|
import dataclasses |
|
import logging |
|
from typing import Any, Callable, Dict, List, Optional |
|
|
|
import datasets |
|
from pytorch_ie.annotations import BinaryRelation, LabeledSpan |
|
from pytorch_ie.core import Annotation, AnnotationList, annotation_field |
|
from pytorch_ie.documents import ( |
|
TextBasedDocument, |
|
TextDocumentWithLabeledSpansAndBinaryRelations, |
|
) |
|
|
|
from pie_datasets import GeneratorBasedBuilder |
|
from pie_datasets.document.processing.text_span_trimmer import trim_text_spans |
|
|
|
log = logging.getLogger(__name__) |
|
|
|
|
|
def dl2ld(dict_of_lists): |
|
return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())] |
|
|
|
|
|
def ld2dl(list_of_dicts, keys: Optional[List[str]] = None): |
|
return {k: [d[k] for d in list_of_dicts] for k in keys} |
|
|
|
|
|
@dataclasses.dataclass(frozen=True) |
|
class Attribute(Annotation): |
|
value: str |
|
annotation: Annotation |
|
|
|
|
|
@dataclasses.dataclass |
|
class CDCPDocument(TextBasedDocument): |
|
propositions: AnnotationList[LabeledSpan] = annotation_field(target="text") |
|
relations: AnnotationList[BinaryRelation] = annotation_field(target="propositions") |
|
urls: AnnotationList[Attribute] = annotation_field(target="propositions") |
|
|
|
|
|
def example_to_document( |
|
example: Dict[str, Any], |
|
relation_label: datasets.ClassLabel, |
|
proposition_label: datasets.ClassLabel, |
|
): |
|
document = CDCPDocument(id=example["id"], text=example["text"]) |
|
for proposition_dict in dl2ld(example["propositions"]): |
|
proposition = LabeledSpan( |
|
start=proposition_dict["start"], |
|
end=proposition_dict["end"], |
|
label=proposition_label.int2str(proposition_dict["label"]), |
|
) |
|
document.propositions.append(proposition) |
|
if proposition_dict.get("url", "") != "": |
|
url = Attribute(annotation=proposition, value=proposition_dict["url"]) |
|
document.urls.append(url) |
|
|
|
for relation_dict in dl2ld(example["relations"]): |
|
relation = BinaryRelation( |
|
head=document.propositions[relation_dict["head"]], |
|
tail=document.propositions[relation_dict["tail"]], |
|
label=relation_label.int2str(relation_dict["label"]), |
|
) |
|
document.relations.append(relation) |
|
|
|
return document |
|
|
|
|
|
def document_to_example( |
|
document: CDCPDocument, |
|
relation_label: datasets.ClassLabel, |
|
proposition_label: datasets.ClassLabel, |
|
) -> Dict[str, Any]: |
|
result = {"id": document.id, "text": document.text} |
|
proposition2dict = {} |
|
proposition2idx = {} |
|
for idx, proposition in enumerate(document.propositions): |
|
proposition2dict[proposition] = { |
|
"start": proposition.start, |
|
"end": proposition.end, |
|
"label": proposition_label.str2int(proposition.label), |
|
"url": "", |
|
} |
|
proposition2idx[proposition] = idx |
|
for url in document.urls: |
|
proposition2dict[url.annotation]["url"] = url.value |
|
|
|
result["propositions"] = ld2dl( |
|
proposition2dict.values(), keys=["start", "end", "label", "url"] |
|
) |
|
|
|
relations = [ |
|
{ |
|
"head": proposition2idx[relation.head], |
|
"tail": proposition2idx[relation.tail], |
|
"label": relation_label.str2int(relation.label), |
|
} |
|
for relation in document.relations |
|
] |
|
result["relations"] = ld2dl(relations, keys=["head", "tail", "label"]) |
|
|
|
return result |
|
|
|
|
|
def convert_to_text_document_with_labeled_spans_and_binary_relations( |
|
document: CDCPDocument, |
|
verbose: bool = True, |
|
) -> TextDocumentWithLabeledSpansAndBinaryRelations: |
|
doc_simplified = document.as_type( |
|
TextDocumentWithLabeledSpansAndBinaryRelations, |
|
field_mapping={"propositions": "labeled_spans", "relations": "binary_relations"}, |
|
) |
|
result = trim_text_spans( |
|
doc_simplified, |
|
layer="labeled_spans", |
|
verbose=verbose, |
|
) |
|
return result |
|
|
|
|
|
class CDCP(GeneratorBasedBuilder): |
|
DOCUMENT_TYPE = CDCPDocument |
|
|
|
DOCUMENT_CONVERTERS = { |
|
TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations |
|
} |
|
|
|
BASE_DATASET_PATH = "DFKI-SLT/cdcp" |
|
|
|
BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")] |
|
|
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _generate_document_kwargs(self, dataset): |
|
return { |
|
"relation_label": dataset.features["relations"].feature["label"], |
|
"proposition_label": dataset.features["propositions"].feature["label"], |
|
} |
|
|
|
def _generate_document(self, example, relation_label, proposition_label): |
|
return example_to_document( |
|
example, relation_label=relation_label, proposition_label=proposition_label |
|
) |
|
|