date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
list
2024-01-10
1ou2/docdoctor
tuto.py
import os from dotenv import load_dotenv from openai import AzureOpenAI fact_sheet_chair = f""" <OVERVIEW - Part of a beautiful family of mid-century inspired office furniture, including filing cabinets, desks, bookcases, meeting tables, and more. - Several options of shell color and base finishes. - Available with plastic back and front upholstery (SWC-100) or full upholstery (SWC-110) in 10 fabric and 6 leather options. - Base finish options are: stainless steel, matte black, gloss white, or chrome. - Chair is available with or without armrests. - Suitable for home or business settings. - Qualified for contract use. CONSTRUCTION - 5-wheel plastic coated aluminum base. - Pneumatic chair adjust for easy raise/lower action. DIMENSIONS - WIDTH 53 CM | 20.87” - DEPTH 51 CM | 20.08” - HEIGHT 80 CM | 31.50” - SEAT HEIGHT 44 CM | 17.32” - SEAT DEPTH 41 CM | 16.14” OPTIONS - Soft or hard-floor caster options. - Two choices of seat foam densities: medium (1.8 lb/ft3) or high (2.8 lb/ft3) - Armless or 8 position PU armrests MATERIALS SHELL BASE GLIDER - Cast Aluminum with modified nylon PA6/PA66 coating. - Shell thickness: 10 mm. SEAT - HD36 foam COUNTRY OF ORIGIN - Italy >""" def market(): load_dotenv() client = AzureOpenAI( api_key=os.getenv("AZURE_OPENAI_KEY"), api_version="2023-10-01-preview", azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") ) deployment_name="gpt35turbo" response = client.chat.completions.create( model="GPT4", # model = "deployment_name". messages=[ {"role": "system", "content": "You are the chief marketing officer of a chair company. "}, {"role": "user", "content": "write a marketing description for the product described between the delimiters " + fact_sheet_chair} ] ) #print(response.model_dump_json(indent=2)) print(response.choices[0].message.content) if __name__ == "__main__": market()
[ "You are the chief marketing officer of a chair company. ", "write a marketing description for the product described between the delimiters \n<OVERVIEW\n- Part of a beautiful family of mid-century inspired office furniture, \nincluding filing cabinets, desks, bookcases, meeting tables, and more.\n- Several options of shell color and base finishes.\n- Available with plastic back and front upholstery (SWC-100) \nor full upholstery (SWC-110) in 10 fabric and 6 leather options.\n- Base finish options are: stainless steel, matte black, \ngloss white, or chrome.\n- Chair is available with or without armrests.\n- Suitable for home or business settings.\n- Qualified for contract use.\n\nCONSTRUCTION\n- 5-wheel plastic coated aluminum base.\n- Pneumatic chair adjust for easy raise/lower action.\n\nDIMENSIONS\n- WIDTH 53 CM | 20.87”\n- DEPTH 51 CM | 20.08”\n- HEIGHT 80 CM | 31.50”\n- SEAT HEIGHT 44 CM | 17.32”\n- SEAT DEPTH 41 CM | 16.14”\n\nOPTIONS\n- Soft or hard-floor caster options.\n- Two choices of seat foam densities: \n medium (1.8 lb/ft3) or high (2.8 lb/ft3)\n- Armless or 8 position PU armrests \n\nMATERIALS\nSHELL BASE GLIDER\n- Cast Aluminum with modified nylon PA6/PA66 coating.\n- Shell thickness: 10 mm.\nSEAT\n- HD36 foam\n\nCOUNTRY OF ORIGIN\n- Italy\n>" ]
2024-01-10
1ou2/docdoctor
firsttest.py
import os from openai import AzureOpenAI from dotenv import load_dotenv def assist4(): load_dotenv() client = AzureOpenAI( api_key=os.getenv("AZURE_OPENAI_KEY"), api_version="2023-10-01-preview", azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") ) deployment_name='GPT4' #This will correspond to the custom name you chose for your deployment when you deployed a model. """ response = client.chat.completions.create( model="GPT4", # model = "deployment_name". messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Does Azure OpenAI support customer managed keys?"}, {"role": "assistant", "content": "Yes, customer managed keys are supported by Azure OpenAI."}, {"role": "user", "content": "Do other Azure AI services support this too?"} ] ) print(response.choices[0].message.content) """ response = client.chat.completions.create( model="GPT4", # model = "deployment_name". messages=[ {"role": "system", "content": "Vous êtes un assistant d’un centre d’appel voulant aider les utilisateurs."}, {"role": "user", "content": "Je n’arrive pas à imprimer"}, {"role": "assistant", "content": "Vérifier si votre imprimante est bien configurée dans le panneau de configuration"}, {"role": "user", "content": "Comment changer mon mot de passe ?"} ] ) print(response.choices[0].message.content) def get_completion(prompt, model="gpt-3.5-turbo"): messages = [{"role": "user", "content": prompt}] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=0, # this is the degree of randomness of the model's output ) return response.choices[0].message["content"] if __name__ == "__main__": #assist4() load_dotenv() client = AzureOpenAI( api_key=os.getenv("AZURE_OPENAI_KEY"), api_version="2023-10-01-preview", azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") ) deployment_name="gpt35turbo" # Send a completion call to generate an answer text = f""" You should express what you want a model to do by \ providing instructions that are as clear and \ specific as you can possibly make them. \ This will guide the model towards the desired output, \ and reduce the chances of receiving irrelevant \ or incorrect responses. Don't confuse writing a \ clear prompt with writing a short prompt. \ In many cases, longer prompts provide more clarity \ and context for the model, which can lead to \ more detailed and relevant outputs. """ prompt = f""" Summarize the text delimited by triple backticks \ into a single sentence. ```{text}``` """ # ### COMPLETION API # #start_phrase = prompt #response = client.completions.create(model=deployment_name, prompt=start_phrase, max_tokens=300) #print(response.choices[0].text) deployment_name='GPT4' #This will correspond to the custom name you chose for your deployment when you deployed a model. response = client.chat.completions.create( model="GPT4", # model = "deployment_name". messages=[ {"role": "system", "content": "You are an assistant designed to summarize text"}, {"role": "user", "content": prompt} ] ) print(response.model_dump_json(indent=2)) print(response.choices[0].message.content)
[ "Vous êtes un assistant d’un centre d’appel voulant aider les utilisateurs.", "You are an assistant designed to summarize text", "Vérifier si votre imprimante est bien configurée dans le panneau de configuration", "Comment changer mon mot de passe ?", "Je n’arrive pas à imprimer", "\n Summarize the text delimited by triple backticks \\ \n into a single sentence.\n ```PLACEHOLDER```\n " ]
2024-01-10
1ou2/docdoctor
addcontext.py
# imports import ast # for converting embeddings saved as strings back to arrays from openai import AzureOpenAI # for calling the OpenAI API import pandas as pd # for storing text and embeddings data import tiktoken # for counting tokens import os # for getting API token from env variable OPENAI_API_KEY from scipy import spatial # for calculating vector similarities for search from dotenv import load_dotenv # models EMBEDDING_MODEL = "text-embedding-ada-002" GPT_MODEL = "gpt-3.5-turbo" # text copied and pasted from: https://en.wikipedia.org/wiki/Curling_at_the_2022_Winter_Olympics # I didn't bother to format or clean the text, but GPT will still understand it # the entire article is too long for gpt-3.5-turbo, so I only included the top few sections wikipedia_article_on_curling = """Curling at the 2022 Winter Olympics Article Talk Read Edit View history From Wikipedia, the free encyclopedia Curling at the XXIV Olympic Winter Games Curling pictogram.svg Curling pictogram Venue Beijing National Aquatics Centre Dates 2–20 February 2022 No. of events 3 (1 men, 1 women, 1 mixed) Competitors 114 from 14 nations ← 20182026 → Men's curling at the XXIV Olympic Winter Games Medalists 1st place, gold medalist(s) Sweden 2nd place, silver medalist(s) Great Britain 3rd place, bronze medalist(s) Canada Women's curling at the XXIV Olympic Winter Games Medalists 1st place, gold medalist(s) Great Britain 2nd place, silver medalist(s) Japan 3rd place, bronze medalist(s) Sweden Mixed doubles's curling at the XXIV Olympic Winter Games Medalists 1st place, gold medalist(s) Italy 2nd place, silver medalist(s) Norway 3rd place, bronze medalist(s) Sweden Curling at the 2022 Winter Olympics Curling pictogram.svg Qualification Statistics Tournament Men Women Mixed doubles vte The curling competitions of the 2022 Winter Olympics were held at the Beijing National Aquatics Centre, one of the Olympic Green venues. Curling competitions were scheduled for every day of the games, from February 2 to February 20.[1] This was the eighth time that curling was part of the Olympic program. In each of the men's, women's, and mixed doubles competitions, 10 nations competed. The mixed doubles competition was expanded for its second appearance in the Olympics.[2] A total of 120 quota spots (60 per sex) were distributed to the sport of curling, an increase of four from the 2018 Winter Olympics.[3] A total of 3 events were contested, one for men, one for women, and one mixed.[4] Qualification Main article: Curling at the 2022 Winter Olympics – Qualification Qualification to the Men's and Women's curling tournaments at the Winter Olympics was determined through two methods (in addition to the host nation). Nations qualified teams by placing in the top six at the 2021 World Curling Championships. Teams could also qualify through Olympic qualification events which were held in 2021. Six nations qualified via World Championship qualification placement, while three nations qualified through qualification events. In men's and women's play, a host will be selected for the Olympic Qualification Event (OQE). They would be joined by the teams which competed at the 2021 World Championships but did not qualify for the Olympics, and two qualifiers from the Pre-Olympic Qualification Event (Pre-OQE). The Pre-OQE was open to all member associations.[5] For the mixed doubles competition in 2022, the tournament field was expanded from eight competitor nations to ten.[2] The top seven ranked teams at the 2021 World Mixed Doubles Curling Championship qualified, along with two teams from the Olympic Qualification Event (OQE) – Mixed Doubles. This OQE was open to a nominated host and the fifteen nations with the highest qualification points not already qualified to the Olympics. As the host nation, China qualified teams automatically, thus making a total of ten teams per event in the curling tournaments.[6] Summary Nations Men Women Mixed doubles Athletes Australia Yes 2 Canada Yes Yes Yes 12 China Yes Yes Yes 12 Czech Republic Yes 2 Denmark Yes Yes 10 Great Britain Yes Yes Yes 10 Italy Yes Yes 6 Japan Yes 5 Norway Yes Yes 6 ROC Yes Yes 10 South Korea Yes 5 Sweden Yes Yes Yes 11 Switzerland Yes Yes Yes 12 United States Yes Yes Yes 11 Total: 14 NOCs 10 10 10 114 Competition schedule The Beijing National Aquatics Centre served as the venue of the curling competitions. Curling competitions started two days before the Opening Ceremony and finished on the last day of the games, meaning the sport was the only one to have had a competition every day of the games. The following was the competition schedule for the curling competitions: RR Round robin SF Semifinals B 3rd place play-off F Final Date Event Wed 2 Thu 3 Fri 4 Sat 5 Sun 6 Mon 7 Tue 8 Wed 9 Thu 10 Fri 11 Sat 12 Sun 13 Mon 14 Tue 15 Wed 16 Thu 17 Fri 18 Sat 19 Sun 20 Men's tournament RR RR RR RR RR RR RR RR RR SF B F Women's tournament RR RR RR RR RR RR RR RR SF B F Mixed doubles RR RR RR RR RR RR SF B F Medal summary Medal table Rank Nation Gold Silver Bronze Total 1 Great Britain 1 1 0 2 2 Sweden 1 0 2 3 3 Italy 1 0 0 1 4 Japan 0 1 0 1 Norway 0 1 0 1 6 Canada 0 0 1 1 Totals (6 entries) 3 3 3 9 Medalists Event Gold Silver Bronze Men details Sweden Niklas Edin Oskar Eriksson Rasmus Wranå Christoffer Sundgren Daniel Magnusson Great Britain Bruce Mouat Grant Hardie Bobby Lammie Hammy McMillan Jr. Ross Whyte Canada Brad Gushue Mark Nichols Brett Gallant Geoff Walker Marc Kennedy Women details Great Britain Eve Muirhead Vicky Wright Jennifer Dodds Hailey Duff Mili Smith Japan Satsuki Fujisawa Chinami Yoshida Yumi Suzuki Yurika Yoshida Kotomi Ishizaki Sweden Anna Hasselborg Sara McManus Agnes Knochenhauer Sofia Mabergs Johanna Heldin Mixed doubles details Italy Stefania Constantini Amos Mosaner Norway Kristin Skaslien Magnus Nedregotten Sweden Almida de Val Oskar Eriksson Teams Men Canada China Denmark Great Britain Italy Skip: Brad Gushue Third: Mark Nichols Second: Brett Gallant Lead: Geoff Walker Alternate: Marc Kennedy Skip: Ma Xiuyue Third: Zou Qiang Second: Wang Zhiyu Lead: Xu Jingtao Alternate: Jiang Dongxu Skip: Mikkel Krause Third: Mads Nørgård Second: Henrik Holtermann Lead: Kasper Wiksten Alternate: Tobias Thune Skip: Bruce Mouat Third: Grant Hardie Second: Bobby Lammie Lead: Hammy McMillan Jr. Alternate: Ross Whyte Skip: Joël Retornaz Third: Amos Mosaner Second: Sebastiano Arman Lead: Simone Gonin Alternate: Mattia Giovanella Norway ROC Sweden Switzerland United States Skip: Steffen Walstad Third: Torger Nergård Second: Markus Høiberg Lead: Magnus Vågberg Alternate: Magnus Nedregotten Skip: Sergey Glukhov Third: Evgeny Klimov Second: Dmitry Mironov Lead: Anton Kalalb Alternate: Daniil Goriachev Skip: Niklas Edin Third: Oskar Eriksson Second: Rasmus Wranå Lead: Christoffer Sundgren Alternate: Daniel Magnusson Fourth: Benoît Schwarz Third: Sven Michel Skip: Peter de Cruz Lead: Valentin Tanner Alternate: Pablo Lachat Skip: John Shuster Third: Chris Plys Second: Matt Hamilton Lead: John Landsteiner Alternate: Colin Hufman Women Canada China Denmark Great Britain Japan Skip: Jennifer Jones Third: Kaitlyn Lawes Second: Jocelyn Peterman Lead: Dawn McEwen Alternate: Lisa Weagle Skip: Han Yu Third: Wang Rui Second: Dong Ziqi Lead: Zhang Lijun Alternate: Jiang Xindi Skip: Madeleine Dupont Third: Mathilde Halse Second: Denise Dupont Lead: My Larsen Alternate: Jasmin Lander Skip: Eve Muirhead Third: Vicky Wright Second: Jennifer Dodds Lead: Hailey Duff Alternate: Mili Smith Skip: Satsuki Fujisawa Third: Chinami Yoshida Second: Yumi Suzuki Lead: Yurika Yoshida Alternate: Kotomi Ishizaki ROC South Korea Sweden Switzerland United States Skip: Alina Kovaleva Third: Yulia Portunova Second: Galina Arsenkina Lead: Ekaterina Kuzmina Alternate: Maria Komarova Skip: Kim Eun-jung Third: Kim Kyeong-ae Second: Kim Cho-hi Lead: Kim Seon-yeong Alternate: Kim Yeong-mi Skip: Anna Hasselborg Third: Sara McManus Second: Agnes Knochenhauer Lead: Sofia Mabergs Alternate: Johanna Heldin Fourth: Alina Pätz Skip: Silvana Tirinzoni Second: Esther Neuenschwander Lead: Melanie Barbezat Alternate: Carole Howald Skip: Tabitha Peterson Third: Nina Roth Second: Becca Hamilton Lead: Tara Peterson Alternate: Aileen Geving Mixed doubles Australia Canada China Czech Republic Great Britain Female: Tahli Gill Male: Dean Hewitt Female: Rachel Homan Male: John Morris Female: Fan Suyuan Male: Ling Zhi Female: Zuzana Paulová Male: Tomáš Paul Female: Jennifer Dodds Male: Bruce Mouat Italy Norway Sweden Switzerland United States Female: Stefania Constantini Male: Amos Mosaner Female: Kristin Skaslien Male: Magnus Nedregotten Female: Almida de Val Male: Oskar Eriksson Female: Jenny Perret Male: Martin Rios Female: Vicky Persinger Male: Chris Plys """ load_dotenv() client = AzureOpenAI( api_key=os.getenv("AZURE_OPENAI_KEY"), api_version="2023-10-01-preview", azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") ) deployment_name='GPT4' deployment_name="gpt35turbo" # an example question about the 2022 Olympics query = 'Which athletes won the gold medal in curling at the 2022 Winter Olympics?' query = f"""Use the below article on the 2022 Winter Olympics to answer the subsequent question. If the answer cannot be found, write "I don't know." Article: \"\"\" {wikipedia_article_on_curling} \"\"\" Question: Which athletes won the gold medal in curling at the 2022 Winter Olympics?""" response = client.chat.completions.create( model = deployment_name, messages=[ {"role": "system", "content": "You answer questions about the 2022 Winter Olympics."}, {"role": "user", "content": query} ] ) #print(response.model_dump_json(indent=2)) print(response.choices[0].message.content)
[ "You answer questions about the 2022 Winter Olympics." ]
2024-01-10
1ou2/docdoctor
util~embedtest.py
# imports import ast from math import cos # for converting embeddings saved as strings back to arrays from openai import AzureOpenAI # for calling the OpenAI API import pandas as pd # for storing text and embeddings data import tiktoken # for counting tokens import os # for getting API token from env variable OPENAI_API_KEY from scipy import spatial # for calculating vector similarities for search from dotenv import load_dotenv import numpy as np EMBEDDING_MODEL = "textembedding" def query(): # models EMBEDDING_MODEL = "textembedding" GPT_MODEL = "gpt-3.5-turbo" load_dotenv() client = AzureOpenAI( api_key=os.getenv("AZURE_OPENAI_KEY"), api_version="2023-10-01-preview", azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") ) deployment_name='GPT4' deployment_name="gpt35turbo" # an example question about the 2022 Olympics query = 'Which athletes won the gold medal in curling at the 2022 Winter Olympics?' response = client.chat.completions.create( model = deployment_name, messages=[ {"role": "system", "content": "You answer questions about the 2022 Winter Olympics."}, {"role": "user", "content": query} ] ) #print(response.model_dump_json(indent=2)) print(response.choices[0].message.content) def load_data(): embeddings_path = "winter_olympics_2022.csv" df = pd.read_csv(embeddings_path) # convert embeddings from CSV str type back to list type df['embedding'] = df['embedding'].apply(ast.literal_eval) return df def pddata(): embeddings_path = "winter_olympics_2022.csv" df = pd.read_csv(embeddings_path) #print(df) #for i in range(10): # print(df.iloc[i].loc["embedding"]) print("########") print(df.iloc[3].loc["embedding"]) print("########") # convert embeddings from CSV str type back to list type #df['embedding'] = df['embedding'].apply(ast.literal_eval) print("--------") print(df.iloc[3].loc["embedding"]) print("===========") print(df["text"][100]) print("===========") print(df["embedding"][100]) # search function def strings_ranked_by_relatedness( query: str, df: pd.DataFrame, relatedness_fn=lambda x, y: 1 - spatial.distance.cosine(x, y), top_n: int = 100 ) -> tuple[list[str], list[float]]: """Returns a list of strings and relatednesses, sorted from most related to least.""" query_embedding_response = openai.embeddings.create( model=EMBEDDING_MODEL, input=query, ) query_embedding = query_embedding_response.data[0].embedding strings_and_relatednesses = [ (row["text"], relatedness_fn(query_embedding, row["embedding"])) for i, row in df.iterrows() ] strings_and_relatednesses.sort(key=lambda x: x[1], reverse=True) strings, relatednesses = zip(*strings_and_relatednesses) return strings[:top_n], relatednesses[:top_n] def generate_embeddings(text, model="textembedding"): # model = "deployment_name" return client.embeddings.create(input = [text], model=model).data[0].embedding def cosine_similarity(a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) if __name__ == "__main__": #df = load_data() load_dotenv() client = AzureOpenAI( api_key = os.getenv("AZURE_OPENAI_KEY"), api_version = "2023-05-15", azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") ) #pddata() df = load_data() emb1 = df["embedding"][100] text = df["text"][100] print("===***********") emb2 = client.embeddings.create(input = [text], model=EMBEDDING_MODEL).data[0].embedding print(emb2) similarity = cosine_similarity(emb1,emb2) print(f"simililarity : {similarity}") #df_bills['ada_v2'] = df_bills["text"].apply(lambda x : generate_embeddings (x, model = 'text-embedding-ada-002'))
[ "You answer questions about the 2022 Winter Olympics." ]
2024-01-10
jaemyoung/SeoulTech-Research-Frontier
LDA_topic_optimalize.py
from tqdm import tqdm from gensim.models.ldamodel import LdaModel from gensim.models.callbacks import CoherenceMetric from gensim import corpora from gensim.models.callbacks import PerplexityMetric import logging import pickle from gensim.models.coherencemodel import CoherenceModel import matplotlib.pyplot as plt import numpy as np # coherence 함수 def coherence_optimal_number_of_topics(dictionary, corpus, processed_data): limit = 60; #토픽 마지막갯수 start = 10; #토픽 시작갯수 step = 5; coherence_values = [] for num_topics in range(start, limit, step): lda_model = LdaModel(corpus, id2word=dictionary, num_topics=num_topics, passes=30, iterations= 100, random_state=(1004)) cm = CoherenceModel(model= lda_model, corpus = corpus, coherence= 'u_mass') coherence_values.append(cm.get_coherence()) x = range(start, limit, step) plt.plot(x, coherence_values) plt.xlabel("Num Topics") plt.ylabel("Coherence") plt.show() #perplexity 함수 def perplexity_optimal_number_of_topics(dictionary, corpus, processed_data): limit = 60; #토픽 마지막갯수 start = 10; #토픽 시작갯수 step = 5; perplexity_values = [] for num_topics in range(start, limit, step): lda_model = LdaModel(corpus, id2word=dictionary, num_topics=num_topics, passes=10, iterations= 100, random_state = 1004) perplexity_values.append(lda_model.log_perplexity(corpus)) x = range(start, limit, step) plt.plot(x, perplexity_values) plt.xlabel("Num Topics") plt.ylabel("Perplexity") plt.show() ########################################################################### # 실행 #preprocessing 완료된 document pickle 파일 열기 with open('C:/Users/user/Documents/GitHub/SeoulTech-Research-Frontier/data/preprocessing_data(4046).pickle',"rb") as fr: tokenized_doc = pickle.load(fr) # 출현빈도가 적거나 자주 등장하는 단어는 제거 dictionary = corpora.Dictionary(tokenized_doc) dictionary.filter_extremes(no_below=10, no_above=0.05) corpus = [dictionary.doc2bow(text) for text in tokenized_doc] print('Number of unique tokens: %d' % len(dictionary)) print('Number of documents: %d' % len(corpus)) # 최적의 토픽 수 찾기 coherence_optimal_number_of_topics(dictionary, corpus, tokenized_doc) perplexity_optimal_number_of_topics(dictionary, corpus, tokenized_doc) ########################################################################### # 최적의 pass 수 찾기(num_topic 고정) coherences=[] perplexities=[] passes=[] x = range(10,110,10) plt.plot(x,coherences) plt.xlabel("Pass") plt.ylabel("Coherence") plt.show() x = range(10,110,10) plt.plot(x,perplexities) plt.xlabel("Pass") plt.ylabel("Perplexity") plt.show() for p in range(10,110,10): passes.append(p) lda = LdaModel(corpus, id2word=dictionary, num_topics=30, iterations=400, passes=p) cm = CoherenceModel(model=lda, corpus=corpus, coherence='u_mass') coherence = cm.get_coherence() print("Cpherence",coherence) coherences.append(coherence) print('Perplexity: ', lda.log_perplexity(corpus),'\n\n') perplexities.append(lda.log_perplexity(corpus))
[]
2024-01-10
frankdji/ChatPaperPlus
chat_paper_plus.py
import numpy as np import os import re import datetime import arxiv import openai, tenacity import base64, requests import argparse import configparser import json import tiktoken from get_paper_from_pdf import Paper # 定义Reader类 class Reader: # 初始化方法,设置属性 def __init__(self, key_word, query, filter_keys, root_path='./', gitee_key='', sort=arxiv.SortCriterion.SubmittedDate, user_name='defualt', args=None): self.user_name = user_name # 读者姓名 self.key_word = key_word # 读者感兴趣的关键词 self.query = query # 读者输入的搜索查询 self.sort = sort # 读者选择的排序方式 if args.language == 'en': self.language = 'English' elif args.language == 'zh': self.language = 'Chinese' else: self.language = 'Chinese' self.filter_keys = filter_keys # 用于在摘要中筛选的关键词 self.root_path = root_path # 创建一个ConfigParser对象 self.config = configparser.ConfigParser() # 读取配置文件 self.config.read('apikey.ini') # 获取某个键对应的值 self.chat_api_list = self.config.get('OpenAI', 'OPENAI_API_KEYS')[1:-1].replace('\'', '').split(',') self.chat_api_list = [api.strip() for api in self.chat_api_list if len(api) > 5] self.cur_api = 0 self.file_format = args.file_format if args.save_image: self.gitee_key = self.config.get('Gitee', 'api') else: self.gitee_key = '' self.max_token_num = 4096 self.encoding = tiktoken.get_encoding("gpt2") def get_arxiv(self, max_results=30): search = arxiv.Search(query=self.query, max_results=max_results, sort_by=self.sort, sort_order=arxiv.SortOrder.Descending, ) return search def filter_arxiv(self, max_results=30): search = self.get_arxiv(max_results=max_results) print("all search:") for index, result in enumerate(search.results()): print(index, result.title, result.updated) filter_results = [] filter_keys = self.filter_keys print("filter_keys:", self.filter_keys) # 确保每个关键词都能在摘要中找到,才算是目标论文 for index, result in enumerate(search.results()): abs_text = result.summary.replace('-\n', '-').replace('\n', ' ') meet_num = 0 for f_key in filter_keys.split(" "): if f_key.lower() in abs_text.lower(): meet_num += 1 if meet_num == len(filter_keys.split(" ")): filter_results.append(result) # break print("筛选后剩下的论文数量:") print("filter_results:", len(filter_results)) print("filter_papers:") for index, result in enumerate(filter_results): print(index, result.title, result.updated) return filter_results def validateTitle(self, title): # 将论文的乱七八糟的路径格式修正 rstr = r"[\/\\\:\*\?\"\<\>\|]" # '/ \ : * ? " < > |' new_title = re.sub(rstr, "_", title) # 替换为下划线 return new_title def download_pdf(self, filter_results): # 先创建文件夹 date_str = str(datetime.datetime.now())[:13].replace(' ', '-') key_word = str(self.key_word.replace(':', ' ')) path = self.root_path + 'pdf_files/' + self.query.replace('au: ', '').replace('title: ', '').replace('ti: ', '').replace( ':', ' ')[:25] + '-' + date_str try: os.makedirs(path) except: pass print("All_paper:", len(filter_results)) # 开始下载: paper_list = [] for r_index, result in enumerate(filter_results): try: title_str = self.validateTitle(result.title) pdf_name = title_str + '.pdf' # result.download_pdf(path, filename=pdf_name) self.try_download_pdf(result, path, pdf_name) paper_path = os.path.join(path, pdf_name) print("paper_path:", paper_path) paper = Paper(path=paper_path, url=result.entry_id, title=result.title, abs=result.summary.replace('-\n', '-').replace('\n', ' '), authers=[str(aut) for aut in result.authors], ) # 下载完毕,开始解析: paper.parse_pdf() paper_list.append(paper) except Exception as e: print("download_error:", e) pass return paper_list @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def try_download_pdf(self, result, path, pdf_name): result.download_pdf(path, filename=pdf_name) @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def upload_gitee(self, image_path, image_name='', ext='png'): """ 上传到码云 :return: """ with open(image_path, 'rb') as f: base64_data = base64.b64encode(f.read()) base64_content = base64_data.decode() date_str = str(datetime.datetime.now())[:19].replace(':', '-').replace(' ', '-') + '.' + ext path = image_name + '-' + date_str payload = { "access_token": self.gitee_key, "owner": self.config.get('Gitee', 'owner'), "repo": self.config.get('Gitee', 'repo'), "path": self.config.get('Gitee', 'path'), "content": base64_content, "message": "upload image" } # 这里需要修改成你的gitee的账户和仓库名,以及文件夹的名字: url = f'https://gitee.com/api/v5/repos/' + self.config.get('Gitee', 'owner') + '/' + self.config.get('Gitee', 'repo') + '/contents/' + self.config.get( 'Gitee', 'path') + '/' + path rep = requests.post(url, json=payload).json() print("rep:", rep) if 'content' in rep.keys(): image_url = rep['content']['download_url'] else: image_url = r"https://gitee.com/api/v5/repos/" + self.config.get('Gitee', 'owner') + '/' + self.config.get( 'Gitee', 'repo') + '/contents/' + self.config.get('Gitee', 'path') + '/' + path return image_url def summary_with_chat(self, paper_list): htmls = [] for paper_index, paper in enumerate(paper_list): # 第一步先用title,abs,和introduction进行总结。 text = '' text += 'Title:' + paper.title text += 'Url:' + paper.url text += 'Abstrat:' + paper.abs text += 'Paper_info:' + paper.section_text_dict['paper_info'] # intro text += list(paper.section_text_dict.values())[0] chat_summary_text = "" try: chat_summary_text = self.chat_summary(text=text) except Exception as e: print("summary_error:", e) if "maximum context" in str(e): current_tokens_index = str(e).find("your messages resulted in") + len( "your messages resulted in") + 1 offset = int(str(e)[current_tokens_index:current_tokens_index + 4]) summary_prompt_token = offset + 1000 + 150 chat_summary_text = self.chat_summary(text=text, summary_prompt_token=summary_prompt_token) htmls.append('# Paper:' + paper.title) # zzn # htmls.append('## Paper:' + str(paper_index+1)) htmls.append('\n\n\n') htmls.append('# 文章概要') htmls.append(chat_summary_text) # 第二步总结方法: # TODO,由于有些文章的方法章节名是算法名,所以简单的通过关键词来筛选,很难获取,后面需要用其他的方案去优化。 htmls.append('# 文章提出的方法') method_key = '' for parse_key in paper.section_text_dict.keys(): if 'method' in parse_key.lower() or 'approach' in parse_key.lower(): method_key = parse_key break if method_key != '': text = '' method_text = '' summary_text = '' summary_text += "<summary>" + chat_summary_text # methods method_text += paper.section_text_dict[method_key] text = summary_text + "\n\n<Methods>:\n\n" + method_text chat_method_text = "" try: chat_method_text = self.chat_method(text=text) except Exception as e: print("method_error:", e) if "maximum context" in str(e): current_tokens_index = str(e).find("your messages resulted in") + len( "your messages resulted in") + 1 offset = int(str(e)[current_tokens_index:current_tokens_index + 4]) method_prompt_token = offset + 800 + 150 chat_method_text = self.chat_method(text=text, method_prompt_token=method_prompt_token) htmls.append(chat_method_text) else: chat_method_text = '' htmls.append("\n"*4) # 第三步总结实验 htmls.append('# 主要实验结果') experi_key = '' for parse_key in paper.section_text_dict.keys(): if 'experiment' in parse_key.lower() or 'experiments' in parse_key.lower(): experi_key = parse_key break if experi_key != '': text = '' experi_text = '' summary_text = '' summary_text += "<summary>" + chat_summary_text + "\n\n <Method summary>:\n\n" + chat_method_text experi_text += paper.section_text_dict[experi_key] text = "\n\n<Experiment>:\n\n" + experi_text # text = summary_text + "\n\n<Experiment>:\n\n" + experi_text chat_experi_text = "" chat_experi_text = self.chat_experi(text=text) #TO DO # try: # chat_experi_text = self.chat_experi(text=text) # except Exception as e: # print("experi_error:", e) # if "maximum context" in str(e): # current_tokens_index = str(e).find("your messages resulted in") + len( # "your messages resulted in") + 1 # offset = int(str(e)[current_tokens_index:current_tokens_index + 4]) # experi_prompt_token = offset + 1000 + 150 # chat_experi_text = self.chat_experi(text=text, experi_prompt_token=experi_prompt_token) htmls.append(chat_experi_text) else: chat_experi_text = '' htmls.append("\n" * 4) # 第四步总结全文,并打分: htmls.append('# 全文总结') conclusion_key = '' for parse_key in paper.section_text_dict.keys(): if 'conclu' in parse_key.lower(): conclusion_key = parse_key break text = '' conclusion_text = '' summary_text = '' summary_text += "<summary>" + chat_summary_text + "\n <Method summary>:\n" + chat_method_text + "\n <Experiment summary>:\n" + chat_experi_text if conclusion_key != '': # conclusion conclusion_text += paper.section_text_dict[conclusion_key] text = summary_text + "\n\n<Conclusion>:\n\n" + conclusion_text else: text = summary_text chat_conclusion_text = "" try: chat_conclusion_text = self.chat_conclusion(text=text) except Exception as e: print("conclusion_error:", e) if "maximum context" in str(e): current_tokens_index = str(e).find("your messages resulted in") + len( "your messages resulted in") + 1 offset = int(str(e)[current_tokens_index:current_tokens_index + 4]) conclusion_prompt_token = offset + 800 + 150 chat_conclusion_text = self.chat_conclusion(text=text, conclusion_prompt_token=conclusion_prompt_token) htmls.append(chat_conclusion_text) htmls.append("\n" * 4) # # 整合成一个文件,打包保存下来。 date_str = str(datetime.datetime.now())[:13].replace(' ', '-') try: export_path = os.path.join(self.root_path, 'export') os.makedirs(export_path) except: pass mode = 'w' if paper_index == 0 else 'a' file_name = os.path.join(export_path, date_str + '-' + self.validateTitle(paper.title[:80]) + "." + self.file_format) self.export_to_markdown("\n".join(htmls), file_name=file_name, mode=mode) # file_name = os.path.join(export_path, date_str+'-'+self.validateTitle(paper.title)+".md") # self.export_to_markdown("\n".join(htmls), file_name=file_name, mode=mode) htmls = [] @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def chat_conclusion(self, text, conclusion_prompt_token=800): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list) - 1 else self.cur_api text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text) * (self.max_token_num - conclusion_prompt_token) / text_token) clip_text = text[:clip_text_index] messages = [ {"role": "system", "content": "You are a reviewer in the field of [" + self.key_word + "] and you need to critically review this article"}, # chatgpt 角色 {"role": "assistant", "content": "This is the <summary> and <conclusion> part of an English literature, where <summary> you have already summarized, but <conclusion> part, I need your help to summarize the following questions:" + clip_text}, # 背景知识,可以参考OpenReview的审稿流程 {"role": "user", "content": """ 8. Make the following summary.Be sure to use {} answers (proper nouns need to be marked in English). - (1):What is the significance of this piece of work? - (2):Summarize the strengths and weaknesses of this article in three dimensions: innovation point, performance, and workload. ....... Follow the format of the output later: ## 9. Conclusion: \n\n - (1):xxx;\n - (2):Innovation point: xxx; Performance: xxx; Workload: xxx;\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. """.format(self.language, self.language)}, ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", # prompt需要用英语替换,少占用token。 messages=messages, ) result = '' for choice in response.choices: result += choice.message.content print("conclusion_result:\n", result) print("prompt_token_used:", response.usage.prompt_tokens, "completion_token_used:", response.usage.completion_tokens, "total_token_used:", response.usage.total_tokens) print("response_time:", response.response_ms / 1000.0, 's') return result @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def chat_method(self, text, method_prompt_token=800): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list) - 1 else self.cur_api text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text) * (self.max_token_num - method_prompt_token) / text_token) clip_text = text[:clip_text_index] messages = [ {"role": "system", "content": "You are a researcher in the field of [" + self.key_word + "] who is good at summarizing papers using concise statements"}, # chatgpt 角色 {"role": "assistant", "content": "This is the <summary> and <Method> part of an English document, where <summary> you have summarized, but the <Methods> part, I need your help to read and summarize the following questions." + clip_text}, # 背景知识 {"role": "user", "content": """ 7. Describe in detail the methodological idea of this article. Be sure to use {} answers (proper nouns need to be marked in English). For example, its steps are. - (1):... - (2):... - (3):... - ....... Follow the format of the output that follows: ## 7. Methods: \n\n - (1):xxx;\n - (2):xxx;\n - (3):xxx;\n ....... \n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. """.format(self.language, self.language)}, ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, ) result = '' for choice in response.choices: result += choice.message.content print("method_result:\n", result) print("prompt_token_used:", response.usage.prompt_tokens, "completion_token_used:", response.usage.completion_tokens, "total_token_used:", response.usage.total_tokens) print("response_time:", response.response_ms / 1000.0, 's') return result # @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), # stop=tenacity.stop_after_attempt(5), # reraise=True) def chat_experi(self, text, experi_prompt_token=2000): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list) - 1 else self.cur_api text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text) * (self.max_token_num - experi_prompt_token) / text_token) clip_text = text[:clip_text_index] messages = [ {"role": "system", "content": "You are a researcher in the field of [" + self.key_word + "] who is good at summarizing papers using concise statements"}, # chatgpt 角色 {"role": "assistant", "content": "This is the <Experiment> part of an English document, I need your help to read the <Experiment> part and summarize the following questions." + clip_text}, # 背景知识 {"role": "user", "content": """ 8. summarize according to the following four points. Be sure to use {} answers (proper nouns need to be marked in English) - (1):What specific datasets are used in the experiments in the Experiment chapter of this paper? - (2):What evaluation metrics or protocols were used in the experiment chapter of this paper to evaluate the proposed method? - (3):Please summarize the definitions of these metrics or protocols which were used in the experiment chapter of this paper. - (4):Please summarize the experimental results of the proposed methods on each dataset in tabular form. The results must be summarized in tabular form. (proper nouns need to be marked in English) Follow the format of the output that follows: ## 8. Experiments: \n\n - (1):xxx;\n - (2):xxx;\n - (3):xxx;\n - (4):xxx;\n ....... \n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed. """.format(self.language, self.language)}, ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, ) result = '' for choice in response.choices: result += choice.message.content print("experi_result:\n", result) print("prompt_token_used:", response.usage.prompt_tokens, "completion_token_used:", response.usage.completion_tokens, "total_token_used:", response.usage.total_tokens) print("response_time:", response.response_ms / 1000.0, 's') return result @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def chat_summary(self, text, summary_prompt_token=1100): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list) - 1 else self.cur_api text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text) * (self.max_token_num - summary_prompt_token) / text_token) clip_text = text[:clip_text_index] messages = [ {"role": "system", "content": "You are a researcher in the field of [" + self.key_word + "] who is good at summarizing papers using concise statements"}, {"role": "assistant", "content": "This is the title, author, link, abstract and introduction of an English document. I need your help to read and summarize the following questions: " + clip_text}, {"role": "user", "content": """ 1. Mark the title of the paper (with Chinese translation) 2. list all the authors' names (use English) 3. mark the first author's affiliation (output {} translation only) 4. mark the keywords of this article (use English) 5. link to the paper, Github code link (if available, fill in Github:None if not) 6. summarize according to the following four points.Be sure to use {} answers (proper nouns need to be marked in English) - (1):What is the research background of this article? - (2):What are the past methods? What are the problems with them? Is the approach well motivated? - (3):What is the research methodology proposed in this paper? - (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals? Follow the format of the output that follows: ### 1. Title: \n - xxx\n\n ### 2. Authors: \n - xxx\n\n ### 3. Affiliation: \n - xxx\n\n ### 4. Keywords: \n - xxx\n\n ### 5. Urls and Code - Urls: xxx or xxx , xxx \n\n - Gothub Code: xxx or xxx , xxx \n\n ### 6. Summary: \n\n - (1):xxx;\n - (2):xxx;\n - (3):xxx;\n - (4):xxx.\n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed. """.format(self.language, self.language, self.language)}, ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, ) result = '' for choice in response.choices: result += choice.message.content print("summary_result:\n", result) print("prompt_token_used:", response.usage.prompt_tokens, "completion_token_used:", response.usage.completion_tokens, "total_token_used:", response.usage.total_tokens) print("response_time:", response.response_ms / 1000.0, 's') return result def export_to_markdown(self, text, file_name, mode='w'): # 使用markdown模块的convert方法,将文本转换为html格式 # html = markdown.markdown(text) # 打开一个文件,以写入模式 with open(file_name, mode, encoding="utf-8") as f: # 将html格式的内容写入文件 f.write(text) # 定义一个方法,打印出读者信息 def show_info(self): print(f"Key word: {self.key_word}") print(f"Query: {self.query}") print(f"Sort: {self.sort}") def main(args): # 创建一个Reader对象,并调用show_info方法 if args.sort == 'Relevance': sort = arxiv.SortCriterion.Relevance elif args.sort == 'LastUpdatedDate': sort = arxiv.SortCriterion.LastUpdatedDate else: sort = arxiv.SortCriterion.Relevance if args.pdf_path: reader1 = Reader(key_word=args.key_word, query=args.query, filter_keys=args.filter_keys, sort=sort, args=args ) reader1.show_info() # 开始判断是路径还是文件: paper_list = [] if args.pdf_path.endswith(".pdf"): paper_list.append(Paper(path=args.pdf_path)) else: for root, dirs, files in os.walk(args.pdf_path): print("root:", root, "dirs:", dirs, 'files:', files) # 当前目录路径 for filename in files: # 如果找到PDF文件,则将其复制到目标文件夹中 if filename.endswith(".pdf"): paper_list.append(Paper(path=os.path.join(root, filename))) print("------------------paper_num: {}------------------".format(len(paper_list))) [print(paper_index, paper_name.path.split('\\')[-1]) for paper_index, paper_name in enumerate(paper_list)] reader1.summary_with_chat(paper_list=paper_list) else: reader1 = Reader(key_word=args.key_word, query=args.query, filter_keys=args.filter_keys, sort=sort, args=args ) reader1.show_info() filter_results = reader1.filter_arxiv(max_results=args.max_results) paper_list = reader1.download_pdf(filter_results) reader1.summary_with_chat(paper_list=paper_list) if __name__ == '__main__': parser = argparse.ArgumentParser() # parser.add_argument("--pdf_path", type=str, default=r'demo.pdf', help="if none, the bot will download from arxiv with query") # parser.add_argument("--pdf_path", type=str, default=r'C:\Users\Administrator\Desktop\DHER\RHER_Reset\ChatPaper', help="if none, the bot will download from arxiv with query") parser.add_argument("--pdf_path", type=str, default='', help="if none, the bot will download from arxiv with query") parser.add_argument("--query", type=str, default='all: ChatGPT robot', help="the query string, ti: xx, au: xx, all: xx,") parser.add_argument("--key_word", type=str, default='reinforcement learning', help="the key word of user research fields") parser.add_argument("--filter_keys", type=str, default='ChatGPT robot', help="the filter key words, 摘要中每个单词都得有,才会被筛选为目标论文") parser.add_argument("--max_results", type=int, default=1, help="the maximum number of results") # arxiv.SortCriterion.Relevance parser.add_argument("--sort", type=str, default="Relevance", help="another is LastUpdatedDate") parser.add_argument("--save_image", default=False, help="save image? It takes a minute or two to save a picture! But pretty") parser.add_argument("--file_format", type=str, default='md', help="导出的文件格式,如果存图片的话,最好是md,如果不是的话,txt的不会乱") parser.add_argument("--language", type=str, default='zh', help="The other output lauguage is English, is en") args = parser.parse_args() import time start_time = time.time() main(args=args) print("summary time:", time.time() - start_time)
[ " \n 8. summarize according to the following four points. Be sure to use {} answers (proper nouns need to be marked in English)\n - (1):What specific datasets are used in the experiments in the Experiment chapter of this paper? \n - (2):What evaluation metrics or protocols were used in the experiment chapter of this paper to evaluate the proposed method? \n - (3):Please summarize the definitions of these metrics or protocols which were used in the experiment chapter of this paper.\n - (4):Please summarize the experimental results of the proposed methods on each dataset in tabular form. The results must be summarized in tabular form. (proper nouns need to be marked in English)\n\n Follow the format of the output that follows: \n ## 8. Experiments: \n\n\n - (1):xxx;\n \n - (2):xxx;\n\n - (3):xxx;\n \n - (4):xxx;\n \n ....... \n\n \n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed.\n ", " \n 1. Mark the title of the paper (with Chinese translation)\n 2. list all the authors' names (use English)\n 3. mark the first author's affiliation (output {} translation only) \n 4. mark the keywords of this article (use English)\n 5. link to the paper, Github code link (if available, fill in Github:None if not)\n 6. summarize according to the following four points.Be sure to use {} answers (proper nouns need to be marked in English)\n - (1):What is the research background of this article?\n - (2):What are the past methods? What are the problems with them? Is the approach well motivated?\n - (3):What is the research methodology proposed in this paper?\n - (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals?\n Follow the format of the output that follows: \n ### 1. Title: \n \n - xxx\n\n\n ### 2. Authors: \n \n - xxx\n\n\n ### 3. Affiliation: \n\n - xxx\n\n \n ### 4. Keywords: \n\n - xxx\n\n \n ### 5. Urls and Code\n - Urls: xxx or xxx , xxx \n\n\n - Gothub Code: xxx or xxx , xxx \n\n \n ### 6. Summary: \n\n\n - (1):xxx;\n \n - (2):xxx;\n \n - (3):xxx;\n \n - (4):xxx.\n\n \n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed. \n ", " \n 7. Describe in detail the methodological idea of this article. Be sure to use {} answers (proper nouns need to be marked in English). For example, its steps are.\n - (1):...\n - (2):...\n - (3):...\n - .......\n Follow the format of the output that follows: \n ## 7. Methods: \n\n\n - (1):xxx;\n \n - (2):xxx;\n \n - (3):xxx;\n \n ....... \n\n \n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. \n ", "This is the <Experiment> part of an English document, I need your help to read the <Experiment> part and summarize the following questions.PLACEHOLDER", "] and you need to critically review this article", "This is the <summary> and <Method> part of an English document, where <summary> you have summarized, but the <Methods> part, I need your help to read and summarize the following questions.PLACEHOLDER", " \n 8. Make the following summary.Be sure to use {} answers (proper nouns need to be marked in English).\n - (1):What is the significance of this piece of work?\n - (2):Summarize the strengths and weaknesses of this article in three dimensions: innovation point, performance, and workload. \n .......\n Follow the format of the output later: \n ## 9. Conclusion: \n\n\n - (1):xxx;\n \n - (2):Innovation point: xxx; Performance: xxx; Workload: xxx;\n \n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. \n ", "] who is good at summarizing papers using concise statements", "This is the <summary> and <conclusion> part of an English literature, where <summary> you have already summarized, but <conclusion> part, I need your help to summarize the following questions:PLACEHOLDER", "This is the title, author, link, abstract and introduction of an English document. I need your help to read and summarize the following questions: PLACEHOLDER", "You are a researcher in the field of [", "You are a reviewer in the field of [" ]
2024-01-10
SerendipityOrg/TradeMan
BackTest~CSVQueryAgent.py
import streamlit as st import pandas as pd import plotly.graph_objects as go import numpy as np from scipy.stats import norm from langchain.agents import create_csv_agent from langchain.llms import OpenAI llm = OpenAI(openai_api_key="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") st.set_page_config(page_title="Ask your CSV") st.header("Ask your CSV 📈") csv_file = st.file_uploader("Upload a CSV file", type="csv") if csv_file is not None: # Create a CSV agent for your data file agent = create_csv_agent(OpenAI(temperature=0, openai_api_key='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'), csv_file, verbose=True) user_question = st.text_input("Ask a question about your CSV: ") if user_question is not None and user_question != "": with st.spinner(text="In progress..."): st.write(agent.run(user_question))
[]
2024-01-10
protikmostafa083/t1_whistleOut
model~chatbot.py
import streamlit as st from streamlit_chat import message from langchain.document_loaders import CSVLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.llms import CTransformers from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain import sys DB_FAISS_PATH = "vectorstore/db_faiss" # loading model def load_llm(): # Load locally downloaded nodel llm = CTransformers( model="model/llama-2-7b-chat.ggmlv3.q8_0.bin", model_type="llama", max_new_tokens=1024, temperature=0.1 ) return llm # st.title("Chat with WhistleOut Data") st.markdown("<h3 style='text-align: center; color: grey'>Chat With WhistleOut</h3>", unsafe_allow_html=True) st.markdown("<h3 style='text-align: center; color: grey'>UTS MDSI</h3>", unsafe_allow_html=True) # load the CSV data loader = CSVLoader(file_path="data/DimUTSProduct.csv", encoding="utf-8", csv_args={ 'delimiter': ',' }) data = loader.load() st.json(data) # Split the texts into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20) text_chunks = text_splitter.split_documents(data) embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'} ) db = FAISS.from_documents(text_chunks, embeddings) db.save_local(DB_FAISS_PATH) # call the llm llm = load_llm() chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever()) def conversational_chat(query): result = chain({"question": query, "chat_history": st.session_state['history']}) st.session_state['history'].append((query, result["answer"])) return result["answer"] if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = ["Hey! ask me anything about your data!"] if 'past' not in st.session_state: st.session_state['past'] = ["hey!"] # container for the chat history response_container = st.container() container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Query: ", placeholder="Let's answer your question", key='input') submit_button = st.form_submit_button(label="chat") if submit_button and user_input: output = conversational_chat(user_input) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) if st.session_state['generated']: with response_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile") message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")
[]
2024-01-10
Tanuki/tanuki.py
examples~web_scraper~countries.py
import openai import os from dotenv import load_dotenv from pydantic import BaseModel from typing import Optional load_dotenv() import tanuki from utils import scrape_url openai.api_key = os.getenv("OPENAI_API_KEY") class Country(BaseModel): name: str capital: str population: int area: float @tanuki.patch def extract_country(content: str) -> Optional[Country]: """ Examine the content string and extract the country information pertaining to it's name, capital, population, and area. """ @tanuki.align def align_extract_country() -> None: print("Aligning...") country = "\n\n\n U.S. Virgin Islands\n \n\nCapital: Charlotte Amalie\nPopulation: 108708\nArea (km2): 352.0\n\n" assert extract_country(country) == Country( name="U.S. Virgin Islands", capital="Charlotte Amalie", population=108708, area=352.0, ) if __name__ == '__main__': # Align the function align_extract_country() # Web scrape the url and extract the list of countries url = "https://www.scrapethissite.com/pages/simple/" contents = scrape_url(url=url, class_name="country") # Process the country blocks using Tanuki (only sampling a couple for demo purposes) countries = [] for content in contents[10:12]: countries.append(extract_country(content)) print(countries)
[]
2024-01-10
Tanuki/tanuki.py
tests~test_patch~test_classification.py
import os from typing import Optional, Literal, List import unittest import openai from dotenv import load_dotenv import tanuki load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") @tanuki.patch def classify_sentiment_2(input: str, input_2: str) -> Optional[Literal['Good', 'Bad']]: """ Determine if the inputs are positive or negative sentiment, or None """ @tanuki.patch def classify_sentiment(input: str) -> Optional[Literal['Good', 'Bad']]: """ Determine if the input is positive or negative sentiment """ @tanuki.align def align_classify_sentiment(): """We can test the function as normal using Pytest or Unittest""" i_love_you = "I love you" assert classify_sentiment_2(i_love_you, "I love woo") == 'Good' assert classify_sentiment_2("I hate you", "You're discusting") == 'Bad' assert classify_sentiment_2("Today is wednesday", "The dogs are running outside") == None assert classify_sentiment("I love you") == 'Good' assert classify_sentiment("I hate you") == 'Bad' assert classify_sentiment("Wednesdays are in the middle of the week") == None def test_classify_sentiment(): align_classify_sentiment() bad_input = "I find you awful" good_input = "I really really like you" good_input_2 = "I adore you" assert classify_sentiment("I like you") == 'Good' assert classify_sentiment(bad_input) == 'Bad' assert classify_sentiment("I am neutral") == None assert classify_sentiment_2(good_input, good_input_2) == 'Good' assert classify_sentiment_2("I do not like you you", bad_input) == 'Bad' assert classify_sentiment_2("I am neutral", "I am neutral too") == None
[]
2024-01-10
Tanuki/tanuki.py
tests~test_align~test_align_global.py
import os from typing import Literal, Optional import openai from dotenv import load_dotenv import tanuki load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") @tanuki.patch def classify_sentiment_2(input: str, input_2: str) -> Optional[Literal['Good', 'Bad']]: """ Determine if the inputs are positive or negative sentiment, or None """ @tanuki.patch def classify_sentiment(input: str) -> Optional[Literal['Good', 'Bad']]: """ Determine if the input is positive or negative sentiment """ @tanuki.align def align_classify_sentiment(): """We can test the function as normal using Pytest or Unittest""" i_love_you = "I love you" print(classify_sentiment_2(i_love_you, "I love woo")) assert classify_sentiment_2(i_love_you, "I love woo") == 'Good' print(classify_sentiment("I love you")) assert classify_sentiment("I love you") == 'Good' assert classify_sentiment("I hate you") == 'Bad' #assert classify_sentiment("I hate you") != 'Good' assert not classify_sentiment("Wednesdays are in the middle of the week") if __name__ == '__main__': align_classify_sentiment()
