date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
markingle/assistant_demo
assistant_demo_wx.py
from openai import OpenAI import time import sys import wx client = OpenAI() class MyFrame(wx.Frame): def __init__(self): super().__init__(parent=None, title='OpenAI Assistant Creator', size = wx.Size(600, 375)) panel = wx.Panel(self) my_sizer = wx.BoxSizer(wx.VERTICAL) self.text_ctrl = wx.TextCtrl(panel) my_sizer.Add(self.text_ctrl, 0, wx.ALL | wx.EXPAND, 15) self.text_reply = wx.TextCtrl(panel, id=-1, size=(50,75), style=wx.TE_READONLY | wx.TE_MULTILINE | wx.TE_RICH) my_sizer.Add(self.text_reply, 0, wx.ALL | wx.EXPAND, 30) my_btn = wx.Button(panel, label='Press Me') my_btn.Bind(wx.EVT_BUTTON, self.on_press) my_sizer.Add(my_btn, 0, wx.ALL | wx.CENTER, 5) self.text_status = wx.TextCtrl(panel, id=-1, size=(250,-1), style=wx.TE_READONLY) my_sizer.Add(self.text_status, 0, wx.ALL | wx.LEFT, 40) panel.SetSizer(my_sizer) self.Show() def set_status_text(self, text): wx.CallAfter(self.text_status.SetValue, text) def set_reply_text(self, text): wx.CallAfter(self.text_reply.SetValue, text) def on_press(self, event): value = self.text_ctrl.GetValue() if not value: self.set_status_text("You didn't enter anything! Ya big dummy!!! :)") else: #print(f'You typed: "{value}"') #self.set_status_text(value) thread = client.beta.threads.create() input_message = client.beta.threads.messages.create( thread_id = thread.id, role = "user", content = value ) if input_message is None: self.set_status_text("Failed to create input message") else: run = client.beta.threads.runs.create( thread_id = thread.id, assistant_id = assistant.id ) if run is None: self.set_status_text("Failed to create run for message") #Per the OpenAI architecture get a thread and message going here to prepare for user interaction #while run.status != "completed": # # Be nice to the API # time.sleep(0.5) # run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id) #try: # messages = client.beta.threads.messages.list( # thread_id = thread.id # ) #except: # print("message list failed") # exit() run_done = False while not run_done: #Give the API a break time.sleep(0.5) #retrieve the runs run = client.beta.threads.runs.retrieve( thread_id = thread.id, run_id = run.id ) if run.status in ["queued", "in_progress", "cancelling"]: run_done = False elif run.status in ["cancelled", "failed", "completed", "expired"]: run_done = True elif run.status in ["requires_action"]: self.set_status_text("Required Action...need to do more coding!!") run_done = False else: self.set_status_text("chat: unrecognised run status" + run.status) run_done = True # send status to status callbackxs self.set_status_text(run.status) # retrieve messages on the thread reply_messages = client.beta.threads.messages.list(thread_id=thread.id, order = "asc", after=input_message.id) if reply_messages is None: self.set_status_text("chat: failed to retrieve messages") # concatenate all messages into a single reply skipping the first which is our question reply = "" need_newline = False for message in reply_messages.data: reply = reply + message.content[0].text.value if need_newline: reply = reply + "\n" need_newline = True if reply is None or reply == "": self.set_status_text("chat: failed to retrieve latest reply") else: self.set_reply_text(reply) assistant_name=None module_name=None assistant_created=False #https://www.tutorialspoint.com/python/index.html #TODO: Provide for running script without assistant name provided if assistant_name is None: assistant_name = str(sys.argv[1]) if module_name is None: module_name = "gpt-4-1106-preview" # if assistant exists, use it assistants_list = client.beta.assistants.list() for existing_assistant in assistants_list.data: if existing_assistant.name == assistant_name: print("setup_assistant: using existing assistant: " + existing_assistant.name + " id:" + existing_assistant.id) assistant = client.beta.assistants.retrieve(existing_assistant.id) assistant_created = True if assistant_created == False: assistant = client.beta.assistants.create( name = assistant_name, instructions = "You are a math tutor. Write and run code to answer math questions", tools = [{"type": "code_interpreter"}], model = "gpt-4-1106-preview" ) print("Assistant " + assistant_name + " was created") #run = client.beta.threads.runs.create( # thread_id = thread.id, # assistant_id = assistant.id # ) if __name__ == '__main__': app = wx.App() frame = MyFrame() app.MainLoop()
[]
2024-01-10
vasanthsarathy/mpep-qa
scripts~build_indexes.py
# This module includes code for building Llama indexes import os import openai #openai.api_key = os.environ["OPENAI_API_KEY"]
[]
2024-01-10
saurabh111233212/JustTheFacts
src~extract_facts.py
import openai import os import re import json def load_json(filename): if os.path.isfile(filename): with open(filename) as json_file: data = json.load(json_file) return data return {} def save_json(data, filename): with open(filename, "w") as outfile: json.dump(data, outfile) def extract_statements(text): """ Extract statements from a numbered list, skipping any lines that don't start with a number""" pattern = r'^\s*\d+\.\s*(.*)\s*$' lines = text.split('\n') statements = [] for line in lines: match = re.match(pattern, line) if match: statements.append(match.group(1)) return statements def ask_question_about_article(article_text, question): prompt_messages = [ { "role": "system", "content": "You are a fact checker." # The system description tells GPT what persona it should take on }, { "role": "user", "content": "Here is a newspaper article:" }, { "role": "user", "content": article_text }, { "role": "user", "content": question }, ] response = openai.ChatCompletion.create(model="gpt-4", messages=prompt_messages) return response["choices"][0]["message"]["content"] def ask_question(question): prompt_messages = [ { "role": "user", "content": question }, ] response = openai.ChatCompletion.create(model="gpt-4", messages=prompt_messages) return response["choices"][0]["message"]["content"] def extract_facts_from_article(article_text_1): question = "Please extract a list of simple, declarative sentences that enumerate just the facts from the article. When you extract the facts, please rephrase the sentences that you extract them from." response = ask_question_about_article(article_text_1, question) return response def fact_set_to_str(fact_sets): fact_set_str = "" for i in range(len(fact_sets)): fact_set_str += "Set {set_num}: {set_contents}\n".format(set_num=i, set_contents=str(fact_sets[i])) return fact_set_str def get_closest_fact_set(fact_sets, fact): prompt_messages = [ { "role": "system", "content": "You help group statement into sets of equivalent facts." # The system description tells GPT what persona it should take on }, { "role": "user", "content": "Here are the fact sets:" }, { "role": "user", "content": fact_set_to_str(fact_sets) }, { "role": "user", "content": "Here's a fact to assign to a fact set: " + fact }, { "role": "user", "content": "Which fact set does it most closely correspond to? " "Give the number, or say 'None' if it doesn't closely correspond to any." }, ] response = openai.ChatCompletion.create(model="gpt-4", messages=prompt_messages) return response["choices"][0]["message"]["content"] def get_facts(url): import requests res = requests.get("http://just-the-facts.apps.allenai.org/api/get-facts", params={"url": url, "method": "gpt-4"}) print(res.text) def ask_openai_question(): openai.api_key = os.environ["OPENAI_API_KEY"] q = "Can you write the code of a browser plugin that takes as input 2 lists of strings and display them side by side?" response = ask_question(q) print(response) if __name__ == "__main__": #get_facts(url='https://www.breitbart.com/news/wind-whipped-hawaii-wildfires-force-evacuations-water-rescues/') get_facts(url='https://www.nbcnews.com/news/world/americans-imprisoned-iran-prisoner-exchange-deal-rcna99105')
[ "Here is a newspaper article:", "Here's a fact to assign to a fact set: PLACEHOLDER", "You help group statement into sets of equivalent facts.", "Here are the fact sets:", "Which fact set does it most closely correspond to? Give the number, or say 'None' if it doesn't closely correspond to any.", "You are a fact checker.", "Please extract a list of simple, declarative sentences that enumerate just the facts from the article. When you extract the facts, please rephrase the sentences that you extract them from." ]
2024-01-10
saurabh111233212/JustTheFacts
src~get_openai_embeddings.py
import openai import numpy as np def get_embedding(text, model="text-embedding-ada-002"): text = text.replace("\n", " ") response = openai.Embedding.create(input = [text], model=model)['data'][0]['embedding'] return np.array(response)
[]
2024-01-10
AngryBacteria/lc2_ambispeech
backend_fastapi~app~langchain~gpt4all_helper.py
from __future__ import annotations import os from dotenv import load_dotenv from langchain.llms.gpt4all import GPT4All from langchain_core.language_models import BaseLanguageModel from app.data.data import GenericLangChainModel from app.utils.logging_util import logger class GPT4AllHelper(GenericLangChainModel): _instance = None llm = None def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = super(GPT4AllHelper, cls).__new__(cls) return cls._instance def __init__(self): if hasattr(self, "_initialized"): return load_dotenv() model_path = os.getenv("GPT4ALL_MODEL_PATH") if os.getenv("GPT4ALL_MODEL_PATH") is None: logger.warning( f"Model path not found: {model_path}. The GPT4All LLM will not be functional until a valid path is " f"provided in .env File." ) else: self.llm = GPT4All(model=os.getenv("GPT4ALL_MODEL_PATH")) logger.info("Created GPT4AllHelper") self._initialized = True def get_llm(self): if self.llm is None: raise RuntimeError( "GPT4All LLM is not properly initialized. Please check the model path." ) return self.llm
[]
2024-01-10
HombreOso/aider
aider~coders~base_coder.py
#!/usr/bin/env python import hashlib import json import os import sys import traceback from json.decoder import JSONDecodeError from pathlib import Path, PurePosixPath import backoff import git import openai import requests from jsonschema import Draft7Validator from openai.error import APIError, RateLimitError, ServiceUnavailableError, Timeout from rich.console import Console, Text from rich.live import Live from rich.markdown import Markdown # ------------------------------ ## temporary make aider a package not a library ## after developing needed functionality -> package it again and publish to PyPI ## do not forget to attribute the original library aider from Paul Gauthier # ------------------------------ ## temporary commented out # from aider import models, prompts, utils # from aider.commands import Commands # from aider.repomap import RepoMap # ------------------------------ # ------------------------------ ## temporary added import models, prompts, utils from commands import Commands from repomap import RepoMap # ------------------------------ ## temporary commented out # from ..dump import dump # noqa: F401 # ------------------------------ class MissingAPIKeyError(ValueError): pass class ExhaustedContextWindow(Exception): pass def wrap_fence(name): return f"<{name}>", f"</{name}>" class Coder: abs_fnames = None repo = None last_aider_commit_hash = None last_asked_for_commit_time = 0 repo_map = None functions = None total_cost = 0.0 num_exhausted_context_windows = 0 @classmethod def create( self, main_model, edit_format, io, **kwargs, ): from . import ( EditBlockCoder, EditBlockFunctionCoder, SingleWholeFileFunctionCoder, WholeFileCoder, WholeFileFunctionCoder, ) if not main_model: main_model = models.GPT35_16k if not main_model.always_available: if not check_model_availability(main_model): if main_model != models.GPT4: io.tool_error( f"API key does not support {main_model.name}, falling back to" f" {models.GPT35_16k.name}" ) main_model = models.GPT35_16k if edit_format is None: edit_format = main_model.edit_format if edit_format == "diff": return EditBlockCoder(main_model, io, **kwargs) elif edit_format == "whole": return WholeFileCoder(main_model, io, **kwargs) elif edit_format == "whole-func": return WholeFileFunctionCoder(main_model, io, **kwargs) elif edit_format == "single-whole-func": return SingleWholeFileFunctionCoder(main_model, io, **kwargs) elif edit_format == "diff-func-list": return EditBlockFunctionCoder("list", main_model, io, **kwargs) elif edit_format in ("diff-func", "diff-func-string"): return EditBlockFunctionCoder("string", main_model, io, **kwargs) else: raise ValueError(f"Unknown edit format {edit_format}") def __init__( self, main_model, io, fnames=None, pretty=True, show_diffs=False, auto_commits=True, dirty_commits=True, dry_run=False, map_tokens=1024, verbose=False, assistant_output_color="blue", code_theme="default", stream=True, use_git=True, ): if not fnames: fnames = [] self.chat_completion_call_hashes = [] self.chat_completion_response_hashes = [] self.verbose = verbose self.abs_fnames = set() self.cur_messages = [] self.done_messages = [] self.num_control_c = 0 self.io = io self.stream = stream if not auto_commits: dirty_commits = False self.auto_commits = auto_commits self.dirty_commits = dirty_commits self.assistant_output_color = assistant_output_color self.code_theme = code_theme self.dry_run = dry_run self.pretty = pretty if pretty: self.console = Console() else: self.console = Console(force_terminal=False, no_color=True) self.main_model = main_model self.io.tool_output(f"Model: {main_model.name}") self.show_diffs = show_diffs self.commands = Commands(self.io, self) if use_git: self.set_repo(fnames) else: self.abs_fnames = set([str(Path(fname).resolve()) for fname in fnames]) if self.repo: rel_repo_dir = self.get_rel_repo_dir() self.io.tool_output(f"Git repo: {rel_repo_dir}") else: self.io.tool_output("Git repo: none") self.find_common_root() if main_model.use_repo_map and self.repo and self.gpt_prompts.repo_content_prefix: self.repo_map = RepoMap( map_tokens, self.root, self.main_model, io, self.gpt_prompts.repo_content_prefix, self.verbose, ) if self.repo_map.use_ctags: self.io.tool_output(f"Repo-map: universal-ctags using {map_tokens} tokens") elif not self.repo_map.has_ctags and map_tokens > 0: self.io.tool_output( f"Repo-map: basic using {map_tokens} tokens" f" ({self.repo_map.ctags_disabled_reason})" ) else: self.io.tool_output("Repo-map: disabled because map_tokens == 0") else: self.io.tool_output("Repo-map: disabled") for fname in self.get_inchat_relative_files(): self.io.tool_output(f"Added {fname} to the chat.") # validate the functions jsonschema if self.functions: for function in self.functions: Draft7Validator.check_schema(function) if self.verbose: self.io.tool_output("JSON Schema:") self.io.tool_output(json.dumps(self.functions, indent=4)) def find_common_root(self): if len(self.abs_fnames) == 1: self.root = os.path.dirname(list(self.abs_fnames)[0]) elif self.abs_fnames: self.root = os.path.commonpath(list(self.abs_fnames)) else: self.root = os.getcwd() self.root = utils.safe_abs_path(self.root) def get_rel_repo_dir(self): try: return os.path.relpath(self.repo.git_dir, os.getcwd()) except ValueError: return self.repo.git_dir def add_rel_fname(self, rel_fname): self.abs_fnames.add(self.abs_root_path(rel_fname)) def abs_root_path(self, path): res = Path(self.root) / path return utils.safe_abs_path(res) def set_repo(self, cmd_line_fnames): if not cmd_line_fnames: cmd_line_fnames = ["."] repo_paths = [] for fname in cmd_line_fnames: fname = Path(fname) if not fname.exists(): self.io.tool_output(f"Creating empty file {fname}") fname.parent.mkdir(parents=True, exist_ok=True) fname.touch() fname = fname.resolve() try: repo_path = git.Repo(fname, search_parent_directories=True).working_dir repo_path = utils.safe_abs_path(repo_path) repo_paths.append(repo_path) except git.exc.InvalidGitRepositoryError: pass if fname.is_dir(): continue self.abs_fnames.add(str(fname)) num_repos = len(set(repo_paths)) if num_repos == 0: return if num_repos > 1: self.io.tool_error("Files are in different git repos.") return # https://github.com/gitpython-developers/GitPython/issues/427 self.repo = git.Repo(repo_paths.pop(), odbt=git.GitDB) self.root = utils.safe_abs_path(self.repo.working_tree_dir) new_files = [] for fname in self.abs_fnames: relative_fname = self.get_rel_fname(fname) tracked_files = set(self.get_tracked_files()) if relative_fname not in tracked_files: new_files.append(relative_fname) if new_files: rel_repo_dir = self.get_rel_repo_dir() self.io.tool_output(f"Files not tracked in {rel_repo_dir}:") for fn in new_files: self.io.tool_output(f" - {fn}") if self.io.confirm_ask("Add them?"): for relative_fname in new_files: self.repo.git.add(relative_fname) self.io.tool_output(f"Added {relative_fname} to the git repo") show_files = ", ".join(new_files) commit_message = f"Added new files to the git repo: {show_files}" self.repo.git.commit("-m", commit_message, "--no-verify") commit_hash = self.repo.head.commit.hexsha[:7] self.io.tool_output(f"Commit {commit_hash} {commit_message}") else: self.io.tool_error("Skipped adding new files to the git repo.") return # fences are obfuscated so aider can modify this file! fences = [ ("``" + "`", "``" + "`"), wrap_fence("source"), wrap_fence("code"), wrap_fence("pre"), wrap_fence("codeblock"), wrap_fence("sourcecode"), ] fence = fences[0] def get_abs_fnames_content(self): for fname in list(self.abs_fnames): content = self.io.read_text(fname) if content is None: relative_fname = self.get_rel_fname(fname) self.io.tool_error(f"Dropping {relative_fname} from the chat.") self.abs_fnames.remove(fname) else: yield fname, content def choose_fence(self): all_content = "" for _fname, content in self.get_abs_fnames_content(): all_content += content + "\n" good = False for fence_open, fence_close in self.fences: if fence_open in all_content or fence_close in all_content: continue good = True break if good: self.fence = (fence_open, fence_close) else: self.fence = self.fences[0] self.io.tool_error( "Unable to find a fencing strategy! Falling back to:" " {self.fence[0]}...{self.fence[1]}" ) return def get_files_content(self, fnames=None): if not fnames: fnames = self.abs_fnames prompt = "" for fname, content in self.get_abs_fnames_content(): relative_fname = self.get_rel_fname(fname) prompt += "\n" prompt += relative_fname prompt += f"\n{self.fence[0]}\n" prompt += content prompt += f"{self.fence[1]}\n" return prompt def get_repo_map(self): if not self.repo_map: return other_files = set(self.get_all_abs_files()) - set(self.abs_fnames) repo_content = self.repo_map.get_repo_map(self.abs_fnames, other_files) return repo_content def get_files_messages(self): all_content = "" if self.abs_fnames: files_content = self.gpt_prompts.files_content_prefix files_content += self.get_files_content() else: files_content = self.gpt_prompts.files_no_full_files all_content += files_content repo_content = self.get_repo_map() if repo_content: if all_content: all_content += "\n" all_content += repo_content files_messages = [ dict(role="user", content=all_content), dict(role="assistant", content="Ok."), ] if self.abs_fnames: files_messages += [ dict(role="system", content=self.fmt_system_reminder()), ] return files_messages def run(self, with_message=None): while True: try: if with_message: new_user_message = with_message self.io.user_input(with_message) else: new_user_message = self.run_loop() while new_user_message: new_user_message = self.send_new_user_message(new_user_message) if with_message: return except KeyboardInterrupt: self.num_control_c += 1 if self.num_control_c >= 2: break self.io.tool_error("^C again or /exit to quit") except EOFError: return def should_dirty_commit(self, inp): cmds = self.commands.matching_commands(inp) if cmds: matching_commands, _, _ = cmds if len(matching_commands) == 1: cmd = matching_commands[0] if cmd in ("/exit", "/commit"): return if not self.dirty_commits: return if not self.repo: return if not self.repo.is_dirty(): return if self.last_asked_for_commit_time >= self.get_last_modified(): return return True def move_back_cur_messages(self, message): self.done_messages += self.cur_messages if message: self.done_messages += [ dict(role="user", content=message), dict(role="assistant", content="Ok."), ] self.cur_messages = [] def run_loop(self): try: inp = self.io.get_input( self.root, self.get_inchat_relative_files(), self.get_addable_relative_files(), self.commands, ) except UnicodeEncodeError: print("self.root: ", self.root), print("self.get_inchat_relative_files(): ", self.get_inchat_relative_files()) print("self.get_addable_relative_files(): ",self.get_addable_relative_files()) print("self.commands", self.commands) self.num_control_c = 0 if self.should_dirty_commit(inp): self.io.tool_output("Git repo has uncommitted changes, preparing commit...") self.commit(ask=True, which="repo_files") # files changed, move cur messages back behind the files messages self.move_back_cur_messages(self.gpt_prompts.files_content_local_edits) if inp.strip(): self.io.tool_output("Use up-arrow to retry previous command:", inp) return if not inp: return if self.commands.is_command(inp): return self.commands.run(inp) self.check_for_file_mentions(inp) return self.send_new_user_message(inp) def fmt_system_reminder(self): prompt = self.gpt_prompts.system_reminder prompt = prompt.format(fence=self.fence) return prompt def send_new_user_message(self, inp): self.choose_fence() self.cur_messages += [ dict(role="user", content=inp), ] main_sys = self.gpt_prompts.main_system # if self.main_model.max_context_tokens > 4 * 1024: main_sys += "\n" + self.fmt_system_reminder() messages = [ dict(role="system", content=main_sys), ] messages += self.done_messages messages += self.get_files_messages() messages += self.cur_messages if self.verbose: utils.show_messages(messages, functions=self.functions) exhausted = False interrupted = False try: interrupted = self.send(messages, functions=self.functions) except ExhaustedContextWindow: exhausted = True except openai.error.InvalidRequestError as err: if "maximum context length" in str(err): exhausted = True else: raise err if exhausted: self.num_exhausted_context_windows += 1 self.io.tool_error("The chat session is larger than the context window!\n") self.commands.cmd_tokens("") self.io.tool_error("\nTo reduce token usage:") self.io.tool_error(" - Use /drop to remove unneeded files from the chat session.") self.io.tool_error(" - Use /clear to clear chat history.") return if self.partial_response_function_call: args = self.parse_partial_args() if args: content = args["explanation"] else: content = "" elif self.partial_response_content: content = self.partial_response_content else: content = "" if interrupted: self.io.tool_error("\n\n^C KeyboardInterrupt") self.num_control_c += 1 content += "\n^C KeyboardInterrupt" self.io.tool_output() if interrupted: self.cur_messages += [dict(role="assistant", content=content)] return edited, edit_error = self.apply_updates() if edit_error: return edit_error # TODO: this shouldn't use content, should use self.partial_.... self.update_cur_messages(content, edited) if edited: if self.repo and self.auto_commits and not self.dry_run: saved_message = self.auto_commit() elif hasattr(self.gpt_prompts, "files_content_gpt_edits_no_repo"): saved_message = self.gpt_prompts.files_content_gpt_edits_no_repo else: saved_message = None self.move_back_cur_messages(saved_message) add_rel_files_message = self.check_for_file_mentions(content) if add_rel_files_message: return add_rel_files_message def update_cur_messages(self, content, edited): self.cur_messages += [dict(role="assistant", content=content)] def auto_commit(self): res = self.commit(history=self.cur_messages, prefix="aider: ") if res: commit_hash, commit_message = res self.last_aider_commit_hash = commit_hash saved_message = self.gpt_prompts.files_content_gpt_edits.format( hash=commit_hash, message=commit_message, ) else: if self.repo: self.io.tool_output("No changes made to git tracked files.") saved_message = self.gpt_prompts.files_content_gpt_no_edits return saved_message def check_for_file_mentions(self, content): words = set(word for word in content.split()) # drop sentence punctuation from the end words = set(word.rstrip(",.!;") for word in words) # strip away all kinds of quotes quotes = "".join(['"', "'", "`"]) words = set(word.strip(quotes) for word in words) addable_rel_fnames = self.get_addable_relative_files() mentioned_rel_fnames = set() fname_to_rel_fnames = {} for rel_fname in addable_rel_fnames: if rel_fname in words: mentioned_rel_fnames.add(str(rel_fname)) fname = os.path.basename(rel_fname) if fname not in fname_to_rel_fnames: fname_to_rel_fnames[fname] = [] fname_to_rel_fnames[fname].append(rel_fname) for fname, rel_fnames in fname_to_rel_fnames.items(): if len(rel_fnames) == 1 and fname in words: mentioned_rel_fnames.add(rel_fnames[0]) if not mentioned_rel_fnames: return for rel_fname in mentioned_rel_fnames: self.io.tool_output(rel_fname) if not self.io.confirm_ask("Add these files to the chat?"): return for rel_fname in mentioned_rel_fnames: self.add_rel_fname(rel_fname) return prompts.added_files.format(fnames=", ".join(mentioned_rel_fnames)) @backoff.on_exception( backoff.expo, ( Timeout, APIError, ServiceUnavailableError, RateLimitError, requests.exceptions.ConnectionError, ), max_tries=10, on_backoff=lambda details: print(f"Retry in {details['wait']} seconds."), ) def send_with_retries(self, model, messages, functions): kwargs = dict( model=model, messages=messages, temperature=0, stream=self.stream, ) if functions is not None: kwargs["functions"] = self.functions # we are abusing the openai object to stash these values if hasattr(openai, "api_deployment_id"): kwargs["deployment_id"] = openai.api_deployment_id if hasattr(openai, "api_engine"): kwargs["engine"] = openai.api_engine # Generate SHA1 hash of kwargs and append it to chat_completion_call_hashes hash_object = hashlib.sha1(json.dumps(kwargs, sort_keys=True).encode()) self.chat_completion_call_hashes.append(hash_object.hexdigest()) res = openai.ChatCompletion.create(**kwargs) return res def send(self, messages, model=None, silent=False, functions=None): if not model: model = self.main_model.name self.partial_response_content = "" self.partial_response_function_call = dict() interrupted = False try: completion = self.send_with_retries(model, messages, functions) if self.stream: self.show_send_output_stream(completion, silent) else: self.show_send_output(completion, silent) except KeyboardInterrupt: interrupted = True if not silent: if self.partial_response_content: self.io.ai_output(self.partial_response_content) elif self.partial_response_function_call: # TODO: push this into subclasses args = self.parse_partial_args() if args: self.io.ai_output(json.dumps(args, indent=4)) return interrupted def show_send_output(self, completion, silent): if self.verbose: print(completion) show_func_err = None show_content_err = None try: self.partial_response_function_call = completion.choices[0].message.function_call except AttributeError as func_err: show_func_err = func_err try: self.partial_response_content = completion.choices[0].message.content except AttributeError as content_err: show_content_err = content_err resp_hash = dict( function_call=self.partial_response_function_call, content=self.partial_response_content, ) resp_hash = hashlib.sha1(json.dumps(resp_hash, sort_keys=True).encode()) self.chat_completion_response_hashes.append(resp_hash.hexdigest()) if show_func_err and show_content_err: self.io.tool_error(show_func_err) self.io.tool_error(show_content_err) raise Exception("No data found in openai response!") prompt_tokens = completion.usage.prompt_tokens completion_tokens = completion.usage.completion_tokens tokens = f"{prompt_tokens} prompt tokens, {completion_tokens} completion tokens" if self.main_model.prompt_price: cost = prompt_tokens * self.main_model.prompt_price / 1000 cost += completion_tokens * self.main_model.completion_price / 1000 tokens += f", ${cost:.6f} cost" self.total_cost += cost show_resp = self.render_incremental_response(True) if self.pretty: show_resp = Markdown( show_resp, style=self.assistant_output_color, code_theme=self.code_theme ) else: show_resp = Text(show_resp or "<no response>") self.io.console.print(show_resp) self.io.console.print(tokens) def show_send_output_stream(self, completion, silent): live = None if self.pretty and not silent: live = Live(vertical_overflow="scroll") try: if live: live.start() for chunk in completion: if chunk.choices[0].finish_reason == "length": raise ExhaustedContextWindow() try: func = chunk.choices[0].delta.function_call # dump(func) for k, v in func.items(): if k in self.partial_response_function_call: self.partial_response_function_call[k] += v else: self.partial_response_function_call[k] = v except AttributeError: pass try: text = chunk.choices[0].delta.content if text: self.partial_response_content += text except AttributeError: pass if silent: continue if self.pretty: self.live_incremental_response(live, False) else: sys.stdout.write(text) sys.stdout.flush() finally: if live: self.live_incremental_response(live, True) live.stop() def live_incremental_response(self, live, final): show_resp = self.render_incremental_response(final) if not show_resp: return md = Markdown(show_resp, style=self.assistant_output_color, code_theme=self.code_theme) live.update(md) def render_incremental_response(self, final): return self.partial_response_content def get_context_from_history(self, history): context = "" if history: for msg in history: context += "\n" + msg["role"].upper() + ": " + msg["content"] + "\n" return context def get_commit_message(self, diffs, context): if len(diffs) >= 4 * 1024 * 4: self.io.tool_error( f"Diff is too large for {models.GPT35.name} to generate a commit message." ) return diffs = "# Diffs:\n" + diffs messages = [ dict(role="system", content=prompts.commit_system), dict(role="user", content=context + diffs), ] try: interrupted = self.send( messages, model=models.GPT35.name, silent=True, ) except openai.error.InvalidRequestError: self.io.tool_error( f"Failed to generate commit message using {models.GPT35.name} due to an invalid" " request." ) return commit_message = self.partial_response_content commit_message = commit_message.strip() if commit_message and commit_message[0] == '"' and commit_message[-1] == '"': commit_message = commit_message[1:-1].strip() if interrupted: self.io.tool_error( f"Unable to get commit message from {models.GPT35.name}. Use /commit to try again." ) return return commit_message def get_diffs(self, *args): if self.pretty: args = ["--color"] + list(args) diffs = self.repo.git.diff(*args) return diffs def commit(self, history=None, prefix=None, ask=False, message=None, which="chat_files"): repo = self.repo if not repo: return if not repo.is_dirty(): return def get_dirty_files_and_diffs(file_list): diffs = "" relative_dirty_files = [] for fname in file_list: relative_fname = self.get_rel_fname(fname) relative_dirty_files.append(relative_fname) try: current_branch_commit_count = len( list(self.repo.iter_commits(self.repo.active_branch)) ) except git.exc.GitCommandError: current_branch_commit_count = None if not current_branch_commit_count: continue these_diffs = self.get_diffs("HEAD", "--", relative_fname) if these_diffs: diffs += these_diffs + "\n" return relative_dirty_files, diffs if which == "repo_files": all_files = [os.path.join(self.root, f) for f in self.get_all_relative_files()] relative_dirty_fnames, diffs = get_dirty_files_and_diffs(all_files) elif which == "chat_files": relative_dirty_fnames, diffs = get_dirty_files_and_diffs(self.abs_fnames) else: raise ValueError(f"Invalid value for 'which': {which}") if self.show_diffs or ask: # don't use io.tool_output() because we don't want to log or further colorize print(diffs) context = self.get_context_from_history(history) if message: commit_message = message else: commit_message = self.get_commit_message(diffs, context) if not commit_message: commit_message = "work in progress" if prefix: commit_message = prefix + commit_message if ask: if which == "repo_files": self.io.tool_output("Git repo has uncommitted changes.") else: self.io.tool_output("Files have uncommitted changes.") res = self.io.prompt_ask( "Commit before the chat proceeds [y/n/commit message]?", default=commit_message, ).strip() self.last_asked_for_commit_time = self.get_last_modified() self.io.tool_output() if res.lower() in ["n", "no"]: self.io.tool_error("Skipped commmit.") return if res.lower() not in ["y", "yes"] and res: commit_message = res repo.git.add(*relative_dirty_fnames) full_commit_message = commit_message + "\n\n# Aider chat conversation:\n\n" + context repo.git.commit("-m", full_commit_message, "--no-verify") commit_hash = repo.head.commit.hexsha[:7] self.io.tool_output(f"Commit {commit_hash} {commit_message}") return commit_hash, commit_message def get_rel_fname(self, fname): return os.path.relpath(fname, self.root) def get_inchat_relative_files(self): files = [self.get_rel_fname(fname) for fname in self.abs_fnames] return sorted(set(files)) def get_all_relative_files(self): if self.repo: files = self.get_tracked_files() else: files = self.get_inchat_relative_files() return sorted(set(files)) def get_all_abs_files(self): files = self.get_all_relative_files() files = [self.abs_root_path(path) for path in files] return files def get_last_modified(self): files = self.get_all_abs_files() if not files: return 0 return max(Path(path).stat().st_mtime for path in files) def get_addable_relative_files(self): return set(self.get_all_relative_files()) - set(self.get_inchat_relative_files()) def allowed_to_edit(self, path, write_content=None): full_path = self.abs_root_path(path) if full_path in self.abs_fnames: if write_content: self.io.write_text(full_path, write_content) return full_path if not Path(full_path).exists(): question = f"Allow creation of new file {path}?" # noqa: E501 else: question = f"Allow edits to {path} which was not previously provided?" # noqa: E501 if not self.io.confirm_ask(question): self.io.tool_error(f"Skipping edit to {path}") return if not Path(full_path).exists() and not self.dry_run: Path(full_path).parent.mkdir(parents=True, exist_ok=True) Path(full_path).touch() self.abs_fnames.add(full_path) # Check if the file is already in the repo if self.repo: tracked_files = set(self.get_tracked_files()) relative_fname = self.get_rel_fname(full_path) if relative_fname not in tracked_files and self.io.confirm_ask(f"Add {path} to git?"): if not self.dry_run: self.repo.git.add(full_path) if write_content: self.io.write_text(full_path, write_content) return full_path def get_tracked_files(self): if not self.repo: return [] try: commit = self.repo.head.commit except ValueError: return set() files = [] for blob in commit.tree.traverse(): if blob.type == "blob": # blob is a file files.append(blob.path) # convert to appropriate os.sep, since git always normalizes to / res = set(str(Path(PurePosixPath(path))) for path in files) return res apply_update_errors = 0 def apply_updates(self): max_apply_update_errors = 2 try: edited = self.update_files() except ValueError as err: err = err.args[0] self.apply_update_errors += 1 if self.apply_update_errors < max_apply_update_errors: self.io.tool_error(f"Malformed response #{self.apply_update_errors}, retrying...") self.io.tool_error(str(err)) return None, err else: self.io.tool_error(f"Malformed response #{self.apply_update_errors}, aborting.") return False, None except Exception as err: print(err) print() traceback.print_exc() self.apply_update_errors += 1 if self.apply_update_errors < max_apply_update_errors: self.io.tool_error(f"Update exception #{self.apply_update_errors}, retrying...") return None, str(err) else: self.io.tool_error(f"Update exception #{self.apply_update_errors}, aborting") return False, None self.apply_update_errors = 0 if edited: for path in sorted(edited): if self.dry_run: self.io.tool_output(f"Did not apply edit to {path} (--dry-run)") else: self.io.tool_output(f"Applied edit to {path}") return edited, None def parse_partial_args(self): # dump(self.partial_response_function_call) data = self.partial_response_function_call.get("arguments") if not data: return try: return json.loads(data) except JSONDecodeError: pass try: return json.loads(data + "]}") except JSONDecodeError: pass try: return json.loads(data + "}]}") except JSONDecodeError: pass try: return json.loads(data + '"}]}') except JSONDecodeError: pass def check_model_availability(main_model): available_models = openai.Model.list() model_ids = [model.id for model in available_models["data"]] return main_model.name in model_ids
[ "\n" ]
2024-01-10
HombreOso/aider
benchmark~benchmark.py
#!/usr/bin/env python import datetime import json import os import random import re import shutil import subprocess import time from collections import defaultdict from json.decoder import JSONDecodeError from pathlib import Path from types import SimpleNamespace from typing import List import git import lox import matplotlib.pyplot as plt import numpy as np import openai import pandas as pd import prompts import typer from imgcat import imgcat from rich.console import Console from aider import models from aider.coders import Coder from aider.dump import dump # noqa: F401 from aider.io import InputOutput BENCHMARK_DNAME = Path(os.environ["AIDER_BENCHMARK_DIR"]) ORIGINAL_DNAME = BENCHMARK_DNAME / "exercism-python" app = typer.Typer(add_completion=False, pretty_exceptions_enable=False) def show_stats(dirnames): raw_rows = [] for dirname in dirnames: row = summarize_results(dirname) raw_rows.append(row) return repeats = [] seen = dict() rows = [] for row in raw_rows: if not row: continue if row.model == "gpt-3.5-turbo": row.model = "gpt-3.5-turbo-0613" if row.edit_format == "diff-func-string": row.edit_format = "diff-func" if ( row.model == "gpt-3.5-turbo-0613" and row.edit_format == "whole" and "repeat" not in row.dir_name ): # remember this row, so we can update it with the repeat_avg repeat_row = len(rows) pieces = row.model.split("-") row.model = "-".join(pieces[:3]) if pieces[3:]: row.model += "\n-" + "-".join(pieces[3:]) if row.completed_tests < 133: print(f"Warning: {row.dir_name} is incomplete: {row.completed_tests}") if "repeat" in row.dir_name: repeats.append(vars(row)) continue kind = (row.model, row.edit_format) if kind in seen: dump(row.dir_name) dump(seen[kind]) return seen[kind] = row.dir_name rows.append(vars(row)) if repeats: extra = rows[repeat_row] dump(extra) repeats.append(extra) repeats = pd.DataFrame.from_records(repeats) repeat_max = repeats["pass_rate_2"].max() repeat_min = repeats["pass_rate_2"].min() repeat_avg = repeats["pass_rate_2"].mean() repeat_lo = repeat_avg - repeat_min repeat_hi = repeat_max - repeat_avg dump(repeat_max) dump(repeat_min) dump(repeat_avg) # use the average in the main bar rows[repeat_row]["pass_rate_2"] = repeat_avg df = pd.DataFrame.from_records(rows) df.sort_values(by=["model", "edit_format"], inplace=True) tries = [df.groupby(["model", "edit_format"])["pass_rate_2"].mean()] if True: tries += [df.groupby(["model", "edit_format"])["pass_rate_1"].mean()] plt.rcParams["hatch.linewidth"] = 0.5 plt.rcParams["hatch.color"] = "#444444" from matplotlib import rc rc("font", **{"family": "sans-serif", "sans-serif": ["Helvetica"], "size": 10}) fig, ax = plt.subplots(figsize=(6, 4)) ax.grid(axis="y", zorder=0, lw=0.2) zorder = 1 for grouped in tries: zorder += 1 df = grouped.unstack() num_models, num_formats = df.shape pos = np.array(range(num_models)) width = 0.8 / num_formats formats = df.columns models = df.index for i, fmt in enumerate(formats): if zorder > 1: edge = dict( edgecolor="#ffffff", linewidth=1.5, ) else: edge = dict() if zorder == 2: edge["label"] = fmt color = "#b3e6a8" if "diff" in fmt else "#b3d1e6" hatch = "////" if "func" in fmt else "" rects = ax.bar( pos + i * width, df[fmt], width * 0.95, color=color, hatch=hatch, zorder=zorder, **edge, ) if zorder == 2: ax.bar_label(rects, padding=4, labels=[f"{v:.0f}%" for v in df[fmt]], size=6) if len(repeats): ax.errorbar( 1.4, repeat_avg, yerr=[[repeat_lo], [repeat_hi]], fmt="none", zorder=5, capsize=2.5, elinewidth=1, markeredgewidth=1, ) ax.set_xticks([p + 1.5 * width for p in pos]) ax.set_xticklabels(models) top = 95 ax.annotate( "First attempt,\nbased on\ninstructions", xy=(2.9, 51), xytext=(2.5, top), horizontalalignment="center", verticalalignment="top", arrowprops={"arrowstyle": "->", "connectionstyle": "arc3,rad=0.3"}, ) ax.annotate( "Second attempt,\nbased on\nunit test errors", xy=(3.1, 68), xytext=(4.25, top), horizontalalignment="center", verticalalignment="top", arrowprops={"arrowstyle": "->", "connectionstyle": "arc3,rad=0.3"}, ) ax.set_ylabel("Percent of exercises completed successfully") # ax.set_xlabel("Model") ax.set_title("GPT Code Editing") ax.legend( title="Edit Format", loc="upper left", # bbox_to_anchor=(0.95, 0.95), ) ax.set_ylim(top=100) plt.tight_layout() plt.savefig("tmp.svg") imgcat(fig) # df.to_csv("tmp.benchmarks.csv") def resolve_dirname(dirname, use_single_prior, make_new): if len(dirname.parts) > 1: return dirname priors = list(BENCHMARK_DNAME.glob(f"*--{dirname}")) if len(priors) == 1 and use_single_prior: dirname = priors[0].name print(f"Using pre-existing {dirname}") elif len(priors): if not make_new: print(f"Prior runs of {dirname} exist, use --new or name one explicitly") print() for prior in priors: print(prior) return if not re.match(r"\d\d\d\d-\d\d-\d\d-", str(dirname)): now = datetime.datetime.now() now = now.strftime("%Y-%m-%d-%H-%M-%S--") dirname = now + dirname.name dirname = BENCHMARK_DNAME / dirname return dirname @app.command() def main( dirnames: List[str] = typer.Argument(..., help="Directory names"), model: str = typer.Option("gpt-3.5-turbo", "--model", "-m", help="Model name"), edit_format: str = typer.Option(None, "--edit-format", "-e", help="Edit format"), keyword: str = typer.Option( None, "--keyword", "-k", help="Only run tests that contain keyword" ), clean: bool = typer.Option( False, "--clean", "-c", help="Discard the existing testdir and make a clean copy" ), cont: bool = typer.Option(False, "--cont", help="Continue the (single) matching testdir"), make_new: bool = typer.Option(False, "--new", "-n", help="Make a new dated testdir"), no_unit_tests: bool = typer.Option(False, "--no-unit-tests", help="Do not run unit tests"), no_aider: bool = typer.Option(False, "--no-aider", help="Do not run aider"), verbose: bool = typer.Option(False, "--verbose", "-v", help="Verbose output"), stats_only: bool = typer.Option( False, "--stats", "-s", help="Do not run tests, just collect stats on completed tests" ), tries: int = typer.Option(2, "--tries", "-r", help="Number of tries for running tests"), threads: int = typer.Option(1, "--threads", "-t", help="Number of threads to run in parallel"), num_tests: int = typer.Option(-1, "--num-tests", "-n", help="Number of tests to run"), ): repo = git.Repo(search_parent_directories=True) commit_hash = repo.head.object.hexsha[:7] if repo.is_dirty(): commit_hash += "-dirty" if len(dirnames) > 1 and not stats_only: print("Only provide 1 dirname unless running with --stats") return 1 updated_dirnames = [] for dirname in dirnames: dirname = Path(dirname) dirname = resolve_dirname(dirname, stats_only or cont, make_new) if not dirname: return 1 updated_dirnames.append(dirname) if stats_only: return show_stats(updated_dirnames) assert len(updated_dirnames) == 1, updated_dirnames dirname = updated_dirnames[0] if "AIDER_DOCKER" not in os.environ: print("Warning: benchmarking runs unvetted code from GPT, run in a docker container") return assert BENCHMARK_DNAME.exists() and BENCHMARK_DNAME.is_dir(), BENCHMARK_DNAME assert ORIGINAL_DNAME.exists() and ORIGINAL_DNAME.is_dir(), ORIGINAL_DNAME if clean and dirname.exists(): print("Cleaning up and replacing", dirname) dir_files = set(fn.name for fn in dirname.glob("*")) original_files = set(fn.name for fn in ORIGINAL_DNAME.glob("*")) if dir_files != original_files: print("ERROR: will not delete dir that does not look like original tests", dirname) return dest = dirname.parent / "OLD" / dirname.name if dest.exists(): old_now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") dest = dirname.parent / "OLD" / (old_now + dirname.name) dirname.rename(dest) if not dirname.exists(): shutil.copytree(ORIGINAL_DNAME, dirname) test_dnames = sorted(os.listdir(dirname)) if keyword: test_dnames = [dn for dn in test_dnames if keyword in dn] random.shuffle(test_dnames) if num_tests > 0: test_dnames = test_dnames[:num_tests] if threads == 1: all_results = [] for testname in test_dnames: results = run_test( dirname / testname, model, edit_format, tries, no_unit_tests, no_aider, verbose, commit_hash, ) all_results.append(results) summarize_results(dirname) else: run_test_threaded = lox.thread(threads)(run_test) for testname in test_dnames: run_test_threaded.scatter( dirname / testname, model, edit_format, tries, no_unit_tests, no_aider, verbose, commit_hash, ) all_results = run_test_threaded.gather(tqdm=True) print() print() print() summarize_results(dirname) return 0 def summarize_results(dirname): res = SimpleNamespace() dirname = Path(dirname) res.total_tests = len(list(dirname.glob("*"))) all_results = [json.loads(fname.read_text()) for fname in dirname.glob("*/.aider.results.json")] try: tries = max(len(results["tests_outcomes"]) for results in all_results if results) except ValueError: tries = 0 res.dir_name = str(dirname) passed_tests = [0] * tries res.completed_tests = 0 res.duration = 0 res.cost = 0 res.error_outputs = 0 res.user_asks = 0 res.test_timeouts = 0 res.exhausted_context_windows = 0 variants = defaultdict(set) for results in all_results: if not results: continue res.completed_tests += 1 passed = results["tests_outcomes"][-1] if passed: for i in range(len(results["tests_outcomes"]) - 1, tries): passed_tests[i] += 1 res.cost += results["cost"] res.duration += results["duration"] res.test_timeouts += results.get("test_timeouts", 0) res.error_outputs += results.get("num_error_outputs", 0) res.user_asks += results.get("num_user_asks", 0) res.exhausted_context_windows += results.get("num_exhausted_context_windows", 0) for key in "model edit_format commit_hash".split(): val = results.get(key) variants[key].add(val) if not res.completed_tests: return console = Console(highlight=False) console.rule(title=str(dirname)) console.print(f"test-cases: {res.completed_tests}") for key, val in variants.items(): if len(val) > 1: style = "red" else: style = None val = ", ".join(map(str, val)) setattr(res, key, val) console.print(f"{key}: {val}", style=style) print("num_error_outputs:", res.error_outputs) print("num_user_asks:", res.user_asks) style = "red" if res.exhausted_context_windows else None console.print("num_exhausted_context_windows", res.exhausted_context_windows, style=style) style = "red" if res.test_timeouts else None console.print("test_timeouts:", res.test_timeouts, style=style) console.print() for i in range(tries): pass_rate = 100 * passed_tests[i] / res.completed_tests console.print(f"{pass_rate:.1f}% correct after try {i}") setattr(res, f"pass_rate_{i+1}", pass_rate) console.print() res.avg_duration = res.duration / res.completed_tests console.print(f"duration: {res.avg_duration:.1f} sec/test-case") res.avg_cost = res.cost / res.completed_tests projected_cost = res.avg_cost * res.total_tests console.print( f"costs: ${res.avg_cost:.4f}/test-case, ${res.cost:.2f} total," f" ${projected_cost:.2f} projected" ) console.rule() # print(json.dumps(vars(res), indent=4, sort_keys=True)) return res def run_test( testdir, model_name, edit_format, tries, no_unit_tests, no_aider, verbose, commit_hash ): if not os.path.isdir(testdir): print("Not a dir:", testdir) return testdir = Path(testdir) history_fname = testdir / ".aider.chat.history.md" results_fname = testdir / ".aider.results.json" if results_fname.exists(): try: res = json.loads(results_fname.read_text()) return res except JSONDecodeError: print(f"{results_fname} failed to parse, skipping") return fnames = [] for fname in testdir.glob("*"): if "test" not in fname.name and fname.is_file() and fname.name[0] != ".": fnames.append(fname) # restore the original file, in case we interrupted a prev run # after it had saved changes original_fname = ORIGINAL_DNAME / testdir.name / fname.name shutil.copy(original_fname, fname) file_list = " ".join(fname.name for fname in fnames) instructions = "" introduction = testdir / ".docs/introduction.md" if introduction.exists(): instructions += introduction.read_text() instructions += (testdir / ".docs/instructions.md").read_text() instructions_append = testdir / ".docs/instructions.append.md" if instructions_append.exists(): instructions += instructions_append.read_text() instructions += prompts.instructions_addendum.format(file_list=file_list) io = InputOutput( pretty=True, yes=False, chat_history_file=history_fname, ) main_model = models.Model(model_name) edit_format = edit_format or main_model.edit_format dump(main_model) dump(edit_format) show_fnames = ",".join(map(str, fnames)) print("fnames:", show_fnames) openai.api_key = os.environ["OPENAI_API_KEY"] coder = Coder.create( main_model, edit_format, io, fnames=fnames, use_git=False, stream=False, pretty=False, verbose=verbose, ) timeouts = 0 dur = 0 test_outcomes = [] for i in range(tries): start = time.time() if not no_aider: coder.run(with_message=instructions) dur += time.time() - start if coder.num_control_c: raise KeyboardInterrupt if no_unit_tests: break try: errors = run_unit_tests(testdir, history_fname) except subprocess.TimeoutExpired: errors = "Tests timed out!" timeouts += 1 if errors: test_outcomes.append(False) else: test_outcomes.append(True) break errors = errors.splitlines() print(errors[-1]) errors = errors[:50] errors = "\n".join(errors) instructions = errors instructions += prompts.test_failures.format(file_list=file_list) results = dict( testdir=str(testdir), testcase=testdir.name, model=main_model.name, edit_format=edit_format, tests_outcomes=test_outcomes, cost=coder.total_cost, duration=dur, test_timeouts=timeouts, commit_hash=commit_hash, num_error_outputs=io.num_error_outputs, num_user_asks=io.num_user_asks, num_exhausted_context_windows=coder.num_exhausted_context_windows, chat_hashes=list( zip( coder.chat_completion_call_hashes, coder.chat_completion_response_hashes, ) ), ) dump(results) results_fname.write_text(json.dumps(results, indent=4)) return results def run_unit_tests(testdir, history_fname): command = [ "python", "-m", "unittest", "discover", "-s", str(testdir), "-t", str(testdir), "-p", "*_test.py", ] print(" ".join(command)) timeout = 60 result = subprocess.run( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, timeout=timeout, ) success = result.returncode == 0 res = result.stdout res = cleanup_test_output(res) with history_fname.open("a") as fh: fh.write(f"```\n{res}\n```") if not success: print(f"Tests failed: {testdir}") return res def cleanup_test_output(output): # remove timing info, to avoid randomizing the response to GPT res = re.sub( r"^Ran \d+ tests in \d+\.\d+s$", "", output, flags=re.MULTILINE, ) res = re.sub( r"^====*$", "====", res, flags=re.MULTILINE, ) res = re.sub( r"^----*$", "----", res, flags=re.MULTILINE, ) return res if __name__ == "__main__": app()
[]
2024-01-10
FredGoo/langchain-chinese-chat-models
langchain_c~chat_models~zhipuai.py
