task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #Clean | Clean | import ArgEnv
Start = getCommandLine |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #Clojure | Clojure | (dorun (map println *command-line-args*)) |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #CLU | CLU | % This program needs to be merged with PCLU's "useful.lib",
% where get_argv lives.
%
% pclu -merge $CLUHOME/lib/useful.lib -compile cmdline.clu
start_up = proc ()
po: stream := stream$primary_output()
args: sequence[string] := get_argv()
for arg: string in sequence[string]$elements(args) do
stream$putl(po, "arg: " || arg)
end
end start_up |
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI comment one line */
/* comment line 1
comment line 2
*/
mov r0,#0 @ this comment on end of line
mov r1,#0 // authorized comment
|
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #Arturo | Arturo | ; This is a simple single-line comment
a: 10 ; another single-line comment
; Now, this is a
; multi-line comment |
http://rosettacode.org/wiki/Compiler/virtual_machine_interpreter | Compiler/virtual machine interpreter | A virtual machine implements a computer in software.
Task[edit]
Write a virtual machine interpreter. This interpreter should be able to run virtual
assembly language programs created via the task. This is a
byte-coded, 32-bit word stack based virtual machine.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Input format:
Given the following program:
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
The output from the Code generator is a virtual assembly code program:
Output from gen, input to VM
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
The first line of the input specifies the datasize required and the number of constant
strings, in the order that they are reference via the code.
The data can be stored in a separate array, or the data can be stored at the beginning of
the stack. Data is addressed starting at 0. If there are 3 variables, the 3rd one if
referenced at address 2.
If there are one or more constant strings, they come next. The code refers to these
strings by their index. The index starts at 0. So if there are 3 strings, and the code
wants to reference the 3rd string, 2 will be used.
Next comes the actual virtual assembly code. The first number is the code address of that
instruction. After that is the instruction mnemonic, followed by optional operands,
depending on the instruction.
Registers:
sp:
the stack pointer - points to the next top of stack. The stack is a 32-bit integer
array.
pc:
the program counter - points to the current instruction to be performed. The code is an
array of bytes.
Data:
data
string pool
Instructions:
Each instruction is one byte. The following instructions also have a 32-bit integer
operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
Print the word at stack top as a character.
prtc
Print the word at stack top as an integer.
prti
Stack top points to an index into the string pool. Print that entry.
prts
Unconditional stop.
halt
A simple example virtual machine
def run_vm(data_size)
int stack[data_size + 1000]
set stack[0..data_size - 1] to 0
int pc = 0
while True:
op = code[pc]
pc += 1
if op == FETCH:
stack.append(stack[bytes_to_int(code[pc:pc+word_size])[0]]);
pc += word_size
elif op == STORE:
stack[bytes_to_int(code[pc:pc+word_size])[0]] = stack.pop();
pc += word_size
elif op == PUSH:
stack.append(bytes_to_int(code[pc:pc+word_size])[0]);
pc += word_size
elif op == ADD: stack[-2] += stack[-1]; stack.pop()
elif op == SUB: stack[-2] -= stack[-1]; stack.pop()
elif op == MUL: stack[-2] *= stack[-1]; stack.pop()
elif op == DIV: stack[-2] /= stack[-1]; stack.pop()
elif op == MOD: stack[-2] %= stack[-1]; stack.pop()
elif op == LT: stack[-2] = stack[-2] < stack[-1]; stack.pop()
elif op == GT: stack[-2] = stack[-2] > stack[-1]; stack.pop()
elif op == LE: stack[-2] = stack[-2] <= stack[-1]; stack.pop()
elif op == GE: stack[-2] = stack[-2] >= stack[-1]; stack.pop()
elif op == EQ: stack[-2] = stack[-2] == stack[-1]; stack.pop()
elif op == NE: stack[-2] = stack[-2] != stack[-1]; stack.pop()
elif op == AND: stack[-2] = stack[-2] and stack[-1]; stack.pop()
elif op == OR: stack[-2] = stack[-2] or stack[-1]; stack.pop()
elif op == NEG: stack[-1] = -stack[-1]
elif op == NOT: stack[-1] = not stack[-1]
elif op == JMP: pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == JZ: if stack.pop() then pc += word_size else pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == PRTC: print stack[-1] as a character; stack.pop()
elif op == PRTS: print the constant string referred to by stack[-1]; stack.pop()
elif op == PRTI: print stack[-1] as an integer; stack.pop()
elif op == HALT: break
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
AST Interpreter task
| #Prolog | Prolog | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%% The Rosetta Code Virtual Machine, for GNU Prolog.
%%%
%%% The following code uses GNU Prolog's extensions for global
%%% variables.
%%%
%%% Usage: vm [INPUTFILE [OUTPUTFILE]]
%%% The notation "-" means to use standard input or standard output.
%%% Leaving out an argument is equivalent to specifying "-".
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
make_and_run_machine(Input, Output) :-
make_machine(Input),
run_machine(Output).
run_machine(Output) :-
repeat,
next_instruction(Opcode, Arg),
(Opcode == ('halt')
-> true
; (run_instruction(Output, Opcode, Arg),
fail % Backtracks to the 'repeat'.
)).
run_instruction(Output, Opcode, Arg) :-
(
(Opcode == ('add'),
pop_value(Y),
pop_value(X),
is(Z, X + Y),
push_value(Z))
; (Opcode == ('sub'),
pop_value(Y),
pop_value(X),
is(Z, X - Y),
push_value(Z))
; (Opcode == ('mul'),
pop_value(Y),
pop_value(X),
is(Z, X * Y),
push_value(Z))
; (Opcode == ('div'),
pop_value(Y),
pop_value(X),
is(Z, X // Y),
push_value(Z))
; (Opcode == ('mod'),
pop_value(Y),
pop_value(X),
is(Z, X rem Y),
push_value(Z))
; (Opcode == ('lt'),
pop_value(Y),
pop_value(X),
(X < Y -> Z = 1; Z = 0),
push_value(Z))
; (Opcode == ('le'),
pop_value(Y),
pop_value(X),
(X =< Y -> Z = 1; Z = 0),
push_value(Z))
; (Opcode == ('gt'),
pop_value(Y),
pop_value(X),
(X > Y -> Z = 1; Z = 0),
push_value(Z))
; (Opcode == ('ge'),
pop_value(Y),
pop_value(X),
(X >= Y -> Z = 1; Z = 0),
push_value(Z))
; (Opcode == ('eq'),
pop_value(Y),
pop_value(X),
(X =:= Y -> Z = 1; Z = 0),
push_value(Z))
; (Opcode == ('ne'),
pop_value(Y),
pop_value(X),
(X =\= Y -> Z = 1; Z = 0),
push_value(Z))
; (Opcode == ('and'),
pop_value(Y),
pop_value(X),
((X =\= 0, Y =\= 0) -> Z = 1; Z = 0),
push_value(Z))
; (Opcode == ('or'),
pop_value(Y),
pop_value(X),
((X =\= 0; Y =\= 0) -> Z = 1; Z = 0),
push_value(Z))
; (Opcode == ('neg'),
pop_value(X),
is(Z, -X),
push_value(Z))
; (Opcode == ('not'),
pop_value(X),
(X =:= 0 -> Z = 1; Z = 0),
push_value(Z))
; (Opcode == ('prtc'),
pop_value(X),
char_code(C, X),
write(Output, C))
; (Opcode == ('prti'),
pop_value(X),
write(Output, X))
; (Opcode == ('prts'),
pop_value(K),
g_read(the_strings(K), S),
write(Output, S))
; (Opcode == ('fetch'),
g_read(the_data(Arg), X),
push_value(X),
skip_argument)
; (Opcode == ('store'),
pop_value(X),
g_assign(the_data(Arg), X),
skip_argument)
; (Opcode == ('push'),
push_value(Arg),
skip_argument)
; (Opcode == ('jmp'),
relative_jump(Arg))
; (Opcode == ('jz'),
pop_value(X),
(X =:= 0
-> relative_jump(Arg)
; skip_argument))
).
relative_jump(Offset) :-
g_read(the_program_counter, PC),
is(PC1, PC + Offset),
g_assign(the_program_counter, PC1).
skip_argument :-
g_read(the_program_counter, PC),
is(PC1, PC + 4),
g_assign(the_program_counter, PC1).
next_instruction(Opcode, Arg) :-
g_read(the_program_counter, PC),
is(PC1, PC + 1),
g_assign(the_program_counter, PC1),
g_read(the_code(PC), {Opcode, Arg}).
push_value(X) :-
g_read(the_stack_pointer, SP),
is(SP1, SP + 1),
g_assign(the_stack_pointer, SP1),
g_assign(the_stack(SP), X).
pop_value(X) :-
g_read(the_stack_pointer, SP),
is(SP1, SP - 1),
g_assign(the_stack_pointer, SP1),
g_read(the_stack(SP1), X).
make_machine(Input) :-
get_and_parse_the_header(Input, Datasize, Strings_Count),
(Strings_Count =:= 0
-> true
; get_and_parse_the_strings(Input, Strings_Count)),
get_and_parse_the_instructions(Input),
(Datasize =:= 0
-> true
; g_assign(the_data, g_array(Datasize))),
g_assign(the_stack, g_array(2048)),
g_assign(the_stack_pointer, 0),
g_assign(the_program_counter, 0).
get_and_parse_the_header(Stream, Datasize, Strings_Count) :-
get_line(Stream, Line, ('\n')),
parse_header(Line, Datasize, Strings_Count).
get_and_parse_the_strings(Stream, Strings_Count) :-
% Make 'the_strings' an array of the string literals.
get_and_parse_the_strings(Stream, Strings_Count, Lst),
g_assign(the_strings, g_array(Lst)).
get_and_parse_the_strings(Stream, I, Lst) :-
% Note: this implementation is non-tail recursive.
(I == 0
-> Lst = []
; (get_line(Stream, Line, ('\n')),
parse_string_literal(Line, S),
is(I1, I - 1),
get_and_parse_the_strings(Stream, I1, Lst1),
Lst = [S | Lst1])).
get_and_parse_the_instructions(Stream) :-
get_and_parse_the_instructions(Stream, Lst),
keysort(Lst, Lst1),
last(Lst1, Addr_Max-_),
is(Code_Size, Addr_Max + 5),
g_assign(the_code, g_array(Code_Size, {('halt'), 0})),
maplist(fill_instruction, Lst1).
get_and_parse_the_instructions(Stream, Lst) :-
get_and_parse_the_instructions(Stream, [], Lst).
get_and_parse_the_instructions(Stream, Lst0, Lst) :-
% This implementation is tail recursive. We consider the order of
% the resulting list to be arbitrary.
(get_line(Stream, Line, Terminal),
drop_spaces(Line, S),
(S = []
-> (Terminal = end_of_file
-> Lst = Lst0
; get_and_parse_the_instructions(Stream, Lst0, Lst))
; (parse_instruction(S, Address, Opcode, Arg),
Instr = Address-{Opcode, Arg},
(Terminal = end_of_file
-> reverse([Instr | Lst0], Lst)
; get_and_parse_the_instructions(Stream, [Instr | Lst0],
Lst))))).
fill_instruction(Addr-Instr) :-
g_assign(the_code(Addr), Instr).
parse_header(Line, Datasize, Strings_Count) :-
drop_nondigits(Line, Lst1),
split_digits(Lst1, Datasize_Digits, Rest1),
drop_nondigits(Rest1, Lst2),
split_digits(Lst2, Strings_Digits, _Rest2),
number_chars(Datasize, Datasize_Digits),
number_chars(Strings_Count, Strings_Digits).
parse_string_literal(Line, S) :-
drop_spaces(Line, Lst1),
Lst1 = ['"' | Lst2],
rework_escape_sequences(Lst2, Lst3),
atom_chars(S, Lst3).
rework_escape_sequences(Lst0, Lst) :-
(Lst0 = [('"') | _]
-> Lst = []
; (Lst0 = [('\\'), ('n') | Tail1]
-> (rework_escape_sequences(Tail1, Lst1),
Lst = [('\n') | Lst1])
; (Lst0 = [('\\'), ('\\') | Tail1]
-> (rework_escape_sequences(Tail1, Lst1),
Lst = [('\\') | Lst1])
; (Lst0 = [C | Tail1],
rework_escape_sequences(Tail1, Lst1),
Lst = [C | Lst1])))).
parse_instruction(Line, Address, Opcode, Arg) :-
drop_spaces(Line, Lst1),
split_digits(Lst1, Address_Digits, Rest1),
number_chars(Address, Address_Digits),
drop_spaces(Rest1, Lst2),
split_nonspaces(Lst2, Opcode_Chars, Rest2),
atom_chars(Opcode, Opcode_Chars),
drop_spaces(Rest2, Lst3),
(Lst3 = []
-> Arg = 0
; (Lst3 = [C | Rest3],
(is_digit(C)
-> (split_digits(Lst3, Arg_Chars, _),
number_chars(Arg, Arg_Chars))
; (C = ('(')
-> (split_before_char((')'), Rest3, Arg_Chars, _),
number_chars(Arg, Arg_Chars))
; (C = ('['),
split_before_char((']'), Rest3, Arg_Chars, _),
number_chars(Arg, Arg_Chars)))))).
is_space(C) :-
(C = (' '); C = ('\t'); C = ('\n');
C = ('\v'); C = ('\f'); C = ('\r')).
is_digit(C) :-
(C = ('0'); C = ('1'); C = ('2'); C = ('3'); C = ('4');
C = ('5'); C = ('6'); C = ('7'); C = ('8'); C = ('9')).
drop_spaces([], Lst) :-
Lst = [].
drop_spaces([C | Tail], Lst) :-
(is_space(C)
-> drop_spaces(Tail, Lst)
; Lst = [C | Tail]).
drop_nondigits([], Lst) :-
Lst = [].
drop_nondigits([C | Tail], Lst) :-
(is_digit(C)
-> Lst = [C | Tail]
; drop_nondigits(Tail, Lst)).
split_nonspaces([], Word, Rest) :-
(Word = [], Rest = []).
split_nonspaces([C | Tail], Word, Rest) :-
(is_space(C)
-> (Word = [], Rest = [C | Tail])
; (split_nonspaces(Tail, Word1, Rest),
Word = [C | Word1])).
split_digits([], Digits, Rest) :-
(Digits = [], Rest = []).
split_digits([C | Tail], Digits, Rest) :-
(is_digit(C)
-> (split_digits(Tail, Digits1, Rest),
Digits = [C | Digits1])
; (Digits = [], Rest = [C | Tail])).
split_before_char(_, [], Before, After) :-
(Before = [], After = []).
split_before_char(C, [C1 | Rest], Before, After) :-
(C = C1
-> (Before = [], After = [C1 | Rest])
; (split_before_char(C, Rest, Before1, After),
Before = [C1 | Before1])).
get_line(Stream, Line, Terminal) :-
% Reads a line of input as a list of characters. The character that
% terminates the line is returned separately; it may be either '\n'
% or end_of_file.
get_line_chars(Stream, [], Line, Terminal).
get_line_chars(Stream, Chars0, Chars, Terminal) :-
% Helper predicate for get_line.
get_char(Stream, C),
((C = end_of_file; C = ('\n'))
-> (reverse(Chars0, Chars), Terminal = C)
; get_line_chars(Stream, [C | Chars0], Chars, Terminal)).
main(Args) :-
(Args = []
-> current_input(Input),
current_output(Output),
make_and_run_machine(Input, Output)
; (Args = [Inp_Name]
-> (Inp_Name = ('-')
-> main([])
; (open(Inp_Name, 'read', Input),
current_output(Output),
make_and_run_machine(Input, Output),
close(Input)))
; (Args = [Inp_Name, Out_Name | _],
(Inp_Name = ('-')
-> (Out_Name = ('-')
-> main([])
; (current_input(Input),
open(Out_Name, 'write', Output),
make_and_run_machine(Input, Output),
close(Output)))
; (Out_Name = ('-')
-> main([Inp_Name])
; (open(Inp_Name, 'read', Input),
open(Out_Name, 'write', Output),
make_and_run_machine(Input, Output),
close(Input),
close(Output))))))).
main :-
argument_list(Args),
main(Args).
:- initialization(main).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Instructions for GNU Emacs--
%%% local variables:
%%% mode: prolog
%%% prolog-indent-width: 2
%%% end:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
http://rosettacode.org/wiki/Compiler/code_generator | Compiler/code generator | A code generator translates the output of the syntax analyzer and/or semantic analyzer
into lower level code, either assembly, object, or virtual.
Task[edit]
Take the output of the Syntax analyzer task - which is a flattened Abstract Syntax Tree (AST) - and convert it to virtual machine code, that can be run by the
Virtual machine interpreter. The output is in text format, and represents virtual assembly code.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
while.ast can be input into the code generator.
The following table shows the input to lex, lex output, the AST produced by the parser, and the generated virtual assembly code.
Run as: lex < while.t | parse | gen
Input to lex
Output from lex, input to parse
Output from parse
Output from gen, input to VM
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
Input format
As shown in the table, above, the output from the syntax analyzer is a flattened AST.
In the AST, Identifier, Integer, and String, are terminal nodes, e.g, they do not have child nodes.
Loading this data into an internal parse tree should be as simple as:
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";"
return None
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Output format - refer to the table above
The first line is the header: Size of data, and number of constant strings.
size of data is the number of 32-bit unique variables used. In this example, one variable, count
number of constant strings is just that - how many there are
After that, the constant strings
Finally, the assembly code
Registers
sp: the stack pointer - points to the next top of stack. The stack is a 32-bit integer array.
pc: the program counter - points to the current instruction to be performed. The code is an array of bytes.
Data
32-bit integers and strings
Instructions
Each instruction is one byte. The following instructions also have a 32-bit integer operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
prtc
Print the word at stack top as a character.
prti
Print the word at stack top as an integer.
prts
Stack top points to an index into the string pool. Print that entry.
halt
Unconditional stop.
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Virtual Machine Interpreter task
AST Interpreter task
| #Python | Python | from __future__ import print_function
import sys, struct, shlex, operator
nd_Ident, nd_String, nd_Integer, nd_Sequence, nd_If, nd_Prtc, nd_Prts, nd_Prti, nd_While, \
nd_Assign, nd_Negate, nd_Not, nd_Mul, nd_Div, nd_Mod, nd_Add, nd_Sub, nd_Lss, nd_Leq, \
nd_Gtr, nd_Geq, nd_Eql, nd_Neq, nd_And, nd_Or = range(25)
all_syms = {
"Identifier" : nd_Ident, "String" : nd_String,
"Integer" : nd_Integer, "Sequence" : nd_Sequence,
"If" : nd_If, "Prtc" : nd_Prtc,
"Prts" : nd_Prts, "Prti" : nd_Prti,
"While" : nd_While, "Assign" : nd_Assign,
"Negate" : nd_Negate, "Not" : nd_Not,
"Multiply" : nd_Mul, "Divide" : nd_Div,
"Mod" : nd_Mod, "Add" : nd_Add,
"Subtract" : nd_Sub, "Less" : nd_Lss,
"LessEqual" : nd_Leq, "Greater" : nd_Gtr,
"GreaterEqual": nd_Geq, "Equal" : nd_Eql,
"NotEqual" : nd_Neq, "And" : nd_And,
"Or" : nd_Or}
FETCH, STORE, PUSH, ADD, SUB, MUL, DIV, MOD, LT, GT, LE, GE, EQ, NE, AND, OR, NEG, NOT, \
JMP, JZ, PRTC, PRTS, PRTI, HALT = range(24)
operators = {nd_Lss: LT, nd_Gtr: GT, nd_Leq: LE, nd_Geq: GE, nd_Eql: EQ, nd_Neq: NE,
nd_And: AND, nd_Or: OR, nd_Sub: SUB, nd_Add: ADD, nd_Div: DIV, nd_Mul: MUL, nd_Mod: MOD}
unary_operators = {nd_Negate: NEG, nd_Not: NOT}
input_file = None
code = bytearray()
string_pool = {}
globals = {}
string_n = 0
globals_n = 0
word_size = 4
#*** show error and exit
def error(msg):
print("%s" % (msg))
exit(1)
def int_to_bytes(val):
return struct.pack("<i", val)
def bytes_to_int(bstr):
return struct.unpack("<i", bstr)
class Node:
def __init__(self, node_type, left = None, right = None, value = None):
self.node_type = node_type
self.left = left
self.right = right
self.value = value
#***
def make_node(oper, left, right = None):
return Node(oper, left, right)
#***
def make_leaf(oper, n):
return Node(oper, value = n)
#***
def emit_byte(x):
code.append(x)
#***
def emit_word(x):
s = int_to_bytes(x)
for x in s:
code.append(x)
def emit_word_at(at, n):
code[at:at+word_size] = int_to_bytes(n)
def hole():
t = len(code)
emit_word(0)
return t
#***
def fetch_var_offset(name):
global globals_n
n = globals.get(name, None)
if n == None:
globals[name] = globals_n
n = globals_n
globals_n += 1
return n
#***
def fetch_string_offset(the_string):
global string_n
n = string_pool.get(the_string, None)
if n == None:
string_pool[the_string] = string_n
n = string_n
string_n += 1
return n
#***
def code_gen(x):
if x == None: return
elif x.node_type == nd_Ident:
emit_byte(FETCH)
n = fetch_var_offset(x.value)
emit_word(n)
elif x.node_type == nd_Integer:
emit_byte(PUSH)
emit_word(x.value)
elif x.node_type == nd_String:
emit_byte(PUSH)
n = fetch_string_offset(x.value)
emit_word(n)
elif x.node_type == nd_Assign:
n = fetch_var_offset(x.left.value)
code_gen(x.right)
emit_byte(STORE)
emit_word(n)
elif x.node_type == nd_If:
code_gen(x.left) # expr
emit_byte(JZ) # if false, jump
p1 = hole() # make room for jump dest
code_gen(x.right.left) # if true statements
if (x.right.right != None):
emit_byte(JMP) # jump over else statements
p2 = hole()
emit_word_at(p1, len(code) - p1)
if (x.right.right != None):
code_gen(x.right.right) # else statements
emit_word_at(p2, len(code) - p2)
elif x.node_type == nd_While:
p1 = len(code)
code_gen(x.left)
emit_byte(JZ)
p2 = hole()
code_gen(x.right)
emit_byte(JMP) # jump back to the top
emit_word(p1 - len(code))
emit_word_at(p2, len(code) - p2)
elif x.node_type == nd_Sequence:
code_gen(x.left)
code_gen(x.right)
elif x.node_type == nd_Prtc:
code_gen(x.left)
emit_byte(PRTC)
elif x.node_type == nd_Prti:
code_gen(x.left)
emit_byte(PRTI)
elif x.node_type == nd_Prts:
code_gen(x.left)
emit_byte(PRTS)
elif x.node_type in operators:
code_gen(x.left)
code_gen(x.right)
emit_byte(operators[x.node_type])
elif x.node_type in unary_operators:
code_gen(x.left)
emit_byte(unary_operators[x.node_type])
else:
error("error in code generator - found %d, expecting operator" % (x.node_type))
#***
def code_finish():
emit_byte(HALT)
#***
def list_code():
print("Datasize: %d Strings: %d" % (len(globals), len(string_pool)))
for k in sorted(string_pool, key=string_pool.get):
print(k)
pc = 0
while pc < len(code):
print("%4d " % (pc), end='')
op = code[pc]
pc += 1
if op == FETCH:
x = bytes_to_int(code[pc:pc+word_size])[0]
print("fetch [%d]" % (x));
pc += word_size
elif op == STORE:
x = bytes_to_int(code[pc:pc+word_size])[0]
print("store [%d]" % (x));
pc += word_size
elif op == PUSH:
x = bytes_to_int(code[pc:pc+word_size])[0]
print("push %d" % (x));
pc += word_size
elif op == ADD: print("add")
elif op == SUB: print("sub")
elif op == MUL: print("mul")
elif op == DIV: print("div")
elif op == MOD: print("mod")
elif op == LT: print("lt")
elif op == GT: print("gt")
elif op == LE: print("le")
elif op == GE: print("ge")
elif op == EQ: print("eq")
elif op == NE: print("ne")
elif op == AND: print("and")
elif op == OR: print("or")
elif op == NEG: print("neg")
elif op == NOT: print("not")
elif op == JMP:
x = bytes_to_int(code[pc:pc+word_size])[0]
print("jmp (%d) %d" % (x, pc + x));
pc += word_size
elif op == JZ:
x = bytes_to_int(code[pc:pc+word_size])[0]
print("jz (%d) %d" % (x, pc + x));
pc += word_size
elif op == PRTC: print("prtc")
elif op == PRTI: print("prti")
elif op == PRTS: print("prts")
elif op == HALT: print("halt")
else: error("list_code: Unknown opcode %d", (op));
def load_ast():
line = input_file.readline()
line_list = shlex.split(line, False, False)
text = line_list[0]
if text == ";":
return None
node_type = all_syms[text]
if len(line_list) > 1:
value = line_list[1]
if value.isdigit():
value = int(value)
return make_leaf(node_type, value)
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
#*** main driver
input_file = sys.stdin
if len(sys.argv) > 1:
try:
input_file = open(sys.argv[1], "r", 4096)
except IOError as e:
error("Can't open %s" % sys.argv[1])
n = load_ast()
code_gen(n)
code_finish()
list_code() |
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #PHP | PHP |
<?php
function retrieveStrings()
{
if (isset($_POST['input'])) {
$strings = explode("\n", $_POST['input']);
} else {
$strings = ['abcd', '123456789', 'abcdef', '1234567'];
}
return $strings;
}
function setInput()
{
echo join("\n", retrieveStrings());
}
function setOutput()
{
$strings = retrieveStrings();
// Remove empty strings
//
$strings = array_map('trim', $strings);
$strings = array_filter($strings);
if (!empty($strings)) {
usort($strings, function ($a, $b) {
return strlen($b) - strlen($a);
});
$max_len = strlen($strings[0]);
$min_len = strlen($strings[count($strings) - 1]);
foreach ($strings as $s) {
$length = strlen($s);
if ($length == $max_len) {
$predicate = "is the longest string";
} elseif ($length == $min_len) {
$predicate = "is the shortest string";
} else {
$predicate = "is neither the longest nor the shortest string";
}
echo "$s has length $length and $predicate\n";
}
}
}
?>
<!DOCTYPE html>
<html lang="en">
<head>
<style>
div {
margin-top: 4ch;
margin-bottom: 4ch;
}
label {
display: block;
margin-bottom: 1ch;
}
textarea {
display: block;
}
input {
display: block;
margin-top: 4ch;
margin-bottom: 4ch;
}
</style>
</head>
<body>
<main>
<form action=<?php echo $_SERVER['SCRIPT_NAME'] ?> method="post" accept-charset="utf-8">
<div>
<label for="input">Input:
</label>
<textarea rows='20' cols='80' name='input'><?php setInput(); ?></textarea>
</label>
</div>
<input type="submit" value="press to compare strings">
</input>
<div>
<label for="Output">Output:
</label>
<textarea rows='20' cols='80' name='output'><?php setOutput(); ?></textarea>
</div>
</form>
</main>
</body>
</html> |
http://rosettacode.org/wiki/Compiler/syntax_analyzer | Compiler/syntax analyzer | A Syntax analyzer transforms a token stream (from the Lexical analyzer)
into a Syntax tree, based on a grammar.
Task[edit]
Take the output from the Lexical analyzer task,
and convert it to an Abstract Syntax Tree (AST),
based on the grammar below. The output should be in a flattened format.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a parser module/library/class, it would be great
if two versions of the solution are provided: One without the parser module, and one
with.
Grammar
The simple programming language to be analyzed is more or less a (very tiny) subset of
C. The formal grammar in
Extended Backus-Naur Form (EBNF):
stmt_list = {stmt} ;
stmt = ';'
| Identifier '=' expr ';'
| 'while' paren_expr stmt
| 'if' paren_expr stmt ['else' stmt]
| 'print' '(' prt_list ')' ';'
| 'putc' paren_expr ';'
| '{' stmt_list '}'
;
paren_expr = '(' expr ')' ;
prt_list = (string | expr) {',' (String | expr)} ;
expr = and_expr {'||' and_expr} ;
and_expr = equality_expr {'&&' equality_expr} ;
equality_expr = relational_expr [('==' | '!=') relational_expr] ;
relational_expr = addition_expr [('<' | '<=' | '>' | '>=') addition_expr] ;
addition_expr = multiplication_expr {('+' | '-') multiplication_expr} ;
multiplication_expr = primary {('*' | '/' | '%') primary } ;
primary = Identifier
| Integer
| '(' expr ')'
| ('+' | '-' | '!') primary
;
The resulting AST should be formulated as a Binary Tree.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
The following table shows the input to lex, lex output, and the AST produced by the parser
Input to lex
Output from lex, input to parse
Output from parse
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Specifications
List of node type names
Identifier String Integer Sequence If Prtc Prts Prti While Assign Negate Not Multiply Divide Mod
Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
In the text below, Null/Empty nodes are represented by ";".
Non-terminal (internal) nodes
For Operators, the following nodes should be created:
Multiply Divide Mod Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
For each of the above nodes, the left and right sub-nodes are the operands of the
respective operation.
In pseudo S-Expression format:
(Operator expression expression)
Negate, Not
For these node types, the left node is the operand, and the right node is null.
(Operator expression ;)
Sequence - sub-nodes are either statements or Sequences.
If - left node is the expression, the right node is If node, with it's left node being the
if-true statement part, and the right node being the if-false (else) statement part.
(If expression (If statement else-statement))
If there is not an else, the tree becomes:
(If expression (If statement ;))
Prtc
(Prtc (expression) ;)
Prts
(Prts (String "the string") ;)
Prti
(Prti (Integer 12345) ;)
While - left node is the expression, the right node is the statement.
(While expression statement)
Assign - left node is the left-hand side of the assignment, the right node is the
right-hand side of the assignment.
(Assign Identifier expression)
Terminal (leaf) nodes:
Identifier: (Identifier ident_name)
Integer: (Integer 12345)
String: (String "Hello World!")
";": Empty node
Some simple examples
Sequences denote a list node; they are used to represent a list. semicolon's represent a null node, e.g., the end of this path.
This simple program:
a=11;
Produces the following AST, encoded as a binary tree:
Under each non-leaf node are two '|' lines. The first represents the left sub-node, the second represents the right sub-node:
(1) Sequence
(2) |-- ;
(3) |-- Assign
(4) |-- Identifier: a
(5) |-- Integer: 11
In flattened form:
(1) Sequence
(2) ;
(3) Assign
(4) Identifier a
(5) Integer 11
This program:
a=11;
b=22;
c=33;
Produces the following AST:
( 1) Sequence
( 2) |-- Sequence
( 3) | |-- Sequence
( 4) | | |-- ;
( 5) | | |-- Assign
( 6) | | |-- Identifier: a
( 7) | | |-- Integer: 11
( 8) | |-- Assign
( 9) | |-- Identifier: b
(10) | |-- Integer: 22
(11) |-- Assign
(12) |-- Identifier: c
(13) |-- Integer: 33
In flattened form:
( 1) Sequence
( 2) Sequence
( 3) Sequence
( 4) ;
( 5) Assign
( 6) Identifier a
( 7) Integer 11
( 8) Assign
( 9) Identifier b
(10) Integer 22
(11) Assign
(12) Identifier c
(13) Integer 33
Pseudo-code for the parser.
Uses Precedence Climbing for expression parsing, and
Recursive Descent for statement parsing. The AST is also built:
def expr(p)
if tok is "("
x = paren_expr()
elif tok in ["-", "+", "!"]
gettok()
y = expr(precedence of operator)
if operator was "+"
x = y
else
x = make_node(operator, y)
elif tok is an Identifier
x = make_leaf(Identifier, variable name)
gettok()
elif tok is an Integer constant
x = make_leaf(Integer, integer value)
gettok()
else
error()
while tok is a binary operator and precedence of tok >= p
save_tok = tok
gettok()
q = precedence of save_tok
if save_tok is not right associative
q += 1
x = make_node(Operator save_tok represents, x, expr(q))
return x
def paren_expr()
expect("(")
x = expr(0)
expect(")")
return x
def stmt()
t = NULL
if accept("if")
e = paren_expr()
s = stmt()
t = make_node(If, e, make_node(If, s, accept("else") ? stmt() : NULL))
elif accept("putc")
t = make_node(Prtc, paren_expr())
expect(";")
elif accept("print")
expect("(")
repeat
if tok is a string
e = make_node(Prts, make_leaf(String, the string))
gettok()
else
e = make_node(Prti, expr(0))
t = make_node(Sequence, t, e)
until not accept(",")
expect(")")
expect(";")
elif tok is ";"
gettok()
elif tok is an Identifier
v = make_leaf(Identifier, variable name)
gettok()
expect("=")
t = make_node(Assign, v, expr(0))
expect(";")
elif accept("while")
e = paren_expr()
t = make_node(While, e, stmt()
elif accept("{")
while tok not equal "}" and tok not equal end-of-file
t = make_node(Sequence, t, stmt())
expect("}")
elif tok is end-of-file
pass
else
error()
return t
def parse()
t = NULL
gettok()
repeat
t = make_node(Sequence, t, stmt())
until tok is end-of-file
return t
Once the AST is built, it should be output in a flattened format. This can be as simple as the following
def prt_ast(t)
if t == NULL
print(";\n")
else
print(t.node_type)
if t.node_type in [Identifier, Integer, String] # leaf node
print the value of the Ident, Integer or String, "\n"
else
print("\n")
prt_ast(t.left)
prt_ast(t.right)
If the AST is correctly built, loading it into a subsequent program should be as simple as
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Finally, the AST can also be tested by running it against one of the AST Interpreter solutions.
Test program, assuming this is in a file called prime.t
lex <prime.t | parse
Input to lex
Output from lex, input to parse
Output from parse
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
4 1 Identifier count
4 7 Op_assign
4 9 Integer 1
4 10 Semicolon
5 1 Identifier n
5 3 Op_assign
5 5 Integer 1
5 6 Semicolon
6 1 Identifier limit
6 7 Op_assign
6 9 Integer 100
6 12 Semicolon
7 1 Keyword_while
7 7 LeftParen
7 8 Identifier n
7 10 Op_less
7 12 Identifier limit
7 17 RightParen
7 19 LeftBrace
8 5 Identifier k
8 6 Op_assign
8 7 Integer 3
8 8 Semicolon
9 5 Identifier p
9 6 Op_assign
9 7 Integer 1
9 8 Semicolon
10 5 Identifier n
10 6 Op_assign
10 7 Identifier n
10 8 Op_add
10 9 Integer 2
10 10 Semicolon
11 5 Keyword_while
11 11 LeftParen
11 12 LeftParen
11 13 Identifier k
11 14 Op_multiply
11 15 Identifier k
11 16 Op_lessequal
11 18 Identifier n
11 19 RightParen
11 21 Op_and
11 24 LeftParen
11 25 Identifier p
11 26 RightParen
11 27 RightParen
11 29 LeftBrace
12 9 Identifier p
12 10 Op_assign
12 11 Identifier n
12 12 Op_divide
12 13 Identifier k
12 14 Op_multiply
12 15 Identifier k
12 16 Op_notequal
12 18 Identifier n
12 19 Semicolon
13 9 Identifier k
13 10 Op_assign
13 11 Identifier k
13 12 Op_add
13 13 Integer 2
13 14 Semicolon
14 5 RightBrace
15 5 Keyword_if
15 8 LeftParen
15 9 Identifier p
15 10 RightParen
15 12 LeftBrace
16 9 Keyword_print
16 14 LeftParen
16 15 Identifier n
16 16 Comma
16 18 String " is prime\n"
16 31 RightParen
16 32 Semicolon
17 9 Identifier count
17 15 Op_assign
17 17 Identifier count
17 23 Op_add
17 25 Integer 1
17 26 Semicolon
18 5 RightBrace
19 1 RightBrace
20 1 Keyword_print
20 6 LeftParen
20 7 String "Total primes found: "
20 29 Comma
20 31 Identifier count
20 36 Comma
20 38 String "\n"
20 42 RightParen
20 43 Semicolon
21 1 End_of_input
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier count
Integer 1
Assign
Identifier n
Integer 1
Assign
Identifier limit
Integer 100
While
Less
Identifier n
Identifier limit
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier k
Integer 3
Assign
Identifier p
Integer 1
Assign
Identifier n
Add
Identifier n
Integer 2
While
And
LessEqual
Multiply
Identifier k
Identifier k
Identifier n
Identifier p
Sequence
Sequence
;
Assign
Identifier p
NotEqual
Multiply
Divide
Identifier n
Identifier k
Identifier k
Identifier n
Assign
Identifier k
Add
Identifier k
Integer 2
If
Identifier p
If
Sequence
Sequence
;
Sequence
Sequence
;
Prti
Identifier n
;
Prts
String " is prime\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
;
Sequence
Sequence
Sequence
;
Prts
String "Total primes found: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #Wren | Wren | import "/dynamic" for Enum, Struct, Tuple
import "/fmt" for Fmt
import "/ioutil" for FileUtil
var tokens = [
"EOI",
"Mul",
"Div",
"Mod",
"Add",
"Sub",
"Negate",
"Not",
"Lss",
"Leq",
"Gtr",
"Geq",
"Eql",
"Neq",
"Assign",
"And",
"Or",
"If",
"Else",
"While",
"Print",
"Putc",
"Lparen",
"Rparen",
"Lbrace",
"Rbrace",
"Semi",
"Comma",
"Ident",
"Integer",
"String"
]
var Token = Enum.create("Token", tokens)
var nodes = [
"Ident",
"String",
"Integer",
"Sequence",
"If",
"Prtc",
"Prts",
"Prti",
"While",
"Assign",
"Negate",
"Not",
"Mul",
"Div",
"Mod",
"Add",
"Sub",
"Lss",
"Leq",
"Gtr",
"Geq",
"Eql",
"Neq",
"And",
"Or"
]
var Node = Enum.create("Node", nodes)
// 'text' field represents ident ot string literal or integer value
var TokS = Struct.create("TokS", ["tok", "errLn", "errCol", "text"])
var Tree = Struct.create("Tree", ["nodeType", "left", "right", "value"])
// dependency: Ordered by tok, must remain in same order as Token enum constants
var Atr = Tuple.create("Atr", ["text", "enumText", "tok", "rightAssociative", "isBinary",
"isUnary", "precedence", "nodeType"])
var atrs = [
Atr.new("EOI", "End_of_input", Token.EOI, false, false, false, -1, -1),
Atr.new("*", "Op_multiply", Token.Mul, false, true, false, 13, Node.Mul),
Atr.new("/", "Op_divide", Token.Div, false, true, false, 13, Node.Div),
Atr.new("\%", "Op_mod", Token.Mod, false, true, false, 13, Node.Mod),
Atr.new("+", "Op_add", Token.Add, false, true, false, 12, Node.Add),
Atr.new("-", "Op_subtract", Token.Sub, false, true, false, 12, Node.Sub),
Atr.new("-", "Op_negate", Token.Negate, false, false, true, 14, Node.Negate),
Atr.new("!", "Op_not", Token.Not, false, false, true, 14, Node.Not),
Atr.new("<", "Op_less", Token.Lss, false, true, false, 10, Node.Lss),
Atr.new("<=", "Op_lessequal", Token.Leq, false, true, false, 10, Node.Leq),
Atr.new(">", "Op_greater", Token.Gtr, false, true, false, 10, Node.Gtr),
Atr.new(">=", "Op_greaterequal", Token.Geq, false, true, false, 10, Node.Geq),
Atr.new("==", "Op_equal", Token.Eql, false, true, false, 9, Node.Eql),
Atr.new("!=", "Op_notequal", Token.Neq, false, true, false, 9, Node.Neq),
Atr.new("=", "Op_assign", Token.Assign, false, false, false, -1, Node.Assign),
Atr.new("&&", "Op_and", Token.And, false, true, false, 5, Node.And),
Atr.new("||", "Op_or", Token.Or, false, true, false, 4, Node.Or),
Atr.new("if", "Keyword_if", Token.If, false, false, false, -1, Node.If),
Atr.new("else", "Keyword_else", Token.Else, false, false, false, -1, -1),
Atr.new("while", "Keyword_while", Token.While, false, false, false, -1, Node.While),
Atr.new("print", "Keyword_print", Token.Print, false, false, false, -1, -1),
Atr.new("putc", "Keyword_putc", Token.Putc, false, false, false, -1, -1),
Atr.new("(", "LeftParen", Token.Lparen, false, false, false, -1, -1),
Atr.new(")", "RightParen", Token.Rparen, false, false, false, -1, -1),
Atr.new("{", "LeftBrace", Token.Lbrace, false, false, false, -1, -1),
Atr.new("}", "RightBrace", Token.Rbrace, false, false, false, -1, -1),
Atr.new(";", "Semicolon", Token.Semi, false, false, false, -1, -1),
Atr.new(",", "Comma", Token.Comma, false, false, false, -1, -1),
Atr.new("Ident", "Identifier", Token.Ident, false, false, false, -1, Node.Ident),
Atr.new("Integer literal", "Integer", Token.Integer, false, false, false, -1, Node.Integer),
Atr.new("String literal", "String", Token.String, false, false, false, -1, Node.String),
]
var displayNodes = [
"Identifier", "String", "Integer", "Sequence", "If", "Prtc", "Prts", "Prti",
"While", "Assign", "Negate", "Not", "Multiply", "Divide", "Mod", "Add",
"Subtract", "Less", "LessEqual", "Greater", "GreaterEqual", "Equal",
"NotEqual", "And", "Or"
]
var token = TokS.new(0, 0, 0, "")
var reportError = Fn.new { |eline, ecol, msg| Fiber.abort("(%(eline):%(ecol)) error : %(msg)") }
// return internal version of name
var getEnum = Fn.new { |name|
for (atr in atrs) {
if (atr.enumText == name) return atr.tok
}
reportError.call(0, 0, "Unknown token %(name)")
}
var lines = []
var lineCount = 0
var lineNum = 0
var getTok = Fn.new {
var tok = TokS.new(0, 0, 0, "")
if (lineNum < lineCount) {
var line = lines[lineNum].trimEnd(" \t")
lineNum = lineNum + 1
var fields = line.split(" ").where { |s| s != "" }.toList
// [ ]*{lineno}[ ]+{colno}[ ]+token[ ]+optional
tok.errLn = Num.fromString(fields[0])
tok.errCol = Num.fromString(fields[1])
tok.tok = getEnum.call(fields[2])
var le = fields.count
if (le == 4) {
tok.text = fields[3]
} else if (le > 4) {
var idx = line.indexOf("\"")
tok.text = line[idx..-1]
}
}
return tok
}
var makeNode = Fn.new { |nodeType, left, right| Tree.new(nodeType, left, right, "") }
var makeLeaf = Fn.new { |nodeType, value| Tree.new(nodeType, null, null, value) }
var expect = Fn.new { |msg, s|
if (token.tok == s) {
token = getTok.call()
return
}
reportError.call(token.errLn, token.errCol,
Fmt.swrite("$s: Expecting '$s', found '$s'", msg, atrs[s].text, atrs[token.tok].text))
}
var parenExpr // forward reference
var expr // recursive function
expr = Fn.new { |p|
var x
var node
var t = token.tok
if (t == Token.Lparen) {
x = parenExpr.call()
} else if (t == Token.Sub || t == Token.Add) {
var op = t
token = getTok.call()
node = expr.call(atrs[Token.Negate].precedence)
if (op == Token.Sub) {
x = makeNode.call(Node.negate, node, null)
} else {
x = node
}
} else if (t == Token.Not) {
token = getTok.call()
x = makeNode.call(Node.Not, expr.call(atrs[Token.Not].precedence), null)
} else if (t == Token.Ident) {
x = makeLeaf.call(Node.Ident, token.text)
token = getTok.call()
} else if (t == Token.Integer) {
x = makeLeaf.call(Node.Integer, token.text)
token = getTok.call()
} else {
reportError.call(token.errLn, token.errCol,
Fmt.swrite("Expecting a primary, found: $s", atrs[token.tok].text))
}
while (atrs[token.tok].isBinary && atrs[token.tok].precedence >= p) {
var op = token.tok
token = getTok.call()
var q = atrs[op].precedence
if (!atrs[op].rightAssociative) q = q + 1
node = expr.call(q)
x = makeNode.call(atrs[op].nodeType, x, node)
}
return x
}
parenExpr = Fn.new {
expect.call("parenExpr", Token.Lparen)
var t = expr.call(0)
expect.call("parenExpr", Token.Rparen)
return t
}
var stmt // recursive function
stmt = Fn.new {
var t
var v
var e
var s
var s2
var tt = token.tok
if (tt == Token.If) {
token = getTok.call()
e = parenExpr.call()
s = stmt.call()
s2 = null
if (token.tok == Token.Else) {
token = getTok.call()
s2 = stmt.call()
}
t = makeNode.call(Node.If, e, makeNode.call(Node.If, s, s2))
} else if (tt == Token.Putc) {
token = getTok.call()
e = parenExpr.call()
t = makeNode.call(Node.Prtc, e, null)
expect.call("Putc", Token.Semi)
} else if (tt == Token.Print) { // print '(' expr {',' expr} ')'
token = getTok.call()
expect.call("Print", Token.Lparen)
while (true) {
if (token.tok == Token.String) {
e = makeNode.call(Node.Prts, makeLeaf.call(Node.String, token.text), null)
token = getTok.call()
} else {
e = makeNode.call(Node.Prti, expr.call(0), null)
}
t = makeNode.call(Node.Sequence, t, e)
if (token.tok != Token.Comma) break
expect.call("Print", Token.Comma)
}
expect.call("Print", Token.Rparen)
expect.call("Print", Token.Semi)
} else if (tt == Token.Semi) {
token = getTok.call()
} else if (tt == Token.Ident) {
v = makeLeaf.call(Node.Ident, token.text)
token = getTok.call()
expect.call("assign", Token.Assign)
e = expr.call(0)
t = makeNode.call(Node.Assign, v, e)
expect.call("assign", Token.Semi)
} else if (tt == Token.While) {
token = getTok.call()
e = parenExpr.call()
s = stmt.call()
t = makeNode.call(Node.While, e, s)
} else if (tt == Token.Lbrace) { // {stmt}
expect.call("Lbrace", Token.Lbrace)
while (token.tok != Token.Rbrace && token.tok != Token.EOI) {
t = makeNode.call(Node.Sequence, t, stmt.call())
}
expect.call("Lbrace", Token.Rbrace)
} else if (tt == Token.EOI) {
// do nothing
} else {
reportError.call(token.errLn, token.errCol,
Fmt.Swrite("expecting start of statement, found '$s'", atrs[token.tok].text))
}
return t
}
var parse = Fn.new {
var t
token = getTok.call()
while (true) {
t = makeNode.call(Node.Sequence, t, stmt.call())
if (!t || token.tok == Token.EOI) break
}
return t
}
var prtAst // recursive function
prtAst = Fn.new { |t|
if (!t) {
System.print(";")
} else {
Fmt.write("$-14s ", displayNodes[t.nodeType])
if (t.nodeType == Node.Ident || t.nodeType == Node.Integer || t.nodeType == Node.String) {
System.print(t.value)
} else {
System.print()
prtAst.call(t.left)
prtAst.call(t.right)
}
}
}
lines = FileUtil.readLines("source.txt")
lineCount = lines.count
prtAst.call(parse.call()) |
http://rosettacode.org/wiki/Conway%27s_Game_of_Life | Conway's Game of Life | The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.
