at 0. If there are 3 variables, the 3rd one if
referenced at address 2.
If there are one or more constant strings, they come next. The code refers to these
strings by their index. The index starts at 0. So if there are 3 strings, and the code
wants to reference the 3rd string, 2 will be used.
Next comes the actual virtual assembly code. The first number is the code address of that
instruction. After that is the instruction mnemonic, followed by optional operands,
depending on the instruction.
Registers:
sp:
the stack pointer - points to the next top of stack. The stack is a 32-bit integer
array.
pc:
the program counter - points to the current instruction to be performed. The code is an
array of bytes.
Data:
data
string pool
Instructions:
Each instruction is one byte. The following instructions also have a 32-bit integer
operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
Print the word at stack top as a character.
prtc
Print the word at stack top as an integer.
prti
Stack top points to an index into the string pool. Print that entry.
prts
Unconditional stop.
halt
A simple example virtual machine
def run_vm(data_size)
int stack[data_size + 1000]
set stack[0..data_size - 1] to 0
int pc = 0
while True:
op = code[pc]
pc += 1
if op == FETCH:
stack.append(stack[bytes_to_int(code[pc:pc+word_size])[0]]);
pc += word_size
elif op == STORE:
stack[bytes_to_int(code[pc:pc+word_size])[0]] = stack.pop();
pc += word_size
elif op == PUSH:
stack.append(bytes_to_int(code[pc:pc+word_size])[0]);
pc += word_size
elif op == ADD: stack[-2] += stack[-1]; stack.pop()
elif op == SUB: stack[-2] -= stack[-1]; stack.pop()
elif op == MUL: stack[-2] *= stack[-1]; stack.pop()
elif op == DIV: stack[-2] /= stack[-1]; stack.pop()
elif op == MOD: stack[-2] %= stack[-1]; stack.pop()
elif op == LT: stack[-2] = stack[-2] < stack[-1]; stack.pop()
elif op == GT: stack[-2] = stack[-2] > stack[-1]; stack.pop()
elif op == LE: stack[-2] = stack[-2] <= stack[-1]; stack.pop()
elif op == GE: stack[-2] = stack[-2] >= stack[-1]; stack.pop()
elif op == EQ: stack[-2] = stack[-2] == stack[-1]; stack.pop()
elif op == NE: stack[-2] = stack[-2] != stack[-1]; stack.pop()
elif op == AND: stack[-2] = stack[-2] and stack[-1]; stack.pop()
elif op == OR: stack[-2] = stack[-2] or stack[-1]; stack.pop()
elif op == NEG: stack[-1] = -stack[-1]
elif op == NOT: stack[-1] = not stack[-1]
elif op == JMP: pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == JZ: if stack.pop() then pc += word_size else pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == PRTC: print stack[-1] as a character; stack.pop()
elif op == PRTS: print the constant string referred to by stack[-1]; stack.pop()
elif op == PRTI: print stack[-1] as an integer; stack.pop()
elif op == HALT: break
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
AST Interpreter task
| #Icon | Icon | # -*- Icon -*-
#
# The Rosetta Code virtual machine in Icon. Migrated from the
# ObjectIcon.
#
# See https://rosettacode.org/wiki/Compiler/virtual_machine_interpreter
#
record VirtualMachine(code, global_data, strings, stack, pc)
global opcode_names
global opcode_values
global op_halt
global op_add
global op_sub
global op_mul
global op_div
global op_mod
global op_lt
global op_gt
global op_le
global op_ge
global op_eq
global op_ne
global op_and
global op_or
global op_neg
global op_not
global op_prtc
global op_prti
global op_prts
global op_fetch
global op_store
global op_push
global op_jmp
global op_jz
global whitespace_chars
procedure main(args)
local f_inp, f_out
local vm
whitespace_chars := ' \t\n\r\f\v'
initialize_opcodes()
if 3 <= *args then {
write("Usage: ", &progname, " [INPUT_FILE [OUTPUT_FILE]]")
exit(1)
}
if 1 <= *args then {
f_inp := open(args[1], "r") | {
write(&errout, "Failed to open ", args[1], " for reading.")
exit(1)
}
} else {
f_inp := &input
}
if 2 <= *args then {
f_out := open(args[2], "w") | {
write(&errout, "Failed to open ", args[2], " for writing.")
exit(1)
}
} else {
f_out := &output
}
vm := VirtualMachine()
read_assembly_code(f_inp, vm)
run_vm(f_out, vm)
end
procedure initialize_opcodes()
local i
opcode_names :=
["halt", "add", "sub", "mul", "div",
"mod", "lt", "gt", "le", "ge",
"eq", "ne", "and", "or", "neg",
"not", "prtc", "prti", "prts", "fetch",
"store", "push", "jmp", "jz"]
opcode_values := table()
every i := 1 to *opcode_names do
opcode_values[opcode_names[i]] := char(i)
op_halt := opcode_values["halt"]
op_add := opcode_values["add"]
op_sub := opcode_values["sub"]
op_mul := opcode_values["mul"]
op_div := opcode_values["div"]
op_mod := opcode_values["mod"]
op_lt := opcode_values["lt"]
op_gt := opcode_values["gt"]
op_le := opcode_values["le"]
op_ge := opcode_values["ge"]
op_eq := opcode_values["eq"]
op_ne := opcode_values["ne"]
op_and := opcode_values["and"]
op_or := opcode_values["or"]
op_neg := opcode_values["neg"]
op_not := opcode_values["not"]
op_prtc := opcode_values["prtc"]
op_prti := opcode_values["prti"]
op_prts := opcode_values["prts"]
op_fetch := opcode_values["fetch"]
op_store := opcode_values["store"]
op_push := opcode_values["push"]
op_jmp := opcode_values["jmp"]
op_jz := opcode_values["jz"]
end
procedure int2bytes (n)
local bytes
# The VM is little-endian.
bytes := "****"
bytes[1] := char (iand(n, 16rFF))
bytes[2] := char(iand(ishift(n, -8), 16rFF))
bytes[3] := char(iand(ishift(n, -16), 16rFF))
bytes[4] := char(iand(ishift(n, -24), 16rFF))
return bytes
end
procedure bytes2int(bytes, i)
local n0, n1, n2, n3, n
# The VM is little-endian.
n0 := ord(bytes[i])
n1 := ishift(ord(bytes[i + 1]), 8)
n2 := ishift(ord(bytes[i + 2]), 16)
n3 := ishift(ord(bytes[i + 3]), 24)
n := ior (n0, ior (n1, ior (n2, n3)))
# Do not forget to extend the sign bit.
return (if n3 <= 16r7F then n else ior(n, icom(16rFFFFFFFF)))
end
procedure read_assembly_code(f, vm)
local data_size, number_of_strings
local line, ch
local i
local address
local opcode
# Read the header line.
line := read(f) | bad_vm()
line ? {
tab(many(whitespace_chars))
tab(match("Datasize")) | bad_vm()
tab(many(whitespace_chars))
tab(any(':')) | bad_vm()
tab(many(whitespace_chars))
data_size :=
integer(tab(many(&digits))) | bad_vm()
tab(many(whitespace_chars))
tab(match("Strings")) | bad_vm()
tab(many(whitespace_chars))
tab(any(':')) | bad_vm()
tab(many(whitespace_chars))
number_of_strings :=
integer(tab(many(&digits))) | bad_vm()
}
# Read the strings.
vm.strings := list(number_of_strings)
every i := 1 to number_of_strings do {
vm.strings[i] := ""
line := read(f) | bad_vm()
line ? {
tab(many(whitespace_chars))
tab(any('"')) | bad_vm()
while ch := tab(any(~'"')) do {
if ch == '\\' then {
ch := tab(any('n\\')) | bad_vm()
vm.strings[i] ||:=
(if (ch == "n") then "\n" else "\\")
} else {
vm.strings[i] ||:= ch
}
}
}
}
# Read the code.
vm.code := ""
while line := read(f) do {
line ? {
tab(many(whitespace_chars))
address := integer(tab(many(&digits))) | bad_vm()
tab(many(whitespace_chars))
opcode := tab(many(~whitespace_chars)) | bad_vm()
vm.code ||:= opcode_values[opcode]
case opcode of {
"push": {
tab(many(whitespace_chars))
vm.code ||:=
int2bytes(integer(tab(many(&digits)))) |
int2bytes(integer(tab(any('-')) ||
tab(many(&digits)))) |
bad_vm()
}
"fetch" | "store": {
tab(many(whitespace_chars))
tab(any('[')) | bad_vm()
tab(many(whitespace_chars))
vm.code ||:=
int2bytes(integer(tab(many(&digits)))) |
bad_vm()
tab(many(whitespace_chars))
tab(any(']')) | bad_vm()
}
"jmp" | "jz": {
tab(many(whitespace_chars))
tab(any('(')) | bad_vm()
tab(many(whitespace_chars))
vm.code ||:=
int2bytes(integer(tab(many(&digits)))) |
int2bytes(integer(tab(any('-')) ||
tab(many(&digits)))) |
bad_vm()
tab(many(whitespace_chars))
tab(any(')')) | bad_vm()
tab(many(whitespace_chars))
tab(many(&digits)) | bad_vm()
}
default: {
# Do nothing
}
}
}
}
# Create a global data area.
vm.global_data := list(data_size, &null)
initialize_vm(vm)
end
procedure run_vm(f_out, vm)
initialize_vm(vm)
continue_vm(f_out, vm)
end
procedure continue_vm(f_out, vm)
while vm.code[vm.pc] ~== op_halt do
step_vm(f_out, vm)
end
procedure step_vm(f_out, vm)
local opcode
opcode := vm.code[vm.pc]
vm.pc +:= 1
case opcode of {
op_add: binop(vm, "+")
op_sub: binop(vm, "-")
op_mul: binop(vm, "*")
op_div: binop(vm, "/")
op_mod: binop(vm, "%")
op_lt: comparison(vm, "<")
op_gt: comparison(vm, ">")
op_le: comparison(vm, "<=")
op_ge: comparison(vm, ">=")
op_eq: comparison(vm, "=")
op_ne: comparison(vm, "~=")
op_and: logical_and(vm)
op_or: logical_or(vm)
op_neg: negate(vm)
op_not: logical_not(vm)
op_prtc: printc(f_out, vm)
op_prti: printi(f_out, vm)
op_prts: prints(f_out, vm)
op_fetch: fetch_global(vm)
op_store: store_global(vm)
op_push: push_argument(vm)
op_jmp: jump(vm)
op_jz: jump_if_zero(vm)
default: bad_opcode()
}
end
procedure negate(vm)
vm.stack[1] := -vm.stack[1]
end
procedure binop(vm, func)
vm.stack[2] := func(vm.stack[2], vm.stack[1])
pop(vm.stack)
end
procedure comparison(vm, func)
vm.stack[2] := (if func(vm.stack[2], vm.stack[1]) then 1 else 0)
pop(vm.stack)
end
procedure logical_and(vm)
vm.stack[2] :=
(if vm.stack[2] ~= 0 & vm.stack[1] ~= 0 then 1 else 0)
pop(vm.stack)
end
procedure logical_or(vm)
vm.stack[2] :=
(if vm.stack[2] ~= 0 | vm.stack[1] ~= 0 then 1 else 0)
pop(vm.stack)
end
procedure logical_not(vm)
vm.stack[1] := (if vm.stack[1] ~= 0 then 0 else 1)
end
procedure printc(f_out, vm)
writes(f_out, char(pop(vm.stack)))
end
procedure printi(f_out, vm)
writes(f_out, pop(vm.stack))
end
procedure prints(f_out, vm)
writes(f_out, vm.strings[pop(vm.stack) + 1])
end
procedure fetch_global(vm)
push(vm.stack, vm.global_data[get_argument(vm) + 1])
vm.pc +:= 4
end
procedure store_global(vm)
vm.global_data[get_argument(vm) + 1] := pop(vm.stack)
vm.pc +:= 4
end
procedure push_argument(vm)
push(vm.stack, get_argument(vm))
vm.pc +:= 4
end
procedure jump(vm)
vm.pc +:= get_argument(vm)
end
procedure jump_if_zero(vm)
if pop(vm.stack) = 0 then
vm.pc +:= get_argument(vm)
else
vm.pc +:= 4
end
procedure get_argument(vm)
return bytes2int(vm.code, vm.pc)
end
procedure initialize_vm(vm)
# The program counter starts at 1, for convenient indexing into
# the code[] array. Icon indexing starts at 1 (for a *very* good
# reason, but that’s a topic for another day).
vm.pc := 1
vm.stack := []
end
procedure bad_vm()
write(&errout, "Bad VM.")
exit(1)
end
procedure bad_opcode()
write(&errout, "Bad opcode.")
exit(1)
end |
http://rosettacode.org/wiki/Compiler/code_generator | Compiler/code generator | A code generator translates the output of the syntax analyzer and/or semantic analyzer
into lower level code, either assembly, object, or virtual.