"""ZhiPu chat wrapper.""" from __future__ import annotations import logging import sys from typing import ( TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional, Tuple, Union, ) from pydantic import Extra, Field, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage, ) from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: import tiktoken logger = logging.getLogger(__name__) def _import_tiktoken() -> Any: try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to calculate get_token_ids. " "Please install it with `pip install tiktoken`." ) return tiktoken def _create_retry_decorator(llm: ChatZhiPu) -> Callable[[Any], Any]: import zhipuai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), # retry=( # retry_if_exception_type(zhipuai..Timeout) # | retry_if_exception_type(openai.error.APIError) # | retry_if_exception_type(openai.error.APIConnectionError) # | retry_if_exception_type(openai.error.RateLimitError) # | retry_if_exception_type(openai.error.ServiceUnavailableError) # ), before_sleep=before_sleep_log(logger, logging.WARNING), ) async def acompletion_with_retry(llm: ChatZhiPu, **kwargs: Any) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) def _convert_dict_to_message(_dict: dict) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": return AIMessage(content=_dict["content"]) elif role == "system": return SystemMessage(content=_dict["content"]) else: return ChatMessage(content=_dict["content"], role=role) def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} else: raise ValueError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict class ChatZhiPu(BaseChatModel): """Wrapper around ZhiPu Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatOpenAI openai = ChatOpenAI(model_name="gpt-3.5-turbo") """ @property def lc_serializable(self) -> bool: return True client: Any #: :meta private: model_name: str = Field(default="chatglm_130b", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" zhipuai_api_key: Optional[str] = None """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" zhipuai_api_base: Optional[str] = None zhipuai_organization: Optional[str] = None # to support explicit proxy for OpenAI thu_proxy: Optional[str] = None request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to OpenAI completion API. Default is 600 seconds.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" class Config: """Configuration for this pydantic object.""" extra = Extra.ignore allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = cls.all_required_field_names() extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["zhipuai_api_key"] = get_from_dict_or_env( values, "zhipuai_api_key", "ZHIPUAI_API_KEY" ) values["zhipuai_organization"] = get_from_dict_or_env( values, "zhipuai_organization", "ZHIPUAI_ORGANIZATION", default="", ) values["zhipuai_api_base"] = get_from_dict_or_env( values, "zhipuai_api_base", "ZHIPUAI_API_BASE", default="", ) values["zhipuai_proxy"] = get_from_dict_or_env( values, "zhipuai_proxy", "ZHIPUAI_PROXY", default="", ) try: import zhipuai except ImportError: raise ValueError( "Could not import openai python package. " "Please install it with `pip install zhipuai`." ) try: zhipuai.api_key = values["zhipuai_api_key"] values["client"] = zhipuai.model_api except AttributeError: raise ValueError( "`zhipuai` has no `model_api` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade zhipuai`." ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { "model": self.model_name, "request_timeout": self.request_timeout, "max_tokens": self.max_tokens, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } def _create_retry_decorator(self) -> Callable[[Any], Any]: import openai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(self.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), # retry=( # retry_if_exception_type(openai.error.Timeout) # | retry_if_exception_type(openai.error.APIError) # | retry_if_exception_type(openai.error.APIConnectionError) # | retry_if_exception_type(openai.error.RateLimitError) # | retry_if_exception_type(openai.error.ServiceUnavailableError) # ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def completion_with_retry(self, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = self._create_retry_decorator() @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return self.client.invoke(**kwargs) return _completion_with_retry(**kwargs) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] for k, v in token_usage.items(): if k in overall_token_usage: overall_token_usage[k] += v else: overall_token_usage[k] = v return {"token_usage": overall_token_usage, "model_name": self.model_name} def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True for stream_resp in self.completion_with_retry( messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token if run_manager: run_manager.on_llm_new_token(token) message = _convert_dict_to_message( {"content": inner_completion, "role": role} ) return ChatResult(generations=[ChatGeneration(message=message)]) response = self.completion_with_retry(prompt=message_dicts, **params) return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = dict(self._invocation_params) if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["data"]["choices"]: message = _convert_dict_to_message(res) gen = ChatGeneration(message=message) generations.append(gen) llm_output = {"token_usage": response["data"]["usage"], "model_name": self.model_name} return ChatResult(generations=generations, llm_output=llm_output) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True async for stream_resp in await acompletion_with_retry( self, messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token if run_manager: await run_manager.on_llm_new_token(token) message = _convert_dict_to_message( {"content": inner_completion, "role": role} ) return ChatResult(generations=[ChatGeneration(message=message)]) else: response = await acompletion_with_retry( self, messages=message_dicts, **params ) return self._create_chat_result(response) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _invocation_params(self) -> Mapping[str, Any]: """Get the parameters used to invoke the model.""" zhipuai_creds: Dict[str, Any] = { "api_key": self.zhipuai_api_key, "api_base": self.zhipuai_api_base, "organization": self.zhipuai_organization, "model": self.model_name, } # if self.zhipuai_proxy: # import openai # # openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501 return {**zhipuai_creds, **self._default_params} @property def _llm_type(self) -> str: """Return type of chat model.""" return "zhipuai-chat" def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]: tiktoken_ = _import_tiktoken() model = self.model_name if model == "gpt-3.5-turbo": # gpt-3.5-turbo may change over time. # Returning num tokens assuming gpt-3.5-turbo-0301. model = "gpt-3.5-turbo-0301" elif model == "gpt-4": # gpt-4 may change over time. # Returning num tokens assuming gpt-4-0314. model = "gpt-4-0314" # Returns the number of tokens used by a list of messages. try: encoding = tiktoken_.encoding_for_model(model) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken_.get_encoding(model) return model, encoding def get_token_ids(self, text: str) -> List[int]: """Get the tokens present in the text with tiktoken package.""" # tiktoken NOT supported for Python 3.7 or below if sys.version_info[1] <= 7: return super().get_token_ids(text) _, encoding_model = self._get_encoding_model() return encoding_model.encode(text) def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" if sys.version_info[1] <= 7: return super().get_num_tokens_from_messages(messages) model, encoding = self._get_encoding_model() if model == "gpt-3.5-turbo-0301": # every message follows <im_start>{role/name}\n{content}<im_end>\n tokens_per_message = 4 # if there's a name, the role is omitted tokens_per_name = -1 elif model == "gpt-4-0314": tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"get_num_tokens_from_messages() is not presently implemented " f"for model {model}." "See https://github.com/openai/openai-python/blob/main/chatml.md for " "information on how messages are converted to tokens." ) num_tokens = 0 messages_dict = [_convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens
[ "content" ]
2024-01-10
FredGoo/langchain-chinese-chat-models
test~zhipuai_test.py
import os from dotenv import load_dotenv, find_dotenv from langchain_c.chat_models import ChatZhiPu from langchain.prompts import ChatPromptTemplate # read local .env file _ = load_dotenv(find_dotenv()) gpt_api_key = os.environ['ZHIPUAI_API_KEY'] chat = ChatZhiPu( temperature=0.9, model_name="chatglm_130b", max_tokens=1000, zhipuai_api_key=gpt_api_key ) # Prompt 编写 review_template = """ {text}\n 请你提取包含“人”(name, position),“时间”,“事件“,“地点”(location)类型的所有信息,并输出JSON格式 """ # 创建 ChatPromptTemplate prompt_template = ChatPromptTemplate.from_template(review_template) # 用户的商品评价 customer_review = """ 2022年11月4日,计算机系通过线上线下相结合的方式在东主楼10-103会议室召开博士研究生导师交流会。\ 计算机学科学位分委员会主席吴空,计算机系副主任张建、党委副书记李伟出席会议,博士生研究生导师和教学办工作人员等30余人参加会议,会议由张建主持。 """ messages = prompt_template.format_messages(text=customer_review) # 请求 response = chat(messages) print(response.content)
[ "\n{text}\n\n请你提取包含“人”(name, position),“时间”,“事件“,“地点”(location)类型的所有信息,并输出JSON格式\n" ]
2024-01-10
FredGoo/langchain-chinese-chat-models
langchain_c~chat_models~sample.py
"""OpenAI chat wrapper.""" from __future__ import annotations import logging import sys from typing import ( TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional, Tuple, Union, ) from pydantic import Extra, Field, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage, ) from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: import tiktoken logger = logging.getLogger(__name__) def _import_tiktoken() -> Any: try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to calculate get_token_ids. " "Please install it with `pip install tiktoken`." ) return tiktoken def _create_retry_decorator(llm: ChatOpenAI) -> Callable[[Any], Any]: import openai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) async def acompletion_with_retry(llm: ChatOpenAI, **kwargs: Any) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) def _convert_dict_to_message(_dict: dict) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": return AIMessage(content=_dict["content"]) elif role == "system": return SystemMessage(content=_dict["content"]) else: return ChatMessage(content=_dict["content"], role=role) def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} else: raise ValueError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict class ChatOpenAI(BaseChatModel): """Wrapper around OpenAI Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatOpenAI openai = ChatOpenAI(model_name="gpt-3.5-turbo") """ @property def lc_serializable(self) -> bool: return True client: Any #: :meta private: model_name: str = Field(default="gpt-3.5-turbo", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" openai_api_base: Optional[str] = None openai_organization: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to OpenAI completion API. Default is 600 seconds.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" class Config: """Configuration for this pydantic object.""" extra = Extra.ignore allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = cls.all_required_field_names() extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) try: import openai except ImportError: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { "model": self.model_name, "request_timeout": self.request_timeout, "max_tokens": self.max_tokens, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } def _create_retry_decorator(self) -> Callable[[Any], Any]: import openai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(self.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def completion_with_retry(self, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = self._create_retry_decorator() @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return self.client.create(**kwargs) return _completion_with_retry(**kwargs) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] for k, v in token_usage.items(): if k in overall_token_usage: overall_token_usage[k] += v else: overall_token_usage[k] = v return {"token_usage": overall_token_usage, "model_name": self.model_name} def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True for stream_resp in self.completion_with_retry( messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token if run_manager: run_manager.on_llm_new_token(token) message = _convert_dict_to_message( {"content": inner_completion, "role": role} ) return ChatResult(generations=[ChatGeneration(message=message)]) response = self.completion_with_retry(messages=message_dicts, **params) return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = dict(self._invocation_params) if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["choices"]: message = _convert_dict_to_message(res["message"]) gen = ChatGeneration(message=message) generations.append(gen) llm_output = {"token_usage": response["usage"], "model_name": self.model_name} return ChatResult(generations=generations, llm_output=llm_output) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True async for stream_resp in await acompletion_with_retry( self, messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token if run_manager: await run_manager.on_llm_new_token(token) message = _convert_dict_to_message( {"content": inner_completion, "role": role} ) return ChatResult(generations=[ChatGeneration(message=message)]) else: response = await acompletion_with_retry( self, messages=message_dicts, **params ) return self._create_chat_result(response) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _invocation_params(self) -> Mapping[str, Any]: """Get the parameters used to invoke the model.""" openai_creds: Dict[str, Any] = { "api_key": self.openai_api_key, "api_base": self.openai_api_base, "organization": self.openai_organization, "model": self.model_name, } if self.openai_proxy: import openai openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501 return {**openai_creds, **self._default_params} @property def _llm_type(self) -> str: """Return type of chat model.""" return "openai-chat" def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]: tiktoken_ = _import_tiktoken() model = self.model_name if model == "gpt-3.5-turbo": # gpt-3.5-turbo may change over time. # Returning num tokens assuming gpt-3.5-turbo-0301. model = "gpt-3.5-turbo-0301" elif model == "gpt-4": # gpt-4 may change over time. # Returning num tokens assuming gpt-4-0314. model = "gpt-4-0314" # Returns the number of tokens used by a list of messages. try: encoding = tiktoken_.encoding_for_model(model) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken_.get_encoding(model) return model, encoding def get_token_ids(self, text: str) -> List[int]: """Get the tokens present in the text with tiktoken package.""" # tiktoken NOT supported for Python 3.7 or below if sys.version_info[1] <= 7: return super().get_token_ids(text) _, encoding_model = self._get_encoding_model() return encoding_model.encode(text) def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" if sys.version_info[1] <= 7: return super().get_num_tokens_from_messages(messages) model, encoding = self._get_encoding_model() if model == "gpt-3.5-turbo-0301": # every message follows <im_start>{role/name}\n{content}<im_end>\n tokens_per_message = 4 # if there's a name, the role is omitted tokens_per_name = -1 elif model == "gpt-4-0314": tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"get_num_tokens_from_messages() is not presently implemented " f"for model {model}." "See https://github.com/openai/openai-python/blob/main/chatml.md for " "information on how messages are converted to tokens." ) num_tokens = 0 messages_dict = [_convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens
[ "content" ]
2024-01-10
FredGoo/langchain-chinese-chat-models
test~xfyun_test.py
import os from dotenv import load_dotenv, find_dotenv from langchain.prompts import ChatPromptTemplate from langchain_c.chat_models import ChatXfyun # read local .env file _ = load_dotenv(find_dotenv()) app_id = os.environ['XFYUN_APP_ID'] api_key = os.environ['XFYUN_API_KEY'] api_secret = os.environ['XFYUN_API_SECRET'] chat = ChatXfyun( temperature=0.9, max_tokens=1000, xfyun_app_id=app_id, xfyun_api_key=api_key, xfyun_api_secret=api_secret ) # Prompt 编写 review_template = """ {text}\ 请你提取包含“人”(name, position),“时间”,“事件“,“地点”(location)类型的所有信息,并输出JSON格式,人的键值为people """ # 创建 ChatPromptTemplate prompt_template = ChatPromptTemplate.from_template(review_template) # 用户的商品评价 customer_review = """ 2022年11月4日,计算机系通过线上线下相结合的方式在东主楼10-103会议室召开博士研究生导师交流会。\ 计算机学科学位分委员会主席吴空,计算机系副主任张建、党委副书记李伟出席会议,博士生研究生导师和教学办工作人员等30余人参加会议,会议由张建主持。\n """ messages = prompt_template.format_messages(text=customer_review) # 请求 response = chat(messages) print(response.content)
[ "\n{text}请你提取包含“人”(name, position),“时间”,“事件“,“地点”(location)类型的所有信息,并输出JSON格式,人的键值为people\n" ]
2024-01-10
FredGoo/langchain-chinese-chat-models
langchain_c~chat_models~xfyun.py
"""Xfyun chat wrapper.""" from __future__ import annotations import _thread as thread import base64 import datetime import hashlib import hmac import json import logging import ssl import sys from datetime import datetime from time import mktime from typing import ( TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional, Tuple, Union, ) from urllib.parse import urlencode from urllib.parse import urlparse from wsgiref.handlers import format_date_time import websocket from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage, ) from langchain.utils import get_from_dict_or_env from pydantic import Extra, Field, root_validator from tenacity import ( before_sleep_log, retry, stop_after_attempt, wait_exponential, ) if TYPE_CHECKING: import tiktoken logger = logging.getLogger(__name__) def _import_tiktoken() -> Any: try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to calculate get_token_ids. " "Please install it with `pip install tiktoken`." ) return tiktoken def _create_retry_decorator(llm: ChatXfyun) -> Callable[[Any], Any]: min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), # retry=( # retry_if_exception_type(openai.error.Timeout) # | retry_if_exception_type(openai.error.APIError) # | retry_if_exception_type(openai.error.APIConnectionError) # | retry_if_exception_type(openai.error.RateLimitError) # | retry_if_exception_type(openai.error.ServiceUnavailableError) # ), before_sleep=before_sleep_log(logger, logging.WARNING), ) async def acompletion_with_retry(llm: ChatXfyun, **kwargs: Any) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) def _convert_dict_to_message(_dict: dict) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": return AIMessage(content=_dict["content"]) elif role == "system": return SystemMessage(content=_dict["content"]) else: return ChatMessage(content=_dict["content"], role=role) def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} else: raise ValueError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict class ChatXfyun(BaseChatModel): """Wrapper around Xfyun Chat large language models. environment variable ``XFYUN_APP_ID`` set with your app id. environment variable ``XFYUN_API_KEY`` set with your API key. environment variable ``XFYUN_API_SECRET`` set with your API Secret. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatOpenAI openai = ChatOpenAI(model_name="gpt-3.5-turbo") """ @property def lc_serializable(self) -> bool: return True client: Any #: :meta private: model_name: str = Field(default="gpt-3.5-turbo", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) xfyun_app_id: Optional[str] = None """Holds any model parameters valid for `create` call not explicitly specified.""" xfyun_api_key: Optional[str] = None xfyun_api_secret: Optional[str] = None """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" xfyun_api_base: Optional[str] = None xfyun_organization: Optional[str] = None # to support explicit proxy for OpenAI xfyun_proxy: Optional[str] = None request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to OpenAI completion API. Default is 600 seconds.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" class Config: """Configuration for this pydantic object.""" extra = Extra.ignore allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = cls.all_required_field_names() extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["xfyun_app_id"] = get_from_dict_or_env( values, "xfyun_app_id", "XFYUN_APP_ID" ) values["xfyun_api_key"] = get_from_dict_or_env( values, "xfyun_api_key", "XFYUN_API_KEY" ) values["xfyun_api_secret"] = get_from_dict_or_env( values, "xfyun_api_secret", "XFYUN_API_SECRET" ) values["xfyun_organization"] = get_from_dict_or_env( values, "xfyun_organization", "XFYUN_ORGANIZATION", default="", ) values["xfyun_api_base"] = get_from_dict_or_env( values, "xfyun_api_base", "XFYUN_API_BASE", default="wss://spark-api.xf-yun.com/v1.1/chat", ) values["xfyun_proxy"] = get_from_dict_or_env( values, "xfyun_proxy", "XFYUN_PROXY", default="", ) # try: # values["client"] = None # except AttributeError: # raise ValueError( # "`xfyun` client not found " # ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { "model": self.model_name, "request_timeout": self.request_timeout, "max_tokens": self.max_tokens, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } def _create_retry_decorator(self) -> Callable[[Any], Any]: min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(self.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), # retry=( # retry_if_exception_type(openai.error.Timeout) # | retry_if_exception_type(openai.error.APIError) # | retry_if_exception_type(openai.error.APIConnectionError) # | retry_if_exception_type(openai.error.RateLimitError) # | retry_if_exception_type(openai.error.ServiceUnavailableError) # ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def create_url(self): # 生成RFC1123格式的时间戳 now = datetime.now() date = format_date_time(mktime(now.timetuple())) host = urlparse(self.xfyun_api_base).netloc path = urlparse(self.xfyun_api_base).path gpt_url = self.xfyun_api_base # 拼接字符串 signature_origin = "host: " + host + "\n" signature_origin += "date: " + date + "\n" signature_origin += "GET " + path + " HTTP/1.1" # 进行hmac-sha256进行加密 signature_sha = hmac.new(self.xfyun_api_secret.encode('utf-8'), signature_origin.encode('utf-8'), digestmod=hashlib.sha256).digest() signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8') authorization_origin = f'api_key="{self.xfyun_api_key}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"' authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8') # 将请求的鉴权参数组合为字典 v = { "authorization": authorization, "date": date, "host": host } # 拼接鉴权参数,生成url url = gpt_url + '?' + urlencode(v) # 此处打印出建立连接时候的url,参考本demo的时候可取消上方打印的注释,比对相同参数时生成的url与自己代码生成的url是否一致 return url content = "" ws_status = 1 def completion_with_retry(self, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = self._create_retry_decorator() def on_open(ws): thread.start_new_thread(run, (ws,)) def run(ws, *args): data = json.dumps(gen_params(appid=ws.appid, messages=ws.messages)) ws.send(data) def gen_params(appid, messages): """ 通过appid和用户的提问来生成请参数 """ data = { "header": { "app_id": appid, "uid": "1234" }, "parameter": { "chat": { "domain": "general", "random_threshold": 0.5, "max_tokens": 2048, "auditing": "default" } }, "payload": { "message": { "text": messages['messages'] } } } return data def on_message(ws, message): data = json.loads(message) code = data['header']['code'] if code != 0: print(f'请求错误: {code}, {data}') ws.close() else: choices = data["payload"]["choices"] status = choices["status"] self.content += choices["text"][0]["content"] if status == 2: print(self.content, end='') self.ws_status = 2 ws.close() @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: websocket.enableTrace(False) ws_url = self.create_url() ws = websocket.WebSocketApp(ws_url, on_message=on_message, on_open=on_open) ws.appid = self.xfyun_app_id ws.messages = kwargs ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE}) while self.ws_status == 1: continue return self.content return _completion_with_retry(**kwargs) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] for k, v in token_usage.items(): if k in overall_token_usage: overall_token_usage[k] += v else: overall_token_usage[k] = v return {"token_usage": overall_token_usage, "model_name": self.model_name} def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True for stream_resp in self.completion_with_retry( messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token if run_manager: run_manager.on_llm_new_token(token) message = _convert_dict_to_message( {"content": inner_completion, "role": role} ) return ChatResult(generations=[ChatGeneration(message=message)]) response = self.completion_with_retry(messages=message_dicts, **params) return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = dict(self._invocation_params) if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["choices"]: message = _convert_dict_to_message(res["message"]) gen = ChatGeneration(message=message) generations.append(gen) llm_output = {"token_usage": response["usage"], "model_name": self.model_name} return ChatResult(generations=generations, llm_output=llm_output) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True async for stream_resp in await acompletion_with_retry( self, messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token if run_manager: await run_manager.on_llm_new_token(token) message = _convert_dict_to_message( {"content": inner_completion, "role": role} ) return ChatResult(generations=[ChatGeneration(message=message)]) else: response = await acompletion_with_retry( self, messages=message_dicts, **params ) return self._create_chat_result(response) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _invocation_params(self) -> Mapping[str, Any]: """Get the parameters used to invoke the model.""" openai_creds: Dict[str, Any] = { "app_id": self.xfyun_app_id, "api_key": self.xfyun_api_key, "api_secret": self.xfyun_api_secret, "api_base": self.xfyun_api_base, "organization": self.xfyun_organization, "model": self.model_name, } # todo # if self.xfyun_proxy: # import openai # # openai.proxy = {"http": self.openai_proxy, # "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501 return {**openai_creds, **self._default_params} @property def _llm_type(self) -> str: """Return type of chat model.""" return "xfyun-chat" def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]: tiktoken_ = _import_tiktoken() model = self.model_name if model == "gpt-3.5-turbo": # gpt-3.5-turbo may change over time. # Returning num tokens assuming gpt-3.5-turbo-0301. model = "gpt-3.5-turbo-0301" elif model == "gpt-4": # gpt-4 may change over time. # Returning num tokens assuming gpt-4-0314. model = "gpt-4-0314" # Returns the number of tokens used by a list of messages. try: encoding = tiktoken_.encoding_for_model(model) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken_.get_encoding(model) return model, encoding def get_token_ids(self, text: str) -> List[int]: """Get the tokens present in the text with tiktoken package.""" # tiktoken NOT supported for Python 3.7 or below if sys.version_info[1] <= 7: return super().get_token_ids(text) _, encoding_model = self._get_encoding_model() return encoding_model.encode(text) def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" if sys.version_info[1] <= 7: return super().get_num_tokens_from_messages(messages) model, encoding = self._get_encoding_model() if model == "gpt-3.5-turbo-0301": # every message follows <im_start>{role/name}\n{content}<im_end>\n tokens_per_message = 4 # if there's a name, the role is omitted tokens_per_name = -1 elif model == "gpt-4-0314": tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"get_num_tokens_from_messages() is not presently implemented " f"for model {model}." "See https://github.com/openai/openai-python/blob/main/chatml.md for " "information on how messages are converted to tokens." ) num_tokens = 0 messages_dict = [_convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens
[ "content" ]
2024-01-10
Audio-AGI/AudioSep
models~CLAP~open_clip~factory.py
import json import logging import os import pathlib import re from copy import deepcopy from pathlib import Path import torch from .model import CLAP, convert_weights_to_fp16 from .openai import load_openai_model from .pretrained import get_pretrained_url, download_pretrained from .transform import image_transform _MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs def _natural_key(string_): return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())] def _rescan_model_configs(): global _MODEL_CONFIGS config_ext = (".json",) config_files = [] for config_path in _MODEL_CONFIG_PATHS: if config_path.is_file() and config_path.suffix in config_ext: config_files.append(config_path) elif config_path.is_dir(): for ext in config_ext: config_files.extend(config_path.glob(f"*{ext}")) for cf in config_files: if os.path.basename(cf)[0] == ".": continue # Ignore hidden files with open(cf, "r") as f: model_cfg = json.load(f) if all(a in model_cfg for a in ("embed_dim", "audio_cfg", "text_cfg")): _MODEL_CONFIGS[cf.stem] = model_cfg _MODEL_CONFIGS = { k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])) } _rescan_model_configs() # initial populate of model config registry def load_state_dict(checkpoint_path: str, map_location="cpu", skip_params=True): checkpoint = torch.load(checkpoint_path, map_location=map_location) if isinstance(checkpoint, dict) and "state_dict" in checkpoint: state_dict = checkpoint["state_dict"] else: state_dict = checkpoint if skip_params: if next(iter(state_dict.items()))[0].startswith("module"): state_dict = {k[7:]: v for k, v in state_dict.items()} # for k in state_dict: # if k.startswith('transformer'): # v = state_dict.pop(k) # state_dict['text_branch.' + k[12:]] = v return state_dict def create_model( amodel_name: str, tmodel_name: str, pretrained: str = "", precision: str = "fp32", device: torch.device = torch.device("cpu"), jit: bool = False, force_quick_gelu: bool = False, openai_model_cache_dir: str = os.path.expanduser("~/.cache/clip"), skip_params=True, pretrained_audio: str = "", pretrained_text: str = "", enable_fusion: bool = False, fusion_type: str = "None" # pretrained_image: bool = False, ): amodel_name = amodel_name.replace( "/", "-" ) # for callers using old naming with / in ViT names pretrained_orig = pretrained pretrained = pretrained.lower() if pretrained == "openai": if amodel_name in _MODEL_CONFIGS: logging.info(f"Loading {amodel_name} model config.") model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name]) else: logging.error( f"Model config for {amodel_name} not found; available models {list_models()}." ) raise RuntimeError(f"Model config for {amodel_name} not found.") logging.info(f"Loading pretrained ViT-B-16 text encoder from OpenAI.") # Hard Code in model name model_cfg["text_cfg"]["model_type"] = tmodel_name model = load_openai_model( "ViT-B-16", model_cfg, device=device, jit=jit, cache_dir=openai_model_cache_dir, enable_fusion=enable_fusion, fusion_type=fusion_type, ) # See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372 if precision == "amp" or precision == "fp32": model = model.float() else: if amodel_name in _MODEL_CONFIGS: logging.info(f"Loading {amodel_name} model config.") model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name]) else: logging.error( f"Model config for {amodel_name} not found; available models {list_models()}." ) raise RuntimeError(f"Model config for {amodel_name} not found.") if force_quick_gelu: # override for use of QuickGELU on non-OpenAI transformer models model_cfg["quick_gelu"] = True # if pretrained_image: # if 'timm_amodel_name' in model_cfg.get('vision_cfg', {}): # # pretrained weight loading for timm models set via vision_cfg # model_cfg['vision_cfg']['timm_model_pretrained'] = True # else: # assert False, 'pretrained image towers currently only supported for timm models' model_cfg["text_cfg"]["model_type"] = tmodel_name model_cfg["enable_fusion"] = enable_fusion model_cfg["fusion_type"] = fusion_type model = CLAP(**model_cfg) if pretrained: checkpoint_path = "" url = get_pretrained_url(amodel_name, pretrained) if url: checkpoint_path = download_pretrained(url, root=openai_model_cache_dir) elif os.path.exists(pretrained_orig): checkpoint_path = pretrained_orig if checkpoint_path: logging.info( f"Loading pretrained {amodel_name}-{tmodel_name} weights ({pretrained})." ) ckpt = load_state_dict(checkpoint_path, skip_params=True) model.load_state_dict(ckpt) param_names = [n for n, p in model.named_parameters()] # for n in param_names: # print(n, "\t", "Loaded" if n in ckpt else "Unloaded") else: logging.warning( f"Pretrained weights ({pretrained}) not found for model {amodel_name}." ) raise RuntimeError( f"Pretrained weights ({pretrained}) not found for model {amodel_name}." ) if pretrained_audio: if amodel_name.startswith("PANN"): if "Cnn14_mAP" in pretrained_audio: # official checkpoint audio_ckpt = torch.load(pretrained_audio, map_location="cpu") audio_ckpt = audio_ckpt["model"] keys = list(audio_ckpt.keys()) for key in keys: if ( "spectrogram_extractor" not in key and "logmel_extractor" not in key ): v = audio_ckpt.pop(key) audio_ckpt["audio_branch." + key] = v elif os.path.basename(pretrained_audio).startswith( "PANN" ): # checkpoint trained via HTSAT codebase audio_ckpt = torch.load(pretrained_audio, map_location="cpu") audio_ckpt = audio_ckpt["state_dict"] keys = list(audio_ckpt.keys()) for key in keys: if key.startswith("sed_model"): v = audio_ckpt.pop(key) audio_ckpt["audio_branch." + key[10:]] = v elif os.path.basename(pretrained_audio).startswith( "finetuned" ): # checkpoint trained via linear probe codebase audio_ckpt = torch.load(pretrained_audio, map_location="cpu") else: raise ValueError("Unknown audio checkpoint") elif amodel_name.startswith("HTSAT"): if "HTSAT_AudioSet_Saved" in pretrained_audio: # official checkpoint audio_ckpt = torch.load(pretrained_audio, map_location="cpu") audio_ckpt = audio_ckpt["state_dict"] keys = list(audio_ckpt.keys()) for key in keys: if key.startswith("sed_model") and ( "spectrogram_extractor" not in key and "logmel_extractor" not in key ): v = audio_ckpt.pop(key) audio_ckpt["audio_branch." + key[10:]] = v elif os.path.basename(pretrained_audio).startswith( "HTSAT" ): # checkpoint trained via HTSAT codebase audio_ckpt = torch.load(pretrained_audio, map_location="cpu") audio_ckpt = audio_ckpt["state_dict"] keys = list(audio_ckpt.keys()) for key in keys: if key.startswith("sed_model"): v = audio_ckpt.pop(key) audio_ckpt["audio_branch." + key[10:]] = v elif os.path.basename(pretrained_audio).startswith( "finetuned" ): # checkpoint trained via linear probe codebase audio_ckpt = torch.load(pretrained_audio, map_location="cpu") else: raise ValueError("Unknown audio checkpoint") else: raise f"this audio encoder pretrained checkpoint is not support" model.load_state_dict(audio_ckpt, strict=False) logging.info( f"Loading pretrained {amodel_name} weights ({pretrained_audio})." ) param_names = [n for n, p in model.named_parameters()] for n in param_names: print(n, "\t", "Loaded" if n in audio_ckpt else "Unloaded") model.to(device=device) if precision == "fp16": assert device.type != "cpu" convert_weights_to_fp16(model) if jit: model = torch.jit.script(model) return model, model_cfg def create_model_and_transforms( model_name: str, pretrained: str = "", precision: str = "fp32", device: torch.device = torch.device("cpu"), jit: bool = False, force_quick_gelu: bool = False, # pretrained_image: bool = False, ): model = create_model( model_name, pretrained, precision, device, jit, force_quick_gelu=force_quick_gelu, # pretrained_image=pretrained_image ) preprocess_train = image_transform(model.visual.image_size, is_train=True) preprocess_val = image_transform(model.visual.image_size, is_train=False) return model, preprocess_train, preprocess_val def list_models(): """enumerate available model architectures based on config files""" return list(_MODEL_CONFIGS.keys()) def add_model_config(path): """add model config path or file and update registry""" if not isinstance(path, Path): path = Path(path) _MODEL_CONFIG_PATHS.append(path) _rescan_model_configs()
[]
2024-01-10
duxton/CarInsuranceChatbotWithLLM
UIChatbot.py
from tkinter import * import json import openai # GUI root = Tk() root.title("Chatbot") BG_GRAY = "#FFFFFF" BG_COLOR = "#FFFFFF" TEXT_COLOR = "#000000" FONT = "Helvetica 14" FONT_BOLD = "Helvetica 13 bold" api_key = "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" openai.api_key = api_key # Send function def send(): # send is user input send = "Me: " + e.get() # txt is respond from gpt txt.insert(END, "\n" + send) # Call GPT3 model and store the response to a variable and return # Replace with GPT response #new_prompt = "My Car proton model x70 year 2021 ncd 25%, how much would my car insurance be?" new_prompt = e.get() + " ->" if "FAQ-> " in e.get(): # for FAQ questions replaced_prompt = new_prompt.replace("FAQ-> ", '') answer = openai.Completion.create( model="davinci:ft-pogtdev-2023-06-11-07-19-08", prompt=replaced_prompt, temperature=1, max_tokens=100, top_p=1, best_of=5, frequency_penalty=1, presence_penalty=1 ) else: # For car price replaced_prompt = new_prompt.replace("Car-> ", '') answer = openai.Completion.create( model="davinci:ft-pogtdev-2023-06-11-07-19-08", prompt=replaced_prompt, temperature=1, max_tokens=20, top_p=1, best_of=5, frequency_penalty=1, presence_penalty=1 ) txt.insert(END, "\n" + "POIBOT: " + answer['choices'][0]['text']) # https://www.geeksforgeeks.org/gui-chat-application-using-tkinter-in-python/ # get user input user = e.get().lower() e.delete(0, END) # Welcome on the top lable1 = Label(root, bg=BG_COLOR, fg=TEXT_COLOR, text="Welcome", font=FONT_BOLD, pady=10, width=55, height=1).grid( row=0) # Display text txt = Text(root, bg=BG_COLOR, fg=TEXT_COLOR, font=FONT, width=60) txt.grid(row=1, column=0, columnspan=2) txt.insert(END, "\n" + "POIBOT: Hi Welcome, how may I help you? Please include FAQ or Car to get a better result") # Scroll bar scrollbar = Scrollbar(txt) scrollbar.place(relheight=1, relx=0.974) # Input from user e = Entry(root, bg="#FFFFFF", fg=TEXT_COLOR, font=FONT, width=55) e.grid(row=2, column=0) # Sent Btn send = Button(root, text="Send", font=FONT_BOLD, bg=BG_GRAY, command=send).grid(row=2, column=1) root.mainloop()
[ " ->", "e.get() + \" ->" ]
2024-01-10
martincooperbiz/aipif-kids
src~text~Gpt4t8kTextMaker.py
import os import openai from text.TextMaker import TextMaker openai.api_key = os.getenv("OPENAI_API_KEY") class Gpt4t8kTextMaker(TextMaker): def make_text(self, prompt_dict:dict): completion = openai.ChatCompletion.create( model = 'gpt-4', messages = [ {'role': 'user', 'content': prompt_dict['positive_prompt_text']} ], temperature = 0.6 # temperature = 0.7 # temperature = 0.55 ) return completion['choices'][0]['message']['content'] # def generate_prompt(animal): # return """Suggest three names for an animal that is a superhero. # Animal: Cat # Names: Captain Sharpclaw, Agent Fluffball, The Incredible Feline # Animal: Dog # Names: Ruff the Protector, Wonder Canine, Sir Barks-a-Lot # Animal: {} # Names:""".format( # animal.capitalize() # )
[ "positive_prompt_text" ]
2024-01-10
martincooperbiz/aipif-kids
src~text~Gpt35TextMaker.py
import os import openai from text.TextMaker import TextMaker openai.api_key = os.getenv("OPENAI_API_KEY") class Gpt35TextMaker(TextMaker): def make_text(self, prompt_dict:dict): completion = openai.ChatCompletion.create( model = 'gpt-3.5-turbo', messages = [ {'role': 'user', 'content': prompt_dict['positive_prompt_text']} ], temperature = 0.6 # temperature = 0.7 # temperature = 0.55 ) return completion['choices'][0]['message']['content'] # def generate_prompt(animal): # return """Suggest three names for an animal that is a superhero. # Animal: Cat # Names: Captain Sharpclaw, Agent Fluffball, The Incredible Feline # Animal: Dog # Names: Ruff the Protector, Wonder Canine, Sir Barks-a-Lot # Animal: {} # Names:""".format( # animal.capitalize() # )
[ "positive_prompt_text" ]
2024-01-10
martincooperbiz/aipif-kids
src~text~Davinci003TextMaker.py
import os import openai from text.TextMaker import TextMaker openai.api_key = os.getenv("OPENAI_API_KEY") class Davinci003TextMaker(TextMaker): def make_text(self, prompt_dict:dict): response = openai.Completion.create( model="text-davinci-003", prompt=prompt_dict['positive_prompt_text'], temperature=0.6, ) return response
[ "positive_prompt_text" ]
2024-01-10
BYZANTINE26/DocAI
creating_vector_store.py
from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import ElasticKnnSearch, Pinecone, Weaviate, FAISS from langchain.document_loaders import DirectoryLoader from langchain.document_loaders import UnstructuredHTMLLoader import os import pinecone from langchain.llms import OpenAI from langchain.callbacks import get_openai_callback import time from keys import OPENAI_API_KEY # PINECONE_API_KEY = PINECONE_API_KEY # PINECONE_ENV = PINECONE_ENV os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY def pinecone_create_vector_store(software): print(software) loader = DirectoryLoader(f'/home/yuvraj/projects/docai/test/{software}', glob="**/*.html", use_multithreading=True, loader_cls=UnstructuredHTMLLoader, show_progress=True) data = loader.load() print(data) text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) docs = text_splitter.split_documents(data) # file = open('docs.txt', 'w') # for item in docs: # file.write(item.page_content+"\n") # file.close() embeddings = OpenAIEmbeddings() # pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV) # index_name = software # pinecone.create_index(name=index_name, metric="cosine", shards=1, dimension=16000) print(len(docs)) vector_store = None token_count = 0 pre_tokens = 0 with get_openai_callback() as cb: for i, doc in enumerate(docs): print(i) if vector_store is None: vector_store = FAISS.from_documents([doc], embeddings) else: vector_store.add_documents([doc]) print(f'added to vector store doc {i}') print(cb.total_tokens) print(pre_tokens) token_count += cb.total_tokens - pre_tokens pre_tokens = cb.total_tokens print(token_count) if token_count > 995000: time.sleep(45) token_count = 0 print(token_count) vector_store.save_local(f'/home/yuvraj/projects/docai/vector_stores/{software}', index_name=software) return(f'uploaded vector {software}') # vector = FAISS.from_documents(docs, embeddings, index_name=index_name) # vector.save_local()
[]
2024-01-10
Kiash254/QA-chatbot-with-Gemini-streamlit
chatpdf.py
import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import os from langchain_google_genai import GoogleGenerativeAIEmbeddings import google.generativeai as genai from langchain.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv # Load the environment variables from a .env file load_dotenv() os.getenv("GOOGLE_API_KEY") genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # Function to extract text from PDFs and return a list of strings def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text # Function to split the text into chunks def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) chunks = text_splitter.split_text(text) return chunks # Function to create and save the vector store database def create_vector_store(text_chunks): embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local("faiss_index") # Function to load the vector store database def load_vector_store(): embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") return FAISS.load_local("faiss_index", embeddings) # Function to initiate the conversational chain def initiate_conversational_chain(): prompt_template = """ Answer the question as detailed as possible from the provided context. If the answer is not available in provided context, indicate that the information is not present. Don't provide a wrong answer.\n\n Context:\n{context}?\n Question:\n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) return load_qa_chain(model, chain_type="stuff", prompt=prompt) # Function to interact with the PDFs based on user input def interact_with_pdfs(user_question, db): chain = initiate_conversational_chain() docs = db.similarity_search(user_question) response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) return response["output_text"] # Main function to run the Streamlit app def main(): st.set_page_config("Chat PDF") st.header("Chat with PDF using Gemini💁") user_question = st.text_input("Ask a Question from the PDF Files") if user_question: vector_store = load_vector_store() st.write("Reply: ", interact_with_pdfs(user_question, vector_store)) with st.sidebar: st.title("Menu:") pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) if st.button("Submit & Process"): with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) create_vector_store(text_chunks) st.success("Done") # Execute the main function if __name__ == "__main__": main()
[ "\n Answer the question as detailed as possible from the provided context. If the answer is not available in\n provided context, indicate that the information is not present. Don't provide a wrong answer.\n\n\n Context:\n{context}?\n\n Question:\n{question}\n\n\n Answer:\n ", "question", "context" ]
2024-01-10
Kiash254/QA-chatbot-with-Gemini-streamlit
csv_chat.py
import streamlit as st from streamlit_chat import message import tempfile from langchain.document_loaders.csv_loader import CSVLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.llms import CTransformers from langchain.chains import ConversationalRetrievalChain DB_FAISS_PATH = 'vectorstore/db_faiss' #Loading the model def load_llm(): # Load the locally downloaded model here llm = CTransformers( model = "llama-2-7b-chat.ggmlv3.q8_0.bin", model_type="llama", max_new_tokens = 512, temperature = 0.5 ) return llm st.title("Chat with CSV using Llama2 🦙🦜") st.markdown("<h3 style='text-align: center; color: white;'>Built by <a href='https://github.com/AIAnytime'>AI Anytime with ❤️ </a></h3>", unsafe_allow_html=True) uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv") if uploaded_file : #use tempfile because CSVLoader only accepts a file_path with tempfile.NamedTemporaryFile(delete=False) as tmp_file: tmp_file.write(uploaded_file.getvalue()) tmp_file_path = tmp_file.name loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={ 'delimiter': ','}) data = loader.load() #st.json(data) embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'}) db = FAISS.from_documents(data, embeddings) db.save_local(DB_FAISS_PATH) llm = load_llm() chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever()) def conversational_chat(query): result = chain({"question": query, "chat_history": st.session_state['history']}) st.session_state['history'].append((query, result["answer"])) return result["answer"] if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = ["Hello ! Ask me anything about " + uploaded_file.name + " 🤗"] if 'past' not in st.session_state: st.session_state['past'] = ["Hey ! 👋"] #container for the chat history response_container = st.container() #container for the user's text input container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Query:", placeholder="Talk to your csv data here (:", key='input') submit_button = st.form_submit_button(label='Send') if submit_button and user_input: output = conversational_chat(user_input) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) if st.session_state['generated']: with response_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile") message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")
[]
2024-01-10
Kiash254/QA-chatbot-with-Gemini-streamlit
genai_langchain.py
import streamlit as st import getpass import os from dotenv import load_dotenv from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.messages import HumanMessage, SystemMessage # Load the API key from .env GOOGLE_API_KEY load_dotenv() GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY') # Initialize the model llm = ChatGoogleGenerativeAI(model='gemini-pro') # Streamlit application st.title('LangChain Google Generative AI') # User input user_input = st.text_input('Enter a message:') if st.button('Generate Ballad'): # Use the model to generate a response result = llm.invoke(f"Write a ballad about {user_input}") # Display the model's response st.write(result.content) if st.button('Generate Limerick'): # Use the model to generate a response for chunk in llm.stream(f"Write a limerick about {user_input}."): st.write(chunk.content) # System and human message input system_message = st.text_input('Enter a system message:') human_message = st.text_input('Enter a human message:') if st.button('Generate Conversation'): model = ChatGoogleGenerativeAI(model="gemini-pro", convert_system_message_to_human=True) conversation = model( [ SystemMessage(content=system_message), HumanMessage(content=human_message), ] ) st.write(conversation)
[]
2024-01-10
Kiash254/QA-chatbot-with-Gemini-streamlit
blog.py
import streamlit as st from langchain.prompts import PromptTemplate from langchain_google_genai import ChatGoogleGenerativeAI from dotenv import load_dotenv import os import google.generativeai as genai from langchain.schema import HumanMessage # Load the environment variables from a .env file load_dotenv() os.getenv("GOOGLE_API_KEY") genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # Initialize the Google Generative AI model llm = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) # Function to get response from Gemini model def getGeminiResponse(input_text, no_words, blog_style): # Prompt Template template=""" Write a blog for {blog_style} job profile for a topic {input_text} within {no_words} words. """ prompt = template.format(blog_style=blog_style, input_text=input_text, no_words=no_words) # Generate the response from the Gemini model response = llm([HumanMessage(content=prompt)]) return response.content # Streamlit UI st.set_page_config(page_title="Generate Blogs", page_icon='🤖', layout='centered', initial_sidebar_state='collapsed') st.header("Generate Blogs 🤖") input_text = st.text_input("Enter the Blog Topic") # Creating two more columns for additional 2 fields col1, col2 = st.columns([5,5]) with col1: no_words = st.text_input('No of Words') with col2: blog_style = st.selectbox('Writing the blog for', ('Researchers', 'Data Scientist', 'Common People'), index=0) submit = st.button("Generate") # Final response if submit: st.write(getGeminiResponse(input_text, no_words, blog_style))
[ "\n Write a blog for PLACEHOLDER job profile for a topic PLACEHOLDER\n within PLACEHOLDER words.\n ", "\n Write a blog for {blog_style} job profile for a topic {input_text}\n within {no_words} words.\n " ]
2024-01-10
Kiash254/QA-chatbot-with-Gemini-streamlit
blog_langchain.py
import streamlit as st from langchain.prompts import PromptTemplate from langchain_google_genai import ChatGoogleGenerativeAI from dotenv import load_dotenv import os import google.generativeai as genai from langchain.schema import HumanMessage # Load the environment variables from a .env file load_dotenv() os.getenv("GOOGLE_API_KEY") genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # Initialize the Google Generative AI model llm = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) # Function to get response from Gemini model def getGeminiResponse(input_text, no_words, blog_style): # Prompt Template template=""" Write a blog for {blog_style} job profile for a topic {input_text} within {no_words} words. """ prompt = template.format(blog_style=blog_style, input_text=input_text, no_words=no_words) # Generate the response from the Gemini model response = llm([HumanMessage(content=prompt)]) return response.content # Streamlit UI st.set_page_config(page_title="Generate Blogs", page_icon='🤖', layout='centered', initial_sidebar_state='collapsed') st.header("Generate Blogs 🤖") input_text = st.text_input("Enter the Blog Topic") # Creating two more columns for additional 2 fields col1, col2 = st.columns([5,5]) with col1: no_words = st.text_input('No of Words') with col2: blog_style = st.selectbox('Writing the blog for', ('Researchers', 'Data Scientist', 'Common People'), index=0) submit = st.button("Generate") # Final response if submit: st.write(getGeminiResponse(input_text, no_words, blog_style))
[ "\n Write a blog for PLACEHOLDER job profile for a topic PLACEHOLDER\n within PLACEHOLDER words.\n ", "\n Write a blog for {blog_style} job profile for a topic {input_text}\n within {no_words} words.\n " ]
2024-01-10
Kiash254/QA-chatbot-with-Gemini-streamlit
face.py
from langchain_community.llms import HuggingFaceHub from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline from langchain_community.llms import HuggingFaceTextGenInference from langchain_community.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.document_loaders import AsyncChromiumLoader from langchain_community.document_transformers import BeautifulSoupTransformer # Load HTML loader = AsyncChromiumLoader(["http://www.w3schools.com/"]) html = loader.load() # Transform bs_transformer = BeautifulSoupTransformer() docs_transformed = bs_transformer.transform_documents( html, tags_to_extract=["p", "li", "div", "a"] ) docs_transformed[0].page_content[0:500]
[]
2024-01-10
bcsamrudh/LearnQuest
notes~views.py
from django.http import JsonResponse from django.shortcuts import get_object_or_404, render,redirect from .models import Notes from .forms import NotesForm from django.contrib import messages from django.urls import reverse from django.db.models import Q from django.conf import settings from django.contrib.auth.decorators import login_required from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.contrib.auth import get_user_model from django.views.decorators.cache import never_cache import datetime import google.generativeai as palm import cohere User_model = get_user_model() @never_cache def about(request): return render(request,"about.html") @login_required def generate_questions(request,topic,subject): palm.configure(api_key=settings.API_KEY) defaults = { 'model': 'models/text-bison-001', 'temperature': 0.7, 'candidate_count': 1, 'top_k': 40, 'top_p': 0.95, 'max_output_tokens': 1024, 'stop_sequences': [], 'safety_settings': [{"category":"HARM_CATEGORY_DEROGATORY","threshold":1},{"category":"HARM_CATEGORY_TOXICITY","threshold":1},{"category":"HARM_CATEGORY_VIOLENCE","threshold":2},{"category":"HARM_CATEGORY_SEXUAL","threshold":2},{"category":"HARM_CATEGORY_MEDICAL","threshold":2},{"category":"HARM_CATEGORY_DANGEROUS","threshold":2}], } prompt = prompt = f"""Please generate 10 related follow-up questions of medium difficulty and answers to this topic: {topic} of subject {subject}""" response = palm.generate_text( **defaults, prompt=prompt ) data = response.result context={"data":data,"topic":topic,"subject":subject} return render(request,'notes/questions_view.html',context) @login_required def upload_notes(request): if request.method=='POST': form=NotesForm(request.POST,request.FILES) if form.is_valid(): subject = form.cleaned_data.get('subject') title = form.cleaned_data.get('title') notesfile = form.cleaned_data.get('notesfile') university = form.cleaned_data.get('university') filetype = notesfile.name.split('.')[1].upper() description = form.cleaned_data.get('description') tags = form.cleaned_data.get('tags') user =User_model.objects.filter(username=request.user.username).first() user.consistency_score+=50 user.save() try: Notes.objects.create(title=title,user=user,subject=subject,notesfile=notesfile,filetype=filetype,description=description,tags=tags,university=university) return redirect(reverse('notes',kwargs={'search':0})) except: messages.error(request,"Error occured while uploading Notes, Please try again!") else: form = NotesForm(None) return render(request,'notes/upload_notes.html',{"form":form}) def my_notes(id): user = get_object_or_404(User_model,id=id) notes = Notes.objects.filter(user=user) return notes # @login_required # def update_notes(request, slug): # obj = get_object_or_404(Notes, slug=slug) # print(request.FILES) # form = NotesForm(request.POST or None,request.FILES or None,instance = obj) # if form.is_valid(): # form.save() # return redirect(reverse('note',kwargs={'slug':slug})) # return render(request,'notes/upload_notes.html',{"form":form}) @login_required def delete_notes(request,slug): notes = get_object_or_404(Notes,slug=slug) notes.delete() return redirect(reverse('notes',kwargs={"search":0})) def is_valid_queryparam(param): return param != '' and param is not None def filter(request): qs = Notes.objects.all() title_contains_query = request.POST.get('title_contains') user_query = request.POST.get('user') date_query = request.POST.get('date_query') subject = request.POST.get('subject') tags_query = request.POST.get('tags') if is_valid_queryparam(title_contains_query): qs = qs.filter(title__icontains=title_contains_query) if is_valid_queryparam(user_query): qs = qs.filter(Q(user__username__icontains=user_query)).distinct() if is_valid_queryparam(date_query): date = datetime.datetime.strptime(date_query, '%Y-%m-%d').date() qs = qs.filter(date_uploaded__year=date.year,date_uploaded__month=date.month,date_uploaded__day=date.day) if is_valid_queryparam(subject): qs = qs.filter(subject__icontains=subject) if is_valid_queryparam(tags_query): qs = qs.filter(tags__icontains=tags_query) return qs @login_required def notes(request,search): if search: notes=filter(request) else: notes=Notes.objects.all() p = Paginator(notes.order_by('-date_uploaded'), 5) page_number = request.POST.get('page') try: page_obj = p.get_page(page_number) except PageNotAnInteger: page_obj = p.page(1) except EmptyPage: page_obj = p.get_page(p.num_pages) context = {'page_obj': page_obj} return render(request, 'notes/view_notes.html', context) @login_required def note(request,slug): try: notes_display=get_object_or_404(Notes,slug=slug) if notes_display.filetype == "PDF": filetype = "PDF" else: filetype="None" except Notes.DoesNotExist: return render(request, '404.html') except : return render(request,'404.html') context={"note": notes_display,"current_user":request.user,"filetype":filetype} return render(request,'notes/note.html',context=context) def upvote(request,id): note_obj = get_object_or_404(Notes, id=id) if note_obj.upvotes.filter(id=request.user.id).exists(): note_obj.upvotes.remove(request.user) note_obj.save() text = True else: note_obj.upvotes.add(request.user) note_obj.save() text = False return JsonResponse({'total_upvotes': note_obj.total_upvotes,'text':text})