Conway's game of life is described here:
A cell C is represented by a 1 when alive, or 0 when dead, in an m-by-m (or m×m) square array of cells.
We calculate N - the sum of live cells in C's eight-location neighbourhood, then cell C is alive or dead in the next generation based on the following table:
C N new C
1 0,1 -> 0 # Lonely
1 4,5,6,7,8 -> 0 # Overcrowded
1 2,3 -> 1 # Lives
0 3 -> 1 # It takes three to give birth!
0 0,1,2,4,5,6,7,8 -> 0 # Barren
Assume cells beyond the boundary are always dead.
The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.
Task
Although you should test your implementation on more complex examples such as the glider in a larger universe, show the action of the blinker (three adjoining cells in a row all alive), over three generations, in a 3 by 3 grid.
References
Its creator John Conway, explains the game of life. Video from numberphile on youtube.
John Conway Inventing Game of Life - Numberphile video.
Related task
Langton's ant - another well known cellular automaton.
| #Egel | Egel | import "prelude.eg"
import "io.ego"
using System
using List
using IO
def boardsize = 5
def empty = [ X Y -> 0 ]
def insert =
[ X Y BOARD ->
[ X0 Y0 -> if and (X0 == X) (Y0 == Y) then 1
else BOARD X0 Y0 ] ]
def coords =
let R = fromto 0 (boardsize - 1) in
[ XX YY -> map (\X -> map (\Y -> X Y) YY) XX ] R R
def printcell =
[ 0 -> print ". "
| _ -> print "* " ]
def printboard =
[ BOARD ->
let M = map [XX -> let _ = map [(X Y) -> printcell (BOARD X Y)] XX in print "\n" ] coords in
nop ]
def count =
[ BOARD, X, Y ->
(BOARD (X - 1) (Y - 1)) + (BOARD (X) (Y - 1)) + (BOARD (X+1) (Y - 1)) +
(BOARD (X - 1) Y) + (BOARD (X+1) Y) +
(BOARD (X - 1) (Y+1)) + (BOARD (X) (Y+1)) + (BOARD (X+1) (Y+1)) ]
def next =
[ 0 N -> if N == 3 then 1 else 0
| _ N -> if or (N == 2) (N == 3) then 1 else 0 ]
def updateboard =
[ BOARD ->
let XX = map (\(X Y) -> X Y (BOARD X Y) (count BOARD X Y)) (flatten coords) in
let YY = map (\(X Y C N) -> X Y (next C N)) XX in
foldr [(X Y 0) BOARD -> BOARD | (X Y _) BOARD -> insert X Y BOARD ] empty YY ]
def blinker =
(insert 1 2) @ (insert 2 2) @ (insert 3 2)
def main =
let GEN0 = blinker empty in
let GEN1 = updateboard GEN0 in
let GEN2 = updateboard GEN1 in
let _ = map [ G -> let _ = print "generation:\n" in printboard G ] {GEN0, GEN1, GEN2} in
nop
|
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #SIMPOL | SIMPOL | type mypoint
embed
integer x
integer y
end type |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #SNOBOL4 | SNOBOL4 | data('point(x,y)')
p1 = point(10,20)
p2 = point(10,40)
output = "Point 1 (" x(p1) "," y(p1) ")"
output = "Point 2 (" x(p2) "," y(p2) ")"
end |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Befunge | Befunge | v > "X",@ non-zero
> & |
> "0",@ zero |
http://rosettacode.org/wiki/Commatizing_numbers | Commatizing numbers | Commatizing numbers (as used here, is a handy expedient made-up word) is the act of adding commas to a number (or string), or to the numeric part of a larger string.
Task
Write a function that takes a string as an argument with optional arguments or parameters (the format of parameters/options is left to the programmer) that in general, adds commas (or some
other characters, including blanks or tabs) to the first numeric part of a string (if it's suitable for commatizing as per the rules below), and returns that newly commatized string.
Some of the commatizing rules (specified below) are arbitrary, but they'll be a part of this task requirements, if only to make the results consistent amongst national preferences and other disciplines.
The number may be part of a larger (non-numeric) string such as:
«US$1744 millions» ──or──
±25000 motes.
The string may possibly not have a number suitable for commatizing, so it should be untouched and no error generated.
If any argument (option) is invalid, nothing is changed and no error need be generated (quiet execution, no fail execution). Error message generation is optional.
The exponent part of a number is never commatized. The following string isn't suitable for commatizing: 9.7e+12000
Leading zeroes are never commatized. The string 0000000005714.882 after commatization is: 0000000005,714.882
Any period (.) in a number is assumed to be a decimal point.
The original string is never changed except by the addition of commas [or whatever character(s) is/are used for insertion], if at all.
To wit, the following should be preserved:
leading signs (+, -) ── even superfluous signs
leading/trailing/embedded blanks, tabs, and other whitespace
the case (upper/lower) of the exponent indicator, e.g.: 4.8903d-002
Any exponent character(s) should be supported:
1247e12
57256.1D-4
4444^60
7500∙10**35
8500x10**35
9500↑35
+55000↑3
1000**100
2048²
409632
10000pow(pi)
Numbers may be terminated with any non-digit character, including subscripts and/or superscript: 41421356243 or 7320509076(base 24).
The character(s) to be used for the comma can be specified, and may contain blanks, tabs, and other whitespace characters, as well as multiple characters. The default is the comma (,) character.
The period length can be specified (sometimes referred to as "thousands" or "thousands separators"). The period length can be defined as the length (or number) of the decimal digits between commas. The default period length is 3.
E.G.: in this example, the period length is five: 56789,12340,14148
The location of where to start the scanning for the target field (the numeric part) should be able to be specified. The default is 1.
The character strings below may be placed in a file (and read) or stored as simple strings within the program.
Strings to be used as a minimum
The value of pi (expressed in base 10) should be separated with blanks every 5 places past the decimal point,
the Zimbabwe dollar amount should use a decimal point for the "comma" separator:
pi=3.14159265358979323846264338327950288419716939937510582097494459231
The author has two Z$100000000000000 Zimbabwe notes (100 trillion).
"-in Aus$+1411.8millions"
===US$0017440 millions=== (in 2000 dollars)
123.e8000 is pretty big.
The land area of the earth is 57268900(29% of the surface) square miles.
Ain't no numbers in this here words, nohow, no way, Jose.
James was never known as 0000000007
Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe.
␢␢␢$-140000±100 millions.
6/9/1946 was a good year for some.
where the penultimate string has three leading blanks (real blanks are to be used).
Also see
The Wiki entry: (sir) Arthur Eddington's number of protons in the universe.
| #VBA | VBA | Public Sub commatize(s As String, Optional sep As String = ",", Optional start As Integer = 1, Optional step As Integer = 3)
Dim l As Integer: l = Len(s)
For i = start To l
If Asc(Mid(s, i, 1)) >= Asc("1") And Asc(Mid(s, i, 1)) <= Asc("9") Then
For j = i + 1 To l + 1
If j > l Then
For k = j - 1 - step To i Step -step
s = Mid(s, 1, k) & sep & Mid(s, k + 1, l - k + 1)
l = Len(s)
Next k
Exit For
Else
If (Asc(Mid(s, j, 1)) < Asc("0") Or Asc(Mid(s, j, 1)) > Asc("9")) Then
For k = j - 1 - step To i Step -step
s = Mid(s, 1, k) & sep & Mid(s, k + 1, l - k + 1)
l = Len(s)
Next k
Exit For
End If
End If
Next j
Exit For
End If
Next i
Debug.Print s
End Sub
Public Sub main()
commatize "pi=3.14159265358979323846264338327950288419716939937510582097494459231", " ", 6, 5
commatize "The author has two Z$100000000000000 Zimbabwe notes (100 trillion).", "."
commatize """-in Aus$+1411.8millions"""
commatize "===US$0017440 millions=== (in 2000 dollars)"
commatize "123.e8000 is pretty big."
commatize "The land area of the earth is 57268900(29% of the surface) square miles."
commatize "Ain't no numbers in this here words, nohow, no way, Jose."
commatize "James was never known as 0000000007"
commatize "Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe."
commatize " $-140000±100 millions."
commatize "6/9/1946 was a good year for some."
End Sub |
http://rosettacode.org/wiki/Commatizing_numbers | Commatizing numbers | Commatizing numbers (as used here, is a handy expedient made-up word) is the act of adding commas to a number (or string), or to the numeric part of a larger string.
Task
Write a function that takes a string as an argument with optional arguments or parameters (the format of parameters/options is left to the programmer) that in general, adds commas (or some
other characters, including blanks or tabs) to the first numeric part of a string (if it's suitable for commatizing as per the rules below), and returns that newly commatized string.
Some of the commatizing rules (specified below) are arbitrary, but they'll be a part of this task requirements, if only to make the results consistent amongst national preferences and other disciplines.
The number may be part of a larger (non-numeric) string such as:
«US$1744 millions» ──or──
±25000 motes.
The string may possibly not have a number suitable for commatizing, so it should be untouched and no error generated.
If any argument (option) is invalid, nothing is changed and no error need be generated (quiet execution, no fail execution). Error message generation is optional.
The exponent part of a number is never commatized. The following string isn't suitable for commatizing: 9.7e+12000
Leading zeroes are never commatized. The string 0000000005714.882 after commatization is: 0000000005,714.882
Any period (.) in a number is assumed to be a decimal point.
The original string is never changed except by the addition of commas [or whatever character(s) is/are used for insertion], if at all.
To wit, the following should be preserved:
leading signs (+, -) ── even superfluous signs
leading/trailing/embedded blanks, tabs, and other whitespace
the case (upper/lower) of the exponent indicator, e.g.: 4.8903d-002
Any exponent character(s) should be supported:
1247e12
57256.1D-4
4444^60
7500∙10**35
8500x10**35
9500↑35
+55000↑3
1000**100
2048²
409632
10000pow(pi)
Numbers may be terminated with any non-digit character, including subscripts and/or superscript: 41421356243 or 7320509076(base 24).
The character(s) to be used for the comma can be specified, and may contain blanks, tabs, and other whitespace characters, as well as multiple characters. The default is the comma (,) character.
The period length can be specified (sometimes referred to as "thousands" or "thousands separators"). The period length can be defined as the length (or number) of the decimal digits between commas. The default period length is 3.
E.G.: in this example, the period length is five: 56789,12340,14148
The location of where to start the scanning for the target field (the numeric part) should be able to be specified. The default is 1.
The character strings below may be placed in a file (and read) or stored as simple strings within the program.
Strings to be used as a minimum
The value of pi (expressed in base 10) should be separated with blanks every 5 places past the decimal point,
the Zimbabwe dollar amount should use a decimal point for the "comma" separator:
pi=3.14159265358979323846264338327950288419716939937510582097494459231
The author has two Z$100000000000000 Zimbabwe notes (100 trillion).
"-in Aus$+1411.8millions"
===US$0017440 millions=== (in 2000 dollars)
123.e8000 is pretty big.
The land area of the earth is 57268900(29% of the surface) square miles.
Ain't no numbers in this here words, nohow, no way, Jose.
James was never known as 0000000007
Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe.
␢␢␢$-140000±100 millions.
6/9/1946 was a good year for some.
where the penultimate string has three leading blanks (real blanks are to be used).
Also see
The Wiki entry: (sir) Arthur Eddington's number of protons in the universe.
| #Wren | Wren | var commatize = Fn.new { |s, start, step, sep|
var addSeps = Fn.new { |n, dp|
var lz = ""
if (!dp && n.startsWith("0") && n != "0") {
var k = n.trimStart("0")
if (k == "") k = "0"
lz = "0" * (n.count - k.count)
n = k
}
if (dp) n = n[-1..0] // invert if after decimal point
var i = n.count - step
while (i >= 1) {
n = n[0...i] + sep + n[i..-1]
i = i - step
}
if (dp) n = n[-1..0] // invert back
return lz + n
}
var t = s.toList
var isExponent = Fn.new { |c| "eEdDpP^∙x↑*⁰¹²³⁴⁵⁶⁷⁸⁹".contains(c) }
var acc = (start == 0) ? "" : t.toList[0...start].join()
var n = ""
var dp = false
for (j in start...t.count) {
var c = t[j].codePoints[0]
if (c >= 48 && c <= 57) {
n = n + t[j]
if (j == t.count-1) {
if (acc != "" && isExponent.call(acc[-1])) {
acc = s
} else {
acc = acc + addSeps.call(n, dp)
}
}
} else if (n != "") {
if (acc != "" && isExponent.call(acc[-1])) {
acc = s
break
} else if (t[j] != ".") {
acc = acc + addSeps.call(n, dp) + t[j..-1].join()
break
} else {
acc = acc + addSeps.call(n, dp) + t[j]
dp = true
n = ""
}
} else {
acc = acc + t[j]
}
}
System.print(s)
System.print(acc)
System.print()
}
// special version of the above which uses defaults for start, step and sep.
var commatize2 = Fn.new { |s| commatize.call(s, 0, 3, ",") }
commatize.call("123456789.123456789", 0, 2, "*")
commatize.call(".123456789", 0, 3, "-")
commatize.call("57256.1D-4", 0, 4, "__")
commatize.call("pi=3.14159265358979323846264338327950288419716939937510582097494459231", 0, 5, " ")
commatize.call("The author has two Z$100000000000000 Zimbabwe notes (100 trillion).", 0, 3, ".")
var defaults = [
"\"-in Aus$+1411.8millions\"",
"===US$0017440 millions=== (in 2000 dollars)",
"123.e8000 is pretty big.",
"The land area of the earth is 57268900(29\% of the surface) square miles.",
"Ain't no numbers in this here words, nohow, no way, Jose.",
"James was never known as 0000000007",
"Arthur Eddington wrote: I believe there are 15747724136275002577605653961181555468044717914527116709366231425076185631031296 protons in the universe.",
" $-140000±100 millions.",
"6/9/1946 was a good year for some."
]
defaults.each { |d| commatize2.call(d) } |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #F.23 | F# | let allEqual strings = Seq.isEmpty strings || Seq.forall (fun x -> x = Seq.head strings) (Seq.tail strings)
let ascending strings = Seq.isEmpty strings || Seq.forall2 (fun x y -> x < y) strings (Seq.tail strings) |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Factor | Factor | USE: grouping
all-equal? |
http://rosettacode.org/wiki/Comma_quibbling | Comma quibbling | Comma quibbling is a task originally set by Eric Lippert in his blog.
Task
Write a function to generate a string output which is the concatenation of input words from a list/sequence where:
An input of no words produces the output string of just the two brace characters "{}".
An input of just one word, e.g. ["ABC"], produces the output string of the word inside the two braces, e.g. "{ABC}".
An input of two words, e.g. ["ABC", "DEF"], produces the output string of the two words inside the two braces with the words separated by the string " and ", e.g. "{ABC and DEF}".
An input of three or more words, e.g. ["ABC", "DEF", "G", "H"], produces the output string of all but the last word separated by ", " with the last word separated by " and " and all within braces; e.g. "{ABC, DEF, G and H}".
Test your function with the following series of inputs showing your output here on this page:
[] # (No input words).
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]
Note: Assume words are non-empty strings of uppercase characters for this task.
| #BCPL | BCPL | get "libhdr"
// Add a character to the end of a string
let addch(s, ch) be
$( s%0 := s%0 + 1
s%(s%0) := ch
$)
// Add s2 to the end of s1
and adds(s1, s2) be
for i = 1 to s2%0 do
addch(s1, s2%i)
// Comma quibbling on strs, which should be a 0-terminated
// vector of string pointers.
let quibble(strs, buf) = valof
$( buf%0 := 0
addch(buf, '{')
until !strs = 0 do
$( addch(buf, '"')
adds(buf, !strs)
addch(buf, '"')
unless strs!1 = 0
test strs!2 = 0
then adds(buf, " and ")
else adds(buf, ", ")
strs := strs + 1
$)
addch(buf, '}')
resultis buf
$)
let start() be
$( let words = vec 4
let buf = vec 63
words!0 := 0
writef("%S*N", quibble(words, buf))
words!0 := "ABC" ; words!1 := 0
writef("%S*N", quibble(words, buf))
words!1 := "DEF" ; words!2 := 0
writef("%S*N", quibble(words, buf))
words!2 := "G" ; words!3 := "H" ; words!4 := 0
writef("%S*N", quibble(words, buf))
$) |
http://rosettacode.org/wiki/Comma_quibbling | Comma quibbling | Comma quibbling is a task originally set by Eric Lippert in his blog.
Task
Write a function to generate a string output which is the concatenation of input words from a list/sequence where:
An input of no words produces the output string of just the two brace characters "{}".
An input of just one word, e.g. ["ABC"], produces the output string of the word inside the two braces, e.g. "{ABC}".
An input of two words, e.g. ["ABC", "DEF"], produces the output string of the two words inside the two braces with the words separated by the string " and ", e.g. "{ABC and DEF}".
An input of three or more words, e.g. ["ABC", "DEF", "G", "H"], produces the output string of all but the last word separated by ", " with the last word separated by " and " and all within braces; e.g. "{ABC, DEF, G and H}".
Test your function with the following series of inputs showing your output here on this page:
[] # (No input words).
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]
Note: Assume words are non-empty strings of uppercase characters for this task.
| #Bracmat | Bracmat | ( :?L1
& ABC:?L2
& ABC DEF:?L3
& ABC DEF G H:?L4
& L1 L2 L3 L4:?names
& ( quibble
= w
. !arg:%?w (% %:?arg)
& !w ", " quibble$!arg
| !arg:%?w %?arg&!w " and " quibble$!arg
| !arg
)
& (concat=.str$("{" quibble$!arg "}"))
& whl
' (!names:%?name ?names&out$(!name concat$!!name))
); |
http://rosettacode.org/wiki/Combinations_with_repetitions | Combinations with repetitions | The set of combinations with repetitions is computed from a set,
S
{\displaystyle S}
(of cardinality
n
{\displaystyle n}
), and a size of resulting selection,
k
{\displaystyle k}
, by reporting the sets of cardinality
k
{\displaystyle k}
where each member of those sets is chosen from
S
{\displaystyle S}
.
In the real world, it is about choosing sets where there is a “large” supply of each type of element and where the order of choice does not matter.
For example:
Q: How many ways can a person choose two doughnuts from a store selling three types of doughnut: iced, jam, and plain? (i.e.,
S
{\displaystyle S}
is
{
i
c
e
d
,
j
a
m
,
p
l
a
i
n
}
{\displaystyle \{\mathrm {iced} ,\mathrm {jam} ,\mathrm {plain} \}}
,
|
S
|
=
3
{\displaystyle |S|=3}
, and
k
=
2
{\displaystyle k=2}
.)
A: 6: {iced, iced}; {iced, jam}; {iced, plain}; {jam, jam}; {jam, plain}; {plain, plain}.
Note that both the order of items within a pair, and the order of the pairs given in the answer is not significant; the pairs represent multisets.
Also note that doughnut can also be spelled donut.
Task
Write a function/program/routine/.. to generate all the combinations with repetitions of
n
{\displaystyle n}
types of things taken
k
{\displaystyle k}
at a time and use it to show an answer to the doughnut example above.
For extra credit, use the function to compute and show just the number of ways of choosing three doughnuts from a choice of ten types of doughnut. Do not show the individual choices for this part.
References
k-combination with repetitions
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #C.2B.2B | C++ |
#include <iostream>
#include <string>
#include <vector>
void print_vector(const std::vector<int> &pos,
const std::vector<std::string> &str) {
for (size_t i = 1; i < pos.size(); ++i) // offset: i:1..N
printf("%s\t", str[pos[i]].c_str()); // str: 0..N-1
printf("\n");
}
// idea: custom number system with 2s complement like 0b10...0==MIN stop case
void combination_with_repetiton(int n, int k,
const std::vector<std::string> &str) {
std::vector<int> pos(k + 1, 0);
while (true) {
for (int i = k; i > 0; i -= 1) {
if (pos[i] > n - 1) // if number spilled over: xx0(n-1)xx
{
pos[i - 1] += 1; // set xx1(n-1)xx
for (int j = i; j <= k; j += 1)
pos[j] = pos[j - 1]; // set xx11..1
}
}
if (pos[0] > 0) // stop condition: 1xxxx
break;
print_vector(pos, str);
pos[k] += 1; // xxxxN -> xxxxN+1
}
}
int main() {
std::vector<std::string> str{"iced", "jam", "plain"};
combination_with_repetiton(3, 2, str);
return 0;
}
|
http://rosettacode.org/wiki/Combinations_and_permutations | Combinations and permutations |
This page uses content from Wikipedia. The original article was at Combination. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
This page uses content from Wikipedia. The original article was at Permutation. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Implement the combination (nCk) and permutation (nPk) operators in the target language:
n
C
k
=
(
n
k
)
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle ^{n}\operatorname {C} _{k}={\binom {n}{k}}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
See the Wikipedia articles for a more detailed description.
To test, generate and print examples of:
A sample of permutations from 1 to 12 and Combinations from 10 to 60 using exact Integer arithmetic.
A sample of permutations from 5 to 15000 and Combinations from 100 to 1000 using approximate Floating point arithmetic.
This 'floating point' code could be implemented using an approximation, e.g., by calling the Gamma function.
Related task
Evaluate binomial coefficients
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Go | Go |
package main
import (
"fmt"
"math/big"
)
func main() {
var n, p int64
fmt.Printf("A sample of permutations from 1 to 12:\n")
for n = 1; n < 13; n++ {
p = n / 3
fmt.Printf("P(%d,%d) = %d\n", n, p, perm(big.NewInt(n), big.NewInt(p)))
}
fmt.Printf("\nA sample of combinations from 10 to 60:\n")
for n = 10; n < 61; n += 10 {
p = n / 3
fmt.Printf("C(%d,%d) = %d\n", n, p, comb(big.NewInt(n), big.NewInt(p)))
}
fmt.Printf("\nA sample of permutations from 5 to 15000:\n")
nArr := [...]int64{5, 50, 500, 1000, 5000, 15000}
for _, n = range nArr {
p = n / 3
fmt.Printf("P(%d,%d) = %d\n", n, p, perm(big.NewInt(n), big.NewInt(p)))
}
fmt.Printf("\nA sample of combinations from 100 to 1000:\n")
for n = 100; n < 1001; n += 100 {
p = n / 3
fmt.Printf("C(%d,%d) = %d\n", n, p, comb(big.NewInt(n), big.NewInt(p)))
}
}
func fact(n *big.Int) *big.Int {
if n.Sign() < 1 {
return big.NewInt(0)
}
r := big.NewInt(1)
i := big.NewInt(2)
for i.Cmp(n) < 1 {
r.Mul(r, i)
i.Add(i, big.NewInt(1))
}
return r
}
func perm(n, k *big.Int) *big.Int {
r := fact(n)
r.Div(r, fact(n.Sub(n, k)))
return r
}
func comb(n, r *big.Int) *big.Int {
if r.Cmp(n) == 1 {
return big.NewInt(0)
}
if r.Cmp(n) == 0 {
return big.NewInt(1)
}
c := fact(n)
den := fact(n.Sub(n, r))
den.Mul(den, fact(r))
c.Div(c, den)
return c
}
|
http://rosettacode.org/wiki/Compiler/lexical_analyzer | Compiler/lexical analyzer | Definition from Wikipedia:
Lexical analysis is the process of converting a sequence of characters (such as in a computer program or web page) into a sequence of tokens (strings with an identified "meaning"). A program that performs lexical analysis may be called a lexer, tokenizer, or scanner (though "scanner" is also used to refer to the first stage of a lexer).
Task[edit]
Create a lexical analyzer for the simple programming language specified below. The
program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a lexer module/library/class, it would be great
if two versions of the solution are provided: One without the lexer module, and one with.
Input Specification
The simple programming language to be analyzed is more or less a subset of C. It supports the following tokens:
Operators
Name
Common name
Character sequence
Op_multiply
multiply
*
Op_divide
divide
/
Op_mod
mod
%
Op_add
plus
+
Op_subtract
minus
-
Op_negate
unary minus
-
Op_less
less than
<
Op_lessequal
less than or equal
<=
Op_greater
greater than
>
Op_greaterequal
greater than or equal
>=
Op_equal
equal
==
Op_notequal
not equal
!=
Op_not
unary not
!
Op_assign
assignment
=
Op_and
logical and
&&
Op_or
logical or
¦¦
The - token should always be interpreted as Op_subtract by the lexer. Turning some Op_subtract into Op_negate will be the job of the syntax analyzer, which is not part of this task.
Symbols
Name
Common name
Character
LeftParen
left parenthesis
(
RightParen
right parenthesis
)
LeftBrace
left brace
{
RightBrace
right brace
}
Semicolon
semi-colon
;
Comma
comma
,
Keywords
Name
Character sequence
Keyword_if
if
Keyword_else
else
Keyword_while
while
Keyword_print
print
Keyword_putc
putc
Identifiers and literals
These differ from the the previous tokens, in that each occurrence of them has a value associated with it.
Name
Common name
Format description
Format regex
Value
Identifier
identifier
one or more letter/number/underscore characters, but not starting with a number
[_a-zA-Z][_a-zA-Z0-9]*
as is
Integer
integer literal
one or more digits
[0-9]+
as is, interpreted as a number
Integer
char literal
exactly one character (anything except newline or single quote) or one of the allowed escape sequences, enclosed by single quotes
'([^'\n]|\\n|\\\\)'
the ASCII code point number of the character, e.g. 65 for 'A' and 10 for '\n'
String
string literal
zero or more characters (anything except newline or double quote), enclosed by double quotes
"[^"\n]*"
the characters without the double quotes and with escape sequences converted
For char and string literals, the \n escape sequence is supported to represent a new-line character.
For char and string literals, to represent a backslash, use \\.
No other special sequences are supported. This means that:
Char literals cannot represent a single quote character (value 39).
String literals cannot represent strings containing double quote characters.
Zero-width tokens
Name
Location
End_of_input
when the end of the input stream is reached
White space
Zero or more whitespace characters, or comments enclosed in /* ... */, are allowed between any two tokens, with the exceptions noted below.
"Longest token matching" is used to resolve conflicts (e.g., in order to match <= as a single token rather than the two tokens < and =).
Whitespace is required between two tokens that have an alphanumeric character or underscore at the edge.
This means: keywords, identifiers, and integer literals.
e.g. ifprint is recognized as an identifier, instead of the keywords if and print.
e.g. 42fred is invalid, and neither recognized as a number nor an identifier.
Whitespace is not allowed inside of tokens (except for chars and strings where they are part of the value).
e.g. & & is invalid, and not interpreted as the && operator.
For example, the following two program fragments are equivalent, and should produce the same token stream except for the line and column positions:
if ( p /* meaning n is prime */ ) {
print ( n , " " ) ;
count = count + 1 ; /* number of primes found so far */
}
if(p){print(n," ");count=count+1;}
Complete list of token names
End_of_input Op_multiply Op_divide Op_mod Op_add Op_subtract
Op_negate Op_not Op_less Op_lessequal Op_greater Op_greaterequal
Op_equal Op_notequal Op_assign Op_and Op_or Keyword_if
Keyword_else Keyword_while Keyword_print Keyword_putc LeftParen RightParen
LeftBrace RightBrace Semicolon Comma Identifier Integer
String
Output Format
The program output should be a sequence of lines, each consisting of the following whitespace-separated fields:
the line number where the token starts
the column number where the token starts
the token name
the token value (only for Identifier, Integer, and String tokens)
the number of spaces between fields is up to you. Neatly aligned is nice, but not a requirement.
This task is intended to be used as part of a pipeline, with the other compiler tasks - for example:
lex < hello.t | parse | gen | vm
Or possibly:
lex hello.t lex.out
parse lex.out parse.out
gen parse.out gen.out
vm gen.out
This implies that the output of this task (the lexical analyzer) should be suitable as input to any of the Syntax Analyzer task programs.
Diagnostics
The following error conditions should be caught:
Error
Example
Empty character constant
''
Unknown escape sequence.
\r
Multi-character constant.
'xx'
End-of-file in comment. Closing comment characters not found.
End-of-file while scanning string literal. Closing string character not found.
End-of-line while scanning string literal. Closing string character not found before end-of-line.
Unrecognized character.
|
Invalid number. Starts like a number, but ends in non-numeric characters.
123abc
Test Cases
Input
Output
Test Case 1:
/*
Hello world
*/
print("Hello, World!\n");
4 1 Keyword_print
4 6 LeftParen
4 7 String "Hello, World!\n"
4 24 RightParen
4 25 Semicolon
5 1 End_of_input
Test Case 2:
/*
Show Ident and Integers
*/
phoenix_number = 142857;
print(phoenix_number, "\n");
4 1 Identifier phoenix_number
4 16 Op_assign
4 18 Integer 142857
4 24 Semicolon
5 1 Keyword_print
5 6 LeftParen
5 7 Identifier phoenix_number
5 21 Comma
5 23 String "\n"
5 27 RightParen
5 28 Semicolon
6 1 End_of_input
Test Case 3:
/*
All lexical tokens - not syntactically correct, but that will
have to wait until syntax analysis
*/
/* Print */ print /* Sub */ -
/* Putc */ putc /* Lss */ <
/* If */ if /* Gtr */ >
/* Else */ else /* Leq */ <=
/* While */ while /* Geq */ >=
/* Lbrace */ { /* Eq */ ==
/* Rbrace */ } /* Neq */ !=
/* Lparen */ ( /* And */ &&
/* Rparen */ ) /* Or */ ||
/* Uminus */ - /* Semi */ ;
/* Not */ ! /* Comma */ ,
/* Mul */ * /* Assign */ =
/* Div */ / /* Integer */ 42
/* Mod */ % /* String */ "String literal"
/* Add */ + /* Ident */ variable_name
/* character literal */ '\n'
/* character literal */ '\\'
/* character literal */ ' '
5 16 Keyword_print
5 40 Op_subtract
6 16 Keyword_putc
6 40 Op_less
7 16 Keyword_if
7 40 Op_greater
8 16 Keyword_else
8 40 Op_lessequal
9 16 Keyword_while
9 40 Op_greaterequal
10 16 LeftBrace
10 40 Op_equal
11 16 RightBrace
11 40 Op_notequal
12 16 LeftParen
12 40 Op_and
13 16 RightParen
13 40 Op_or
14 16 Op_subtract
14 40 Semicolon
15 16 Op_not
15 40 Comma
16 16 Op_multiply
16 40 Op_assign
17 16 Op_divide
17 40 Integer 42
18 16 Op_mod
18 40 String "String literal"
19 16 Op_add
19 40 Identifier variable_name
20 26 Integer 10
21 26 Integer 92
22 26 Integer 32
23 1 End_of_input
Test Case 4:
/*** test printing, embedded \n and comments with lots of '*' ***/
print(42);
print("\nHello World\nGood Bye\nok\n");
print("Print a slash n - \\n.\n");
2 1 Keyword_print
2 6 LeftParen
2 7 Integer 42
2 9 RightParen
2 10 Semicolon
3 1 Keyword_print
3 6 LeftParen
3 7 String "\nHello World\nGood Bye\nok\n"
3 38 RightParen
3 39 Semicolon
4 1 Keyword_print
4 6 LeftParen
4 7 String "Print a slash n - \\n.\n"
4 33 RightParen
4 34 Semicolon
5 1 End_of_input
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Syntax Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #Emacs_Lisp | Emacs Lisp | #!/usr/bin/emacs --script
;;
;; The Rosetta Code lexical analyzer in GNU Emacs Lisp.
;;
;; Migrated from the ATS. However, Emacs Lisp is not friendly to the
;; functional style of the ATS implementation; therefore the
;; differences are vast.
;;
;; (A Scheme migration could easily, on the other hand, have been
;; almost exact. It is interesting to contrast Lisp dialects and see
;; how huge the differences are.)
;;
;; The script currently takes input only from standard input and
;; writes the token stream only to standard output.
;;
(require 'cl-lib)
;;; The type of a character, consisting of its code point and where it
;;; occurred in the text.
(cl-defstruct (ch_t (:constructor make-ch (ichar line-no column-no)))
ichar line-no column-no)
(defun ch-ichar (ch)
(ch_t-ichar ch))
(defun ch-line-no (ch)
(ch_t-line-no ch))
(defun ch-column-no (ch)
(ch_t-column-no ch))
;;; The type of an "inputter", consisting of an open file for the
;;; text, a pushback buffer (which is an indefinitely deep stack of
;;; ch_t), an input buffer for the current line, and a position in the
;;; text.
(cl-defstruct inp_t file pushback line line-no column-no)
(defun make-inp (file)
"Initialize a new inp_t."
(make-inp_t :file file
:pushback '()
:line ""
:line-no 0
:column-no 0))
(defvar inp (make-inp t)
"A global inp_t.")
(defun get-ch ()
"Get a ch_t, either from the pushback buffer or from the input."
(pcase (inp_t-pushback inp)
(`(,ch . ,tail)
;; Emacs Lisp has only single value return, so the results come
;; back as a list rather than multiple values.
(setq inp (make-inp_t :file (inp_t-file inp)
:pushback tail
:line (inp_t-line inp)
:line-no (inp_t-line-no inp)
:column-no (inp_t-column-no inp)))
ch)
('()
(let ((line (inp_t-line inp))
(line-no (inp_t-line-no inp))
(column-no (inp_t-column-no inp)))
(when (string= line "")
;; Refill the buffer.
(let ((text
(condition-case nil (read-string "")
nil (error 'eoi))))
(if (eq text 'eoi)
(setq line 'eoi)
(setq line (format "%s%c" text ?\n)))
(setq line-no (1+ line-no))
(setq column-no 1)))
(if (eq line 'eoi)
(progn
(setq inp (make-inp_t :file (inp_t-file inp)
:pushback (inp_t-pushback inp)
:line line
:line-no line-no
:column-no column-no))
(make-ch 'eoi line-no column-no))
(let ((c (elt line 0))
(line (substring line 1)))
(setq inp (make-inp_t :file (inp_t-file inp)
:pushback (inp_t-pushback inp)
:line line
:line-no line-no
:column-no (1+ column-no)))
(make-ch c line-no column-no)))))))
(defun get-new-line (file)
;; Currently "file" is ignored and the input must be from stdin.
(read-from-minibuffer "" :default 'eoi))
(defun push-back (ch)
"Push back a ch_t."
(setq inp (make-inp_t :file (inp_t-file inp)
:pushback (cons ch (inp_t-pushback inp))
:line (inp_t-line inp)
:line-no (inp_t-line-no inp)
:column-no (inp_t-column-no inp))))
(defun get-position ()
"Return the line-no and column-no of the next ch_t to be
returned by get-ch, assuming there are no more pushbacks
beforehand."
(let* ((ch (get-ch))
(line-no (ch-line-no ch))
(column-no (ch-column-no ch)))
(push-back ch)
(list line-no column-no)))
(defun scan-text (outf)
"The main loop."
(cl-loop for toktup = (get-next-token)
do (print-token outf toktup)
until (string= (elt toktup 0) "End_of_input")))
(defun print-token (outf toktup)
"Print a token, along with its position and possibly an
argument."
;; Currently outf is ignored, and the output goes to stdout.
(pcase toktup
(`(,tok ,arg ,line-no ,column-no)
(princ (format "%5d %5d %s" line-no column-no tok))
(pcase tok
("Identifier" (princ (format " %s\n" arg)))
("Integer" (princ (format " %s\n" arg)))
("String" (princ (format " %s\n" arg)))
(_ (princ "\n"))))))
(defun get-next-token ()
"The token dispatcher. Returns the next token, as a list along
with its argument and text position."
(skip-spaces-and-comments)
(let* ((ch (get-ch))
(ln (ch-line-no ch))
(cn (ch-column-no ch)))
(pcase (ch-ichar ch)
('eoi (list "End_of_input" "" ln cn))
(?, (list "Comma" "," ln cn))
(?\N{SEMICOLON} (list "Semicolon" ";" ln cn))
(?\N{LEFT PARENTHESIS} (list "LeftParen" "(" ln cn))
(?\N{RIGHT PARENTHESIS} (list "RightParen" ")" ln cn))
(?{ (list "LeftBrace" "{" ln cn))
(?} (list "RightBrace" "}" ln cn))
(?* (list "Op_multiply" "*" ln cn))
(?/ (list "Op_divide" "/" ln cn))
(?% (list "Op_mod" "%" ln cn))
(?+ (list "Op_add" "+" ln cn))
(?- (list "Op_subtract" "-" ln cn))
(?< (let ((ch1 (get-ch)))
(pcase (ch-ichar ch1)
(?= (list "Op_lessequal" "<=" ln cn))
(_ (push-back ch1)
(list "Op_less" "<" ln cn)))))
(?> (let ((ch1 (get-ch)))
(pcase (ch-ichar ch1)
(?= (list "Op_greaterequal" ">=" ln cn))
(_ (push-back ch1)
(list "Op_greater" ">" ln cn)))))
(?= (let ((ch1 (get-ch)))
(pcase (ch-ichar ch1)
(?= (list "Op_equal" "==" ln cn))
(_ (push-back ch1)
(list "Op_assign" "=" ln cn)))))
(?! (let ((ch1 (get-ch)))
(pcase (ch-ichar ch1)
(?= (list "Op_notequal" "!=" ln cn))
(_ (push-back ch1)
(list "Op_not" "!" ln cn)))))
(?& (let ((ch1 (get-ch)))
(pcase (ch-ichar ch1)
(?& (list "Op_and" "&&" ln cn))
(_ (unexpected-character ln cn (get-ichar ch))))))
(?| (let ((ch1 (get-ch)))
(pcase (ch-ichar ch1)
(?| (list "Op_or" "||" ln cn))
(_ (unexpected-character ln cn (get-ichar ch))))))
(?\N{QUOTATION MARK} (push-back ch) (scan-string-literal))
(?\N{APOSTROPHE} (push-back ch) (scan-character-literal))
((pred digitp) (push-back ch) (scan-integer-literal))
((pred identifier-start-p)
(progn
(push-back ch)
(scan-identifier-or-reserved-word)))
(c (unexpected-character ln cn c)))))
(defun skip-spaces-and-comments ()
"Skip spaces and comments. A comment is treated as equivalent
to a run of spaces."
(cl-loop for ch = (let ((ch1 (get-ch)))
(pcase (ch-ichar ch1)
(?/ (let* ((ch2 (get-ch))
(line-no (ch-line-no ch1))
(column-no (ch-column-no ch1))
(position `(,line-no ,column-no)))
(pcase (ch-ichar ch2)
(?* (scan-comment position)
(get-ch))
(_ (push-back ch2)
ch1))))
(_ ch1)))
while (spacep (ch-ichar ch))
finally do (push-back ch)))
(defun scan-comment (position)
(cl-loop for ch = (get-ch)
for done = (comment-done-p ch position)
until done))
(defun comment-done-p (ch position)
(pcase (ch-ichar ch)
('eoi (apply 'unterminated-comment position))
(?* (let ((ch1 (get-ch)))
(pcase (ch-ichar ch1)
('eoi (apply 'unterminated-comment position))
(?/ t)
(_ nil))))
(_ nil)))
(defun scan-integer-literal ()
"Scan an integer literal, on the assumption that a digit has
been seen and pushed back."
(let* ((position (get-position))
(lst (scan-word))
(s (list-to-string lst)))
(if (all-digits-p lst)
`("Integer" ,s . ,position)
(apply 'illegal-integer-literal `(,@position , s)))))
(defun scan-identifier-or-reserved-word ()
"Scan an identifier or reserved word, on the assumption that a
legal first character (for an identifier) has been seen and
pushed back."
(let* ((position (get-position))
(lst (scan-word))
(s (list-to-string lst))
(tok (pcase s
("else" "Keyword_else")
("if" "Keyword_if")
("while" "Keyword_while")
("print" "Keyword_print")
("putc" "Keyword_putc")
(_ "Identifier"))))
`(,tok ,s . ,position)))
(defun scan-word ()
(cl-loop for ch = (get-ch)
while (identifier-continuation-p (ch-ichar ch))
collect (ch-ichar ch)
finally do (push-back ch)))
(defun scan-string-literal ()
"Scan a string literal, on the assumption that a double quote
has been seen and pushed back."
(let* ((ch (get-ch))
(_ (cl-assert (= (ch-ichar ch) ?\N{QUOTATION MARK})))
(line-no (ch-line-no ch))
(column-no (ch-column-no ch))
(position `(,line-no ,column-no))
(lst (scan-str-lit position))
(lst `(?\N{QUOTATION MARK} ,@lst ?\N{QUOTATION MARK})))
`("String" ,(list-to-string lst) . ,position)))
(defun scan-str-lit (position)
(flatten
(cl-loop for ch = (get-ch)
until (= (ch-ichar ch) ?\N{QUOTATION MARK})
collect (process-str-lit-character
(ch-ichar ch) position))))
(defun process-str-lit-character (c position)
;; NOTE: This script might insert a newline before any eoi, so that
;; "end-of-input-in-string-literal" never actually occurs. It is a
;; peculiarity of the script's input mechanism.
(pcase c
('eoi (apply 'end-of-input-in-string-literal position))
(?\n (apply 'end-of-line-in-string-literal position))
(?\\ (let ((ch1 (get-ch)))
(pcase (ch-ichar ch1)
(?n '(?\\ ?n))
(?\\ '(?\\ ?\\))
(c (unsupported-escape (ch-line-no ch1)
(ch-column-no ch1)
c)))))
(c c)))
(defun scan-character-literal ()
"Scan a character literal, on the assumption that an ASCII
single quote (that is, a Unicode APOSTROPHE) has been seen and
pushed back."
(let* ((toktup (scan-character-literal-without-checking-end))
(line-no (elt toktup 2))
(column-no (elt toktup 3))
(position (list line-no column-no)))
(check-char-lit-end position)
toktup))
(defun check-char-lit-end (position)
(let ((ch (get-ch)))
(unless (and (integerp (ch-ichar ch))
(= (ch-ichar ch) ?\N{APOSTROPHE}))
(push-back ch)
(loop-to-char-lit-end position))))
(defun loop-to-char-lit-end (position)
(cl-loop for ch = (get-ch)
until (or (eq (ch-ichar ch) 'eoi)
(= (ch-ichar ch) ?\N{APOSTROPHE}))
finally do (if (eq (ch-ichar ch) 'eoi)
(apply 'unterminated-character-literal
position)
(apply 'multicharacter-literal position))))
(defun scan-character-literal-without-checking-end ()
(let* ((ch (get-ch))
(_ (cl-assert (= (ch-ichar ch) ?\N{APOSTROPHE})))
(line-no (ch-line-no ch))
(column-no (ch-column-no ch))
(position (list line-no column-no))
(ch1 (get-ch)))
(pcase (ch-ichar ch1)
('eoi (apply 'unterminated-character-literal position))
(?\\ (let ((ch2 (get-ch)))
(pcase (ch-ichar ch2)
('eoi (apply 'unterminated-character-literal position))
(?n `("Integer" ,(format "%d" ?\n) . ,position))
(?\\ `("Integer" ,(format "%d" ?\\) . ,position))
(c (unsupported-escape (ch-line-no ch1)
(ch-column-no ch1)
c)))))
(c `("Integer" ,(format "%d" c) . ,position)))))
(defun spacep (c)
(and (integerp c) (or (= c ?\N{SPACE})
(and (<= 9 c) (<= c 13)))))
(defun digitp (c)
(and (integerp c) (<= ?0 c) (<= c ?9)))
(defun lowerp (c)
;; Warning: in EBCDIC, this kind of test for "alphabetic" is no
;; good. The letters are not contiguous.
(and (integerp c) (<= ?a c) (<= c ?z)))
(defun upperp (c)
;; Warning: in EBCDIC, this kind of test for "alphabetic" is no
;; good. The letters are not contiguous.
