Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 13 new columns ({'codebase_version', 'fps', 'total_videos', 'total_frames', 'total_tasks', 'features', 'robot_type', 'chunks_size', 'splits', 'video_path', 'data_path', 'total_episodes', 'total_chunks'}) and 3 missing columns ({'episode_index', 'length', 'tasks'}).

This happened while the json dataset builder was generating data using

hf://datasets/phospho-ai/bobololo/info.json (at revision 79fec651a75a3e4ac4f56a4c325bbe9885c9e92e)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              codebase_version: string
              robot_type: string
              total_episodes: int64
              total_frames: int64
              total_tasks: int64
              total_videos: int64
              total_chunks: int64
              chunks_size: int64
              fps: int64
              splits: struct<train: string>
                child 0, train: string
              data_path: string
              video_path: string
              features: struct<observation.image: struct<dtype: string, shape: list<item: int64>, names: list<item: string>, video_info: struct<video.fps: int64, video.codec: string, video.pix_fmt: string, video.is_depth_map: bool, has_audio: bool>>, observation.state: struct<dtype: string, shape: list<item: int64>, names: struct<motors: list<item: string>>>, action: struct<dtype: string, shape: list<item: int64>, names: struct<motors: list<item: string>>>, observation.action: struct<dtype: string, shape: list<item: int64>, names: list<item: string>>, episode_index: struct<dtype: string, shape: list<item: int64>, names: null>, frame_index: struct<dtype: string, shape: list<item: int64>, names: null>, timestamp: struct<dtype: string, shape: list<item: int64>, names: null>, next.reward: struct<dtype: string, shape: list<item: int64>, names: null>, next.done: struct<dtype: string, shape: list<item: int64>, names: null>, next.success: struct<dtype: string, shape: list<item: int64>, names: null>, index: struct<dtype: string, shape: list<item: int64>, names: null>, task_index: struct<dtype: string, shape: list<item: int64>, names: null>>
                child 0, observation.image: struct<dtype: string, shape: list<item: int64>, names: list<item: s
              ...
                  child 2, names: null
                child 5, frame_index: struct<dtype: string, shape: list<item: int64>, names: null>
                    child 0, dtype: string
                    child 1, shape: list<item: int64>
                        child 0, item: int64
                    child 2, names: null
                child 6, timestamp: struct<dtype: string, shape: list<item: int64>, names: null>
                    child 0, dtype: string
                    child 1, shape: list<item: int64>
                        child 0, item: int64
                    child 2, names: null
                child 7, next.reward: struct<dtype: string, shape: list<item: int64>, names: null>
                    child 0, dtype: string
                    child 1, shape: list<item: int64>
                        child 0, item: int64
                    child 2, names: null
                child 8, next.done: struct<dtype: string, shape: list<item: int64>, names: null>
                    child 0, dtype: string
                    child 1, shape: list<item: int64>
                        child 0, item: int64
                    child 2, names: null
                child 9, next.success: struct<dtype: string, shape: list<item: int64>, names: null>
                    child 0, dtype: string
                    child 1, shape: list<item: int64>
                        child 0, item: int64
                    child 2, names: null
                child 10, index: struct<dtype: string, shape: list<item: int64>, names: null>
                    child 0, dtype: string
                    child 1, shape: list<item: int64>
                        child 0, item: int64
                    child 2, names: null
                child 11, task_index: struct<dtype: string, shape: list<item: int64>, names: null>
                    child 0, dtype: string
                    child 1, shape: list<item: int64>
                        child 0, item: int64
                    child 2, names: null
              to
              {'episode_index': Value(dtype='int64', id=None), 'tasks': Sequence(feature=Value(dtype='null', id=None), length=-1, id=None), 'length': Value(dtype='int64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 13 new columns ({'codebase_version', 'fps', 'total_videos', 'total_frames', 'total_tasks', 'features', 'robot_type', 'chunks_size', 'splits', 'video_path', 'data_path', 'total_episodes', 'total_chunks'}) and 3 missing columns ({'episode_index', 'length', 'tasks'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/phospho-ai/bobololo/info.json (at revision 79fec651a75a3e4ac4f56a4c325bbe9885c9e92e)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