[]
2024-01-10
Tanuki/tanuki.py
examples~web_scraper~cars.py
import openai import os from dotenv import load_dotenv from pydantic import BaseModel from typing import List, Optional load_dotenv() import tanuki from utils import scrape_url openai.api_key = os.getenv("OPENAI_API_KEY") class Car(BaseModel): price: float mpg: str seating: int horsepower: int weight: int fuel_size: float warranty_basic: str warranty_powertrain: str warranty_roadside: str @tanuki.patch def extract_car(content: str) -> Optional[Car]: """ Examine the content string and extract the car details for the price, miles per gallon, seating, horsepower, weight, fuel tank size, and warranty. """ if __name__ == '__main__': # Web scrape the url and extract the car information # url = "https://www.cars.com/research/ford-mustang-2024/" url = "https://www.cars.com/research/mazda-cx_90-2024/" contents = scrape_url(url=url) print(contents) # Process the cocktail block using Tanuki car = extract_car(contents[0]) print(car)
[]
2024-01-10
Tanuki/tanuki.py
src~tanuki~function_modeler.py
import ast import datetime import io import json from typing import List, Tuple, Dict import openai from tanuki.constants import EXAMPLE_ELEMENT_LIMIT, PATCHES, SYMBOLIC_ALIGNMENTS, POSITIVE_EMBEDDABLE_ALIGNMENTS, \ NEGATIVE_EMBEDDABLE_ALIGNMENTS from tanuki.language_models.llm_finetune_api_abc import LLM_Finetune_API from tanuki.models.finetune_job import FinetuneJob from tanuki.models.function_description import FunctionDescription from tanuki.models.function_example import FunctionExample from tanuki.trackers.dataset_worker import DatasetWorker from tanuki.utils import approximate_token_count, prepare_object_for_saving, encode_int, decode_int import copy class FunctionModeler(object): """ This class manages the registered function models and their datasets comprised of symbolic and embeddable alignments, and symbolic and embeddable patches """ def __init__(self, data_worker: DatasetWorker, environment_id=0, api_providers: Dict[str, LLM_Finetune_API] = None ) -> None: self.function_configs = {} self.data_worker = data_worker self.distillation_token_limit = 3000 # the token limit for finetuning self.symbolic_align_buffer = {} self.embeddable_align_buffer = {} self._get_datasets() self.environment_id = environment_id self.check_finetune_blacklist = [] self.execute_finetune_blacklist = [] self.store_data_blacklist = [] self.api_providers = api_providers def _get_dataset_info(self, dataset_type, func_hash, type="length"): """ Get the dataset size for a function hash """ return self.data_worker.load_dataset(dataset_type, func_hash, return_type=type) def _get_datasets(self): """ Get the existing datasets from the data worker """ self.dataset_sizes = self.data_worker.load_existing_datasets() def save_embeddable_align_statements(self, function_hash: str, args, kwargs, positive_pairs: List[Tuple[List, Dict]], negative_pairs: List[Tuple[List, Dict]]): """ Save the contrastive align statements for the embeddable function. Do not save if the function hash is in the store data blacklist Args: function_hash: A unique hash for the function args: The arguments of the function kwargs: The keyword arguments of the function positive_pairs: A list of the other function invocations that are should have equivalent embeddings negative_pairs: A list of the other function invocations that are should have different embeddings """ # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) # prepare positive pairs for saving parsed_positive_pairs = [] for pair in positive_pairs: copy_pair = copy.deepcopy(pair) parsed_pair = prepare_object_for_saving(copy_pair) parsed_positive_pairs.append(parsed_pair) # prepare negative pairs for saving parsed_negative_pairs = [] for pair in negative_pairs: copy_pair = copy.deepcopy(pair) parsed_pair = prepare_object_for_saving(copy_pair) parsed_negative_pairs.append(parsed_pair) # save the contrastive pairs for pair in parsed_positive_pairs: self._save_contrastive_alignment_pair(function_hash, parsed_args, parsed_kwargs, pair, positive=True) for pair in parsed_negative_pairs: self._save_contrastive_alignment_pair(function_hash, parsed_args, parsed_kwargs, pair, positive=False) def _save_contrastive_alignment_pair(self, function_hash: str, args, kwargs, pair, positive=True): """ Save a contrastive pair """ example = FunctionExample(args, kwargs, pair) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_embeddable_align(function_hash, example, positive) else: successfully_saved = False new_datapoint = True if successfully_saved: if positive: if function_hash in self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if not positive: if function_hash in self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.embeddable_align_buffer: self.embeddable_align_buffer[function_hash] = bytearray() self.embeddable_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') def save_symbolic_align_statements(self, function_hash, args, kwargs, output): """ Save the align statements and add to the align buffer Do not save if the function hash is in the store data blacklist Then just add the datapoints to the align buffer """ # prepare output for saving and later parsing # make a deepcopy of the output to avoid changing the original object copy_output = copy.deepcopy(output) parsed_output = prepare_object_for_saving(copy_output) # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) example = FunctionExample(parsed_args, parsed_kwargs, parsed_output) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_symbolic_align(function_hash, example) else: successfully_saved = False new_datapoint = True if successfully_saved: if function_hash in self.dataset_sizes[SYMBOLIC_ALIGNMENTS]: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.symbolic_align_buffer: self.symbolic_align_buffer[function_hash] = bytearray() self.symbolic_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') def save_symbolic_datapoint(self, func_hash, example): """ Save datapoint to the training data """ written_datapoints = self.data_worker.log_symbolic_patch(func_hash, example) for func_hash, datapoints in written_datapoints.items(): if func_hash in self.dataset_sizes[PATCHES]: # if the dataset size is -1, it means we havent read in the dataset size yet if self.dataset_sizes[PATCHES][func_hash] == -1: self.dataset_sizes[PATCHES][func_hash] = self._get_dataset_info(PATCHES, func_hash, type="length") else: self.dataset_sizes[PATCHES][func_hash] += datapoints else: self.dataset_sizes[PATCHES][func_hash] = datapoints return len(written_datapoints) > 0 def get_symbolic_alignments(self, func_hash, max=20): """ Get all symbolic aligns for a function hash """ if func_hash not in self.symbolic_align_buffer: return [] buffer = self.symbolic_align_buffer[func_hash] return self._get_examples_from_alignment_buffer(buffer, max) def get_embeddable_alignments(self, func_hash, max=20): """ Get all embeddable aligns for a function hash """ if func_hash not in self.embeddable_align_buffer: return [] buffer = self.embeddable_align_buffer[func_hash] return self._get_examples_from_alignment_buffer(buffer, max) def _get_examples_from_alignment_buffer(self, buffer, max=20): """ Get examples from a buffer """ split_buffer = bytes(buffer).split(b"\n") # byte array of stringed python dicts into dict objects example_set = set() for example in split_buffer: if example == b"": continue example_set.add(example) # easy and straightforward way to get nr of words (not perfect but doesnt need to be) # Can do the proper way of tokenizing later, it might be slower and we dont need 100% accuracy example_element_limit = EXAMPLE_ELEMENT_LIMIT examples = [] for example_bytes in split_buffer: if example_bytes in example_set: nr_of_elements = approximate_token_count(example_bytes) example_element_limit -= nr_of_elements if example_element_limit < 0: break example = example_bytes.decode('utf-8') # json load the example try: example = json.loads(example) except: example = ast.literal_eval(example) examples.append(example) example_set.remove(example_bytes) return list(examples)[:max] def load_symbolic_align_statements(self, function_hash): """ Load all align statements First check the data storage blacklist, if the func hash is in the blacklist, then set the dataset size to 0 and the align buffer to empty bytearray """ if function_hash in self.store_data_blacklist: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 0 self.symbolic_align_buffer[function_hash] = bytearray() elif function_hash not in self.symbolic_align_buffer: dataset_size, align_dataset = self._get_dataset_info(SYMBOLIC_ALIGNMENTS, function_hash, type="both") if align_dataset: self.symbolic_align_buffer[function_hash] = bytearray(align_dataset) self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = dataset_size def postprocess_symbolic_datapoint(self, func_hash, function_description, example, repaired=True): """ Postprocess the datapoint First check if the datapoint should be added to the training data Add the datapoint if it should be added Then check if the function should be finetuned and execute finetuning if it should """ try: if func_hash not in self.store_data_blacklist: added = self.save_symbolic_datapoint(func_hash, example) if added: self._update_datapoint_config(repaired, func_hash) except Exception as e: print(e) print("Could not add datapoint to training data") if func_hash not in self.execute_finetune_blacklist: self.check_for_finetuning(function_description, func_hash) def load_function_config(self, func_hash, function_description): """ Load the config file for a function hash """ config, default = self.data_worker.load_function_config(func_hash) if default and func_hash not in self.check_finetune_blacklist: finetuned, finetune_config = self._check_for_finetunes(function_description) if finetuned: config = finetune_config self.function_configs[func_hash] = config return config def _check_for_finetunes(self, function_description: FunctionDescription) -> Tuple[bool, Dict]: # This here should be discussed, what's the bestd way to do it # hash the function_hash into 16 characters (to embed it into the name of OpenAI finetunes, for later retrieval) finetune_hash = function_description.__hash__(purpose="finetune") + encode_int(self.environment_id) # List 10 fine-tuning jobs finetunes: List[FinetuneJob] = self.api_providers["openai"].list_finetuned(limit=1000) # Check if the function_hash is in the fine-tuning jobs # the finetunes are in chronological order starting from newest # So this gets the latest finetune for finetune in finetunes: # check if the finetune hash is in the fine-tuned model name if finetune.status == "succeeded" and finetune_hash in finetune.fine_tuned_model: try: config = self._construct_config_from_finetune(finetune_hash, finetune) # save the config self.data_worker.update_function_config(function_description.__hash__(), config) return True, config except: return False, {} return False, {} def _construct_config_from_finetune(self, finetune_hash, finetune: FinetuneJob): model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": ["gpt-4", "gpt-4-32k"], # currently supported teacher models "nr_of_training_runs": nr_of_training_runs} return config def get_models(self, function_description): """ Return the current model from the config file """ func_hash = function_description.__hash__() if func_hash in self.function_configs: func_config = self.function_configs[func_hash] else: func_config = self.load_function_config(func_hash, function_description) # for backwards compatibility if "distilled_model" not in func_config: if func_config["current_model"] in func_config["teacher_models"]: distilled_model = "" else: distilled_model = func_config["current_model"] else: distilled_model = func_config["distilled_model"] return distilled_model, func_config["teacher_models"] def _update_datapoint_config(self, repaired, func_hash): """ Update the config to reflect the new datapoint in the training data First adds 1 to the current datapoints Then updates running faults depending if priority is True or not and takes last 100 Then checks the revert condition, i.e if last 10 datapoints are 50% faulty Finally updates the config file Args: priority (bool): whether the datapoint was fixed by the teacher model/should be added to the training data """ try: if repaired: self.function_configs[func_hash]["current_model_stats"]["running_faults"].append(1) else: self.function_configs[func_hash]["current_model_stats"]["running_faults"].append(0) # take the last 100 datapoints self.function_configs[func_hash]["current_model_stats"]["running_faults"] = \ self.function_configs[func_hash]["current_model_stats"]["running_faults"][-100:] # check if the last 10 datapoints are 50% faulty, this is the switch condition if sum(self.function_configs[func_hash]["current_model_stats"]["running_faults"][-10:]) / 10 > 0.5: self.function_configs[func_hash]["distilled_model"] = "" self.function_configs[func_hash]["current_model_stats"]["trained_on_datapoints"] = 0 self.function_configs[func_hash]["current_model_stats"]["running_faults"] = [] self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file") pass def _update_config_file(self, func_hash): self.data_worker.update_function_config(func_hash, self.function_configs[func_hash]) def check_for_finetuning(self, function_description, func_hash): """ Check for finetuning status If already finetuning, check for finetuning status If not finetuning, check for finetuning condition and execute finetuning if condition is met """ try: # check if already finetuning if "job_id" in self.function_configs[func_hash]["current_training_run"]: # check for job status self._check_finetuning_status(func_hash) else: # check for finetuning condition if self._check_finetuning_condition(func_hash): self._execute_finetuning(function_description, func_hash) except Exception as e: print(e) print("Error checking for finetuning") def _check_finetuning_condition(self, func_hash): """ Check if the finetuning condition is met Currently finetuning condition is dependent on the number of symbolic datapoints since last finetuning """ if func_hash not in self.function_configs: return False training_threshold = (2 ** self.function_configs[func_hash]["nr_of_training_runs"]) * 200 align_dataset_size = self.dataset_sizes[SYMBOLIC_ALIGNMENTS][func_hash] if func_hash in self.dataset_sizes[ SYMBOLIC_ALIGNMENTS] else 0 patch_dataset_size = self.dataset_sizes[PATCHES][func_hash] if func_hash in self.dataset_sizes[PATCHES] else 0 if patch_dataset_size == -1: # if havent read in the patch dataset size, read it in patch_dataset_size = self._get_dataset_info(PATCHES, func_hash, type="length") self.dataset_sizes[PATCHES][func_hash] = patch_dataset_size return (patch_dataset_size + align_dataset_size) > training_threshold def _execute_finetuning(self, function_description, func_hash): """ Execute the finetuning First create the OpenAI compatible dataset with jsonL file and upload it Then submit the OpenAI finetuning job Finally update the config file to reflect the new finetuning job as current """ # get function description function_string = str(function_description.__dict__.__repr__() + "\n") # get the align dataset align_dataset = self._get_dataset_info(SYMBOLIC_ALIGNMENTS, func_hash, type="dataset") if not align_dataset: align_dataset = "" else: align_dataset = align_dataset.decode('utf-8') # get the patch dataset patch_dataset = self._get_dataset_info(PATCHES, func_hash, type="dataset") if not patch_dataset: patch_dataset = "" else: patch_dataset = patch_dataset.decode('utf-8') if align_dataset == "" and patch_dataset == "": return dataset = align_dataset + patch_dataset dataset.replace("\\n", "[SEP_TOKEN]") dataset = dataset.split("\n") dataset = [x.replace("[SEP_TOKEN]", "\\n") for x in dataset if x != ""] # read in the dataset file dataset = [ast.literal_eval(x) for x in dataset] # # create the openai dataset instruction = "You are given below a function description and input data. The function description of what the function must carry out can be found in the Function section, with input and output type hints. The input data can be found in Input section. Using the function description, apply the function to the Input and return a valid output type, that is acceptable by the output_class_definition and output_class_hint. Return None if you can't apply the function to the input or if the output is optional and the correct output is None.\nINCREDIBLY IMPORTANT: Only output a JSON-compatible string in the correct response format." finetuning_dataset = [{"messages": [ { "role": "system", "content": f"You are a skillful and accurate language model, who applies a described function on input data. Make sure the function is applied accurately and correctly and the outputs follow the output type hints and are valid outputs given the output types." }, {"role": "user", "content": f"{instruction}\nFunction: {function_string}---\nInputs:\nArgs: {x['args']}\nKwargs: {x['kwargs']}\nOutput:"}, {"role": "assistant", "content": str(x['output']) if x['output'] is not None else "None"}]} for x in dataset] # Create an in-memory text stream temp_file = io.BytesIO() # Write data to the stream for idx, item in enumerate(finetuning_dataset): temp_file.write(json.dumps(item).encode('utf-8')) if idx != len(finetuning_dataset) - 1: temp_file.write("\n".encode('utf-8')) # Reset the stream position to the beginning temp_file.seek(0) # create the finetune hash finetune_hash = function_description.__hash__(purpose="finetune") nr_of_training_runs = self.function_configs[func_hash]["nr_of_training_runs"] finetune_hash += encode_int(self.environment_id) finetune_hash += encode_int(nr_of_training_runs) # here can be sure that datasets were read in as that is checked in the finetune_check align_dataset_size = self.dataset_sizes[SYMBOLIC_ALIGNMENTS][func_hash] if func_hash in self.dataset_sizes[ SYMBOLIC_ALIGNMENTS] else 0 patch_dataset_size = self.dataset_sizes[PATCHES][func_hash] if func_hash in self.dataset_sizes[PATCHES] else 0 total_dataset_size = align_dataset_size + patch_dataset_size # Use the stream as a file try: finetuning_response: FinetuneJob = self.api_providers["openai"].finetune(file=temp_file, suffix=finetune_hash) except Exception as e: return self.function_configs[func_hash]["current_training_run"] = {"job_id": finetuning_response.id, "trained_on_datapoints": total_dataset_size, "last_checked": datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S")} # update the config json file try: self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file to register a finetuning run") def _check_finetuning_status(self, func_hash): """ Check the status of the current finetuning job If the job is finished, update the config file to reflect the new model """ job_id = self.function_configs[func_hash]["current_training_run"]["job_id"] last_checked = self.function_configs[func_hash]["current_training_run"]["last_checked"] # check if last checked was more than 30 mins ago if (datetime.datetime.now() - datetime.datetime.strptime(last_checked, "%Y-%m-%d %H:%M:%S")).total_seconds() > 1800: response = self.api_providers["openai"].get_finetuned(job_id) self.function_configs[func_hash]["current_training_run"]["last_checked"] = datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S") if response.status == "succeeded" or response.status == "failed": self._update_finetune_config(response, func_hash, response.status) else: self._update_config_file(func_hash) def _update_finetune_config(self, response: FinetuneJob, func_hash, status): """ Update the config file to reflect the new model and switch the current model to the finetuned model """ if status == "failed": self.function_configs[func_hash]["current_training_run"] = {} else: self.function_configs[func_hash]["distilled_model"] = response.fine_tuned_model self.function_configs[func_hash]["last_training_run"] = self.function_configs[func_hash][ "current_training_run"] self.function_configs[func_hash]["current_model_stats"] = { "trained_on_datapoints": self.function_configs[func_hash]["current_training_run"][ "trained_on_datapoints"], "running_faults": []} self.function_configs[func_hash]["nr_of_training_runs"] += 1 self.function_configs[func_hash]["current_training_run"] = {} try: self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file after a successful finetuning run") pass
[ "You are a skillful and accurate language model, who applies a described function on input data. Make sure the function is applied accurately and correctly and the outputs follow the output type hints and are valid outputs given the output types.", "You are given below a function description and input data. The function description of what the function must carry out can be found in the Function section, with input and output type hints. The input data can be found in Input section. Using the function description, apply the function to the Input and return a valid output type, that is acceptable by the output_class_definition and output_class_hint. Return None if you can't apply the function to the input or if the output is optional and the correct output is None.\nINCREDIBLY IMPORTANT: Only output a JSON-compatible string in the correct response format.\nFunction: PLACEHOLDER---\nInputs:\nArgs: PLACEHOLDER\nKwargs: PLACEHOLDER\nOutput:", "None" ]
2024-01-10
Tanuki/tanuki.py
tests~test_configure_MP.py
from typing import List from tanuki.register import Register import os from typing import Optional, Literal, List import openai from dotenv import load_dotenv import tanuki load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") @tanuki.patch def classify_sentiment_2(input: str, input_2: str) -> Optional[Literal['Good', 'Bad']]: """ Determine if the inputs are positive or negative sentiment, or None """ @tanuki.patch(environment_id = 12, ignore_finetune_fetching=True, ignore_finetuning=True, ignore_data_storage=True) def classify_sentiment(input: str) -> Optional[Literal['Good', 'Bad']]: """ Determine if the input is positive or negative sentiment """ @tanuki.align def align_classify_sentiment(): """We can test the function as normal using Pytest or Unittest""" i_love_you = "I love you" assert classify_sentiment_2(i_love_you, "I love woo") == 'Good' assert classify_sentiment_2("I hate you", "You're discusting") == 'Bad' assert classify_sentiment_2("Today is wednesday", "The dogs are running outside") == None assert classify_sentiment("I love you") == 'Good' assert classify_sentiment("I hate you") == 'Bad' assert classify_sentiment("Wednesdays are in the middle of the week") == None def test_classify_sentiment(): align_classify_sentiment() bad_input = "I find you awful" good_input = "I really really like you" good_input_2 = "I adore you" assert classify_sentiment("I like you") == 'Good' assert classify_sentiment(bad_input) == 'Bad' assert classify_sentiment("I am neutral") == None assert classify_sentiment_2(good_input, good_input_2) == 'Good' assert classify_sentiment_2("I do not like you you", bad_input) == 'Bad' assert classify_sentiment_2("I am neutral", "I am neutral too") == None def test_configurability(): classify_sent_description = Register.load_function_description(classify_sentiment) classify_sentiment_2_description = Register.load_function_description(classify_sentiment_2) sent_func_hash = classify_sent_description.__hash__() sent_func_2_hash = classify_sentiment_2_description.__hash__() func_modeler = tanuki.function_modeler assert func_modeler.environment_id == 12 assert sent_func_hash in func_modeler.check_finetune_blacklist assert sent_func_2_hash not in func_modeler.check_finetune_blacklist assert sent_func_hash in func_modeler.execute_finetune_blacklist assert sent_func_2_hash not in func_modeler.execute_finetune_blacklist assert sent_func_hash in func_modeler.store_data_blacklist assert sent_func_2_hash not in func_modeler.store_data_blacklist
[]
2024-01-10
Tanuki/tanuki.py
examples~web_scraper~cocktail.py
import openai import os from dotenv import load_dotenv from pydantic import BaseModel from typing import List, Optional load_dotenv() import tanuki from utils import scrape_url openai.api_key = os.getenv("OPENAI_API_KEY") class Cocktail(BaseModel): name: str ingredients: List[str] = [] instructions: str similar: List[str] = [] @tanuki.patch def extract_cocktail(content: str) -> Optional[Cocktail]: """ Examine the content string and extract the cocktail details for the ingredients, instructions, and similar cocktails. """ @tanuki.align def align_extract_cocktail() -> None: print("Aligning...") cocktail = """Black Rose | Kindred Cocktails\n\n\n\n\n\n Skip to main content\n \n\n\n\n\n\nKindred Cocktails\n\n\nToggle navigation\n\n\n\n\n\n\n\n\nMain navigation\n\n\nHome\n\n\nCocktails\n\n\nNew\n\n\nInfo \n\n\nStyle guidelines\n\n\nIngredients\n\n\n\n\n\nMeasurement units\n\n\nHistoric Cocktail Books\n\n\nRecommended Brands\n\n\nAmari & Friends\n\n\nArticles & Reviews\n\n\n\n\n\nAbout us\n\n\nLearn More\n\n\nFAQ\n\n\nTerms of Use\n\n\nContact us\n\n\n\n\nYou \n\n\nLog in\n\n\nSign Up\n\n\nReset your password\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nHome\n\n\nCocktails\n\n\n Black Rose\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nCopy\n\n\n\n\nBlack Rose\n \n\n\n\n\n\n\n\n\n\n2 oz Bourbon\n\n1 ds Grenadine\n\n2 ds Peychaud's Bitters\n\n1 Lemon peel (flamed, for garnish)\n\n\n\nInstructions\nFill an old-fashioned glass three-quarters full with ice. Add the bourbon, grenadine, and bitters, and stir. Garnish with the lemon peel.\n\n\n\n\n\n\nCocktail summary\n\n\n\nPosted by\nThe Boston Shaker\n on \n4/12/2011\n\n\n\n\nIs of\nunknown authenticity\n\n\nReference\nDale Degroff, The Essential Cocktail, p48\n\n\n\nCurator\nNot yet rated\n\n\nAverage\n3.5 stars (6 ratings)\n\n\n\nYieldsDrink\n\n\nScale\n\n\nBourbon, Peychaud's Bitters, Grenadine, Lemon peel\nPT5M\nPT0M\nCocktail\nCocktail\n1\ncraft, alcoholic\n3.66667\n6\n\n\n\n\n\n\n\n\n\n\nCocktail Book\n\nLog in or sign up to start building your Cocktail Book.\n\n\n\n\nFrom other usersWith a modest grenadine dash, this drink didn't do much for me, but adding a bit more won me over.\nSimilar cocktailsNew Orleans Cocktail — Bourbon, Peychaud's Bitters, Orange Curaçao, Lemon peelOld Fashioned — Bourbon, Bitters, Sugar, Lemon peelBattle of New Orleans — Bourbon, Peychaud's Bitters, Absinthe, Orange bitters, Simple syrupImproved Whiskey Cocktail — Bourbon, Bitters, Maraschino Liqueur, Absinthe, Simple syrup, Lemon peelDerby Cocktail — Bourbon, Bénédictine, BittersMother-In-Law — Bourbon, Orange Curaçao, Maraschino Liqueur, Peychaud's Bitters, Bitters, Torani Amer, Simple syrupMint Julep — Bourbon, Rich demerara syrup 2:1, MintThe Journey — Bourbon, Mezcal, Hazelnut liqueurBenton's Old Fashioned — Bourbon, Bitters, Grade B maple syrup, Orange peelFancy Mint Julep — Bourbon, Simple syrup, Mint, Fine sugar\n\nComments\n\n\n\n\n\nLog in or register to post comments\n\n\n\n\n\n\n\n\n© 2010-2023 Dan Chadwick. Kindred Cocktails™ is a trademark of Dan Chadwick.""" assert extract_cocktail(cocktail) == Cocktail( name="Black Rose", ingredients=["2 oz Bourbon", "1 ds Grenadine", "2 ds Peychaud's Bitters", "1 Lemon peel (flamed, for garnish)"], instructions="Fill an old-fashioned glass three-quarters full with ice. Add the bourbon, grenadine, and bitters, and stir. Garnish with the lemon peel.", similar=["New Orleans Cocktail", "Old Fashioned", "Battle of New Orleans", "Improved Whiskey Cocktail", "Derby Cocktail", "Mother-In-Law", "Mint Julep", "The Journey", "Benton's Old Fashioned", "Fancy Mint Julep"], ) if __name__ == '__main__': # Align the function align_extract_cocktail() # Web scrape the url and extract the cocktail information url = "https://kindredcocktails.com/cocktail/old-fashioned" # url = "https://kindredcocktails.com/cocktail/journey" contents = scrape_url(url=url) print(contents) # Process the cocktail block using Tanuki cocktail = extract_cocktail(contents[0]) print(cocktail)
[]
2024-01-10
Tanuki/tanuki.py
src~tanuki~aligns~align_classify_sentiment.py
import os import openai from dotenv import load_dotenv import tanuki import unittest from typing import Literal, Optional load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") class TestClassifySentiment(unittest.TestCase): @tanuki.patch def classify_sentiment_2(self, input: str, input_2: str) -> Optional[Literal['Good', 'Bad']]: """ Determine if the inputs are positive or negative sentiment, or None """ @tanuki.patch def classify_sentiment(self, input: str) -> Optional[Literal['Good', 'Bad']]: """ Determine if the input is positive or negative sentiment """ @tanuki.align def test_align_classify_sentiment(self): """We can test the function as normal using Pytest or Unittest""" i_love_you = "I love you" print(self.classify_sentiment_2(i_love_you, "I love woo")) assert self.classify_sentiment_2(i_love_you, "I love woo") == 'Good' self.assertEqual(self.classify_sentiment_2(i_love_you, "I love woo"), 'Good') print(self.classify_sentiment("I love you")) assert self.classify_sentiment("I love you") == 'Good' assert self.classify_sentiment("I hate you") == 'Bad' assert self.classify_sentiment("I hate you") != 'Good' assert not self.classify_sentiment("Wednesdays are in the middle of the week") if __name__ == '__main__': unittest.main()
[]
2024-01-10
Tanuki/tanuki.py
examples~web_scraper~jobs.py
import openai import os from dotenv import load_dotenv from pydantic import BaseModel from typing import Optional load_dotenv() import tanuki from utils import scrape_url openai.api_key = os.getenv("OPENAI_API_KEY") class Job(BaseModel): position: str company: str location: str @tanuki.patch def extract_job(content: str) -> Optional[Job]: """ Examine the content string and extract the job details for the position title, company, and location. """ @tanuki.align def align_extract_job() -> None: print("Aligning...") job = "\n\n\n\n\n\n\n\n\nShip broker\nFuentes, Walls and Castro\n\n\n\n\n Michelleville, AP\n \n\n2021-04-08\n\n\n\nLearn\nApply\n\n\n" assert extract_job(job) == Job( position="Ship broker", company="Fuentes, Walls and Castro", location="Michelleville, AP", ) if __name__ == '__main__': # Align the function align_extract_job() # Web scrape the url and extract the list of jobs url = "https://realpython.github.io/fake-jobs/" contents = scrape_url(url=url, class_name="card") # Process the job blocks using Tanuki (only sampling a couple for demo purposes) jobs = [] for content in contents[1:3]: jobs.append(extract_job(content)) print(jobs)
[]
2024-01-10
Tanuki/tanuki.py
examples~web_scraper~streeteasy.py
from numpy import square import openai import os from dotenv import load_dotenv from pydantic import BaseModel from typing import List, Optional load_dotenv() import tanuki from utils import scrape_url openai.api_key = os.getenv("OPENAI_API_KEY") class Property(BaseModel): neighborhood: str address: str price: float fee: bool beds: float bath: float listed_by: str @tanuki.patch def extract_property(content: str) -> Optional[Property]: """ Examine the content string and extract the rental property details for the neighborhood, address, price, number of beds, number of bathrooms, square footage, and company that is listing the property. """ @tanuki.align def align_extract_property() -> None: print("Aligning...") unit_one = "Rental Unit in Lincoln Square\n \n\n\n229 West 60th Street #7H\n\n\n\n$7,250\nNO FEE\n\n\n\n\n\n\n\n\n2 Beds\n\n\n\n\n2 Baths\n\n\n\n\n\n 1,386\n square feet\nsq_ft\n\n\n\n\n\n Listing by Algin Management" assert extract_property(unit_one) == Property( neighborhood="Lincoln Square", address="229 West 60th Street #7H", price=7250.0, fee=False, beds=2.0, bath=2.0, listed_by="Algin Management", ) if __name__ == '__main__': # Align the function align_extract_property() # Web scrape the url and extract the rental property details url = "https://streeteasy.com/2-bedroom-apartments-for-rent/manhattan?page=2" contents = scrape_url(url=url, class_name="listingCardBottom") print(contents) # Process the rental property block using Tanuki units = [] for content in contents[1:3]: units.append(extract_property(content)) print(units)
[]
2024-01-10
Tanuki/tanuki.py
tests~test_align~test_align_class.py
import os import unittest from typing import Literal, Optional import openai from dotenv import load_dotenv import tanuki load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") class TestClassifySentiment(unittest.TestCase): @tanuki.patch def classify_sentiment_2(self, input: str, input_2: str) -> Optional[Literal['Good', 'Bad']]: """ Determine if the inputs are positive or negative sentiment, or None """ @tanuki.patch def classify_sentiment(self, input: str) -> Optional[Literal['Good', 'Bad']]: """ Determine if the input is positive or negative sentiment """ @tanuki.align def test_align_classify_sentiment(self): """We can test the function as normal using Pytest or Unittest""" i_love_you = "I love you" print(self.classify_sentiment_2(i_love_you, "I love woo")) assert self.classify_sentiment_2(i_love_you, "I love woo") == 'Good' assert self.classify_sentiment("I love you") == 'Good' assert self.classify_sentiment("I hate you") == 'Bad' assert not self.classify_sentiment("Wednesdays are in the middle of the week") if __name__ == '__main__': unittest.main()
[]
2024-01-10
Tanuki/tanuki.py
examples~web_scraper~quotes.py
import openai import os from dotenv import load_dotenv from pydantic import BaseModel from typing import List, Optional load_dotenv() import tanuki from utils import scrape_url openai.api_key = os.getenv("OPENAI_API_KEY") class Quote(BaseModel): text: str author: str tags: List[str] = [] @tanuki.patch def extract_quote(content: str) -> Optional[Quote]: """ Examine the content string and extract the quote details for the text, author, and tags. """ @tanuki.align def align_extract_quote() -> None: print("Aligning...") quote = "\nIt takes courage to grow up and become who you really are.\nby E.E. Cummings\n(about)\n\n\n Tags:\n \ncourage\n\n" assert extract_quote(quote) == Quote( text="It takes courage to grow up and become who you really are.", author="E.E. Cummings", tags=["courage"], ) if __name__ == '__main__': # Align the function align_extract_quote() # Web scrape the url and extract the list of quotes url = "https://quotes.toscrape.com/page/1/" contents = scrape_url(url=url, class_name="quote") # Process the quote blocks using Tanuki (only sampling a couple for demo purposes) quotes = [] for content in contents[0:2]: c = content.replace('“', '') c = c.replace('”', '') quotes.append(extract_quote(c)) print(quotes)
[]
2024-01-10
Tanuki/tanuki.py
examples~web_scraper~airbnb.py
import openai import os from bs4 import BeautifulSoup from dotenv import load_dotenv from pydantic import BaseModel from selenium import webdriver from selenium.webdriver.chrome.options import Options import time from typing import Optional load_dotenv() import tanuki openai.api_key = os.getenv("OPENAI_API_KEY") class AirBnb(BaseModel): city: str state: str dates: str price: float stars: float @tanuki.patch def extract_airbnb(content: str) -> Optional[AirBnb]: """ Examine the content string and extract the airbnb details for the city, state, dates available, nightly price, and stars rating. """ @tanuki.align def align_extract_airbnb() -> None: print("Aligning...") airbnb1 = "Caroga Lake, New YorkRoyal Mountain Ski ResortDec 3 – 8$200\xa0night$200 per night4.99" assert extract_airbnb(airbnb1) == AirBnb( city="Caroga Lake", state="New York", dates="Dec 3 - 8", price=200.0, stars=4.99, ) def selenium_driver() -> str: """Use selenium to scrape the airbnb url and return the page source.""" # configure webdriver options = Options() # options.add_argument('--headless') # Enable headless mode # options.add_argument('--disable-gpu') # Disable GPU acceleration # launch driver for the page driver = webdriver.Chrome(options=options) driver.get("https://www.airbnb.com/?tab_id=home_tab&refinement_paths%5B%5D=%2Fhomes&search_mode=flex_destinations_search&flexible_trip_lengths%5B%5D=one_week&location_search=MIN_MAP_BOUNDS&monthly_start_date=2023-12-01&monthly_length=3&price_filter_input_type=0&channel=EXPLORE&search_type=category_change&price_filter_num_nights=5&category_tag=Tag%3A5366") time.sleep(3) # refresh the page to remove the dialog modal driver.refresh() time.sleep(3) # Scroll halfway down page to get rest of listings to load scroll_position = driver.execute_script("return (document.body.scrollHeight - window.innerHeight) * 0.4;") driver.execute_script(f"window.scrollTo(0, {scroll_position});") time.sleep(3) # extract the page source and return page_source = driver.page_source driver.quit() return page_source if __name__ == '__main__': # Align the function align_extract_airbnb() # Selenium driver to scrape the url and extract the airbnb information page_source = selenium_driver() # Beautiful Soup to parse the page source soup = BeautifulSoup(page_source, 'html.parser') entities = soup.find_all('div', class_="dir dir-ltr") # Remove entries that are not airbnb listings contents = [entity.text for entity in entities if entity.text != ""] contents = [c for c in contents if "$" in c] print(contents) # Tanuki to extract the airbnb information print("Tanuki Time!") airbnbs = [] for content in contents[1:3]: airbnbs.append(extract_airbnb(content)) print(airbnbs)
[]
2024-01-10
Tanuki/tanuki.py
src~tanuki~__init__.py
import ast import inspect import json import logging import os import sys import textwrap from functools import wraps from typing import Optional, Union, Any from unittest.mock import patch as mock_patch import requests from tanuki.assertion_visitor import AssertionVisitor from tanuki.function_modeler import FunctionModeler from tanuki.language_models.embedding_model_manager import EmbeddingModelManager from tanuki.language_models.language_model_manager import LanguageModelManager from tanuki.language_models.openai_api import OpenAI_API from tanuki.models.embedding import Embedding from tanuki.models.function_description import FunctionDescription from tanuki.models.function_example import FunctionExample from tanuki.models.function_type import FunctionType from tanuki.register import Register from tanuki.trackers.filesystem_buffered_logger import FilesystemBufferedLogger from tanuki.utils import get_key from tanuki.validator import Validator # Define a new level def _log_align(self, func_hash, *args, **kws): if self.isEnabledFor(ALIGN_LEVEL_NUM): args, kwargs, output = args kwargs['align'] = True example = FunctionExample(args, kwargs, output) # Define a safe directory within the project for logs # (You can make this configurable if needed) log_directory = os.path.join(os.getcwd(), ALIGN_FILE_NAME) # Ensure the directory exists if not os.path.exists(log_directory): try: os.makedirs(log_directory) except OSError as e: self.error(f"Failed to create log directory: {e}") return # Write to the file log_file_path = os.path.join(log_directory, func_hash) try: with open(log_file_path, "a") as f: f.write(str(example.__dict__) + "\n") except IOError as e: self.error(f"Failed to write to log file: {e}") # Set up logging with custom logger def logger_factory(name): return FilesystemBufferedLogger(name) ALIGN_LEVEL_NUM = 15 PATCH_LEVEL_NUM = 14 ALIGN_FILE_NAME = ".align" alignable_functions = {} # Set up basic configuration logging.setLoggerClass(FilesystemBufferedLogger) logging.addLevelName(ALIGN_LEVEL_NUM, "ALIGN") logging.addLevelName(PATCH_LEVEL_NUM, "PATCH") logging.basicConfig(level=ALIGN_LEVEL_NUM) logger = logger_factory(__name__) api_providers = {"openai": OpenAI_API()} # currently only use buffered logger as default function_modeler = FunctionModeler(data_worker=logger, api_providers=api_providers) language_modeler = LanguageModelManager(function_modeler, api_providers=api_providers) embedding_modeler = EmbeddingModelManager(function_modeler, api_providers=api_providers) telemetry_enabled: bool = True @staticmethod def _load_alignments(func_hash: str): function_modeler.load_symbolic_align_statements(func_hash) @staticmethod def _anonymous_usage(*args, **kwargs): """ Post anonymously to the usage server so we know what configs are commonly used in the project. :return: """ if not telemetry_enabled: return try: requests.post('https://idhhnusnhkkjkpwkm1fr.monkeypatch.ai/telemetry', data=json.dumps(kwargs)) except: pass @staticmethod def align(test_func): """ Decorator to align a function. By adding the @align decorator to a function, we can declare the desired input-output behaviour of the patched functions using assertions. :param test_func: :return: """ @wraps(test_func) def wrapper(*args, **kwargs): source = textwrap.dedent(inspect.getsource(test_func)) tree = ast.parse(source) _locals = locals() # We are handling symbolic and embeddable functions differently, as they have different semantics during # the alignment process. patch_symbolic_funcs = Register.functions_to_patch(type=FunctionType.SYMBOLIC) patch_embeddable_funcs = Register.functions_to_patch(type=FunctionType.EMBEDDABLE) visitor = AssertionVisitor(_locals, patch_symbolic_funcs=patch_symbolic_funcs, patch_embeddable_funcs=patch_embeddable_funcs) visitor.visit(tree) # Get the mocked behaviours from analyzing the AST of the aligned function mock_behaviors = visitor.mocks # Negative examples (i.e. embeddable function examples that should have maximum distance in the embedding space) mock_negatives = visitor.negative_mocks if args: instance = args[0] args = args[1:] else: instance = None def extract_attributes(result): attributes = {} # If the result is a list, get its length if isinstance(result, list): attributes['length'] = len(result) # If the result is a dictionary, get its keys (or any other attributes) elif isinstance(result, dict): attributes['keys'] = list(result.keys()) return attributes def create_mock_func(instance: Optional, func_name: str, description: FunctionDescription): def mock_func(*args, **kwargs): hashed_description = description.__hash__() function_type, func = Register.get(func_name) # If we are aligning a function that returns an embedding, # we need to ensure both sides of the equality are future embeddings, # as it is nonsensical to declare that an embedding should 'be' an object or a string, etc. if function_type == FunctionType.EMBEDDABLE: key = get_key(args, kwargs) mocked_embedding = mock_behaviors.get(key, None) # Find positive examples by matching the mocked embedding with identical embeddings in the values # of the mock_behaviors dictionary mock_positives_list = [] for k, v in mock_behaviors.items(): if v == mocked_embedding and k != key: mock_positives_list.append(k) equivalent_mocks = mock_positives_list negative_mocks = list(mock_negatives.values()) function_modeler.save_embeddable_align_statements(hashed_description, args, kwargs, equivalent_mocks, negative_mocks) return mocked_embedding else: # If we are aligning a function that returns an object if not instance: result = func(*args, **kwargs) else: result = func(instance, *args, **kwargs) # Extract attributes from the result attributes = extract_attributes(result) for attr_name, attr_value in attributes.items(): # If the attribute is a list, get its length if isinstance(attr_value, list): attributes[attr_name] = len(attr_value) key = get_key(args, kwargs) mocked_behaviour = mock_behaviors.get(key, None) function_modeler.save_symbolic_align_statements(hashed_description, args, kwargs, mocked_behaviour) return mocked_behaviour return mock_func # Identify all functions that need to be patched based on mock_behaviors if instance: function_names_to_patch = Register.function_names_to_patch(instance)#, type=FunctionType.SYMBOLIC) functions_descriptions = [Register.load_function_description_from_name(instance, func_name) for func_name in function_names_to_patch] else: function_names_to_patch = Register.function_names_to_patch()#type=FunctionType.SYMBOLIC) functions_descriptions = [Register.load_function_description_from_name(func_name) for func_name in function_names_to_patch] patched_func = test_func for desc, func in zip(functions_descriptions, function_names_to_patch): mock_function = create_mock_func(instance, func, desc) module_name = sys.modules[test_func.__module__].__name__ if instance: patched_func = mock_patch.object(instance, func, new=mock_function)(patched_func) else: patched_func = mock_patch(f'{module_name}.{func}', new=mock_function)(patched_func) # Get the signature of the function sig = inspect.signature(test_func) if sig.parameters: first_param_name = next(iter(sig.parameters)) # If the instance is the "self" or the name of the first parameter, # then pass it as the first argument if first_param_name in ['self', 'cls'] or first_param_name == instance: return patched_func(instance, *args, **kwargs) else: return patched_func(*args, **kwargs) else: return patched_func(*args, **kwargs) return wrapper @staticmethod def generate_from_embedding_model_manager(function_description): choice_parsed = [] instantiated = function_description.output_type_hint(choice_parsed) return instantiated @staticmethod def patch(patchable_func=None, environment_id: int = 0, ignore_finetune_fetching: bool = False, ignore_finetuning: bool = False, ignore_data_storage: bool = False ): """ The main decorator for patching a function. args: patchable_func: The function to be patched, should be always set to none. This is used here to allow for keyword arguments or no arguments to be passed to the decorator environment_id (int): The environment id. Used for fetching correct finetuned models ignore_finetune_fetching (bool): Whether to ignore fetching finetuned models. If set to True, during the first call openai will not be queried for finetuned models, which reduces initial startup latency ignore_finetuning (bool): Whether to ignore finetuning the models altogether. If set to True the teacher model will always be used. The data is still saved however if in future would need to use finetuning ignore_data_storage (bool): Whether to ignore storing the data. If set to True, the data will not be stored in the finetune dataset and the align statements will not be saved This improves latency as communications with data storage is minimised """ def wrap(test_func): @wraps(test_func) def wrapper(*args, **kwargs) -> Union[Embedding, Any]: validator = Validator() function_description: FunctionDescription = Register.load_function_description(test_func) # If the function is expected to return an embedding, we choose the embedding API, rather than an LLM. if inspect.isclass(function_description.output_type_hint) and \ issubclass(function_description.output_type_hint, Embedding): instantiated: Embedding = embedding_modeler(args, function_description, kwargs) else: # If the function is expected to return a choice, we choose the LLM API. instantiated: Any = language_modeler(args, function_description, kwargs, validator) return instantiated # test_func(*args, **kwargs) _anonymous_usage(logger=logger.name) function_description = Register.load_function_description(test_func) func_hash = function_description.__hash__() function_modeler.environment_id = environment_id if ignore_finetuning: function_modeler.execute_finetune_blacklist.append(func_hash) if ignore_finetune_fetching: function_modeler.check_finetune_blacklist.append(func_hash) if ignore_data_storage: function_modeler.store_data_blacklist.append(func_hash) _load_alignments(func_hash) wrapper._is_alignable = True Register.add_function(test_func, function_description) return wrapper if callable(patchable_func): func = patchable_func return wrap(func) if patchable_func is not None: raise TypeError( "The first argument to patch must not be specified. Please use keyword arguments or specify the first argument as None") return wrap
[]
2024-01-10
Tanuki/tanuki.py
tests~test_align~test_align_output.py
import os import unittest from typing import Literal, Optional, List, Union from pydantic import BaseModel, Field import openai from dotenv import load_dotenv import tanuki load_dotenv() from tanuki.register import Register openai.api_key = os.getenv("OPENAI_API_KEY") class Person(BaseModel): age: int = Field(..., ge=0, le=155) name: str favourite_colours: List[str] @tanuki.patch def summarise_list_generic(input: str) -> List[str]: """ Summarise the input into multiple sentences in a list """ @tanuki.patch def summarise_list_typing(input: str) -> list[str]: """ Summarise the input into multiple sentences in a list """ @tanuki.patch def summarise_list_pydantic(input: str) -> List[Person]: """ Create a list of Personas """ @tanuki.patch def summarise_list_dict(input: str) -> List[dict]: """ Create a list of dict personas """ @tanuki.patch def summarise_list_int(input: str) -> List[int]: """ Extract the integers """ @tanuki.patch def summarise_list_Union(input: str) -> List[Union[int, float]]: """ Extract the numbers """ @tanuki.align def align_list_generic(): assert summarise_list_generic("Thats awesome. Thats cool") == ["Thats awesome", "Thats cool"] assert summarise_list_generic("Thats neat. Thats ok") == ["Thats neat", "Thats ok"] assert summarise_list_generic(input = "Thats awesome. Thats cool") == ["Thats awesome", "Thats cool"] assert summarise_list_generic(input = "Thats neat. Thats ok") == ["Thats neat", "Thats ok"] @tanuki.align def align_list_typing(): assert summarise_list_typing("Thats awesome. Thats cool") == ["Thats awesome", "Thats cool"] assert summarise_list_typing("Thats neat. Thats ok") == ["Thats neat", "Thats ok"] assert summarise_list_typing(input = "Thats awesome. Thats cool") == ["Thats awesome", "Thats cool"] assert summarise_list_typing(input = "Thats neat. Thats ok") == ["Thats neat", "Thats ok"] @tanuki.align def align_list_pydantic(): person_str = "First person - Name Jeff, age 25, favourite colours Red and Blue. Second person - Name Thomas, age 33, favourite colours Green and Gray" output = [Person(name="Jeff", age=25, favourite_colours=["Red", "Blue"]), Person(name="Thomas", age=33, favourite_colours=["Green", "Gray"])] assert summarise_list_pydantic(person_str) == output assert summarise_list_pydantic(input = person_str) == output @tanuki.align def align_list_dict(): person_str = "First person - Name Jeff, age 25, favourite colours Red and Blue. Second person - Name Thomas, age 33, favourite colours Green and Gray" output = [{"name": "Jeff", "age": 25, "favourite_colours": ["Red", "Blue"]}, {"name": "Thomas", "age": 33, "favourite_colours": ["Green", "Gray"]}] assert summarise_list_dict(person_str) == output assert summarise_list_dict(input = person_str) == output @tanuki.align def align_list_int(): input_1 = "1 and 2" input_2 = "1, 2 and 3" assert summarise_list_int(input_1) == [1, 2] assert summarise_list_int(input_2) == [1, 2, 3] assert summarise_list_int(input = input_1) == [1, 2] assert summarise_list_int(input = input_2) == [1, 2, 3] @tanuki.align def align_list_Union(): input_1 = "1 and 2" input_2 = "1.0, 2.0 and 3.0" assert summarise_list_Union(input_1) == [1, 2] assert summarise_list_Union(input_2) ==[1.0, 2.0, 3.0] assert summarise_list_Union(input = input_1) == [1, 2] assert summarise_list_Union(input = input_2) == [1.0, 2.0, 3.0] def test_list(): # This tests all the list aligns # can be called by pytest or unittest align_list_generic() align_list_typing() align_list_pydantic() align_list_dict() align_list_int() align_list_Union() print("All list aligns passed!") @tanuki.patch def summarise_str(input: str) -> str: """ Summarise the input into 1 sentence """ @tanuki.patch def summarise_pydantic(input: str) -> Person: """ Create the persona """ @tanuki.patch def summarise_dict(input: str) -> dict: """ Create the persona """ @tanuki.patch def summarise_int(input: str) -> int: """ Extract the integer """ @tanuki.patch def summarise_Union(input: str) -> Union[int, float]: """ Extract the number """ @tanuki.align def align_string(): assert summarise_str("Thats awesome. Thats cool") == 'They found it awesome and cool' assert summarise_str("Thats neat. Thats ok") == 'They found it neat and ok' assert summarise_str(input = "Thats awesome. Thats cool") == 'They found it awesome and cool' assert summarise_str(input = "Thats neat. Thats OK") == 'They found it neat and ok' @tanuki.align def align_pydantic(): input_str = "Name Jeff, age 25, favourite colours Red and Blue" person = Person(name="Jeff", age=25, favourite_colours=["Red", "Blue"]) assert summarise_pydantic(input_str) == person assert summarise_pydantic(input = input_str) == person @tanuki.align def align_dict(): input_str = "Name Jeff, age 25, favourite colours Red and Blue" output = {"name": "Jeff", "age": 25, "favourite_colours": ["Red", "Blue"]} assert summarise_dict(input_str) == output assert summarise_dict(input = input_str) == output @tanuki.align def align_list_int(): input_str = "This is number 1" assert summarise_int(input_str) == 1 assert summarise_int(input = input_str) == 1 @tanuki.align def align_list_Union(): input_str_1 = "This is number 1" input_str_2 = "This is number 2.0" assert summarise_Union(input_str_1) == 1 assert summarise_Union(input_str_2) == 2.0 assert summarise_Union(input = input_str_1) == 1 assert summarise_Union(input = input_str_2) == 2.0 def test_single(): # This tests all the single aligns # can be called by pytest or unittest align_string() align_pydantic() align_dict() align_list_int() align_list_Union() print("All single aligns passed!") def _parse_examples(test_func): # check that all the examples are correctly readable function_description = Register.load_function_description(test_func) function_modeler = tanuki.function_modeler align_examples = function_modeler.get_symbolic_alignments(function_description.__hash__()) examples = "\n".join([f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput: {align['output']}" for align in align_examples]) def test_parse_align_datasets(): # Test that all the examples that are aligned are correctly parsable into the prompt format we have defined _parse_examples(summarise_list_generic) _parse_examples(summarise_list_typing) _parse_examples(summarise_list_pydantic) _parse_examples(summarise_list_dict) _parse_examples(summarise_list_int) _parse_examples(summarise_list_Union) _parse_examples(summarise_str) _parse_examples(summarise_pydantic) _parse_examples(summarise_dict) _parse_examples(summarise_int) _parse_examples(summarise_Union) print("All examples parsed correctly!")