Task[edit]
Take the output of the Syntax analyzer task - which is a flattened Abstract Syntax Tree (AST) - and convert it to virtual machine code, that can be run by the
Virtual machine interpreter. The output is in text format, and represents virtual assembly code.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
while.ast can be input into the code generator.
The following table shows the input to lex, lex output, the AST produced by the parser, and the generated virtual assembly code.
Run as: lex < while.t | parse | gen
Input to lex
Output from lex, input to parse
Output from parse
Output from gen, input to VM
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
Input format
As shown in the table, above, the output from the syntax analyzer is a flattened AST.
In the AST, Identifier, Integer, and String, are terminal nodes, e.g, they do not have child nodes.
Loading this data into an internal parse tree should be as simple as:
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";"
return None
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Output format - refer to the table above
The first line is the header: Size of data, and number of constant strings.
size of data is the number of 32-bit unique variables used. In this example, one variable, count
number of constant strings is just that - how many there are
After that, the constant strings
Finally, the assembly code
Registers
sp: the stack pointer - points to the next top of stack. The stack is a 32-bit integer array.
pc: the program counter - points to the current instruction to be performed. The code is an array of bytes.
Data
32-bit integers and strings
Instructions
Each instruction is one byte. The following instructions also have a 32-bit integer operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
prtc
Print the word at stack top as a character.
prti
Print the word at stack top as an integer.
prts
Stack top points to an index into the string pool. Print that entry.
halt
Unconditional stop.
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Virtual Machine Interpreter task
AST Interpreter task
| #Fortran | Fortran | module compiler_type_kinds
use, intrinsic :: iso_fortran_env, only: int32
use, intrinsic :: iso_fortran_env, only: int64
implicit none
private
! Synonyms.
integer, parameter, public :: size_kind = int64
integer, parameter, public :: length_kind = size_kind
integer, parameter, public :: nk = size_kind
! Synonyms for character capable of storing a Unicode code point.
integer, parameter, public :: unicode_char_kind = selected_char_kind ('ISO_10646')
integer, parameter, public :: ck = unicode_char_kind
! Synonyms for integers capable of storing a Unicode code point.
integer, parameter, public :: unicode_ichar_kind = int32
integer, parameter, public :: ick = unicode_ichar_kind
! Synonyms for integers in the virtual machine or the interpreter’s
! runtime. (The Rosetta Code task says integers in the virtual
! machine are 32-bit, but there is nothing in the task that prevents
! us using 64-bit integers in the compiler and interpreter.)
integer, parameter, public :: runtime_int_kind = int64
integer, parameter, public :: rik = runtime_int_kind
end module compiler_type_kinds
module helper_procedures
use, non_intrinsic :: compiler_type_kinds, only: nk, rik, ck
implicit none
private
public :: new_storage_size
public :: next_power_of_two
public :: isspace
public :: quoted_string
public :: int32_to_vm_bytes
public :: uint32_to_vm_bytes
public :: int32_from_vm_bytes
public :: uint32_from_vm_bytes
character(1, kind = ck), parameter :: horizontal_tab_char = char (9, kind = ck)
character(1, kind = ck), parameter :: linefeed_char = char (10, kind = ck)
character(1, kind = ck), parameter :: vertical_tab_char = char (11, kind = ck)
character(1, kind = ck), parameter :: formfeed_char = char (12, kind = ck)
character(1, kind = ck), parameter :: carriage_return_char = char (13, kind = ck)
character(1, kind = ck), parameter :: space_char = ck_' '
! The following is correct for Unix and its relatives.
character(1, kind = ck), parameter :: newline_char = linefeed_char
character(1, kind = ck), parameter :: backslash_char = char (92, kind = ck)
contains
elemental function new_storage_size (length_needed) result (size)
integer(kind = nk), intent(in) :: length_needed
integer(kind = nk) :: size
! Increase storage by orders of magnitude.
if (2_nk**32 < length_needed) then
size = huge (1_nk)
else
size = next_power_of_two (length_needed)
end if
end function new_storage_size
elemental function next_power_of_two (x) result (y)
integer(kind = nk), intent(in) :: x
integer(kind = nk) :: y
!
! It is assumed that no more than 64 bits are used.
!
! The branch-free algorithm is that of
! https://archive.is/nKxAc#RoundUpPowerOf2
!
! Fill in bits until one less than the desired power of two is
! reached, and then add one.
!
y = x - 1
y = ior (y, ishft (y, -1))
y = ior (y, ishft (y, -2))
y = ior (y, ishft (y, -4))
y = ior (y, ishft (y, -8))
y = ior (y, ishft (y, -16))
y = ior (y, ishft (y, -32))
y = y + 1
end function next_power_of_two
elemental function isspace (ch) result (bool)
character(1, kind = ck), intent(in) :: ch
logical :: bool
bool = (ch == horizontal_tab_char) .or. &
& (ch == linefeed_char) .or. &
& (ch == vertical_tab_char) .or. &
& (ch == formfeed_char) .or. &
& (ch == carriage_return_char) .or. &
& (ch == space_char)
end function isspace
function quoted_string (str) result (qstr)
character(*, kind = ck), intent(in) :: str
character(:, kind = ck), allocatable :: qstr
integer(kind = nk) :: n, i, j
! Compute n = the size of qstr.
n = 2_nk
do i = 1_nk, len (str, kind = nk)
select case (str(i:i))
case (newline_char, backslash_char)
n = n + 2
case default
n = n + 1
end select
end do
allocate (character(n, kind = ck) :: qstr)
! Quote the string.
qstr(1:1) = ck_'"'
j = 2_nk
do i = 1_nk, len (str, kind = nk)
select case (str(i:i))
case (newline_char)
qstr(j:j) = backslash_char
qstr((j + 1):(j + 1)) = ck_'n'
j = j + 2
case (backslash_char)
qstr(j:j) = backslash_char
qstr((j + 1):(j + 1)) = backslash_char
j = j + 2
case default
qstr(j:j) = str(i:i)
j = j + 1
end select
end do
if (j /= n) error stop ! Check code correctness.
qstr(n:n) = ck_'"'
end function quoted_string
subroutine int32_to_vm_bytes (n, bytes, i)
integer(kind = rik), intent(in) :: n
character(1), intent(inout) :: bytes(0:*)
integer(kind = rik), intent(in) :: i
!
! The virtual machine is presumed to be little-endian. Because I
! slightly prefer little-endian.
!
bytes(i) = achar (ibits (n, 0, 8))
bytes(i + 1) = achar (ibits (n, 8, 8))
bytes(i + 2) = achar (ibits (n, 16, 8))
bytes(i + 3) = achar (ibits (n, 24, 8))
end subroutine int32_to_vm_bytes
subroutine uint32_to_vm_bytes (n, bytes, i)
integer(kind = rik), intent(in) :: n
character(1), intent(inout) :: bytes(0:*)
integer(kind = rik), intent(in) :: i
call int32_to_vm_bytes (n, bytes, i)
end subroutine uint32_to_vm_bytes
subroutine int32_from_vm_bytes (n, bytes, i)
integer(kind = rik), intent(out) :: n
character(1), intent(in) :: bytes(0:*)
integer(kind = rik), intent(in) :: i
!
! The virtual machine is presumed to be little-endian. Because I
! slightly prefer little-endian.
!
call uint32_from_vm_bytes (n, bytes, i)
if (ibits (n, 31, 1) == 1) then
! Extend the sign bit.
n = ior (n, not ((2_rik ** 32) - 1))
end if
end subroutine int32_from_vm_bytes
subroutine uint32_from_vm_bytes (n, bytes, i)
integer(kind = rik), intent(out) :: n
character(1), intent(in) :: bytes(0:*)
integer(kind = rik), intent(in) :: i
!
! The virtual machine is presumed to be little-endian. Because I
! slightly prefer little-endian.
!
integer(kind = rik) :: n0, n1, n2, n3
n0 = iachar (bytes(i), kind = rik)
n1 = ishft (iachar (bytes(i + 1), kind = rik), 8)
n2 = ishft (iachar (bytes(i + 2), kind = rik), 16)
n3 = ishft (iachar (bytes(i + 3), kind = rik), 24)
n = ior (n0, ior (n1, ior (n2, n3)))
end subroutine uint32_from_vm_bytes
end module helper_procedures
module string_buffers
use, intrinsic :: iso_fortran_env, only: error_unit
use, intrinsic :: iso_fortran_env, only: int64
use, non_intrinsic :: compiler_type_kinds, only: nk, ck, ick
use, non_intrinsic :: helper_procedures
implicit none
private
public :: strbuf_t
public :: skip_whitespace
public :: skip_non_whitespace
public :: skip_whitespace_backwards
public :: at_end_of_line
type :: strbuf_t
integer(kind = nk), private :: len = 0
!
! ‘chars’ is made public for efficient access to the individual
! characters.
!
character(1, kind = ck), allocatable, public :: chars(:)
contains
procedure, pass, private :: ensure_storage => strbuf_t_ensure_storage
procedure, pass :: to_unicode_full_string => strbuf_t_to_unicode_full_string
procedure, pass :: to_unicode_substring => strbuf_t_to_unicode_substring
procedure, pass :: length => strbuf_t_length
procedure, pass :: set => strbuf_t_set
procedure, pass :: append => strbuf_t_append
generic :: to_unicode => to_unicode_full_string
generic :: to_unicode => to_unicode_substring
generic :: assignment(=) => set
end type strbuf_t
contains
function strbuf_t_to_unicode_full_string (strbuf) result (s)
class(strbuf_t), intent(in) :: strbuf
character(:, kind = ck), allocatable :: s
!
! This does not actually ensure that the string is valid Unicode;
! any 31-bit ‘character’ is supported.
!
integer(kind = nk) :: i
allocate (character(len = strbuf%len, kind = ck) :: s)
do i = 1, strbuf%len
s(i:i) = strbuf%chars(i)
end do
end function strbuf_t_to_unicode_full_string
function strbuf_t_to_unicode_substring (strbuf, i, j) result (s)
!
! ‘Extreme’ values of i and j are allowed, as shortcuts for ‘from
! the beginning’, ‘up to the end’, or ‘empty substring’.
!
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i, j
character(:, kind = ck), allocatable :: s
!
! This does not actually ensure that the string is valid Unicode;
! any 31-bit ‘character’ is supported.
!
integer(kind = nk) :: i1, j1
integer(kind = nk) :: n
integer(kind = nk) :: k
i1 = max (1_nk, i)
j1 = min (strbuf%len, j)
n = max (0_nk, (j1 - i1) + 1_nk)
allocate (character(n, kind = ck) :: s)
do k = 1, n
s(k:k) = strbuf%chars(i1 + (k - 1_nk))
end do
end function strbuf_t_to_unicode_substring
elemental function strbuf_t_length (strbuf) result (n)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk) :: n
n = strbuf%len
end function strbuf_t_length
subroutine strbuf_t_ensure_storage (strbuf, length_needed)
class(strbuf_t), intent(inout) :: strbuf
integer(kind = nk), intent(in) :: length_needed
integer(kind = nk) :: len_needed
integer(kind = nk) :: new_size
type(strbuf_t) :: new_strbuf
len_needed = max (length_needed, 1_nk)
if (.not. allocated (strbuf%chars)) then
! Initialize a new strbuf%chars array.
new_size = new_storage_size (len_needed)
allocate (strbuf%chars(1:new_size))
else if (ubound (strbuf%chars, 1) < len_needed) then
! Allocate a new strbuf%chars array, larger than the current
! one, but containing the same characters.
new_size = new_storage_size (len_needed)
allocate (new_strbuf%chars(1:new_size))
new_strbuf%chars(1:strbuf%len) = strbuf%chars(1:strbuf%len)
call move_alloc (new_strbuf%chars, strbuf%chars)
end if
end subroutine strbuf_t_ensure_storage
subroutine strbuf_t_set (dst, src)
class(strbuf_t), intent(inout) :: dst
class(*), intent(in) :: src
integer(kind = nk) :: n
integer(kind = nk) :: i
select type (src)
type is (character(*, kind = ck))
n = len (src, kind = nk)
call dst%ensure_storage(n)
do i = 1, n
dst%chars(i) = src(i:i)
end do
dst%len = n
type is (character(*))
n = len (src, kind = nk)
call dst%ensure_storage(n)
do i = 1, n
dst%chars(i) = src(i:i)
end do
dst%len = n
class is (strbuf_t)
n = src%len
call dst%ensure_storage(n)
dst%chars(1:n) = src%chars(1:n)
dst%len = n
class default
error stop
end select
end subroutine strbuf_t_set
subroutine strbuf_t_append (dst, src)
class(strbuf_t), intent(inout) :: dst
class(*), intent(in) :: src
integer(kind = nk) :: n_dst, n_src, n
integer(kind = nk) :: i
select type (src)
type is (character(*, kind = ck))
n_dst = dst%len
n_src = len (src, kind = nk)
n = n_dst + n_src
call dst%ensure_storage(n)
do i = 1, n_src
dst%chars(n_dst + i) = src(i:i)
end do
dst%len = n
type is (character(*))
n_dst = dst%len
n_src = len (src, kind = nk)
n = n_dst + n_src
call dst%ensure_storage(n)
do i = 1, n_src
dst%chars(n_dst + i) = src(i:i)
end do
dst%len = n
class is (strbuf_t)
n_dst = dst%len
n_src = src%len
n = n_dst + n_src
call dst%ensure_storage(n)
dst%chars((n_dst + 1):n) = src%chars(1:n_src)
dst%len = n
class default
error stop
end select
end subroutine strbuf_t_append
function skip_whitespace (strbuf, i) result (j)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i
integer(kind = nk) :: j
logical :: done
j = i
done = .false.