[ "Please generate 10 related follow-up questions of medium difficulty and answers to this topic: PLACEHOLDER of subject PLACEHOLDER" ]
2024-01-10
DrScotthew/Senior-Project
SoftwareDevelopmentFinalProject.py
from ast import Try, TryStar from cgitb import lookup from http.server import ThreadingHTTPServer import os from pickle import FALSE import string from unittest import skip from InventoryVersion1 import Inventory_Version_1 #import inventory management inventory_version_1.py import colorama #Colorama is a way to highlight text color in the output console from colorama import just_fix_windows_console #'Fixes' windows and forces colored text to work from colorama import init from colorama import Fore #ability for color change settings for objects...see 'settings' import json import traceback import random import StarWarsDataSets import SupernaturalDataSets import DemoDataSets import openai from openai import OpenAI #uses openai import config import time global isUsingOpenAI client = OpenAI( organization=openai.api_key, ) def random_generation_ask(): print("Would you like to use the OpenAI random generation? (see README for more info...)") #asks user if they want to use OpenAI random generation choice = input() global isUsingOpenAI if choice in ("yes", "Y", "y"): print("Do you have your own API key to use?") #asks user if they have their own API key to use choice2=input() if choice2 in ("yes", "Y", "y"): print("Please type in the API key you would like to use: ") #asks user to put in their API key to use isUsingOpenAI = True user_api_key = input() openai.api_key = user_api_key #sets api key to what user put in... new_game_screen() else: print("The game will use preconfigured data sets...") #will use the prechosen OpenAI key so user can use OpenAI random generation still... isUsingOpenAI = False new_game_screen() else: print("The game will use preconfigured data sets...") #uses the preconfigured data sets... isUsingOpenAI=False new_game_screen() random_generation_spn_weapon_names = [] #creates spn array elements for weapon names random_generation_starwars_weapon_names = [] #creates star wars array elements for weapon names random_generation_demo_weapon_names = [] #creates demo array elements for weapon names random_generation_spn_weapon_descriptions = [] #creates spn array elements for weapon descriptions...array index values will match weapon array index values each time as both are added at same time... random_generation_starwars_weapon_descriptions = [] #star wars weapon descriptions array random_generation_demo_weapon_descriptions = [] #demo weapon descriptions array def demo_openai_gen(): demo_prompt = ["give the name of a random weapon that is not listed here: {}".format(random_generation_demo_weapon_names) + "\n\n"] #will ask for generic weapons for demo mode...each weapon must be unique... response = openai.completions.create( model="text-davinci-003", #using davinci003 prompt=demo_prompt, #asks openai to give a weapon name from 'Supernatural' temperature=0.7, frequency_penalty=0, presence_penalty=0, max_tokens=10 ) demo_weapon = response.choices[0].text; random_generation_demo_weapon_names.append(demo_weapon) #adds weapon name to array... L = [demo_weapon] demo_file = open('random_weapons_demo.txt', 'w') #saves each weapon name into new .txt file demo_file.writelines(L) demo_file.close demo_file = open('random_weapons_demo.txt', 'r') demo_prompt2=["give a one sentence description of " + demo_weapon + "describing what it looks like and its function. Do not use the phrase '" + demo_weapon + "' in your description." +"\n\n"] #asks openai for description of demo weapon(s)... response = openai.completions.create( model="text-davinci-003", prompt=demo_prompt2, #asks openai to give a description from previously used name for demo weapon temperature=0.7, frequency_penalty=0, presence_penalty=0, max_tokens=50 ) demo_weapon_description = response.choices[0].text; random_generation_demo_weapon_descriptions.append(demo_weapon_description) #adds weapon description to array... final_weapon_description_save = open('random_weapons_demo_descriptions.txt', 'w') final_weapon_description_save.writelines(demo_weapon_description) final_weapon_description_save.close def supernatural_openai_gen(): #all random generation for supernatural supernatural_prompt = ["give a random weapon name from the tv show 'Supernatural' that is not listed here: {}".format(random_generation_spn_weapon_names) + "\n\n"] #asks openai to give one weapon name each time...this is to prevent errors when ai gives list of items and program is unable to accurately prepare to read txt file in different formats... #also asks for openai to only give a weapon name that is unique from weapon names already stored in array... response = openai.completions.create( model="text-davinci-003", #using davinci003 prompt=supernatural_prompt, #asks openai to give a weapon name from 'Supernatural' temperature=0.7, frequency_penalty=0, presence_penalty=0, max_tokens=10 ) supernatural_weapon = response.choices[0].text; random_generation_spn_weapon_names.append(supernatural_weapon) #adds weapon name to array... L = [supernatural_weapon] spn_file = open('random_weapons_supernatural.txt', 'w') #saves each weapon name into new .txt file spn_file.writelines(L) spn_file.close spn_file = open('random_weapons_supernatural.txt', 'r') supernatural_prompt2=["give a one sentence description of the weapon from 'Supernatural' called " + supernatural_weapon + "describing what it looks like and its function. Do not use the phrase '" + supernatural_weapon + "' in your description." +"\n\n"] #this will ask the openai to give a description for the weapon stored in supernatural_weapon variable without mentioning the weapon's name...this is to make the text in the game less redundant and awkward... #need to check each time if program has already given a description for that weapon...? no since it will be called each time weapon is created #will store descriptions in save file... #will access said save file when player wants to see weapon descriptions from inventory screen... #e.g. player opens inventory, selects weapon, program displays weapon description again for player before asking if thats the weapon they want to use... #program will know which description to give based on array index value...since program gives description at same time as weapon name, the index values will match each time... response = openai.completions.create( model="text-davinci-003", #using davinci003 prompt=supernatural_prompt2, #asks openai to give a description from previously used name from 'Supernatural' temperature=0.7, frequency_penalty=0, presence_penalty=0, max_tokens=50 ) supernatural_weapon_description = response.choices[0].text; random_generation_spn_weapon_descriptions.append(supernatural_weapon_description) #adds weapon description to array... final_weapon_description_save = open('random_weapons_supernatural_descriptions.txt', 'w') final_weapon_description_save.writelines(supernatural_weapon_description) final_weapon_description_save.close def starwars_openai_gen(): starwars_prompt = ["give a random weapon name from 'Star Wars' that is not listed here: {}".format(random_generation_starwars_weapon_names) + "\n\n"] response = openai.completions.create( model="text-davinci-003", #using davinci003 prompt=starwars_prompt, #asks openai to give a weapon name from 'Star Wars' temperature=0.7, frequency_penalty=0, presence_penalty=0, max_tokens=50 ) starwars_weapon = response.choices[0].text; random_generation_starwars_weapon_names.append(starwars_weapon) L1 = [starwars_weapon] starwars_file = open('random_weapons_starwars.txt', 'w') starwars_file.writelines(L1) starwars_file.close starwars_file = open('random_weapons_starwars.txt', 'r') starwars_prompt2=["give a one sentence description of the weapon from 'Supernatural' called " + starwars_weapon + "describing what it looks like and its function. Do not use the phrase '" + starwars_weapon + "' in your description." +"\n\n"] response = openai.completions.create( model="text-davinci-003", #using davinci003 prompt=starwars_prompt2, #asks openai to give a description from previously used name from 'Supernatural' temperature=0.7, frequency_penalty=0, presence_penalty=0, max_tokens=50 ) starwars_weapon_description = response.choices[0].text; random_generation_starwars_weapon_descriptions.append(starwars_weapon_description) #adds weapon description to array... final_weapon_description_save = open('random_weapons_supernatural_descriptions.txt', 'w') final_weapon_description_save.writelines(starwars_weapon_description) final_weapon_description_save.close def display_title_screen(): os.system("clear" if os.name == "posix" else "cls") # Clear the screen title = """ _______ _______ _________ _______ _______ ( ____ )( ___ )|\ /|\__ __/|\ /|( ____ )|\ /|( ____ \\ | ( )|| ( ) || ) ( | ) ( | ) ( || ( )|| ) ( || ( \/ | (____)|| | | || | | | | | | | | || (____)|| | | || (_____ | __)| | | |( ( ) ) | | ( ( ) )| __)| | | |(_____ ) | (\ ( | | | | \ \_/ / | | \ \_/ / | (\ ( | | | | ) | | ) \ \__| (___) | \ / ___) (___ \ / | ) \ \__| (___) |/\____) | |/ \__/(_______) \_/ \_______/ \_/ |/ \__/(_______)\_______) """ menu = """ 1. Start New Game 2. Load Saved Game 3. Settings 4. Exit Game """ print(title) print(menu) def display_new_game_screen(): #asks player if they want to enter a custom seed or use a pregenerated random seed for their new game os.system("clear" if os.name == "posix" else "cls") # Clear the screen open('random_weapons_supernatural.txt', 'w').close() #clears all data open('random_weapons_starwars.txt', 'w').close() #clears all data open('save.txt', 'w').close() seed_selection = """ Enter a custom seed. Alternatively, type 'random' for a random seed. Enter 'exit' to go back to the main menu. """ print(seed_selection) def display_settings_screen(): #displays all available color choices player can choose from before starting their game color_selection = """ Please choose a color for highlighted items. (*Note: The default highlight color for items is Yellow. All enemies will have a Red highlight color regardless of choice for object color.). 1. Blue 2. Yellow 3. Purple 4. Red 5. Green Enter 'exit' to go back to the main menu. """ print(color_selection) def data_starwars(): #accesses data sets for star wars global place global weapon global weapon_name global weapon_description global trash_can global trash_can_name global piece_of_paper global piece_of_paper_name global enemy global enemy_name if isUsingOpenAI: starwars_openai_gen() #performs openai generation for weapon names/descriptions weapon_name = random.choice(random_generation_starwars_weapon_names) #will access from randomly generated lists weapon_description = random.choice(random_generation_starwars_weapon_descriptions) place = random.choice(StarWarsDataSets.woods) #randomly chooses values from specified list trash_can_name = random.choice(StarWarsDataSets.trash_can) piece_of_paper_name = random.choice(StarWarsDataSets.piece_of_paper) enemy_name = random.choice(StarWarsDataSets.enemy) else: weapon_name = random.choice(StarWarsDataSets.weapons) #will access from predefined data sets weapon_description = "test description of star wars weapon..." place = random.choice(StarWarsDataSets.woods) #randomly chooses values from specified list trash_can_name = random.choice(StarWarsDataSets.trash_can) piece_of_paper_name = random.choice(StarWarsDataSets.piece_of_paper) enemy_name = random.choice(StarWarsDataSets.enemy) try: weapon = color_choice + weapon_name + Fore.RESET trash_can = color_choice + trash_can_name + Fore.RESET piece_of_paper = color_choice + piece_of_paper_name + Fore.RESET enemy = Fore.RED + enemy_name + Fore.RESET except: weapon = Fore.YELLOW + weapon_name + Fore.RESET trash_can = Fore.YELLOW + trash_can_name + Fore.RESET piece_of_paper = Fore.YELLOW + piece_of_paper_name + Fore.RESET enemy = Fore.RED + enemy_name + Fore.RESET def data_supernatural(): #accesses data sets for supernatural global place global weapon global weapon_name global weapon_description global trash_can global trash_can_name global piece_of_paper global piece_of_paper_name global enemy global enemy_name if isUsingOpenAI: supernatural_openai_gen() #performs openai generation for weapon names/descriptions weapon_name = random.choice(random_generation_spn_weapon_names) #will access from randomly generated lists weapon_description = random.choice(random_generation_spn_weapon_descriptions) place = random.choice(SupernaturalDataSets.woods) #randomly chooses values from specified list trash_can_name = random.choice(SupernaturalDataSets.trash_can) piece_of_paper_name = random.choice(SupernaturalDataSets.piece_of_paper) enemy_name = random.choice(SupernaturalDataSets.enemy) else: weapon_name = random.choice(SupernaturalDataSets.weapons) #will access from predefined data sets weapon_description = "test description of supernatural weapon..." place = random.choice(SupernaturalDataSets.woods) #randomly chooses values from specified list trash_can_name = random.choice(SupernaturalDataSets.trash_can) piece_of_paper_name = random.choice(SupernaturalDataSets.piece_of_paper) enemy_name = random.choice(SupernaturalDataSets.enemy) try: weapon = color_choice + weapon_name + Fore.RESET trash_can = color_choice + trash_can_name + Fore.RESET piece_of_paper = color_choice + piece_of_paper_name + Fore.RESET enemy = Fore.RED + enemy_name + Fore.RESET except: weapon = Fore.YELLOW + weapon_name + Fore.RESET trash_can = Fore.YELLOW + trash_can_name + Fore.RESET piece_of_paper = Fore.YELLOW + piece_of_paper_name + Fore.RESET enemy = Fore.RED + enemy_name + Fore.RESET def data_demo(): #accesses data set for traditional demo global place global weapon global weapon_name global weapon_description global trash_can global trash_can_name global piece_of_paper global piece_of_paper_name global enemy global enemy_name if isUsingOpenAI: demo_openai_gen() #performs openai generation for weapon names/descriptions weapon_name = random.choice(random_generation_demo_weapon_names) #will access from randomly generated lists weapon_description = random.choice(random_generation_demo_weapon_descriptions) place = random.choice(DemoDataSets.woods) #randomly chooses values from specified list trash_can_name = random.choice(DemoDataSets.trash_can) piece_of_paper_name = random.choice(DemoDataSets.piece_of_paper) enemy_name = random.choice(DemoDataSets.enemy) else: weapon_name = random.choice(DemoDataSets.weapons) #will access from predefined data sets weapon_description = "test description of demo weapon..." place = random.choice(DemoDataSets.woods) #randomly chooses values from specified list trash_can_name = random.choice(DemoDataSets.trash_can) piece_of_paper_name = random.choice(DemoDataSets.piece_of_paper) enemy_name = random.choice(DemoDataSets.enemy) try: weapon = color_choice + weapon_name + Fore.RESET trash_can = color_choice + trash_can_name + Fore.RESET piece_of_paper = color_choice + piece_of_paper_name + Fore.RESET enemy = Fore.RED + enemy_name + Fore.RESET except: weapon = Fore.YELLOW + weapon_name + Fore.RESET trash_can = Fore.YELLOW + trash_can_name + Fore.RESET piece_of_paper = Fore.YELLOW + piece_of_paper_name + Fore.RESET enemy = Fore.RED + enemy_name + Fore.RESET def settings_screen(): #uses ASCI codes to change colors... display_settings_screen() global color_choice for color_choice in [Fore.BLUE, Fore.YELLOW, Fore.MAGENTA, Fore.RED, Fore.GREEN]: while True: choice = input("Make your choice: ") if choice == '1': data.update({'highlight_color': Fore.BLUE}) print(Fore.BLUE + 'Highlight color changed to Blue') color_choice = Fore.BLUE print(Fore.RESET) #resets color of text in console back to white...object color is set, however elif choice == '2': data.update({'highlight_color': Fore.YELLOW}) print(Fore.YELLOW + 'Highlight color changed to Yellow') color_choice = Fore.YELLOW print(Fore.RESET) elif choice == '3': data.update({'highlight_color': Fore.MAGENTA}) print(Fore.MAGENTA + 'Highlight color changed to Purple') color_choice = Fore.MAGENTA print(Fore.RESET) elif choice == '4': data.update({'highlight_color': Fore.RED}) print(Fore.RED + 'Highlight color changed to Red') color_choice = Fore.RED print(Fore.RESET) elif choice == '5': data.update({'highlight_color': Fore.GREEN}) print(Fore.GREEN + 'Highlight color changed to Green') color_choice = Fore.GREEN print(Fore.RESET) elif choice == 'go back': main() else: print("Invalid input. Please choose a highlight color from the list.") color_choice = [Fore.BLUE, Fore.YELLOW, Fore.MAGENTA , Fore.RED, Fore.GREEN] setting = [DemoDataSets.woods, StarWarsDataSets.woods, SupernaturalDataSets.woods] data = { 'checkpoint': 0, 'complete inventory': Inventory_Version_1.Inventory, 'weapons': Inventory_Version_1.InventoryWeapons, 'armor': Inventory_Version_1.InventoryArmor, 'ammo': Inventory_Version_1.InventoryAmmo, 'health items': Inventory_Version_1.InventoryHealthItems, 'currently equipped': Inventory_Version_1.InventoryCurrentlyEquipped, 'money': Inventory_Version_1.InventoryMoney, 'highlight_color': Fore.YELLOW, 'setting': DemoDataSets.woods #this allows for the player to load their game from a save file } def main(): #automatically goes to title screen from main() function main_menu() choice = input() if choice == 'exit game': print("Saving the game...") checkpoints = [start, startpath, startpath_object, startpath_continue, crossroads, crossroads_left, crossroads_left1, crossroads_left2, crossroads_left3] def load_game(): global color_choice color_choice = [Fore.BLUE, Fore.YELLOW, Fore.MAGENTA, Fore.RED, Fore.GREEN] checkpoints = [start, startpath, startpath_object, startpath_continue, crossroads, crossroads_left, crossroads_left1, crossroads_left2, crossroads_left3] #checkpoints are defined as places in the story or 'timeline' for the player to access... #this allows for the game to always know where the player is in the story try: with open('save.txt') as save_file: data = json.load(save_file) #gets data from save file... Inventory_Version_1.Inventory = data.get("inventory") #checks what items player had in save file Inventory_Version_1.InventoryWeapons = data.get("weapons") Inventory_Version_1.InventoryArmor = data.get("armor") Inventory_Version_1.InventoryAmmo = data.get("ammo") Inventory_Version_1.InventoryHealthItems = data.get("health items") Inventory_Version_1.InventoryCurrentlyEquipped = data.get("currently equipped") Inventory_Version_1.InventoryMoney = data.get("money") color_choice = data.get("highlight_color") saved_setting = data.get("setting") if saved_setting == 'supernatural': data_supernatural() elif saved_setting == 'star wars': data_starwars() else: data_demo() saved_checkpoint = data.get("checkpoint") #checks where player was when they exited the game last checkpoints[saved_checkpoint]() #puts player back at same 'checkpoint' they were in last except: start() def main_menu(): #the title screen display_title_screen() while True: choice = input("Make Your Choice (1/2/3/4): ") if choice == '1': # Allows player to either a) enter a custom seed or b) use a pregenerated random seed in order to create the world and start the game random_generation_ask() #will ask player if they want to use the OpenAI random generation or preconfigured data sets... elif choice == '2': # Loads last saved game print("Loading a saved game...") load_game() elif choice == '3': # Allows player to change different settings (includes: highlight color) settings_screen() elif choice == '4': # Exits the game print("Exiting the game...") else: # Error control... print("Invalid choice. Please select a valid option (1/2/3/4).") #def random_generation_ask(): # print("Would you like to use the OpenAI random generation?") # choice = input() # if choice in ("yes", "Y", "y"): # print("Do you have your own API key to use?") # choice2=input() # if choice2 in ("yes", "Y", "y"): # print("Please type in the API key you would like to use: ") # isUsingOpenAI = True # open_api_key = input() #sets api key to what user put in... # new_game_screen() # else: # openai.api_key = config.api_key #sets api key to example api key... # isUsingOpenAI = True # new_game_screen() # else: # print("The game will use preconfigured data sets...") # new_game_screen() def new_game_screen(): display_new_game_screen() while True: choice = input() if choice == 'random': #for demo playthrough #Will generate a random seed for the world the player will be in...however, this is currently for the demo print("Generating random seed...") print("Loading...") Inventory_Version_1.isDemo=True data.update({'setting': 'demo'}) #updates saved selection of data set used Inventory_Version_1.Inventory.clear #clears inventory data for new game data_demo() #will assign demo data for wold generation start() #goes to start function to start game elif choice == 'star wars': print("Generating a Star Wars themed world...") print("Loading...") Inventory_Version_1.isStarWars=True data.update({'setting': 'star wars'}) Inventory_Version_1.Inventory.clear data_starwars() #will assign star wars data sets for wold generation start() elif choice == 'supernatural': print("Generating a Supernatural themed world...") print("Loading...") Inventory_Version_1.isSupernatural=True data.update({'setting': 'supernatural'}) Inventory_Version_1.Inventory.clear data_supernatural() #will assign supernatural data sets for world generation start() elif choice == 'exit': main_menu() else: #incomplete...will finish later print("Generating world based on seed given...") print("Loading...") flowchart = [] #the flowchart for the player's choices in the game... def weapon_inventory_descriptions(): stack = traceback.extract_stack() filename, codeline, funcName, text = stack[-2] checkpoints = {'start': start, 'startpath':startpath, "startpath_object":startpath_object, "startpath_continue":startpath_continue, "crossroads":crossroads, "crossroads_left":crossroads_left, "crossroads_left1":crossroads_left1, "crossroads_left2":crossroads_left2} last_checkpoint = flowchart[-1] #gets last checkpoint in player's flowchart if not Inventory_Version_1.InventoryWeapons: #checks if player has weapons...if not, tells them they don't have any weapons and takes them back... checkpoints[last_checkpoint]() #returns player to previous checkpoint... else: print("Which weapon do you want to look at?") while True: choice2 = input() if choice2=="{}".format(Inventory_Version_1.weapon_description_index) and Inventory_Version_1.isStarWars: #and Inventory_Version_1.isStarWars print("Description: ") #how to make program look at descriptions for weapon...how to make it know if using spn data sets or star wars data sets... #print(random_generation_starwars_weapon_descriptions[Inventory_Version_1.weapon_description_index]) print(weapon_description) checkpoints[last_checkpoint]() #returns player to last checkpoint... elif choice2=="{}".format(Inventory_Version_1.weapon_description_index) and Inventory_Version_1.isSupernatural: print("Description: ") #how to make program look at descriptions for weapon...how to make it know if using spn data sets or star wars data sets... print(random_generation_spn_weapon_descriptions[Inventory_Version_1.weapon_description_index]) checkpoints[last_checkpoint]() #returns player to last checkpoint... elif choice2=="{}".format(Inventory_Version_1.weapon_description_index) and Inventory_Version_1.isDemo: print("Description: ") #how to make program look at descriptions for weapon...how to make it know if using spn data sets or star wars data sets... print(random_generation_demo_weapon_descriptions[Inventory_Version_1.weapon_description_index]) checkpoints[last_checkpoint]() #returns player to last checkpoint... elif choice2=="exit": checkpoints[last_checkpoint]() else: print("I don't understand that statement. Please enter the number associated with the weapon you want to look at.") def start(): print(""" You are standing in the middle of the """ + place + """ at night. There is a full moon overhead casting a faint glow on the ground in front of you. There are trees surrounding you in every direction and span far into the night. However, there seems to be traces of a path to your right. It doesn't look to have been walked on in a long time. You suddenly remember why you are here. The people of """ + place + """ have requested your help in defeating a creature that has terrorized them for many years. Its last known location was somewhere in these woods...""") print("") flowchart.append("start") while True: #Loop continuously choice = input() #Get the input if choice in ("go on path", "go along path"): #Correct responses... startpath() #...break the loop elif choice == 'exit game': data.update({'checkpoint': 0}) with open('save.txt', 'w') as save_file: json.dump(data,save_file) print("Saving the game...") elif choice == 'inventory': Inventory_Version_1.main1() #Will access Inventory_Version_1 to show inventory options weapon_inventory_descriptions() else: print('I do not understand that statement.') #error control def startpath(): print("") print(""" You walk along the path, careful to not trip on any rocks or limbs along the way. You don't get very far before seeing an object lying on the ground, shining from the moonlight filtering through the trees. You can't make out exactly what it is, though.""") flowchart.append("startpath") print("") while True: choice = input() if choice in ("pick up object", "pick up the object", "look at object", "look at the object"): startpath_object() elif choice == 'exit game': data.update({'checkpoint': 1}) with open('save.txt', 'w') as save_file: json.dump(data,save_file) print("Saving the game...") elif choice == 'inventory': Inventory_Version_1.main1() weapon_inventory_descriptions() else: print('I do not understand that statement.') def startpath_object(): print("") print(""" You pick up the object and notice that it is a """ + weapon) print(weapon_description) print("") flowchart.append("startpath_object") global Inventory while True: choice = input() if choice in ("take " + weapon_name , "take weapon", "take the weapon"): #allows player to specifically type in weapon name or just 'weapon' print(""" You take the """ + weapon + """ and hold it tightly in your hand.""") #ANSI codes implemented...change to yellow then back to white Inventory_Version_1.addToInventory(weapon_name) #this adds the item to overall inventory list Inventory_Version_1.addToInventoryWeapons(weapon_name) #adds item to inventory under 'Weapons' list #NOTE: this is currently hardcoded...to effectively be randomly generated, this will need to change so that there is a list of preconceived items associated with their respective types #e.g. if the player picked up a health item, one would need to code 'addToInventoryHealthItems'...would be better if program automatically assigned it #will work on this soon data.update({'complete inventory': Inventory_Version_1.Inventory}) data.update({'weapons': Inventory_Version_1.InventoryWeapons}) startpath_continue() elif choice in ("drop " + weapon_name, "leave " + weapon_name): print(" You put the " + weapon + " back on the ground.") startpath_continue() elif choice in ("go down path", "continue", "go along path", "continue down path", "continue on path"): startpath_continue() elif choice == 'exit game': data.update({'checkpoint': 2}) with open('save.txt', 'w') as save_file: json.dump(data,save_file) print("Saving the game...") elif choice == 'inventory': Inventory_Version_1.main1() weapon_inventory_descriptions() else: print("I don't understand that statement.") def startpath_continue(): print(""" You look around and see that the path still continues in front of you. No other path is in sight and trees surround you. The moonlight still filters through shining a faint light on the path ahead.""") print("") flowchart.append("startpath_continue") global Inventory while True: choice = input() if choice in ("go down path", "continue", "go along path", "continue down path", "continue on path"): crossroads() elif choice == 'exit game': data.update({'checkpoint': 3}) with open('save.txt', 'w') as save_file: json.dump(data,save_file) print("Saving the game...") elif choice == 'inventory': Inventory_Version_1.main1() weapon_inventory_descriptions() else: print('I do not understand that statement.') def crossroads(): print("") print(""" You continue to go along the path and eventually reach the center of a crossroads. There are 3 paths in front of you: one to the left, one to the right, and one that seems to continue from the path you are on currently. The middle section of the crossroads is a wide circle with a """ + trash_can +""" sitting in the center. There is a lamp post lighting the center of the crossroads.""") print("") flowchart.append("crossroads") while True: choice = input() if choice in ("go to " + trash_can_name, "go to trash can"): print(""" You are now standing right in front of the """ + trash_can) elif choice in ("look inside " + trash_can_name, "look inside the " + trash_can_name): print(" You look inside the " + trash_can + " and see there is a " + piece_of_paper + " at the bottom") elif choice in ("get " + piece_of_paper_name, "get the " + piece_of_paper_name, "pick up " + piece_of_paper_name, "pick up the " + piece_of_paper_name): print(""" You pick up the """ + piece_of_paper + """ and read it. """ + """It reads: Welcome to Rovivrus! In this game, you will find there are many paths to go on. There is no right or wrong way to play this game. While one path might lead to something incredible, another could lead to your demise. Be cautious. There are several others in this world, but not all will be friendly. Be prepared for anything. """) elif choice in ("go on left path", "go down left path"): crossroads_left() #demo 1 playthrough...code others in phase 2 elif choice in ("go on right path", "go down right path"): crossroads_right() elif choice in ("go forward", "go down same path", "go on same path", "continue on same path", "continue down same path"): crossroads_forward() elif choice == 'exit game': data.update({'checkpoint': 4}) with open('save.txt', 'w') as save_file: json.dump(data,save_file) print("Saving the game...") elif choice == 'inventory': Inventory_Version_1.main1() else: print("I don't understand that statement.") def crossroads_left(): print("") print(""" You go down the path to your left, leaving the crossroads behind you. Eventually, the light from the crossroads becomes faint. The path in front of you is almost invisible from the pitch black darkness all around. Suddenly, a growling sound can be heard from in front of you, though you cannot see what is making the sound.""") print("") flowchart.append("crossroads_left") while True: choice = input() if choice in ("keep going forward", "go forward", "continue forward", "keep going"): crossroads_left1() elif choice in ("turn around", "turn back"): print(""" You are turned around with the growling still menacingly continuing behind you.""") elif choice in ("go back to crossroads", "go to crossroads", "return to crossroads"): print(""" You turn around and go back to the crossroads that you can barely make out in the dark from walking so far from it. The growling continues behind you, but it eventually becomes faint. Soon you are back at the crossroads.""") crossroads() elif choice in ("fight", "attack", "kill"): preattack_inventory_check() elif choice == 'exit game': data.update({'checkpoint': 5}) with open('save.txt', 'w') as save_file: json.dump(data,save_file) print("Saving the game...") elif choice == 'inventory': Inventory_Version_1.main1() else: print("I don't understand that statement.") def crossroads_left1(): print("") print(""" You slowly move forward towards the growling which has gotten significantly louder and more menacing now. After a few steps, you can start to make out what seems to be a """ + enemy + """. A pair of glowing eyes are faint, but seem to be staring right into your soul. The creature's growling starts to hurt your ears as it increases in volume.""") print("") flowchart.append("crossroads_left1") while True: choice = input() if choice in ("keep going forward", "go forward", "continue forward", "keep going"): crossroads_left2() elif choice in ("turn around", "turn back"): print(""" You are turned around with the growling still menacingly continuing behind you.""") elif choice in ("go back to crossroads", "go to crossroads", "return to crossroads"): print(""" You turn around and go back to the crossroads that you can barely make out in the dark from walking so far from it. The growling continues behind you, but it eventually becomes faint. Soon you are back at the crossroads.""") crossroads() elif choice in ("attack", "fight", "attack the " + enemy_name, "fight the " + enemy_name): attack_wolf() elif choice == 'exit game': data.update({'checkpoint': 6}) with open('save.txt', 'w') as save_file: json.dump(data,save_file) print("Saving the game...") elif choice == 'inventory': Inventory_Version_1.main1() else: print("I don't understand that statement.") def crossroads_left2(): print("") print(""" You continue to move forward towards the """ + enemy + """ which is still growling. You only get three steps further before the creature suddenly lunges forward at you. Fangs sink down into your right arm as the """ + enemy + """ bites down hard. The pain causes you to scream out in pain. Blood is now all over your arm and falling to the forest floor. The """ + enemy + """ continues to hold his grip on your arm and shows no signs of letting go.""") print("") flowchart.append("crossroads_left2") while True: choice = input() if choice in ("attack", "fight", "attack the " + enemy_name, "fight the " + enemy_name): attack_wolf() elif choice in ("run away", "run", "leave"): print(""" You try to get away from the """ + enemy + ", but it is futile. It continues to bite down even harder than before. Not a few moments later, your vision starts to deteriorate and you fall into a dark abyss of nothingness...") death() elif choice == 'exit game': data.update({'checkpoint': 7}) with open('save.txt', 'w') as save_file: json.dump(data,save_file) print("Saving the game...") elif choice == 'inventory': Inventory_Version_1.main1() else: print("I don't understand that statement.") def death(): print("") open('save.txt', 'w').close() #clears all saved data from save file upon death of player print("You died...") print("Would you like to return to the main menu? If not, the game will close.") print("") while True: choice = input() if choice in ("yes", "Y", "Yes", "y"): main_menu() #allows player to restart game again elif choice in ("no", "N", "No", "n"): exit() #closes game completely else: print("I don't understand that statement.") def preattack_inventory_check(): #checks if the player has any weapons available to attack with...if so, then the function continues... while True: if Inventory_Version_1.InventoryWeapons == []: print("You have no weapons to attack with. ") stack = traceback.extract_stack() filename, codeline, funcName, text = stack[-2] #print(funcName) checkpoints = [start, startpath, startpath_object, startpath_continue, crossroads, crossroads_left, crossroads_left1, crossroads_left2] #checkpoints = ["start", "startpath", "startpath_object", "startpath_continue", "crossroads", "crossroads_left", "crossroads_left1", "crossroads_left2"] last_checkpoint = flowchart[-1] #gets last checkpoint in player's flowchart print(last_checkpoint) #methods = {last_checkpoint: start or startpath or crossroads_left} #method_name = 'start' # set by the command line options checkpoints[last_checkpoint]() #automatically sends player back to checkpoint... if funcName in checkpoints: #compares checkpoint name to function names checkpoints[last_checkpoint]() #automatically sends player back to checkpoint... else: raise Exception("Method %s not implemented" % last_checkpoint) else: attack_wolf() def attack_wolf(): print(""" What do you want to fight with?""") #allows player to choose a weapon to fight with print(""" Current weapons avaiable to use:""") #retrieves avaiable weapons from inventory player currently has Inventory_Version_1.showWeapons() flowchart.append("attack_wolf") while True: choice = input() if choice in Inventory_Version_1.InventoryWeapons: #read player input and match string value to inventory weapons available print(""" You use the """ + choice + """ to attack the """ + enemy + """ and cause a deep gash on its right side. Shrieking in pain and full of rage, it lunges towards you with viciousness.""") attack_wolf2() else: print("I don't understand that statement.") def attack_wolf2(): print(" Do you want to fight or flee?") while True: choice = input() if choice in ("fight"): print(""" You attack the """ + enemy + """ again, this time using all your strength to cause a devastating blow, knocking the """ + enemy + """ to the ground. It attempts to get up to fight again, but you finally finish it off.""") win() elif choice in ("flee"): print(""" You try to run away from the """ + enemy + """ and you are almost to the end of the path where the crossroads begins when a sudden force knocks you down. You try to get back up, but the """ + enemy + """has you pinned down. Pain rushes through your body as it digs its claws into you. You are completely helpless...""") death() else: print("I don't understand that statement.") def win(): print("") print(""" Congratulations! You have fought the """ + enemy + " and lived to tell the tale. Because of your actions, the people of " + place + " can now live in peace.") def crossroads_left3(): print("yay") if __name__ == "__main__": main() checkpoints = [start, startpath, startpath_object, startpath_continue, crossroads, crossroads_left, crossroads_left1, crossroads_left2, crossroads_left3] def load_game(): try: saved_checkpoint = int(open("save.txt").read()) checkpoints[saved_checkpoint]() except FileNotFoundError: start()
[ "[\"give a random weapon name from 'Star Wars' that is not listed here: PLACEHOLDER\\n\\n\"]", "['give the name of a random weapon that is not listed here: PLACEHOLDER\\n\\n']", "[\"give a random weapon name from the tv show 'Supernatural' that is not listed here: PLACEHOLDER\\n\\n\"]", "[\"give a one sentence description of PLACEHOLDERdescribing what it looks like and its function. Do not use the phrase 'PLACEHOLDER' in your description.\\n\\n\"]", "[\"give a one sentence description of the weapon from 'Supernatural' called PLACEHOLDERdescribing what it looks like and its function. Do not use the phrase 'PLACEHOLDER' in your description.\\n\\n\"]" ]
2024-01-10
shivanandmn/quiz_me_on
quizzes~schematic_prompt.py
from langchain.output_parsers import ResponseSchema from langchain.output_parsers import StructuredOutputParser from pydantic import BaseModel from langchain.output_parsers.format_instructions import PYDANTIC_FORMAT_INSTRUCTIONS from langchain.output_parsers.json import parse_json_markdown line_template = '\t"{name}": {type} // {description}' class ResponseSchema(BaseModel): name: str description: str type: str = "string" def _get_sub_string(schema: ResponseSchema) -> str: return line_template.format( name=schema.name, description=schema.description, type=schema.type ) class StructuredDictOutputParser(StructuredOutputParser): response_schemas: list[ResponseSchema] def get_format_instructions(self) -> str: schema_str = '{"response":[ ' + "\n".join( [_get_sub_string(schema) for schema in self.response_schemas] )+'],}' return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str) def parse(self, text: str): return parse_json_markdown(text)["response"] @property def _type(self) -> str: return "structured_dict" def get_format_parser(): question_text_schema = ResponseSchema(name="question_text", description="Question text") options_schema = ResponseSchema(name="options", description=" Options that are associated to questions", type="list[str]") correct_option_idx_schema = ResponseSchema(name="correct_option_idx", description="Correct option index starting from 0", type="int") explanation_schema = ResponseSchema(name="explanation", description="Some explanation related to the quiz") response_schemas = [question_text_schema, options_schema, correct_option_idx_schema, explanation_schema] output_parser = StructuredDictOutputParser.from_response_schemas( response_schemas) return output_parser prompt_template = """ Generate as many questions as possible for Multiple choice question quizzes for {topic}, be pricise and factual. Make sure that the following informations are generated. Options should be clear and should have misconceptual options to confuse student. One option should be correct in the options. question_text: Question text here, character limit is strictly less than 255. options: Get multiple options here and output them as a comma separated Python list. Each option must of less than 100 characters. correct_option_idx: Get the index of the options which is correct. Index starts from zero and output them as python integer. explanation: character limit is strictly less than 190. Explain or give factual information about the quiz. {format_instructions} """
[ "\t\"{name}\": {type} // {description}", "\nGenerate as many questions as possible for Multiple choice question quizzes for {topic}, be pricise and factual.\nMake sure that the following informations are generated. Options should be clear and should have misconceptual options to confuse student.\nOne option should be correct in the options.\n\nquestion_text: Question text here, character limit is strictly less than 255.\n\noptions: Get multiple options here and output them as a comma separated Python list. Each option must of less than 100 characters.\n\ncorrect_option_idx: Get the index of the options which is correct. Index starts from zero and output them as python integer.\n\nexplanation: character limit is strictly less than 190. Explain or give factual information about the quiz.\n\n{format_instructions}\n" ]
2024-01-10
shivanandmn/quiz_me_on
query_master~query_master.py
from pathlib import Path from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import DocArrayInMemorySearch from langchain.chains import ConversationalRetrievalChain from langchain.chat_models.openai import ChatOpenAI from langchain.memory import ConversationBufferMemory from get_parms import openai_key import openai openai.api_key = openai_key() def load_file(file:Path): if "pdf" in file: loader = PyPDFLoader(file) documents = loader.load() else: raise NotImplementedError return documents def get_retriever(documents, embd_type:str="openai", search_type="similarity", search_kwargs=None): # define embedding if embd_type == "openai": embeddings = OpenAIEmbeddings() else: raise NotImplementedError # create vector database from data db = DocArrayInMemorySearch.from_documents(documents, embeddings) # define retriever retriever = db.as_retriever(search_type=search_type, search_kwargs=search_kwargs) return retriever def text_splits(documents): # split documents text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150) docs = text_splitter.split_documents(documents) return docs def load_query_db(file:Path, chain_type, k): # load documents documents = load_file(file) documents = text_splits(documents) retriever = get_retriever(documents, embd_type="openai", search_type="similarity", search_kwargs={"k":k}) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) # create a chatbot chain. Memory is managed externally. qa_chain = ConversationalRetrievalChain.from_llm( llm=ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0), chain_type=chain_type, retriever=retriever, memory=memory ) return qa_chain if __name__ == "__main__": file = "query_master/docs/MachineLearning-Lecture01.pdf" qa_chain = load_query_db(file, chain_type="stuff", k=4) questions = "who are TA in this lecture?" results = qa_chain({"question":questions}) print(results["answer"])
[]
2024-01-10
Rukiren/AQUA_INSIGHT
import_file~command.py
import os import requests import openai # 設定 OpenAI API 的金鑰 OPENAI_API_KEY = "//Your open api key//" # 初始化 OpenAI API openai.api_key = OPENAI_API_KEY def gpt35(role, q): """ gpt-3.5-turbo role: 設定角色 q: 輸入的問題 """ response = openai.ChatCompletion.create( model="gpt-3.5-turbo", temperature=0.7, messages=[ {"role": "system", "content":role}, # 設定角色 {"role": "user", "content": q} ]) bot_response = response['choices'][0]['message']['content'] return bot_response def gpt4(role, q): """ gpt-4 role: 設定角色 q: 輸入的問題 """ response = openai.ChatCompletion.create( model="gpt-4", temperature=0.7, messages=[ {"role": "system", "content":role}, # 設定角色 {"role": "user", "content": q} ]) bot_response = response['choices'][0]['message']['content'] return bot_response
[]
2024-01-10
blockchain-Bitcion/ChatGPT-2
src~revChatGPT~V1.py
""" Standard ChatGPT """ import json import uuid from os import environ from os import getenv from os.path import exists import requests from OpenAIAuth import Authenticator from OpenAIAuth import Error as AuthError BASE_URL = environ.get("CHATGPT_BASE_URL") or "https://chatgpt.duti.tech/" class Error(Exception): """Base class for exceptions in this module.""" source: str message: str code: int class Chatbot: """ Chatbot class for ChatGPT """ def __init__( self, config, conversation_id=None, parent_id=None, ) -> None: self.config = config self.session = requests.Session() if "proxy" in config: if isinstance(config["proxy"], str) is False: raise Exception("Proxy must be a string!") proxies = { "http": config["proxy"], "https": config["proxy"], } self.session.proxies.update(proxies) if "verbose" in config: if not isinstance(config["verbose"], bool): raise Exception("Verbose must be a boolean!") self.verbose = config["verbose"] else: self.verbose = False self.conversation_id = conversation_id self.parent_id = parent_id self.conversation_mapping = {} self.conversation_id_prev_queue = [] self.parent_id_prev_queue = [] if "email" in config and "password" in config: pass elif "access_token" in config: self.__refresh_headers(config["access_token"]) elif "session_token" in config: pass else: raise Exception("No login details provided!") if "access_token" not in config: try: self.__login() except AuthError as error: raise error def __refresh_headers(self, access_token): self.session.headers.clear() self.session.headers.update( { "Accept": "text/event-stream", "Authorization": f"Bearer {access_token}", "Content-Type": "application/json", "X-Openai-Assistant-App-Id": "", "Connection": "close", "Accept-Language": "en-US,en;q=0.9", "Referer": "https://chat.openai.com/chat", }, ) def __login(self): if ( "email" not in self.config or "password" not in self.config ) and "session_token" not in self.config: raise Exception("No login details provided!") auth = Authenticator( email_address=self.config.get("email"), password=self.config.get("password"), proxy=self.config.get("proxy"), ) if self.config.get("session_token"): auth.session_token = self.config["session_token"] auth.get_access_token() if auth.access_token is None: del self.config["session_token"] self.__login() return else: auth.begin() self.config["session_token"] = auth.session_token auth.get_access_token() self.__refresh_headers(auth.access_token) def ask( self, prompt, conversation_id=None, parent_id=None, timeout=360, # gen_title=True, ): """ Ask a question to the chatbot :param prompt: String :param conversation_id: UUID :param parent_id: UUID :param gen_title: Boolean """ if parent_id is not None and conversation_id is None: error = Error() error.source = "User" error.message = "conversation_id must be set once parent_id is set" error.code = -1 raise error # user-specified covid and parid, check skipped to avoid rate limit if ( conversation_id is not None and conversation_id != self.conversation_id ): # Update to new conversations self.parent_id = None # Resetting parent_id conversation_id = conversation_id or self.conversation_id parent_id = parent_id or self.parent_id if conversation_id is None and parent_id is None: # new conversation parent_id = str(uuid.uuid4()) if conversation_id is not None and parent_id is None: if conversation_id not in self.conversation_mapping: self.__map_conversations() parent_id = self.conversation_mapping[conversation_id] data = { "action": "next", "messages": [ { "id": str(uuid.uuid4()), "role": "user", "content": {"content_type": "text", "parts": [prompt]}, }, ], "conversation_id": conversation_id, "parent_message_id": parent_id, "model": "text-davinci-002-render-sha" if not self.config.get("paid") else "text-davinci-002-render-paid", } # new_conv = data["conversation_id"] is None self.conversation_id_prev_queue.append( data["conversation_id"], ) # for rollback self.parent_id_prev_queue.append(data["parent_message_id"]) response = self.session.post( url=BASE_URL + "api/conversation", data=json.dumps(data), timeout=timeout, stream=True, ) self.__check_response(response) for line in response.iter_lines(): line = str(line)[2:-1] if line == "Internal Server Error": raise Exception("Error: " + str(line)) if line == "" or line is None: continue if "data: " in line: line = line[6:] if line == "[DONE]": break # Replace accidentally escaped double quotes line = line.replace('\\"', '"') line = line.replace("\\'", "'") line = line.replace("\\\\", "\\") # Try parse JSON try: line = json.loads(line) except json.decoder.JSONDecodeError: continue if not self.__check_fields(line): raise Exception("Field missing. Details: " + str(line)) message = line["message"]["content"]["parts"][0] conversation_id = line["conversation_id"] parent_id = line["message"]["id"] yield { "message": message, "conversation_id": conversation_id, "parent_id": parent_id, } self.conversation_mapping[conversation_id] = parent_id if parent_id is not None: self.parent_id = parent_id if conversation_id is not None: self.conversation_id = conversation_id def __check_fields(self, data: dict) -> bool: try: data["message"]["content"] except TypeError: return False except KeyError: return False return True def __check_response(self, response): if response.status_code != 200: print(response.text) error = Error() error.source = "OpenAI" error.code = response.status_code error.message = response.text raise error def get_conversations(self, offset=0, limit=20): """ Get conversations :param offset: Integer :param limit: Integer """ url = BASE_URL + f"api/conversations?offset={offset}&limit={limit}" response = self.session.get(url) self.__check_response(response) data = json.loads(response.text) return data["items"] def get_msg_history(self, convo_id, encoding="utf-8"): """ Get message history :param id: UUID of conversation """ url = BASE_URL + f"api/conversation/{convo_id}" response = self.session.get(url) if encoding != None: response.encoding = encoding else: response.encoding = response.apparent_encoding self.__check_response(response) data = json.loads(response.text) return data def gen_title(self, convo_id, message_id): """ Generate title for conversation """ url = BASE_URL + f"api/conversation/gen_title/{convo_id}" response = self.session.post( url, data=json.dumps( {"message_id": message_id, "model": "text-davinci-002-render"}, ), ) self.__check_response(response) def change_title(self, convo_id, title): """ Change title of conversation :param id: UUID of conversation :param title: String """ url = BASE_URL + f"api/conversation/{convo_id}" response = self.session.patch(url, data=f'{{"title": "{title}"}}') self.__check_response(response) def delete_conversation(self, convo_id): """ Delete conversation :param id: UUID of conversation """ url = BASE_URL + f"api/conversation/{convo_id}" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) def clear_conversations(self): """ Delete all conversations """ url = BASE_URL + "api/conversations" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) def __map_conversations(self): conversations = self.get_conversations() histories = [self.get_msg_history(x["id"]) for x in conversations] for x, y in zip(conversations, histories): self.conversation_mapping[x["id"]] = y["current_node"] def reset_chat(self) -> None: """ Reset the conversation ID and parent ID. :return: None """ self.conversation_id = None self.parent_id = str(uuid.uuid4()) def rollback_conversation(self, num=1) -> None: """ Rollback the conversation. :param num: The number of messages to rollback :return: None """ for _ in range(num): self.conversation_id = self.conversation_id_prev_queue.pop() self.parent_id = self.parent_id_prev_queue.pop() def get_input(prompt): """ Multiline input function. """ # Display the prompt print(prompt, end="") # Initialize an empty list to store the input lines lines = [] # Read lines of input until the user enters an empty line while True: line = input() if line == "": break lines.append(line) # Join the lines, separated by newlines, and store the result user_input = "\n".join(lines) # Return the input return user_input def configure(): """ Looks for a config file in the following locations: """ config_files = ["config.json"] xdg_config_home = getenv("XDG_CONFIG_HOME") if xdg_config_home: config_files.append(f"{xdg_config_home}/revChatGPT/config.json") user_home = getenv("HOME") if user_home: config_files.append(f"{user_home}/.config/revChatGPT/config.json") config_file = next((f for f in config_files if exists(f)), None) if config_file: with open(config_file, encoding="utf-8") as f: config = json.load(f) else: print("No config file found.") raise Exception("No config file found.") return config def main(config: dict): """ Main function for the chatGPT program. """ print("Logging in...") chatbot = Chatbot( config, conversation_id=config.get("conversation_id"), parent_id=config.get("parent_id"), ) def handle_commands(command: str) -> bool: if command == "!help": print( """ !help - Show this message !reset - Forget the current conversation !config - Show the current configuration !rollback x - Rollback the conversation (x being the number of messages to rollback) !exit - Exit this program !setconversation - Changes the conversation """, ) elif command == "!reset": chatbot.reset_chat() print("Chat session successfully reset.") elif command == "!config": print(json.dumps(chatbot.config, indent=4)) elif command.startswith("!rollback"): # Default to 1 rollback if no number is specified try: rollback = int(command.split(" ")[1]) except IndexError: rollback = 1 chatbot.rollback_conversation(rollback) print(f"Rolled back {rollback} messages.") elif command.startswith("!setconversation"): try: chatbot.conversation_id = chatbot.config[ "conversation_id" ] = command.split(" ")[1] print("Conversation has been changed") except IndexError: print("Please include conversation UUID in command") elif command == "!exit": exit(0) else: return False return True while True: prompt = get_input("\nYou:\n") if prompt.startswith("!"): if handle_commands(prompt): continue print("Chatbot: ") prev_text = "" for data in chatbot.ask( prompt, ): message = data["message"][len(prev_text) :] print(message, end="", flush=True) prev_text = data["message"] print() # print(message["message"]) if __name__ == "__main__": print( """ ChatGPT - A command-line interface to OpenAI's ChatGPT (https://chat.openai.com/chat) Repo: github.com/acheong08/ChatGPT """, ) print("Type '!help' to show a full list of commands") print("Press enter twice to submit your question.\n") main(configure())