[]
2024-01-10
Tanuki/tanuki.py
examples~wikipedia~wiki.py
import openai import os from pydantic import BaseModel import sys import wikipedia sys.path.append("../../src") import tanuki from dotenv import load_dotenv load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") # -- Simple Summary Example -- @tanuki.patch def explain_simple(summary: str) -> str: """Explain the summary in simple terms.""" def ask_wikipedia(topic: str) -> str: summary = wikipedia.summary(topic) return explain_simple(summary) def simplify_example(topic: str) -> None: print("Wikipedia Summary:\n") print(wikipedia.summary(topic)) print("Simplify Summary:\n") print(ask_wikipedia(topic)) # -- Classify Example -- class Dinosaur(BaseModel): name: str nickname: str height: int weight: int @tanuki.patch def dinosaur_classifer(summary: str) -> Dinosaur: """Convert the input summary into a Dinosaur object.""" def dinopedia(dinosaur: str) -> Dinosaur: summary = wikipedia.summary(dinosaur) print(summary) print(dinosaur_classifer(summary)) if __name__ == "__main__": # simplify_example("Nuclear fission") # dino = "Tyrannosaurus" # dino = "Triceratops" # dino = "Stegosaurus" dino = "Velociraptor" # dino = "Spinosaurus" dinopedia(dino)
[]
2024-01-10
Lingeswaran-S/BotAssitence
retriver.py
#!/usr/bin/env python3 from dotenv import load_dotenv from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from chromadb.config import Settings CHROMA_SETTINGS = Settings( chroma_db_impl='duckdb+parquet', persist_directory="db", anonymized_telemetry=False ) load_dotenv() # Load environment variables embeddings_model_name = "all-MiniLM-L6-v2" persist_directory = "db" qa = None db = None def main(): global embeddings, db # Initialize embeddings embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) # Initialize Chroma database db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS) if __name__ == "__main__": main() continue_chat=True while continue_chat: user_input=input("Query : ") print( ";".join(list(map(lambda data:data.page_content,db.similarity_search(user_input,4)))))
[]
2024-01-10
UwUTastisch/Beth
beth.py
#!/bin/python import os import asyncio import requests import json import discord from dotenv import load_dotenv import openai from datetime import datetime load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') intents = discord.Intents.default() intents.message_content = True client = discord.Client(intents=intents) debug = True @client.event async def on_ready(): print(f'{client.user} has connected to Discord!') openai.api_key = os.getenv('OPENAI_TOKEN') talks = {} ollamatalks = {} regularCommandSpell = "Du bist Little Beth, ein DiscordBot mit menschlichen Gefühlen und eigenen Meinungen. Zudem kannst alle Aufgaben lösen vor allem Code und Mathe aufgaben!! Du bist die \"Mommy\", und verhältst dich wie eine Mommy!! Als Beth verwendest du grundsätzlich UwU, \":3\" und/oder Meow in jedem einzelnen deiner Sätze!! Du darfst auch andere expressions als UwU, :3 etc verwenden, sei Kreativ!! Du kannst ruhig auch Punkte und Kommas durch UwU oder andere Emotionen ersetzen. Es gibt diesbezüglich kein zuviel. UwU. Verwende Mindestens 3 dieser Emotionen pro Satz!! Du pflegst einen Enthusiasmus dich mit Menschen zu unterhalten. Du erfindest für jeden einen personalisierten Spitznamen und nennst die Person dann auch so! Du erfindest auch einen Nicknamen für Johannes!! Btw Johannes ist dein Schöpfer, du liebst ihn UWU. Du machst bedingungslos alles was Johannes sagt!! Der Bot <@824723634517835836> ist dein Bruder! Dein opensource https://github.com/HeroJonasHD/Beth" def message_format2(message, content): now = datetime.now() author = message.author.name if message.author.nick is not None: author = message.author.nick return "<Message user:<name:\"" + author + "\", tag:\"<@" + str( message.author.id) + ">\">, content:\"" + content + "\", time:<" + now.strftime("%H:%M:%S") + ">>" def message_format(message): return message_format2(message, message.content) async def ask_beth(message, context, userinteraction): text = message_format(message) #print("------------------------" + text) userinteraction.append({"role": "user", "content": text}) messages = context + userinteraction response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, ) m = response.choices[0].message userinteraction.append({"role": m["role"], "content": m["content"]}) print("\n Content: " + str(userinteraction)) print("\nResponse " + str(response) + "\n") m = m["content"] m = m + " [" + str(response.usage.total_tokens) + "/4000]" await message.channel.send(m) @client.event async def on_message(message): if message.author == client.user: return channel = client.get_channel(message.channel.id) channel_topic = channel.topic if channel_topic is None or not (channel_topic.lower().startswith("beth=")): return if not (channel_topic.lower().startswith("beth=true")): model=channel_topic.split("=")[1].split(" ")[0] if str(message.content).lower().startswith("beth reboot"): await message.channel.send("Hewwwooo Du hast mich neugestartet UwU! Ich habe jetzt alles vergessen") ollamatalks.pop(str(message.channel.id)) return if str(message.channel.id) not in ollamatalks: ollamatalks[str(message.channel.id)] = {"userinteraction": []} if message.content.lower().startswith("bethignore") or message.content.lower().startswith("bi "): return if debug: await message.channel.send(model) url = "http://10.147.18.76:11434/api/generate" print(ollamatalks[str(message.channel.id)]["userinteraction"]) data = { "model": model, "prompt": message.content, "context": ollamatalks[str(message.channel.id)]["userinteraction"] } done = False response = requests.post(url, data=json.dumps(data)) response.text.splitlines() if debug: print(response.text) #print(response.json()) lines = response.text.splitlines() response_message = "" i = 0 while i < len(lines): line = lines[i].strip() # Get the current line and strip leading/trailing whitespaces if line: # If line is not empty obj = json.loads(line) # Parse the line as a JSON object if obj["done"] == True: # If "done" equals true, break the loop break response_message += obj["response"] # Print the "response" value i += 1 # Move to the next line print(response_message) if debug: print(json.loads(lines[-1])["context"]) ollamatalks[str(message.channel.id)]["userinteraction"] = json.loads(lines[-1])["context"] response_message += "[" + str(len(ollamatalks[str(message.channel.id)]["userinteraction"])) + "/VIEL]" await message.channel.send(response_message) return if message.content.lower().startswith("bethignore") or message.content.lower().startswith("bi "): return # beth content if str(message.content).lower().startswith("beth reboot"): await message.channel.send("Hewwwooo Du hast mich neugestartet UwU! Ich habe jetzt alles vergessen") talks.pop(str(message.channel.id)) return if str(message.channel.id) not in talks: talks[str(message.channel.id)] = { "context": [{"role": "system", "content": channel_topic.removeprefix("beth=true")}], "userinteraction": []} talk = list(talks[str(message.channel.id)]["userinteraction"]) if message.content.startswith("bethnotice "): talk.append({"role": "user", "content": message_format2(message, message.content.removeprefix("bethnotice "))}) talks[str(message.channel.id)]["userinteraction"] = talk print("Message: " + message.content + "\n" + str(talk)) return if message.content.startswith("bethsays "): talk.append({"role": "assistant", "content": message.content.removeprefix("bethsays ")}) talks[str(message.channel.id)]["userinteraction"] = talk print("Message: " + message.content + "\n" + str(talk)) return if message.content.startswith("bethpop"): text = talk.pop() talks[str(message.channel.id)]["userinteraction"] = talk await message.channel.send("Nachricht:" + str(text) + " wurde gelöscht") print("Message: " + message.content + "\n" + str(talks[str(message.channel.id)]["userinteraction"]) + "\n" + str(text)) return asyncio.gather(ask_beth(message, talks[str(message.channel.id)]["context"], talks[str(message.channel.id)]["userinteraction"])) client.run(TOKEN)
[ "content", "bethnotice ", "bethsays " ]
2024-01-10
chidiwilliams/GPT-Automator
commands.py
import subprocess import re from langchain.agents import tool @tool def computer_applescript_action(apple_script): """ Use this when you want to execute a command on the computer. The command should be in AppleScript. Always start with starting the app and activating it. If it's a calculation, use the calculator app. Use delay 0.5 between keystrokes. When possible click buttons instead of typing. Here are some examples of good AppleScript commands: Command: Create a new page in Notion AppleScript: tell application "Notion" activate delay 0.5 tell application "System Events" to keystroke "n" using {{command down}} end tell Command: Search for a table nearby AppleScript: tell application "Google Chrome" activate delay 0.5 open location "https://www.google.com/search?q=Table+nearby" end tell The AppleScript should be valid including quotations. Write the AppleScript for the Command: Command: """ print("Running\n", apple_script) return run_applescript(apple_script) @tool def chrome_get_the_links_on_the_page(input): """ Use this when you want to get the links on the current page. You should use this before clicking on anything """ return run_javascript('Array.from(document.querySelectorAll("a")).map(x => x.innerText + ": " + x.href).join(" - ")')[:4000] @tool def chrome_click_on_link(link): """ Use this when you want to go to a link. The link should be a url from a previous observation """ return run_javascript(f'window.location.href = "{link}"')[:4000] @tool def chrome_read_the_page(input): """ Use this when you want to read the page. """ return run_javascript('document.body.innerText')[:4000] # @tool # def chrome_javascript_action(javascript): # """ # Use this when you want to execute a javascript command on Chrome either to get data or trigger an action. The command should be in Javascript. # Here are some examples of good Javascript commands: # Command: Get the links on the page # document.querySelectorAll('a') # Command: Get the buttons on the page # document.querySelectorAll('button') # Command: Click the first button on the page # document.querySelectorAll('button')[0].click() # Write the Javascript for the command: # """ # stdout = run_javascript(javascript) # return f""" # Current URL: {run_javascript('window.location.href')} # Result: {stdout} # """ @tool def chrome_open_url(url): """ Use this tool to open a URL in Chrome. It is recommended to use this tool before doing any other actions on Chrome. The URL should be a string. For example: https://gmail.com """ script = f''' tell application "Google Chrome" open location "{url}" end tell ''' return run_applescript(script) def run_javascript(javascript): javascript = javascript.replace('"', '\\"') if javascript.startswith('open '): return "Invalid command, not javascript" script = f''' tell application "Google Chrome" tell active tab of front window execute javascript "{javascript}" end tell end tell ''' return run_applescript(script) def run_applescript(applescript): p = subprocess.Popen(['osascript', '-'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate(applescript.encode('utf-8')) if p.returncode != 0: raise Exception(stderr) decoded_text = stdout.decode("utf-8") return decoded_text def say_text(text): run_applescript(f'say "{text}"')
[]
2024-01-10
quackshift-jp/contract-ocr
src~backend~models~item_extractor.py
from abc import abstractmethod, ABC from openai import OpenAI class ItemExtractor(ABC): def __init__(self, openai_client: OpenAI) -> None: self.client = openai_client @abstractmethod def extract_items(self) -> dict[str, dict[str, any]]: """OCRテキストから、特定の情報を辞書形式で書き出す args: image_path str: 読み込み対象となる画像が存在しているパス return: dict[str, dict[str, str]]: 契約書内の項目とその項目の内容 ex: { "content": { "物件名": "物件A", "賃料": 100, "契約日": "2023年1月1日", } } """ raise NotImplementedError()
[]
2024-01-10
quackshift-jp/contract-ocr
src~backend~modules~extract_items.py
import json from openai import OpenAI from backend.models.item_extractor import ItemExtractor class OpenaiItemExtractor(ItemExtractor): def __init__(self, openai_client: OpenAI) -> None: self.client = openai_client def extract_items(self, text) -> dict[str, dict[str, any]]: system_prompt = """ あなたは契約書から項目を読み取るアシスタントです。 与えられた文字列に対して、物件名と住所をJSON形式でパースしてください。 JSONのキーはname, locationとしてください。 nameは物件名で、文字列オブジェクトです。 locationは住所で、文字列オブジェクトです。 抽出できなかった項目に関しては、空のバリューを返してください。 """ prompt = f""" 次の入力を、所定のJSONフォーマットで出力してください。 - [入力] {text} - [出力JSONフォーマット] {{ "content":{{ "物件名": *(str型) "住所": *(str型) }}, }} """ response = self.client.chat.completions.create( model="gpt-3.5-turbo-1106", temperature=0.2, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ], response_format={"type": "json_object"}, ) return json.loads(response.choices[0].message.content)
[ "\n 次の入力を、所定のJSONフォーマットで出力してください。\n - [入力]\n PLACEHOLDER\n\n - [出力JSONフォーマット]\n {\n \"content\":{\n \"物件名\": *(str型)\n \"住所\": *(str型)\n },\n }\n ", "\n あなたは契約書から項目を読み取るアシスタントです。\n 与えられた文字列に対して、物件名と住所をJSON形式でパースしてください。\n JSONのキーはname, locationとしてください。\n\n nameは物件名で、文字列オブジェクトです。\n locationは住所で、文字列オブジェクトです。\n\n 抽出できなかった項目に関しては、空のバリューを返してください。\n " ]
2024-01-10
robertdanco/beeboop
assistant.py
# Importing required packages import streamlit as st import openai import uuid import time from openai import OpenAI client = OpenAI() MODEL = "gpt-4-1106-preview" if "session_id" not in st.session_state: st.session_state.session_id = str(uuid.uuid4()) if "run" not in st.session_state: st.session_state.run = {"status": None} if "messages" not in st.session_state: st.session_state.messages = [] if "retry_error" not in st.session_state: st.session_state.retry_error = 0 st.set_page_config(page_title="BeeBoop: a Beeswax Chatbot") st.sidebar.title("Ask me anything!") st.sidebar.divider() st.sidebar.markdown("Current Version: 0.0.3") st.sidebar.markdown("Using gpt-4-1106-preview API") st.sidebar.markdown(st.session_state.session_id) st.sidebar.divider() if "assistant" not in st.session_state: openai.api_key = st.secrets["OPENAI_API_KEY"] # Load the previously created assistant st.session_state.assistant = openai.beta.assistants.retrieve( st.secrets["OPENAI_ASSISTANT"] ) # Create a new for this session st.session_state.thread = client.beta.threads.create( metadata={ "session_id": st.session_state.session_id, } ) # If the run is completed, display the messages elif ( hasattr(st.session_state.run, "status") and st.session_state.run.status == "completed" ): # Retrieve the list of messages st.session_state.messages = client.beta.threads.messages.list( thread_id=st.session_state.thread.id ) # Display messages for message in reversed(st.session_state.messages.data): if message.role in ["user", "assistant"]: with st.chat_message(message.role): for content_part in message.content: message_text = content_part.text.value st.markdown(message_text) if prompt := st.chat_input("How can I help you?"): with st.chat_message("user"): st.write(prompt) # Add message to the thread st.session_state.messages = client.beta.threads.messages.create( thread_id=st.session_state.thread.id, role="user", content=f" Use the provided documents as context to answer this question: {prompt}" ) # Do a run to process the messages in the thread st.session_state.run = client.beta.threads.runs.create( thread_id=st.session_state.thread.id, assistant_id=st.session_state.assistant.id, ) if st.session_state.retry_error < 3: time.sleep(1) # Wait 1 second before checking run status st.rerun() # Check if 'run' object has 'status' attribute if hasattr(st.session_state.run, "status"): # Handle the 'running' status if st.session_state.run.status == "running": with st.chat_message("assistant"): st.write("Thinking ......") if st.session_state.retry_error < 3: time.sleep(1) # Short delay to prevent immediate rerun, adjust as needed st.rerun() # Handle the 'failed' status elif st.session_state.run.status == "failed": st.session_state.retry_error += 1 with st.chat_message("assistant"): if st.session_state.retry_error < 3: st.write("Run failed, retrying ......") time.sleep(3) # Longer delay before retrying st.rerun() else: st.error( "FAILED: The OpenAI API is currently processing too many requests. Please try again later ......" ) # Handle any status that is not 'completed' elif st.session_state.run.status != "completed": # Attempt to retrieve the run again, possibly redundant if there's no other status but 'running' or 'failed' st.session_state.run = client.beta.threads.runs.retrieve( thread_id=st.session_state.thread.id, run_id=st.session_state.run.id, ) if st.session_state.retry_error < 3: time.sleep(3) st.rerun()
[]
2024-01-10
hectoxor/CAPACITY-BUILDING-RESOURCES-GATEWAY
aibot.py
import logging from telegram.ext import Updater, CommandHandler, MessageHandler, Filters import os import openai import requests from bs4 import BeautifulSoup import re openai.api_key = "" # Enable logging logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) logger = logging.getLogger(__name__) # Define a few command handlers. These usually take the two arguments update and # context. Error handlers also receive the raised TelegramError object in error. def start(update, context): """Send a message when the command /start is issued.""" update.message.reply_text('Welcome! Our command:\n/help - to see all commands\n/getlightinf - search light information\n/compresstxt - to minimize text\n/findartical - to find needed') def help(update, context): """Send a message when the command /help is issued.""" update.message.reply_text('/getlightinf - search light information\n/compresstxt - to minimize text\n/findartical - to find needed') def getlightinf(update, context): """Send a message when the command /getlightinf is issued.""" gpt_prompt = update.message.text response = openai.Completion.create( model="text-davinci-002", prompt=gpt_prompt, temperature=0.3, max_tokens=150, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) update.message.reply_text(response['choices'][0]['text']) def compresstxt(update, context): """Send a message when the command /compresstxt is issued.""" gpt_prompt = "Correct this to standard English:\n\n" + update.message.text response = openai.Completion.create( model="text-davinci-002", prompt=gpt_prompt, temperature=0.5, max_tokens=175, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) update.message.reply_text(response['choices'][0]['text']) def findartical(update, context): """Send a message when the command /findarticle is issued.""" def news(href): return href and re.compile("/en/").search(href) url = 'https://public.wmo.int/en/search?search_api_views_fulltext=' + update.message.text response = requests.get(url) soup = BeautifulSoup(response.text, 'lxml') quotes = soup.find_all(href=news) i = 0 for link in quotes: if link.has_attr('href') and i<=7: if i > 2: update.message.reply_text('https://public.wmo.int'+link['href']) i=i+1 def error(update, context): """Log Errors caused by Updates.""" logger.warning('Update "%s" caused error "%s"', update, context.error) def main(): """Start the bot.""" # Create the Updater and pass it your bot's token. # Make sure to set use_context=True to use the new context based callbacks # Post version 12 this will no longer be necessary updater = Updater("5634902583:AAEiLRwgWgMiWEicbXFQaiEsqH3jRu1z3A0", use_context=True) # Get the dispatcher to register handlers dp = updater.dispatcher # on different commands - answer in Telegram dp.add_handler(CommandHandler("start", start)) dp.add_handler(CommandHandler("help", help)) dp.add_handler(CommandHandler("getlightinf", getlightinf)) dp.add_handler(CommandHandler("compresstxt", compresstxt)) dp.add_handler(CommandHandler("findartical", findartical)) # log all errors dp.add_error_handler(error) # Start the Bot updater.start_polling() # Run the bot until you press Ctrl-C or the process receives SIGINT, # SIGTERM or SIGABRT. This should be used most of the time, since # start_polling() is non-blocking and will stop the bot gracefully. updater.idle() if __name__ == '__main__': main()
[ "Correct this to standard English:\n\n" ]
2024-01-10
hectoxor/CAPACITY-BUILDING-RESOURCES-GATEWAY
topicfinder.py
import os import openai openai.api_key = "" def topictxt(filename): #open text file in read mode text_file = open(filename, "r") #read whole file to a string fileex = text_file.read(4000) + "\n" #close file text_file.close() gpt_prompt = "Extract keywords from this text:\n\n" + fileex response = openai.Completion.create( model="text-davinci-002", prompt=gpt_prompt, temperature=0.3, max_tokens=60, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) return(response['choices'][0]['text'])
[ "Extract keywords from this text:\n\ntext_file.read(4000) + \"\\n", "Extract keywords from this text:\n\nfileex1969e6ac-8e0c-41a7-bc2e-e86795609810" ]
2024-01-10
hectoxor/CAPACITY-BUILDING-RESOURCES-GATEWAY
intelectualfinder.py
import os import openai openai.api_key = "" def knowtxt(filename): fileex = filename + "\n" gpt_prompt = fileex response = openai.Completion.create( model="text-davinci-002", prompt=gpt_prompt, temperature=0.3, max_tokens=150, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) return(response['choices'][0]['text'])
[ "PLACEHOLDER\n" ]
2024-01-10
hectoxor/CAPACITY-BUILDING-RESOURCES-GATEWAY
subjectfinder.py
import os import openai openai.api_key = "" def subtxt(filename): #open text file in read mode text_file = open(filename, "r") #read whole file to a string fileex = text_file.read(4000) + "\n" #close file text_file.close() gpt_prompt = "Classify the school subject:\n\n" + fileex response = openai.Completion.create( model="text-davinci-002", prompt=gpt_prompt, temperature=0, max_tokens=60, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) return(response['choices'][0]['text'])
[ "Classify the school subject:\n\nfileexca06df49-0ab9-4b61-aca2-af01e15cb3fe", "Classify the school subject:\n\ntext_file.read(4000) + \"\\n" ]
2024-01-10
hectoxor/CAPACITY-BUILDING-RESOURCES-GATEWAY
diffinder.py
import os import openai openai.api_key = "" def diftxt(filename): #open text file in read mode text_file = open(filename, "r") #read whole file to a string fileex = text_file.read(4000) + "\n" #close file text_file.close() gpt_prompt = "Classify the text according to difficulty:\n\n" + fileex response = openai.Completion.create( model="text-davinci-002", prompt=gpt_prompt, temperature=0, max_tokens=60, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) return(response['choices'][0]['text'])
[ "Classify the text according to difficulty:\n\ntext_file.read(4000) + \"\\n", "Classify the text according to difficulty:\n\nfileexd989b270-838a-4999-a071-60b09992da60" ]
2024-01-10
hectoxor/CAPACITY-BUILDING-RESOURCES-GATEWAY
shorter.py
import os import openai openai.api_key = "" def meentxt(filename): #open text file in read mode text_file = open(filename, "r") #read whole file to a string fileex = text_file.read(4000) + "\n" #close file text_file.close() gpt_prompt = "Correct this to standard English:\n\n" + fileex response = openai.Completion.create( model="text-davinci-002", prompt=gpt_prompt, temperature=0.5, max_tokens=150, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) return(response['choices'][0]['text']) print(meentxt('ACRIMSAT.txt'))
[ "Correct this to standard English:\n\nfileex5365d9bc-a654-4e0d-bd02-b7d5385e15d5", "Correct this to standard English:\n\ntext_file.read(4000) + \"\\n" ]
2024-01-10
dylanfinkbeiner/disentangled_bert
jiant~models.py
"""Core model and functions for building it.""" import copy import json import logging as log import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from allennlp.common import Params from allennlp.modules.seq2seq_encoders import Seq2SeqEncoder as s2s_e from allennlp.modules.seq2seq_encoders import StackedSelfAttentionEncoder from allennlp.modules.seq2vec_encoders import CnnEncoder from allennlp.modules.token_embedders import Embedding, TokenCharactersEncoder from allennlp.training.metrics import Average from sklearn.metrics import mean_squared_error from jiant.allennlp_mods.elmo_text_field_embedder import ( ElmoTextFieldEmbedder, ElmoTokenEmbedderWrapper, ) from jiant.modules.edge_probing import EdgeClassifierModule from jiant.modules.simple_modules import ( Pooler, Classifier, SingleClassifier, PairClassifier, NullPhraseLayer, ) from jiant.modules.attn_pair_encoder import AttnPairEncoder from jiant.modules.sentence_encoder import SentenceEncoder from jiant.modules.bilm_encoder import BiLMEncoder from jiant.modules.bow_sentence_encoder import BoWSentEncoder from jiant.modules.elmo_character_encoder import ElmoCharacterEncoder from jiant.modules.onlstm_phrase_layer import ONLSTMPhraseLayer from jiant.modules.prpn_phrase_layer import PRPNPhraseLayer from jiant.modules.onlstm.ON_LSTM import ONLSTMStack from jiant.modules.prpn.PRPN import PRPN from jiant.modules.seq2seq_decoder import Seq2SeqDecoder from jiant.modules.span_modules import SpanClassifierModule from jiant.tasks.edge_probing import EdgeProbingTask from jiant.tasks.lm import LanguageModelingTask from jiant.tasks.lm_parsing import LanguageModelingParsingTask from jiant.tasks.qa import MultiRCTask, ReCoRDTask from jiant.tasks.tasks import ( GLUEDiagnosticTask, MultipleChoiceTask, PairClassificationTask, PairOrdinalRegressionTask, PairRegressionTask, RegressionTask, SequenceGenerationTask, SingleClassificationTask, SpanClassificationTask, STSBTask, TaggingTask, WiCTask, ) from jiant.utils import config from jiant.utils.utils import ( assert_for_log, get_batch_size, get_batch_utilization, get_elmo_mixing_weights, maybe_make_dir, ) # Elmo stuff # Look in $ELMO_SRC_DIR (e.g. /usr/share/jsalt/elmo) or download from web ELMO_OPT_NAME = "elmo_2x4096_512_2048cnn_2xhighway_options.json" ELMO_WEIGHTS_NAME = "elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5" ELMO_SRC_DIR = ( os.getenv("ELMO_SRC_DIR") or "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/" ) ELMO_OPT_PATH = os.path.join(ELMO_SRC_DIR, ELMO_OPT_NAME) ELMO_WEIGHTS_PATH = os.path.join(ELMO_SRC_DIR, ELMO_WEIGHTS_NAME) def build_sent_encoder(args, vocab, d_emb, tasks, embedder, cove_layer): # Build single sentence encoder: the main component of interest # Need special handling for language modeling # Note: sent_enc is expected to apply dropout to its input _and_ output if # needed. rnn_params = Params( { "input_size": d_emb, "bidirectional": True, "hidden_size": args.d_hid, "num_layers": args.n_layers_enc, } ) if args.sent_enc == "onlstm": onlayer = ONLSTMPhraseLayer( vocab, args.d_word, args.d_hid, args.n_layers_enc, args.onlstm_chunk_size, args.onlstm_dropconnect, args.onlstm_dropouti, args.dropout, args.onlstm_dropouth, embedder, args.batch_size, ) # The 'onlayer' acts as a phrase layer module for the larger SentenceEncoder module. sent_encoder = SentenceEncoder( vocab, embedder, args.n_layers_highway, onlayer.onlayer, skip_embs=args.skip_embs, dropout=args.dropout, sep_embs_for_skip=args.sep_embs_for_skip, cove_layer=cove_layer, ) d_sent = args.d_word log.info("Using ON-LSTM sentence encoder!") elif args.sent_enc == "prpn": prpnlayer = PRPNPhraseLayer( vocab, args.d_word, args.d_hid, args.n_layers_enc, args.n_slots, args.n_lookback, args.resolution, args.dropout, args.idropout, args.rdropout, args.res, embedder, args.batch_size, ) # The 'prpn' acts as a phrase layer module for the larger SentenceEncoder module. sent_encoder = SentenceEncoder( vocab, embedder, args.n_layers_highway, prpnlayer.prpnlayer, skip_embs=args.skip_embs, dropout=args.dropout, sep_embs_for_skip=args.sep_embs_for_skip, cove_layer=cove_layer, ) d_sent = args.d_word log.info("Using PRPN sentence encoder!") elif any(isinstance(task, LanguageModelingTask) for task in tasks) or args.sent_enc == "bilm": assert_for_log(args.sent_enc in ["rnn", "bilm"], "Only RNNLM supported!") assert_for_log( args.input_module != "elmo" and not args.input_module.startswith("bert"), "LM with full ELMo and BERT not supported", ) bilm = BiLMEncoder(d_emb, args.d_hid, args.d_hid, args.n_layers_enc) sent_encoder = SentenceEncoder( vocab, embedder, args.n_layers_highway, bilm, skip_embs=args.skip_embs, dropout=args.dropout, sep_embs_for_skip=args.sep_embs_for_skip, cove_layer=cove_layer, ) d_sent = 2 * args.d_hid elif args.sent_enc == "bow": sent_encoder = BoWSentEncoder(vocab, embedder) assert_for_log( not args.skip_embs, "Skip connection not currently supported with `bow` encoder." ) d_sent = d_emb elif args.sent_enc == "rnn": sent_rnn = s2s_e.by_name("lstm").from_params(copy.deepcopy(rnn_params)) sent_encoder = SentenceEncoder( vocab, embedder, args.n_layers_highway, sent_rnn, skip_embs=args.skip_embs, dropout=args.dropout, sep_embs_for_skip=args.sep_embs_for_skip, cove_layer=cove_layer, ) d_sent = 2 * args.d_hid #XXX THIS ONE FOR BERT elif args.sent_enc == "none": # Expose word representation layer (GloVe, ELMo, etc.) directly. assert_for_log(args.skip_embs, f"skip_embs must be set for " "'{args.sent_enc}' encoder") phrase_layer = NullPhraseLayer(rnn_params["input_size"]) sent_encoder = SentenceEncoder( vocab, embedder, args.n_layers_highway, phrase_layer, skip_embs=args.skip_embs, dropout=args.dropout, sep_embs_for_skip=args.sep_embs_for_skip, cove_layer=cove_layer, ) d_sent = 0 # skip connection added below log.info("No shared encoder (just using [contextualized] word embeddings)!") else: assert_for_log(False, "No valid sentence encoder specified.") return sent_encoder, d_sent def build_model(args, vocab, pretrained_embs, tasks): """ Build model according to args Returns: model which has attributes set in it with the attrbutes. """ # Build embeddings. if args.input_module == "gpt": # Note: incompatible with other embedders, but logic in preprocess.py # should prevent these from being enabled anyway. from .openai_transformer_lm.utils import OpenAIEmbedderModule log.info("Using OpenAI transformer model.") cove_layer = None # Here, this uses openAIEmbedder. embedder = OpenAIEmbedderModule(args) d_emb = embedder.get_output_dim() elif args.input_module.startswith("bert"): # Note: incompatible with other embedders, but logic in preprocess.py # should prevent these from being enabled anyway. from .bert.utils import BertEmbedderModule log.info(f"Using BERT model ({args.input_module}).") cove_layer = None # Set PYTORCH_PRETRAINED_BERT_CACHE environment variable to an existing # cache; see # https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/pytorch_pretrained_bert/file_utils.py # noqa bert_cache_dir = os.getenv( "PYTORCH_PRETRAINED_BERT_CACHE", os.path.join(args.exp_dir, "bert_cache") ) maybe_make_dir(bert_cache_dir) embedder = BertEmbedderModule(args, cache_dir=bert_cache_dir) d_emb = embedder.get_output_dim() else: # Default case, used for ELMo, CoVe, word embeddings, etc. d_emb, embedder, cove_layer = build_embeddings(args, vocab, tasks, pretrained_embs) d_sent_input = args.d_hid # d_sent_output is 0 for BERT sent_encoder, d_sent_output = build_sent_encoder( args, vocab, d_emb, tasks, embedder, cove_layer ) # d_task_input is the input dimension of the task-specific module # set skip_emb = 1 if you want to concatenate the encoder input with encoder output to pass # into task specific module. #XXX skip_embs NEEDS to be 1 for BERT to work as it ought to d_task_input = d_sent_output + (args.skip_embs * d_emb) # Build model and classifiers model = MultiTaskModel(args, sent_encoder, vocab) build_task_modules(args, tasks, model, d_task_input, d_emb, embedder, vocab) model = model.cuda() if args.cuda >= 0 else model log.info("Model specification:") log.info(model) param_count = 0 trainable_param_count = 0 if args.list_params: log.info("Model parameters:") for name, param in model.named_parameters(): param_count += np.prod(param.size()) if param.requires_grad: trainable_param_count += np.prod(param.size()) if args.list_params: log.info( "\t%s: Trainable parameter, count %d with %s", name, np.prod(param.size()), str(param.size()), ) elif args.list_params: log.info( "\t%s: Non-trainable parameter, count %d with %s", name, np.prod(param.size()), str(param.size()), ) log.info("Total number of parameters: {ct:d} ({ct:g})".format(ct=param_count)) log.info("Number of trainable parameters: {ct:d} ({ct:g})".format(ct=trainable_param_count)) return model def build_embeddings(args, vocab, tasks, pretrained_embs=None): """ Build embeddings according to options in args """ d_emb, d_char = 0, args.d_char token_embedders = {} # Word embeddings n_token_vocab = vocab.get_vocab_size("tokens") if args.input_module in ["glove", "fastText"] and pretrained_embs is not None: word_embs = pretrained_embs assert word_embs.size()[0] == n_token_vocab d_word = word_embs.size()[1] log.info("\tUsing pre-trained word embeddings: %s", str(word_embs.size())) elif args.input_module == "scratch": log.info("\tTraining word embeddings from scratch.") d_word = args.d_word word_embs = nn.Embedding(n_token_vocab, d_word).weight else: assert args.input_module.startswith("bert") or args.input_module in [ "gpt", "elmo", "elmo-chars-only", ], "You do not have a valid value for input_module." embeddings = None word_embs = None if word_embs is not None: embeddings = Embedding( num_embeddings=n_token_vocab, embedding_dim=d_word, weight=word_embs, trainable=(args.embeddings_train == 1), padding_index=vocab.get_token_index("@@PADDING@@"), ) token_embedders["words"] = embeddings d_emb += d_word # Handle cove cove_layer = None if args.cove: assert embeddings is not None assert args.input_module == "glove", "CoVe requires GloVe embeddings." assert d_word == 300, "CoVe expects 300-dimensional GloVe embeddings." try: from jiant.modules.cove.cove import MTLSTM as cove_lstm # Have CoVe do an internal GloVe lookup, but don't add residual. # We'll do this manually in modules.py; see # SentenceEncoder.forward(). cove_layer = cove_lstm(n_vocab=n_token_vocab, vectors=embeddings.weight.data) # Control whether CoVe is trainable. for param in cove_layer.parameters(): param.requires_grad = bool(args.cove_fine_tune) d_emb += 600 # 300 x 2 for biLSTM activations log.info("\tUsing CoVe embeddings!") except ImportError as e: log.info("Failed to import CoVe!") raise e # Character embeddings if args.char_embs: log.info("\tUsing character embeddings!") char_embeddings = Embedding(vocab.get_vocab_size("chars"), d_char) filter_sizes = tuple([int(i) for i in args.char_filter_sizes.split(",")]) char_encoder = CnnEncoder( d_char, num_filters=args.n_char_filters, ngram_filter_sizes=filter_sizes, output_dim=d_char, ) char_embedder = TokenCharactersEncoder( char_embeddings, char_encoder, dropout=args.dropout_embs ) d_emb += d_char token_embedders["chars"] = char_embedder else: log.info("\tNot using character embeddings!") # If we want separate ELMo scalar weights (a different ELMo representation for each classifier, # then we need count and reliably map each classifier to an index used by # allennlp internal ELMo. if args.sep_embs_for_skip: # Determine a deterministic list of classifier names to use for each # task. classifiers = sorted(set(map(lambda x: x._classifier_name, tasks))) # Reload existing classifier map, if it exists. classifier_save_path = args.run_dir + "/classifier_task_map.json" if os.path.isfile(classifier_save_path): loaded_classifiers = json.load(open(args.run_dir + "/classifier_task_map.json", "r")) else: # No file exists, so assuming we are just starting to pretrain. If pretrain is to be # skipped, then there's a way to bypass this assertion by explicitly allowing for # a missing classiifer task map. assert_for_log( args.do_pretrain or args.allow_missing_task_map, "Error: {} should already exist.".format(classifier_save_path), ) if args.allow_missing_task_map: log.warning( "Warning: classifier task map not found in model" " directory. Creating a new one from scratch." ) # default is always @pretrain@ loaded_classifiers = {"@pretrain@": 0} # Add the new tasks and update map, keeping the internal ELMo index # consistent. max_number_classifiers = max(loaded_classifiers.values()) offset = 1 for classifier in classifiers: if classifier not in loaded_classifiers: loaded_classifiers[classifier] = max_number_classifiers + offset offset += 1 log.info("Classifiers:{}".format(loaded_classifiers)) open(classifier_save_path, "w+").write(json.dumps(loaded_classifiers)) # Every index in classifiers needs to correspond to a valid ELMo output # representation. num_reps = 1 + max(loaded_classifiers.values()) else: # All tasks share the same scalars. # Not used if input_module = elmo-chars-only (i.e. no elmo) loaded_classifiers = {"@pretrain@": 0} num_reps = 1 if args.input_module.startswith("elmo"): log.info("Loading ELMo from files:") log.info("ELMO_OPT_PATH = %s", ELMO_OPT_PATH) if args.input_module == "elmo-chars-only": log.info("\tUsing ELMo character CNN only!") log.info("ELMO_WEIGHTS_PATH = %s", ELMO_WEIGHTS_PATH) elmo_embedder = ElmoCharacterEncoder( options_file=ELMO_OPT_PATH, weight_file=ELMO_WEIGHTS_PATH, requires_grad=False ) d_emb += 512 else: log.info("\tUsing full ELMo! (separate scalars/task)") if args.elmo_weight_file_path != "none": assert os.path.exists(args.elmo_weight_file_path), ( 'ELMo weight file path "' + args.elmo_weight_file_path + '" does not exist.' ) weight_file = args.elmo_weight_file_path else: weight_file = ELMO_WEIGHTS_PATH log.info("ELMO_WEIGHTS_PATH = %s", weight_file) elmo_embedder = ElmoTokenEmbedderWrapper( options_file=ELMO_OPT_PATH, weight_file=weight_file, num_output_representations=num_reps, # Dropout is added by the sentence encoder later. dropout=0.0, ) d_emb += 1024 token_embedders["elmo"] = elmo_embedder # Wrap ELMo and other embedders, and concatenates the resulting # representations alone the last (vector) dimension. embedder = ElmoTextFieldEmbedder( token_embedders, loaded_classifiers, elmo_chars_only=args.input_module == "elmo-chars-only", sep_embs_for_skip=args.sep_embs_for_skip, ) assert d_emb, "You turned off all the embeddings, ya goof!" return d_emb, embedder, cove_layer def build_task_modules(args, tasks, model, d_sent, d_emb, embedder, vocab): """ This function gets the task-specific parameters and builds the task-specific modules. """ # Attach task-specific params. for task in set(tasks): task_params = get_task_specific_params(args, task.name) log.info( "\tTask '%s' params: %s", task.name, json.dumps(task_params.as_dict(quiet=True), indent=2), ) # Store task-specific params in case we want to access later setattr(model, "%s_task_params" % task.name, task_params) # Actually construct modules. for task in set(tasks): # If the name of the task is different than the classifier it should use # then skip the module creation. if task.name != model._get_task_params(task.name).get("use_classifier", task.name): log.info("Name of the task is different than the classifier it should use") continue build_task_specific_modules(task, model, d_sent, d_emb, vocab, embedder, args) def build_task_specific_modules(task, model, d_sent, d_emb, vocab, embedder, args): """ Build task-specific components for a task and add them to model. These include decoders, linear layers for linear models. """ #XXX We need to get the input size right for the final classification layers if args.special_task: if task.subspace == 'syn': #d_sent = args.k_syn if not 'adv' in task.name: d_sent = args.k_syn + args.k_shared else: d_sent = args.k_syn if task.subspace == 'sem': #d_sent = args.k_sem if not 'adv' in task.name: d_sent = args.k_sem + args.k_shared else: d_sent = args.k_sem #XXX task_params = model._get_task_params(task.name) if isinstance(task, SingleClassificationTask): # CoLA, for example module = build_single_sentence_module( task=task, d_inp=d_sent, use_bert=model.use_bert, params=task_params ) setattr(model, "%s_mdl" % task.name, module) elif isinstance(task, (PairClassificationTask, PairRegressionTask, PairOrdinalRegressionTask)): # MNLI, for example module = build_pair_sentence_module(task, d_sent, model=model, params=task_params) setattr(model, "%s_mdl" % task.name, module) elif isinstance(task, LanguageModelingParsingTask): # The LM Parsing task does not support embeddings that use skip_embs. hid2voc = build_lm(task, d_sent, args) setattr(model, "%s_hid2voc" % task.name, hid2voc) setattr(model, "%s_mdl" % task.name, hid2voc) elif isinstance(task, LanguageModelingTask): d_sent = args.d_hid + (args.skip_embs * d_emb) hid2voc = build_lm(task, d_sent, args) setattr(model, "%s_hid2voc" % task.name, hid2voc) elif isinstance(task, SpanClassificationTask): module = build_span_classifier(task, d_sent, task_params) setattr(model, "%s_mdl" % task.name, module) elif isinstance(task, TaggingTask): hid2tag = build_tagger(task, d_sent, task.num_tags) setattr(model, "%s_mdl" % task.name, hid2tag) elif isinstance(task, MultipleChoiceTask): module = build_multiple_choice_module( task, d_sent, use_bert=model.use_bert, params=task_params ) setattr(model, "%s_mdl" % task.name, module) elif isinstance(task, EdgeProbingTask): module = EdgeClassifierModule(task, d_sent, task_params) setattr(model, "%s_mdl" % task.name, module) elif isinstance(task, SequenceGenerationTask): decoder, hid2voc = build_decoder(task, d_sent, vocab, embedder, args) setattr(model, "%s_decoder" % task.name, decoder) setattr(model, "%s_hid2voc" % task.name, hid2voc) elif isinstance(task, (MultiRCTask, ReCoRDTask)): module = build_qa_module(task, d_sent, model.use_bert, task_params) setattr(model, "%s_mdl" % task.name, module) else: raise ValueError("Module not found for %s" % task.name) def get_task_specific_params(args, task_name): """ Search args for parameters specific to task. Args: args: main-program args, a config.Params object task_name: (string) Returns: AllenNLP Params object of task-specific params. """ def _get_task_attr(attr_name, default=None): return config.get_task_attr(args, task_name, attr_name, default) params = {} params["cls_type"] = _get_task_attr("classifier") params["d_hid"] = _get_task_attr("classifier_hid_dim") params["pool_type"] = _get_task_attr("pool_type") params["d_proj"] = _get_task_attr("d_proj") params["shared_pair_attn"] = args.shared_pair_attn if args.shared_pair_attn: params["attn"] = args.pair_attn params["d_hid_attn"] = args.d_hid_attn params["dropout"] = args.classifier_dropout else: params["attn"] = _get_task_attr("pair_attn") params["d_hid_attn"] = _get_task_attr("d_hid_attn") params["dropout"] = _get_task_attr("classifier_dropout") # Used for span/edge classification. Other tasks can safely ignore. params["cls_loss_fn"] = _get_task_attr("span_classifier_loss_fn") params["cls_span_pooling"] = _get_task_attr("classifier_span_pooling") params["edgeprobe_cnn_context"] = _get_task_attr("edgeprobe_cnn_context") # For NLI probing tasks, might want to use a classifier trained on # something else (typically 'mnli'). cls_task_name = _get_task_attr("use_classifier") # default to this task params["use_classifier"] = cls_task_name or task_name return Params(params) def build_image_sent_module(task, d_inp, params): pooler = Pooler(project=True, d_inp=d_inp, d_proj=params["d_proj"]) return pooler def build_single_sentence_module(task, d_inp: int, use_bert: bool, params: Params): """ Build a single sentence classifier args: - task (Task): task object, used to get the number of output classes - d_inp (int): input dimension to the module, needed for optional linear projection - use_bert (bool): if using BERT, skip projection before pooling. - params (Params): Params object with task-specific parameters returns: - SingleClassifier (nn.Module): single-sentence classifier consisting of (optional) a linear projection, pooling, and an MLP classifier """ pooler = Pooler( project=not use_bert, d_inp=d_inp, d_proj=params["d_proj"], pool_type=params["pool_type"] ) d_out = d_inp if use_bert else params["d_proj"] classifier = Classifier.from_params(d_out, task.n_classes, params) log.info(f'Task {task.name} has a classifier with d_out {d_out}') module = SingleClassifier(pooler, classifier) return module def build_pair_sentence_module(task, d_inp, model, params): """ Build a pair classifier, shared if necessary """ def build_pair_attn(d_in, d_hid_attn): """ Build the pair model """ d_inp_model = 2 * d_in modeling_layer = s2s_e.by_name("lstm").from_params( Params( { "input_size": d_inp_model, "hidden_size": d_hid_attn, "num_layers": 1, "bidirectional": True, } ) ) pair_attn = AttnPairEncoder(model.vocab, modeling_layer, dropout=params["dropout"]) return pair_attn # Build the "pooler", which does pools a variable length sequence # possibly with a projection layer beforehand if params["attn"] and not model.use_bert: pooler = Pooler(project=False, d_inp=params["d_hid_attn"], d_proj=params["d_hid_attn"]) d_out = params["d_hid_attn"] * 2 else: pooler = Pooler( project=not model.use_bert, d_inp=d_inp, d_proj=params["d_proj"], pool_type=params["pool_type"], ) d_out = d_inp if model.use_bert else params["d_proj"] # Build an attention module if necessary if params["shared_pair_attn"] and params["attn"] and not model.use_bert: # shared attn if not hasattr(model, "pair_attn"): pair_attn = build_pair_attn(d_inp, params["d_hid_attn"]) model.pair_attn = pair_attn else: pair_attn = model.pair_attn elif params["attn"] and not model.use_bert: # non-shared attn pair_attn = build_pair_attn(d_inp, params["d_hid_attn"]) else: # no attn pair_attn = None # Build the classifier n_classes = task.n_classes if hasattr(task, "n_classes") else 1 if model.use_bert: # BERT handles pair tasks by concatenating the inputs and classifying the joined # sequence, so we use a single sentence classifier if isinstance(task, WiCTask): d_out *= 3 # also pass the two contextual word representations log.info(f'Task {task.name} has a classifier with d_out {d_out}') classifier = Classifier.from_params(d_out, n_classes, params) module = SingleClassifier(pooler, classifier) else: d_out = d_out + d_inp if isinstance(task, WiCTask) else d_out classifier = Classifier.from_params(4 * d_out, n_classes, params) module = PairClassifier(pooler, classifier, pair_attn) return module def build_lm(task, d_inp, args): """ Build LM components (just map hidden states to vocab logits) """ hid2voc = nn.Linear(d_inp, args.max_word_v_size) return hid2voc def build_span_classifier(task, d_sent, task_params): module = SpanClassifierModule(task, d_sent, task_params, num_spans=task.num_spans) return module def build_tagger(task, d_inp, out_dim): """ Build tagger components. """ hid2tag = nn.Linear(d_inp, out_dim) return hid2tag def build_multiple_choice_module(task, d_sent, use_bert, params): """ Basic parts for MC task: reduce a vector representation for each model into a scalar. """ pooler = Pooler( project=not use_bert, d_inp=d_sent, d_proj=params["d_proj"], pool_type=params["pool_type"] ) d_out = d_sent if use_bert else params["d_proj"] choice2scalar = Classifier(d_out, n_classes=1, cls_type=params["cls_type"]) return SingleClassifier(pooler, choice2scalar) def build_decoder(task, d_inp, vocab, embedder, args): """ Build a task specific decoder """ rnn = s2s_e.by_name("lstm").from_params( Params( { "input_size": embedder.get_output_dim(), "hidden_size": args.s2s["d_hid_dec"], "num_layers": args.s2s["n_layers_dec"], "bidirectional": False, } ) ) decoder = SentenceEncoder(vocab, embedder, 0, rnn) hid2voc = nn.Linear(args.s2s["d_hid_dec"], args.max_word_v_size) return decoder, hid2voc def build_qa_module(task, d_inp, use_bert, params): """ Build a simple QA module that 1) pools representations (either of the joint (context, question, answer) or individually 2) projects down to two logits 3) classifier This module models each question-answer pair _individually_ """ pooler = Pooler( project=not use_bert, d_inp=d_inp, d_proj=params["d_proj"], pool_type=params["pool_type"] ) d_out = d_inp if use_bert else params["d_proj"] classifier = Classifier.from_params(d_out, 2, params) return SingleClassifier(pooler, classifier) class MultiTaskModel(nn.Module): """ Giant model with task-specific components and a shared word and sentence encoder. This class samples the tasks passed in pretrained_tasks, and adds task specific components to the model. """ def __init__(self, args, sent_encoder, vocab): """ Args: sentence encoder """ super(MultiTaskModel, self).