do while (.not. done)
if (at_end_of_line (strbuf, j)) then
done = .true.
else if (.not. isspace (strbuf%chars(j))) then
done = .true.
else
j = j + 1
end if
end do
end function skip_whitespace
function skip_non_whitespace (strbuf, i) result (j)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i
integer(kind = nk) :: j
logical :: done
j = i
done = .false.
do while (.not. done)
if (at_end_of_line (strbuf, j)) then
done = .true.
else if (isspace (strbuf%chars(j))) then
done = .true.
else
j = j + 1
end if
end do
end function skip_non_whitespace
function skip_whitespace_backwards (strbuf, i) result (j)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i
integer(kind = nk) :: j
logical :: done
j = i
done = .false.
do while (.not. done)
if (j == -1) then
done = .true.
else if (.not. isspace (strbuf%chars(j))) then
done = .true.
else
j = j - 1
end if
end do
end function skip_whitespace_backwards
function at_end_of_line (strbuf, i) result (bool)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i
logical :: bool
bool = (strbuf%length() < i)
end function at_end_of_line
end module string_buffers
module reading_one_line_from_a_stream
use, intrinsic :: iso_fortran_env, only: input_unit
use, intrinsic :: iso_fortran_env, only: error_unit
use, non_intrinsic :: compiler_type_kinds, only: nk, ck, ick
use, non_intrinsic :: string_buffers
implicit none
private
! get_line_from_stream: read an entire input line from a stream into
! a strbuf_t.
public :: get_line_from_stream
character(1, kind = ck), parameter :: linefeed_char = char (10, kind = ck)
! The following is correct for Unix and its relatives.
character(1, kind = ck), parameter :: newline_char = linefeed_char
contains
subroutine get_line_from_stream (unit_no, eof, no_newline, strbuf)
integer, intent(in) :: unit_no
logical, intent(out) :: eof ! End of file?
logical, intent(out) :: no_newline ! There is a line but it has no
! newline? (Thus eof also must
! be .true.)
class(strbuf_t), intent(inout) :: strbuf
character(1, kind = ck) :: ch
strbuf = ''
call get_ch (unit_no, eof, ch)
do while (.not. eof .and. ch /= newline_char)
call strbuf%append (ch)
call get_ch (unit_no, eof, ch)
end do
no_newline = eof .and. (strbuf%length() /= 0)
end subroutine get_line_from_stream
subroutine get_ch (unit_no, eof, ch)
!
! Read a single code point from the stream.
!
! Currently this procedure simply inputs ‘ASCII’ bytes rather than
! Unicode code points.
!
integer, intent(in) :: unit_no
logical, intent(out) :: eof
character(1, kind = ck), intent(out) :: ch
integer :: stat
character(1) :: c = '*'
eof = .false.
if (unit_no == input_unit) then
call get_input_unit_char (c, stat)
else
read (unit = unit_no, iostat = stat) c
end if
if (stat < 0) then
ch = ck_'*'
eof = .true.
else if (0 < stat) then
write (error_unit, '("Input error with status code ", I0)') stat
stop 1
else
ch = char (ichar (c, kind = ick), kind = ck)
end if
end subroutine get_ch
!!!
!!! If you tell gfortran you want -std=f2008 or -std=f2018, you likely
!!! will need to add also -fall-intrinsics or -U__GFORTRAN__
!!!
!!! The first way, you get the FGETC intrinsic. The latter way, you
!!! get the C interface code that uses getchar(3).
!!!
#ifdef __GFORTRAN__
subroutine get_input_unit_char (c, stat)
!
! The following works if you are using gfortran.
!
! (FGETC is considered a feature for backwards compatibility with
! g77. However, I know of no way to reconfigure input_unit as a
! Fortran 2003 stream, for use with ordinary ‘read’.)
!
character, intent(inout) :: c
integer, intent(out) :: stat
call fgetc (input_unit, c, stat)
end subroutine get_input_unit_char
#else
subroutine get_input_unit_char (c, stat)
!
! An alternative implementation of get_input_unit_char. This
! actually reads input from the C standard input, which might not
! be the same as input_unit.
!
use, intrinsic :: iso_c_binding, only: c_int
character, intent(inout) :: c
integer, intent(out) :: stat
interface
!
! Use getchar(3) to read characters from standard input. This
! assumes there is actually such a function available, and that
! getchar(3) does not exist solely as a macro. (One could write
! one’s own getchar() if necessary, of course.)
!
function getchar () result (c) bind (c, name = 'getchar')
use, intrinsic :: iso_c_binding, only: c_int
integer(kind = c_int) :: c
end function getchar
end interface
integer(kind = c_int) :: i_char
i_char = getchar ()
!
! The C standard requires that EOF have a negative value. If the
! value returned by getchar(3) is not EOF, then it will be
! representable as an unsigned char. Therefore, to check for end
! of file, one need only test whether i_char is negative.
!
if (i_char < 0) then
stat = -1
else
stat = 0
c = char (i_char)
end if
end subroutine get_input_unit_char
#endif
end module reading_one_line_from_a_stream
module ast_reader
!
! The AST will be read into an array. Perhaps that will improve
! locality, compared to storing the AST as many linked heap nodes.
!
! In any case, implementing the AST this way is an interesting
! problem.
!
use, intrinsic :: iso_fortran_env, only: input_unit
use, intrinsic :: iso_fortran_env, only: output_unit
use, intrinsic :: iso_fortran_env, only: error_unit
use, non_intrinsic :: compiler_type_kinds, only: nk, ck, ick, rik
use, non_intrinsic :: helper_procedures, only: next_power_of_two
use, non_intrinsic :: helper_procedures, only: new_storage_size
use, non_intrinsic :: string_buffers
use, non_intrinsic :: reading_one_line_from_a_stream
implicit none
private
public :: string_table_t
public :: ast_node_t
public :: ast_t
public :: read_ast
integer, parameter, public :: node_Nil = 0
integer, parameter, public :: node_Identifier = 1
integer, parameter, public :: node_String = 2
integer, parameter, public :: node_Integer = 3
integer, parameter, public :: node_Sequence = 4
integer, parameter, public :: node_If = 5
integer, parameter, public :: node_Prtc = 6
integer, parameter, public :: node_Prts = 7
integer, parameter, public :: node_Prti = 8
integer, parameter, public :: node_While = 9
integer, parameter, public :: node_Assign = 10
integer, parameter, public :: node_Negate = 11
integer, parameter, public :: node_Not = 12
integer, parameter, public :: node_Multiply = 13
integer, parameter, public :: node_Divide = 14
integer, parameter, public :: node_Mod = 15
integer, parameter, public :: node_Add = 16
integer, parameter, public :: node_Subtract = 17
integer, parameter, public :: node_Less = 18
integer, parameter, public :: node_LessEqual = 19
integer, parameter, public :: node_Greater = 20
integer, parameter, public :: node_GreaterEqual = 21
integer, parameter, public :: node_Equal = 22
integer, parameter, public :: node_NotEqual = 23
integer, parameter, public :: node_And = 24
integer, parameter, public :: node_Or = 25
type :: string_table_element_t
character(:, kind = ck), allocatable :: str
end type string_table_element_t
type :: string_table_t
integer(kind = nk), private :: len = 0_nk
type(string_table_element_t), allocatable, private :: strings(:)
contains
procedure, pass, private :: ensure_storage => string_table_t_ensure_storage
procedure, pass :: look_up_index => string_table_t_look_up_index
procedure, pass :: look_up_string => string_table_t_look_up_string
procedure, pass :: length => string_table_t_length
generic :: look_up => look_up_index
generic :: look_up => look_up_string
end type string_table_t
type :: ast_node_t
integer :: node_variety
! Runtime integer, symbol index, or string index.
integer(kind = rik) :: int
! The left branch begins at the next node. The right branch
! begins at the address of the left branch, plus the following.
integer(kind = nk) :: right_branch_offset
end type ast_node_t
type :: ast_t
integer(kind = nk), private :: len = 0_nk
type(ast_node_t), allocatable, public :: nodes(:)
contains
procedure, pass, private :: ensure_storage => ast_t_ensure_storage
end type ast_t
contains
subroutine string_table_t_ensure_storage (table, length_needed)
class(string_table_t), intent(inout) :: table
integer(kind = nk), intent(in) :: length_needed
integer(kind = nk) :: len_needed
integer(kind = nk) :: new_size
type(string_table_t) :: new_table
len_needed = max (length_needed, 1_nk)
if (.not. allocated (table%strings)) then
! Initialize a new table%strings array.
new_size = new_storage_size (len_needed)
allocate (table%strings(1:new_size))
else if (ubound (table%strings, 1) < len_needed) then
! Allocate a new table%strings array, larger than the current
! one, but containing the same strings.
new_size = new_storage_size (len_needed)
allocate (new_table%strings(1:new_size))
new_table%strings(1:table%len) = table%strings(1:table%len)
call move_alloc (new_table%strings, table%strings)
end if
end subroutine string_table_t_ensure_storage
elemental function string_table_t_length (table) result (len)
class(string_table_t), intent(in) :: table
integer(kind = nk) :: len
len = table%len
end function string_table_t_length
function string_table_t_look_up_index (table, str) result (index)
class(string_table_t), intent(inout) :: table
character(*, kind = ck), intent(in) :: str
integer(kind = rik) :: index
!
! This implementation simply stores the strings sequentially into
! an array. Obviously, for large numbers of strings, one might
! wish to do something more complex.
!
! Standard Fortran does not come, out of the box, with a massive
! runtime library for doing such things. They are, however, no
! longer nearly as challenging to implement in Fortran as they
! used to be.
!
integer(kind = nk) :: i
i = 1
index = 0
do while (index == 0)
if (i == table%len + 1) then
! The string is new and must be added to the table.
i = table%len + 1
if (huge (1_rik) < i) then
! String indices are assumed to be storable as runtime
! integers.
write (error_unit, '("string_table_t capacity exceeded")')
stop 1
end if
call table%ensure_storage(i)
table%len = i
allocate (table%strings(i)%str, source = str)
index = int (i, kind = rik)
else if (table%strings(i)%str == str) then
index = int (i, kind = rik)
else
i = i + 1
end if
end do
end function string_table_t_look_up_index
function string_table_t_look_up_string (table, index) result (str)
class(string_table_t), intent(inout) :: table
integer(kind = rik), intent(in) :: index
character(:, kind = ck), allocatable :: str
!
! This is the reverse of string_table_t_look_up_index: given an
! index, find the string.