(and (integerp c) (<= ?A c) (<= c ?Z)))
(defun alphap (c)
(or (lowerp c) (upperp c)))
(defun identifier-start-p (c)
(and (integerp c) (or (alphap c) (= c ?_))))
(defun identifier-continuation-p (c)
(and (integerp c) (or (alphap c) (= c ?_) (digitp c))))
(defun all-digits-p (thing)
(cl-loop for c in thing
if (not (digitp c)) return nil
finally return t))
(defun list-to-string (lst)
"Convert a list of characters to a string."
(apply 'string lst))
(defun flatten (lst)
"Flatten nested lists. (The implementation is recursive and not
for very long lists.)"
(pcase lst
('() '())
(`(,head . ,tail)
(if (listp head)
(append (flatten head) (flatten tail))
(cons head (flatten tail))))))
(defun unexpected-character (line-no column-no c)
(error (format "unexpected character '%c' at %d:%d"
c line-no column-no)))
(defun unsupported-escape (line-no column-no c)
(error (format "unsupported escape \\%c at %d:%d"
c line-no column-no)))
(defun illegal-integer-literal (line-no column-no s)
(error (format "illegal integer literal \"%s\" at %d:%d"
s line-no column-no)))
(defun unterminated-character-literal (line-no column-no)
(error (format "unterminated character literal starting at %d:%d"
line-no column-no)))
(defun multicharacter-literal (line-no column-no)
(error (format
"unsupported multicharacter literal starting at %d:%d"
line-no column-no)))
(defun end-of-input-in-string-literal (line-no column-no)
(error (format "end of input in string literal starting at %d:%d"
line-no column-no)))
(defun end-of-line-in-string-literal (line-no column-no)
(error (format "end of line in string literal starting at %d:%d"
line-no column-no)))
(defun unterminated-comment (line-no column-no)
(error (format "unterminated comment starting at %d:%d"
line-no column-no)))
(defun main ()
(setq inp (make-inp t))
(scan-text t))
(main) |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #COBOL | COBOL | IDENTIFICATION DIVISION.
PROGRAM-ID. accept-all-args.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 args PIC X(50).
PROCEDURE DIVISION.
main-line.
ACCEPT args FROM COMMAND-LINE
DISPLAY args
GOBACK
. |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #CoffeeScript | CoffeeScript |
console.log arg for arg in process.argv
|
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #Asymptote | Asymptote | // double slash to newline |
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #AutoHotkey | AutoHotkey | Msgbox, comments demo ; end of line comment
/*
multiline comment1
multiline comment2
*/ |
http://rosettacode.org/wiki/Compiler/virtual_machine_interpreter | Compiler/virtual machine interpreter | A virtual machine implements a computer in software.
Task[edit]
Write a virtual machine interpreter. This interpreter should be able to run virtual
assembly language programs created via the task. This is a
byte-coded, 32-bit word stack based virtual machine.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Input format:
Given the following program:
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
The output from the Code generator is a virtual assembly code program:
Output from gen, input to VM
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
The first line of the input specifies the datasize required and the number of constant
strings, in the order that they are reference via the code.
The data can be stored in a separate array, or the data can be stored at the beginning of
the stack. Data is addressed starting at 0. If there are 3 variables, the 3rd one if
referenced at address 2.
If there are one or more constant strings, they come next. The code refers to these
strings by their index. The index starts at 0. So if there are 3 strings, and the code
wants to reference the 3rd string, 2 will be used.
Next comes the actual virtual assembly code. The first number is the code address of that
instruction. After that is the instruction mnemonic, followed by optional operands,
depending on the instruction.
Registers:
sp:
the stack pointer - points to the next top of stack. The stack is a 32-bit integer
array.
pc:
the program counter - points to the current instruction to be performed. The code is an
array of bytes.
Data:
data
string pool
Instructions:
Each instruction is one byte. The following instructions also have a 32-bit integer
operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
Print the word at stack top as a character.
prtc
Print the word at stack top as an integer.
prti
Stack top points to an index into the string pool. Print that entry.
prts
Unconditional stop.
halt
A simple example virtual machine
def run_vm(data_size)
int stack[data_size + 1000]
set stack[0..data_size - 1] to 0
int pc = 0
while True:
op = code[pc]
pc += 1
if op == FETCH:
stack.append(stack[bytes_to_int(code[pc:pc+word_size])[0]]);
pc += word_size
elif op == STORE:
stack[bytes_to_int(code[pc:pc+word_size])[0]] = stack.pop();
pc += word_size
elif op == PUSH:
stack.append(bytes_to_int(code[pc:pc+word_size])[0]);
pc += word_size
elif op == ADD: stack[-2] += stack[-1]; stack.pop()
elif op == SUB: stack[-2] -= stack[-1]; stack.pop()
elif op == MUL: stack[-2] *= stack[-1]; stack.pop()
elif op == DIV: stack[-2] /= stack[-1]; stack.pop()
elif op == MOD: stack[-2] %= stack[-1]; stack.pop()
elif op == LT: stack[-2] = stack[-2] < stack[-1]; stack.pop()
elif op == GT: stack[-2] = stack[-2] > stack[-1]; stack.pop()
elif op == LE: stack[-2] = stack[-2] <= stack[-1]; stack.pop()
elif op == GE: stack[-2] = stack[-2] >= stack[-1]; stack.pop()
elif op == EQ: stack[-2] = stack[-2] == stack[-1]; stack.pop()
elif op == NE: stack[-2] = stack[-2] != stack[-1]; stack.pop()
elif op == AND: stack[-2] = stack[-2] and stack[-1]; stack.pop()
elif op == OR: stack[-2] = stack[-2] or stack[-1]; stack.pop()
elif op == NEG: stack[-1] = -stack[-1]
elif op == NOT: stack[-1] = not stack[-1]
elif op == JMP: pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == JZ: if stack.pop() then pc += word_size else pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == PRTC: print stack[-1] as a character; stack.pop()
elif op == PRTS: print the constant string referred to by stack[-1]; stack.pop()
elif op == PRTI: print stack[-1] as an integer; stack.pop()
elif op == HALT: break
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
AST Interpreter task
| #Python | Python | from __future__ import print_function
import sys, struct
FETCH, STORE, PUSH, ADD, SUB, MUL, DIV, MOD, LT, GT, LE, GE, EQ, NE, AND, OR, NEG, NOT, \
JMP, JZ, PRTC, PRTS, PRTI, HALT = range(24)
code_map = {
"fetch": FETCH,
"store": STORE,
"push": PUSH,
"add": ADD,
"sub": SUB,
"mul": MUL,
"div": DIV,
"mod": MOD,
"lt": LT,
"gt": GT,
"le": LE,
"ge": GE,
"eq": EQ,
"ne": NE,
"and": AND,
"or": OR,
"not": NOT,
"neg": NEG,
"jmp": JMP,
"jz": JZ,
"prtc": PRTC,
"prts": PRTS,
"prti": PRTI,
"halt": HALT
}
input_file = None
code = bytearray()
string_pool = []
word_size = 4
#*** show error and exit
def error(msg):
print("%s" % (msg))
exit(1)
def int_to_bytes(val):
return struct.pack("<i", val)
def bytes_to_int(bstr):
return struct.unpack("<i", bstr)
#***
def emit_byte(x):
code.append(x)
#***
def emit_word(x):
s = int_to_bytes(x)
for x in s:
code.append(x)
#***
def run_vm(data_size):
stack = [0 for i in range(data_size + 1)]
pc = 0
while True:
op = code[pc]
pc += 1
if op == FETCH:
stack.append(stack[bytes_to_int(code[pc:pc+word_size])[0]]);
pc += word_size
elif op == STORE:
stack[bytes_to_int(code[pc:pc+word_size])[0]] = stack.pop();
pc += word_size
elif op == PUSH:
stack.append(bytes_to_int(code[pc:pc+word_size])[0]);
pc += word_size
elif op == ADD: stack[-2] += stack[-1]; stack.pop()
elif op == SUB: stack[-2] -= stack[-1]; stack.pop()
elif op == MUL: stack[-2] *= stack[-1]; stack.pop()
# use C like division semantics
elif op == DIV: stack[-2] = int(float(stack[-2]) / stack[-1]); stack.pop()
elif op == MOD: stack[-2] = int(float(stack[-2]) % stack[-1]); stack.pop()
elif op == LT: stack[-2] = stack[-2] < stack[-1]; stack.pop()
elif op == GT: stack[-2] = stack[-2] > stack[-1]; stack.pop()
elif op == LE: stack[-2] = stack[-2] <= stack[-1]; stack.pop()
elif op == GE: stack[-2] = stack[-2] >= stack[-1]; stack.pop()
elif op == EQ: stack[-2] = stack[-2] == stack[-1]; stack.pop()
elif op == NE: stack[-2] = stack[-2] != stack[-1]; stack.pop()
elif op == AND: stack[-2] = stack[-2] and stack[-1]; stack.pop()
elif op == OR: stack[-2] = stack[-2] or stack[-1]; stack.pop()
elif op == NEG: stack[-1] = -stack[-1]
elif op == NOT: stack[-1] = not stack[-1]
elif op == JMP: pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == JZ:
if stack.pop():
pc += word_size
else:
pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == PRTC: print("%c" % (stack[-1]), end=''); stack.pop()
elif op == PRTS: print("%s" % (string_pool[stack[-1]]), end=''); stack.pop()
elif op == PRTI: print("%d" % (stack[-1]), end=''); stack.pop()
elif op == HALT: break
def str_trans(srce):
dest = ""
i = 0
while i < len(srce):
if srce[i] == '\\' and i + 1 < len(srce):
if srce[i + 1] == 'n':
dest += '\n'
i += 2
elif srce[i + 1] == '\\':
dest += '\\'
i += 2
else:
dest += srce[i]
i += 1
return dest
#***
def load_code():
global string_pool
line = input_file.readline()
if len(line) == 0:
error("empty line")
line_list = line.split()
data_size = int(line_list[1])
n_strings = int(line_list[3])
for i in range(n_strings):
string_pool.append(str_trans(input_file.readline().strip('"\n')))
while True:
line = input_file.readline()
if len(line) == 0:
break
line_list = line.split()
offset = int(line_list[0])
instr = line_list[1]
opcode = code_map.get(instr)
if opcode == None:
error("Unknown instruction %s at %d" % (instr, offset))
emit_byte(opcode)
if opcode in [JMP, JZ]:
p = int(line_list[3])
emit_word(p - (offset + 1))
elif opcode == PUSH:
value = int(line_list[2])
emit_word(value)
elif opcode in [FETCH, STORE]:
value = int(line_list[2].strip('[]'))
emit_word(value)
return data_size
#*** main driver
input_file = sys.stdin
if len(sys.argv) > 1:
try:
input_file = open(sys.argv[1], "r", 4096)
except IOError as e:
error(0, 0, "Can't open %s" % sys.argv[1])
data_size = load_code()
run_vm(data_size) |
http://rosettacode.org/wiki/Compiler/code_generator | Compiler/code generator | A code generator translates the output of the syntax analyzer and/or semantic analyzer
into lower level code, either assembly, object, or virtual.
Task[edit]
Take the output of the Syntax analyzer task - which is a flattened Abstract Syntax Tree (AST) - and convert it to virtual machine code, that can be run by the
Virtual machine interpreter. The output is in text format, and represents virtual assembly code.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
while.ast can be input into the code generator.
The following table shows the input to lex, lex output, the AST produced by the parser, and the generated virtual assembly code.
Run as: lex < while.t | parse | gen
Input to lex
Output from lex, input to parse
Output from parse
Output from gen, input to VM
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
Input format
As shown in the table, above, the output from the syntax analyzer is a flattened AST.
In the AST, Identifier, Integer, and String, are terminal nodes, e.g, they do not have child nodes.
Loading this data into an internal parse tree should be as simple as:
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";"
return None
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Output format - refer to the table above
The first line is the header: Size of data, and number of constant strings.
size of data is the number of 32-bit unique variables used. In this example, one variable, count
number of constant strings is just that - how many there are
After that, the constant strings
Finally, the assembly code
Registers
sp: the stack pointer - points to the next top of stack. The stack is a 32-bit integer array.
pc: the program counter - points to the current instruction to be performed. The code is an array of bytes.
Data
32-bit integers and strings
Instructions
Each instruction is one byte. The following instructions also have a 32-bit integer operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
prtc
Print the word at stack top as a character.
prti
Print the word at stack top as an integer.
prts
Stack top points to an index into the string pool. Print that entry.
halt
Unconditional stop.
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Virtual Machine Interpreter task
AST Interpreter task
| #Raku | Raku | my %opnames = <
Less lt LessEqual le Multiply mul Subtract sub NotEqual ne
Divide div GreaterEqual ge Equal eq Greater gt Negate neg
>;
my (@AST, %strings, %names);
my $string-count = my $name-count = my $pairsym = my $pc = 0;
sub tree {
my ($A, $B) = ( '_' ~ ++$pairsym, '_' ~ ++$pairsym );
my $line = @AST.shift // return '';
$line ~~ /^ $<instr> = (\w+|';') [\s+ $<arg> =(.*)]? / or die "bad input $line";
given $<instr> {
when 'Identifier' { "fetch [{%names{$<arg>} //= $name-count++ }]\n" }
when 'Sequence' { tree() ~ tree() }
when 'Integer' { "push $<arg>\n" }
when 'String' { "push { %strings{$<arg>} //= $string-count++ }\n" }
when 'Assign' { join '', reverse (tree().subst( /fetch/, 'store')), tree() }
when 'While' { "$A:\n{ tree() }jz $B\n{ tree() }jmp $A\n$B:\n" }
when 'If' { tree() ~ "jz $A\n{ [email protected] ~ tree() }jmp $B\n$A:\n{ tree() }$B:\n" }
when ';' { '' }
default { tree() ~ tree() ~ (%opnames{$<instr>} // $<instr>.lc) ~ "\n" }
}
}
@AST = slurp('ast.txt').lines;
my $code = tree() ~ "halt\n";
$code ~~ s:g/^^ jmp \s+ (\S+) \n ('_'\d+:\n) $0:\n/$1/; # remove jmp next
$code ~~ s:g/^^ (<[a..z]>\w* (\N+)? ) $$/{my $l=$pc.fmt("%4d "); $pc += $0[0] ?? 5 !! 1; $l}$0/; # add locations
my %labels = ($code ~~ m:g/^^ ('_' \d+) ':' \n \s* (\d+)/)».Slip».Str; # pc addr of labels
$code ~~ s:g/^^ \s* (\d+) \s j[z|mp] \s* <(('_'\d+)/ ({%labels{$1} - $0 - 1}) %labels{$1}/; # fix jumps
$code ~~ s:g/^^ '_'\d+.*?\n//; # remove labels
say "Datasize: $name-count Strings: $string-count\n"
~ join('', %strings.keys.sort.reverse «~» "\n")
~ $code; |
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Python | Python | A = 'I am string'
B = 'I am string too'
if len(A) > len(B):
print('"' + A + '"', 'has length', len(A), 'and is the longest of the two strings')
print('"' + B + '"', 'has length', len(B), 'and is the shortest of the two strings')
elif len(A) < len(B):
print('"' + B + '"', 'has length', len(B), 'and is the longest of the two strings')
print('"' + A + '"', 'has length', len(A), 'and is the shortest of the two strings')
else:
print('"' + A + '"', 'has length', len(A), 'and it is as long as the second string')
print('"' + B + '"', 'has length', len(B), 'and it is as long as the second string') |
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #QB64 | QB64 |
Dim Words(1 To 4) As String
Dim Lengths As Integer, Index As Integer, Position As Integer, Done As String, Index2 As Integer
' inititialization
Words(1) = "abcd"
Words(2) = "123456789"
Words(3) = "abcdef"
Words(4) = "1234567"
Print " Word Length"
For Index2 = 1 To 4 Step 1
Lengths = 0
Position = 0
For Index = 1 To 4 Step 1
If Lengths < Len(Words(Index)) And InStr(Done, Words(Index) + " ") = 0 Then
Lengths = Len(Words(Index))
Position = Index
End If
Next Index
Done = Done + Words(Position) + " /@/"
Print Words(Position), Len(Words(Position))
Next Index2
|
http://rosettacode.org/wiki/Compiler/syntax_analyzer | Compiler/syntax analyzer | A Syntax analyzer transforms a token stream (from the Lexical analyzer)
into a Syntax tree, based on a grammar.
Task[edit]
Take the output from the Lexical analyzer task,
and convert it to an Abstract Syntax Tree (AST),
based on the grammar below. The output should be in a flattened format.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a parser module/library/class, it would be great
if two versions of the solution are provided: One without the parser module, and one
with.
Grammar
The simple programming language to be analyzed is more or less a (very tiny) subset of
C. The formal grammar in
Extended Backus-Naur Form (EBNF):
stmt_list = {stmt} ;
stmt = ';'
| Identifier '=' expr ';'
| 'while' paren_expr stmt
| 'if' paren_expr stmt ['else' stmt]
| 'print' '(' prt_list ')' ';'
| 'putc' paren_expr ';'
| '{' stmt_list '}'
;
paren_expr = '(' expr ')' ;
prt_list = (string | expr) {',' (String | expr)} ;
expr = and_expr {'||' and_expr} ;
and_expr = equality_expr {'&&' equality_expr} ;
equality_expr = relational_expr [('==' | '!=') relational_expr] ;
relational_expr = addition_expr [('<' | '<=' | '>' | '>=') addition_expr] ;
addition_expr = multiplication_expr {('+' | '-') multiplication_expr} ;
multiplication_expr = primary {('*' | '/' | '%') primary } ;
primary = Identifier
| Integer
| '(' expr ')'
| ('+' | '-' | '!') primary
;
The resulting AST should be formulated as a Binary Tree.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
The following table shows the input to lex, lex output, and the AST produced by the parser
Input to lex
Output from lex, input to parse
Output from parse
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Specifications
List of node type names
Identifier String Integer Sequence If Prtc Prts Prti While Assign Negate Not Multiply Divide Mod
Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
In the text below, Null/Empty nodes are represented by ";".
Non-terminal (internal) nodes
For Operators, the following nodes should be created:
Multiply Divide Mod Add Subtract Less LessEqual Greater GreaterEqual Equal NotEqual And Or
For each of the above nodes, the left and right sub-nodes are the operands of the
respective operation.
In pseudo S-Expression format:
(Operator expression expression)
Negate, Not
For these node types, the left node is the operand, and the right node is null.
(Operator expression ;)
Sequence - sub-nodes are either statements or Sequences.
If - left node is the expression, the right node is If node, with it's left node being the
if-true statement part, and the right node being the if-false (else) statement part.
(If expression (If statement else-statement))
If there is not an else, the tree becomes:
(If expression (If statement ;))
Prtc
(Prtc (expression) ;)
Prts
(Prts (String "the string") ;)
Prti
(Prti (Integer 12345) ;)
While - left node is the expression, the right node is the statement.
(While expression statement)
Assign - left node is the left-hand side of the assignment, the right node is the
right-hand side of the assignment.
(Assign Identifier expression)
Terminal (leaf) nodes:
Identifier: (Identifier ident_name)
Integer: (Integer 12345)
String: (String "Hello World!")
";": Empty node
Some simple examples
Sequences denote a list node; they are used to represent a list. semicolon's represent a null node, e.g., the end of this path.
This simple program:
a=11;
Produces the following AST, encoded as a binary tree:
Under each non-leaf node are two '|' lines. The first represents the left sub-node, the second represents the right sub-node:
(1) Sequence
(2) |-- ;
(3) |-- Assign
(4) |-- Identifier: a
(5) |-- Integer: 11
In flattened form:
(1) Sequence
(2) ;
(3) Assign
(4) Identifier a
(5) Integer 11
This program:
a=11;
b=22;
c=33;
Produces the following AST:
( 1) Sequence
( 2) |-- Sequence
( 3) | |-- Sequence
( 4) | | |-- ;
( 5) | | |-- Assign
( 6) | | |-- Identifier: a
( 7) | | |-- Integer: 11
( 8) | |-- Assign
( 9) | |-- Identifier: b
(10) | |-- Integer: 22
(11) |-- Assign
(12) |-- Identifier: c
(13) |-- Integer: 33
In flattened form:
( 1) Sequence
( 2) Sequence
( 3) Sequence
( 4) ;
( 5) Assign
( 6) Identifier a
( 7) Integer 11
( 8) Assign
( 9) Identifier b
(10) Integer 22
(11) Assign
(12) Identifier c
(13) Integer 33
Pseudo-code for the parser.
Uses Precedence Climbing for expression parsing, and
Recursive Descent for statement parsing. The AST is also built:
def expr(p)
if tok is "("
x = paren_expr()
elif tok in ["-", "+", "!"]
gettok()
y = expr(precedence of operator)
if operator was "+"
x = y
else
x = make_node(operator, y)
elif tok is an Identifier
x = make_leaf(Identifier, variable name)
gettok()
elif tok is an Integer constant
x = make_leaf(Integer, integer value)
gettok()
else
error()
while tok is a binary operator and precedence of tok >= p
save_tok = tok
gettok()
q = precedence of save_tok
if save_tok is not right associative
q += 1
x = make_node(Operator save_tok represents, x, expr(q))
return x
def paren_expr()
expect("(")
x = expr(0)
expect(")")
return x
def stmt()
t = NULL
if accept("if")
e = paren_expr()
s = stmt()
t = make_node(If, e, make_node(If, s, accept("else") ? stmt() : NULL))
elif accept("putc")
t = make_node(Prtc, paren_expr())
expect(";")
elif accept("print")
expect("(")
repeat
if tok is a string
e = make_node(Prts, make_leaf(String, the string))
gettok()
else
e = make_node(Prti, expr(0))
t = make_node(Sequence, t, e)
until not accept(",")
expect(")")
expect(";")
elif tok is ";"
gettok()
elif tok is an Identifier
v = make_leaf(Identifier, variable name)
gettok()
expect("=")
t = make_node(Assign, v, expr(0))
expect(";")
elif accept("while")
e = paren_expr()
t = make_node(While, e, stmt()
elif accept("{")
while tok not equal "}" and tok not equal end-of-file
t = make_node(Sequence, t, stmt())
expect("}")
elif tok is end-of-file
pass
else
error()
return t
def parse()
t = NULL
gettok()
repeat
t = make_node(Sequence, t, stmt())
until tok is end-of-file
return t
Once the AST is built, it should be output in a flattened format. This can be as simple as the following
def prt_ast(t)
if t == NULL
print(";\n")
else
print(t.node_type)
if t.node_type in [Identifier, Integer, String] # leaf node
print the value of the Ident, Integer or String, "\n"
else
print("\n")
prt_ast(t.left)
prt_ast(t.right)
If the AST is correctly built, loading it into a subsequent program should be as simple as
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";" # a terminal node
return NULL
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer, String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Finally, the AST can also be tested by running it against one of the AST Interpreter solutions.
Test program, assuming this is in a file called prime.t
lex <prime.t | parse
Input to lex
Output from lex, input to parse
Output from parse
/*
Simple prime number generator
*/
count = 1;
n = 1;
limit = 100;
while (n < limit) {
k=3;
p=1;
n=n+2;
while ((k*k<=n) && (p)) {
p=n/k*k!=n;
k=k+2;
}
if (p) {
print(n, " is prime\n");
count = count + 1;
}
}
print("Total primes found: ", count, "\n");
4 1 Identifier count
4 7 Op_assign
4 9 Integer 1
4 10 Semicolon
5 1 Identifier n
5 3 Op_assign
5 5 Integer 1
5 6 Semicolon
6 1 Identifier limit
6 7 Op_assign
6 9 Integer 100
6 12 Semicolon
7 1 Keyword_while
7 7 LeftParen
7 8 Identifier n
7 10 Op_less
7 12 Identifier limit
7 17 RightParen
7 19 LeftBrace
8 5 Identifier k
8 6 Op_assign
8 7 Integer 3
8 8 Semicolon
9 5 Identifier p
9 6 Op_assign
9 7 Integer 1
9 8 Semicolon
10 5 Identifier n
10 6 Op_assign
10 7 Identifier n
10 8 Op_add
10 9 Integer 2
10 10 Semicolon
11 5 Keyword_while
11 11 LeftParen
11 12 LeftParen
11 13 Identifier k
11 14 Op_multiply
11 15 Identifier k
11 16 Op_lessequal
11 18 Identifier n
11 19 RightParen
11 21 Op_and
11 24 LeftParen
11 25 Identifier p
11 26 RightParen
11 27 RightParen
11 29 LeftBrace
12 9 Identifier p
12 10 Op_assign
12 11 Identifier n
12 12 Op_divide
12 13 Identifier k
12 14 Op_multiply
12 15 Identifier k
12 16 Op_notequal
12 18 Identifier n
12 19 Semicolon
13 9 Identifier k
13 10 Op_assign
13 11 Identifier k
13 12 Op_add
13 13 Integer 2
13 14 Semicolon
14 5 RightBrace
15 5 Keyword_if
15 8 LeftParen
15 9 Identifier p
15 10 RightParen
15 12 LeftBrace
16 9 Keyword_print
16 14 LeftParen
16 15 Identifier n
16 16 Comma
16 18 String " is prime\n"
16 31 RightParen
16 32 Semicolon
17 9 Identifier count
17 15 Op_assign
17 17 Identifier count
17 23 Op_add
17 25 Integer 1
17 26 Semicolon
18 5 RightBrace
19 1 RightBrace
20 1 Keyword_print
20 6 LeftParen
20 7 String "Total primes found: "
20 29 Comma
20 31 Identifier count
20 36 Comma
20 38 String "\n"
20 42 RightParen
20 43 Semicolon
21 1 End_of_input
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier count
Integer 1
Assign
Identifier n
Integer 1
Assign
Identifier limit
Integer 100
While
Less
Identifier n
Identifier limit
Sequence
Sequence
Sequence
Sequence
Sequence
;
Assign
Identifier k
Integer 3
Assign
Identifier p
Integer 1
Assign
Identifier n
Add
Identifier n
Integer 2
While
And
LessEqual
Multiply
Identifier k
Identifier k
Identifier n
Identifier p
Sequence
Sequence
;
Assign
Identifier p
NotEqual
Multiply
Divide
Identifier n
Identifier k
Identifier k
Identifier n
Assign
Identifier k
Add
Identifier k
Integer 2
If
Identifier p
If
Sequence
Sequence
;
Sequence
Sequence
;
Prti
Identifier n
;
Prts
String " is prime\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
;
Sequence
Sequence
Sequence
;
Prts
String "Total primes found: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #Zig | Zig |
const std = @import("std");
pub const NodeValue = union(enum) {
integer: i32,
string: []const u8,
fn fromToken(token: Token) ?NodeValue {
if (token.value) |value| {
switch (value) {
.integer => |int| return NodeValue{ .integer = int },
.string => |str| return NodeValue{ .string = str },
}
} else {
return null;
}
}
};
pub const Tree = struct {
left: ?*Tree,
right: ?*Tree,
typ: NodeType,
value: ?NodeValue = null,
};
pub const ParserError = error{
OutOfMemory,
ExpectedNotFound,
} || std.fmt.ParseIntError;
pub const Parser = struct {
token_it: LexerOutputTokenizer,
curr: Token,
allocator: std.mem.Allocator,
const Self = @This();
pub fn init(allocator: std.mem.Allocator, str: []const u8) Self {
return Self{
.token_it = LexerOutputTokenizer.init(str),
.curr = Token{ .line = 0, .col = 0, .typ = .unknown },
.allocator = allocator,
};
}
fn makeNode(self: *Self, typ: NodeType, left: ?*Tree, right: ?*Tree) !*Tree {
const result = try self.allocator.create(Tree);
result.* = Tree{ .left = left, .right = right, .typ = typ };
return result;
}
fn makeLeaf(self: *Self, typ: NodeType, value: ?NodeValue) !*Tree {
const result = try self.allocator.create(Tree);
result.* = Tree{ .left = null, .right = null, .typ = typ, .value = value };
return result;
}
pub fn parse(self: *Self) ParserError!?*Tree {
try self.next();
var result: ?*Tree = null;
while (true) {
const stmt = try self.parseStmt();
result = try self.makeNode(.sequence, result, stmt);
if (self.curr.typ == .eof) break;
}
return result;
}
/// Classic "Recursive descent" statement parser.
fn parseStmt(self: *Self) ParserError!?*Tree {
var result: ?*Tree = null;
switch (self.curr.typ) {
.kw_print => {
try self.next();
try self.expect(.left_paren);
// Parse each print's argument as an expression delimited by commas until we reach
// a closing parens.
while (true) {
var expr: ?*Tree = null;
if (self.curr.typ == .string) {
expr = try self.makeNode(
.prts,
try self.makeLeaf(.string, NodeValue.fromToken(self.curr)),
null,
);
try self.next();
} else {
expr = try self.makeNode(.prti, try self.parseExpr(0), null);
}
result = try self.makeNode(.sequence, result, expr);
if (self.curr.typ != .comma) break;
try self.next();
}
try self.expect(.right_paren);
try self.expect(.semicolon);
},
.kw_putc => {
try self.next();
result = try self.makeNode(.prtc, try self.parseParenExpr(), null);
try self.expect(.semicolon);
},
.kw_while => {
try self.next();
const expr = try self.parseParenExpr();
result = try self.makeNode(.kw_while, expr, try self.parseStmt());
},
.kw_if => {
try self.next();
const expr = try self.parseParenExpr();
const if_stmt = try self.parseStmt();
const else_stmt = blk: {
if (self.curr.typ == .kw_else) {
try self.next();
break :blk try self.parseStmt();
} else {
break :blk null;
}
};
const stmt_node = try self.makeNode(.kw_if, if_stmt, else_stmt);
// If-statement uses `.kw_if` node for both first node with `expr` on the left
// and statements on the right and also `.kw_if` node which goes to the right
// and contains both if-branch and else-branch.
result = try self.makeNode(.kw_if, expr, stmt_node);
},
.left_brace => {
try self.next();
while (self.curr.typ != .right_brace and self.curr.typ != .eof) {
result = try self.makeNode(.sequence, result, try self.parseStmt());
}
try self.expect(.right_brace);
},
.identifier => {
const identifer = try self.makeLeaf(.identifier, NodeValue.fromToken(self.curr));
try self.next();
try self.expect(.assign);
const expr = try self.parseExpr(0);
result = try self.makeNode(.assign, identifer, expr);
try self.expect(.semicolon);
},
.semicolon => try self.next(),
else => {
std.debug.print("\nSTMT: UNKNOWN {}\n", .{self.curr});
std.os.exit(1);
},
}
return result;
}
/// "Precedence climbing" expression parser.
fn parseExpr(self: *Self, precedence: i8) ParserError!?*Tree {
var result: ?*Tree = null;
switch (self.curr.typ) {
.left_paren => {
result = try self.parseParenExpr();
},
.subtract => {
try self.next();
const metadata = NodeMetadata.find(.negate);
const expr = try self.parseExpr(metadata.precedence);
result = try self.makeNode(.negate, expr, null);
},
.not => {
try self.next();
const metadata = NodeMetadata.find(.not);
const expr = try self.parseExpr(metadata.precedence);
result = try self.makeNode(.not, expr, null);
},
.add => {
try self.next();
result = try self.parseExpr(precedence);
},
.integer, .identifier => {
const node_type = NodeMetadata.find(self.curr.typ).node_type;
result = try self.makeLeaf(node_type, NodeValue.fromToken(self.curr));
try self.next();
},
else => {
std.debug.print("\nEXPR: UNKNOWN {}\n", .{self.curr});
std.os.exit(1);
},
}
var curr_metadata = NodeMetadata.find(self.curr.typ);
while (curr_metadata.binary and curr_metadata.precedence >= precedence) {
const new_precedence =
if (curr_metadata.right_associative)
curr_metadata.precedence
else
curr_metadata.precedence + 1;
try self.next();
const sub_expr = try self.parseExpr(new_precedence);
result = try self.makeNode(curr_metadata.node_type, result, sub_expr);
curr_metadata = NodeMetadata.find(self.curr.typ);
}
return result;
}
fn parseParenExpr(self: *Self) ParserError!?*Tree {
try self.expect(.left_paren);
const result = try self.parseExpr(0);
try self.expect(.right_paren);
return result;
}
fn next(self: *Self) ParserError!void {
const token = try self.token_it.next();
if (token) |tok| {
self.curr = tok;
} else {
self.curr = Token{ .line = 0, .col = 0, .typ = .unknown };
}
}
fn expect(self: *Self, token_type: TokenType) ParserError!void {
if (self.curr.typ != token_type) {
const expected_str = NodeMetadata.find(token_type).token_str;
const found_str = NodeMetadata.find(self.curr.typ).token_str;
std.debug.print(
"({d}, {d}) error: Expecting '{s}', found '{s}'\n",
.{ self.curr.line, self.curr.col, expected_str, found_str },
);
return ParserError.ExpectedNotFound;
}
try self.next();
}
};
pub fn parse(allocator: std.mem.Allocator, str: []const u8) !?*Tree {
var parser = Parser.init(allocator, str);
return try parser.parse();
}
pub fn main() !void {
var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
defer arena.deinit();
const allocator = arena.allocator();
var arg_it = std.process.args();
_ = try arg_it.next(allocator) orelse unreachable; // program name
const file_name = arg_it.next(allocator);
// We accept both files and standard input.
var file_handle = blk: {
if (file_name) |file_name_delimited| {
const fname: []const u8 = try file_name_delimited;
break :blk try std.fs.cwd().openFile(fname, .{});
} else {
break :blk std.io.getStdIn();
}
};
defer file_handle.close();
const input_content = try file_handle.readToEndAlloc(allocator, std.math.maxInt(usize));
const result: ?*Tree = try parse(allocator, input_content);
const result_str = try astToFlattenedString(allocator, result);
_ = try std.io.getStdOut().write(result_str);
}
const NodeMetadata = struct {
token_type: TokenType,
right_associative: bool,
binary: bool,
unary: bool,
precedence: i8,
node_type: NodeType,
token_str: []const u8,
const self = [_]NodeMetadata{
.{ .token_type = .multiply, .right_associative = false, .binary = true, .unary = false, .precedence = 13, .node_type = .multiply, .token_str = "*" },
.{ .token_type = .divide, .right_associative = false, .binary = true, .unary = false, .precedence = 13, .node_type = .divide, .token_str = "/" },
.{ .token_type = .mod, .right_associative = false, .binary = true, .unary = false, .precedence = 13, .node_type = .mod, .token_str = "%" },
.{ .token_type = .add, .right_associative = false, .binary = true, .unary = false, .precedence = 12, .node_type = .add, .token_str = "+" },
.{ .token_type = .subtract, .right_associative = false, .binary = true, .unary = false, .precedence = 12, .node_type = .subtract, .token_str = "-" },
.{ .token_type = .negate, .right_associative = false, .binary = false, .unary = true, .precedence = 14, .node_type = .negate, .token_str = "-" },
.{ .token_type = .less, .right_associative = false, .binary = true, .unary = false, .precedence = 10, .node_type = .less, .token_str = "<" },
.{ .token_type = .less_equal, .right_associative = false, .binary = true, .unary = false, .precedence = 10, .node_type = .less_equal, .token_str = "<=" },
.{ .token_type = .greater, .right_associative = false, .binary = true, .unary = false, .precedence = 10, .node_type = .greater, .token_str = ">" },
.{ .token_type = .greater_equal, .right_associative = false, .binary = true, .unary = false, .precedence = 10, .node_type = .greater_equal, .token_str = ">=" },
.{ .token_type = .equal, .right_associative = false, .binary = true, .unary = false, .precedence = 9, .node_type = .equal, .token_str = "=" },
.{ .token_type = .not_equal, .right_associative = false, .binary = true, .unary = false, .precedence = 9, .node_type = .not_equal, .token_str = "!=" },
.{ .token_type = .not, .right_associative = false, .binary = false, .unary = true, .precedence = 14, .node_type = .not, .token_str = "!" },
.{ .token_type = .assign, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .assign, .token_str = "=" },
.{ .token_type = .bool_and, .right_associative = false, .binary = true, .unary = false, .precedence = 5, .node_type = .bool_and, .token_str = "&&" },
.{ .token_type = .bool_or, .right_associative = false, .binary = true, .unary = false, .precedence = 4, .node_type = .bool_or, .token_str = "||" },
.{ .token_type = .left_paren, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .unknown, .token_str = "(" },
.{ .token_type = .right_paren, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .unknown, .token_str = ")" },
.{ .token_type = .left_brace, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .unknown, .token_str = "{" },
.{ .token_type = .right_brace, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .unknown, .token_str = "}" },
.{ .token_type = .semicolon, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .unknown, .token_str = ";" },
.{ .token_type = .comma, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .unknown, .token_str = "," },
.{ .token_type = .kw_if, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .kw_if, .token_str = "if" },
.{ .token_type = .kw_else, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .unknown, .token_str = "else" },
.{ .token_type = .kw_while, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .kw_while, .token_str = "while" },
.{ .token_type = .kw_print, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .unknown, .token_str = "print" },
.{ .token_type = .kw_putc, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .unknown, .token_str = "putc" },
.{ .token_type = .identifier, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .identifier, .token_str = "Identifier" },
.{ .token_type = .integer, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .integer, .token_str = "Integer literal" },
.{ .token_type = .string, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .string, .token_str = "String literal" },
.{ .token_type = .eof, .right_associative = false, .binary = false, .unary = false, .precedence = -1, .node_type = .unknown, .token_str = "End of line" },
};
pub fn find(token_type: TokenType) NodeMetadata {
for (self) |metadata| {
if (metadata.token_type == token_type) return metadata;
} else {
unreachable;
}
}
};
pub const NodeType = enum {
unknown,
identifier,
string,
integer,
sequence,
kw_if,
prtc,
prts,
prti,
kw_while,
assign,
negate,
not,
multiply,
divide,
mod,
add,
subtract,
less,
less_equal,
greater,
greater_equal,
equal,
not_equal,
bool_and,
bool_or,
pub fn toString(self: NodeType) []const u8 {
return switch (self) {
.unknown => "UNKNOWN",
.identifier => "Identifier",
.string => "String",
.integer => "Integer",
.sequence => "Sequence",
.kw_if => "If",
.prtc => "Prtc",
.prts => "Prts",
.prti => "Prti",
.kw_while => "While",
.assign => "Assign",
.negate => "Negate",
.not => "Not",
.multiply => "Multiply",
.divide => "Divide",
.mod => "Mod",
.add => "Add",
.subtract => "Subtract",
.less => "Less",
.less_equal => "LessEqual",
.greater => "Greater",
.greater_equal => "GreaterEqual",
.equal => "Equal",
.not_equal => "NotEqual",
.bool_and => "And",
.bool_or => "Or",
};
}
};
fn astToFlattenedString(allocator: std.mem.Allocator, tree: ?*Tree) ![]const u8 {
var result = std.ArrayList(u8).init(allocator);
var writer = result.writer();
try treeToString(allocator, writer, tree);
return result.items;
}
pub const TokenType = enum {
unknown,
multiply,
divide,
mod,
add,
subtract,
negate,
less,
less_equal,
greater,
greater_equal,
equal,
not_equal,
not,
assign,
bool_and,
bool_or,
left_paren,
right_paren,
left_brace,
right_brace,
semicolon,
comma,
kw_if,
kw_else,
kw_while,
kw_print,
kw_putc,
identifier,
integer,
string,
eof,
const from_string_map = std.ComptimeStringMap(TokenType, .{
.{ "Op_multiply", .multiply },
.{ "Op_divide", .divide },
.{ "Op_mod", .mod },
.{ "Op_add", .add },
.{ "Op_subtract", .subtract },
.{ "Op_negate", .negate },
.{ "Op_less", .less },
.{ "Op_lessequal", .less_equal },
.{ "Op_greater", .greater },
.{ "Op_greaterequal", .greater_equal },
.{ "Op_equal", .equal },
.{ "Op_notequal", .not_equal },
.{ "Op_not", .not },
.{ "Op_assign", .assign },
.{ "Op_and", .bool_and },
.{ "Op_or", .bool_or },
.{ "LeftParen", .left_paren },
.{ "RightParen", .right_paren },
.{ "LeftBrace", .left_brace },
.{ "RightBrace", .right_brace },
.{ "Semicolon", .semicolon },
.{ "Comma", .comma },
.{ "Keyword_if", .kw_if },
.{ "Keyword_else", .kw_else },
.{ "Keyword_while", .kw_while },
.{ "Keyword_print", .kw_print },
.{ "Keyword_putc", .kw_putc },
.{ "Identifier", .identifier },
.{ "Integer", .integer },
.{ "String", .string },
.{ "End_of_input", .eof },
});
pub fn fromString(str: []const u8) TokenType {
return from_string_map.get(str).?;
}
};
pub const TokenValue = union(enum) {
integer: i32,
string: []const u8,
};
pub const Token = struct {
line: usize,
col: usize,
typ: TokenType = .unknown,
value: ?TokenValue = null,
};
const TreeToStringError = error{OutOfMemory};
fn treeToString(
allocator: std.mem.Allocator,
writer: std.ArrayList(u8).Writer,
tree: ?*Tree,
) TreeToStringError!void {
if (tree) |t| {
_ = try writer.write(try std.fmt.allocPrint(
allocator,
"{s}",
.{t.typ.toString()},
));
switch (t.typ) {
.string, .identifier => _ = try writer.write(try std.fmt.allocPrint(
allocator,
" {s}\n",
.{t.value.?.string},
)),
.integer => _ = try writer.write(try std.fmt.allocPrint(
allocator,
" {d}\n",
.{t.value.?.integer},
)),
else => {
_ = try writer.write(try std.fmt.allocPrint(
allocator,
"\n",
.{},
));
try treeToString(allocator, writer, t.left);
try treeToString(allocator, writer, t.right);
},
}
} else {
_ = try writer.write(try std.fmt.allocPrint(
allocator,
";\n",
.{},
));
}
}
pub const LexerOutputTokenizer = struct {
it: std.mem.SplitIterator(u8),
const Self = @This();
pub fn init(str: []const u8) Self {
return Self{ .it = std.mem.split(u8, str, "\n") };
}
pub fn next(self: *Self) std.fmt.ParseIntError!?Token {
if (self.it.next()) |line| {
if (line.len == 0) return null;
var tokens_it = std.mem.tokenize(u8, line, " ");
const lineNumber = try std.fmt.parseInt(usize, tokens_it.next().?, 10);
const colNumber = try std.fmt.parseInt(usize, tokens_it.next().?, 10);
const typ_text = tokens_it.next().?;
const typ = TokenType.fromString(typ_text);
const pre_value_index = tokens_it.index;
const value = tokens_it.next();
var token = Token{ .line = lineNumber, .col = colNumber, .typ = typ };
if (value) |val| {
const token_value = blk: {
switch (typ) {
.string, .identifier => {
tokens_it.index = pre_value_index;
break :blk TokenValue{ .string = tokens_it.rest() };
},
.integer => break :blk TokenValue{ .integer = try std.fmt.parseInt(i32, val, 10) },
else => unreachable,
}
};
token.value = token_value;
}
return token;
} else {
return null;
}
}
};
fn stringToTokenList(allocator: std.mem.Allocator, str: []const u8) !std.ArrayList(Token) {
var result = std.ArrayList(Token).init(allocator);
var lexer_output_it = LexerOutputTokenizer.init(str);
while (try lexer_output_it.next()) |token| {
try result.append(token);
}
return result;
}
|
http://rosettacode.org/wiki/Conway%27s_Game_of_Life | Conway's Game of Life | The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.
Conway's game of life is described here:
A cell C is represented by a 1 when alive, or 0 when dead, in an m-by-m (or m×m) square array of cells.
We calculate N - the sum of live cells in C's eight-location neighbourhood, then cell C is alive or dead in the next generation based on the following table:
C N new C
1 0,1 -> 0 # Lonely
1 4,5,6,7,8 -> 0 # Overcrowded
1 2,3 -> 1 # Lives
0 3 -> 1 # It takes three to give birth!
0 0,1,2,4,5,6,7,8 -> 0 # Barren
Assume cells beyond the boundary are always dead.
The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.
Task
Although you should test your implementation on more complex examples such as the glider in a larger universe, show the action of the blinker (three adjoining cells in a row all alive), over three generations, in a 3 by 3 grid.
References
Its creator John Conway, explains the game of life. Video from numberphile on youtube.
John Conway Inventing Game of Life - Numberphile video.