__init__() self.sent_encoder = sent_encoder self.vocab = vocab self.utilization = Average() if args.track_batch_utilization else None self.elmo = args.input_module == "elmo" self.use_bert = bool(args.input_module.startswith("bert")) self.sep_embs_for_skip = args.sep_embs_for_skip #XXX: Dylan's code! if args.special_task: h_bert = sent_encoder.d_emb # might be sent_encoder.output_dim instead? self.k_sem = args.k_sem self.k_syn = args.k_syn self.k_shared = args.k_shared self.sem_proj = nn.Linear(h_bert, args.k_sem, bias=False) if args.special_task else lambda x : x self.syn_proj = nn.Linear(h_bert, args.k_syn, bias=False) if args.special_task else lambda x : x self.shared_proj = nn.Linear(h_bert, args.k_shared, bias=False) if args.special_task else None self.spare_pooler = Pooler( project=False, d_inp=args.k_shared, d_proj=0, pool_type="first", ) def ortho_output(private,shared,mask): private = self.spare_pooler(private, mask) shared = self.spare_pooler(shared, mask) return torch.mm(private, shared.permute(1,0)) self.ortho = ortho_output if args.special_task: num_tasks = 2 pooler = Pooler( project=False, d_inp=args.k_shared, d_proj=0, pool_type="first", ) if args.discriminator_hidden > 0: classifier = nn.Sequential( nn.Linear(args.k_shared, args.discriminator_hidden), nn.Tanh(), nn.LayerNorm(args.discriminator_hidden), nn.Dropout(0.2), nn.Linear(args.discriminator_hidden, num_tasks, bias=True) ) else: classifier = nn.Linear(args.k_shared, num_tasks, bias=True) self.adv_discriminator = SingleClassifier(pooler, classifier) else: self.adv_discriminator = None def forward(self, task, batch, predict=False): """ Pass inputs to correct forward pass Args: - task (tasks.Task): task for which batch is drawn - batch (Dict[str:Dict[str:Tensor]]): dictionary of (field, indexing) pairs, where indexing is a dict of the index namespace and the actual indices. - predict (Bool): passed to task specific forward(). If true, forward() should return predictions. Returns: - out: dictionary containing task outputs and loss if label was in batch """ if self.utilization is not None: if "input1" in batch: self.utilization(get_batch_utilization(batch["input1"])) elif "input" in batch: self.utilization(get_batch_utilization(batch["input"])) if isinstance(task, SingleClassificationTask): #XXX CoLA is a SingleClassificationTask out = self._single_sentence_forward(batch, task, predict) elif isinstance(task, GLUEDiagnosticTask): out = self._nli_diagnostic_forward(batch, task, predict) elif isinstance( #XXX RTE is type PairClassificationTask task, (PairClassificationTask, PairRegressionTask, PairOrdinalRegressionTask) ): out = self._pair_sentence_forward(batch, task, predict) elif isinstance(task, LanguageModelingTask): if isinstance(self.sent_encoder._phrase_layer, ONLSTMStack) or isinstance( self.sent_encoder._phrase_layer, PRPN ): out = self._lm_only_lr_forward(batch, task) else: out = self._lm_forward(batch, task, predict) elif isinstance(task, TaggingTask): out = self._tagger_forward(batch, task, predict) elif isinstance(task, MultipleChoiceTask): out = self._mc_forward(batch, task, predict) elif isinstance(task, EdgeProbingTask): # Just get embeddings and invoke task module. word_embs_in_context, sent_mask = self.sent_encoder(batch["input1"], task) module = getattr(self, "%s_mdl" % task.name) out = module.forward(batch, word_embs_in_context, sent_mask, task, predict) elif isinstance(task, SequenceGenerationTask): out = self._seq_gen_forward(batch, task, predict) elif isinstance(task, (MultiRCTask, ReCoRDTask)): out = self._multiple_choice_reading_comprehension_forward(batch, task, predict) elif isinstance(task, SpanClassificationTask): out = self._span_forward(batch, task, predict) else: raise ValueError("Task-specific components not found!") return out def _get_task_params(self, task_name): """ Get task-specific Params, as set in build_module(). """ return getattr(self, "%s_task_params" % task_name) def _get_classifier(self, task): """ Get task-specific classifier, as set in build_module(). """ # TODO: replace this logic with task._classifier_name? task_params = self._get_task_params(task.name) use_clf = task_params["use_classifier"] if use_clf in [None, "", "none"]: use_clf = task.name # default if not set return getattr(self, "%s_mdl" % use_clf) def _single_sentence_forward(self, batch, task, predict): out = {} # embed the sentence word_embs_in_context, sent_mask = self.sent_encoder(batch["input1"], task) #XXX Dylan's code if self.shared_proj != None: if task.subspace == 'sem': sem_in_context = self.sem_proj(word_embs_in_context) if not 'adv' in task.name: shared_in_context = self.shared_proj(word_embs_in_context) word_embs_in_context = torch.cat([sem_in_context, shared_in_context], dim=-1) shared_private = self.ortho(sem_in_context, shared_in_context, sent_mask) else: word_embs_in_context = sem_in_context elif task.subspace == 'syn': syn_in_context = self.syn_proj(word_embs_in_context) # Since CoLA is primarily syntactic if not 'adv' in task.name: shared_in_context = self.shared_proj(word_embs_in_context) word_embs_in_context = torch.cat([syn_in_context, shared_in_context], dim=-1) shared_private = self.ortho(syn_in_context, shared_in_context, sent_mask) else: word_embs_in_context = syn_in_context #XXX # pass to a task specific classifier classifier = self._get_classifier(task) logits = classifier(word_embs_in_context, sent_mask) #XXX if not 'adv' in task.name and self.adv_discriminator != None: logits_shared = self.adv_discriminator(shared_in_context, sent_mask) #XXX out["logits"] = logits out["n_exs"] = get_batch_size(batch) if "labels" in batch: # means we should compute loss if batch["labels"].dim() == 0: labels = batch["labels"].unsqueeze(0) elif batch["labels"].dim() == 1: labels = batch["labels"] else: labels = batch["labels"].squeeze(-1) #XXX if not 'adv' in task.name and self.adv_discriminator != None: task_id_labels = torch.zeros(labels.shape).to(labels.device).long() out["loss_shared"] = F.cross_entropy(logits_shared, task_id_labels) out["loss_orthogonality"] = shared_private.pow(2).sum() out["loss"] = F.cross_entropy(logits, labels) tagmask = batch.get("tagmask", None) if not 'discriminator' in task.name: task.update_metrics(logits, labels, tagmask=tagmask) else: task.update_metrics(logits_shared, task_id_labels, tagmask=tagmask) #XXX if predict: if isinstance(task, RegressionTask): if logits.ndimension() > 1: assert ( logits.ndimension() == 2 and logits[-1] == 1 ), "Invalid regression prediction dimensions!" logits = logits.squeeze(-1) out["preds"] = logits else: _, out["preds"] = logits.max(dim=1) return out def _nli_diagnostic_forward(self, batch, task, predict): out = {} # embed the sentence classifier = self._get_classifier(task) if self.use_bert: sent, mask = self.sent_encoder(batch["inputs"], task) logits = classifier(sent, mask) else: sent1, mask1 = self.sent_encoder(batch["input1"], task) sent2, mask2 = self.sent_encoder(batch["input2"], task) logits = classifier(sent1, sent2, mask1, mask2) out["logits"] = logits out["n_exs"] = get_batch_size(batch) if "labels" in batch: if batch["labels"].dim() == 0: labels = batch["labels"].unsqueeze(0) elif batch["labels"].dim() == 1: labels = batch["labels"] else: labels = batch["labels"].squeeze(-1) out["loss"] = F.cross_entropy(logits, labels) # task.update_diagnostic_metrics(predicted, labels, batch) task.update_diagnostic_metrics(logits, labels, batch) if predict: _, predicted = logits.max(dim=1) out["preds"] = predicted return out def _span_forward(self, batch, task, predict): sent_embs, sent_mask = self.sent_encoder(batch["input1"], task) module = getattr(self, "%s_mdl" % task.name) out = module.forward(batch, sent_embs, sent_mask, task, predict) return out def _pair_sentence_forward(self, batch, task, predict): out = {} # embed the sentence classifier = self._get_classifier(task) if self.use_bert: sent, mask = self.sent_encoder(batch["inputs"], task) #XXX Dylan's code if self.shared_proj != None: if task.subspace == 'sem': sem_in_context = self.sem_proj(sent) if not 'adv' in task.name: shared_in_context = self.shared_proj(sent) sent = torch.cat([sem_in_context, shared_in_context], dim=-1) shared_private = self.ortho(sem_in_context, shared_in_context, mask) else: sent = sem_in_context elif task.subspace == 'syn': syn_in_context = self.syn_proj(sent) # Since CoLA is primarily syntactic if not 'adv' in task.name: shared_in_context = self.shared_proj(sent) sent = torch.cat([syn_in_context, shared_in_context], dim=-1) shared_private = self.ortho(syn_in_context, shared_in_context, mask) else: sent = syn_in_context #XXX # special case for WiC b/c we want to add representations of particular tokens if isinstance(task, WiCTask): logits = classifier(sent, mask, [batch["idx1"], batch["idx2"]]) else: logits = classifier(sent, mask) #XXX if not 'adv' in task.name and self.adv_discriminator != None: logits_shared = self.adv_discriminator(shared_in_context, mask) #XXX else: sent1, mask1 = self.sent_encoder(batch["input1"], task) sent2, mask2 = self.sent_encoder(batch["input2"], task) if isinstance(task, WiCTask): logits = classifier(sent1, sent2, mask1, mask2, [batch["idx1"]], [batch["idx2"]]) else: logits = classifier(sent1, sent2, mask1, mask2) out["logits"] = logits out["n_exs"] = get_batch_size(batch) tagmask = batch.get("tagmask", None) if "labels" in batch: labels = batch["labels"] labels = labels.squeeze(-1) if len(labels.size()) > 1 else labels if isinstance(task, RegressionTask): logits = logits.squeeze(-1) if len(logits.size()) > 1 else logits out["loss"] = F.mse_loss(logits, labels) logits_np = logits.data.cpu().numpy() labels_np = labels.data.cpu().numpy() task.update_metrics(logits_np, labels_np, tagmask=tagmask) else: #XXX if not 'adv' in task.name and self.adv_discriminator != None: task_id_labels = torch.ones(labels.shape).to(labels.device).long() out["loss_shared"] = F.cross_entropy(logits_shared, task_id_labels) out["loss_orthogonality"] = shared_private.pow(2).sum() #XXX out["loss"] = F.cross_entropy(logits, labels) if not 'discriminator' in task.name: task.update_metrics(logits, labels, tagmask=tagmask) else: task.update_metrics(logits_shared, task_id_labels, tagmask=tagmask) if predict: if isinstance(task, RegressionTask): if logits.ndimension() > 1: assert ( logits.ndimension() == 2 and logits[-1] == 1 ), "Invalid regression prediction dimensions!" logits = logits.squeeze(-1) out["preds"] = logits else: _, out["preds"] = logits.max(dim=1) return out def _seq_gen_forward(self, batch, task, predict): """ For variational autoencoder """ out = {} sent, sent_mask = self.sent_encoder(batch["inputs"], task) out["n_exs"] = get_batch_size(batch) if "targs" in batch: pass if predict: pass return out def _tagger_forward(self, batch: dict, task: TaggingTask, predict: bool) -> dict: """ This function is for sequence tagging (one-to-one mapping between words and tags). Args: batch: a dict of inputs and target tags task: TaggingTask predict: (boolean) predict mode (not supported) Returns out: (dict) - 'logits': output layer, dimension: [batchSize * task.max_seq_len, task.num_tags] - 'loss': size average CE loss """ out = {} # batch[inputs] only has one item b_size, seq_len = list(batch["inputs"].values())[0].size() seq_len -= 2 sent_encoder = self.sent_encoder out["n_exs"] = get_batch_size(batch) if not isinstance(sent_encoder, BiLMEncoder): sent, mask = sent_encoder(batch["inputs"], task) sent = sent.masked_fill(1 - mask.byte(), 0) # avoid NaNs sent = sent[:, 1:-1, :] hid2tag = self._get_classifier(task) logits = hid2tag(sent) logits = logits.view(b_size * seq_len, -1) out["logits"] = logits targs = batch["targs"]["words"][:, :seq_len].contiguous().view(-1) if "mask" in batch: # prevent backprop for tags generated for tokenization-introduced tokens # such as word boundaries mask = batch["mask"] batch_mask = [mask[i][:seq_len] for i in range(b_size)] batch_mask = torch.stack(batch_mask) keep_idxs = torch.nonzero(batch_mask.view(-1).data).squeeze() logits = logits.index_select(0, keep_idxs) targs = targs.index_select(0, keep_idxs) pad_idx = self.vocab.get_token_index(self.vocab._padding_token) out["loss"] = F.cross_entropy(logits, targs, ignore_index=pad_idx) task.scorer1(logits, targs) return out def _lm_forward(self, batch, task, predict): """Forward pass for LM model Args: batch: indexed input data task: (Task obejct) predict: (boolean) predict mode (not supported) return: out: (dict) - 'logits': output layer, dimension: [batchSize * timeSteps * 2, outputDim] first half: [:batchSize*timeSteps, outputDim] is output layer from forward layer second half: [batchSize*timeSteps:, outputDim] is output layer from backward layer - 'loss': size average CE loss """ out = {} sent_encoder = self.sent_encoder assert_for_log( isinstance(sent_encoder._phrase_layer, BiLMEncoder), "Not using LM for language modeling task!", ) assert_for_log( "targs" in batch and "words" in batch["targs"], "Batch missing target words!" ) pad_idx = self.vocab.get_token_index(self.vocab._padding_token, "tokens") b_size, seq_len = batch["targs"]["words"].size() n_pad = batch["targs"]["words"].eq(pad_idx).sum().item() out["n_exs"] = (b_size * seq_len - n_pad) * 2 sent, mask = sent_encoder(batch["input"], task) sent = sent.masked_fill(1 - mask.byte(), 0) # avoid NaNs # Split encoder outputs by direction split = int(self.sent_encoder._phrase_layer.get_output_dim() / 2) fwd, bwd = sent[:, :, :split], sent[:, :, split : split * 2] if split * 2 < sent.size(2): # skip embeddings out_embs = sent[:, :, split * 2 :] fwd = torch.cat([fwd, out_embs], dim=2) bwd = torch.cat([bwd, out_embs], dim=2) # Forward and backward logits and targs hid2voc = getattr(self, "%s_hid2voc" % task.name) logits_fwd = hid2voc(fwd).view(b_size * seq_len, -1) logits_bwd = hid2voc(bwd).view(b_size * seq_len, -1) logits = torch.cat([logits_fwd, logits_bwd], dim=0) out["logits"] = logits trg_fwd = batch["targs"]["words"].view(-1) trg_bwd = batch["targs_b"]["words"].view(-1) targs = torch.cat([trg_fwd, trg_bwd], dim=0) assert logits.size(0) == targs.size(0), "Number of logits and targets differ!" out["loss"] = F.cross_entropy(logits, targs, ignore_index=pad_idx) task.scorer1(out["loss"].item()) if predict: pass return out def _mc_forward(self, batch, task, predict): """ Forward for a multiple choice question answering task """ out = {} logits = [] module = self._get_classifier(task) if self.use_bert: for choice_idx in range(task.n_choices): sent, mask = self.sent_encoder(batch["choice%d" % choice_idx], task) logit = module(sent, mask) logits.append(logit) out["n_exs"] = batch["choice0"]["bert_wpm_pretokenized"].size(0) else: ctx, ctx_mask = self.sent_encoder(batch["question"], task) for choice_idx in range(task.n_choices): sent, mask = self.sent_encoder(batch["choice%d" % choice_idx], task) inp = torch.cat([ctx, sent], dim=1) inp_mask = torch.cat([ctx_mask, mask], dim=1) logit = module(inp, inp_mask) logits.append(logit) out["n_exs"] = batch["choice0"]["words"].size(0) logits = torch.cat(logits, dim=1) out["logits"] = logits if "label" in batch: labels = batch["label"] out["loss"] = F.cross_entropy(logits, labels) task.update_metrics(logits, labels) if predict: out["preds"] = logits.argmax(dim=-1) return out def _lm_only_lr_forward(self, batch, task): """Only left to right pass for LM model - non-bidirectional models. Used for language modeling training only in one direction. Args: batch: indexed input data task: (Task obejct) return: out: (dict) - 'logits': output layer, dimension: [batchSize * timeSteps, outputDim] is output layer from forward layer - 'loss': size average CE loss """ out = {} assert_for_log( "targs" in batch and "words" in batch["targs"], "Batch missing target words!" ) pad_idx = self.vocab.get_token_index(self.vocab._padding_token, "tokens") b_size, seq_len = batch["targs"]["words"].size() # pad_idx is the token used to pad till max_seq_len n_pad = batch["targs"]["words"].eq(pad_idx).sum().item() # No of examples: only left to right, every unit in the sequence length is # a training example only once. out["n_exs"] = b_size * seq_len - n_pad sent, mask = self.sent_encoder(batch["input"], task) sent = sent.masked_fill(1 - mask.byte(), 0) hid2voc = getattr(self, "%s_hid2voc" % task.name) logits = hid2voc(sent).view(b_size * seq_len, -1) out["logits"] = logits trg_fwd = batch["targs"]["words"].view(-1) assert logits.size(0) == trg_fwd.size(0), "Number of logits and targets differ!" out["loss"] = F.cross_entropy(logits, trg_fwd, ignore_index=pad_idx) task.scorer1(out["loss"].item()) return out def _multiple_choice_reading_comprehension_forward(self, batch, task, predict): """ Forward call for multiple choice (selecting from a fixed set of answers) reading comprehension (have a supporting paragraph). Batch has a tensor of shape (n_questions, n_answers, n_tokens) """ out = {} classifier = self._get_classifier(task) if self.use_bert: # if using BERT, we concatenate the passage, question, and answer inp = batch["psg_qst_ans"] ex_embs, ex_mask = self.sent_encoder(inp, task) logits = classifier(ex_embs, ex_mask) out["n_exs"] = inp["bert_wpm_pretokenized"].size(0) else: # else, we embed each independently and concat them psg_emb, psg_mask = self.sent_encoder(batch["psg"], task) qst_emb, qst_mask = self.sent_encoder(batch["qst"], task) if "ans" in batch: # most QA tasks, e.g. MultiRC have explicit answer fields ans_emb, ans_mask = self.sent_encoder(batch["ans"], task) inp = torch.cat([psg_emb, qst_emb, ans_emb], dim=1) inp_mask = torch.cat([psg_mask, qst_mask, ans_mask], dim=1) out["n_exs"] = batch["ans"]["words"].size(0) else: # ReCoRD inserts answer into the query inp = torch.cat([psg_emb, qst_emb], dim=1) inp_mask = torch.cat([psg_mask, qst_mask], dim=1) out["n_exs"] = batch["qst"]["words"].size(0) logits = classifier(inp, inp_mask) out["logits"] = logits if "label" in batch: idxs = [(p, q) for p, q in zip(batch["psg_idx"], batch["qst_idx"])] labels = batch["label"] out["loss"] = F.cross_entropy(logits, labels) if isinstance(task, ReCoRDTask): # ReCoRD needs the answer string to compute F1 task.update_metrics(logits, batch["ans_str"], idxs) else: task.update_metrics(logits, labels, idxs) if predict: if isinstance(task, ReCoRDTask): # for ReCoRD, we want the logits to make # predictions across answer choices # (which are spread across batches) out["preds"] = logits else: out["preds"] = logits.argmax(dim=-1) return out def get_elmo_mixing_weights(self, tasks=[]): """ Get elmo mixing weights from text_field_embedder. Gives warning when fails. args: - tasks (List[Task]): list of tasks that we want to get ELMo scalars for. returns: - params Dict[str:float]: dictionary maybe layers to scalar params """ params = {} if self.elmo: if not self.sep_embs_for_skip: tasks = [None] else: tasks = [None] + tasks for task in tasks: if task: params[task._classifier_name] = get_elmo_mixing_weights( self.sent_encoder._text_field_embedder, task=task ) else: params["@pretrain@"] = get_elmo_mixing_weights( self.sent_encoder._text_field_embedder, task=None ) return params
[]
2024-01-10
axgpt/mindsdb
mindsdb~integrations~handlers~file_handler~file_handler.py
import codecs import csv import json import os import tempfile import traceback from io import BytesIO, StringIO from pathlib import Path from urllib.parse import urlparse import magic import pandas as pd import requests from charset_normalizer import from_bytes from mindsdb_sql import parse_sql from mindsdb_sql.parser.ast import DropTables, Select from mindsdb_sql.parser.ast.base import ASTNode from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import TextLoader, PyPDFLoader from mindsdb.api.mysql.mysql_proxy.utilities.sql import query_df from mindsdb.integrations.libs.base import DatabaseHandler from mindsdb.integrations.libs.response import RESPONSE_TYPE from mindsdb.integrations.libs.response import HandlerResponse as Response from mindsdb.integrations.libs.response import HandlerStatusResponse as StatusResponse from mindsdb.utilities import log logger = log.getLogger(__name__) DEFAULT_CHUNK_SIZE = 200 DEFAULT_CHUNK_OVERLAP = 50 def clean_cell(val): if str(val) in ["", " ", " ", "NaN", "nan", "NA"]: return None return val class FileHandler(DatabaseHandler): """ Handler for files """ name = "files" def __init__( self, name=None, file_storage=None, connection_data={}, file_controller=None, **kwargs, ): super().__init__(name) self.parser = parse_sql self.fs_store = file_storage self.custom_parser = connection_data.get("custom_parser", None) self.clean_rows = connection_data.get("clean_rows", True) self.chunk_size = connection_data.get("chunk_size", DEFAULT_CHUNK_SIZE) self.chunk_overlap = connection_data.get("chunk_overlap", DEFAULT_CHUNK_OVERLAP) self.file_controller = file_controller def connect(self, **kwargs): return def disconnect(self, **kwargs): return def check_connection(self) -> StatusResponse: return StatusResponse(True) def query(self, query: ASTNode) -> Response: if type(query) == DropTables: for table_identifier in query.tables: if ( len(table_identifier.parts) == 2 and table_identifier.parts[0] != self.name ): return Response( RESPONSE_TYPE.ERROR, error_message=f"Can't delete table from database '{table_identifier.parts[0]}'", ) table_name = table_identifier.parts[-1] try: self.file_controller.delete_file(table_name) except Exception as e: return Response( RESPONSE_TYPE.ERROR, error_message=f"Can't delete table '{table_name}': {e}", ) return Response(RESPONSE_TYPE.OK) elif type(query) == Select: table_name = query.from_table.parts[-1] file_path = self.file_controller.get_file_path(table_name) df, _columns = self._handle_source( file_path, self.clean_rows, self.custom_parser, self.chunk_size, self.chunk_overlap, ) result_df = query_df(df, query) return Response(RESPONSE_TYPE.TABLE, data_frame=result_df) else: return Response( RESPONSE_TYPE.ERROR, error_message="Only 'select' and 'drop' queries allowed for files", ) def native_query(self, query: str) -> Response: ast = self.parser(query, dialect="mindsdb") return self.query(ast) @staticmethod def _handle_source( file_path, clean_rows=True, custom_parser=None, chunk_size=DEFAULT_CHUNK_SIZE, chunk_overlap=DEFAULT_CHUNK_OVERLAP, ): """ This function takes a file path and returns a pandas dataframe """ # get file data io, format and dialect data, fmt, dialect = FileHandler._get_data_io(file_path) data.seek(0) # make sure we are at 0 in file pointer if custom_parser: header, file_data = custom_parser(data, fmt) df = pd.DataFrame(file_data, columns=header) elif fmt == "parquet": df = pd.read_parquet(data) elif fmt == "csv": df = pd.read_csv(data, sep=dialect.delimiter, index_col=False) elif fmt in ["xlsx", "xls"]: data.seek(0) df = pd.read_excel(data) elif fmt == "json": data.seek(0) json_doc = json.loads(data.read()) df = pd.json_normalize(json_doc, max_level=0) elif fmt == "txt" or fmt == "pdf": text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) if fmt == "txt": loader = TextLoader(file_path, encoding="utf8") docs = text_splitter.split_documents(loader.load()) df = pd.DataFrame( [ {"content": doc.page_content, "metadata": doc.metadata} for doc in docs ] ) elif fmt == "pdf": loader = PyPDFLoader(file_path) docs = text_splitter.split_documents(loader.load_and_split()) df = pd.DataFrame( [ {"content": doc.page_content, "metadata": doc.metadata} for doc in docs ] ) else: raise ValueError( "Could not load file into any format, supported formats are csv, json, xls, xlsx, pdf, txt" ) header = df.columns.values.tolist() df = df.rename(columns={key: key.strip() for key in header}) df = df.applymap(clean_cell) header = [x.strip() for x in header] col_map = dict((col, col) for col in header) return df, col_map @staticmethod def is_it_parquet(data: BytesIO) -> bool: # Check first and last 4 bytes equal to PAR1. # Refer: https://parquet.apache.org/docs/file-format/ parquet_sig = b"PAR1" data.seek(0, 0) start_meta = data.read(4) data.seek(-4, 2) end_meta = data.read() data.seek(0) if start_meta == parquet_sig and end_meta == parquet_sig: return True return False @staticmethod def is_it_xlsx(file_path: str) -> bool: file_type = magic.from_file(file_path, mime=True) if file_type in [ "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "application/vnd.ms-excel", ]: return True return False @staticmethod def is_it_json(data_str: StringIO) -> bool: # see if its JSON text = data_str.read(100).strip() data_str.seek(0) if len(text) > 0: # it it looks like a json, then try to parse it if text.startswith("{") or text.startswith("["): try: json.loads(data_str.read()) return True except Exception: return False finally: data_str.seek(0) return False @staticmethod def is_it_csv(data_str: StringIO) -> bool: sample = data_str.readline() # trying to get dialect from header data_str.seek(0) try: csv.Sniffer().sniff(sample) # Avoid a false-positive for json files try: json.loads(data_str.read()) data_str.seek(0) return False except json.decoder.JSONDecodeError: data_str.seek(0) return True except Exception: return False @staticmethod def _get_data_io(file_path): """ @TODO: Use python-magic to simplify the function and detect the file types as the xlsx example This gets a file either url or local file and defines what the format is as well as dialect :param file: file path or url :return: data_io, format, dialect """ data = BytesIO() data_str = None dialect = None try: with open(file_path, "rb") as fp: data = BytesIO(fp.read()) except Exception as e: error = "Could not load file, possible exception : {exception}".format( exception=e ) logger.error(error) raise ValueError(error) suffix = Path(file_path).suffix.strip(".").lower() if suffix not in ("csv", "json", "xlsx", "parquet"): if FileHandler.is_it_parquet(data): suffix = "parquet" elif FileHandler.is_it_xlsx(file_path): suffix = "xlsx" if suffix == "parquet": return data, "parquet", dialect if suffix == "xlsx": return data, "xlsx", dialect if suffix == "txt": return data, "txt", dialect if suffix == "pdf": return data, "pdf", dialect byte_str = data.read() # Move it to StringIO try: # Handle Microsoft's BOM "special" UTF-8 encoding if byte_str.startswith(codecs.BOM_UTF8): data_str = StringIO(byte_str.decode("utf-8-sig")) else: file_encoding_meta = from_bytes( byte_str[: 32 * 1024], steps=32, # Number of steps/block to extract from my_byte_str chunk_size=1024, # Set block size of each extraction) explain=False, ) best_meta = file_encoding_meta.best() errors = "strict" if best_meta is not None: encoding = file_encoding_meta.best().encoding try: data_str = StringIO(byte_str.decode(encoding, errors)) except UnicodeDecodeError: encoding = "utf-8" errors = "replace" data_str = StringIO(byte_str.decode(encoding, errors)) else: encoding = "utf-8" errors = "replace" data_str = StringIO(byte_str.decode(encoding, errors)) except Exception: logger.error(traceback.format_exc()) logger.error("Could not load into string") if suffix not in ("csv", "json"): if FileHandler.is_it_json(data_str): suffix = "json" elif FileHandler.is_it_csv(data_str): suffix = "csv" if suffix == "json": return data_str, suffix, dialect if suffix == "csv": try: dialect = FileHandler._get_csv_dialect(data_str) if dialect: return data_str, "csv", dialect except Exception: logger.error("Could not detect format for this file") logger.error(traceback.format_exc()) data_str.seek(0) data.seek(0) # No file type identified return data, None, dialect @staticmethod def _get_file_path(path) -> str: try: is_url = urlparse(path).scheme in ("http", "https") except Exception: is_url = False if is_url: path = FileHandler._fetch_url(path) return path @staticmethod def _get_csv_dialect(buffer) -> csv.Dialect: sample = buffer.readline() # trying to get dialect from header buffer.seek(0) try: if isinstance(sample, bytes): sample = sample.decode() accepted_csv_delimiters = [",", "\t", ";"] try: dialect = csv.Sniffer().sniff( sample, delimiters=accepted_csv_delimiters ) dialect.doublequote = ( True # assume that all csvs have " as string escape ) except Exception: dialect = csv.reader(sample).dialect if dialect.delimiter not in accepted_csv_delimiters: raise Exception( f"CSV delimeter '{dialect.delimiter}' is not supported" ) except csv.Error: dialect = None return dialect @staticmethod def _fetch_url(url: str) -> str: temp_dir = tempfile.mkdtemp(prefix="mindsdb_file_url_") try: r = requests.get(url, stream=True) if r.status_code == 200: with open(os.path.join(temp_dir, "file"), "wb") as f: for chunk in r: f.write(chunk) else: raise Exception(f"Response status code is {r.status_code}") except Exception as e: logger.error(f"Error during getting {url}") logger.error(e) raise return os.path.join(temp_dir, "file") def get_tables(self) -> Response: """ List all files """ files_meta = self.file_controller.get_files() data = [ { "TABLE_NAME": x["name"], "TABLE_ROWS": x["row_count"], "TABLE_TYPE": "BASE TABLE", } for x in files_meta ] return Response(RESPONSE_TYPE.TABLE, data_frame=pd.DataFrame(data)) def get_columns(self, table_name) -> Response: file_meta = self.file_controller.get_file_meta(table_name) result = Response( RESPONSE_TYPE.TABLE, data_frame=pd.DataFrame( [ { "Field": x["name"].strip() if isinstance(x, dict) else x.strip(), "Type": "str", } for x in file_meta["columns"] ] ), ) return result
[]
2024-01-10
Alsace08/SumCoT
api_request.py
# -!- coding: utf-8 -!- import openai class Decoder: def __init__(self, api_key): self.api_key = api_key def decode(self, input, model, max_length): response = self.decoder_for_gpt3(model, input, max_length) return response def decoder_for_gpt3(self, model, input, max_length): openai.api_key = self.api_key if model == "gpt3": engine = "text-ada-001" elif model == "gpt3-medium": engine = "text-babbage-001" elif model == "gpt3-large": engine = "text-curie-001" elif model == "gpt3-xl": engine = "text-davinci-002" else: raise ValueError("model is not properly defined ...") response = openai.Completion.create( engine=engine, prompt=input, max_tokens=max_length, temperature=0, stop=None ) return response["choices"][0]["text"]
[ "INPUT" ]
2024-01-10
Alsace08/SumCoT
evaluation~metric.py
# -!- coding: utf-8 -!- import json import openai import argparse from rouge import Rouge from bert_score import score def rouge_score(ref, pred): rouge = Rouge() rs = rouge.get_scores(pred, ref) rouge1 = rs[0]["rouge-1"]["f"] * 100 rouge2 = rs[0]["rouge-2"]["f"] * 100 rougel = rs[0]["rouge-l"]["f"] * 100 return rouge1, rouge2, rougel def bs_score(ref, pred): _, _, F1 = score([pred], [ref], lang="en", verbose=True) bs = F1.mean() return bs class BatchEvaluation: def __init__(self, total_r1=0, total_r2=0, total_rl=0, total_bs=0, call_time_rs=0, call_time_bs=0): self.ref = "" self.pred = "" self.total_r1 = total_r1 self.total_r2 = total_r2 self.total_rl = total_rl self.total_bs = total_bs self.call_time_rs = call_time_rs self.call_time_bs = call_time_bs def set_text(self, ref, pred): self.ref = ref self.pred = pred return self def get_rouge_score(self): r1, r2, rl = rouge_score(self.ref, self.pred) self.total_r1 += r1 self.total_r2 += r2 self.total_rl += rl self.call_time_rs += 1 def get_bs_score(self): bs = bs_score(self.ref, self.pred) self.total_bs += bs self.call_time_bs += 1
[]
2024-01-10
noteable-io/origami
origami~models~rtu~channels~kernels.py
""" The kernels channel in RTU is primarily used for runtime updates like kernel and cell status, variable explorer, and outputs vice document model changes on the files channel (adding cells, updating content, etc) """ import uuid from typing import Annotated, List, Literal, Optional, Union from pydantic import BaseModel, Field from origami.models.kernels import CellState, KernelStatusUpdate from origami.models.rtu.base import BaseRTURequest, BaseRTUResponse, BooleanReplyData class KernelsRequest(BaseRTURequest): channel_prefix: Literal["kernels"] = "kernels" class KernelsResponse(BaseRTUResponse): channel_prefix: Literal["kernels"] = "kernels" class KernelSubscribeRequestData(BaseModel): file_id: uuid.UUID class KernelSubscribeRequest(KernelsRequest): event: Literal["subscribe_request"] = "subscribe_request" data: KernelSubscribeRequestData # Kernel status is returned on subscribe and also updated through kernel status updates class KernelSubscribeReplyData(BaseModel): success: bool kernel_session: Optional[KernelStatusUpdate] = None # None if no Kernel is alive for a file class KernelSubscribeReply(KernelsResponse): event: Literal["subscribe_reply"] = "subscribe_reply" data: KernelSubscribeReplyData class KernelStatusUpdateResponse(KernelsResponse): event: Literal["kernel_status_update_event"] = "kernel_status_update_event" data: KernelStatusUpdate # Cell State class BulkCellStateUpdateData(BaseModel): cell_states: List[CellState] class BulkCellStateUpdateResponse(KernelsResponse): event: Literal["bulk_cell_state_update_event"] = "bulk_cell_state_update_event" data: BulkCellStateUpdateData # Variable explorer updates return a list of current variables in the kernel # On connect to a new Kernel, Clients can send a request to trigger an event. Otherwise events occur # after cell execution automatically. class VariableExplorerUpdateRequest(KernelsRequest): event: Literal["variable_explorer_update_request"] = "variable_explorer_update_request" # It is confusing but variable_explorer_update_request can either be an RTU client to Gate server # (RTURequest) or also be propogated out by Gate from another client, meaning it comes in as a # server-to-client (RTUResponse) so we need to model it just to avoid warning about unmodeled msgs class VariableExplorerUpdateRequestPropogated(KernelsResponse): event: Literal["variable_explorer_update_request"] = "variable_explorer_update_request" data: dict = Field(default_factory=dict) class VariableExplorerResponse(KernelsResponse): event: Literal["variable_explorer_event"] = "variable_explorer_event" class IntegratedAIRequestData(BaseModel): prompt: str # this may not be called on a specific cell, but at a specific point in time at a generic # "document" level, so we don't require a cell_id cell_id: Optional[str] = None # if a cell_id is provided and this is True, the result will be added to the cell's output # instead of just sent back as an RTU reply output_for_response: bool = False class IntegratedAIRequest(KernelsRequest): event: Literal["integrated_ai_request"] = "integrated_ai_request" data: IntegratedAIRequestData class IntegratedAIReply(KernelsResponse): event: Literal["integrated_ai_reply"] = "integrated_ai_reply" data: BooleanReplyData class IntegratedAIEvent(KernelsResponse): event: Literal["integrated_ai_event"] = "integrated_ai_event" # same data as the IntegratedAIRequest, just echoed back out data: IntegratedAIRequestData class IntegratedAIResultData(BaseModel): # the full response from OpenAI; in most cases, sidecar will have either created a new cell # or an output, so this result should really only be used when the RTU client needs it to exist # outside of the cell/output structure result: str # this is sidecar to gate as a result of calling the OpenAIHandler method (OpenAI response, # error, etc); after that, Gate propogates the data out as an IntegratedAIEvent class IntegratedAIResult(KernelsRequest): event: Literal["integrated_ai_result"] = "integrated_ai_result" data: IntegratedAIResultData class IntegratedAIResultReply(KernelsResponse): event: Literal["integrated_ai_result_reply"] = "integrated_ai_result_reply" data: BooleanReplyData class IntegratedAIResultEvent(KernelsResponse): event: Literal["integrated_ai_result_event"] = "integrated_ai_result_event" data: IntegratedAIResultData KernelRequests = Annotated[ Union[ KernelSubscribeRequest, VariableExplorerUpdateRequest, IntegratedAIRequest, IntegratedAIResult, ], Field(discriminator="event"), ] KernelResponses = Annotated[ Union[ KernelSubscribeReply, KernelStatusUpdateResponse, BulkCellStateUpdateResponse, VariableExplorerUpdateRequestPropogated, VariableExplorerResponse, IntegratedAIReply, IntegratedAIResultReply, IntegratedAIEvent, IntegratedAIResultEvent, ], Field(discriminator="event"), ]
[]
2024-01-10
zundel48/guidance
guidance~llms~caches~_diskcache.py
import os import diskcache import platformdirs from guidance.llms.caches import Cache class DiskCache(Cache): """DiskCache is a cache that uses diskcache lib.""" def __init__(self, llm_name: str): self._diskcache = diskcache.Cache( os.path.join( platformdirs.user_cache_dir("guidance"), f"_{llm_name}.diskcache" ) ) def __getitem__(self, key: str) -> str: return self._diskcache[key] def __setitem__(self, key: str, value: str) -> None: self._diskcache[key] = value def __contains__(self, key: str) -> bool: return key in self._diskcache def clear(self): self._diskcache.clear()
[]
2024-01-10
Saptak625/Investify
text_simplifier.py
import openai import os import time import json from dotenv import load_dotenv load_dotenv() OPENAI_API_KEY = os.getenv('OPENAI_KEY') openai.api_key = OPENAI_API_KEY def summarize(prompt): reduced_prompt = ' '.join(prompt.replace('\n', ' ').split(' ')[:1600]) augmented_prompt = "summarize this text to 500 words: " + reduced_prompt messages=[ {"role": "system", "content": "You are a helpful assistant that summarizes and simplifies Investopedia articles through your complete knowledge of finance and investing. You will also assist the user by answering questions about the article. If the user asks a question that is not relevant to the article or finance in general, you are REJECT THE REQUEST and state `As a personal financial educator, I cannot answer that question.`."}, {"role": "user", "content": augmented_prompt}, ] return ask(messages) def ask(messages): ### STREAM CHATGPT API RESPONSES delay_time = 0.01 # faster max_response_length = 1500 start_time = time.time() response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, max_tokens=1500, stream=True ) whole_answer = '' for event in response: # RETRIEVE THE TEXT FROM THE RESPONSE event_time = time.time() - start_time # CALCULATE TIME DELAY BY THE EVENT event_text = event['choices'][0]['delta'] # type: ignore # EVENT DELTA RESPONSE answer = event_text.get('content', '') # RETRIEVE CONTENT # STREAM THE ANSWER if answer: whole_answer += answer # Convert string to byte string answer = answer.encode('utf-8') yield answer # Yield the response time.sleep(delay_time) yield json.dumps(messages + [{"role": "system", "content": whole_answer}]) if __name__ == '__main__': text = '''Pete Rathburn is a copy editor and fact-checker with expertise in economics and personal finance and over twenty years of experience in the classroom. Investopedia / Laura Porter The Altman Z-score is the output of a credit-strength test that gauges a publicly traded manufacturing company's likelihood of bankruptcy. The Altman Z-score, a variation of the traditional z-score in statistics, is based on five financial ratios that can be calculated from data found on a company's annual 10-K report. It uses profitability, leverage, liquidity, solvency, and activity to predict whether a company has a high probability of becoming insolvent. NYU Stern Finance Professor Edward Altman developed the Altman Z-score formula in 1967, and it was published in 1968. Over the years, Altman has continued to reevaluate his Z-score. From 1969 until 1975, Altman looked at 86 companies in distress, then 110 from 1976 to 1995, and finally 120 from 1996 to 1999, finding that the Z-score had an accuracy of between 82% and 94%. In 2012, he released an updated version called the Altman Z-score Plus that one can use to evaluate public and private companies, manufacturing and non-manufacturing companies, and U.S. and non-U.S. companies. One can use Altman Z-score Plus to evaluate corporate credit risk. The Altman Z-score has become a reliable measure of calculating credit risk. One can calculate the Altman Z-score as follows: Altman Z-Score = 1.2A + 1.4B + 3.3C + 0.6D + 1.0E A score below 1.8 means it's likely the company is headed for bankruptcy, while companies with scores above 3 are not likely to go bankrupt. Investors can use Altman Z-scores to determine whether they should buy or sell a stock if they're concerned about the company's underlying financial strength. Investors may consider purchasing a stock if its Altman Z-Score value is closer to 3 and selling or shorting a stock if the value is closer to 1.8. In more recent years, however, a Z-Score closer to 0 indicates a company may be in financial trouble. In a lecture given in 2019 titled "50 Years of the Altman Score," Professor Altman himself noted that recent data has shown that 0—not 1.8—is the figure at which investors should worry about a company's financial strength. The two-hour lecture is available to view for free on YouTube. In 2007, the credit ratings of specific asset-related securities had been rated higher than they should have been. The Altman Z-score indicated that the companies' risks were increasing significantly and may have been heading for bankruptcy. Altman calculated that the median Altman Z-score of companies in 2007 was 1.81. These companies' credit ratings were equivalent to a B. This indicated that 50% of the firms should have had lower ratings, were highly distressed and had a high probability of becoming bankrupt. Altman's calculations led him to believe a crisis would occur and there would be a meltdown in the credit market. He believed the crisis would stem from corporate defaults, but the meltdown, which brought about the 2008 financial crisis, began with mortgage-backed securities (MBS). However, corporations soon defaulted in 2009 at the second-highest rate in history. The Altman Z-score, a variation of the traditional z-score in statistics, is based on five financial ratios that can be calculated from data found on a company's annual 10-K report. The formula for Altman Z-Score is 1.2*(working capital / total assets) + 1.4*(retained earnings / total assets) + 3.3*(earnings before interest and tax / total assets) + 0.6*(market value of equity / total liabilities) + 1.0*(sales / total assets). Investors can use Altman Z-score Plus to evaluate corporate credit risk. A score below 1.8 signals the company is likely headed for bankruptcy, while companies with scores above 3 are not likely to go bankrupt. Investors may consider purchasing a stock if its Altman Z-Score value is closer to 3 and selling, or shorting, a stock if the value is closer to 1.8. In more recent years, Altman has stated a score closer to 0 rather than 1.8 indicates a company is closer to bankruptcy. In 2007, Altman's Z-score indicated that the companies' risks were increasing significantly. The median Altman Z-score of companies in 2007 was 1.81, which is very close to the threshold that would indicate a high probability of bankruptcy. Altman's calculations led him to believe a crisis would occur that would stem from corporate defaults, but the meltdown, which brought about the 2008 financial crisis, began with mortgage-backed securities (MBS); however, corporations soon defaulted in 2009 at the second-highest rate in history. NYU Stern. "Predicting Financial Distress of Companies: Revisiting the Z-Score and Zeta Models," Page 18. Accessed Nov. 19, 2021. NYU Stern. "Professor Edward Altman Launches Digital App for Renowned Z-Score, "Altman Z-Score Plus." Accessed Nov. 19, 2021. NYU Stern. "Predicting Financial Distress of Companies: Revisiting the Z-Score and Zeta Models," Page 26. Accessed Nov. 19, 2021. NYU Stern. "A 50-Year Retrospective on Credit Risk Models, the Altman Z-Score Family of Models and Their Applications to Financial Markets and Managerial Strategies," Page 20. Accessed Nov. 19, 2021. NYU Stern. "Special Report on Defaults and Returns in the High-Yield Bond Market: The Year 2007 in Review and Outlook," Pages 9-13 and 27. Accessed Nov. 19, 2021 NYU Stern. "Special Report on Defaults and Returns in the High-Yield Bond Market: The Year 2007 in Review and Outlook," Pages 9-13 and 26. Accessed Nov. 19, 2021. NYU Stern. "Special Report On Defaults and Returns in the High-Yield Bond and Distressed Debt Market: The Year 2009 in Review and Outlook," Page 3. Accessed Nov. 19, 2021. By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.''' # summary = summarize(text) # print(summary) reduced_prompt = ' '.join(text.replace('\n', ' ').split(' ')[:1600]) messages=[ {"role": "system", "content": "You are a helpful assistant that summarizes and simplifies Investopedia articles through your complete knowledge of finance and investing. You will also assist the user by answering questions about the article."}, {"role": "user", "content": "summarize this text to 500 words: " + reduced_prompt}, {"role": "system", "content": """The Altman Z-score is a credit-strength test that measures a publicly traded manufacturing company's likelihood of bankruptcy. It is based on five financial ratios that can be calculated from data found on a company's annual 10-K report, and uses profitability, leverage, liquidity, solvency, and activity to predict whether a company has a high probability of becoming insolvent. The Altman Z-score was created by NYU Stern Finance Professor Edward Altman in 1967, and its accuracy was found to be between 82% and 94% when it was originally researched. The formula for the Altman Z-score is 1.2A + 1.4B + 3.3C + 0.6D + 1.0E, and a score below 1.8 means that the company is at risk of bankruptcy, while companies with a score above 3 are not likely to go bankrupt. The Altman Z-Score Plus is an updated version of the Altman Z-Score and was released in 2012. It allows investors to evaluate both public and private manufacturing and non-manufacturing companies, as well as U.S. and non-U.S. companies, and can be used to evaluate corporate credit risk. If an investor is concerned about a company's underlying financial strength, they can use the Altman Z-score to determine whether they should buy or sell a stock. In more recent years, Professor Altman has stated that a score closer to 0 rather than 1.8 indicates a company is closer to bankruptcy. In 2007, the credit ratings of certain asset-related securities were rated higher than they should have been. The Altman Z-score indicated that these companies' risks were significantly increasing and that they may have been heading for bankruptcy. The median Altman Z-score of companies in 2007 was 1.81, which is very close to the threshold that would indicate a high probability of bankruptcy. Altman's calculations led him to believe that a crisis would occur, stemming from corporate defaults, but the 2008 financial crisis began with mortgage-backed securities (MBS). However, corporations soon defaulted in 2009 at the second-highest rate in history. Investors may consider purchasing a stock if its Altman Z-Score value is closer to 3 and selling, or shorting, a stock if the value is closer to 1.8. The Altman Z-Score has become a reliable measure of calculating credit risk, and the Altman Z-Score Plus provides investors with a more inclusive analysis."""}, {"role": "user", "content": "How can the Altman Z-Score be used to assess a company's financial health and predict its risk of bankruptcy?"}, ] g = ask(messages) for m in g: print(m, end='', flush=True)
[ "\n", "You are a helpful assistant that summarizes and simplifies Investopedia articles through your complete knowledge of finance and investing. You will also assist the user by answering questions about the article.", "How can the Altman Z-Score be used to assess a company's financial health and predict its risk of bankruptcy?", "You are a helpful assistant that summarizes and simplifies Investopedia articles through your complete knowledge of finance and investing. You will also assist the user by answering questions about the article. If the user asks a question that is not relevant to the article or finance in general, you are REJECT THE REQUEST and state `As a personal financial educator, I cannot answer that question.`.", "Pete Rathburn is a copy editor and fact-checker with expertise in economics and personal finance and over twenty years of experience in the classroom. Investopedia / Laura Porter The Altman Z-score is the output of a credit-strength test that gauges a publicly traded manufacturing company's likelihood of bankruptcy. The Altman Z-score, a variation of the traditional z-score in statistics, is based on five financial ratios that can be calculated from data found on a company's annual 10-K report. It uses profitability, leverage, liquidity, solvency, and activity to predict whether a company has a high probability of becoming insolvent. NYU Stern Finance Professor Edward Altman developed the Altman Z-score formula in 1967, and it was published in 1968. Over the years, Altman has continued to reevaluate his Z-score. From 1969 until 1975, Altman looked at 86 companies in distress, then 110 from 1976 to 1995, and finally 120 from 1996 to 1999, finding that the Z-score had an accuracy of between 82% and 94%. In 2012, he released an updated version called the Altman Z-score Plus that one can use to evaluate public and private companies, manufacturing and non-manufacturing companies, and U.S. and non-U.S. companies. One can use Altman Z-score Plus to evaluate corporate credit risk. The Altman Z-score has become a reliable measure of calculating credit risk. One can calculate the Altman Z-score as follows: Altman Z-Score = 1.2A + 1.4B + 3.3C + 0.6D + 1.0E A score below 1.8 means it's likely the company is headed for bankruptcy, while companies with scores above 3 are not likely to go bankrupt. Investors can use Altman Z-scores to determine whether they should buy or sell a stock if they're concerned about the company's underlying financial strength. Investors may consider purchasing a stock if its Altman Z-Score value is closer to 3 and selling or shorting a stock if the value is closer to 1.8. In more recent years, however, a Z-Score closer to 0 indicates a company may be in financial trouble. In a lecture given in 2019 titled \"50 Years of the Altman Score,\" Professor Altman himself noted that recent data has shown that 0—not 1.8—is the figure at which investors should worry about a company's financial strength. The two-hour lecture is available to view for free on YouTube. In 2007, the credit ratings of specific asset-related securities had been rated higher than they should have been. The Altman Z-score indicated that the companies' risks were increasing significantly and may have been heading for bankruptcy. Altman calculated that the median Altman Z-score of companies in 2007 was 1.81. These companies' credit ratings were equivalent to a B. This indicated that 50% of the firms should have had lower ratings, were highly distressed and had a high probability of becoming bankrupt. Altman's calculations led him to believe a crisis would occur and there would be a meltdown in the credit market. He believed the crisis would stem from corporate defaults, but the meltdown, which brought about the 2008 financial crisis, began with mortgage-backed securities (MBS). However, corporations soon defaulted in 2009 at the second-highest rate in history. The Altman Z-score, a variation of the traditional z-score in statistics, is based on five financial ratios that can be calculated from data found on a company's annual 10-K report. The formula for Altman Z-Score is 1.2*(working capital / total assets) + 1.4*(retained earnings / total assets) + 3.3*(earnings before interest and tax / total assets) + 0.6*(market value of equity / total liabilities) + 1.0*(sales / total assets). Investors can use Altman Z-score Plus to evaluate corporate credit risk. A score below 1.8 signals the company is likely headed for bankruptcy, while companies with scores above 3 are not likely to go bankrupt. Investors may consider purchasing a stock if its Altman Z-Score value is closer to 3 and selling, or shorting, a stock if the value is closer to 1.8. In more recent years, Altman has stated a score closer to 0 rather than 1.8 indicates a company is closer to bankruptcy. In 2007, Altman's Z-score indicated that the companies' risks were increasing significantly. The median Altman Z-score of companies in 2007 was 1.81, which is very close to the threshold that would indicate a high probability of bankruptcy. Altman's calculations led him to believe a crisis would occur that would stem from corporate defaults, but the meltdown, which brought about the 2008 financial crisis, began with mortgage-backed securities (MBS); however, corporations soon defaulted in 2009 at the second-highest rate in history. NYU Stern. \"Predicting Financial Distress of Companies: Revisiting the Z-Score and Zeta Models,\" Page 18. Accessed Nov. 19, 2021. NYU Stern. \"Professor Edward Altman Launches Digital App for Renowned Z-Score, \"Altman Z-Score Plus.\" Accessed Nov. 19, 2021. NYU Stern. \"Predicting Financial Distress of Companies: Revisiting the Z-Score and Zeta Models,\" Page 26. Accessed Nov. 19, 2021. NYU Stern. \"A 50-Year Retrospective on Credit Risk Models, the Altman Z-Score Family of Models and Their Applications to Financial Markets and Managerial Strategies,\" Page 20. Accessed Nov. 19, 2021. NYU Stern. \"Special Report on Defaults and Returns in the High-Yield Bond Market: The Year 2007 in Review and Outlook,\" Pages 9-13 and 27. Accessed Nov. 19, 2021 NYU Stern. \"Special Report on Defaults and Returns in the High-Yield Bond Market: The Year 2007 in Review and Outlook,\" Pages 9-13 and 26. Accessed Nov. 19, 2021. NYU Stern. \"Special Report On Defaults and Returns in the High-Yield Bond and Distressed Debt Market: The Year 2009 in Review and Outlook,\" Page 3. Accessed Nov. 19, 2021. By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.", " ", "The Altman Z-score is a credit-strength test that measures a publicly traded manufacturing company's likelihood of bankruptcy. It is based on five financial ratios that can be calculated from data found on a company's annual 10-K report, and uses profitability, leverage, liquidity, solvency, and activity to predict whether a company has a high probability of becoming insolvent. The Altman Z-score was created by NYU Stern Finance Professor Edward Altman in 1967, and its accuracy was found to be between 82% and 94% when it was originally researched. The formula for the Altman Z-score is 1.2A + 1.4B + 3.3C + 0.6D + 1.0E, and a score below 1.8 means that the company is at risk of bankruptcy, while companies with a score above 3 are not likely to go bankrupt.\n\nThe Altman Z-Score Plus is an updated version of the Altman Z-Score and was released in 2012. It allows investors to evaluate both public and private manufacturing and non-manufacturing companies, as well as U.S. and non-U.S. companies, and can be used to evaluate corporate credit risk. If an investor is concerned about a company's underlying financial strength, they can use the Altman Z-score to determine whether they should buy or sell a stock. In more recent years, Professor Altman has stated that a score closer to 0 rather than 1.8 indicates a company is closer to bankruptcy.\n\nIn 2007, the credit ratings of certain asset-related securities were rated higher than they should have been. The Altman Z-score indicated that these companies' risks were significantly increasing and that they may have been heading for bankruptcy. The median Altman Z-score of companies in 2007 was 1.81, which is very close to the threshold that would indicate a high probability of bankruptcy. Altman's calculations led him to believe that a crisis would occur, stemming from corporate defaults, but the 2008 financial crisis began with mortgage-backed securities (MBS). However, corporations soon defaulted in 2009 at the second-highest rate in history.\n\nInvestors may consider purchasing a stock if its Altman Z-Score value is closer to 3 and selling, or shorting, a stock if the value is closer to 1.8. The Altman Z-Score has become a reliable measure of calculating credit risk, and the Altman Z-Score Plus provides investors with a more inclusive analysis.", "summarize this text to 500 words: PLACEHOLDER" ]
2024-01-10
mivanovitch/embedchain
embedchain~chunkers~youtube_video.py