!
if (index < 1 .or. table%len < index) then
! In correct code, this branch should never be reached.
error stop
else
allocate (str, source = table%strings(index)%str)
end if
end function string_table_t_look_up_string
subroutine ast_t_ensure_storage (ast, length_needed)
class(ast_t), intent(inout) :: ast
integer(kind = nk), intent(in) :: length_needed
integer(kind = nk) :: len_needed
integer(kind = nk) :: new_size
type(ast_t) :: new_ast
len_needed = max (length_needed, 1_nk)
if (.not. allocated (ast%nodes)) then
! Initialize a new ast%nodes array.
new_size = new_storage_size (len_needed)
allocate (ast%nodes(1:new_size))
else if (ubound (ast%nodes, 1) < len_needed) then
! Allocate a new ast%nodes array, larger than the current one,
! but containing the same nodes.
new_size = new_storage_size (len_needed)
allocate (new_ast%nodes(1:new_size))
new_ast%nodes(1:ast%len) = ast%nodes(1:ast%len)
call move_alloc (new_ast%nodes, ast%nodes)
end if
end subroutine ast_t_ensure_storage
subroutine read_ast (unit_no, strbuf, ast, symtab, strtab)
integer, intent(in) :: unit_no
type(strbuf_t), intent(inout) :: strbuf
type(ast_t), intent(inout) :: ast
type(string_table_t), intent(inout) :: symtab
type(string_table_t), intent(inout) :: strtab
logical :: eof
logical :: no_newline
integer(kind = nk) :: after_ast_address
ast%len = 0
symtab%len = 0
strtab%len = 0
call build_subtree (1_nk, after_ast_address)
contains
recursive subroutine build_subtree (here_address, after_subtree_address)
integer(kind = nk), value :: here_address
integer(kind = nk), intent(out) :: after_subtree_address
integer :: node_variety
integer(kind = nk) :: i, j
integer(kind = nk) :: left_branch_address
integer(kind = nk) :: right_branch_address
! Get a line from the parser output.
call get_line_from_stream (unit_no, eof, no_newline, strbuf)
if (eof) then
call ast_error
else
! Prepare to store a new node.
call ast%ensure_storage(here_address)
ast%len = here_address
! What sort of node is it?
i = skip_whitespace (strbuf, 1_nk)
j = skip_non_whitespace (strbuf, i)
node_variety = strbuf_to_node_variety (strbuf, i, j - 1)
ast%nodes(here_address)%node_variety = node_variety
select case (node_variety)
case (node_Nil)
after_subtree_address = here_address + 1
case (node_Identifier)
i = skip_whitespace (strbuf, j)
j = skip_non_whitespace (strbuf, i)
ast%nodes(here_address)%int = &
& strbuf_to_symbol_index (strbuf, i, j - 1, symtab)
after_subtree_address = here_address + 1
case (node_String)
i = skip_whitespace (strbuf, j)
j = skip_whitespace_backwards (strbuf, strbuf%length())
ast%nodes(here_address)%int = &
& strbuf_to_string_index (strbuf, i, j, strtab)
after_subtree_address = here_address + 1
case (node_Integer)
i = skip_whitespace (strbuf, j)
j = skip_non_whitespace (strbuf, i)
ast%nodes(here_address)%int = strbuf_to_int (strbuf, i, j - 1)
after_subtree_address = here_address + 1
case default
! The node is internal, and has left and right branches.
! The left branch will start at left_branch_address; the
! right branch will start at left_branch_address +
! right_side_offset.
left_branch_address = here_address + 1
! Build the left branch.
call build_subtree (left_branch_address, right_branch_address)
! Build the right_branch.
call build_subtree (right_branch_address, after_subtree_address)
ast%nodes(here_address)%right_branch_offset = &
& right_branch_address - left_branch_address
end select
end if
end subroutine build_subtree
end subroutine read_ast
function strbuf_to_node_variety (strbuf, i, j) result (node_variety)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i, j
integer :: node_variety
!
! This function has not been optimized in any way, unless the
! Fortran compiler can optimize it.
!
! Something like a ‘radix tree search’ could be done on the
! characters of the strbuf. Or a perfect hash function. Or a
! binary search. Etc.
!
if (j == i - 1) then
call ast_error
else
select case (strbuf%to_unicode(i, j))
case (ck_";")
node_variety = node_Nil
case (ck_"Identifier")
node_variety = node_Identifier
case (ck_"String")
node_variety = node_String
case (ck_"Integer")
node_variety = node_Integer
case (ck_"Sequence")
node_variety = node_Sequence
case (ck_"If")
node_variety = node_If
case (ck_"Prtc")
node_variety = node_Prtc
case (ck_"Prts")
node_variety = node_Prts
case (ck_"Prti")
node_variety = node_Prti
case (ck_"While")
node_variety = node_While
case (ck_"Assign")
node_variety = node_Assign
case (ck_"Negate")
node_variety = node_Negate
case (ck_"Not")
node_variety = node_Not
case (ck_"Multiply")
node_variety = node_Multiply
case (ck_"Divide")
node_variety = node_Divide
case (ck_"Mod")
node_variety = node_Mod
case (ck_"Add")
node_variety = node_Add
case (ck_"Subtract")
node_variety = node_Subtract
case (ck_"Less")
node_variety = node_Less
case (ck_"LessEqual")
node_variety = node_LessEqual
case (ck_"Greater")
node_variety = node_Greater
case (ck_"GreaterEqual")
node_variety = node_GreaterEqual
case (ck_"Equal")
node_variety = node_Equal
case (ck_"NotEqual")
node_variety = node_NotEqual
case (ck_"And")
node_variety = node_And
case (ck_"Or")
node_variety = node_Or
case default
call ast_error
end select
end if
end function strbuf_to_node_variety
function strbuf_to_symbol_index (strbuf, i, j, symtab) result (int)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i, j
type(string_table_t), intent(inout) :: symtab
integer(kind = rik) :: int
if (j == i - 1) then
call ast_error
else
int = symtab%look_up(strbuf%to_unicode (i, j))
end if
end function strbuf_to_symbol_index
function strbuf_to_int (strbuf, i, j) result (int)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i, j
integer(kind = rik) :: int
integer :: stat
character(:, kind = ck), allocatable :: str
if (j < i) then
call ast_error
else
allocate (character(len = (j - i) + 1_nk, kind = ck) :: str)
str = strbuf%to_unicode (i, j)
read (str, *, iostat = stat) int
if (stat /= 0) then
call ast_error
end if
end if
end function strbuf_to_int
function strbuf_to_string_index (strbuf, i, j, strtab) result (int)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i, j
type(string_table_t), intent(inout) :: strtab
integer(kind = rik) :: int
if (j == i - 1) then
call ast_error
else
int = strtab%look_up(strbuf_to_string (strbuf, i, j))
end if
end function strbuf_to_string_index
function strbuf_to_string (strbuf, i, j) result (str)
class(strbuf_t), intent(in) :: strbuf
integer(kind = nk), intent(in) :: i, j
character(:, kind = ck), allocatable :: str
character(1, kind = ck), parameter :: linefeed_char = char (10, kind = ck)
character(1, kind = ck), parameter :: backslash_char = char (92, kind = ck)
! The following is correct for Unix and its relatives.
character(1, kind = ck), parameter :: newline_char = linefeed_char
integer(kind = nk) :: k
integer(kind = nk) :: count
if (strbuf%chars(i) /= ck_'"' .or. strbuf%chars(j) /= ck_'"') then
call ast_error
else
! Count how many characters are needed.
count = 0
k = i + 1
do while (k < j)
count = count + 1
if (strbuf%chars(k) == backslash_char) then
k = k + 2
else
k = k + 1
end if
end do
allocate (character(len = count, kind = ck) :: str)
count = 0
k = i + 1
do while (k < j)
if (strbuf%chars(k) == backslash_char) then
if (k == j - 1) then
call ast_error
else
select case (strbuf%chars(k + 1))
case (ck_'n')
count = count + 1
str(count:count) = newline_char
case (backslash_char)
count = count + 1
str(count:count) = backslash_char
case default
call ast_error
end select
k = k + 2
end if
else
count = count + 1
str(count:count) = strbuf%chars(k)
k = k + 1
end if
end do
end if
end function strbuf_to_string
subroutine ast_error
!
! It might be desirable to give more detail.
!
write (error_unit, '("The AST input seems corrupted.")')
stop 1
end subroutine ast_error
end module ast_reader
module code_generation
!
! First we generate code as if the virtual machine itself were part
! of this program. Then we disassemble the generated code.
!
! Because we are targeting only the one output language, this seems
! an easy way to perform the task.
!
!
! A point worth noting: the virtual machine is a stack
! architecture.
!
! Stack architectures have a long history. Burroughs famously
! preferred stack architectures for running Algol programs. See, for
! instance,
! https://en.wikipedia.org/w/index.php?title=Burroughs_large_systems&oldid=1068076420
!
use, intrinsic :: iso_fortran_env, only: input_unit
use, intrinsic :: iso_fortran_env, only: output_unit
use, intrinsic :: iso_fortran_env, only: error_unit
use, non_intrinsic :: compiler_type_kinds
use, non_intrinsic :: helper_procedures
use, non_intrinsic :: ast_reader
implicit none
private
public :: generate_and_output_code
public :: generate_code
public :: output_code
! The virtual machine cannot handle integers of more than 32 bits,
! two’s-complement.
integer(kind = rik), parameter :: vm_huge_negint = -(2_rik ** 31_rik)
integer(kind = rik), parameter :: vm_huge_posint = (2_rik ** 31_rik) - 1_rik
! Arbitrarily chosen opcodes.
integer, parameter :: opcode_nop = 0 ! I think there should be a nop
! opcode, to reserve space for
! later hand-patching. :)
integer, parameter :: opcode_halt = 1 ! Does the ‘halt’ instruction
! apply brakes to the drum?
integer, parameter :: opcode_add = 2
integer, parameter :: opcode_sub = 3
integer, parameter :: opcode_mul = 4
integer, parameter :: opcode_div = 5
integer, parameter :: opcode_mod = 6
integer, parameter :: opcode_lt = 7
integer, parameter :: opcode_gt = 8
integer, parameter :: opcode_le = 9
integer, parameter :: opcode_ge = 10
integer, parameter :: opcode_eq = 11
integer, parameter :: opcode_ne = 12
integer, parameter :: opcode_and = 13
integer, parameter :: opcode_or = 14
integer, parameter :: opcode_neg = 15
integer, parameter :: opcode_not = 16
integer, parameter :: opcode_prtc = 17
integer, parameter :: opcode_prti = 18
integer, parameter :: opcode_prts = 19
integer, parameter :: opcode_fetch = 20
integer, parameter :: opcode_store = 21
integer, parameter :: opcode_push = 22
integer, parameter :: opcode_jmp = 23
integer, parameter :: opcode_jz = 24
character(8, kind = ck), parameter :: opcode_names(0:24) = &
& (/ "nop ", &
& "halt ", &
& "add ", &
& "sub ", &
& "mul ", &
& "div ", &
& "mod ", &
& "lt ", &
& "gt ", &
& "le ", &
& "ge ", &
& "eq ", &
& "ne ", &
& "and ", &
& "or ", &
& "neg ", &
& "not ", &
& "prtc ", &
& "prti ", &
& "prts ", &
& "fetch ", &
& "store ", &
& "push ", &
& "jmp ", &
& "jz " /)
type :: vm_code_t
integer(kind = rik), private :: len = 0_rik
character(1), allocatable :: bytes(:)
contains
procedure, pass, private :: ensure_storage => vm_code_t_ensure_storage
procedure, pass :: length => vm_code_t_length
end type vm_code_t
contains
subroutine vm_code_t_ensure_storage (code, length_needed)
class(vm_code_t), intent(inout) :: code
integer(kind = nk), intent(in) :: length_needed
integer(kind = nk) :: len_needed
integer(kind = nk) :: new_size
type(vm_code_t) :: new_code
len_needed = max (length_needed, 1_nk)
if (.not. allocated (code%bytes)) then
! Initialize a new code%bytes array.
new_size = new_storage_size (len_needed)
allocate (code%bytes(0:(new_size - 1)))
else if (ubound (code%bytes, 1) < len_needed - 1) then
! Allocate a new code%bytes array, larger than the current one,
! but containing the same bytes.
new_size = new_storage_size (len_needed)
allocate (new_code%bytes(0:(new_size - 1)))
new_code%bytes(0:(code%len - 1)) = code%bytes(0:(code%len - 1))
call move_alloc (new_code%bytes, code%bytes)
end if
end subroutine vm_code_t_ensure_storage
elemental function vm_code_t_length (code) result (len)
class(vm_code_t), intent(in) :: code
integer(kind = rik) :: len
len = code%len
end function vm_code_t_length
subroutine generate_and_output_code (outp, ast, symtab, strtab)
integer, intent(in) :: outp ! The unit to write the output to.
type(ast_t), intent(in) :: ast
type(string_table_t), intent(inout) :: symtab
type(string_table_t), intent(inout) :: strtab
type(vm_code_t) :: code
integer(kind = rik) :: i_vm
code%len = 0
i_vm = 0_rik
call generate_code (ast, 1_nk, i_vm, code)
call output_code (outp, symtab, strtab, code)
end subroutine generate_and_output_code
subroutine generate_code (ast, i_ast, i_vm, code)
type(ast_t), intent(in) :: ast
integer(kind = nk), intent(in) :: i_ast ! Index in the ast array.
integer(kind = rik), intent(inout) :: i_vm ! Address in the virtual machine.
type(vm_code_t), intent(inout) :: code
call traverse (i_ast)
! Generate a halt instruction.