Related task
Langton's ant - another well known cellular automaton.
| #Elena | Elena | import extensions;
import system'threading;
import cellular;
const int maxX = 48;
const int maxY = 28;
const int DELAY = 50;
sealed class Model
{
Space theSpace;
RuleSet theRuleSet;
bool started;
event Func<Space, object> OnUpdate;
constructor newRandomset(RuleSet transformSet)
{
theSpace := new IntMatrixSpace.allocate(maxY, maxX, randomSet);
theRuleSet := transformSet;
started := false
}
constructor newLoaded(RuleSet initSet, RuleSet transformSet)
{
theSpace := IntMatrixSpace.allocate(maxY, maxX, initSet);
theRuleSet := transformSet;
started := false
}
private onUpdate()
{
OnUpdate.?(theSpace)
}
run()
{
if (started)
{
theSpace.update(theRuleSet)
}
else
{
started := true
};
self.onUpdate()
}
}
singleton gameOfLifeRuleSet : RuleSet
{
proceed(Space s, int x, int y, ref int retVal)
{
int cell := s.at(x, y);
int number := s.LiveCell(x, y, 1); // NOTE : number of living cells around the self includes the cell itself
if (cell == 0 && number == 3)
{
retVal := 1
}
else if (cell == 1 && (number == 4 || number == 3))
{
retVal := 1
}
else
{
retVal := 0
}
}
}
public extension presenterOp : Space
{
print()
{
console.setCursorPosition(0, 0);
int columns := self.Columns;
int rows := self.Rows;
for(int i := 0, i < rows, i += 1)
{
for(int j := 0, j < columns, j += 1)
{
int cell := self.at(i, j);
console.write((cell == 0).iif(" ","o"));
};
console.writeLine()
}
}
}
public program()
{
auto model := Model.newRandomset(gameOfLifeRuleSet);
console.clear();
model.OnUpdate := (Space sp){ sp.print() };
until (console.KeyAvailable)
{
model.run();
threadControl.sleep:DELAY
};
console.readChar()
} |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Standard_ML | Standard ML | datatype tree = Empty
| Leaf of int
| Node of tree * tree
val t1 = Node (Leaf 1, Node (Leaf 2, Leaf 3)) |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Stata | Stata | mata
struct Point {
real scalar x, y
}
// dumb example
function test() {
struct Point scalar a
a.x = 10
a.y = 20
printf("%f\n",a.x+a.y)
}
test()
30
end |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Swift | Swift | // Structure
struct Point {
var x:Int
var y:Int
}
// Tuple
typealias PointTuple = (Int, Int)
// Class
class PointClass {
var x:Int!
var y:Int!
init(x:Int, y:Int) {
self.x = x
self.y = y
}
} |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #blz | blz |
if i % 2 == 0
print("even")
else
print("odd")
end
|
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Forth | Forth | \ linked list of strings creators
: ," ( -- ) [CHAR] " WORD c@ 1+ ALLOT ; \ Parse input stream until " and write into next available memory
: [[ ( -- ) 0 C, ; \ begin a list. write a 0 into next memory byte (null string)
: ]] ( -- ) [[ ; \ end list with same null string
: nth ( n list -- addr) swap 0 do count + loop ; \ return address of the Nth item in a list
: items ( list -- n ) \ return the number of items in a list
0 >R
BEGIN
COUNT + DUP
R> 1+ >R
0= UNTIL
DROP
R> 1- ;
: compare$ ( $1 $2 -- -n|0|n ) count rot count compare ; \ compare is an ANS Forth word. returns 0 if $1=$2
: compare[] ( list n1 n2 -- flag) \ compare items n1 and n2 in list
ROT dup >R nth ( -- $1)
swap r> nth ( -- $1 $2)
compare$ ;
\ create our lexical operators
: LEX= ( list -- flag)
0 \ place holder for the flag
over items 1
DO
over I I 1+ compare[] + \ we sum the comparison results on the stack
LOOP
nip 0= ;
: LEX< ( list -- flag)
0 \ place holder for the flag
over items 1
DO
over I I 1+ compare[] 0< NOT +
LOOP
nip 0= ;
\ make some lists
create strings [[ ," ENTRY 4" ," ENTRY 3" ," ENTRY 2" ," ENTRY 1" ]]
create strings2 [[ ," the same" ," the same" ," the same" ]]
create strings3 [[ ," AAA" ," BBB" ," CCC" ," DDD" ]] |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Fortran | Fortran |
INTEGER MANY,LONG
PARAMETER (LONG = 6,MANY = 4) !Adjust to suit.
CHARACTER*(LONG) STRINGS(MANY) !A list of text strings.
STRINGS(1) = "Fee"
STRINGS(2) = "Fie"
STRINGS(3) = "Foe"
STRINGS(4) = "Fum"
IF (ALL(STRINGS(1:MANY - 1) .LT. STRINGS(2:MANY))) THEN
WRITE (6,*) MANY," strings: strictly increasing in order."
ELSE
WRITE (6,*) MANY," strings: not strictly increasing in order."
END IF
IF (ALL(STRINGS(1:MANY - 1) .EQ. STRINGS(2:MANY))) THEN
WRITE (6,*) MANY," strings: all equal."
ELSE
WRITE (6,*) MANY," strings: not all equal."
END IF
END
|
http://rosettacode.org/wiki/Comma_quibbling | Comma quibbling | Comma quibbling is a task originally set by Eric Lippert in his blog.
Task
Write a function to generate a string output which is the concatenation of input words from a list/sequence where:
An input of no words produces the output string of just the two brace characters "{}".
An input of just one word, e.g. ["ABC"], produces the output string of the word inside the two braces, e.g. "{ABC}".
An input of two words, e.g. ["ABC", "DEF"], produces the output string of the two words inside the two braces with the words separated by the string " and ", e.g. "{ABC and DEF}".
An input of three or more words, e.g. ["ABC", "DEF", "G", "H"], produces the output string of all but the last word separated by ", " with the last word separated by " and " and all within braces; e.g. "{ABC, DEF, G and H}".
Test your function with the following series of inputs showing your output here on this page:
[] # (No input words).
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]
Note: Assume words are non-empty strings of uppercase characters for this task.
| #C | C | #include <stdio.h>
#include <string.h>
#include <stdlib.h>
char *quib(const char **strs, size_t size)
{
size_t len = 3 + ((size > 1) ? (2 * size + 1) : 0);
size_t i;
for (i = 0; i < size; i++)
len += strlen(strs[i]);
char *s = malloc(len * sizeof(*s));
if (!s)
{
perror("Can't allocate memory!\n");
exit(EXIT_FAILURE);
}
strcpy(s, "{");
switch (size) {
case 0: break;
case 1: strcat(s, strs[0]);
break;
default: for (i = 0; i < size - 1; i++)
{
strcat(s, strs[i]);
if (i < size - 2)
strcat(s, ", ");
else
strcat(s, " and ");
}
strcat(s, strs[i]);
break;
}
strcat(s, "}");
return s;
}
int main(void)
{
const char *test[] = {"ABC", "DEF", "G", "H"};
char *s;
for (size_t i = 0; i < 5; i++)
{
s = quib(test, i);
printf("%s\n", s);
free(s);
}
return EXIT_SUCCESS;
} |
http://rosettacode.org/wiki/Combinations_with_repetitions | Combinations with repetitions | The set of combinations with repetitions is computed from a set,
S
{\displaystyle S}
(of cardinality
n
{\displaystyle n}
), and a size of resulting selection,
k
{\displaystyle k}
, by reporting the sets of cardinality
k
{\displaystyle k}
where each member of those sets is chosen from
S
{\displaystyle S}
.
In the real world, it is about choosing sets where there is a “large” supply of each type of element and where the order of choice does not matter.
For example:
Q: How many ways can a person choose two doughnuts from a store selling three types of doughnut: iced, jam, and plain? (i.e.,
S
{\displaystyle S}
is
{
i
c
e
d
,
j
a
m
,
p
l
a
i
n
}
{\displaystyle \{\mathrm {iced} ,\mathrm {jam} ,\mathrm {plain} \}}
,
|
S
|
=
3
{\displaystyle |S|=3}
, and
k
=
2
{\displaystyle k=2}
.)
A: 6: {iced, iced}; {iced, jam}; {iced, plain}; {jam, jam}; {jam, plain}; {plain, plain}.
Note that both the order of items within a pair, and the order of the pairs given in the answer is not significant; the pairs represent multisets.
Also note that doughnut can also be spelled donut.
Task
Write a function/program/routine/.. to generate all the combinations with repetitions of
n
{\displaystyle n}
types of things taken
k
{\displaystyle k}
at a time and use it to show an answer to the doughnut example above.
For extra credit, use the function to compute and show just the number of ways of choosing three doughnuts from a choice of ten types of doughnut. Do not show the individual choices for this part.
References
k-combination with repetitions
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Clojure | Clojure |
(defn combinations [coll k]
(when-let [[x & xs] coll]
(if (= k 1)
(map list coll)
(concat (map (partial cons x) (combinations coll (dec k)))
(combinations xs k)))))
|
http://rosettacode.org/wiki/Combinations_with_repetitions | Combinations with repetitions | The set of combinations with repetitions is computed from a set,
S
{\displaystyle S}
(of cardinality
n
{\displaystyle n}
), and a size of resulting selection,
k
{\displaystyle k}
, by reporting the sets of cardinality
k
{\displaystyle k}
where each member of those sets is chosen from
S
{\displaystyle S}
.
In the real world, it is about choosing sets where there is a “large” supply of each type of element and where the order of choice does not matter.
For example:
Q: How many ways can a person choose two doughnuts from a store selling three types of doughnut: iced, jam, and plain? (i.e.,
S
{\displaystyle S}
is
{
i
c
e
d
,
j
a
m
,
p
l
a
i
n
}
{\displaystyle \{\mathrm {iced} ,\mathrm {jam} ,\mathrm {plain} \}}
,
|
S
|
=
3
{\displaystyle |S|=3}
, and
k
=
2
{\displaystyle k=2}
.)
A: 6: {iced, iced}; {iced, jam}; {iced, plain}; {jam, jam}; {jam, plain}; {plain, plain}.
Note that both the order of items within a pair, and the order of the pairs given in the answer is not significant; the pairs represent multisets.
Also note that doughnut can also be spelled donut.
Task
Write a function/program/routine/.. to generate all the combinations with repetitions of
n
{\displaystyle n}
types of things taken
k
{\displaystyle k}
at a time and use it to show an answer to the doughnut example above.
For extra credit, use the function to compute and show just the number of ways of choosing three doughnuts from a choice of ten types of doughnut. Do not show the individual choices for this part.
References
k-combination with repetitions
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #CoffeeScript | CoffeeScript |
combos = (arr, k) ->
return [ [] ] if k == 0
return [] if arr.length == 0
combos_with_head = ([arr[0]].concat combo for combo in combos arr, k-1)
combos_sans_head = combos arr[1...], k
combos_with_head.concat combos_sans_head
arr = ['iced', 'jam', 'plain']
console.log "valid pairs from #{arr.join ','}:"
console.log combos arr, 2
console.log "#{combos([1..10], 3).length} ways to order 3 donuts given 10 types"
|
http://rosettacode.org/wiki/Combinations_and_permutations | Combinations and permutations |
This page uses content from Wikipedia. The original article was at Combination. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
This page uses content from Wikipedia. The original article was at Permutation. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Implement the combination (nCk) and permutation (nPk) operators in the target language:
n
C
k
=
(
n
k
)
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle ^{n}\operatorname {C} _{k}={\binom {n}{k}}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
See the Wikipedia articles for a more detailed description.
To test, generate and print examples of:
A sample of permutations from 1 to 12 and Combinations from 10 to 60 using exact Integer arithmetic.
A sample of permutations from 5 to 15000 and Combinations from 100 to 1000 using approximate Floating point arithmetic.
This 'floating point' code could be implemented using an approximation, e.g., by calling the Gamma function.
Related task
Evaluate binomial coefficients
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Haskell | Haskell | perm :: Integer -> Integer -> Integer
perm n k = product [n-k+1..n]
comb :: Integer -> Integer -> Integer
comb n k = perm n k `div` product [1..k]
main :: IO ()
main = do
let showBig maxlen b =
let st = show b
stlen = length st
in if stlen < maxlen then st else take maxlen st ++ "... (" ++ show (stlen-maxlen) ++ " more digits)"
let showPerm pr =
putStrLn $ "perm(" ++ show n ++ "," ++ show k ++ ") = " ++ showBig 40 (perm n k)
where n = fst pr
k = snd pr
let showComb pr =
putStrLn $ "comb(" ++ show n ++ "," ++ show k ++ ") = " ++ showBig 40 (comb n k)
where n = fst pr
k = snd pr
putStrLn "A sample of permutations from 1 to 12:"
mapM_ showPerm [(n, n `div` 3) | n <- [1..12] ]
putStrLn ""
putStrLn "A sample of combinations from 10 to 60:"
mapM_ showComb [(n, n `div` 3) | n <- [10,20..60] ]
putStrLn ""
putStrLn "A sample of permutations from 5 to 15000:"
mapM_ showPerm [(n, n `div` 3) | n <- [5,50,500,1000,5000,15000] ]
putStrLn ""
putStrLn "A sample of combinations from 100 to 1000:"
mapM_ showComb [(n, n `div` 3) | n <- [100,200..1000] ]
|
http://rosettacode.org/wiki/Compiler/lexical_analyzer | Compiler/lexical analyzer | Definition from Wikipedia:
Lexical analysis is the process of converting a sequence of characters (such as in a computer program or web page) into a sequence of tokens (strings with an identified "meaning"). A program that performs lexical analysis may be called a lexer, tokenizer, or scanner (though "scanner" is also used to refer to the first stage of a lexer).
Task[edit]
Create a lexical analyzer for the simple programming language specified below. The
program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a lexer module/library/class, it would be great
if two versions of the solution are provided: One without the lexer module, and one with.
Input Specification
The simple programming language to be analyzed is more or less a subset of C. It supports the following tokens:
Operators
Name
Common name
Character sequence
Op_multiply
multiply
*
Op_divide
divide
/
Op_mod
mod
%
Op_add
plus
+
Op_subtract
minus
-
Op_negate
unary minus
-
Op_less
less than
<
Op_lessequal
less than or equal
<=
Op_greater
greater than
>
Op_greaterequal
greater than or equal
>=
Op_equal
equal
==
Op_notequal
not equal
!=
Op_not
unary not
!
Op_assign
assignment
=
Op_and
logical and
&&
Op_or
logical or
¦¦
The - token should always be interpreted as Op_subtract by the lexer. Turning some Op_subtract into Op_negate will be the job of the syntax analyzer, which is not part of this task.
Symbols
Name
Common name
Character
LeftParen
left parenthesis
(
RightParen
right parenthesis
)
LeftBrace
left brace
{
RightBrace
right brace
}
Semicolon
semi-colon
;
Comma
comma
,
Keywords
Name
Character sequence
Keyword_if
if
Keyword_else
else
Keyword_while
while
Keyword_print
print
Keyword_putc
putc
Identifiers and literals
These differ from the the previous tokens, in that each occurrence of them has a value associated with it.
Name
Common name
Format description
Format regex
Value
Identifier
identifier
one or more letter/number/underscore characters, but not starting with a number
[_a-zA-Z][_a-zA-Z0-9]*
as is
Integer
integer literal
one or more digits
[0-9]+
as is, interpreted as a number
Integer
char literal
exactly one character (anything except newline or single quote) or one of the allowed escape sequences, enclosed by single quotes
'([^'\n]|\\n|\\\\)'
the ASCII code point number of the character, e.g. 65 for 'A' and 10 for '\n'
String
string literal
zero or more characters (anything except newline or double quote), enclosed by double quotes
"[^"\n]*"
the characters without the double quotes and with escape sequences converted
For char and string literals, the \n escape sequence is supported to represent a new-line character.
For char and string literals, to represent a backslash, use \\.
No other special sequences are supported. This means that:
Char literals cannot represent a single quote character (value 39).
String literals cannot represent strings containing double quote characters.
Zero-width tokens
Name
Location
End_of_input
when the end of the input stream is reached
White space
Zero or more whitespace characters, or comments enclosed in /* ... */, are allowed between any two tokens, with the exceptions noted below.
"Longest token matching" is used to resolve conflicts (e.g., in order to match <= as a single token rather than the two tokens < and =).
Whitespace is required between two tokens that have an alphanumeric character or underscore at the edge.
This means: keywords, identifiers, and integer literals.
e.g. ifprint is recognized as an identifier, instead of the keywords if and print.
e.g. 42fred is invalid, and neither recognized as a number nor an identifier.
Whitespace is not allowed inside of tokens (except for chars and strings where they are part of the value).
e.g. & & is invalid, and not interpreted as the && operator.
For example, the following two program fragments are equivalent, and should produce the same token stream except for the line and column positions:
if ( p /* meaning n is prime */ ) {
print ( n , " " ) ;
count = count + 1 ; /* number of primes found so far */
}
if(p){print(n," ");count=count+1;}
Complete list of token names
End_of_input Op_multiply Op_divide Op_mod Op_add Op_subtract
Op_negate Op_not Op_less Op_lessequal Op_greater Op_greaterequal
Op_equal Op_notequal Op_assign Op_and Op_or Keyword_if
Keyword_else Keyword_while Keyword_print Keyword_putc LeftParen RightParen
LeftBrace RightBrace Semicolon Comma Identifier Integer
String
Output Format
The program output should be a sequence of lines, each consisting of the following whitespace-separated fields:
the line number where the token starts
the column number where the token starts
the token name
the token value (only for Identifier, Integer, and String tokens)
the number of spaces between fields is up to you. Neatly aligned is nice, but not a requirement.
This task is intended to be used as part of a pipeline, with the other compiler tasks - for example:
lex < hello.t | parse | gen | vm
Or possibly:
lex hello.t lex.out
parse lex.out parse.out
gen parse.out gen.out
vm gen.out
This implies that the output of this task (the lexical analyzer) should be suitable as input to any of the Syntax Analyzer task programs.
Diagnostics
The following error conditions should be caught:
Error
Example
Empty character constant
''
Unknown escape sequence.
\r
Multi-character constant.
'xx'
End-of-file in comment. Closing comment characters not found.
End-of-file while scanning string literal. Closing string character not found.
End-of-line while scanning string literal. Closing string character not found before end-of-line.
Unrecognized character.
|
Invalid number. Starts like a number, but ends in non-numeric characters.
123abc
Test Cases
Input
Output
Test Case 1:
/*
Hello world
*/
print("Hello, World!\n");
4 1 Keyword_print
4 6 LeftParen
4 7 String "Hello, World!\n"
4 24 RightParen
4 25 Semicolon
5 1 End_of_input
Test Case 2:
/*
Show Ident and Integers
*/
phoenix_number = 142857;
print(phoenix_number, "\n");
4 1 Identifier phoenix_number
4 16 Op_assign
4 18 Integer 142857
4 24 Semicolon
5 1 Keyword_print
5 6 LeftParen
5 7 Identifier phoenix_number
5 21 Comma
5 23 String "\n"
5 27 RightParen
5 28 Semicolon
6 1 End_of_input
Test Case 3:
/*
All lexical tokens - not syntactically correct, but that will
have to wait until syntax analysis
*/
/* Print */ print /* Sub */ -
/* Putc */ putc /* Lss */ <
/* If */ if /* Gtr */ >
/* Else */ else /* Leq */ <=
/* While */ while /* Geq */ >=
/* Lbrace */ { /* Eq */ ==
/* Rbrace */ } /* Neq */ !=
/* Lparen */ ( /* And */ &&
/* Rparen */ ) /* Or */ ||
/* Uminus */ - /* Semi */ ;
/* Not */ ! /* Comma */ ,
/* Mul */ * /* Assign */ =
/* Div */ / /* Integer */ 42
/* Mod */ % /* String */ "String literal"
/* Add */ + /* Ident */ variable_name
/* character literal */ '\n'
/* character literal */ '\\'
/* character literal */ ' '
5 16 Keyword_print
5 40 Op_subtract
6 16 Keyword_putc
6 40 Op_less
7 16 Keyword_if
7 40 Op_greater
8 16 Keyword_else
8 40 Op_lessequal
9 16 Keyword_while
9 40 Op_greaterequal
10 16 LeftBrace
10 40 Op_equal
11 16 RightBrace
11 40 Op_notequal
12 16 LeftParen
12 40 Op_and
13 16 RightParen
13 40 Op_or
14 16 Op_subtract
14 40 Semicolon
15 16 Op_not
15 40 Comma
16 16 Op_multiply
16 40 Op_assign
17 16 Op_divide
17 40 Integer 42
18 16 Op_mod
18 40 String "String literal"
19 16 Op_add
19 40 Identifier variable_name
20 26 Integer 10
21 26 Integer 92
22 26 Integer 32
23 1 End_of_input
Test Case 4:
/*** test printing, embedded \n and comments with lots of '*' ***/
print(42);
print("\nHello World\nGood Bye\nok\n");
print("Print a slash n - \\n.\n");
2 1 Keyword_print
2 6 LeftParen
2 7 Integer 42
2 9 RightParen
2 10 Semicolon
3 1 Keyword_print
3 6 LeftParen
3 7 String "\nHello World\nGood Bye\nok\n"
3 38 RightParen
3 39 Semicolon
4 1 Keyword_print
4 6 LeftParen
4 7 String "Print a slash n - \\n.\n"
4 33 RightParen
4 34 Semicolon
5 1 End_of_input
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Syntax Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #Erlang | Erlang | #!/bin/env escript
%%%-------------------------------------------------------------------
-record (inp_t, {inpf, pushback, line_no, column_no}).
main (Args) ->
main_program (Args).
main_program ([]) ->
scan_from_inpf_to_outf ("-", "-"),
halt (0);
main_program ([Inpf_filename]) ->
scan_from_inpf_to_outf (Inpf_filename, "-"),
halt (0);
main_program ([Inpf_filename, Outf_filename]) ->
scan_from_inpf_to_outf (Inpf_filename, Outf_filename),
halt (0);
main_program ([_, _ | _]) ->
ProgName = escript:script_name (),
io:put_chars (standard_error, "Usage: "),
io:put_chars (standard_error, ProgName),
io:put_chars (standard_error, " [INPUTFILE [OUTPUTFILE]]\n"),
halt (1).
scan_from_inpf_to_outf ("-", "-") ->
scan_input (standard_io, standard_io);
scan_from_inpf_to_outf (Inpf_filename, "-") ->
case file:open (Inpf_filename, [read]) of
{ok, Inpf} -> scan_input (Inpf, standard_io);
_ -> open_failure (Inpf_filename, "input")
end;
scan_from_inpf_to_outf ("-", Outf_filename) ->
case file:open (Outf_filename, [write]) of
{ok, Outf} -> scan_input (standard_io, Outf);
_ -> open_failure (Outf_filename, "output")
end;
scan_from_inpf_to_outf (Inpf_filename, Outf_filename) ->
case file:open(Inpf_filename, [read]) of
{ok, Inpf} ->
case file:open (Outf_filename, [write]) of
{ok, Outf} -> scan_input (Inpf, Outf);
_ -> open_failure (Outf_filename, "output")
end;
_ -> open_failure (Inpf_filename, "input")
end.
open_failure (Filename, ForWhat) ->
ProgName = escript:script_name (),
io:put_chars (standard_error, ProgName),
io:put_chars (standard_error, ": failed to open \""),
io:put_chars (standard_error, Filename),
io:put_chars (standard_error, "\" for "),
io:put_chars (standard_error, ForWhat),
io:put_chars (standard_error, "\n"),
halt (1).
scan_input (Inpf, Outf) ->
scan_text (Outf, make_inp (Inpf)).
scan_text (Outf, Inp) ->
{TokTup, Inp1} = get_next_token (Inp),
print_token (Outf, TokTup),
case TokTup of
{"End_of_input", _, _, _} -> ok;
_ -> scan_text (Outf, Inp1)
end.
print_token (Outf, {Tok, Arg, Line_no, Column_no}) ->
S_line_no = erlang:integer_to_list (Line_no),
S_column_no = erlang:integer_to_list (Column_no),
io:put_chars (Outf, string:pad (S_line_no, 5, leading)),
io:put_chars (Outf, " "),
io:put_chars (Outf, string:pad (S_column_no, 5, leading)),
io:put_chars (Outf, " "),
io:put_chars (Outf, Tok),
{Padding, Arg1} =
case Tok of
"Identifier" -> {" ", Arg};
"Integer" -> {" ", Arg};
"String" -> {" ", Arg};
_ -> {"", ""}
end,
io:put_chars (Outf, Padding),
io:put_chars (Outf, Arg1),
io:put_chars ("\n").
%%%-------------------------------------------------------------------
%%%
%%% The token dispatcher.
%%%
get_next_token (Inp) ->
Inp00 = skip_spaces_and_comments (Inp),
{Ch, Inp0} = get_ch (Inp00),
{Char, Line_no, Column_no} = Ch,
Ln = Line_no,
Cn = Column_no,
case Char of
eof -> {{"End_of_input", "", Ln, Cn}, Inp0};
"," -> {{"Comma", ",", Ln, Cn}, Inp0};
";" -> {{"Semicolon", ";", Ln, Cn}, Inp0};
"(" -> {{"LeftParen", "(", Ln, Cn}, Inp0};
")" -> {{"RightParen", ")", Ln, Cn}, Inp0};
"{" -> {{"LeftBrace", "{", Ln, Cn}, Inp0};
"}" -> {{"RightBrace", "}", Ln, Cn}, Inp0};
"*" -> {{"Op_multiply", "*", Ln, Cn}, Inp0};
"/" -> {{"Op_divide", "/", Ln, Cn}, Inp0};
"%" -> {{"Op_mod", "%", Ln, Cn}, Inp0};
"+" -> {{"Op_add", "+", Ln, Cn}, Inp0};
"-" -> {{"Op_subtract", "-", Ln, Cn}, Inp0};
"<" ->
{Ch1, Inp1} = get_ch (Inp0),
{Char1, _, _} = Ch1,
case Char1 of
"=" -> {{"Op_lessequal", "<=", Ln, Cn}, Inp1};
_ -> {{"Op_less", "<", Ln, Cn}, push_back (Ch1, Inp1)}
end;
">" ->
{Ch1, Inp1} = get_ch (Inp0),
{Char1, _, _} = Ch1,
case Char1 of
"=" -> {{"Op_greaterequal", ">=", Ln, Cn}, Inp1};
_ -> {{"Op_greater", ">", Ln, Cn}, push_back (Ch1, Inp1)}
end;
"=" ->
{Ch1, Inp1} = get_ch (Inp0),
{Char1, _, _} = Ch1,
case Char1 of
"=" -> {{"Op_equal", "==", Ln, Cn}, Inp1};
_ -> {{"Op_assign", "=", Ln, Cn}, push_back (Ch1, Inp1)}
end;
"!" ->
{Ch1, Inp1} = get_ch (Inp0),
{Char1, _, _} = Ch1,
case Char1 of
"=" -> {{"Op_notequal", "!=", Ln, Cn}, Inp1};
_ -> {{"Op_not", "!", Ln, Cn}, push_back (Ch1, Inp1)}
end;
"&" ->
{Ch1, Inp1} = get_ch (Inp0),
{Char1, _, _} = Ch1,
case Char1 of
"&" -> {{"Op_and", "&&", Ln, Cn}, Inp1};
_ -> unexpected_character (Ln, Cn, Char)
end;
"|" ->
{Ch1, Inp1} = get_ch (Inp0),
{Char1, _, _} = Ch1,
case Char1 of
"|" -> {{"Op_or", "||", Ln, Cn}, Inp1};
_ -> unexpected_character (Ln, Cn, Char)
end;
"\"" ->
Inp1 = push_back (Ch, Inp0),
scan_string_literal (Inp1);
"'" ->
Inp1 = push_back (Ch, Inp0),
scan_character_literal (Inp1);
_ ->
case is_digit (Char) of
true ->
Inp1 = push_back (Ch, Inp0),
scan_integer_literal (Inp1);
false ->
case is_alpha_or_underscore (Char) of
true ->
Inp1 = push_back (Ch, Inp0),
scan_identifier_or_reserved_word (Inp1);
false ->
unexpected_character (Ln, Cn, Char)
end
end
end.
%%%-------------------------------------------------------------------
%%%
%%% Skipping past spaces and /* ... */ comments.
%%%
%%% Comments are treated exactly like a bit of whitespace. They never
%%% make it to the dispatcher.
%%%
skip_spaces_and_comments (Inp) ->
{Ch, Inp0} = get_ch (Inp),
{Char, Line_no, Column_no} = Ch,
case classify_char (Char) of
eof -> push_back (Ch, Inp0);
space -> skip_spaces_and_comments (Inp0);
slash ->
{Ch1, Inp1} = get_ch (Inp0),
case Ch1 of
{"*", _, _} ->
Inp2 = scan_comment (Inp1, Line_no, Column_no),
skip_spaces_and_comments (Inp2);
_ -> push_back (Ch, (push_back (Ch1, Inp1)))
end;
other -> push_back (Ch, Inp0)
end.
classify_char (Char) ->
case Char of
eof -> eof;
"/" -> slash;
_ -> case is_space (Char) of
true -> space;
false -> other
end
end.
scan_comment (Inp, Line_no, Column_no) ->
{Ch0, Inp0} = get_ch (Inp),
case Ch0 of
{eof, _, _} -> unterminated_comment (Line_no, Column_no);
{"*", _, _} ->
{Ch1, Inp1} = get_ch (Inp0),
case Ch1 of
{eof, _, _} ->
unterminated_comment (Line_no, Column_no);
{"/", _, _} -> Inp1;
_ -> scan_comment (Inp1, Line_no, Column_no)
end;
_ -> scan_comment (Inp0, Line_no, Column_no)
end.
is_space (S) ->
case re:run (S, "^[[:space:]]+$") of
{match, _} -> true;
_ -> false
end.
%%%-------------------------------------------------------------------
%%%
%%% Scanning of integer literals, identifiers, and reserved words.
%%%
%%% These three types of token are very similar to each other.
%%%
scan_integer_literal (Inp) ->
%% Scan an entire word, not just digits. This way we detect
%% erroneous text such as "23skidoo".
{Line_no, Column_no, Inp1} = get_position (Inp),
{Word, Inp2} = scan_word (Inp1),
case is_digit (Word) of
true -> {{"Integer", Word, Line_no, Column_no}, Inp2};
false -> invalid_integer_literal (Line_no, Column_no, Word)
end.
scan_identifier_or_reserved_word (Inp) ->
%% It is assumed that the first character is of the correct type,
%% thanks to the dispatcher.
{Line_no, Column_no, Inp1} = get_position (Inp),
{Word, Inp2} = scan_word (Inp1),
Tok =
case Word of
"if" -> "Keyword_if";
"else" -> "Keyword_else";
"while" -> "Keyword_while";
"print" -> "Keyword_print";
"putc" -> "Keyword_putc";
_ -> "Identifier"
end,
{{Tok, Word, Line_no, Column_no}, Inp2}.
scan_word (Inp) ->
scan_word_loop (Inp, "").
scan_word_loop (Inp, Word0) ->
{Ch1, Inp1} = get_ch (Inp),
{Char1, _, _} = Ch1,
case is_alnum_or_underscore (Char1) of
true -> scan_word_loop (Inp1, Word0 ++ Char1);
false -> {Word0, push_back (Ch1, Inp1)}
end.
get_position (Inp) ->
{Ch1, Inp1} = get_ch (Inp),
{_, Line_no, Column_no} = Ch1,
Inp2 = push_back (Ch1, Inp1),
{Line_no, Column_no, Inp2}.
is_digit (S) ->
case re:run (S, "^[[:digit:]]+$") of
{match, _} -> true;
_ -> false
end.
is_alpha_or_underscore (S) ->
case re:run (S, "^[[:alpha:]_]+$") of
{match, _} -> true;
_ -> false
end.
is_alnum_or_underscore (S) ->
case re:run (S, "^[[:alnum:]_]+$") of
{match, _} -> true;
_ -> false
end.
%%%-------------------------------------------------------------------
%%%
%%% Scanning of string literals.
%%%
%%% It is assumed that the first character is the opening quote, and
%%% that the closing quote is the same character.
%%%
scan_string_literal (Inp) ->
{Ch1, Inp1} = get_ch (Inp),
{Quote_mark, Line_no, Column_no} = Ch1,
{Contents, Inp2} = scan_str_lit (Inp1, Ch1),
Toktup = {"String", Quote_mark ++ Contents ++ Quote_mark,
Line_no, Column_no},
{Toktup, Inp2}.
scan_str_lit (Inp, Ch) -> scan_str_lit_loop (Inp, Ch, "").
scan_str_lit_loop (Inp, Ch, Contents) ->
{Quote_mark, Line_no, Column_no} = Ch,
{Ch1, Inp1} = get_ch (Inp),
{Char1, Line_no1, Column_no1} = Ch1,
case Char1 of
Quote_mark -> {Contents, Inp1};
eof -> eoi_in_string_literal (Line_no, Column_no);
"\n" -> eoln_in_string_literal (Line_no, Column_no);
"\\" ->
{Ch2, Inp2} = get_ch (Inp1),
{Char2, _, _} = Ch2,
case Char2 of
"n" ->
scan_str_lit_loop (Inp2, Ch, Contents ++ "\\n");
"\\" ->
scan_str_lit_loop (Inp2, Ch, Contents ++ "\\\\");
_ ->
unsupported_escape (Line_no1, Column_no1, Char2)
end;
_ -> scan_str_lit_loop (Inp1, Ch, Contents ++ Char1)
end.
%%%-------------------------------------------------------------------
%%%
%%% Scanning of character literals.
%%%
%%% It is assumed that the first character is the opening quote, and
%%% that the closing quote is the same character.
%%%
%%% The tedious part of scanning a character literal is distinguishing
%%% between the kinds of lexical error. (One might wish to modify the
%%% code to detect, as a distinct kind of error, end of line within a
%%% character literal.)
%%%
scan_character_literal (Inp) ->
{Ch, Inp0} = get_ch (Inp),
{_, Line_no, Column_no} = Ch,
{Ch1, Inp1} = get_ch (Inp0),
{Char1, Line_no1, Column_no1} = Ch1,
{Intval, Inp3} =
case Char1 of
eof -> unterminated_character_literal (Line_no, Column_no);
"\\" ->
{Ch2, Inp2} = get_ch (Inp1),
{Char2, _, _} = Ch2,
case Char2 of
eof -> unterminated_character_literal (Line_no,
Column_no);
"n" -> {char_to_code ("\n"), Inp2};
"\\" -> {char_to_code ("\\"), Inp2};
_ -> unsupported_escape (Line_no1, Column_no1,
Char2)
end;
_ -> {char_to_code (Char1), Inp1}
end,
Inp4 = check_character_literal_end (Inp3, Ch),
{{"Integer", Intval, Line_no, Column_no}, Inp4}.
char_to_code (Char) ->
%% Hat tip to https://archive.ph/BxZRS
lists:flatmap (fun erlang:integer_to_list/1, Char).
check_character_literal_end (Inp, Ch) ->
{Char, _, _} = Ch,
{{Char1, _, _}, Inp1} = get_ch (Inp),
case Char1 of
Char -> Inp1;
_ -> find_char_lit_end (Inp1, Ch) % Handle a lexical error.
end.
find_char_lit_end (Inp, Ch) ->
%% There is a lexical error. Determine which kind it fits into.
{Char, Line_no, Column_no} = Ch,
{{Char1, _, _}, Inp1} = get_ch (Inp),
case Char1 of
Char -> multicharacter_literal (Line_no, Column_no);
eof -> unterminated_character_literal (Line_no, Column_no);
_ -> find_char_lit_end (Inp1, Ch)
end.
%%%-------------------------------------------------------------------
%%%
%%% Character-at-a-time input, with unrestricted pushback, and with
%%% line and column numbering.
%%%
make_inp (Inpf) ->
#inp_t{inpf = Inpf,
pushback = [],
line_no = 1,
column_no = 1}.
get_ch (Inp) ->
#inp_t{inpf = Inpf,
pushback = Pushback,
line_no = Line_no,
column_no = Column_no} = Inp,
case Pushback of
[Ch | Tail] ->
Inp1 = Inp#inp_t{pushback = Tail},
{Ch, Inp1};
[] ->
case io:get_chars (Inpf, "", 1) of
eof ->
Ch = {eof, Line_no, Column_no},
{Ch, Inp};
{error, _} ->
Ch = {eof, Line_no, Column_no},
{Ch, Inp};
Char ->
case Char of
"\n" ->
Ch = {Char, Line_no, Column_no},
Inp1 = Inp#inp_t{line_no = Line_no + 1,
column_no = 1},
{Ch, Inp1};
_ ->
Ch = {Char, Line_no, Column_no},
Inp1 =
Inp#inp_t{column_no = Column_no + 1},
{Ch, Inp1}
end
end
end.
push_back (Ch, Inp) ->
Inp#inp_t{pushback = [Ch | Inp#inp_t.pushback]}.
%%%-------------------------------------------------------------------
invalid_integer_literal (Line_no, Column_no, Word) ->
error_abort ("invalid integer literal \"" ++
Word ++ "\" at " ++
integer_to_list (Line_no) ++ ":" ++
integer_to_list (Column_no)).
unsupported_escape (Line_no, Column_no, Char) ->
error_abort ("unsupported escape \\" ++
Char ++ " at " ++
integer_to_list (Line_no) ++ ":" ++
integer_to_list (Column_no)).
unexpected_character (Line_no, Column_no, Char) ->
error_abort ("unexpected character '" ++
Char ++ "' at " ++
integer_to_list (Line_no) ++ ":" ++
integer_to_list (Column_no)).
eoi_in_string_literal (Line_no, Column_no) ->
error_abort ("end of input in string literal starting at " ++
integer_to_list (Line_no) ++ ":" ++
integer_to_list (Column_no)).
eoln_in_string_literal (Line_no, Column_no) ->
error_abort ("end of line in string literal starting at " ++
integer_to_list (Line_no) ++ ":" ++
integer_to_list (Column_no)).
unterminated_character_literal (Line_no, Column_no) ->
error_abort ("unterminated character literal starting at " ++
integer_to_list (Line_no) ++ ":" ++
integer_to_list (Column_no)).
multicharacter_literal (Line_no, Column_no) ->
error_abort ("unsupported multicharacter literal starting at " ++
integer_to_list (Line_no) ++ ":" ++
integer_to_list (Column_no)).
unterminated_comment (Line_no, Column_no) ->
error_abort ("unterminated comment starting at " ++
integer_to_list (Line_no) ++ ":" ++
integer_to_list (Column_no)).
error_abort (Message) ->
ProgName = escript:script_name (),
io:put_chars (standard_error, ProgName),
io:put_chars (standard_error, ": "),
io:put_chars (standard_error, Message),
io:put_chars (standard_error, "\n"),
halt (1).
%%%-------------------------------------------------------------------
%%% Instructions to GNU Emacs --
%%% local variables:
%%% mode: erlang
%%% erlang-indent-level: 3
%%% end:
%%%------------------------------------------------------------------- |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #Common_Lisp | Common Lisp | (defun argv ()
(or
#+clisp (ext:argv)
#+sbcl sb-ext:*posix-argv*
#+abcl ext:*command-line-argument-list*
#+clozure (ccl::command-line-arguments)
#+gcl si:*command-args*
#+ecl (loop for i from 0 below (si:argc) collect (si:argv i))
#+cmu extensions:*command-line-strings*
#+allegro (sys:command-line-arguments)
#+lispworks sys:*line-arguments-list*
nil)) |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #Cowgol | Cowgol | include "cowgol.coh";
include "argv.coh";
ArgvInit();
var i: uint8 := 0;
loop
var arg := ArgvNext();
if arg == 0 as [uint8] then break; end if;
i := i + 1;
print_i8(i);
print(": '");
print(arg);
print("'\n");
end loop; |
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #AutoIt | AutoIt |
#cs
Everything between the cs and and the ce is commented.
Commented code is not used by the computer.
#ce
;individual lines after a semicolon are commented.
|
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #AWK | AWK | BEGIN { # this code does something
# do something
} |
http://rosettacode.org/wiki/Compiler/virtual_machine_interpreter | Compiler/virtual machine interpreter | A virtual machine implements a computer in software.
Task[edit]
Write a virtual machine interpreter. This interpreter should be able to run virtual
assembly language programs created via the task. This is a
byte-coded, 32-bit word stack based virtual machine.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Input format:
Given the following program:
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
The output from the Code generator is a virtual assembly code program:
Output from gen, input to VM
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
The first line of the input specifies the datasize required and the number of constant
strings, in the order that they are reference via the code.
The data can be stored in a separate array, or the data can be stored at the beginning of
the stack. Data is addressed starting at 0. If there are 3 variables, the 3rd one if
referenced at address 2.
If there are one or more constant strings, they come next. The code refers to these
strings by their index. The index starts at 0. So if there are 3 strings, and the code
wants to reference the 3rd string, 2 will be used.
Next comes the actual virtual assembly code. The first number is the code address of that
instruction. After that is the instruction mnemonic, followed by optional operands,
depending on the instruction.
Registers:
sp:
the stack pointer - points to the next top of stack. The stack is a 32-bit integer
array.
pc:
the program counter - points to the current instruction to be performed. The code is an
array of bytes.
Data:
data
string pool
Instructions:
Each instruction is one byte. The following instructions also have a 32-bit integer
operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
Print the word at stack top as a character.
prtc
Print the word at stack top as an integer.
prti
Stack top points to an index into the string pool. Print that entry.
prts
Unconditional stop.
halt
A simple example virtual machine
def run_vm(data_size)
int stack[data_size + 1000]
set stack[0..data_size - 1] to 0
int pc = 0
while True:
op = code[pc]
pc += 1
if op == FETCH:
stack.append(stack[bytes_to_int(code[pc:pc+word_size])[0]]);
pc += word_size
elif op == STORE:
stack[bytes_to_int(code[pc:pc+word_size])[0]] = stack.pop();
pc += word_size
elif op == PUSH:
stack.append(bytes_to_int(code[pc:pc+word_size])[0]);
pc += word_size
elif op == ADD: stack[-2] += stack[-1]; stack.pop()
elif op == SUB: stack[-2] -= stack[-1]; stack.pop()
elif op == MUL: stack[-2] *= stack[-1]; stack.pop()
elif op == DIV: stack[-2] /= stack[-1]; stack.pop()
elif op == MOD: stack[-2] %= stack[-1]; stack.pop()
elif op == LT: stack[-2] = stack[-2] < stack[-1]; stack.pop()
elif op == GT: stack[-2] = stack[-2] > stack[-1]; stack.pop()
elif op == LE: stack[-2] = stack[-2] <= stack[-1]; stack.pop()
elif op == GE: stack[-2] = stack[-2] >= stack[-1]; stack.pop()
elif op == EQ: stack[-2] = stack[-2] == stack[-1]; stack.pop()
elif op == NE: stack[-2] = stack[-2] != stack[-1]; stack.pop()
elif op == AND: stack[-2] = stack[-2] and stack[-1]; stack.pop()
elif op == OR: stack[-2] = stack[-2] or stack[-1]; stack.pop()
elif op == NEG: stack[-1] = -stack[-1]
elif op == NOT: stack[-1] = not stack[-1]
elif op == JMP: pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == JZ: if stack.pop() then pc += word_size else pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == PRTC: print stack[-1] as a character; stack.pop()
elif op == PRTS: print the constant string referred to by stack[-1]; stack.pop()
elif op == PRTI: print stack[-1] as an integer; stack.pop()
elif op == HALT: break
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
AST Interpreter task
| #Racket | Racket | #lang typed/racket
;;;
;;; The Rosetta Code Virtual Machine, in Typed Racket.
;;;
;;; Migrated from the Common Lisp.
;;;
;;; Yes, I could compute how much memory is needed, or I could assume
;;; that the instructions are in address order. However, for *this*
;;; implementation I am going to use a large fixed-size memory and use
;;; the address fields of instructions to place the instructions.
(: executable-memory-size Positive-Fixnum)
(define executable-memory-size 65536)
;;; Similarly, I am going to have fixed size data and stack memory.
(: data-memory-size Positive-Fixnum)
(define data-memory-size 2048)
(: stack-memory-size Positive-Fixnum)
(define stack-memory-size 2048)
;;; And so I am going to have specialized types for the different
;;; kinds of memory the platform contains. Also for its "word" and
;;; register types.
(define-type Word Nonnegative-Fixnum)
(define-type Register (Boxof Word))
(define-type Executable-Memory (Mutable-Vectorof Byte))
(define-type Data-Memory (Mutable-Vectorof Word))
(define-type Stack-Memory (Mutable-Vectorof Word))
(define re-blank-line #px"^\\s*$")
(define re-parse-instr-1 #px"^\\s*(\\d+)\\s*(.*\\S)")
(define re-parse-instr-2 #px"(?i:^(\\S+)\\s*(.*))")
(define re-parse-instr-3 #px"^[[(]?([0-9-]+)")
(define re-header
#px"(?i:^\\s*Datasize\\s*:\\s*(\\d+)\\s*Strings\\s*:\\s*(\\d+))")
(define re-leading-spaces #px"^\\s*")
(define opcode-names
'("halt"
"add"
"sub"
"mul"
"div"
"mod"
"lt"
"gt"
"le"
"ge"
"eq"
"ne"
"and"
"or"
"neg"
"not"
"prtc"
"prti"
"prts"
"fetch"
"store"
"push"
"jmp"
"jz"))
(: blank-line? (String -> Boolean))
(define (blank-line? s)
(not (not (regexp-match re-blank-line s))))
(: opcode-from-name (String -> Byte))
(define (opcode-from-name s)
(let ((i (index-of opcode-names s)))
(assert i)
(cast i Byte)))
(: create-executable-memory (-> Executable-Memory))
(define (create-executable-memory)
(make-vector executable-memory-size (opcode-from-name "halt")))
(: create-data-memory (-> Data-Memory))
(define (create-data-memory)
(make-vector data-memory-size 0))
(: create-stack-memory (-> Stack-Memory))
(define (create-stack-memory)
(make-vector stack-memory-size 0))
(: create-register (-> Register))
(define (create-register)
(box 0))
(struct machine
((sp : Register) ; Stack pointer.
(ip : Register) ; Instruction pointer (that is, program counter).