episode_index
int64
tasks
sequence
length
int64
codebase_version
string
robot_type
string
total_episodes
int64
total_frames
int64
total_tasks
int64
total_videos
int64
total_chunks
int64
chunks_size
int64
fps
int64
splits
dict
data_path
string
video_path
string
features
dict
observation.state
sequence
observation.joints_position
sequence
observation.image
sequence
next.reward
int64
next.done
float64
next.success
float64
timestamp
float64
0
[ null ]
19
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
v2.0
so-100
1
19
1
1
1
1,000
10
{ "train": "0:206" }
data/episode_{episode_index:06d}.parquet
videos/{video_key}/episode_{episode_index:06d}.mp4
{ "observation.image": { "dtype": "video", "shape": [ 224, 224, 3 ], "names": [ "height", "width", "channel" ], "video_info": { "video.fps": 10, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": { "motors": [ "motor_0", "motor_1", "motor_2", "motor_3", "motor_4", "motor_5" ] } }, "action": { "dtype": "float32", "shape": [ 6 ], "names": { "motors": [ "motor_0", "motor_1", "motor_2", "motor_3", "motor_4", "motor_5" ] } }, "observation.action": { "dtype": "float32", "shape": [ 7 ], "names": [ "x", "y", "z", "rx", "ry", "rz", "gripper" ] }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "next.reward": { "dtype": "float32", "shape": [ 1 ], "names": null }, "next.done": { "dtype": "bool", "shape": [ 1 ], "names": null }, "next.success": { "dtype": "bool", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } }
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
[0.36274477839469904,0.025095846503973,0.228017330169677,0.03573540155339,0.067881497247121,2.871816(...TRUNCATED)
[0.015496049358753,0.379697650905781,-0.354303197897956,0.07218178988276601,0.015095044927927001,1.4(...TRUNCATED)
[[[91.0,102.0,111.0],[91.0,102.0,111.0],[92.0,103.0,111.0],[92.0,104.0,113.0],[94.0,105.0,114.0],[95(...TRUNCATED)
0
1
1
3.186313
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
[0.36122296515264,0.023405455543022,0.225509375333786,-0.037000817274891004,0.049563681274915006,2.8(...TRUNCATED)
[0.010161662226542,0.366956194692842,-0.374039629668141,-0.021693204443779,-0.02320678925472,1.47902(...TRUNCATED)
[[[89.05263157894737,100.84210526315789,108.89473684210526],[89.84210526315789,101.21052631578948,10(...TRUNCATED)
0
0.052632
0.052632
1.628738
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
[0.359442472457885,0.022078081965446,0.21177899837493802,-0.050908946535130006,-0.044982477826564005(...TRUNCATED)
[0.0059536928031500005,0.348738256377425,-0.38750822518954003,-0.039946763801139006,-0.0325681381913(...TRUNCATED)
[[[87.0,100.0,107.0],[89.0,100.0,107.0],[90.0,101.0,109.0],[91.0,101.0,110.0],[91.0,102.0,111.0],[92(...TRUNCATED)
0
0
0
0.0721
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
[0.00102347406708,0.0009743924954460001,0.004350440048415,0.022886437139734,0.031187343237768003,0.0(...TRUNCATED)
[0.0030837381097380003,0.009896612828052001,0.010742139599822,0.03207757943069,0.012511822156119,0.0(...TRUNCATED)
[[[0.9444399181540191,0.5860804592452651,1.25214497403898],[0.5860804592452651,0.6137844099837151,1.(...TRUNCATED)
0
0.223297
0.223297
0.947659
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null

No dataset card yet

Downloads last month
21