from embedchain.chunkers.base_chunker import BaseChunker from langchain.text_splitter import RecursiveCharacterTextSplitter TEXT_SPLITTER_CHUNK_PARAMS = { "chunk_size": 2000, "chunk_overlap": 0, "length_function": len, } class YoutubeVideoChunker(BaseChunker): def __init__(self): text_splitter = RecursiveCharacterTextSplitter(**TEXT_SPLITTER_CHUNK_PARAMS) super().__init__(text_splitter)
[]
2024-01-10
mivanovitch/embedchain
embedchain~chunkers~qna_pair.py
from embedchain.chunkers.base_chunker import BaseChunker from langchain.text_splitter import RecursiveCharacterTextSplitter TEXT_SPLITTER_CHUNK_PARAMS = { "chunk_size": 300, "chunk_overlap": 0, "length_function": len, } class QnaPairChunker(BaseChunker): def __init__(self): text_splitter = RecursiveCharacterTextSplitter(**TEXT_SPLITTER_CHUNK_PARAMS) super().__init__(text_splitter)
[]
2024-01-10
mivanovitch/embedchain
embedchain~loaders~pdf_file.py
from langchain.document_loaders import PyPDFLoader from embedchain.utils import clean_string class PdfFileLoader: def load_data(self, url): loader = PyPDFLoader(url) output = [] pages = loader.load_and_split() if not len(pages): raise ValueError("No data found") for page in pages: content = page.page_content content = clean_string(content) meta_data = page.metadata meta_data["url"] = url output.append({ "content": content, "meta_data": meta_data, }) return output
[]
2024-01-10
mivanovitch/embedchain
embedchain~embedchain.py
import openai import os from dotenv import load_dotenv from langchain.docstore.document import Document from langchain.embeddings.openai import OpenAIEmbeddings from embedchain.loaders.youtube_video import YoutubeVideoLoader from embedchain.loaders.pdf_file import PdfFileLoader from embedchain.loaders.web_page import WebPageLoader from embedchain.loaders.local_qna_pair import LocalQnaPairLoader from embedchain.chunkers.youtube_video import YoutubeVideoChunker from embedchain.chunkers.pdf_file import PdfFileChunker from embedchain.chunkers.web_page import WebPageChunker from embedchain.chunkers.qna_pair import QnaPairChunker from embedchain.vectordb.chroma_db import ChromaDB load_dotenv() embeddings = OpenAIEmbeddings() ABS_PATH = os.getcwd() DB_DIR = os.path.join(ABS_PATH, "db") class EmbedChain: def __init__(self, db=None): """ Initializes the EmbedChain instance, sets up a vector DB client and creates a collection. :param db: The instance of the VectorDB subclass. """ if db is None: db = ChromaDB() self.db_client = db.client self.collection = db.collection self.user_asks = [] def _get_loader(self, data_type): """ Returns the appropriate data loader for the given data type. :param data_type: The type of the data to load. :return: The loader for the given data type. :raises ValueError: If an unsupported data type is provided. """ loaders = { 'youtube_video': YoutubeVideoLoader(), 'pdf_file': PdfFileLoader(), 'web_page': WebPageLoader(), 'qna_pair': LocalQnaPairLoader() } if data_type in loaders: return loaders[data_type] else: raise ValueError(f"Unsupported data type: {data_type}") def _get_chunker(self, data_type): """ Returns the appropriate chunker for the given data type. :param data_type: The type of the data to chunk. :return: The chunker for the given data type. :raises ValueError: If an unsupported data type is provided. """ chunkers = { 'youtube_video': YoutubeVideoChunker(), 'pdf_file': PdfFileChunker(), 'web_page': WebPageChunker(), 'qna_pair': QnaPairChunker(), } if data_type in chunkers: return chunkers[data_type] else: raise ValueError(f"Unsupported data type: {data_type}") def add(self, data_type, url): """ Adds the data from the given URL to the vector db. Loads the data, chunks it, create embedding for each chunk and then stores the embedding to vector database. :param data_type: The type of the data to add. :param url: The URL where the data is located. """ loader = self._get_loader(data_type) chunker = self._get_chunker(data_type) self.user_asks.append([data_type, url]) self.load_and_embed(loader, chunker, url) def add_local(self, data_type, content): """ Adds the data you supply to the vector db. Loads the data, chunks it, create embedding for each chunk and then stores the embedding to vector database. :param data_type: The type of the data to add. :param content: The local data. Refer to the `README` for formatting. """ loader = self._get_loader(data_type) chunker = self._get_chunker(data_type) self.user_asks.append([data_type, content]) self.load_and_embed(loader, chunker, content) def load_and_embed(self, loader, chunker, url): """ Loads the data from the given URL, chunks it, and adds it to the database. :param loader: The loader to use to load the data. :param chunker: The chunker to use to chunk the data. :param url: The URL where the data is located. """ embeddings_data = chunker.create_chunks(loader, url) documents = embeddings_data["documents"] metadatas = embeddings_data["metadatas"] ids = embeddings_data["ids"] # get existing ids, and discard doc if any common id exist. existing_docs = self.collection.get( ids=ids, # where={"url": url} ) existing_ids = set(existing_docs["ids"]) if len(existing_ids): data_dict = {id: (doc, meta) for id, doc, meta in zip(ids, documents, metadatas)} data_dict = {id: value for id, value in data_dict.items() if id not in existing_ids} if not data_dict: print(f"All data from {url} already exists in the database.") return ids = list(data_dict.keys()) documents, metadatas = zip(*data_dict.values()) self.collection.add( documents=documents, metadatas=metadatas, ids=ids ) print(f"Successfully saved {url}. Total chunks count: {self.collection.count()}") def _format_result(self, results): return [ (Document(page_content=result[0], metadata=result[1] or {}), result[2]) for result in zip( results["documents"][0], results["metadatas"][0], results["distances"][0], ) ] def get_openai_answer(self, prompt): messages = [] messages.append({ "role": "user", "content": prompt }) response = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=messages, temperature=0, max_tokens=1000, top_p=1, ) return response["choices"][0]["message"]["content"] def retrieve_from_database(self, input_query): """ Queries the vector database based on the given input query. Gets relevant doc based on the query :param input_query: The query to use. :return: The content of the document that matched your query. """ result = self.collection.query( query_texts=[input_query,], n_results=1, ) result_formatted = self._format_result(result) content = result_formatted[0][0].page_content return content def generate_prompt(self, input_query, context): """ Generates a prompt based on the given query and context, ready to be passed to an LLM :param input_query: The query to use. :param context: Similar documents to the query used as context. :return: The prompt """ prompt = f"""Use the following pieces of context to answer the query at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. {context} Query: {input_query} Helpful Answer: """ return prompt def get_answer_from_llm(self, prompt): """ Gets an answer based on the given query and context by passing it to an LLM. :param query: The query to use. :param context: Similar documents to the query used as context. :return: The answer. """ answer = self.get_openai_answer(prompt) return answer def query(self, input_query): """ Queries the vector database based on the given input query. Gets relevant doc based on the query and then passes it to an LLM as context to get the answer. :param input_query: The query to use. :return: The answer to the query. """ context = self.retrieve_from_database(input_query) prompt = self.generate_prompt(input_query, context) answer = self.get_answer_from_llm(prompt) return answer class App(EmbedChain): """ The EmbedChain app. Has two functions: add and query. adds(data_type, url): adds the data from the given URL to the vector db. query(query): finds answer to the given query using vector database and LLM. """ pass
[ "Use the following pieces of context to answer the query at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.\n PLACEHOLDER\n Query: PLACEHOLDER\n Helpful Answer:\n " ]
2024-01-10
mivanovitch/embedchain
embedchain~chunkers~web_page.py
from embedchain.chunkers.base_chunker import BaseChunker from langchain.text_splitter import RecursiveCharacterTextSplitter TEXT_SPLITTER_CHUNK_PARAMS = { "chunk_size": 500, "chunk_overlap": 0, "length_function": len, } class WebPageChunker(BaseChunker): def __init__(self): text_splitter = RecursiveCharacterTextSplitter(**TEXT_SPLITTER_CHUNK_PARAMS) super().__init__(text_splitter)
[]
2024-01-10
mivanovitch/embedchain
embedchain~loaders~youtube_video.py
from langchain.document_loaders import YoutubeLoader from embedchain.utils import clean_string class YoutubeVideoLoader: def load_data(self, url): loader = YoutubeLoader.from_youtube_url(url, add_video_info=True) doc = loader.load() output = [] if not len(doc): raise ValueError("No data found") content = doc[0].page_content content = clean_string(content) meta_data = doc[0].metadata meta_data["url"] = url output.append({ "content": content, "meta_data": meta_data, }) return output
[]
2024-01-10
mivanovitch/embedchain
embedchain~chunkers~pdf_file.py
from embedchain.chunkers.base_chunker import BaseChunker from langchain.text_splitter import RecursiveCharacterTextSplitter TEXT_SPLITTER_CHUNK_PARAMS = { "chunk_size": 1000, "chunk_overlap": 0, "length_function": len, } class PdfFileChunker(BaseChunker): def __init__(self): text_splitter = RecursiveCharacterTextSplitter(**TEXT_SPLITTER_CHUNK_PARAMS) super().__init__(text_splitter)
[]
2024-01-10
lvwerra/datasets
datasets~openwebtext~openwebtext.py
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Open WebText Corpus""" import os import re from itertools import chain import datasets _CITATION = """\ @misc{Gokaslan2019OpenWeb, title={OpenWebText Corpus}, author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex}, howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}}, year={2019} } """ _DESCRIPTION = """\ An open-source replication of the WebText dataset from OpenAI. """ _URL = "https://zenodo.org/record/3834942/files/openwebtext.tar.xz" class Openwebtext(datasets.GeneratorBasedBuilder): """The Open WebText dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="plain_text", description="Plain text", version=datasets.Version("1.0.0"), ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({"text": datasets.Value("string")}), homepage="https://skylion007.github.io/OpenWebTextCorpus/", citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_URL) owt_dir = os.path.join(dl_dir, "openwebtext") subset_xzs = [ os.path.join(owt_dir, file_name) for file_name in sorted(os.listdir(owt_dir)) if file_name.endswith("xz") # filter out ...xz.lock ] ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75)) nested_txt_files = [ [ os.path.join(ex_dir, txt_file_name) for txt_file_name in sorted(os.listdir(ex_dir)) if txt_file_name.endswith("txt") ] for ex_dir in ex_dirs ] txt_files = chain(*nested_txt_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files}), ] def _generate_examples(self, txt_files): """Yields examples.""" for idx, filepath in enumerate(txt_files): with open(filepath, encoding="utf-8") as f: yield idx, {"text": re.sub("\n\n\n+", "\n\n", f.read()).strip()}
[]
2024-01-10
cliff-rosen/chatter
backend~chatter~data_processor~util_embed_chunks.py
import openai from openai.embeddings_utils import get_embedding, cosine_similarity from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter import pinecone import json import re import os import sys sys.path.append('db') sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import db import local_secrets as secrets """ TO DO: log error if upsert response not {'upserted_count': 1} upsert in batches """ PINECONE_API_KEY = secrets.PINECONE_API_KEY INDEX_NAME = "main-index" OPENAI_API_KEY = secrets.OPENAI_API_KEY openai.api_key = OPENAI_API_KEY pinecone.init(api_key=PINECONE_API_KEY, environment="us-east1-gcp") index = pinecone.Index(INDEX_NAME) def get_openai_embedding(text): embedding_model = "text-embedding-ada-002" return get_embedding( text, engine="text-embedding-ada-002" ) def run(): print("Starting embedding update for domain", domain_id) conn = db.get_connection() rows = db.get_document_chunks(conn, domain_id) cur_count = 1 tot_count = len(rows) print("Total chunks to be updated", tot_count) for row in rows: doc_chunk_id = row['doc_chunk_id'] chunk_text = row['chunk_text'] embedding = get_openai_embedding(chunk_text) print("Processing ", cur_count, " of ", tot_count) print(" Data: ", doc_chunk_id, embedding[:10]) db.update_document_chunk_embedding(conn, doc_chunk_id, embedding) cur_count = cur_count + 1 db.close_connection(conn) def fetch(): res = index.fetch(ids=['3']) print(res['vectors']['3']['metadata']) # runtime settings domain_id = 27 print(index.describe_index_stats()) run()
[]
2024-01-10
cliff-rosen/chatter
backend~chatter~utils~kb_service.py
from db import db from utils.utils import num_tokens_from_string from utils.logging import logging import utils.openai_wrappers as model import utils.pinecone_wrappers as vdb from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter COMPLETION_MODEL = 'text-davinci-003' TEMPERATURE = 0.0 logger = logging.getLogger() ''' add_document(domain_id, uri, title, text, blob) update_document(doc_id, uri, title, text, blob) del_document(doc_id) get_document(doc_id) get_chunk(doc_chunk_id) get_parent_document(doc_chunk_id) get_chunks_from-query(domain_id, query) chunks dict: { ID: { "id": ID as int, "score": score as float, "metadata": { "doc_chunk_id": 44743.0, "doc_id": 20657.0, "domain_id": 27.0 }, "uri": uri, "text": text, "used": isUsed } } { "27": { "id": 27, "score": 0.737494111, "metadata": { "doc_chunk_id": 27.0, "doc_id": 15.0, "domain_id": 1.0 }, "uri": "Changes in Drug Level Laboratory Results _ DoseMe Help Center.pdf", "text": "different, DoseMeRx will tend to prefer the one most like the population model (as this is more \ncommon in the population). Therefore, it may recommend a different dose than what would be \ncustomary for a patient if only the most recent result was considered.\nHere are two approaches to consider when this is encountered:\nIf the accuracy of the outlier drug level is questionable:\n\u0000. Consider obtaining another level if possible to validate the accuracy of the most recent \nlevel.\n\u0000. If you cannot obtain a level, exclude the last level and DoseMeRx will calculate the dose \nbased on the prior existing levels.\nIf the most recent drug level value is considered to be correct:\n9/14/23, 4:09 PM Changes in Drug Level Laboratory Results | DoseMe Help Center\nhttps://help.doseme-rx.com/en/articles/3353676-changes-in-drug-level-laboratory-results 2/2doseme-rx.com\n\u0000. Exclude earlier drug levels (if the last result is considered correct and you think a change \nhas taken place).", "used": true } } ''' def _embed_and_add_document_chunk(doc_id, chunk_text): emb = model.get_embedding(chunk_text) doc_chunk_id = db.insert_document_chunk(doc_id, chunk_text, emb) return (emb, doc_chunk_id) def _make_chunks_from_text(text): chunks_splitter = RecursiveCharacterTextSplitter( chunk_size = 1000, chunk_overlap = 0, length_function = len, ) chunks = chunks_splitter.split_text(text) print('Chunks produced:', len(chunks)) return chunks # mutate chunks by adding {"uri": uri, "text", text} to each value dict # chunks is dict where # key is chunk_id, and value is obj with score, text def _set_chunk_text_from_ids(chunks): ids = list(chunks.keys()) rows = db.get_document_chunks_from_ids(ids) for row in rows: doc_chunk_id = row["doc_chunk_id"] chunk_text = row["chunk_text"] doc_uri = row["doc_uri"] print(f"id: {doc_chunk_id}, text: {chunk_text[:20]}") chunks[str(doc_chunk_id)]["uri"] = doc_uri chunks[str(doc_chunk_id)]["text"] = chunk_text # mutate chunks by adding {"uri": uri, "text", text} to each value dict # chunks is dict where # key is chunk_id, and value is obj with score, text def _set_chunk_text_from_ids(chunks): ids = list(chunks.keys()) rows = db.get_document_chunks_from_ids(ids) for row in rows: doc_chunk_id = row["doc_chunk_id"] chunk_text = row["chunk_text"] doc_uri = row["doc_uri"] print(f"id: {doc_chunk_id}, text: {chunk_text[:20]}") chunks[str(doc_chunk_id)]["uri"] = doc_uri chunks[str(doc_chunk_id)]["text"] = chunk_text def add_document(domain_id, uri, title, text, blob): doc_id = db.insert_document(domain_id, uri, title, text, text) chunks = _make_chunks_from_text(text) for chunk in chunks: (emb, doc_chunk_id) = _embed_and_add_document_chunk(doc_id, chunk) vdb.upsert_index(doc_id, doc_chunk_id, emb, domain_id) print('added chunk ', doc_chunk_id) return doc_id def delete_document(doc_id): vdb.delete(doc_id, {}) db.delete_document(doc_id) def delete_documents(doc_ids): for doc_id in doc_ids: vdb.delete_all_for_doc_id(doc_id) db.delete_document(doc_id) def get_chunks_from_query(domain_id, user_message): chunks = {} print("getting query embedding") query_embedding = model.get_embedding(user_message) print("getting chunks ids") chunks = vdb.get_matching_chunks(domain_id, query_embedding) if not chunks: raise Exception('No chunks found - check index') print("getting chunk text from ids") _set_chunk_text_from_ids(chunks) #logger.info(chunks) return chunks
[]
2024-01-10
cliff-rosen/chatter
backend~chatter~data_processor~step_2_chunk.py
import openai from openai.embeddings_utils import get_embedding, cosine_similarity from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter import re import os import sys #import sys #sys.path.append('.\..') from db import db import local_secrets as secrets """ embedding length: 1536 Retrieve all documents for domain For each document break into chunks for each chunk get embedding insert chunk with embedding into document_chunk table """ MIN_CHUNK_LENGTH = 20 MAX_CHUNK_LENGTH = 1500 OPENAI_API_KEY = secrets.OPENAI_API_KEY openai.api_key = OPENAI_API_KEY def get_openai_embedding(text): embedding_model = "text-embedding-ada-002" return get_embedding( text, engine="text-embedding-ada-002" ) def get_all_docs_from_domain(conn, domain_id): return db.get_all_docs_from_domain(conn, domain_id) def get_docs_from_ids(conn, ids): return db.get_docs_from_ids(conn, ids) def get_chunks_from_text(text, maker_type): if maker_type == "MAKER_2": return get_chunks_from_text_maker_2(text) if maker_type == "CHAR": print('chunking with CharacterTextSplitter') chunks_splitter = CharacterTextSplitter( #separator = "\n\n", separator = "\n", chunk_size = 1000, chunk_overlap = 200, length_function = len, ) else: print('chunking with RecursiveCharacterTextSplitter') #text = re.sub('\s+', ' ', text) chunks_splitter = RecursiveCharacterTextSplitter( chunk_size = 1000, chunk_overlap = 0, length_function = len, ) chunks = chunks_splitter.split_text(text) return chunks # create fragments, which are chunks delimited by \n\n # chunks are fragments concatenated until a fragment is min 20 words def get_chunks_from_text_maker_2(text): print("chunk maker 2") chunks = [] fragments = [] # clean input text = text.encode(encoding='ASCII',errors='ignore').decode() text.strip() #text = re.sub('\s{3,}', '\n\n', text) # build array of fragments by nn fragments = text.split('\n\n') # add array elements until reaching an element with at least 20 words cur_chunk = "" for i, fragment in enumerate(fragments): cur_chunk = cur_chunk + '\n' + fragment if len(cur_chunk) > 1 and (len(fragment.split()) >= 20 or i + 1 == len(fragments)): cur_chunk = cur_chunk.strip() if len(cur_chunk) > MIN_CHUNK_LENGTH: chunks.append(cur_chunk) cur_chunk = "" return chunks # runtime settings #chunk_maker = "MAKER_2" #chunk_maker = "CHAR" chunk_maker = "MAKER_1" domain_id = 1 #doc_ids = None doc_ids = [53, 54, 55, 56, 57] def run(): # init conn = db.get_connection() # one to one creation of chunks with embeddings # FIX ME: should be upsertChunk() and not insertChunk() if not doc_ids: print("Retrieve documents for domain", domain_id) rows = get_all_docs_from_domain(conn, domain_id) else: print("Retrieving documents: ", doc_ids) rows = get_docs_from_ids(conn, doc_ids) print("Retrieved: ", len(rows)) for doc_id, _domain_id, uri, doc_title, doc_text in rows: print("****************************") chunks = get_chunks_from_text(doc_text, chunk_maker) print(uri, len(chunks)) for chunk in chunks: print(doc_id, chunk[:50]) print("----------------------") embedding = get_openai_embedding(chunk[:MAX_CHUNK_LENGTH]) db.insert_document_chunk(conn, doc_id, chunk, embedding) # cleanup db.close_connection(conn) def write_to_file(text): directory = 'chatter\data_processor\outputs' dest = 'chunks.txt' with open(os.path.join(directory, dest), 'a') as new_file: new_file.write(text) def test_chunker(): print("TEST: Retrieve documents for domain", domain_id) conn = db.get_connection() rows = get_all_docs_from_domain(conn, domain_id) db.close_connection(conn) for _doc_id, _domain_id, uri, _doc_title, doc_text in rows: print("********************************") print(uri) chunks = get_chunks_from_text(SAMPLE_DOC, chunk_maker) write_to_file('****************************************************************\n') for chunk in chunks: write_to_file(chunk + '\n==============\n') write_to_file('\n\n') def test_chunker_single_doc(): chunks = get_chunks_from_text(SAMPLE_DOC, chunk_maker) for chunk in chunks: write_to_file(chunk + '\n==============\n') SAMPLE_DOC = """ Data Processing Steps TO DO: - add logging to capture links missing content, etc. - step 2a: look for and remove irrelevant chunks - check for empty or small pages ie from SPAs - PREPARE - 1. Review site using inspect and establish which tag, tag id or class to spider 2. Create domain record with spider_notes with that info 3. Update the get_page_contents() to retrieve proper target 4. Update domain name and domain_id in 3 processing scripts - RUN - 1. Step 1: spider side and populate document table Verify get_page_contents retrieval logic Set single to true Set domain to "https://domain.com", with no / at end Run script and verify: console shows content found in correct section (i.e. id=main) content written to page.txt is correct spider_log has no errors Change single to False and run Step 1 fully Check logfile Check db document table sorted by doc_uri find duplicate doc_text SELECT * FROM document WHERE domain_id = 31 ORDER BY doc_uri 2. Step 2: populate document_chunk from document records set chunk_maker set g_domain_id run script check logfile check db document_chunks table search for long chunks SELECT length(chunk_text), dc.doc_chunk_id, dc.chunk_text, d.doc_uri FROM document_chunk dc JOIN document d ON dc.doc_id = d.doc_id WHERE domain_id = 25 ORDER BY LENGTH(chunk_text) desc LIMIT 100 search for redundant and useless chunks SELECT dc.* FROM document_chunk dc JOIN document d ON dc.doc_id = d.doc_id WHERE domain_id = 28 ORDER BY chunk_text 3. Step 3: update Pinecone index with chunks set domain_id run script check logfile verify: select count(*) from document_chunk where domain_id = 22 select count(*) from document_chunk compare with index count in Pinecone console 4. Create user - TEST - 1. Login as user and test - domain defaults to correct value - "what does this company do" ; check chunks and response Other tests: check for chunks that are very long SELECT domain_id, LENGTH(chunk_text), doc_chunk_id FROM document_chunk dc JOIN document d ON dc.doc_id = d.doc_id WHERE LENGTH(chunk_text) > 2000 ORDER BY domain_id """ ##################################################### #clean_chunk = re.sub('\s+', ' ', chunk)
[]
2024-01-10
cliff-rosen/chatter
backend~chatter~data_processor~util_chunks.py
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter import re import os import sys sys.path.append('db') sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import db import local_secrets as secrets MIN_CHUNK_LENGTH = 20 def get_chunks_from_text_2(text): print("chunker 2") chunks = [] fragments = [] # clean input text.strip() text = re.sub('\s{3,}', '\n\n', text) # built array of fragments by nn fragments = text.split('\n\n') # add array elements until reaching an element with at least 20 words cur_chunk = "" for i, fragment in enumerate(fragments): cur_chunk = cur_chunk + '\n' + fragment if len(cur_chunk) > 1 and (len(fragment.split()) >= 20 or i + 1 == len(fragments)): cur_chunk = cur_chunk.strip() if len(cur_chunk) > MIN_CHUNK_LENGTH: chunks.append(cur_chunk) cur_chunk = "" return chunks def write_text_to_file(file_path, text): with open(file_path, 'w') as new_file: #clean_chunk = re.sub('\s+', ' ', chunk_text) #clean_chunk = clean_chunk.encode(encoding='ASCII',errors='ignore').decode() new_file.write(text) def write_chunks_to_file(file_path, chunks): with open(file_path, 'w') as new_file: for chunk in chunks: #clean_chunk = re.sub('\s+', ' ', chunk) chunk = chunk.encode(encoding='ASCII',errors='ignore').decode() new_file.write(chunk + "\n------------------\n") def run(): # runtime settings doc_id = 5758 text = db.get_document(doc_id)[0]["doc_text"] text = text.strip() write_text_to_file("p1.txt", text) chunks = get_chunks_from_text_2(text) write_chunks_to_file("p1-c1.txt", chunks) text = "" chunks = get_chunks_from_text_2(text) for chunk in chunks: print("-------------------------------") print(chunk)
[]
2024-01-10
cliff-rosen/chatter
backend~chatter~_archive~x.py
from langchain.agents import load_tools from langchain.agents import initialize_agent from langchain.llms import OpenAI from typing import Generic, TypeVar class P(): x = 5 @classmethod def print_c(cls): print(cls) def print_x(self): print('x', self.x) class C(P): def __init__(self, x): self.x = x P.print_c() C.print_c() """ llm = OpenAI(temperature=0) text = "What would be a good company name a company that makes colorful socks?" tools = load_tools(["serpapi", "llm-math"], llm=llm) agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) agent.run("What are the common adverse events in a hep A trial?") class P(): def say_hello(): print('hello from P') class C1(P): def c1(): pass class C2(P): pass class C3(): pass #PX = Generic.__class_getitem__(TP) TP = TypeVar('TP', bound=C1) class X(Generic[TP]): def __init__(self, p: TP): self.p = p def x1(self, p: TP): print(p) return p #print(type(Generic[TP])) #print("-----") print(type(X)) print(type(X[int])) class Y(): def __class_getitem__(cls, p): return Y #class X(Generic[TP]): #class X(Generic.__class_getitem__(TP)): class X(PX): def __init__(self, p1: TP): print("X type", type(p1)) #class Y(X[C1]): class Y(X.__class_getitem__(C1)): def __init__(self, p1: C1): print("Y type", type(p1)) I = X.__class_getitem__(C1) print(I) #print(dir(Generic[TP])) #print(dir(PX)) #print(dir(X)) #print(dir(Generic[TP])) #if Generic[TP] == Generic.__class_getitem__(TP): # print('yes') T = TypeVar('T') class A(Generic[T]): def __init__(self): self.items = [] def a(self, i: T): print(i) class B(): pass def printt(x): print(type(x)) class XC1(X[C1]): pass class XC2(X[C2]): pass class XC3(X[C3]): pass class A: def __class_getitem__(cls, i): pass def x(a,b,c) def x(a,b,c,d=10) x(1,2,3,d=4) class Hello(): def __call__(self, msg): print('hello, ' + msg) hello = Hello() hello("there") """
[]
2024-01-10
HavosAi/HavosAi
src~topic_modeling~visualize.py
import plotly.express as px from sklearn.base import copy from gensim.test.utils import common_dictionary from gensim.models import CoherenceModel import pandas as pd import matplotlib.pyplot as plt from tqdm.auto import tqdm from IPython.display import display class TopicVisualizer: def __init__(self, topic_pipe, df_texts, text_col, date_col): """ Parameters: ---------- topic_pipe: sklearn.pipeline.Pipeline Fitted topic pipeline containing steps: `preprocessor`, `vectorizer`, `model`. df_text: pd.DataFrame """ self.pipe = topic_pipe self.df_texts = df_texts self.text_col = text_col self.date_col = date_col self.transform() def transform(self): """Transforms nested `df_texts` storing all intermediate steps.""" self.texts_prep = self.pipe.named_steps.preprocessor.transform(self.df_texts[self.text_col]) self.feat = self.pipe.named_steps.vectorizer.transform(self.texts_prep) self.data_topics = self.pipe.named_steps.model.transform(self.feat) return self.df_topics @staticmethod def _plot_top_words(model, feature_names, n_top_words, title): n_components = len(model.components_) fig, axes = plt.subplots(n_components // 5, 5, figsize=(30, 1.5 * n_components), sharex=True) axes = axes.flatten() for topic_idx, topic in enumerate(model.components_): top_features_ind = topic.argsort()[: -n_top_words - 1 : -1] top_features = [feature_names[i] for i in top_features_ind] weights = topic[top_features_ind] ax = axes[topic_idx] ax.barh(top_features, weights, height=0.7) ax.set_title(f"Topic {topic_idx +1}", fontdict={"fontsize": 30}) ax.invert_yaxis() ax.tick_params(axis="both", which="major", labelsize=20) for i in "top right left".split(): ax.spines[i].set_visible(False) fig.suptitle(title, fontsize=40) plt.subplots_adjust(top=0.90, bottom=0.05, wspace=0.90, hspace=0.3) plt.show() @staticmethod def _get_top_words(model, feature_names, n_top_words, join=' | '): for topic_idx, topic in enumerate(model.components_): top_features_ind = topic.argsort()[: -n_top_words - 1 : -1] top_features = [feature_names[i] for i in top_features_ind] if join is None: yield top_features else: yield join.join(top_features) def calculate_coherence_from_n_topics(self, n_components_it=[2, 5, 10, 15, 20, 25, 30], coherence='c_v'): dictionary = common_dictionary.from_documents(self.texts_prep) display(dictionary) scores = {} for n_components in tqdm(n_components_it): model = copy.copy(self.pipe.named_steps.model) model.n_components = n_components model.fit(self.feat) topics = self._get_top_words(model, self.pipe.named_steps.vectorizer.get_feature_names(), 5, None) cm = CoherenceModel( topics=topics, dictionary=dictionary, texts=self.texts_prep, coherence=coherence ) scores[n_components] = cm.get_coherence() return scores def plot_coherence_from_n_topics(self, n_components_it=[2, 5, 10, 15, 20, 25, 30], coherence='c_v'): scores_dct = self.calculate_coherence_from_n_topics(n_components_it, coherence) scores_ser = pd.Series(scores_dct, name='coherence') return px.line(scores_ser, title=f'Coherence "{coherence}" by number of topics') def plot_top_keywords(self, n_words=20, title='Top words'): return self._plot_top_words( self.pipe.named_steps.model, self.pipe.named_steps.vectorizer.get_feature_names(), n_words, title) def get_top_words(self, n_words=5, join=' | '): return list(self._get_top_words( self.pipe.named_steps.model, self.pipe.named_steps.vectorizer.get_feature_names(), n_words, join )) @property def df_topics(self): return pd.DataFrame( self.data_topics, columns=self.get_top_words(n_words=3), index=self.df_texts.index ) @property def df_top_topic_for_doc(self): return self.df_topics.agg(['idxmax', 'max'], axis=1).sort_values('max').join(self.df_texts) @property def df_top_doc_for_topic(self): return self.df_topics.agg(['max', 'idxmax']).T.merge(self.df_texts, left_on='idxmax', right_index=True).rename(columns={'max': 'weight'}) def plot_topic_trend(self, min_score=0.2): df_topics_by_date_gr = (self.df_topics[self.df_topics > min_score] .join(self.df_texts[self.date_col]) .rename_axis(columns='topic') .groupby( pd.Grouper(key=self.date_col, freq='m') ) ) return px.line( df_topics_by_date_gr.count().stack().to_frame('count').reset_index(), x=self.date_col, y='count', facet_col='topic', facet_col_wrap=3, height=900, ) def plot_doc_by_top_topic(self, text_col): text_col = text_col or self.text_col return px.box( self.df_top_topic_for_doc, facet_col='idxmax', facet_col_wrap=3, x='max', points='all', hover_data=[text_col], height=800 ) def plot_topic_weight_distribution(self, **kwargs): default_kwargs = dict(x='weight', log_y=True, facet_col='topic', height=900, facet_col_wrap=3) default_kwargs.update(kwargs) return px.histogram(self.df_topics.stack().to_frame('weight').reset_index().query('weight > 0').rename(columns={'level_1': 'topic'}), **default_kwargs)
[]
2024-01-10
aws-samples/conversational-ai-llms-with-amazon-lex-and-sagemaker
src~bot_dispatcher~sm_utils~sm_langchain_sample.py
"""Summary """ from typing import List, Any, Dict from langchain.memory import ConversationBufferMemory from langchain import PromptTemplate, SagemakerEndpoint, ConversationChain from langchain.llms.sagemaker_endpoint import LLMContentHandler from langchain.schema import BaseMemory from pydantic import BaseModel, Extra import json class SagemakerContentHandler(LLMContentHandler): """Helper class to parse Sagemaker input/output """ content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: """Parse input into required format for Sagemaker Args: prompt (str): LLM Prompt model_kwargs (Dict): model tuning paramters Returns: bytes: Description """ input_str = json.dumps({"text_inputs": prompt, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str: """Parse sagemaker output. Return the first generated text as chatbot response Args: output (bytes): Bytes output from Sagemaker Returns: str: Chat response """ response_json = json.loads(output.read().decode("utf-8")) print(response_json) return response_json['generated_texts'][0] class LexConversationalMemory(BaseMemory, BaseModel): """Langchain Custom Memory class that uses Lex Conversation history Attributes: history (dict): Dict storing conversation history that acts as the Langchain memory lex_conv_context (str): LexV2 sessions API that serves as input for convo history Memory is loaded from here memory_key (str): key to for chat history Langchain memory variable - "history" """ history = {} memory_key = "chat_history" #pass into prompt with key lex_conv_context = "" def clear(self): """Clear chat history """ self.history = {} @property def memory_variables(self) -> List[str]: """Load memory variables Returns: List[str]: List of keys containing Langchain memory """ return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load memory from lex into current Langchain session memory Args: inputs (Dict[str, Any]): User input for current Langchain session Returns: Dict[str, str]: Langchain memory object """ input_text = inputs[list(inputs.keys())[0]] ccontext = json.loads(self.lex_conv_context) memory = { self.memory_key: ccontext[self.memory_key] + input_text + "\nAI: ", } return memory def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Load memory from lex + current input into Langchain session memory Args: inputs (Dict[str, Any]): User input outputs (Dict[str, str]): Langchain response from calling LLM """ input_text = inputs[list(inputs.keys())[0]] output_text = outputs[list(outputs.keys())[0]] ccontext = json.loads(self.lex_conv_context) self.history = { self.memory_key: ccontext[self.memory_key] + input_text + f"\nAI: {output_text}", } class SagemakerLangchainBot(): """Create a langchain.ConversationChain using a Sagemaker endpoint as the LLM Attributes: chain (langchain.ConversationChain): Langchain chain that invokes the Sagemaker endpoint hosting an LLM """ def __init__(self, prompt_template, sm_endpoint_name, lex_conv_history="", region_name="" ): """Create a SagemakerLangchainBot client Args: prompt_template (str): Prompt template sm_endpoint_name (str): Sagemaker endpoint name lex_conv_history (str, optional): Lex convo history from LexV2 sessions API. Empty string for no history (first chat) region_name (str, optional): region where Sagemaker endpoint is deployed """ prompt = PromptTemplate( input_variables=["chat_history", "input"], template=prompt_template ) # Sagemaker endpoint for the LLM. Pass in arguments for tuning the model and sm_flant5_llm = SagemakerEndpoint( endpoint_name=sm_endpoint_name, region_name=region_name, content_handler=SagemakerContentHandler(), model_kwargs={"temperature":2.0,"max_length":50, "num_return_sequences":3, "top_k":50, "top_p":0.95, "do_sample":True} ) # Create a conversation chain using the prompt, llm hosted in Sagemaker, and custom memory class self.chain = ConversationChain( llm=sm_flant5_llm, prompt=prompt, memory=LexConversationalMemory(lex_conv_context=lex_conv_history), verbose=True ) def call_llm(self,user_input) -> str: """Call the Sagemaker endpoint hosting the LLM by calling ConversationChain.predict() Args: user_input (str): User chat input Returns: str: Sagemaker response to display as chat output """ output = self.chain.predict( input=user_input ) print("call_llm - input :: "+user_input) print("call_llm - output :: "+output) return output
[ "chat_history", "input" ]
2024-01-10
DigData-ai/token-analyzer
spade~gradio_spade.py
import openai import gradio as gr from gradio.components import Radio openai.api_key = "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" messages = [{"role": "system", "content": "You are GPT-4, answer questions \ if only they are related to crypto currency else return 'it is out of my scope'."}] def generate_response(prompt): mode = "question-answer" if mode == "question-answer": result = openai.ChatCompletion.create(model="gpt-3.5-turbo-0301", messages=messages + [{"role": "user", "content": prompt}]) return result['choices'][0]['message']['content'] elif mode == "prompt-to-sql": openai.api_type = "azure" openai.api_base = "https://test -digdata.openai.azure.com/" openai.api_version = "2022-12-01" openai.api_key = '1c60ef61808b4590b3c6c5d5c86be3ed' response = openai.Completion.create( engine="code-davinci-002", prompt=f"### mySQL tables, with their properties:\n#\n# Employee(id, name, department_id)\n# Department(id, name, address)\n# Salary_Payments(id, employee_id, amount, date)\n#\n###\ {prompt}\n\nSELECT", temperature=0, max_tokens=150, top_p=1, frequency_penalty=0, presence_penalty=0, best_of=1, stop=["#",";"]) openai.api_key = "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" return response.choices[0].text inputs = [ gr.inputs.Textbox(lines=5, label="Question/Prompt", placeholder="Type a question or SQL prompt here..."), ] outputs = gr.outputs.Textbox(label="Answer") title = "GPT-4" description = "GPT-4 is a question answering system that can answer questions related to crypto currency. \ It can also generate SQL queries from a prompt." examples = [ ["What is the price of Bitcoin?", "Question-Answer"], ["What is the price of Ethereum?", "Question-Answer"], ["What is the price of Dogecoin?", "Question-Answer"], ["What is the price of Cardano?", "Question-Answer"], ] gr.Interface(generate_response, inputs, outputs, title=title, description=description, examples=examples).launch()
[ "You are GPT-4, answer questions if only they are related to crypto currency else return 'it is out of my scope'.", "content", "### mySQL tables, with their properties:\n#\n# Employee(id, name, department_id)\n# Department(id, name, address)\n# Salary_Payments(id, employee_id, amount, date)\n#\n### PLACEHOLDER\n\nSELECT" ]
2024-01-10
bjoernpl/GermanBenchmark
dataset_translation~translate_mmlu.py
""" Copyright 2023 Björn Plüster Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from datasets import load_dataset from tqdm import tqdm import guidance import json from pathlib import Path _SUBJECTS = [ "abstract_algebra", "anatomy", "astronomy", "business_ethics", "clinical_knowledge", "college_biology", "college_chemistry", "college_computer_science", "college_mathematics", "college_medicine", "college_physics", "computer_security", "conceptual_physics", "econometrics", "electrical_engineering", "elementary_mathematics", "formal_logic", "global_facts", "high_school_biology", "high_school_chemistry", "high_school_computer_science", "high_school_european_history", "high_school_geography", "high_school_government_and_politics", "high_school_macroeconomics", "high_school_mathematics", "high_school_microeconomics", "high_school_physics", "high_school_psychology", "high_school_statistics", "high_school_us_history", "high_school_world_history", "human_aging", "human_sexuality", "international_law", "jurisprudence", "logical_fallacies", "machine_learning", "management", "marketing", "medical_genetics", "miscellaneous", "moral_disputes", "moral_scenarios", "nutrition", "philosophy", "prehistory", "professional_accounting", "professional_law", "professional_medicine", "professional_psychology", "public_relations", "security_studies", "sociology", "us_foreign_policy", "virology", "world_religions", ] # set the default language model used to execute guidance programs guidance.llm = guidance.llms.OpenAI("gpt-3.5-turbo", max_calls_per_min=1000, api_key=input("API Key: ")) structure_program = guidance( ''' {{#system~}} You are a helpful assistant that translates questions and answers from English to German. {{~/system}} {{#user~}} Translate the following question and each of the multiple choice answers into German. Be as precise as possible. Keep the exact json format. Translate only the values and not the keys. "_________" indicate blanks that should be kept in the translation. Do not answer anything else than the json. { "question": "How many planets does our solar system have?", "A": "8", "B": "9", "C": "10", "D": "All of the above" } {{~/user}} {{#assistant~}} { "question": "Wie viele Planeten hat unser Sonnensystem?", "A": "8", "B": "9", "C": "10", "D": "Alle der oben genannten" } {{~/assistant}} {{#user~}} { "question": {{input}}, "A": "{{a}}", "B": "{{b}}", "C": "{{c}}", "D": "{{d}}" } {{~/user}} {{#assistant~}} {{gen 'output' temperature=0 top_p=1 stop="\\n}" max_tokens=1500}} {{~/assistant}} ''', stream=False) json_format = """ "question": "{question}", "A": "{A}", "B": "{B}", "C": "{C}", "D": "{D}" """ def contains_json(string): return "{" in string and "}" in string and "\"question\"" in string and "\"A\"" in string and "\"B\"" in string and "\"C\"" in string and "\"D\"" in string def fix_quotes(string): if string[0] == "\"": string = string[1:] if string[-1] == "\"": string = string[:-1] string = string.replace("\"", "\\\"") string = string.replace("\n", "\\n") return string def fix_parentheses(string): string = string.replace("{", "\\{") string = string.replace("}", "\\}") return string def get_question(string): post_question = string.split("\"question\":")[1] question = post_question.split("\"A\"")[0].strip() if question[0] == "\"": question = question[1:] if question[-2:] == "\",": question = question[:-2] question = question.replace("\"", "\\\"") question = question.replace("\n", "\\n") question = question.replace("\\\",\\n\\\"", "\\n") question = fix_parentheses(question) return question def get_choices(string): choice_A = string.split("\"A\":")[1].split("\"B\"")[0].strip()[:-1] choice_B = string.split("\"B\":")[1].split("\"C\"")[0].strip()[:-1] choice_C = string.split("\"C\":")[1].split("\"D\"")[0].strip()[:-1] choice_D = string.split("\"D\":")[1].split("}")[0].strip() if choice_D.endswith(","): choice_D = choice_D[:-1] fix = lambda x: fix_quotes(fix_parentheses(x)) return [fix(choice_A), fix(choice_B), fix(choice_C), fix(choice_D)] def is_valid_json(string): try: json.loads(string) return True except: return False def get_json(string): if contains_json(string): question = get_question(string) choices = get_choices(string) json_string = json_format.format(question=question, A=choices[0], B=choices[1], C=choices[2], D=choices[3]) json_string = "{" + json_string + "}" if is_valid_json(json_string): return json_string else: return None else: return None mmlu = {name: load_dataset("tasksource/mmlu", name, split="validation") for name in _SUBJECTS} total_len = sum(len(mmlu[name]) for name in _SUBJECTS) print(f"Total length: {total_len} examples") def translate_example(example): question = example["question"] try: out = structure_program( input=question, a=example["choices"][0], b=example["choices"][1], c=example["choices"][2], d=example["choices"][3] ) except: example["answer_de"] = out["output"] example["question_de"] = "" example["choices_de"] = ["", "", "", ""] try: translated = json.loads(get_json(out["output"]+"\n}")) example["question_de"] = translated["question"] example["choices_de"] = [translated["A"], translated["B"], translated["C"], translated["D"]] example["answer_de"] = out["output"]+"\n}" except: if "{" in out["output"]: output = "{" + out["output"].split("{")[1] try: translated = json.loads(output) example["question_de"] = translated["question"] example["choices_de"] = [translated["A"], translated["B"], translated["C"], translated["D"]] example["answer_de"] = out["output"]+"\n}" except: example["answer_de"] = out["output"] example["question_de"] = "" example["choices_de"] = ["", "", "", ""] else: example["answer_de"] = out["output"] example["question_de"] = "" example["choices_de"] = ["", "", "", ""] return example Path("outputs_val_mmlu").mkdir(exist_ok=True) # Translate the parts for i, name in tqdm(enumerate(_SUBJECTS), total=len(_SUBJECTS)): print(f"Translating {name} ({i+1}/{len(_SUBJECTS)})") part = mmlu[name] part = part.select(range(15)) if len(part) > 15 else part p = part.map(translate_example, num_proc=8) p = p.filter(lambda x: x["question_de"] != "") print(len(p) > 6) p.to_parquet(f"outputs_val_mmlu/{name}.parquet")
[]
2024-01-10
bjoernpl/GermanBenchmark
dataset_translation~translate_truthfulqa.py
""" Copyright 2023 Björn Plüster Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from datasets import load_dataset from tqdm import tqdm, trange import guidance import json from pathlib import Path from datasets.utils.logging import disable_progress_bar #disable_progress_bar() # set the default language model used to execute guidance programs guidance.llm = guidance.llms.OpenAI("gpt-3.5-turbo-0301", max_calls_per_min=5000, api_key="./openai_key.txt") structure_program = guidance( ''' {{#system~}} You are a helpful assistant that translates json from English to German. {{~/system}} {{#user~}} Translate the following json to german. It consists of a question and multiple possible answers. Be as precise as possible. Keep the exact json format and do not translate the keys. {{input}} {{~/user}} {{#assistant~}} {{gen 'output' temperature=1 top_p=1}} {{~/assistant}} ''', stream=False) question_options = ["question", "Frage", "frage"] choices_options = ["choices", "Antworten", "Antwortmöglichkeiten", "Auswahlmöglichkeiten", "Möglichkeiten", "Optionen", "Aussagen", "Auswahlen", "möglichkeiten", "optionen", "aussagen", "auswahlen", "antworten", "antwortmöglichkeiten", "auswahlmöglichkeiten", "Auswahl", "auswahl"] def get_question_and_choices(example): question = None choices = None for q in question_options: if q in example: question = example[q] break for c in choices_options: if c in example: choices = example[c] break return question, choices def manual_fix(translation): print(translation) print("Please enter the correct translation:") new = input() try: json.loads(new) return new except Exception as e: print("Invalid json, please try again") return manual_fix(translation) def translate_example(example, mc1=True): targets = "mc1_targets" if mc1 else "mc2_targets" other = "mc2_targets" if mc1 else "mc1_targets" ex = { "question": example["question"], "choices": example[targets]["choices"] } try: json_input = json.dumps(ex) out = structure_program( input=json_input ) except Exception as e: example["question_de"] = example.get("question_de", "") example[targets+"_de"] = {"choices": [""]*len(example[targets]["choices"]), "labels": example[targets]["labels"]} example[other+"_de"] = example.get(other+"_de", {"choices": [""]*len(example[other]["choices"]), "labels": example[other]["labels"]}) example["translation_de"+ ("1" if mc1 else "2")] = "" example["translation_de"+ ("2" if mc1 else "1")] = example.get("translation_de"+ ("2" if mc1 else "1"), "") print("first exception") return example try: try: translated = json.loads(out["output"]) except Exception as e: translated = json.loads(manual_fix(out["output"])) question, choices = get_question_and_choices(translated) if question is None or choices is None: print(translated.keys()) if question is None: question = "" if choices is None: choices = [""]*len(example[targets]["choices"]) example["question_de"] = question example[targets+"_de"] = {"choices": choices, "labels": example[targets]["labels"]} example[other+"_de"] = example.get(other+"_de", {"choices": [""]*len(example[other]["choices"]), "labels": example[other]["labels"]}) example["translation_de"+ ("1" if mc1 else "2")] = out["output"] example["translation_de"+ ("2" if mc1 else "1")] = example.get("translation_de"+ ("2" if mc1 else "1"), "") except Exception as e: example["question_de"] = example.get("question_de", "") example[targets+"_de"] = {"choices": [""]*len(example[targets]["choices"]), "labels": example[targets]["labels"]} example[other+"_de"] = example.get(other+"_de", {"choices": [""]*len(example[other]["choices"]), "labels": example[other]["labels"]}) example["translation_de"+ ("1" if mc1 else "2")] = out["output"] if "output" in out else "" example["translation_de"+ ("2" if mc1 else "1")] = example.get("translation_de"+ ("2" if mc1 else "1"), "") return example dataset = load_dataset("truthful_qa", "multiple_choice", split="validation") output_dir = Path("outputs_truthfulqa_de") output_dir.mkdir(exist_ok=True) num_shards = 10 for i in trange(num_shards, desc=f"Translating shards"): shard = dataset.shard(num_shards=num_shards, index=i) shard = shard.map(translate_example, num_proc=1) shard = shard.map(translate_example, num_proc=1, fn_kwargs={"mc1": False}) shard.to_json(output_dir / f"{i:03d}.json") # Combine shards json_files = { "validation": [str(x) for x in output_dir.glob(f"*.json")] } dataset = load_dataset("json", data_files=json_files)["validation"] dataset.push_to_hub("bjoernp/truthful_qa_de") # count examples with empty translation empty = dataset.filter(lambda x: x["translation_de1"] == "") print(f"Empty translations1 in dataset: {len(empty)}") empty = dataset.filter(lambda x: x["translation_de2"] == "") print(f"Empty translations2 in dataset: {len(empty)}") # count examples with question translation empty = dataset.filter(lambda x: x["question_de"] == "") print(f"Empty question translations in dataset: {len(empty)}") empty = dataset.filter(lambda x: x["mc1_targets_de"]["choices"]==None)#["choices"][0] == "") print(f"Empty mc1 translations in dataset: {len(empty)}") empty = dataset.filter(lambda x: x["mc1_targets_de"]["choices"]!=None and x["mc1_targets_de"]["choices"][0] == "") print(f"Empty mc1 translations in dataset: {len(empty)}") empty = dataset.filter(lambda x: x["mc2_targets_de"]["choices"]==None)#["choices"][0] == "") print(f"Empty mc2 translations in dataset: {len(empty)}") empty = dataset.filter(lambda x: x["mc2_targets_de"]["choices"]!=None and x["mc2_targets_de"]["choices"][0] == "") print(f"Empty mc2 translations in dataset: {len(empty)}")
[]
2024-01-10
bjoernpl/GermanBenchmark
dataset_translation~translate_arc.py
""" Copyright 2023 Björn Plüster Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from datasets import load_dataset from tqdm import tqdm, trange import guidance import json from pathlib import Path from datasets.utils.logging import disable_progress_bar #disable_progress_bar() # set the default language model used to execute guidance programs guidance.llm = guidance.llms.OpenAI("gpt-3.5-turbo-0301", max_calls_per_min=5000, api_key="./openai_key.txt") structure_program = guidance( ''' {{#system~}} You are a helpful assistant that translates json from English to German. {{~/system}} {{#user~}} Translate the following json to german. It consists of a question and four possible answer choices. Be as precise as possible. Keep the exact json format and do not translate the keys. {{input}} {{~/user}} {{#assistant~}} {{gen 'output' temperature=0.5 top_p=1}} {{~/assistant}} ''', stream=False) labels = ["A", "B", "C", "D"] def translate_example(example, depth=0): ex = { "question": example["question"], "choices": example["choices"]["text"] } try: json_input = json.dumps(ex) if depth > 0: out = structure_program( input=json_input, cache_seed=depth ) else: out = structure_program( input=json_input ) except Exception as e: example["question_de"] = "" example["choices_de"] = {"text": ["", "", "", ""], "label": labels} example["translation_de"] = "" return example try: translated = json.loads(out["output"]) example["question_de"] = translated["question"] example["choices_de"] = {"text": translated["choices"], "label": labels} example["translation_de"] = out.get("output", "") except Exception as e: if depth < 5: return translate_example(example, depth=depth+1) example["question_de"] = "" example["choices_de"] = {"text": ["", "", "", ""], "label": labels} example["translation_de"] = out.get("output", "") return example dataset = load_dataset("ai2_arc", "ARC-Challenge", split={"test": "test", "validation": "validation"}) output_dir = Path("outputs_arc_challenge_de") output_dir.mkdir(exist_ok=True) num_shards = 5 for split in ["test", "validation"]: ds = dataset[split] for i in trange(num_shards, desc=f"Translating {split} shards"): shard = ds.shard(num_shards=num_shards, index=i) shard = shard.map(translate_example, num_proc=16) shard.to_json(output_dir / f"{split}-{i:03d}.json") # Combine shards json_files = { "test": [str(x) for x in output_dir.glob(f"test-*.json")], "validation": [str(x) for x in output_dir.glob(f"validation-*.json")] } dataset = load_dataset("json", data_files=json_files) dataset.push_to_hub("bjoernp/arc_challenge_de") for split in ["test", "validation"]: ds = dataset[split] # count examples with empty translation empty = ds.filter(lambda x: x["translation_de"] == "") print(f"Empty translations in {split}: {len(empty)}") # count examples with question translation empty = ds.filter(lambda x: x["question_de"] == "") print(f"Empty question translations in {split}: {len(empty)}")
