File size: 3,632 Bytes
bb7db63
 
442eaea
3df2755
 
 
442eaea
 
 
 
 
 
5e05c06
442eaea
 
 
 
 
5772aad
442eaea
 
 
bb7db63
5e05c06
442eaea
 
 
5772aad
442eaea
 
 
5772aad
442eaea
 
3df2755
5772aad
 
3df2755
ec015f3
3df2755
 
5772aad
3df2755
442eaea
3df2755
 
5772aad
 
3df2755
 
 
442eaea
 
 
 
3df2755
 
 
bb7db63
5e05c06
5772aad
bb7db63
 
 
5e05c06
bb7db63
5772aad
3df2755
bb7db63
 
 
3df2755
 
5772aad
 
3df2755
bb7db63
 
 
 
3df2755
5a6497d
bb7db63
de731d3
 
442eaea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# meter2800.py

from pathlib import Path
import datasets
import pandas as pd

_CITATION = """\
@misc{meter2800_dataset,
  author       = {PianistProgrammer},
  title        = {{Meter2800}: A Dataset for Music Time signature detection / Meter Classification},
  year         = {2025},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/datasets/pianistprogrammer/meter2800}
}
"""

_DESCRIPTION = """\
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification.
Each audio file is annotated with a primary meter class label and an alternative meter.
It is split into training, validation, and test sets, each available in two class configurations:
2-class and 4-class. All audio is 16-bit WAV format.
"""

_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/meter2800"
_LICENSE = "mit"

LABELS_4 = ["three", "four", "five", "seven"]
LABELS_2 = ["three", "four"]

class Meter2800Config(datasets.BuilderConfig):
    def __init__(self, name, **kwargs):
        super().__init__(name=name, version=datasets.Version("1.0.0"), **kwargs)

class Meter2800(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        Meter2800Config(name="4_classes", description="4‑class meter classification"),
        Meter2800Config(name="2_classes", description="2‑class meter classification"),
    ]
    DEFAULT_CONFIG_NAME = "4_classes"

    def _info(self):
        labels = LABELS_4 if self.config.name == "4_classes" else LABELS_2
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "filename": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=22050),
                "label": datasets.ClassLabel(names=labels),
                "meter": datasets.Value("string"),
                "alt_meter": datasets.Value("string"),
            }),
            supervised_keys=("audio", "label"),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        csv_links = {
            split: f"https://huggingface.co/datasets/pianistprogrammer/meter2800/resolve/main/data_{split}_{self.config.name}.csv"
            for split in ["train", "val", "test"]
        }
        csv_files = dl_manager.download(csv_links)
        archive = dl_manager.download_and_extract(
            "https://huggingface.co/datasets/pianistprogrammer/meter2800/resolve/main/data.tar.gz"
        )

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"csv_path": csv_files["train"], "root": archive}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": csv_files["val"], "root": archive}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"csv_path": csv_files["test"], "root": archive}),
        ]

    def _generate_examples(self, csv_path, root):
        df = pd.read_csv(csv_path).dropna(subset=["filename", "label", "meter"]).reset_index(drop=True)
        for idx, row in df.iterrows():
            rel = row["filename"].lstrip("/")  # ensure relative path, not absolute
            audio_path = Path(root) / rel
            if not audio_path.is_file():
                raise FileNotFoundError(f"Missing audio file: {audio_path}")
            yield idx, {
                "filename": rel,
                "audio": str(audio_path),
                "label": row["label"],
                "meter": str(row["meter"]),
                "alt_meter": str(row.get("alt_meter", row["meter"])),
            }