File size: 4,011 Bytes
4da394b
a70ce33
4da394b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7a310f
 
 
 
 
 
3ed6f4e
e7a310f
3ed6f4e
e7a310f
3ed6f4e
e7a310f
 
 
3ed6f4e
e7a310f
3ed6f4e
e7a310f
3ed6f4e
4da394b
8b20842
4da394b
8b20842
50b08fb
c02718b
4da394b
c02718b
50b08fb
4da394b
 
50b08fb
4da394b
 
 
 
 
 
 
 
c02718b
4da394b
 
425dd3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd94a8e
b4144c1
22a4635
 
245fb44
 
 
22a4635
245fb44
22a4635
bdae059
22a4635
 
 
bdae059
22a4635
bdae059
 
22a4635
 
 
4da394b
c02718b
4da394b
 
 
 
 
c02718b
4da394b
c02718b
50b08fb
 
4da394b
 
 
 
 
aa1ac14
 
4da394b
 
8156838
4da394b
aa1ac14
4da394b
bdae059
4da394b
 
 
 
 
 
 
c02718b
8b20842
4da394b
 
50b08fb
4da394b
 
a70ce33
c02718b
8b20842
4da394b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
pretty_name: "meter2800"
language:
  - en
tags:
  - audio
  - music-classification
  - meter-classification
  - multi-class-classification
  - multi-label-classification
license: mit
task_categories:
  - audio-classification
dataset_info:
  size_categories:
    - 1K<n<10K
  source_datasets:
    - gtzan
    - mag
    - own
    - fma

configs:
- config_name: 2_classes
  default: true
  data_files:
  - split: train
    path: "data_train_2_classes.csv"
  - split: validation
    path: "data_val_2_classes.csv"
  - split: test
    path: "data_test_2_classes.csv"
- config_name: 4_classes
  data_files:
  - split: train
    path: "data_train_4_classes.csv"
  - split: validation
    path: "data_val_4_classes.csv"
  - split: test
    path: "data_test_4_classes.csv"
---

# Meter2800

**Dataset for music time signature/ meter (rhythm) classification**, combining tracks from GTZAN, MAG, OWN, and FMA.

## Dataset Description

Meter2800 is a curated collection of 2,800 `.wav` music audio samples, each annotated with **meter** (and optionally `alt_meter`). It supports both:

- **4-class classification** (e.g., 4 genres),
- **2-class classification** (binary meter labeling).

Split into train/val/test sets with clear metadata in CSV.

Intended for music information retrieval tasks like rhythmic / structural analysis and genre prediction.

## Supported Tasks and Usage  

Load the dataset via the `datasets` library with automatic audio decoding:

```python
from datasets import load_dataset, Audio

meter2800 = load_dataset("pianistprogrammer/meter2800", name="4_classes")
```

The output should look like this

```python
DatasetDict({
    train: Dataset({
        features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
        num_rows: 1680
    })
    validation: Dataset({
        features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
        num_rows: 420
    })
    test: Dataset({
        features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
        num_rows: 700
    })
})
```

```python
meter2800["train"][0]
```

A sample of the training set 

```python
{'filename': 'MAG/00553.wav',
 'audio': {'path': '/root/.cache/huggingface/datasets/downloads/extracted/.             73a5809e655e59c99bd79d00033b98b254ca3689f2b9e2c2eba55fe3894b7622/MAG/00553.wav',
  'array': array([ 2.87892180e-06, -1.07296364e-05, -3.22661945e-05, ...,
         -2.06501483e-13, -5.44009282e-15,  1.38777878e-14]),
  'sampling_rate': 16000},
 'label': 'three',
 'meter': '3',
 'alt_meter': '6'
 }

 ```

Each entry in the dataset contains:

- **filename**: Path to the audio file.
- **label**: Genre label (multi-class or binary, depending on split).
- **meter**: Primary meter annotation (e.g., 4/4, 3/4).
- **alt_meter**: Optional alternative meter annotation.
- **audio**: Audio data as a NumPy array and its sampling rate.

The dataset is organized into the following splits:

- `train_4`, `val_4`, `test_4`: For 4-class meter classification.
- `train_2`, `val_2`, `test_2`: For 2-class (binary) meter classification.

All splits are provided as CSV files referencing the audio files in the corresponding folders (`GTZAN/`, `MAG/`, `OWN/`, `FMA/`).

Example row in a CSV file:

```code

| filename                | label   | meter | alt_meter | 
|-------------------------|---------|-------|-----------|
| GTZAN/blues.00000.wav   | three   |   3   |    6      |


Meter2800/
β”œβ”€β”€ data.tar.gz // contains the audio data
β”œβ”€β”€ data_train_4_classes.csv
β”œβ”€β”€ data_val_4_classes.csv
β”œβ”€β”€ data_test_4_classes.csv
β”œβ”€β”€ data_train_2_classes.csv
β”œβ”€β”€ data_val_2_classes.csv
β”œβ”€β”€ data_test_2_classes.csv
└── README.md


@misc{meter2800_dataset,
  author       = {PianistProgrammer},
  title        = {{Meter2800}: A Dataset for Music time signature detection / Meter Classification},
  year         = {2025},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/datasets/pianistprogrammer/meter2800}
}

license: "CC0 1.0 Public Domain"