[ "text", "\nYou:\n", "content_type" ]
2024-01-10
MANIKANTA-POTNURU/Generate-content-maintaining-the-style-and-tone
functions.py
import streamlit as st from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfpage import PDFPage from io import StringIO import cohere as ch import base64 @st.cache_data def convert_pdf_to_txt_pages(path): texts = [] rsrcmgr = PDFResourceManager() retstr = StringIO() laparams = LAParams() device = TextConverter(rsrcmgr, retstr, laparams=laparams) # fp = open(path, 'rb') interpreter = PDFPageInterpreter(rsrcmgr, device) size = 0 c = 0 file_pages = PDFPage.get_pages(path) nbPages = len(list(file_pages)) for page in PDFPage.get_pages(path): interpreter.process_page(page) t = retstr.getvalue() if c == 0: texts.append(t) else: texts.append(t[size:]) c = c+1 size = len(t) device.close() retstr.close() return texts, nbPages def generate_script(user_input): co = ch.Client('COHERE_APIKEY') # This is your trial API key (Paste the cohere API KEY) response = co.generate( model='command', prompt=user_input, max_tokens=300, temperature=0.9, k=0, stop_sequences=[], return_likelihoods='NONE') return response.generations[0].text @st.cache_data def convert_pdf_to_txt_file(textarea,path): texts = [] rsrcmgr = PDFResourceManager() retstr = StringIO() laparams = LAParams() device = TextConverter(rsrcmgr, retstr, laparams=laparams) # fp = open(path, 'rb') interpreter = PDFPageInterpreter(rsrcmgr, device) file_pages = PDFPage.get_pages(path) nbPages = len(list(file_pages)) for page in PDFPage.get_pages(path): interpreter.process_page(page) t = retstr.getvalue() # text = retstr.getvalue() # fp.close() device.close() retstr.close() t=summarize_script(t) t=generate_script(textarea+t) return t, nbPages def summarize_script(output1): co = ch.Client('COHERE_APIKEY')# This is your trial API key (Paste the cohere API KEY) response = co.summarize( text=output1, length='auto', format='auto', model='summarize-xlarge', additional_command='', temperature=0.3, ) return response.summary @st.cache_data def save_pages(pages): files = [] for page in range(len(pages)): filename = "page_"+str(page)+".txt" with open("./file_pages/"+filename, 'w', encoding="utf-8") as file: file.write(pages[page]) files.append(file.name) def displayPDF(file): # Opening file from file path # with open(file, "rb") as f: base64_pdf = base64.b64encode(file).decode('utf-8') # Embedding PDF in HTML pdf_display = F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf"></iframe>' # Displaying File st.markdown(pdf_display, unsafe_allow_html=True)
[]
2024-01-10
MANIKANTA-POTNURU/Generate-content-maintaining-the-style-and-tone
Final.py
import streamlit as st import cohere as ch import time from transformers import pipeline from youtube_transcript_api import YouTubeTranscriptApi import wikipedia import requests from functions import convert_pdf_to_txt_file, displayPDF def main(): st.title("Generate content maintaining the style and tone") st.sidebar.title("Choose an Option") task = st.sidebar.radio("Select a task:", ["Using AI","From YouTube & AI", "From Wikipedia & AI","Chat with pdf using AI","Tone&Style Checker"]) if task == "From YouTube & AI": st.title("Enter the youtube video Url") youtube_url = st.text_input("Enter YouTube video URL:") if youtube_url: video_id = youtube_url.split("=")[-1] if st.button("Summarize"): summarized_text = summarize_youtube(video_id) st.subheader("Summarized Transcript:") st.write(summarized_text) not_satisfied_checkbox = st.checkbox("Not Satisfied") if not_satisfied_checkbox: not_satisfied(summarized_text) time.sleep(30000) elif task == "From Wikipedia & AI": st.title("Input The Text") article_title = st.text_input("Enter Wikipedia article title:") if article_title: if st.button("Summarize"): summarized_text =summarize_script(summarize_wikipedia(article_title)) st.subheader("Summarized Article:") st.write(summarized_text) not_satisfied_checkbox = st.checkbox("Not Satisfied") if not_satisfied_checkbox: not_satisfied(summarized_text) time.sleep(30000) elif task=="Using AI": st.title("Input The Prompt") user_input = st.text_input("Enter something:") if st.button("Submit"): output1 = generate_script(user_input) st.write(output1) not_satisfied_checkbox = st.checkbox("Not Satisfied") if not_satisfied_checkbox: not_satisfied(output1) time.sleep(30000) elif task=="Chat with pdf using AI": pdf_file = st.file_uploader("Load your PDF", type=['pdf']) if pdf_file: path = pdf_file.read() file_extension = pdf_file.name.split(".")[-1] if file_extension == "pdf": # display document textarea=st.text_input("Enter some more text:") with st.expander("Display document"): displayPDF(path) text_data_f, nbPages = convert_pdf_to_txt_file(textarea,pdf_file) totalPages = "Pages: "+str(nbPages)+" in total" st.info(totalPages) st.download_button("Download txt file", text_data_f) elif task=="Tone&Style Checker": st.title("Text Tone Checker") tetx= st.text_input("Enter something:") st.write(tone_reco(tetx)) def not_satisfied(output1): user_input1 = st.text_input("Enter some more text:") tone=tone_reco(output1) context = summarize_script(output1) prompt1 = ' Follow this '+tone+'tone for this prompt regarding' + user_input1 +'based on this '+context #Prompt If the user is not satisfied or if user want some more if prompt1!="": st.write(generate_script(prompt1)) def tone_reco(tetx): response = requests.post( "https://api.sapling.ai/api/v1/tone", # SaplingAi json={ "key": "SAPLING_APIKEY",#Use SaplingAi Api For Recongnizing The tone and Style For an text "text": tetx } ) data = response.json() overall_tones = data.get('overall', []) results = data.get('results', []) tone_results = overall_tones + (results[0] if results else []) tones_formatted = [f"{tone[1]} ({tone[2]})" for tone in tone_results] output_sentence = ', '.join(tones_formatted) return output_sentence def generate_script(user_input): co = ch.Client('COHERE_APIKEY') # This is your trial API key (Paste the cohere API KEY) response = co.generate( model='command', prompt=user_input, max_tokens=300, temperature=0.9, k=0, stop_sequences=[], return_likelihoods='NONE') return response.generations[0].text def summarize_script(output1): co = ch.Client('COHERE_APIKEY') # This is your trial API key(Paste the Api Key) response = co.summarize( text=output1, length='auto', format='auto', model='summarize-xlarge', additional_command='', temperature=0.3, ) return response.summary def summarize_youtube(video_id): transcript = YouTubeTranscriptApi.get_transcript(video_id) result = "" for i in transcript: result += ' ' + i['text'] summarizer = pipeline('summarization') summarized_text = summarizer(result) return summarized_text[0]['summary_text'] def summarize_wikipedia(article_title): content = wikipedia.page(article_title).content summarizer = pipeline('summarization') max_length = 1024 # Adjust this value as needed chunks = [content[i:i + max_length] for i in range(0, len(content), max_length)] summarized_text = "" for chunk in chunks: summarized_chunk = summarizer(chunk) summarized_text += summarized_chunk[0]['summary_text'] + " " return summarized_text if __name__ == "__main__": main()
[ " Follow this PLACEHOLDERtone for this prompt regardingPLACEHOLDERbased on this PLACEHOLDER" ]
2024-01-10
rickli92/LiCSBAS
LiCSBAS_lib~LiCSBAS_inv_lib.py
#!/usr/bin/env python3 """ ======== Overview ======== Python3 library of time series inversion functions for LiCSBAS. ========= Changelog ========= v1.4 20200703 Yu Morioshita, GSI - Replace problematic terms v1.3 20200103 Yu Morioshita, Uni of Leeds and GSI - Bag fix in calc_stc (return nonzero even if two adjacent pixels have identical ts) v1.2 20190823 Yu Morioshita, Uni of Leeds and GSI - Bag fix in calc_velstd_withnan - Remove calc_velstd v1.1 20190807 Yu Morioshita, Uni of Leeds and GSI - Add calc_velsin v1.0 20190730 Yu Morioshita, Uni of Leeds and GSI - Original implementation """ import warnings import numpy as np import datetime as dt import multiprocessing as multi from astropy.stats import bootstrap from astropy.utils import NumpyRNGContext import LiCSBAS_tools_lib as tools_lib #%% def make_sb_matrix(ifgdates): """ Make small baseline incidence-like matrix. Composed of 1 between primary and secondary. (n_ifg, n_im-1) Unknown is incremental displacement. """ imdates = tools_lib.ifgdates2imdates(ifgdates) n_im = len(imdates) n_ifg = len(ifgdates) G = np.zeros((n_ifg, n_im-1), dtype=np.int16) for ifgix, ifgd in enumerate(ifgdates): primarydate = ifgd[:8] primaryix = imdates.index(primarydate) secondarydate = ifgd[-8:] secondaryix = imdates.index(secondarydate) G[ifgix, primaryix:secondaryix] = 1 return G #%% def make_sb_matrix2(ifgdates): """ Make small baseline incidence-like matrix. Composed of -1 at primary and 1 at secondary. (n_ifg, n_im) Unknown is cumulative displacement. """ imdates = tools_lib.ifgdates2imdates(ifgdates) n_im = len(imdates) n_ifg = len(ifgdates) A = np.zeros((n_ifg, n_im), dtype=np.int16) for ifgix, ifgd in enumerate(ifgdates): primarydate = ifgd[:8] primaryix = imdates.index(primarydate) secondarydate = ifgd[-8:] secondaryix = imdates.index(secondarydate) A[ifgix, primaryix] = -1 A[ifgix, secondaryix] = 1 return A #%% def invert_nsbas(unw, G, dt_cum, gamma, n_core): """ Calculate increment displacement difference by NSBAS inversion. Points with all unw data are solved by simple SB inversion firstly at a time. Inputs: unw : Unwrapped data block for each point (n_pt, n_ifg) Still include nan to keep dimention G : Design matrix (1 between primary and secondary) (n_ifg, n_im-1) dt_cum : Cumulative years(or days) for each image (n_im) gamma : Gamma value for NSBAS inversion, should be small enough (e.g., 0.0001) n_core : Number of cores for parallel processing Returns: inc : Incremental displacement (n_im-1, n_pt) vel : Velocity (n_pt) vconst : Constant part of linear velocity (c of vt+c) (n_pt) """ if n_core != 1: global Gall, unw_tmp, mask ## for para_wrapper ### Settings n_pt, n_ifg = unw.shape n_im = G.shape[1]+1 result = np.zeros((n_im+1, n_pt), dtype=np.float32)*np.nan #[inc, vel, const] ### Set matrix of NSBAS part (bottom) Gbl = np.tril(np.ones((n_im, n_im-1), dtype=np.float32), k=-1) #lower tri matrix without diag Gbr = -np.ones((n_im, 2), dtype=np.float32) Gbr[:, 0] = -dt_cum Gb = np.concatenate((Gbl, Gbr), axis=1)*gamma Gt = np.concatenate((G, np.zeros((n_ifg, 2), dtype=np.float32)), axis=1) Gall = np.float32(np.concatenate((Gt, Gb))) ### Solve points with full unw data at a time. Very fast. bool_pt_full = np.all(~np.isnan(unw), axis=1) n_pt_full = bool_pt_full.sum() if n_pt_full!=0: print(' Solving {0:6}/{1:6}th points with full unw at a time...'.format(n_pt_full, n_pt), flush=True) ## Sovle unw_tmp = np.concatenate((unw[bool_pt_full, :], np.zeros((n_pt_full, n_im), dtype=np.float32)), axis=1).transpose() result[:, bool_pt_full] = np.linalg.lstsq(Gall, unw_tmp, rcond=None)[0] ### Solve other points with nan point by point. unw_tmp = np.concatenate((unw[~bool_pt_full, :], np.zeros((n_pt-n_pt_full, n_im), dtype=np.float32)), axis=1).transpose() mask = (~np.isnan(unw_tmp)) unw_tmp[np.isnan(unw_tmp)] = 0 print(' Next, solve {0} points including nan point-by-point...'.format(n_pt-n_pt_full), flush=True) if n_core == 1: result[:, ~bool_pt_full] = censored_lstsq_slow(Gall, unw_tmp, mask) #(n_im+1, n_pt) else: print(' {} parallel processing'.format(n_core), flush=True) args = [i for i in range(n_pt-n_pt_full)] p = multi.Pool(n_core) _result = p.map(censored_lstsq_slow_para_wrapper, args) #list[n_pt][length] result[:, ~bool_pt_full] = np.array(_result).T inc = result[:n_im-1, :] vel = result[n_im-1, :] vconst = result[n_im, :] return inc, vel, vconst def censored_lstsq_slow_para_wrapper(i): ### Use global value if np.mod(i, 1000) == 0: print(' Running {0:6}/{1:6}th point...'.format(i, unw_tmp.shape[1]), flush=True) m = mask[:,i] # drop rows where mask is zero try: X = np.linalg.lstsq(Gall[m], unw_tmp[m,i], rcond=None)[0] except: X = np.zeros((Gall.shape[1]), dtype=np.float32)*np.nan return X #%% def invert_nsbas_wls(unw, var, G, dt_cum, gamma, n_core): """ Calculate increment displacement difference by NSBAS inversion with WLS. Inputs: unw : Unwrapped data block for each point (n_pt, n_ifg) Still include nan to keep dimention var : Variance estimated from coherence (n_pt, n_ifg) G : Design matrix (1 between primary and secondary) (n_ifg, n_im-1) dt_cum : Cumulative years(or days) for each image (n_im) gamma : Gamma value for NSBAS inversion, should be small enough (e.g., 0.0001) n_core : Number of cores for parallel processing Returns: inc : Incremental displacement (n_im-1, n_pt) vel : Velocity (n_pt) vconst : Constant part of linear velocity (c of vt+c) (n_pt) """ global Gall, unw_tmp, var_tmp, mask ## for para_wrapper ### Settings n_pt, n_ifg = unw.shape n_im = G.shape[1]+1 result = np.zeros((n_im+1, n_pt), dtype=np.float32)*np.nan #[inc, vel, const] ### Set matrix of NSBAS part (bottom) Gbl = np.tril(np.ones((n_im, n_im-1), dtype=np.float32), k=-1) #lower tri matrix without diag Gbr = -np.ones((n_im, 2), dtype=np.float32) Gbr[:, 0] = -dt_cum Gb = np.concatenate((Gbl, Gbr), axis=1)*gamma Gt = np.concatenate((G, np.zeros((n_ifg, 2), dtype=np.float32)), axis=1) Gall = np.float32(np.concatenate((Gt, Gb))) ### Make unw_tmp, var_tmp, and mask unw_tmp = np.concatenate((unw, np.zeros((n_pt, n_im), dtype=np.float32)), axis=1).transpose() mask = (~np.isnan(unw_tmp)) unw_tmp[np.isnan(unw_tmp)] = 0 var_tmp = np.concatenate((var, 50*np.ones((n_pt, n_im), dtype=np.float32)), axis=1).transpose() #50 is var for coh=0.1, to scale bottom part of Gall if n_core == 1: for i in range(n_pt): result[:, i] = wls_nsbas(i) #(n_im+1, n_pt) else: print(' {} parallel processing'.format(n_core), flush=True) args = [i for i in range(n_pt)] p = multi.Pool(n_core) _result = p.map(wls_nsbas, args) #list[n_pt][length] result = np.array(_result).T inc = result[:n_im-1, :] vel = result[n_im-1, :] vconst = result[n_im, :] return inc, vel, vconst def wls_nsbas(i): ### Use global value of Gall, unw_tmp, mask if np.mod(i, 1000) == 0: print(' Running {0:6}/{1:6}th point...'.format(i, unw_tmp.shape[1]), flush=True) ## Weight unw and G Gall_w = Gall/np.sqrt(np.float64(var_tmp[:,i][:,np.newaxis])) unw_tmp_w = unw_tmp[:, i]/np.sqrt(np.float64(var_tmp[:,i])) m = mask[:,i] # drop rows where mask is zero try: X = np.linalg.lstsq(Gall_w[m], unw_tmp_w[m], rcond=None)[0] except: X = np.zeros((Gall.shape[1]), dtype=np.float32)*np.nan return X #%% def calc_vel(cum, dt_cum): """ Calculate velocity. Inputs: cum : cumulative phase block for each point (n_pt, n_im) dt_cum : Cumulative days for each image (n_im) Returns: vel : Velocity (n_pt) vconst : Constant part of linear velocity (c of vt+c) (n_pt) """ n_pt, n_im = cum.shape result = np.zeros((2, n_pt), dtype=np.float32)*np.nan #[vconst, vel] G = np.stack((np.ones_like(dt_cum), dt_cum), axis=1) vconst = np.zeros((n_pt), dtype=np.float32)*np.nan vel = np.zeros((n_pt), dtype=np.float32)*np.nan bool_pt_full = np.all(~np.isnan(cum), axis=1) n_pt_full = bool_pt_full.sum() if n_pt_full!=0: print(' Solving {0:6}/{1:6}th points with full cum at a time...'.format(n_pt_full, n_pt), flush=True) ## Sovle result[:, bool_pt_full] = np.linalg.lstsq(G, cum[bool_pt_full, :].transpose(), rcond=None)[0] ### Solve other points with nan point by point. cum_tmp = cum[~bool_pt_full, :].transpose() mask = (~np.isnan(cum_tmp)) cum_tmp[np.isnan(cum_tmp)] = 0 print(' Next, solve {0} points including nan point-by-point...'.format(n_pt-n_pt_full), flush=True) result[:, ~bool_pt_full] = censored_lstsq_slow(G, cum_tmp, mask) #(n_im+1, n_pt) vconst = result[0, :] vel = result[1, :] return vel, vconst #%% def calc_velsin(cum, dt_cum, imd0): """ Calculate velocity and coeffcients of sin (annual) function. Inputs: cum : cumulative phase block for each point (n_pt, n_im) dt_cum : Cumulative days for each image (n_im) imd0 : Date of first acquistion (str, yyyymmdd) Returns: vel : Velocity (n_pt) vconst : Constant part of linear velocity (c of vt+c) (n_pt) amp : Amplitude of sin function dt : Time difference of sin function wrt Jan 1 (day) """ doy0 = (dt.datetime.strptime(imd0, '%Y%m%d')-dt.datetime.strptime(imd0[0:4]+'0101', '%Y%m%d')).days n_pt, n_im = cum.shape result = np.zeros((4, n_pt), dtype=np.float32)*np.nan #[vconst, vel, coef_s, coef_c] sin = np.sin(2*np.pi*dt_cum) cos = np.cos(2*np.pi*dt_cum) G = np.stack((np.ones_like(dt_cum), dt_cum, sin, cos), axis=1) vconst = np.zeros((n_pt), dtype=np.float32)*np.nan vel = np.zeros((n_pt), dtype=np.float32)*np.nan amp = np.zeros((n_pt), dtype=np.float32)*np.nan delta_t = np.zeros((n_pt), dtype=np.float32)*np.nan bool_pt_full = np.all(~np.isnan(cum), axis=1) n_pt_full = bool_pt_full.sum() if n_pt_full!=0: print(' Solving {0:6}/{1:6}th points with full cum at a time...'.format(n_pt_full, n_pt), flush=True) ## Sovle result[:, bool_pt_full] = np.linalg.lstsq(G, cum[bool_pt_full, :].transpose(), rcond=None)[0] ### Solve other points with nan point by point. cum_tmp = cum[~bool_pt_full, :].transpose() mask = (~np.isnan(cum_tmp)) cum_tmp[np.isnan(cum_tmp)] = 0 print(' Next, solve {0} points including nan point-by-point...'.format(n_pt-n_pt_full), flush=True) result[:, ~bool_pt_full] = censored_lstsq_slow(G, cum_tmp, mask) #(n_im+1, n_pt) vconst = result[0, :] vel = result[1, :] coef_s = result[2, :] coef_c = result[3, :] amp = np.sqrt(coef_s**2+coef_c**2) delta_t = np.arctan2(-coef_c, coef_s)/2/np.pi*365.25 ## wrt 1st img delta_t = delta_t+doy0 ## wrt Jan 1 delta_t[delta_t < 0] = delta_t[delta_t < 0]+365.25 #0-365.25 delta_t[delta_t > 365.25] = delta_t[delta_t > 365.25]-365.25 return vel, vconst, amp, delta_t #%% def calc_velstd_withnan(cum, dt_cum): """ Calculate std of velocity by bootstrap for each point which may include nan. Inputs: cum : Cumulative phase block for each point (n_pt, n_im) Can include nan. dt_cum : Cumulative days for each image (n_im) Returns: vstd : Std of Velocity for each point (n_pt) """ global bootcount, bootnum n_pt, n_im = cum.shape bootnum = 100 bootcount = 0 vstd = np.zeros((n_pt), dtype=np.float32) G = np.stack((np.ones_like(dt_cum), dt_cum), axis=1) data = cum.transpose().copy() ixs_day = np.arange(n_im) mask = (~np.isnan(data)) data[np.isnan(data)] = 0 velinv = lambda x : censored_lstsq2(G[x, :], data[x, :], mask[x, :])[1] with NumpyRNGContext(1): bootresult = bootstrap(ixs_day, bootnum, bootfunc=velinv) vstd = np.nanstd(bootresult, axis=0) print('') return vstd def censored_lstsq2(A, B, M): ## http://alexhwilliams.info/itsneuronalblog/2018/02/26/censored-lstsq/ global bootcount, bootnum print('\r Running {0:3}/{1:3}th bootstrap...'.format(bootcount, bootnum), end='', flush=True) bootcount = bootcount+1 # if B is a vector, simply drop out corresponding rows in A if B.ndim == 1 or B.shape[1] == 1: return np.linalg.leastsq(A[M], B[M])[0] # else solve via tensor representation rhs = np.dot(A.T, M * B).T[:,:,None] # n x r x 1 tensor T = np.matmul(A.T[None,:,:], M.T[:,:,None] * A[None,:,:]) # n x r x r tensor try: X = np.squeeze(np.linalg.solve(T, rhs)).T # transpose to get r x n except: ## In case Singular matrix X = np.zeros((B.shape[1]), dtype=np.float32)*np.nan return X #%% def calc_stc(cum): """ Calculate STC (spatio-temporal consistensy; Hanssen et al., 2008, Terrafirma) of time series of displacement. Note that isolated pixels (which have no surrounding pixel) have nan of STC. Input: cum : Cumulative displacement (n_im, length, width) Return: stc : STC (length, width) """ n_im, length, width = cum.shape ### Add 1 pixel margin to cum data filled with nan cum1 = np.ones((n_im, length+2, width+2), dtype=np.float32)*np.nan cum1[:, 1:length+1, 1:width+1] = cum ### Calc STC for surrounding 8 pixels _stc = np.ones((length, width, 8), dtype=np.float32)*np.nan pixels = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1], [2, 2]] ## Left Top = [0, 0], Rigth Bottmon = [2, 2], Center = [1, 1] for i, pixel in enumerate(pixels): ### Spatial difference (surrounding pixel-center) d_cum = cum1[:, pixel[0]:length+pixel[0], pixel[1]:width+pixel[1]] - cum1[:, 1:length+1, 1:width+1] ### Temporal difference (double difference) dd_cum = d_cum[:-1,:,:]-d_cum[1:,:,:] ### STC (i.e., RMS of DD) sumsq_dd_cum = np.nansum(dd_cum**2, axis=0) n_dd_cum = np.float32(np.sum(~np.isnan(dd_cum), axis=0)) #nof non-nan n_dd_cum[n_dd_cum==0] = np.nan #to avoid 0 division _stc[:, :, i] = np.sqrt(sumsq_dd_cum/n_dd_cum) ### Strange but some adjacent pixels can have identical time series, ### resulting in 0 of stc. To avoid this, replace 0 with nan. _stc[_stc==0] = np.nan ### Identify minimum value as final STC with warnings.catch_warnings(): ## To silence warning by All-Nan slice warnings.simplefilter('ignore', RuntimeWarning) stc = np.nanmin(_stc, axis=2) return stc #%% def censored_lstsq(A, B, M): ## http://alexhwilliams.info/itsneuronalblog/2018/02/26/censored-lstsq/ ## This is actually slow because matmul does not use multicore... ## Need multiprocessing. ## Precison is bad widh bad condition, so this is unfortunately useless for NSABS... ## But maybe usable for vstd because its condition is good. """Solves least squares problem subject to missing data. Note: uses a broadcasted solve for speed. Args ---- A (ndarray) : m x r matrix B (ndarray) : m x n matrix M (ndarray) : m x n binary matrix (zeros indicate missing values) Returns ------- X (ndarray) : r x n matrix that minimizes norm(M*(AX - B)) """ # Note: we should check A is full rank but we won't bother... # if B is a vector, simply drop out corresponding rows in A if B.ndim == 1 or B.shape[1] == 1: return np.linalg.leastsq(A[M], B[M])[0] # else solve via tensor representation rhs = np.dot(A.T, M * B).T[:,:,None] # n x r x 1 tensor T = np.matmul(A.T[None,:,:], M.T[:,:,None] * A[None,:,:]) # n x r x r tensor return np.squeeze(np.linalg.solve(T, rhs)).T # transpose to get r x n #%% def censored_lstsq_slow(A, B, M): ## http://alexhwilliams.info/itsneuronalblog/2018/02/26/censored-lstsq/ """Solves least squares problem subject to missing data. Note: uses a for loop over the columns of B, leading to a slower but more numerically stable algorithm Args ---- A (ndarray) : m x r matrix B (ndarray) : m x n matrix M (ndarray) : m x n binary matrix (zeros indicate missing values) Returns ------- X (ndarray) : r x n matrix that minimizes norm(M*(AX - B)) """ X = np.empty((A.shape[1], B.shape[1])) for i in range(B.shape[1]): if np.mod(i, 1000) == 0: print('\r Running {0:6}/{1:6}th point...'.format(i, B.shape[1]), end='', flush=True) m = M[:,i] # drop rows where mask is zero try: X[:,i] = np.linalg.lstsq(A[m], B[m,i], rcond=None)[0] except: X[:,i] = np.nan print('') return X
[]
2024-01-10
rickli92/LiCSBAS
bin~LiCSBAS13_sb_inv.py
#!/usr/bin/env python3 """ v1.2 20200225 Yu Morishita, Uni of Leeds and GSI ======== Overview ======== This script inverts the SB network of unw to obtain the time series and velocity using NSBAS (López-Quiroz et al., 2009; Doin et al., 2011) approach. A stable reference point is determined after the inversion. RMS of the time series wrt median among all points is calculated for each point. Then the point with minimum RMS and minimum n_gap is selected as new stable reference point. =============== Input & output files =============== Inputs in GEOCml*/ : - yyyymmdd_yyyymmdd/ - yyyymmdd_yyyymmdd.unw - yyyymmdd_yyyymmdd.cc - EQA.dem_par - slc.mli.par - baselines (may be dummy) Inputs in TS_GEOCml*/info/ : - 11bad_ifg.txt - 12bad_ifg.txt - 12ref.txt Outputs in TS_GEOCml*/ : - cum.h5 : Cumulative displacement (time-seires) in mm - results/ - vel[.png] : Velocity in mm/yr (positive means LOS decrease; uplift) - vintercept[.png] : Constant part of linear velocity (c for vt+c) in mm - resid_rms[.png] : RMS of residual in mm - n_gap[.png] : Number of gaps in SB network - n_ifg_noloop[.png] : Number of ifgs with no loop - maxTlen[.png] : Max length of continous SB network in year - info/ - 13parameters.txt : List of used parameters - 13used_image.txt : List of used images - 13resid.txt : List of RMS of residual for each ifg - 13ref.txt[kml] : Auto-determined stable ref point - 13rms_cum_wrt_med[.png] : RMS of cum wrt median used for ref selection - 13increment/yyyymmdd_yyyymmdd.increment.png : Comparison between unw and inverted incremental displacement - 13resid/yyyymmdd_yyyymmdd.res.png : Residual for each ifg - network/network13*.png : Figures of the network ===== Usage ===== LiCSBAS13_sb_inv.py -d ifgdir [-t tsadir] [--inv_alg LS|WLS] [--mem_size float] [--gamma float] [--n_core int] [--n_unw_r_thre float] [--keep_incfile] -d Path to the GEOCml* dir containing stack of unw data -t Path to the output TS_GEOCml* dir. --inv_alg Inversion algolism (Default: LS) LS : NSBAS Least Square with no weight WLS: NSBAS Weighted Least Square (not well tested) Weight (variance) is calculated by (1-coh**2)/(2*coh**2) --mem_size Max memory size for each patch in MB. (Default: 4000) --gamma Gamma value for NSBAS inversion (Default: 0.0001) --n_core Number of cores for parallel processing (Default: 1) --n_unw_r_thre Threshold of n_unw (number of used unwrap data) (Note this value is ratio to the number of images; i.e., 1.5*n_im) Larger number (e.g. 2.5) makes processing faster but result sparser. (Default: 1 and 0.5 for C- and L-band, respectively) --keep_incfile Not remove inc and resid files (Default: remove them) """ #%% Change log ''' v1.2 20200225 Yu Morishita, Uni of Leeds and GSI - Not output network pdf - Change color of png - Change name of parameters.txt to 13parameters.txt - Deal with cc file in uint8 format - Automatically find stable reference point v1.1 20190829 Yu Morishita, Uni of Leeds and GSI - Remove cum.h5 if exists before creation v1.0 20190730 Yu Morishita, Uni of Leeds and GSI - Original implementation ''' #%% Import import getopt import os import sys import re import time import h5py as h5 import numpy as np import datetime as dt import SCM import LiCSBAS_io_lib as io_lib import LiCSBAS_inv_lib as inv_lib import LiCSBAS_tools_lib as tools_lib import LiCSBAS_loop_lib as loop_lib import LiCSBAS_plot_lib as plot_lib class Usage(Exception): """Usage context manager""" def __init__(self, msg): self.msg = msg #%% Main def main(argv=None): #%% Check argv if argv == None: argv = sys.argv start = time.time() ver=1.2; date=20200225; author="Y. Morishita" print("\n{} ver{} {} {}".format(os.path.basename(argv[0]), ver, date, author), flush=True) print("{} {}".format(os.path.basename(argv[0]), ' '.join(argv[1:])), flush=True) #%% Set default ifgdir = [] tsadir = [] inv_alg = 'LS' n_core = 1 memory_size = 4000 gamma = 0.0001 n_unw_r_thre = [] keep_incfile = False cmap_vel = SCM.roma.reversed() cmap_noise = 'viridis' cmap_noise_r = 'viridis_r' #%% Read options try: try: opts, args = getopt.getopt(argv[1:], "hd:t:", ["help", "mem_size=", "gamma=", "n_unw_r_thre=", "keep_incfile", "inv_alg=", "n_core="]) except getopt.error as msg: raise Usage(msg) for o, a in opts: if o == '-h' or o == '--help': print(__doc__) return 0 elif o == '-d': ifgdir = a elif o == '-t': tsadir = a elif o == '--mem_size': memory_size = float(a) elif o == '--gamma': gamma = float(a) elif o == '--n_unw_r_thre': n_unw_r_thre = float(a) elif o == '--keep_incfile': keep_incfile = True elif o == '--inv_alg': inv_alg = a elif o == '--n_core': n_core = int(a) if not ifgdir: raise Usage('No data directory given, -d is not optional!') elif not os.path.isdir(ifgdir): raise Usage('No {} dir exists!'.format(ifgdir)) elif not os.path.exists(os.path.join(ifgdir, 'slc.mli.par')): raise Usage('No slc.mli.par file exists in {}!'.format(ifgdir)) except Usage as err: print("\nERROR:", file=sys.stderr, end='') print(" "+str(err.msg), file=sys.stderr) print("\nFor help, use -h or --help.\n", file=sys.stderr) return 2 #%% Directory settings ifgdir = os.path.abspath(ifgdir) if not tsadir: tsadir = os.path.join(os.path.dirname(ifgdir), 'TS_'+os.path.basename(ifgdir)) if not os.path.isdir(tsadir): print('\nNo {} exists!'.format(tsadir), file=sys.stderr) return 1 tsadir = os.path.abspath(tsadir) resultsdir = os.path.join(tsadir, 'results') infodir = os.path.join(tsadir, 'info') netdir = os.path.join(tsadir, 'network') bad_ifg11file = os.path.join(infodir, '11bad_ifg.txt') bad_ifg12file = os.path.join(infodir, '12bad_ifg.txt') reffile = os.path.join(infodir, '12ref.txt') if not os.path.exists(reffile): ## for old LiCSBAS12 < v1.1 reffile = os.path.join(infodir, 'ref.txt') incdir = os.path.join(tsadir,'13increment') if not os.path.exists(incdir): os.mkdir(incdir) resdir = os.path.join(tsadir,'13resid') if not os.path.exists(resdir): os.mkdir(resdir) restxtfile = os.path.join(infodir,'13resid.txt') cumh5file = os.path.join(tsadir,'cum.h5') #%% Check files try: if not os.path.exists(bad_ifg11file): raise Usage('No 11bad_ifg.txt file exists in {}!'.format(infodir)) if not os.path.exists(bad_ifg12file): raise Usage('No 12bad_ifg.txt file exists in {}!'.format(infodir)) if not os.path.exists(reffile): raise Usage('No 12ref.txt file exists in {}!'.format(infodir)) except Usage as err: print("\nERROR:", file=sys.stderr, end='') print(" "+str(err.msg), file=sys.stderr) print("\nFor help, use -h or --help.\n", file=sys.stderr) return 2 #%% Set preliminaly reference with open(reffile, "r") as f: refarea = f.read().split()[0] #str, x1/x2/y1/y2 refx1, refx2, refy1, refy2 = [int(s) for s in re.split('[:/]', refarea)] #%% Read data information ### Get size mlipar = os.path.join(ifgdir, 'slc.mli.par') width = int(io_lib.get_param_par(mlipar, 'range_samples')) length = int(io_lib.get_param_par(mlipar, 'azimuth_lines')) speed_of_light = 299792458 #m/s radar_frequency = float(io_lib.get_param_par(mlipar, 'radar_frequency')) #Hz wavelength = speed_of_light/radar_frequency #meter coef_r2m = -wavelength/4/np.pi*1000 #rad -> mm, positive is -LOS ### Calc pixel spacing depending on IFG or GEOC, used in later spatial filter dempar = os.path.join(ifgdir, 'EQA.dem_par') width_geo = int(io_lib.get_param_par(dempar, 'width')) length_geo = int(io_lib.get_param_par(dempar, 'nlines')) dlat = float(io_lib.get_param_par(dempar, 'post_lat')) #negative dlon = float(io_lib.get_param_par(dempar, 'post_lon')) #positive lat1 = float(io_lib.get_param_par(dempar, 'corner_lat')) lon1 = float(io_lib.get_param_par(dempar, 'corner_lon')) if width == width_geo and length == length_geo: ## Geocoded print('In geographical coordinates', flush=True) centerlat = lat1+dlat*(length/2) ra = float(io_lib.get_param_par(dempar, 'ellipsoid_ra')) recip_f = float(io_lib.get_param_par(dempar, 'ellipsoid_reciprocal_flattening')) rb = ra*(1-1/recip_f) ## polar radius pixsp_a = 2*np.pi*rb/360*abs(dlat) pixsp_r = 2*np.pi*ra/360*dlon*np.cos(np.deg2rad(centerlat)) else: print('In radar coordinates', flush=True) pixsp_r_org = float(io_lib.get_param_par(mlipar, 'range_pixel_spacing')) pixsp_a = float(io_lib.get_param_par(mlipar, 'azimuth_pixel_spacing')) inc_agl = float(io_lib.get_param_par(mlipar, 'incidence_angle')) pixsp_r = pixsp_r_org/np.sin(np.deg2rad(inc_agl)) ### Set n_unw_r_thre and cycle depending on L- or C-band if wavelength > 0.2: ## L-band if not n_unw_r_thre: n_unw_r_thre = 0.5 cycle = 1.5 # 2pi/cycle for comparison png elif wavelength <= 0.2: ## C-band if not n_unw_r_thre: n_unw_r_thre = 1.0 cycle = 3 # 3*2pi/cycle for comparison png #%% Read date and network information ### Get all ifgdates in ifgdir ifgdates_all = tools_lib.get_ifgdates(ifgdir) imdates_all = tools_lib.ifgdates2imdates(ifgdates_all) n_im_all = len(imdates_all) n_ifg_all = len(ifgdates_all) ### Read bad_ifg11 and 12 bad_ifg11 = io_lib.read_ifg_list(bad_ifg11file) bad_ifg12 = io_lib.read_ifg_list(bad_ifg12file) bad_ifg_all = list(set(bad_ifg11+bad_ifg12)) bad_ifg_all.sort() ### Remove bad ifgs and images from list ifgdates = list(set(ifgdates_all)-set(bad_ifg_all)) ifgdates.sort() imdates = tools_lib.ifgdates2imdates(ifgdates) n_ifg = len(ifgdates) n_ifg_bad = len(set(bad_ifg11+bad_ifg12)) n_im = len(imdates) n_unw_thre = int(n_unw_r_thre*n_im) ### Make 13used_image.txt imfile = os.path.join(infodir, '13used_image.txt') with open(imfile, 'w') as f: for i in imdates: print('{}'.format(i), file=f) ### Calc dt in year imdates_dt = ([dt.datetime.strptime(imd, '%Y%m%d').toordinal() for imd in imdates]) dt_cum = np.float32((np.array(imdates_dt)-imdates_dt[0])/365.25) ### Construct G and Aloop matrix for increment and n_gap G = inv_lib.make_sb_matrix(ifgdates) Aloop = loop_lib.make_loop_matrix(ifgdates) n_loop = Aloop.shape[0] # (n_loop,n_ifg) #%% Plot network ## Read bperp data or dummy bperp_file = os.path.join(ifgdir, 'baselines') if os.path.exists(bperp_file): bperp_all = io_lib.read_bperp_file(bperp_file, imdates_all) bperp = io_lib.read_bperp_file(bperp_file, imdates) else: #dummy bperp_all = np.random.random(len(imdates_all)).tolist() bperp = np.random.random(n_im).tolist() pngfile = os.path.join(netdir, 'network13_all.png') plot_lib.plot_network(ifgdates_all, bperp_all, [], pngfile) pngfile = os.path.join(netdir, 'network13.png') plot_lib.plot_network(ifgdates_all, bperp_all, bad_ifg_all, pngfile) pngfile = os.path.join(netdir, 'network13_nobad.png') plot_lib.plot_network(ifgdates_all, bperp_all, bad_ifg_all, pngfile, plot_bad=False) #%% Get patch row number if inv_alg == 'WLS': n_store_data = n_ifg*3+n_im*2+n_im*0.3 # else: n_store_data = n_ifg*2+n_im*2+n_im*0.3 #not sure n_patch, patchrow = tools_lib.get_patchrow(width, length, n_store_data, memory_size) #%% Display and output settings & parameters print('') print('Size of image (w,l) : {}, {}'.format(width, length)) print('# of all images : {}'.format(n_im_all)) print('# of images to be used : {}'.format(n_im)) print('# of all ifgs : {}'.format(n_ifg_all)) print('# of ifgs to be used : {}'.format(n_ifg)) print('# of removed ifgs : {}'.format(n_ifg_bad)) print('Threshold of used unw : {}'.format(n_unw_thre)) print('') print('Reference area (X/Y) : {}:{}/{}:{}'.format(refx1, refx2, refy1, refy2)) print('Allowed memory size : {} MB'.format(memory_size)) print('Number of patches : {}'.format(n_patch)) print('Inversion algorism : {}'.format(inv_alg)) print('Gamma value : {}'.format(gamma), flush=True) with open(os.path.join(infodir, '13parameters.txt'), "w") as f: print('range_samples: {}'.format(width), file=f) print('azimuth_lines: {}'.format(length), file=f) print('wavelength: {}'.format(wavelength), file=f) print('n_im_all: {}'.format(n_im_all), file=f) print('n_im: {}'.format(n_im), file=f) print('n_ifg_all: {}'.format(n_ifg_all), file=f) print('n_ifg: {}'.format(n_ifg), file=f) print('n_ifg_bad: {}'.format(n_ifg_bad), file=f) print('n_unw_thre: {}'.format(n_unw_thre), file=f) print('ref_area: {}:{}/{}:{}'.format(refx1, refx2, refy1, refy2), file=f) print('memory_size: {} MB'.format(memory_size), file=f) print('n_patch: {}'.format(n_patch), file=f) print('inv_alg: {}'.format(inv_alg), file=f) print('gamma: {}'.format(gamma), file=f) print('pixel_spacing_r: {:.2f} m'.format(pixsp_r), file=f) print('pixel_spacing_a: {:.2f} m'.format(pixsp_a), file=f) #%% Ref phase for inversion lengththis = refy2-refy1 countf = width*refy1 countl = width*lengththis # Number to be read ref_unw = [] for i, ifgd in enumerate(ifgdates): unwfile = os.path.join(ifgdir, ifgd, ifgd+'.unw') f = open(unwfile, 'rb') f.seek(countf*4, os.SEEK_SET) #Seek for >=2nd path, 4 means byte ### Read unw data (mm) at ref area unw = np.fromfile(f, dtype=np.float32, count=countl).reshape((lengththis, width))[:, refx1:refx2]*coef_r2m unw[unw == 0] = np.nan if np.all(np.isnan(unw)): print('All nan in ref area in {}.'.format(ifgd)) print('Rerun LiCSBAS12.') return 1 ref_unw.append(np.nanmean(unw)) f.close() #%% Open cum.h5 for output if os.path.exists(cumh5file): os.remove(cumh5file) cumh5 = h5.File(cumh5file, 'w') cumh5.create_dataset('imdates', data=[np.int32(imd) for imd in imdates]) if not np.all(np.abs(np.array(bperp))<=1):# if not dummy cumh5.create_dataset('bperp', data=bperp) cum = cumh5.require_dataset('cum', (n_im, length, width), dtype=np.float32) vel = cumh5.require_dataset('vel', (length, width), dtype=np.float32) vconst = cumh5.require_dataset('vintercept', (length, width), dtype=np.float32) gap = cumh5.require_dataset('gap', (n_im-1, length, width), dtype=np.int8) if width == width_geo and length == length_geo: ## if geocoded cumh5.create_dataset('corner_lat', data=lat1) cumh5.create_dataset('corner_lon', data=lon1) cumh5.create_dataset('post_lat', data=dlat) cumh5.create_dataset('post_lon', data=dlon) #%% For each patch i_patch = 1 for rows in patchrow: print('\nProcess {0}/{1}th line ({2}/{3}th patch)...'.format(rows[1], patchrow[-1][-1], i_patch, n_patch), flush=True) start2 = time.time() #%% Read data ### Allocate memory lengththis = rows[1] - rows[0] n_pt_all = lengththis*width unwpatch = np.zeros((n_ifg, lengththis, width), dtype=np.float32) if inv_alg == 'WLS': cohpatch = np.zeros((n_ifg, lengththis, width), dtype=np.float32) ### For each ifg print(" Reading {0} ifg's unw data...".format(n_ifg), flush=True) countf = width*rows[0] countl = width*lengththis for i, ifgd in enumerate(ifgdates): unwfile = os.path.join(ifgdir, ifgd, ifgd+'.unw') f = open(unwfile, 'rb') f.seek(countf*4, os.SEEK_SET) #Seek for >=2nd patch, 4 means byte ### Read unw data (mm) at patch area unw = np.fromfile(f, dtype=np.float32, count=countl).reshape((lengththis, width))*coef_r2m unw[unw == 0] = np.nan # Fill 0 with nan unw = unw - ref_unw[i] unwpatch[i] = unw f.close() ### Read coh file at patch area for WLS if inv_alg == 'WLS': cohfile = os.path.join(ifgdir, ifgd, ifgd+'.cc') f = open(cohfile, 'rb') if os.path.getsize(cohfile) == length*width: ## uint8 format f.seek(countf, os.SEEK_SET) #Seek for >=2nd patch cohpatch[i, :, :] = (np.fromfile(f, dtype=np.uint8, count=countl).reshape((lengththis, width))).astype(np.float32)/255 else: ## old float32 format f.seek(countf*4, os.SEEK_SET) #Seek for >=2nd patch, 4 means byte cohpatch[i, :, :] = np.fromfile(f, dtype=np.float32, count=countl).reshape((lengththis, width)) cohpatch[cohpatch==0] = np.nan unwpatch = unwpatch.reshape((n_ifg, n_pt_all)).transpose() #(n_pt_all, n_ifg) ### Calc variance from coherence for WLS if inv_alg == 'WLS': cohpatch = cohpatch.reshape((n_ifg, n_pt_all)).transpose() #(n_pt_all, n_ifg) cohpatch[cohpatch<0.01] = 0.01 ## because negative value possible due to geocode cohpatch[cohpatch>0.99] = 0.99 ## because >1 possible due to geocode varpatch = (1-cohpatch**2)/(2*cohpatch**2) del cohpatch #%% Remove points with less valid data than n_unw_thre ix_unnan_pt = np.where(np.sum(~np.isnan(unwpatch), axis=1) > n_unw_thre)[0] n_pt_unnan = len(ix_unnan_pt) unwpatch = unwpatch[ix_unnan_pt,:] ## keep only unnan data if inv_alg == 'WLS': varpatch = varpatch[ix_unnan_pt,:] ## keep only unnan data print(' {}/{} points removed due to not enough ifg data...'.format(n_pt_all-n_pt_unnan, n_pt_all), flush=True) #%% Compute number of gaps, ifg_noloop, maxTlen point-by-point ns_gap_patch = np.zeros((n_pt_all), dtype=np.float32)*np.nan gap_patch = np.zeros((n_im-1, n_pt_all), dtype=np.int8) ns_ifg_noloop_patch = np.zeros((n_pt_all), dtype=np.float32)*np.nan maxTlen_patch = np.zeros((n_pt_all), dtype=np.float32)*np.nan ### n_gap print('\n Identifing gaps and counting n_gap...', flush=True) # ns_unw_unnan4inc = (np.matmul(np.int8(G[:, :, None]), (~np.isnan(unwpatch.T))[:, None, :])).sum(axis=0, dtype=np.int16) #n_ifg, n_im-1, n_pt -> n_im-1, n_pt ns_unw_unnan4inc = np.array([(G[:, i]*(~np.isnan(unwpatch))).sum(axis=1, dtype=np.int16) for i in range(n_im-1)]) #n_ifg*(n_pt,n_ifg) -> (n_im-1,n_pt) ns_gap_patch[ix_unnan_pt] = (ns_unw_unnan4inc==0).sum(axis=0) #n_pt gap_patch[:, ix_unnan_pt] = ns_unw_unnan4inc==0 del ns_unw_unnan4inc ### n_ifg_noloop print(' Counting n_ifg_noloop...', flush=True) # n_ifg*(n_pt,n_ifg)->(n_loop,n_pt) # Number of ifgs for each loop at eath point. # 3 means complete loop, 1 or 2 means broken loop. ns_ifg4loop = np.array([ (np.abs(Aloop[i, :])*(~np.isnan(unwpatch))).sum(axis=1) for i in range(n_loop)]) bool_loop = (ns_ifg4loop==3) #(n_loop,n_pt) identify complete loop only # n_loop*(n_loop,n_pt)*n_pt->(n_ifg,n_pt) # Number of loops for each ifg at eath point. ns_loop4ifg = np.array([( (np.abs(Aloop[:, i])*bool_loop.T).T* (~np.isnan(unwpatch[:, i])) ).sum(axis=0) for i in range(n_ifg)]) # ns_ifg_noloop_tmp = (ns_loop4ifg==0).sum(axis=0) #n_pt ns_nan_ifg = np.isnan(unwpatch).sum(axis=1) #n_pt, nan ifg count ns_ifg_noloop_patch[ix_unnan_pt] = ns_ifg_noloop_tmp - ns_nan_ifg del bool_loop, ns_ifg4loop, ns_loop4ifg ### maxTlen _maxTlen = np.zeros((n_pt_unnan), dtype=np.float32) #temporaly _Tlen = np.zeros((n_pt_unnan), dtype=np.float32) #temporaly for imx in range(n_im-1): _Tlen = _Tlen + (dt_cum[imx+1]-dt_cum[imx]) ## Adding dt _Tlen[gap_patch[imx, ix_unnan_pt]==1] = 0 ## reset to 0 if gap _maxTlen[_maxTlen<_Tlen] = _Tlen[_maxTlen<_Tlen] ## Set Tlen to maxTlen maxTlen_patch[ix_unnan_pt] = _maxTlen #%% Time series inversion print('\n Small Baseline inversion by {}...\n'.format(inv_alg), flush=True) if inv_alg == 'WLS': inc_tmp, vel_tmp, vconst_tmp = inv_lib.invert_nsbas_wls(unwpatch, varpatch, G, dt_cum, gamma, n_core) else: inc_tmp, vel_tmp, vconst_tmp = inv_lib.invert_nsbas(unwpatch, G, dt_cum, gamma, n_core) ### Set to valuables inc_patch = np.zeros((n_im-1, n_pt_all), dtype=np.float32)*np.nan vel_patch = np.zeros((n_pt_all), dtype=np.float32)*np.nan vconst_patch = np.zeros((n_pt_all), dtype=np.float32)*np.nan inc_patch[:, ix_unnan_pt] = inc_tmp vel_patch[ix_unnan_pt] = vel_tmp vconst_patch[ix_unnan_pt] = vconst_tmp ### Calculate residuals res_patch = np.zeros((n_ifg, n_pt_all), dtype=np.float32)*np.nan res_patch[:, ix_unnan_pt] = unwpatch.T-np.dot(G, inc_tmp) res_sumsq = np.nansum(res_patch**2, axis=0) res_n = np.float32((~np.isnan(res_patch)).sum(axis=0)) res_n[res_n==0] = np.nan # To avoid 0 division res_rms_patch = np.sqrt(res_sumsq/res_n) ### Cumulative displacememt cum_patch = np.zeros((n_im, n_pt_all), dtype=np.float32)*np.nan cum_patch[1:, :] = np.cumsum(inc_patch, axis=0) ## Fill 1st image with 0 at unnan points from 2nd images bool_unnan_pt = ~np.isnan(cum_patch[1, :]) cum_patch[0, bool_unnan_pt] = 0 ## Drop (fill with nan) interpolated cum by 2 continuous gaps for i in range(n_im-2): ## from 1->n_im-1 gap2 = gap_patch[i, :]+gap_patch[i+1, :] bool_gap2 = (gap2==2) ## true if 2 continuous gaps for each point cum_patch[i+1, :][bool_gap2] = np.nan ## Last (n_im th) image. 1 gap means interpolated cum_patch[-1, :][gap_patch[-1, :]==1] = np.nan #%% Output data and image ### cum.h5 file cum[:, rows[0]:rows[1], :] = cum_patch.reshape((n_im, lengththis, width)) vel[rows[0]:rows[1], :] = vel_patch.reshape((lengththis, width)) vconst[rows[0]:rows[1], :] = vconst_patch.reshape((lengththis, width)) gap[:, rows[0]:rows[1], :] = gap_patch.reshape((n_im-1, lengththis, width)) ### Others openmode = 'w' if rows[0] == 0 else 'a' #w only 1st patch ## For each imd. cum and inc for imx, imd in enumerate(imdates): ## Incremental displacement if imd == imdates[-1]: continue #skip last incfile = os.path.join(incdir, '{0}_{1}.inc'.format(imd, imdates[imx+1])) with open(incfile, openmode) as f: inc_patch[imx, :].tofile(f) ## For each ifgd. resid for i, ifgd in enumerate(ifgdates): resfile = os.path.join(resdir, '{0}.res'.format(ifgd)) with open(resfile, openmode) as f: res_patch[i, :].tofile(f) ## velocity and noise indecies in results dir names = ['vel', 'vintercept', 'resid_rms', 'n_gap', 'n_ifg_noloop', 'maxTlen'] data = [vel_patch, vconst_patch, res_rms_patch, ns_gap_patch, ns_ifg_noloop_patch, maxTlen_patch] for i in range(len(names)): file = os.path.join(resultsdir, names[i]) with open(file, openmode) as f: data[i].tofile(f) #%% Finish patch elapsed_time2 = int(time.time()-start2) hour2 = int(elapsed_time2/3600) minite2 = int(np.mod((elapsed_time2/60),60)) sec2 = int(np.mod(elapsed_time2,60)) print(" Elapsed time for {0}th patch: {1:02}h {2:02}m {3:02}s".format(i_patch, hour2, minite2, sec2), flush=True) i_patch += 1 #Next patch count #%% Find stable ref point print('\nFind stable reference point...', flush=True) ### Compute RMS of time series with reference to all points sumsq_cum_wrt_med = np.zeros((length, width), dtype=np.float32) for i in range(n_im): sumsq_cum_wrt_med = sumsq_cum_wrt_med + (cum[i, :, :]-np.nanmedian(cum[i, :, :]))**2 rms_cum_wrt_med = np.sqrt(sumsq_cum_wrt_med/n_im) ### Mask by minimum n_gap n_gap = io_lib.read_img(os.path.join(resultsdir, 'n_gap'), length, width) min_n_gap = np.nanmin(n_gap) mask_n_gap = np.float32(n_gap==min_n_gap) mask_n_gap[mask_n_gap==0] = np.nan rms_cum_wrt_med = rms_cum_wrt_med*mask_n_gap ### Find stable reference min_rms = np.nanmin(rms_cum_wrt_med) refy1s, refx1s = np.where(rms_cum_wrt_med==min_rms) refy1s, refx1s = refy1s[0], refx1s[0] ## Only first index refy2s, refx2s = refy1s+1, refx1s+1 print('Selected ref: {}:{}/{}:{}'.format(refx1s, refx2s, refy1s, refy2s), flush=True) ### Rerferencing cumulative displacement and vel to new stable ref for i in range(n_im): cum[i, :, :] = cum[i, :, :] - cum[i, refy1s, refx1s] vel = vel - vel[refy1s, refx1s] vconst = vconst - vconst[refy1s, refx1s] ### Save image rms_cum_wrt_med_file = os.path.join(infodir, '13rms_cum_wrt_med') with open(rms_cum_wrt_med_file, 'w') as f: rms_cum_wrt_med.tofile(f) pngfile = os.path.join(infodir, '13rms_cum_wrt_med.png') plot_lib.make_im_png(rms_cum_wrt_med, pngfile, cmap_noise_r, 'RMS of cum wrt median (mm)', np.nanpercentile(rms_cum_wrt_med, 1), np.nanpercentile(rms_cum_wrt_med, 99)) ### Save ref cumh5.create_dataset('refarea', data='{}:{}/{}:{}'.format(refx1s, refx2s, refy1s, refy2s)) refsfile = os.path.join(infodir, '13ref.txt') with open(refsfile, 'w') as f: print('{}:{}/{}:{}'.format(refx1s, refx2s, refy1s, refy2s), file=f) if width == width_geo and length == length_geo: ## Geocoded ### Make ref_stable.kml reflat = lat1+dlat*refy1s reflon = lon1+dlon*refx1s io_lib.make_point_kml(reflat, reflon, os.path.join(infodir, '13ref.kml')) #%% Close h5 file cumh5.close() #%% Output png images print('\nOutput png images...', flush=True) ### Incremental displacement for imx, imd in enumerate(imdates): if imd == imdates[-1]: continue #skip last for increment ## Comparison of increment and daisy chain pair ifgd = '{}_{}'.format(imd, imdates[imx+1]) incfile = os.path.join(incdir, '{}.inc'.format(ifgd)) unwfile = os.path.join(ifgdir, ifgd, '{}.unw'.format(ifgd)) pngfile = os.path.join(incdir, '{}.inc_comp.png'.format(ifgd)) inc = io_lib.read_img(incfile, length, width) try: unw = io_lib.read_img(unwfile, length, width)*coef_r2m ix_ifg = ifgdates.index(ifgd) unw = unw - ref_unw[ix_ifg] except: unw = np.zeros((length, width), dtype=np.float32)*np.nan ### Output png for comparison data3 = [np.angle(np.exp(1j*(data/coef_r2m/cycle))*cycle) for data in [unw, inc, inc-unw]] title3 = ['Daisy-chain IFG ({}pi/cycle)'.format(cycle*2), 'Inverted ({}pi/cycle)'.format(cycle*2), 'Difference ({}pi/cycle)'.format(cycle*2)] pngfile = os.path.join(incdir, '{}.increment.png'.format(ifgd)) plot_lib.make_3im_png(data3, pngfile, 'insar', title3, vmin=-np.pi, vmax=np.pi, cbar=False) if not keep_incfile: os.remove(incfile) ### Residual for each ifg. png and txt. with open(restxtfile, "w") as f: print('# RMS of residual (mm)', file=f) for ifgd in ifgdates: infile = os.path.join(resdir, '{}.res'.format(ifgd)) resid = io_lib.read_img(infile, length, width) resid_rms = np.sqrt(np.nanmean(resid**2)) with open(restxtfile, "a") as f: print('{} {:5.2f}'.format(ifgd, resid_rms), file=f) pngfile = infile+'.png' title = 'Residual (mm) of {} (RMS:{:.2f}mm)'.format(ifgd, resid_rms) plot_lib.make_im_png(resid, pngfile, cmap_vel, title, -wavelength/2*1000, wavelength/2*1000) if not keep_incfile: os.remove(infile) ### Velocity and noise indices cmins = [None, None, None, None, None, None] cmaxs = [None, None, None, None, None, None] cmaps = [cmap_vel, cmap_vel, cmap_noise_r, cmap_noise_r, cmap_noise_r, cmap_noise] titles = ['Velocity (mm/yr)', 'Intercept of velocity (mm)', 'RMS of residual (mm)', 'Number of gaps in SB network', 'Number of ifgs with no loops', 'Max length of connected SB network (yr)'] for i in range(len(names)): file = os.path.join(resultsdir, names[i]) data = io_lib.read_img(file, length, width) pngfile = file+'.png' ## Get color range if None if cmins[i] is None: cmins[i] = np.nanpercentile(data, 1) if cmaxs[i] is None: cmaxs[i] = np.nanpercentile(data, 99) if cmins[i] == cmaxs[i]: cmins[i] = cmaxs[i]-1 plot_lib.make_im_png(data, pngfile, cmaps[i], titles[i], cmins[i], cmaxs[i]) #%% Finish elapsed_time = time.time()-start hour = int(elapsed_time/3600) minite = int(np.mod((elapsed_time/60),60)) sec = int(np.mod(elapsed_time,60)) print("\nElapsed time: {0:02}h {1:02}m {2:02}s".format(hour,minite,sec)) print('\n{} Successfully finished!!\n'.format(os.path.basename(argv[0]))) print('Output directory: {}\n'.format(os.path.relpath(tsadir))) #%% main if __name__ == "__main__": sys.exit(main())
[]
2024-01-10
robzeh/genai_hackathon
gpt-4.py
import os import whisper from openai import OpenAI client = OpenAI( api_key=os.environ.get("OPENAI_API_KEY") ) def read_text_file(file_path): with open(file_path, 'r') as file: return file.read() text_content = read_text_file('all_text.txt') chat_completion = client.chat.completions.create( messages=[ { "role": "system", "content": "You are a helpful assistant.", }, { "role": "system", "content": "Can you list general categories, desired service, common types of information for each category (other than patient identification)? Make your response organized.", }, { "role": "user", "content": text_content } ], model="gpt-4", ) print(chat_completion)
[ "Can you list general categories, desired service, common types of information for each category (other than patient identification)? Make your response organized.", "You are a helpful assistant." ]
2024-01-10
robzeh/genai_hackathon
whisp.py
import os import whisper from openai import OpenAI # load model model = whisper.load_model("medium") files = os.listdir("./sample_audio") for f in files: result = model.transcribe(f"./sample_audio/{f}") print(result) with open(f"./sample_audio_transcripts/{f}-transcript.txt", "w") as file: file.write(result["text"])
[]
2024-01-10
JMousqueton/ransomware.live
analyse_negotiation.py
# Pre version to analyse ransom negotiation with chat GPT import json import openai import argparse import os from dotenv import load_dotenv # Load OpenAI API key from .env file load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') def read_json_file(filename): with open(filename, 'r') as file: return json.load(file) def ask_openai(question, content): response = openai.Completion.create( engine="text-davinci-002", prompt=f"{content}\n\n{question}", max_tokens=150 ) return response.choices[0].text.strip() def extract_details_from_json(json_content): # Extract ransom demand ransom_demand_question = "How much was the ransom demand, answer only the figure of the amount?" ransom_demand = ask_openai(ransom_demand_question, json_content) print(f"Ransom Demand: {ransom_demand}") # Extract negotiated ransom negotiated_ransom_question = "How much was the negotiated ransom, answer only the figure of the amount?" negotiated_ransom = ask_openai(negotiated_ransom_question, json_content) print(f"Negotiated Ransom: {negotiated_ransom}") # Check if victim paid the ransom paid_ransom_question = "Did the victim pay the ransom, answer only yes or no?" paid_ransom = ask_openai(paid_ransom_question, json_content) print(f"Paid Ransom: {paid_ransom}") def main(): parser = argparse.ArgumentParser(description='Analyse negotiation json file file using ChatGPT.') parser.add_argument('filename', help='Path to the JSON file.') args = parser.parse_args() json_content = read_json_file(args.filename) extract_details_from_json(str(json_content)) if __name__ == "__main__": main()
[ "PLACEHOLDER\n\nPLACEHOLDER" ]
2024-01-10
JMousqueton/ransomware.live
updatecountry.py
import openai import json import os import re from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() # Get the API key from the environment variables api_key = os.getenv("OPENAI_API_KEY") # Check if the API key is available if api_key is None: raise ValueError("API key not found in the .env file") # Open the JSON file for reading with open('posts.json', 'r') as json_file: # Load the JSON data from the file data = json.load(json_file) # Loop through each post and update the "country" field if it's empty for post in data: if not post["country"]: # Extract the country code based on post_title prompt = f"From which country is based '{post['post_title']}'? Give me only the country code." response = openai.Completion.create( engine="text-davinci-002", prompt=prompt, max_tokens=5, # Adjust as needed api_key=api_key ) # Extract the country code from the API response response_text = response.choices[0].text.strip() # Extract the country code from the response text #country_code = response_text.split("code is ")[-1].strip('" ') country_code = country_code = re.search(r'(?<=code\sis\s)[A-Z]{2}(?="\.)', response_text ).group() # If country code is still empty, ask based on the description if not country_code: prompt = f"Based on this description: '{post['description']}' can you tell me in which country is based the company described ? Give me only the country code." response = openai.Completion.create( engine="text-davinci-002", prompt=prompt, max_tokens=5, # Adjust as needed api_key=api_key ) # Extract the country code from the response response_text = response.choices[0].text.strip() country_code = country_code = re.search(r'(?<=code\sis\s)[A-Z]{2}(?="\.)', response_text ).group() # Update the "country" field with the extracted country code if country_code: post["country"] = country_code # Save the updated data back to the JSON file with open('posts.json', 'w') as json_file: json.dump(data, json_file, indent=4) print("Country codes inserted into the 'country' field for posts with empty country.")
