File size: 4,762 Bytes
56fbd0c
8f9f5d5
33126ae
56fbd0c
 
3c3b52d
56fbd0c
8f9f5d5
 
 
 
 
56fbd0c
8f9f5d5
56fbd0c
8f9f5d5
56fbd0c
 
 
 
 
 
8f9f5d5
 
56fbd0c
 
 
 
 
 
 
 
 
8f9f5d5
56fbd0c
 
 
 
 
 
 
8f9f5d5
 
56fbd0c
 
 
 
 
 
8f9f5d5
56fbd0c
 
 
 
 
 
 
 
 
 
8f9f5d5
56fbd0c
 
 
 
 
 
 
 
8f9f5d5
 
56fbd0c
 
 
 
 
 
 
 
8f9f5d5
56fbd0c
 
 
 
 
 
 
 
 
 
 
 
 
 
8f9f5d5
56fbd0c
 
 
 
 
 
 
 
8f9f5d5
 
 
 
 
 
 
 
 
 
 
 
 
 
56fbd0c
 
8f9f5d5
56fbd0c
 
8f9f5d5
 
 
 
56fbd0c
0017228
56fbd0c
 
 
 
 
 
 
8f9f5d5
 
56fbd0c
 
8f9f5d5
56fbd0c
8f9f5d5
56fbd0c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import dataclasses
import logging
from typing import Any, Dict, List, Optional

import datasets
from pie_modules.document.processing.text_span_trimmer import trim_text_spans
from pytorch_ie.annotations import BinaryRelation, LabeledSpan
from pytorch_ie.core import Annotation, AnnotationList, annotation_field
from pytorch_ie.documents import (
    TextBasedDocument,
    TextDocumentWithLabeledSpansAndBinaryRelations,
)

from pie_datasets import GeneratorBasedBuilder

log = logging.getLogger(__name__)


def dl2ld(dict_of_lists):
    return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]


def ld2dl(list_of_dicts, keys: Optional[List[str]] = None):
    return {k: [d[k] for d in list_of_dicts] for k in keys}


@dataclasses.dataclass(frozen=True)
class Attribute(Annotation):
    value: str
    annotation: Annotation


@dataclasses.dataclass
class CDCPDocument(TextBasedDocument):
    propositions: AnnotationList[LabeledSpan] = annotation_field(target="text")
    relations: AnnotationList[BinaryRelation] = annotation_field(target="propositions")
    urls: AnnotationList[Attribute] = annotation_field(target="propositions")


def example_to_document(
    example: Dict[str, Any],
    relation_label: datasets.ClassLabel,
    proposition_label: datasets.ClassLabel,
):
    document = CDCPDocument(id=example["id"], text=example["text"])
    for proposition_dict in dl2ld(example["propositions"]):
        proposition = LabeledSpan(
            start=proposition_dict["start"],
            end=proposition_dict["end"],
            label=proposition_label.int2str(proposition_dict["label"]),
        )
        document.propositions.append(proposition)
        if proposition_dict.get("url", "") != "":
            url = Attribute(annotation=proposition, value=proposition_dict["url"])
            document.urls.append(url)

    for relation_dict in dl2ld(example["relations"]):
        relation = BinaryRelation(
            head=document.propositions[relation_dict["head"]],
            tail=document.propositions[relation_dict["tail"]],
            label=relation_label.int2str(relation_dict["label"]),
        )
        document.relations.append(relation)

    return document


def document_to_example(
    document: CDCPDocument,
    relation_label: datasets.ClassLabel,
    proposition_label: datasets.ClassLabel,
) -> Dict[str, Any]:
    result = {"id": document.id, "text": document.text}
    proposition2dict = {}
    proposition2idx = {}
    for idx, proposition in enumerate(document.propositions):
        proposition2dict[proposition] = {
            "start": proposition.start,
            "end": proposition.end,
            "label": proposition_label.str2int(proposition.label),
            "url": "",
        }
        proposition2idx[proposition] = idx
    for url in document.urls:
        proposition2dict[url.annotation]["url"] = url.value

    result["propositions"] = ld2dl(
        proposition2dict.values(), keys=["start", "end", "label", "url"]
    )

    relations = [
        {
            "head": proposition2idx[relation.head],
            "tail": proposition2idx[relation.tail],
            "label": relation_label.str2int(relation.label),
        }
        for relation in document.relations
    ]
    result["relations"] = ld2dl(relations, keys=["head", "tail", "label"])

    return result


def convert_to_text_document_with_labeled_spans_and_binary_relations(
    document: CDCPDocument,
    verbose: bool = True,
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
    doc_simplified = document.as_type(
        TextDocumentWithLabeledSpansAndBinaryRelations,
        field_mapping={"propositions": "labeled_spans", "relations": "binary_relations"},
    )
    result = trim_text_spans(
        doc_simplified,
        layer="labeled_spans",
        verbose=verbose,
    )
    return result


class CDCP(GeneratorBasedBuilder):
    DOCUMENT_TYPE = CDCPDocument

    DOCUMENT_CONVERTERS = {
        TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
    }

    BASE_DATASET_PATH = "DFKI-SLT/cdcp"
    BASE_DATASET_REVISION = "3cf79257900b3f97e4b8f9faae2484b1a534f484"

    BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")]

    DEFAULT_CONFIG_NAME = "default"  # type: ignore

    def _generate_document_kwargs(self, dataset):
        return {
            "relation_label": dataset.features["relations"].feature["label"],
            "proposition_label": dataset.features["propositions"].feature["label"],
        }

    def _generate_document(self, example, relation_label, proposition_label):
        return example_to_document(
            example, relation_label=relation_label, proposition_label=proposition_label
        )