Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
Commit
·
de731d3
1
Parent(s):
747f6d0
Refactor Meter2800 dataset class by removing unused variables and simplifying example generation logic
Browse files- meter2800.py +11 -84
meter2800.py
CHANGED
@@ -1,115 +1,42 @@
|
|
1 |
import datasets
|
2 |
import pandas as pd
|
3 |
-
from pathlib import Path
|
4 |
-
|
5 |
-
_CITATION = """\
|
6 |
-
@misc{meter2800_dataset,
|
7 |
-
author = {PianistProgrammer},
|
8 |
-
title = {{Meter2800}: A Dataset for Music Time signature detection / Meter Classification},
|
9 |
-
year = {2025},
|
10 |
-
publisher = {Hugging Face},
|
11 |
-
url = {https://huggingface.co/datasets/pianistprogrammer/Meter2800}
|
12 |
-
}
|
13 |
-
"""
|
14 |
-
|
15 |
-
_DESCRIPTION = """\
|
16 |
-
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification.
|
17 |
-
Each audio file is annotated with a primary meter class label and an alternative meter.
|
18 |
-
It is split into training, validation, and test sets, each available in two class configurations:
|
19 |
-
2-class and 4-class. All audio is 16-bit WAV format.
|
20 |
-
"""
|
21 |
-
|
22 |
-
_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/Meter2800"
|
23 |
-
_LICENSE = "mit"
|
24 |
|
25 |
class Meter2800(datasets.GeneratorBasedBuilder):
|
26 |
-
"""
|
27 |
|
28 |
-
VERSION = datasets.Version("1.0.0")
|
29 |
-
|
30 |
BUILDER_CONFIGS = [
|
31 |
-
datasets.BuilderConfig(
|
32 |
-
|
33 |
-
version=VERSION,
|
34 |
-
description="4-class meter classification",
|
35 |
-
),
|
36 |
-
datasets.BuilderConfig(
|
37 |
-
name="2_classes",
|
38 |
-
version=VERSION,
|
39 |
-
description="2-class meter classification",
|
40 |
-
),
|
41 |
]
|
42 |
-
|
43 |
DEFAULT_CONFIG_NAME = "4_classes"
|
44 |
|
45 |
def _info(self):
|
46 |
-
# We'll determine the labels dynamically from the CSV files
|
47 |
-
# For now, use a generic ClassLabel that will be updated later
|
48 |
return datasets.DatasetInfo(
|
49 |
-
description=_DESCRIPTION,
|
50 |
features=datasets.Features({
|
51 |
"filename": datasets.Value("string"),
|
52 |
"audio": datasets.Audio(sampling_rate=None),
|
53 |
-
"label": datasets.Value("string"),
|
54 |
"meter": datasets.Value("string"),
|
55 |
"alt_meter": datasets.Value("string"),
|
56 |
}),
|
57 |
-
supervised_keys=("audio", "label"),
|
58 |
-
homepage=_HOMEPAGE,
|
59 |
-
license=_LICENSE,
|
60 |
-
citation=_CITATION,
|
61 |
)
|
62 |
|
63 |
def _split_generators(self, dl_manager):
|
64 |
-
"""Returns SplitGenerators."""
|
65 |
-
|
66 |
-
# The files should be in the root of the repo
|
67 |
-
config_suffix = self.config.name
|
68 |
-
|
69 |
return [
|
70 |
datasets.SplitGenerator(
|
71 |
name=datasets.Split.TRAIN,
|
72 |
-
gen_kwargs={
|
73 |
-
"csv_file": f"data_train_{config_suffix}.csv",
|
74 |
-
"split": "train",
|
75 |
-
},
|
76 |
-
),
|
77 |
-
datasets.SplitGenerator(
|
78 |
-
name=datasets.Split.VALIDATION,
|
79 |
-
gen_kwargs={
|
80 |
-
"csv_file": f"data_val_{config_suffix}.csv",
|
81 |
-
"split": "validation",
|
82 |
-
},
|
83 |
-
),
|
84 |
-
datasets.SplitGenerator(
|
85 |
-
name=datasets.Split.TEST,
|
86 |
-
gen_kwargs={
|
87 |
-
"csv_file": f"data_test_{config_suffix}.csv",
|
88 |
-
"split": "test",
|
89 |
-
},
|
90 |
),
|
91 |
]
|
92 |
|
93 |
-
def _generate_examples(self, csv_file
|
94 |
-
"""Yields examples."""
|
95 |
-
|
96 |
-
# Read CSV directly - the file should be available in the repo
|
97 |
-
df = pd.read_csv(csv_file)
|
98 |
-
|
99 |
-
# Read CSV
|
100 |
df = pd.read_csv(csv_file)
|
101 |
-
df = df.dropna(subset=["filename", "label"]).reset_index(drop=True)
|
102 |
-
|
103 |
for idx, row in df.iterrows():
|
104 |
-
# The audio files should be in subdirectories
|
105 |
-
audio_file = row["filename"]
|
106 |
-
if not audio_file.startswith("/"):
|
107 |
-
audio_file = "/" + audio_file
|
108 |
-
|
109 |
yield idx, {
|
110 |
"filename": row["filename"],
|
111 |
-
"audio":
|
112 |
-
"label":
|
113 |
-
"meter": str(row
|
114 |
-
"alt_meter": str(row
|
115 |
}
|
|
|
1 |
import datasets
|
2 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
class Meter2800(datasets.GeneratorBasedBuilder):
|
5 |
+
"""Minimal test version."""
|
6 |
|
|
|
|
|
7 |
BUILDER_CONFIGS = [
|
8 |
+
datasets.BuilderConfig(name="4_classes", description="4 class version"),
|
9 |
+
datasets.BuilderConfig(name="2_classes", description="2 class version"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
]
|
11 |
+
|
12 |
DEFAULT_CONFIG_NAME = "4_classes"
|
13 |
|
14 |
def _info(self):
|
|
|
|
|
15 |
return datasets.DatasetInfo(
|
|
|
16 |
features=datasets.Features({
|
17 |
"filename": datasets.Value("string"),
|
18 |
"audio": datasets.Audio(sampling_rate=None),
|
19 |
+
"label": datasets.Value("string"),
|
20 |
"meter": datasets.Value("string"),
|
21 |
"alt_meter": datasets.Value("string"),
|
22 |
}),
|
|
|
|
|
|
|
|
|
23 |
)
|
24 |
|
25 |
def _split_generators(self, dl_manager):
|
|
|
|
|
|
|
|
|
|
|
26 |
return [
|
27 |
datasets.SplitGenerator(
|
28 |
name=datasets.Split.TRAIN,
|
29 |
+
gen_kwargs={"csv_file": f"data_train_{self.config.name}.csv"},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
),
|
31 |
]
|
32 |
|
33 |
+
def _generate_examples(self, csv_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
df = pd.read_csv(csv_file)
|
|
|
|
|
35 |
for idx, row in df.iterrows():
|
|
|
|
|
|
|
|
|
|
|
36 |
yield idx, {
|
37 |
"filename": row["filename"],
|
38 |
+
"audio": row["filename"].lstrip("/"),
|
39 |
+
"label": row["label"],
|
40 |
+
"meter": str(row["meter"]),
|
41 |
+
"alt_meter": str(row["alt_meter"]),
|
42 |
}
|