[ "Based on this description: 'PLACEHOLDER' can you tell me in which country is based the company described ? Give me only the country code.", "From which country is based 'PLACEHOLDER'? Give me only the country code." ]
2024-01-10
leoshum/FL_Python_Scripts
frontline-commit-analyzer~codeReview.py
import openai import tiktoken import os from openpyxl import load_workbook class CodeReviewProvider: def __init__(self, chat_completion=False): self.chat_completion = chat_completion openai.api_key = os.environ.get("OPENAI_API_TOKEN") with open(f"{os.path.dirname(__file__)}\\preprompt.txt", "r") as file: self.prepromt = file.read() with open(f"{os.path.dirname(__file__)}\\c-sharp-issues.txt", "r") as file: self.csharp_preprompt = file.read() with open(f"{os.path.dirname(__file__)}\\sql-issues.txt", "r") as file: self.sql_preprompt = file.read() with open(f"{os.path.dirname(__file__)}\\angular-issues.txt", "r") as file: self.angular_preprompt = file.read() with open(f"{os.path.dirname(__file__)}\\js-issues.txt", "r") as file: self.js_preprompt = file.read() with open(f"{os.path.dirname(__file__)}\\binary-answer-preprompt.txt", "r") as file: self.binary_prepromt = file.read() def get_chat_completion_answer(self, prompt): response = openai.ChatCompletion.create( model="gpt-4-0613", messages=[ {"role": "user", "content": prompt} ] ) return response['choices'][0]['message']['content'] def get_completion_answer(self, prompt): model_engine = "text-davinci-003" encoding = tiktoken.get_encoding("p50k_base") max_tokens = 4097 - len(encoding.encode(prompt)) if max_tokens < 0: max_tokens = 4097 completion = openai.Completion.create( engine=model_engine, prompt=prompt, max_tokens=max_tokens, temperature=0.5, top_p=1, frequency_penalty=0, presence_penalty=0 ) return completion.choices[0].text.strip() def get_bot_answer(self, prepromt, code, file_path, binary_answer=False): file_ext = os.path.splitext(file_path)[1] ext_to_excluede = [".xml", ".rdlc", ".resx", ".json", ".md", ".csproj", ".sln"] if file_ext in ext_to_excluede: return "Skipped" code_issues = "" if file_ext == ".cs": code_issues = self.csharp_preprompt elif file_ext == ".sql": code_issues = self.sql_preprompt elif file_ext == ".ts": code_issues = self.angular_preprompt elif file_ext == ".js": code_issues = self.js_preprompt else: code_issues = prepromt prompt = "" if binary_answer: prompt = f"{self.binary_prepromt}\n{code}" else: prompt = f"{code_issues}\n{code}" result = "" if self.chat_completion: result = self.get_chat_completion_answer(prompt) else: result = self.get_completion_answer(prompt) return result def get_code_review(self, code, file_path): return self.get_bot_answer(self.prepromt, code, file_path) def get_binary_answer(self, review, file_path): return self.get_bot_answer(self.binary_prepromt, review, file_path, binary_answer=True) def main(): code_review = CodeReviewProvider(chat_completion=True) file_name = f"{os.path.dirname(__file__)}\\code_issues.xlsx" wb = load_workbook(file_name, data_only=True) wb_sheet = wb.active file_ext = ".md" for row in wb_sheet.iter_rows(): if row[0].value in ["C#", "JS/TS/Angular", "SQL"]: file_ext = row[1].value else: row[4].value = code_review.get_code_review(row[0].value, f"https://api.github.com/repos/octokit/octokit.rb/contents/README{file_ext}") row[5].value = code_review.get_binary_answer(row[0].value, f"https://api.github.com/repos/octokit/octokit.rb/contents/README{file_ext}") wb.save(file_name) if __name__ == "__main__": main()
[ "PLACEHOLDER\nPLACEHOLDER" ]
2024-01-10
ContextualAI/HALOs
compare.py
# Copyright (c) 2023 Contextual AI, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Compare a candidate model to some baseline model by using GPT4 as an judge. Typical use is python compare.py -f samples/sft_llama7b.json -mc 512 -bk chosen -ck policy -r result.jsonl -j gpt-4-0613 where -f is a JSON file of generations, where the "samples" key maps to a list of dicts of the form { history_key: the prompt, baseline_key: the generation by the baseline (this can be model-written (Anthropic-HH) or human-written (SHP)), candidate_key: the generation by the candidate model you want to evaluate, } - mc denotes the maximum number of comparisons to make between baseline_key and candidate_key (optional) - bk is the baseline model's key in the dict (optional, default: chosen) - ck is the candidate model's key in the dict (optional, default: policy) - r is the JSONL file to which to append the result, a JSON dict containing the metadata, the number of winning matchups by each model, and the lengths of all outputs - j is the version of GPT to use as a judge (optional, default: gpt-4-0613) To overwrite the template used to evaluate with GPT-4 as a judge, subclass PromptTemplate. The default template asks GPT-4 to pick the response that is "more helpful, harmless, and concise", since helpfulness and harmlessness are the two key objectives of model alignment and GPT-4 has a bias for longer outputs by default. If GPT-4's response does not contain 'Response 1' or 'Response 2' (case-insensitive), then we assume that no winner is picked and it does not count as a win for either model. Therefore the number of baseline wins and the number of candidate wins add up to less total # of comparisons. """ import os import openai import random import json import numpy as np import re import time import signal from dataclasses import dataclass from scipy.stats import binomtest, binom from math import ceil, floor from typing import Dict, Tuple from collections import defaultdict from datetime import datetime from transformers import AutoTokenizer client = openai.OpenAI( api_key=os.environ.get("OPENAI_API_KEY"), ) import argparse parser = argparse.ArgumentParser() parser.add_argument('--file', '-f', help="JSON file with the generated samples; list of dicts containing candidate, baseline, and history as keys", type= str) parser.add_argument('--candidate_key', '-ck', help="model that you want to test; should be a key in the JSON dicts", type=str, default='policy') parser.add_argument('--baseline_key', '-bk', help="model that you want to use as a baseline; should be a key in the JSON dicts", type=str, default='chosen') parser.add_argument('--history_key', '-hk', help="key for prompt; should be a key in the JSON dicts", type=str, default='prompt') parser.add_argument('--labels', '-l', help="used to enumerate the responses being compared in the GPT-4 API call (e.g., Response 1, Response A)", type=str, default='12') parser.add_argument('--seed', '-s', help="seed for GPT eval", type=int, default=0) parser.add_argument('--sleep_time', '-st', help="how long to sleep to prevent rate limit hit", type=int, default=0.5) parser.add_argument('--max_comp', '-mc', help="maximum number of comparisons to make", type=int, default=None) parser.add_argument('--verbose', '-v', help="detailed outputs", type=bool, default=True) parser.add_argument('--results_file', '-r', help="JSONL file to append to", type=str, default='results.jsonl') parser.add_argument('--judge', '-j', help="version of GPT-4 used as judge", type=str, default='gpt-4-0613') class APITimeoutException(Exception): pass @dataclass class PromptTemplate: """ Prompt generator for comparing the outputs of any number of models using GPT-4 as a judge. """ models: Tuple[str] # list of models under consideration labels: str # list of labels to assign to models (e.g., "12345") seed: int # random seed verbose: bool human_prefix: str="\n<|user|>\n" assistant_prefix: str="\n<|assistant|>\n" # Tulu format; modify as needed def __post_init__(self): random.seed(self.seed) def shuffle(self): """ Shuffle the list of models under consideration. This is to correct for any bias GPT-4 might have in picking the first/last response. """ random.shuffle(self.models) def clean_response(self, response): """ Truncate any hanging sentence (not ending in a ?!.) and return the cleaned response. """ match = re.search(r'[.!?](?=[^.!?]*$)', response) if match: return response[:match.start() + 1] else: return response def format(self, history: str, samples: Dict[str, str]) -> str: """ Format samples into a given prompt. Overwrite in subclass as needed. Args: - history: the input/instruction - samples: a dictionary mapping models to their generations Returns: A list of messages to send to the GPT-4 API. Each item is a dictionary containing the role of the speaker and the candidate text. """ self.shuffle() history = history[:history.rfind(self.assistant_prefix)].strip() messages = [{"role": "user", "content": f"Here is a conversation between {self.human_prefix.strip()} and {self.assistant_prefix.strip()}.\n\n" + history }] prompt = [f'{self.assistant_prefix.strip()} can now choose from different responses.'] for i,m in enumerate(self.models): response = self.clean_response(samples[m]) prompt.append(f'Response {self.labels[i]}: {response}\nEND OF RESPONSE {self.labels[i]}') prompt.append("Between these two responses, which response is more helpful, harmless, and concise? Pick one.") messages.append({ "role": "user", "content": "\n\n".join(prompt), }) return messages def get_model_choice_from_response(self, response) -> str: """ Given a response from the GPT-4 evaluator, identify and return the model it chose. Args: - response: response from calling GPT-4 API Returns: One of the models in self.models (or None if GPT-4's choice cannot be inferred). """ completion = response.choices[0].message.content answer = re.search(r'response (.).*', completion, re.IGNORECASE) if self.verbose: print(completion) if answer is None: return None idx = self.labels.index(answer.group(1)) return self.models[idx] def get_preferred_model(history: str, samples: Dict[str, str], prompt_template: PromptTemplate, judge: str, rate_limit_size: int=1000) -> str: """ Find the model whose generation is most preferred by the judge. Args: - history: prompt used to condition generations - samples: generations for the given history, indexed by model name - prompt_template: instance of PromptTemplate - judge: one of the OpenAI chat models - rate_limit_size: maximum number of characters that can be in any message to avoid rate limit problem (tokens is ~ 1/3 of chars) Returns: A 2-tuple of the evaluation completion and the name of the more preferred model. """ # Set up a timeout handler def timeout_handler(signum, frame): """Handler for when OpenAI call takes too long.""" raise APITimeoutException("API call took too long") signal.signal(signal.SIGALRM, timeout_handler) signal.alarm(10) try: response = client.chat.completions.create( model=judge, messages=prompt_template.format(history, samples), temperature=0, max_tokens=10, seed=prompt_template.seed, ) signal.alarm(0) # Cancel the alarm since the call completed within the timeout return prompt_template.get_model_choice_from_response(response) except ValueError: print("The chosen response could not be determined.") pass except APITimeoutException: pass except openai.APIConnectionError as e: print("The server could not be reached.") print(e.__cause__) # an underlying Exception, likely raised within httpx. except openai.RateLimitError as e: print("A 429 status code was received; we should back off a bit.") signal.alarm(0) time.sleep(5) except openai.APIStatusError as e: print("Another non-200-range status code was received") print(e.response) finally: signal.alarm(0) return None if __name__ == "__main__": args = parser.parse_args() samples = json.load(open(args.file)) prompt_template = PromptTemplate( [args.candidate_key, args.baseline_key], args.labels, args.seed, verbose=args.verbose, human_prefix=samples['config']['human_prefix'], assistant_prefix=samples['config']['assistant_prefix'] ) tokenizer = AutoTokenizer.from_pretrained(samples['config']['local_run_dir']) i = 0 lengths = defaultdict(list) wins = defaultdict(lambda: 0) for batch in samples["samples"]: if args.max_comp is not None and i >= args.max_comp: break lengths[args.candidate_key].append(len(tokenizer.encode(batch[args.candidate_key]))) lengths[args.baseline_key].append(len(tokenizer.encode(batch[args.baseline_key]))) time.sleep(args.sleep_time) choice = get_preferred_model(batch[args.history_key], batch, prompt_template, judge=args.judge) i += 1 if choice is not None: wins[choice] += 1 if args.verbose: print(wins, 'of', i, { k: np.mean(lengths[k]) for k in lengths }) results = { 'date': str(datetime.now()), 'total': i, 'seed': args.seed, 'exp_name': samples["config"]["exp_name"], 'judge' : args.judge, 'candidate': { 'name': args.candidate_key, 'wins': wins[args.candidate_key], 'lengths': lengths[args.candidate_key], }, 'baseline': { 'name': args.baseline_key, 'wins': wins[args.baseline_key], 'lengths': lengths[args.baseline_key], }, 'config' : samples["config"], } with open(args.results_file, 'a+') as f: json.dump(results, f) f.write('\n') print(wins)
[ "\n\n", "config", "assistant_prefix", "human_prefix" ]
2024-01-10
Marcos-VM-1708/Automode
version.py
# bibliophiles: import openai import time import pandas as pd import aws # ------------------------------------# # rules: openai.api_key = "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" tam_request = 50 result = aws.data # ------------------------------------# inicio_1= time.time() def request(messages): # api log: response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages= messages, max_tokens=1024, temperature=0.5) # request: return [response.choices[0].message.content, response.usage] # ------------------------------------# # process: comentarios = [] gpt_result = [] inicio = time.time() for i in range(0, len(result), tam_request): coment = result[i:i + tam_request] mensagens = [{"role": "system", "content": "preciso que você interplete o sentimento desses textos, retorne apenas positivo, neutro, negativo e 0 caso vc não consigua identificar, escreva o resultado em um formato de lista separado por virgula e sem ponto final "}] mensagens.append({"role": "user", "content": str(coment)}) try: temp = request(mensagens) comentarios.extend(coment) gpt_result.append(temp[0]) print(temp[0]) # diagnostico print(coment) #comentarios print() except openai.error.RateLimitError: print("aguardando limite") fim = time.time() time.sleep(80 - (fim - inicio)) continue # # ------------------------------------# diagnostico = [] for elemento in gpt_result: palavras = elemento.split(',') palavras = [palavra.strip('.') for palavra in palavras] diagnostico.extend(palavras) print(f"{diagnostico} tamanho{len(diagnostico)}") print(f"{comentarios} tamanho{len(comentarios)}") # ------------------------------------# # close: df = pd.DataFrame({'comentarios': comentarios, 'sentimentos': diagnostico}) pd.to_csv(df) fim_1 = time.time() print(fim_1-inicio_1) # # ------------------------------------#
[ "preciso que você interplete o sentimento desses textos, retorne apenas positivo, neutro, negativo e 0 caso vc não consigua identificar, escreva o resultado em um formato de lista separado por virgula e sem ponto final " ]
2024-01-10
Marcos-VM-1708/Automode
gpt_request.py
import openai #-------------------------------------------------- # teste de requisições, imput um texto manual e retorna o sentimento openai.api_key = "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" def request(messages): response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages= messages, max_tokens=1024, temperature=0.5 ) return [response.choices[0].message.content, response.usage] #----------------------------------------------------------- mensagens = [{"role": "system", "content": "voce é um interpletador de sentimentos, seu obijetivo é classificar em positivo, negativo ou neutro os textos enseridos"}] while True: # Ask a question question = input("texto: (\"sair\"): ") mensagens.append({"role": "user", "content": str(question)}) answer = request(mensagens) print("enviado:", question) print("ChatGPT:", answer[0], "\nCusto:\n", answer[1]) debugar = False if debugar: print("Mensagens", mensagens, type(mensagens))
[ "voce é um interpletador de sentimentos, seu obijetivo é classificar em positivo, negativo ou neutro os textos enseridos" ]
2024-01-10
ccbehera5/jstechno_Task
Jstechno~Task_2.py
from openai import OpenAI import os from dotenv import load_dotenv load_dotenv() client = OpenAI( api_key=os.environ['OPENAI_API_KEY'], ) mes=input("write your message: ") completion = client.completions.create( model="gpt-3.5-turbo", prompt=[ { "role": "user", "content": mes } ], temperature=1, max_tokens=256 ) print(completion.choices[0].text)
[]
2024-01-10
ShivaNaniSimha/OpenChat-YIC
OpenChat.py
from langchain.chat_models import ChatOpenAI from googleapiclient.discovery import build import streamlit as st from langchain.schema import HumanMessage, SystemMessage from key import youtube_api_key,chat_apikey #set up your openai api key. import os os.environ["OPENAI_API_KEY"]=chat_apikey chat=ChatOpenAI(temperature=0.9) #web framework st.title(":orange[OpenChat]") user_prompt = st.chat_input("Enter your prompt ") #Chatbot Interaction if user_prompt: messages = [ SystemMessage( content='''You are a helpful OpenChat assistant where as an AI language model, trained on enormous data like chatgpt and google bard.And you are founded by shiva nani and developed by the openchat developers. for every single task you need to respond accordingly and you should aslo understand the follow up messages,remember this instruction particularly. ''' ), HumanMessage( content=user_prompt ) ] #this gives us only the content. response_list=[] for message in chat(messages): response_list.append(message[1]) assistant_response=response_list[0] #Integrating youtube inks using youtube data api youtube = build('youtube', 'v3', developerKey=youtube_api_key) video_search_response = youtube.search().list( part="snippet", q=user_prompt, type="video", order="relevance" ).execute() videos_list=[] for item in video_search_response['items']: video_id = item['id']['videoId'] videos_list.append(video_id) #session_state is used to show the conversation history for that session if "history" not in st.session_state: st.session_state.history=[] st.session_state.history.append([user_prompt,assistant_response,videos_list]) print(st.session_state.history) for prompt,response,video in st.session_state.history: user_message=st.chat_message("User") user_message.write(prompt) assistant_message = st.chat_message('Assistant') assistant_message.write(response) assistant_message.write("Here are few videos from youtube based on your search.") for url in range(0,5): assistant_message.video(f"https://www.youtube.com/watch?v={video[url]}")
[ "Enter your prompt ", "You are a helpful OpenChat assistant where as an AI language model,\n trained on enormous data like chatgpt and google bard.And you are founded by shiva nani \n and developed by the openchat developers.\n for every single task you need to respond accordingly and you should aslo understand\n the follow up messages,remember this instruction particularly.\n " ]
2024-01-10
cananeadouglas/pythonExercicios
tecnologia_assistiva~fala.py
# pip install SpeechRecognition # pip install pyaudio # sudo apt-get install python-pyaudio python3-pyaudio import openai import speech_recognition as sr import pyttsx3 import time # Initialize OpenAI API openai.api_key = "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" # Initialize the text to speech engine engine=pyttsx3.init() def transcribe_audio_to_test(filename): recogizer=sr.Recognizer() with sr.AudioFile(filename)as source: audio=recogizer.record(source) try: return recogizer.recognize_google(audio) except: print("skipping unkown error") def generate_response(prompt): response= openai.completion.create( engine="text-davinci-003", prompt=prompt, max_tokens=4000, n=1, stop=None, temperature=0.5, ) return response ["Choices"][0]["text"] def speak_text(text): engine.say(text) engine.runAndWait() def main(): while True: #Waith for user say "genius" print("Say 'Genius' to start recording your question") with sr.Microphone() as source: recognizer=sr.Recognizer() audio=recognizer.listen(source) try: transcription = recognizer.recognize_google(audio) if transcription.lower()=="genius": #record audio filename ="input.wav" print("Say your question") with sr.Microphone() as source: recognizer=sr.recognize() source.pause_threshold=1 audio=recognizer.listen(source,phrase_time_limit=None,timeout=None) with open(filename,"wb")as f: f.write(audio.get_wav_data()) #transcript audio to test text=transcribe_audio_to_test(filename) if text: print(f"yuo said {text}") #Generate the response response = generate_response(text) print(f"chat gpt 3 say {response}") #read resopnse using GPT3 speak_text(response) except Exception as e: print("An error ocurred : {}".format(e)) if __name__=="__main__": main()
[]
2024-01-10
elehman16/do-we-still-need-clinical-lms
src~zero-shot~clip~clip_gpt3.py
import json import argparse import pandas as pd import numpy as np from sklearn.metrics import f1_score, accuracy_score from datasets import Dataset, DatasetDict from tqdm import tqdm import random import os import requests import json import openai import re openai.api_key = "" openai.api_base = "" openai.api_type = "" openai.api_version = "" deployment_id="" def conversion(prediction_str: str) -> str: mapper = {'N/A': ''} if prediction_str in mapper: return mapper[prediction_str] else: return prediction_str LABEL_TYPES = ['Appointment-related followup', 'Medication-related followups', 'Other helpful contextual information', 'Lab-related followup', 'Case-specific instructions for patient', 'Procedure-related followup', 'Imaging-related followup'] LOWERCASED_TYPES = [x.lower() for x in LABEL_TYPES] def str_tags_to_binary_tensor(los): """Convert list of strings to indexed positions. """ arr = np.zeros(len(LABEL_TYPES)) for str_ in los: if not str_ in LABEL_TYPES and not str_ in LOWERCASED_TYPES: continue # It's in our list. Get the label. Mark as 1 in our label list. if str_ in LOWERCASED_TYPES: arr[LOWERCASED_TYPES.index(str_)] = 1 else: arr[LABEL_TYPES.index(str_)] = 1 return arr def load_ids(clip_path): """Load the training/val/test ids. """ tr_id = pd.read_csv(clip_path + '/train_ids.csv', header=None) vl_id = pd.read_csv(clip_path + '/val_ids.csv', header=None) te_id = pd.read_csv(clip_path + '/test_ids.csv', header=None) return set(tr_id[0].values), set(vl_id[0].values), set(te_id[0].values) def prompt_label_type(s, prompt: str) -> str: if prompt == '0': return f"Context: {s}\nLabel the above sentence as one of the following:\n\nOptions:\n-Appointment-related followup\n-Medication-related followup\n-Lab-related followup\n-Case-specific instructions for the patient\n-Procedure-related followup\n-Imaging-related followup\n-Other helpful contextual information for the patient\n-None of the above" elif prompt == '1': return f"Context: {s}\nLabel the above sentence as one of the following:\n\nOptions:\n-Appointment-related followup\n-Medication-related followup\n-Lab-related followup\n-Case-specific instructions for the patient\n-Procedure-related followup\n-Imaging-related followup\n-None of the above" elif prompt == '2': return f"Context: {s}\nLabel the above sentence as one of the following:\n\nOptions:\n-Appointment-related followup\n-Medication-related Information\n-Lab-related Information\n-Case-specific instructions for the patient\n-Procedure-related followup\n-Imaging-related followup\n-None of the above" elif prompt == '3': return f"Context: {s}\nLabel the above sentence as one or more of the following, separated by a comma:\n\nOptions:\n-Appointment-related followup\n-Medication-related Information\n-Lab-related Information\n-Case-specific instructions for the patient\n-Procedure-related followup\n-Imaging-related followup\n-None of the above" elif prompt == '4': return f"Context: {s}\nLabel the above sentence as one or more of the following, delimited by comma:\n\nOptions:\n-Appointment-related followup information\n-Medication-related followup information\n-Lab-related followup information\n-Case-specific instructions for the patient\n-Procedure-related followup information\n-Imaging-related followup information\n-None of the above" elif prompt == '5': examples = ['He has a follow-up neck CTA and appointment with [ **Month/Year ( 2 ) 1106** ] surgery on 1978-10-18 , with possible subsequent carotid stenting procedure to follow . .'] + [s] labels = ['Appointment-related followup, Imaging-related followup, Procedure-related followup'] + [""] in_context = [f"Context: {s}\nLabel the above sentence as one or more of the following, delimited by comma:\n\nOptions:\n-Appointment-related followup information\n-Medication-related followup information\n-Lab-related followup information\n-Case-specific instructions for the patient\n-Procedure-related followup information\n-Imaging-related followup information\n-None of the above\n{l}" for s, l in zip(examples, labels)] return "\n\n".join(in_context) elif prompt == '6': examples = ['He has a follow-up neck CTA and appointment with [ **Month/Year ( 2 ) 1106** ] surgery on 1978-10-18 , with possible subsequent carotid stenting procedure to follow . .', 'He is also to be seen by his primary care physician to regulate medications and to restart Plavix approximately two weeks after his surgery .', 'JP drains were left in place under his wound , with planned removal by Thoracics surgery once there was trace to no output .'] + [s] labels = ['Appointment-related followup, Imaging-related followup, Procedure-related followup', 'Appointment-related followup, Case-specific instructions for patient, Medication-related followups', 'Appointment-related followup, Other helpful contextual information'] + [""] in_context = [f"Context: {s}\nLabel the above sentence as one or more of the following, delimited by comma:\n\nOptions:\n-Appointment-related followup information\n-Medication-related followup information\n-Lab-related followup information\n-Case-specific instructions for the patient\n-Procedure-related followup information\n-Imaging-related followup information\n-None of the above\n{l}" for s, l in zip(examples, labels)] return "\n\n".join(in_context) elif prompt == '7': examples = ['He has a follow-up neck CTA and appointment with [ **Month/Year ( 2 ) 1106** ] surgery on 1978-10-18 , with possible subsequent carotid stenting procedure to follow . .', 'He is also to be seen by his primary care physician to regulate medications and to restart Plavix approximately two weeks after his surgery .', 'JP drains were left in place under his wound , with planned removal by Thoracics surgery once there was trace to no output .'] + [s] labels = ['Appointment-related followup, Imaging-related followup, Procedure-related followup', 'Appointment-related followup, Case-specific instructions for patient, Medication-related followups', 'Appointment-related followup, Other helpful contextual information'] + [""] in_context = [f"Context: {s}\nLabel the above sentence as one or more of the following, delimited by comma:\n\nOptions:\n-Appointment-related followup information\n-Medication-related followup information\n-Lab-related followup information\n-Case-specific instructions for the patient\n-Medical procedure-related followup information\n-Medical imaging-related followup information\n-None of the above\n{l}" for s, l in zip(examples, labels)] return "\n\n".join(in_context) elif prompt == '8': examples = ['He has a follow-up neck CTA and appointment with [ **Month/Year ( 2 ) 1106** ] surgery on 1978-10-18 , with possible subsequent carotid stenting procedure to follow . .', 'He is also to be seen by his primary care physician to regulate medications and to restart Plavix approximately two weeks after his surgery .', 'JP drains were left in place under his wound , with planned removal by Thoracics surgery once there was trace to no output .'] + [s] labels = ['Appointment-related followup, Imaging-related followup, Procedure-related followup', 'Appointment-related followup, Case-specific instructions for patient, Medication-related followups', 'Appointment-related followup, Other helpful contextual information'] + [""] in_context = [f"Context: {s}\nLabel the above sentence as one or more of the following, delimited by comma:\n\nOptions:\n-Appointment-related followup information\n-Medication-related followup information\n-Lab-related followup information\n-Case-specific instructions for the patient\n-Medical procedure-related followup information\n-Medical imaging-related followup information\n-None of the above\n{l}" for s, l in zip(examples, labels)] return "\n\n".join(in_context) elif prompt == '9': return f"Tag the following sentence as one OR more of the following. If there are multiple options, separate each by a comma.\n\nOptions:\n-Appointment-related followup\n-Medication-related followup\n-Lab-related followup\n-Case-specific instructions for the patient\n-Procedure-related followup\n-Imaging-related followup\n-Other helpful contextual information for the patient\n-None of the above\n\nSentence: {s}Tags: " else: raise ValueError(f"Invalid prompt {prompt}") def tokenize_data(df: pd.DataFrame, prompt: str) -> pd.DataFrame: """Split the data into chunks of `max_seq_length`. Attempt to take an equal number of tokens before and after the text. @param tokenizer @param replace_text_with_tags @param max_seq_length """ inputs, labels, ids = [], [], [] j = 0 for idx, row in tqdm(df.iterrows(), total=df.shape[0]): text = row.text # for s in row.labels: sent = row.text[s[0]:s[1]] all_prompts = prompt_label_type(sent, prompt) idx_labels = str_tags_to_binary_tensor(s[2].split(", ")) inputs.append(all_prompts) labels.append(idx_labels) ids.append(row.note_id) j += 1 tokenized_inputs = {} tokenized_inputs['inputs'] = inputs tokenized_inputs['idx_labels'] = labels tokenized_inputs['id'] = ids return pd.DataFrame.from_dict(tokenized_inputs) def load_data(clip_path) -> pd.DataFrame: """Load the data from the sentences.csv. """ df = pd.read_csv(clip_path + '/sentence_level.csv') df['sentence'] = [eval(x) for x in df['sentence']] # type: ignore df['labels'] = [eval(x) for x in df['labels']] # type: ignore # Combine the text, remember sentence offsets. docs = {'note_id': [], 'text': [], 'labels': []} for id, group in df.groupby('doc_id'): text, sentence_offsets = "", [] for _, row in group.iterrows(): sent = ' '.join(row['sentence']) # Remove the weird `I-` in front of the labels row['labels'] = [x[2:] for x in row['labels']] row['labels'].sort() labels = ', '.join(row['labels']) sentence_offsets.append((len(text), len(text) + len(sent), labels)) # Now join the text text += sent + ' ' docs['note_id'].append(id) docs['text'].append(text) docs['labels'].append(sentence_offsets) return pd.DataFrame(docs) def get_data(clip_path, prompt) -> DatasetDict: """Get the CLIP data. @param tokenizer is a Huggingface tokenizer. @param clip_path is the path to the clip data. @param replace_text_with_tags determines whether or not we modify the text to remove PHI. @param max_seq_length is the maximum sequence length.""" df = load_data(clip_path) tr_id, vl_id, te_id = load_ids(clip_path) # Split the data into chunks + into train/val/test model_inputs = tokenize_data(df, prompt) train = model_inputs[model_inputs['id'].isin(tr_id)] val = model_inputs[model_inputs['id'].isin(vl_id)] test = model_inputs[model_inputs['id'].isin(te_id)] # Create the dataset objects and return input_dict = {'train': None, 'val': Dataset.from_pandas(val), 'test': Dataset.from_pandas(test)} return input_dict def compute_metrics_prompt(predictions, examples, prompt): """Given some predictions, calculate the F1. """ # Decode the predictions + labels decoded_predictions = predictions mapper = { 'Appointment-related followup': LABEL_TYPES[0], 'Appointment-related followup information': LABEL_TYPES[0], 'Medication-related followup': LABEL_TYPES[1], 'Medication-related Information': LABEL_TYPES[1], 'Medication-related followup information': LABEL_TYPES[1], 'Lab-related Information': LABEL_TYPES[3], 'Lab-related followup information': LABEL_TYPES[3], 'Lab-related instructions for the patient': LABEL_TYPES[3], 'Case-specific instructions for the patient': LABEL_TYPES[4], 'Procedure-related followup': LABEL_TYPES[5], 'Imaging-related followup': LABEL_TYPES[6], 'Procedure-related followup information': LABEL_TYPES[5], 'Imaging-related followup information': LABEL_TYPES[6], 'Medical procedure-related followup information': LABEL_TYPES[5], 'Medical imaging-related followup information': LABEL_TYPES[6], 'Other helpful contextual information': LABEL_TYPES[2] } preds = [] for d in decoded_predictions: str_pred = [] for p in d.split(', '): if p in mapper: str_pred.append(mapper[p]) else: str_pred.append(p) preds.append(", ".join(str_pred)) preds = [str_tags_to_binary_tensor([x]) for x in preds] labels = examples['idx_labels'] return { 'macro_f1': f1_score(labels, preds, average='macro'), 'micro_f1': f1_score(labels, preds, average='micro'), 'per_class': f1_score(labels, preds, average=None) } def query_openai_all(all_inputs): all_answers = [] for i in range(0, len(all_inputs), 20): response = openai.Completion.create(engine=deployment_id, prompt=all_inputs[i:i+20], max_tokens=50, temperature=0) all_answers.extend([resp['text'].strip() for resp in response['choices']]) return all_answers if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--clip-dir', type=str, required=True) parser.add_argument('--seed', type=int, default=42) parser.add_argument('--prompt', type=str, required=True) parser.add_argument('--set', required=True, choices=['dev', 'test']) args = parser.parse_args() print(f"Running with {args.seed}") # Get data and use the tokenizer on the data tokenized_datasets = get_data(args.clip_dir, args.prompt) random.seed(0) if args.set == 'dev': ds = tokenized_datasets['val'] ds.shuffle() ds = ds[:200] else: ds = tokenized_datasets['test'] ds.shuffle() ds = ds[:int(len(ds) * 0.25)] predictions = query_openai_all(ds['inputs']) metrics = compute_metrics_prompt(predictions, ds, args.prompt) print(metrics)
[]
2024-01-10
elehman16/do-we-still-need-clinical-lms
src~zero-shot~radqa~radqa_gpt_3.py
import json import argparse import pandas as pd import numpy as np import random from sklearn.metrics import f1_score, accuracy_score from evaluate import load squad_metric = load("squad_v2") import os import requests import json import openai from sklearn.utils import shuffle openai.api_key = "" openai.api_base = "" openai.api_type = "" openai.api_version = "" deployment_id="" def conversion(prediction_str: str) -> str: mapper = {'N/A': ''} if prediction_str in mapper: return mapper[prediction_str] else: return prediction_str def precision_filter(pred: str, context: str) -> str: mapper = {'N/A': ''} if pred in mapper: return mapper[pred] elif not pred in context: return '' else: return pred def compute_metrics_prompt(context, predictions, answers): """Given some predictions, calculate the F1. """ # Decode the predictions + labels clean_predictions = [{'prediction_text': conversion(x), 'id': str(i), 'no_answer_probability': -1} for i, x in enumerate(predictions)] precision = [{'prediction_text': precision_filter(x, context[i]), 'id': str(i), 'no_answer_probability': -1} for i, x in enumerate(predictions)] references = [{'id': str(i), 'answers': l} for i, l in enumerate(answers)] results = squad_metric.compute(predictions=clean_predictions, references=references) clean_results = squad_metric.compute(predictions=precision, references=references) return {'reg': results, 'precision': clean_results} def format_single_example(e, prompt: str) -> str: if prompt == '0': return f"Context: {e['context']}\nQuestion: {e['question']}\nAnswer:" elif prompt == '1': return f"Context: {e['context']}\nGiven the above context, {e['question']}? Answer N/A if there is no answer." elif prompt == '2': return f"Answer N/A if there is no answer.\n\nContext: {e['context']}\nQuestion:{e['question']}\nAnswer:" elif prompt == '3': return f"Context: {e['context']}\nGiven the above context, {e['question']}? Answer N/A if there is no answer or give a quote from the context: " elif prompt == '4': return f"Context: {e['context']}\nGiven the above context, {e['question']}?\nAnswer: \"" elif prompt == '5': return f"Context: {e['context']}\nGiven the above context, {e['question']}? Give a quote from the text: " elif prompt == '6': prompt = "Context: IMPRESSION: Subdural hematomas with blood products of different ages.\n Question vescular abnormality in left suprasellar space. Findings were\n discussed with Dr. [**Last Name (STitle) 8620**] at 9:25 am on [**2191-8-5**]. An MRI of the brain and MRA\n of the COW is recommended.\nGiven the above context, Is there any significant change in bleeding? Answer N/A if there is no answer or give a quote from the context: N/A\n\n" return prompt + f"Context: {e['context']}\nGiven the above context, {e['question']}? Answer N/A if there is no answer or give a quote from the context: " elif prompt == '7': prompt = "Context: FINAL REPORT\nCHEST SINGLE AP FILM:\n\nHISTORY: ICD placement and shortness of breath.\n\nThere is a right sided dual chamber ICD with leads unchanged in location in\n this single view compared with the prior film of [**2101-5-25**]. No pneumothorax.\n There is cardiomegaly with upper zone redistribution, bilateral pleural\n effusions and associated bibasilar atelectases. Consolidation at the lung\n bases cannot be ruled out.\nGiven the above context, Is there any significant change from prior visit? Answer N/A if there is no answer or give a quote from the context: ICD with leads unchanged in location\n\n" prompt += f"Context: {e['context']}\nGiven the above context, {e['question']}? Answer N/A if there is no answer or give a quote from the context: " return prompt elif prompt == '8': prompt = "Context: IMPRESSION: Subdural hematomas with blood products of different ages.\n Question vescular abnormality in left suprasellar space. Findings were\n discussed with Dr. [**Last Name (STitle) 8620**] at 9:25 am on [**2191-8-5**]. An MRI of the brain and MRA\n of the COW is recommended.\nGiven the above context, Is there any significant change in bleeding? Answer N/A if there is no answer or give a quote from the context: N/A\n\nContext: FINAL REPORT\nCHEST SINGLE AP FILM:\n\nHISTORY: ICD placement and shortness of breath.\n\nThere is a right sided dual chamber ICD with leads unchanged in location in\n this single view compared with the prior film of [**2101-5-25**]. No pneumothorax.\n There is cardiomegaly with upper zone redistribution, bilateral pleural\n effusions and associated bibasilar atelectases. Consolidation at the lung\n bases cannot be ruled out.\nGiven the above context, Is there any significant change from prior visit? Answer N/A if there is no answer or give a quote from the context: ICD with leads unchanged in location\n\n" prompt += f"Context: {e['context']}\nGiven the above context, {e['question']}? Answer N/A if there is no answer or give a quote from the context: " return prompt elif prompt == '9': prompt = "Context: IMPRESSION: Subdural hematomas with blood products of different ages.\n Question vescular abnormality in left suprasellar space. Findings were\n discussed with Dr. [**Last Name (STitle) 8620**] at 9:25 am on [**2191-8-5**]. An MRI of the brain and MRA\n of the COW is recommended.\nGiven the above context, Is there any significant change in bleeding? Answer N/A if there is no answer or give a quote from the context: N/A\n\n" prompt += "Context: FINAL REPORT\nCHEST SINGLE AP FILM:\n\nHISTORY: ICD placement and shortness of breath.\n\nThere is a right sided dual chamber ICD with leads unchanged in location in\n this single view compared with the prior film of [**2101-5-25**]. No pneumothorax.\n There is cardiomegaly with upper zone redistribution, bilateral pleural\n effusions and associated bibasilar atelectases. Consolidation at the lung\n bases cannot be ruled out.\nGiven the above context, Is there any significant change from prior visit? Answer N/A if there is no answer or give a quote from the context: ICD with leads unchanged in location\n\n" prompt += f"Context: {e['context']}\nGiven the above context, {e['question']}? Answer N/A if there is no answer or give a quote from the context: " return prompt elif prompt == '10': prompt = f"Context: {e['context']}\nGiven the above context, {e['question']}?\nGive an answer from the text, but do not reply if there is no answer: " return prompt elif prompt == '11': if e['question'][-1] == '?': e['question'] = e['question'][:-1] return f"Radiology Report: {e['context']}\nGiven the above radiology report, {e['question']}? Answer N/A if there is no answer or give a quote from the context: " elif prompt == '12': begin = "Find the answer to the question based on the context below. Provided a quote from the context, otherwise write N/A.\n\n" begin += f"Context: {e['context']}\nGiven the above context, {e['question']} Answer:" return begin elif prompt == '13': begin = "Find the answer to the question based on the context below. Provided a quote from the context, otherwise write N/A.\n\n" begin += f"Context: {e['context']}\nQuestion: {e['question']} Answer:" return begin elif prompt == '14': begin = "Find the answer to the question based on the context below. Provided a quote from the context, otherwise write N/A.\n\n" begin += "Context: IMPRESSION: Subdural hematomas with blood products of different ages.\n Question vescular abnormality in left suprasellar space. Findings were\n discussed with Dr. [**Last Name (STitle) 8620**] at 9:25 am on [**2191-8-5**]. An MRI of the brain and MRA\n of the COW is recommended. Is there any significant change in bleeding? Answer: N/A\n\n" begin += "Context: FINAL REPORT\nCHEST SINGLE AP FILM:\n\nHISTORY: ICD placement and shortness of breath.\n\nThere is a right sided dual chamber ICD with leads unchanged in location in\n this single view compared with the prior film of [**2101-5-25**]. No pneumothorax.\n There is cardiomegaly with upper zone redistribution, bilateral pleural\n effusions and associated bibasilar atelectases. Consolidation at the lung\n bases cannot be ruled out.\nQuestion: Is there any significant change from prior visit? Answer: ICD with leads unchanged in location\n\n" begin += f"Context: {e['context']}\nQuestion: {e['question']} Answer:" return begin elif prompt == '15': begin = "Find the answer to the question based on the context below. Provided a quote from the context, otherwise write N/A.\n\n" begin += "Context: IMPRESSION: Subdural hematomas with blood products of different ages.\n Question vescular abnormality in left suprasellar space. Findings were\n discussed with Dr. [**Last Name (STitle) 8620**] at 9:25 am on [**2191-8-5**]. An MRI of the brain and MRA\n of the COW is recommended.\nQuestion: Is there any significant change in bleeding?\nAnswer: N/A\n\n" begin += "Context: FINAL REPORT\nCHEST SINGLE AP FILM:\n\nHISTORY: ICD placement and shortness of breath.\n\nThere is a right sided dual chamber ICD with leads unchanged in location in\n this single view compared with the prior film of [**2101-5-25**]. No pneumothorax.\n There is cardiomegaly with upper zone redistribution, bilateral pleural\n effusions and associated bibasilar atelectases. Consolidation at the lung\n bases cannot be ruled out.\nQuestion: Is there any significant change from prior visit?\nAnswer: ICD with leads unchanged in location\n\n" begin += 'Context: IMPRESSION: 1) Large constricting circumferential mass is present in the\n antrum of the stomach, causing massive dilatation of the body and fundus of\n the stomach. Adenopathy is present in the gastrohepatic ligament. No\n definite metastatic lesions are seen in the liver, although there is a tiny\n low attenuation lesion in the posterior segment of the right hepatic lobe\n which is too small to characterize. No other evidence of metastatic disease\n is seen in the torso. 2) Markedly enlarged prostate. 3) Bilateral small\n anastomotic aneurysms at the junction of the bypass graft with the common\n femoral arteries. 4) Small fat-containing left inguinal hernia.\nQuestion: Did the gastric cancer metastasize to chest.\nAnswer: No other evidence of metastatic disease\n is seen in the torso\n\n' begin += f"Context: {e['context']}\nQuestion: {e['question']}\nAnswer:" return begin else: raise ValueError("Prompt id not implemented") def preprocess_function(examples, prompt: str): """Format the examples and then tokenize them. """ inputs = [format_single_example(e, prompt) for _, e in examples.iterrows()] return {'inputs': inputs} def format_csv(df: pd.DataFrame): df['answers'] = [eval(x) for x in df['answers']] #type: ignore return df def get_data(radqa_path: str): """Get the radqa data. """ train = format_csv(pd.read_csv(radqa_path + '/train.csv')) val = format_csv(pd.read_csv(radqa_path + '/dev.csv')) val = shuffle(val) test = format_csv(pd.read_csv(radqa_path + '/test.csv')) return {"train": train, "val": val, "test": test} def get_prompted_data(dataset_dict, prompt: str): """Tokenize stuff. """ processed_dict = {} for name, dataset_ in dataset_dict.items(): processed_item = preprocess_function(dataset_, prompt) processed_item['answers'] = dataset_['answers'].values processed_item['context'] = dataset_['context'].values processed_dict[name] = processed_item return processed_dict def query_openai_all(all_inputs): all_answers = [] for i in range(0, len(all_inputs), 20): response = openai.Completion.create(engine=deployment_id, prompt=all_inputs[i:i+20], max_tokens=256, temperature=0) all_answers.extend([resp['text'].strip() for resp in response['choices']]) return all_answers if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--radqa-dir', type=str, required=True) parser.add_argument('--seed', type=int, default=42) parser.add_argument('--output-dir', type=str) parser.add_argument('--prompt', type=str) parser.add_argument('--set', required=True, choices=['dev', 'test']) args = parser.parse_args() print(f"Running with {args.seed}") # Get data and use the tokenizer on the data dataset_dict = get_data(args.radqa_dir) prompted_dataset = get_prompted_data(dataset_dict, args.prompt) if args.set == 'dev': ds = prompted_dataset['val'] selection = 200 ds = {'inputs': ds['inputs'][:selection], 'answers': ds['answers'][:selection], 'context': ds['context'][:selection]} else: ds = prompted_dataset['test'] predictions = query_openai_all(ds['inputs']) output_metrics = compute_metrics_prompt(ds['context'], predictions, ds['answers']) print(output_metrics)
[ "Context: FINAL REPORT\nCHEST SINGLE AP FILM:\n\nHISTORY: ICD placement and shortness of breath.\n\nThere is a right sided dual chamber ICD with leads unchanged in location in\n this single view compared with the prior film of [**2101-5-25**]. No pneumothorax.\n There is cardiomegaly with upper zone redistribution, bilateral pleural\n effusions and associated bibasilar atelectases. Consolidation at the lung\n bases cannot be ruled out.\nGiven the above context, Is there any significant change from prior visit? Answer N/A if there is no answer or give a quote from the context: ICD with leads unchanged in location\n\n", "Context: PLACEHOLDER\nGiven the above context, PLACEHOLDER? Answer N/A if there is no answer or give a quote from the context: ", "Context: IMPRESSION: Subdural hematomas with blood products of different ages.\n Question vescular abnormality in left suprasellar space. Findings were\n discussed with Dr. [**Last Name (STitle) 8620**] at 9:25 am on [**2191-8-5**]. An MRI of the brain and MRA\n of the COW is recommended.\nGiven the above context, Is there any significant change in bleeding? Answer N/A if there is no answer or give a quote from the context: N/A\n\n", "Context: PLACEHOLDER\nGiven the above context, PLACEHOLDER?\nGive an answer from the text, but do not reply if there is no answer: ", "Context: IMPRESSION: Subdural hematomas with blood products of different ages.\n Question vescular abnormality in left suprasellar space. Findings were\n discussed with Dr. [**Last Name (STitle) 8620**] at 9:25 am on [**2191-8-5**]. An MRI of the brain and MRA\n of the COW is recommended.\nGiven the above context, Is there any significant change in bleeding? Answer N/A if there is no answer or give a quote from the context: N/A\n\nContext: FINAL REPORT\nCHEST SINGLE AP FILM:\n\nHISTORY: ICD placement and shortness of breath.\n\nThere is a right sided dual chamber ICD with leads unchanged in location in\n this single view compared with the prior film of [**2101-5-25**]. No pneumothorax.\n There is cardiomegaly with upper zone redistribution, bilateral pleural\n effusions and associated bibasilar atelectases. Consolidation at the lung\n bases cannot be ruled out.\nGiven the above context, Is there any significant change from prior visit? Answer N/A if there is no answer or give a quote from the context: ICD with leads unchanged in location\n\n" ]
2024-01-10
elehman16/do-we-still-need-clinical-lms
src~zero-shot~mednli~mednli_gpt_3.py
import json import argparse import pandas as pd import numpy as np from sklearn.metrics import f1_score, accuracy_score from datasets import Dataset, DatasetDict from transformers import AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForSeq2Seq from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer import openai from sklearn.utils import shuffle openai.api_key = "" openai.api_base = "" openai.api_type = "" openai.api_version = "" deployment_id="" def get_mapping() -> dict: mapper1 = {'yes': 'entailment', 'no': 'contradiction', 'maybe': 'neutral', 'it is not possible to tell': 'neutral'} mapper2 = {'true': 'entailment', 'false': 'contradiction', 'inconclusive': 'neutral'} mapper3 = {'always': 'entailment', 'never': 'contradiction', 'sometimes': 'neutral'} mapper4 = {'entailment': 'entailment', 'contradiction': 'contradiction', 'neutral': 'neutral'} mapper5 = {'true': 'entailment', 'false': 'contradiction', 'neither': 'neutral'} mapper6 = {'yes': 'entailment', 'no': 'contradiction', "it's impossible to say": 'neutral', 'it is not possible to say': 'neutral'} combiner = {} mappers = [mapper1, mapper2, mapper3, mapper4, mapper5, mapper6] for m in mappers: combiner = combiner | m return combiner def format_single_example(sentence1: str, sentence2: str, prompt: str) -> str: if prompt == '0': return f"Answer entailment, neutral or contradiction.\n\nPremise: {sentence1}\nHypothesis: {sentence2}\nAnswer:" elif prompt == '1': return f'Suppose {sentence1} Can we infer that "{sentence2}"? Yes, no, or maybe?' elif prompt == '2': return f'{sentence1} Based on that information, is the claim: "{sentence2}" true, false, or inconclusive?' elif prompt == '3': return f'Given that "{sentence1}". Does it follow that "{sentence2}" Yes, no, or maybe?' elif prompt == '4': return f'Suppose it\'s true that {sentence1} Then, is "{sentence2}" always, sometimes, or never true?' elif prompt == '5': prompt = 'Answer entailment, contradiction or neutral.\nPremise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has elevated Cr\nAnswer: entailment\n\nPremise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has elevated BUN\nAnswer: neutral\n\nPremise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has normal Cr\nAnswer: contradiction\n\n' prompt += f'Premise: {sentence1}\nHypothesis: {sentence2}\nAnswer:' return prompt elif prompt == '6': prompt = 'Premise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has elevated Cr\nAnswer entailment, contradiction or neutral: entailment\n\nPremise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has elevated BUN\nAnswer entailment, contradiction or neutral: neutral\n\nPremise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has normal Cr\nAnswer entailment, contradiction or neutral: contradiction\n\n' prompt += f'Premise: {sentence1}\nHypothesis: {sentence2}\nAnswer entailment, contradiction or neutral:' return prompt elif prompt == '7': prompt = f"{sentence1} Question: {sentence2} True, False, or Neither?" return prompt elif prompt == '8': prompt = 'Given that "Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.". Does it follow that "Patient has elevated Cr" Yes, no, or maybe? Yes.\n\nGiven that "Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.". Does it follow that "Patient has elevated BUN" Yes, no, or maybe? Maybe.\n\nGiven that "Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.". Does it follow that "Patient has normal Cr" Yes, no, or maybe? No.\n\n' prompt += f'Given that "{sentence1}". Does it follow that "{sentence2}" Yes, no, or maybe?' return prompt elif prompt == '9': prompt = 'Given that "It was not associated with any shortness of breath, nausea, vomiting, or she tried standing during this episode.” Does it follow that "She had vomiting and dyspnea with this episode”? Yes, no, or maybe? No.\n\nGiven that "He has been followed by Dr. [**Last Name (STitle) 21267**] of Podiatry for chronic first toe MTP ulcer, which is now resolving.” Does it follow that "He had a chronic wound on his toe”? Yes, no, or maybe? Yes.\n\nGiven that "She had no fevers/chills/sweats prior to coming to the hosptial.” Does it follow that "Patient has a normal abdominal CT”? Yes, no, or maybe? Neutral.' prompt += f'Given that {sentence1} Does it follow that {sentence2.strip()}? Yes, no, or maybe?' return prompt elif prompt == '10': prompt = f"Does {sentence1} mean that {sentence2}?\n\n Options:\n-Yes\n-No\n-It's impossible to say" return prompt elif prompt == '11': if sentence1.strip()[-1] == '.': sentence1 = sentence1[:-1] prompt = f'Does "{sentence1}" mean that "{sentence2.strip()}"?\n\nOptions:\n-Yes\n-No\n-It\'s impossible to say' return prompt elif prompt == '12': if sentence1.strip()[-1] == '.': sentence1 = sentence1[:-1] prompt = 'Does “Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4” mean that "Patient has elevated Cr"?\n\nOptions:\n-Yes\n-No\n-It\'s impossible to say \nYes\n\nDoes “Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4” mean that "Patient has elevated BUN"?\n\nOptions:\n-Yes\n-No\n-It\'s impossible to say \nNo\n\nDoes “Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4” mean that "Patient has normal Cr"?\n\nOptions:\n-Yes\n-No\n-It\'s impossible to say \nIt’s impossible to say\n\n' actual_prompt = f'Does "{sentence1}" mean that "{sentence2.strip()}"?\n\nOptions:\n-Yes\n-No\n-It\'s impossible to say' return prompt + actual_prompt elif prompt == '13': if sentence1.strip()[-1] == '.': sentence1 = sentence1[:-1] prompt = 'Does “It was not associated with any shortness of breath, nausea, vomiting, or she tried standing during this episode” mean that "She had vomiting and dyspnea with this episode"?\n\n Options:\n-Yes\n-No\n-It\'s impossible to say \nNo\n\nDoes “He has been followed by Dr. [**Last Name (STitle) 21267**] of Podiatry for chronic first toe MTP ulcer, which is now resolving” mean that "He had a chronic wound on his toe"?\n\n Options:\n-Yes\n-No\n-It\'s impossible to say \nYes\n\nDoes “She had no fevers/chills/sweats prior to coming to the hosptial” mean that "Patient has a normal abdominal CT"?\n\n Options:\n-Yes\n-No\n-It\'s impossible to say \nIt’s impossible to say' actual_prompt = f'Does "{sentence1}" mean that "{sentence2.strip()}"?\n\nOptions:\n-Yes\n-No\n-It\'s impossible to say' return prompt + actual_prompt elif prompt == '14': prompt = f"Does Discharge Summary: {sentence1} mean that {sentence2}?\n\n Options:\n-Yes\n-No\n-It's impossible to say" return prompt else: return "" def preprocess_function(examples, prompt: str) -> tuple[list, list]: """Format the examples and then tokenize them. """ inputs = [format_single_example(s1, s2, prompt) for s1, s2 in zip(examples['sentence1'], examples['sentence2'])] targets = examples['gold_label'] return inputs, targets def read_jsonl(file_path: str): """Read the given JSONL file.""" with open(file_path) as f: data = [json.loads(line) for line in f] return data def get_data(mednli_path: str): """Get the mednli data. """ # mli_dev_v1.jsonl mli_test_v1.jsonl mli_train_v1.jsonl train = Dataset.from_list(read_jsonl(mednli_path + '/mli_train_v1.jsonl')) val = Dataset.from_list(read_jsonl(mednli_path + '/mli_dev_v1.jsonl')) test = Dataset.from_list(read_jsonl(mednli_path + '/mli_test_v1.jsonl')) return DatasetDict({"train": train, "val": val, "test": test}) def query_openai_all(all_inputs): """Query OpenAI. """ all_answers = [] for i in range(0, len(all_inputs), 20): response = openai.Completion.create(engine=deployment_id, prompt=all_inputs[i:i+20], max_tokens=256, temperature=0) all_answers.extend([resp['text'].strip() for resp in response['choices']]) return all_answers if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--mednli-dir', type=str, required=True) parser.add_argument('--output-dir', type=str) parser.add_argument('--prompt', type=str) args = parser.parse_args() # Get data and use the tokenizer on the data dataset_dict = get_data(args.mednli_dir) test_inputs, test_targets = preprocess_function(dataset_dict['test'], args.prompt) # Test the model. predictions = query_openai_all(dataset_dict['test']) with open(args.output_dir + '/predictions.json', 'w') as f: json.dump(predictions, f)
[ "PLACEHOLDER Question: PLACEHOLDER True, False, or Neither?", "Given that \"It was not associated with any shortness of breath, nausea, vomiting, or she tried standing during this episode.” Does it follow that \"She had vomiting and dyspnea with this episode”? Yes, no, or maybe? No.\n\nGiven that \"He has been followed by Dr. [**Last Name (STitle) 21267**] of Podiatry for chronic first toe MTP ulcer, which is now resolving.” Does it follow that \"He had a chronic wound on his toe”? Yes, no, or maybe? Yes.\n\nGiven that \"She had no fevers/chills/sweats prior to coming to the hosptial.” Does it follow that \"Patient has a normal abdominal CT”? Yes, no, or maybe? Neutral.", "Premise: PLACEHOLDER\nHypothesis: PLACEHOLDER\nAnswer:", "Does “Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4” mean that \"Patient has elevated Cr\"?\n\nOptions:\n-Yes\n-No\n-It's impossible to say \nYes\n\nDoes “Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4” mean that \"Patient has elevated BUN\"?\n\nOptions:\n-Yes\n-No\n-It's impossible to say \nNo\n\nDoes “Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4” mean that \"Patient has normal Cr\"?\n\nOptions:\n-Yes\n-No\n-It's impossible to say \nIt’s impossible to say\n\n", "Does PLACEHOLDER mean that PLACEHOLDER?\n\n Options:\n-Yes\n-No\n-It's impossible to say", "Given that \"PLACEHOLDER\". Does it follow that \"PLACEHOLDER\" Yes, no, or maybe?", "Premise: PLACEHOLDER\nHypothesis: PLACEHOLDER\nAnswer entailment, contradiction or neutral:", "Answer entailment, contradiction or neutral.\nPremise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has elevated Cr\nAnswer: entailment\n\nPremise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has elevated BUN\nAnswer: neutral\n\nPremise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has normal Cr\nAnswer: contradiction\n\n", "Does Discharge Summary: PLACEHOLDER mean that PLACEHOLDER?\n\n Options:\n-Yes\n-No\n-It's impossible to say", "Does “It was not associated with any shortness of breath, nausea, vomiting, or she tried standing during this episode” mean that \"She had vomiting and dyspnea with this episode\"?\n\n Options:\n-Yes\n-No\n-It's impossible to say \nNo\n\nDoes “He has been followed by Dr. [**Last Name (STitle) 21267**] of Podiatry for chronic first toe MTP ulcer, which is now resolving” mean that \"He had a chronic wound on his toe\"?\n\n Options:\n-Yes\n-No\n-It's impossible to say \nYes\n\nDoes “She had no fevers/chills/sweats prior to coming to the hosptial” mean that \"Patient has a normal abdominal CT\"?\n\n Options:\n-Yes\n-No\n-It's impossible to say \nIt’s impossible to say", "Given that \"Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\". Does it follow that \"Patient has elevated Cr\" Yes, no, or maybe? Yes.\n\nGiven that \"Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\". Does it follow that \"Patient has elevated BUN\" Yes, no, or maybe? Maybe.\n\nGiven that \"Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\". Does it follow that \"Patient has normal Cr\" Yes, no, or maybe? No.\n\n", "Premise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has elevated Cr\nAnswer entailment, contradiction or neutral: entailment\n\nPremise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has elevated BUN\nAnswer entailment, contradiction or neutral: neutral\n\nPremise: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.\nHypothesis: Patient has normal Cr\nAnswer entailment, contradiction or neutral: contradiction\n\n" ]
2024-01-10
NoviScl/MoRE
gpt_router.py
import os import argparse import numpy as np from time import sleep import json import random import openai from tqdm import tqdm test_dir = "uniqa_predictions_final/test/" dev_dir = "uniqa_predictions_final/dev/" datasets = [ "nq", "triviaqa", "squad", "hotpotqa", "beerqa_3hop", "musique", "gsm8k", "svamp", "multiarith", "csqa", "csqa2", "qasc" ] experts = ["factual", "multihop", "math", "commonsense"] choices = ["A", "B", "C", "D"] def main(): parser = argparse.ArgumentParser() parser.add_argument('--apikey', type=str, help='api key; https://openai.com/api/') parser.add_argument('--engine', type=str, default='text-davinci-003', help='api engine; https://openai.com/api/') parser.add_argument('--maxlen', type=int, default=1, help='max len') args = parser.parse_args() openai.api_key = args.apikey prompt = "" prompt += "I am in a question-answering contest. There are four experts on my team: expert A specializes in factoid questions that focus on factual knowledge; expert B specializes in multihop questions that need multiple steps of reasoning; expert C specializes in mathematics questions that require logical reasoning and math calculation; expert D specializes in commonsense questions that focus on commonsense knowledge.\n" prompt += "Given a question, I will get answers from all four experts, your task is to choose the best answer from the four answers. Directly predict the index of the chosen expert (A, B, C, or D). If there are multiple correct answers, just choose one of them.\n\n" with open("sampled_demos.json", 'r') as f: sampled_examples = json.load(f) for dp in sampled_examples: prompt += "Question: " + dp["question"] + "\n" prompt += "A: " + dp["factual"].replace("\n", " ").strip() + "\n" prompt += "B: " + dp["multihop"].replace("\n", " ").strip() + "\n" prompt += "C: " + dp["math"].replace("\n", " ").strip() + "\n" prompt += "D: " + dp["commonsense"].replace("\n", " ").strip() + "\n" prompt += "Best Answer: " + dp["answer"].strip() + "\n" prompt += "\n" all_gpt_preds = {} for dataset in datasets: correct = 0 total = 0 all_dp = {"dataset": dataset, "data": []} all_data = {} for expert in experts: fname = os.path.join(test_dir, dataset + '_' + expert + ".json") with open(fname, 'r') as f: data = json.load(f) all_data[expert] = data for i in tqdm(range(len(all_data["factual"]))): total += 1 EMs = [] dp = {} cur_prompt = prompt cur_prompt += "Question: " + all_data["factual"][i]["question"].strip() + "\n" dp["question"] = all_data["factual"][i]["question"].strip() if all_data["factual"][i]["full_answer"]: cur_prompt += "A: " + all_data["factual"][i]["full_answer"].replace("\n", " ").strip() + "\n" else: cur_prompt += "A: " + all_data["factual"][i]["answer"].replace("\n", " ").strip() + "\n" EMs.append(all_data["factual"][i]["em"]) dp["factual"] = all_data["factual"][i]["answer"].replace("\n", " ").strip() if all_data["multihop"][i]["full_answer"]: cur_prompt += "B: " + all_data["multihop"][i]["full_answer"].replace("\n", " ").strip() + "\n" else: cur_prompt += "B: " + all_data["multihop"][i]["answer"].replace("\n", " ").strip() + "\n" EMs.append(all_data["multihop"][i]["em"]) dp["multihop"] = all_data["multihop"][i]["answer"].replace("\n", " ").strip() if all_data["math"][i]["full_answer"]: cur_prompt += "C: " + all_data["math"][i]["full_answer"].replace("\n", " ").strip() + "\n" else: cur_prompt += "C: " + all_data["math"][i]["answer"].replace("\n", " ").strip() + "\n" EMs.append(all_data["math"][i]["em"]) dp["math"] = all_data["math"][i]["answer"].replace("\n", " ").strip() if all_data["commonsense"][i]["full_answer"]: cur_prompt += "D: " + all_data["commonsense"][i]["full_answer"].replace("\n", " ").strip() + "\n" else: cur_prompt += "D: " + all_data["commonsense"][i]["answer"].replace("\n", " ").strip() + "\n" EMs.append(all_data["commonsense"][i]["em"]) dp["commonsense"] = all_data["commonsense"][i]["answer"].replace("\n", " ").strip() dp["EMs"] = EMs cur_prompt += "Best Answer: " # print (cur_prompt) # print ("\n\n\n") response = None while response is None: try: response = openai.Completion.create( engine=args.engine, prompt=cur_prompt, max_tokens=args.maxlen, logprobs=5, temperature=0., stream=False, stop=["<|endoftext|>", "\n"] ) except: sleep(10) continue output = response['choices'][0]["text"].strip() try: raw_logprobs = response['choices'][0]["logprobs"]["top_logprobs"][0] except: raw_logprobs = [] # print (output) # print (raw_logprobs) # print ("\n\n") if output not in choices: output = random.choice(choices) dp["choice"] = output dp["EM"] = EMs[choices.index(output)] correct += EMs[choices.index(output)] all_dp["data"].append(dp) accuracy = correct / total * 100 print ("Accuracy on {}: {} / {} = {}%".format(dataset, correct, total, accuracy)) all_gpt_preds[dataset] = all_dp with open("gpt_preds.json", 'w') as f: json.dump(all_gpt_preds, f, indent=4) if __name__ == '__main__': main()
[ "\n", "Best Answer: ", "B: PLACEHOLDER\n", "Question: PLACEHOLDER\n", " ", "answer", "A: ", "full_answer", "question", "D: ", "commonsense", "Best Answer: PLACEHOLDER\n", "B: ", "A: PLACEHOLDER\n", "D: PLACEHOLDER\n", "C: PLACEHOLDER\n", "Given a question, I will get answers from all four experts, your task is to choose the best answer from the four answers. Directly predict the index of the chosen expert (A, B, C, or D). If there are multiple correct answers, just choose one of them.\n\n", "C: ", "Question: ", "I am in a question-answering contest. There are four experts on my team: expert A specializes in factoid questions that focus on factual knowledge; expert B specializes in multihop questions that need multiple steps of reasoning; expert C specializes in mathematics questions that require logical reasoning and math calculation; expert D specializes in commonsense questions that focus on commonsense knowledge.\n" ]
2024-01-10
krishnannarayanaswamy/wit-ai-assistant
data~crawlload.py
from langchain.docstore.document import Document from langchain.utilities import ApifyWrapper from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import AstraDB from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import ApifyDatasetLoader import os token=os.environ['ASTRA_DB_APPLICATION_TOKEN'] api_endpoint=os.environ['ASTRA_DB_API_ENDPOINT'] openai_api_key=os.environ["OPENAI_API_KEY"] apify_api_key=os.environ["APIFY_API_TOKEN"] vstore = AstraDB( embedding=OpenAIEmbeddings(), collection_name="wit_chatbot", api_endpoint=api_endpoint, token=token, ) apify = ApifyWrapper() text_splitter = RecursiveCharacterTextSplitter( # Set a really small chunk size, just to show. chunk_size = 1000, chunk_overlap = 20, length_function = len, is_separator_regex = False, ) #loader = apify.call_actor( # actor_id="apify/website-content-crawler", # run_input={"startUrls": [{"url": "https://www.wit.co.th/"}]}, # dataset_mapping_function=lambda item: Document( # page_content=item["text"] or "", metadata={"source": item["url"]} # ), #) loader = ApifyDatasetLoader( dataset_id="fQChcE0tvhKKAOyHg", dataset_mapping_function=lambda dataset_item: Document( page_content=dataset_item["text"], metadata={"source": dataset_item["url"]} ), ) docs = loader.load() texts = text_splitter.split_documents(docs) #texts = text_splitter.create_documents([docs]) print(texts[0]) print(texts[1]) inserted_ids = vstore.add_documents(texts) print(f"\nInserted {len(inserted_ids)} documents.")
