Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
File size: 4,011 Bytes
4da394b a70ce33 4da394b e7a310f 3ed6f4e e7a310f 3ed6f4e e7a310f 3ed6f4e e7a310f 3ed6f4e e7a310f 3ed6f4e e7a310f 3ed6f4e 4da394b 8b20842 4da394b 8b20842 50b08fb c02718b 4da394b c02718b 50b08fb 4da394b 50b08fb 4da394b c02718b 4da394b 425dd3a cd94a8e b4144c1 22a4635 245fb44 22a4635 245fb44 22a4635 bdae059 22a4635 bdae059 22a4635 bdae059 22a4635 4da394b c02718b 4da394b c02718b 4da394b c02718b 50b08fb 4da394b aa1ac14 4da394b 8156838 4da394b aa1ac14 4da394b bdae059 4da394b c02718b 8b20842 4da394b 50b08fb 4da394b a70ce33 c02718b 8b20842 4da394b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
pretty_name: "meter2800"
language:
- en
tags:
- audio
- music-classification
- meter-classification
- multi-class-classification
- multi-label-classification
license: mit
task_categories:
- audio-classification
dataset_info:
size_categories:
- 1K<n<10K
source_datasets:
- gtzan
- mag
- own
- fma
configs:
- config_name: 2_classes
default: true
data_files:
- split: train
path: "data_train_2_classes.csv"
- split: validation
path: "data_val_2_classes.csv"
- split: test
path: "data_test_2_classes.csv"
- config_name: 4_classes
data_files:
- split: train
path: "data_train_4_classes.csv"
- split: validation
path: "data_val_4_classes.csv"
- split: test
path: "data_test_4_classes.csv"
---
# Meter2800
**Dataset for music time signature/ meter (rhythm) classification**, combining tracks from GTZAN, MAG, OWN, and FMA.
## Dataset Description
Meter2800 is a curated collection of 2,800 `.wav` music audio samples, each annotated with **meter** (and optionally `alt_meter`). It supports both:
- **4-class classification** (e.g., 4 genres),
- **2-class classification** (binary meter labeling).
Split into train/val/test sets with clear metadata in CSV.
Intended for music information retrieval tasks like rhythmic / structural analysis and genre prediction.
## Supported Tasks and Usage
Load the dataset via the `datasets` library with automatic audio decoding:
```python
from datasets import load_dataset, Audio
meter2800 = load_dataset("pianistprogrammer/meter2800", name="4_classes")
```
The output should look like this
```python
DatasetDict({
train: Dataset({
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
num_rows: 1680
})
validation: Dataset({
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
num_rows: 420
})
test: Dataset({
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
num_rows: 700
})
})
```
```python
meter2800["train"][0]
```
A sample of the training set
```python
{'filename': 'MAG/00553.wav',
'audio': {'path': '/root/.cache/huggingface/datasets/downloads/extracted/. 73a5809e655e59c99bd79d00033b98b254ca3689f2b9e2c2eba55fe3894b7622/MAG/00553.wav',
'array': array([ 2.87892180e-06, -1.07296364e-05, -3.22661945e-05, ...,
-2.06501483e-13, -5.44009282e-15, 1.38777878e-14]),
'sampling_rate': 16000},
'label': 'three',
'meter': '3',
'alt_meter': '6'
}
```
Each entry in the dataset contains:
- **filename**: Path to the audio file.
- **label**: Genre label (multi-class or binary, depending on split).
- **meter**: Primary meter annotation (e.g., 4/4, 3/4).
- **alt_meter**: Optional alternative meter annotation.
- **audio**: Audio data as a NumPy array and its sampling rate.
The dataset is organized into the following splits:
- `train_4`, `val_4`, `test_4`: For 4-class meter classification.
- `train_2`, `val_2`, `test_2`: For 2-class (binary) meter classification.
All splits are provided as CSV files referencing the audio files in the corresponding folders (`GTZAN/`, `MAG/`, `OWN/`, `FMA/`).
Example row in a CSV file:
```code
| filename | label | meter | alt_meter |
|-------------------------|---------|-------|-----------|
| GTZAN/blues.00000.wav | three | 3 | 6 |
Meter2800/
βββ data.tar.gz // contains the audio data
βββ data_train_4_classes.csv
βββ data_val_4_classes.csv
βββ data_test_4_classes.csv
βββ data_train_2_classes.csv
βββ data_val_2_classes.csv
βββ data_test_2_classes.csv
βββ README.md
@misc{meter2800_dataset,
author = {PianistProgrammer},
title = {{Meter2800}: A Dataset for Music time signature detection / Meter Classification},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/pianistprogrammer/meter2800}
}
license: "CC0 1.0 Public Domain"
|