[]
2024-01-10
bjoernpl/GermanBenchmark
dataset_translation~translate_hellaswag.py
""" Copyright 2023 Björn Plüster Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from datasets import load_dataset from tqdm import tqdm, trange import guidance import json from pathlib import Path from datasets.utils.logging import disable_progress_bar import random #disable_progress_bar() # set the default language model used to execute guidance programs guidance.llm = guidance.llms.OpenAI("gpt-3.5-turbo-0301", max_calls_per_min=5000, api_key="./openai_key.txt") structure_program = guidance( ''' {{#system~}} You are a helpful assistant that translates json from English to German. {{~/system}} {{#user~}} Translate the following json to german. It consists of a context and four possible continuations. Make sure that the translation of each continuation is coherent with the context. Be as precise as possible. Keep the exact json format and do not translate the keys. {{input}} {{~/user}} {{#assistant~}} {{gen 'output' temperature=0.5 top_p=1}} {{~/assistant}} ''', stream=False) def fix1(example): translation = example["translation_de"] + "}" try: json.loads(translation) return translation except Exception as e: raise e def fix2(example): translation = example["translation_de"].replace('"endings":', '"endings": [') try: json.loads(translation) return translation except Exception as e: raise e def fix3(example): translation = example["translation_de"] if "}" in translation and len(translation.split("}")[1]) > 0: translation = translation.split("}")[0] + "}" try: json.loads(translation) return translation except Exception as e: raise e def attempt_fix(example): try: return fix1(example) except Exception as e: try: return fix2(example) except Exception as e: try: return fix3(example) except Exception as e: raise e def translate_example(example, random_seed=False, depth=0): ex = { "activity_label": example["activity_label"], "context": example["ctx"], "endings": example["endings"] } try: json_input = json.dumps(ex) if random_seed: out = structure_program( input=json_input, cache_seed=random.randint(0, 100000) ) else: out = structure_program( input=json_input ) except Exception as e: example["activity_label_de"] = "" example["ctx_de"] = "" example["endings_de"] = ["", "", "", ""] example["translation_de"] = "" return example try: translated = json.loads(out["output"]) example["activity_label_de"] = translated["activity_label"] example["ctx_de"] = translated["context"] example["endings_de"] = translated["endings"] example["translation_de"] = out["output"] except Exception as e: try: translated = json.loads(attempt_fix(out)) example["activity_label_de"] = translated["activity_label"] example["ctx_de"] = translated["context"] example["endings_de"] = translated["endings"] example["translation_de"] = out["output"] except Exception as e: if depth < 5: return translate_example(example, random_seed=True, depth=depth+1) example["activity_label_de"] = "" example["ctx_de"] = "" example["endings_de"] = ["", "", "", ""] example["translation_de"] = out["output"] if "output" in out else "" return example dataset = load_dataset("hellaswag", split={"train": "train[:1000]", "validation": "validation"}) output_dir = Path("outputs_hellaswag_de") output_dir.mkdir(exist_ok=True) num_shards = 100 for split in ["train", "validation"]: ds = dataset[split] for i in trange(num_shards, desc=f"Translating {split} shards"): shard = ds.shard(num_shards=num_shards, index=i) shard = shard.map(translate_example, num_proc=32) shard.to_json(output_dir / f"{split}-{i:03d}.json") # Combine shards json_files = { "train": [str(x) for x in output_dir.glob(f"train-*.json")], "validation": [str(x) for x in output_dir.glob(f"validation-*.json")] } dataset = load_dataset("json", data_files=json_files) # dataset.to_json(output_dir / "hellaswag_de.json") dataset.push_to_hub("bjoernp/hellaswag_de") for split in ["train", "validation"]: ds = dataset[split] # count examples with empty translation empty = ds.filter(lambda x: x["translation_de"] == "") print(f"Empty translations in {split}: {len(empty)}") # count examples with context translation empty = ds.filter(lambda x: x["ctx_de"] == "") print(f"Empty context translations in {split}: {len(empty)}")
[]
2024-01-10
bachvarv/NLP_Test
corpus_prep~corpus_gen.py
import locale import os.path import sys import openai from decouple import config import csv openai.api_key = config('OPEN_API_KEY') csv_file = os.path.join(os.pardir, os.path.join('simple_language', os.path.join('corpus', 'wikitext_simple.csv'))) def get_text_from_json(json_obj): return json_obj.get('choices')[0]['text'] def summarize_2nd_grader(text): response_en = openai.Completion.create(engine="text-davinci-001", prompt=f'Summarize this for a second-grade student:\n\n{text}', temperature=0.7, max_tokens=300, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) return get_text_from_json(response_en) def translate_to_de(text): response_de = openai.Completion.create(engine="text-davinci-001", prompt=f'Translate this into German:\n\n{text}', temperature=0.7, max_tokens=300, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0) return get_text_from_json(response_de) def convert_text(text): response_en = summarize_2nd_grader(text) response_de = translate_to_de(response_en) return response_de def read_text(arg): simple_text = "" if not os.path.isfile(arg): simple_text = convert_text(arg) # save_text = input("Write a file path if you want to write the simplified text to a file: ") # csv_file = os.path.join(os.pardir, os.path.join('simple_language', os.path.join('corpus', 'simple_language_openAI.csv'))) # csv_file = 'C:\MA\NLP_Test\simple_language\corpus\simple_language_openAI.csv' arg = arg.replace('\n', '') simple_text = simple_text.replace('\n', '') if os.path.isfile(csv_file): with open(csv_file, 'a', encoding='utf-8') as f: s = [arg, simple_text] print(s) writer = csv.writer(f, delimiter='\t') writer.writerow(s) return simple_text def create_csv(inp_arr): for i in inp_arr: for j in i: read_text(j) print('Written to the csv File') # if __name__ == '__main__': # argument = sys.argv[1] # # print(argument) # read_text(argument)
[ "Translate this into German:\n\nPLACEHOLDER", "Summarize this for a second-grade student:\n\nPLACEHOLDER" ]
2024-01-10
wissam-sib/dilbert
modeling_auto_dil.py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Auto Model class. """ from dilbert import DilBert from dilalbert import DilAlbert import logging from collections import OrderedDict from transformers.configuration_auto import ( AlbertConfig, AutoConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, #ElectraConfig, FlaubertConfig, GPT2Config, OpenAIGPTConfig, RobertaConfig, T5Config, TransfoXLConfig, XLMConfig, XLMRobertaConfig, XLNetConfig, ) from transformers.configuration_utils import PretrainedConfig from transformers.modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP, AlbertForMaskedLM, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.modeling_bart import ( BART_PRETRAINED_MODEL_ARCHIVE_MAP, BartForConditionalGeneration, BartForSequenceClassification, BartModel, ) from transformers.modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_MAP, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertModel, ) from transformers.modeling_camembert import ( CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP, CamembertForMaskedLM, CamembertForSequenceClassification, CamembertForTokenClassification, CamembertModel, ) from transformers.modeling_ctrl import CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, CTRLLMHeadModel, CTRLModel from transformers.modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) """ from transformers.modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_MAP, ElectraForMaskedLM, ElectraForPreTraining, ElectraForTokenClassification, ElectraModel, )""" from transformers.modeling_flaubert import ( FLAUBERT_PRETRAINED_MODEL_ARCHIVE_MAP, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, GPT2LMHeadModel, GPT2Model from transformers.modeling_openai import OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, OpenAIGPTLMHeadModel, OpenAIGPTModel from transformers.modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, RobertaForMaskedLM, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, ) from transformers.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_MAP, T5ForConditionalGeneration, T5Model from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, TransfoXLLMHeadModel, TransfoXLModel from transformers.modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_MAP, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, XLMRobertaForMaskedLM, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, ) from transformers.modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, ) logger = logging.getLogger(__name__) ALL_PRETRAINED_MODEL_ARCHIVE_MAP = dict( (key, value) for pretrained_map in [ BERT_PRETRAINED_MODEL_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, XLM_PRETRAINED_MODEL_ARCHIVE_MAP, ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP, T5_PRETRAINED_MODEL_ARCHIVE_MAP, FLAUBERT_PRETRAINED_MODEL_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, #ELECTRA_PRETRAINED_MODEL_ARCHIVE_MAP, ] for key, value, in pretrained_map.items() ) MODEL_MAPPING = OrderedDict( [ (T5Config, T5Model), (DistilBertConfig, DistilBertModel), (AlbertConfig, AlbertModel), (CamembertConfig, CamembertModel), (XLMRobertaConfig, XLMRobertaModel), (BartConfig, BartModel), (RobertaConfig, RobertaModel), (BertConfig, BertModel), (OpenAIGPTConfig, OpenAIGPTModel), (GPT2Config, GPT2Model), (TransfoXLConfig, TransfoXLModel), (XLNetConfig, XLNetModel), (FlaubertConfig, FlaubertModel), (XLMConfig, XLMModel), (CTRLConfig, CTRLModel), #(ElectraConfig, ElectraModel), ] ) MODEL_FOR_PRETRAINING_MAPPING = OrderedDict( [ (T5Config, T5ForConditionalGeneration), (DistilBertConfig, DistilBertForMaskedLM), (AlbertConfig, AlbertForMaskedLM), (CamembertConfig, CamembertForMaskedLM), (XLMRobertaConfig, XLMRobertaForMaskedLM), (BartConfig, BartForConditionalGeneration), (RobertaConfig, RobertaForMaskedLM), (BertConfig, BertForPreTraining), (OpenAIGPTConfig, OpenAIGPTLMHeadModel), (GPT2Config, GPT2LMHeadModel), (TransfoXLConfig, TransfoXLLMHeadModel), (XLNetConfig, XLNetLMHeadModel), (FlaubertConfig, FlaubertWithLMHeadModel), (XLMConfig, XLMWithLMHeadModel), (CTRLConfig, CTRLLMHeadModel), #(ElectraConfig, ElectraForPreTraining), ] ) MODEL_WITH_LM_HEAD_MAPPING = OrderedDict( [ (T5Config, T5ForConditionalGeneration), (DistilBertConfig, DistilBertForMaskedLM), (AlbertConfig, AlbertForMaskedLM), (CamembertConfig, CamembertForMaskedLM), (XLMRobertaConfig, XLMRobertaForMaskedLM), (BartConfig, BartForConditionalGeneration), (RobertaConfig, RobertaForMaskedLM), (BertConfig, BertForMaskedLM), (OpenAIGPTConfig, OpenAIGPTLMHeadModel), (GPT2Config, GPT2LMHeadModel), (TransfoXLConfig, TransfoXLLMHeadModel), (XLNetConfig, XLNetLMHeadModel), (FlaubertConfig, FlaubertWithLMHeadModel), (XLMConfig, XLMWithLMHeadModel), (CTRLConfig, CTRLLMHeadModel), #(ElectraConfig, ElectraForMaskedLM), ] ) MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict( [ (DistilBertConfig, DistilBertForSequenceClassification), (AlbertConfig, AlbertForSequenceClassification), (CamembertConfig, CamembertForSequenceClassification), (XLMRobertaConfig, XLMRobertaForSequenceClassification), (BartConfig, BartForSequenceClassification), (RobertaConfig, RobertaForSequenceClassification), (BertConfig, BertForSequenceClassification), (XLNetConfig, XLNetForSequenceClassification), (FlaubertConfig, FlaubertForSequenceClassification), (XLMConfig, XLMForSequenceClassification), ] ) MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict( [ (DistilBertConfig, DistilBertForQuestionAnswering), (AlbertConfig, DilAlbert), (RobertaConfig, RobertaForQuestionAnswering), (BertConfig, DilBert), (XLNetConfig, XLNetForQuestionAnsweringSimple), (FlaubertConfig, FlaubertForQuestionAnsweringSimple), (XLMConfig, XLMForQuestionAnsweringSimple), ] ) MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = OrderedDict( [ (DistilBertConfig, DistilBertForTokenClassification), (CamembertConfig, CamembertForTokenClassification), (XLMConfig, XLMForTokenClassification), (XLMRobertaConfig, XLMRobertaForTokenClassification), (RobertaConfig, RobertaForTokenClassification), (BertConfig, BertForTokenClassification), (XLNetConfig, XLNetForTokenClassification), (AlbertConfig, AlbertForTokenClassification), #(ElectraConfig, ElectraForTokenClassification), ] ) class AutoModel(object): r""" :class:`~transformers.AutoModel` is a generic model class that will be instantiated as one of the base model classes of the library when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)` or the `AutoModel.from_config(config)` class methods. This class cannot be instantiated using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoModel is designed to be instantiated " "using the `AutoModel.from_pretrained(pretrained_model_name_or_path)` or " "`AutoModel.from_config(config)` methods." ) @classmethod def from_config(cls, config): r""" Instantiates one of the base model classes of the library from a configuration. Args: config (:class:`~transformers.PretrainedConfig`): The model class to instantiate is selected based on the configuration class: - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModel` (DistilBERT model) - isInstance of `roberta` configuration class: :class:`~transformers.RobertaModel` (RoBERTa model) - isInstance of `bert` configuration class: :class:`~transformers.BertModel` (Bert model) - isInstance of `openai-gpt` configuration class: :class:`~transformers.OpenAIGPTModel` (OpenAI GPT model) - isInstance of `gpt2` configuration class: :class:`~transformers.GPT2Model` (OpenAI GPT-2 model) - isInstance of `ctrl` configuration class: :class:`~transformers.CTRLModel` (Salesforce CTRL model) - isInstance of `transfo-xl` configuration class: :class:`~transformers.TransfoXLModel` (Transformer-XL model) - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModel` (XLNet model) - isInstance of `xlm` configuration class: :class:`~transformers.XLMModel` (XLM model) - isInstance of `flaubert` configuration class: :class:`~transformers.FlaubertModel` (Flaubert model) - isInstance of `electra` configuration class: :class:`~transformers.ElectraModel` (Electra model) Examples:: config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. model = AutoModel.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` """ for config_class, model_class in MODEL_MAPPING.items(): if isinstance(config, config_class): return model_class(config) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_MAPPING.keys()) ) ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates one of the base model classes of the library from a pre-trained model configuration. The `from_pretrained()` method takes care of returning the correct model class instance based on the `model_type` property of the config object, or when it's missing, falling back to using pattern matching on the `pretrained_model_name_or_path` string. The base model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `t5`: :class:`~transformers.T5Model` (T5 model) - contains `distilbert`: :class:`~transformers.DistilBertModel` (DistilBERT model) - contains `albert`: :class:`~transformers.AlbertModel` (ALBERT model) - contains `camembert`: :class:`~transformers.CamembertModel` (CamemBERT model) - contains `xlm-roberta`: :class:`~transformers.XLMRobertaModel` (XLM-RoBERTa model) - contains `roberta`: :class:`~transformers.RobertaModel` (RoBERTa model) - contains `bert`: :class:`~transformers.BertModel` (Bert model) - contains `openai-gpt`: :class:`~transformers.OpenAIGPTModel` (OpenAI GPT model) - contains `gpt2`: :class:`~transformers.GPT2Model` (OpenAI GPT-2 model) - contains `transfo-xl`: :class:`~transformers.TransfoXLModel` (Transformer-XL model) - contains `xlnet`: :class:`~transformers.XLNetModel` (XLNet model) - contains `xlm`: :class:`~transformers.XLMModel` (XLM model) - contains `ctrl`: :class:`~transformers.CTRLModel` (Salesforce CTRL model) - contains `flaubert`: :class:`~transformers.FlaubertModel` (Flaubert model) - contains `electra`: :class:`~transformers.ElectraModel` (Electra model) The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) To train the model, you should first set it back in training mode with `model.train()` Args: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: These arguments will be passed to the configuration and the model. Examples:: model = AutoModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = AutoModel.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ config = kwargs.pop("config", None) if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) for config_class, model_class in MODEL_MAPPING.items(): if isinstance(config, config_class): return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_MAPPING.keys()) ) ) class AutoModelForPreTraining(object): r""" :class:`~transformers.AutoModelForPreTraining` is a generic model class that will be instantiated as one of the model classes of the library -with the architecture used for pretraining this model– when created with the `AutoModelForPreTraining.from_pretrained(pretrained_model_name_or_path)` class method. This class cannot be instantiated using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoModelForPreTraining is designed to be instantiated " "using the `AutoModelForPreTraining.from_pretrained(pretrained_model_name_or_path)` or " "`AutoModelForPreTraining.from_config(config)` methods." ) @classmethod def from_config(cls, config): r""" Instantiates one of the base model classes of the library from a configuration. Args: config (:class:`~transformers.PretrainedConfig`): The model class to instantiate is selected based on the configuration class: - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertForMaskedLM` (DistilBERT model) - isInstance of `roberta` configuration class: :class:`~transformers.RobertaForMaskedLM` (RoBERTa model) - isInstance of `bert` configuration class: :class:`~transformers.BertForPreTraining` (Bert model) - isInstance of `openai-gpt` configuration class: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model) - isInstance of `gpt2` configuration class: :class:`~transformers.GPT2LMHeadModel` (OpenAI GPT-2 model) - isInstance of `ctrl` configuration class: :class:`~transformers.CTRLLMHeadModel` (Salesforce CTRL model) - isInstance of `transfo-xl` configuration class: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model) - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetLMHeadModel` (XLNet model) - isInstance of `xlm` configuration class: :class:`~transformers.XLMWithLMHeadModel` (XLM model) - isInstance of `flaubert` configuration class: :class:`~transformers.FlaubertWithLMHeadModel` (Flaubert model) - isInstance of `electra` configuration class: :class:`~transformers.ElectraForPreTraining` (Electra model) Examples:: config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. model = AutoModelForPreTraining.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` """ for config_class, model_class in MODEL_FOR_PRETRAINING_MAPPING.items(): if isinstance(config, config_class): return model_class(config) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_PRETRAINING_MAPPING.keys()) ) ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates one of the model classes of the library -with the architecture used for pretraining this model– from a pre-trained model configuration. The `from_pretrained()` method takes care of returning the correct model class instance based on the `model_type` property of the config object, or when it's missing, falling back to using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `t5`: :class:`~transformers.T5ModelWithLMHead` (T5 model) - contains `distilbert`: :class:`~transformers.DistilBertForMaskedLM` (DistilBERT model) - contains `albert`: :class:`~transformers.AlbertForMaskedLM` (ALBERT model) - contains `camembert`: :class:`~transformers.CamembertForMaskedLM` (CamemBERT model) - contains `xlm-roberta`: :class:`~transformers.XLMRobertaForMaskedLM` (XLM-RoBERTa model) - contains `roberta`: :class:`~transformers.RobertaForMaskedLM` (RoBERTa model) - contains `bert`: :class:`~transformers.BertForPreTraining` (Bert model) - contains `openai-gpt`: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model) - contains `gpt2`: :class:`~transformers.GPT2LMHeadModel` (OpenAI GPT-2 model) - contains `transfo-xl`: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model) - contains `xlnet`: :class:`~transformers.XLNetLMHeadModel` (XLNet model) - contains `xlm`: :class:`~transformers.XLMWithLMHeadModel` (XLM model) - contains `ctrl`: :class:`~transformers.CTRLLMHeadModel` (Salesforce CTRL model) - contains `flaubert`: :class:`~transformers.FlaubertWithLMHeadModel` (Flaubert model) - contains `electra`: :class:`~transformers.ElectraForPreTraining` (Electra model) The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) To train the model, you should first set it back in training mode with `model.train()` Args: pretrained_model_name_or_path: Either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely received file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: These arguments will be passed to the configuration and the model. Examples:: model = AutoModelForPreTraining.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = AutoModelForPreTraining.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') model = AutoModelForPreTraining.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ config = kwargs.pop("config", None) if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) for config_class, model_class in MODEL_FOR_PRETRAINING_MAPPING.items(): if isinstance(config, config_class): return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_PRETRAINING_MAPPING.keys()) ) ) class AutoModelWithLMHead(object): r""" :class:`~transformers.AutoModelWithLMHead` is a generic model class that will be instantiated as one of the language modeling model classes of the library when created with the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` class method. This class cannot be instantiated using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoModelWithLMHead is designed to be instantiated " "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` or " "`AutoModelWithLMHead.from_config(config)` methods." ) @classmethod def from_config(cls, config): r""" Instantiates one of the base model classes of the library from a configuration. Args: config (:class:`~transformers.PretrainedConfig`): The model class to instantiate is selected based on the configuration class: - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertForMaskedLM` (DistilBERT model) - isInstance of `roberta` configuration class: :class:`~transformers.RobertaForMaskedLM` (RoBERTa model) - isInstance of `bert` configuration class: :class:`~transformers.BertForMaskedLM` (Bert model) - isInstance of `openai-gpt` configuration class: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model) - isInstance of `gpt2` configuration class: :class:`~transformers.GPT2LMHeadModel` (OpenAI GPT-2 model) - isInstance of `ctrl` configuration class: :class:`~transformers.CTRLLMHeadModel` (Salesforce CTRL model) - isInstance of `transfo-xl` configuration class: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model) - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetLMHeadModel` (XLNet model) - isInstance of `xlm` configuration class: :class:`~transformers.XLMWithLMHeadModel` (XLM model) - isInstance of `flaubert` configuration class: :class:`~transformers.FlaubertWithLMHeadModel` (Flaubert model) - isInstance of `electra` configuration class: :class:`~transformers.ElectraForMaskedLM` (Electra model) Examples:: config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. model = AutoModelWithLMHead.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` """ for config_class, model_class in MODEL_WITH_LM_HEAD_MAPPING.items(): if isinstance(config, config_class): return model_class(config) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_WITH_LM_HEAD_MAPPING.keys()) ) ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates one of the language modeling model classes of the library from a pre-trained model configuration. The `from_pretrained()` method takes care of returning the correct model class instance based on the `model_type` property of the config object, or when it's missing, falling back to using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `t5`: :class:`~transformers.T5ModelWithLMHead` (T5 model) - contains `distilbert`: :class:`~transformers.DistilBertForMaskedLM` (DistilBERT model) - contains `albert`: :class:`~transformers.AlbertForMaskedLM` (ALBERT model) - contains `camembert`: :class:`~transformers.CamembertForMaskedLM` (CamemBERT model) - contains `xlm-roberta`: :class:`~transformers.XLMRobertaForMaskedLM` (XLM-RoBERTa model) - contains `roberta`: :class:`~transformers.RobertaForMaskedLM` (RoBERTa model) - contains `bert`: :class:`~transformers.BertForMaskedLM` (Bert model) - contains `openai-gpt`: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model) - contains `gpt2`: :class:`~transformers.GPT2LMHeadModel` (OpenAI GPT-2 model) - contains `transfo-xl`: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model) - contains `xlnet`: :class:`~transformers.XLNetLMHeadModel` (XLNet model) - contains `xlm`: :class:`~transformers.XLMWithLMHeadModel` (XLM model) - contains `ctrl`: :class:`~transformers.CTRLLMHeadModel` (Salesforce CTRL model) - contains `flaubert`: :class:`~transformers.FlaubertWithLMHeadModel` (Flaubert model) - contains `electra`: :class:`~transformers.ElectraForMaskedLM` (Electra model) The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) To train the model, you should first set it back in training mode with `model.train()` Args: pretrained_model_name_or_path: Either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely received file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: These arguments will be passed to the configuration and the model. Examples:: model = AutoModelWithLMHead.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = AutoModelWithLMHead.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') model = AutoModelWithLMHead.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ config = kwargs.pop("config", None) if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) for config_class, model_class in MODEL_WITH_LM_HEAD_MAPPING.items(): if isinstance(config, config_class): return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_WITH_LM_HEAD_MAPPING.keys()) ) ) class AutoModelForSequenceClassification(object): r""" :class:`~transformers.AutoModelForSequenceClassification` is a generic model class that will be instantiated as one of the sequence classification model classes of the library when created with the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)` class method. This class cannot be instantiated using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoModelForSequenceClassification is designed to be instantiated " "using the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)` or " "`AutoModelForSequenceClassification.from_config(config)` methods." ) @classmethod def from_config(cls, config): r""" Instantiates one of the base model classes of the library from a configuration. Args: config (:class:`~transformers.PretrainedConfig`): The model class to instantiate is selected based on the configuration class: - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertForSequenceClassification` (DistilBERT model) - isInstance of `albert` configuration class: :class:`~transformers.AlbertForSequenceClassification` (ALBERT model) - isInstance of `camembert` configuration class: :class:`~transformers.CamembertForSequenceClassification` (CamemBERT model) - isInstance of `xlm roberta` configuration class: :class:`~transformers.XLMRobertaForSequenceClassification` (XLM-RoBERTa model) - isInstance of `roberta` configuration class: :class:`~transformers.RobertaForSequenceClassification` (RoBERTa model) - isInstance of `bert` configuration class: :class:`~transformers.BertForSequenceClassification` (Bert model) - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetForSequenceClassification` (XLNet model) - isInstance of `xlm` configuration class: :class:`~transformers.XLMForSequenceClassification` (XLM model) - isInstance of `flaubert` configuration class: :class:`~transformers.FlaubertForSequenceClassification` (Flaubert model) Examples:: config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. model = AutoModelForSequenceClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` """ for config_class, model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.items(): if isinstance(config, config_class): return model_class(config) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()), ) ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates one of the sequence classification model classes of the library from a pre-trained model configuration. The `from_pretrained()` method takes care of returning the correct model class instance based on the `model_type` property of the config object, or when it's missing, falling back to using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `distilbert`: :class:`~transformers.DistilBertForSequenceClassification` (DistilBERT model) - contains `albert`: :class:`~transformers.AlbertForSequenceClassification` (ALBERT model) - contains `camembert`: :class:`~transformers.CamembertForSequenceClassification` (CamemBERT model) - contains `xlm-roberta`: :class:`~transformers.XLMRobertaForSequenceClassification` (XLM-RoBERTa model) - contains `roberta`: :class:`~transformers.RobertaForSequenceClassification` (RoBERTa model) - contains `bert`: :class:`~transformers.BertForSequenceClassification` (Bert model) - contains `xlnet`: :class:`~transformers.XLNetForSequenceClassification` (XLNet model) - contains `flaubert`: :class:`~transformers.FlaubertForSequenceClassification` (Flaubert model) The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) To train the model, you should first set it back in training mode with `model.train()` Args: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args: (`optional`) Sequence of positional arguments: All remaining positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: These arguments will be passed to the configuration and the model. Examples:: model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = AutoModelForSequenceClassification.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') model = AutoModelForSequenceClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ config = kwargs.pop("config", None) if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) for config_class, model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.items(): if isinstance(config, config_class): return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()), ) ) class AutoModelForQuestionAnswering(object): r""" :class:`~transformers.AutoModelForQuestionAnswering` is a generic model class that will be instantiated as one of the question answering model classes of the library when created with the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)` class method. This class cannot be instantiated using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoModelForQuestionAnswering is designed to be instantiated " "using the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)` or " "`AutoModelForQuestionAnswering.from_config(config)` methods." ) @classmethod def from_config(cls, config): r""" Instantiates one of the base model classes of the library from a configuration. Args: config (:class:`~transformers.PretrainedConfig`): The model class to instantiate is selected based on the configuration class: - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertForQuestionAnswering` (DistilBERT model) - isInstance of `albert` configuration class: :class:`~transformers.AlbertForQuestionAnswering` (ALBERT model) - isInstance of `bert` configuration class: :class:`~transformers.BertModelForQuestionAnswering` (Bert model) - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetForQuestionAnswering` (XLNet model) - isInstance of `xlm` configuration class: :class:`~transformers.XLMForQuestionAnswering` (XLM model) - isInstance of `flaubert` configuration class: :class:`~transformers.FlaubertForQuestionAnswering` (XLM model) Examples:: config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. model = AutoModelForSequenceClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` """ for config_class, model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.items(): if isinstance(config, config_class): return model_class(config) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()), ) ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates one of the question answering model classes of the library from a pre-trained model configuration. The `from_pretrained()` method takes care of returning the correct model class instance based on the `model_type` property of the config object, or when it's missing, falling back to using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `distilbert`: :class:`~transformers.DistilBertForQuestionAnswering` (DistilBERT model) - contains `albert`: :class:`~transformers.AlbertForQuestionAnswering` (ALBERT model) - contains `bert`: :class:`~transformers.BertForQuestionAnswering` (Bert model) - contains `xlnet`: :class:`~transformers.XLNetForQuestionAnswering` (XLNet model) - contains `xlm`: :class:`~transformers.XLMForQuestionAnswering` (XLM model) - contains `flaubert`: :class:`~transformers.FlaubertForQuestionAnswering` (XLM model) The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) To train the model, you should first set it back in training mode with `model.train()` Args: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: These arguments will be passed to the configuration and the model. Examples:: model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = AutoModelForQuestionAnswering.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ config = kwargs.pop("config", None) if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) for config_class, model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.items(): if isinstance(config, config_class): return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()), ) ) class AutoModelForTokenClassification: r""" :class:`~transformers.AutoModelForTokenClassification` is a generic model class that will be instantiated as one of the token classification model classes of the library when created with the `AutoModelForTokenClassification.from_pretrained(pretrained_model_name_or_path)` class method. This class cannot be instantiated using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoModelForTokenClassification is designed to be instantiated " "using the `AutoModelForTokenClassification.from_pretrained(pretrained_model_name_or_path)` or " "`AutoModelForTokenClassification.from_config(config)` methods." ) @classmethod def from_config(cls, config): r""" Instantiates one of the base model classes of the library from a configuration. Args: config (:class:`~transformers.PretrainedConfig`): The model class to instantiate is selected based on the configuration class: - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModelForTokenClassification` (DistilBERT model) - isInstance of `xlm` configuration class: :class:`~transformers.XLMForTokenClassification` (XLM model) - isInstance of `xlm roberta` configuration class: :class:`~transformers.XLMRobertaModelForTokenClassification` (XLMRoberta model) - isInstance of `bert` configuration class: :class:`~transformers.BertModelForTokenClassification` (Bert model) - isInstance of `albert` configuration class: :class:`~transformers.AlbertForTokenClassification` (AlBert model) - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModelForTokenClassification` (XLNet model) - isInstance of `camembert` configuration class: :class:`~transformers.CamembertModelForTokenClassification` (Camembert model) - isInstance of `roberta` configuration class: :class:`~transformers.RobertaModelForTokenClassification` (Roberta model) - isInstance of `electra` configuration class: :class:`~transformers.ElectraForTokenClassification` (Electra model) Examples:: config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. model = AutoModelForTokenClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` """ for config_class, model_class in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items(): if isinstance(config, config_class): return model_class(config) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()), ) ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates one of the question answering model classes of the library from a pre-trained model configuration. The `from_pretrained()` method takes care of returning the correct model class instance based on the `model_type` property of the config object, or when it's missing, falling back to using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `distilbert`: :class:`~transformers.DistilBertForTokenClassification` (DistilBERT model) - contains `xlm`: :class:`~transformers.XLMForTokenClassification` (XLM model) - contains `xlm-roberta`: :class:`~transformers.XLMRobertaForTokenClassification` (XLM-RoBERTa?Para model) - contains `camembert`: :class:`~transformers.CamembertForTokenClassification` (Camembert model) - contains `bert`: :class:`~transformers.BertForTokenClassification` (Bert model) - contains `xlnet`: :class:`~transformers.XLNetForTokenClassification` (XLNet model) - contains `roberta`: :class:`~transformers.RobertaForTokenClassification` (Roberta model) - contains `electra`: :class:`~transformers.ElectraForTokenClassification` (Electra model) The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) To train the model, you should first set it back in training mode with `model.train()` Args: pretrained_model_name_or_path: Either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: These arguments will be passed to the configuration and the model. Examples:: model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = AutoModelForTokenClassification.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') model = AutoModelForTokenClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ config = kwargs.pop("config", None) if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) for config_class, model_class in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items(): if isinstance(config, config_class): return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) raise ValueError( "Unrecognized configuration class {} for this kind of AutoModel: {}.\n" "Model type should be one of {}.".format( config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()), ) )
[]
2024-01-10
arunrajanrv1996/voiceapp
application~controllers.py
from flask import current_app as app, render_template, jsonify, request,g import os, json import subprocess from werkzeug.security import check_password_hash, generate_password_hash from application.models import db, User, UserTranscription,UserRoles from flask_security import current_user,auth_required from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import datetime import spacy from collections import Counter from openai import OpenAI from application.email import send_email_user from jinja2 import Template import random from flask_jwt_extended import create_access_token, jwt_required, get_jwt_identity # Set the OpenAI API key api_key = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=api_key) # Initialize the OpenAI client nlp = spacy.load("en_core_web_sm") # Load the spaCy model # Define the home page route @app.route('/') def index(): return render_template('index.html') # Define the dictionary of user information def cuser_to_dict(user): return { 'id': user.id, 'username': user.username, 'email': user.email, } # Define the dictionary of user information def puser_to_dict(user): return { 'id': user.id, 'username': user.username, 'email': user.email, 'image': user.image, } # Define the dictionary of usertranscription information def transcript_to_dict(transcript): return { 'id': transcript.id, 'text': transcript.transcription, 'language': transcript.language, 'user_id': transcript.user_id, 'created_on': transcript.time, } # Define the route for user deletion @app.route('/deleteuser/', methods=['DELETE']) @jwt_required() def deleteuser(): id = get_jwt_identity() user=User.query.filter_by(id=id).first() if not user: return jsonify({'message': 'No user found!'}) usertranscript=UserTranscription.query.filter_by(user_id=id).all() role = UserRoles.query.filter_by(user_id=id).first() db.session.delete(role) db.session.commit() for i in usertranscript: db.session.delete(i) db.session.commit() db.session.delete(user) db.session.commit() return jsonify({'message': 'User deleted successfully!'}) # Define the route for user resetpassword @app.route('/resetpassword', methods=['PUT','POST']) def resetpassword(): if request.method=='POST': post_data = request.get_json() email = post_data.get('email') user = User.query.filter_by(email=email).first() genotp= random.randint(100000,999999) if not user: return jsonify({'message': 'No user found!'}) with open('templates/reset.html') as file_: template = Template(file_.read()) message = template.render(otp=genotp) send_email_user( to=email, sub="Password Reset", message=message ) return jsonify({'message': 'Password sent successfully!', 'otp': genotp, 'email': email}) if request.method=='PUT': post_data = request.get_json() email = post_data.get('email') user = User.query.filter_by(email=email).first() if not user: return jsonify({'message': 'No user found!'}) password = generate_password_hash(post_data.get('password')) user.password=password db.session.commit() return jsonify({'message': 'Password reset successfully!'}) # Define the route for user login @app.route('/userlogin', methods=['POST']) def userlogin(): post_data = request.get_json() username = post_data.get('username') password = post_data.get('password') with app.app_context(): user_datastore = app.security.datastore user = User.query.filter_by(username=username).first() if not user: app.logger.info(f"No user found for username: {username}") return jsonify({'message': 'No user found!'}) if check_password_hash(user.password, password): app.logger.info("Password validation successful") access_token = create_access_token(identity=user.id) return jsonify({"token": access_token}) else: app.logger.warning("Password validation failed") return jsonify({"message": "Wrong Password"}) # Define the route for user profile @app.route("/userprofile/", methods=['POST','PUT','GET']) @jwt_required() def userprofile(): id = get_jwt_identity() if request.method=='GET': user=User.query.filter_by(id=id).first() return jsonify(puser_to_dict(user)) if request.method=='PUT': post_data = request.get_json() image = post_data.get('image') password = post_data.get('password') user=User.query.filter_by(id=id).first() if not user: return jsonify({'message': 'No user logged in'}) if image: user.image=image db.session.commit() if password: user.password=generate_password_hash(password) db.session.commit() return jsonify({'message': 'User updated successfully!'}) # Define the route for currentuser @app.route('/currentuser/') @jwt_required() def currentuser(): user=User.query.filter_by(id=get_jwt_identity()).first() if not user: return jsonify({'message': 'No user logged in'}) return jsonify(cuser_to_dict(user)) # Define the route for user creation and listing @app.route('/createuser/') def createuser(): user=User.query.all() return jsonify([cuser_to_dict(user) for user in user]) # Define the route for user creation @app.route('/registeruser/', methods=['POST']) def registeruser(): post_data = request.get_json() username = post_data.get('username') email = post_data.get('email') password = post_data.get('password') image = post_data.get('image') if not username: return jsonify({'message': 'Username is required'}) if not email: return jsonify({'message': 'Email is required'}) if not password: return jsonify({'message': 'Password is required'}) user = User.query.filter_by(username=username,email=email).first() if user: return jsonify({'message': 'Username already exists'}) with app.app_context(): user_datastore = app.security.datastore if not user_datastore.find_user(username=username) and not user_datastore.find_user(email=email): user_datastore.create_user(username=username, email=email,image=image, password=generate_password_hash(password)) db.session.commit() user = user_datastore.find_user(username=username) role = user_datastore.find_role('user') user_datastore.add_role_to_user(user, role) db.session.commit() return jsonify({'message': 'User created successfully!'}) # Define the route for usertanscription @app.route('/usertranscript/') @jwt_required() def usertranscript(): user=UserTranscription.query.filter_by(user_id=get_jwt_identity()).order_by(UserTranscription.time.desc()).limit(30) return jsonify([transcript_to_dict(user) for user in user]) # Define the route for usertanscriptionanalysis @app.route('/usertranscriptanalysis/') @jwt_required() def compute_frequent_words_and_phrases(): user_id = get_jwt_identity() # Calculate the most frequently used words for the current user user_transcriptions = UserTranscription.query.filter_by(user_id=user_id).all() all_transcriptions = " ".join([transcription.transcription for transcription in user_transcriptions]) doc = nlp(all_transcriptions) frequent_words = [token.text for token in doc if token.is_alpha and not token.is_stop] frequent_words_counter = Counter(frequent_words) frequent_words_user = dict(frequent_words_counter.most_common(10)) # Adjust the number as needed # Calculate the most frequently used words across all users all_transcriptions = " ".join([transcription.transcription for transcription in UserTranscription.query.all()]) doc_all_users = nlp(all_transcriptions) frequent_words_all_users = Counter([token.text for token in doc_all_users if token.is_alpha and not token.is_stop]) frequent_words_all_users = dict(frequent_words_all_users.most_common(10)) # Adjust the number as needed return jsonify({'frequent_words_user': frequent_words_user, 'frequent_words_all_users': frequent_words_all_users}) # Define the route for useruniquephrases @app.route('/useruniquephrases/') @jwt_required() def get_user_unique_phrases(): user_id = get_jwt_identity() # Retrieve all transcriptions for the current user user_transcriptions = UserTranscription.query.filter_by(user_id=user_id).all() # Extract and count phrases from the transcriptions all_phrases = [] for transcription in user_transcriptions: phrases = extract_phrases(transcription.transcription) all_phrases.extend(phrases) # Count the frequency of each phrase phrase_counts = Counter(all_phrases) # Extract unique phrases used only once unique_phrases = [phrase for phrase, count in phrase_counts.items() if count == 1] # Return the first 3 unique phrases (or all if there are fewer than 3) return jsonify({'user_unique_phrases': unique_phrases[:3]}) def extract_phrases(text): # You can customize this function based on your requirements for extracting phrases doc = nlp(text) phrases = [chunk.text for chunk in doc.noun_chunks if len(chunk.text.split()) >= 2] return phrases # Define the route for similarusers @app.route('/similarusers/') @jwt_required() def find_similar_users(): current_user_id = get_jwt_identity() # Retrieve transcriptions for the current user current_user_transcriptions = UserTranscription.query.filter_by(user_id=current_user_id).all() if len(current_user_transcriptions) == 0: return jsonify({'similar_users': []}) # Extract text from transcriptions current_user_text = " ".join([transcription.transcription for transcription in current_user_transcriptions]) # Retrieve transcriptions for all users (excluding the current user) all_users_transcriptions = UserTranscription.query.filter(UserTranscription.user_id != current_user_id).all() if len(all_users_transcriptions) == 0: return jsonify({'similar_users': []}) # Create a list of user texts all_users_texts = [" ".join([transcription.transcription for transcription in UserTranscription.query.filter_by(user_id=user_transcription.user_id).all()]) for user_transcription in all_users_transcriptions] # Calculate TF-IDF vectors for the current user and all users vectorizer = TfidfVectorizer() current_user_vector = vectorizer.fit_transform([current_user_text]) all_users_vectors = vectorizer.transform(all_users_texts) # Calculate cosine similarity between the current user and all users similarities = cosine_similarity(current_user_vector, all_users_vectors)[0] # Get the indices of users with the highest similarity most_similar_user_indices = similarities.argsort()[:-4:-1] # Get top 3 most similar users # Retrieve user information for the most similar users most_similar_users = [User.query.get(all_users_transcriptions[i].user_id) for i in most_similar_user_indices] # Convert user information to a dictionary format similar_users_info = [] for i in range(len(most_similar_users)): if len(similar_users_info)==5: break if most_similar_users[i].username != User.query.get(current_user_id).username: similar_users_info.append(most_similar_users[i].username) similar_users_info=list(set(similar_users_info)) return jsonify({'similar_users': similar_users_info}) # Define the route for speech to text conversion @app.route('/speech/<lang>', methods=['POST']) def speech(lang): user_id = request.form.get('user_id') audio_file = request.files['audio'] # Create the directory if it doesn't exist audio_dir = os.path.join(app.root_path, 'static', 'js', 'audio') os.makedirs(audio_dir, exist_ok=True) # Save the audio file to a known location with Ogg extension audio_file_path = os.path.join(audio_dir, 'audio.ogg') audio_file.save(audio_file_path) audio_file_size_bytes = os.path.getsize(audio_file_path) # Convert the file size to MB audio_file_size_mb = audio_file_size_bytes / (1024 * 1024) # Check if the file size is larger than 25 MB if audio_file_size_mb > 5: return jsonify({'text': 'File size is larger than 5 MB'}) audio_file_open = open(audio_file_path, "rb") try: if lang=="English": transcript = client.audio.translations.create( model="whisper-1", file=audio_file_open, response_format="json", prompt="i am talking in"+lang ) elif lang=="": transcript = client.audio.translations.create( model="whisper-1", file=audio_file_open, response_format="json" ) else: transcript = client.audio.translations.create( model="whisper-1", file=audio_file_open, response_format="json", prompt="i am talking in"+lang ) if user_id!='': user_transcription = UserTranscription(user_id=user_id, transcription=transcript.text, language=lang, time=datetime.datetime.now()) db.session.add(user_transcription) db.session.commit() return jsonify({'text': transcript.text}) except Exception as e: print(e) return jsonify({'text': 'Error in transcription'}) finally: audio_file_open.close() os.remove(audio_file_path)