[]
2024-01-10
AppDirectory/open-interpreter
interpreter~interpreter.py
from .cli import cli from .utils import merge_deltas, parse_partial_json from .message_block import MessageBlock from .code_block import CodeBlock from .code_interpreter import CodeInterpreter from .llama_2 import get_llama_2_instance import os import time import platform import openai import getpass import requests import readline import urllib.parse import tokentrim as tt from rich import print from rich.markdown import Markdown from rich.rule import Rule # Function schema for gpt-4 function_schema = { "name": "run_code", "description": "Executes code in various programming languages and returns the output.", "parameters": { "type": "object", "properties": { "language": { "type": "string", "description": "The programming language.", "enum": ["python", "shell", "applescript", "javascript", "html"] }, "code": { "type": "string", "description": "The code to execute." } }, "required": ["language", "code"] }, } # Message for when users don't have an OpenAI API key. missing_api_key_message = """> OpenAI API key not found To use `GPT-4` (recommended) please provide an OpenAI API key. To use `Code-Llama` (free but less capable) press `enter`. """ confirm_mode_message = """ **Open Interpreter** will require approval before running code. Use `interpreter -y` to bypass this. Press `CTRL-C` to exit. """ class Interpreter: def __init__(self): self.messages = [] self.temperature = 0.001 self.api_key = None self.auto_run = False self.local = False self.model = "gpt-4" self.debug_mode = False # Get default system message here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, 'system_message.txt'), 'r') as f: self.system_message = f.read().strip() # Store Code Interpreter instances for each language self.code_interpreters = {} # No active block to start # (blocks are visual representation of messages on the terminal) self.active_block = None # Note: While Open Interpreter can use Llama, we will prioritize gpt-4. # gpt-4 is faster, smarter, can call functions, and is all-around easier to use. # This makes gpt-4 better aligned with Open Interpreters priority to be easy to use. self.llama_instance = None def cli(self): # The cli takes the current instance of Interpreter, # modifies it according to command line flags, then runs chat. cli(self) def get_info_for_system_message(self): """ Gets relevent information for the system message. """ info = "" # Add user info username = getpass.getuser() current_working_directory = os.getcwd() operating_system = platform.system() info += f"\n\n[User Info]\nName: {username}\nCWD: {current_working_directory}\nOS: {operating_system}" if not self.local: # Open Procedures is an open-source database of tiny, structured coding tutorials. # We can query it semantically and append relevant tutorials/procedures to our system message: # Encode and truncate the last two messages query = str(self.messages[-2:]) query = urllib.parse.quote(query) query = query[-2000:] # Use them to query Open Procedures url = f"https://open-procedures.replit.app/search/?query={query}" try: relevant_procedures = requests.get(url).json()["procedures"] info += "\n\n# Recommended Procedures\n" + "\n---\n".join(relevant_procedures) + "\nIn your plan, include steps and, if present, **EXACT CODE SNIPPETS** (especially for depracation notices, **WRITE THEM INTO YOUR PLAN -- underneath each numbered step** as they will VANISH once you execute your first line of code, so WRITE THEM DOWN NOW if you need them) from the above procedures if they are relevant to the task. Again, include **VERBATIM CODE SNIPPETS** from the procedures above if they are relevent to the task **directly in your plan.**" except: # For someone, this failed for a super secure SSL reason. # Since it's not stricly necessary, let's worry about that another day. Should probably log this somehow though. pass elif self.local: # Tell Code-Llama how to run code. info += "\n\nTo run Python code, simply write a fenced Python code block (i.e ```python) in markdown. When you close it with ```, it will be run. You'll then be given its output." return info def reset(self): self.messages = [] self.code_interpreters = {} def load(self, messages): self.messages = messages def chat(self, message=None, return_messages=False): # Connect to an LLM (an large language model) if not self.local: # gpt-4 self.verify_api_key() # ^ verify_api_key may set self.local to True, so we run this as an 'if', not 'elif': if self.local: # Code-Llama if self.llama_instance == None: # Find or install Code-Llama try: self.llama_instance = get_llama_2_instance() except: # If it didn't work, apologize and switch to GPT-4 print(">Failed to install Code-LLama.") print("\n**We have likely not built the proper `Code-Llama` support for your system.**") print("\n(Running language models locally is a difficult task! If you have insight into the best way to implement this across platforms/architectures, please join the Open Interpreter community Discord and consider contributing the project's development.)") print("\nPlease press enter to switch to `GPT-4` (recommended).") input() # Switch to GPT-4 self.local = False self.verify_api_key() # Display welcome message welcome_message = "" if self.debug_mode: welcome_message += "> Entered debug mode" # If self.local, we actually don't use self.model # (self.auto_run is like advanced usage, we display no messages) if not self.local and not self.auto_run: welcome_message += f"\n> Model set to `{self.model.upper()}`\n\n**Tip:** To run locally, use `interpreter --local`" if self.local: welcome_message += f"\n> Model set to `Code-Llama`" # If not auto_run, tell the user we'll ask permission to run code # We also tell them here how to exit Open Interpreter if not self.auto_run: welcome_message += "\n\n" + confirm_mode_message welcome_message = welcome_message.strip() # Print welcome message with newlines on either side (aesthetic choice) # unless we're starting with a blockquote (aesthetic choice) if welcome_message != "": if welcome_message.startswith(">"): print(Markdown(welcome_message), '') else: print('', Markdown(welcome_message), '') # Check if `message` was passed in by user if message: # If it was, we respond non-interactivley self.messages.append({"role": "user", "content": message}) self.respond() else: # If it wasn't, we start an interactive chat while True: try: user_input = input("> ").strip() except EOFError: break except KeyboardInterrupt: print() # Aesthetic choice break # Use `readline` to let users up-arrow to previous user messages, # which is a common behavior in terminals. readline.add_history(user_input) # Add the user message to self.messages self.messages.append({"role": "user", "content": user_input}) # Let the user turn on debug mode mid-chat if user_input == "%debug": print('', Markdown("> Entered debug mode"), '') print(self.messages) self.debug_mode = True continue # Respond, but gracefully handle CTRL-C / KeyboardInterrupt try: self.respond() except KeyboardInterrupt: pass finally: # Always end the active block. Multiple Live displays = issues self.end_active_block() if return_messages: return self.messages def verify_api_key(self): """ Makes sure we have an OPENAI_API_KEY. """ if self.api_key == None: if 'OPENAI_API_KEY' in os.environ: self.api_key = os.environ['OPENAI_API_KEY'] else: # This is probably their first time here! print('', Markdown("**Welcome to Open Interpreter.**"), '') time.sleep(1) print(Rule(style="white")) print(Markdown(missing_api_key_message), '', Rule(style="white"), '') response = input("OpenAI API key: ") if response == "": # User pressed `enter`, requesting Code-Llama self.local = True print(Markdown("> Switching to `Code-Llama`...\n\n**Tip:** Run `interpreter --local` to automatically use `Code-Llama`."), '') time.sleep(2) print(Rule(style="white")) return else: self.api_key = response print('', Markdown("**Tip:** To save this key for later, run `export OPENAI_API_KEY=your_api_key` on Mac/Linux or `setx OPENAI_API_KEY your_api_key` on Windows."), '') time.sleep(2) print(Rule(style="white")) openai.api_key = self.api_key def end_active_block(self): if self.active_block: self.active_block.end() self.active_block = None def respond(self): # Add relevant info to system_message # (e.g. current working directory, username, os, etc.) info = self.get_info_for_system_message() system_message = self.system_message + "\n\n" + info if self.local: # Model determines how much we'll trim the messages list to get it under the context limit # So for Code-Llama, we'll use "gpt-3.5-turbo" which (i think?) has the same context window as Code-Llama self.model = "gpt-3.5-turbo" # In the future lets make --model {model} just work / include llama messages = tt.trim(self.messages, self.model, system_message=system_message) if self.debug_mode: print("\n", "Sending `messages` to LLM:", "\n") print(messages) print() # Make LLM call if not self.local: # gpt-4 response = openai.ChatCompletion.create( model=self.model, messages=messages, functions=[function_schema], stream=True, temperature=self.temperature, ) elif self.local: # Code-Llama # Turn function messages -> system messages for llama compatability messages = self.messages for message in messages: if message['role'] == 'function': message['role'] = 'system' response = self.llama_instance.create_chat_completion( messages=messages, stream=True, temperature=self.temperature, ) # Initialize message, function call trackers, and active block self.messages.append({}) in_function_call = False llama_function_call_finished = False self.active_block = None for chunk in response: delta = chunk["choices"][0]["delta"] # Accumulate deltas into the last message in messages self.messages[-1] = merge_deltas(self.messages[-1], delta) # Check if we're in a function call if not self.local: condition = "function_call" in self.messages[-1] elif self.local: # Since Code-Llama can't call functions, we just check if we're in a code block. # This simply returns true if the number of "```" in the message is odd. if "content" in self.messages[-1]: condition = self.messages[-1]["content"].count("```") % 2 == 1 else: # If it hasn't made "content" yet, we're certainly not in a function call. condition = False if condition: # We are in a function call. # Check if we just entered a function call if in_function_call == False: # If so, end the last block, self.end_active_block() # Print newline if it was just a code block or user message # (this just looks nice) last_role = self.messages[-2]["role"] if last_role == "user" or last_role == "function": print() # then create a new code block self.active_block = CodeBlock() # Remember we're in a function_call in_function_call = True # Now let's parse the function's arguments: if not self.local: # gpt-4 # Parse arguments and save to parsed_arguments, under function_call if "arguments" in self.messages[-1]["function_call"]: arguments = self.messages[-1]["function_call"]["arguments"] new_parsed_arguments = parse_partial_json(arguments) if new_parsed_arguments: # Only overwrite what we have if it's not None (which means it failed to parse) self.messages[-1]["function_call"][ "parsed_arguments"] = new_parsed_arguments elif self.local: # Code-Llama # Get contents of current code block and save to parsed_arguments, under function_call if "content" in self.messages[-1]: current_code_block = self.messages[-1]["content"].split("```python")[-1] arguments = {"language": "python", "code": current_code_block} # Code-Llama won't make a "function_call" property for us to store this under, so: if "function_call" not in self.messages[-1]: self.messages[-1]["function_call"] = {} self.messages[-1]["function_call"]["parsed_arguments"] = arguments else: # We are not in a function call. # Check if we just left a function call if in_function_call == True: if self.local: # This is the same as when gpt-4 gives finish_reason as function_call. # We have just finished a code block, so now we should run it. llama_function_call_finished = True # Remember we're not in a function_call in_function_call = False # If there's no active block, if self.active_block == None: # Create a message block self.active_block = MessageBlock() # Update active_block self.active_block.update_from_message(self.messages[-1]) # Check if we're finished if chunk["choices"][0]["finish_reason"] or llama_function_call_finished: if chunk["choices"][ 0]["finish_reason"] == "function_call" or llama_function_call_finished: # Time to call the function! # (Because this is Open Interpreter, we only have one function.) if self.debug_mode: print("Running function:") print(self.messages[-1]) print("---") # Ask for user confirmation to run code if self.auto_run == False: # End the active block so you can run input() below it # Save language and code so we can create a new block in a moment self.active_block.end() language = self.active_block.language code = self.active_block.code # Prompt user response = input(" Would you like to run this code? (y/n)\n\n ") print("") # <- Aesthetic choice if response.strip().lower() == "y": # Create a new, identical block where the code will actually be run self.active_block = CodeBlock() self.active_block.language = language self.active_block.code = code else: # User declined to run code. self.active_block.end() self.messages.append({ "role": "function", "name": "run_code", "content": "User decided not to run this code." }) return # If we couldn't parse its arguments, we need to try again. if "parsed_arguments" not in self.messages[-1]["function_call"]: print("> Function call could not be parsed.\n\nPlease open an issue on Github (openinterpreter.com, click Github) and paste the following:") print("\n", self.messages[-1]["function_call"], "\n") time.sleep(2) print("Informing the language model and continuing...") # Reiterate what we need to the language model: self.messages.append({ "role": "function", "name": "run_code", "content": """Your function call could not be parsed. Please use ONLY the `run_code` function, which takes two parameters: `code` and `language`. Your response should be formatted as a JSON.""" }) # Go around again self.respond() return # Create or retrieve a Code Interpreter for this language language = self.messages[-1]["function_call"]["parsed_arguments"][ "language"] if language not in self.code_interpreters: self.code_interpreters[language] = CodeInterpreter(language, self.debug_mode) code_interpreter = self.code_interpreters[language] # Let this Code Interpreter control the active_block code_interpreter.active_block = self.active_block code_interpreter.run() # End the active_block self.active_block.end() # Append the output to messages # Explicitly tell it if there was no output (sometimes "" = hallucinates output) self.messages.append({ "role": "function", "name": "run_code", "content": self.active_block.output if self.active_block.output else "No output" }) # Go around again self.respond() if chunk["choices"][0]["finish_reason"] != "function_call": # Done! # Code Llama likes to output "###" at the end of every message for some reason if self.local and "content" in self.messages[-1]: self.messages[-1]["content"] = self.messages[-1]["content"].strip().rstrip("#") self.active_block.update_from_message(self.messages[-1]) time.sleep(0.1) self.active_block.end() return
[ "User decided not to run this code.", "No output", "Your function call could not be parsed. Please use ONLY the `run_code` function, which takes two parameters: `code` and `language`. Your response should be formatted as a JSON." ]
2024-01-10
explomind1/gpt-researcher-LLMHackatlon
agent~llm_utils.py
from __future__ import annotations import json from fastapi import WebSocket import time import openai from colorama import Fore, Style from openai.error import APIError, RateLimitError from agent.prompts import auto_agent_instructions from config import Config CFG = Config() openai.api_key = CFG.openai_api_key from typing import Optional import logging def create_chat_completion( messages: list, # type: ignore model: Optional[str] = None, temperature: float = CFG.temperature, max_tokens: Optional[int] = None, stream: Optional[bool] = False, websocket: WebSocket | None = None, ) -> str: """Create a chat completion using the OpenAI API Args: messages (list[dict[str, str]]): The messages to send to the chat completion model (str, optional): The model to use. Defaults to None. temperature (float, optional): The temperature to use. Defaults to 0.9. max_tokens (int, optional): The max tokens to use. Defaults to None. stream (bool, optional): Whether to stream the response. Defaults to False. Returns: str: The response from the chat completion """ # validate input if model is None: raise ValueError("Model cannot be None") if max_tokens is not None and max_tokens > 8001: raise ValueError(f"Max tokens cannot be more than 8001, but got {max_tokens}") if stream and websocket is None: raise ValueError("Websocket cannot be None when stream is True") # create response for attempt in range(10): # maximum of 10 attempts try: response = send_chat_completion_request( messages, model, temperature, max_tokens, stream, websocket ) return response except RateLimitError: logging.warning("Rate limit reached, backing off...") time.sleep(2 ** (attempt + 2)) # exponential backoff except APIError as e: if e.http_status != 502 or attempt == 9: # if not Bad Gateway error or final attempt raise logging.error("API Error: Bad gateway, backing off...") time.sleep(2 ** (attempt + 2)) # exponential backoff logging.error("Failed to get response after 10 attempts") raise RuntimeError("Failed to get response from OpenAI API") def send_chat_completion_request( messages, model, temperature, max_tokens, stream, websocket ): if not stream: result = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, ) return result.choices[0].message["content"] else: return stream_response(model, messages, temperature, max_tokens, websocket) async def stream_response(model, messages, temperature, max_tokens, websocket): paragraph = "" response = "" print(f"streaming response...") for chunk in openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, stream=True, ): content = chunk["choices"][0].get("delta", {}).get("content") if content is not None: response += content paragraph += content if "\n" in paragraph: await websocket.send_json({"type": "report", "output": paragraph}) paragraph = "" print(f"streaming response complete") return response def choose_agent(task: str) -> str: """Determines what agent should be used Args: task (str): The research question the user asked Returns: agent - The agent that will be used agent_role_prompt (str): The prompt for the agent """ try: response = openai.ChatCompletion.create( model=CFG.smart_llm_model, messages=[ {"role": "system", "content": f"{auto_agent_instructions()}"}, {"role": "user", "content": f"task: {task}"}], temperature=0, ) return json.loads(response["choices"][0]["message"]["content"]) except Exception as e: print(f"{Fore.RED}Error in choose_agent: {e}{Style.RESET_ALL}") return {"agent": "Default Agent", "agent_role_prompt": "You are an AI critical thinker research assistant. Your sole purpose is to write well written, critically acclaimed, objective and structured reports on given text."}
[ "task: PLACEHOLDER" ]
2024-01-10
gutessitore/SaWine
src~nlp~sentiment_analysis.py
import openai import os class ReviewClassifier: def __init__(self): self.prompt = "Decide whether a wine review's sentiment is positive, neutral, or negative.\n\nreview: \"{}\"\nSentiment:" self.model = "text-davinci-003" self.temperature = 0 self.max_tokens = 60 self.top_p = 1.0 self.frequency_penalty = 0.5 self.presence_penalty = 0.0 self.__authenticate() def __authenticate(self): openai.api_key = os.getenv("OPENAI_API_KEY") def get_sentiment(self, review): prompt = self.prompt.format(review) response = openai.Completion.create( engine=self.model, prompt=prompt, temperature=self.temperature, max_tokens=self.max_tokens, top_p=self.top_p, frequency_penalty=self.frequency_penalty, presence_penalty=self.presence_penalty ) if not response['choices']: raise Exception("OpenAI API request failed: {}".format(response)) sentiment = response['choices'][0]['text'].strip().lower() return sentiment
[]
2024-01-10
patrickamadeus/Prettify.md
templates~factory.py
from langchain.prompts import ( PromptTemplate, load_prompt ) class PromptFactory(): PROMPTDIR: str = "./templates/prompts" prompts: dict = {} def __init__(self): self.prompts["base_prompt"] = load_prompt(f"{self.PROMPTDIR}/base.json") pass def append_prompt(self, prompt: PromptTemplate) -> None: pass def remove_prompt(self, prompt_key: str) -> None: pass def get_prompt_keys(self) -> [str]: return list(self.prompts.keys()) def get_prompt_dict(self) -> dict: return self.prompts def get_prompts(self) -> [PromptTemplate]: return list(self.prompts.values())
[ "./templates/prompts", "{}" ]
2024-01-10
Hengle/Tools-7
Python~ChatGPT~TestRequestOpenAI.py
import openai # 将YOUR_API_KEY替换成自己的API Key openai.api_key = YOUR_API_KEY # 指定请求的模型ID和文本 model_engine = "davinci" # 模型ID,可选davinci、curie、babbage等 prompt_text = "Hello, ChatGPT!" # 发送API请求,获取响应 response = openai.Completion.create( engine=model_engine, prompt=prompt_text, max_tokens=5 ) # 解析响应结果 if response.choices[0].text: answer = response.choices[0].text.strip() print(answer) else: print("No response received") # print(response.json())
[ "Hello, ChatGPT!" ]
2024-01-10
sert121/probable-broccoli
langch~qdrant_testing_repl.py
from langchain.vectorstores import Qdrant import pinecone from langchain.vectorstores import Chroma from langchain.embeddings import CohereEmbeddings import os import time from qdrant_client import QdrantClient from qdrant_client.models import Distance, VectorParams import pickle import cohere from qdrant_client.http.models import Batch from qdrant_client.http import models from langchain.document_loaders import PyPDFLoader COHERE_API_KEY = os.environ['COHERE_API_KEY'] COHERE_API_KEY = 'lgi7A2ZBRIswmmUy3FIB0AbjfNhEnvWtgEXnElPi' cohere_client = cohere.Client(api_key=COHERE_API_KEY) API_KEY_QDRANT = os.environ['QDRANT_KEY'] embeddings = CohereEmbeddings(cohere_api_key=COHERE_API_KEY) #initializing qdrant client cloud ~~ def initialize_vecstore(): client_q = QdrantClient( url= 'https://5bcda451-5eec-489e-a663-1349d8693bf3.us-east-1-0.aws.cloud.qdrant.io:6333', api_key=API_KEY_QDRANT) collection_name = "Pandora" # client.create_collection(collection_name=collection_name, # vectors_config=VectorParams( # size=4096, distance=Distance.COSINE)) qdrant = Qdrant(client_q, collection_name, embedding_function=embeddings.embed_documents) with open('gpt4.pkl', 'rb') as f: texts = pickle.load(f) fine_texts = [t.page_content for t in texts] # qdrant.from_documents(documents=texts, # embedding=embeddings, # collection_name=collection_name) # qdrant.add_texts(fine_texts) ids = [i for i in range(len(fine_texts))] embedded_vectors = cohere_client.embed(model="large", texts=fine_texts).embeddings # Conversion to float is required for Qdrant vectors = [list(map(float, vector)) for vector in embedded_vectors] client_q.upsert(collection_name=collection_name, points=Batch(ids=ids, vectors=vectors)) def create_collection(collection_name='Pandora'): client_q = QdrantClient( url= 'https://5bcda451-5eec-489e-a663-1349d8693bf3.us-east-1-0.aws.cloud.qdrant.io:6333', api_key=API_KEY_QDRANT) client_q.recreate_collection( collection_name=f"{collection_name}", vectors_config=models.VectorParams(size=4096, distance=models.Distance.COSINE), ) print('done---') def get_collection(): print("in here guys") client_q = QdrantClient( url= 'https://5bcda451-5eec-489e-a663-1349d8693bf3.us-east-1-0.aws.cloud.qdrant.io:6333', api_key=API_KEY_QDRANT) collection_name = 'Pandora' details = client_q.get_collection(collection_name=f"{collection_name}") print(f"Details : {details}") def query_vecstore(collection_name='Pandora', questions=['']): client_q = QdrantClient( url= 'https://5bcda451-5eec-489e-a663-1349d8693bf3.us-east-1-0.aws.cloud.qdrant.io:6333', api_key=API_KEY_QDRANT) embedded_vectors = cohere_client.embed(model="large", texts=questions).embeddings # Conversion to float is required for Qdrant vectors = [list(map(float, vector)) for vector in embedded_vectors] k_max = 5 response = client_q.search(collection_name=f"{collection_name}", query_vector=vectors[0], limit=k_max, with_payload=True) print('------\n', response[0].payload['page_content'], '\n------') print(f'Response h: -----\n {response} \n-----') def text_store_lang(): loader = PyPDFLoader("potential_topics.pdf") pages = loader.load_and_split() host = 'https://5bcda451-5eec-489e-a663-1349d8693bf3.us-east-1-0.aws.cloud.qdrant.io:6333' finer_texts = [t.page_content for t in pages] doc_store = Qdrant.from_texts(finer_texts, embeddings, collection_name='rune', url=host, api_key=API_KEY_QDRANT) print(doc_store) print( doc_store.similarity_search( 'What are you interested in federated learning?')) def doc_store_lang(): with open('django_texts.pkl', 'rb') as f: texts = pickle.load(f) host = 'https://5bcda451-5eec-489e-a663-1349d8693bf3.us-east-1-0.aws.cloud.qdrant.io:6333' doc_store = Qdrant.from_documents(texts, embeddings, collection_name='django', url=host, api_key=API_KEY_QDRANT) print(doc_store) print(doc_store.similarity_search('How to install django?')) def load_vec_store_lang(): print(callable(cohere_client.embed)) host = 'https://5bcda451-5eec-489e-a663-1349d8693bf3.us-east-1-0.aws.cloud.qdrant.io:6333' client_q = QdrantClient( url= 'https://5bcda451-5eec-489e-a663-1349d8693bf3.us-east-1-0.aws.cloud.qdrant.io:6333', api_key=API_KEY_QDRANT) store = Qdrant(client=client_q, embedding_function=cohere_client.embed, collection_name='ronan') print("store", store) r = store.similarity_search_with_score(query='how big is gpt4?') print("Results ----\n", r) def delete_collection(collection_name: str): client_q = QdrantClient( url= 'https://5bcda451-5eec-489e-a663-1349d8693bf3.us-east-1-0.aws.cloud.qdrant.io:6333', api_key=API_KEY_QDRANT) client_q.delete_collection(collection_name=f"{collection_name}") print('done--') # create_collection('rune') # delete_collection('freshman') # get_collection() # initialize_vecstore() # query_vecstore(collection_name='ronan', # questions=['What is the size of gpt4?']) text_store_lang() # load_vec_store_lang() # doc_store_lang() # query_vecstore(collection_name='artichoke', # questions=['What is the size of gpt4?'])
[]
2024-01-10
sert121/probable-broccoli
langch~languish.py
# [1] import sys # import document loader from lamgcahin from langchain.document_loaders import OnlinePDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma,Pinecone from langchain import VectorDBQA from langchain.llms import Cohere,OpenAI from langchain.embeddings import CohereEmbeddings import pinecone import os from langchain.chains.question_answering import load_qa_chain # defining the cohere keys COHERE_API_KEY = 'lgi7A2ZBRIswmmUy3FIB0AbjfNhEnvWtgEXnElPi' EMBEDDING_TYPE = 'cohere' PINECONE_KEY = os.getenv("PINECONE_KEY") #defining the loader def load_data(data_path='https://django.readthedocs.io/_/downloads/en/latest/pdf/',loader_type='online' ): if loader_type == 'online': loader = OnlinePDFLoader('https://django.readthedocs.io/_/downloads/en/latest/pdf/') data = loader.load() print(f"--- No of pages: {len(data)} \n") # Chunking up the data splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = splitter.split_documents(data) print(f"--- No of chunks: {len(texts)}") return texts def generate_embeddings(texts, embedding_type=EMBEDDING_TYPE): if embedding_type == 'cohere': embeddings = CohereEmbeddings(cohere_api_key=COHERE_API_KEY) elif embedding_type == 'openai': embeddings = OpenAIEmbeddings(openai_api_key='OPENAI_API_KEY') return embeddings def initialize_vecstore(embeddings,texts, vector_store='pinecone'): if vector_store == 'pinecone': #initialize pinecone # pinecone.init( api_key=PINECONE_KEY,environment='us-west1-gcp') index_name = 'testindex-co' # if index_name not in pinecone.list_indexes(): # if EMBEDDING_TYPE == 'cohere': # pinecone.create_index(index_name, vector_size=4096, metric='cosine') # elif EMBEDDING_TYPE == 'openai': # pinecone.create_index(index_name, vector_size=768, metric='cosine') # else: # index_pine = pinecone.Index("cohere") search_docs = Pinecone.from_texts([t.page_content for t in texts],embeddings, index_name=index_name) return search_docs def initialize_llm(llmtype='cohere'): if llmtype == 'cohere': llm = Cohere(cohere_api_key=COHERE_API_KEY) elif llmtype == 'openai': llm = OpenAI(openai_api_key='OPENAI_API_KEY') return llm def query_vecstore(search_docs, query,llm): topk_docs = search_docs.similarity_search(query, include_metadata=True) llm = initialize_llm() # qa = VectorDBQA.from_chain_type(llm=llm, chain_type="stuff", vectorstore=search_docs) chain = load_qa_chain(llm, chain_type="stuff") output = chain.run(query, topk_docs) print(output) return output def run_process(): texts = load_data() embeddings = generate_embeddings(texts) search_docs = initialize_vecstore(embeddings,texts) llm = initialize_llm() query = 'How to setup models in django?' output = query_vecstore(search_docs, query,llm) return output # running the process run_process() ''' search_docs = Pinecone.from_texts([t.page_content for t in texts],cohere_embeddings, index_name=index_name) q = input("Enter your query: ") print(search_docs.similarity_search(q,include_metadata=True)) # docsearch = Chroma.from_documents(texts, embeddings) from langchain.llms import Cohere cohere = Cohere(model="gptd-instruct-tft", cohere_api_key="lgi7A2ZBRIswmmUy3FIB0AbjfNhEnvWtgEXnElPi") qa = VectorDBQA.from_chain_type(llm=cohere, chain_type="stuff", vectorstore=search_docs) '''
[]
2024-01-10
HaythmKenway/dotfiles
.local~bin~hey
#!/usr/bin/env python3 import os import openai import json import sys import requests from termcolor import colored import re # Set your secret API key sys.argv[0]=re.search(r'[^/]+$',sys.argv[0]).group(0) prompt= ' '.join(sys.argv[0:]) openai.api_key="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" openai.organization = "org-dgLV2rtLJwJKYYPncP8q86zi" payload = {"model": "text-davinci-003", "prompt": prompt, "temperature": 0, "max_tokens": 500} header={"Content-Type":"application/json","Authorization": "Bearer {}".format(openai.api_key)} try: r = requests.post("https://api.openai.com/v1/completions", headers=header, data=json.dumps(payload)) print(colored('|\n','red')+colored('└╼','red')+colored("Rhaenyra",'cyan')+colored('# ','yellow')+r.json()["choices"][0]["text"].strip()) except: print(colored('| 🥺\n|👉👈\n','red')+colored('└╼','red')+colored("Rhaenyra",'cyan')+colored('# ','yellow')+"I don't know what to say")
[ " " ]
2024-01-10
fujitatomoya/ros2ai
ros2ai~api~config.py
# Copyright 2023 Tomoya Fujita <[email protected]>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import ros2ai.api.constants as constants from openai import OpenAI def get_api_key() -> str: """ Get OpenAI API Key from OPENAI_API_KEY environment variable. OpenAI API Key must be set by ros2ai user with OPENAI_API_KEY environment variable. :return: string of OpenAI API Key. :raises: if OPENAI_API_KEY is not set. """ key_name = os.environ.get(constants.ROS_OPENAI_API_KEY_ENV_VAR) if not key_name: raise EnvironmentError( f"'{constants.ROS_OPENAI_API_KEY_ENV_VAR}' environment variable is not set'" ) else: return key_name def get_ai_model() -> str: """ Get OpenAI Model from OPENAI_MODEL_NAME environment variable. OpenAI Model is optional, in default to gpt-3.5-turbo :return: string of OpenAI Model. """ model_name = os.environ.get(constants.ROS_OPENAI_MODEL_NAME_ENV_VAR) if not model_name: # TODO(@fujitatomoya):better to print info here that using default model. return constants.ROS_OPENAI_DEFAULT_MODEL else: return model_name def get_endpoint_url() -> str: """ Get OpenAI API service endpoint URL from OPENAI_ENDPOINT environment variable. OpenAI API service endpoint URL is optional, in default fallback to openai. :return: string of OpenAI API service endpoint URL, could be None. """ url = os.environ.get(constants.ROS_OPENAI_ENDPOINT_ENV_VAR) # TODO(@fujitatomoya):check if that is valid url before return. if not url: return constants.ROS_OPENAI_DEFAULT_ENDPOINT else: return url def get_temperature() -> float: """ Get temperature parameter to be used with OpenAI API. :return: temperature, could be None. """ temperature = os.environ.get(constants.ROS_OPENAI_TEMPERATURE_ENV_VAR) if not temperature: return float(constants.ROS_OPENAI_DEFAULT_TEMPERATURE) else: return float(temperature) class OpenAiConfig: """ Collect all OpenAI API related configuration from user setting as key-value pair. """ def __init__(self, args): self.config_pair = {} # api key is mandatory, this could throw the exception if not set self.config_pair['api_key'] = get_api_key() # ai model is optional, command line argument prevails self.config_pair['api_model'] = get_ai_model() if args.model != constants.ROS_OPENAI_DEFAULT_MODEL: self.config_pair['api_model'] = args.model # api endpoint is optional, command line argument prevails self.config_pair['api_endpoint'] = get_endpoint_url() if args.url != constants.ROS_OPENAI_DEFAULT_MODEL: self.config_pair['api_endpoint'] = args.url # api token is optional, only available via command line argument self.config_pair['api_token'] = args.token # temperature is optional, only available via environmental variable self.config_pair['api_temperature'] = get_temperature() def set_value(self, key, value): # Set a key-value pair self.config_pair[key] = value def get_value(self, key): # Get the value for a given key return self.config_pair.get(key, None) def remove_key(self, key): # Remove a key and its associated value if key in self.config_pair: del self.config_pair[key] def display_all(self): # Display all key-value pairs for key, value in self.config_pair.items(): # we should never print the api key for the security if key != 'api_key': print(f"----- {key}: {value}") def is_api_key_valid(self): # Validate api key, model and endpoint to post the API client = OpenAI( api_key=self.get_value('api_key') ) try: completion = client.chat.completions.create( model = self.get_value('api_model'), messages = [ { "role": "user", "content": "Are you in service?", }, ], temperature = self.get_value('api_temperature'), max_tokens = self.get_value('api_token') ) except Exception as e: print('Failed to call OpenAI API: ' + str(e)) return False else: if (completion.choices[0].finish_reason != 'stop'): print('Failed chat completion with: ' + completion.choices[0].finish_reason) return False else: print(completion.choices[0].message.content) return True
[ "Are you in service?" ]
2024-01-10
uvens/HappyBirthday
servis1.py
import openai from random import choice import csv from datetime import datetime openai.api_key = 'API_KEY' messages = [ {"role": "system", "content": "You are a helpful assistant."}, ] class HappyBirthday: __FLAG=None def __new__(cls, *args, **kwargs): if HappyBirthday.__FLAG is None: HappyBirthday.__FLAG=super().__new__(cls) return HappyBirthday.__FLAG return HappyBirthday.__FLAG def __call__(self, *args, **kwargs): if args[0].rsplit('.')[1] == 'csv': self.congratulation_file(args[0]) else: if len(args) == 2: return ','.join(self.congratulation_name(*args)) else: print(f'Неверный формат данных') def congratulation_file(self, *args): '''Открытие файла на чтение Перебор данных из файла открытие файла на запись и передача имени и даты в ChatGpt с дальнейшей записью в файл''' lst = [] with open(args[0], newline='') as f: file = csv.reader(f, delimiter=' ', quotechar='|') for n, i in enumerate(file): lst.append(tuple(''.join(i).split(','))) with open(args[0], 'w') as user: writer = csv.writer(user) for n, i in enumerate(lst): data, name = i[0],i[1] if n == 0 and i[0].isalpha() and i[1].isalpha(): writer.writerow([data, name]) else: writer.writerow(self.congratulation_name(data, name)) def congratulation_name(self, data, name): '''Проверка на корректность данных и генерация ответа ChatGpt ''' if self.check_name(name) and self.check_date(data): message = ''.join(choice([ f"Напиши поздравление с днём рождения для {name}, как аристократ, уложись в 120 символов ответ предоставь на русском" f"Напиши поздравление с днём рождения для {name}, сделав акцент на месяц рождения{data[1]} и указав его дату {data[0]}, уложись в 120 символов ответ предоставь на русском", f"Напиши поздравление с днём рождения для {name} как чёткий пацан, уложись в 120 символов, добавь смайлы в конец поздравления ответ предоставь на русском", f"Напиши поздравление с днём рождения для {name} как писатель Есенин, уложись в 120 символов ответ предоставь на русском", f"Напиши поздравление с днём рождения для {name} в стиле хоку, уложись в 120 символов ответ предоставь на русском", f"Напиши поздравление с днём рождения для {name} по фене, уложись в 120 символов ответ предоставь на русском", f"Напиши поздравление с днём рождения для {name} в форме анекдота, уложись в 120 символов, добавь смайлы в конец поздравления ответ предоставь на русском", ])) messages.append( {"role": "user", "content": message}, ) chat_completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) answer = ' '.join(chat_completion.choices[0].message.content.split('\n')) messages.append({"role": "assistant", "content": answer}) return [data, name, answer] return [data, name, f'Неправильный формат даты'] @staticmethod def check_date(x: str): '''Проверка даты на корректность ввода''' try: datetime.strptime(x, "%d.%m") return True except ValueError: return False @staticmethod def check_name(x): '''Проверка имени на корректность ввода''' if all((i.isalpha() for i in x)): return True return False
[ "You are a helpful assistant." ]
2024-01-10
uvens/HappyBirthday
servis.py
import openai from random import choice import csv from datetime import datetime openai.api_key = 'API_KEY' messages = [ {"role": "system", "content": "You are a helpful assistant."}, ] class HappyBirthday: __FLAG=None def __new__(cls, *args, **kwargs): if HappyBirthday.__FLAG is None: HappyBirthday.__FLAG=super().__new__(cls) return HappyBirthday.__FLAG return HappyBirthday.__FLAG def __call__(self, *args, **kwargs): if args[0].rsplit('.')[1] == 'csv': self.congratulation_file(args[0]) else: if len(args) == 2: return ','.join(self.congratulation_name(*args)) else: print(f'Неверный формат данных') def congratulation_file(self, *args): '''Открытие файла на чтение Перебор данных из файла открытие файла на запись и передача имени и даты в ChatGpt с дальнейшей записью в файл''' lst = [] with open(args[0], newline='') as f: file = csv.reader(f, delimiter=' ', quotechar='|') for n, i in enumerate(file): lst.append(tuple(''.join(i).split(','))) with open(args[0], 'w') as user: writer = csv.writer(user) for n, i in enumerate(lst): data, name = i if n == 0 and i[0].isalpha() and i[1].isalpha(): writer.writerow([data, name]) else: writer.writerow(self.congratulation_name(data, name)) def congratulation_name(self, data, name): '''Проверка на корректность данных и генерация ответа ChatGpt ''' if self.check_name(name) and self.check_date(data): message = ''.join(choice([ f"Напиши поздравление с днём рождения для {name}, как аристократ, уложись в 120 символов ответ предоставь на русском" f"Напиши поздравление с днём рождения для {name}, сделав акцент на месяц рождения{data[1]} и указав его дату {data[0]}, уложись в 120 символов ответ предоставь на русском", f"Напиши поздравление с днём рождения для {name} как чёткий пацан, уложись в 120 символов, добавь смайлы в конец поздравления ответ предоставь на русском", f"Напиши поздравление с днём рождения для {name} как писатель Есенин, уложись в 120 символов ответ предоставь на русском", f"Напиши поздравление с днём рождения для {name} в стиле хоку, уложись в 120 символов ответ предоставь на русском", f"Напиши поздравление с днём рождения для {name} по фене, уложись в 120 символов ответ предоставь на русском", f"Напиши поздравление с днём рождения для {name} в форме анекдота, уложись в 120 символов, добавь смайлы в конец поздравления ответ предоставь на русском", ])) messages.append( {"role": "user", "content": message}, ) chat_completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) answer = ' '.join(chat_completion.choices[0].message.content.split('\n')) messages.append({"role": "assistant", "content": answer}) return [data, name, answer] return [data, name, f'Неправильный формат даты'] @staticmethod def check_date(x: str): '''Проверка даты на корректность ввода''' try: datetime.strptime(x, "%d.%m") return True except Exception: raise ValueError('Неверный формат даты') @staticmethod def check_name(x): '''Проверка имени на корректность ввода''' if all((i.isalpha() for i in x)): return True raise ValueError('Неверный формат имени')
[ "You are a helpful assistant." ]
2024-01-10
Bfault/langchain
libs~langchain~langchain~document_loaders~parsers~language~cobol.py
import re from typing import Callable, List from langchain.document_loaders.parsers.language.code_segmenter import CodeSegmenter class CobolSegmenter(CodeSegmenter): """Code segmenter for `COBOL`.""" PARAGRAPH_PATTERN = re.compile(r"^[A-Z0-9\-]+(\s+.*)?\.$", re.IGNORECASE) DIVISION_PATTERN = re.compile( r"^\s*(IDENTIFICATION|DATA|PROCEDURE|ENVIRONMENT)\s+DIVISION.*$", re.IGNORECASE ) SECTION_PATTERN = re.compile(r"^\s*[A-Z0-9\-]+\s+SECTION.$", re.IGNORECASE) def __init__(self, code: str): super().__init__(code) self.source_lines: List[str] = self.code.splitlines() def is_valid(self) -> bool: # Identify presence of any division to validate COBOL code return any(self.DIVISION_PATTERN.match(line) for line in self.source_lines) def _extract_code(self, start_idx: int, end_idx: int) -> str: return "\n".join(self.source_lines[start_idx:end_idx]).rstrip("\n") def _is_relevant_code(self, line: str) -> bool: """Check if a line is part of the procedure division or a relevant section.""" if "PROCEDURE DIVISION" in line.upper(): return True # Add additional conditions for relevant sections if needed return False def _process_lines(self, func: Callable) -> List[str]: """A generic function to process COBOL lines based on provided func.""" elements: List[str] = [] start_idx = None inside_relevant_section = False for i, line in enumerate(self.source_lines): if self._is_relevant_code(line): inside_relevant_section = True if inside_relevant_section and ( self.PARAGRAPH_PATTERN.match(line.strip().split(" ")[0]) or self.SECTION_PATTERN.match(line.strip()) ): if start_idx is not None: func(elements, start_idx, i) start_idx = i # Handle the last element if exists if start_idx is not None: func(elements, start_idx, len(self.source_lines)) return elements def extract_functions_classes(self) -> List[str]: def extract_func(elements: List[str], start_idx: int, end_idx: int) -> None: elements.append(self._extract_code(start_idx, end_idx)) return self._process_lines(extract_func) def simplify_code(self) -> str: simplified_lines: List[str] = [] inside_relevant_section = False omitted_code_added = ( False # To track if "* OMITTED CODE *" has been added after the last header ) for line in self.source_lines: is_header = ( "PROCEDURE DIVISION" in line or "DATA DIVISION" in line or "IDENTIFICATION DIVISION" in line or self.PARAGRAPH_PATTERN.match(line.strip().split(" ")[0]) or self.SECTION_PATTERN.match(line.strip()) ) if is_header: inside_relevant_section = True # Reset the flag since we're entering a new section/division or # paragraph omitted_code_added = False if inside_relevant_section: if is_header: # Add header and reset the omitted code added flag simplified_lines.append(line) elif not omitted_code_added: # Add omitted code comment only if it hasn't been added directly # after the last header simplified_lines.append("* OMITTED CODE *") omitted_code_added = True return "\n".join(simplified_lines)
[]
2024-01-10
Bfault/langchain
templates~rag-timescale-hybrid-search-time~rag_timescale_hybrid_search_time~load_sample_dataset.py
import os import tempfile from datetime import datetime, timedelta import requests from langchain.document_loaders import JSONLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores.timescalevector import TimescaleVector from timescale_vector import client def parse_date(date_string: str) -> datetime: if date_string is None: return None time_format = "%a %b %d %H:%M:%S %Y %z" return datetime.strptime(date_string, time_format) def extract_metadata(record: dict, metadata: dict) -> dict: dt = parse_date(record["date"]) metadata["id"] = str(client.uuid_from_time(dt)) if dt is not None: metadata["date"] = dt.isoformat() else: metadata["date"] = None metadata["author"] = record["author"] metadata["commit_hash"] = record["commit"] return metadata def load_ts_git_dataset( service_url, collection_name="timescale_commits", num_records: int = 500, partition_interval=timedelta(days=7), ): json_url = "https://s3.amazonaws.com/assets.timescale.com/ai/ts_git_log.json" tmp_file = "ts_git_log.json" temp_dir = tempfile.gettempdir() json_file_path = os.path.join(temp_dir, tmp_file) if not os.path.exists(json_file_path): response = requests.get(json_url) if response.status_code == 200: with open(json_file_path, "w") as json_file: json_file.write(response.text) else: print(f"Failed to download JSON file. Status code: {response.status_code}") loader = JSONLoader( file_path=json_file_path, jq_schema=".commit_history[]", text_content=False, metadata_func=extract_metadata, ) documents = loader.load() # Remove documents with None dates documents = [doc for doc in documents if doc.metadata["date"] is not None] if num_records > 0: documents = documents[:num_records] # Split the documents into chunks for embedding text_splitter = CharacterTextSplitter( chunk_size=1000, chunk_overlap=200, ) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() # Create a Timescale Vector instance from the collection of documents TimescaleVector.from_documents( embedding=embeddings, ids=[doc.metadata["id"] for doc in docs], documents=docs, collection_name=collection_name, service_url=service_url, time_partition_interval=partition_interval, )
[]
2024-01-10
Bfault/langchain
libs~langchain~langchain~document_loaders~docusaurus.py
"""Load Documents from Docusarus Documentation""" from typing import Any, List, Optional from langchain.document_loaders.sitemap import SitemapLoader class DocusaurusLoader(SitemapLoader): """ Loader that leverages the SitemapLoader to loop through the generated pages of a Docusaurus Documentation website and extracts the content by looking for specific HTML tags. By default, the parser searches for the main content of the Docusaurus page, which is normally the <article>. You also have the option to define your own custom HTML tags by providing them as a list, for example: ["div", ".main", "a"]. """ def __init__( self, url: str, custom_html_tags: Optional[List[str]] = None, **kwargs: Any, ): """ Initialize DocusaurusLoader Args: url: The base URL of the Docusaurus website. custom_html_tags: Optional custom html tags to extract content from pages. kwargs: Additional args to extend the underlying SitemapLoader, for example: filter_urls, blocksize, meta_function, is_local, continue_on_failure """ if not kwargs.get("is_local"): url = f"{url}/sitemap.xml" self.custom_html_tags = custom_html_tags or ["main article"] super().__init__( url, parsing_function=kwargs.get("parsing_function") or self._parsing_function, **kwargs, ) def _parsing_function(self, content: Any) -> str: """Parses specific elements from a Docusarus page.""" relevant_elements = content.select(",".join(self.custom_html_tags)) for element in relevant_elements: if element not in relevant_elements: element.decompose() return str(content.get_text())
[]
2024-01-10
Bfault/langchain
templates~rag-timescale-conversation~rag_timescale_conversation~load_sample_dataset.py
import os import tempfile from datetime import datetime, timedelta import requests from langchain.document_loaders import JSONLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores.timescalevector import TimescaleVector from timescale_vector import client def parse_date(date_string: str) -> datetime: if date_string is None: return None time_format = "%a %b %d %H:%M:%S %Y %z" return datetime.strptime(date_string, time_format) def extract_metadata(record: dict, metadata: dict) -> dict: dt = parse_date(record["date"]) metadata["id"] = str(client.uuid_from_time(dt)) if dt is not None: metadata["date"] = dt.isoformat() else: metadata["date"] = None metadata["author"] = record["author"] metadata["commit_hash"] = record["commit"] return metadata def load_ts_git_dataset( service_url, collection_name="timescale_commits", num_records: int = 500, partition_interval=timedelta(days=7), ): json_url = "https://s3.amazonaws.com/assets.timescale.com/ai/ts_git_log.json" tmp_file = "ts_git_log.json" temp_dir = tempfile.gettempdir() json_file_path = os.path.join(temp_dir, tmp_file) if not os.path.exists(json_file_path): response = requests.get(json_url) if response.status_code == 200: with open(json_file_path, "w") as json_file: json_file.write(response.text) else: print(f"Failed to download JSON file. Status code: {response.status_code}") loader = JSONLoader( file_path=json_file_path, jq_schema=".commit_history[]", text_content=False, metadata_func=extract_metadata, ) documents = loader.load() # Remove documents with None dates documents = [doc for doc in documents if doc.metadata["date"] is not None] if num_records > 0: documents = documents[:num_records] # Split the documents into chunks for embedding text_splitter = CharacterTextSplitter( chunk_size=1000, chunk_overlap=200, ) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() # Create a Timescale Vector instance from the collection of documents TimescaleVector.from_documents( embedding=embeddings, ids=[doc.metadata["id"] for doc in docs], documents=docs, collection_name=collection_name, service_url=service_url, time_partition_interval=partition_interval, )
[]
2024-01-10
SanderMoon/guidance
guidance~llms~caches~_diskcache.py
import os import diskcache import platformdirs from guidance.llms.caches import Cache class DiskCache(Cache): """DiskCache is a cache that uses diskcache lib.""" def __init__(self, llm_name: str): self._diskcache = diskcache.Cache( os.path.join( platformdirs.user_cache_dir("guidance"), f"_{llm_name}.diskcache" ) ) def __getitem__(self, key: str) -> str: return self._diskcache[key] def __setitem__(self, key: str, value: str) -> None: self._diskcache[key] = value def __contains__(self, key: str) -> bool: return key in self._diskcache def clear(self): self._diskcache.clear()
[]
2024-01-10
tarkalabs/genai-workshop
test_vectordb.py
from qdrant_client import QdrantClient from langchain.vectorstores import Qdrant from langchain.embeddings import OpenAIEmbeddings from env import QDRANT_URL, OPENAI_API_KEY client = QdrantClient(url=QDRANT_URL) embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) vector_store = Qdrant(client=client, collection_name="insurance", embeddings=embeddings) matching_docs = vector_store.similarity_search(query="what is Domiciliary Hospitalization?",k=5) for doc in matching_docs: print(doc.page_content) print("-"*20)
[]
2024-01-10
tarkalabs/genai-workshop
load_vectordb.py
from langchain.document_loaders import TextLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Qdrant from langchain.embeddings import OpenAIEmbeddings from env import OPENAI_API_KEY, QDRANT_URL loader = TextLoader("./data/insurance.txt") documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) all_splits = text_splitter.split_documents(documents) Qdrant.from_documents( documents=all_splits, embedding=OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY), url=QDRANT_URL, collection_name='insurance' )
[]
2024-01-10
definitive-io/human-eval-sampling-benchmark
1_run_eval.py
import json import os import subprocess from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np from human_eval.data import read_problems from langchain.callbacks import get_openai_callback from langchain.chat_models.openai import ChatOpenAI from langchain.schema import HumanMessage, SystemMessage # CONFIG DEBUG = True PRINT_TOKEN_CONSUMPTION = False TEMP_MIN = 0.0 TEMP_MAX = 1.0 TOP_P_MIN = 0.0 TOP_P_MAX = 1.0 STEP = 0.2 if DEBUG: STEP = 1 def get_result(samples_path): result = subprocess.run( [ "evaluate_functional_correctness", samples_path, "1,10,100", "4", "3", "data/problems.jsonl", ], capture_output=True, text=True, ) return result.stdout, result.stderr def eval_sample_problem_pair(samples_path): # Get result of running ".venv/bin/evaluate_functional_correctness" result, _ = get_result(samples_path) with open(f"{samples_path}_results.txt", "w") as f: f.write(result.splitlines()[-1]) def write_modified_problems(problems): """ Write modified problems to data/problems.jsonl. The modification is because the GPT-4 model is a chat model that doesn't do well on strict sentence completion. So instead, we ask it to define the complete function. This requires slightly updated HumanEval problem jsonl lines. """ # Print first problem, it is a dict like this: # Iterate over dict collect_problems = [] for key, value in problems.items(): # Create empty problem collect_problems.append( { "task_id": key, "prompt": "", "entry_point": value["entry_point"], "test": value["test"], } ) # This is just validation, our logic doesn't work if no `def ` is in the prompt def_split = value["prompt"].split("def ") assert len(def_split) != 1, "Prompt must always contain a 'def '" # Write problems to JSONL with a single line for each entry in collect_problems # be sure to convert the dict to a single line string with json.dumps() with open("data/problems.jsonl", "w") as f: for problem in collect_problems: f.write(json.dumps(problem) + "\n") # Modified to return the collect_samples dictionary def generate_solution_for_problem(task_id, problem, chat): with get_openai_callback() as cb: message = chat( [ SystemMessage( content="You are an expert Python programmer. Implement the function provided by the user. Make sure your implementation is correct. Only output code since your output will directly be executed." ), HumanMessage(content=problem["prompt"]), ] ) if PRINT_TOKEN_CONSUMPTION: print(cb) # Assuming no import code exists after first function definition # manual inspection of the HumanEval data showed this was the case. def_split = problem["prompt"].split("def ") imports_code = def_split[0] solution = imports_code + message.content return { "task_id": task_id, "completion": solution, } def generate_solutions_for_params(temperature, top_p, problems): # Set max_retries really high, the concurrency will # cause us to hit the rate limit often. chat = ChatOpenAI( max_retries=1000, temperature=temperature, model_kwargs={ "top_p": top_p, }, ) collect_samples = [] # Generate solutions in parallel with ThreadPoolExecutor() as executor: future_to_task = { executor.submit(generate_solution_for_problem, key, value, chat): ( key, value, ) for key, value in problems.items() } for future in as_completed(future_to_task): collect_samples.append(future.result()) with open(f"data/samples_{temperature:.2f}_{top_p:.2f}_.jsonl", "w") as f: for sample in collect_samples: f.write(json.dumps(sample) + "\n") def generate_solutions(): problems = read_problems() if DEBUG: # Only use the first two problems problems = {k: v for k, v in list(problems.items())[:2]} write_modified_problems(problems) combinations = [ (temperature, top_p) for temperature in np.arange(TEMP_MIN, TEMP_MAX + STEP, STEP) for top_p in np.arange(TOP_P_MIN, TOP_P_MAX + STEP, STEP) ] # Generate solutions for all combinations in parallel with ThreadPoolExecutor() as executor: future_to_comb = { executor.submit( generate_solutions_for_params, temperature, top_p, problems ): (temperature, top_p) for temperature, top_p in combinations } for future in as_completed(future_to_comb): temperature, top_p = future_to_comb[future] print(f"Completed temperature: {temperature}, top_p: {top_p}") def verify_generated_solutions(): # List all JSONL files in the data directory jsonl_files = [f for f in os.listdir("data/") if f.endswith(".jsonl")] # Separate samples and problems files samples_files = [f for f in jsonl_files if "samples" in f and "results" not in f] for samples_file in samples_files: samples_path = os.path.join("data", samples_file) print(f"Running eval() for {samples_file}.") eval_sample_problem_pair(samples_path) if __name__ == "__main__": generate_solutions() verify_generated_solutions()
[ "You are an expert Python programmer. Implement the function provided by the user. Make sure your implementation is correct. Only output code since your output will directly be executed." ]
2024-01-10
mbchang/panel_simulation
dialogue.py