(code : Executable-Memory)
(data : Data-Memory)
(stack : Stack-Memory)
(strings : (Immutable-Vectorof String))
(output : Output-Port))
#:type-name Machine
#:constructor-name %make-machine)
(: make-machine ((Immutable-Vectorof String) Output-Port -> Machine))
(define (make-machine strings outf)
(%make-machine (create-register)
(create-register)
(create-executable-memory)
(create-data-memory)
(create-stack-memory)
strings
outf))
(define-type Instruction-Data (List Word Byte (U False Word)))
(: insert-instruction (Executable-Memory Instruction-Data -> Void))
(define (insert-instruction memory instr)
(void
(match instr
((list address opcode arg)
(let ((instr-size (if arg 5 1)))
(unless (<= (+ address instr-size) executable-memory-size)
(raise-user-error
"the VM's executable memory size is exceeded"))
(vector-set! memory address opcode)
(when arg
;; Big-endian order.
(vector-set! memory (+ address 1)
(bitwise-and (arithmetic-shift arg -24) #xFF))
(vector-set! memory (+ address 2)
(bitwise-and (arithmetic-shift arg -16) #xFF))
(vector-set! memory (+ address 3)
(bitwise-and (arithmetic-shift arg -8) #xFF))
(vector-set! memory (+ address 4)
(bitwise-and arg #xFF))))))))
(: load-executable-memory (Executable-Memory
(Listof Instruction-Data) ->
Void))
(define (load-executable-memory memory instr-lst)
(let loop ((p instr-lst))
(if (null? p)
(void)
(let ((instr (car p)))
(insert-instruction memory (car p))
(loop (cdr p))))))
(: number->word (Number -> Word))
(define (number->word n)
(cast (bitwise-and (cast n Integer) #xFFFFFFFF) Word))
(: string->word (String -> Word))
(define (string->word s)
(let ((n (string->number s)))
(assert (number? n))
(number->word n)))
(: parse-instruction (String -> (U False Instruction-Data)))
(define (parse-instruction s)
(and (not (blank-line? s))
(let* ((strings (cast (regexp-match re-parse-instr-1 s)
(Listof String)))
(address (cast (string->number (second strings))
Word))
(split (cast (regexp-match re-parse-instr-2
(third strings))
(Listof String)))
(opcode-name (string-downcase (second split)))
(opcode (opcode-from-name opcode-name))
(arguments (third split))
(has-arg? (match opcode-name
((or "fetch" "store" "push" "jmp" "jz") #t)
(_ #f))))
(if has-arg?
(let* ((argstr-lst
(cast (regexp-match re-parse-instr-3 arguments)
(Listof String)))
(argstr (second argstr-lst))
(arg (string->word argstr)))
`(,address ,opcode ,arg))
`(,address ,opcode #f)))))
(: read-instructions (Input-Port -> (Listof Instruction-Data)))
(define (read-instructions inpf)
(let loop ((line (read-line inpf))
(lst (cast '() (Listof Instruction-Data))))
(if (eof-object? line)
(reverse lst)
(let ((instr (parse-instruction line)))
(loop (read-line inpf)
(if instr
(cons instr lst)
lst))))))
(: read-datasize-and-strings-count (Input-Port -> (Values Word Word)))
(define (read-datasize-and-strings-count inpf)
(let ((line (read-line inpf)))
(unless (string? line)
(raise-user-error "empty input"))
;; This is a permissive implementation.
(let* ((strings (cast (regexp-match re-header line)
(Listof String)))
(datasize (string->word (second strings)))
(strings-count (string->word (third strings))))
(values datasize strings-count))))
(: parse-string-literal (String -> String))
(define (parse-string-literal s)
;; This is a permissive implementation, but only in that it skips
;; any leading space. It does not check carefully for outright
;; mistakes.
(let* ((s (regexp-replace re-leading-spaces s ""))
(quote-mark (string-ref s 0)))
(let loop ((i 1)
(lst (cast '() (Listof Char))))
(if (char=? (string-ref s i) quote-mark)
(list->string (reverse lst))
(let ((c (string-ref s i)))
(if (char=? c #\\)
(let ((c0 (match (string-ref s (+ i 1))
(#\n #\newline)
(c1 c1))))
(loop (+ i 2) (cons c0 lst)))
(loop (+ i 1) (cons c lst))))))))
(: read-string-literals (Input-Port Word -> (Listof String)))
(define (read-string-literals inpf strings-count)
(for/list ((i (in-range strings-count)))
(let ((line (read-line inpf)))
(begin (assert (string? line))
(parse-string-literal line)))))
(: open-inpf (String -> Input-Port))
(define (open-inpf inpf-filename)
(if (string=? inpf-filename "-")
(current-input-port)
(open-input-file inpf-filename)))
(: open-outf (String -> Output-Port))
(define (open-outf outf-filename)
(if (string=? outf-filename "-")
(current-output-port)
(open-output-file outf-filename #:exists 'truncate)))
(: word-signbit? (Word -> Boolean))
(define (word-signbit? x)
;; True if and only if the sign bit is set.
(not (zero? (bitwise-and x #x80000000))))
(: word-add (Word Word -> Word))
(define (word-add x y)
;; Addition with overflow freely allowed.
(cast (bitwise-and (+ x y) #xFFFFFFFF) Word))
(: word-neg (Word -> Word))
(define (word-neg x)
;; The two's complement.
(word-add (cast (bitwise-xor x #xFFFFFFFF) Word) 1))
(: word-sub (Word Word -> Word))
(define (word-sub x y)
;; Subtraction with overflow freely allowed.
(word-add x (word-neg y)))
(: word-mul (Word Word -> Word))
(define (word-mul x y)
;; Signed multiplication.
(let ((x<0 (word-signbit? x))
(y<0 (word-signbit? y)))
(let ((abs-x (if x<0 (word-neg x) x))
(abs-y (if y<0 (word-neg y) y)))
(let* ((abs-xy (cast (bitwise-and (* abs-x abs-y) #xFFFFFFFF)
Word)))
(if x<0
(if y<0 abs-xy (word-neg abs-xy))
(if y<0 (word-neg abs-xy) abs-xy))))))
(: word-div (Word Word -> Word))
(define (word-div x y)
;; The quotient after signed integer division with truncation
;; towards zero.
(let ((x<0 (word-signbit? x))
(y<0 (word-signbit? y)))
(let ((abs-x (if x<0 (word-neg x) x))
(abs-y (if y<0 (word-neg y) y)))
(let* ((abs-x/y (cast (bitwise-and (quotient abs-x abs-y)
#xFFFFFFFF)
Word)))
(if x<0
(if y<0 abs-x/y (word-neg abs-x/y))
(if y<0 (word-neg abs-x/y) abs-x/y))))))
(: word-mod (Word Word -> Word))
(define (word-mod x y)
;; The remainder after signed integer division with truncation
;; towards zero.
(let ((x<0 (word-signbit? x))
(y<0 (word-signbit? y)))
(let ((abs-x (if x<0 (word-neg x) x))
(abs-y (if y<0 (word-neg y) y)))
(let* ((abs-x/y (cast (bitwise-and (remainder abs-x abs-y)
#xFFFFFFFF)
Word)))
(if x<0
(if y<0 abs-x/y (word-neg abs-x/y))
(if y<0 (word-neg abs-x/y) abs-x/y))))))
(: b2i (Boolean -> (U Zero One)))
(define (b2i b)
(if b 1 0))
(: word-lt (Word Word -> Word))
(define (word-lt x y)
;; Signed comparison: is x less than y?
(let ((x<0 (word-signbit? x))
(y<0 (word-signbit? y)))
(b2i (if x<0
(if y<0 (< x y) #t)
(if y<0 #f (< x y))))))
(: word-le (Word Word -> Word))
(define (word-le x y)
;; Signed comparison: is x less than or equal to y?
(let ((x<0 (word-signbit? x))
(y<0 (word-signbit? y)))
(b2i (if x<0
(if y<0 (<= x y) #t)
(if y<0 #f (<= x y))))))
(: word-gt (Word Word -> Word))
(define (word-gt x y)
;; Signed comparison: is x greater than y?
(let ((x<0 (word-signbit? x))
(y<0 (word-signbit? y)))
(b2i (if x<0
(if y<0 (> x y) #f)
(if y<0 #t (> x y))))))
(: word-ge (Word Word -> Word))
(define (word-ge x y)
;; Signed comparison: is x greater than or equal to y?
(let ((x<0 (word-signbit? x))
(y<0 (word-signbit? y)))
(b2i (if x<0
(if y<0 (>= x y) #f)
(if y<0 #t (>= x y))))))
(: word-eq (Word Word -> Word))
(define (word-eq x y)
;; Is x equal to y?
(b2i (= x y)))
(: word-ne (Word Word -> Word))
(define (word-ne x y)
;; Is x not equal to y?
(b2i (not (= x y))))
(: word-cmp (Word -> Word))
(define (word-cmp x)
;; The logical complement.
(b2i (zero? x)))
(: word-and (Word Word -> Word))
(define (word-and x y)
;; The logical conjunction.
(b2i (and (not (zero? x)) (not (zero? y)))))
(: word-or (Word Word -> Word))
(define (word-or x y)
;; The logical disjunction.
(b2i (or (not (zero? x)) (not (zero? y)))))
(: unop (Stack-Memory Register (Word -> Word) -> Void))
(define (unop stack sp operation)
;; Perform a unary operation on the stack.
(let ((i (unbox sp)))
(unless (<= 1 i)
(raise-user-error "stack underflow"))
(let ((x (vector-ref stack (- i 1))))
;; Note how, in contrast to Common Lisp, "operation" is not in a
;; namespace separate from that of "ordinary" values, such as
;; numbers and strings. (Which way is "better" is a matter of
;; taste, and probably depends mostly on what "functional"
;; language one learnt first. Mine was Caml Light, so I prefer
;; the Scheme way. :) )
(vector-set! stack (- i 1) (operation x)))))
(: binop (Stack-Memory Register (Word Word -> Word) -> Void))
(define (binop stack sp operation)
;; Perform a binary operation on the stack.
(let ((i (unbox sp)))
(unless (<= 2 i)
(raise-user-error "stack underflow"))
(let ((x (vector-ref stack (- i 2)))
(y (vector-ref stack (- i 1))))
(vector-set! stack (- i 2) (operation x y)))
(set-box! sp (cast (- i 1) Word))))
(: jri (Executable-Memory Register -> Void))
(define (jri code ip)
;; Jump relative immediate.
(let ((j (unbox ip)))
(unless (<= (+ j 4) executable-memory-size)
(raise-user-error "address past end of executable memory"))
;; Big-endian order.
(let* ((offset (vector-ref code (+ j 3)))
(offset (bitwise-ior
(arithmetic-shift (vector-ref code (+ j 2)) 8)
offset))
(offset (bitwise-ior
(arithmetic-shift (vector-ref code (+ j 1)) 16)
offset))
(offset (bitwise-ior
(arithmetic-shift (vector-ref code j) 24)
offset)))
(set-box! ip (word-add j (cast offset Word))))))
(: jriz (Stack-Memory Register Executable-Memory Register -> Void))
(define (jriz stack sp code ip)
;; Jump relative immediate, if zero.
(let ((i (unbox sp)))
(unless (<= 1 i)
(raise-user-error "stack underflow"))
(let ((x (vector-ref stack (- i 1))))
(set-box! sp (- i 1))
(if (zero? x)
(jri code ip)
(let ((j (unbox ip)))
(set-box! ip (cast (+ j 4) Word)))))))
(: get-immediate-value (Executable-Memory Register -> Word))
(define (get-immediate-value code ip)
(let ((j (unbox ip)))
(unless (<= (+ j 4) executable-memory-size)
(raise-user-error "address past end of executable memory"))
;; Big-endian order.
(let* ((x (vector-ref code (+ j 3)))
(x (bitwise-ior
(arithmetic-shift (vector-ref code (+ j 2)) 8)
x))
(x (bitwise-ior
(arithmetic-shift (vector-ref code (+ j 1)) 16)
x))
(x (bitwise-ior
(arithmetic-shift (vector-ref code j) 24)
x)))
(set-box! ip (cast (+ j 4) Word))
(cast x Word))))
(: pushi (Stack-Memory Register Executable-Memory Register -> Void))
(define (pushi stack sp code ip)
;; Push-immediate a value from executable memory onto the stack.
(let ((i (unbox sp)))
(unless (< i stack-memory-size)
(raise-user-error "stack overflow"))
(vector-set! stack i (get-immediate-value code ip))
(set-box! sp (cast (+ i 1) Word))))
(: fetch (Stack-Memory
Register Executable-Memory Register
Data-Memory -> Void))
(define (fetch stack sp code ip data)
;; Fetch data to the stack, using the storage location given in
;; executable memory.
(let ((i (unbox sp)))
(unless (< i stack-memory-size)
(raise-user-error "stack overflow"))
(let* ((k (get-immediate-value code ip))
(x (vector-ref data k)))
(vector-set! stack i x)
(set-box! sp (cast (+ i 1) Word)))))
(: pop-one (Stack-Memory Register -> Word))
(define (pop-one stack sp)
(let ((i (unbox sp)))
(unless (<= 1 i)
(raise-user-error "stack underflow"))
(let* ((x (vector-ref stack (- i 1))))
(set-box! sp (- i 1))
x)))
(: store (Stack-Memory
Register Executable-Memory Register
Data-Memory -> Void))
(define (store stack sp code ip data)
;; Store data from the stack, using the storage location given in
;; executable memory.
(let ((i (unbox sp)))
(unless (<= 1 i)
(raise-user-error "stack underflow"))
(let ((k (get-immediate-value code ip))
(x (pop-one stack sp)))
(vector-set! data k x))))
(: prti (Stack-Memory Register Output-Port -> Void))
(define (prti stack sp outf)
;; Print the top value of the stack, as a signed decimal value.
(let* ((n (pop-one stack sp))
(n<0 (word-signbit? n)))
(if n<0
(begin (display "-" outf)
(display (word-neg n) outf))
(display n outf))))
(: prtc (Stack-Memory Register Output-Port -> Void))
(define (prtc stack sp outf)
;; Print the top value of the stack, as a character.
(let ((c (pop-one stack sp)))
(display (integer->char c) outf)))
(: prts (Stack-Memory
Register (Immutable-Vectorof String) Output-Port -> Void))
(define (prts stack sp strings outf)
;; Print the string specified by the top of the stack.
(let* ((k (pop-one stack sp))
(s (vector-ref strings k)))
(display s outf)))
;;
;; I have written macros in the standard R6RS fashion, with a lambda
;; and syntax-case, so the examples may be widely illustrative. Racket
;; supports this style, despite (purposely) not adhering to any Scheme
;; standard.
;;
;; Some Schemes that do not provide syntax-case (CHICKEN, for
;; instance) provide alternatives that may be quite different.
;;
;; R5RS and R7RS require only syntax-rules, which cannot do what we
;; are doing here. (What we are doing is similar to using ## in a
;; modern C macro, except that the pieces are not merely raw text, and
;; they must be properly typed at every stage.)
;;
(define-syntax define-machine-binop
(lambda (stx)
(syntax-case stx ()
((_ op)
(let* ((op^ (syntax->datum #'op))
(machine-op (string-append "machine-" op^))
(machine-op (string->symbol machine-op))
(machine-op (datum->syntax stx machine-op))
(word-op (string-append "word-" op^))
(word-op (string->symbol word-op))
(word-op (datum->syntax stx word-op)))
#`(begin
(: #,machine-op (Machine -> Void))
(define (#,machine-op mach)
(binop (machine-stack mach)
(machine-sp mach)
#,word-op))))))))
(define-syntax define-machine-unop
(lambda (stx)
(syntax-case stx ()
((_ op)
(let* ((op^ (syntax->datum #'op))
(machine-op (string-append "machine-" op^))
(machine-op (string->symbol machine-op))
(machine-op (datum->syntax stx machine-op))
(word-op (string-append "word-" op^))
(word-op (string->symbol word-op))
(word-op (datum->syntax stx word-op)))
#`(begin
(: #,machine-op (Machine -> Void))
(define (#,machine-op mach)
(unop (machine-stack mach)
(machine-sp mach)
#,word-op))))))))
(define-machine-binop "add")
(define-machine-binop "sub")
(define-machine-binop "mul")
(define-machine-binop "div")
(define-machine-binop "mod")
(define-machine-binop "lt")
(define-machine-binop "gt")
(define-machine-binop "le")
(define-machine-binop "ge")
(define-machine-binop "eq")
(define-machine-binop "ne")
(define-machine-binop "and")
(define-machine-binop "or")
(define-machine-unop "neg")
(: machine-not (Machine -> Void))
(define (machine-not mach)
(unop (machine-stack mach)
(machine-sp mach)
word-cmp))
(: machine-prtc (Machine -> Void))
(define (machine-prtc mach)
(prtc (machine-stack mach)
(machine-sp mach)
(machine-output mach)))
(: machine-prti (Machine -> Void))
(define (machine-prti mach)
(prti (machine-stack mach)
(machine-sp mach)
(machine-output mach)))
(: machine-prts (Machine -> Void))
(define (machine-prts mach)
(prts (machine-stack mach)
(machine-sp mach)
(machine-strings mach)
(machine-output mach)))
(: machine-fetch (Machine -> Void))
(define (machine-fetch mach)
(fetch (machine-stack mach)
(machine-sp mach)
(machine-code mach)
(machine-ip mach)
(machine-data mach)))
(: machine-store (Machine -> Void))
(define (machine-store mach)
(store (machine-stack mach)
(machine-sp mach)
(machine-code mach)
(machine-ip mach)
(machine-data mach)))
(: machine-push (Machine -> Void))
(define (machine-push mach)
(pushi (machine-stack mach)
(machine-sp mach)
(machine-code mach)
(machine-ip mach)))
(: machine-jmp (Machine -> Void))
(define (machine-jmp mach)
(jri (machine-code mach)
(machine-ip mach)))
(: machine-jz (Machine -> Void))
(define (machine-jz mach)
(jriz (machine-stack mach)
(machine-sp mach)
(machine-code mach)
(machine-ip mach)))
(: get-opcode (Machine -> Byte))
(define (get-opcode mach)
(let ((code (machine-code mach))
(ip (machine-ip mach)))
(let ((j (unbox ip)))
(unless (< j executable-memory-size)
(raise-user-error "address past end of executable memory"))
(let ((opcode (vector-ref code j)))
(set-box! ip (cast (+ j 1) Word))
opcode))))
(: run-instruction (Machine Byte -> Void))
(define (run-instruction mach opcode)
(let ((op-mod-4 (bitwise-and opcode #x3))
(op-div-4 (arithmetic-shift opcode -2)))
(match op-div-4
(0 (match op-mod-4
(1 (machine-add mach))
(2 (machine-sub mach))
(3 (machine-mul mach))))
(1 (match op-mod-4
(0 (machine-div mach))
(1 (machine-mod mach))
(2 (machine-lt mach))
(3 (machine-gt mach))))
(2 (match op-mod-4
(0 (machine-le mach))
(1 (machine-ge mach))
(2 (machine-eq mach))
(3 (machine-ne mach))))
(3 (match op-mod-4
(0 (machine-and mach))
(1 (machine-or mach))
(2 (machine-neg mach))
(3 (machine-not mach))))
(4 (match op-mod-4
(0 (machine-prtc mach))
(1 (machine-prti mach))
(2 (machine-prts mach))
(3 (machine-fetch mach))))
(5 (match op-mod-4
(0 (machine-store mach))
(1 (machine-push mach))
(2 (machine-jmp mach))
(3 (machine-jz mach)))))))
(: run-vm (Machine -> Void))
(define (run-vm mach)
(let ((opcode-for-halt (cast (opcode-from-name "halt") Byte))
(opcode-for-add (cast (opcode-from-name "add") Byte))
(opcode-for-jz (cast (opcode-from-name "jz") Byte)))
(let loop ((opcode (get-opcode mach)))
(unless (= opcode opcode-for-halt)
(begin
(when (or (< opcode opcode-for-add)
(< opcode-for-jz opcode))
(raise-user-error "unsupported opcode"))
(run-instruction mach opcode)
(loop (get-opcode mach)))))))
(define (usage-error)
(display "Usage: vm [INPUTFILE [OUTPUTFILE]]" (current-error-port))
(newline (current-error-port))
(display "If either INPUTFILE or OUTPUTFILE is \"-\", the respective"
(current-error-port))
(display " standard I/O is used." (current-error-port))
(newline (current-error-port))
(exit 1))
(: get-filenames (-> (Values String String)))
(define (get-filenames)
(match (current-command-line-arguments)
((vector) (values "-" "-"))
((vector inpf-filename)
(values (cast inpf-filename String) "-"))
((vector inpf-filename outf-filename)
(values (cast inpf-filename String)
(cast outf-filename String)))
(_ (usage-error)
(values "" ""))))
(let-values (((inpf-filename outf-filename) (get-filenames)))
(let* ((inpf (open-inpf inpf-filename))
(outf (open-outf outf-filename)))
(let-values (((datasize strings-count)
(read-datasize-and-strings-count inpf)))
(let* ((strings
(vector->immutable-vector
(list->vector
(read-string-literals inpf strings-count))))
(instructions (read-instructions inpf))
(mach (make-machine strings outf)))
(unless (<= datasize data-memory-size)
(raise-user-error
"the VM's data memory size is exceeded"))
(load-executable-memory (machine-code mach) instructions)
(run-vm mach)
(unless (string=? inpf-filename "-")
(close-input-port inpf))
(unless (string=? outf-filename "-")
(close-output-port outf))
(exit 0))))) |
http://rosettacode.org/wiki/Compiler/code_generator | Compiler/code generator | A code generator translates the output of the syntax analyzer and/or semantic analyzer
into lower level code, either assembly, object, or virtual.
Task[edit]
Take the output of the Syntax analyzer task - which is a flattened Abstract Syntax Tree (AST) - and convert it to virtual machine code, that can be run by the
Virtual machine interpreter. The output is in text format, and represents virtual assembly code.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
while.ast can be input into the code generator.
The following table shows the input to lex, lex output, the AST produced by the parser, and the generated virtual assembly code.
Run as: lex < while.t | parse | gen
Input to lex
Output from lex, input to parse
Output from parse
Output from gen, input to VM
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
Input format
As shown in the table, above, the output from the syntax analyzer is a flattened AST.
In the AST, Identifier, Integer, and String, are terminal nodes, e.g, they do not have child nodes.
Loading this data into an internal parse tree should be as simple as:
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";"
return None
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Output format - refer to the table above
The first line is the header: Size of data, and number of constant strings.
size of data is the number of 32-bit unique variables used. In this example, one variable, count
number of constant strings is just that - how many there are
After that, the constant strings
Finally, the assembly code
Registers
sp: the stack pointer - points to the next top of stack. The stack is a 32-bit integer array.
pc: the program counter - points to the current instruction to be performed. The code is an array of bytes.
Data
32-bit integers and strings
Instructions
Each instruction is one byte. The following instructions also have a 32-bit integer operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
prtc
Print the word at stack top as a character.
prti
Print the word at stack top as an integer.
prts
Stack top points to an index into the string pool. Print that entry.
halt
Unconditional stop.
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Virtual Machine Interpreter task
AST Interpreter task
| #RATFOR | RATFOR | ######################################################################
#
# The Rosetta Code code generator in Ratfor 77.
#
#
# In FORTRAN 77 and therefore in Ratfor 77, there is no way to specify
# that a value should be put on a call stack. Therefore there is no
# way to implement recursive algorithms in Ratfor 77 (although see the
# Ratfor for the "syntax analyzer" task, where a recursive language is
# implemented *in* Ratfor). We are forced to use non-recursive
# algorithms.
#
# How to deal with FORTRAN 77 input is another problem. I use
# formatted input, treating each line as an array of type
# CHARACTER--regrettably of no more than some predetermined, finite
# length. It is a very simple method and presents no significant
# difficulties, aside from the restriction on line length of the
# input.
#
#
# On a POSIX platform, the program can be compiled with f2c and run
# somewhat as follows:
#
# ratfor77 gen-in-ratfor.r > gen-in-ratfor.f
# f2c -C -Nc80 gen-in-ratfor.f
# cc gen-in-ratfor.c -lf2c
# ./a.out < compiler-tests/primes.ast
#
# With gfortran, a little differently:
#
# ratfor77 gen-in-ratfor.r > gen-in-ratfor.f
# gfortran -fcheck=all -std=legacy gen-in-ratfor.f
# ./a.out < compiler-tests/primes.ast
#
#
# I/O is strictly from default input and to default output, which, on
# POSIX systems, usually correspond respectively to standard input and
# standard output. (I did not wish to have to deal with unit numbers;
# these are now standardized in ISO_FORTRAN_ENV, but that is not
# available in FORTRAN 77.)
#
#---------------------------------------------------------------------
# Some parameters you may wish to modify.
define(LINESZ, 256) # Size of an input line.
define(OUTLSZ, 1024) # Size of an output line.
define(STRNSZ, 4096) # Size of the string pool.
define(NODSSZ, 4096) # Size of the nodes pool.
define(STCKSZ, 4096) # Size of stacks.
define(MAXVAR, 256) # Maximum number of variables.
define(MAXSTR, 256) # Maximum number of strings.
define(CODESZ, 16384) # Maximum size of a compiled program.
#---------------------------------------------------------------------
define(NEWLIN, 10) # The Unix newline character (ASCII LF).
define(DQUOTE, 34) # The double quote character.
define(BACKSL, 92) # The backslash character.
#---------------------------------------------------------------------
define(NODESZ, 3)
define(NNEXTF, 1) # Index for next-free.
define(NTAG, 1) # Index for the tag.
# For an internal node --
define(NLEFT, 2) # Index for the left node.
define(NRIGHT, 3) # Index for the right node.
# For a leaf node --
define(NITV, 2) # Index for the string pool index.
define(NITN, 3) # Length of the value.
define(NIL, -1) # Nil node.
define(RGT, 10000)
define(STAGE2, 20000)
define(STAGE3, 30000)
define(STAGE4, 40000)
# The following all must be less than RGT.
define(NDID, 0)
define(NDSTR, 1)
define(NDINT, 2)
define(NDSEQ, 3)
define(NDIF, 4)
define(NDPRTC, 5)
define(NDPRTS, 6)
define(NDPRTI, 7)
define(NDWHIL, 8)
define(NDASGN, 9)
define(NDNEG, 10)
define(NDNOT, 11)
define(NDMUL, 12)
define(NDDIV, 13)
define(NDMOD, 14)
define(NDADD, 15)
define(NDSUB, 16)
define(NDLT, 17)
define(NDLE, 18)
define(NDGT, 19)
define(NDGE, 20)
define(NDEQ, 21)
define(NDNE, 22)
define(NDAND, 23)
define(NDOR, 24)
define(OPHALT, 1)
define(OPADD, 2)
define(OPSUB, 3)
define(OPMUL, 4)
define(OPDIV, 5)
define(OPMOD, 6)
define(OPLT, 7)
define(OPGT, 8)
define(OPLE, 9)
define(OPGE, 10)
define(OPEQ, 11)
define(OPNE, 12)
define(OPAND, 13)
define(OPOR, 14)
define(OPNEG, 15)
define(OPNOT, 16)
define(OPPRTC, 17)
define(OPPRTI, 18)
define(OPPRTS, 19)
define(OPFTCH, 20)
define(OPSTOR, 21)
define(OPPUSH, 22)
define(OPJMP, 23)
define(OPJZ, 24)
#---------------------------------------------------------------------
function issp (c)
# Is a character a space character?
implicit none
character c
logical issp
integer ic
ic = ichar (c)
issp = (ic == 32 || (9 <= ic && ic <= 13))
end
function skipsp (str, i, imax)
# Skip past spaces in a string.
implicit none
character str(*)
integer i
integer imax
integer skipsp
logical issp
logical done
skipsp = i
done = .false.
while (!done)
{
if (imax <= skipsp)
done = .true.
else if (!issp (str(skipsp)))
done = .true.
else
skipsp = skipsp + 1
}
end
function skipns (str, i, imax)
# Skip past non-spaces in a string.
implicit none
character str(*)
integer i
integer imax
integer skipns
logical issp
logical done
skipns = i
done = .false.
while (!done)
{
if (imax <= skipns)
done = .true.
else if (issp (str(skipns)))
done = .true.
else
skipns = skipns + 1
}
end
function trimrt (str, n)
# Find the length of a string, if one ignores trailing spaces.
implicit none
character str(*)
integer n
integer trimrt
logical issp
logical done
trimrt = n
done = .false.
while (!done)
{
if (trimrt == 0)
done = .true.
else if (!issp (str(trimrt)))
done = .true.
else
trimrt = trimrt - 1
}
end
#---------------------------------------------------------------------
subroutine addstr (strngs, istrng, src, i0, n0, i, n)
# Add a string to the string pool.
implicit none
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
character src(*) # Source string.
integer i0, n0 # Index and length in source string.
integer i, n # Index and length in string pool.
integer j
if (STRNSZ < istrng + (n0 - 1))
{
write (*, '(''string pool exhausted'')')
stop
}
if (n0 == 0)
{
i = 0
n = 0
}
else
{
for (j = 0; j < n0; j = j + 1)
strngs(istrng + j) = src(i0 + j)
i = istrng
n = n0
istrng = istrng + n0
}
end
#---------------------------------------------------------------------
subroutine push (stack, sp, i)
implicit none
integer stack(STCKSZ)
integer sp # Stack pointer.
integer i # Value to push.
if (sp == STCKSZ)
{
write (*, '(''stack overflow in push'')')
stop
}
stack(sp) = i
sp = sp + 1
end
function pop (stack, sp)
implicit none
integer stack(STCKSZ)
integer sp # Stack pointer.
integer pop
if (sp == 1)
{
write (*, '(''stack underflow in pop'')')
stop
}
sp = sp - 1
pop = stack(sp)
end
function nstack (sp)
implicit none
integer sp # Stack pointer.
integer nstack
nstack = sp - 1 # Current cardinality of the stack.
end
#---------------------------------------------------------------------
subroutine initnd (nodes, frelst)
# Initialize the nodes pool.
implicit none
integer nodes (NODESZ, NODSSZ)
integer frelst # Head of the free list.
integer i
for (i = 1; i < NODSSZ; i = i + 1)
nodes(NNEXTF, i) = i + 1
nodes(NNEXTF, NODSSZ) = NIL
frelst = 1
end
subroutine newnod (nodes, frelst, i)
# Get the index for a new node taken from the free list.
integer nodes (NODESZ, NODSSZ)
integer frelst # Head of the free list.
integer i # Index of the new node.
integer j
if (frelst == NIL)
{
write (*, '(''nodes pool exhausted'')')
stop
}
i = frelst
frelst = nodes(NNEXTF, frelst)
for (j = 1; j <= NODESZ; j = j + 1)
nodes(j, i) = 0
end
subroutine frenod (nodes, frelst, i)
# Return a node to the free list.
integer nodes (NODESZ, NODSSZ)
integer frelst # Head of the free list.
integer i # Index of the node to free.
nodes(NNEXTF, i) = frelst
frelst = i
end
function strtag (str, i, n)
implicit none
character str(*)
integer i, n
integer strtag
character*16 s
integer j
for (j = 0; j < 16; j = j + 1)
if (j < n)
s(j + 1 : j + 1) = str(i + j)
else
s(j + 1 : j + 1) = ' '
if (s == "Identifier ")
strtag = NDID
else if (s == "String ")
strtag = NDSTR
else if (s == "Integer ")
strtag = NDINT
else if (s == "Sequence ")
strtag = NDSEQ
else if (s == "If ")
strtag = NDIF
else if (s == "Prtc ")
strtag = NDPRTC
else if (s == "Prts ")
strtag = NDPRTS
else if (s == "Prti ")
strtag = NDPRTI
else if (s == "While ")
strtag = NDWHIL
else if (s == "Assign ")
strtag = NDASGN
else if (s == "Negate ")
strtag = NDNEG
else if (s == "Not ")
strtag = NDNOT
else if (s == "Multiply ")
strtag = NDMUL
else if (s == "Divide ")
strtag = NDDIV
else if (s == "Mod ")
strtag = NDMOD
else if (s == "Add ")
strtag = NDADD
else if (s == "Subtract ")
strtag = NDSUB
else if (s == "Less ")
strtag = NDLT
else if (s == "LessEqual ")
strtag = NDLE
else if (s == "Greater ")
strtag = NDGT
else if (s == "GreaterEqual ")
strtag = NDGE
else if (s == "Equal ")
strtag = NDEQ
else if (s == "NotEqual ")
strtag = NDNE
else if (s == "And ")
strtag = NDAND
else if (s == "Or ")
strtag = NDOR
else if (s == "; ")
strtag = NIL
else
{
write (*, '(''unrecognized input line: '', A16)') s
stop
}
end
subroutine readln (strngs, istrng, tag, iarg, narg)
# Read a line of the AST input.
implicit none
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer tag # The node tag or NIL.
integer iarg # Index of an argument in the string pool.
integer narg # Length of an argument in the string pool.
integer trimrt
integer strtag
integer skipsp
integer skipns
character line(LINESZ)
character*20 fmt
integer i, j, n
# Read a line of text as an array of characters.
write (fmt, '(''('', I10, ''A)'')') LINESZ
read (*, fmt) line
n = trimrt (line, LINESZ)
i = skipsp (line, 1, n + 1)
j = skipns (line, i, n + 1)
tag = strtag (line, i, j - i)
i = skipsp (line, j, n + 1)
call addstr (strngs, istrng, line, i, (n + 1) - i, iarg, narg)
end
function hasarg (tag)
implicit none
integer tag
logical hasarg
hasarg = (tag == NDID || tag == NDINT || tag == NDSTR)
end
subroutine rdast (strngs, istrng, nodes, frelst, iast)
# Read in the AST. A non-recursive algorithm is used.
implicit none
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer nodes (NODESZ, NODSSZ) # Nodes pool.
integer frelst # Head of the free list.
integer iast # Index of root node of the AST.
integer nstack
integer pop
logical hasarg
integer stack(STCKSZ)
integer sp # Stack pointer.
integer tag, iarg, narg
integer i, j, k
sp = 1
call readln (strngs, istrng, tag, iarg, narg)
if (tag == NIL)
iast = NIL
else
{
call newnod (nodes, frelst, i)
iast = i
nodes(NTAG, i) = tag
nodes(NITV, i) = 0
nodes(NITN, i) = 0
if (hasarg (tag))
{
nodes(NITV, i) = iarg
nodes(NITN, i) = narg
}
else
{
call push (stack, sp, i + RGT)
call push (stack, sp, i)
while (nstack (sp) != 0)
{
j = pop (stack, sp)
k = mod (j, RGT)
call readln (strngs, istrng, tag, iarg, narg)
if (tag == NIL)
i = NIL
else
{
call newnod (nodes, frelst, i)
nodes(NTAG, i) = tag
if (hasarg (tag))
{
nodes(NITV, i) = iarg
nodes(NITN, i) = narg
}
else
{
call push (stack, sp, i + RGT)
call push (stack, sp, i)
}
}
if (j == k)
nodes(NLEFT, k) = i
else
nodes(NRIGHT, k) = i
}
}
}
end
#---------------------------------------------------------------------
subroutine flushl (outbuf, noutbf)
# Flush a line from the output buffer.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
character*20 fmt
integer i
if (noutbf == 0)
write (*, '()')
else
{
write (fmt, 1000) noutbf
1000 format ('(', I10, 'A)')
write (*, fmt) (outbuf(i), i = 1, noutbf)
noutbf = 0
}
end
subroutine wrtchr (outbuf, noutbf, ch)
# Write a character to output.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
character ch # The character to output.
# This routine silently truncates anything that goes past the buffer
# boundary.
if (ch == char (NEWLIN))
call flushl (outbuf, noutbf)
else if (noutbf < OUTLSZ)
{
noutbf = noutbf + 1
outbuf(noutbf) = ch
}
end
subroutine wrtstr (outbuf, noutbf, str, i, n)
# Write a substring to output.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
character str(*) # The string from which to output.
integer i, n # Index and length of the substring.
integer j
for (j = 0; j < n; j = j + 1)
call wrtchr (outbuf, noutbf, str(i + j))
end
subroutine wrtint (outbuf, noutbf, ival, colcnt)
# Write a non-negative integer to output.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
integer ival # The non-negative integer to print.
integer colcnt # Column count, or zero for free format.
integer skipsp
character*40 buf
integer i, j
write (buf, '(I40)') ival
i = skipsp (buf, 1, 41)
if (0 < colcnt)
for (j = 1; j < colcnt - (40 - i); j = j + 1)
call wrtchr (outbuf, noutbf, ' ')
while (i <= 40)
{
call wrtchr (outbuf, noutbf, buf(i:i))
i = i + 1
}
end
#---------------------------------------------------------------------
define(VARSZ, 3)
define(VNAMEI, 1) # Variable name's index in the string pool.
define(VNAMEN, 2) # Length of the name.
define(VVALUE, 3) # Variable's number in the VM's data pool.
function fndvar (vars, numvar, strngs, istrng, i0, n0)
implicit none
integer vars(VARSZ, MAXVAR) # Variables.
integer numvar # Number of variables.
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer i0, n0 # Index and length in the string pool.
integer fndvar # The location of the variable.
integer j, k
integer i, n
logical done1
logical done2
j = 1
done1 = .false.
while (!done1)
if (j == numvar + 1)
done1 = .true.
else if (n0 == vars(VNAMEN, j))
{
k = 0
done2 = .false.
while (!done2)
if (n0 <= k)
done2 = .true.
else if (strngs(i0 + k) == strngs(vars(VNAMEI, j) + k))
k = k + 1
else
done2 = .true.
if (k < n0)
j = j + 1
else
{
done2 = .true.
done1 = .true.
}
}
else
j = j + 1
if (j == numvar + 1)
{
if (numvar == MAXVAR)
{
write (*, '(''too many variables'')')
stop
}
numvar = numvar + 1
call addstr (strngs, istrng, strngs, i0, n0, i, n)
vars(VNAMEI, numvar) = i
vars(VNAMEN, numvar) = n
vars(VVALUE, numvar) = numvar - 1
fndvar = numvar
}
else
fndvar = j
end
define(STRSZ, 3)
define(STRI, 1) # String's index in this program's string pool.
define(STRN, 2) # Length of the string.
define(STRNO, 3) # String's number in the VM's string pool.
function fndstr (strs, numstr, strngs, istrng, i0, n0)
implicit none
integer strs(STRSZ, MAXSTR) # Strings for the VM's string pool.
integer numstr # Number of such strings.
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer i0, n0 # Index and length in the string pool.
integer fndstr # The location of the string in the VM's string pool.
integer j, k
integer i, n
logical done1
logical done2
j = 1
done1 = .false.
while (!done1)
if (j == numstr + 1)
done1 = .true.
else if (n0 == strs(STRN, j))
{
k = 0
done2 = .false.
while (!done2)
if (n0 <= k)
done2 = .true.
else if (strngs(i0 + k) == strngs(strs(STRI, j) + k))
k = k + 1
else
done2 = .true.
if (k < n0)
j = j + 1
else
{
done2 = .true.
done1 = .true.
}
}
else
j = j + 1
if (j == numstr + 1)
{
if (numstr == MAXSTR)
{
write (*, '(''too many string literals'')')
stop
}
numstr = numstr + 1
call addstr (strngs, istrng, strngs, i0, n0, i, n)
strs(STRI, numstr) = i
strs(STRN, numstr) = n
strs(STRNO, numstr) = numstr - 1
fndstr = numstr
}
else
fndstr = j
end
function strint (strngs, i, n)
# Convert a string to a non-negative integer.
implicit none
character strngs(STRNSZ) # String pool.
integer i, n
integer strint
integer j
strint = 0
for (j = 0; j < n; j = j + 1)
strint = (10 * strint) + (ichar (strngs(i + j)) - ichar ('0'))
end
subroutine put1 (code, ncode, i, opcode)
# Store a 1-byte operation.
implicit none
integer code(0 : CODESZ - 1) # Generated code.
integer ncode # Number of VM bytes in the code.
integer i # Address to put the code at.
integer opcode
if (CODESZ - i < 1)
{
write (*, '(''address beyond the size of memory'')')
stop
}
code(i) = opcode
ncode = max (ncode, i + 1)
end
subroutine put5 (code, ncode, i, opcode, ival)
# Store a 5-byte operation.
implicit none
integer code(0 : CODESZ - 1) # Generated code.
integer ncode # Number of VM bytes in the code.
integer i # Address to put the code at.
integer opcode
integer ival # Immediate integer value.
if (CODESZ - i < 5)
{
write (*, '(''address beyond the size of memory'')')
stop
}
code(i) = opcode
code(i + 1) = ival # Do not bother to break the integer into bytes.
code(i + 2) = 0
code(i + 3) = 0
code(i + 4) = 0
ncode = max (ncode, i + 5)
end
subroutine compil (vars, numvar, _
strs, numstr, _
strngs, istrng, _
nodes, frelst, _
code, ncode, iast)
# Compile the AST to virtual machine code. The algorithm employed is
# non-recursive.
implicit none
integer vars(VARSZ, MAXVAR) # Variables.
integer numvar # Number of variables.
integer strs(STRSZ, MAXSTR) # Strings for the VM's string pool.
integer numstr # Number of such strings.
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer nodes (NODESZ, NODSSZ) # Nodes pool.
integer frelst # Head of the free list.
integer code(0 : CODESZ - 1) # Generated code.
integer ncode # Number of VM bytes in the code.
integer iast # Root node of the AST.
integer fndvar
integer fndstr
integer nstack
integer pop
integer strint
integer xstack(STCKSZ) # Node stack.
integer ixstck # Node stack pointer.
integer i
integer i0, n0
integer tag
integer ivar
integer inode1, inode2, inode3
integer addr1, addr2
ixstck = 1
call push (xstack, ixstck, iast)
while (nstack (ixstck) != 0)
{
i = pop (xstack, ixstck)
if (i == NIL)
tag = NIL
else
tag = nodes(NTAG, i)
if (tag == NIL)
continue
else if (tag < STAGE2)
{
if (tag == NDSEQ)
{
if (nodes(NRIGHT, i) != NIL)
call push (xstack, ixstck, nodes(NRIGHT, i))
if (nodes(NLEFT, i) != NIL)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDID)
{
# Fetch the value of a variable.
i0 = nodes(NITV, i)
n0 = nodes(NITN, i)
ivar = fndvar (vars, numvar, strngs, istrng, i0, n0)
ivar = vars(VVALUE, ivar)
call put5 (code, ncode, ncode, OPFTCH, ivar)
}
else if (tag == NDINT)
{
# Push the value of an integer literal.
i0 = nodes(NITV, i)
n0 = nodes(NITN, i)
call put5 (code, ncode, ncode, OPPUSH, _
strint (strngs, i0, n0))
}
else if (tag == NDNEG)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDNEG + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDNOT)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDNOT + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDAND)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDAND + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDOR)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDOR + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDADD)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDADD + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDSUB)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDSUB + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDMUL)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDMUL + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDDIV)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDDIV + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDMOD)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDMOD + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDLT)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDLT + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDLE)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDLE + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDGT)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDGT + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDGE)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDGE + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDEQ)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDEQ + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDNE)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDNE + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDASGN)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDASGN + STAGE2
nodes(NITV, inode1) = nodes(NITV, nodes(NLEFT, i))
nodes(NITN, inode1) = nodes(NITN, nodes(NLEFT, i))
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NRIGHT, i))
}
else if (tag == NDPRTS)
{
i0 = nodes(NITV, nodes(NLEFT, i))
n0 = nodes(NITN, nodes(NLEFT, i))
ivar = fndstr (strs, numstr, strngs, istrng, i0, n0)
ivar = strs(STRNO, ivar)
call put5 (code, ncode, ncode, OPPUSH, ivar)
call put1 (code, ncode, ncode, OPPRTS)
}
else if (tag == NDPRTC)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDPRTC + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDPRTI)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDPRTI + STAGE2
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDWHIL)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDWHIL + STAGE2
nodes(NLEFT, inode1) = nodes(NRIGHT, i) # Loop body.
nodes(NRIGHT, inode1) = ncode # Addr. of top of loop.
