Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
metadata
pretty_name: Meter2800
language:
- en
tags:
- audio
- music-classification
- meter-classification
- multi-class-classification
- multi-label-classification
license: mit
task_categories:
- audio-classification
dataset_info:
size_categories:
- 1K<n<10K
source_datasets:
- gtzan
- mag
- own
- fma
configs:
- config_name: 2_classes
default: true
data_files:
- split: train
path: data_train_2_classes.csv
- split: validation
path: data_val_2_classes.csv
- split: test
path: data_test_2_classes.csv
- config_name: 4_classes
data_files:
- split: train
path: data_train_4_classes.csv
- split: validation
path: data_val_4_classes.csv
- split: test
path: data_test_4_classes.csv
Meter2800
Dataset for music time signature/ meter (rhythm) classification, combining tracks from GTZAN, MAG, OWN, and FMA.
Dataset Description
Meter2800 is a curated collection of 2,800 .wav
music audio samples, each annotated with meter (and optionally alt_meter
). It supports both:
- 4-class classification (e.g., 4 genres),
- 2-class classification (binary meter labeling).
Split into train/val/test sets with clear metadata in CSV.
Intended for music information retrieval tasks like rhythmic / structural analysis and genre prediction.
Supported Tasks and Usage
Load the dataset via the datasets
library with automatic audio decoding:
from datasets import load_dataset, Audio
dataset = load_dataset(
"pianistprogrammer/Meter2800",
data_files={
"train_4": "data_train_4_classes.csv",
"val_4": "data_val_4_classes.csv",
"test_4": "data_test_4_classes.csv",
"train_2": "data_train_2_classes.csv",
"val_2": "data_val_2_classes.csv",
"test_2": "data_test_2_classes.csv"
}
)
Each entry in the dataset contains:
- **filename**: Path to the audio file.
- **label**: Genre label (multi-class or binary, depending on split).
- **meter**: Primary meter annotation (e.g., 4/4, 3/4).
- **alt_meter**: Optional alternative meter annotation.
- **audio**: Audio data as a NumPy array and its sampling rate.
The dataset is organized into the following splits:
- `train_4`, `val_4`, `test_4`: For 4-class meter classification.
- `train_2`, `val_2`, `test_2`: For 2-class (binary) meter classification.
All splits are provided as CSV files referencing the audio files in the corresponding folders (`GTZAN/`, `MAG/`, `OWN/`, `FMA/`).
Example row in a CSV file:
| filename | label | meter | alt_meter |
|-------------------------|---------|-------|-----------|
| GTZAN/blues.00000.wav | three | 3 | 6 |
Meter2800/
βββ GTZAN/
βββ MAG/
βββ OWN/
βββ FMA/
βββ data_train_4_classes.csv
βββ data_val_4_classes.csv
βββ data_test_4_classes.csv
βββ data_train_2_classes.csv
βββ data_val_2_classes.csv
βββ data_test_2_classes.csv
βββ README.md
@misc{meter2800_dataset,
author = {PianistProgrammer},
title = {{Meter2800}: A Dataset for Music time signature detection / Meter Classification},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/pianistprogrammer/Meter2800}
}
license: "CC0 1.0 Public Domain"