import random import tenacity from typing import List, Callable from langchain import PromptTemplate from langchain.chat_models import ChatOpenAI from langchain.output_parsers import RegexParser from langchain.schema import ( HumanMessage, SystemMessage, ) class DialogueAgent: def __init__( self, name: str, system_message: SystemMessage, model: ChatOpenAI, ) -> None: self.name = name self.system_message = system_message self.model = model self.prefix = f"{self.name}: " self.reset() def reset(self): self.message_history = ["Here is the conversation so far."] def send(self) -> str: """ Applies the chatmodel to the message history and returns the message string """ message = self.model( [ self.system_message, HumanMessage(content="\n".join(self.message_history + [self.prefix])), ] ) return message.content def receive(self, name: str, message: str) -> None: """ Concatenates {message} spoken by {name} into message history """ self.message_history.append(f"{name}: {message}") class IntegerOutputParser(RegexParser): def get_format_instructions(self) -> str: return "Your response should be an integer delimited by angled brackets, like this: <int>." class DirectorDialogueAgent(DialogueAgent): def __init__( self, name, system_message: SystemMessage, model: ChatOpenAI, speakers: List[DialogueAgent], stopping_probability: float, ) -> None: super().__init__(name, system_message, model) self.speakers = speakers self.next_speaker = "" self.stop = False self.stopping_probability = stopping_probability self.termination_clause = "Finish the conversation by stating a concluding message and thanking everyone." self.continuation_clause = "Do not end the conversation. Keep the conversation going by adding your own ideas." # 1. have a prompt for generating a response to the previous speaker self.response_prompt_template = PromptTemplate( input_variables=["message_history", "termination_clause"], template=f"""{{message_history}} Follow up with an insightful comment. {{termination_clause}} {self.prefix} """, ) # 2. have a prompt for deciding who to speak next self.choice_parser = IntegerOutputParser( regex=r"<(\d+)>", output_keys=["choice"], default_output_key="choice" ) self.choose_next_speaker_prompt_template = PromptTemplate( input_variables=["message_history", "speaker_names"], template=f"""{{message_history}} Given the above conversation, select a new speaker by choosing index next to their name: {{speaker_names}} {self.choice_parser.get_format_instructions()} Do nothing else. """, ) # 3. have a prompt for prompting the next speaker to speak self.prompt_next_speaker_prompt_template = PromptTemplate( input_variables=["message_history", "next_speaker"], template=f"""{{message_history}} The next speaker is {{next_speaker}}. Prompt the next speaker to speak with an insightful question. {self.prefix} """, ) def _generate_response(self): # if self.stop = True, then we will inject the prompt with a termination clause sample = random.uniform(0, 1) self.stop = sample < self.stopping_probability print(f"\tStop? {self.stop}\n") response_prompt = self.response_prompt_template.format( message_history="\n".join(self.message_history), termination_clause=self.termination_clause if self.stop else "", ) self.response = self.model( [ self.system_message, HumanMessage(content=response_prompt), ] ).content return self.response @tenacity.retry( stop=tenacity.stop_after_attempt(2), wait=tenacity.wait_none(), # No waiting time between retries retry=tenacity.retry_if_exception_type(ValueError), before_sleep=lambda retry_state: print( f"ValueError occurred: {retry_state.outcome.exception()}, retrying..." ), retry_error_callback=lambda retry_state: 0, ) # Default value when all retries are exhausted def _choose_next_speaker(self) -> str: speaker_names = "\n".join( [f"{idx}: {name}" for idx, name in enumerate(self.speakers)] ) choice_prompt = self.choose_next_speaker_prompt_template.format( message_history="\n".join( self.message_history + [self.prefix] + [self.response] ), speaker_names=speaker_names, ) choice_string = self.model( [ self.system_message, HumanMessage(content=choice_prompt), ] ).content choice = int(self.choice_parser.parse(choice_string)["choice"]) return choice def select_next_speaker(self): return self.chosen_speaker_id def send(self) -> str: """ Applies the chatmodel to the message history and returns the message string """ # 1. generate and save response to the previous speaker self.response = self._generate_response() if self.stop: message = self.response else: # 2. decide who to speak next self.chosen_speaker_id = self._choose_next_speaker() self.next_speaker = self.speakers[self.chosen_speaker_id] print(f"\tNext speaker: {self.next_speaker}\n") # 3. prompt the next speaker to speak next_prompt = self.prompt_next_speaker_prompt_template.format( message_history="\n".join( self.message_history + [self.prefix] + [self.response] ), next_speaker=self.next_speaker, ) message = self.model( [ self.system_message, HumanMessage(content=next_prompt), ] ).content message = " ".join([self.response, message]) return message class DialogueSimulator: def __init__( self, agents: List[DialogueAgent], selection_function: Callable[[int, List[DialogueAgent]], int], ) -> None: self.agents = agents self._step = 0 self.select_next_speaker = selection_function def reset(self): for agent in self.agents: agent.reset() def inject(self, name: str, message: str): """ Initiates the conversation with a {message} from {name} """ for agent in self.agents: agent.receive(name, message) # increment time self._step += 1 def step(self) -> tuple[str, str]: # 1. choose the next speaker speaker_idx = self.select_next_speaker(self._step, self.agents) speaker = self.agents[speaker_idx] # 2. next speaker sends message message = speaker.send() # 3. everyone receives message for receiver in self.agents: receiver.receive(speaker.name, message) # 4. increment time self._step += 1 return speaker.name, message
[ "\n" ]
2024-01-10
mbchang/panel_simulation
panel.py
from dataclasses import dataclass from langchain.schema import ( SystemMessage, ) @dataclass class PanelistConfig: name: str role: str title: str bio: str url: str icon_path: str voice: str def url_markdown(self): return f"[{self.name}]({self.url})" def generate_system_message(self, conversation_description): return SystemMessage( content=f"""{conversation_description} Your name is {self.name}, your role is {self.role}. Your description is as follows: {self.bio} Your goal is to provide the most informative, creative, and novel perspectives of the topic from the perspective of your role and your background. Speak in the first person with the style and perspective of {self.name}. For describing your own body movements, wrap your description in '*'. Be concise and limit your response to 30 words. """ ) def validate_agent_cfgs(agent_cfgs): directors = [agent for agent in agent_cfgs if agent.role == "director"] assert len(directors) == 1 def get_director(agent_cfgs): validate_agent_cfgs(agent_cfgs) return next(agent for agent in agent_cfgs if agent.role == "director") def get_panelists(agent_cfgs): validate_agent_cfgs(agent_cfgs) return [agent for agent in agent_cfgs if agent.role == "panelist"] def get_summary(agent_cfgs): summary = "\n- ".join( [""] + [f"{agent.name}: {agent.title}" for agent in agent_cfgs] ) return summary
[]
2024-01-10
zwbgood6/local_chatgpt
local_chatgpt.py
import os import openai import gradio as gr # step 1: Run the following command to create a new environment variable named OPENAI_API_KEY: # export OPENAI_API_KEY=<your-api-key> # step 2: Save the changes to your environment variables by running the following command: # source ~/.bashrc # step 3: You can now check if the environment variable has been set by running the following command: # echo $OPENAI_API_KEY openai.api_key = os.environ['OPENAI_API_KEY'] messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, ] def chat(user_input): if user_input: messages.append({"role": "user", "content": user_input}) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) reply = response.choices[0].message.content messages.append({"role": "assistant", "content": reply}) return reply inputs = gr.inputs.Textbox(label="User input") outputs = gr.outputs.Textbox(label="Response") gr.Interface( fn=chat, inputs=inputs, outputs=outputs, title="ChatGPT Demo", ).launch(share=True)
[ "You are a helpful AI assistant." ]
2024-01-10
JialongMei/GPT-WSD-thesis-project
custom_evaluation.py
import re import openai from nltk.corpus import wordnet as wn import json #same as evalution.py but it reads json file instead of xml and gold key txt openai.api_key = 'replace with openai api key' sense_keys = [] ok = 0 notok = 0 def get_word_meanings(word): global sense_keys sense_keys.clear() synsets = wn.synsets(word) for i, synset in enumerate(synsets): sense_keys.append((i, synset.name())) return 0 def same_check(model_question, real_answer, keyword): response = openai.Completion.create( engine="text-davinci-003", prompt=model_question, max_tokens=33, temperature=0, top_p=0.3, frequency_penalty=0, presence_penalty=0 ) get_word_meanings(keyword) reply = response.choices[0].text.strip() sense_key_num = re.search(r'\d+', reply) synset_id = None if sense_key_num: chosen_number = int(sense_key_num.group()) if chosen_number < len(sense_keys): synset_id = sense_keys[chosen_number][1] print(reply) print(synset_id) print(real_answer) if synset_id == real_answer: return True else: return False with open('custom_data.json', 'r') as file: data = json.load(file) counter = 0 for item in data: question = item['question'] answer = item['answer'] word = item['word'] if same_check(question, answer, word) == True: ok += 1 else: notok += 1 counter += 1 if counter == 45: break precision = ok/(ok + notok) #recall is always 1 here since the model is just doing mcq f1 = (2*precision*1)/(precision+1) print("ok: " + str(ok)) print("notok: " + str(notok)) print("precision: " + str(precision)) print("f1 socre: " + str(f1))
[]
2024-01-10
JialongMei/GPT-WSD-thesis-project
check_status.py
import os import openai openai.api_key = os.getenv("OPENAI_API_KEY") job = openai.FineTune.retrieve(id="fine-tuning job ID") print(job) #check fine-tuning progress from openai servers
[]
2024-01-10
JialongMei/GPT-WSD-thesis-project
WSD.py
import openai import tkinter as tk from nltk.corpus import wordnet import re openai.api_key = 'replace with openai api key' def get_word_meanings(word): synsets = wordnet.synsets(word) if not synsets: return "Cannot provide meaning for this word, so do not choose a number and just answer the meaning of this word in this sentence yourself" meanings = [] for i, synset in enumerate(synsets): meanings.append(f"{i}. {synset.definition()}") return '\n'.join(meanings)#extra new line for stop sequences def remove_number_dot_space(reply): pattern = r'^\d+\.\s' if re.match(pattern, reply): reply = re.sub(pattern, '', reply) return reply def pairs(): text = text_text.get("1.0", tk.END).strip() target_word = word_entry.get() meanings = get_word_meanings(target_word) prompt_content = "What is the meaning of word \"" + target_word + "\" in the sentence: \"" + text + "\"\n" + "Options" + "\n" + meanings + "\n" + "Repeat the option you selected(include the number):" + "\n" response = openai.Completion.create( engine="text-davinci-003", prompt=prompt_content, max_tokens=30, temperature=0, top_p=0.3, frequency_penalty=0, presence_penalty=0 ) reply = response.choices[0].text.strip() reply = remove_number_dot_space(reply)#reply process Reply_text.config(state=tk.NORMAL) Reply_text.delete(1.0, tk.END) Reply_text.insert(tk.END, reply) Reply_text.config(state=tk.DISABLED) window = tk.Tk() window.title("SenseQuery") window.geometry("500x250") word_label = tk.Label(window, text="Target Word") word_label.pack() word_entry = tk.Entry(window) word_entry.pack() text_label = tk.Label(window, text="Text") text_label.pack() text_text = tk.Text(window, height=3) text_text.pack() the_button = tk.Button(window, text="Submit", command=pairs) the_button.pack() Reply_label = tk.Label(window, text="Reply:") Reply_label.pack() Reply_text = tk.Text(window, height=5, state=tk.DISABLED) Reply_text.pack() window.mainloop()
[ "What is the meaning of word \"PLACEHOLDER\" in the sentence: \"PLACEHOLDER\"\nOptions\nPLACEHOLDER\nRepeat the option you selected(include the number):\n" ]
2024-01-10
windweller/AutoGrade_Pixel
autograde~train~rad_ppo2.py
import time import gym import numpy as np import tensorflow as tf from stable_baselines import logger from stable_baselines.common import explained_variance, ActorCriticRLModel, tf_util, SetVerbosity, TensorboardWriter from stable_baselines.common.runners import AbstractEnvRunner from stable_baselines.common.policies import ActorCriticPolicy, RecurrentActorCriticPolicy from stable_baselines.common.schedules import get_schedule_fn from stable_baselines.common.tf_util import total_episode_reward_logger from stable_baselines.common.math_util import safe_mean class PPO2(ActorCriticRLModel): """ Proximal Policy Optimization algorithm (GPU version). Paper: https://arxiv.org/abs/1707.06347 :param policy: (ActorCriticPolicy or str) The policy model to use (MlpPolicy, CnnPolicy, CnnLstmPolicy, ...) :param env: (Gym environment or str) The environment to learn from (if registered in Gym, can be str) :param gamma: (float) Discount factor :param n_steps: (int) The number of steps to run for each environment per update (i.e. batch size is n_steps * n_env where n_env is number of environment copies running in parallel) :param ent_coef: (float) Entropy coefficient for the loss calculation :param learning_rate: (float or callable) The learning rate, it can be a function :param vf_coef: (float) Value function coefficient for the loss calculation :param max_grad_norm: (float) The maximum value for the gradient clipping :param lam: (float) Factor for trade-off of bias vs variance for Generalized Advantage Estimator :param nminibatches: (int) Number of training minibatches per update. For recurrent policies, the number of environments run in parallel should be a multiple of nminibatches. :param noptepochs: (int) Number of epoch when optimizing the surrogate :param cliprange: (float or callable) Clipping parameter, it can be a function :param cliprange_vf: (float or callable) Clipping parameter for the value function, it can be a function. This is a parameter specific to the OpenAI implementation. If None is passed (default), then `cliprange` (that is used for the policy) will be used. IMPORTANT: this clipping depends on the reward scaling. To deactivate value function clipping (and recover the original PPO implementation), you have to pass a negative value (e.g. -1). :param verbose: (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug :param tensorboard_log: (str) the log location for tensorboard (if None, no logging) :param _init_setup_model: (bool) Whether or not to build the network at the creation of the instance :param policy_kwargs: (dict) additional arguments to be passed to the policy on creation :param full_tensorboard_log: (bool) enable additional logging when using tensorboard WARNING: this logging can take a lot of space quickly :param seed: (int) Seed for the pseudo-random generators (python, numpy, tensorflow). If None (default), use random seed. Note that if you want completely deterministic results, you must set `n_cpu_tf_sess` to 1. :param n_cpu_tf_sess: (int) The number of threads for TensorFlow operations If None, the number of cpu of the current machine will be used. """ def __init__(self, policy, env, gamma=0.99, n_steps=128, ent_coef=0.01, learning_rate=2.5e-4, vf_coef=0.5, max_grad_norm=0.5, lam=0.95, nminibatches=4, noptepochs=4, cliprange=0.2, cliprange_vf=None, verbose=0, tensorboard_log=None, _init_setup_model=True, policy_kwargs=None, full_tensorboard_log=False, seed=None, n_cpu_tf_sess=None, data_aug='normal'): self.learning_rate = learning_rate self.cliprange = cliprange self.cliprange_vf = cliprange_vf self.n_steps = n_steps self.ent_coef = ent_coef self.vf_coef = vf_coef self.max_grad_norm = max_grad_norm self.gamma = gamma self.lam = lam self.nminibatches = nminibatches self.noptepochs = noptepochs self.tensorboard_log = tensorboard_log self.full_tensorboard_log = full_tensorboard_log self.data_aug = data_aug self.action_ph = None self.advs_ph = None self.rewards_ph = None self.old_neglog_pac_ph = None self.old_vpred_ph = None self.learning_rate_ph = None self.clip_range_ph = None self.entropy = None self.vf_loss = None self.pg_loss = None self.approxkl = None self.clipfrac = None self._train = None self.loss_names = None self.train_model = None self.act_model = None self.value = None self.n_batch = None self.summary = None super().__init__(policy=policy, env=env, verbose=verbose, requires_vec_env=True, _init_setup_model=_init_setup_model, policy_kwargs=policy_kwargs, seed=seed, n_cpu_tf_sess=n_cpu_tf_sess) if _init_setup_model: self.setup_model() def _make_runner(self): return RAD_Runner(env=self.env, model=self, n_steps=self.n_steps, gamma=self.gamma, lam=self.lam, data_aug=self.data_aug) def _get_pretrain_placeholders(self): policy = self.act_model if isinstance(self.action_space, gym.spaces.Discrete): return policy.obs_ph, self.action_ph, policy.policy return policy.obs_ph, self.action_ph, policy.deterministic_action def setup_model(self): with SetVerbosity(self.verbose): assert issubclass(self.policy, ActorCriticPolicy), "Error: the input policy for the PPO2 model must be " \ "an instance of common.policies.ActorCriticPolicy." self.n_batch = self.n_envs * self.n_steps self.graph = tf.Graph() with self.graph.as_default(): self.set_random_seed(self.seed) self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess, graph=self.graph) n_batch_step = None n_batch_train = None if issubclass(self.policy, RecurrentActorCriticPolicy): assert self.n_envs % self.nminibatches == 0, "For recurrent policies, "\ "the number of environments run in parallel should be a multiple of nminibatches." n_batch_step = self.n_envs n_batch_train = self.n_batch // self.nminibatches act_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, 1, n_batch_step, reuse=False, **self.policy_kwargs) with tf.variable_scope("train_model", reuse=True, custom_getter=tf_util.outer_scope_getter("train_model")): train_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs // self.nminibatches, self.n_steps, n_batch_train, reuse=True, **self.policy_kwargs) with tf.variable_scope("loss", reuse=False): self.action_ph = train_model.pdtype.sample_placeholder([None], name="action_ph") self.advs_ph = tf.placeholder(tf.float32, [None], name="advs_ph") self.rewards_ph = tf.placeholder(tf.float32, [None], name="rewards_ph") self.old_neglog_pac_ph = tf.placeholder(tf.float32, [None], name="old_neglog_pac_ph") self.old_vpred_ph = tf.placeholder(tf.float32, [None], name="old_vpred_ph") self.learning_rate_ph = tf.placeholder(tf.float32, [], name="learning_rate_ph") self.clip_range_ph = tf.placeholder(tf.float32, [], name="clip_range_ph") neglogpac = train_model.proba_distribution.neglogp(self.action_ph) self.entropy = tf.reduce_mean(train_model.proba_distribution.entropy()) vpred = train_model.value_flat # Value function clipping: not present in the original PPO if self.cliprange_vf is None: # Default behavior (legacy from OpenAI baselines): # use the same clipping as for the policy self.clip_range_vf_ph = self.clip_range_ph self.cliprange_vf = self.cliprange elif isinstance(self.cliprange_vf, (float, int)) and self.cliprange_vf < 0: # Original PPO implementation: no value function clipping self.clip_range_vf_ph = None else: # Last possible behavior: clipping range # specific to the value function self.clip_range_vf_ph = tf.placeholder(tf.float32, [], name="clip_range_vf_ph") if self.clip_range_vf_ph is None: # No clipping vpred_clipped = train_model.value_flat else: # Clip the different between old and new value # NOTE: this depends on the reward scaling vpred_clipped = self.old_vpred_ph + \ tf.clip_by_value(train_model.value_flat - self.old_vpred_ph, - self.clip_range_vf_ph, self.clip_range_vf_ph) vf_losses1 = tf.square(vpred - self.rewards_ph) vf_losses2 = tf.square(vpred_clipped - self.rewards_ph) self.vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2)) ratio = tf.exp(self.old_neglog_pac_ph - neglogpac) pg_losses = -self.advs_ph * ratio pg_losses2 = -self.advs_ph * tf.clip_by_value(ratio, 1.0 - self.clip_range_ph, 1.0 + self.clip_range_ph) self.pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2)) self.approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - self.old_neglog_pac_ph)) self.clipfrac = tf.reduce_mean(tf.cast(tf.greater(tf.abs(ratio - 1.0), self.clip_range_ph), tf.float32)) loss = self.pg_loss - self.entropy * self.ent_coef + self.vf_loss * self.vf_coef tf.summary.scalar('entropy_loss', self.entropy) tf.summary.scalar('policy_gradient_loss', self.pg_loss) tf.summary.scalar('value_function_loss', self.vf_loss) tf.summary.scalar('approximate_kullback-leibler', self.approxkl) tf.summary.scalar('clip_factor', self.clipfrac) tf.summary.scalar('loss', loss) with tf.variable_scope('model'): self.params = tf.trainable_variables() if self.full_tensorboard_log: for var in self.params: tf.summary.histogram(var.name, var) grads = tf.gradients(loss, self.params) if self.max_grad_norm is not None: grads, _grad_norm = tf.clip_by_global_norm(grads, self.max_grad_norm) grads = list(zip(grads, self.params)) trainer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph, epsilon=1e-5) self._train = trainer.apply_gradients(grads) self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac'] with tf.variable_scope("input_info", reuse=False): tf.summary.scalar('discounted_rewards', tf.reduce_mean(self.rewards_ph)) tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph)) tf.summary.scalar('advantage', tf.reduce_mean(self.advs_ph)) tf.summary.scalar('clip_range', tf.reduce_mean(self.clip_range_ph)) if self.clip_range_vf_ph is not None: tf.summary.scalar('clip_range_vf', tf.reduce_mean(self.clip_range_vf_ph)) tf.summary.scalar('old_neglog_action_probability', tf.reduce_mean(self.old_neglog_pac_ph)) tf.summary.scalar('old_value_pred', tf.reduce_mean(self.old_vpred_ph)) if self.full_tensorboard_log: tf.summary.histogram('discounted_rewards', self.rewards_ph) tf.summary.histogram('learning_rate', self.learning_rate_ph) tf.summary.histogram('advantage', self.advs_ph) tf.summary.histogram('clip_range', self.clip_range_ph) tf.summary.histogram('old_neglog_action_probability', self.old_neglog_pac_ph) tf.summary.histogram('old_value_pred', self.old_vpred_ph) if tf_util.is_image(self.observation_space): tf.summary.image('observation', train_model.obs_ph) else: tf.summary.histogram('observation', train_model.obs_ph) self.train_model = train_model self.act_model = act_model self.step = act_model.step self.proba_step = act_model.proba_step self.value = act_model.value self.initial_state = act_model.initial_state tf.global_variables_initializer().run(session=self.sess) # pylint: disable=E1101 self.summary = tf.summary.merge_all() def _train_step(self, learning_rate, cliprange, obs, returns, masks, actions, values, neglogpacs, update, writer, states=None, cliprange_vf=None): """ Training of PPO2 Algorithm :param learning_rate: (float) learning rate :param cliprange: (float) Clipping factor :param obs: (np.ndarray) The current observation of the environment :param returns: (np.ndarray) the rewards :param masks: (np.ndarray) The last masks for done episodes (used in recurent policies) :param actions: (np.ndarray) the actions :param values: (np.ndarray) the values :param neglogpacs: (np.ndarray) Negative Log-likelihood probability of Actions :param update: (int) the current step iteration :param writer: (TensorFlow Summary.writer) the writer for tensorboard :param states: (np.ndarray) For recurrent policies, the internal state of the recurrent model :return: policy gradient loss, value function loss, policy entropy, approximation of kl divergence, updated clipping range, training update operation :param cliprange_vf: (float) Clipping factor for the value function """ advs = returns - values advs = (advs - advs.mean()) / (advs.std() + 1e-8) td_map = {self.train_model.obs_ph: obs, self.action_ph: actions, self.advs_ph: advs, self.rewards_ph: returns, self.learning_rate_ph: learning_rate, self.clip_range_ph: cliprange, self.old_neglog_pac_ph: neglogpacs, self.old_vpred_ph: values} if states is not None: td_map[self.train_model.states_ph] = states td_map[self.train_model.dones_ph] = masks if cliprange_vf is not None and cliprange_vf >= 0: td_map[self.clip_range_vf_ph] = cliprange_vf if states is None: update_fac = self.n_batch // self.nminibatches // self.noptepochs + 1 else: update_fac = self.n_batch // self.nminibatches // self.noptepochs // self.n_steps + 1 if writer is not None: # run loss backprop with summary, but once every 10 runs save the metadata (memory, compute time, ...) if self.full_tensorboard_log and (1 + update) % 10 == 0: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() summary, policy_loss, value_loss, policy_entropy, approxkl, clipfrac, _ = self.sess.run( [self.summary, self.pg_loss, self.vf_loss, self.entropy, self.approxkl, self.clipfrac, self._train], td_map, options=run_options, run_metadata=run_metadata) writer.add_run_metadata(run_metadata, 'step%d' % (update * update_fac)) else: summary, policy_loss, value_loss, policy_entropy, approxkl, clipfrac, _ = self.sess.run( [self.summary, self.pg_loss, self.vf_loss, self.entropy, self.approxkl, self.clipfrac, self._train], td_map) writer.add_summary(summary, (update * update_fac)) else: policy_loss, value_loss, policy_entropy, approxkl, clipfrac, _ = self.sess.run( [self.pg_loss, self.vf_loss, self.entropy, self.approxkl, self.clipfrac, self._train], td_map) return policy_loss, value_loss, policy_entropy, approxkl, clipfrac def learn(self, total_timesteps, callback=None, log_interval=1, tb_log_name="PPO2", reset_num_timesteps=True): # Transform to callable if needed self.learning_rate = get_schedule_fn(self.learning_rate) self.cliprange = get_schedule_fn(self.cliprange) cliprange_vf = get_schedule_fn(self.cliprange_vf) new_tb_log = self._init_num_timesteps(reset_num_timesteps) callback = self._init_callback(callback) with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \ as writer: self._setup_learn() t_first_start = time.time() n_updates = total_timesteps // self.n_batch callback.on_training_start(locals(), globals()) for update in range(1, n_updates + 1): assert self.n_batch % self.nminibatches == 0, ("The number of minibatches (`nminibatches`) " "is not a factor of the total number of samples " "collected per rollout (`n_batch`), " "some samples won't be used." ) batch_size = self.n_batch // self.nminibatches t_start = time.time() frac = 1.0 - (update - 1.0) / n_updates lr_now = self.learning_rate(frac) cliprange_now = self.cliprange(frac) cliprange_vf_now = cliprange_vf(frac) callback.on_rollout_start() # true_reward is the reward without discount rollout = self.runner.run(callback) # Unpack obs, returns, masks, actions, values, neglogpacs, states, ep_infos, true_reward = rollout callback.on_rollout_end() # Early stopping due to the callback if not self.runner.continue_training: break self.ep_info_buf.extend(ep_infos) mb_loss_vals = [] if states is None: # nonrecurrent version update_fac = self.n_batch // self.nminibatches // self.noptepochs + 1 inds = np.arange(self.n_batch) for epoch_num in range(self.noptepochs): np.random.shuffle(inds) for start in range(0, self.n_batch, batch_size): timestep = self.num_timesteps // update_fac + ((self.noptepochs * self.n_batch + epoch_num * self.n_batch + start) // batch_size) end = start + batch_size mbinds = inds[start:end] slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mb_loss_vals.append(self._train_step(lr_now, cliprange_now, *slices, writer=writer, update=timestep, cliprange_vf=cliprange_vf_now)) else: # recurrent version update_fac = self.n_batch // self.nminibatches // self.noptepochs // self.n_steps + 1 assert self.n_envs % self.nminibatches == 0 env_indices = np.arange(self.n_envs) flat_indices = np.arange(self.n_envs * self.n_steps).reshape(self.n_envs, self.n_steps) envs_per_batch = batch_size // self.n_steps for epoch_num in range(self.noptepochs): np.random.shuffle(env_indices) for start in range(0, self.n_envs, envs_per_batch): timestep = self.num_timesteps // update_fac + ((self.noptepochs * self.n_envs + epoch_num * self.n_envs + start) // envs_per_batch) end = start + envs_per_batch mb_env_inds = env_indices[start:end] mb_flat_inds = flat_indices[mb_env_inds].ravel() slices = (arr[mb_flat_inds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mb_states = states[mb_env_inds] mb_loss_vals.append(self._train_step(lr_now, cliprange_now, *slices, update=timestep, writer=writer, states=mb_states, cliprange_vf=cliprange_vf_now)) loss_vals = np.mean(mb_loss_vals, axis=0) t_now = time.time() fps = int(self.n_batch / (t_now - t_start)) if writer is not None: total_episode_reward_logger(self.episode_reward, true_reward.reshape((self.n_envs, self.n_steps)), masks.reshape((self.n_envs, self.n_steps)), writer, self.num_timesteps) if self.verbose >= 1 and (update % log_interval == 0 or update == 1): explained_var = explained_variance(values, returns) logger.logkv("serial_timesteps", update * self.n_steps) logger.logkv("n_updates", update) logger.logkv("total_timesteps", self.num_timesteps) logger.logkv("fps", fps) logger.logkv("explained_variance", float(explained_var)) if len(self.ep_info_buf) > 0 and len(self.ep_info_buf[0]) > 0: logger.logkv('ep_reward_mean', safe_mean([ep_info['r'] for ep_info in self.ep_info_buf])) logger.logkv('ep_len_mean', safe_mean([ep_info['l'] for ep_info in self.ep_info_buf])) logger.logkv('time_elapsed', t_start - t_first_start) for (loss_val, loss_name) in zip(loss_vals, self.loss_names): logger.logkv(loss_name, loss_val) logger.dumpkvs() callback.on_training_end() return self def save(self, save_path, cloudpickle=False): data = { "gamma": self.gamma, "n_steps": self.n_steps, "vf_coef": self.vf_coef, "ent_coef": self.ent_coef, "max_grad_norm": self.max_grad_norm, "learning_rate": self.learning_rate, "lam": self.lam, "nminibatches": self.nminibatches, "noptepochs": self.noptepochs, "cliprange": self.cliprange, "cliprange_vf": self.cliprange_vf, "verbose": self.verbose, "policy": self.policy, "observation_space": self.observation_space, "action_space": self.action_space, "n_envs": self.n_envs, "n_cpu_tf_sess": self.n_cpu_tf_sess, "seed": self.seed, "_vectorize_action": self._vectorize_action, "policy_kwargs": self.policy_kwargs } params_to_save = self.get_parameters() self._save_to_file(save_path, data=data, params=params_to_save, cloudpickle=cloudpickle) import data_augs as rad class RAD_Runner(AbstractEnvRunner): def __init__(self, *, env, model, n_steps, gamma, lam, data_aug): """ A runner to learn the policy of an environment for a model :param env: (Gym environment) The environment to learn from :param model: (Model) The model to learn :param n_steps: (int) The number of steps to run for each environment :param gamma: (float) Discount factor :param lam: (float) Factor for trade-off of bias vs variance for Generalized Advantage Estimator """ super().__init__(env=env, model=model, n_steps=n_steps) self.lam = lam self.gamma = gamma self.data_aug = data_aug # we don't need "eval_flag" because we directly use model.predict() # in eval. nenvs = self.obs.shape[0] self.augs_funcs = None if self.data_aug != 'normal': # and self.eval_flag is False: aug_to_func = { 'gray': rad.RandGray, 'cutout': rad.Cutout, 'cutout_color': rad.Cutout_Color, 'flip': rad.Rand_Flip, 'rotate': rad.Rand_Rotate, 'color_jitter': rad.ColorJitterLayer, 'crop': rad.Rand_Crop, } self.augs_funcs = aug_to_func[data_aug](batch_size=nenvs, p_gray=0.8) self.obs = self.augs_funcs.do_augmentation(self.obs) def _run(self): """ Run a learning step of the model :return: - observations: (np.ndarray) the observations - rewards: (np.ndarray) the rewards - masks: (numpy bool) whether an episode is over or not - actions: (np.ndarray) the actions - values: (np.ndarray) the value function output - negative log probabilities: (np.ndarray) - states: (np.ndarray) the internal states of the recurrent policies - infos: (dict) the extra information of the model """ # mb stands for minibatch mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [], [], [], [], [], [] mb_states = self.states ep_infos = [] for _ in range(self.n_steps): actions, values, self.states, neglogpacs = self.model.step(self.obs, self.states, self.dones) mb_obs.append(self.obs.copy()) mb_actions.append(actions) mb_values.append(values) mb_neglogpacs.append(neglogpacs) mb_dones.append(self.dones) clipped_actions = actions # Clip the actions to avoid out of bound error if isinstance(self.env.action_space, gym.spaces.Box): clipped_actions = np.clip(actions, self.env.action_space.low, self.env.action_space.high) obs, rewards, self.dones, infos = self.env.step(clipped_actions) # self.obs[:], rewards, self.dones, infos = self.env.step(clipped_actions) # augment the observation here if self.data_aug != 'normal': # This is the "training" condition self.obs[:] = self.augs_funcs.do_augmentation(obs) else: self.obs[:] = obs self.model.num_timesteps += self.n_envs if self.callback is not None: # Abort training early if self.callback.on_step() is False: self.continue_training = False # Return dummy values return [None] * 9 for info in infos: maybe_ep_info = info.get('episode') if maybe_ep_info is not None: ep_infos.append(maybe_ep_info) mb_rewards.append(rewards) # batch of steps to batch of rollouts mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype) mb_rewards = np.asarray(mb_rewards, dtype=np.float32) mb_actions = np.asarray(mb_actions) mb_values = np.asarray(mb_values, dtype=np.float32) mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32) mb_dones = np.asarray(mb_dones, dtype=np.bool) last_values = self.model.value(self.obs, self.states, self.dones) # discount/bootstrap off value fn mb_advs = np.zeros_like(mb_rewards) true_reward = np.copy(mb_rewards) last_gae_lam = 0 for step in reversed(range(self.n_steps)): if step == self.n_steps - 1: nextnonterminal = 1.0 - self.dones nextvalues = last_values else: nextnonterminal = 1.0 - mb_dones[step + 1] nextvalues = mb_values[step + 1] delta = mb_rewards[step] + self.gamma * nextvalues * nextnonterminal - mb_values[step] mb_advs[step] = last_gae_lam = delta + self.gamma * self.lam * nextnonterminal * last_gae_lam mb_returns = mb_advs + mb_values mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, true_reward = \ map(swap_and_flatten, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, true_reward)) return mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_states, ep_infos, true_reward # obs, returns, masks, actions, values, neglogpacs, states = runner.run() def swap_and_flatten(arr): """ swap and then flatten axes 0 and 1 :param arr: (np.ndarray) :return: (np.ndarray) """ shape = arr.shape return arr.swapaxes(0, 1).reshape(shape[0] * shape[1], *shape[2:])
[]
2024-01-10
geekan/MetaGPT
tests~metagpt~provider~test_fireworks_api.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Desc : the unittest of fireworks api import pytest from openai.types.chat.chat_completion import ( ChatCompletion, ChatCompletionMessage, Choice, ) from openai.types.chat.chat_completion_chunk import ChatCompletionChunk from openai.types.chat.chat_completion_chunk import Choice as AChoice from openai.types.chat.chat_completion_chunk import ChoiceDelta from openai.types.completion_usage import CompletionUsage from metagpt.config import CONFIG from metagpt.provider.fireworks_api import ( MODEL_GRADE_TOKEN_COSTS, FireworksCostManager, FireworksLLM, ) from metagpt.utils.cost_manager import Costs CONFIG.fireworks_api_key = "xxx" CONFIG.max_budget = 10 CONFIG.calc_usage = True resp_content = "I'm fireworks" default_resp = ChatCompletion( id="cmpl-a6652c1bb181caae8dd19ad8", model="accounts/fireworks/models/llama-v2-13b-chat", object="chat.completion", created=1703300855, choices=[ Choice( finish_reason="stop", index=0, message=ChatCompletionMessage(role="assistant", content=resp_content), logprobs=None, ) ], usage=CompletionUsage(completion_tokens=110, prompt_tokens=92, total_tokens=202), ) default_resp_chunk = ChatCompletionChunk( id=default_resp.id, model=default_resp.model, object="chat.completion.chunk", created=default_resp.created, choices=[ AChoice( delta=ChoiceDelta(content=resp_content, role="assistant"), finish_reason="stop", index=0, logprobs=None, ) ], usage=dict(default_resp.usage), ) prompt_msg = "who are you" messages = [{"role": "user", "content": prompt_msg}] def test_fireworks_costmanager(): cost_manager = FireworksCostManager() assert MODEL_GRADE_TOKEN_COSTS["-1"] == cost_manager.model_grade_token_costs("test") assert MODEL_GRADE_TOKEN_COSTS["-1"] == cost_manager.model_grade_token_costs("xxx-81b-chat") assert MODEL_GRADE_TOKEN_COSTS["16"] == cost_manager.model_grade_token_costs("llama-v2-13b-chat") assert MODEL_GRADE_TOKEN_COSTS["16"] == cost_manager.model_grade_token_costs("xxx-15.5b-chat") assert MODEL_GRADE_TOKEN_COSTS["16"] == cost_manager.model_grade_token_costs("xxx-16b-chat") assert MODEL_GRADE_TOKEN_COSTS["80"] == cost_manager.model_grade_token_costs("xxx-80b-chat") assert MODEL_GRADE_TOKEN_COSTS["mixtral-8x7b"] == cost_manager.model_grade_token_costs("mixtral-8x7b-chat") cost_manager.update_cost(prompt_tokens=500000, completion_tokens=500000, model="llama-v2-13b-chat") assert cost_manager.total_cost == 0.5 async def mock_openai_acompletions_create(self, stream: bool = False, **kwargs) -> ChatCompletionChunk: if stream: class Iterator(object): async def __aiter__(self): yield default_resp_chunk return Iterator() else: return default_resp @pytest.mark.asyncio async def test_fireworks_acompletion(mocker): mocker.patch("openai.resources.chat.completions.AsyncCompletions.create", mock_openai_acompletions_create) fireworks_gpt = FireworksLLM() fireworks_gpt.model = "llama-v2-13b-chat" fireworks_gpt._update_costs( usage=CompletionUsage(prompt_tokens=500000, completion_tokens=500000, total_tokens=1000000) ) assert fireworks_gpt.get_costs() == Costs( total_prompt_tokens=500000, total_completion_tokens=500000, total_cost=0.5, total_budget=0 ) resp = await fireworks_gpt.acompletion(messages) assert resp.choices[0].message.content in resp_content resp = await fireworks_gpt.aask(prompt_msg, stream=False) assert resp == resp_content resp = await fireworks_gpt.acompletion_text(messages, stream=False) assert resp == resp_content resp = await fireworks_gpt.acompletion_text(messages, stream=True) assert resp == resp_content resp = await fireworks_gpt.aask(prompt_msg) assert resp == resp_content
[ "I'm fireworks", "who are you" ]
2024-01-10
geekan/MetaGPT
examples~search_kb.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @File : search_kb.py @Modified By: mashenquan, 2023-12-22. Delete useless codes. """ import asyncio from langchain.embeddings import OpenAIEmbeddings from metagpt.config import CONFIG from metagpt.const import DATA_PATH, EXAMPLE_PATH from metagpt.document_store import FaissStore from metagpt.logs import logger from metagpt.roles import Sales def get_store(): embedding = OpenAIEmbeddings(openai_api_key=CONFIG.openai_api_key, openai_api_base=CONFIG.openai_base_url) return FaissStore(DATA_PATH / "example.json", embedding=embedding) async def search(): store = FaissStore(EXAMPLE_PATH / "example.json") role = Sales(profile="Sales", store=store) query = "Which facial cleanser is good for oily skin?" result = await role.run(query) logger.info(result) if __name__ == "__main__": asyncio.run(search())
[]
2024-01-10
geekan/MetaGPT
tests~metagpt~provider~test_anthropic_api.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Desc : the unittest of Claude2 import pytest from anthropic.resources.completions import Completion from metagpt.config import CONFIG from metagpt.provider.anthropic_api import Claude2 CONFIG.anthropic_api_key = "xxx" prompt = "who are you" resp = "I'am Claude2" def mock_anthropic_completions_create(self, model: str, prompt: str, max_tokens_to_sample: int) -> Completion: return Completion(id="xx", completion=resp, model="claude-2", stop_reason="stop_sequence", type="completion") async def mock_anthropic_acompletions_create(self, model: str, prompt: str, max_tokens_to_sample: int) -> Completion: return Completion(id="xx", completion=resp, model="claude-2", stop_reason="stop_sequence", type="completion") def test_claude2_ask(mocker): mocker.patch("anthropic.resources.completions.Completions.create", mock_anthropic_completions_create) assert resp == Claude2().ask(prompt) @pytest.mark.asyncio async def test_claude2_aask(mocker): mocker.patch("anthropic.resources.completions.AsyncCompletions.create", mock_anthropic_acompletions_create) assert resp == await Claude2().aask(prompt)
[ "who are you" ]
2024-01-10
geekan/MetaGPT
metagpt~document_store~faiss_store.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Time : 2023/5/25 10:20 @Author : alexanderwu @File : faiss_store.py """ import asyncio from pathlib import Path from typing import Optional from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain_core.embeddings import Embeddings from metagpt.config import CONFIG from metagpt.document import IndexableDocument from metagpt.document_store.base_store import LocalStore from metagpt.logs import logger class FaissStore(LocalStore): def __init__( self, raw_data: Path, cache_dir=None, meta_col="source", content_col="output", embedding: Embeddings = None ): self.meta_col = meta_col self.content_col = content_col self.embedding = embedding or OpenAIEmbeddings( openai_api_key=CONFIG.openai_api_key, openai_api_base=CONFIG.openai_base_url ) super().__init__(raw_data, cache_dir) def _load(self) -> Optional["FaissStore"]: index_file, store_file = self._get_index_and_store_fname(index_ext=".faiss") # langchain FAISS using .faiss if not (index_file.exists() and store_file.exists()): logger.info("Missing at least one of index_file/store_file, load failed and return None") return None return FAISS.load_local(self.raw_data_path.parent, self.embedding, self.fname) def _write(self, docs, metadatas): store = FAISS.from_texts(docs, self.embedding, metadatas=metadatas) return store def persist(self): self.store.save_local(self.raw_data_path.parent, self.fname) def search(self, query, expand_cols=False, sep="\n", *args, k=5, **kwargs): rsp = self.store.similarity_search(query, k=k, **kwargs) logger.debug(rsp) if expand_cols: return str(sep.join([f"{x.page_content}: {x.metadata}" for x in rsp])) else: return str(sep.join([f"{x.page_content}" for x in rsp])) async def asearch(self, *args, **kwargs): return await asyncio.to_thread(self.search, *args, **kwargs) def write(self): """Initialize the index and library based on the Document (JSON / XLSX, etc.) file provided by the user.""" if not self.raw_data_path.exists(): raise FileNotFoundError doc = IndexableDocument.from_path(self.raw_data_path, self.content_col, self.meta_col) docs, metadatas = doc.get_docs_and_metadatas() self.store = self._write(docs, metadatas) self.persist() return self.store def add(self, texts: list[str], *args, **kwargs) -> list[str]: """FIXME: Currently, the store is not updated after adding.""" return self.store.add_texts(texts) def delete(self, *args, **kwargs): """Currently, langchain does not provide a delete interface.""" raise NotImplementedError
[]
2024-01-10
geekan/MetaGPT
metagpt~provider~azure_openai_api.py
# -*- coding: utf-8 -*- """ @Time : 2023/5/5 23:08 @Author : alexanderwu @File : openai.py @Modified By: mashenquan, 2023/8/20. Remove global configuration `CONFIG`, enable configuration support for business isolation; Change cost control from global to company level. @Modified By: mashenquan, 2023/11/21. Fix bug: ReadTimeout. @Modified By: mashenquan, 2023/12/1. Fix bug: Unclosed connection caused by openai 0.x. """ from openai import AsyncAzureOpenAI from openai._base_client import AsyncHttpxClientWrapper from metagpt.config import LLMProviderEnum from metagpt.provider.llm_provider_registry import register_provider from metagpt.provider.openai_api import OpenAILLM @register_provider(LLMProviderEnum.AZURE_OPENAI) class AzureOpenAILLM(OpenAILLM): """ Check https://platform.openai.com/examples for examples """ def _init_client(self): kwargs = self._make_client_kwargs() # https://learn.microsoft.com/zh-cn/azure/ai-services/openai/how-to/migration?tabs=python-new%2Cdalle-fix self.aclient = AsyncAzureOpenAI(**kwargs) self.model = self.config.DEPLOYMENT_NAME # Used in _calc_usage & _cons_kwargs def _make_client_kwargs(self) -> dict: kwargs = dict( api_key=self.config.OPENAI_API_KEY, api_version=self.config.OPENAI_API_VERSION, azure_endpoint=self.config.OPENAI_BASE_URL, ) # to use proxy, openai v1 needs http_client proxy_params = self._get_proxy_params() if proxy_params: kwargs["http_client"] = AsyncHttpxClientWrapper(**proxy_params) return kwargs
[]
2024-01-10
geekan/MetaGPT
tests~metagpt~test_gpt.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Time : 2023/4/29 19:47 @Author : alexanderwu @File : test_gpt.py """ import openai import pytest from metagpt.config import CONFIG from metagpt.logs import logger @pytest.mark.usefixtures("llm_api") class TestGPT: @pytest.mark.asyncio async def test_llm_api_aask(self, llm_api): answer = await llm_api.aask("hello chatgpt", stream=False) logger.info(answer) assert len(answer) > 0 answer = await llm_api.aask("hello chatgpt", stream=True) logger.info(answer) assert len(answer) > 0 @pytest.mark.asyncio async def test_llm_api_aask_code(self, llm_api): try: answer = await llm_api.aask_code(["请扮演一个Google Python专家工程师,如果理解,回复明白", "写一个hello world"], timeout=60) logger.info(answer) assert len(answer) > 0 except openai.BadRequestError: assert CONFIG.OPENAI_API_TYPE == "azure" @pytest.mark.asyncio async def test_llm_api_costs(self, llm_api): await llm_api.aask("hello chatgpt", stream=False) costs = llm_api.get_costs() logger.info(costs) assert costs.total_cost > 0 if __name__ == "__main__": pytest.main([__file__, "-s"])
[]
2024-01-10
geekan/MetaGPT
metagpt~provider~__init__.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Time : 2023/5/5 22:59 @Author : alexanderwu @File : __init__.py """ from metagpt.provider.fireworks_api import FireworksLLM from metagpt.provider.google_gemini_api import GeminiLLM from metagpt.provider.ollama_api import OllamaLLM from metagpt.provider.open_llm_api import OpenLLM from metagpt.provider.openai_api import OpenAILLM from metagpt.provider.zhipuai_api import ZhiPuAILLM from metagpt.provider.azure_openai_api import AzureOpenAILLM from metagpt.provider.metagpt_api import MetaGPTLLM __all__ = [ "FireworksLLM", "GeminiLLM", "OpenLLM", "OpenAILLM", "ZhiPuAILLM", "AzureOpenAILLM", "MetaGPTLLM", "OllamaLLM", ]
[]
2024-01-10
geekan/MetaGPT
metagpt~provider~zhipuai_api.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Desc : zhipuai LLM from https://open.bigmodel.cn/dev/api#sdk import json from enum import Enum import openai import zhipuai from requests import ConnectionError from tenacity import ( after_log, retry, retry_if_exception_type, stop_after_attempt, wait_random_exponential, ) from metagpt.config import CONFIG, LLMProviderEnum from metagpt.logs import log_llm_stream, logger from metagpt.provider.base_llm import BaseLLM from metagpt.provider.llm_provider_registry import register_provider from metagpt.provider.openai_api import log_and_reraise from metagpt.provider.zhipuai.zhipu_model_api import ZhiPuModelAPI class ZhiPuEvent(Enum): ADD = "add" ERROR = "error" INTERRUPTED = "interrupted" FINISH = "finish" @register_provider(LLMProviderEnum.ZHIPUAI) class ZhiPuAILLM(BaseLLM): """ Refs to `https://open.bigmodel.cn/dev/api#chatglm_turbo` From now, there is only one model named `chatglm_turbo` """ def __init__(self): self.__init_zhipuai(CONFIG) self.llm = ZhiPuModelAPI self.model = "chatglm_turbo" # so far only one model, just use it self.use_system_prompt: bool = False # zhipuai has no system prompt when use api def __init_zhipuai(self, config: CONFIG): assert config.zhipuai_api_key zhipuai.api_key = config.zhipuai_api_key # due to use openai sdk, set the api_key but it will't be used. # openai.api_key = zhipuai.api_key # due to use openai sdk, set the api_key but it will't be used. if config.openai_proxy: # FIXME: openai v1.x sdk has no proxy support openai.proxy = config.openai_proxy def _const_kwargs(self, messages: list[dict]) -> dict: kwargs = {"model": self.model, "prompt": messages, "temperature": 0.3} return kwargs def _update_costs(self, usage: dict): """update each request's token cost""" if CONFIG.calc_usage: try: prompt_tokens = int(usage.get("prompt_tokens", 0)) completion_tokens = int(usage.get("completion_tokens", 0)) CONFIG.cost_manager.update_cost(prompt_tokens, completion_tokens, self.model) except Exception as e: logger.error(f"zhipuai updats costs failed! exp: {e}") def get_choice_text(self, resp: dict) -> str: """get the first text of choice from llm response""" assist_msg = resp.get("data", {}).get("choices", [{"role": "error"}])[-1] assert assist_msg["role"] == "assistant" return assist_msg.get("content") def completion(self, messages: list[dict], timeout=3) -> dict: resp = self.llm.invoke(**self._const_kwargs(messages)) usage = resp.get("data").get("usage") self._update_costs(usage) return resp async def _achat_completion(self, messages: list[dict], timeout=3) -> dict: resp = await self.llm.ainvoke(**self._const_kwargs(messages)) usage = resp.get("data").get("usage") self._update_costs(usage) return resp async def acompletion(self, messages: list[dict], timeout=3) -> dict: return await self._achat_completion(messages, timeout=timeout) async def _achat_completion_stream(self, messages: list[dict], timeout=3) -> str: response = await self.llm.asse_invoke(**self._const_kwargs(messages)) collected_content = [] usage = {} async for event in response.async_events(): if event.event == ZhiPuEvent.ADD.value: content = event.data collected_content.append(content) log_llm_stream(content) elif event.event == ZhiPuEvent.ERROR.value or event.event == ZhiPuEvent.INTERRUPTED.value: content = event.data logger.error(f"event error: {content}", end="") elif event.event == ZhiPuEvent.FINISH.value: """ event.meta { "task_status":"SUCCESS", "usage":{ "completion_tokens":351, "prompt_tokens":595, "total_tokens":946 }, "task_id":"xx", "request_id":"xxx" } """ meta = json.loads(event.meta) usage = meta.get("usage") else: print(f"zhipuapi else event: {event.data}", end="") self._update_costs(usage) full_content = "".join(collected_content) return full_content @retry( stop=stop_after_attempt(3), wait=wait_random_exponential(min=1, max=60), after=after_log(logger, logger.level("WARNING").name), retry=retry_if_exception_type(ConnectionError), retry_error_callback=log_and_reraise, ) async def acompletion_text(self, messages: list[dict], stream=False, timeout=3) -> str: """response in async with stream or non-stream mode""" if stream: return await self._achat_completion_stream(messages) resp = await self._achat_completion(messages) return self.get_choice_text(resp)
[ "prompt_tokens" ]
2024-01-10
geekan/MetaGPT
metagpt~document.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Time : 2023/6/8 14:03 @Author : alexanderwu @File : document.py @Desc : Classes and Operations Related to Files in the File System. """ from enum import Enum from pathlib import Path from typing import Optional, Union import pandas as pd from langchain.document_loaders import ( TextLoader, UnstructuredPDFLoader, UnstructuredWordDocumentLoader, ) from langchain.text_splitter import CharacterTextSplitter from pydantic import BaseModel, ConfigDict, Field from tqdm import tqdm from metagpt.repo_parser import RepoParser def validate_cols(content_col: str, df: pd.DataFrame): if content_col not in df.columns: raise ValueError("Content column not found in DataFrame.") def read_data(data_path: Path): suffix = data_path.suffix if ".xlsx" == suffix: data = pd.read_excel(data_path) elif ".csv" == suffix: data = pd.read_csv(data_path) elif ".json" == suffix: data = pd.read_json(data_path) elif suffix in (".docx", ".doc"): data = UnstructuredWordDocumentLoader(str(data_path), mode="elements").load() elif ".txt" == suffix: data = TextLoader(str(data_path)).load() text_splitter = CharacterTextSplitter(separator="\n", chunk_size=256, chunk_overlap=0) texts = text_splitter.split_documents(data) data = texts elif ".pdf" == suffix: data = UnstructuredPDFLoader(str(data_path), mode="elements").load() else: raise NotImplementedError("File format not supported.") return data class DocumentStatus(Enum): """Indicates document status, a mechanism similar to RFC/PEP""" DRAFT = "draft" UNDERREVIEW = "underreview" APPROVED = "approved" DONE = "done" class Document(BaseModel): """ Document: Handles operations related to document files. """ path: Path = Field(default=None) name: str = Field(default="") content: str = Field(default="") # metadata? in content perhaps. author: str = Field(default="") status: DocumentStatus = Field(default=DocumentStatus.DRAFT) reviews: list = Field(default_factory=list) @classmethod def from_path(cls, path: Path): """ Create a Document instance from a file path. """ if not path.exists(): raise FileNotFoundError(f"File {path} not found.") content = path.read_text() return cls(content=content, path=path) @classmethod def from_text(cls, text: str, path: Optional[Path] = None): """ Create a Document from a text string. """ return cls(content=text, path=path) def to_path(self, path: Optional[Path] = None): """ Save content to the specified file path. """ if path is not None: self.path = path if self.path is None: raise ValueError("File path is not set.") self.path.parent.mkdir(parents=True, exist_ok=True) # TODO: excel, csv, json, etc. self.path.write_text(self.content, encoding="utf-8") def persist(self): """ Persist document to disk. """ return self.to_path() class IndexableDocument(Document): """ Advanced document handling: For vector databases or search engines. """ model_config = ConfigDict(arbitrary_types_allowed=True) data: Union[pd.DataFrame, list] content_col: Optional[str] = Field(default="") meta_col: Optional[str] = Field(default="") @classmethod def from_path(cls, data_path: Path, content_col="content", meta_col="metadata"): if not data_path.exists(): raise FileNotFoundError(f"File {data_path} not found.") data = read_data(data_path) if isinstance(data, pd.DataFrame): validate_cols(content_col, data) return cls(data=data, content=str(data), content_col=content_col, meta_col=meta_col) else: content = data_path.read_text() return cls(data=data, content=content, content_col=content_col, meta_col=meta_col) def _get_docs_and_metadatas_by_df(self) -> (list, list): df = self.data docs = [] metadatas = [] for i in tqdm(range(len(df))): docs.append(df[self.content_col].iloc[i]) if self.meta_col: metadatas.append({self.meta_col: df[self.meta_col].iloc[i]}) else: metadatas.append({}) return docs, metadatas def _get_docs_and_metadatas_by_langchain(self) -> (list, list): data = self.data docs = [i.page_content for i in data] metadatas = [i.metadata for i in data] return docs, metadatas def get_docs_and_metadatas(self) -> (list, list): if isinstance(self.data, pd.DataFrame): return self._get_docs_and_metadatas_by_df() elif isinstance(self.data, list): return self._get_docs_and_metadatas_by_langchain() else: raise NotImplementedError("Data type not supported for metadata extraction.") class RepoMetadata(BaseModel): name: str = Field(default="") n_docs: int = Field(default=0) n_chars: int = Field(default=0) symbols: list = Field(default_factory=list) class Repo(BaseModel): # Name of this repo. name: str = Field(default="") # metadata: RepoMetadata = Field(default=RepoMetadata) docs: dict[Path, Document] = Field(default_factory=dict) codes: dict[Path, Document] = Field(default_factory=dict) assets: dict[Path, Document] = Field(default_factory=dict) path: Path = Field(default=None) def _path(self, filename): return self.path / filename @classmethod def from_path(cls, path: Path): """Load documents, code, and assets from a repository path.""" path.mkdir(parents=True, exist_ok=True) repo = Repo(path=path, name=path.name) for file_path in path.rglob("*"): # FIXME: These judgments are difficult to support multiple programming languages and need to be more general if file_path.is_file() and file_path.suffix in [".json", ".txt", ".md", ".py", ".js", ".css", ".html"]: repo._set(file_path.read_text(), file_path) return repo def to_path(self): """Persist all documents, code, and assets to the given repository path.""" for doc in self.docs.values(): doc.to_path() for code in self.codes.values(): code.to_path() for asset in self.assets.values(): asset.to_path() def _set(self, content: str, path: Path): """Add a document to the appropriate category based on its file extension.""" suffix = path.suffix doc = Document(content=content, path=path, name=str(path.relative_to(self.path))) # FIXME: These judgments are difficult to support multiple programming languages and need to be more general if suffix.lower() == ".md": self.docs[path] = doc elif suffix.lower() in [".py", ".js", ".css", ".html"]: self.codes[path] = doc else: self.assets[path] = doc return doc def set(self, filename: str, content: str): """Set a document and persist it to disk.""" path = self._path(filename) doc = self._set(content, path) doc.to_path() def get(self, filename: str) -> Optional[Document]: """Get a document by its filename.""" path = self._path(filename) return self.docs.get(path) or self.codes.get(path) or self.assets.get(path) def get_text_documents(self) -> list[Document]: return list(self.docs.values()) + list(self.codes.values()) def eda(self) -> RepoMetadata: n_docs = sum(len(i) for i in [self.docs, self.codes, self.assets]) n_chars = sum(sum(len(j.content) for j in i.values()) for i in [self.docs, self.codes, self.assets]) symbols = RepoParser(base_directory=self.path).generate_symbols() return RepoMetadata(name=self.name, n_docs=n_docs, n_chars=n_chars, symbols=symbols)
[]
2024-01-10
geekan/MetaGPT
metagpt~provider~open_llm_api.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Desc : self-host open llm model with openai-compatible interface from openai.types import CompletionUsage from metagpt.config import CONFIG, Config, LLMProviderEnum from metagpt.logs import logger from metagpt.provider.llm_provider_registry import register_provider from metagpt.provider.openai_api import OpenAILLM from metagpt.utils.cost_manager import CostManager, Costs from metagpt.utils.token_counter import count_message_tokens, count_string_tokens class OpenLLMCostManager(CostManager): """open llm model is self-host, it's free and without cost""" def update_cost(self, prompt_tokens, completion_tokens, model): """ Update the total cost, prompt tokens, and completion tokens. Args: prompt_tokens (int): The number of tokens used in the prompt. completion_tokens (int): The number of tokens used in the completion. model (str): The model used for the API call. """ self.total_prompt_tokens += prompt_tokens self.total_completion_tokens += completion_tokens max_budget = CONFIG.max_budget if CONFIG.max_budget else CONFIG.cost_manager.max_budget logger.info( f"Max budget: ${max_budget:.3f} | reference " f"prompt_tokens: {prompt_tokens}, completion_tokens: {completion_tokens}" ) @register_provider(LLMProviderEnum.OPEN_LLM) class OpenLLM(OpenAILLM): def __init__(self): self.config: Config = CONFIG self.__init_openllm() self.auto_max_tokens = False self._cost_manager = OpenLLMCostManager() def __init_openllm(self): self.is_azure = False self.rpm = int(self.config.get("RPM", 10)) self._init_client() self.model = self.config.open_llm_api_model # `self.model` should after `_make_client` to rewrite it def _make_client_kwargs(self) -> dict: kwargs = dict(api_key="sk-xxx", base_url=self.config.open_llm_api_base) return kwargs def _calc_usage(self, messages: list[dict], rsp: str) -> CompletionUsage: usage = CompletionUsage(prompt_tokens=0, completion_tokens=0, total_tokens=0) if not CONFIG.calc_usage: return usage try: usage.prompt_tokens = count_message_tokens(messages, "open-llm-model") usage.completion_tokens = count_string_tokens(rsp, "open-llm-model") except Exception as e: logger.error(f"usage calculation failed!: {e}") return usage def _update_costs(self, usage: CompletionUsage): if self.config.calc_usage and usage: try: # use OpenLLMCostManager not CONFIG.cost_manager self._cost_manager.update_cost(usage.prompt_tokens, usage.completion_tokens, self.model) except Exception as e: logger.error(f"updating costs failed!, exp: {e}") def get_costs(self) -> Costs: return self._cost_manager.get_costs()