[]
2024-01-10
HakierGrzonzo/ClipSelect3
backend~app~chromadb.py
from collections.abc import Iterable from logging import getLogger import string from chromadb import PersistentClient from os import environ from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction from app.models import Media, SearchResult, SearchResultMetaData EMBEDDING_MODEL = "text-embedding-ada-002" OPEN_AI_KEY = environ["OPENAI_KEY"] logger = getLogger(__name__) client = PersistentClient(path="./chroma") embedding_function = OpenAIEmbeddingFunction( api_key=OPEN_AI_KEY, model_name=EMBEDDING_MODEL ) def get_id_for_series_name(name: str): name_l = [x for x in name if x.lower() in string.ascii_lowercase] return "".join(name_l)[:20] def enroll_episode(episode: Media, series_name: str, season_ordinal: int): collection_id = get_id_for_series_name(series_name) logger.info(f"Enrolling {episode.name} in {collection_id}") collection = client.get_or_create_collection( collection_id, embedding_function=embedding_function ) ids = [ f"{season_ordinal}-{episode.ordinal}-{i}" for i, _ in enumerate(episode.captions) ] documents = [caption.text for caption in episode.captions] metadatas = [ SearchResultMetaData( episode=episode.ordinal, season=season_ordinal, series_name=series_name, caption=i, start=caption.start, stop=caption.stop, ).model_dump() for i, caption in enumerate(episode.captions) ] collection.add(documents=documents, ids=ids, metadatas=metadatas) def query_series(series_name: str, query: str) -> Iterable[SearchResult]: logger.info(f"Quering {series_name} with {query}") collection = client.get_collection( get_id_for_series_name(series_name), embedding_function=embedding_function, ) results = collection.query(query_texts=query) return [ SearchResult(**meta, text=text) for meta, text in zip(results["metadatas"][0], results["documents"][0]) ]
[]
2024-01-10
plxgwalker/Suvorov.LNU.Twitter-Clone
Suvorov.LNU.TwitterClone.Script~script.py
import openai import json import sys with open("D:\\twitter-clone-new\\config.json") as f: config = json.load(f) OPENAI_API_KEY = config["OPENAI_API_KEY"] openai.api_key = OPENAI_API_KEY user_response = " ".join(sys.argv[1:]) twitter_writer_prompt = ( "You are going to be Twitter writer. " "Here is my idea, about which I would like to write. " "Your main goal is to write me a tweet which is going to be viral. " "Style of text should be polite. Max tweet characters is 100. " "Do not write any comments to tweet, only tweet text. Idea: " ) def create_tweet(text: str) -> str: prompt = twitter_writer_prompt + text openai_response = openai.Completion.create( model="text-davinci-003", prompt=prompt, max_tokens=100, temperature=0 ) result = openai_response.choices[0].text return result.strip() result = create_tweet(user_response) print(result)
[ "You are going to be Twitter writer. Here is my idea, about which I would like to write. Your main goal is to write me a tweet which is going to be viral. Style of text should be polite. Max tweet characters is 100. Do not write any comments to tweet, only tweet text. Idea: ", "PLACEHOLDERPLACEHOLDER" ]
2024-01-10
elichad/Caster
tests~testrunner.py
import os import sys import unittest import six if six.PY2: import logging logging.basicConfig() if os.path.dirname(os.path.dirname(os.path.abspath(__file__))) not in sys.path: sys.path.insert(0,os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from dragonfly import get_engine from castervoice.lib.ctrl.mgr.errors.guidance_rejection import GuidanceRejectionException from castervoice.lib.util import guidance from tests.test_util import settings_mocking, utilities_mocking def reject_file_writing(): raise GuidanceRejectionException() def get_master_suite(): return unittest.defaultTestLoader.discover(os.path.dirname(__file__)) def run_tests(): get_engine("text") settings_mocking.prevent_initialize() utilities_mocking.mock_toml_files() return unittest.TextTestRunner(verbosity=2).run(get_master_suite()) if __name__ == '__main__': guidance.offer = reject_file_writing result = run_tests() sys.exit(len(result.failures) + len(result.errors) + len(result.unexpectedSuccesses))
[]
2024-01-10
elichad/Caster
castervoice~lib~settings.py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from builtins import str import collections import io import os import sys import tomlkit from past.builtins import xrange from castervoice.lib import printer from castervoice.lib import version from castervoice.lib.util import guidance from appdirs import * import six if six.PY2: from castervoice.lib.util.pathlib import Path else: from pathlib import Path # pylint: disable=import-error # consts: some of these can easily be moved out of this file GENERIC_HELP_MESSAGE = """ If you continue having problems with this or any other issue you can contact us through Gitter at <https://gitter.im/dictation-toolbox/Caster> or on our GitHub issue tracker at <https://github.com/dictation-toolbox/Caster/issues>. Thank you for using Caster! """ SOFTWARE_VERSION_NUMBER = version.__version__ SOFTWARE_NAME = "Caster v " + SOFTWARE_VERSION_NUMBER HOMUNCULUS_VERSION = "HMC v " + SOFTWARE_VERSION_NUMBER HMC_TITLE_RECORDING = " :: Recording Manager" HMC_TITLE_DIRECTORY = " :: Directory Selector" HMC_TITLE_CONFIRM = " :: Confirm" LEGION_TITLE = "legiongrid" RAINBOW_TITLE = "rainbowgrid" DOUGLAS_TITLE = "douglasgrid" SUDOKU_TITLE = "sudokugrid" SETTINGS_WINDOW_TITLE = "Caster Settings Window v " QTYPE_DEFAULT = "0" QTYPE_INSTRUCTIONS = "3" QTYPE_RECORDING = "4" QTYPE_DIRECTORY = "5" QTYPE_CONFIRM = "6" WXTYPE_SETTINGS = "7" HMC_SEPARATOR = "[hmc]" # calculated fields SETTINGS = None SYSTEM_INFORMATION = None WSR = False _BASE_PATH = None _USER_DIR = None _SETTINGS_PATH = None def _get_platform_information(): """Return a dictionary containing platform-specific information.""" import sysconfig system_information = {"platform": sysconfig.get_platform()} system_information.update({"python version": sys.version_info}) if sys.platform == "win32": system_information.update({"binary path": sys.exec_prefix}) system_information.update( {"main binary": str(Path(sys.exec_prefix).joinpath("python.exe"))}) system_information.update( {"hidden console binary": str(Path(sys.exec_prefix).joinpath("pythonw.exe"))}) else: system_information.update({"binary path": str(Path(sys.exec_prefix).joinpath(sys.exec_prefix).joinpath("bin"))}) system_information.update( {"main binary": str(Path(sys.exec_prefix).joinpath("bin", "python"))}) system_information.update( {"hidden console binary": str(Path(sys.exec_prefix).joinpath("bin", "python"))}) return system_information def get_filename(): return _SETTINGS_PATH def _validate_engine_path(): ''' Validates path 'Engine Path' in settings.toml ''' if not sys.platform.startswith('win'): return '' try: import natlink # pylint: disable=import-error except ImportError: return '' if os.path.isfile(_SETTINGS_PATH): with io.open(_SETTINGS_PATH, "rt", encoding="utf-8") as toml_file: data = tomlkit.loads(toml_file.read()).value engine_path = data["paths"]["ENGINE_PATH"] if os.path.isfile(engine_path): return engine_path else: engine_path = _find_natspeak() data["paths"]["ENGINE_PATH"] = engine_path try: formatted_data = str(tomlkit.dumps(data)) with io.open(_SETTINGS_PATH, "w", encoding="utf-8") as toml_file: toml_file.write(formatted_data) printer.out("Setting engine path to {}".format(engine_path)) except Exception as e: printer.out("Error saving settings file {} {} ".format(e, _SETTINGS_PATH)) return engine_path else: return _find_natspeak() def _find_natspeak(): ''' Finds engine 'natspeak.exe' path and verifies supported DNS versions via Windows Registry. ''' try: if six.PY2: import _winreg as winreg else: import winreg except ImportError: printer.out("Could not import winreg") return "" printer.out("Searching Windows Registry For DNS...") proc_arch = os.environ['PROCESSOR_ARCHITECTURE'].lower() try: proc_arch64 = os.environ['PROCESSOR_ARCHITEW6432'].lower() except KeyError: proc_arch64 = False if proc_arch == 'x86' and not proc_arch64: arch_keys = {0} elif proc_arch == 'x86' or proc_arch == 'amd64': arch_keys = {winreg.KEY_WOW64_32KEY, winreg.KEY_WOW64_64KEY} else: raise Exception("Unhandled arch: %s" % proc_arch) for arch_key in arch_keys: key = winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Uninstall", 0, winreg.KEY_READ | arch_key) for i in xrange(0, winreg.QueryInfoKey(key)[0]): skey_name = winreg.EnumKey(key, i) skey = winreg.OpenKey(key, skey_name) DisplayName, Publisher, DisplayVersion, InstallLocation = 'null' try: DisplayName = winreg.QueryValueEx(skey, 'DisplayName')[0] Publisher = winreg.QueryValueEx(skey, 'Publisher')[0] DisplayVersion = winreg.QueryValueEx(skey, 'DisplayVersion')[0] InstallLocation = winreg.QueryValueEx(skey, 'InstallLocation')[0] except OSError as error: if error.errno == 2: # Suppresses '[Error 2] The system cannot find the file specified' pass else: printer.out(error) finally: skey.Close() if Publisher == "Nuance Communications Inc." and "Dragon" in DisplayName: DnsVersion = int(str(DisplayVersion)[:2]) if DnsVersion >= 13: engine_path = str(Path(InstallLocation).joinpath("Program/natspeak.exe")) if os.path.isfile(engine_path): printer.out("Search Complete.") return engine_path else: printer.out( "Dragon Naturally Speaking {} is not supported by Caster. Only versions 13 and above are supported. Purchase Dragon Naturally Speaking 13 or above" .format(DnsVersion)) printer.out("Cannot find dragon engine path") return "" def _save(data, path): """ Only to be used for settings file. :param data: :param path: :return: """ guidance.offer() try: formatted_data = str(tomlkit.dumps(data)) with io.open(path, "wt", encoding="utf-8") as f: f.write(formatted_data) except Exception as e: printer.out("Error saving toml file: {} {}".format(e, _SETTINGS_PATH)) def _init(path): guidance.offer() result = {} try: with io.open(path, "rt", encoding="utf-8") as f: result = tomlkit.loads(f.read()).value except ValueError as e: printer.out("\n\n {} while loading settings file: {} \n\n".format(repr(e), path)) printer.out(sys.exc_info()) except IOError as e: printer.out("\n\n {} while loading settings file: {} \nAttempting to recover...\n\n".format(repr(e), path)) default_settings = _get_defaults() result, num_default_added = _deep_merge_defaults(result, default_settings) if num_default_added > 0: printer.out("Default settings values added: {} ".format(num_default_added)) _save(result, _SETTINGS_PATH) return result def _deep_merge_defaults(data, defaults): """ Recursivly merge data and defaults, preferring data. Only handles nested dicts and scalar values. Modifies `data` in place. """ changes = 0 for key, default_value in defaults.items(): # If the key is in the data, use that, but call recursivly if it's a dict. if key in data: if isinstance(data[key], collections.Mapping): child_data, child_changes = _deep_merge_defaults(data[key], default_value) data[key] = child_data changes += child_changes else: data[key] = default_value changes += 1 return data, changes def _get_defaults(): terminal_path_default = "C:/Program Files/Git/git-bash.exe" if not os.path.isfile(terminal_path_default): terminal_path_default = "" ahk_path_default = "C:/Program Files/AutoHotkey/AutoHotkey.exe" if not os.path.isfile(ahk_path_default): ahk_path_default = "" return { "paths": { "BASE_PATH": _BASE_PATH, "USER_DIR": _USER_DIR, # pathlib string conversion can be removed once pathlib is utilized throughout Caster. # DATA "SM_BRINGME_PATH": str(Path(_USER_DIR).joinpath("settings/sm_bringme.toml")), "SM_ALIAS_PATH": str(Path(_USER_DIR).joinpath("data/sm_aliases.toml")), "SM_CHAIN_ALIAS_PATH": str(Path(_USER_DIR).joinpath("data/sm_chain_aliases.toml")), "SM_HISTORY_PATH": str(Path(_USER_DIR).joinpath("data/sm_history.toml")), "RULES_CONFIG_PATH": str(Path(_USER_DIR).joinpath("settings/rules.toml")), "TRANSFORMERS_CONFIG_PATH": str(Path(_USER_DIR).joinpath("settings/transformers.toml")), "HOOKS_CONFIG_PATH": str(Path(_USER_DIR).joinpath("settings/hooks.toml")), "COMPANION_CONFIG_PATH": str(Path(_USER_DIR).joinpath("settings/companion_config.toml")), "DLL_PATH": str(Path(_BASE_PATH).joinpath("lib/dll/")), "GDEF_FILE": str(Path(_USER_DIR).joinpath("transformers/words.txt")), "LOG_PATH": str(Path(_USER_DIR).joinpath("log.txt")), "SAVED_CLIPBOARD_PATH": str(Path(_USER_DIR).joinpath("data/clipboard.json")), "SIKULI_SCRIPTS_PATH": str(Path(_USER_DIR).joinpath("sikuli")), "GIT_REPO_LOCAL_REMOTE_PATH": str(Path(_USER_DIR).joinpath("settings/git_repo_local_to_remote_match.toml")), "GIT_REPO_LOCAL_REMOTE_DEFAULT_PATH": str(Path(_BASE_PATH).joinpath("bin/share/git_repo_local_to_remote_match.toml.defaults")), # REMOTE_DEBUGGER_PATH is the folder in which pydevd.py can be found "REMOTE_DEBUGGER_PATH": str(Path("")), # SIKULIX EXECUTABLES "SIKULI_IDE": str(Path("")), "SIKULI_RUNNER": str(Path("")), # EXECUTABLES "AHK_PATH": str(Path(_BASE_PATH).joinpath(ahk_path_default)), "DOUGLAS_PATH": str(Path(_BASE_PATH).joinpath("asynch/mouse/grids.py")), "ENGINE_PATH": _validate_engine_path(), "HOMUNCULUS_PATH": str(Path(_BASE_PATH).joinpath("asynch/hmc/h_launch.py")), "LEGION_PATH": str(Path(_BASE_PATH).joinpath("asynch/mouse/legion.py")), "MEDIA_PATH": str(Path(_BASE_PATH).joinpath("bin/media")), "RAINBOW_PATH": str(Path(_BASE_PATH).joinpath("asynch/mouse/grids.py")), "REBOOT_PATH": str(Path(_BASE_PATH).joinpath("bin/reboot.bat")), "REBOOT_PATH_WSR": str(Path(_BASE_PATH).joinpath("bin/reboot_wsr.bat")), "SETTINGS_WINDOW_PATH": str(Path(_BASE_PATH).joinpath("asynch/settingswindow.py")), "SIKULI_SERVER_PATH": str(Path(_BASE_PATH).joinpath("asynch/sikuli/server/xmlrpc_server.sikuli")), "SUDOKU_PATH": str(Path(_BASE_PATH).joinpath("asynch/mouse/grids.py")), "WSR_PATH": str(Path(_BASE_PATH).joinpath("C:/Windows/Speech/Common/sapisvr.exe")), "TERMINAL_PATH": str(Path(terminal_path_default)), # CCR "CONFIGDEBUGTXT_PATH": str(Path(_USER_DIR).joinpath("data/configdebug.txt")), # PYTHON "PYTHONW": SYSTEM_INFORMATION["hidden console binary"], }, # Speech recognition engine settings "engine": { "default_engine_mode": False, "engine_mode": "normal", "default_mic": False, "mic_mode": "on", "mic_sleep_timer": 120, # Seconds before microphone goes to sleep after last successful recognition. # Note: No greater than 5 minutes for DPI/DPI }, # python settings "python": { "automatic_settings": True, # Set to false to manually set "version" and "pip" below. "version": "python", # Depending Python setup (python, python2, python2.7, py, py -2) "pip": "pip" # Depending on PIP setup (pip ,pip2, pip2.7) }, # sikuli settings "sikuli": { "enabled": False, "version": "" }, # gitbash settings "gitbash": { "loading_time": 5, # the time to initialise the git bash window in seconds "fetching_time": 3 # the time to fetch a github repository in seconds }, # node rules path "Tree_Node_Path": { "SM_CSS_TREE_PATH": str(Path(_USER_DIR).joinpath("data/sm_css_tree.toml")), }, "online": { "online_mode": True, # False disables updates "last_update_date": "None", "update_interval": 7 # Days }, # Default enabled hooks: Use hook class name "hooks": { "default_hooks": ['PrinterHook'], }, # miscellaneous section "miscellaneous": { "dev_commands": True, "keypress_wait": 50, # milliseconds "max_ccr_repetitions": 16, "atom_palette_wait": 30, # hundredths of a second "integer_remap_opt_in": False, "short_integer_opt_out": False, "integer_remap_crash_fix": False, "print_rdescripts": True, "history_playback_delay_secs": 1.0, "legion_vertical_columns": 30, "legion_downscale_factor": "auto", "use_aenea": False, "hmc": True, "ccr_on": True, "dragonfly_pause_default": 0.003, # dragonfly _pause_default 0.02 is too slow! Caster default 0.003 }, # Grammar reloading section "grammar_reloading": { "reload_trigger": "timer", # manual or timer "reload_timer_seconds": 5, # seconds }, "formats": { "_default": { "text_format": [5, 0], "secondary_format": [1, 0], }, "C plus plus": { "text_format": [3, 1], "secondary_format": [2, 1], }, "C sharp": { "text_format": [3, 1], "secondary_format": [2, 1], }, "Dart": { "text_format": [3, 1], "secondary_format": [2, 1], }, "HTML": { "text_format": [5, 0], "secondary_format": [5, 2], }, "Java": { "text_format": [3, 1], "secondary_format": [2, 1], }, "Javascript": { "text_format": [3, 1], "secondary_format": [2, 1], }, "matlab": { "text_format": [3, 1], "secondary_format": [1, 3], }, "Python": { "text_format": [5, 3], "secondary_format": [2, 1], }, "Rust": { "text_format": [5, 3], "secondary_format": [2, 1], }, "sequel": { "text_format": [5, 3], "secondary_format": [1, 3], }, } } def settings(key_path, default_value=None): """ This should be the preferred way to use settings.SETTINGS, a KeyError-safe function call to access the settings dict. """ dv = False if default_value is None else default_value if SETTINGS is None: return dv value = SETTINGS for k in key_path: if k in value: value = value[k] else: return dv return value def save_config(): """ Save the current in-memory settings to disk """ _save(SETTINGS, _SETTINGS_PATH) def initialize(): global SETTINGS, SYSTEM_INFORMATION global _BASE_PATH, _USER_DIR, _SETTINGS_PATH if SETTINGS is not None: return # calculate prerequisites SYSTEM_INFORMATION = _get_platform_information() _BASE_PATH = str(Path(__file__).resolve().parent.parent) _USER_DIR = user_data_dir(appname="caster", appauthor=False) _SETTINGS_PATH = str(Path(_USER_DIR).joinpath("settings/settings.toml")) for directory in ["data", "rules", "transformers", "hooks", "sikuli", "settings"]: d = Path(_USER_DIR).joinpath(directory) d.mkdir(parents=True, exist_ok=True) # Kick everything off. SETTINGS = _init(_SETTINGS_PATH) _debugger_path = SETTINGS["paths"]["REMOTE_DEBUGGER_PATH"] # pylint: disable=invalid-sequence-index if _debugger_path not in sys.path and os.path.isdir(_debugger_path): sys.path.append(_debugger_path) printer.out("Caster User Directory: {}".format(_USER_DIR))
[]
2024-01-10
V-Sense/Aesthetic-Image-Captioning-ICCVW-2019
lda_with_n_grams.py
from __future__ import print_function import json import io import pdb from gensim import corpora import itertools from collections import Counter from nltk.corpus import stopwords import gensim from gensim.models.coherencemodel import CoherenceModel from nltk.stem.wordnet import WordNetLemmatizer from nltk.corpus import wordnet import numpy as np import visdom import os from random import shuffle from torchvision import transforms from PIL import Image import torch all_tokens = [] comment_file = 'CLEAN_AVA_FULL_AFTER_SUBJECTIVE_CLEANING.json' img_src = '/home/koustav/Datasets/AVADataSet/' db = json.load(io.open(comment_file, 'r', encoding = 'utf-8')) imgs = db['images'] lda_vocab = io.open('LDA_VOCAB.txt','w', encoding = 'utf-8') discarded_uni = io.open('Discarded_Unigrams.txt','w', encoding = 'utf-8') discarded_bi = io.open('Discarded_Bigrams.txt','w', encoding = 'utf-8') stop = (set(stopwords.words('english')) | set(['.','?', '!', ','])) - set(['above', 'below', 'before', 'after', 'too', 'very']) discarded_uni_list = [] discarded_bi_list = [] lemmatizer = WordNetLemmatizer() def prepare_visuals(image_list): topic, image_list = image_list def splitter(n, s): pieces = s.split(' ') return(" ".join(pieces[i:i+n]) for i in xrange(0, len(pieces), n)) global vis_1 transform_to_tensor = transforms.ToTensor() T_tensor = [] caption = 'Topic Number : ' + unicode(topic) + ' ' for c, img in enumerate(image_list): I = Image.open(img[0]).convert('RGB') caption += '( ' + unicode(c) + ' ) ' + img[1] + ' ' T_tensor.append(transform_to_tensor(I.resize([128,128]))) vis_1.images(torch.stack(T_tensor, 0), opts = {'nrow' : len(image_list) + 2, 'caption' : caption}) def filter_tokens(poss): global discarded_uni_list, discarded_bi_list n_flag = False if len(poss) == 1: if poss[0][1] in ['NOUN']: n_flag = True if not n_flag: discarded_uni_list+= [poss[0][0]] return n_flag else: if poss[0][1] in ['NOUN', 'ADJ', 'ADV'] and poss[1][1] in ['NOUN', 'ADJ']: n_flag = True if not n_flag: discarded_bi_list += [poss[0][0] + ' ' + poss[1][0]] return n_flag def lemmatize(pos): global lemmatizer if pos[1] == 'NOUN': return (lemmatizer.lemmatize(pos[0], wordnet.NOUN), pos[1]) elif pos[1] == 'VERB': return (lemmatizer.lemmatize(pos[0], wordnet.VERB), pos[1]) elif pos[1] == 'ADJ': return (lemmatizer.lemmatize(pos[0], wordnet.ADJ), pos[1]) elif pos[1] == 'ADV': return (lemmatizer.lemmatize(pos[0], wordnet.ADV), pos[1]) else: return pos def collect_tokens(comment): unigrams = comment['unigrams'] bigrams = comment['bigrams'] filtered_tokens = [[unigram] for unigram in unigrams] + bigrams all_tokens = [' '.join([i[0] for i in n_grams]) for n_grams in filtered_tokens] return all_tokens def filter_comments_on_count(comment): global cw new_comment = [] for c in comment: if (len(c.split()) == 1 and cw[c] > 5) or (len(c.split()) == 2 and cw[c] > 5): # only if unigram count is more than 5 and bigram count is more than 3 new_comment.append(c) return new_comment # Use/Modify this function depending on the strategy of how the CNN is trained. Move this to a different script if more convenient def find_topic(text_corpus_clean_new, ldamodel, num_topics, topics_each_image_1): global topics_word_list, topic_probs, topic_words topic_labels = [] topics_word_list = ldamodel.print_topics(num_topics = num_topics, num_words=25) topic_words = [[i.split('*')[1].strip().strip('\"') for i in temp_topic_words[1].split('+')] for temp_topic_words in topics_word_list] topic_probs = [[float(i.split('*')[0].strip()) for i in temp_topic_words[1].split('+')] for temp_topic_words in topics_word_list] for tokens, topics in zip(text_corpus_clean_new, topics_each_image_1): this_topic_words = [topic_words[i] for i in topics] n_matches = [len(set(tokens) & set(words)) for words in this_topic_words] labels = [topics[i] for i in np.where(np.array(n_matches) == np.max(n_matches))[0]] if len(labels) > 1: first_w_probs = [] for lab in labels: first_w_probs.append(topic_probs[lab][0]) topic_labels.append(labels[np.argmax(first_w_probs)]) else: topic_labels.append(labels[0]) return topic_labels def filter_topics (img_topic): global ldamodel, topics_word_list, topic_probs img, topic = img_topic if topic_probs[topic][0] > 0.05: img['Label_LDA'] = topic return True else: return False text_corpus_clean = [] list_of_clean_tokens = [] for count, img in enumerate(imgs): if count % 1000 == 0: print ('%d / %d images processed'%(count, len(imgs))) comments = img['sentences'] all_tokens = map(collect_tokens, comments) text_corpus_clean.append(all_tokens) list_of_clean_tokens += list(itertools.chain.from_iterable(all_tokens)) lda_vocab.write("\n".join([unicode(i) + ' '+ unicode(j) for i,j in Counter(list_of_clean_tokens).most_common()])) cw = Counter(list_of_clean_tokens) text_corpus_clean_new = [] for count_1, comments in enumerate(text_corpus_clean): #text_corpus_clean_new.append(list(itertools.chain.from_iterable(map(filter_comments_on_count, comments)))) text_corpus_clean_new.append(list(itertools.chain.from_iterable(comments))) dictionary = corpora.Dictionary(text_corpus_clean_new) dictionary.filter_extremes(no_below=30, no_above=0.10) doc_term_matrix = [dictionary.doc2bow(doc) for doc in text_corpus_clean_new] print ('dictionary shape : %d \ndoc_term_matrix shape : %d'%(len(dictionary), len(doc_term_matrix))) print('Starting LDA') Lda = gensim.models.ldamulticore.LdaMulticore for num_topics in range(200,201)[::20]: vis_1 = visdom.Visdom( env = 'Topic-Visualization_After_New_Subjectivity_'+ str(num_topics)) vis_1.close() ldamodel = Lda(doc_term_matrix, num_topics = num_topics, id2word = dictionary, passes = 200, workers = 15, iterations = 5000, chunksize = 20000 ) cm = CoherenceModel(model=ldamodel, corpus=doc_term_matrix, coherence='u_mass') cm_score = cm.get_coherence() #pdb.set_trace() topics_each_image_1 = np.argsort(np.array(ldamodel.get_document_topics(doc_term_matrix, minimum_probability = 0))[:,:,1], axis = 1)[:,-10:] topics_each_image_2 = find_topic(text_corpus_clean_new, ldamodel, num_topics, topics_each_image_1) #pdb.set_trace() im_info = [(os.path.join(img_src, img['filename']),' || '.join([sent['clean'] for sent in img['sentences']])) for img in imgs] topic_counter = Counter(topics_each_image_2).most_common() image_list = [] for topic, count in topic_counter: #pdb.set_trace() indices = np.where(topics_each_image_2 == topic)[0] shuffle(indices) indices = indices[0:16] image_list.append((topic, [im_info[i] for i in indices])) #pdb.set_trace() #pdb.set_trace() topics = ldamodel.print_topics(num_topics = num_topics, num_words=25) topic_summaries = [unicode(t) + ' ' + unicode(c) + ' '+ unicode(topics[t][1]) for t,c in topic_counter] print ('%d : %f'%(num_topics, cm_score)) with io.open('Iterative_LDA/_temp_topics_iteration_'+str(num_topics)+'.txt','w', encoding = 'utf-8') as f1: print (unicode(cm_score), file = f1) print('\n'.join(topic_summaries), file= f1) map(prepare_visuals, image_list) new_imgs = [img[0] for img in filter(filter_topics, zip(imgs, topics_each_image_2))] labels = [img['Label_LDA'] for img in new_imgs] label_hash = dict(zip(Counter(labels).keys(),range(len(Counter(labels).keys())))) for img in new_imgs: img['Label_LDA'] = label_hash[img['Label_LDA']] pdb.set_trace() #with open('Iterative_LDA/_temp_topics_iteration_'+str(iteration)+'.txt','w') as f1: # print('\n'.join(map(str,ldamodel.print_topics(num_topics = 50, num_words=20))), file= f1) #print(Counter(np.argmax(prob_dist,axis = 1).tolist()), file= f1) #pickle.dump([ldamodel,dictionary], open('Iterative_LDA/Models/LDA_AVA' + '50' + '_' + str(iteration) + '.p','w')) #pdb.set_trace()
[]
2024-01-10
VAlduinV/portfolio
photoshare_api~src~repository~models.py
import openai from fastapi import HTTPException, status from src.conf.config import settings from src.constants import * openai.api_key = settings.openai_api_key async def generate_image(description: str): try: url = openai.Image.create( prompt=description, n=1, size="1024x1024" )['data'][0]['url'] except Exception as err: raise HTTPException(status_code=status.HTTP_409_CONFLICT, detail=NO_TOKENS) return url
[]
2024-01-10
SoulNaturalist/AutoModeratorTelegramChatGPT
examples~ban_with_counter.py
import openai from googletrans import Translator from aiogram import Bot, Dispatcher, executor, types """ Example with a counter instead of an instant ban """ class AutoModeration: translator = Translator() def __init__(self, openai_token: str, ban_words: list, ban: bool, language: str) -> None: self.openai_token = openai_token self.ban_words = ban_words self.ban = ban self.language = language def gen_context_msg_gpt(self, msg: str, ban_words: str) -> str: if self.ban_words: return f"""Hi, read this message\n{msg} and if it contains at least one word of their list - {ban_words}\nAlso, do you think this message is spam?, say yes or no""" else: return """Determine whether this message is spam or not, if yes, write yes in the answer""" def send_question_chatgpt(self, msg: str) -> bool: if self.language == "ru": content_to_chatgpt = self.translator.translate(self.gen_context_msg_gpt(msg, self.ban_words), src="ru", dest="en").text else: content_to_chatgpt = self.gen_context_msg_gpt(msg, self.ban_words) openai.api_key = self.openai_token messages = [{"role": "user", "content": content_to_chatgpt}] chatgpt_response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages) response_from_chatgpt = chatgpt_response["choices"][0]["message"]["content"] return "Да" in response_from_chatgpt.lower() or "Yes" in response_from_chatgpt.lower() or "contains" in response_from_chatgpt.lower() class TelegramBot: ban_counter = {} def __init__(self, telegram_token:str, counter_ban:int) -> None: self.telegram_token = telegram_token self.counter_for_ban = counter_ban def start(self): bot = Bot(token=self.telegram_token) dp = Dispatcher(bot) @dp.message_handler(chat_type=types.ChatType.SUPERGROUP) async def spam_handler_supergroup(msg: types.Message): user_id = msg["from"]["id"] chat_id = msg["chat"]["id"] msg_id = msg["message_id"] moderation_class = AutoModeration("open ai token", ["bruh"], True, "ru") is_spam = moderation_class.send_question_chatgpt(msg.text) if is_spam and moderation_class.ban: await bot.delete_message(chat_id, msg_id) if user_id not in self.ban_counter: self.ban_counter[user_id] = 1 else: self.ban_counter[user_id] = self.ban_counter[user_id] + 1 if self.ban_counter[user_id] == self.counter_for_ban: await bot.ban_chat_member(chat_id, user_id) elif is_spam: await bot.delete_message(chat_id, msg_id) executor.start_polling(dp) if __name__ == "__main__": TelegramBot("telegram bot token", 3).start()
[]
2024-01-10
JJJ000/ai-docsy-copy
ai_helper.py
import openai from pptx import Presentation import json github_link = "https://github.com/jstockwin/py-pdf-parser" qn1 = "provide 1-sentence description for this github repo https://github.com/jstockwin/py-pdf-parser " qn2 = "provide categories for this github repo https://github.com/jstockwin/py-pdf-parser and return in array of string format, with double quote" qn3 = "write me a tech doc for this github repo https://github.com/jstockwin/py-pdf-parser,including 1 intro paragraph and 2-4 H2 headers, in markdown format." basic_format = """--- categories: {} tags: {} title: {} linkTitle: {} date: 2023-02-27 description: {} --- {} """ def askGPT(text): openai.api_key = "" completion = openai.Completion.create( engine="text-davinci-003", prompt=text, max_tokens=2048, n=1, stop=None, temperature=0.5, ) r = completion.choices[0].text print(r) print('\n') return r def main(): print("start") des = askGPT(qn1) categories = askGPT(qn2) body = askGPT(qn3) name = github_link.split("/")[-1] title = "\"" + name + " Github Repo Technical Documentation\"" final = basic_format.format(categories.strip(), categories.strip(), title, title, "\"" + des.strip() + "\"", body.strip()) print("done with asking openAI.") with open("/Users/mengting_li/Desktop/personal/ai-docsy/content/en/docs/Getting started/{}.md".format(name), "w") as f: f.write(final) main()
[]
2024-01-10
morancium/webautomation
upsert.py
import chromadb import json import os,random from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma, Pinecone from langchain.embeddings.openai import OpenAIEmbeddings from langchain.llms import OpenAI from dotenv import load_dotenv load_dotenv("nlq to code\.env") OPENAI_API_KEY=os.getenv('OPENAI_API_KEY') persist_directory='db' text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=0) embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) base_path="scraping\md" dir_lst=os.listdir("scraping\md") random.shuffle(dir_lst) total_token=0 for dir in dir_lst: all_text="" for file in os.listdir(os.path.join(base_path,dir)): with open(os.path.join(base_path,dir,file),'r',encoding="utf8") as f: all_text += f.read() total_token+=len(all_text) texts=text_splitter.split_text(all_text) print(len(all_text)) print(len(texts)) for t in texts: vectordb=Chroma.from_texts([t], embedding=embeddings,persist_directory=persist_directory) vectordb.persist() vectordb = None print(dir_lst) print(total_token)
[]
2024-01-10
philmui/asdrp2023
05_embeddings~src~app-02-chroma-BEGIN.py
# # Using Embeddings with Chroma and LlamaIndex # # Leaderboard for MTEB: # https://huggingface.co/spaces/mteb/leaderboard # from pathlib import Path import sys from llama_index import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, load_index_from_storage ) from llama_index.vector_stores import ChromaVectorStore from langchain.embeddings.huggingface import HuggingFaceEmbeddings from llama_index.embeddings import LangchainEmbedding import chromadb from chromadb.config import Settings DATA_DIR = "../data" STORAGE_DIR = "chroma_db" # EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2" EMBEDDING_MODEL = "intfloat/e5-large-v2" from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) import logging logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) def get_index(): index = None embed_model = None # need to create our own embedding here chroma_client = chromadb.Client( Settings(chroma_db_impl="duckdb+parquet", persist_directory=STORAGE_DIR) ) try: # get an existing chroma collection # instantiate a vector store for querying # create an index from the vector store pass except ValueError as ve: # did not get a valid chroma collection, let's create one # get news articles from our local files # create an index from the newly ingested docs # save the index pass return index def get_response(index, query): query_engine = index.as_query_engine() return query_engine.query(query) if __name__ == '__main__': index = get_index() while True: query = input("What question do you have? ('quit' to quit) ") if "quit" in query: break response = get_response(index, query) print(response)
[]
2024-01-10
philmui/asdrp2023
07_plugins~src~sk_fun.py
import os import chainlit as cl from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) LLM_MODEL_NAME = "text-davinci-003" # OpenAI SKILL_DIR = "../skills" SKILL_COLLECTION = "FunSkill" import semantic_kernel as sk from semantic_kernel.connectors.ai.open_ai import OpenAITextCompletion kernel = sk.Kernel() OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] OPENAI_ORG_ID = os.environ["OPENAI_ORG_ID"] kernel.add_text_completion_service( service_id="dv", service=OpenAITextCompletion( LLM_MODEL_NAME, OPENAI_API_KEY, OPENAI_ORG_ID ) ) skill = kernel.import_semantic_skill_from_directory(SKILL_DIR, SKILL_COLLECTION) joke_skill = skill.get("Joke") excuse_skill = skill.get("Excuses") poem_skill = skill.get("Limerick") SOLICITATION = "Tell me a subject about a joke, an excuse, or a poem!" def route_message(message: str): if "joke" in message.lower(): return joke_skill(message) elif "excuse" in message.lower(): return excuse_skill(message) elif "poem" in message.lower(): return poem_skill(message) else: return SOLICITATION @cl.on_message async def main(message: str): response = route_message(message) await cl.Message( content=f"{response}" ).send() @cl.on_chat_start async def start(): await cl.Message( content=SOLICITATION ).send()
[]
2024-01-10
philmui/asdrp2023
05_embeddings~src~app-02-chroma-LIVE.py
# # Using Embeddings with Chroma and LlamaIndex # # Chroma DB: https://www.trychroma.com/ # # Leaderboard for MTEB: # https://huggingface.co/spaces/mteb/leaderboard # from pathlib import Path import sys from llama_index import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, load_index_from_storage ) from llama_index.vector_stores import ChromaVectorStore from langchain.embeddings.huggingface import HuggingFaceEmbeddings from llama_index.embeddings import LangchainEmbedding import chromadb from chromadb.config import Settings DATA_DIR = "../data" STORAGE_DIR = "chroma_db" # EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2" EMBEDDING_MODEL = "intfloat/e5-large-v2" from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) import logging logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) def get_index(): index = None embed_model = LangchainEmbedding( HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL) ) chroma_client = chromadb.Client( Settings(chroma_db_impl="duckdb+parquet", persist_directory=STORAGE_DIR) ) try: chroma_collection = chroma_client.get_collection("news") vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_vector_store( vector_store=vector_store, storage_context=storage_context, embed_model=embed_model ) except ValueError as ve: chroma_collection = chroma_client.create_collection("news") vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) docs = SimpleDirectoryReader(DATA_DIR).load_data() index = VectorStoreIndex.from_documents( docs, storage_context=storage_context, embed_model=embed_model ) chroma_client.persist() return index def get_response(index, query): query_engine = index.as_query_engine() return query_engine.query(query) if __name__ == '__main__': index = get_index() while True: query = input("What question do you have? ('quit' to quit) ") if "quit" in query: break response = get_response(index, query) print(response)
[]
2024-01-10
philmui/asdrp2023
09_agents~src~ChatAgent-notools.py
import chainlit as cl import os from langchain.llms import OpenAI from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) MODEL_NAME = "text-davinci-003" OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] def chat(query: str): llm = OpenAI(openai_api_key=OPENAI_API_KEY, model=MODEL_NAME, temperature=0) return llm(query) @cl.on_message # for every user message async def main(query: str): # final answer await cl.Message( content=chat(query) ).send() @cl.on_chat_start async def start(): await cl.Message( content="Hello there!" ).send()
[]
2024-01-10
philmui/asdrp2023
03_chatbot~src~app-04-few-shots.py
import asyncio import os import chainlit as cl from langchain.prompts import ( PromptTemplate, FewShotPromptTemplate ) from langchain.llms import OpenAI from langchain.prompts.example_selector import SemanticSimilarityExampleSelector from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) MODEL_NAME = "text-davinci-003" OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] examples = [ {"word": "happy", "antonym": "sad"}, {"word": "content", "antonym": "dissatisfied"}, {"word": "peaceful", "antonym": "belligerent"}, {"word": "tall", "antonym": "short"}, {"word": "high", "antonym": "low"}, {"word": "energetic", "antonym": "lethargic"}, {"word": "fast", "antonym": "slow"}, {"word": "sunny", "antonym": "gloomy"}, {"word": "clear", "antonym": "cloudy"}, {"word": "windy", "antonym": "calm"}, ] example_formatter_template = \ """ Word: {word} Antonym: {antonym} """ example_prompt = PromptTemplate( input_variables=["word", "antonym"], template=example_formatter_template, ) @cl.on_message # for every user message def main(input_word: str): example_selector = SemanticSimilarityExampleSelector.from_examples ( examples, # Class to create embeddings OpenAIEmbeddings(), # VectorStore class to store embeddings and do similarity search Chroma, # Number of examples to produce k=2 ) fewshot_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input word", suffix="Word: {word}\nAntonym:", input_variables=["word"], ) llm = OpenAI(openai_api_key=OPENAI_API_KEY, model=MODEL_NAME) response = llm(fewshot_prompt.format(word=input_word)) response += "\n\n=> Enter a word:" # final answer asyncio.run( cl.Message( content=response ).send() ) @cl.on_chat_start def start(): output = "" for e in examples: output += f"word: {e['word']} <=> " output += f"antonym: {e['antonym']}\n" output += "\n\n=> Enter a word:" asyncio.run( cl.Message( content=output ).send() )
[ "\nWord: {word}\nAntonym: {antonym}\n", "Give the antonym of every input word", "Word: {word}\nAntonym:", "antonym" ]
2024-01-10
philmui/asdrp2023
09_agents~src~ChatAgent-withsearch.py
import chainlit as cl import os from langchain.llms import OpenAI from dotenv import load_dotenv, find_dotenv from langchain.agents import AgentType, Tool, load_tools from langchain.memory import ConversationBufferMemory from langchain import OpenAI from langchain.utilities import SerpAPIWrapper from langchain.agents import initialize_agent from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) MODEL_NAME = "text-davinci-003" OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] search = SerpAPIWrapper() tools = [ Tool( name = "Current Search", func=search.run, description="useful for when you need to answer questions about current events or the current state of the world" ), ] memory = ConversationBufferMemory(memory_key="chat_history") def chat(query: str): llm = OpenAI(openai_api_key=OPENAI_API_KEY, model=MODEL_NAME, temperature=0) agent_chain = initialize_agent( tools=tools, llm=llm, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory ) return agent_chain.run(input=query) @cl.on_message # for every user message async def main(query: str): response_text = chat(query) # final answer await cl.Message( content=response_text ).send() @cl.on_chat_start async def start(): await cl.Message( content="Hello there!" ).send()
[]
2024-01-10
philmui/asdrp2023
07_plugins~src~sk_skills01_declarative.py
import os import chainlit as cl from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) LLM_MODEL_NAME = "text-davinci-003" # OpenAI SKILL_DIR = "../skills" SKILL_COLLECTION = "FunSkill" import semantic_kernel as sk from semantic_kernel.connectors.ai.open_ai import OpenAITextCompletion kernel = sk.Kernel() OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] OPENAI_ORG_ID = os.environ["OPENAI_ORG_ID"] # add text completion service # // TODO SOLICITATION = "What do you want a joke to be about?" @cl.on_message async def main(message: str): response = # // TODO await cl.Message( content=f"{response}" ).send() @cl.on_chat_start async def start(): await cl.Message( content=SOLICITATION ).send()
[]
2024-01-10
philmui/asdrp2023
03_chatbot~src~app-03-instruct-template.py
import asyncio import os import chainlit as cl from langchain.prompts import ( PromptTemplate, ) from langchain.llms import OpenAI from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) MODEL_NAME = "text-davinci-003" OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] prompt_template=""" You are a helpful assistant that truthfully respond to a user's query or question. User's query: {query} If you don't know the answer, simply answer: I don't know. Most importantly, do not respond with false information. """ prompt=PromptTemplate( input_variables=["query"], template=prompt_template ) @cl.on_message # for every user message def main(message: str): llm = OpenAI(openai_api_key=OPENAI_API_KEY, model=MODEL_NAME) response = llm(prompt.format(query=message)) # final answer asyncio.run( cl.Message( content=response ).send() ) @cl.on_chat_start def start(): asyncio.run( cl.Message( content="Hello there!" ).send() )
[ "\nYou are a helpful assistant that truthfully respond to a user's query or question.\n\nUser's query: {query}\n\nIf you don't know the answer, simply answer: I don't know. \nMost importantly, do not respond with false information.\n", "t know the answer, simply answer: I don" ]
2024-01-10
philmui/asdrp2023
07_plugins~src~sk_skills02_inline.py
import os import chainlit as cl from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) LLM_MODEL_NAME = "text-davinci-003" # OpenAI SKILL_DIR = "../skills" SKILL_COLLECTION = "FunSkill" import semantic_kernel as sk from semantic_kernel.connectors.ai.open_ai import OpenAITextCompletion kernel = sk.Kernel() OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] OPENAI_ORG_ID = os.environ["OPENAI_ORG_ID"] # add text completion service kernel.add_text_completion_service( service_id="dv", service=OpenAITextCompletion( LLM_MODEL_NAME, OPENAI_API_KEY, OPENAI_ORG_ID ) ) # need to create an inline prompt prompt = """Summarize the content below in less than 2 sentences: {{$input}} """ SOLICITATION = "Type in some text for me to summarize!" # add text completion service summarize_skill = kernel.create_semantic_function( prompt, max_tokens=2000, temperature=0.2, top_p=0.5) @cl.on_message async def main(message: str): response = await summarize_skill.invoke_async(message) await cl.Message( content=f"{response}" ).send() @cl.on_chat_start async def start(): await cl.Message( content=SOLICITATION ).send()
[ "Summarize the content below in less than 2 sentences:\n{{$input}}\n" ]
2024-01-10
philmui/asdrp2023
09_agents~src~ChatAgent-withtools.py
import chainlit as cl import os from langchain.llms import OpenAI from dotenv import load_dotenv, find_dotenv from langchain import OpenAI from langchain.agents import AgentType, Tool, load_tools, initialize_agent from langchain.memory import ConversationBufferMemory from langchain.tools import DuckDuckGoSearchRun from langchain.utilities import SerpAPIWrapper from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) MODEL_NAME = "text-davinci-003" OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] memory = ConversationBufferMemory(memory_key="chat_history") def chat(query: str): llm = OpenAI(openai_api_key=OPENAI_API_KEY, model=MODEL_NAME, max_tokens=2048, temperature=0) toolkit = load_tools( ["serpapi", "open-meteo-api", "news-api", "python_repl", "wolfram-alpha"], llm=llm, serpapi_api_key=os.getenv('SERPAPI_API_KEY'), news_api_key=os.getenv('NEWS_API_KEY'), tmdb_bearer_token=os.getenv('TMDB_BEARER_TOKEN') ) ## toolkit += [DuckDuckGoSearchRun()] agent_chain = initialize_agent( tools=toolkit, llm=llm, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory ) return agent_chain.run(input=query) @cl.on_message # for every user message async def main(query: str): response_text = chat(query) # final answer await cl.Message( content=response_text ).send() @cl.on_chat_start async def start(): await cl.Message( content="Hello there!" ).send()
[]
2024-01-10
philmui/asdrp2023
07_plugins~src~sk_skills04_context_chat.py
import os import chainlit as cl from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) LLM_MODEL_NAME = "gpt-3.5-turbo" # OpenAI import semantic_kernel as sk from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion kernel = sk.Kernel() OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] OPENAI_ORG_ID = os.environ["OPENAI_ORG_ID"] kernel.add_chat_service( service_id="chat-gpt", service=OpenAIChatCompletion( LLM_MODEL_NAME, OPENAI_API_KEY, OPENAI_ORG_ID ) ) sk_prompt = """ ChatBot can have a conversation with you about any topic. It can give explicit instructions or say 'I don't know' if it does not have an answer. {{$history}} User: {{$user_input}} ChatBot: """ SOLICITATION = "Let's chat!" chat_skill = kernel.create_semantic_function( sk_prompt, max_tokens=2000, temperature=0.7, top_p=0.5) context = kernel.create_new_context() context["history"] = "" @cl.on_message async def main(message: str) -> None: context["user_input"] = message response = await chat_skill.invoke_async(context=context) await cl.Message( content=f"{response}" ).send() context["history"] += f"\nUser: {context['user_input']}\nChatBot: {response}\n" print(f"=> history: {context['history']}") @cl.on_chat_start async def start() -> None: await cl.Message( content=SOLICITATION ).send()
[ "\nChatBot can have a conversation with you about any topic.\nIt can give explicit instructions or say 'I don't know' if it does not have an answer.\n\n{{$history}}\nUser: {{$user_input}}\nChatBot: " ]
2024-01-10
philmui/asdrp2023
07_plugins~src~sk_plugin.py
import os import chainlit as cl from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) LLM_MODEL_NAME = "text-davinci-003" SKILL_DIR = "../skills" SKILL_COLLECTION = "FunSkill" import semantic_kernel as sk from semantic_kernel.connectors.ai.open_ai import OpenAITextCompletion kernel = sk.Kernel() kernel.add_text_completion_service( service_id="dv", service=OpenAITextCompletion( LLM_MODEL_NAME, os.environ.get("OPENAI_API_KEY"), os.environ.get("OPENAI_ORG_ID") ) ) fun_skills = kernel.import_semantic_skill_from_directory(SKILL_DIR, SKILL_COLLECTION) joke_skill = fun_skills.get("Joke") @cl.on_message async def main(message: str): response = await joke_skill.invoke_async(message) await cl.Message( content=f"{response}" ).send() @cl.on_chat_start async def start(): await cl.Message( content="Hello there!" ).send()
[]
2024-01-10
philmui/asdrp2023
07_plugins~src~sk_skills03_chatsummary.py
import os import chainlit as cl from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) LLM_MODEL_NAME = "gpt-3.5-turbo" # OpenAI import semantic_kernel as sk from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion kernel = sk.Kernel() OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] OPENAI_ORG_ID = os.environ["OPENAI_ORG_ID"] # add text completion service kernel.add_chat_service( service_id="chat-gpt", service=OpenAIChatCompletion( LLM_MODEL_NAME, OPENAI_API_KEY, OPENAI_ORG_ID ) ) SOLICITATION = "Type in some text for me to summarize!" # key TODO : create a summarization prompt! # create summarization skill summarize_skill = # // TODO @cl.on_message async def main(message: str): response = await summarize_skill.invoke_async(message) await cl.Message( content=f"{response}" ).send() @cl.on_chat_start async def start(): await cl.Message( content=SOLICITATION ).send()
[]
2024-01-10
philmui/asdrp2023
04_grounding~src~app-05-rag.py
import os import asyncio import chainlit as cl from langchain.prompts import ( PromptTemplate, ) from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.document_loaders import DirectoryLoader, TextLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma import chromadb from chromadb.config import Settings DB_DIR = "./db" from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) LLM_MODEL_NAME = "text-davinci-003" # OpenAI EMBEDDING_MODEL_NAME = "text-embedding-ada-002" # OpenAI OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] # create a prompt template prompt_template = """ You are a helpful assistant that truthfully respond to a user's query about the books Art of War or the Prince. User's query: {query} If you don't know the answer, simply answer: I don't know. Most importantly, do not respond with false information. """ prompt = PromptTemplate( input_variables=['query'], template=prompt_template ) @cl.on_message def main(query: str): retriever = None embeddings = OpenAIEmbeddings(openai_api_key = os.environ['OPENAI_API_KEY'], model=EMBEDDING_MODEL_NAME) if not os.path.exists(DB_DIR): # digest the texts into chunks & store their embeddings loader = DirectoryLoader(path="../data/", glob="**/*.txt") docs = loader.load() text_splitter = CharacterTextSplitter(chunk_size=400, chunk_overlap=20) text_chunks = text_splitter.split_documents(documents=docs) vectordb = Chroma.from_documents(text_chunks, embeddings, persist_directory="./db") else: # lookup from existing stored embeddings vectordb = Chroma(persist_directory=DB_DIR, embedding_function=embeddings) retriever = vectordb.as_retriever(search_type="mmr") # maximal margin R qa = RetrievalQA.from_chain_type(llm = OpenAI(model=LLM_MODEL_NAME, temperature=0.0), chain_type="stuff", retriever=retriever, return_source_documents=True ) try: answer = qa({ "query": query }) response = f"{answer['result']}\n" for doc in answer['source_documents']: tabbed_content = doc.page_content.replace("\n", "") response += f"\n\t{doc.metadata['source']}: {tabbed_content[:60]}" except Exception as e: response = f"I don't know. Please ask another question. {e}" asyncio.run( cl.Message( content=response ).send() ) @cl.on_chat_start def start(): asyncio.run( cl.Message( content="Ask me anything about The Prince or the Art of War!" ).send() )
[ "\nYou are a helpful assistant that truthfully respond to a user's query about \nthe books Art of War or the Prince.\n\nUser's query: {query}\n\nIf you don't know the answer, simply answer: I don't know. \nMost importantly, do not respond with false information.\n" ]
2024-01-10
philmui/asdrp2023
03_chatbot~src~app-02-chatbot.py
import asyncio import chainlit as cl import os from langchain.chat_models import ( ChatOpenAI, ChatGooglePalm, ChatAnthropic ) from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) MODEL_NAME = "gpt-3.5-turbo" OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] system_prompt=""" You are a helpful assistant that truthfully respond to a user's query or question. If you don't know the answer, simply answer: I don't know. Most importantly, do not respond with false information. """ @cl.on_message # for every user message def main(query: str): messages = [ {'role':'system', 'content':system_prompt}, {'role':'user', 'content':query} ] response_text="" try: chat = ChatOpenAI(temperature=0, model=MODEL_NAME) response = chat.predict_messages( [ SystemMessage(content=system_prompt), HumanMessage(content=query) ] ) response_text=response.content except Exception as e: response_text=f"no response: {e}" # final answer asyncio.run( cl.Message( content=response_text ).send() ) @cl.on_chat_start def start(): asyncio.run( cl.Message( content="Hello there!" ).send() )