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_halt)
i_vm = i_vm + 1
code%len = i_vm
contains
recursive subroutine traverse (i_ast)
integer(kind = nk), intent(in) :: i_ast ! Index in the ast array.
select case (ast%nodes(i_ast)%node_variety)
case (node_Nil)
continue
case (node_Integer)
block
integer(kind = rik) :: int_value
int_value = ast%nodes(i_ast)%int
call ensure_integer_is_vm_compatible (int_value)
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode_push)
call int32_to_vm_bytes (int_value, code%bytes, i_vm + 1)
i_vm = i_vm + 5
end block
case (node_Identifier)
block
integer(kind = rik) :: variable_index
! In the best Fortran tradition, we indexed the variables
! starting at one; however, the virtual machine starts them
! at zero. So subtract 1.
variable_index = ast%nodes(i_ast)%int - 1
call ensure_integer_is_vm_compatible (variable_index)
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode_fetch)
call uint32_to_vm_bytes (variable_index, code%bytes, i_vm + 1)
i_vm = i_vm + 5
end block
case (node_String)
block
integer(kind = rik) :: string_index
! In the best Fortran tradition, we indexed the strings
! starting at one; however, the virtual machine starts them
! at zero. So subtract 1.
string_index = ast%nodes(i_ast)%int - 1
call ensure_integer_is_vm_compatible (string_index)
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode_push)
call uint32_to_vm_bytes (string_index, code%bytes, i_vm + 1)
i_vm = i_vm + 5
end block
case (node_Assign)
block
integer(kind = nk) :: i_left, i_right
integer(kind = rik) :: variable_index
i_left = left_branch (i_ast)
i_right = right_branch (i_ast)
! In the best Fortran tradition, we indexed the variables
! starting at one; however, the virtual machine starts them
! at zero. So subtract 1.
variable_index = ast%nodes(i_left)%int - 1
! Create code to push the right side onto the stack
call traverse (i_right)
! Create code to store that result into the variable on the
! left side.
call ensure_node_variety (node_Identifier, ast%nodes(i_left)%node_variety)
call ensure_integer_is_vm_compatible (variable_index)
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode_store)
call uint32_to_vm_bytes (variable_index, code%bytes, i_vm + 1)
i_vm = i_vm + 5
end block
case (node_Multiply)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_mul)
i_vm = i_vm + 1
case (node_Divide)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_div)
i_vm = i_vm + 1
case (node_Mod)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_mod)
i_vm = i_vm + 1
case (node_Add)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_add)
i_vm = i_vm + 1
case (node_Subtract)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_sub)
i_vm = i_vm + 1
case (node_Less)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_lt)
i_vm = i_vm + 1
case (node_LessEqual)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_le)
i_vm = i_vm + 1
case (node_Greater)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_gt)
i_vm = i_vm + 1
case (node_GreaterEqual)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_ge)
i_vm = i_vm + 1
case (node_Equal)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_eq)
i_vm = i_vm + 1
case (node_NotEqual)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_ne)
i_vm = i_vm + 1
case (node_Negate)
call ensure_node_variety (node_Nil, &
& ast%nodes(right_branch (i_ast))%node_variety)
call traverse (left_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_neg)
i_vm = i_vm + 1
case (node_Not)
call ensure_node_variety (node_Nil, &
& ast%nodes(right_branch (i_ast))%node_variety)
call traverse (left_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_not)
i_vm = i_vm + 1
case (node_And)
!
! This is not a short-circuiting AND and so differs from
! C. One would not notice the difference, except in side
! effects that (I believe) are not possible in our tiny
! language.
!
! Even in a language such as Fortran that has actual AND and
! OR operators, an optimizer may generate short-circuiting
! code and so spoil one’s expectations for side
! effects. (Therefore gfortran may issue a warning if you
! call an unpure function within an .AND. or
! .OR. expression.)
!
! A C equivalent to what we have our code generator doing
! (and to Fortran’s .AND. operator) might be something like
!
! #define AND(a, b) ((!!(a)) * (!!(b)))
!
! This macro takes advantage of the equivalence of AND to
! multiplication modulo 2. The ‘!!’ notations are a C idiom
! for converting values to 0 and 1.
!
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_and)
i_vm = i_vm + 1
case (node_Or)
!
! This is not a short-circuiting OR and so differs from
! C. One would not notice the difference, except in side
! effects that (I believe) are not possible in our tiny
! language.
!
! Even in a language such as Fortran that has actual AND and
! OR operators, an optimizer may generate short-circuiting
! code and so spoil one’s expectations for side
! effects. (Therefore gfortran may issue a warning if you
! call an unpure function within an .AND. or
! .OR. expression.)
!
! A C equivalent to what we have our code generator doing
! (and to Fortran’s .OR. operator) might be something like
!
! #define OR(a, b) (!( (!(a)) * (!(b)) ))
!
! This macro takes advantage of the equivalence of AND to
! multiplication modulo 2, and the equivalence of OR(a,b) to
! !AND(!a,!b). One could instead take advantage of the
! equivalence of OR to addition modulo 2:
!
! #define OR(a, b) ( ( (!!(a)) + (!!(b)) ) & 1 )
!
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_or)
i_vm = i_vm + 1
case (node_If)
block
integer(kind = nk) :: i_left, i_right
integer(kind = nk) :: i_right_then_left, i_right_then_right
logical :: there_is_an_else_clause
integer(kind = rik) :: fixup_address1
integer(kind = rik) :: fixup_address2
integer(kind = rik) :: relative_address
i_left = left_branch (i_ast)
i_right = right_branch (i_ast)
call ensure_node_variety (node_If, ast%nodes(i_right)%node_variety)
i_right_then_left = left_branch (i_right)
i_right_then_right = right_branch (i_right)
there_is_an_else_clause = &
& (ast%nodes(i_right_then_right)%node_variety /= node_Nil)
! Generate code for the predicate.
call traverse (i_left)
! Generate a conditional jump over the predicate-true code.
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode_jz)
call int32_to_vm_bytes (0_rik, code%bytes, i_vm + 1)
fixup_address1 = i_vm + 1
i_vm = i_vm + 5
! Generate the predicate-true code.
call traverse (i_right_then_left)
if (there_is_an_else_clause) then
! Generate an unconditional jump over the predicate-true
! code.
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode_jmp)
call int32_to_vm_bytes (0_rik, code%bytes, i_vm + 1)
fixup_address2 = i_vm + 1
i_vm = i_vm + 5
! Fix up the conditional jump, so it jumps to the
! predicate-false code.
relative_address = i_vm - fixup_address1
call int32_to_vm_bytes (relative_address, code%bytes, fixup_address1)
! Generate the predicate-false code.
call traverse (i_right_then_right)
! Fix up the unconditional jump, so it jumps past the
! predicate-false code.
relative_address = i_vm - fixup_address2
call int32_to_vm_bytes (relative_address, code%bytes, fixup_address2)
else
! Fix up the conditional jump, so it jumps past the
! predicate-true code.
relative_address = i_vm - fixup_address1
call int32_to_vm_bytes (relative_address, code%bytes, fixup_address1)
end if
end block
case (node_While)
block
!
! Note there is another common way to translate a
! while-loop which is to put (logically inverted) predicate
! code *after* the loop-body code, followed by a
! conditional jump to the start of the loop. You start the
! loop by unconditionally jumping to the predicate code.
!
! If our VM had a ‘jnz’ instruction, that translation would
! almost certainly be slightly better than this one. Given
! that we do not have a ‘jnz’, the code would end up
! slightly enlarged; one would have to put ‘not’ before the
! ‘jz’ at the bottom of the loop.
!
integer(kind = nk) :: i_left, i_right
integer(kind = rik) :: loop_address
integer(kind = rik) :: fixup_address
integer(kind = rik) :: relative_address
i_left = left_branch (i_ast)
i_right = right_branch (i_ast)
! Generate code for the predicate.
loop_address = i_vm
call traverse (i_left)
! Generate a conditional jump out of the loop.
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode_jz)
call int32_to_vm_bytes (0_rik, code%bytes, i_vm + 1)
fixup_address = i_vm + 1
i_vm = i_vm + 5
! Generate code for the loop body.
call traverse (i_right)
! Generate an unconditional jump to the top of the loop.
call code%ensure_storage(i_vm + 5)
code%bytes(i_vm) = achar (opcode_jmp)
relative_address = loop_address - (i_vm + 1)
call int32_to_vm_bytes (relative_address, code%bytes, i_vm + 1)
i_vm = i_vm + 5
! Fix up the conditional jump, so it jumps after the loop
! body.
relative_address = i_vm - fixup_address
call int32_to_vm_bytes (relative_address, code%bytes, fixup_address)
end block
case (node_Prtc)
call ensure_node_variety (node_Nil, &
& ast%nodes(right_branch (i_ast))%node_variety)
call traverse (left_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_prtc)
i_vm = i_vm + 1
case (node_Prti)
call ensure_node_variety (node_Nil, &
& ast%nodes(right_branch (i_ast))%node_variety)
call traverse (left_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_prti)
i_vm = i_vm + 1
case (node_Prts)
call ensure_node_variety (node_Nil, &
& ast%nodes(right_branch (i_ast))%node_variety)
call traverse (left_branch (i_ast))
call code%ensure_storage(i_vm + 1)
code%bytes(i_vm) = achar (opcode_prts)
i_vm = i_vm + 1
case (node_Sequence)
call traverse (left_branch (i_ast))
call traverse (right_branch (i_ast))
case default
call bad_ast
end select
code%len = i_vm
end subroutine traverse
elemental function left_branch (i_here) result (i_left)
integer(kind = nk), intent(in) :: i_here
integer(kind = nk) :: i_left
i_left = i_here + 1
end function left_branch
elemental function right_branch (i_here) result (i_right)
integer(kind = nk), intent(in) :: i_here
integer(kind = nk) :: i_right
i_right = i_here + 1 + ast%nodes(i_here)%right_branch_offset
end function right_branch
subroutine ensure_node_variety (expected_node_variety, found_node_variety)
integer, intent(in) :: expected_node_variety
integer, intent(in) :: found_node_variety
if (expected_node_variety /= found_node_variety) call bad_ast
end subroutine ensure_node_variety
subroutine bad_ast
call codegen_error_message
write (error_unit, '("unexpected abstract syntax")')
stop 1
end subroutine bad_ast
end subroutine generate_code
subroutine output_code (outp, symtab, strtab, code)
integer, intent(in) :: outp ! The unit to write the output to.
type(string_table_t), intent(inout) :: symtab
type(string_table_t), intent(inout) :: strtab
type(vm_code_t), intent(in) :: code
call write_header (outp, symtab%length(), strtab%length())
call write_strings (outp, strtab)
call disassemble_instructions (outp, code)
end subroutine output_code
subroutine write_header (outp, data_size, strings_size)
integer, intent(in) :: outp
integer(kind = rik) :: data_size
integer(kind = rik) :: strings_size
call ensure_integer_is_vm_compatible (data_size)
call ensure_integer_is_vm_compatible (strings_size)
write (outp, '("Datasize: ", I0, " Strings: ", I0)') data_size, strings_size
end subroutine write_header
subroutine write_strings (outp, strtab)
integer, intent(in) :: outp
type(string_table_t), intent(inout) :: strtab
integer(kind = rik) :: i
do i = 1_rik, strtab%length()
write (outp, '(1A)') quoted_string (strtab%look_up(i))
end do
end subroutine write_strings
subroutine disassemble_instructions (outp, code)
integer, intent(in) :: outp
type(vm_code_t), intent(in) :: code
integer(kind = rik) :: i_vm
integer :: opcode
integer(kind = rik) :: n
i_vm = 0_rik
do while (i_vm /= code%length())
call write_vm_code_address (outp, i_vm)
opcode = iachar (code%bytes(i_vm))
call write_vm_opcode (outp, opcode)
select case (opcode)
case (opcode_push)
call int32_from_vm_bytes (n, code%bytes, i_vm + 1)
call write_vm_int_literal (outp, n)
i_vm = i_vm + 5
case (opcode_fetch, opcode_store)
call uint32_from_vm_bytes (n, code%bytes, i_vm + 1)
call write_vm_data_address (outp, n)
i_vm = i_vm + 5
case (opcode_jmp, opcode_jz)
call int32_from_vm_bytes (n, code%bytes, i_vm + 1)
call write_vm_jump_address (outp, n, i_vm + 1)
i_vm = i_vm + 5
case default
i_vm = i_vm + 1
end select
write (outp, '()', advance = 'yes')
end do
end subroutine disassemble_instructions
subroutine write_vm_code_address (outp, i_vm)
integer, intent(in) :: outp
integer(kind = rik), intent(in) :: i_vm
! 10 characters is wide enough for any 32-bit unsigned number.
write (outp, '(I10, 1X)', advance = 'no') i_vm
end subroutine write_vm_code_address
subroutine write_vm_opcode (outp, opcode)
integer, intent(in) :: outp
integer, intent(in) :: opcode
character(8, kind = ck) :: opcode_name
opcode_name = opcode_names(opcode)
select case (opcode)
case (opcode_push, opcode_fetch, opcode_store, opcode_jz, opcode_jmp)
write (outp, '(1A)', advance = 'no') opcode_name(1:6)
case default
write (outp, '(1A)', advance = 'no') trim (opcode_name)
end select
end subroutine write_vm_opcode
subroutine write_vm_int_literal (outp, n)
integer, intent(in) :: outp
integer(kind = rik), intent(in) :: n
write (outp, '(I0)', advance = 'no') n
end subroutine write_vm_int_literal
subroutine write_vm_data_address (outp, i)
integer, intent(in) :: outp
integer(kind = rik), intent(in) :: i
write (outp, '("[", I0, "]")', advance = 'no') i
end subroutine write_vm_data_address
subroutine write_vm_jump_address (outp, relative_address, i_vm)
integer, intent(in) :: outp
integer(kind = rik), intent(in) :: relative_address
integer(kind = rik), intent(in) :: i_vm
write (outp, '(" (", I0, ") ", I0)', advance = 'no') &
& relative_address, i_vm + relative_address
end subroutine write_vm_jump_address
subroutine ensure_integer_is_vm_compatible (n)
integer(kind = rik), intent(in) :: n
!