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
else if (tag == NDIF)
{
call newnod (nodes, frelst, inode1)
nodes(NTAG, inode1) = NDIF + STAGE2
# The "then" and "else" clauses, respectively:
nodes(NLEFT, inode1) = nodes(NLEFT, nodes(NRIGHT, i))
nodes(NRIGHT, inode1) = nodes(NRIGHT, nodes(NRIGHT, i))
call push (xstack, ixstck, inode1)
call push (xstack, ixstck, nodes(NLEFT, i))
}
}
else
{
if (tag == NDNEG + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPNEG)
}
else if (tag == NDNOT + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPNOT)
}
else if (tag == NDAND + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPAND)
}
else if (tag == NDOR + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPOR)
}
else if (tag == NDADD + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPADD)
}
else if (tag == NDSUB + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPSUB)
}
else if (tag == NDMUL + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPMUL)
}
else if (tag == NDDIV + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPDIV)
}
else if (tag == NDMOD + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPMOD)
}
else if (tag == NDLT + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPLT)
}
else if (tag == NDLE + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPLE)
}
else if (tag == NDGT + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPGT)
}
else if (tag == NDGE + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPGE)
}
else if (tag == NDEQ + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPEQ)
}
else if (tag == NDNE + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPNE)
}
else if (tag == NDASGN + STAGE2)
{
i0 = nodes(NITV, i)
n0 = nodes(NITN, i)
call frenod (nodes, frelst, i)
ivar = fndvar (vars, numvar, strngs, istrng, i0, n0)
ivar = vars(VVALUE, ivar)
call put5 (code, ncode, ncode, OPSTOR, ivar)
}
else if (tag == NDPRTC + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPPRTC)
}
else if (tag == NDPRTI + STAGE2)
{
call frenod (nodes, frelst, i)
call put1 (code, ncode, ncode, OPPRTI)
}
else if (tag == NDWHIL + STAGE2)
{
inode1 = nodes(NLEFT, i) # Loop body.
addr1 = nodes(NRIGHT, i) # Addr. of top of loop.
call frenod (nodes, frelst, i)
call put5 (code, ncode, ncode, OPJZ, 0)
call newnod (nodes, frelst, inode2)
nodes(NTAG, inode2) = NDWHIL + STAGE3
nodes(NLEFT, inode2) = addr1 # Top of loop.
nodes(NRIGHT, inode2) = ncode - 4 # Fixup address.
call push (xstack, ixstck, inode2)
call push (xstack, ixstck, inode1)
}
else if (tag == NDWHIL + STAGE3)
{
addr1 = nodes(NLEFT, i) # Top of loop.
addr2 = nodes(NRIGHT, i) # Fixup address.
call frenod (nodes, frelst, i)
call put5 (code, ncode, ncode, OPJMP, addr1)
code(addr2) = ncode
}
else if (tag == NDIF + STAGE2)
{
inode1 = nodes(NLEFT, i) # "Then" clause.
inode2 = nodes(NRIGHT, i) # "Else" clause.
call frenod (nodes, frelst, i)
call put5 (code, ncode, ncode, OPJZ, 0)
call newnod (nodes, frelst, inode3)
nodes(NTAG, inode3) = NDIF + STAGE3
nodes(NLEFT, inode3) = ncode - 4 # Fixup address.
nodes(NRIGHT, inode3) = inode2 # "Else" clause.
call push (xstack, ixstck, inode3)
call push (xstack, ixstck, inode1)
}
else if (tag == NDIF + STAGE3)
{
addr1 = nodes(NLEFT, i) # Fixup address.
inode1 = nodes(NRIGHT, i) # "Else" clause.
call frenod (nodes, frelst, i)
if (inode2 == NIL)
code(addr1) = ncode
else
{
call put5 (code, ncode, ncode, OPJMP, 0)
addr2 = ncode - 4 # Another fixup address.
code(addr1) = ncode
call newnod (nodes, frelst, inode2)
nodes(NTAG, inode2) = NDIF + STAGE4
nodes(NLEFT, inode2) = addr2
call push (xstack, ixstck, inode2)
call push (xstack, ixstck, inode1)
}
}
else if (tag == NDIF + STAGE4)
{
addr1 = nodes(NLEFT, i) # Fixup address.
call frenod (nodes, frelst, i)
code(addr1) = ncode
}
}
}
call put1 (code, ncode, ncode, OPHALT)
end
function opname (opcode)
implicit none
integer opcode
character*8 opname
if (opcode == OPHALT)
opname = 'halt '
else if (opcode == OPADD)
opname = 'add '
else if (opcode == OPSUB)
opname = 'sub '
else if (opcode == OPMUL)
opname = 'mul '
else if (opcode == OPDIV)
opname = 'div '
else if (opcode == OPMOD)
opname = 'mod '
else if (opcode == OPLT)
opname = 'lt '
else if (opcode == OPGT)
opname = 'gt '
else if (opcode == OPLE)
opname = 'le '
else if (opcode == OPGE)
opname = 'ge '
else if (opcode == OPEQ)
opname = 'eq '
else if (opcode == OPNE)
opname = 'ne '
else if (opcode == OPAND)
opname = 'and '
else if (opcode == OPOR)
opname = 'or '
else if (opcode == OPNEG)
opname = 'neg '
else if (opcode == OPNOT)
opname = 'not '
else if (opcode == OPPRTC)
opname = 'prtc '
else if (opcode == OPPRTI)
opname = 'prti '
else if (opcode == OPPRTS)
opname = 'prts '
else if (opcode == OPFTCH)
opname = 'fetch '
else if (opcode == OPSTOR)
opname = 'store '
else if (opcode == OPPUSH)
opname = 'push '
else if (opcode == OPJMP)
opname = 'jmp '
else if (opcode == OPJZ)
opname = 'jz '
else
{
write (*, '(''Unrecognized opcode: '', I5)') opcode
stop
}
end
subroutine prprog (numvar, strs, numstr, strngs, istrng, _
code, ncode, outbuf, noutbf)
implicit none
integer numvar # Number of variables.
integer strs(STRSZ, MAXSTR) # Strings for the VM's string pool.
integer numstr # Number of such strings.
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer code(0 : CODESZ - 1) # Generated code.
integer ncode # Number of VM bytes in the code.
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
character*8 opname
integer i0, n0
integer i, j
integer opcode
character*8 name
character buf(20)
buf(1) = 'D'
buf(2) = 'a'
buf(3) = 't'
buf(4) = 'a'
buf(5) = 's'
buf(6) = 'i'
buf(7) = 'z'
buf(8) = 'e'
buf(9) = ':'
buf(10) = ' '
call wrtstr (outbuf, noutbf, buf, 1, 10)
call wrtint (outbuf, noutbf, numvar, 0)
buf(1) = ' '
buf(2) = 'S'
buf(3) = 't'
buf(4) = 'r'
buf(5) = 'i'
buf(6) = 'n'
buf(7) = 'g'
buf(8) = 's'
buf(9) = ':'
buf(10) = ' '
call wrtstr (outbuf, noutbf, buf, 1, 10)
call wrtint (outbuf, noutbf, numstr, 0)
call wrtchr (outbuf, noutbf, char (NEWLIN))
for (i = 1; i <= numstr; i = i + 1)
{
i0 = strs(STRI, i)
n0 = strs(STRN, i)
call wrtstr (outbuf, noutbf, strngs, i0, n0)
call wrtchr (outbuf, noutbf, char (NEWLIN))
}
i = 0
while (i != ncode)
{
opcode = code(i)
name = opname (opcode)
call wrtint (outbuf, noutbf, i, 10)
for (j = 1; j <= 2; j = j + 1)
call wrtchr (outbuf, noutbf, ' ')
for (j = 1; j <= 8; j = j + 1)
{
if (opcode == OPFTCH _
|| opcode == OPSTOR _
|| opcode == OPPUSH _
|| opcode == OPJMP _
|| opcode == OPJZ)
call wrtchr (outbuf, noutbf, name(j:j))
else if (name(j:j) != ' ')
call wrtchr (outbuf, noutbf, name(j:j))
}
if (opcode == OPPUSH)
{
call wrtint (outbuf, noutbf, code(i + 1), 0)
i = i + 5
}
else if (opcode == OPFTCH || opcode == OPSTOR)
{
call wrtchr (outbuf, noutbf, '[')
call wrtint (outbuf, noutbf, code(i + 1), 0)
call wrtchr (outbuf, noutbf, ']')
i = i + 5
}
else if (opcode == OPJMP || opcode == OPJZ)
{
call wrtchr (outbuf, noutbf, '(')
call wrtint (outbuf, noutbf, code(i + 1) - (i + 1), 0)
call wrtchr (outbuf, noutbf, ')')
call wrtchr (outbuf, noutbf, ' ')
call wrtint (outbuf, noutbf, code(i + 1), 0)
i = i + 5
}
else
i = i + 1
call wrtchr (outbuf, noutbf, char (NEWLIN))
}
end
#---------------------------------------------------------------------
program gen
implicit none
integer vars(VARSZ, MAXVAR) # Variables.
integer numvar # Number of variables.
integer strs(STRSZ, MAXSTR) # Strings for the VM's string pool.
integer numstr # Number of such strings.
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer nodes (NODESZ, NODSSZ) # Nodes pool.
integer frelst # Head of the free list.
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
integer code(0 : CODESZ - 1) # Generated code.
integer ncode # Number of VM bytes in the code.
integer iast # Root node of the AST.
numvar = 0
numstr = 0
istrng = 1
noutbf = 0
ncode = 0
call initnd (nodes, frelst)
call rdast (strngs, istrng, nodes, frelst, iast)
call compil (vars, numvar, strs, numstr, _
strngs, istrng, nodes, frelst, _
code, ncode, iast)
call prprog (numvar, strs, numstr, strngs, istrng, _
code, ncode, outbuf, noutbf)
if (noutbf != 0)
call flushl (outbuf, noutbf)
end
###################################################################### |
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Quackery | Quackery | $ "A short string of"
$ "A slightly longer string of"
2dup size dip size > if swap
dup echo$ sp size echo say " characters." cr
dup echo$ sp size echo say " characters." cr cr
' [ $ "From troubles of the world I turn to ducks,"
$ "Beautiful comical things"
$ "Sleeping or curled"
$ "Their heads beneath white wings"
$ "By water cool,"
$ "Or finding curious things"
$ "To eat in various mucks"
$ "Beneath the pool," ]
[] swap witheach [ do nested join ]
sortwith [ size dip size < ]
witheach [ echo$ cr ] |
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Raku | Raku | say 'Strings (👨👩👧👦, 🤔🇺🇸, BOGUS!) sorted: "longest" first:';
say "$_: characters:{.chars}, Unicode code points:{.codes}, UTF-8 bytes:{.encode('UTF8').bytes}, UTF-16 bytes:{.encode('UTF16').bytes}" for <👨👩👧👦 BOGUS! 🤔🇺🇸>.sort: -*.chars; |
http://rosettacode.org/wiki/Conway%27s_Game_of_Life | Conway's Game of Life | The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.
Conway's game of life is described here:
A cell C is represented by a 1 when alive, or 0 when dead, in an m-by-m (or m×m) square array of cells.
We calculate N - the sum of live cells in C's eight-location neighbourhood, then cell C is alive or dead in the next generation based on the following table:
C N new C
1 0,1 -> 0 # Lonely
1 4,5,6,7,8 -> 0 # Overcrowded
1 2,3 -> 1 # Lives
0 3 -> 1 # It takes three to give birth!
0 0,1,2,4,5,6,7,8 -> 0 # Barren
Assume cells beyond the boundary are always dead.
The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.
Task
Although you should test your implementation on more complex examples such as the glider in a larger universe, show the action of the blinker (three adjoining cells in a row all alive), over three generations, in a 3 by 3 grid.
References
Its creator John Conway, explains the game of life. Video from numberphile on youtube.
John Conway Inventing Game of Life - Numberphile video.
Related task
Langton's ant - another well known cellular automaton.
| #Elixir | Elixir | defmodule Conway do
def game_of_life(name, size, generations, initial_life\\nil) do
board = seed(size, initial_life)
print_board(board, name, size, 0)
reason = generate(name, size, generations, board, 1)
case reason do
:all_dead -> "no more life."
:static -> "no movement"
_ -> "specified lifetime ended"
end
|> IO.puts
IO.puts ""
end
defp new_board(n) do
for x <- 1..n, y <- 1..n, into: %{}, do: {{x,y}, 0}
end
defp seed(n, points) do
if points do
points
else # randomly seed board
(for x <- 1..n, y <- 1..n, do: {x,y}) |> Enum.take_random(10)
end
|> Enum.reduce(new_board(n), fn pos,acc -> %{acc | pos => 1} end)
end
defp generate(_, _, generations, _, gen) when generations < gen, do: :ok
defp generate(name, size, generations, board, gen) do
new = evolve(board, size)
print_board(new, name, size, gen)
cond do
barren?(new) -> :all_dead
board == new -> :static
true -> generate(name, size, generations, new, gen+1)
end
end
defp evolve(board, n) do
for x <- 1..n, y <- 1..n, into: %{}, do: {{x,y}, fate(board, x, y, n)}
end
defp fate(board, x, y, n) do
irange = max(1, x-1) .. min(x+1, n)
jrange = max(1, y-1) .. min(y+1, n)
sum = ((for i <- irange, j <- jrange, do: board[{i,j}]) |> Enum.sum) - board[{x,y}]
cond do
sum == 3 -> 1
sum == 2 and board[{x,y}] == 1 -> 1
true -> 0
end
end
defp barren?(board) do
Enum.all?(board, fn {_,v} -> v == 0 end)
end
defp print_board(board, name, n, generation) do
IO.puts "#{name}: generation #{generation}"
Enum.each(1..n, fn y ->
Enum.map(1..n, fn x -> if board[{x,y}]==1, do: "#", else: "." end)
|> IO.puts
end)
end
end
Conway.game_of_life("blinker", 3, 2, [{2,1},{2,2},{2,3}])
Conway.game_of_life("glider", 4, 4, [{2,1},{3,2},{1,3},{2,3},{3,3}])
Conway.game_of_life("random", 5, 10) |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Tcl | Tcl | array set point {x 4 y 5}
set point(y) 7
puts "Point is {$point(x),$point(y)}"
# => Point is {4,7} |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #TI-89_BASIC | TI-89 BASIC | (defstruct point nil (x 0) (y 0)) |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Bori | Bori |
if (i == 0)
return "zero";
elif (i % 2)
return "odd";
else
return "even";
|
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #FreeBASIC | FreeBASIC |
' FB 1.05.0 Win64
Function AllEqual(strings() As String) As Boolean
Dim length As Integer = UBound(strings) - LBound(strings) + 1
If length < 2 Then Return False
For i As Integer = LBound(strings) + 1 To UBound(strings)
If strings(i - 1) <> strings(i) Then Return False
Next
Return True
End Function
Function AllAscending(strings() As String) As Boolean
Dim length As Integer = UBound(strings) - LBound(strings) + 1
If length < 2 Then Return False
For i As Integer = LBound(strings) + 1 To UBound(strings)
If strings(i - 1) >= strings(i) Then Return False
Next
Return True
End Function
|
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #F.C5.8Drmul.C3.A6 | Fōrmulæ | package cmp
func AllEqual(strings []string) bool {
for _, s := range strings {
if s != strings[0] {
return false
}
}
return true
}
func AllLessThan(strings []string) bool {
for i := 1; i < len(strings); i++ {
if !(strings[i - 1] < s) {
return false
}
}
return true
} |
http://rosettacode.org/wiki/Comma_quibbling | Comma quibbling | Comma quibbling is a task originally set by Eric Lippert in his blog.
Task
Write a function to generate a string output which is the concatenation of input words from a list/sequence where:
An input of no words produces the output string of just the two brace characters "{}".
An input of just one word, e.g. ["ABC"], produces the output string of the word inside the two braces, e.g. "{ABC}".
An input of two words, e.g. ["ABC", "DEF"], produces the output string of the two words inside the two braces with the words separated by the string " and ", e.g. "{ABC and DEF}".
An input of three or more words, e.g. ["ABC", "DEF", "G", "H"], produces the output string of all but the last word separated by ", " with the last word separated by " and " and all within braces; e.g. "{ABC, DEF, G and H}".
Test your function with the following series of inputs showing your output here on this page:
[] # (No input words).
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]
Note: Assume words are non-empty strings of uppercase characters for this task.
| #C.23 | C# | using System;
using System.Linq;
namespace CommaQuibbling
{
internal static class Program
{
#region Static Members
private static string Quibble(string[] input)
{
return
String.Format("{{{0}}}",
String.Join("",
input.Reverse().Zip(
new [] { "", " and " }.Concat(Enumerable.Repeat(", ", int.MaxValue)),
(x, y) => x + y).Reverse()));
}
private static void Main()
{
Console.WriteLine( Quibble( new string[] {} ) );
Console.WriteLine( Quibble( new[] {"ABC"} ) );
Console.WriteLine( Quibble( new[] {"ABC", "DEF"} ) );
Console.WriteLine( Quibble( new[] {"ABC", "DEF", "G", "H"} ) );
Console.WriteLine( "< Press Any Key >" );
Console.ReadKey();
}
#endregion
}
} |
http://rosettacode.org/wiki/Combinations_with_repetitions | Combinations with repetitions | The set of combinations with repetitions is computed from a set,
S
{\displaystyle S}
(of cardinality
n
{\displaystyle n}
), and a size of resulting selection,
k
{\displaystyle k}
, by reporting the sets of cardinality
k
{\displaystyle k}
where each member of those sets is chosen from
S
{\displaystyle S}
.
In the real world, it is about choosing sets where there is a “large” supply of each type of element and where the order of choice does not matter.
For example:
Q: How many ways can a person choose two doughnuts from a store selling three types of doughnut: iced, jam, and plain? (i.e.,
S
{\displaystyle S}
is
{
i
c
e
d
,
j
a
m
,
p
l
a
i
n
}
{\displaystyle \{\mathrm {iced} ,\mathrm {jam} ,\mathrm {plain} \}}
,
|
S
|
=
3
{\displaystyle |S|=3}
, and
k
=
2
{\displaystyle k=2}
.)
A: 6: {iced, iced}; {iced, jam}; {iced, plain}; {jam, jam}; {jam, plain}; {plain, plain}.
Note that both the order of items within a pair, and the order of the pairs given in the answer is not significant; the pairs represent multisets.
Also note that doughnut can also be spelled donut.
Task
Write a function/program/routine/.. to generate all the combinations with repetitions of
n
{\displaystyle n}
types of things taken
k
{\displaystyle k}
at a time and use it to show an answer to the doughnut example above.
For extra credit, use the function to compute and show just the number of ways of choosing three doughnuts from a choice of ten types of doughnut. Do not show the individual choices for this part.
References
k-combination with repetitions
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Common_Lisp | Common Lisp | (defun combinations (xs k)
(let ((x (car xs)))
(cond
((null xs) nil)
((= k 1) (mapcar #'list xs))
(t (append (mapcar (lambda (ys) (cons x ys))
(combinations xs (1- k)))
(combinations (cdr xs) k))))))
|
http://rosettacode.org/wiki/Combinations_and_permutations | Combinations and permutations |
This page uses content from Wikipedia. The original article was at Combination. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
This page uses content from Wikipedia. The original article was at Permutation. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Implement the combination (nCk) and permutation (nPk) operators in the target language:
n
C
k
=
(
n
k
)
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle ^{n}\operatorname {C} _{k}={\binom {n}{k}}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
See the Wikipedia articles for a more detailed description.
To test, generate and print examples of:
A sample of permutations from 1 to 12 and Combinations from 10 to 60 using exact Integer arithmetic.
A sample of permutations from 5 to 15000 and Combinations from 100 to 1000 using approximate Floating point arithmetic.
This 'floating point' code could be implemented using an approximation, e.g., by calling the Gamma function.
Related task
Evaluate binomial coefficients
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Icon_and_Unicon | Icon and Unicon | procedure main()
write("P(4,2) = ",P(4,2))
write("P(8,2) = ",P(8,2))
write("P(10,8) = ",P(10,8))
write("C(10,8) = ",C(10,8))
write("C(20,8) = ",C(20,8))
write("C(60,58) = ",C(60,58))
write("P(1000,10) = ",P(1000,10))
write("P(1000,20) = ",P(1000,20))
write("P(15000,2) = ",P(15000,2))
write("C(1000,10) = ",C(1000,10))
write("C(1000,999) = ",C(1000,999))
write("C(1000,1000) = ",C(1000,1000))
write("C(15000,14998) = ",C(15000,14998))
end
procedure C(n,k)
every (d:=1) *:= 2 to k
return P(n,k)/d
end
procedure P(n,k)
every (p:=1) *:= (n-k+1) to n
return p
end |
http://rosettacode.org/wiki/Compiler/lexical_analyzer | Compiler/lexical analyzer | Definition from Wikipedia:
Lexical analysis is the process of converting a sequence of characters (such as in a computer program or web page) into a sequence of tokens (strings with an identified "meaning"). A program that performs lexical analysis may be called a lexer, tokenizer, or scanner (though "scanner" is also used to refer to the first stage of a lexer).
Task[edit]
Create a lexical analyzer for the simple programming language specified below. The
program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a lexer module/library/class, it would be great
if two versions of the solution are provided: One without the lexer module, and one with.
Input Specification
The simple programming language to be analyzed is more or less a subset of C. It supports the following tokens:
Operators
Name
Common name
Character sequence
Op_multiply
multiply
*
Op_divide
divide
/
Op_mod
mod
%
Op_add
plus
+
Op_subtract
minus
-
Op_negate
unary minus
-
Op_less
less than
<
Op_lessequal
less than or equal
<=
Op_greater
greater than
>
Op_greaterequal
greater than or equal
>=
Op_equal
equal
==
Op_notequal
not equal
!=
Op_not
unary not
!
Op_assign
assignment
=
Op_and
logical and
&&
Op_or
logical or
¦¦
The - token should always be interpreted as Op_subtract by the lexer. Turning some Op_subtract into Op_negate will be the job of the syntax analyzer, which is not part of this task.
Symbols
Name
Common name
Character
LeftParen
left parenthesis
(
RightParen
right parenthesis
)
LeftBrace
left brace
{
RightBrace
right brace
}
Semicolon
semi-colon
;
Comma
comma
,
Keywords
Name
Character sequence
Keyword_if
if
Keyword_else
else
Keyword_while
while
Keyword_print
print
Keyword_putc
putc
Identifiers and literals
These differ from the the previous tokens, in that each occurrence of them has a value associated with it.
Name
Common name
Format description
Format regex
Value
Identifier
identifier
one or more letter/number/underscore characters, but not starting with a number
[_a-zA-Z][_a-zA-Z0-9]*
as is
Integer
integer literal
one or more digits
[0-9]+
as is, interpreted as a number
Integer
char literal
exactly one character (anything except newline or single quote) or one of the allowed escape sequences, enclosed by single quotes
'([^'\n]|\\n|\\\\)'
the ASCII code point number of the character, e.g. 65 for 'A' and 10 for '\n'
String
string literal
zero or more characters (anything except newline or double quote), enclosed by double quotes
"[^"\n]*"
the characters without the double quotes and with escape sequences converted
For char and string literals, the \n escape sequence is supported to represent a new-line character.
For char and string literals, to represent a backslash, use \\.
No other special sequences are supported. This means that:
Char literals cannot represent a single quote character (value 39).
String literals cannot represent strings containing double quote characters.
Zero-width tokens
Name
Location
End_of_input
when the end of the input stream is reached
White space
Zero or more whitespace characters, or comments enclosed in /* ... */, are allowed between any two tokens, with the exceptions noted below.
"Longest token matching" is used to resolve conflicts (e.g., in order to match <= as a single token rather than the two tokens < and =).
Whitespace is required between two tokens that have an alphanumeric character or underscore at the edge.
This means: keywords, identifiers, and integer literals.
e.g. ifprint is recognized as an identifier, instead of the keywords if and print.
e.g. 42fred is invalid, and neither recognized as a number nor an identifier.
Whitespace is not allowed inside of tokens (except for chars and strings where they are part of the value).
e.g. & & is invalid, and not interpreted as the && operator.
For example, the following two program fragments are equivalent, and should produce the same token stream except for the line and column positions:
if ( p /* meaning n is prime */ ) {
print ( n , " " ) ;
count = count + 1 ; /* number of primes found so far */
}
if(p){print(n," ");count=count+1;}
Complete list of token names
End_of_input Op_multiply Op_divide Op_mod Op_add Op_subtract
Op_negate Op_not Op_less Op_lessequal Op_greater Op_greaterequal
Op_equal Op_notequal Op_assign Op_and Op_or Keyword_if
Keyword_else Keyword_while Keyword_print Keyword_putc LeftParen RightParen
LeftBrace RightBrace Semicolon Comma Identifier Integer
String
Output Format
The program output should be a sequence of lines, each consisting of the following whitespace-separated fields:
the line number where the token starts
the column number where the token starts
the token name
the token value (only for Identifier, Integer, and String tokens)
the number of spaces between fields is up to you. Neatly aligned is nice, but not a requirement.
This task is intended to be used as part of a pipeline, with the other compiler tasks - for example:
lex < hello.t | parse | gen | vm
Or possibly:
lex hello.t lex.out
parse lex.out parse.out
gen parse.out gen.out
vm gen.out
This implies that the output of this task (the lexical analyzer) should be suitable as input to any of the Syntax Analyzer task programs.
Diagnostics
The following error conditions should be caught:
Error
Example
Empty character constant
''
Unknown escape sequence.
\r
Multi-character constant.
'xx'
End-of-file in comment. Closing comment characters not found.
End-of-file while scanning string literal. Closing string character not found.
End-of-line while scanning string literal. Closing string character not found before end-of-line.
Unrecognized character.
|
Invalid number. Starts like a number, but ends in non-numeric characters.
123abc
Test Cases
Input
Output
Test Case 1:
/*
Hello world
*/
print("Hello, World!\n");
4 1 Keyword_print
4 6 LeftParen
4 7 String "Hello, World!\n"
4 24 RightParen
4 25 Semicolon
5 1 End_of_input
Test Case 2:
/*
Show Ident and Integers
*/
phoenix_number = 142857;
print(phoenix_number, "\n");
4 1 Identifier phoenix_number
4 16 Op_assign
4 18 Integer 142857
4 24 Semicolon
5 1 Keyword_print
5 6 LeftParen
5 7 Identifier phoenix_number
5 21 Comma
5 23 String "\n"
5 27 RightParen
5 28 Semicolon
6 1 End_of_input
Test Case 3:
/*
All lexical tokens - not syntactically correct, but that will
have to wait until syntax analysis
*/
/* Print */ print /* Sub */ -
/* Putc */ putc /* Lss */ <
/* If */ if /* Gtr */ >
/* Else */ else /* Leq */ <=
/* While */ while /* Geq */ >=
/* Lbrace */ { /* Eq */ ==
/* Rbrace */ } /* Neq */ !=
/* Lparen */ ( /* And */ &&
/* Rparen */ ) /* Or */ ||
/* Uminus */ - /* Semi */ ;
/* Not */ ! /* Comma */ ,
/* Mul */ * /* Assign */ =
/* Div */ / /* Integer */ 42
/* Mod */ % /* String */ "String literal"
/* Add */ + /* Ident */ variable_name
/* character literal */ '\n'
/* character literal */ '\\'
/* character literal */ ' '
5 16 Keyword_print
5 40 Op_subtract
6 16 Keyword_putc
6 40 Op_less
7 16 Keyword_if
7 40 Op_greater
8 16 Keyword_else
8 40 Op_lessequal
9 16 Keyword_while
9 40 Op_greaterequal
10 16 LeftBrace
10 40 Op_equal
11 16 RightBrace
11 40 Op_notequal
12 16 LeftParen
12 40 Op_and
13 16 RightParen
13 40 Op_or
14 16 Op_subtract
14 40 Semicolon
15 16 Op_not
15 40 Comma
16 16 Op_multiply
16 40 Op_assign
17 16 Op_divide
17 40 Integer 42
18 16 Op_mod
18 40 String "String literal"
19 16 Op_add
19 40 Identifier variable_name
20 26 Integer 10
21 26 Integer 92
22 26 Integer 32
23 1 End_of_input
Test Case 4:
/*** test printing, embedded \n and comments with lots of '*' ***/
print(42);
print("\nHello World\nGood Bye\nok\n");
print("Print a slash n - \\n.\n");
2 1 Keyword_print
2 6 LeftParen
2 7 Integer 42
2 9 RightParen
2 10 Semicolon
3 1 Keyword_print
3 6 LeftParen
3 7 String "\nHello World\nGood Bye\nok\n"
3 38 RightParen
3 39 Semicolon
4 1 Keyword_print
4 6 LeftParen
4 7 String "Print a slash n - \\n.\n"
4 33 RightParen
4 34 Semicolon
5 1 End_of_input
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Syntax Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #Euphoria | Euphoria | include std/io.e
include std/map.e
include std/types.e
include std/convert.e
constant true = 1, false = 0, EOF = -1
enum tk_EOI, tk_Mul, tk_Div, tk_Mod, tk_Add, tk_Sub, tk_Negate, tk_Not, tk_Lss, tk_Leq,
tk_Gtr, tk_Geq, tk_Eq, tk_Neq, tk_Assign, tk_And, tk_Or, tk_If, tk_Else, tk_While,
tk_Print, tk_Putc, tk_Lparen, tk_Rparen, tk_Lbrace, tk_Rbrace, tk_Semi, tk_Comma,
tk_Ident, tk_Integer, tk_String
constant all_syms = {"End_of_input", "Op_multiply", "Op_divide", "Op_mod", "Op_add",
"Op_subtract", "Op_negate", "Op_not", "Op_less", "Op_lessequal", "Op_greater",
"Op_greaterequal", "Op_equal", "Op_notequal", "Op_assign", "Op_and", "Op_or",
"Keyword_if", "Keyword_else", "Keyword_while", "Keyword_print", "Keyword_putc",
"LeftParen", "RightParen", "LeftBrace", "RightBrace", "Semicolon", "Comma",
"Identifier", "Integer", "String"}
integer input_file, the_ch = ' ', the_col = 0, the_line = 1
sequence symbols
map key_words = new()
procedure error(sequence format, sequence data)
printf(STDOUT, format, data)
abort(1)
end procedure
-- get the next character from the input
function next_ch()
the_ch = getc(input_file)
the_col += 1
if the_ch = '\n' then
the_line += 1
the_col = 0
end if
return the_ch
end function
-- 'x' - character constants
function char_lit(integer err_line, integer err_col)
integer n = next_ch() -- skip opening quote
if the_ch = '\'' then
error("%d %d empty character constant", {err_line, err_col})
elsif the_ch = '\\' then
next_ch()
if the_ch = 'n' then
n = 10
elsif the_ch = '\\' then
n = '\\'
else
error("%d %d unknown escape sequence \\%c", {err_line, err_col, the_ch})
end if
end if
if next_ch() != '\'' then
error("%d %d multi-character constant", {err_line, err_col})
end if
next_ch()
return {tk_Integer, err_line, err_col, n}
end function
-- process divide or comments
function div_or_cmt(integer err_line, integer err_col)
if next_ch() != '*' then
return {tk_Div, err_line, err_col}
end if
-- comment found
next_ch()
while true do
if the_ch = '*' then
if next_ch() = '/' then
next_ch()
return get_tok()
end if
elsif the_ch = EOF then
error("%d %d EOF in comment", {err_line, err_col})
else
next_ch()
end if
end while
end function
-- "string"
function string_lit(integer start, integer err_line, integer err_col)
string text = ""
while next_ch() != start do
if the_ch = EOF then
error("%d %d EOF while scanning string literal", {err_line, err_col})
end if
if the_ch = '\n' then
error("%d %d EOL while scanning string literal", {err_line, err_col})
end if
text &= the_ch
end while
next_ch()
return {tk_String, err_line, err_col, text}
end function
-- handle identifiers and integers
function ident_or_int(integer err_line, integer err_col)
integer n, is_number = true
string text = ""
while t_alnum(the_ch) or the_ch = '_' do
text &= the_ch
if not t_digit(the_ch) then
is_number = false
end if
next_ch()
end while
if length(text) = 0 then
error("%d %d ident_or_int: unrecognized character: (%d) '%s'", {err_line, err_col, the_ch, the_ch})
end if
if t_digit(text[1]) then
if not is_number then
error("%d %d invalid number: %s", {err_line, err_col, text})
end if
n = to_integer(text)
return {tk_Integer, err_line, err_col, n}
end if
if has(key_words, text) then
return {get(key_words, text), err_line, err_col}
end if
return {tk_Ident, err_line, err_col, text}
end function
-- look ahead for '>=', etc.
function follow(integer expect, integer ifyes, integer ifno, integer err_line, integer err_col)
if next_ch() = expect then
next_ch()
return {ifyes, err_line, err_col}
end if
if ifno = tk_EOI then
error("%d %d follow: unrecognized character: (%d)", {err_line, err_col, the_ch})
end if
return {ifno, err_line, err_col}
end function
-- return the next token type
function get_tok()
while t_space(the_ch) do
next_ch()
end while
integer err_line = the_line
integer err_col = the_col
switch the_ch do
case EOF then return {tk_EOI, err_line, err_col}
case '/' then return div_or_cmt(err_line, err_col)
case '\'' then return char_lit(err_line, err_col)
case '<' then return follow('=', tk_Leq, tk_Lss, err_line, err_col)
case '>' then return follow('=', tk_Geq, tk_Gtr, err_line, err_col)
case '=' then return follow('=', tk_Eq, tk_Assign, err_line, err_col)
case '!' then return follow('=', tk_Neq, tk_Not, err_line, err_col)
case '&' then return follow('&', tk_And, tk_EOI, err_line, err_col)
case '|' then return follow('|', tk_Or, tk_EOI, err_line, err_col)
case '"' then return string_lit(the_ch, err_line, err_col)
case else
integer sym = symbols[the_ch]
if sym != tk_EOI then
next_ch()
return {sym, err_line, err_col}
end if
return ident_or_int(err_line, err_col)
end switch
end function
procedure init()
put(key_words, "else", tk_Else)
put(key_words, "if", tk_If)
put(key_words, "print", tk_Print)
put(key_words, "putc", tk_Putc)
put(key_words, "while", tk_While)
symbols = repeat(tk_EOI, 256)
symbols['{'] = tk_Lbrace
symbols['}'] = tk_Rbrace
symbols['('] = tk_Lparen
symbols[')'] = tk_Rparen
symbols['+'] = tk_Add
symbols['-'] = tk_Sub
symbols['*'] = tk_Mul
symbols['%'] = tk_Mod
symbols[';'] = tk_Semi
symbols[','] = tk_Comma
end procedure
procedure main(sequence cl)
sequence file_name
input_file = STDIN
if length(cl) > 2 then
file_name = cl[3]
input_file = open(file_name, "r")
if input_file = -1 then
error("Could not open %s", {file_name})
end if
end if
init()
sequence t
loop do
t = get_tok()
printf(STDOUT, "%5d %5d %-8s", {t[2], t[3], all_syms[t[1]]})
switch t[1] do
case tk_Integer then printf(STDOUT, " %5d\n", {t[4]})
case tk_Ident then printf(STDOUT, " %s\n", {t[4]})
case tk_String then printf(STDOUT, " \"%s\"\n", {t[4]})
case else printf(STDOUT, "\n")
end switch
until t[1] = tk_EOI
end loop
end procedure
main(command_line()) |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #D | D | void main(in string[] args) {
import std.stdio;
foreach (immutable i, arg; args[1 .. $])
writefln("#%2d : %s", i + 1, arg);
} |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #Dart | Dart | main(List<String> args) {
for(var arg in args)
print(arg);
} |
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #Axe | Axe | .This is a single-line comment |
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #Babel | Babel |
-- This is a line-comment
#
This is a block-comment
It goes until de-dent
dedent: 0x42 -- The comment block above is now closed
|
http://rosettacode.org/wiki/Compiler/virtual_machine_interpreter | Compiler/virtual machine interpreter | A virtual machine implements a computer in software.
Task[edit]
Write a virtual machine interpreter. This interpreter should be able to run virtual
assembly language programs created via the task. This is a
byte-coded, 32-bit word stack based virtual machine.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Input format:
Given the following program:
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
The output from the Code generator is a virtual assembly code program:
Output from gen, input to VM
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
The first line of the input specifies the datasize required and the number of constant
strings, in the order that they are reference via the code.
The data can be stored in a separate array, or the data can be stored at the beginning of
the stack. Data is addressed starting at 0. If there are 3 variables, the 3rd one if
referenced at address 2.
If there are one or more constant strings, they come next. The code refers to these
strings by their index. The index starts at 0. So if there are 3 strings, and the code
wants to reference the 3rd string, 2 will be used.
Next comes the actual virtual assembly code. The first number is the code address of that
instruction. After that is the instruction mnemonic, followed by optional operands,
depending on the instruction.
Registers:
sp:
the stack pointer - points to the next top of stack. The stack is a 32-bit integer
array.
pc:
the program counter - points to the current instruction to be performed. The code is an
array of bytes.
Data:
data
string pool
Instructions:
Each instruction is one byte. The following instructions also have a 32-bit integer
operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
Print the word at stack top as a character.
prtc
Print the word at stack top as an integer.
prti
Stack top points to an index into the string pool. Print that entry.
prts
Unconditional stop.
halt
A simple example virtual machine
def run_vm(data_size)
int stack[data_size + 1000]
set stack[0..data_size - 1] to 0
int pc = 0
while True:
op = code[pc]
pc += 1
if op == FETCH:
stack.append(stack[bytes_to_int(code[pc:pc+word_size])[0]]);
pc += word_size
elif op == STORE:
stack[bytes_to_int(code[pc:pc+word_size])[0]] = stack.pop();
pc += word_size
elif op == PUSH:
stack.append(bytes_to_int(code[pc:pc+word_size])[0]);
pc += word_size
elif op == ADD: stack[-2] += stack[-1]; stack.pop()
elif op == SUB: stack[-2] -= stack[-1]; stack.pop()
elif op == MUL: stack[-2] *= stack[-1]; stack.pop()
elif op == DIV: stack[-2] /= stack[-1]; stack.pop()
elif op == MOD: stack[-2] %= stack[-1]; stack.pop()
elif op == LT: stack[-2] = stack[-2] < stack[-1]; stack.pop()
elif op == GT: stack[-2] = stack[-2] > stack[-1]; stack.pop()
elif op == LE: stack[-2] = stack[-2] <= stack[-1]; stack.pop()
elif op == GE: stack[-2] = stack[-2] >= stack[-1]; stack.pop()
elif op == EQ: stack[-2] = stack[-2] == stack[-1]; stack.pop()
elif op == NE: stack[-2] = stack[-2] != stack[-1]; stack.pop()
elif op == AND: stack[-2] = stack[-2] and stack[-1]; stack.pop()
elif op == OR: stack[-2] = stack[-2] or stack[-1]; stack.pop()
elif op == NEG: stack[-1] = -stack[-1]
elif op == NOT: stack[-1] = not stack[-1]
elif op == JMP: pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == JZ: if stack.pop() then pc += word_size else pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == PRTC: print stack[-1] as a character; stack.pop()
elif op == PRTS: print the constant string referred to by stack[-1]; stack.pop()
elif op == PRTI: print stack[-1] as an integer; stack.pop()
elif op == HALT: break
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
AST Interpreter task
| #Raku | Raku | my @CODE = q:to/END/.lines;
Datasize: 3 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (68) 65 # jump value adjusted
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-87) 10 # jump value adjusted
65 halt
END
my (@stack, @strings, @data, $memory);
my $pc = 0;
(@CODE.shift) ~~ /'Datasize:' \s+ (\d+) \s+ 'Strings:' \s+ (\d+)/ or die "bad header";
my $w = $0; # 'wordsize' of op-codes and 'width' of data values
@strings.push: (my $s = @CODE.shift) eq '"\n"' ?? "\n" !! $s.subst(/'"'/, '', :g) for 1..$1;
sub value { substr($memory, ($pc += $w) - $w, $w).trim }
my %ops = (
'no-op' => sub { },
'add' => sub { @stack[*-2] += @stack.pop },
'sub' => sub { @stack[*-2] -= @stack.pop },
'mul' => sub { @stack[*-2] *= @stack.pop },
'div' => sub { @stack[*-2] /= @stack.pop },
'mod' => sub { @stack[*-2] %= @stack.pop },
'neg' => sub { @stack[*-1] = - @stack[*-1] },
'and' => sub { @stack[*-2] &&= @stack[*-1]; @stack.pop },
'or' => sub { @stack[*-2] ||= @stack[*-1]; @stack.pop },
'not' => sub { @stack[*-1] = @stack[*-1] ?? 0 !! 1 },
'lt' => sub { @stack[*-1] = @stack[*-2] < @stack.pop ?? 1 !! 0 },
'gt' => sub { @stack[*-1] = @stack[*-2] > @stack.pop ?? 1 !! 0 },
'le' => sub { @stack[*-1] = @stack[*-2] <= @stack.pop ?? 1 !! 0 },
'ge' => sub { @stack[*-1] = @stack[*-2] >= @stack.pop ?? 1 !! 0 },
'ne' => sub { @stack[*-1] = @stack[*-2] != @stack.pop ?? 1 !! 0 },
'eq' => sub { @stack[*-1] = @stack[*-2] == @stack.pop ?? 1 !! 0 },
'store' => sub { @data[&value] = @stack.pop },
'fetch' => sub { @stack.push: @data[&value] // 0 },
'push' => sub { @stack.push: value() },
'jmp' => sub { $pc += value() - $w },
'jz' => sub { $pc += @stack.pop ?? $w !! value() - $w },
'prts' => sub { print @strings[@stack.pop] },
'prti' => sub { print @stack.pop },
'prtc' => sub { print chr @stack.pop },
'halt' => sub { exit }
);
my %op2n = %ops.keys.sort Z=> 0..*;
my %n2op = %op2n.invert;
%n2op{''} = 'no-op';
for @CODE -> $_ {
next unless /\w/;
/^ \s* \d+ \s+ (\w+)/ or die "bad line $_";
$memory ~= %op2n{$0}.fmt("%{$w}d");
/'(' ('-'?\d+) ')' | (\d+) ']'? $/;
$memory ~= $0 ?? $0.fmt("%{$w}d") !! ' ' x $w;
}
loop {
my $opcode = substr($memory, $pc, $w).trim;
$pc += $w;
%ops{%n2op{ $opcode }}();
} |
http://rosettacode.org/wiki/Compiler/code_generator | Compiler/code generator | A code generator translates the output of the syntax analyzer and/or semantic analyzer
into lower level code, either assembly, object, or virtual.
Task[edit]
Take the output of the Syntax analyzer task - which is a flattened Abstract Syntax Tree (AST) - and convert it to virtual machine code, that can be run by the
Virtual machine interpreter. The output is in text format, and represents virtual assembly code.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
while.ast can be input into the code generator.
The following table shows the input to lex, lex output, the AST produced by the parser, and the generated virtual assembly code.
Run as: lex < while.t | parse | gen
Input to lex
Output from lex, input to parse
Output from parse
Output from gen, input to VM
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
Input format
As shown in the table, above, the output from the syntax analyzer is a flattened AST.
In the AST, Identifier, Integer, and String, are terminal nodes, e.g, they do not have child nodes.
Loading this data into an internal parse tree should be as simple as:
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";"
return None
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Output format - refer to the table above
The first line is the header: Size of data, and number of constant strings.
size of data is the number of 32-bit unique variables used. In this example, one variable, count
number of constant strings is just that - how many there are
After that, the constant strings
Finally, the assembly code
Registers
sp: the stack pointer - points to the next top of stack. The stack is a 32-bit integer array.
pc: the program counter - points to the current instruction to be performed. The code is an array of bytes.
Data
32-bit integers and strings
Instructions
Each instruction is one byte. The following instructions also have a 32-bit integer operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
prtc
Print the word at stack top as a character.
prti
Print the word at stack top as an integer.
prts
Stack top points to an index into the string pool. Print that entry.
halt
Unconditional stop.
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Virtual Machine Interpreter task
AST Interpreter task
| #Scala | Scala |
package xyz.hyperreal.rosettacodeCompiler
import scala.collection.mutable.{ArrayBuffer, HashMap}
import scala.io.Source
object CodeGenerator {
def fromStdin = fromSource(Source.stdin)
def fromString(src: String) = fromSource(Source.fromString(src))
def fromSource(ast: Source) = {
val vars = new HashMap[String, Int]
val strings = new ArrayBuffer[String]
val code = new ArrayBuffer[String]
var s: Stream[String] = ast.getLines.toStream
def line =
if (s.nonEmpty) {
val n = s.head
s = s.tail
n.split(" +", 2) match {
case Array(n) => n
case a => a
}
} else
sys.error("unexpected end of AST")
def variableIndex(name: String) =
vars get name match {
case None =>
val idx = vars.size
vars(name) = idx
idx
case Some(idx) => idx
}
def stringIndex(s: String) =
strings indexOf s match {
case -1 =>
val idx = strings.length
strings += s
idx
case idx => idx
}
var loc = 0
def addSimple(inst: String) = {
code += f"$loc%4d $inst"
loc += 1
}
def addOperand(inst: String, operand: String) = {
code += f"$loc%4d $inst%-5s $operand"
loc += 5
}
def fixup(inst: String, idx: Int, at: Int) = code(idx) = f"$at%4d $inst%-5s (${loc - at - 1}) $loc"
generate
addSimple("halt")
println(s"Datasize: ${vars.size} Strings: ${strings.length}")
for (s <- strings)
println(s)
println(code mkString "\n")
def generate: Unit =
line match {
case "Sequence" =>
generate
generate
case ";" =>
case "Assign" =>
val idx =
line match {
case Array("Identifier", name: String) =>
variableIndex(name)
case l => sys.error(s"expected identifier: $l")
}
generate
addOperand("store", s"[$idx]")
case Array("Identifier", name: String) => addOperand("fetch", s"[${variableIndex(name)}]")
case Array("Integer", n: String) => addOperand("push", s"$n")
case Array("String", s: String) => addOperand("push", s"${stringIndex(s)}")
case "If" =>
generate
val cond = loc
val condidx = code.length
addOperand("", "")
s = s.tail
generate
if (s.head == ";") {
s = s.tail
fixup("jz", condidx, cond)
} else {
val jump = loc
val jumpidx = code.length
addOperand("", "")
fixup("jz", condidx, cond)
generate
fixup("jmp", jumpidx, jump)
}
case "While" =>
val start = loc
generate
val cond = loc
val condidx = code.length
addOperand("", "")
generate
addOperand("jmp", s"(${start - loc - 1}) $start")
fixup("jz", condidx, cond)
case op =>
generate
generate
addSimple(
op match {
case "Prti" => "prti"
case "Prts" => "prts"
case "Prtc" => "prtc"
case "Add" => "add"
case "Subtract" => "sub"
case "Multiply" => "mul"
case "Divide" => "div"
case "Mod" => "mod"
case "Less" => "lt"
case "LessEqual" => "le"
case "Greater" => "gt"
case "GreaterEqual" => "ge"
case "Equal" => "eq"
case "NotEqual" => "ne"
case "And" => "and"
case "Or" => "or"
case "Negate" => "neg"
case "Not" => "not"
}
)
}
}
}
|
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #REXX | REXX | /* REXX */
list = '"abcd","123456789","abcdef","1234567"'
Do i=1 By 1 While list>''
Parse Var list s.i ',' list
s.i=strip(s.i,,'"')
End
n=i-1
Do While n>1
max=0
Do i=1 To n
If length(s.i)>max Then Do
k=i
max=length(s.i)
End
End
Call o s.k
If k<n Then
s.k=s.n
n=n-1
End
Call o s.1
Exit
o:
Say length(arg(1)) arg(1)
Return |
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Ring | Ring |
see "working..." + nl
list = ["abcd","123456789"]
if len(list[1]) > len(list[2])
first = list[1]
second = list[2]
else
first = list[2]
second = list[1]
ok
see "Compare length of two strings:" + nl
see "" + first + " len = " + len(first) + nl + second + " len = " + len(second) + nl
see "done..." + nl
|
http://rosettacode.org/wiki/Conway%27s_Game_of_Life | Conway's Game of Life | The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.