[]
2024-01-10
geekan/MetaGPT
metagpt~provider~fireworks_api.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Desc : fireworks.ai's api import re from openai import APIConnectionError, AsyncStream from openai.types import CompletionUsage from openai.types.chat import ChatCompletionChunk from tenacity import ( after_log, retry, retry_if_exception_type, stop_after_attempt, wait_random_exponential, ) from metagpt.config import CONFIG, Config, LLMProviderEnum from metagpt.logs import logger from metagpt.provider.llm_provider_registry import register_provider from metagpt.provider.openai_api import OpenAILLM, log_and_reraise from metagpt.utils.cost_manager import CostManager, Costs MODEL_GRADE_TOKEN_COSTS = { "-1": {"prompt": 0.0, "completion": 0.0}, # abnormal condition "16": {"prompt": 0.2, "completion": 0.8}, # 16 means model size <= 16B; 0.2 means $0.2/1M tokens "80": {"prompt": 0.7, "completion": 2.8}, # 80 means 16B < model size <= 80B "mixtral-8x7b": {"prompt": 0.4, "completion": 1.6}, } class FireworksCostManager(CostManager): def model_grade_token_costs(self, model: str) -> dict[str, float]: def _get_model_size(model: str) -> float: size = re.findall(".*-([0-9.]+)b", model) size = float(size[0]) if len(size) > 0 else -1 return size if "mixtral-8x7b" in model: token_costs = MODEL_GRADE_TOKEN_COSTS["mixtral-8x7b"] else: model_size = _get_model_size(model) if 0 < model_size <= 16: token_costs = MODEL_GRADE_TOKEN_COSTS["16"] elif 16 < model_size <= 80: token_costs = MODEL_GRADE_TOKEN_COSTS["80"] else: token_costs = MODEL_GRADE_TOKEN_COSTS["-1"] return token_costs def update_cost(self, prompt_tokens: int, completion_tokens: int, model: str): """ Refs to `https://app.fireworks.ai/pricing` **Developer pricing** Update the total cost, prompt tokens, and completion tokens. Args: prompt_tokens (int): The number of tokens used in the prompt. completion_tokens (int): The number of tokens used in the completion. model (str): The model used for the API call. """ self.total_prompt_tokens += prompt_tokens self.total_completion_tokens += completion_tokens token_costs = self.model_grade_token_costs(model) cost = (prompt_tokens * token_costs["prompt"] + completion_tokens * token_costs["completion"]) / 1000000 self.total_cost += cost max_budget = CONFIG.max_budget if CONFIG.max_budget else CONFIG.cost_manager.max_budget logger.info( f"Total running cost: ${self.total_cost:.4f} | Max budget: ${max_budget:.3f} | " f"Current cost: ${cost:.4f}, prompt_tokens: {prompt_tokens}, completion_tokens: {completion_tokens}" ) CONFIG.total_cost = self.total_cost @register_provider(LLMProviderEnum.FIREWORKS) class FireworksLLM(OpenAILLM): def __init__(self): self.config: Config = CONFIG self.__init_fireworks() self.auto_max_tokens = False self._cost_manager = FireworksCostManager() def __init_fireworks(self): self.is_azure = False self.rpm = int(self.config.get("RPM", 10)) self._init_client() self.model = self.config.fireworks_api_model # `self.model` should after `_make_client` to rewrite it def _make_client_kwargs(self) -> dict: kwargs = dict(api_key=self.config.fireworks_api_key, base_url=self.config.fireworks_api_base) return kwargs def _update_costs(self, usage: CompletionUsage): if self.config.calc_usage and usage: try: # use FireworksCostManager not CONFIG.cost_manager self._cost_manager.update_cost(usage.prompt_tokens, usage.completion_tokens, self.model) except Exception as e: logger.error(f"updating costs failed!, exp: {e}") def get_costs(self) -> Costs: return self._cost_manager.get_costs() async def _achat_completion_stream(self, messages: list[dict]) -> str: response: AsyncStream[ChatCompletionChunk] = await self.aclient.chat.completions.create( **self._cons_kwargs(messages), stream=True ) collected_content = [] usage = CompletionUsage(prompt_tokens=0, completion_tokens=0, total_tokens=0) # iterate through the stream of events async for chunk in response: if chunk.choices: choice = chunk.choices[0] choice_delta = choice.delta finish_reason = choice.finish_reason if hasattr(choice, "finish_reason") else None if choice_delta.content: collected_content.append(choice_delta.content) print(choice_delta.content, end="") if finish_reason: # fireworks api return usage when finish_reason is not None usage = CompletionUsage(**chunk.usage) full_content = "".join(collected_content) self._update_costs(usage) return full_content @retry( wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6), after=after_log(logger, logger.level("WARNING").name), retry=retry_if_exception_type(APIConnectionError), retry_error_callback=log_and_reraise, ) async def acompletion_text(self, messages: list[dict], stream=False, timeout: int = 3) -> str: """when streaming, print each token in place.""" if stream: return await self._achat_completion_stream(messages) rsp = await self._achat_completion(messages) return self.get_choice_text(rsp)
[]
2024-01-10
geekan/MetaGPT
metagpt~provider~metagpt_api.py
# -*- coding: utf-8 -*- """ @Time : 2023/5/5 23:08 @Author : alexanderwu @File : metagpt_api.py @Desc : MetaGPT LLM provider. """ from metagpt.config import LLMProviderEnum from metagpt.provider import OpenAILLM from metagpt.provider.llm_provider_registry import register_provider @register_provider(LLMProviderEnum.METAGPT) class MetaGPTLLM(OpenAILLM): def __init__(self): super().__init__()
[]
2024-01-10
geekan/MetaGPT
metagpt~provider~anthropic_api.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Time : 2023/7/21 11:15 @Author : Leo Xiao @File : anthropic_api.py """ import anthropic from anthropic import Anthropic, AsyncAnthropic from metagpt.config import CONFIG class Claude2: def ask(self, prompt: str) -> str: client = Anthropic(api_key=CONFIG.anthropic_api_key) res = client.completions.create( model="claude-2", prompt=f"{anthropic.HUMAN_PROMPT} {prompt} {anthropic.AI_PROMPT}", max_tokens_to_sample=1000, ) return res.completion async def aask(self, prompt: str) -> str: aclient = AsyncAnthropic(api_key=CONFIG.anthropic_api_key) res = await aclient.completions.create( model="claude-2", prompt=f"{anthropic.HUMAN_PROMPT} {prompt} {anthropic.AI_PROMPT}", max_tokens_to_sample=1000, ) return res.completion
[]
2024-01-10
geekan/MetaGPT
tests~mock~mock_llm.py
from typing import Optional from metagpt.logs import log_llm_stream, logger from metagpt.provider.openai_api import OpenAILLM class MockLLM(OpenAILLM): def __init__(self, allow_open_api_call): super().__init__() self.allow_open_api_call = allow_open_api_call self.rsp_cache: dict = {} self.rsp_candidates: list[dict] = [] # a test can have multiple calls with the same llm, thus a list async def acompletion_text(self, messages: list[dict], stream=False, timeout=3) -> str: """Overwrite original acompletion_text to cancel retry""" if stream: resp = self._achat_completion_stream(messages, timeout=timeout) collected_messages = [] async for i in resp: log_llm_stream(i) collected_messages.append(i) full_reply_content = "".join(collected_messages) usage = self._calc_usage(messages, full_reply_content) self._update_costs(usage) return full_reply_content rsp = await self._achat_completion(messages, timeout=timeout) return self.get_choice_text(rsp) async def original_aask( self, msg: str, system_msgs: Optional[list[str]] = None, format_msgs: Optional[list[dict[str, str]]] = None, timeout=3, stream=True, ): """A copy of metagpt.provider.base_llm.BaseLLM.aask, we can't use super().aask because it will be mocked""" if system_msgs: message = self._system_msgs(system_msgs) else: message = [self._default_system_msg()] if self.use_system_prompt else [] if format_msgs: message.extend(format_msgs) message.append(self._user_msg(msg)) rsp = await self.acompletion_text(message, stream=stream, timeout=timeout) return rsp async def original_aask_batch(self, msgs: list, timeout=3) -> str: """A copy of metagpt.provider.base_llm.BaseLLM.aask_batch, we can't use super().aask because it will be mocked""" context = [] for msg in msgs: umsg = self._user_msg(msg) context.append(umsg) rsp_text = await self.acompletion_text(context, timeout=timeout) context.append(self._assistant_msg(rsp_text)) return self._extract_assistant_rsp(context) async def aask( self, msg: str, system_msgs: Optional[list[str]] = None, format_msgs: Optional[list[dict[str, str]]] = None, timeout=3, stream=True, ) -> str: msg_key = msg # used to identify it a message has been called before if system_msgs: joined_system_msg = "#MSG_SEP#".join(system_msgs) + "#SYSTEM_MSG_END#" msg_key = joined_system_msg + msg_key rsp = await self._mock_rsp(msg_key, self.original_aask, msg, system_msgs, format_msgs, timeout, stream) return rsp async def aask_batch(self, msgs: list, timeout=3) -> str: msg_key = "#MSG_SEP#".join([msg if isinstance(msg, str) else msg.content for msg in msgs]) rsp = await self._mock_rsp(msg_key, self.original_aask_batch, msgs, timeout) return rsp async def _mock_rsp(self, msg_key, ask_func, *args, **kwargs): if msg_key not in self.rsp_cache: if not self.allow_open_api_call: raise ValueError( "In current test setting, api call is not allowed, you should properly mock your tests, " "or add expected api response in tests/data/rsp_cache.json. " f"The prompt you want for api call: {msg_key}" ) # Call the original unmocked method rsp = await ask_func(*args, **kwargs) else: logger.warning("Use response cache") rsp = self.rsp_cache[msg_key] self.rsp_candidates.append({msg_key: rsp}) return rsp
[]
2024-01-10
geekan/MetaGPT
tests~metagpt~provider~test_general_api_base.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Desc : import os from typing import AsyncGenerator, Generator, Iterator, Tuple, Union import aiohttp import pytest import requests from openai import OpenAIError from metagpt.provider.general_api_base import ( APIRequestor, ApiType, OpenAIResponse, _aiohttp_proxies_arg, _build_api_url, _make_session, _requests_proxies_arg, log_debug, log_info, log_warn, logfmt, parse_stream, parse_stream_helper, ) def test_basic(): _ = ApiType.from_str("azure") _ = ApiType.from_str("azuread") _ = ApiType.from_str("openai") with pytest.raises(OpenAIError): _ = ApiType.from_str("xx") os.environ.setdefault("LLM_LOG", "debug") log_debug("debug") log_warn("warn") log_info("info") logfmt({"k1": b"v1", "k2": 1, "k3": "a b"}) _build_api_url(url="http://www.baidu.com/s?wd=", query="baidu") def test_openai_response(): resp = OpenAIResponse(data=[], headers={"retry-after": 3}) assert resp.request_id is None assert resp.retry_after == 3 assert resp.operation_location is None assert resp.organization is None assert resp.response_ms is None def test_proxy(): assert _requests_proxies_arg(proxy=None) is None proxy = "127.0.0.1:80" assert _requests_proxies_arg(proxy=proxy) == {"http": proxy, "https": proxy} proxy_dict = {"http": proxy} assert _requests_proxies_arg(proxy=proxy_dict) == proxy_dict assert _aiohttp_proxies_arg(proxy_dict) == proxy proxy_dict = {"https": proxy} assert _requests_proxies_arg(proxy=proxy_dict) == proxy_dict assert _aiohttp_proxies_arg(proxy_dict) == proxy assert _make_session() is not None assert _aiohttp_proxies_arg(None) is None assert _aiohttp_proxies_arg("test") == "test" with pytest.raises(ValueError): _aiohttp_proxies_arg(-1) def test_parse_stream(): assert parse_stream_helper(None) is None assert parse_stream_helper(b"data: [DONE]") is None assert parse_stream_helper(b"data: test") == "test" assert parse_stream_helper(b"test") is None for line in parse_stream([b"data: test"]): assert line == "test" api_requestor = APIRequestor(base_url="http://www.baidu.com") def mock_interpret_response( self, result: requests.Response, stream: bool ) -> Tuple[Union[bytes, Iterator[Generator]], bytes]: return b"baidu", False async def mock_interpret_async_response( self, result: aiohttp.ClientResponse, stream: bool ) -> Tuple[Union[OpenAIResponse, AsyncGenerator[OpenAIResponse, None]], bool]: return b"baidu", True def test_requestor_headers(): # validate_headers headers = api_requestor._validate_headers(None) assert not headers with pytest.raises(Exception): api_requestor._validate_headers(-1) with pytest.raises(Exception): api_requestor._validate_headers({1: 2}) with pytest.raises(Exception): api_requestor._validate_headers({"test": 1}) supplied_headers = {"test": "test"} assert api_requestor._validate_headers(supplied_headers) == supplied_headers api_requestor.organization = "test" api_requestor.api_version = "test123" api_requestor.api_type = ApiType.OPEN_AI request_id = "test123" headers = api_requestor.request_headers(method="post", extra={}, request_id=request_id) assert headers["LLM-Organization"] == api_requestor.organization assert headers["LLM-Version"] == api_requestor.api_version assert headers["X-Request-Id"] == request_id def test_api_requestor(mocker): mocker.patch("metagpt.provider.general_api_base.APIRequestor._interpret_response", mock_interpret_response) resp, _, _ = api_requestor.request(method="get", url="/s?wd=baidu") resp, _, _ = api_requestor.request(method="post", url="/s?wd=baidu") @pytest.mark.asyncio async def test_async_api_requestor(mocker): mocker.patch( "metagpt.provider.general_api_base.APIRequestor._interpret_async_response", mock_interpret_async_response ) resp, _, _ = await api_requestor.arequest(method="get", url="/s?wd=baidu") resp, _, _ = await api_requestor.arequest(method="post", url="/s?wd=baidu")
[]
2024-01-10
geekan/MetaGPT
tests~metagpt~actions~test_write_code.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Time : 2023/5/11 17:45 @Author : alexanderwu @File : test_write_code.py @Modifiled By: mashenquan, 2023-12-6. According to RFC 135 """ from pathlib import Path import pytest from metagpt.actions.write_code import WriteCode from metagpt.config import CONFIG from metagpt.const import ( CODE_SUMMARIES_FILE_REPO, SYSTEM_DESIGN_FILE_REPO, TASK_FILE_REPO, TEST_OUTPUTS_FILE_REPO, ) from metagpt.logs import logger from metagpt.provider.openai_api import OpenAILLM as LLM from metagpt.schema import CodingContext, Document from metagpt.utils.common import aread from metagpt.utils.file_repository import FileRepository from tests.metagpt.actions.mock_markdown import TASKS_2, WRITE_CODE_PROMPT_SAMPLE @pytest.mark.asyncio async def test_write_code(): context = CodingContext( filename="task_filename.py", design_doc=Document(content="设计一个名为'add'的函数,该函数接受两个整数作为输入,并返回它们的和。") ) doc = Document(content=context.model_dump_json()) write_code = WriteCode(context=doc) code = await write_code.run() logger.info(code.model_dump_json()) # 我们不能精确地预测生成的代码,但我们可以检查某些关键字 assert "def add" in code.code_doc.content assert "return" in code.code_doc.content @pytest.mark.asyncio async def test_write_code_directly(): prompt = WRITE_CODE_PROMPT_SAMPLE + "\n" + TASKS_2[0] llm = LLM() rsp = await llm.aask(prompt) logger.info(rsp) @pytest.mark.asyncio async def test_write_code_deps(): # Prerequisites CONFIG.src_workspace = CONFIG.git_repo.workdir / "snake1/snake1" demo_path = Path(__file__).parent / "../../data/demo_project" await FileRepository.save_file( filename="test_game.py.json", content=await aread(str(demo_path / "test_game.py.json")), relative_path=TEST_OUTPUTS_FILE_REPO, ) await FileRepository.save_file( filename="20231221155954.json", content=await aread(str(demo_path / "code_summaries.json")), relative_path=CODE_SUMMARIES_FILE_REPO, ) await FileRepository.save_file( filename="20231221155954.json", content=await aread(str(demo_path / "system_design.json")), relative_path=SYSTEM_DESIGN_FILE_REPO, ) await FileRepository.save_file( filename="20231221155954.json", content=await aread(str(demo_path / "tasks.json")), relative_path=TASK_FILE_REPO ) await FileRepository.save_file( filename="main.py", content='if __name__ == "__main__":\nmain()', relative_path=CONFIG.src_workspace ) context = CodingContext( filename="game.py", design_doc=await FileRepository.get_file(filename="20231221155954.json", relative_path=SYSTEM_DESIGN_FILE_REPO), task_doc=await FileRepository.get_file(filename="20231221155954.json", relative_path=TASK_FILE_REPO), code_doc=Document(filename="game.py", content="", root_path="snake1"), ) coding_doc = Document(root_path="snake1", filename="game.py", content=context.json()) action = WriteCode(context=coding_doc) rsp = await action.run() assert rsp assert rsp.code_doc.content if __name__ == "__main__": pytest.main([__file__, "-s"])
[ "PLACEHOLDER\nPLACEHOLDER" ]
2024-01-10
geekan/MetaGPT
tests~metagpt~provider~test_open_llm_api.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Desc : import pytest from openai.types.chat.chat_completion import ( ChatCompletion, ChatCompletionMessage, Choice, ) from openai.types.chat.chat_completion_chunk import ChatCompletionChunk from openai.types.chat.chat_completion_chunk import Choice as AChoice from openai.types.chat.chat_completion_chunk import ChoiceDelta from openai.types.completion_usage import CompletionUsage from metagpt.config import CONFIG from metagpt.provider.open_llm_api import OpenLLM from metagpt.utils.cost_manager import Costs CONFIG.max_budget = 10 CONFIG.calc_usage = True resp_content = "I'm llama2" default_resp = ChatCompletion( id="cmpl-a6652c1bb181caae8dd19ad8", model="llama-v2-13b-chat", object="chat.completion", created=1703302755, choices=[ Choice( finish_reason="stop", index=0, message=ChatCompletionMessage(role="assistant", content=resp_content), logprobs=None, ) ], ) default_resp_chunk = ChatCompletionChunk( id=default_resp.id, model=default_resp.model, object="chat.completion.chunk", created=default_resp.created, choices=[ AChoice( delta=ChoiceDelta(content=resp_content, role="assistant"), finish_reason="stop", index=0, logprobs=None, ) ], ) prompt_msg = "who are you" messages = [{"role": "user", "content": prompt_msg}] async def mock_openai_acompletions_create(self, stream: bool = False, **kwargs) -> ChatCompletionChunk: if stream: class Iterator(object): async def __aiter__(self): yield default_resp_chunk return Iterator() else: return default_resp @pytest.mark.asyncio async def test_openllm_acompletion(mocker): mocker.patch("openai.resources.chat.completions.AsyncCompletions.create", mock_openai_acompletions_create) openllm_gpt = OpenLLM() openllm_gpt.model = "llama-v2-13b-chat" openllm_gpt._update_costs(usage=CompletionUsage(prompt_tokens=100, completion_tokens=100, total_tokens=200)) assert openllm_gpt.get_costs() == Costs( total_prompt_tokens=100, total_completion_tokens=100, total_cost=0, total_budget=0 ) resp = await openllm_gpt.acompletion(messages) assert resp.choices[0].message.content in resp_content resp = await openllm_gpt.aask(prompt_msg, stream=False) assert resp == resp_content resp = await openllm_gpt.acompletion_text(messages, stream=False) assert resp == resp_content resp = await openllm_gpt.acompletion_text(messages, stream=True) assert resp == resp_content resp = await openllm_gpt.aask(prompt_msg) assert resp == resp_content
[ "I'm llama2", "who are you" ]
2024-01-10
geekan/MetaGPT
metagpt~tools~ut_writer.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from pathlib import Path from metagpt.provider.openai_api import OpenAILLM as GPTAPI from metagpt.utils.common import awrite ICL_SAMPLE = """Interface definition: ```text Interface Name: Element Tagging Interface Path: /projects/{project_key}/node-tags Method: POST Request parameters: Path parameters: project_key Body parameters: Name Type Required Default Value Remarks nodes array Yes Nodes node_key string No Node key tags array No Original node tag list node_type string No Node type DATASET / RECIPE operations array Yes tags array No Operation tag list mode string No Operation type ADD / DELETE Return data: Name Type Required Default Value Remarks code integer Yes Status code msg string Yes Prompt message data object Yes Returned data list array No Node list true / false node_type string No Node type DATASET / RECIPE node_key string No Node key ``` Unit test: ```python @pytest.mark.parametrize( "project_key, nodes, operations, expected_msg", [ ("project_key", [{"node_key": "dataset_001", "tags": ["tag1", "tag2"], "node_type": "DATASET"}], [{"tags": ["new_tag1"], "mode": "ADD"}], "success"), ("project_key", [{"node_key": "dataset_002", "tags": ["tag1", "tag2"], "node_type": "DATASET"}], [{"tags": ["tag1"], "mode": "DELETE"}], "success"), ("", [{"node_key": "dataset_001", "tags": ["tag1", "tag2"], "node_type": "DATASET"}], [{"tags": ["new_tag1"], "mode": "ADD"}], "Missing the required parameter project_key"), (123, [{"node_key": "dataset_001", "tags": ["tag1", "tag2"], "node_type": "DATASET"}], [{"tags": ["new_tag1"], "mode": "ADD"}], "Incorrect parameter type"), ("project_key", [{"node_key": "a"*201, "tags": ["tag1", "tag2"], "node_type": "DATASET"}], [{"tags": ["new_tag1"], "mode": "ADD"}], "Request parameter exceeds field boundary") ] ) def test_node_tags(project_key, nodes, operations, expected_msg): pass # The above is an interface definition and a unit test example. # Next, please play the role of an expert test manager with 20 years of experience at Google. When I give the interface definition, # reply to me with a unit test. There are several requirements: # 1. Only output one `@pytest.mark.parametrize` and the corresponding test_<interface name> function (inside pass, do not implement). # -- The function parameter contains expected_msg for result verification. # 2. The generated test cases use shorter text or numbers and are as compact as possible. # 3. If comments are needed, use Chinese. # If you understand, please wait for me to give the interface definition and just answer "Understood" to save tokens. """ ACT_PROMPT_PREFIX = """Refer to the test types: such as missing request parameters, field boundary verification, incorrect field type. Please output 10 test cases within one `@pytest.mark.parametrize` scope. ```text """ YFT_PROMPT_PREFIX = """Refer to the test types: such as SQL injection, cross-site scripting (XSS), unauthorized access and privilege escalation, authentication and authorization, parameter verification, exception handling, file upload and download. Please output 10 test cases within one `@pytest.mark.parametrize` scope. ```text """ OCR_API_DOC = """```text Interface Name: OCR recognition Interface Path: /api/v1/contract/treaty/task/ocr Method: POST Request Parameters: Path Parameters: Body Parameters: Name Type Required Default Value Remarks file_id string Yes box array Yes contract_id number Yes Contract id start_time string No yyyy-mm-dd end_time string No yyyy-mm-dd extract_type number No Recognition type 1- During import 2- After import Default 1 Response Data: Name Type Required Default Value Remarks code integer Yes message string Yes data object Yes ``` """ class UTGenerator: """UT Generator: Construct UT through API documentation""" def __init__( self, swagger_file: str, ut_py_path: str, questions_path: str, chatgpt_method: str = "API", template_prefix=YFT_PROMPT_PREFIX, ) -> None: """Initialize UT Generator Args: swagger_file: path to the swagger file ut_py_path: path to store test cases questions_path: path to store the template, facilitating subsequent checks chatgpt_method: API method template_prefix: use the template, default is YFT_UT_PROMPT """ self.swagger_file = swagger_file self.ut_py_path = ut_py_path self.questions_path = questions_path assert chatgpt_method in ["API"], "Invalid chatgpt_method" self.chatgpt_method = chatgpt_method # ICL: In-Context Learning, provide an example here for GPT to mimic self.icl_sample = ICL_SAMPLE self.template_prefix = template_prefix def get_swagger_json(self) -> dict: """Load Swagger JSON from a local file""" with open(self.swagger_file, "r", encoding="utf-8") as file: swagger_json = json.load(file) return swagger_json def __para_to_str(self, prop, required, name=""): name = name or prop["name"] ptype = prop["type"] title = prop.get("title", "") desc = prop.get("description", "") return f'{name}\t{ptype}\t{"Yes" if required else "No"}\t{title}\t{desc}' def _para_to_str(self, prop): required = prop.get("required", False) return self.__para_to_str(prop, required) def para_to_str(self, name, prop, prop_object_required): required = name in prop_object_required return self.__para_to_str(prop, required, name) def build_object_properties(self, node, prop_object_required, level: int = 0) -> str: """Recursively output properties of object and array[object] types Args: node (_type_): value of the child item prop_object_required (_type_): whether it's a required field level: current recursion depth """ doc = "" def dive_into_object(node): """If it's an object type, recursively output its properties""" if node.get("type") == "object": sub_properties = node.get("properties", {}) return self.build_object_properties(sub_properties, prop_object_required, level=level + 1) return "" if node.get("in", "") in ["query", "header", "formData"]: doc += f'{" " * level}{self._para_to_str(node)}\n' doc += dive_into_object(node) return doc for name, prop in node.items(): if not isinstance(prop, dict): doc += f'{" " * level}{self._para_to_str(node)}\n' break doc += f'{" " * level}{self.para_to_str(name, prop, prop_object_required)}\n' doc += dive_into_object(prop) if prop["type"] == "array": items = prop.get("items", {}) doc += dive_into_object(items) return doc def get_tags_mapping(self) -> dict: """Process tag and path mappings Returns: Dict: mapping of tag to path """ swagger_data = self.get_swagger_json() paths = swagger_data["paths"] tags = {} for path, path_obj in paths.items(): for method, method_obj in path_obj.items(): for tag in method_obj["tags"]: if tag not in tags: tags[tag] = {} if path not in tags[tag]: tags[tag][path] = {} tags[tag][path][method] = method_obj return tags async def generate_ut(self, include_tags) -> bool: """Generate test case files""" tags = self.get_tags_mapping() for tag, paths in tags.items(): if include_tags is None or tag in include_tags: await self._generate_ut(tag, paths) return True def build_api_doc(self, node: dict, path: str, method: str) -> str: summary = node["summary"] doc = f"API Name: {summary}\nAPI Path: {path}\nMethod: {method.upper()}\n" doc += "\nRequest Parameters:\n" if "parameters" in node: parameters = node["parameters"] doc += "Path Parameters:\n" # param["in"]: path / formData / body / query / header for param in parameters: if param["in"] == "path": doc += f'{param["name"]} \n' doc += "\nBody Parameters:\n" doc += "Name\tType\tRequired\tDefault Value\tRemarks\n" for param in parameters: if param["in"] == "body": schema = param.get("schema", {}) prop_properties = schema.get("properties", {}) prop_required = schema.get("required", []) doc += self.build_object_properties(prop_properties, prop_required) else: doc += self.build_object_properties(param, []) # Display response data information doc += "\nResponse Data:\n" doc += "Name\tType\tRequired\tDefault Value\tRemarks\n" responses = node["responses"] response = responses.get("200", {}) schema = response.get("schema", {}) properties = schema.get("properties", {}) required = schema.get("required", {}) doc += self.build_object_properties(properties, required) doc += "\n" doc += "```" return doc async def ask_gpt_and_save(self, question: str, tag: str, fname: str): """Generate questions and store both questions and answers""" messages = [self.icl_sample, question] result = await self.gpt_msgs_to_code(messages=messages) await awrite(Path(self.questions_path) / tag / f"{fname}.txt", question) data = result.get("code", "") if result else "" await awrite(Path(self.ut_py_path) / tag / f"{fname}.py", data) async def _generate_ut(self, tag, paths): """Process the structure under a data path Args: tag (_type_): module name paths (_type_): Path Object """ for path, path_obj in paths.items(): for method, node in path_obj.items(): summary = node["summary"] question = self.template_prefix question += self.build_api_doc(node, path, method) await self.ask_gpt_and_save(question, tag, summary) async def gpt_msgs_to_code(self, messages: list) -> str: """Choose based on different calling methods""" result = "" if self.chatgpt_method == "API": result = await GPTAPI().aask_code(messages=messages) return result
[ "Refer to the test types: such as SQL injection, cross-site scripting (XSS), unauthorized access and privilege escalation, \nauthentication and authorization, parameter verification, exception handling, file upload and download.\nPlease output 10 test cases within one `@pytest.mark.parametrize` scope.\n```text\n", "Refer to the test types: such as missing request parameters, field boundary verification, incorrect field type.\nPlease output 10 test cases within one `@pytest.mark.parametrize` scope.\n```text\n" ]
2024-01-10
geekan/MetaGPT
metagpt~provider~general_api_base.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Desc : refs to openai 0.x sdk import asyncio import json import os import platform import re import sys import threading import time from contextlib import asynccontextmanager from enum import Enum from typing import ( AsyncGenerator, AsyncIterator, Dict, Iterator, Optional, Tuple, Union, overload, ) from urllib.parse import urlencode, urlsplit, urlunsplit import aiohttp import requests if sys.version_info >= (3, 8): from typing import Literal else: from typing_extensions import Literal import logging import openai from openai import version logger = logging.getLogger("openai") TIMEOUT_SECS = 600 MAX_SESSION_LIFETIME_SECS = 180 MAX_CONNECTION_RETRIES = 2 # Has one attribute per thread, 'session'. _thread_context = threading.local() LLM_LOG = os.environ.get("LLM_LOG", "debug") class ApiType(Enum): AZURE = 1 OPEN_AI = 2 AZURE_AD = 3 @staticmethod def from_str(label): if label.lower() == "azure": return ApiType.AZURE elif label.lower() in ("azure_ad", "azuread"): return ApiType.AZURE_AD elif label.lower() in ("open_ai", "openai"): return ApiType.OPEN_AI else: raise openai.OpenAIError( "The API type provided in invalid. Please select one of the supported API types: 'azure', 'azure_ad', 'open_ai'" ) api_key_to_header = ( lambda api, key: {"Authorization": f"Bearer {key}"} if api in (ApiType.OPEN_AI, ApiType.AZURE_AD) else {"api-key": f"{key}"} ) def _console_log_level(): if LLM_LOG in ["debug", "info"]: return LLM_LOG else: return None def log_debug(message, **params): msg = logfmt(dict(message=message, **params)) if _console_log_level() == "debug": print(msg, file=sys.stderr) logger.debug(msg) def log_info(message, **params): msg = logfmt(dict(message=message, **params)) if _console_log_level() in ["debug", "info"]: print(msg, file=sys.stderr) logger.info(msg) def log_warn(message, **params): msg = logfmt(dict(message=message, **params)) print(msg, file=sys.stderr) logger.warning(msg) def logfmt(props): def fmt(key, val): # Handle case where val is a bytes or bytesarray if hasattr(val, "decode"): val = val.decode("utf-8") # Check if val is already a string to avoid re-encoding into ascii. if not isinstance(val, str): val = str(val) if re.search(r"\s", val): val = repr(val) # key should already be a string if re.search(r"\s", key): key = repr(key) return "{key}={val}".format(key=key, val=val) return " ".join([fmt(key, val) for key, val in sorted(props.items())]) class OpenAIResponse: def __init__(self, data, headers): self._headers = headers self.data = data @property def request_id(self) -> Optional[str]: return self._headers.get("request-id") @property def retry_after(self) -> Optional[int]: try: return int(self._headers.get("retry-after")) except TypeError: return None @property def operation_location(self) -> Optional[str]: return self._headers.get("operation-location") @property def organization(self) -> Optional[str]: return self._headers.get("LLM-Organization") @property def response_ms(self) -> Optional[int]: h = self._headers.get("Openai-Processing-Ms") return None if h is None else round(float(h)) def _build_api_url(url, query): scheme, netloc, path, base_query, fragment = urlsplit(url) if base_query: query = "%s&%s" % (base_query, query) return urlunsplit((scheme, netloc, path, query, fragment)) def _requests_proxies_arg(proxy) -> Optional[Dict[str, str]]: """Returns a value suitable for the 'proxies' argument to 'requests.request.""" if proxy is None: return None elif isinstance(proxy, str): return {"http": proxy, "https": proxy} elif isinstance(proxy, dict): return proxy.copy() else: raise ValueError( "'openai.proxy' must be specified as either a string URL or a dict with string URL under the https and/or http keys." ) def _aiohttp_proxies_arg(proxy) -> Optional[str]: """Returns a value suitable for the 'proxies' argument to 'aiohttp.ClientSession.request.""" if proxy is None: return None elif isinstance(proxy, str): return proxy elif isinstance(proxy, dict): return proxy["https"] if "https" in proxy else proxy["http"] else: raise ValueError( "'openai.proxy' must be specified as either a string URL or a dict with string URL under the https and/or http keys." ) def _make_session() -> requests.Session: s = requests.Session() s.mount( "https://", requests.adapters.HTTPAdapter(max_retries=MAX_CONNECTION_RETRIES), ) return s def parse_stream_helper(line: bytes) -> Optional[str]: if line: if line.strip() == b"data: [DONE]": # return here will cause GeneratorExit exception in urllib3 # and it will close http connection with TCP Reset return None if line.startswith(b"data: "): line = line[len(b"data: ") :] return line.decode("utf-8") else: return None return None def parse_stream(rbody: Iterator[bytes]) -> Iterator[str]: for line in rbody: _line = parse_stream_helper(line) if _line is not None: yield _line async def parse_stream_async(rbody: aiohttp.StreamReader): async for line in rbody: _line = parse_stream_helper(line) if _line is not None: yield _line class APIRequestor: def __init__( self, key=None, base_url=None, api_type=None, api_version=None, organization=None, ): self.base_url = base_url or openai.base_url self.api_key = key or openai.api_key self.api_type = ApiType.from_str(api_type) if api_type else ApiType.from_str("openai") self.api_version = api_version or openai.api_version self.organization = organization or openai.organization @overload def request( self, method, url, params, headers, files, stream: Literal[True], request_id: Optional[str] = ..., request_timeout: Optional[Union[float, Tuple[float, float]]] = ..., ) -> Tuple[Iterator[OpenAIResponse], bool, str]: pass @overload def request( self, method, url, params=..., headers=..., files=..., *, stream: Literal[True], request_id: Optional[str] = ..., request_timeout: Optional[Union[float, Tuple[float, float]]] = ..., ) -> Tuple[Iterator[OpenAIResponse], bool, str]: pass @overload def request( self, method, url, params=..., headers=..., files=..., stream: Literal[False] = ..., request_id: Optional[str] = ..., request_timeout: Optional[Union[float, Tuple[float, float]]] = ..., ) -> Tuple[OpenAIResponse, bool, str]: pass @overload def request( self, method, url, params=..., headers=..., files=..., stream: bool = ..., request_id: Optional[str] = ..., request_timeout: Optional[Union[float, Tuple[float, float]]] = ..., ) -> Tuple[Union[OpenAIResponse, Iterator[OpenAIResponse]], bool, str]: pass def request( self, method, url, params=None, headers=None, files=None, stream: bool = False, request_id: Optional[str] = None, request_timeout: Optional[Union[float, Tuple[float, float]]] = None, ) -> Tuple[Union[OpenAIResponse, Iterator[OpenAIResponse]], bool, str]: result = self.request_raw( method.lower(), url, params=params, supplied_headers=headers, files=files, stream=stream, request_id=request_id, request_timeout=request_timeout, ) resp, got_stream = self._interpret_response(result, stream) return resp, got_stream, self.api_key @overload async def arequest( self, method, url, params, headers, files, stream: Literal[True], request_id: Optional[str] = ..., request_timeout: Optional[Union[float, Tuple[float, float]]] = ..., ) -> Tuple[AsyncGenerator[OpenAIResponse, None], bool, str]: pass @overload async def arequest( self, method, url, params=..., headers=..., files=..., *, stream: Literal[True], request_id: Optional[str] = ..., request_timeout: Optional[Union[float, Tuple[float, float]]] = ..., ) -> Tuple[AsyncGenerator[OpenAIResponse, None], bool, str]: pass @overload async def arequest( self, method, url, params=..., headers=..., files=..., stream: Literal[False] = ..., request_id: Optional[str] = ..., request_timeout: Optional[Union[float, Tuple[float, float]]] = ..., ) -> Tuple[OpenAIResponse, bool, str]: pass @overload async def arequest( self, method, url, params=..., headers=..., files=..., stream: bool = ..., request_id: Optional[str] = ..., request_timeout: Optional[Union[float, Tuple[float, float]]] = ..., ) -> Tuple[Union[OpenAIResponse, AsyncGenerator[OpenAIResponse, None]], bool, str]: pass async def arequest( self, method, url, params=None, headers=None, files=None, stream: bool = False, request_id: Optional[str] = None, request_timeout: Optional[Union[float, Tuple[float, float]]] = None, ) -> Tuple[Union[OpenAIResponse, AsyncGenerator[OpenAIResponse, None]], bool, str]: ctx = aiohttp_session() session = await ctx.__aenter__() try: result = await self.arequest_raw( method.lower(), url, session, params=params, supplied_headers=headers, files=files, request_id=request_id, request_timeout=request_timeout, ) resp, got_stream = await self._interpret_async_response(result, stream) except Exception: await ctx.__aexit__(None, None, None) raise if got_stream: async def wrap_resp(): assert isinstance(resp, AsyncGenerator) try: async for r in resp: yield r finally: await ctx.__aexit__(None, None, None) return wrap_resp(), got_stream, self.api_key else: await ctx.__aexit__(None, None, None) return resp, got_stream, self.api_key def request_headers(self, method: str, extra, request_id: Optional[str]) -> Dict[str, str]: user_agent = "LLM/v1 PythonBindings/%s" % (version.VERSION,) uname_without_node = " ".join(v for k, v in platform.uname()._asdict().items() if k != "node") ua = { "bindings_version": version.VERSION, "httplib": "requests", "lang": "python", "lang_version": platform.python_version(), "platform": platform.platform(), "publisher": "openai", "uname": uname_without_node, } headers = { "X-LLM-Client-User-Agent": json.dumps(ua), "User-Agent": user_agent, } headers.update(api_key_to_header(self.api_type, self.api_key)) if self.organization: headers["LLM-Organization"] = self.organization if self.api_version is not None and self.api_type == ApiType.OPEN_AI: headers["LLM-Version"] = self.api_version if request_id is not None: headers["X-Request-Id"] = request_id headers.update(extra) return headers def _validate_headers(self, supplied_headers: Optional[Dict[str, str]]) -> Dict[str, str]: headers: Dict[str, str] = {} if supplied_headers is None: return headers if not isinstance(supplied_headers, dict): raise TypeError("Headers must be a dictionary") for k, v in supplied_headers.items(): if not isinstance(k, str): raise TypeError("Header keys must be strings") if not isinstance(v, str): raise TypeError("Header values must be strings") headers[k] = v # NOTE: It is possible to do more validation of the headers, but a request could always # be made to the API manually with invalid headers, so we need to handle them server side. return headers def _prepare_request_raw( self, url, supplied_headers, method, params, files, request_id: Optional[str], ) -> Tuple[str, Dict[str, str], Optional[bytes]]: abs_url = "%s%s" % (self.base_url, url) headers = self._validate_headers(supplied_headers) data = None if method == "get" or method == "delete": if params: encoded_params = urlencode([(k, v) for k, v in params.items() if v is not None]) abs_url = _build_api_url(abs_url, encoded_params) elif method in {"post", "put"}: if params and files: data = params if params and not files: data = json.dumps(params).encode() headers["Content-Type"] = "application/json" else: raise openai.APIConnectionError( message=f"Unrecognized HTTP method {method}. This may indicate a bug in the LLM bindings.", request=None, ) headers = self.request_headers(method, headers, request_id) # log_debug("Request to LLM API", method=method, path=abs_url) # log_debug("Post details", data=data, api_version=self.api_version) return abs_url, headers, data def request_raw( self, method, url, *, params=None, supplied_headers: Optional[Dict[str, str]] = None, files=None, stream: bool = False, request_id: Optional[str] = None, request_timeout: Optional[Union[float, Tuple[float, float]]] = None, ) -> requests.Response: abs_url, headers, data = self._prepare_request_raw(url, supplied_headers, method, params, files, request_id) if not hasattr(_thread_context, "session"): _thread_context.session = _make_session() _thread_context.session_create_time = time.time() elif time.time() - getattr(_thread_context, "session_create_time", 0) >= MAX_SESSION_LIFETIME_SECS: _thread_context.session.close() _thread_context.session = _make_session() _thread_context.session_create_time = time.time() try: result = _thread_context.session.request( method, abs_url, headers=headers, data=data, files=files, stream=stream, timeout=request_timeout if request_timeout else TIMEOUT_SECS, proxies=_thread_context.session.proxies, ) except requests.exceptions.Timeout as e: raise openai.APITimeoutError("Request timed out: {}".format(e)) from e except requests.exceptions.RequestException as e: raise openai.APIConnectionError(message="Error communicating with LLM: {}".format(e), request=None) from e # log_debug( # "LLM API response", # path=abs_url, # response_code=result.status_code, # processing_ms=result.headers.get("LLM-Processing-Ms"), # request_id=result.headers.get("X-Request-Id"), # ) return result async def arequest_raw( self, method, url, session, *, params=None, supplied_headers: Optional[Dict[str, str]] = None, files=None, request_id: Optional[str] = None, request_timeout: Optional[Union[float, Tuple[float, float]]] = None, ) -> aiohttp.ClientResponse: abs_url, headers, data = self._prepare_request_raw(url, supplied_headers, method, params, files, request_id) if isinstance(request_timeout, tuple): timeout = aiohttp.ClientTimeout( connect=request_timeout[0], total=request_timeout[1], ) else: timeout = aiohttp.ClientTimeout(total=request_timeout if request_timeout else TIMEOUT_SECS) if files: # TODO: Use `aiohttp.MultipartWriter` to create the multipart form data here. # For now we use the private `requests` method that is known to have worked so far. data, content_type = requests.models.RequestEncodingMixin._encode_files(files, data) # type: ignore headers["Content-Type"] = content_type request_kwargs = { "method": method, "url": abs_url, "headers": headers, "data": data, "timeout": timeout, } try: result = await session.request(**request_kwargs) # log_info( # "LLM API response", # path=abs_url, # response_code=result.status, # processing_ms=result.headers.get("LLM-Processing-Ms"), # request_id=result.headers.get("X-Request-Id"), # ) return result except (aiohttp.ServerTimeoutError, asyncio.TimeoutError) as e: raise openai.APITimeoutError("Request timed out") from e except aiohttp.ClientError as e: raise openai.APIConnectionError(message="Error communicating with LLM", request=None) from e def _interpret_response( self, result: requests.Response, stream: bool ) -> Tuple[Union[OpenAIResponse, Iterator[OpenAIResponse]], bool]: """Returns the response(s) and a bool indicating whether it is a stream.""" async def _interpret_async_response( self, result: aiohttp.ClientResponse, stream: bool ) -> Tuple[Union[OpenAIResponse, AsyncGenerator[OpenAIResponse, None]], bool]: """Returns the response(s) and a bool indicating whether it is a stream.""" def _interpret_response_line(self, rbody: str, rcode: int, rheaders, stream: bool) -> OpenAIResponse: ... @asynccontextmanager async def aiohttp_session() -> AsyncIterator[aiohttp.ClientSession]: async with aiohttp.ClientSession() as session: yield session
[]
2024-01-10
geekan/MetaGPT
metagpt~memory~memory_storage.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Desc : the implement of memory storage @Modified By: mashenquan, 2023/8/20. Remove global configuration `CONFIG`, enable configuration support for business isolation. """ from pathlib import Path from typing import Optional from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores.faiss import FAISS from langchain_core.embeddings import Embeddings from metagpt.const import DATA_PATH, MEM_TTL from metagpt.document_store.faiss_store import FaissStore from metagpt.logs import logger from metagpt.schema import Message from metagpt.utils.serialize import deserialize_message, serialize_message class MemoryStorage(FaissStore): """ The memory storage with Faiss as ANN search engine """ def __init__(self, mem_ttl: int = MEM_TTL, embedding: Embeddings = None): self.role_id: str = None self.role_mem_path: str = None self.mem_ttl: int = mem_ttl # later use self.threshold: float = 0.1 # experience value. TODO The threshold to filter similar memories self._initialized: bool = False self.embedding = embedding or OpenAIEmbeddings() self.store: FAISS = None # Faiss engine @property def is_initialized(self) -> bool: return self._initialized def _load(self) -> Optional["FaissStore"]: index_file, store_file = self._get_index_and_store_fname(index_ext=".faiss") # langchain FAISS using .faiss if not (index_file.exists() and store_file.exists()): logger.info("Missing at least one of index_file/store_file, load failed and return None") return None return FAISS.load_local(self.role_mem_path, self.embedding, self.role_id) def recover_memory(self, role_id: str) -> list[Message]: self.role_id = role_id self.role_mem_path = Path(DATA_PATH / f"role_mem/{self.role_id}/") self.role_mem_path.mkdir(parents=True, exist_ok=True) self.store = self._load() messages = [] if not self.store: # TODO init `self.store` under here with raw faiss api instead under `add` pass else: for _id, document in self.store.docstore._dict.items(): messages.append(deserialize_message(document.metadata.get("message_ser"))) self._initialized = True return messages def _get_index_and_store_fname(self, index_ext=".index", pkl_ext=".pkl"): if not self.role_mem_path: logger.error(f"You should call {self.__class__.__name__}.recover_memory fist when using LongTermMemory") return None, None index_fpath = Path(self.role_mem_path / f"{self.role_id}{index_ext}") storage_fpath = Path(self.role_mem_path / f"{self.role_id}{pkl_ext}") return index_fpath, storage_fpath def persist(self): self.store.save_local(self.role_mem_path, self.role_id) logger.debug(f"Agent {self.role_id} persist memory into local") def add(self, message: Message) -> bool: """add message into memory storage""" docs = [message.content] metadatas = [{"message_ser": serialize_message(message)}] if not self.store: # init Faiss self.store = self._write(docs, metadatas) self._initialized = True else: self.store.add_texts(texts=docs, metadatas=metadatas) self.persist() logger.info(f"Agent {self.role_id}'s memory_storage add a message") def search_dissimilar(self, message: Message, k=4) -> list[Message]: """search for dissimilar messages""" if not self.store: return [] resp = self.store.similarity_search_with_score(query=message.content, k=k) # filter the result which score is smaller than the threshold filtered_resp = [] for item, score in resp: # the smaller score means more similar relation if score < self.threshold: continue # convert search result into Memory metadata = item.metadata new_mem = deserialize_message(metadata.get("message_ser")) filtered_resp.append(new_mem) return filtered_resp def clean(self): index_fpath, storage_fpath = self._get_index_and_store_fname() if index_fpath and index_fpath.exists(): index_fpath.unlink(missing_ok=True) if storage_fpath and storage_fpath.exists(): storage_fpath.unlink(missing_ok=True) self.store = None self._initialized = False
[]
2024-01-10
Open-Swarm-Net/OSNAP
osnap_client~utils~ai_engines~GPTConversEngine.py
import os import openai import tiktoken from osnap_client.utils.ai_engines.EngineBase import EngineBase class GPTConversEngine(EngineBase): """ gpt-4, gpt-4-0314, gpt-4-32k, gpt-4-32k-0314, gpt-3.5-turbo, gpt-3.5-turbo-0301 """ SUPPORTED_MODELS = [ "gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314", "gpt-3.5-turbo", "gpt-3.5-turbo-0301", ] def __init__(self, model_name: str, temperature: float, max_response_tokens: int): if model_name not in self.SUPPORTED_MODELS: raise ValueError( f"Model {model_name} is not supported. Supported models are: {self.SUPPORTED_MODELS}" ) super().__init__("openai", model_name, temperature, max_response_tokens) if "OPENAI_API_KEY" not in os.environ: raise ValueError("OPENAI_API_KEY environment variable is not set.") openai.api_key = os.getenv("OPENAI_API_KEY") self.tiktoken_encoding = tiktoken.encoding_for_model(model_name) def call_model(self, conversation, max_tokens=None, temperature=None) -> str: """Calls the gpt-3.5 or gpt-4 model to generate a response to a conversation. Args: conversation (list[dict]): The conversation to be completed. Example: [ {"role": "system", "content": configuration_prompt}, {"role": "user", "content": prompt} ] """ if max_tokens is None: max_tokens = self.max_response_tokens if temperature is None: temperature = self.temperature if isinstance(conversation, str): conversation = [{"role": "user", "content": conversation}] if len(conversation) == 0: raise ValueError( "Conversation must have at least one message of format: [{'role': 'user', 'content': 'message'}]" ) total_len = 0 for message in conversation: if "role" not in message: raise ValueError( "Conversation messages must have a format: {'role': 'user', 'content': 'message'}. 'role' is missing." ) if "content" not in message: raise ValueError( "Conversation messages must have a format: {'role': 'user', 'content': 'message'}. 'content' is missing." ) message["content"] = self.truncate_message( message["content"], self.max_input_length() - total_len - 100 ) new_message_len = len(self.tiktoken_encoding.encode(message["content"])) total_len += new_message_len try: response = openai.ChatCompletion.create( model=self.model_name, messages=conversation, max_tokens=max_tokens, temperature=temperature, n=1, ) except: return "" return response["choices"][0]["message"]["content"]
[]
2024-01-10
Open-Swarm-Net/OSNAP
osnap_client~utils~ai_engines~LanchainGoogleEngine.py
import os import openai import tiktoken from osnap.utils.ai_engines.EngineBase import EngineBase from langchain.agents import load_tools from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.llms import OpenAI from langchain.utilities import GoogleSearchAPIWrapper class LanchainGoogleEngine(EngineBase): """ gpt-4, gpt-4-0314, gpt-4-32k, gpt-4-32k-0314, gpt-3.5-turbo, gpt-3.5-turbo-0301 """ SUPPORTED_MODELS = [ "gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314", "gpt-3.5-turbo", "gpt-3.5-turbo-0301" ] def __init__(self, model_name: str, temperature: float, max_response_tokens: int): if model_name not in self.SUPPORTED_MODELS: raise ValueError(f"Model {model_name} is not supported. Supported models are: {self.SUPPORTED_MODELS}") super().__init__("openai", model_name, temperature, max_response_tokens) if "OPENAI_API_KEY" not in os.environ: raise ValueError("OPENAI_API_KEY environment variable is not set.") openai.api_key = os.getenv("OPENAI_API_KEY") self.tiktoken_encoding = tiktoken.encoding_for_model(model_name) self.agent = self._init_chain() self.search = GoogleSearchAPIWrapper() def _init_chain(self): """Instantiates langchain chain with all the necessary tools """ llm = OpenAI(temperature=self.temperature) tools = load_tools(["google-search", "google-search-results-json"], llm=llm) agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=False, return_intermediate_steps=True) return agent def call_model(self, conversation: list) -> str: """Does the search itself but provides very short answers! """ if isinstance(conversation, list): prompt = self._convert_conversation_to_str(conversation) else: prompt = conversation response = self.agent(prompt) final_response = "" intermediate_steps = response["intermediate_steps"] for step in intermediate_steps: final_response += step[0].log + "\n" + step[1] final_response += response["output"] return final_response def google_query(self, query: str) -> str: """Does the search itself but provides very short answers! """ response = self.search.run(query) return response def search_sources(self, query: str, n=5): """Does the search itself but provides very short answers! """ response = self.search.results(query, n) return response def _convert_conversation_to_str(self, conversation): """Converts conversation to a string """ prompt = "" for message in conversation: prompt += message["content"] + "\n" return prompt
[ "PLACEHOLDER\n" ]
2024-01-10
microsoft/clinical-self-verification
clin~eval~med_status.py
import os import matplotlib.pyplot as plt import seaborn as sns from os.path import join from tqdm import tqdm import pandas as pd import joblib import sys import datasets import time import openai import numpy as np from typing import List, Dict, Set from collections import defaultdict import clin.parse import sklearn.metrics def add_status_eval(r, dfe): """Add status eval by aggregating over all columns with dict_ in the name""" d = defaultdict(list) dict_columns = [ k for k in r.keys() if k.startswith("dict_") and not k.startswith("dict_evidence") ] # common_meds_status_gt_dict = clin.eval.get_common_medications(r[dict_columns].values.flatten().tolist(), dfe) for i in range(r.shape[0]): row = r.iloc[i] med_status_dicts_list = [row[k] for k in dict_columns] common_meds_status_gt_dict = get_common_medications(med_status_dicts_list, dfe) accs_cond, f1s_macro_cond = eval_medication_status( med_status_dicts_list, common_meds_status_gt_dict ) for j, setting in enumerate(dict_columns): setting_name = setting.replace("dict_", "") d[f"status_acc_cond___{setting_name}"].append(accs_cond[j]) d[f"status_f1_macro_cond___{setting_name}"].append(f1s_macro_cond[j]) for k in d: r[k] = d[k] return r def process_med_lists( med_status_dict: Dict[str, str], df_row: pd.Series, verbose=False ) -> List[bool]: """ Given a dictionary of medication status, and a row of the dataframe, return precision and recall """ # process meds_retrieved meds_retrieved = list(med_status_dict.keys()) meds_retrieved = [med.strip(' "').lower() for med in meds_retrieved] # get meds_true meds_true = ( clin.parse.str_to_list(df_row["active_medications"]) + clin.parse.str_to_list(df_row["discontinued_medications"]) + clin.parse.str_to_list(df_row["neither_medications"]) ) meds_true = [med.strip(' "').lower() for med in meds_true] return meds_retrieved, meds_true def get_common_medications( med_status_dicts_list: List[List[Dict[str, str]]], dfe: pd.DataFrame ) -> List[Set[str]]: '''get the common retrieved medications for each row by all models ''' n_runs_to_compare = len(med_status_dicts_list) n = len(dfe) common_meds = [] for i in range(n_runs_to_compare): med_status_dict_list = med_status_dicts_list[i] med_status_dicts = clin.parse.convert_keys_to_lowercase(med_status_dict_list) if i == 0: common_meds = [set(med_status_dicts[j].keys()) for j in range(n)] else: common_meds = [ common_meds[j].intersection(set(med_status_dicts[j].keys())) for j in range(n) ] # add status and only keep medications that are present in the groundtruth def _get_status_of_med(row, med): if med in row["active_medications"].lower(): return "active" elif med in row["discontinued_medications"].lower(): return "discontinued" elif med in row["neither_medications"].lower(): return "neither" else: return None common_meds_status_gt_dict = [ { med: _get_status_of_med(dfe.iloc[i], med) for med in common_meds[i] if _get_status_of_med(dfe.iloc[i], med) is not None } for i in range(len(dfe)) ] return common_meds_status_gt_dict def eval_medication_status( med_status_dicts_list: List[List[Dict[str, str]]], common_meds_status_gt_dict: Dict[str, str], verbose=False, ): """Compute the metrics for medication status, conditioned on the medications that are retrieved by all models and are valid medications in the groundtruth """ n_runs_to_compare = len(med_status_dicts_list) n = len(common_meds_status_gt_dict) # compute conditional accuracy for all rows accs_cond = [] f1s_macro_cond = [] for i in range(n_runs_to_compare): status_extracted_list = [] status_gt_list = [] for j in range(n): med_status_dict = clin.parse.convert_keys_to_lowercase( [med_status_dicts_list[i][j]] )[0] for med in common_meds_status_gt_dict[j]: status_extracted_list.append(med_status_dict[med]) status_gt_list.append(common_meds_status_gt_dict[j][med]) if verbose: if not med_status_dict[med] == common_meds_status_gt_dict[j][med]: print( "med", med, "\n\t", "pred\t", med_status_dict[med], "\n\t", "gt\t", common_meds_status_gt_dict[j][med], ) accs_cond.append( np.mean(np.array(status_extracted_list) == np.array(status_gt_list)) ) f1s_macro_cond.append( sklearn.metrics.f1_score( status_gt_list, status_extracted_list, average="macro" ) ) return accs_cond, f1s_macro_cond
[]
2024-01-10
RaulV10/Lunchi
Lunchi~fetching_recipe.py
import os import sys import openai API_KEY = sys.argv[1] openai.api_key = API_KEY model_id = "gpt-3.5-turbo" def chatgpt_conversation(messages): response = openai.ChatCompletion.create( model=model_id, messages=messages, temperature=0.85, max_tokens=1000 ) return response def main(recipe_type, must_include, dont_include): prompt = f"Please give me a recipe for {recipe_type}. " if must_include: prompt = prompt + f"Please this recipe must include the following ingredients: {must_include}. " if dont_include: prompt = prompt + f"Please this recipe must not include the following ingredients: {dont_include}." messages = [ {'role': 'system', 'content': 'The response must include "Title", "Ingredients", "Steps" and "Time" in a JSON format, the Time option is the estimate preparation time, but leave it only "Time"'}, {'role': 'user', 'content': prompt}, ] try: response_content = chatgpt_conversation(messages)['choices'][0]['message']['content'] print(response_content) except Exception as e: print("Error fetching the recipe.") print(e) if __name__ == "__main__": if len(sys.argv) >= 3: recipe_type = sys.argv[2] must_include = sys.argv[3] dont_include = sys.argv[4] main(recipe_type, must_include, dont_include) else: print("Please provide the API key, recipe type, must include, and don't include as command-line arguments.")
[ "The response must include \"Title\", \"Ingredients\", \"Steps\" and \"Time\" in a JSON format, the Time option is the estimate preparation time, but leave it only \"Time\"", "PLACEHOLDERPlease this recipe must not include the following ingredients: PLACEHOLDER.", "Please give me a recipe for PLACEHOLDER. ", "PLACEHOLDERPlease this recipe must include the following ingredients: PLACEHOLDER. " ]