! It would seem desirable to check this in the syntax analyzer,
! instead, so line and column numbers can be given. But checking
! here will not hurt.
!
if (n < vm_huge_negint .or. vm_huge_posint < n) then
call codegen_error_message
write (error_unit, '("integer is too large for the virtual machine: ", I0)') n
stop 1
end if
end subroutine ensure_integer_is_vm_compatible
subroutine codegen_error_message
write (error_unit, '("Code generation error: ")', advance = 'no')
end subroutine codegen_error_message
end module code_generation
program gen
use, intrinsic :: iso_fortran_env, only: input_unit
use, intrinsic :: iso_fortran_env, only: output_unit
use, intrinsic :: iso_fortran_env, only: error_unit
use, non_intrinsic :: compiler_type_kinds
use, non_intrinsic :: string_buffers
use, non_intrinsic :: ast_reader
use, non_intrinsic :: code_generation
implicit none
integer, parameter :: inp_unit_no = 100
integer, parameter :: outp_unit_no = 101
integer :: arg_count
character(200) :: arg
integer :: inp
integer :: outp
type(strbuf_t) :: strbuf
type(ast_t) :: ast
type(string_table_t) :: symtab
type(string_table_t) :: strtab
arg_count = command_argument_count ()
if (3 <= arg_count) then
call print_usage
else
if (arg_count == 0) then
inp = input_unit
outp = output_unit
else if (arg_count == 1) then
call get_command_argument (1, arg)
inp = open_for_input (trim (arg))
outp = output_unit
else if (arg_count == 2) then
call get_command_argument (1, arg)
inp = open_for_input (trim (arg))
call get_command_argument (2, arg)
outp = open_for_output (trim (arg))
end if
call read_ast (inp, strbuf, ast, symtab, strtab)
call generate_and_output_code (outp, ast, symtab, strtab)
end if
contains
function open_for_input (filename) result (unit_no)
character(*), intent(in) :: filename
integer :: unit_no
integer :: stat
open (unit = inp_unit_no, file = filename, status = 'old', &
& action = 'read', access = 'stream', form = 'unformatted', &
& iostat = stat)
if (stat /= 0) then
write (error_unit, '("Error: failed to open ", 1A, " for input")') filename
stop 1
end if
unit_no = inp_unit_no
end function open_for_input
function open_for_output (filename) result (unit_no)
character(*), intent(in) :: filename
integer :: unit_no
integer :: stat
open (unit = outp_unit_no, file = filename, action = 'write', iostat = stat)
if (stat /= 0) then
write (error_unit, '("Error: failed to open ", 1A, " for output")') filename
stop 1
end if
unit_no = outp_unit_no
end function open_for_output
subroutine print_usage
character(200) :: progname
call get_command_argument (0, progname)
write (output_unit, '("Usage: ", 1A, " [INPUT_FILE [OUTPUT_FILE]]")') &
& trim (progname)
end subroutine print_usage
end program gen |
http://rosettacode.org/wiki/Compare_sorting_algorithms%27_performance | Compare sorting algorithms' performance |
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
O(n logn) sorts
Heap sort |
Merge sort |
Patience sort |
Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Measure a relative performance of sorting algorithms implementations.
Plot execution time vs. input sequence length dependencies for various implementation of sorting algorithm and different input sequence types (example figures).
Consider three type of input sequences:
ones: sequence of all 1's. Example: {1, 1, 1, 1, 1}
range: ascending sequence, i.e. already sorted. Example: {1, 2, 3, 10, 15}
shuffled range: sequence with elements randomly distributed. Example: {5, 3, 9, 6, 8}
Consider at least two different sorting functions (different algorithms or/and different implementation of the same algorithm).
For example, consider Bubble Sort, Insertion sort, Quicksort or/and implementations of Quicksort with different pivot selection mechanisms. Where possible, use existing implementations.
Preliminary subtask:
Bubble Sort, Insertion sort, Quicksort, Radix sort, Shell sort
Query Performance
Write float arrays to a text file
Plot x, y arrays
Polynomial Fitting
General steps:
Define sorting routines to be considered.
Define appropriate sequence generators and write timings.
Plot timings.
What conclusions about relative performance of the sorting routines could be made based on the plots?
| #J | J |
NB. extracts from other rosetta code projects
ts=: 6!:2, 7!:2@]
radix =: 3 : 0
256 radix y
:
a=. #{. z =. x #.^:_1 y
e=. (-a) {."0 b =. i.x
x#.1{::(<:@[;([: ; (b, {"1) <@}./. e,]))&>/^:a [ z;~a-1
NB. , ([: ; (b, {:"1) <@(}:"1@:}.)/. e,])^:(#{.z) y,.z
)
bubble=: (([ (<. , >.) {.@]) , }.@])/^:_
insertion=:((>: # ]) , [ , < #])/
sel=: 1 : 'x # ['
quick=: 3 : 0
if. 1 >: #y do. y
else.
e=. y{~?#y
(quick y <sel e),(y =sel e),quick y >sel e
end.
)
gaps =: [: }: 1 (1+3*])^:(> {:)^:a:~ #
insert =: (I.~ {. ]) , [ , ] }.~ I.~
gapinss =: #@] {. ,@|:@(] insert//.~ #@] $ i.@[)
shell =: [: ; gapinss &.>/@(< ,~ ]&.>@gaps)
builtin =: /:~
NB. characterization of the sorting algorithms.
sorts =: bubble`insertion`shell`quick`radix`builtin
generators =: #&1`(i.@-)`(?.~) NB. data generators
round =: [: <. 1r2&+
ll =: (<_1 0)&{ NB. verb to extract lower left which holds ln data length
lc =: (<_1 1)&{ NB. verb to fetch lower center which holds most recent time
NB. maximum_time characterize ln_start_size
NB. characterize returns a rank 4 matrix with successive indexes for
NB. algorithm, input arrangement, max number of tests in group, length time space
characterize =: 4 : 0
max_time =. x
start =. 1 3{.<:y
for_sort. sorts do.
for_generator. generators do. NB. limit time and paging prevention
t =: }. (, (, [: ts '[email protected] ([email protected])' , ":@round@^)@>:@ll) ^: ((lc < max_time"_) *. ll < 17"_) ^:_ start
if. generator -: {.generators do.
g =. ,:t
else.
g =. g,t
end.
end.
if. sort -: {.sorts do.
s =. ,:g
else.
s =. s,g
end.
end.
)
NB. character cell graphics
NB. From j phrases 10E. Approximation
d3=: 1&,.@[ %.~ ] NB. a and b such that y is approx. a + b*x
NB. domain and range 0 to 14.
D=:14
plot =: 1 : '(=/ round@(u&.(*&(D%<:y))))i.y' NB. function plot size
points =: 4 : '1(<"1|:|.round y*D%~<:x)}0$~2#x' NB. size points x,:y
show =: [: |. [: '0'&~:@{:} ' ' ,: ":
plt =: 3 : 0
30 plt y NB. default size 30
:
n =. >:i.-# experiments =. <@(#~"1 (0&<)@{.)"2 y
pts =. n +./ .*x&points@>experiments
coef =. d3/@>experiments
(_*pts) + n +./ .*1 0 2|:coef&(p."1) plot x
)
|
http://rosettacode.org/wiki/Compiler/AST_interpreter | Compiler/AST interpreter | An AST interpreter interprets an Abstract Syntax Tree (AST)
produced by a Syntax Analyzer.
Task[edit]
Take the AST output from the Syntax analyzer task, and interpret it as appropriate.
Refer to the Syntax analyzer task for details of the AST.
Loading the AST from the syntax analyzer is as simple as (pseudo code)
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
The interpreter algorithm is relatively simple
interp(x)
if x == NULL return NULL
elif x.node_type == Integer return x.value converted to an integer
elif x.node_type == Ident return the current value of variable x.value
elif x.node_type == String return x.value
elif x.node_type == Assign
globals[x.left.value] = interp(x.right)
return NULL
elif x.node_type is a binary operator return interp(x.left) operator interp(x.right)
elif x.node_type is a unary operator, return return operator interp(x.left)
elif x.node_type == If
if (interp(x.left)) then interp(x.right.left)
else interp(x.right.right)
return NULL
elif x.node_type == While
while (interp(x.left)) do interp(x.right)
return NULL
elif x.node_type == Prtc
print interp(x.left) as a character, no newline
return NULL
elif x.node_type == Prti
print interp(x.left) as an integer, no newline
return NULL
elif x.node_type == Prts
print interp(x.left) as a string, respecting newlines ("\n")
return NULL
elif x.node_type == Sequence
interp(x.left)
interp(x.right)
return NULL
else
error("unknown node type")
Notes:
Because of the simple nature of our tiny language, Semantic analysis is not needed.
Your interpreter should use C like division semantics, for both division and modulus. For division of positive operands, only the non-fractional portion of the result should be returned. In other words, the result should be truncated towards 0.
This means, for instance, that 3 / 2 should result in 1.
For division when one of the operands is negative, the result should be truncated towards 0.
This means, for instance, that 3 / -2 should result in -1.
Test program
prime.t
lex <prime.t | parse | interp
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
101 is prime
Total primes found: 26
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
Virtual Machine Interpreter task
| #Scala | Scala |
package xyz.hyperreal.rosettacodeCompiler
import scala.collection.mutable
import scala.io.Source
object ASTInterpreter {
def fromStdin = fromSource(Source.stdin)
def fromString(src: String) = fromSource(Source.fromString(src))
def fromSource(s: Source) = {
val lines = s.getLines
def load: Node =
if (!lines.hasNext)
TerminalNode
else
lines.next.split(" +", 2) match {
case Array(name, value) => LeafNode(name, value)
case Array(";") => TerminalNode
case Array(name) => BranchNode(name, load, load)
}
val vars = new mutable.HashMap[String, Any]
def interpInt(n: Node) = interp(n).asInstanceOf[Int]
def interpBoolean(n: Node) = interp(n).asInstanceOf[Boolean]
def interp(n: Node): Any =
n match {
case TerminalNode => null
case LeafNode("Identifier", name) =>
vars get name match {
case None =>
vars(name) = 0
0
case Some(v) => v
}
case LeafNode("Integer", "'\\n'") => '\n'.toInt
case LeafNode("Integer", "'\\\\'") => '\\'.toInt
case LeafNode("Integer", value: String) if value startsWith "'" => value(1).toInt
case LeafNode("Integer", value: String) => value.toInt
case LeafNode("String", value: String) => unescape(value.substring(1, value.length - 1))
case BranchNode("Assign", LeafNode(_, name), exp) => vars(name) = interp(exp)
case BranchNode("Sequence", l, r) => interp(l); interp(r)
case BranchNode("Prts" | "Prti", a, _) => print(interp(a))
case BranchNode("Prtc", a, _) => print(interpInt(a).toChar)
case BranchNode("Add", l, r) => interpInt(l) + interpInt(r)
case BranchNode("Subtract", l, r) => interpInt(l) - interpInt(r)
case BranchNode("Multiply", l, r) => interpInt(l) * interpInt(r)
case BranchNode("Divide", l, r) => interpInt(l) / interpInt(r)
case BranchNode("Mod", l, r) => interpInt(l) % interpInt(r)
case BranchNode("Negate", a, _) => -interpInt(a)
case BranchNode("Less", l, r) => interpInt(l) < interpInt(r)
case BranchNode("LessEqual", l, r) => interpInt(l) <= interpInt(r)
case BranchNode("Greater", l, r) => interpInt(l) > interpInt(r)
case BranchNode("GreaterEqual", l, r) => interpInt(l) >= interpInt(r)
case BranchNode("Equal", l, r) => interpInt(l) == interpInt(r)
case BranchNode("NotEqual", l, r) => interpInt(l) != interpInt(r)
case BranchNode("And", l, r) => interpBoolean(l) && interpBoolean(r)
case BranchNode("Or", l, r) => interpBoolean(l) || interpBoolean(r)
case BranchNode("Not", a, _) => !interpBoolean(a)
case BranchNode("While", l, r) => while (interpBoolean(l)) interp(r)
case BranchNode("If", cond, BranchNode("If", yes, no)) => if (interpBoolean(cond)) interp(yes) else interp(no)
}
interp(load)
}
abstract class Node
case class BranchNode(name: String, left: Node, right: Node) extends Node
case class LeafNode(name: String, value: String) extends Node
case object TerminalNode extends Node
}
|
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #FutureBasic | FutureBasic | local fn MyArraySortFunction( obj1 as CFTypeRef, obj2 as CFTypeRef, context as ptr ) as NSComparisonResult
NSComparisonResult result = NSOrderedDescending
if len(obj1) >= len(obj2) then result = NSOrderedAscending
end fn = result
void local fn DoIt
CFStringRef string1 = @"abcd", string2 = @"abcdef", s
if len(string1) >= len(string2)
print string1,len(string1)
print string2,len(string2)
else
print string2,len(string2)
print string1,len(string1)
end if
print
text ,,,,, 85
CFArrayRef strings = @[@"abcd",@"123456789",@"abcdef",@"1234567"]
strings = fn ArraySortedArrayUsingFunction( strings, @fn MyArraySortFunction, NULL )
for s in strings
print s,len(s)
next
end fn
window 1
fn DoIt
HandleEvents |
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Harbour | Harbour |
PROCEDURE Main()
LOCAL s1 := "The long string"
LOCAL s2 := "The short string"
LOCAL a := { s1, s2 }
LOCAL s3
? s3 := "Here is how you can print the longer string first using Harbour language"
?