Conway's game of life is described here:
A cell C is represented by a 1 when alive, or 0 when dead, in an m-by-m (or m×m) square array of cells.
We calculate N - the sum of live cells in C's eight-location neighbourhood, then cell C is alive or dead in the next generation based on the following table:
C N new C
1 0,1 -> 0 # Lonely
1 4,5,6,7,8 -> 0 # Overcrowded
1 2,3 -> 1 # Lives
0 3 -> 1 # It takes three to give birth!
0 0,1,2,4,5,6,7,8 -> 0 # Barren
Assume cells beyond the boundary are always dead.
The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.
Task
Although you should test your implementation on more complex examples such as the glider in a larger universe, show the action of the blinker (three adjoining cells in a row all alive), over three generations, in a 3 by 3 grid.
References
Its creator John Conway, explains the game of life. Video from numberphile on youtube.
John Conway Inventing Game of Life - Numberphile video.
Related task
Langton's ant - another well known cellular automaton.
| #Emacs_Lisp | Emacs Lisp | #!/usr/bin/env emacs -script
;; -*- lexical-binding: t -*-
;; run: ./conways-life conways-life.config
(require 'cl-lib)
(defconst blinker '("***"))
(defconst toad '(".***" "***."))
(defconst pentomino-p '(".**" ".**" ".*."))
(defconst pi-heptomino '("***" "*.*" "*.*"))
(defconst glider '(".*." "..*" "***"))
(defconst pre-pulsar '("***...***" "*.*...*.*" "***...***"))
(defconst ship '("**." "*.*" ".**"))
(defconst pentadecathalon '("**********"))
(defconst clock '("..*." "*.*." ".*.*" ".*.."))
(defmacro swap (a b)
`(setq ,b (prog1 ,a (setq ,a ,b))))
(cl-defstruct world rows cols data)
(defun new-world (rows cols)
(make-world :rows rows :cols cols :data (make-vector (* rows cols) nil)))
(defmacro world-pt (w r c)
`(+ (* (mod ,r (world-rows ,w)) (world-cols ,w))
(mod ,c (world-cols ,w))))
(defmacro world-ref (w r c)
`(aref (world-data ,w) (world-pt ,w ,r ,c)))
(defun print-world (world)
(dotimes (r (world-rows world))
(dotimes (c (world-cols world))
(princ (format "%c" (if (world-ref world r c) ?* ?.))))
(terpri)))
(defun insert-pattern (world row col shape)
(let ((r row)
(c col))
(unless (listp shape)
(setq shape (symbol-value shape)))
(dolist (row-data shape)
(dolist (col-data (mapcar 'identity row-data))
(setf (world-ref world r c) (not (or (eq col-data ?.))))
(setq c (1+ c)))
(setq r (1+ r))
(setq c col))))
(defun neighbors (world row col)
(let ((n 0))
(dolist (offset '((1 . 1) (1 . 0) (1 . -1) (0 . 1) (0 . -1) (-1 . 1) (-1 . 0) (-1 . -1)))
(when (world-ref world (+ row (car offset)) (+ col (cdr offset)))
(setq n (1+ n))))
n))
(defun advance-generation (old new)
(dotimes (r (world-rows old))
(dotimes (c (world-cols old))
(let ((n (neighbors old r c)))
(setf (world-ref new r c)
(if (world-ref old r c)
(or (= n 2) (= n 3))
(= n 3)))))))
(defun read-config (file-name)
(with-temp-buffer
(insert-file-contents-literally file-name)
(read (current-buffer))))
(defun get-config (key config)
(let ((val (assoc key config)))
(if (null val)
(error (format "missing value for %s" key))
(cdr val))))
(defun insert-patterns (world patterns)
(dolist (p patterns)
(apply 'insert-pattern (cons world p))))
(defun simulate-life (file-name)
(let* ((config (read-config file-name))
(rows (get-config 'rows config))
(cols (get-config 'cols config))
(generations (get-config 'generations config))
(a (new-world rows cols))
(b (new-world rows cols)))
(insert-patterns a (get-config 'patterns config))
(dotimes (g generations)
(princ (format "generation %d\n" g))
(print-world a)
(advance-generation a b)
(swap a b))))
(simulate-life (elt command-line-args-left 0)) |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #TXR | TXR | (defstruct point nil (x 0) (y 0)) |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #UNIX_Shell | UNIX Shell | typeset -T Point=(
typeset x
typeset y
)
Point p
p.x=1
p.y=2
echo $p
echo ${p.x} ${p.y}
Point q=(x=3 y=4)
echo ${q.x} ${q.y} |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #BQN | BQN | If ← {𝕏⍟𝕎@}´ # Also Repeat
IfElse ← {c‿T‿F: c◶F‿T@}
While ← {𝕩{𝔽⍟𝔾∘𝔽_𝕣_𝔾∘𝔽⍟𝔾𝕩}𝕨@}´ # While 1‿{... to run forever
DoWhile ← {𝕏@ ⋄ While 𝕨‿𝕩}´
For ← {I‿C‿P‿A: I@ ⋄ While⟨C,P∘A⟩}
# Switch/case statements have many variations; these are a few
Match ← {𝕏𝕨}´
Select ← {(⊑𝕩)◶(1↓𝕩)@}
Switch ← {c←⊑𝕩 ⋄ m‿a←<˘⍉∘‿2⥊1↓𝕩 ⋄ (⊑a⊐C)◶m@}
Test ← {fn←{C‿A𝕊e:C◶A‿E}´𝕩⋄Fn@} |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Go | Go | package cmp
func AllEqual(strings []string) bool {
for _, s := range strings {
if s != strings[0] {
return false
}
}
return true
}
func AllLessThan(strings []string) bool {
for i := 1; i < len(strings); i++ {
if !(strings[i - 1] < s) {
return false
}
}
return true
} |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Gosu | Gosu | var list = {"a", "b", "c", "d"}
var isHomogeneous = list.toSet().Count < 2
var isOrderedSet = list.toSet().order().toList() == list |
http://rosettacode.org/wiki/Comma_quibbling | Comma quibbling | Comma quibbling is a task originally set by Eric Lippert in his blog.
Task
Write a function to generate a string output which is the concatenation of input words from a list/sequence where:
An input of no words produces the output string of just the two brace characters "{}".
An input of just one word, e.g. ["ABC"], produces the output string of the word inside the two braces, e.g. "{ABC}".
An input of two words, e.g. ["ABC", "DEF"], produces the output string of the two words inside the two braces with the words separated by the string " and ", e.g. "{ABC and DEF}".
An input of three or more words, e.g. ["ABC", "DEF", "G", "H"], produces the output string of all but the last word separated by ", " with the last word separated by " and " and all within braces; e.g. "{ABC, DEF, G and H}".
Test your function with the following series of inputs showing your output here on this page:
[] # (No input words).
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]
Note: Assume words are non-empty strings of uppercase characters for this task.
| #C.2B.2B | C++ | #include <iostream>
template<class T>
void quibble(std::ostream& o, T i, T e) {
o << "{";
if (e != i) {
T n = i++;
const char* more = "";
while (e != i) {
o << more << *n;
more = ", ";
n = i++;
}
o << (*more?" and ":"") << *n;
}
o << "}";
}
int main(int argc, char** argv) {
char const* a[] = {"ABC","DEF","G","H"};
for (int i=0; i<5; i++) {
quibble(std::cout, a, a+i);
std::cout << std::endl;
}
return 0;
} |
http://rosettacode.org/wiki/Combinations_with_repetitions | Combinations with repetitions | The set of combinations with repetitions is computed from a set,
S
{\displaystyle S}
(of cardinality
n
{\displaystyle n}
), and a size of resulting selection,
k
{\displaystyle k}
, by reporting the sets of cardinality
k
{\displaystyle k}
where each member of those sets is chosen from
S
{\displaystyle S}
.
In the real world, it is about choosing sets where there is a “large” supply of each type of element and where the order of choice does not matter.
For example:
Q: How many ways can a person choose two doughnuts from a store selling three types of doughnut: iced, jam, and plain? (i.e.,
S
{\displaystyle S}
is
{
i
c
e
d
,
j
a
m
,
p
l
a
i
n
}
{\displaystyle \{\mathrm {iced} ,\mathrm {jam} ,\mathrm {plain} \}}
,
|
S
|
=
3
{\displaystyle |S|=3}
, and
k
=
2
{\displaystyle k=2}
.)
A: 6: {iced, iced}; {iced, jam}; {iced, plain}; {jam, jam}; {jam, plain}; {plain, plain}.
Note that both the order of items within a pair, and the order of the pairs given in the answer is not significant; the pairs represent multisets.
Also note that doughnut can also be spelled donut.
Task
Write a function/program/routine/.. to generate all the combinations with repetitions of
n
{\displaystyle n}
types of things taken
k
{\displaystyle k}
at a time and use it to show an answer to the doughnut example above.
For extra credit, use the function to compute and show just the number of ways of choosing three doughnuts from a choice of ten types of doughnut. Do not show the individual choices for this part.
References
k-combination with repetitions
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Crystal | Crystal | possible_doughnuts = ["iced", "jam", "plain"].repeated_combinations(2)
puts "There are #{possible_doughnuts.size} possible doughnuts:"
possible_doughnuts.each{|doughnut_combi| puts doughnut_combi.join(" and ")}
# Extra credit
possible_doughnuts = (1..10).to_a.repeated_combinations(3)
# size returns the size of the enumerator, or nil if it can’t be calculated lazily.
puts "", "#{possible_doughnuts.size} ways to order 3 donuts given 10 types." |
http://rosettacode.org/wiki/Combinations_with_repetitions | Combinations with repetitions | The set of combinations with repetitions is computed from a set,
S
{\displaystyle S}
(of cardinality
n
{\displaystyle n}
), and a size of resulting selection,
k
{\displaystyle k}
, by reporting the sets of cardinality
k
{\displaystyle k}
where each member of those sets is chosen from
S
{\displaystyle S}
.
In the real world, it is about choosing sets where there is a “large” supply of each type of element and where the order of choice does not matter.
For example:
Q: How many ways can a person choose two doughnuts from a store selling three types of doughnut: iced, jam, and plain? (i.e.,
S
{\displaystyle S}
is
{
i
c
e
d
,
j
a
m
,
p
l
a
i
n
}
{\displaystyle \{\mathrm {iced} ,\mathrm {jam} ,\mathrm {plain} \}}
,
|
S
|
=
3
{\displaystyle |S|=3}
, and
k
=
2
{\displaystyle k=2}
.)
A: 6: {iced, iced}; {iced, jam}; {iced, plain}; {jam, jam}; {jam, plain}; {plain, plain}.
Note that both the order of items within a pair, and the order of the pairs given in the answer is not significant; the pairs represent multisets.
Also note that doughnut can also be spelled donut.
Task
Write a function/program/routine/.. to generate all the combinations with repetitions of
n
{\displaystyle n}
types of things taken
k
{\displaystyle k}
at a time and use it to show an answer to the doughnut example above.
For extra credit, use the function to compute and show just the number of ways of choosing three doughnuts from a choice of ten types of doughnut. Do not show the individual choices for this part.
References
k-combination with repetitions
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #D | D | import std.stdio, std.range;
const struct CombRep {
immutable uint nt, nc;
private const ulong[] combVal;
this(in uint numType, in uint numChoice) pure nothrow @safe
in {
assert(0 < numType && numType + numChoice <= 64,
"Valid only for nt + nc <= 64 (ulong bit size)");
} body {
nt = numType;
nc = numChoice;
if (nc == 0)
return;
ulong v = (1UL << (nt - 1)) - 1;
// Init to smallest number that has nt-1 bit set
// a set bit is metaphored as a _type_ seperator.
immutable limit = v << nc;
ulong[] localCombVal;
// Limit is the largest nt-1 bit set number that has nc
// zero-bit a zero-bit means a _choice_ between _type_
// seperators.
while (v <= limit) {
localCombVal ~= v;
if (v == 0)
break;
// Get next nt-1 bit number.
immutable t = (v | (v - 1)) + 1;
v = t | ((((t & -t) / (v & -v)) >> 1) - 1);
}
this.combVal = localCombVal;
}
uint length() @property const pure nothrow @safe {
return combVal.length;
}
uint[] opIndex(in uint idx) const pure nothrow @safe {
return val2set(combVal[idx]);
}
int opApply(immutable int delegate(in ref uint[]) pure nothrow @safe dg)
pure nothrow @safe {
foreach (immutable v; combVal) {
auto set = val2set(v);
if (dg(set))
break;
}
return 1;
}
private uint[] val2set(in ulong v) const pure nothrow @safe {
// Convert bit pattern to selection set
immutable uint bitLimit = nt + nc - 1;
uint typeIdx = 0;
uint[] set;
foreach (immutable bitNum; 0 .. bitLimit)
if (v & (1 << (bitLimit - bitNum - 1)))
typeIdx++;
else
set ~= typeIdx;
return set;
}
}
// For finite Random Access Range.
auto combRep(R)(R types, in uint numChoice) /*pure*/ nothrow @safe
if (hasLength!R && isRandomAccessRange!R) {
ElementType!R[][] result;
foreach (const s; CombRep(types.length, numChoice)) {
ElementType!R[] r;
foreach (immutable i; s)
r ~= types[i];
result ~= r;
}
return result;
}
void main() @safe {
foreach (const e; combRep(["iced", "jam", "plain"], 2))
writefln("%-(%5s %)", e);
writeln("Ways to select 3 from 10 types is ",
CombRep(10, 3).length);
} |
http://rosettacode.org/wiki/Combinations_and_permutations | Combinations and permutations |
This page uses content from Wikipedia. The original article was at Combination. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
This page uses content from Wikipedia. The original article was at Permutation. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Implement the combination (nCk) and permutation (nPk) operators in the target language:
n
C
k
=
(
n
k
)
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle ^{n}\operatorname {C} _{k}={\binom {n}{k}}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
See the Wikipedia articles for a more detailed description.
To test, generate and print examples of:
A sample of permutations from 1 to 12 and Combinations from 10 to 60 using exact Integer arithmetic.
A sample of permutations from 5 to 15000 and Combinations from 100 to 1000 using approximate Floating point arithmetic.
This 'floating point' code could be implemented using an approximation, e.g., by calling the Gamma function.
Related task
Evaluate binomial coefficients
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #J | J | C=: !
P=: (%&!&x:~ * <:)"0 |
http://rosettacode.org/wiki/Combinations_and_permutations | Combinations and permutations |
This page uses content from Wikipedia. The original article was at Combination. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
This page uses content from Wikipedia. The original article was at Permutation. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Implement the combination (nCk) and permutation (nPk) operators in the target language:
n
C
k
=
(
n
k
)
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle ^{n}\operatorname {C} _{k}={\binom {n}{k}}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
See the Wikipedia articles for a more detailed description.
To test, generate and print examples of:
A sample of permutations from 1 to 12 and Combinations from 10 to 60 using exact Integer arithmetic.
A sample of permutations from 5 to 15000 and Combinations from 100 to 1000 using approximate Floating point arithmetic.
This 'floating point' code could be implemented using an approximation, e.g., by calling the Gamma function.
Related task
Evaluate binomial coefficients
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Java | Java |
import java.math.BigInteger;
public class CombinationsAndPermutations {
public static void main(String[] args) {
System.out.println(Double.MAX_VALUE);
System.out.println("A sample of permutations from 1 to 12 with exact Integer arithmetic:");
for ( int n = 1 ; n <= 12 ; n++ ) {
int k = n / 2;
System.out.printf("%d P %d = %s%n", n, k, permutation(n, k));
}
System.out.println();
System.out.println("A sample of combinations from 10 to 60 with exact Integer arithmetic:");
for ( int n = 10 ; n <= 60 ; n += 5 ) {
int k = n / 2;
System.out.printf("%d C %d = %s%n", n, k, combination(n, k));
}
System.out.println();
System.out.println("A sample of permutations from 5 to 15000 displayed in floating point arithmetic:");
System.out.printf("%d P %d = %s%n", 5, 2, display(permutation(5, 2), 50));
for ( int n = 1000 ; n <= 15000 ; n += 1000 ) {
int k = n / 2;
System.out.printf("%d P %d = %s%n", n, k, display(permutation(n, k), 50));
}
System.out.println();
System.out.println("A sample of combinations from 100 to 1000 displayed in floating point arithmetic:");
for ( int n = 100 ; n <= 1000 ; n += 100 ) {
int k = n / 2;
System.out.printf("%d C %d = %s%n", n, k, display(combination(n, k), 50));
}
}
private static String display(BigInteger val, int precision) {
String s = val.toString();
precision = Math.min(precision, s.length());
StringBuilder sb = new StringBuilder();
sb.append(s.substring(0, 1));
sb.append(".");
sb.append(s.substring(1, precision));
sb.append(" * 10^");
sb.append(s.length()-1);
return sb.toString();
}
public static BigInteger combination(int n, int k) {
// Select value with smallest intermediate results
// combination(n, k) = combination(n, n-k)
if ( n-k < k ) {
k = n-k;
}
BigInteger result = permutation(n, k);
while ( k > 0 ) {
result = result.divide(BigInteger.valueOf(k));
k--;
}
return result;
}
public static BigInteger permutation(int n, int k) {
BigInteger result = BigInteger.ONE;
for ( int i = n ; i >= n-k+1 ; i-- ) {
result = result.multiply(BigInteger.valueOf(i));
}
return result;
}
}
|
http://rosettacode.org/wiki/Compiler/lexical_analyzer | Compiler/lexical analyzer | Definition from Wikipedia:
Lexical analysis is the process of converting a sequence of characters (such as in a computer program or web page) into a sequence of tokens (strings with an identified "meaning"). A program that performs lexical analysis may be called a lexer, tokenizer, or scanner (though "scanner" is also used to refer to the first stage of a lexer).
Task[edit]
Create a lexical analyzer for the simple programming language specified below. The
program should read input from a file and/or stdin, and write output to a file and/or
stdout. If the language being used has a lexer module/library/class, it would be great
if two versions of the solution are provided: One without the lexer module, and one with.
Input Specification
The simple programming language to be analyzed is more or less a subset of C. It supports the following tokens:
Operators
Name
Common name
Character sequence
Op_multiply
multiply
*
Op_divide
divide
/
Op_mod
mod
%
Op_add
plus
+
Op_subtract
minus
-
Op_negate
unary minus
-
Op_less
less than
<
Op_lessequal
less than or equal
<=
Op_greater
greater than
>
Op_greaterequal
greater than or equal
>=
Op_equal
equal
==
Op_notequal
not equal
!=
Op_not
unary not
!
Op_assign
assignment
=
Op_and
logical and
&&
Op_or
logical or
¦¦
The - token should always be interpreted as Op_subtract by the lexer. Turning some Op_subtract into Op_negate will be the job of the syntax analyzer, which is not part of this task.
Symbols
Name
Common name
Character
LeftParen
left parenthesis
(
RightParen
right parenthesis
)
LeftBrace
left brace
{
RightBrace
right brace
}
Semicolon
semi-colon
;
Comma
comma
,
Keywords
Name
Character sequence
Keyword_if
if
Keyword_else
else
Keyword_while
while
Keyword_print
print
Keyword_putc
putc
Identifiers and literals
These differ from the the previous tokens, in that each occurrence of them has a value associated with it.
Name
Common name
Format description
Format regex
Value
Identifier
identifier
one or more letter/number/underscore characters, but not starting with a number
[_a-zA-Z][_a-zA-Z0-9]*
as is
Integer
integer literal
one or more digits
[0-9]+
as is, interpreted as a number
Integer
char literal
exactly one character (anything except newline or single quote) or one of the allowed escape sequences, enclosed by single quotes
'([^'\n]|\\n|\\\\)'
the ASCII code point number of the character, e.g. 65 for 'A' and 10 for '\n'
String
string literal
zero or more characters (anything except newline or double quote), enclosed by double quotes
"[^"\n]*"
the characters without the double quotes and with escape sequences converted
For char and string literals, the \n escape sequence is supported to represent a new-line character.
For char and string literals, to represent a backslash, use \\.
No other special sequences are supported. This means that:
Char literals cannot represent a single quote character (value 39).
String literals cannot represent strings containing double quote characters.
Zero-width tokens
Name
Location
End_of_input
when the end of the input stream is reached
White space
Zero or more whitespace characters, or comments enclosed in /* ... */, are allowed between any two tokens, with the exceptions noted below.
"Longest token matching" is used to resolve conflicts (e.g., in order to match <= as a single token rather than the two tokens < and =).
Whitespace is required between two tokens that have an alphanumeric character or underscore at the edge.
This means: keywords, identifiers, and integer literals.
e.g. ifprint is recognized as an identifier, instead of the keywords if and print.
e.g. 42fred is invalid, and neither recognized as a number nor an identifier.
Whitespace is not allowed inside of tokens (except for chars and strings where they are part of the value).
e.g. & & is invalid, and not interpreted as the && operator.
For example, the following two program fragments are equivalent, and should produce the same token stream except for the line and column positions:
if ( p /* meaning n is prime */ ) {
print ( n , " " ) ;
count = count + 1 ; /* number of primes found so far */
}
if(p){print(n," ");count=count+1;}
Complete list of token names
End_of_input Op_multiply Op_divide Op_mod Op_add Op_subtract
Op_negate Op_not Op_less Op_lessequal Op_greater Op_greaterequal
Op_equal Op_notequal Op_assign Op_and Op_or Keyword_if
Keyword_else Keyword_while Keyword_print Keyword_putc LeftParen RightParen
LeftBrace RightBrace Semicolon Comma Identifier Integer
String
Output Format
The program output should be a sequence of lines, each consisting of the following whitespace-separated fields:
the line number where the token starts
the column number where the token starts
the token name
the token value (only for Identifier, Integer, and String tokens)
the number of spaces between fields is up to you. Neatly aligned is nice, but not a requirement.
This task is intended to be used as part of a pipeline, with the other compiler tasks - for example:
lex < hello.t | parse | gen | vm
Or possibly:
lex hello.t lex.out
parse lex.out parse.out
gen parse.out gen.out
vm gen.out
This implies that the output of this task (the lexical analyzer) should be suitable as input to any of the Syntax Analyzer task programs.
Diagnostics
The following error conditions should be caught:
Error
Example
Empty character constant
''
Unknown escape sequence.
\r
Multi-character constant.
'xx'
End-of-file in comment. Closing comment characters not found.
End-of-file while scanning string literal. Closing string character not found.
End-of-line while scanning string literal. Closing string character not found before end-of-line.
Unrecognized character.
|
Invalid number. Starts like a number, but ends in non-numeric characters.
123abc
Test Cases
Input
Output
Test Case 1:
/*
Hello world
*/
print("Hello, World!\n");
4 1 Keyword_print
4 6 LeftParen
4 7 String "Hello, World!\n"
4 24 RightParen
4 25 Semicolon
5 1 End_of_input
Test Case 2:
/*
Show Ident and Integers
*/
phoenix_number = 142857;
print(phoenix_number, "\n");
4 1 Identifier phoenix_number
4 16 Op_assign
4 18 Integer 142857
4 24 Semicolon
5 1 Keyword_print
5 6 LeftParen
5 7 Identifier phoenix_number
5 21 Comma
5 23 String "\n"
5 27 RightParen
5 28 Semicolon
6 1 End_of_input
Test Case 3:
/*
All lexical tokens - not syntactically correct, but that will
have to wait until syntax analysis
*/
/* Print */ print /* Sub */ -
/* Putc */ putc /* Lss */ <
/* If */ if /* Gtr */ >
/* Else */ else /* Leq */ <=
/* While */ while /* Geq */ >=
/* Lbrace */ { /* Eq */ ==
/* Rbrace */ } /* Neq */ !=
/* Lparen */ ( /* And */ &&
/* Rparen */ ) /* Or */ ||
/* Uminus */ - /* Semi */ ;
/* Not */ ! /* Comma */ ,
/* Mul */ * /* Assign */ =
/* Div */ / /* Integer */ 42
/* Mod */ % /* String */ "String literal"
/* Add */ + /* Ident */ variable_name
/* character literal */ '\n'
/* character literal */ '\\'
/* character literal */ ' '
5 16 Keyword_print
5 40 Op_subtract
6 16 Keyword_putc
6 40 Op_less
7 16 Keyword_if
7 40 Op_greater
8 16 Keyword_else
8 40 Op_lessequal
9 16 Keyword_while
9 40 Op_greaterequal
10 16 LeftBrace
10 40 Op_equal
11 16 RightBrace
11 40 Op_notequal
12 16 LeftParen
12 40 Op_and
13 16 RightParen
13 40 Op_or
14 16 Op_subtract
14 40 Semicolon
15 16 Op_not
15 40 Comma
16 16 Op_multiply
16 40 Op_assign
17 16 Op_divide
17 40 Integer 42
18 16 Op_mod
18 40 String "String literal"
19 16 Op_add
19 40 Identifier variable_name
20 26 Integer 10
21 26 Integer 92
22 26 Integer 32
23 1 End_of_input
Test Case 4:
/*** test printing, embedded \n and comments with lots of '*' ***/
print(42);
print("\nHello World\nGood Bye\nok\n");
print("Print a slash n - \\n.\n");
2 1 Keyword_print
2 6 LeftParen
2 7 Integer 42
2 9 RightParen
2 10 Semicolon
3 1 Keyword_print
3 6 LeftParen
3 7 String "\nHello World\nGood Bye\nok\n"
3 38 RightParen
3 39 Semicolon
4 1 Keyword_print
4 6 LeftParen
4 7 String "Print a slash n - \\n.\n"
4 33 RightParen
4 34 Semicolon
5 1 End_of_input
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Syntax Analyzer task
Code Generator task
Virtual Machine Interpreter task
AST Interpreter task
| #Flex | Flex | %{
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <limits.h>
#define NELEMS(arr) (sizeof(arr) / sizeof(arr[0]))
typedef enum {
tk_EOI, tk_Mul, tk_Div, tk_Mod, tk_Add, tk_Sub, tk_Negate, tk_Not, tk_Lss, tk_Leq,
tk_Gtr, tk_Geq, tk_Eq, tk_Neq, tk_Assign, tk_And, tk_Or, tk_If, tk_Else, tk_While,
tk_Print, tk_Putc, tk_Lparen, tk_Rparen, tk_Lbrace, tk_Rbrace, tk_Semi, tk_Comma,
tk_Ident, tk_Integer, tk_String
} TokenType;
void yyerror(char msg[]) {
printf(msg);
exit(1);
}
static int yynval;
struct yylloc {
int first_line, first_col;
int last_line, last_col;
} yylloc;
static void update_loc() {
static int curr_line = 1;
static int curr_col = 1;
yylloc.first_line = curr_line;
yylloc.first_col = curr_col;
{char *s; for (s = yytext; *s != '\0'; s++) {
if (*s == '\n') {
curr_line++;
curr_col = 1;
} else {
curr_col++;
}
}}
yylloc.last_line = curr_line;
yylloc.last_col = curr_col-1;
}
#define YY_USER_ACTION update_loc();
static int kwd_cmp(const void *p1, const void *p2) {
return strcmp(*(char **)p1, *(char **)p2);
}
static TokenType get_ident_type(const char *ident) {
static struct {
char *s;
TokenType sym;
} kwds[] = {
{"else", tk_Else},
{"if", tk_If},
{"print", tk_Print},
{"putc", tk_Putc},
{"while", tk_While},
}, *kwp;
return (kwp = bsearch(&ident, kwds, NELEMS(kwds), sizeof(kwds[0]), kwd_cmp)) == NULL ? tk_Ident : kwp->sym;
}
%}
%start COMMENT2
%option noyywrap
digit [0-9]
ident [a-zA-Z_][a-zA-Z_0-9]*
number {digit}+
string \"[^"\n]*\"
char_const \'([^'\n]|\\n|\\\\)\'
%%
<COMMENT2>[^*]+ ;
<COMMENT2>\*[^/] ;
<COMMENT2>\*\/ BEGIN 0; /* end comment */
"/*" BEGIN COMMENT2;
"{" {return tk_Lbrace;}
"}" {return tk_Rbrace;}
"(" {return tk_Lparen;}
")" {return tk_Rparen;}
"*" {return tk_Mul;}
"/" {return tk_Div;}
"%" {return tk_Mod;}
"+" {return tk_Add;}
"-" {return tk_Sub;}
"<" {return tk_Lss;}
">" {return tk_Gtr;}
"<=" {return tk_Leq;}
">=" {return tk_Geq;}
"!=" {return tk_Neq;}
"!" {return tk_Not;}
"&&" {return tk_And;}
"||" {return tk_Or;}
";" {return tk_Semi;}
"," {return tk_Comma;}
"==" {return tk_Eq;}
"=" {return tk_Assign;}
{ident} {return get_ident_type(yytext);}
{string} {return tk_String;}
[ \t\n]+ ; /* ignore whitespace */
{number} {
yynval = strtol(yytext, NULL, 0);
if (yynval == LONG_MAX && errno == ERANGE)
yyerror("Number exceeds maximum value");
return tk_Integer;
}
{char_const} {
int n = yytext[1];
char *p = yytext;
if (yyleng < 3)
yyerror("empty character constant");
++p;
if (p[0] == '\\') {
++p;
if (p[0] == 'n')
n = 10;
else if (p[0] == '\\')
n = '\\';
else
yyerror("unknown escape sequence");
}
yynval = n;
return tk_Integer;
}
. yyerror("Unknown character\n");
%%
int main(int argc, char *argv[]) {
int tok;
++argv, --argc; /* skip over program name */
yyin = stdin;
if (argc > 0)
yyin = fopen(argv[0], "r");
do {
tok = yylex();
printf("%5d %5d %.15s", yylloc.first_line, yylloc.first_col,
&"End_of_input Op_multiply Op_divide Op_mod Op_add "
"Op_subtract Op_negate Op_not Op_less Op_lessequal "
"Op_greater Op_greaterequal Op_equal Op_notequal Op_assign "
"Op_and Op_or Keyword_if Keyword_else Keyword_while "
"Keyword_print Keyword_putc LeftParen RightParen LeftBrace "
"RightBrace Semicolon Comma Identifier Integer "
"String "
[tok * 16]);
if (tok == tk_Integer) printf(" %5d", yynval);
else if (tok == tk_Ident) printf(" %s", yytext);
else if (tok == tk_String) printf(" %s", yytext);
printf("\n");
} while (tok != tk_EOI);
return 0;
} |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #DCL | DCL | $ i = 1
$ loop:
$ write sys$output "the value of P''i' is ", p'i
$ i = i + 1
$ if i .le. 8 then $ goto loop |
http://rosettacode.org/wiki/Command-line_arguments | Command-line arguments | Command-line arguments is part of Short Circuit's Console Program Basics selection.
Scripted main
See also Program name.
For parsing command line arguments intelligently, see Parsing command-line arguments.
Example command line:
myprogram -c "alpha beta" -h "gamma"
| #Delphi | Delphi | // The program name and the directory it was called from are in
// param[0] , so given the axample of myprogram -c "alpha beta" -h "gamma"
for x := 0 to paramcount do
writeln('param[',x,'] = ',param[x]);
// will yield ( assuming windows and the c drive as the only drive) :
// param[0] = c:\myprogram
// param[1] = -c
// param[2] = alpha beta
// param[3] = -h
// param[4] = gamma
|
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #BASIC | BASIC | 100 REM Standard BASIC comments begin with "REM" (remark) and extend to the end of the line
110 PRINT "this is code": REM comment after statement |
http://rosettacode.org/wiki/Comments | Comments | Task
Show all ways to include text in a language source file
that's completely ignored by the compiler or interpreter.
Related tasks
Documentation
Here_document
See also
Wikipedia
xkcd (Humor: hand gesture denoting // for "commenting out" people.)
| #Batch_File | Batch File | rem Single-line comment. |
http://rosettacode.org/wiki/Compiler/virtual_machine_interpreter | Compiler/virtual machine interpreter | A virtual machine implements a computer in software.
Task[edit]
Write a virtual machine interpreter. This interpreter should be able to run virtual
assembly language programs created via the task. This is a
byte-coded, 32-bit word stack based virtual machine.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Input format:
Given the following program:
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
The output from the Code generator is a virtual assembly code program:
Output from gen, input to VM
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
The first line of the input specifies the datasize required and the number of constant
strings, in the order that they are reference via the code.
The data can be stored in a separate array, or the data can be stored at the beginning of
the stack. Data is addressed starting at 0. If there are 3 variables, the 3rd one if
referenced at address 2.
If there are one or more constant strings, they come next. The code refers to these
strings by their index. The index starts at 0. So if there are 3 strings, and the code
wants to reference the 3rd string, 2 will be used.
Next comes the actual virtual assembly code. The first number is the code address of that
instruction. After that is the instruction mnemonic, followed by optional operands,
depending on the instruction.
Registers:
sp:
the stack pointer - points to the next top of stack. The stack is a 32-bit integer
array.
pc:
the program counter - points to the current instruction to be performed. The code is an
array of bytes.
Data:
data
string pool
Instructions:
Each instruction is one byte. The following instructions also have a 32-bit integer
operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
Print the word at stack top as a character.
prtc
Print the word at stack top as an integer.
prti
Stack top points to an index into the string pool. Print that entry.
prts
Unconditional stop.
halt
A simple example virtual machine
def run_vm(data_size)
int stack[data_size + 1000]
set stack[0..data_size - 1] to 0
int pc = 0
while True:
op = code[pc]
pc += 1
if op == FETCH:
stack.append(stack[bytes_to_int(code[pc:pc+word_size])[0]]);
pc += word_size
elif op == STORE:
stack[bytes_to_int(code[pc:pc+word_size])[0]] = stack.pop();
pc += word_size
elif op == PUSH:
stack.append(bytes_to_int(code[pc:pc+word_size])[0]);
pc += word_size
elif op == ADD: stack[-2] += stack[-1]; stack.pop()
elif op == SUB: stack[-2] -= stack[-1]; stack.pop()
elif op == MUL: stack[-2] *= stack[-1]; stack.pop()
elif op == DIV: stack[-2] /= stack[-1]; stack.pop()
elif op == MOD: stack[-2] %= stack[-1]; stack.pop()
elif op == LT: stack[-2] = stack[-2] < stack[-1]; stack.pop()
elif op == GT: stack[-2] = stack[-2] > stack[-1]; stack.pop()
elif op == LE: stack[-2] = stack[-2] <= stack[-1]; stack.pop()
elif op == GE: stack[-2] = stack[-2] >= stack[-1]; stack.pop()
elif op == EQ: stack[-2] = stack[-2] == stack[-1]; stack.pop()
elif op == NE: stack[-2] = stack[-2] != stack[-1]; stack.pop()
elif op == AND: stack[-2] = stack[-2] and stack[-1]; stack.pop()
elif op == OR: stack[-2] = stack[-2] or stack[-1]; stack.pop()
elif op == NEG: stack[-1] = -stack[-1]
elif op == NOT: stack[-1] = not stack[-1]
elif op == JMP: pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == JZ: if stack.pop() then pc += word_size else pc += bytes_to_int(code[pc:pc+word_size])[0]
elif op == PRTC: print stack[-1] as a character; stack.pop()
elif op == PRTS: print the constant string referred to by stack[-1]; stack.pop()
elif op == PRTI: print stack[-1] as an integer; stack.pop()
elif op == HALT: break
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Code Generator task
AST Interpreter task
| #RATFOR | RATFOR | ######################################################################
#
# The Rosetta Code code virtual machine in Ratfor 77.
#
# The implementation assumes your FORTRAN compiler supports 1-byte
# INTEGER*1 and 4-byte INTEGER*4. Integer storage will be
# native-endian, achieved via EQUIVALENCE. (GNU Fortran and f2c both
# should work.)
#
#
# How to deal with FORTRAN 77 input is a problem. I use formatted
# input, treating each line as an array of type CHARACTER--regrettably
# of no more than some predetermined, finite length. It is a very
# simple method and presents no significant difficulties, aside from
# the restriction on line length of the input.
#
#
# On a POSIX platform, the program can be compiled with f2c and run
# somewhat as follows:
#
# ratfor77 vm-in-ratfor.r > vm-in-ratfor.f
# f2c -C -Nc40 vm-in-ratfor.f
# cc vm-in-ratfor.c -lf2c
# ./a.out < compiler-tests/primes.vm
#
# With gfortran, a little differently:
#
# ratfor77 vm-in-ratfor.r > vm-in-ratfor.f
# gfortran -fcheck=all -std=legacy vm-in-ratfor.f
# ./a.out < compiler-tests/primes.vm
#
#
# I/O is strictly from default input and to default output, which, on
# POSIX systems, usually correspond respectively to standard input and
# standard output. (I did not wish to have to deal with unit numbers;
# these are now standardized in ISO_FORTRAN_ENV, but that is not
# available in FORTRAN 77.)
#
#---------------------------------------------------------------------
# Some parameters you may wish to modify.
define(LINESZ, 256) # Size of an input line.
define(OUTLSZ, 1024) # Size of an output line.
define(STRNSZ, 4096) # Size of the string pool.
define(STCKSZ, 4096) # Size of stacks.
define(MAXVAR, 256) # Maximum number of variables.
define(MAXSTR, 256) # Maximum number of strings.
define(CODESZ, 16384) # Maximum size of a compiled program.
define(STRSZ, 2) # Size of an entry in the VM strings array.
define(STRI, 1) # Index of the string within strngs.
define(STRN, 2) # Length of the string.
#---------------------------------------------------------------------
define(NEWLIN, 10) # The Unix newline character (ASCII LF).
define(DQUOTE, 34) # The double quote character.
define(BACKSL, 92) # The backslash character.
#---------------------------------------------------------------------
define(OPHALT, 1)
define(OPADD, 2)
define(OPSUB, 3)
define(OPMUL, 4)
define(OPDIV, 5)
define(OPMOD, 6)
define(OPLT, 7)
define(OPGT, 8)
define(OPLE, 9)
define(OPGE, 10)
define(OPEQ, 11)
define(OPNE, 12)
define(OPAND, 13)
define(OPOR, 14)
define(OPNEG, 15)
define(OPNOT, 16)
define(OPPRTC, 17)
define(OPPRTI, 18)
define(OPPRTS, 19)
define(OPFTCH, 20)
define(OPSTOR, 21)
define(OPPUSH, 22)
define(OPJMP, 23)
define(OPJZ, 24)
#---------------------------------------------------------------------
function issp (c)
# Is a character a space character?
implicit none
character c
logical issp
integer ic
ic = ichar (c)
issp = (ic == 32 || (9 <= ic && ic <= 13))
end
function isalph (c)
# Is c character code for a letter?
implicit none
integer c
logical isalph
#
# The following is correct for ASCII and Unicode, but not for
# EBCDIC.
#
isalph = (ichar ('a') <= c && c <= ichar ('z')) _
|| (ichar ('A') <= c && c <= ichar ('Z'))
end
function isdgt (c)
# Is c character code for a digit?
implicit none
integer c
logical isdgt
isdgt = (ichar ('0') <= c && c <= ichar ('9'))
end
function skipsp (str, i, imax)
# Skip past spaces in a string.
implicit none
character str(*)
integer i
integer imax
integer skipsp
logical issp
logical done
skipsp = i
done = .false.
while (!done)
{
if (imax <= skipsp)
done = .true.
else if (!issp (str(skipsp)))
done = .true.
else
skipsp = skipsp + 1
}
end
function skipns (str, i, imax)
# Skip past non-spaces in a string.
implicit none
character str(*)
integer i
integer imax
integer skipns
logical issp
logical done
skipns = i
done = .false.
while (!done)
{
if (imax <= skipns)
done = .true.
else if (issp (str(skipns)))
done = .true.
else
skipns = skipns + 1
}
end
function trimrt (str, n)
# Find the length of a string, if one ignores trailing spaces.
implicit none
character str(*)
integer n
integer trimrt
logical issp
logical done
trimrt = n
done = .false.
while (!done)
{
if (trimrt == 0)
done = .true.
else if (!issp (str(trimrt)))
done = .true.
else
trimrt = trimrt - 1
}
end
function skipal (str, i, imax)
# Skip past alphabetic characters in a string.
implicit none
character str(*)
integer i
integer imax
integer skipal
logical isalph
logical done
skipal = i
done = .false.
while (!done)
{
if (imax <= skipal)
done = .true.
else if (!isalph (ichar (str(skipal))))
done = .true.
else
skipal = skipal + 1
}
end
function skipdg (str, i, imax)
# Skip past digits in a string.
implicit none
character str(*)
integer i
integer imax
integer skipdg
logical isdgt
logical done
skipdg = i
done = .false.
while (!done)
{
if (imax <= skipdg)
done = .true.
else if (!isdgt (ichar (str(skipdg))))
done = .true.
else
skipdg = skipdg + 1
}
end
function skipnd (str, i, imax)
# Skip past nondigits in a string.
implicit none
character str(*)
integer i
integer imax
integer skipnd
logical isdgt
logical done
skipnd = i
done = .false.
while (!done)
{
if (imax <= skipnd)
done = .true.
else if (isdgt (ichar (str(skipnd))))
done = .true.
else
skipnd = skipnd + 1
}
end
function skipd1 (str, i, imax)
# Skip past digits and '-' in a string.
implicit none
character str(*)
integer i
integer imax
integer skipd1
logical isdgt
logical done
skipd1 = i
done = .false.
while (!done)
{
if (imax <= skipd1)
done = .true.
else if (!isdgt (ichar (str(skipd1))) && str(skipd1) != '-')
done = .true.
else
skipd1 = skipd1 + 1
}
end
function skipn1 (str, i, imax)
# Skip past nondigits in a string, except '-'.
implicit none
character str(*)
integer i
integer imax
integer skipn1
logical isdgt
logical done
skipn1 = i
done = .false.
while (!done)
{
if (imax <= skipn1)
done = .true.
else if (isdgt (ichar (str(skipn1))) || str(skipn1) == '-')
done = .true.
else
skipn1 = skipn1 + 1
}
end
function tolowr (c)
implicit none
character c
character tolowr
integer ic
# The following is correct for ASCII, and will work with Unicode
# code points, but is incorrect for EBCDIC.
ic = ichar (c)
if (ichar ('A') <= ic && ic <= ichar ('Z'))
ic = ic - ichar('A') + ichar('a')
tolowr = char (ic)
end
#---------------------------------------------------------------------
subroutine addstq (strngs, istrng, src, i0, n0, i, n)
# Add a quoted string to the string pool.
implicit none
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
character src(*) # Source string.
integer i0, n0 # Index and length in source string.
integer i, n # Index and length in string pool.
integer j
logical done
1000 format ('attempt to treat an unquoted string as a quoted string')
if (src(i0) != char (DQUOTE) || src(i0 + n0 - 1) != char (DQUOTE))
{
write (*, 1000)
stop
}
i = istrng
n = 0
j = i0 + 1
done = .false.
while (j != i0 + n0 - 1)
if (i == STRNSZ)
{
write (*, '(''string pool exhausted'')')
stop
}
else if (src(j) == char (BACKSL))
{
if (j == i0 + n0 - 1)
{
write (*, '(''incorrectly formed quoted string'')')
stop
}
if (src(j + 1) == 'n')
strngs(istrng) = char (NEWLIN)
else if (src(j + 1) == char (BACKSL))
strngs(istrng) = src(j + 1)
else
{
write (*, '(''unrecognized escape sequence'')')
stop
}
istrng = istrng + 1
n = n + 1
j = j + 2
}
else
{
strngs(istrng) = src(j)
istrng = istrng + 1
n = n + 1
j = j + 1
}
end
#---------------------------------------------------------------------
subroutine push (stack, sp, i)
implicit none
integer stack(STCKSZ)
integer sp # Stack pointer.
integer i # Value to push.
if (sp == STCKSZ)
{
write (*, '(''stack overflow in push'')')
stop
}
stack(sp) = i
sp = sp + 1
end
function pop (stack, sp)
implicit none
integer stack(STCKSZ)
integer sp # Stack pointer.
integer pop
if (sp == 1)
{
write (*, '(''stack underflow in pop'')')
stop
}
sp = sp - 1
pop = stack(sp)
end
function nstack (sp)
implicit none
integer sp # Stack pointer.
integer nstack
nstack = sp - 1 # Current cardinality of the stack.
end
#---------------------------------------------------------------------
subroutine flushl (outbuf, noutbf)
# Flush a line from the output buffer.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
character*20 fmt
integer i
if (noutbf == 0)
write (*, '()')
else
{
write (fmt, 1000) noutbf
1000 format ('(', I10, 'A)')
write (*, fmt) (outbuf(i), i = 1, noutbf)
noutbf = 0
}
end
subroutine wrtchr (outbuf, noutbf, ch)
# Write a character to output.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
character ch # The character to output.