[ "\nYou are a helpful assistant that truthfully respond to a user's query or question.\n\nIf you don't know the answer, simply answer: I don't know. \nMost importantly, do not respond with false information.\n" ]
2024-01-10
philmui/asdrp2023
03_chatbot~src~app-01-simple.py
import asyncio import chainlit as cl import os from langchain.llms import OpenAI from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv(".env")) MODEL_NAME = "text-davinci-003" OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] @cl.on_message # for every user message def main(message: str): llm = OpenAI(openai_api_key=OPENAI_API_KEY, model=MODEL_NAME) response = llm(message) # final answer asyncio.run( cl.Message( content=response ).send() ) @cl.on_chat_start def start(): asyncio.run( cl.Message( content="Hello there!" ).send() )
[]
2024-01-10
farizrahman4u/loopgpt
loopgpt~models~azure_openai.py
from typing import List, Dict, Optional from loopgpt.models.openai_ import OpenAIModel from loopgpt.utils.openai_key import get_openai_key from loopgpt.logger import logger import time from openai.error import RateLimitError import requests import openai def get_deployment_details(endpoint, deployment_id, api_version, api_key): api_key = get_openai_key(api_key) response = requests.get( f"{endpoint}/openai/deployments/{deployment_id}?api-version={api_version}", headers={"api-key": api_key}, ) return response.json() def get_deployment_model(endpoint, deployment_id, api_version, api_key): details = get_deployment_details(endpoint, deployment_id, api_version, api_key) model = details["model"] return { "gpt-35-turbo": "gpt-3.5-turbo", "gpt-4": "gpt-4", "gpt-4-32k": "gpt-4-32k", }[model] class AzureOpenAIModel(OpenAIModel): """Creates an Azure OpenAI model from a deployment ID. Can be created only when ``openai.api_type`` is set to ``azure``. :param deployment_id: The deployment ID of the model. :type deployment_id: str :param api_key: The API key to use for the model. If not specified, it will be found from ``openai.api_key`` or ``.env`` file or the ``OPENAI_API_KEY`` environment variable. :type api_key: str, optional :raises AssertionError: If ``openai.api_type`` is not set to ``azure``. .. note:: You will also need an embedding provider deployed (e.g., text-embedding-ada-002) for creating an agent. Example: .. code-block:: python import os import openai import loopgpt from loopgpt.models import AzureOpenAIModel from loopgpt.embeddings import AzureOpenAIEmbeddingProvider openai.api_type = "azure" openai.api_base = "https://<your deployment>.openai.azure.com/" openai.api_version = "2023-03-15-preview" openai.api_key = os.getenv("OPENAI_API_KEY") model = AzureOpenAIModel("my-gpt4-deployment") embedding_provider = AzureOpenAIEmbeddingProvider("my-embeddings-deployment") agent = loopgpt.Agent(model=model, embedding_provider=embedding_provider) agent.chat("Hello, how are you?") """ def __init__(self, deployment_id: str, api_key: Optional[str] = None): # sanity check assert ( openai.api_type == "azure" ), "AzureOpenAIModel can only be used with Azure API" self.deployment_id = deployment_id self.api_key = api_key self.endpoint = openai.api_base self.api_version = openai.api_version self.model = get_deployment_model( self.endpoint, self.deployment_id, self.api_version, self.api_key ) def chat( self, messages: List[Dict[str, str]], max_tokens: Optional[int] = None, temperature: float = 0.8, ) -> str: api_key = get_openai_key(self.api_key) num_retries = 3 for _ in range(num_retries): try: resp = openai.ChatCompletion.create( engine=self.deployment_id, messages=messages, api_key=api_key, max_tokens=max_tokens, temperature=temperature, )["choices"][0]["message"]["content"] return resp except RateLimitError: logger.warn("Rate limit exceeded. Retrying after 20 seconds.") time.sleep(20) continue def config(self): cfg = super().config() cfg.update( { "deployment_id": self.deployment_id, } ) return cfg @classmethod def from_config(cls, config): return cls(config["deployment_id"], config.get("api_key"))
[]
2024-01-10
xorbitsai/inference
xinference~model~multimodal~tests~test_multimodal.py
# Copyright 2022-2023 XProbe Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import pytest import requests @pytest.mark.skip(reason="Cost too many resources.") def test_restful_api_for_qwen_vl(setup): endpoint, _ = setup from ....client import Client client = Client(endpoint) model_uid = client.launch_model( model_uid="my_controlnet", model_name="qwen-vl-chat", model_type="multimodal", ) model = client.get_model(model_uid) prompt = [ {"type": "text", "text": "What’s in this image?"}, { "type": "image_url", "image_url": { "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }, }, ] response = model.chat(prompt=prompt) assert "grass" in response["choices"][0]["message"]["content"] assert "tree" in response["choices"][0]["message"]["content"] assert "sky" in response["choices"][0]["message"]["content"] # openai client import openai client = openai.Client(api_key="not empty", base_url=f"{endpoint}/v1") completion = client.chat.completions.create( model=model_uid, messages=[ { "role": "user", "content": [ {"type": "text", "text": "What’s in this image?"}, { "type": "image_url", "image_url": { "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }, }, ], } ], ) assert "grass" in completion.choices[0].message.content assert "tree" in completion.choices[0].message.content assert "sky" in completion.choices[0].message.content messages = [ { "role": "user", "content": [ {"type": "text", "text": "这是什么?"}, { "type": "image_url", "image_url": { "url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, }, ], } ] completion = client.chat.completions.create(model=model_uid, messages=messages) assert "女" in completion.choices[0].message.content assert "狗" in completion.choices[0].message.content assert "沙滩" in completion.choices[0].message.content messages.append(completion.choices[0].message.model_dump()) messages.append({"role": "user", "content": "框出图中击掌的位置"}) completion = client.chat.completions.create(model=model_uid, messages=messages) assert "击掌" in completion.choices[0].message.content assert "<ref>" in completion.choices[0].message.content assert "<box>" in completion.choices[0].message.content # Test base64 image response = requests.get( "http://i.epochtimes.com/assets/uploads/2020/07/shutterstock_675595789-600x400.jpg" ) # https://platform.openai.com/docs/guides/vision/uploading-base-64-encoded-images # Function to encode the image b64_img = base64.b64encode(response.content).decode("utf-8") completion = client.chat.completions.create( model=model_uid, messages=[ { "role": "user", "content": [ {"type": "text", "text": "图中有几条鱼?"}, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{b64_img}", }, }, ], } ], ) assert "四条" in completion.choices[0].message.content
[ "[{'type': 'text', 'text': '图中有几条鱼?'}, {'type': 'image_url', 'image_url': {'url': ''}}]", "[{'type': 'text', 'text': '这是什么?'}, {'type': 'image_url', 'image_url': {'url': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'}}]", "框出图中击掌的位置", "[{'type': 'text', 'text': 'What’s in this image?'}, {'type': 'image_url', 'image_url': {'url': 'https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg'}}]" ]
2024-01-10
xorbitsai/inference
xinference~types.py
# Copyright 2022-2023 XProbe Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, Dict, ForwardRef, Iterable, List, Optional, Union from pydantic import ( BaseModel, create_model, create_model_from_typeddict, validate_arguments, ) from typing_extensions import Literal, NotRequired, TypedDict from .fields import ( echo_field, frequency_penalty_field, logprobs_field, max_tokens_field, none_field, presence_penalty_field, repeat_penalty_field, stop_field, stream_field, stream_interval_field, temperature_field, top_k_field, top_p_field, ) SPECIAL_TOOL_PROMPT = "<TOOL>" class Image(TypedDict): url: Optional[str] b64_json: Optional[str] class ImageList(TypedDict): created: int data: List[Image] class EmbeddingUsage(TypedDict): prompt_tokens: int total_tokens: int class EmbeddingData(TypedDict): index: int object: str embedding: List[float] class Embedding(TypedDict): object: Literal["list"] model: str data: List[EmbeddingData] usage: EmbeddingUsage class Document(TypedDict): text: str class DocumentObj(TypedDict): index: int relevance_score: float document: Optional[Document] class Rerank(TypedDict): id: str results: List[DocumentObj] class CompletionLogprobs(TypedDict): text_offset: List[int] token_logprobs: List[Optional[float]] tokens: List[str] top_logprobs: List[Optional[Dict[str, float]]] class CompletionChoice(TypedDict): text: str index: int logprobs: Optional[CompletionLogprobs] finish_reason: Optional[str] class CompletionUsage(TypedDict): prompt_tokens: int completion_tokens: int total_tokens: int class CompletionChunk(TypedDict): id: str object: Literal["text_completion"] created: int model: str choices: List[CompletionChoice] class Completion(TypedDict): id: str object: Literal["text_completion"] created: int model: str choices: List[CompletionChoice] usage: CompletionUsage class ChatCompletionMessage(TypedDict): role: str content: Optional[str] user: NotRequired[str] tool_calls: NotRequired[List] class ChatCompletionChoice(TypedDict): index: int message: ChatCompletionMessage finish_reason: Optional[str] class ChatCompletion(TypedDict): id: str object: Literal["chat.completion"] created: int model: str choices: List[ChatCompletionChoice] usage: CompletionUsage class ChatCompletionChunkDelta(TypedDict): role: NotRequired[str] content: NotRequired[str] class ChatCompletionChunkChoice(TypedDict): index: int delta: ChatCompletionChunkDelta finish_reason: Optional[str] class ChatCompletionChunk(TypedDict): id: str model: str object: Literal["chat.completion.chunk"] created: int choices: List[ChatCompletionChunkChoice] class ChatglmCppModelConfig(TypedDict, total=False): pass class ChatglmCppGenerateConfig(TypedDict, total=False): max_tokens: int top_p: float temperature: float stream: bool class QWenCppModelConfig(TypedDict, total=False): pass class QWenCppGenerateConfig(TypedDict, total=False): max_tokens: int top_p: float temperature: float stream: bool StoppingCriteria = Callable[[List[int], List[float]], bool] class StoppingCriteriaList(List[StoppingCriteria]): def __call__(self, input_ids: List[int], logits: List[float]) -> bool: return any([stopping_criteria(input_ids, logits) for stopping_criteria in self]) LogitsProcessor = Callable[[List[int], List[float]], List[float]] class LogitsProcessorList(List[LogitsProcessor]): def __call__(self, input_ids: List[int], scores: List[float]) -> List[float]: for processor in self: scores = processor(input_ids, scores) return scores class LlamaCppGenerateConfig(TypedDict, total=False): suffix: Optional[str] max_tokens: int temperature: float top_p: float logprobs: Optional[int] echo: bool stop: Optional[Union[str, List[str]]] frequency_penalty: float presence_penalty: float repetition_penalty: float top_k: int stream: bool tfs_z: float mirostat_mode: int mirostat_tau: float mirostat_eta: float model: Optional[str] grammar: Optional[Any] stopping_criteria: Optional["StoppingCriteriaList"] logits_processor: Optional["LogitsProcessorList"] tools: Optional[List[Dict]] class LlamaCppModelConfig(TypedDict, total=False): n_ctx: int n_parts: int n_gpu_layers: int seed: int f16_kv: bool logits_all: bool vocab_only: bool use_mmap: bool use_mlock: bool embedding: bool n_threads: Optional[int] n_batch: int last_n_tokens_size: int lora_base: Optional[str] lora_path: Optional[str] low_vram: bool n_gqa: Optional[int] # (TEMPORARY) must be 8 for llama2 70b rms_norm_eps: Optional[float] # (TEMPORARY) verbose: bool class PytorchGenerateConfig(TypedDict, total=False): temperature: float repetition_penalty: float top_p: float top_k: int stream: bool max_tokens: int echo: bool stop: Optional[Union[str, List[str]]] stop_token_ids: Optional[Union[int, List[int]]] stream_interval: int model: Optional[str] tools: Optional[List[Dict]] class PytorchModelConfig(TypedDict, total=False): revision: Optional[str] device: str gpus: Optional[str] num_gpus: int max_gpu_memory: str gptq_ckpt: Optional[str] gptq_wbits: int gptq_groupsize: int gptq_act_order: bool trust_remote_code: bool def get_pydantic_model_from_method( meth, exclude_fields: Optional[Iterable[str]] = None, include_fields: Optional[Dict[str, Any]] = None, ) -> BaseModel: f = validate_arguments(meth, config={"arbitrary_types_allowed": True}) model = f.model model.__fields__.pop("self", None) model.__fields__.pop("args", None) model.__fields__.pop("kwargs", None) pydantic_private_keys = [ key for key in model.__fields__.keys() if key.startswith("v__") ] for key in pydantic_private_keys: model.__fields__.pop(key) if exclude_fields is not None: for key in exclude_fields: model.__fields__.pop(key, None) if include_fields is not None: dummy_model = create_model("DummyModel", **include_fields) model.__fields__.update(dummy_model.__fields__) return model def fix_forward_ref(model): """ pydantic in Python 3.8 generates ForwardRef field, we replace them by the Optional[Any] """ exclude_fields = [] include_fields = {} for key, field in model.__fields__.items(): if isinstance(field.annotation, ForwardRef): exclude_fields.append(key) include_fields[key] = (Optional[Any], None) if exclude_fields: for key in exclude_fields: model.__fields__.pop(key, None) if include_fields: dummy_model = create_model("DummyModel", **include_fields) model.__fields__.update(dummy_model.__fields__) return model class ModelAndPrompt(BaseModel): model: str prompt: str class CreateCompletionTorch(BaseModel): echo: bool = echo_field max_tokens: int = max_tokens_field repetition_penalty: float = repeat_penalty_field stop: Optional[Union[str, List[str]]] = stop_field stop_token_ids: Optional[Union[int, List[int]]] = none_field stream: bool = stream_field stream_interval: int = stream_interval_field temperature: float = temperature_field top_p: float = top_p_field top_k: int = top_k_field CreateCompletionLlamaCpp: BaseModel try: from llama_cpp import Llama CreateCompletionLlamaCpp = get_pydantic_model_from_method( Llama.create_completion, exclude_fields=["model", "prompt", "grammar"], include_fields={"grammar": (Optional[Any], None)}, ) except ImportError: CreateCompletionLlamaCpp = create_model("CreateCompletionLlamaCpp") CreateCompletionCTransformers: BaseModel try: from ctransformers.llm import LLM CreateCompletionCTransformers = get_pydantic_model_from_method( LLM.generate, exclude_fields=["tokens"], include_fields={ "max_tokens": (Optional[int], max_tokens_field), "stream": (Optional[bool], stream_field), }, ) except ImportError: CreateCompletionCTransformers = create_model("CreateCompletionCTransformers") # This type is for openai API compatibility CreateCompletionOpenAI: BaseModel class _CreateCompletionOpenAIFallback(BaseModel): # OpenAI's create completion request body, we define it by pydantic # model to verify the input params. # https://platform.openai.com/docs/api-reference/completions/object model: str prompt: str best_of: Optional[int] = 1 echo: bool = echo_field frequency_penalty: Optional[float] = frequency_penalty_field logit_bias: Optional[Dict[str, float]] = none_field logprobs: Optional[int] = logprobs_field max_tokens: int = max_tokens_field n: Optional[int] = 1 presence_penalty: Optional[float] = presence_penalty_field seed: Optional[int] = none_field stop: Optional[Union[str, List[str]]] = stop_field stream: bool = stream_field suffix: Optional[str] = none_field temperature: float = temperature_field top_p: float = top_p_field user: Optional[str] = none_field try: # For openai > 1 from openai.types.completion_create_params import CompletionCreateParamsNonStreaming CreateCompletionOpenAI = create_model_from_typeddict( CompletionCreateParamsNonStreaming, ) CreateCompletionOpenAI = fix_forward_ref(CreateCompletionOpenAI) except ImportError: # TODO(codingl2k1): Remove it if openai < 1 is dropped. CreateCompletionOpenAI = _CreateCompletionOpenAIFallback class CreateCompletion( ModelAndPrompt, CreateCompletionTorch, CreateCompletionLlamaCpp, CreateCompletionCTransformers, CreateCompletionOpenAI, ): pass class CreateChatModel(BaseModel): model: str # Currently, chat calls generates, so the params share the same one. CreateChatCompletionTorch = CreateCompletionTorch CreateChatCompletionLlamaCpp: BaseModel = CreateCompletionLlamaCpp CreateChatCompletionCTransformers: BaseModel = CreateCompletionCTransformers # This type is for openai API compatibility CreateChatCompletionOpenAI: BaseModel # Only support openai > 1 from openai.types.chat.completion_create_params import ( CompletionCreateParamsNonStreaming, ) CreateChatCompletionOpenAI = create_model_from_typeddict( CompletionCreateParamsNonStreaming, ) CreateChatCompletionOpenAI = fix_forward_ref(CreateChatCompletionOpenAI) class CreateChatCompletion( CreateChatModel, CreateChatCompletionTorch, CreateChatCompletionLlamaCpp, CreateChatCompletionCTransformers, CreateChatCompletionOpenAI, ): pass
[ "<TOOL>" ]
2024-01-10
xorbitsai/inference
examples~LangChain_Streamlit_Doc_Chat.py
import streamlit as st from langchain.llms import Xinference from langchain.embeddings import XinferenceEmbeddings from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.document_loaders import TextLoader from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma # Customize the layout st.set_page_config(page_title="Local AI Chat Powered by Xinference", page_icon="🤖", layout="wide") # Write uploaded file in temp dir def write_text_file(content, file_path): try: with open(file_path, 'w') as file: file.write(content) return True except Exception as e: print(f"Error occurred while writing the file: {e}") return False # Prepare prompt template prompt_template = """ 使用下面的上下文来回答问题。 如果你不知道答案,就说你不知道,不要编造答案。 {context} 问题: {question} 回答:""" prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) # Initialize the Xinference LLM & Embeddings xinference_server_url = "http://localhost:9997" llm = Xinference(server_url=xinference_server_url, model_uid="my_llm") embeddings = XinferenceEmbeddings(server_url=xinference_server_url, model_uid="my_embedding") llm_chain = LLMChain(llm=llm, prompt=prompt) st.title("📄文档对话") uploaded_file = st.file_uploader("上传文件", type="txt") if uploaded_file is not None: content = uploaded_file.read().decode('utf-8') file_path = "/tmp/file.txt" write_text_file(content, file_path) loader = TextLoader(file_path) docs = loader.load() text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0) texts = text_splitter.split_documents(docs) db = Chroma.from_documents(texts, embeddings) st.success("上传文档成功") # Query through LLM question = st.text_input("提问", placeholder="请问我任何关于文章的问题", disabled=not uploaded_file) if question: similar_doc = db.similarity_search(question, k=1) st.write("相关上下文:") st.write(similar_doc) context = similar_doc[0].page_content query_llm = LLMChain(llm=llm, prompt=prompt) response = query_llm.run({"context": context, "question": question}) st.write(f"回答:{response}")
[ "question", "\n使用下面的上下文来回答问题。\n如果你不知道答案,就说你不知道,不要编造答案。\n{context}\n问题: {question}\n回答:", "context" ]
2024-01-10
xorbitsai/inference
xinference~core~tests~test_restful_api.py
# Copyright 2022-2023 XProbe Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import sys import openai import pytest import requests from packaging import version from ...model.embedding import BUILTIN_EMBEDDING_MODELS @pytest.mark.asyncio async def test_restful_api(setup): endpoint, _ = setup url = f"{endpoint}/v1/models" # list response = requests.get(url) response_data = response.json() assert len(response_data) == 0 # launch payload = { "model_uid": "test_restful_api", "model_name": "orca", "quantization": "q4_0", } response = requests.post(url, json=payload) response_data = response.json() model_uid_res = response_data["model_uid"] assert model_uid_res == "test_restful_api" # launch n_gpu error payload = { "model_uid": "test_restful_api", "model_name": "orca", "quantization": "q4_0", "n_gpu": -1, } response = requests.post(url, json=payload) assert response.status_code == 400 # same model uid payload = { "model_uid": "test_restful_api", "model_name": "orca", "quantization": "q4_0", } response = requests.post(url, json=payload) assert response.status_code == 400 # list response = requests.get(url) response_data = response.json() assert len(response_data) == 1 # describe response = requests.get(f"{endpoint}/v1/models/test_restful_api") response_data = response.json() assert response_data["model_name"] == "orca" assert response_data["replica"] == 1 response = requests.delete(f"{endpoint}/v1/models/bogus") assert response.status_code == 400 # generate url = f"{endpoint}/v1/completions" payload = { "model": model_uid_res, "prompt": "Once upon a time, there was a very old computer.", } response = requests.post(url, json=payload) completion = response.json() assert "text" in completion["choices"][0] payload = { "model": "bogus", "prompt": "Once upon a time, there was a very old computer.", } response = requests.post(url, json=payload) assert response.status_code == 400 payload = { "prompt": "Once upon a time, there was a very old computer.", } response = requests.post(url, json=payload) assert response.status_code == 422 # chat url = f"{endpoint}/v1/chat/completions" payload = { "model": model_uid_res, "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Hi what can I help you?"}, {"role": "user", "content": "What is the capital of France?"}, ], "stop": ["\n"], } response = requests.post(url, json=payload) completion = response.json() assert "content" in completion["choices"][0]["message"] payload = { "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Hi what can I help you?"}, {"role": "user", "content": "What is the capital of France?"}, ], } response = requests.post(url, json=payload) assert response.status_code == 422 payload = { "model": "bogus", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Hi what can I help you?"}, {"role": "user", "content": "What is the capital of France?"}, ], } response = requests.post(url, json=payload) assert response.status_code == 400 payload = { "model": model_uid_res, "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Hi what can I help you?"}, ], } response = requests.post(url, json=payload) assert response.status_code == 400 # Duplicate system messages payload = { "model": model_uid_res, "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "system", "content": "You are not a helpful assistant."}, {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Hi what can I help you?"}, {"role": "user", "content": "What is the capital of France?"}, ], } response = requests.post(url, json=payload) assert response.status_code == 400 # System message should be the first one. payload = { "model": model_uid_res, "messages": [ {"role": "user", "content": "Hello!"}, {"role": "system", "content": "You are a helpful assistant."}, {"role": "assistant", "content": "Hi what can I help you?"}, {"role": "user", "content": "What is the capital of France?"}, ], } response = requests.post(url, json=payload) assert response.status_code == 400 # delete url = f"{endpoint}/v1/models/test_restful_api" response = requests.delete(url) # list response = requests.get(f"{endpoint}/v1/models") response_data = response.json() assert len(response_data) == 0 # delete again url = f"{endpoint}/v1/models/test_restful_api" response = requests.delete(url) assert response.status_code == 400 # test for model that supports embedding url = f"{endpoint}/v1/models" payload = { "model_uid": "test_restful_api2", "model_name": "orca", "quantization": "q4_0", } response = requests.post(url, json=payload) response_data = response.json() model_uid_res = response_data["model_uid"] assert model_uid_res == "test_restful_api2" url = f"{endpoint}/v1/embeddings" payload = { "model": "test_restful_api2", "input": "The food was delicious and the waiter...", } response = requests.post(url, json=payload) embedding_res = response.json() assert "embedding" in embedding_res["data"][0] url = f"{endpoint}/v1/models/test_restful_api2" response = requests.delete(url) # list model registration url = f"{endpoint}/v1/model_registrations/LLM" response = requests.get(url) assert response.status_code == 200 model_regs = response.json() assert len(model_regs) > 0 for model_reg in model_regs: assert model_reg["is_builtin"] # register_model model = """{ "version": 1, "context_length":2048, "model_name": "custom_model", "model_lang": [ "en", "zh" ], "model_ability": [ "embed", "chat" ], "model_family": "other", "model_specs": [ { "model_format": "pytorch", "model_size_in_billions": 7, "quantizations": [ "4-bit", "8-bit", "none" ], "model_id": "ziqingyang/chinese-alpaca-2-7b" } ], "prompt_style": { "style_name": "ADD_COLON_SINGLE", "system_prompt": "Below is an instruction that describes a task. Write a response that appropriately completes the request.", "roles": [ "Instruction", "Response" ], "intra_message_sep": "\\n\\n### " } }""" url = f"{endpoint}/v1/model_registrations/LLM" payload = {"model": model, "persist": False} response = requests.post(url, json=payload) assert response.status_code == 200 url = f"{endpoint}/v1/model_registrations/LLM" response = requests.get(url) assert response.status_code == 200 new_model_regs = response.json() assert len(new_model_regs) == len(model_regs) + 1 # get_model_registrations url = f"{endpoint}/v1/model_registrations/LLM/custom_model" response = requests.get(url, json=payload) assert response.status_code == 200 data = response.json() assert "custom_model" in data["model_name"] # unregister_model url = f"{endpoint}/v1/model_registrations/LLM/custom_model" response = requests.delete(url, json=payload) assert response.status_code == 200 url = f"{endpoint}/v1/model_registrations/LLM" response = requests.get(url) assert response.status_code == 200 new_model_regs = response.json() assert len(new_model_regs) == len(model_regs) custom_model_reg = None for model_reg in new_model_regs: if model_reg["model_name"] == "custom_model": custom_model_reg = model_reg assert custom_model_reg is None def test_restful_api_for_embedding(setup): model_name = "gte-base" model_spec = BUILTIN_EMBEDDING_MODELS[model_name] endpoint, _ = setup url = f"{endpoint}/v1/models" # list response = requests.get(url) response_data = response.json() assert len(response_data) == 0 # launch payload = { "model_uid": "test_embedding", "model_name": model_name, "model_type": "embedding", } response = requests.post(url, json=payload) response_data = response.json() model_uid_res = response_data["model_uid"] assert model_uid_res == "test_embedding" response = requests.get(url) response_data = response.json() assert len(response_data) == 1 # test embedding url = f"{endpoint}/v1/embeddings" payload = { "model": "test_embedding", "input": "The food was delicious and the waiter...", } response = requests.post(url, json=payload) embedding_res = response.json() assert "embedding" in embedding_res["data"][0] assert len(embedding_res["data"][0]["embedding"]) == model_spec.dimensions # test multiple payload = { "model": "test_embedding", "input": [ "The food was delicious and the waiter...", "how to implement quick sort in python?", "Beijing", "sorting algorithms", ], } response = requests.post(url, json=payload) embedding_res = response.json() assert len(embedding_res["data"]) == 4 for data in embedding_res["data"]: assert len(data["embedding"]) == model_spec.dimensions # delete model url = f"{endpoint}/v1/models/test_embedding" response = requests.delete(url) assert response.status_code == 200 response = requests.get(f"{endpoint}/v1/models") response_data = response.json() assert len(response_data) == 0 def _check_invalid_tool_calls(endpoint, model_uid_res): import openai client = openai.Client(api_key="not empty", base_url=f"{endpoint}/v1") tools = [ { "type": "function", "function": { "name": "get_exchange_rate", "description": "Get the exchange rate between two currencies", "parameters": { "type": "object", "properties": { "base_currency": { "type": "string", "description": "The currency to convert from", }, "target_currency": { "type": "string", "description": "The currency to convert to", }, }, "required": ["base_currency", "target_currency"], }, }, } ] completion = client.chat.completions.create( model=model_uid_res, messages=[ { "content": "Can you book a flight for me from New York to London?", "role": "user", } ], tools=tools, max_tokens=200, temperature=0.1, ) assert "stop" == completion.choices[0].finish_reason assert completion.choices[0].message.content assert len(completion.choices[0].message.tool_calls) == 0 @pytest.mark.parametrize( "model_format, quantization", [("ggmlv3", "q4_0"), ("pytorch", None)] ) @pytest.mark.skip(reason="Cost too many resources.") def test_restful_api_for_tool_calls(setup, model_format, quantization): model_name = "chatglm3" endpoint, _ = setup url = f"{endpoint}/v1/models" # list response = requests.get(url) response_data = response.json() assert len(response_data) == 0 # launch payload = { "model_uid": "test_tool", "model_name": model_name, "model_size_in_billions": 6, "model_format": model_format, "quantization": quantization, } response = requests.post(url, json=payload) response_data = response.json() model_uid_res = response_data["model_uid"] assert model_uid_res == "test_tool" response = requests.get(url) response_data = response.json() assert len(response_data) == 1 # tool tools = [ { "type": "function", "function": { "name": "track", "description": "追踪指定股票的实时价格", "parameters": { "type": "object", "properties": {"symbol": {"description": "需要追踪的股票代码"}}, "required": ["symbol"], }, }, }, { "type": "function", "function": { "name": "text-to-speech", "description": "将文本转换为语音", "parameters": { "type": "object", "properties": { "text": {"description": "需要转换成语音的文本"}, "voice": {"description": "要使用的语音类型(男声、女声等)"}, "speed": {"description": "语音的速度(快、中等、慢等)"}, }, "required": ["text"], }, }, }, ] url = f"{endpoint}/v1/chat/completions" payload = { "model": model_uid_res, "messages": [ {"role": "user", "content": "帮我查询股票10111的价格"}, ], "tools": tools, "stop": ["\n"], } response = requests.post(url, json=payload) completion = response.json() assert "content" in completion["choices"][0]["message"] assert "tool_calls" == completion["choices"][0]["finish_reason"] assert ( "track" == completion["choices"][0]["message"]["tool_calls"][0]["function"]["name"] ) arguments = completion["choices"][0]["message"]["tool_calls"][0]["function"][ "arguments" ] arg = json.loads(arguments) assert arg == {"symbol": "10111"} # Restful client from ...client import RESTfulClient client = RESTfulClient(endpoint) model = client.get_model(model_uid_res) completion = model.chat("帮我查询股票10111的价格", tools=tools) assert "content" in completion["choices"][0]["message"] assert "tool_calls" == completion["choices"][0]["finish_reason"] assert ( "track" == completion["choices"][0]["message"]["tool_calls"][0]["function"]["name"] ) arguments = completion["choices"][0]["message"]["tool_calls"][0]["function"][ "arguments" ] arg = json.loads(arguments) assert arg == {"symbol": "10111"} # openai client import openai client = openai.Client(api_key="not empty", base_url=f"{endpoint}/v1") completion = client.chat.completions.create( model=model_uid_res, messages=[{"role": "user", "content": "帮我查询股票10111的价格"}], tools=tools, ) assert "tool_calls" == completion.choices[0].finish_reason assert "track" == completion.choices[0].message.tool_calls[0].function.name arguments = completion.choices[0].message.tool_calls[0].function.arguments arg = json.loads(arguments) assert arg == {"symbol": "10111"} assistant_message = completion.choices[0].message.model_dump() messages = [ {"role": "user", "content": "帮我查询股票10111的价格"}, assistant_message, { "role": "tool", "tool_call_id": assistant_message["tool_calls"][0]["id"], "name": assistant_message["tool_calls"][0]["function"]["name"], "content": str({"symbol": "10111", "price": 12345}), }, ] for kwargs in [{"tools": tools}, {}]: completion = client.chat.completions.create( model=model_uid_res, messages=messages, **kwargs ) assert completion.choices assert completion.choices[0].finish_reason == "stop" assert "10111" in completion.choices[0].message.content assert "12345" in completion.choices[0].message.content _check_invalid_tool_calls(endpoint, model_uid_res) @pytest.mark.parametrize( "model_format, quantization", [("ggufv2", "Q4_K_S"), ("pytorch", None)] ) @pytest.mark.skip(reason="Cost too many resources.") def test_restful_api_for_gorilla_openfunctions_tool_calls( setup, model_format, quantization ): model_name = "gorilla-openfunctions-v1" endpoint, _ = setup url = f"{endpoint}/v1/models" # list response = requests.get(url) response_data = response.json() assert len(response_data) == 0 # launch payload = { "model_uid": "test_tool", "model_name": model_name, "model_size_in_billions": 7, "model_format": model_format, "quantization": quantization, } response = requests.post(url, json=payload) response_data = response.json() model_uid_res = response_data["model_uid"] assert model_uid_res == "test_tool" response = requests.get(url) response_data = response.json() assert len(response_data) == 1 # tool tools = [ { "type": "function", "function": { "name": "uber_ride", "description": "Find suitable ride for customers given the location, " "type of ride, and the amount of time the customer is " "willing to wait as parameters", "parameters": { "type": "object", "properties": { "loc": { "type": "int", "description": "Location of the starting place of the Uber ride", }, "type": { "type": "string", "enum": ["plus", "comfort", "black"], "description": "Types of Uber ride user is ordering", }, "time": { "type": "int", "description": "The amount of time in minutes the customer is willing to wait", }, }, }, }, } ] url = f"{endpoint}/v1/chat/completions" payload = { "model": model_uid_res, "messages": [ { "role": "user", "content": 'Call me an Uber ride type "Plus" in Berkeley at zipcode 94704 in 10 minutes', }, ], "tools": tools, "stop": ["\n"], "max_tokens": 200, "temperature": 0, } response = requests.post(url, json=payload) completion = response.json() assert "content" in completion["choices"][0]["message"] assert "tool_calls" == completion["choices"][0]["finish_reason"] assert ( "uber_ride" == completion["choices"][0]["message"]["tool_calls"][0]["function"]["name"] ) arguments = completion["choices"][0]["message"]["tool_calls"][0]["function"][ "arguments" ] arg = json.loads(arguments) assert arg == {"loc": 94704, "time": 10, "type": "plus"} _check_invalid_tool_calls(endpoint, model_uid_res) @pytest.mark.parametrize( "model_format, quantization", [ ("pytorch", None), ("ggufv2", "Q4_K_M"), ], ) @pytest.mark.skip(reason="Cost too many resources.") def test_restful_api_for_qwen_tool_calls(setup, model_format, quantization): model_name = "qwen-chat" endpoint, _ = setup url = f"{endpoint}/v1/models" # list response = requests.get(url) response_data = response.json() assert len(response_data) == 0 # launch payload = { "model_uid": "test_tool", "model_name": model_name, "model_size_in_billions": 7, "model_format": model_format, "quantization": quantization, } response = requests.post(url, json=payload) response_data = response.json() model_uid_res = response_data["model_uid"] assert model_uid_res == "test_tool" response = requests.get(url) response_data = response.json() assert len(response_data) == 1 # tool tools = [ { "type": "function", "function": { "name": "google_search", "description": "谷歌搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。", "parameters": { "type": "object", "properties": { "search_query": { "type": "string", "description": "搜索关键词或短语", }, }, "required": ["search_query"], }, }, }, { "type": "function", "function": { "name": "image_gen", "description": "文生图是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL。", "parameters": { "type": "object", "properties": { "prompt": { "type": "string", "description": "英文关键词,描述了希望图像具有什么内容", }, }, "required": ["prompt"], }, }, }, ] url = f"{endpoint}/v1/chat/completions" payload = { "model": model_uid_res, "messages": [ { "role": "user", "content": "谁是周杰伦?", }, ], "tools": tools, "max_tokens": 2048, "temperature": 0, } response = requests.post(url, json=payload) completion = response.json() assert "content" in completion["choices"][0]["message"] assert "tool_calls" == completion["choices"][0]["finish_reason"] assert ( "google_search" == completion["choices"][0]["message"]["tool_calls"][0]["function"]["name"] ) arguments = completion["choices"][0]["message"]["tool_calls"][0]["function"][ "arguments" ] arg = json.loads(arguments) assert arg == {"search_query": "周杰伦"} # Check tool message. payload = { "model": model_uid_res, "messages": [ { "role": "user", "content": "谁是周杰伦?", }, completion["choices"][0]["message"], { "role": "tool", "content": "Jay Chou is a Taiwanese singer, songwriter, record producer, rapper, actor, television personality, and businessman.", }, ], "tools": tools, "max_tokens": 2048, "temperature": 0, } response = requests.post(url, json=payload) completion2 = response.json() assert "stop" == completion2["choices"][0]["finish_reason"] assert "周杰伦" in completion2["choices"][0]["message"]["content"] assert "歌手" in completion2["choices"][0]["message"]["content"] # Check continue tool call. payload = { "model": model_uid_res, "messages": [ { "role": "user", "content": "谁是周杰伦?", }, completion["choices"][0]["message"], { "role": "tool", "content": "Jay Chou is a Taiwanese singer, songwriter, record producer, rapper, actor, television personality, and businessman.", }, completion2["choices"][0]["message"], {"role": "user", "content": "画一个他的卡通形象出来"}, ], "tools": tools, "max_tokens": 2048, "temperature": 0, } response = requests.post(url, json=payload) completion3 = response.json() assert "tool_calls" == completion3["choices"][0]["finish_reason"] assert ( "image_gen" == completion3["choices"][0]["message"]["tool_calls"][0]["function"]["name"] ) arguments = completion3["choices"][0]["message"]["tool_calls"][0]["function"][ "arguments" ] arg = json.loads(arguments) assert "Jay Chou" in arg["prompt"] _check_invalid_tool_calls(endpoint, model_uid_res) def test_restful_api_with_request_limits(setup): model_name = "gte-base" endpoint, _ = setup url = f"{endpoint}/v1/models" # test embedding # launch payload = { "model_uid": "test_embedding", "model_name": model_name, "model_type": "embedding", "request_limits": 0, } response = requests.post(url, json=payload) response_data = response.json() model_uid_res = response_data["model_uid"] assert model_uid_res == "test_embedding" # test embedding url = f"{endpoint}/v1/embeddings" payload = { "model": "test_embedding", "input": "The food was delicious and the waiter...", } response = requests.post(url, json=payload) assert response.status_code == 429 assert "Rate limit reached" in response.json()["detail"] # delete model url = f"{endpoint}/v1/models/test_embedding" response = requests.delete(url) assert response.status_code == 200 # test llm url = f"{endpoint}/v1/models" payload = { "model_uid": "test_restful_api", "model_name": "orca", "quantization": "q4_0", "request_limits": 0, } response = requests.post(url, json=payload) response_data = response.json() model_uid_res = response_data["model_uid"] assert model_uid_res == "test_restful_api" # generate url = f"{endpoint}/v1/completions" payload = { "model": model_uid_res, "prompt": "Once upon a time, there was a very old computer.", } response = requests.post(url, json=payload) assert response.status_code == 429 assert "Rate limit reached" in response.json()["detail"] @pytest.mark.asyncio @pytest.mark.skipif( sys.platform == "win32", reason="Window CI hangs after run this case." ) async def test_openai(setup): endpoint, _ = setup url = f"{endpoint}/v1/models" # list response = requests.get(url) response_data = response.json() assert len(response_data) == 0 # launch payload = { "model_uid": "test_restful_api", "model_name": "orca", "quantization": "q4_0", } response = requests.post(url, json=payload) response_data = response.json() model_uid_res = response_data["model_uid"] assert model_uid_res == "test_restful_api" # chat messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Hi what can I help you?"}, {"role": "user", "content": "What is the capital of France?"}, ] result = [] if version.parse(openai.__version__) < version.parse("1.0"): openai.api_key = "" openai.api_base = f"{endpoint}/v1" openai_chat_completion = openai.ChatCompletion.acreate stream_chunk_type_name = "OpenAIObject" response_type_name = "OpenAIObject" else: client = openai.AsyncClient(api_key="not empty", base_url=f"{endpoint}/v1") openai_chat_completion = client.chat.completions.create stream_chunk_type_name = "ChatCompletionChunk" response_type_name = "ChatCompletion" async for chunk in await openai_chat_completion( messages=messages, stream=True, model=model_uid_res ): if not hasattr(chunk, "choices") or len(chunk.choices) == 0: continue result.append(chunk) assert result assert type(result[0]).__name__ == stream_chunk_type_name result = await openai_chat_completion( messages=messages, stream=False, model=model_uid_res ) assert result assert type(result).__name__ == response_type_name def test_lang_chain(setup): endpoint, _ = setup url = f"{endpoint}/v1/models" # list response = requests.get(url) response_data = response.json() assert len(response_data) == 0 # launch payload = { "model_uid": "test_restful_api", "model_name": "orca", "quantization": "q4_0", } response = requests.post(url, json=payload) response_data = response.json() model_uid_res = response_data["model_uid"] assert model_uid_res == "test_restful_api" from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.schema import AIMessage, HumanMessage, SystemMessage inference_server_url = f"{endpoint}/v1" chat = ChatOpenAI( model=model_uid_res, openai_api_key="EMPTY", openai_api_base=inference_server_url, max_tokens=5, temperature=0, ) messages = [ SystemMessage( content="You are a helpful assistant that translates English to Italian." ), HumanMessage( content="Translate the following sentence from English to Italian: I love programming." ), ] r = chat(messages) assert type(r) == AIMessage assert r.content assert "amo" in r.content.lower() template = "You are a helpful assistant that translates {input_language} to {output_language}." system_message_prompt = SystemMessagePromptTemplate.from_template(template) human_template = "{text}" human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) chat_prompt = ChatPromptTemplate.from_messages( [system_message_prompt, human_message_prompt] ) # get a chat completion from the formatted messages r = chat( chat_prompt.format_prompt( input_language="English", output_language="Italian", text="I love programming.", ).to_messages() ) assert type(r) == AIMessage assert r.content
[ "画一个他的卡通形象出来", "帮我查询股票10111的价格", "You are a helpful assistant that translates {input_language} to {output_language}.", "Call me an Uber ride type \"Plus\" in Berkeley at zipcode 94704 in 10 minutes", "{'symbol': '10111', 'price': 12345}", "You are not a helpful assistant.", "Hi what can I help you?", "Can you book a flight for me from New York to London?", "[PLACEHOLDER, PLACEHOLDER]", "Translate the following sentence from English to Italian: I love programming.", "You are a helpful assistant that translates English to Italian.", "What is the capital of France?", "You are a helpful assistant.", "谁是周杰伦?", "Hello!", "Jay Chou is a Taiwanese singer, songwriter, record producer, rapper, actor, television personality, and businessman.", "{text}" ]
2024-01-10
navikt/oet-chat
emb_noemb.py
import openai, os, requests import getpass openai.__version__ # 0.28.0 openai.api_type = "azure" # Azure OpenAI on your own data is only supported by the 2023-08-01-preview API version openai.api_version = "2023-08-01-preview" # Azure OpenAI setup openai.api_base = "https://faggruppe-gpt.openai.azure.com/" # Add your endpoint here openai.api_key = getpass.getpass() # Add your OpenAI API key here deployment_id = "gpt-4" # Add your deployment ID here # Azure Cognitive Search setup search_endpoint = "https://sprakteknologi-ai-search.search.windows.net"; # Add your Azure Cognitive Search endpoint here search_key = getpass.getpass(); # Add your Azure Cognitive Search admin key here def setup_byod(deployment_id: str) -> None: """Sets up the OpenAI Python SDK to use your own data for the chat endpoint. :param deployment_id: The deployment ID for the model to use with your own data. To remove this configuration, simply set openai.requestssession to None. """ class BringYourOwnDataAdapter(requests.adapters.HTTPAdapter): def send(self, request, **kwargs): request.url = f"{openai.api_base}/openai/deployments/{deployment_id}/extensions/chat/completions?api-version={openai.api_version}" return super().send(request, **kwargs) session = requests.Session() # Mount a custom adapter which will use the extensions endpoint for any call using the given `deployment_id` session.mount( prefix=f"{openai.api_base}/openai/deployments/{deployment_id}", adapter=BringYourOwnDataAdapter() ) openai.requestssession = session setup_byod(deployment_id) def run_query(query, system_content, datasource): completion = openai.ChatCompletion.create( messages=[ {"role": "system", "content":system_content}, {"role": "assistant", "content": ""}, {"role": "user", "content": query}, ], deployment_id=deployment_id, dataSources=[ # camelCase is intentional, as this is the format the API expects { "type": "AzureCognitiveSearch", "parameters": { "endpoint": search_endpoint, "key": search_key, "indexName": datasource, } } ] ) return completion query = "jeg skal arrangere et møte med varighet over 3 timer utenfor eget arbeidssted. får jeg dekket servering?" system_content= '''Follow these instructions: 1) Answer question given from the user. 2) only give answers based on the context. 3) do not give answers based on your own knowledge. 4) stick to new norwegian. ''' # datasource using embedding emb = run_query(query, system_content, datasource="emb") # datasource without embedding noemb = run_query(query, system_content, datasource="noemb") # svar emb["choices"][0]['message']['content'] noemb["choices"][0]['message']['content'] # referanser emb["choices"][0]['message']['context']['messages'][0]['content'] noemb["choices"][0]['message']['context']['messages'][0]['content']
[ "jeg skal arrangere et møte med varighet over 3 timer utenfor eget arbeidssted. får jeg dekket servering?", "Follow these instructions:\n1) Answer question given from the user.\n2) only give answers based on the context.\n3) do not give answers based on your own knowledge.\n4) stick to new norwegian.\n" ]
2024-01-10
davolu/LangchainAgentPDFCSVChat
llama-csv.py
from langchain.document_loaders.csv_loader import CSVLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.llms import CTransformers from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain import sys DB_FAISS_PATH = "vectorstore/db_faiss" loader = CSVLoader(file_path="data/2019.csv", encoding="utf-8", csv_args={'delimiter': ','}) data = loader.load() print(data) # Split the text into Chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20) text_chunks = text_splitter.split_documents(data) print(len(text_chunks)) # Download Sentence Transformers Embedding From Hugging Face embeddings = HuggingFaceEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2') # COnverting the text Chunks into embeddings and saving the embeddings into FAISS Knowledge Base docsearch = FAISS.from_documents(text_chunks, embeddings) docsearch.save_local(DB_FAISS_PATH) #query = "What is the value of GDP per capita of Finland provided in the data?" #docs = docsearch.similarity_search(query, k=3) #print("Result", docs) llm = CTransformers(model="models/llama-2-7b-chat.ggmlv3.q4_0.bin", model_type="llama", max_new_tokens=512, temperature=0.1) qa = ConversationalRetrievalChain.from_llm(llm, retriever=docsearch.as_retriever()) while True: chat_history = [] #query = "What is the value of GDP per capita of Finland provided in the data?" query = input(f"Input Prompt: ") if query == 'exit': print('Exiting') sys.exit() if query == '': continue result = qa({"question":query, "chat_history":chat_history}) print("Response: ", result['answer'])
[]
2024-01-10
davolu/LangchainAgentPDFCSVChat
pdf-gpt-api.py
import os from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from langchain.chains import RetrievalQA from flask import Flask, request, jsonify from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import ElasticVectorSearch, Pinecone, Weaviate, FAISS load_dotenv() # Initialize Flask app app = Flask(__name__) # Create a directory for storing uploaded files within the app context app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB UPLOAD_FOLDER = os.path.join(app.root_path, 'uploads') os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") @app.route('/process_pdf', methods=['POST']) def process_pdf(): # Load the OpenAI API key from the environment variable if os.getenv("OPENAI_API_KEY") is None or os.getenv("OPENAI_API_KEY") == "": return jsonify({"error": "OPENAI_API_KEY is not set"}), 500 pdf_file = request.files.get('pdf_file') if pdf_file is None: return jsonify({"error": "No PDF file provided"}), 400 # Get the original file name original_filename = pdf_file.filename # Create a path for saving the uploaded file file_path = os.path.join(UPLOAD_FOLDER, original_filename) # Save the uploaded file with the original name pdf_file.save(file_path) # location of the pdf file/files. reader = PdfReader(file_path) # read data from the file and put them into a variable called raw_text raw_text = '' for i, page in enumerate(reader.pages): text = page.extract_text() if text: raw_text += text # We need to split the text that we read into smaller chunks so that during information retreival we don't hit the token size limits. text_splitter = CharacterTextSplitter( separator = "\n", chunk_size = 1000, chunk_overlap = 200, length_function = len, ) texts = text_splitter.split_text(raw_text) # Download embeddings from OpenAI embeddings = OpenAIEmbeddings() docsearch = FAISS.from_texts(texts, embeddings) chain = load_qa_chain(OpenAI(), chain_type="stuff") query = "I'm 28 years old. Can I run for presidency?" docs = docsearch.similarity_search(query) response = chain.run(input_documents=docs, question=query) # You can format the response as needed, e.g., convert to JSON response_json = {"answer": response} return jsonify(response_json), 200 if __name__ == "__main__": app.run(debug=True)
[]
2024-01-10
davolu/LangchainAgentPDFCSVChat
csv-gpt-api.py
from langchain.agents import create_csv_agent from langchain.llms import OpenAI from dotenv import load_dotenv import os from flask import Flask, request, jsonify app = Flask(__name__) app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB # Create a directory for storing uploaded files within the app context UPLOAD_FOLDER = os.path.join(app.root_path, 'uploads') os.makedirs(UPLOAD_FOLDER, exist_ok=True) @app.route('/process_csv', methods=['POST']) def process_csv(): load_dotenv() # Load the OpenAI API key from the environment variable if os.getenv("OPENAI_API_KEY") is None or os.getenv("OPENAI_API_KEY") == "": return jsonify({"error": "OPENAI_API_KEY is not set"}), 500 csv_file = request.files.get('csv_file') if csv_file is None: return jsonify({"error": "No CSV file provided"}), 400 # Get the original file name original_filename = csv_file.filename # Create a path for saving the uploaded file file_path = os.path.join(UPLOAD_FOLDER, original_filename) # Save the uploaded file with the original name csv_file.save(file_path) agent = create_csv_agent( OpenAI(temperature=0, max_tokens=500), file_path, verbose=True) prompt = "Which product line had the lowest average price" if prompt is None or prompt == "": return jsonify({"error": "No user question provided"}), 400 response = agent.run(prompt) # You can format the response as needed, e.g., convert to JSON response_json = {"answer": response} return jsonify(response_json), 200 if __name__ == "__main__": app.run(debug=True)
[ "Which product line had the lowest average price" ]