? "-------------------------------------------"
PrintTheLongerFirst( a )
a := hb_ATokens( s3, " " )
? "-------------------------------------------"
PrintTheLongerFirst( a )
? "-------------------------------------------"
RETURN
FUNCTION PrintTheLongerFirst( a )
LOCAL n, tmp
a := ASort( a,,, {|x,y| Len(x) > Len(y) } )
n:= Len( a[1] )
AEval( a, { |e| tmp := n-Len(e), Qout( e, Space(tmp) + ;
hb_strFormat( "(length = %d chars)", Len(e) ) ) } )
RETURN NIL
|
http://rosettacode.org/wiki/Compiler/syntax_analyzer | Compiler/syntax analyzer | A Syntax analyzer transforms a token stream (from the Lexical analyzer)
into a Syntax tree, based on a grammar.
Task[edit]
Take the output from the Lexical analyzer task,
and convert it to an Abstract Syntax Tree (AST),
based on the grammar below. The output should be in a flattened format.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a parser module/library/class, it would be great
if two versions of the solution are provided: One without the parser module, and one
with.
Grammar
The simple programming language to be analyzed is more or less a (very tiny) subset of
C. The formal grammar in
Extended Backus-Naur Form (EBNF):
stmt_list = {stmt} ;
stmt = ';'
| Identifier '=' expr ';'
| 'while' paren_expr stmt
| 'if' paren_expr stmt ['else' stmt]
| 'print' '(' prt_list ')' ';'
| 'putc' paren_expr ';'
| '{' stmt_list '}'
;
paren_expr = '(' expr ')' ;
prt_list = (string | expr) {',' (String | expr)} ;
expr = and_expr {'||' and_expr} ;
and_expr = equality_expr {'&&' equality_expr} ;
equality_expr = relational_expr [('==' | '!=') relational_expr] ;
relational_expr = addition_expr [('<' | '<=' | '>' | '>=') addition_expr] ;
addition_expr = multiplication_expr {('+' | '-') multiplication_expr} ;
multiplication_expr = primary {('*' | '/' | '%') primary } ;
primary = Identifier
| Integer
| '(' expr ')'
| ('+' | '-' | '!') primary
;
The resulting AST should be formulated as a Binary Tree.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
The following table shows the input to lex, lex output, and the AST produced by the parser
Input to lex
Output from lex, input to parse
Output from parse
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Specifications
List of node type names
Identifier String Integer Sequence If Prtc Prts Prti While Assign Negate Not Multiply Divide Mod
Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
In the text below, Null/Empty nodes are represented by ";".
Non-terminal (internal) nodes
For Operators, the following nodes should be created:
Multiply Divide Mod Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
For each of the above nodes, the left and right sub-nodes are the operands of the
respective operation.
In pseudo S-Expression format:
(Operator expression expression)
Negate, Not
For these node types, the left node is the operand, and the right node is null.
(Operator expression ;)
Sequence - sub-nodes are either statements or Sequences.
If - left node is the expression, the right node is If node, with it's left node being the
if-true statement part, and the right node being the if-false (else) statement part.
(If expression (If statement else-statement))
If there is not an else, the tree becomes:
(If expression (If statement ;))
Prtc
(Prtc (expression) ;)
Prts
(Prts (String "the string") ;)
Prti
(Prti (Integer 12345) ;)
While - left node is the expression, the right node is the statement.
(While expression statement)
Assign - left node is the left-hand side of the assignment, the right node is the
right-hand side of the assignment.
(Assign Identifier expression)
Terminal (leaf) nodes:
Identifier: (Identifier ident_name)
Integer: (Integer 12345)
String: (String "Hello World!")
";": Empty node
Some simple examples
Sequences denote a list node; they are used to represent a list. semicolon's represent a null node, e.g., the end of this path.
This simple program:
a=11;
Produces the following AST, encoded as a binary tree:
Under each non-leaf node are two '|' lines. The first represents the left sub-node, the second represents the right sub-node:
(1) Sequence
(2) |-- ;
(3) |-- Assign
(4) |-- Identifier: a
(5) |-- Integer: 11
In flattened form:
(1) Sequence
(2) ;
(3) Assign
(4) Identifier a
(5) Integer 11
This program:
a=11;
b=22;
c=33;
Produces the following AST:
( 1) Sequence
( 2) |-- Sequence
( 3) | |-- Sequence
( 4) | | |-- ;
( 5) | | |-- Assign
( 6) | | |-- Identifier: a
( 7) | | |-- Integer: 11
( 8) | |-- Assign
( 9) | |-- Identifier: b
(10) | |-- Integer: 22
(11) |-- Assign
(12) |-- Identifier: c
(13) |-- Integer: 33
In flattened form:
( 1) Sequence
( 2) Sequence
( 3) Sequence
( 4) ;
( 5) Assign
( 6) Identifier a
( 7) Integer 11
( 8) Assign
( 9) Identifier b
(10) Integer 22
(11) Assign
(12) Identifier c
(13) Integer 33
Pseudo-code for the parser.
Uses Precedence Climbing for expression parsing, and
Recursive Descent for statement parsing. The AST is also built:
def expr(p)
if tok is "("
x = paren_expr()
elif tok in ["-", "+", "!"]
gettok()
y = expr(precedence of operator)
if operator was "+"
x = y
else
x = make_node(operator, y)
elif tok is an Identifier
x = make_leaf(Identifier, variable name)
gettok()
elif tok is an Integer constant
x = make_leaf(Integer, integer value)
gettok()
else
error()
while tok is a binary operator and precedence of tok >= p
save_tok = tok
gettok()
q = precedence of save_tok
if save_tok is not right associative
q += 1
x = make_node(Operator save_tok represents, x, expr(q))
return x
def paren_expr()
expect("(")
x = expr(0)
expect(")")
return x
def stmt()
t = NULL
if accept("if")
e = paren_expr()
s = stmt()
t = make_node(If, e, make_node(If, s, accept("else") ? stmt() : NULL))
elif accept("putc")
t = make_node(Prtc, paren_expr())
expect(";")
elif accept("print")
expect("(")
repeat
if tok is a string
e = make_node(Prts, make_leaf(String, the string))
gettok()
else
e = make_node(Prti, expr(0))
t = make_node(Sequence, t, e)
until not accept(",")
expect(")")
expect(";")
elif tok is ";"
gettok()
elif tok is an Identifier
v = make_leaf(Identifier, variable name)
gettok()
expect("=")
t = make_node(Assign, v, expr(0))
expect(";")
elif accept("while")
e = paren_expr()
t = make_node(While, e, stmt()
elif accept("{")
while tok not equal "}" and tok not equal end-of-file
t = make_node(Sequence, t, stmt())
expect("}")
elif tok is end-of-file
pass
else
error()
return t
def parse()
t = NULL
gettok()
repeat
t = make_node(Sequence, t, stmt())
until tok is end-of-file
return t
Once the AST is built, it should be output in a flattened format. This can be as simple as the following
def prt_ast(t)
if t == NULL
print(";\n")
else
print(t.node_type)
if t.node_type in [Identifier, Integer, String] # leaf node
print the value of the Ident, Integer or String, "\n"
else
print("\n")
prt_ast(t.left)
prt_ast(t.right)
If the AST is correctly built, loading it into a subsequent program should be as simple as
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Finally, the AST can also be tested by running it against one of the AST Interpreter solutions.
Test program, assuming this is in a file called prime.t
lex <prime.t | parse
Input to lex
Output from lex, input to parse
Output from parse
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
4 1 Identifier count
4 7 Op_assign
4 9 Integer 1
4 10 Semicolon
5 1 Identifier n
5 3 Op_assign
5 5 Integer 1
5 6 Semicolon
6 1 Identifier limit
6 7 Op_assign
6 9 Integer 100
6 12 Semicolon
7 1 Keyword_while
7 7 LeftParen
7 8 Identifier n
7 10 Op_less
7 12 Identifier limit
7 17 RightParen
7 19 LeftBrace
8 5 Identifier k
8 6 Op_assign
8 7 Integer 3
8 8 Semicolon
9 5 Identifier p
9 6 Op_assign
9 7 Integer 1
9 8 Semicolon
10 5 Identifier n
10 6 Op_assign
10 7 Identifier n
10 8 Op_add
10 9 Integer 2
10 10 Semicolon
11 5 Keyword_while
11 11 LeftParen
11 12 LeftParen
11 13 Identifier k
11 14 Op_multiply
11 15 Identifier k
11 16 Op_lessequal
11 18 Identifier n
11 19 RightParen
11 21 Op_and
11 24 LeftParen
11 25 Identifier p
11 26 RightParen
11 27 RightParen
11 29 LeftBrace
12 9 Identifier p
12 10 Op_assign
12 11 Identifier n
12 12 Op_divide
12 13 Identifier k
12 14 Op_multiply
12 15 Identifier k
12 16 Op_notequal
12 18 Identifier n
12 19 Semicolon
13 9 Identifier k
13 10 Op_assign
13 11 Identifier k
13 12 Op_add
13 13 Integer 2
13 14 Semicolon
14 5 RightBrace
15 5 Keyword_if
15 8 LeftParen
15 9 Identifier p
15 10 RightParen
15 12 LeftBrace
16 9 Keyword_print
16 14 LeftParen
16 15 Identifier n
16 16 Comma
16 18 String " is prime\n"
16 31 RightParen
16 32 Semicolon
17 9 Identifier count
17 15 Op_assign
17 17 Identifier count
17 23 Op_add
17 25 Integer 1
17 26 Semicolon
18 5 RightBrace
19 1 RightBrace
20 1 Keyword_print
20 6 LeftParen
20 7 String "Total primes found: "
20 29 Comma
20 31 Identifier count
20 36 Comma
20 38 String "\n"
20 42 RightParen
20 43 Semicolon
21 1 End_of_input
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier count
Integer 1
Assign
Identifier n
Integer 1
Assign
Identifier limit
Integer 100
While
Less
Identifier n
Identifier limit
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier k
Integer 3
Assign
Identifier p
Integer 1
Assign
Identifier n
Add
Identifier n
Integer 2
While
And
LessEqual
Multiply
Identifier k
Identifier k
Identifier n
Identifier p
Sequence
Sequence
;
Assign
Identifier p
NotEqual
Multiply
Divide
Identifier n
Identifier k
Identifier k
Identifier n
Assign
Identifier k
Add
Identifier k
Integer 2
If
Identifier p
If
Sequence
Sequence
;
Sequence
Sequence
;
Prti
Identifier n
;
Prts
String " is prime\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
;
Sequence
Sequence
Sequence
;
Prts
String "Total primes found: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #M2000_Interpreter | M2000 Interpreter |
Module syntax_analyzer(b$){
enum tokens {
Op_add, Op_subtract, Op_not=5, Op_multiply=10, Op_divide, Op_mod,
Op_negate, Op_less, Op_lessequal, Op_greater, Op_greaterequal,
Op_equal, Op_notequal, Op_and, Op_or, Op_assign=100, Keyword_if=110,
Keyword_else, Keyword_while, Keyword_print, Keyword_putc, LeftParen, RightParen,
LeftBrace, RightBrace, Semicolon, Comma, Identifier, Integer, String, End_of_input
}
Inventory precedence=Op_multiply:=13, Op_divide:=13, Op_mod:=13, Op_add:=12, Op_subtract:=12
Append precedence, Op_negate:=14, Op_not:=14, Op_less:=10, Op_lessequal:=10, Op_greater:=10
Append precedence, Op_greaterequal:=10, Op_equal:=9, Op_notequal:=9, Op_assign:=-1, Op_and:=5
Append precedence, Op_or:=4
Inventory symbols=Op_multiply:="Multiply", Op_divide:="Divide", Op_mod:="Mod", Op_add:="Add"
Append symbols, Op_negate:="Negate", Op_not:="Not", Op_less:="Less", Op_subtract:="Subtract"
Append symbols, Op_lessequal:="LessEqual", Op_greater:="Greater", Op_greaterequal:="GreaterEqual"
Append symbols, Op_equal:="Equal", Op_notequal:="NotEqual", Op_and:="And", Op_or:="Or"
def lineNo, ColumnNo, m, line$, a, lim, cur=-1
const nl$=chr$(13)+chr$(10), Ansi=3
Dim lex$()
lex$()=piece$(b$,chr$(13)+chr$(10))
lim=dimension(lex$(),1)-1
op=End_of_input
flush
k=0
Try {
push (,) ' Null
getone(&op)
repeat
stmt(&op)
shift 2 ' swap two top items
push ("Sequence", array, array)
k++
until op=End_of_Input
}
er$=error$
if er$<>"" then print er$ : flush: break
Print "Ast"
Document Output$
prt_ast()
clipboard Output$
Save.Doc Output$, "parse.t", Ansi
document parse$
Load.Doc parse$,"parse.t", Ansi
Report parse$
sub prt_ast(t)
if len(t)<1 then
Output$=";"+nl$
else.if len(t)=3 then
Output$=t#val$(0) +nl$
prt_ast(t#val(1)) : prt_ast(t#val(2))
else
Output$=t#val$(0) +nl$
end if
end sub
sub expr(p) ' only a number
local x=(,), prev=op
if op>=Identifier then
x=(line$,)
getone(&op)
else.if op=LeftParen then
paren_exp()
x=array
else.if op<10 then
getone(&op)
expr(precedence(int(Op_negate)))
read local y
if prev=Op_add then
x=y
else
if prev=Op_subtract then prev=Op_negate
x=(symbols(prev), y,(,))
End if
else
{error "??? "+eval$(op)}
end if
local prec
while exist(precedence, int(op))
prev=op : prec=eval(precedence)
if prec<14 and prec>=p else exit
getone(&op)
expr(prec+1) ' all operators are left associative (use prec for right a.)