# This routine silently truncates anything that goes past the buffer
# boundary.
if (ch == char (NEWLIN))
call flushl (outbuf, noutbf)
else if (noutbf < OUTLSZ)
{
noutbf = noutbf + 1
outbuf(noutbf) = ch
}
end
subroutine wrtstr (outbuf, noutbf, str, i, n)
# Write a substring to output.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
character str(*) # The string from which to output.
integer i, n # Index and length of the substring.
integer j
for (j = 0; j < n; j = j + 1)
call wrtchr (outbuf, noutbf, str(i + j))
end
subroutine wrtint (outbuf, noutbf, ival, colcnt)
# Write an integer to output.
implicit none
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
integer ival # The non-negative integer to print.
integer colcnt # Column count, or zero for free format.
integer skipsp
character*40 buf
integer i, j
write (buf, '(I40)') ival
i = skipsp (buf, 1, 41)
if (0 < colcnt)
for (j = 1; j < colcnt - (40 - i); j = j + 1)
call wrtchr (outbuf, noutbf, ' ')
while (i <= 40)
{
call wrtchr (outbuf, noutbf, buf(i:i))
i = i + 1
}
end
#---------------------------------------------------------------------
function strnat (str, i, n)
# Convert a string to a non-negative integer.
implicit none
character str(*)
integer i, n
integer strnat
integer j
strnat = 0
for (j = 0; j < n; j = j + 1)
strnat = (10 * strnat) + (ichar (str(i + j)) - ichar ('0'))
end
function strint (str, i, n)
# Convert a string to an integer
implicit none
character str(*)
integer i, n
integer strint
integer strnat
if (str(i) == '-')
strint = -strnat (str, i + 1, n - 1)
else
strint = strnat (str, i, n)
end
#---------------------------------------------------------------------
subroutine put1 (code, i, opcode)
# Store a 1-byte operation.
implicit none
integer*1 code(0 : CODESZ - 1) # Byte code.
integer i # Address to put the code at.
integer*1 opcode
if (CODESZ - i < 1)
{
write (*, '(''address beyond the size of memory'')')
stop
}
code(i) = opcode
end
subroutine put5 (code, i, opcode, ival)
# Store a 5-byte operation.
implicit none
integer*1 code(0 : CODESZ - 1) # Byte code.
integer i # Address to put the code at.
integer*1 opcode #
integer ival # Immediate integer value.
integer*4 ival32
integer*1 ival8(4)
equivalence (ival32, ival8)
if (CODESZ - i < 5)
{
write (*, '(''address beyond the size of memory'')')
stop
}
code(i) = opcode
# Native-endian storage.
ival32 = ival
code(i + 1) = ival8(1)
code(i + 2) = ival8(2)
code(i + 3) = ival8(3)
code(i + 4) = ival8(4)
end
function getimm (code, i)
# Get an immediate value from the code, at address i.
implicit none
integer*1 code(0 : CODESZ - 1) # Byte code.
integer i # Address at which the integer resides.
integer getimm # Immediate integer value.
integer*4 ival32
integer*1 ival8(4)
equivalence (ival32, ival8)
if (i < 0 || CODESZ <= i + 3)
{
write (*, '(''code address out of range'')')
stop
}
# Native-endian storage.
ival8(1) = code(i)
ival8(2) = code(i + 1)
ival8(3) = code(i + 2)
ival8(4) = code(i + 3)
getimm = ival32
end
#---------------------------------------------------------------------
subroutine rdhead (datsiz, strsiz)
# Read the header line.
implicit none
integer datsiz
integer strsiz
integer skipnd
integer skipdg
integer strnat
character line(LINESZ)
character*20 fmt
integer i1, j1, i2, j2
# Read a line of text as an array of characters.
write (fmt, '(''('', I10, ''A)'')') LINESZ
read (*, fmt) line
i1 = skipnd (line, 1, LINESZ + 1)
j1 = skipdg (line, i1, LINESZ + 1)
i2 = skipnd (line, j1, LINESZ + 1)
j2 = skipdg (line, i2, LINESZ + 1)
if (i1 == j1 || i2 == j2)
{
write (*, '(''bad header line'')')
stop
}
datsiz = strnat (line, i1, j1 - i1)
strsiz = strnat (line, i2, j2 - i2)
end
subroutine rdstrs (strs, strsiz, strngs, istrng)
implicit none
integer strs(1:STRSZ, 0 : MAXSTR - 1)
integer strsiz
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer trimrt
integer skipsp
character line(LINESZ)
character*20 fmt
integer j
integer i, n
integer i0, n0
# Read lines of text as an array of characters.
write (fmt, '(''('', I10, ''A)'')') LINESZ
for (j = 0; j < strsiz; j = j + 1)
{
read (*, fmt) line
n0 = trimrt (line, LINESZ)
i0 = skipsp (line, 1, n0 + 1)
if (i0 == n0 + 1)
{
write (*, '(''blank line where a string should be'')')
stop
}
call addstq (strngs, istrng, line, i0, n0 - i0 + 1, i, n)
strs(STRI, j) = i
strs(STRN, j) = n
}
end
function stropc (str, i, n)
# Convert substring to an opcode.
implicit none
character str(*)
integer i, n
integer*1 stropc
stropc = -1
if (n == 2)
{
if (str(i) == 'l')
{
if (str(i + 1) == 't')
stropc = OPLT
else if (str(i + 1) == 'e')
stropc = OPLE
}
else if (str(i) == 'g')
{
if (str(i + 1) == 't')
stropc = OPGT
else if (str(i + 1) == 'e')
stropc = OPGE
}
else if (str(i) == 'e' && str(i + 1) == 'q')
stropc = OPEQ
else if (str(i) == 'n' && str(i + 1) == 'e')
stropc = OPNE
else if (str(i) == 'o' && str(i + 1) == 'r')
stropc = OPOR
else if (str(i) == 'j' && str(i + 1) == 'z')
stropc = OPJZ
}
else if (n == 3)
{
if (str(i) == 'a')
{
if (str(i + 1) == 'd' && str(i + 2) == 'd')
stropc = OPADD
else if (str(i + 1) == 'n' && str(i + 2) == 'd')
stropc = OPAND
}
else if (str(i) == 'm')
{
if (str(i + 1) == 'o' && str(i + 2) == 'd')
stropc = OPMOD
else if (str(i + 1) == 'u' && str(i + 2) == 'l')
stropc = OPMUL
}
else if (str(i) == 'n')
{
if (str(i + 1) == 'e' && str(i + 2) == 'g')
stropc = OPNEG
else if (str(i + 1) == 'o' && str(i + 2) == 't')
stropc = OPNOT
}
else if (str(i) == 's' && str(i + 1) == 'u' _
&& str(i + 2) == 'b')
stropc = OPSUB
else if (str(i) == 'd' && str(i + 1) == 'i' _
&& str(i + 2) == 'v')
stropc = OPDIV
else if (str(i) == 'j' && str(i + 1) == 'm' _
&& str(i + 2) == 'p')
stropc = OPJMP
}
else if (n == 4)
{
if (str(i) == 'p')
{
if (str(i + 1) == 'r' && str(i + 2) == 't')
{
if (str(i + 3) == 'c')
stropc = OPPRTC
else if (str(i + 3) == 'i')
stropc = OPPRTI
else if (str(i + 3) == 's')
stropc = OPPRTS
}
if (str(i + 1) == 'u' && str(i + 2) == 's' _
&& str(i + 3) == 'h')
stropc = OPPUSH
}
else if (str(i) == 'h' && str(i + 1) == 'a' _
&& str(i + 2) == 'l' && str(i + 3) == 't')
stropc = OPHALT
}
else if (n == 5)
{
if (str(i) == 'f' && str(i + 1) == 'e' && str(i + 2) == 't' _
&& str(i + 3) == 'c' && str(i + 4) == 'h')
stropc = OPFTCH
if (str(i) == 's' && str(i + 1) == 't' && str(i + 2) == 'o' _
&& str(i + 3) == 'r' && str(i + 4) == 'e')
stropc = OPSTOR
}
if (stropc == -1)
{
write (*, '(''unrecognized opcode name'')')
stop
}
end
subroutine rdops (code)
# Read the opcodes and their immediate values.
implicit none
integer*1 code(0 : CODESZ - 1) # The byte code.
integer trimrt
integer skipsp
integer skipal
integer skipdg
integer skipd1
integer skipn1
integer strnat
integer strint
integer*1 stropc
character tolowr
character line(LINESZ)
character*20 fmt
integer stat
integer n
integer j
integer iaddr, jaddr # Address index and size.
integer iopnm, jopnm # Opcode name index and size.
integer iarg, jarg
integer addr
integer arg
integer*1 opcode
# Read lines of text as an array of characters.
write (fmt, '(''('', I10, ''A)'')') LINESZ
read (*, fmt, iostat = stat) line
while (stat == 0)
{
n = trimrt (line, LINESZ)
for (j = 1; j <= n; j = j + 1)
line(j) = tolowr (line(j))
iaddr = skipsp (line, 1, n + 1)
jaddr = skipdg (line, iaddr, n + 1)
addr = strnat (line, iaddr, jaddr - iaddr)
iopnm = skipsp (line, jaddr, n + 1)
jopnm = skipal (line, iopnm, n + 1)
opcode = stropc (line, iopnm, jopnm - iopnm)
if (opcode == OPPUSH || opcode == OPFTCH || opcode == OPSTOR _
|| opcode == OPJMP || opcode == OPJZ)
{
iarg = skipn1 (line, jopnm, n + 1)
jarg = skipd1 (line, iarg, n + 1)
arg = strint (line, iarg, jarg - iarg)
call put5 (code, addr, opcode, arg)
}
else
call put1 (code, addr, opcode)
read (*, fmt, iostat = stat) line
}
end
subroutine rdcode (strs, strngs, istrng, code)
# Read and parse the "assembly" code.
implicit none
integer strs(1:STRSZ, 0 : MAXSTR - 1)
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer*1 code(0 : CODESZ - 1) # The byte code.
integer datsiz
integer strsiz
call rdhead (datsiz, strsiz)
if (MAXVAR < datsiz)
{
write (*, '(''too many variables'')')
stop
}
if (MAXSTR < strsiz)
{
write (*, '(''too many strings'')')
stop
}
call rdstrs (strs, strsiz, strngs, istrng)
call rdops (code)
end
#---------------------------------------------------------------------
subroutine stkbin (sp)
implicit none
integer sp
if (sp < 3)
{
write (*, '(''stack underflow in binary operation'')')
stop
}
end
subroutine stkun (sp)
implicit none
integer sp
if (sp < 2)
{
write (*, '(''stack underflow in unary operation'')')
stop
}
end
function logl2i (b)
implicit none
logical b
integer logl2i
if (b)
logl2i = 1
else
logl2i = 0
end
subroutine rncode (strs, strngs, code, outbuf, noutbf)
# Run the code.
implicit none
integer strs(1:STRSZ, 0 : MAXSTR - 1)
character strngs(STRNSZ) # String pool.
integer*1 code(0 : CODESZ - 1) # The byte code.
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
integer logl2i
integer getimm
integer pop
integer stack(STCKSZ)
integer data(0 : MAXVAR - 1)
integer sp # Stack pointer.
integer pc # Program counter.
integer ip # Instruction pointer.
equivalence (pc, ip) # LOL, use either name. :)
integer i, n
integer*1 opcode
logical done
sp = 1
ip = 0
done = .false.
while (!done)
{
if (ip < 0 || CODESZ <= ip)
{
write (*, '(''code address out of range'')')
stop
}
opcode = code(ip)
ip = ip + 1
if (opcode == OPADD)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = stack (sp - 1) + stack(sp)
}
else if (opcode == OPSUB)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = stack (sp - 1) - stack(sp)
}
else if (opcode == OPMUL)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = stack (sp - 1) * stack(sp)
}
else if (opcode == OPDIV)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = stack (sp - 1) / stack(sp)
}
else if (opcode == OPMOD)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = mod (stack (sp - 1), stack(sp))
}
else if (opcode == OPLT)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = logl2i (stack (sp - 1) < stack(sp))
}
else if (opcode == OPGT)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = logl2i (stack (sp - 1) > stack(sp))
}
else if (opcode == OPLE)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = logl2i (stack (sp - 1) <= stack(sp))
}
else if (opcode == OPGE)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = logl2i (stack (sp - 1) >= stack(sp))
}
else if (opcode == OPEQ)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = logl2i (stack (sp - 1) == stack(sp))
}
else if (opcode == OPNE)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = logl2i (stack (sp - 1) != stack(sp))
}
else if (opcode == OPAND)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = _
logl2i (stack (sp - 1) != 0 && stack(sp) != 0)
}
else if (opcode == OPOR)
{
call stkbin (sp)
sp = sp - 1
stack(sp - 1) = _
logl2i (stack (sp - 1) != 0 || stack(sp) != 0)
}
else if (opcode == OPNEG)
{
call stkun (sp)
stack(sp - 1) = -stack(sp - 1)
}
else if (opcode == OPNOT)
{
call stkun (sp)
stack(sp - 1) = logl2i (stack(sp - 1) == 0)
}
else if (opcode == OPPRTC)
{
call wrtchr (outbuf, noutbf, char (pop (stack, sp)))
}
else if (opcode == OPPRTI)
{
call wrtint (outbuf, noutbf, pop (stack, sp), 0)
}
else if (opcode == OPPRTS)
{
i = pop (stack, sp)
if (i < 0 || MAXSTR <= i)
{
write (*, '(''string address out of range'')')
stop
}
n = strs(STRN, i)
i = strs(STRI, i)
call wrtstr (outbuf, noutbf, strngs, i, n)
}
else if (opcode == OPFTCH)
{
i = getimm (code, ip)
ip = ip + 4
if (i < 0 || MAXVAR <= i)
{
write (*, '(''data address out of range'')')
stop
}
call push (stack, sp, data(i))
}
else if (opcode == OPSTOR)
{
i = getimm (code, ip)
ip = ip + 4
if (i < 0 || MAXVAR <= i)
{
write (*, '(''data address out of range'')')
stop
}
data(i) = pop (stack, sp)
}
else if (opcode == OPPUSH)
{
call push (stack, sp, getimm (code, ip))
ip = ip + 4
}
else if (opcode == OPJMP)
{
ip = ip + getimm (code, ip)
}
else if (opcode == OPJZ)
{
if (pop (stack, sp) == 0)
ip = ip + getimm (code, ip)
else
ip = ip + 4
}
else
{
# Halt on OPHALT or any unrecognized code.
done = .true.
}
}
end
#---------------------------------------------------------------------
program vm
implicit none
integer strs(1:STRSZ, 0 : MAXSTR - 1)
character strngs(STRNSZ) # String pool.
integer istrng # String pool's next slot.
integer*1 code(0 : CODESZ - 1) # The byte code.
character outbuf(OUTLSZ) # Output line buffer.
integer noutbf # Number of characters in outbuf.
integer j
istrng = 1
noutbf = 0
for (j = 0; j < CODESZ; j = j + 1)
code(j) = OPHALT
call rdcode (strs, strngs, istrng, code)
call rncode (strs, strngs, code, outbuf, noutbf)
if (noutbf != 0)
call flushl (outbuf, noutbf)
end
###################################################################### |
http://rosettacode.org/wiki/Compiler/code_generator | Compiler/code generator | A code generator translates the output of the syntax analyzer and/or semantic analyzer
into lower level code, either assembly, object, or virtual.
Task[edit]
Take the output of the Syntax analyzer task - which is a flattened Abstract Syntax Tree (AST) - and convert it to virtual machine code, that can be run by the
Virtual machine interpreter. The output is in text format, and represents virtual assembly code.
The program should read input from a file and/or stdin, and write output to a file and/or
stdout.
Example - given the simple program (below), stored in a file called while.t, create the list of tokens, using one of the Lexical analyzer solutions
lex < while.t > while.lex
Run one of the Syntax analyzer solutions
parse < while.lex > while.ast
while.ast can be input into the code generator.
The following table shows the input to lex, lex output, the AST produced by the parser, and the generated virtual assembly code.
Run as: lex < while.t | parse | gen
Input to lex
Output from lex, input to parse
Output from parse
Output from gen, input to VM
count = 1;
while (count < 10) {
print("count is: ", count, "\n");
count = count + 1;
}
1 1 Identifier count
1 7 Op_assign
1 9 Integer 1
1 10 Semicolon
2 1 Keyword_while
2 7 LeftParen
2 8 Identifier count
2 14 Op_less
2 16 Integer 10
2 18 RightParen
2 20 LeftBrace
3 5 Keyword_print
3 10 LeftParen
3 11 String "count is: "
3 23 Comma
3 25 Identifier count
3 30 Comma
3 32 String "\n"
3 36 RightParen
3 37 Semicolon
4 5 Identifier count
4 11 Op_assign
4 13 Identifier count
4 19 Op_add
4 21 Integer 1
4 22 Semicolon
5 1 RightBrace
6 1 End_of_input
Sequence
Sequence
;
Assign
Identifier count
Integer 1
While
Less
Identifier count
Integer 10
Sequence
Sequence
;
Sequence
Sequence
Sequence
;
Prts
String "count is: "
;
Prti
Identifier count
;
Prts
String "\n"
;
Assign
Identifier count
Add
Identifier count
Integer 1
Datasize: 1 Strings: 2
"count is: "
"\n"
0 push 1
5 store [0]
10 fetch [0]
15 push 10
20 lt
21 jz (43) 65
26 push 0
31 prts
32 fetch [0]
37 prti
38 push 1
43 prts
44 fetch [0]
49 push 1
54 add
55 store [0]
60 jmp (-51) 10
65 halt
Input format
As shown in the table, above, the output from the syntax analyzer is a flattened AST.
In the AST, Identifier, Integer, and String, are terminal nodes, e.g, they do not have child nodes.
Loading this data into an internal parse tree should be as simple as:
def load_ast()
line = readline()
# Each line has at least one token
line_list = tokenize the line, respecting double quotes
text = line_list[0] # first token is always the node type
if text == ";"
return None
node_type = text # could convert to internal form if desired
# A line with two tokens is a leaf node
# Leaf nodes are: Identifier, Integer String
# The 2nd token is the value
if len(line_list) > 1
return make_leaf(node_type, line_list[1])
left = load_ast()
right = load_ast()
return make_node(node_type, left, right)
Output format - refer to the table above
The first line is the header: Size of data, and number of constant strings.
size of data is the number of 32-bit unique variables used. In this example, one variable, count
number of constant strings is just that - how many there are
After that, the constant strings
Finally, the assembly code
Registers
sp: the stack pointer - points to the next top of stack. The stack is a 32-bit integer array.
pc: the program counter - points to the current instruction to be performed. The code is an array of bytes.
Data
32-bit integers and strings
Instructions
Each instruction is one byte. The following instructions also have a 32-bit integer operand:
fetch [index]
where index is an index into the data array.
store [index]
where index is an index into the data array.
push n
where value is a 32-bit integer that will be pushed onto the stack.
jmp (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
jz (n) addr
where (n) is a 32-bit integer specifying the distance between the current location and the
desired location. addr is an unsigned value of the actual code address.
The following instructions do not have an operand. They perform their operation directly
against the stack:
For the following instructions, the operation is performed against the top two entries in
the stack:
add
sub
mul
div
mod
lt
gt
le
ge
eq
ne
and
or
For the following instructions, the operation is performed against the top entry in the
stack:
neg
not
prtc
Print the word at stack top as a character.
prti
Print the word at stack top as an integer.
prts
Stack top points to an index into the string pool. Print that entry.
halt
Unconditional stop.
Additional examples
Your solution should pass all the test cases above and the additional tests found Here.
Reference
The C and Python versions can be considered reference implementations.
Related Tasks
Lexical Analyzer task
Syntax Analyzer task
Virtual Machine Interpreter task
AST Interpreter task
| #Scheme | Scheme |
(import (scheme base)
(scheme file)
(scheme process-context)
(scheme write)
(only (srfi 1) delete-duplicates list-index)
(only (srfi 13) string-delete string-index string-trim))
(define *names* '((Add add) (Subtract sub) (Multiply mul) (Divide div) (Mod mod)
(Less lt) (Greater gt) (LessEqual le) (GreaterEqual ge)
(Equal eq) (NotEqual ne) (And and) (Or or) (Negate neg)
(Not not) (Prts prts) (Prti prti) (Prtc prtc)))
(define (change-name name)
(if (assq name *names*)
(cdr (assq name *names*))
(error "Cannot find name" name)))
;; Read AST from given filename
;; - return as an s-expression
(define (read-code filename)
(define (read-expr)
(let ((line (string-trim (read-line))))
(if (string=? line ";")
'()
(let ((space (string-index line #\space)))
(if space
(list (string->symbol (string-trim (substring line 0 space)))
(string-trim (substring line space (string-length line))))
(list (string->symbol line) (read-expr) (read-expr)))))))
;
(with-input-from-file filename (lambda () (read-expr))))
;; run a three-pass assembler
(define (generate-code ast)
(define new-address ; create a new unique address - for jump locations
(let ((count 0))
(lambda ()
(set! count (+ 1 count))
(string->symbol (string-append "loc-" (number->string count))))))
; define some names for fields
(define left cadr)
(define right (lambda (x) (cadr (cdr x))))
;
(define (extract-values ast)
(if (null? ast)
(values '() '())
(case (car ast)
((Integer)
(values '() '()))
((Negate Not Prtc Prti Prts)
(extract-values (left ast)))
((Assign Add Subtract Multiply Divide Mod Less Greater LessEqual GreaterEqual
Equal NotEqual And Or If While Sequence)
(let-values (((a b) (extract-values (left ast)))
((c d) (extract-values (right ast))))
(values (delete-duplicates (append a c) string=?)
(delete-duplicates (append b d) string=?))))
((String)
(values '() (list (left ast))))
((Identifier)
(values (list (left ast)) '())))))
;
(let-values (((constants strings) (extract-values ast)))
(define (constant-idx term)
(list-index (lambda (s) (string=? s term)) constants))
(define (string-idx term)
(list-index (lambda (s) (string=? s term)) strings))
;
(define (pass-1 ast asm) ; translates ast into a list of basic operations
(if (null? ast)
asm
(case (car ast)
((Integer)
(cons (list 'push (left ast)) asm))
((Identifier)
(cons (list 'fetch (constant-idx (left ast))) asm))
((String)
(cons (list 'push (string-idx (left ast))) asm))
((Assign)
(cons (list 'store (constant-idx (left (left ast)))) (pass-1 (right ast) asm)))
((Add Subtract Multiply Divide Mod Less Greater LessEqual GreaterEqual
Equal NotEqual And Or) ; binary operators
(cons (change-name (car ast))
(pass-1 (right ast) (pass-1 (left ast) asm))))
((Negate Not Prtc Prti Prts) ; unary operations
(cons (change-name (car ast))
(pass-1 (left ast) asm)))
((If)
(let ((label-else (new-address))
(label-end (new-address)))
(if (null? (right (right ast)))
(cons (list 'label label-end) ; label for end of if statement
(pass-1 (left (right ast)) ; output the 'then block
(cons (list 'jz label-end) ; jump to end when test is false
(pass-1 (left ast) asm))))
(cons (list 'label label-end) ; label for end of if statement
(pass-1 (right (right ast)) ; output the 'else block
(cons (list 'label label-else)
(cons (list 'jmp label-end) ; jump past 'else, after 'then
(pass-1 (left (right ast)) ; output the 'then block
(cons (list 'jz label-else) ; jumpt to else when false
(pass-1 (left ast) asm))))))))))
((While)
(let ((label-test (new-address))
(label-end (new-address)))
(cons (list 'label label-end) ; introduce a label for end of while block
(cons (list 'jmp label-test) ; jump back to repeat test
(pass-1 (right ast) ; output the block
(cons (list 'jz label-end) ; test failed, jump around block
(pass-1 (left ast) ; output the test
(cons (list 'label label-test) ; introduce a label for test
asm))))))))
((Sequence)
(pass-1 (right ast) (pass-1 (left ast) asm)))
(else
"Unknown token type"))))
;
(define (pass-2 asm) ; adds addresses and fills in jump locations
(define (fill-addresses)
(let ((addr 0))
(map (lambda (instr)
(let ((res (cons addr instr)))
(unless (eq? (car instr) 'label)
(set! addr (+ addr (if (= 1 (length instr)) 1 5))))
res))
asm)))
;
(define (extract-labels asm)
(let ((labels '()))
(for-each (lambda (instr)
(when (eq? (cadr instr) 'label)
(set! labels (cons (cons (cadr (cdr instr)) (car instr))
labels))))
asm)
labels))
;
(define (add-jump-locations asm labels rec)
(cond ((null? asm)
(reverse rec))
((eq? (cadr (car asm)) 'label) ; ignore the labels
(add-jump-locations (cdr asm) labels rec))
((memq (cadr (car asm)) '(jmp jz)) ; replace labels with addresses for jumps
(add-jump-locations (cdr asm)
labels
(cons (list (car (car asm)) ; previous address
(cadr (car asm)) ; previous jump type
(cdr (assq (cadr (cdar asm)) labels))) ; actual address
rec)))
(else
(add-jump-locations (cdr asm) labels (cons (car asm) rec)))))
;
(let ((asm+addr (fill-addresses)))
(add-jump-locations asm+addr (extract-labels asm+addr) '())))
;
(define (output-instruction instr)
(display (number->string (car instr))) (display #\tab)
(display (cadr instr)) (display #\tab)
(case (cadr instr)
((fetch store)
(display "[") (display (number->string (cadr (cdr instr)))) (display "]\n"))
((jmp jz)
(display
(string-append "("
(number->string (- (cadr (cdr instr)) (car instr) 1))
")"))
(display #\tab)
(display (number->string (cadr (cdr instr)))) (newline))
((push)
(display (cadr (cdr instr))) (newline))
(else
(newline))))
; generate the code and output to stdout
(display
(string-append "Datasize: "
(number->string (length constants))
" Strings: "
(number->string (length strings))))
(newline)
(for-each (lambda (str) (display str) (newline))
strings)
(for-each output-instruction
(pass-2 (reverse (cons (list 'halt) (pass-1 ast '())))))))
;; read AST from file and output code to stdout
(if (= 2 (length (command-line)))
(generate-code (read-code (cadr (command-line))))
(display "Error: pass an ast filename\n"))
|
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Ruby | Ruby |
a, b = "Given two strings", "of different length"
[a,b].sort_by{|s| - s.size }.each{|s| puts s + " (size: #{s.size})"}
list = ["abcd","123456789","abcdef","1234567"]
puts list.sort_by{|s|- s.size}
|
http://rosettacode.org/wiki/Compare_length_of_two_strings | Compare length of two strings |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Given two strings of different length, determine which string is longer or shorter. Print both strings and their length, one on each line. Print the longer one first.
Measure the length of your string in terms of bytes or characters, as appropriate for your language. If your language doesn't have an operator for measuring the length of a string, note it.
Extra credit
Given more than two strings:
list = ["abcd","123456789","abcdef","1234567"]
Show the strings in descending length order.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Rust | Rust |
fn compare_and_report<T: ToString>(string1: T, string2: T) -> String {
let strings = [string1.to_string(), string2.to_string()];
let difference = strings[0].len() as i32 - strings[1].len() as i32;
if difference == 0 { // equal
format!("\"{}\" and \"{}\" are of equal length, {}", strings[0], strings[1], strings[0].len())
} else if difference > 1 { // string1 > string2
format!("\"{}\" has length {} and is the longest\n\"{}\" has length {} and is the shortest", strings[0], strings[0].len(), strings[1], strings[1].len())
} else { // string2 > string1
format!("\"{}\" has length {} and is the longest\n\"{}\" has length {} and is the shortest", strings[1], strings[1].len(), strings[0], strings[0].len())
}
}
fn main() {
println!("{}", compare_and_report("a", "b"));
println!("\n{}", compare_and_report("cd", "e"));
println!("\n{}", compare_and_report("f", "gh"));
}
|
http://rosettacode.org/wiki/Conway%27s_Game_of_Life | Conway's Game of Life | The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.
Conway's game of life is described here:
A cell C is represented by a 1 when alive, or 0 when dead, in an m-by-m (or m×m) square array of cells.
We calculate N - the sum of live cells in C's eight-location neighbourhood, then cell C is alive or dead in the next generation based on the following table:
C N new C
1 0,1 -> 0 # Lonely
1 4,5,6,7,8 -> 0 # Overcrowded
1 2,3 -> 1 # Lives
0 3 -> 1 # It takes three to give birth!
0 0,1,2,4,5,6,7,8 -> 0 # Barren
Assume cells beyond the boundary are always dead.
The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.
Task
Although you should test your implementation on more complex examples such as the glider in a larger universe, show the action of the blinker (three adjoining cells in a row all alive), over three generations, in a 3 by 3 grid.
References
Its creator John Conway, explains the game of life. Video from numberphile on youtube.
John Conway Inventing Game of Life - Numberphile video.
Related task
Langton's ant - another well known cellular automaton.
| #Erlang | Erlang |
-module(life).
-export([bang/1]).
-define(CHAR_DEAD, 32). % " "
-define(CHAR_ALIVE, 111). % "o"
-define(CHAR_BAR, 45). % "-"
-define(GEN_INTERVAL, 100).
-record(state, {x :: non_neg_integer()
,y :: non_neg_integer()
,n :: pos_integer()
,bar :: nonempty_string()
,board :: array()
,gen_count :: pos_integer()
,gen_duration :: non_neg_integer()
,print_time :: non_neg_integer()
}).
%% ============================================================================
%% API
%% ============================================================================
bang(Args) ->
[X, Y] = [atom_to_integer(A) || A <- Args],
{Time, Board} = timer:tc(fun() -> init_board(X, Y) end),
State = #state{x = X
,y = Y
,n = X * Y
,bar = [?CHAR_BAR || _ <- lists:seq(1, X)]
,board = Board
,gen_count = 1 % Consider inital state to be generation 1
,gen_duration = Time
,print_time = 0 % There was no print time yet
},
life_loop(State).
%% ============================================================================
%% Internal
%% ============================================================================
life_loop(
#state{x = X
,y = Y
,n = N
,bar = Bar
,board = Board
,gen_count = GenCount
,gen_duration = Time
,print_time = LastPrintTime
}=State) ->
{PrintTime, ok} = timer:tc(
fun() ->
do_print_screen(Board, Bar, X, Y, N, GenCount, Time, LastPrintTime)
end
),
{NewTime, NewBoard} = timer:tc(
fun() ->
next_generation(X, Y, Board)
end
),
NewState = State#state{board = NewBoard
,gen_count = GenCount + 1
,gen_duration = NewTime
,print_time = PrintTime
},
NewTimeMil = NewTime / 1000,
NextGenDelay = at_least_zero(round(?GEN_INTERVAL - NewTimeMil)),
timer:sleep(NextGenDelay),
life_loop(NewState).
at_least_zero(Integer) when Integer >= 0 -> Integer;
at_least_zero(_) -> 0.
do_print_screen(Board, Bar, X, Y, N, GenCount, Time, PrintTime) ->
ok = do_print_status(Bar, X, Y, N, GenCount, Time, PrintTime),
ok = do_print_board(Board).
do_print_status(Bar, X, Y, N, GenCount, TimeMic, PrintTimeMic) ->
TimeSec = TimeMic / 1000000,
PrintTimeSec = PrintTimeMic / 1000000,
ok = io:format("~s~n", [Bar]),
ok = io:format(
"X: ~b Y: ~b CELLS: ~b GENERATION: ~b DURATION: ~f PRINT TIME: ~f~n",
[X, Y, N, GenCount, TimeSec, PrintTimeSec]
),
ok = io:format("~s~n", [Bar]).
do_print_board(Board) ->
% It seems that just doing a fold should be faster than map + to_list
% combo, but, after measuring several times, map + to_list has been
% consistently (nearly twice) faster than either foldl or foldr.
RowStrings = array:to_list(
array:map(
fun(_, Row) ->
array:to_list(
array:map(
fun(_, State) ->
state_to_char(State)
end,
Row
)
)
end,
Board
)
),
ok = lists:foreach(
fun(RowString) ->
ok = io:format("~s~n", [RowString])
end,
RowStrings
).
state_to_char(0) -> ?CHAR_DEAD;
state_to_char(1) -> ?CHAR_ALIVE.
next_generation(W, H, Board) ->
array:map(
fun(Y, Row) ->
array:map(
fun(X, State) ->
Neighbors = filter_offsides(H, W, neighbors(X, Y)),
States = neighbor_states(Board, Neighbors),
LiveNeighbors = lists:sum(States),
new_state(State, LiveNeighbors)
end,
Row
)
end,
Board
).
new_state(1, LiveNeighbors) when LiveNeighbors < 2 -> 0;
new_state(1, LiveNeighbors) when LiveNeighbors < 4 -> 1;
new_state(1, LiveNeighbors) when LiveNeighbors > 3 -> 0;
new_state(0, LiveNeighbors) when LiveNeighbors =:= 3 -> 1;
new_state(State, _LiveNeighbors) -> State.
neighbor_states(Board, Neighbors) ->
[array:get(X, array:get(Y, Board)) || {X, Y} <- Neighbors].
filter_offsides(H, W, Coordinates) ->
[{X, Y} || {X, Y} <- Coordinates, is_onside(X, Y, H, W)].
is_onside(X, Y, H, W) when (X >= 0) and (Y >= 0) and (X < W) and (Y < H) -> true;
is_onside(_, _, _, _) -> false.
neighbors(X, Y) ->
[{X + OffX, Y + OffY} || {OffX, OffY} <- offsets()].
offsets() ->
[offset(D) || D <- directions()].
offset('N') -> { 0, -1};
offset('NE') -> { 1, -1};
offset('E') -> { 1, 0};
offset('SE') -> { 1, 1};
offset('S') -> { 0, 1};
offset('SW') -> {-1, 1};
offset('W') -> {-1, 0};
offset('NW') -> {-1, -1}.
directions() ->
['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW'].
init_board(X, Y) ->
array:map(fun(_, _) -> init_row(X) end, array:new(Y)).
init_row(X) ->
array:map(fun(_, _) -> init_cell_state() end, array:new(X)).
init_cell_state() ->
crypto:rand_uniform(0, 2).
atom_to_integer(Atom) ->
list_to_integer(atom_to_list(Atom)).
|
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Ursala | Ursala | point :: x y |
http://rosettacode.org/wiki/Compound_data_type | Compound data type |
Data Structure
This illustrates a data structure, a means of storing data within a program.
You may see other such structures in the Data Structures category.
Task
Create a compound data type:
Point(x,y)
A compound data type is one that holds multiple independent values.
Related task
Enumeration
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Vala | Vala | struct Point {
int x;
int y;
} |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Bracmat | Bracmat | 2+2:5
& put$"Strange, must check that Bracmat interpreter."
& 0
| put$"That's what I thought."
& Right |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Haskell | Haskell | allEqual :: Eq a => [a] -> Bool
allEqual xs = and $ zipWith (==) xs (tail xs)
allIncr :: Ord a => [a] -> Bool
allIncr xs = and $ zipWith (<) xs (tail xs) |
http://rosettacode.org/wiki/Compare_a_list_of_strings | Compare a list of strings | Task
Given a list of arbitrarily many strings, show how to:
test if they are all lexically equal
test if every string is lexically less than the one after it (i.e. whether the list is in strict ascending order)
Each of those two tests should result in a single true or false value, which could be used as the condition of an if statement or similar.
If the input list has less than two elements, the tests should always return true.
There is no need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see #Perl and #Python for solutions that use implicit short-circuiting loops, and #Raku for a solution that gets away with simply using a built-in language feature.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Icon_and_Unicon | Icon and Unicon | #
# list-compare.icn
#
link fullimag
procedure main()
L1 := ["aa"]
L2 := ["aa", "aa", "aa"]
L3 := ["", "aa", "ab", "ac"]
L4 := ["aa", "bb", "cc"]
L5 := ["cc", "bb", "aa"]
every L := (L1 | L2 | L3 | L4 | L5) do {
writes(fullimage(L))
writes(": equal ")
writes(if allequal(L) then "true" else "false")
writes(", ascending ")
write(if ascending(L) then "true" else "false")
}
end
# test for all identical
procedure allequal(L)
if *L < 2 then return
a := L[1]
every b := L[2 to *L] do {
if a ~== b then fail
a := b
}
return
end
# test for strictly ascending
procedure ascending(L)
if *L < 2 then return
a := L[1]
every b := L[2 to *L] do {
if a >>= b then fail
a := b
}
return
end |
http://rosettacode.org/wiki/Comma_quibbling | Comma quibbling | Comma quibbling is a task originally set by Eric Lippert in his blog.
Task
Write a function to generate a string output which is the concatenation of input words from a list/sequence where:
An input of no words produces the output string of just the two brace characters "{}".
An input of just one word, e.g. ["ABC"], produces the output string of the word inside the two braces, e.g. "{ABC}".
An input of two words, e.g. ["ABC", "DEF"], produces the output string of the two words inside the two braces with the words separated by the string " and ", e.g. "{ABC and DEF}".
An input of three or more words, e.g. ["ABC", "DEF", "G", "H"], produces the output string of all but the last word separated by ", " with the last word separated by " and " and all within braces; e.g. "{ABC, DEF, G and H}".
Test your function with the following series of inputs showing your output here on this page:
[] # (No input words).
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]
Note: Assume words are non-empty strings of uppercase characters for this task.
| #Clojure | Clojure | (defn quibble [sq]
(let [sep (if (pos? (count sq)) " and " "")]
(apply str
(concat "{" (interpose ", " (butlast sq)) [sep (last sq)] "}"))))
; Or, using clojure.pprint's cl-format, which implements common lisp's format:
(defn quibble-f [& args]
(clojure.pprint/cl-format nil "{~{~a~#[~; and ~:;, ~]~}}" args))
(def test
#(doseq [sq [[]
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]]]
((comp println %) sq)))
(test quibble)
(test quibble-f) |
http://rosettacode.org/wiki/Combinations_with_repetitions | Combinations with repetitions | The set of combinations with repetitions is computed from a set,
S
{\displaystyle S}
(of cardinality
n
{\displaystyle n}
), and a size of resulting selection,
k
{\displaystyle k}
, by reporting the sets of cardinality
k
{\displaystyle k}
where each member of those sets is chosen from
S
{\displaystyle S}
.
In the real world, it is about choosing sets where there is a “large” supply of each type of element and where the order of choice does not matter.
For example:
Q: How many ways can a person choose two doughnuts from a store selling three types of doughnut: iced, jam, and plain? (i.e.,
S
{\displaystyle S}
is
{
i
c
e
d
,
j
a
m
,
p
l
a
i
n
}
{\displaystyle \{\mathrm {iced} ,\mathrm {jam} ,\mathrm {plain} \}}
,
|
S
|
=
3
{\displaystyle |S|=3}
, and
k
=
2
{\displaystyle k=2}
.)
A: 6: {iced, iced}; {iced, jam}; {iced, plain}; {jam, jam}; {jam, plain}; {plain, plain}.
Note that both the order of items within a pair, and the order of the pairs given in the answer is not significant; the pairs represent multisets.
Also note that doughnut can also be spelled donut.
Task
Write a function/program/routine/.. to generate all the combinations with repetitions of
n
{\displaystyle n}
types of things taken
k
{\displaystyle k}
at a time and use it to show an answer to the doughnut example above.
For extra credit, use the function to compute and show just the number of ways of choosing three doughnuts from a choice of ten types of doughnut. Do not show the individual choices for this part.
References
k-combination with repetitions
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #EasyLang | EasyLang | items$[] = [ "iced" "jam" "plain" ]
n = len items$[]
k = 2
len result[] k
n_results = 0
#
func output . .
n_results += 1
if len items$[] > 0
for r in result[]
write items$[r] & " "
.
print ""
.
.
func combine pos val . .
if pos = k
call output
else
for i = val to n - 1
result[pos] = i
call combine pos + 1 i
.
.
.
call combine 0 0
#
n = 10
k = 3
len result[] k
items$[] = [ ]
n_results = 0
call combine 0 0
print ""
print n_results & " results with 10 donuts" |
http://rosettacode.org/wiki/Combinations_with_repetitions | Combinations with repetitions | The set of combinations with repetitions is computed from a set,
S
{\displaystyle S}
(of cardinality
n
{\displaystyle n}
), and a size of resulting selection,
k
{\displaystyle k}
, by reporting the sets of cardinality
k
{\displaystyle k}
where each member of those sets is chosen from
S
{\displaystyle S}
.
In the real world, it is about choosing sets where there is a “large” supply of each type of element and where the order of choice does not matter.
For example:
Q: How many ways can a person choose two doughnuts from a store selling three types of doughnut: iced, jam, and plain? (i.e.,
S
{\displaystyle S}
is
{
i
c
e
d
,
j
a
m
,
p
l
a
i
n
}
{\displaystyle \{\mathrm {iced} ,\mathrm {jam} ,\mathrm {plain} \}}
,
|
S
|
=
3
{\displaystyle |S|=3}
, and
k
=
2
{\displaystyle k=2}
.)
A: 6: {iced, iced}; {iced, jam}; {iced, plain}; {jam, jam}; {jam, plain}; {plain, plain}.
Note that both the order of items within a pair, and the order of the pairs given in the answer is not significant; the pairs represent multisets.
Also note that doughnut can also be spelled donut.
Task
Write a function/program/routine/.. to generate all the combinations with repetitions of
n
{\displaystyle n}
types of things taken
k
{\displaystyle k}
at a time and use it to show an answer to the doughnut example above.
For extra credit, use the function to compute and show just the number of ways of choosing three doughnuts from a choice of ten types of doughnut. Do not show the individual choices for this part.
References
k-combination with repetitions
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #EchoLisp | EchoLisp |
;;
;; native function : combinations/rep in list.lib
;;
(lib 'list)
(combinations/rep '(iced jam plain) 2)
→ ((iced iced) (iced jam) (iced plain) (jam jam) (jam plain) (plain plain))
;;
;; using a combinator iterator
;;
(lib 'sequences)
(take (combinator/rep '(iced jam plain) 2) 8)
→ ((iced iced) (iced jam) (iced plain) (jam jam) (jam plain) (plain plain))
;;
;; or, implementing the function
;;
(define (comb/rep nums k)
(cond
[(null? nums) null]
[(<= k 0) null]
[(= k 1) (map list nums)]
[else
(for/fold (acc null) ((anum nums))
(append acc
(for/list ((xs (comb/rep nums (1- k))))
#:continue (< (first xs) anum)
(cons anum xs))))]))
(map (curry list-permute '(iced jam plain)) (comb/rep (iota 3) 2))
→ ((iced iced) (iced jam) (iced plain) (jam jam) (jam plain) (plain plain))
;;
;; extra credit
;;
(length (combinator/rep (iota 10) 3))
→ 220
|
http://rosettacode.org/wiki/Combinations_and_permutations | Combinations and permutations |
This page uses content from Wikipedia. The original article was at Combination. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
This page uses content from Wikipedia. The original article was at Permutation. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Implement the combination (nCk) and permutation (nPk) operators in the target language:
n
C
k
=
(
n
k
)
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle ^{n}\operatorname {C} _{k}={\binom {n}{k}}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
See the Wikipedia articles for a more detailed description.
To test, generate and print examples of:
A sample of permutations from 1 to 12 and Combinations from 10 to 60 using exact Integer arithmetic.
A sample of permutations from 5 to 15000 and Combinations from 100 to 1000 using approximate Floating point arithmetic.
This 'floating point' code could be implemented using an approximation, e.g., by calling the Gamma function.
Related task
Evaluate binomial coefficients
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #jq | jq | def permutation(k): . as $n
| reduce range($n-k+1; 1+$n) as $i (1; . * $i);
def combination(k): . as $n
| if k > ($n/2) then combination($n-k)
else reduce range(0; k) as $i (1; (. * ($n - $i)) / ($i + 1))
end;
# natural log of n!
def log_factorial: (1+.) | tgamma | log;
def log_permutation(k):
(log_factorial - ((.-k) | log_factorial));
def log_combination(k):
(log_factorial - ((. - k)|log_factorial) - (k|log_factorial));
def big_permutation(k): log_permutation(k) | exp;
def big_combination(k): log_combination(k) | exp; |
http://rosettacode.org/wiki/Combinations_and_permutations | Combinations and permutations |
This page uses content from Wikipedia. The original article was at Combination. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
This page uses content from Wikipedia. The original article was at Permutation. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Implement the combination (nCk) and permutation (nPk) operators in the target language:
n
C
k
=
(
n
k
)
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle ^{n}\operatorname {C} _{k}={\binom {n}{k}}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
See the Wikipedia articles for a more detailed description.
To test, generate and print examples of:
A sample of permutations from 1 to 12 and Combinations from 10 to 60 using exact Integer arithmetic.
A sample of permutations from 5 to 15000 and Combinations from 100 to 1000 using approximate Floating point arithmetic.
This 'floating point' code could be implemented using an approximation, e.g., by calling the Gamma function.
Related task
Evaluate binomial coefficients
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Julia | Julia |
function Base.binomial{T<:FloatingPoint}(n::T, k::T)
exp(lfact(n) - lfact(n - k) - lfact(k))
end
function Base.factorial{T<:FloatingPoint}(n::T, k::T)
exp(lfact(n) - lfact(k))
end
⊞{T<:Real}(n::T, k::T) = binomial(n, k)
⊠{T<:Real}(n::T, k::T) = factorial(n, n-k)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.