x=(symbols(int(prev)), x, array)
End While
Push x
end sub
sub paren_exp()
expected(LeftParen)
getone(&op)
expr(0)
expected(RightParen)
getone(&op)
end sub
sub stmt(&op)
local t=(,)
if op=Identifier then
t=(line$)
getone(&op)
expected(Op_assign)
getone(&op)
expr(0)
read local rightnode
Push ("Assign",t,rightnode)
expected(Semicolon)
getone(&op)
else.if op=Semicolon then
getone(&op)
Push (";",)
else.if op=Keyword_print then
getone(&op)
expected(LeftParen)
repeat
getone(&op)
if op=String then
Push ("Prts",(line$,),(,))
getone(&op)
else
expr(0)
Push ("Prti", array,(,))
end if
t=("Sequence", t, array)
until op<>Comma
expected(RightParen)
getone(&op)
expected(Semicolon)
getone(&op)
push t
else.if op=Keyword_while then
getone(&op)
paren_exp()
stmt(&op)
shift 2
Push ("While",array, array)
else.if op=Keyword_if then
getone(&op)
paren_exp()
stmt(&op)
local s2=(,)
if op=Keyword_else then
getone(&op)
stmt(&op)
read s2
end if
shift 2
Push ("If",array ,("If",array,s2))
else.if op=Keyword_putc then
getone(&op)
paren_exp()
Push ("Prtc",array,t)
expected(Semicolon)
getone(&op)
else.if op=LeftBrace then
Brace()
else
error "Unkown Op"
end if
end sub
Sub Brace()
getone(&op)
while op<>RightBrace and op<>End_of_input
stmt(&op)
t=("Sequence", t, array)
end while
expected(RightBrace)
getone(&op)
push t
End Sub
Sub expected(what)
if not op=what then {Error "Expected "+eval$(what)+str$(LineNo)+","+Str$(ColumnNo)}
End Sub
sub getone(&op)
op=End_of_input
while cur<lim
cur++
line$=trim$(lex$(cur))
if line$<>"" then exit
end while
if cur=lim then exit sub
LineNo=Val(line$,"int",m)
line$=mid$(line$, m)
ColumnNo=Val(line$,"int",m)
line$=trim$(mid$(line$, m))
Rem : Print LineNo, ColumnNo
m=instr(line$," ")
if m>0 then op=Eval("."+leftpart$(line$, " ")) else op=Eval("."+line$)
end sub
}
syntax_analyzer {
1 1 LeftBrace
5 5 Identifier left_edge
5 17 Op_assign
5 19 Op_subtract
5 20 Integer 420
5 23 Semicolon
6 5 Identifier right_edge
6 17 Op_assign
6 20 Integer 300
6 23 Semicolon
7 5 Identifier top_edge
7 17 Op_assign
7 20 Integer 300
7 23 Semicolon
8 5 Identifier bottom_edge
8 17 Op_assign
8 19 Op_subtract
8 20 Integer 300
8 23 Semicolon
9 5 Identifier x_step
9 17 Op_assign
9 22 Integer 7
9 23 Semicolon
10 5 Identifier y_step
10 17 Op_assign
10 21 Integer 15
10 23 Semicolon
12 5 Identifier max_iter
12 17 Op_assign
12 20 Integer 200
12 23 Semicolon
14 5 Identifier y0
14 8 Op_assign
14 10 Identifier top_edge
14 18 Semicolon
15 5 Keyword_while
15 11 LeftParen
15 12 Identifier y0
15 15 Op_greater
15 17 Identifier bottom_edge
15 28 RightParen
15 30 LeftBrace
16 9 Identifier x0
16 12 Op_assign
16 14 Identifier left_edge
16 23 Semicolon
17 9 Keyword_while
17 15 LeftParen
17 16 Identifier x0
17 19 Op_less
17 21 Identifier right_edge
17 31 RightParen
17 33 LeftBrace
18 13 Identifier y
18 15 Op_assign
18 17 Integer 0
18 18 Semicolon
19 13 Identifier x
19 15 Op_assign
19 17 Integer 0
19 18 Semicolon
20 13 Identifier the_char
20 22 Op_assign
20 24 Integer 32
20 27 Semicolon
21 13 Identifier i
21 15 Op_assign
21 17 Integer 0
21 18 Semicolon
22 13 Keyword_while
22 19 LeftParen
22 20 Identifier i
22 22 Op_less
22 24 Identifier max_iter
22 32 RightParen
22 34 LeftBrace
23 17 Identifier x_x
23 21 Op_assign
23 23 LeftParen
23 24 Identifier x
23 26 Op_multiply
23 28 Identifier x
23 29 RightParen
23 31 Op_divide
23 33 Integer 200
23 36 Semicolon
24 17 Identifier y_y
24 21 Op_assign
24 23 LeftParen
24 24 Identifier y
24 26 Op_multiply
24 28 Identifier y
24 29 RightParen
24 31 Op_divide
24 33 Integer 200
24 36 Semicolon
25 17 Keyword_if
25 20 LeftParen
25 21 Identifier x_x
25 25 Op_add
25 27 Identifier y_y
25 31 Op_greater
25 33 Integer 800
25 37 RightParen
25 39 LeftBrace
26 21 Identifier the_char
26 30 Op_assign
26 32 Integer 48
26 36 Op_add
26 38 Identifier i
26 39 Semicolon
27 21 Keyword_if
27 24 LeftParen
27 25 Identifier i
27 27 Op_greater
27 29 Integer 9
27 30 RightParen
27 32 LeftBrace
28 25 Identifier the_char
28 34 Op_assign
28 36 Integer 64
28 39 Semicolon
29 21 RightBrace
30 21 Identifier i
30 23 Op_assign
30 25 Identifier max_iter
30 33 Semicolon
31 17 RightBrace
32 17 Identifier y
32 19 Op_assign
32 21 Identifier x
32 23 Op_multiply
32 25 Identifier y
32 27 Op_divide
32 29 Integer 100
32 33 Op_add
32 35 Identifier y0
32 37 Semicolon
33 17 Identifier x
33 19 Op_assign
33 21 Identifier x_x
33 25 Op_subtract
33 27 Identifier y_y
33 31 Op_add
33 33 Identifier x0
33 35 Semicolon
34 17 Identifier i
34 19 Op_assign
34 21 Identifier i
34 23 Op_add
34 25 Integer 1
34 26 Semicolon
35 13 RightBrace
36 13 Keyword_putc
36 17 LeftParen
36 18 Identifier the_char
36 26 RightParen
36 27 Semicolon
37 13 Identifier x0
37 16 Op_assign
37 18 Identifier x0
37 21 Op_add
37 23 Identifier x_step
37 29 Semicolon
38 9 RightBrace
39 9 Keyword_putc
39 13 LeftParen
39 14 Integer 10
39 18 RightParen
39 19 Semicolon
40 9 Identifier y0
40 12 Op_assign
40 14 Identifier y0
40 17 Op_subtract
40 19 Identifier y_step
40 25 Semicolon
41 5 RightBrace
42 1 RightBrace
43 1 End_of_Input
}
|
http://rosettacode.org/wiki/Conway%27s_Game_of_Life | Conway's Game of Life | The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.
Conway's game of life is described here:
A cell C is represented by a 1 when alive, or 0 when dead, in an m-by-m (or m×m) square array of cells.
We calculate N - the sum of live cells in C's eight-location neighbourhood, then cell C is alive or dead in the next generation based on the following table:
C N new C
1 0,1 -> 0 # Lonely
1 4,5,6,7,8 -> 0 # Overcrowded
1 2,3 -> 1 # Lives
0 3 -> 1 # It takes three to give birth!
0 0,1,2,4,5,6,7,8 -> 0 # Barren
Assume cells beyond the boundary are always dead.
The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.
Task
Although you should test your implementation on more complex examples such as the glider in a larger universe, show the action of the blinker (three adjoining cells in a row all alive), over three generations, in a 3 by 3 grid.
References
Its creator John Conway, explains the game of life. Video from numberphile on youtube.
John Conway Inventing Game of Life - Numberphile video.
Related task
Langton's ant - another well known cellular automaton.
| #Clojure | Clojure | (defn moore-neighborhood [[x y]]
(for [dx [-1 0 1]
dy [-1 0 1]
:when (not (= [dx dy] [0 0]))]
[(+ x dx) (+ y dy)]))
(defn step [set-of-cells]
(set (for [[cell count] (frequencies (mapcat moore-neighborhood set-of-cells))
:when (or (= 3 count)
(and (= 2 count) (contains? set-of-cells cell)))]
cell)))
(defn print-world
([set-of-cells] (print-world set-of-cells 10))
([set-of-cells world-size]
(let [r (range 0 (+ 1 world-size))]
(pprint (for [y r] (apply str (for [x r] (if (set-of-cells [x y]) \# \.))))))))
(defn run-life [world-size num-steps set-of-cells]
(loop [s num-steps
cells set-of-cells]
(print-world cells world-size)
(when (< 0 s)
(recur (- s 1) (step cells)))))
(def *blinker* #{[1 2] [2 2] [3 2]})
(def *glider* #{[1 0] [2 1] [0 2] [1 2] [2 2]})
|
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #PowerShell | PowerShell |
class Point {
[Int]$a
[Int]$b
Point() {
$this.a = 0
$this.b = 0
}
Point([Int]$a, [Int]$b) {
$this.a = $a
$this.b = $b
}
[Int]add() {return $this.a + $this.b}
[Int]mul() {return $this.a * $this.b}
}
$p1 = [Point]::new()
$p2 = [Point]::new(3,2)
$p1.add()
$p2.mul()
|
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Prolog | Prolog | point(10, 20). |
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Zoomscript | Zoomscript | var a
var b
a = "World"
b = a
a = "Hello"
print (a," ",b) |
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ZX_Spectrum_Basic | ZX Spectrum Basic | 10 LET a$ = "Hello": REM a$ is the original string
20 LET b$ = a$: REM b$ is the copy |
http://rosettacode.org/wiki/Copy_a_string | Copy a string | This task is about copying a string.
Task
Where it is relevant, distinguish between copying the contents of a string
versus making an additional reference to an existing string.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Amazing_Hopper | Amazing Hopper |
#include <hopper.h>
main:
s = "string to copy"
t = s
{s,"\n",t}println
exit(0)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.